Sample records for control device discharges

  1. 40 CFR 63.10010 - What are my monitoring, installation, operation, and maintenance requirements?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... that emissions are controlled with a common control device or series of control devices, are discharged... parallel control devices or multiple series of control devices are discharged to the atmosphere through... quality control activities (including, as applicable, calibration checks and required zero and span...

  2. 40 CFR 63.10010 - What are my monitoring, installation, operation, and maintenance requirements?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... that emissions are controlled with a common control device or series of control devices, are discharged... parallel control devices or multiple series of control devices are discharged to the atmosphere through... quality control activities (including, as applicable, calibration checks and required zero and span...

  3. 40 CFR 63.10010 - What are my monitoring, installation, operation, and maintenance requirements?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... emissions are controlled with a common control device or series of control devices, are discharged to the... devices or multiple series of control devices are discharged to the atmosphere through more than one stack... control activities (including, as applicable, calibration checks and required zero and span adjustments...

  4. The variable magnetic baffle as a control device for Kaufman thrusters.

    NASA Technical Reports Server (NTRS)

    Poeschel, R. L.

    1972-01-01

    The variable magnetic baffle described in this paper aids in control of electron flow from the hollow cathode plasma into the main discharge region by augmenting the fringe magnetic field which impedes this electron flow in conventionally baffled Kaufman thrusters. A passive, low loss, and automatic control device is obtained by using the discharge current to excite the control winding. Used in conjunction with typical thruster control loops, stable operation has been obtained over a 10:1 throttling range with a 30 cm thruster. Discharge ignition and overcurrent recycling is also facilitated through use of this device in a permanent magnet thruster.

  5. Preliminary Studies on Aerodynamic Control with Direct Current Discharge at Hypersonic Speed

    NASA Astrophysics Data System (ADS)

    Watanabe, Yasumasa; Takama, Yoshiki; Imamura, Osamu; Watanuki, Tadaharu; Suzuki, Kojiro

    A new idea of an aerodynamic control device for hypersonic vehicles using plasma discharges is presented. The effect of DC plasma discharge on a hypersonic flow is examined with both experiments and CFD analyses. It is revealed that the surface pressure upstream of plasma area significantly increases, which would be preferable in realizing a new aerodynamic control devices. Such pressure rise is also observed in the result of analyses of the Navier-Stokes equations with energy addition that simulates the Joule heating of a plasma discharge. It is revealed that the pressure rise due to the existence of the plasma discharge can be qualitatively explained as an effect of Joule heating.

  6. 49 CFR 178.338-11 - Discharge control devices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... devices. (a) Excess-flow valves are not required. (b) Each liquid filling and liquid discharge line must... tank that is used to transport argon, carbon dioxide, helium, krypton, neon, nitrogen, xenon, or mixtures thereof, each liquid filling and liquid discharge line must be provided with an on-vehicle...

  7. 40 CFR 1700.14 - Marine Pollution Control Device (MPCD) Performance Standards. [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Marine Pollution Control Device (MPCD... UNIFORM NATIONAL DISCHARGE STANDARDS FOR VESSELS OF THE ARMED FORCES Marine Pollution Control Device (MPCD) Performance Standards § 1700.14 Marine Pollution Control Device (MPCD) Performance Standards. [Reserved] ...

  8. 40 CFR 1700.14 - Marine Pollution Control Device (MPCD) Performance Standards. [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Marine Pollution Control Device (MPCD... UNIFORM NATIONAL DISCHARGE STANDARDS FOR VESSELS OF THE ARMED FORCES Marine Pollution Control Device (MPCD) Performance Standards § 1700.14 Marine Pollution Control Device (MPCD) Performance Standards. [Reserved] ...

  9. 40 CFR 1700.14 - Marine Pollution Control Device (MPCD) Performance Standards. [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Marine Pollution Control Device (MPCD... UNIFORM NATIONAL DISCHARGE STANDARDS FOR VESSELS OF THE ARMED FORCES Marine Pollution Control Device (MPCD) Performance Standards § 1700.14 Marine Pollution Control Device (MPCD) Performance Standards. [Reserved] ...

  10. 40 CFR 1700.14 - Marine Pollution Control Device (MPCD) Performance Standards. [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Marine Pollution Control Device (MPCD... UNIFORM NATIONAL DISCHARGE STANDARDS FOR VESSELS OF THE ARMED FORCES Marine Pollution Control Device (MPCD) Performance Standards § 1700.14 Marine Pollution Control Device (MPCD) Performance Standards. [Reserved] ...

  11. 40 CFR 1700.14 - Marine Pollution Control Device (MPCD) Performance Standards. [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Marine Pollution Control Device (MPCD... UNIFORM NATIONAL DISCHARGE STANDARDS FOR VESSELS OF THE ARMED FORCES Marine Pollution Control Device (MPCD) Performance Standards § 1700.14 Marine Pollution Control Device (MPCD) Performance Standards. [Reserved] ...

  12. Uniform National Discharge Standards (UNDS): Rulemaking Process

    EPA Pesticide Factsheets

    The EPA and Department of Defense used a batch rulemaking process for establishing the discharge standards for vessels of the Armed Forces. They identified and evaluated the discharges and determined which require marine pollution control devices.

  13. Grid regulation services for energy storage devices based on grid frequency

    DOEpatents

    Pratt, Richard M; Hammerstrom, Donald J; Kintner-Meyer, Michael C.W.; Tuffner, Francis K

    2013-07-02

    Disclosed herein are representative embodiments of methods, apparatus, and systems for charging and discharging an energy storage device connected to an electrical power distribution system. In one exemplary embodiment, a controller monitors electrical characteristics of an electrical power distribution system and provides an output to a bi-directional charger causing the charger to charge or discharge an energy storage device (e.g., a battery in a plug-in hybrid electric vehicle (PHEV)). The controller can help stabilize the electrical power distribution system by increasing the charging rate when there is excess power in the electrical power distribution system (e.g., when the frequency of an AC power grid exceeds an average value), or by discharging power from the energy storage device to stabilize the grid when there is a shortage of power in the electrical power distribution system (e.g., when the frequency of an AC power grid is below an average value).

  14. Grid regulation services for energy storage devices based on grid frequency

    DOEpatents

    Pratt, Richard M.; Hammerstrom, Donald J.; Kintner-Meyer, Michael C. W.; Tuffner, Francis K.

    2017-09-05

    Disclosed herein are representative embodiments of methods, apparatus, and systems for charging and discharging an energy storage device connected to an electrical power distribution system. In one exemplary embodiment, a controller monitors electrical characteristics of an electrical power distribution system and provides an output to a bi-directional charger causing the charger to charge or discharge an energy storage device (e.g., a battery in a plug-in hybrid electric vehicle (PHEV)). The controller can help stabilize the electrical power distribution system by increasing the charging rate when there is excess power in the electrical power distribution system (e.g., when the frequency of an AC power grid exceeds an average value), or by discharging power from the energy storage device to stabilize the grid when there is a shortage of power in the electrical power distribution system (e.g., when the frequency of an AC power grid is below an average value).

  15. Grid regulation services for energy storage devices based on grid frequency

    DOEpatents

    Pratt, Richard M; Hammerstrom, Donald J; Kintner-Meyer, Michael C.W.; Tuffner, Francis K

    2014-04-15

    Disclosed herein are representative embodiments of methods, apparatus, and systems for charging and discharging an energy storage device connected to an electrical power distribution system. In one exemplary embodiment, a controller monitors electrical characteristics of an electrical power distribution system and provides an output to a bi-directional charger causing the charger to charge or discharge an energy storage device (e.g., a battery in a plug-in hybrid electric vehicle (PHEV)). The controller can help stabilize the electrical power distribution system by increasing the charging rate when there is excess power in the electrical power distribution system (e.g., when the frequency of an AC power grid exceeds an average value), or by discharging power from the energy storage device to stabilize the grid when there is a shortage of power in the electrical power distribution system (e.g., when the frequency of an AC power grid is below an average value).

  16. 40 CFR 60.5250 - What definitions must I know?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... used for discharging combustion gases to avoid severe damage to the air pollution control device or..., 2010. Fabric filter means an add-on air pollution control device used to capture particulate matter by...). (2) A change in the air pollution control devices used to comply with the emission limits for the...

  17. 40 CFR 60.5250 - What definitions must I know?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... used for discharging combustion gases to avoid severe damage to the air pollution control device or..., 2010. Fabric filter means an add-on air pollution control device used to capture particulate matter by...). (2) A change in the air pollution control devices used to comply with the emission limits for the...

  18. 40 CFR 60.5250 - What definitions must I know?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... used for discharging combustion gases to avoid severe damage to the air pollution control device or..., 2010. Fabric filter means an add-on air pollution control device used to capture particulate matter by...). (2) A change in the air pollution control devices used to comply with the emission limits for the...

  19. 40 CFR 60.5250 - What definitions must I know?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... used for discharging combustion gases to avoid severe damage to the air pollution control device or..., 2010. Fabric filter means an add-on air pollution control device used to capture particulate matter by...). (2) A change in the air pollution control devices used to comply with the emission limits for the...

  20. Research on charging and discharging control strategy for electric vehicles as distributed energy storage devices

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Yang, Feng; Zhang, Dongqing; Tang, Pengcheng

    2018-02-01

    A large number of electric vehicles are connected to the family micro grid will affect the operation safety of the power grid and the quality of power. Considering the factors of family micro grid price and electric vehicle as a distributed energy storage device, a two stage optimization model is established, and the improved discrete binary particle swarm optimization algorithm is used to optimize the parameters in the model. The proposed control strategy of electric vehicle charging and discharging is of practical significance for the rational control of electric vehicle as a distributed energy storage device and electric vehicle participating in the peak load regulation of power consumption.

  1. 40 CFR 63.641 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... recovery device (if any) and prior to any control device and prior to discharge to the atmosphere. Group 1..., these four technologies are considered equivalent. Reference control technology for wastewater means the..., not by carbon equivalents. Car-seal means a seal that is placed on a device that is used to change the...

  2. 40 CFR 63.641 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... recovery device (if any) and prior to any control device and prior to discharge to the atmosphere. Group 1..., these four technologies are considered equivalent. Reference control technology for wastewater means the..., not by carbon equivalents. Car-seal means a seal that is placed on a device that is used to change the...

  3. 40 CFR 63.641 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... recovery device (if any) and prior to any control device and prior to discharge to the atmosphere. Group 1..., these four technologies are considered equivalent. Reference control technology for wastewater means the..., not by carbon equivalents. Car-seal means a seal that is placed on a device that is used to change the...

  4. 40 CFR 63.641 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... recovery device (if any) and prior to any control device and prior to discharge to the atmosphere. Group 1..., these four technologies are considered equivalent. Reference control technology for wastewater means the..., not by carbon equivalents. Car-seal means a seal that is placed on a device that is used to change the...

  5. 40 CFR 63.641 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... recovery device (if any) and prior to any control device and prior to discharge to the atmosphere. Group 1..., these four technologies are considered equivalent. Reference control technology for wastewater means the..., not by carbon equivalents. Car-seal means a seal that is placed on a device that is used to change the...

  6. 40 CFR 60.4930 - What definitions must I know?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... stack means a device used for discharging combustion gases to avoid severe damage to the air pollution..., 2010. Fabric filter means an add-on air pollution control device used to capture particulate matter by... sludge prior to incineration). (2) A change in the air pollution control devices used to comply with the...

  7. 40 CFR 60.4930 - What definitions must I know?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... stack means a device used for discharging combustion gases to avoid severe damage to the air pollution..., 2010. Fabric filter means an add-on air pollution control device used to capture particulate matter by... sludge prior to incineration). (2) A change in the air pollution control devices used to comply with the...

  8. 40 CFR 60.4930 - What definitions must I know?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... stack means a device used for discharging combustion gases to avoid severe damage to the air pollution..., 2010. Fabric filter means an add-on air pollution control device used to capture particulate matter by... sludge prior to incineration). (2) A change in the air pollution control devices used to comply with the...

  9. 40 CFR 60.4930 - What definitions must I know?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... stack means a device used for discharging combustion gases to avoid severe damage to the air pollution..., 2010. Fabric filter means an add-on air pollution control device used to capture particulate matter by... sludge prior to incineration). (2) A change in the air pollution control devices used to comply with the...

  10. Refrigeration system with a compressor-pump unit and a liquid-injection desuperheating line

    DOEpatents

    Gaul, Christopher J.

    2001-01-01

    The refrigeration system includes a compressor-pump unit and/or a liquid-injection assembly. The refrigeration system is a vapor-compression refrigeration system that includes an expansion device, an evaporator, a compressor, a condenser, and a liquid pump between the condenser and the expansion device. The liquid pump improves efficiency of the refrigeration system by increasing the pressure of, thus subcooling, the liquid refrigerant delivered from the condenser to the expansion device. The liquid pump and the compressor are driven by a single driving device and, in this regard, are coupled to a single shaft of a driving device, such as a belt-drive, an engine, or an electric motor. While the driving device may be separately contained, in a preferred embodiment, the liquid pump, the compressor, and the driving device (i.e., an electric motor) are contained within a single sealable housing having pump and driving device cooling paths to subcool liquid refrigerant discharged from the liquid pump and to control the operating temperature of the driving device. In another aspect of the present invention, a liquid injection assembly is included in a refrigeration system to divert liquid refrigerant from the discharge of a liquid pressure amplification pump to a compressor discharge pathway within a compressor housing to desuperheat refrigerant vapor to the saturation point within the compressor housing. The liquid injection assembly includes a liquid injection pipe with a control valve to meter the volume of diverted liquid refrigerant. The liquid injection assembly may also include a feedback controller with a microprocessor responsive to a pressure sensor and a temperature sensor both positioned between the compressor to operate the control valve to maintain the refrigerant at or near saturation.

  11. 40 CFR 112.11 - Spill Prevention, Control, and Countermeasure Plan requirements for offshore oil drilling...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... level sensing devices that activate an alarm or control the flow, or otherwise prevent discharges. (f) Equip pressure containers with high and low pressure sensing devices that activate an alarm or control... flow conditions, combination of pressure and flow, manual or remote control mechanisms. (k) Install a...

  12. 40 CFR 63.2292 - What definitions apply to this subpart?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... designed and maintained to capture all emissions for discharge through a control device. Work practice..., wheat straw, rice straw, and bagasse. Biofilter means an enclosed control system such as a tank or... collected by a capture device. Catalytic oxidizer means a control system that combusts or oxidizes, in the...

  13. Quantifying opportunities for hospital cost control: medical device purchasing and patient discharge planning.

    PubMed

    Robinson, James C; Brown, Timothy T

    2014-09-01

    To quantify the potential reduction in hospital costs from adoption of best local practices in supply chain management and discharge planning. We performed multivariate statistical analyses of the association between total variable cost per procedure and medical device price and length of stay, controlling for patient and hospital characteristics. Ten hospitals in 1 major metropolitan area supplied patient-level administrative data on 9778 patients undergoing joint replacement, spine fusion, or cardiac rhythm management (CRM) procedures in 2008 and 2010. The impact on each hospital of matching lowest local market device prices and lowest patient length of stay (LOS) was calculated using multivariate regression analysis controlling for patient demographics, diagnoses, comorbidities, and implications. Average variable costs ranged from $11,315 for joint replacement to $16,087 for CRM and $18,413 for spine fusion. Implantable medical devices accounted for a large share of each procedure's variable costs: 44% for joint replacement, 39% for spine fusion, and 59% for CRM. Device prices and patient length-of-stay exhibited wide variation across hospitals. Total potential hospital cost savings from achieving best local practices in device prices and patient length of stay are 14.5% for joint replacement, 18.8% for spine fusion;,and 29.1% for CRM. Hospitals have opportunities for cost reduction from adoption of best local practices in supply chain management and discharge planning.

  14. Advanced hybrid particulate collector and method of operation

    DOEpatents

    Miller, Stanley J [Grand Forks, ND

    2003-04-08

    A device and method for controlling particulate air pollutants of the present invention combines filtration and electrostatic collection devices. The invention includes a chamber housing a plurality of rows of filter elements. Between the rows of filter elements are rows of high voltage discharge electrodes. Between the rows of discharge electrodes and the rows of filter elements are grounded perforated plates for creating electrostatic precipitation zones.

  15. GAS DISCHARGE DEVICES

    DOEpatents

    Arrol, W.J.; Jefferson, S.

    1957-08-27

    The construction of gas discharge devices where the object is to provide a gas discharge device having a high dark current and stabilized striking voltage is described. The inventors have discovered that the introduction of tritium gas into a discharge device with a subsequent electrical discharge in the device will deposit tritium on the inside of the chamber. The tritium acts to emit beta rays amd is an effective and non-hazardous way of improving the abovementioned discharge tube characteristics

  16. 33 CFR 159.317 - Sampling and reporting.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) POLLUTION MARINE SANITATION DEVICES Discharge of Effluents in Certain Alaskan Waters by Cruise Vessel... cruise vessel that discharges treated sewage and/or graywater in the applicable waters of Alaska shall.../Quality Control Plan (QA/QCP) accepted by the COTP for sampling and analysis of treated sewage and/or...

  17. 33 CFR 159.317 - Sampling and reporting.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) POLLUTION MARINE SANITATION DEVICES Discharge of Effluents in Certain Alaskan Waters by Cruise Vessel... cruise vessel that discharges treated sewage and/or graywater in the applicable waters of Alaska shall.../Quality Control Plan (QA/QCP) accepted by the COTP for sampling and analysis of treated sewage and/or...

  18. 33 CFR 159.317 - Sampling and reporting.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) POLLUTION MARINE SANITATION DEVICES Discharge of Effluents in Certain Alaskan Waters by Cruise Vessel... cruise vessel that discharges treated sewage and/or graywater in the applicable waters of Alaska shall.../Quality Control Plan (QA/QCP) accepted by the COTP for sampling and analysis of treated sewage and/or...

  19. Model of Pressure Distribution in Vortex Flow Controls

    NASA Astrophysics Data System (ADS)

    Mielczarek, Szymon; Sawicki, Jerzy M.

    2015-06-01

    Vortex valves belong to the category of hydrodynamic flow controls. They are important and theoretically interesting devices, so complex from hydraulic point of view, that probably for this reason none rational concept of their operation has been proposed so far. In consequence, functioning of vortex valves is described by CFD-methods (computer-aided simulation of technical objects) or by means of simple empirical relations (using discharge coefficient or hydraulic loss coefficient). Such rational model of the considered device is proposed in the paper. It has a simple algebraic form, but is well grounded physically. The basic quantitative relationship, which describes the valve operation, i.e. dependence between the flow discharge and the circumferential pressure head, caused by the rotation, has been verified empirically. Conformity between calculated and measured parameters of the device allows for acceptation of the proposed concept.

  20. Hybrid method of making an amorphous silicon P-I-N semiconductor device

    DOEpatents

    Moustakas, Theodore D.; Morel, Don L.; Abeles, Benjamin

    1983-10-04

    The invention is directed to a hydrogenated amorphous silicon PIN semiconductor device of hybrid glow discharge/reactive sputtering fabrication. The hybrid fabrication method is of advantage in providing an ability to control the optical band gap of the P and N layers, resulting in increased photogeneration of charge carriers and device output.

  1. Autonomous Method and System for Minimizing the Magnitude of Plasma Discharge Current Oscillations in a Hall Effect Plasma Device

    NASA Technical Reports Server (NTRS)

    Hruby, Vladimir (Inventor); Demmons, Nathaniel (Inventor); Ehrbar, Eric (Inventor); Pote, Bruce (Inventor); Rosenblad, Nathan (Inventor)

    2014-01-01

    An autonomous method for minimizing the magnitude of plasma discharge current oscillations in a Hall effect plasma device includes iteratively measuring plasma discharge current oscillations of the plasma device and iteratively adjusting the magnet current delivered to the plasma device in response to measured plasma discharge current oscillations to reduce the magnitude of the plasma discharge current oscillations.

  2. 49 CFR 180.416 - Discharge system inspection and maintenance program for cargo tanks transporting liquefied...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... with a unique identification number and maximum working pressure. (c) Post-delivery hose check. After... during the unloading. (d) Monthly inspections and tests. (1) The operator must visually inspect each... operator must actuate all emergency discharge control devices designed to close the internal self-closing...

  3. 49 CFR 180.416 - Discharge system inspection and maintenance program for cargo tanks transporting liquefied...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... unique identification number and maximum working pressure. (c) Post-delivery hose check. After each... unloading. (d) Monthly inspections and tests. (1) The operator must visually inspect each delivery hose... actuate all emergency discharge control devices designed to close the internal self-closing stop valve to...

  4. 49 CFR 180.416 - Discharge system inspection and maintenance program for cargo tanks transporting liquefied...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... unique identification number and maximum working pressure. (c) Post-delivery hose check. After each... unloading. (d) Monthly inspections and tests. (1) The operator must visually inspect each delivery hose... actuate all emergency discharge control devices designed to close the internal self-closing stop valve to...

  5. 49 CFR 180.416 - Discharge system inspection and maintenance program for cargo tanks transporting liquefied...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... unique identification number and maximum working pressure. (c) Post-delivery hose check. After each... unloading. (d) Monthly inspections and tests. (1) The operator must visually inspect each delivery hose... actuate all emergency discharge control devices designed to close the internal self-closing stop valve to...

  6. 49 CFR 180.416 - Discharge system inspection and maintenance program for cargo tanks transporting liquefied...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... unique identification number and maximum working pressure. (c) Post-delivery hose check. After each... unloading. (d) Monthly inspections and tests. (1) The operator must visually inspect each delivery hose... actuate all emergency discharge control devices designed to close the internal self-closing stop valve to...

  7. 75 FR 41078 - Revisions to the Commerce Control List To Update and Clarify Crime Control License Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-15

    ... * * * * * 0A985 Discharge type arms and devices to administer electric shock, for example, stun guns, shock batons, shock shields, electric cattle prods, immobilization guns and projectiles; except equipment used...

  8. A symmetric supercapacitor/biofuel cell hybrid device based on enzyme-modified nanoporous gold: An autonomous pulse generator.

    PubMed

    Xiao, Xinxin; Conghaile, Peter Ó; Leech, Dónal; Ludwig, Roland; Magner, Edmond

    2017-04-15

    The integration of supercapacitors with enzymatic biofuel cells (BFCs) can be used to prepare hybrid devices in order to harvest significantly higher power output. In this study, a supercapacitor/biofuel cell hybrid device was prepared by the immobilisation of redox enzymes with electrodeposited poly(3,4-ethylenedioxythiophene) (PEDOT) and the redox polymer [Os(2,2'-bipyridine) 2 (polyvinylimidazole) 10 Cl] +/2+ (Os(bpy) 2 PVI) on dealloyed nanoporous gold. The thickness of the deposition layer can be easily controlled by tuning the deposition conditions. Once charged by the internal BFC, the device can be discharged as a supercapacitor at a current density of 2mAcm -2 providing a maximum power density of 608.8μWcm -2 , an increase of a factor of 468 when compared to the power output from the BFC itself. The hybrid device exhibited good operational stability for 50 charge/discharge cycles and ca. 7h at a discharge current density of 0.2mAcm -2 . The device could be used as a pulse generator, mimicking a cardiac pacemaker delivering pulses of 10μA for 0.5ms at a frequency of 0.2Hz. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Status of the Superconducting Insertion Device Control at TLS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, K. H.; Wang, C. J.; Lee, Demi

    2007-01-19

    Superconducting insertion devices are installed at Taiwan Light Source to meet the rapidly growing demand of X-ray users. A control system supports the operation of all these superconducting insertion devices. Control system coordinates the operation of the main power supply and the trimming power supply to charge/discharge the magnet and provide essential interlock protection for the coils and vacuum ducts. Quench protection and various cryogenic interlocks are designed to prevent damage to the magnet. A friendly user interface supports routine operation. Various applications are also developed to aid the operation of these insertion devices. Design consideration and details of themore » implementation will be summarized in this report.« less

  10. Chapter 8: Plasma operation and control

    NASA Astrophysics Data System (ADS)

    ITER Physics Expert Group on Disruptions, Control, Plasma, and MHD; ITER Physics Expert Group on Energetic Particles, Heating, Current and Drive; ITER Physics Expert Group on Diagnostics; ITER Physics Basis Editors

    1999-12-01

    Wall conditioning of fusion devices involves removal of desorbable hydrogen isotopes and impurities from interior device surfaces to permit reliable plasma operation. Techniques used in present devices include baking, metal film gettering, deposition of thin films of low-Z material, pulse discharge cleaning, glow discharge cleaning, radio frequency discharge cleaning, and in situ limiter and divertor pumping. Although wall conditioning techniques have become increasingly sophisticated, a reactor scale facility will involve significant new challenges, including the development of techniques applicable in the presence of a magnetic field and of methods for efficient removal of tritium incorporated into co-deposited layers on plasma facing components and their support structures. The current status of various approaches is reviewed, and the implications for reactor scale devices are summarized. Creation and magnetic control of shaped and vertically unstable elongated plasmas have been mastered in many present tokamaks. The physics of equilibrium control for reactor scale plasmas will rely on the same principles, but will face additional challenges, exemplified by the ITER/FDR design. The absolute positioning of outermost flux surface and divertor strike points will have to be precise and reliable in view of the high heat fluxes at the separatrix. Long pulses will require minimal control actions, to reduce accumulation of AC losses in superconducting PF and TF coils. To this end, more complex feedback controllers are envisaged, and the experimental validation of the plasma equilibrium response models on which such controllers are designed is encouraging. Present simulation codes provide an adequate platform on which equilibrium response techniques can be validated. Burning plasmas require kinetic control in addition to traditional magnetic shape and position control. Kinetic control refers to measures controlling density, rotation and temperature in the plasma core as well as in plasma periphery and divertor. The planned diagnostics (Chapter 7) serve as sensors for kinetic control, while gas and pellet fuelling, auxiliary power and angular momentum input, impurity injection, and non-inductive current drive constitute the control actuators. For example, in an ignited plasma, core density controls fusion power output. Kinetic control algorithms vary according to the plasma state, e.g. H- or L-mode. Generally, present facilities have demonstrated the kinetic control methods required for a reactor scale device. Plasma initiation - breakdown, burnthrough and initial current ramp - in reactor scale tokamaks will not involve physics differing from that found in present day devices. For ITER, the induced electric field in the chamber will be ~0.3V· m-1 - comparable to that required by breakdown theory but somewhat smaller than in present devices. Thus, a start-up 3MW electron cyclotron heating system will be employed to assure burnthrough. Simulations show that plasma current ramp up and termination in a reactor scale device can follow procedures developed to avoid disruption in present devices. In particular, simulations remain in the stable area of the li-q plane. For design purposes, the resistive V·s consumed during initiation is found, by experiments, to follow the Ejima expression, 0.45μ0 RIp. Advanced tokamak control has two distinct goals. First, control of density, auxiliary power, and inductive current ramping to attain reverse shear q profiles and internal transport barriers, which persist until dissipated by magnetic flux diffusion. Such internal transport barriers can lead to transient ignition. Second, combined use poloidal field shape control with non-inductive current drive and NBI angular momentum injection to create and control steady state, high bootstrap fraction, reverse shear discharges. Active n = 1 magnetic feedback and/or driven rotation will be required to suppress resistive wall modes for steady state plasmas that must operate in the wall stabilized regime for reactor levels of β >= 0.03.

  11. A miniature Hopkinson experiment device based on multistage reluctance coil electromagnetic launch.

    PubMed

    Huang, Wenkai; Huan, Shi; Xiao, Ying

    2017-09-01

    A set of seven-stage reluctance miniaturized Hopkinson bar electromagnetic launcher has been developed in this paper. With the characteristics of high precision, small size, and little noise pollution, the device complies with the requirements of miniaturized Hopkinson bar for high strain rate. The launcher is a seven-stage accelerating device up to 65.5 m/s. A high performance microcontroller is used to control accurately the discharge of capacitor sets, by means of which the outlet velocity of the projectile can be controlled within a certain velocity range.

  12. A miniature Hopkinson experiment device based on multistage reluctance coil electromagnetic launch

    NASA Astrophysics Data System (ADS)

    Huang, Wenkai; Huan, Shi; Xiao, Ying

    2017-09-01

    A set of seven-stage reluctance miniaturized Hopkinson bar electromagnetic launcher has been developed in this paper. With the characteristics of high precision, small size, and little noise pollution, the device complies with the requirements of miniaturized Hopkinson bar for high strain rate. The launcher is a seven-stage accelerating device up to 65.5 m/s. A high performance microcontroller is used to control accurately the discharge of capacitor sets, by means of which the outlet velocity of the projectile can be controlled within a certain velocity range.

  13. Self-Protection of Electrochemical Storage Devices via a Thermal Reversible Sol-Gel Transition.

    PubMed

    Yang, Hui; Liu, Zhiyuan; Chandran, Bevita K; Deng, Jiyang; Yu, Jiancan; Qi, Dianpeng; Li, Wenlong; Tang, Yuxin; Zhang, Chenguang; Chen, Xiaodong

    2015-10-07

    Thermal self-protected intelligent electrochemical storage devices are fabricated using a reversible sol-gel transition of the electrolyte, which can decrease the specific capacitance and increase and enable temperature-dependent charging and discharging rates in the device. This work represents proof of a simple and useful concept, which shows tremendous promise for the safe and controlled power delivery in electrochemical devices. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. 10 CFR 431.322 - Definitions concerning metal halide lamp ballasts and fixtures.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... main functions. Ballast means a device used with an electric discharge lamp to obtain necessary circuit... mode. Electronic ballast means a device that uses semiconductors as the primary means to control lamp..., and does not generally contain an igniter but instead starts lamps with high ballast open circuit...

  15. 10 CFR 431.322 - Definitions concerning metal halide lamp ballasts and fixtures.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... main functions. Ballast means a device used with an electric discharge lamp to obtain necessary circuit... mode. Electronic ballast means a device that uses semiconductors as the primary means to control lamp..., and does not generally contain an igniter but instead starts lamps with high ballast open circuit...

  16. 10 CFR 431.322 - Definitions concerning metal halide lamp ballasts and fixtures.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... main functions. Ballast means a device used with an electric discharge lamp to obtain necessary circuit... mode. Electronic ballast means a device that uses semiconductors as the primary means to control lamp..., and does not generally contain an igniter but instead starts lamps with high ballast open circuit...

  17. Control of stochastic sensitivity in a stabilization problem for gas discharge system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bashkirtseva, Irina

    2015-11-30

    We consider a nonlinear dynamic stochastic system with control. A problem of stochastic sensitivity synthesis of the equilibrium is studied. A mathematical technique of the solution of this problem is discussed. This technique is applied to the problem of the stabilization of the operating mode for the stochastic gas discharge system. We construct a feedback regulator that reduces the stochastic sensitivity of the equilibrium, suppresses large-amplitude oscillations, and provides a proper operation of this engineering device.

  18. Three-electrode low pressure discharge apparatus and method for uniform ionization of gaseous media

    DOEpatents

    McLellan, Edward J.

    1983-01-01

    Uniform, transverse electrical discharges are produced in gaseous media without the necessity of switching the main discharge voltage with an external device which carries the entire discharge current. A three-electrode low pressure discharge tube is charged across its anode (1) and cathode (2) to below breakdown voltage using a dc voltage source (3). An array of resistors (4) or capacitors can be made to discharge to the wire screen anode by means of a low energy high voltage pulse circuit (5) producing sufficient preionization in the region between the anode and cathode to initiate and control the main discharge. The invention has been demonstrated to be useful as a CO.sub.2 laser oscillator and pulse-smoother. It can be reliably operated in the sealed-off mode.

  19. Self-learning control system for plug-in hybrid vehicles

    DOEpatents

    DeVault, Robert C [Knoxville, TN

    2010-12-14

    A system is provided to instruct a plug-in hybrid electric vehicle how optimally to use electric propulsion from a rechargeable energy storage device to reach an electric recharging station, while maintaining as high a state of charge (SOC) as desired along the route prior to arriving at the recharging station at a minimum SOC. The system can include the step of calculating a straight-line distance and/or actual distance between an orientation point and the determined instant present location to determine when to initiate optimally a charge depleting phase. The system can limit extended driving on a deeply discharged rechargeable energy storage device and reduce the number of deep discharge cycles for the rechargeable energy storage device, thereby improving the effective lifetime of the rechargeable energy storage device. This "Just-in-Time strategy can be initiated automatically without operator input to accommodate the unsophisticated operator and without needing a navigation system/GPS input.

  20. Kinetically driven self-assembly of a binary solute mixture with controlled phase separation via electro-hydrodynamic flow of corona discharge.

    PubMed

    Jung, Hee Joon; Huh, June; Park, Cheolmin

    2012-10-21

    This feature article describes a new and facile process to fabricate a variety of thin films of non-volatile binary solute mixtures suitable for high performance organic electronic devices via electro-hydrodynamic flow of conventional corona discharge. Both Corona Discharge Coating (CDC) and a modified version of CDC, Scanning Corona Discharge Coating (SCDC), are based on utilizing directional electric flow, known as corona wind, of the charged uni-polar particles generated by corona discharge between a metallic needle and a bottom plate under a high electric field (5-10 kV cm(-1)). The electric flow rapidly spreads out the binary mixture solution on the bottom plate and subsequently forms a smooth and flat thin film in a large area within a few seconds. In the case of SCDC, the static movement of the bottom electrode on which a binary mixture solution is placed provides further control of thin film formation, giving rise to a film highly uniform over a large area. Interesting phase separation behaviors were observed including nanometer scale phase separation of a polymer-polymer binary mixture and vertical phase separation of a polymer-organic semiconductor mixture. Core-shell type phase separation of either polymer-polymer or polymer-colloidal nanoparticle binary mixtures was also developed with a periodically patterned microstructure when the relative location of the corona wind was controlled to a binary solution droplet on a substrate. We also demonstrate potential applications of thin functional films with controlled microstructures by corona coating to various organic electronic devices such as electroluminescent diodes, field effect transistors and non-volatile polymer memories.

  1. Kinetically driven self-assembly of a binary solute mixture with controlled phase separation via electro-hydrodynamic flow of corona discharge

    NASA Astrophysics Data System (ADS)

    Jung, Hee Joon; Huh, June; Park, Cheolmin

    2012-09-01

    This feature article describes a new and facile process to fabricate a variety of thin films of non-volatile binary solute mixtures suitable for high performance organic electronic devices via electro-hydrodynamic flow of conventional corona discharge. Both Corona Discharge Coating (CDC) and a modified version of CDC, Scanning Corona Discharge Coating (SCDC), are based on utilizing directional electric flow, known as corona wind, of the charged uni-polar particles generated by corona discharge between a metallic needle and a bottom plate under a high electric field (5-10 kV cm-1). The electric flow rapidly spreads out the binary mixture solution on the bottom plate and subsequently forms a smooth and flat thin film in a large area within a few seconds. In the case of SCDC, the static movement of the bottom electrode on which a binary mixture solution is placed provides further control of thin film formation, giving rise to a film highly uniform over a large area. Interesting phase separation behaviors were observed including nanometer scale phase separation of a polymer-polymer binary mixture and vertical phase separation of a polymer-organic semiconductor mixture. Core-shell type phase separation of either polymer-polymer or polymer-colloidal nanoparticle binary mixtures was also developed with a periodically patterned microstructure when the relative location of the corona wind was controlled to a binary solution droplet on a substrate. We also demonstrate potential applications of thin functional films with controlled microstructures by corona coating to various organic electronic devices such as electroluminescent diodes, field effect transistors and non-volatile polymer memories.

  2. Compact atmospheric pressure plasma self-resonant drive circuits

    NASA Astrophysics Data System (ADS)

    Law, V. J.; Anghel, S. D.

    2012-02-01

    This paper reports on compact solid-state self-resonant drive circuits that are specifically designed to drive an atmospheric pressure plasma jet and a parallel-plate dielectric barrier discharge of small volume (0.5 cm3). The atmospheric pressure plasma (APP) device can be operated with helium, argon or a mixture of both. Equivalent electrical models of the self-resonant drive circuits and discharge are developed and used to estimate the plasma impedance, plasma power density, current density or electron number density of three APP devices. These parameters and the kinetic gas temperature are dependent on the self-resonant frequency of the APP device. For a fixed switching frequency and APP device geometry, the plasma parameters are controlled by adjusting the dc voltage at the primary coil and the gas flow rate. The resonant frequency is controlled by the selection of the switching power transistor and means of step-up voltage transformation (ferrite core, flyback transformer, or Tesla coil). The flyback transformer operates in the tens of kHz, the ferrite core in the hundreds of kHz and Tesla coil in the MHz range. Embedded within this work is the principle of frequency pulling which is exemplified in the flyback transformer circuit that utilizes a pickup coil for feedback control of the switching frequency.

  3. 40 CFR 63.2292 - What definitions apply to this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... designed and maintained to capture all emissions for discharge through a control device. Work practice..., and bagasse. Biofilter means an enclosed control system such as a tank or series of tanks with a fixed.... Catalytic oxidizer means a control system that combusts or oxidizes, in the presence of a catalyst, exhaust...

  4. Integrated Computer Controlled Glow Discharge Tube

    NASA Astrophysics Data System (ADS)

    Kaiser, Erik; Post-Zwicker, Andrew

    2002-11-01

    An "Interactive Plasma Display" was created for the Princeton Plasma Physics Laboratory to demonstrate the characteristics of plasma to various science education outreach programs. From high school students and teachers, to undergraduate students and visitors to the lab, the plasma device will be a key component in advancing the public's basic knowledge of plasma physics. The device is fully computer controlled using LabVIEW, a touchscreen Graphical User Interface [GUI], and a GPIB interface. Utilizing a feedback loop, the display is fully autonomous in controlling pressure, as well as in monitoring the safety aspects of the apparatus. With a digital convectron gauge continuously monitoring pressure, the computer interface analyzes the input signals, while making changes to a digital flow controller. This function works independently of the GUI, allowing the user to simply input and receive a desired pressure; quickly, easily, and intuitively. The discharge tube is a 36" x 4"id glass cylinder with 3" side port. A 3000 volt, 10mA power supply, is used to breakdown the plasma. A 300 turn solenoid was created to demonstrate the magnetic pinching of a plasma. All primary functions of the device are controlled through the GUI digital controllers. This configuration allows for operators to safely control the pressure (100mTorr-1Torr), magnetic field (0-90Gauss, 7amps, 10volts), and finally, the voltage applied across the electrodes (0-3000v, 10mA).

  5. Pore structures in an implantable sol gel titania ceramic device used in controlled drug release applications: A modeling study

    NASA Astrophysics Data System (ADS)

    Peterson, Aaron; Lopez, Tessy; Islas, Emma Ortiz; Gonzalez, Richard D.

    2007-04-01

    Several process variables, which may be helpful in optimizing the rate at which drugs are released from implantable, sol-gel titania devices have been identified in this study. The controlled rate of drug release is compared for two different anticonvulsant drugs, valproic acid and sodic phenytoin. Contrary to what one might expect, when the concentration is increased in the titania reservoir the rate of initial drug delivery decreases. This is a desirable result, because it may reduce the danger of a high initial discharge, which may harm the epileptic rat. The structure of the porous structure within the titania network has been studied using a generalized form of the BET equation which considers only n layers. In general, following an initial discharge, the rate at which the drug is released will increase with the increasing concentration. Pore mouth blocking can present a problem. However, this problem tends to disappear following the initial discharge. The extent of drug loading is a useful variable parameter, which can be adjusted in order to deliver the amount of drug required in a given application.

  6. Three-electrode low pressure discharge apparatus and method for uniform ionization of gaseous media. [CO/sub 2/ laser oscillator and pulse smoother

    DOEpatents

    McLellan, E.J.

    1980-10-17

    Uniform, transverse electrical discharges are produced in gaseous media without the necessity of switching the main discharge voltage with an external device which carries the entire discharge current. A three-electrode low pressure discharge tube is charged across its anode and cathode to below breakdown voltage using a dc voltage source. An array of resistors or capacitors can be made to discharge to the wire screen anode by means of a low energy high voltage pulse circuit producing sufficient preionization in the region between the anode and cathode to initiate and control the main discharge. The invention has been demonstrated to be useful as a CO/sub 2/ laser oscillator and pulse-smoother. It can be reliably operated in the sealed-off mode.

  7. Means of introducing an analyte into liquid sampling atmospheric pressure glow discharge

    DOEpatents

    Marcus, R. Kenneth; Quarles, Jr., Charles Derrick; Russo, Richard E.; Koppenaal, David W.; Barinaga, Charles J.; Carado, Anthony J.

    2017-01-03

    A liquid sampling, atmospheric pressure, glow discharge (LS-APGD) device as well as systems that incorporate the device and methods for using the device and systems are described. The LS-APGD includes a hollow capillary for delivering an electrolyte solution to a glow discharge space. The device also includes a counter electrode in the form of a second hollow capillary that can deliver the analyte into the glow discharge space. A voltage across the electrolyte solution and the counter electrode creates the microplasma within the glow discharge space that interacts with the analyte to move it to a higher energy state (vaporization, excitation, and/or ionization of the analyte).

  8. Drilling Precise Orifices and Slots

    NASA Technical Reports Server (NTRS)

    Richards, C. W.; Seidler, J. E.

    1983-01-01

    Reaction control thrustor injector requires precisely machined orifices and slots. Tooling setup consists of rotary table, numerical control system and torque sensitive drill press. Components used to drill oxidizer orifices. Electric discharge machine drills fuel-feed orifices. Device automates production of identical parts so several are completed in less time than previously.

  9. 40 CFR 63.4581 - What definitions apply to this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... National Emission Standards for Hazardous Air Pollutants for Surface Coating of Plastic Parts and Products...). Add-on control means an air pollution control device, such as a thermal oxidizer or carbon adsorber, that reduces pollution in an air stream by destruction or removal before discharge to the atmosphere...

  10. 40 CFR 63.4581 - What definitions apply to this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... National Emission Standards for Hazardous Air Pollutants for Surface Coating of Plastic Parts and Products...). Add-on control means an air pollution control device, such as a thermal oxidizer or carbon adsorber, that reduces pollution in an air stream by destruction or removal before discharge to the atmosphere...

  11. 40 CFR 63.11526 - What are the standards for new and existing ferroalloys production facilities?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... must not discharge to the atmosphere visible emissions (VE) from the control device that exceed 5... atmosphere fugitive PM emissions from the furnace building containing the electrometallurgical operations...

  12. 40 CFR 63.11526 - What are the standards for new and existing ferroalloys production facilities?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... must not discharge to the atmosphere visible emissions (VE) from the control device that exceed 5... atmosphere fugitive PM emissions from the furnace building containing the electrometallurgical operations...

  13. 40 CFR 63.11526 - What are the standards for new and existing ferroalloys production facilities?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... must not discharge to the atmosphere visible emissions (VE) from the control device that exceed 5... atmosphere fugitive PM emissions from the furnace building containing the electrometallurgical operations...

  14. 40 CFR 63.11526 - What are the standards for new and existing ferroalloys production facilities?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... must not discharge to the atmosphere visible emissions (VE) from the control device that exceed 5... atmosphere fugitive PM emissions from the furnace building containing the electrometallurgical operations...

  15. 40 CFR 63.11526 - What are the standards for new and existing ferroalloys production facilities?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... must not discharge to the atmosphere visible emissions (VE) from the control device that exceed 5... atmosphere fugitive PM emissions from the furnace building containing the electrometallurgical operations...

  16. Dissociation phenomena in electron-beam sustained carbon dioxide lasers

    NASA Technical Reports Server (NTRS)

    Harris, Michael R.; Willetts, David V.

    1990-01-01

    A number of applications are emerging requiring efficient, long pulse, long-life sealed CO2 lasers. Examples include the proposed NASA and ESA wind lidars. Electron-beam sustained discharge devices are strong contenders. Unlike self-sustained discharges, e-beam sustenance readily provides efficient performance from large volume discharges and offers pulse lengths well in excess of the microsecond or so generally associated with self-sustained devices. In the case of the e-beam sustained laser, since the plasma is externally maintained and operated at electric field strengths less than that associated with the glow to arc transition, the discharges can be run even in the presence of strongly attacking species such as O2. Build up of large levels of attacking contaminants is nevertheless undesirable as their presence reduces the current drawn by the plasma and thus the pumping rate to the upper laser level. The impedance rise leads to a mismatch of the pulse forming network with a consequent loss of control over energy deposition, operating E/N, and gain. Clearly CO2 dissociation rates, the influence of dissociation products on the discharge and gain, and tolerance of the discharge to these products need to be determined. This information can then be used to assess co-oxidation catalyst requirements for sealed operation.

  17. Resuscitation Outcomes Consortium (ROC) PRIMED cardiac arrest trial methods part 1: rationale and methodology for the impedance threshold device (ITD) protocol.

    PubMed

    Aufderheide, Tom P; Kudenchuk, Peter J; Hedges, Jerris R; Nichol, Graham; Kerber, Richard E; Dorian, Paul; Davis, Daniel P; Idris, Ahamed H; Callaway, Clifton W; Emerson, Scott; Stiell, Ian G; Terndrup, Thomas E

    2008-08-01

    The primary aim of this study is to compare survival to hospital discharge with a modified Rankin score (MRS)< or =3 between standard cardiopulmonary resuscitation (CPR) plus an active impedance threshold device (ITD) versus standard CPR plus a sham ITD in patients with out-of-hospital cardiac arrest. Secondary aims are to compare functional status and depression at discharge and at 3 and 6 months post-discharge in survivors. Prospective, double-blind, randomized, controlled, clinical trial. Patients with non-traumatic out-of-hospital cardiac arrest treated by emergency medical services (EMS) providers. EMS systems participating in the Resuscitation Outcomes Consortium. Based on a one-sided significance level of 0.025, power=0.90, a survival with MRS< or =3 to discharge rate of 5.33% with standard CPR and sham ITD, and two interim analyses, a maximum of 14,742 evaluable patients are needed to detect a 6.69% survival with MRS< or =3 to discharge with standard CPR and active ITD (1.36% absolute survival difference). If the ITD demonstrates the hypothesized improvement in survival, it is estimated that 2700 deaths from cardiac arrest per year would be averted in North America alone.

  18. National Contingency Plan Subpart J

    EPA Pesticide Factsheets

    Subpart J of the National Oil and Hazardous Substances Pollution Contingency Plan (NCP) directs EPA to prepare a schedule of dispersants, other chemicals, and oil spill mitigating devices and substances that may be used to remove or control oil discharges.

  19. 30 CFR 75.1107-6 - Capacity of fire suppression devices; location and direction of nozzles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... withstand rough usage and vibration when installed on mining equipment. (b) The extinguishant-discharge..., or combination type. Where fire control is achieved by internal injection, or combination of internal...

  20. 30 CFR 75.1107-6 - Capacity of fire suppression devices; location and direction of nozzles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... withstand rough usage and vibration when installed on mining equipment. (b) The extinguishant-discharge..., or combination type. Where fire control is achieved by internal injection, or combination of internal...

  1. 30 CFR 75.1107-6 - Capacity of fire suppression devices; location and direction of nozzles.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... withstand rough usage and vibration when installed on mining equipment. (b) The extinguishant-discharge..., or combination type. Where fire control is achieved by internal injection, or combination of internal...

  2. 30 CFR 75.1107-6 - Capacity of fire suppression devices; location and direction of nozzles.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... withstand rough usage and vibration when installed on mining equipment. (b) The extinguishant-discharge..., or combination type. Where fire control is achieved by internal injection, or combination of internal...

  3. GAS DISCHARGE DEVICES

    DOEpatents

    Jefferson, S.

    1958-11-11

    An apparatus utilized in introducing tritium gas into envelope of a gas discharge device for the purpose f maintaining the discharge path in ionized condition is described. ln addition to the cathode and anode, the ischarge device contains a zirconium or tantalum ilament arranged for external excitation and a metallic seed containing tritium, and also arranged to have a current passed through it. Initially, the zirconium or tantalum filament is vaporized to deposit its material adjacent the main discharge region. Then the tritium gas is released and, due to its affinity for the first released material, it deposits in the region of the main discharge where it is most effective in maintaining the discharge path in an ionized condition.

  4. The Optimization dispatching of Micro Grid Considering Load Control

    NASA Astrophysics Data System (ADS)

    Zhang, Pengfei; Xie, Jiqiang; Yang, Xiu; He, Hongli

    2018-01-01

    This paper proposes an optimization control of micro-grid system economy operation model. It coordinates the new energy and storage operation with diesel generator output, so as to achieve the economic operation purpose of micro-grid. In this paper, the micro-grid network economic operation model is transformed into mixed integer programming problem, which is solved by the mature commercial software, and the new model is proved to be economical, and the load control strategy can reduce the charge and discharge times of energy storage devices, and extend the service life of the energy storage device to a certain extent.

  5. Effect of energetic electrons on dust charging in hot cathode filament discharge

    NASA Astrophysics Data System (ADS)

    Kakati, B.; Kausik, S. S.; Saikia, B. K.; Bandyopadhyay, M.

    2011-03-01

    The effect of energetic electrons on dust charging for different types of dust is studied in hydrogen plasma. The hydrogen plasma is produced by hot cathode filament discharge method in a dusty plasma device. A full line cusped magnetic field cage is used to confine the plasma elements. To study the plasma parameters for various discharge conditions, a cylindrical Langmuir probe having 0.15 mm diameter and 10.0 mm length is used. An electronically controlled dust dropper is used to drop the dust particles into the plasma. For different discharge conditions, the dust current is measured using a Faraday cup connected to an electrometer. The effect of secondary emission as well as discharge voltage on charging of dust grains in hydrogen plasma is studied with different dust.

  6. Shape Memory Actuation and Release Devices.

    DTIC Science & Technology

    1996-10-01

    shelf devices such as pyrotechnics, gas-discharge systems, paraffin wax actuators, and other electro-mechanical devices may not be able to meet...shelf devices such as pyrotechnics, gas-discharge systems, paraffin wax actuators, and other electro-mechanical devices may not be able to meet future...shard mounts. They do have wide utility as pin-pullers and single point release devices for a variety of spacecraft appendages. Parrafin based mechanisms

  7. REGULATOR FOR CALUTRON ION SOURCE

    DOEpatents

    Miller, B.F.

    1958-09-01

    Improvements are described in electric discharge devices and circuits for a calutron and, more specifically, presents an arc discharge regulator circuit for the ion source of the calatron. In general, the source comprises a filament which bombards a cathode with electrons, a griid control electrode between the filament and the cathode, and an anode electrode. The control electrode has a DC potential which is varied in response to changes in the anode current flow by means of a saturable reactor installed in its power supply energizing line having the anode current flowing through its control winding. In this manner the bombardment current to the cathode may be decreased when the anode current increases beyond a predetermined level.

  8. Control of Transitional and Turbulent Flows Using Plasma-Based Actuators

    DTIC Science & Technology

    2006-06-01

    by means of asymmetric dielectric-barrier-discharge ( DBD ) actuators is presented. The flow fields are simulated employ- ing an extensively validated...effective use of DBD devices. As a consequence, meaningful computations require the use of three-dimensional large-eddy simulation approaches capable of...counter-flow DBD actuator is shown to provide an effective on-demand tripping device . This prop- erty is exploited for the suppression of laminar

  9. Application of the gas-discharge surge arresters in X-ray devices and low voltage instrumentation

    NASA Astrophysics Data System (ADS)

    Simon, V. A.; Gerasimov, V. A.; Kostrin, D. K.; Lisenkov, A. A.; Selivanov, L. M.; Uhov, A. A.

    2018-02-01

    Usage of the gas discharge in science and engineering is discussed. Application examples of the compact gas-discharge tubes in the X-ray devices and low voltage instrumentation appliances for the surge protection are presented.

  10. Discharge start-up and ramp-up development for NSTX-U and MAST-U

    NASA Astrophysics Data System (ADS)

    Battaglia, D. J.; Boyer, M. D.; Gerhardt, S. P.; Menard, J. E.; Mueller, D.; Cunningham, G.; Kirk, A.; Kogan, L.; McArdle, G.; Pangione, L.; Thornton, A. J.; Ren, E.

    2017-10-01

    A collaborative modeling effort is underway to develop robust inductive start-up and ramp-up scenarios for NSTX-U and MAST-U. These complementary spherical tokamak devices aim to generate the physics basis for achieving steady-state, high-beta and high-confinement plasma discharges with a self-consistent solution for managing the divertor heat flux. High-performance discharges in these devices require sufficient plasma elongation (κ = 2.4 - 2.8) to maximize the bootstrap and beam-driven current drive, increase MHD stability at high Ip and high βN, and realize advanced divertor geometries such as the snowflake and super-X. Achieving the target elongation on NSTX-U is enabled by an L-H transition in the current ramp-up that slows the current diffusion and maintains a low internal inductance (li <= 0.8). Modeling focuses on developing scenarios that achieve a suitable field null for breakdown and discharge conditions conducive to an early L-H transition while maintaining vertical and MHD stability, with appropriate margin for variation in experimental conditions. The toroidal currents induced in conducting structures and the specifications of the real-time control and power supply systems are unique constraints for the two devices. Work Supported by U.S. DOE Contract No. DE-AC02-09CH11466 and the RCUK Energy Programme [Grant Number EP/P012450/1].

  11. Glow discharge based device for solving mazes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dubinov, Alexander E., E-mail: dubinov-ae@yandex.ru; Mironenko, Maxim S.; Selemir, Victor D.

    2014-09-15

    A glow discharge based device for solving mazes has been designed and tested. The device consists of a gas discharge chamber and maze-transformer of radial-azimuth type. It allows changing of the maze pattern in a short period of time (within several minutes). The device has been tested with low pressure air. Once switched on, a glow discharge has been shown to find the shortest way through the maze from the very first attempt, even if there is a section with potential barrier for electrons on the way. It has been found that ionization waves (striations) can be excited in themore » maze along the length of the plasma channel. The dependancy of discharge voltage on the length of the optimal path through the maze has been measured. A reduction in discharge voltage with one or two potential barriers present has been found and explained. The dependency of the magnitude of discharge ignition voltage on the length of the optimal path through the maze has been measured. The reduction of the ignition voltage with the presence of one or two potential barriers has been observed and explained.« less

  12. Hollow - cathode electrode for high-power, high-pressure discharge devices

    DOEpatents

    Chang, Jim J.; Alger, Terry W.

    1995-01-01

    Several different cold cathode configurations for a gas discharge device each having a plurality of grooves of selected spacing, depth and width to improve the emission of electrons in a gas discharge device. Each of the cold cathode configurations can be machined from a single piece of a selected material. Several of the configurations can be assembled with individual elements which is easily seen from the various figures.

  13. 49 CFR 178.338-11 - Discharge control devices.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... water capacity, remote means of automatic closure must be installed at the ends of the cargo tank in at... control system. (ii) On a cargo tank motor vehicle of 3,500 gallons water capacity or less, at least one remote means of automatic closure must be installed on the end of the cargo tank farthest away from the...

  14. TRIANGLE-SHAPED DC CORONA DISCHARGE DEVICE FOR MOLECULAR DECOMPOSITION

    EPA Science Inventory

    The paper discusses the evaluation of electrostatic DC corona discharge devices for the application of molecular decomposition. A point-to-plane geometry corona device with a rectangular cross section demonstrated low decomposition efficiencies in earlier experimental work. The n...

  15. Outcomes in variceal hemorrhage following the use of a balloon tamponade device.

    PubMed

    Nadler, Jonathan; Stankovic, Nikola; Uber, Amy; Holmberg, Mathias J; Sanchez, Leon D; Wolfe, Richard E; Chase, Maureen; Donnino, Michael W; Cocchi, Michael N

    2017-10-01

    Variceal hemorrhage is associated with high morbidity and mortality. A balloon tamponade device (BTD), such as the Sengstaken-Blakemore or Minnesota tube, may be used in cases of variceal hemorrhage. While these devices may be effective at controlling acute bleeding, the effect on patient outcomes remains less clear. We sought to describe the number of patients with variceal hemorrhage and a BTD who survive to discharge, survive to one-year, and develop complications related to a BTD. In this retrospective study, we identified patients at a single, tertiary care center who underwent placement of a BTD for upper gastrointestinal hemorrhage between 2003 and 2014. Patient characteristics and outcomes were summarized using descriptive statistics. 34 patients with a BTD were identified. Median age was 57.5 (IQR 47-63) and 76% (26/34) were male. Approximately 59% (20/34) of patients survived to discharge, and 41% (13/32) were alive after one year. Two patients were lost to follow-up. Of those surviving to discharge, 95% (19/20) had undergone transjugular intrahepatic portosystemic shunt (TIPS), while 36% (5/14) of patients who did not survive to discharge had TIPS (p<0.01). One complication, an esophageal perforation, was identified and managed conservatively. In this cohort of patients undergoing BTD placement for variceal hemorrhage, approximately 59% of patients were alive at discharge and 41% were alive after one year. Placement of a BTD as a temporizing measure in the management of acute variceal hemorrhage may be helpful, particularly when utilized as a bridge to more definitive therapy. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Outcomes in variceal hemorrhage following the use of a balloon tamponade device

    PubMed Central

    Nadler, Jonathan; Stankovic, Nikola; Uber, Amy; Holmberg, Mathias J.; Sanchez, Leon D.; Wolfe, Richard E.; Chase, Maureen; Donnino, Michael W.; Cocchi, Michael N.

    2017-01-01

    Background Variceal hemorrhage is associated with high morbidity and mortality. A balloon tamponade device (BTD), such as the Sengstaken-Blakemore or Minnesota tube, may be used in cases of variceal hemorrhage. While these devices may be effective at controlling acute bleeding, the effect on patient outcomes remains less clear. We sought to describe the number of patients with variceal hemorrhage and a BTD who survive to discharge, survive to one-year, and develop complications related to a BTD. Methods In this retrospective study, we identified patients at a single, tertiary care center who underwent placement of a BTD for upper gastrointestinal hemorrhage between 2003 and 2014. Patient characteristics and outcomes were summarized using descriptive statistics. Results 34 patients with a BTD were identified. Median age was 57.5 (IQR 47–63) and 76% (26/34) were male. Approximately 59% (20/34) of patients survived to discharge, and 41% (13/32) were alive after one year. Two patients were lost to follow-up. Of those surviving to discharge, 95% (19/20) had undergone transjugular intrahepatic portosystemic shunt (TIPS), while 36% (5/14) of patients who did not survive to discharge had TIPS (p < 0.01). One complication, an esophageal perforation, was identified and managed conservatively. Conclusion In this cohort of patients undergoing BTD placement for variceal hemorrhage, approximately 59% of patients were alive at discharge and 41% were alive after one year. Placement of a BTD as a temporizing measure in the management of acute variceal hemorrhage may be helpful, particularly when utilized as a bridge to more definitive therapy. PMID:28460805

  17. Resuscitation Outcomes Consortium (ROC) PRIMED Cardiac Arrest Trial Methods, Part 1: Rationale and Methodology for the Impedance Threshold Device (ITD) Protocol

    PubMed Central

    Aufderheide, Tom P.; Kudenchuk, Peter J.; Hedges, Jerris R.; Nichol, Graham; Kerber, Richard E.; Dorian, Paul; Davis, Daniel P.; Idris, Ahamed H.; Callaway, Clifton W.; Emerson, Scott; Stiell, Ian G.; Terndrup, Thomas E.

    2013-01-01

    Aim The primary aim of this study is to compare survival to hospital discharge with a modified Rankin score (MRS) ≤3 between standard cardiopulmonary resuscitation (CPR) plus an active impedance threshold device (ITD) versus standard CPR plus a sham ITD in patients with out-of-hospital cardiac arrest. Secondary aims are to compare functional status and depression at discharge and at 3 and 6 months post discharge in survivors. Materials and Methods Design Prospective, double-blind, randomized, controlled, clinical trial. Population Patients with non-traumatic out-of-hospital cardiac arrest treated by emergency medical services (EMS) providers. Setting EMS systems participating in the Resuscitation Outcomes Consortium. Sample Size Based on a one-sided significance level of 0.025, power = 0.90, a survival with MRS ≤ 3 to discharge rate of 5.33% with standard CPR and sham ITD, and two interim analyses, a maximum of 14,742 evaluable patients are needed to detect a 6.69% survival with MRS ≤ 3 to discharge with standard CPR and active ITD (1.36% absolute survival difference). Conclusion If the ITD demonstrates the hypothesized improvement in survival, it is estimated that2,700 deaths from cardiac arrest per year would be averted in North America alone. PMID:18487005

  18. Hollow-cathode electrode for high-power, high-pressure discharge devices

    DOEpatents

    Chang, J.J.; Alger, T.W.

    1995-08-22

    Several different cold cathode configurations are disclosed for a gas discharge device each having a plurality of grooves of selected spacing, depth and width to improve the emission of electrons in a gas discharge device. Each of the cold cathode configurations can be machined from a single piece of a selected material. Several of the configurations can be assembled with individual elements which is easily seen from the various figures. 8 figs.

  19. Basic Research on Plasma Cathode for HPM Sources (NE - Luginsland)

    DTIC Science & Technology

    2011-11-30

    to NEPP Vacuum Pump for Mock Magnetron 12 (b) Borosilicate glass (Insulator)  Anode Cathode Vacuum chamber Ion gauge controller Charge...channeling may be one physical mechanism that can explain the stability of the pinch in the discharge. (a) Scroll Pump High Voltage Power Supply DC... vacuum and/or low vacuum slow wave devices and cross field devices) in burst mode? Here, burst mode effectively implies an impulse-like (short pulse

  20. Experimental investigation on electrical characteristics and dose measurement of dielectric barrier discharge plasma device used for therapeutic application

    NASA Astrophysics Data System (ADS)

    Shahbazi Rad, Zahra; Abbasi Davani, Fereydoun

    2017-04-01

    In this research, a Dielectric Barrier Discharge (DBD) plasma device operating in air has been made. The electrical characteristics of this device like instantaneous power, dissipated power, and discharge capacitance have been measured. Also, the effects of applied voltage on the dissipated power and discharge capacitance of the device have been investigated. The determination of electrical parameters is important in DBD plasma device used in living tissue treatment for choosing the proper treatment doses and preventing the destructive effects. The non-thermal atmospheric pressure DBD plasma source was applied for studying the acceleration of blood coagulation time, in vitro and wound healing time, in vivo. The citrated blood drops coagulated within 5 s treatment time by DBD plasma. The effects of plasma temperature and electric field on blood coagulation have been studied as an affirmation of the applicability of the constructed device. Also, the effect of constructed DBD plasma on wound healing acceleration has been investigated.

  1. Experimental investigation on electrical characteristics and dose measurement of dielectric barrier discharge plasma device used for therapeutic application.

    PubMed

    Shahbazi Rad, Zahra; Abbasi Davani, Fereydoun

    2017-04-01

    In this research, a Dielectric Barrier Discharge (DBD) plasma device operating in air has been made. The electrical characteristics of this device like instantaneous power, dissipated power, and discharge capacitance have been measured. Also, the effects of applied voltage on the dissipated power and discharge capacitance of the device have been investigated. The determination of electrical parameters is important in DBD plasma device used in living tissue treatment for choosing the proper treatment doses and preventing the destructive effects. The non-thermal atmospheric pressure DBD plasma source was applied for studying the acceleration of blood coagulation time, in vitro and wound healing time, in vivo. The citrated blood drops coagulated within 5 s treatment time by DBD plasma. The effects of plasma temperature and electric field on blood coagulation have been studied as an affirmation of the applicability of the constructed device. Also, the effect of constructed DBD plasma on wound healing acceleration has been investigated.

  2. 76 FR 44489 - Medical Devices; Neurological Devices; Classification of Repetitive Transcranial Magnetic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-26

    ...; Hazards caused by electromagnetic interference and electrostatic discharge hazards; and Hearing loss. FDA... electromagnetic Electromagnetic compatibility. interference and electrostatic discharge hazards. Labeling. Hearing...

  3. Zero dimensional model of atmospheric SMD discharge and afterglow in humid air

    NASA Astrophysics Data System (ADS)

    Smith, Ryan; Kemaneci, Efe; Offerhaus, Bjoern; Stapelmann, Katharina; Peter Brinkmann, Ralph

    2016-09-01

    A novel mesh-like Surface Micro Discharge (SMD) device designed for surface wound treatment is simulated by multiple time-scaled zero-dimensional models. The chemical dynamics of the discharge are resolved in time at atmospheric pressure in humid conditions. Simulated are the particle densities of electrons, 26 ionic species, and 26 reactive neutral species including: O3, NO, and HNO3. The total of 53 described species are constrained by 624 reactions within the simulated plasma discharge volume. The neutral species are allowed to diffuse into a diffusive gas regime which is of primary interest. Two interdependent zero-dimensional models separated by nine orders of magnitude in temporal resolution are used to accomplish this; thereby reducing the computational load. Through variation of control parameters such as: ignition frequency, deposited power density, duty cycle, humidity level, and N2 content, the ideal operation conditions for the SMD device can be predicted. The described model has been verified by matching simulation parameters and comparing results to that of previous works. Current operating conditions of the experimental mesh-like SMD were matched and results are compared to the simulations. Work supported by SFB TR 87.

  4. Emissions of polycyclic aromatic hydrocarbons from batch hot mix asphalt plants.

    PubMed

    Lee, Wen-Jhy; Chao, Wen-Hui; Shih, Minliang; Tsai, Cheng-Hsien; Chen, Thomas Jeng-Ho; Tsai, Perng-Jy

    2004-10-15

    This study was set out to assess the characteristics of polycyclic aromatic hydrocarbon (PAH) emissions from batch hot mix asphalt (HMA) plants and PAH removal efficiencies associated with their installed air pollution control devices. Field samplings were conducted on six randomly selected batch HMA plants. For each selected plant, stack flue gas samples were collected from both stacks of the batch mixer (n = 5) and the preheating boiler (n = 5), respectively. PAH samples were also collected from the field to assess PAHs that were directly emitted from the discharging chute (n = 3). To assess PAH removal efficiencies of the installed air pollution control devices, PAH contents in both cyclone fly ash (n=3) and bag filter fly ash (n = 3) were analyzed. Results show that the total PAH concentration (mean; RSD) in the stack flue gas of the batch mixer (354 microg/Nm3; 78.5%) was higher than that emitted from the discharging chute (107 microg/Nm3; 70.1%) and that in the stack flue gas of the preheating boiler (83.7 microg/Nm3; 77.6%). But the total BaPeq concentration of that emitted from the discharging chute (0.950 microg/Nm3; 84.4%) was higher than contained in the stack flue gas of the batch mixer (0.629 microg/Nm3; 86.8%) and the stack flue gas of the preheating boiler (= 0.112 microg/Nm3; 80.3%). The mean total PAH emission factor for all selected batch mix plants (= 139 mg/ton x product) was much higher than that reported by U.S. EPA for the drum mix asphalt plant (range = 11.8-79.0 mg/ton x product). We found the overall removal efficiency of the installed air pollution control devices (i.e., cyclone + bag filter) on total PAHs and total BaPeq were 22.1% and 93.7%, respectively. This implies that the installed air pollution control devices, although they have a very limited effect on the removal of total PAHs, do significantly reduce the carcinogenic potencies associated with PAH emissions from batch HMA plants.

  5. Feedback control impedance matching system using liquid stub tuner for ion cyclotron heating

    NASA Astrophysics Data System (ADS)

    Nomura, G.; Yokota, M.; Kumazawa, R.; Takahashi, C.; Torii, Y.; Saito, K.; Yamamoto, T.; Takeuchi, N.; Shimpo, F.; Kato, A.; Seki, T.; Mutoh, T.; Watari, T.; Zhao, Y.

    2001-10-01

    A long pulse discharge more than 2 minutes was achieved using Ion Cyclotron Range of Frequency (ICRF) heating only on the Large Helical Device (LHD). The final goal is a steady state operation (30 minutes) at MW level. A liquid stub tuner was newly invented to cope with the long pulse discharge. The liquid surface level was shifted under a high RF voltage operation without breakdown. In the long pulse discharge the reflected power was observed to gradually increase. The shift of the liquid surface was thought to be inevitably required at the further longer discharge. An ICRF heating system consisting of a liquid stub tuner was fabricated to demonstrate a feedback control impedance matching. The required shift of the liquid surface was predicted using a forward and a reflected RF powers as well as the phase difference between them. A liquid stub tuner was controlled by the multiprocessing computer system with CINOS (CHS Integration No Operating System) methods. The prime objective was to improve the performance of data processing and controlling a signal response. By employing this method a number of the program steps was remarkably reduced. A real time feedback control was demonstrated in the system using a temporally changed electric resistance.

  6. ELECTRICAL PROTECTIVE DEVICE

    DOEpatents

    Baker, W.R.

    1958-05-01

    A protective system for high-energy resonant cavities is described. It is particularly directed to the discharging of resonant cavities for preventing energy back flow through associated equipment as a result of faults. The invention in general provides means defining a spark gap communicating with the interior of a cavity or waveguide adapted for high-power energization or an evacuated chamber containing an electrode having a large power differential from the wall or other electrode. A control or trigger circuit is connected between a power supply energizing the cavity and the spark gap whereby reverse current flow in the power supply circuit instantaneously triggers the spark gap to initiate discharge within the cavity, whereupon cavity energy discharges across the gap, or with an electrode present the electrode discharges to one of the spark gap elements.

  7. Low power arcjet system spacecraft impacts

    NASA Technical Reports Server (NTRS)

    Pencil, Eric J.; Sarmiento, Charles J.; Lichtin, D. A.; Palchefsky, J. W.; Bogorad, A. L.

    1993-01-01

    Potential plume contamination of spacecraft surfaces was investigated by positioning spacecraft material samples relative to an arcjet thruster. Samples in the simulated solar array region were exposed to the cold gas arcjet plume for 40 hrs to address concerns about contamination by backstreaming diffusion pump oil. Except for one sample, no significant changes were measured in absorptance and emittance within experimental error. Concerns about surface property degradation due to electrostatic discharges led to the investigation of the discharge phenomenon of charged samples during arcjet ignition. Short duration exposure of charged samples demonstrated that potential differences are consistently and completely eliminated within the first second of exposure to a weakly ionized plume. The spark discharge mechanism was not the discharge phenomenon. The results suggest that the arcjet could act as a charge control device on spacecraft.

  8. RF assisted Glow Discharge Condition experiment for SST-1 Tokamak

    NASA Astrophysics Data System (ADS)

    Raval, Dilip; Khan, Ziauddin; George, Siju; Dhanani, Kalpeshkumar R.; Paravastu, Yuvakiran; Semwal, Pratibha; Thankey, Prashant; Shoaib Khan, Mohammad; Kakati, Bharat; Pradhan, Subrata

    2017-04-01

    Impurity control reduces the radiation loss from plasma and hence enhances the plasma operation. Oxygen and water vapors are the most common impurities in tokamak devices. Water vapour can be reduced with extensive baking while in order to have a significant reduction in oxygen it is necessary to use glow discharge condition (GDC). RF assisted glow discharge cleaning system will be implemented to remove low z impurities at PFC installed SST-1 vacuum vessel. A RF assisted Glow discharge conditioning is studied at laboratory to find the optimum operating parameters in a view to implement at SST-1 tokamak. Helium is used as a fuel gas in the present experiment. It is observed that the ultimate impurity level is reduced significantly below to the accepted level for plasma operation after RF assisted GDC. The experimental findings of RF assisted Glow discharge conditioning is discussed in details in this paper.

  9. Post-breakdown secondary discharges at the electrode/dielectric interface of a cylindrical barrier discharge

    NASA Astrophysics Data System (ADS)

    Carman, Robert; Ward, Barry; Kane, Deborah

    2011-10-01

    The electrical breakdown characteristics of a double-walled cylindrical dielectric barrier discharge (DBD) lamp with a neon buffer gas under pulsed voltage excitation have been investigated. Following the formation of plasma in the main discharge gap, we have observed secondary breakdown phenomena at the inner and outer mesh electrode/dielectric interfaces under specific operating conditions. Plasma formation at these interfaces is investigated by monitoring the Ozone production rate in controlled flows of ultra high purity oxygen together with the overall electrical voltage-charge characteristics of the lamp. The results show that this secondary breakdown only occurs after the main discharge plasma has been established, and that significant electrical power may be dissipated in generating these spurious secondary plasmas. The results are important with regards to optimising the design and identifying efficient operating regimes of DBD based devices that employ mesh-type or wire/strip electrodes.

  10. Device for generation of pulsed corona discharge

    DOEpatents

    Gutsol, Alexander F [San Ramon, CA; Fridman, Alexander [Marlton, NJ; Blank, Kenneth [Philadelphia, PA; Korobtsev, Sergey [Moscow, RU; Shiryaevsky, Valery [Moscow, RU; Medvedev, Dmitry [Moscow, RU

    2012-05-08

    The invention is a method and system for the generation of high voltage, pulsed, periodic corona discharges capable of being used in the presence of conductive liquid droplets. The method and system can be used, for example, in different devices for cleaning of gaseous or liquid media using pulsed corona discharge. Specially designed electrodes and an inductor increase the efficiency of the system, permit the plasma chemical oxidation of detrimental impurities, and increase the range of stable discharge operations in the presence of droplets of water or other conductive liquids in the discharge chamber.

  11. Evaluation of a pulsed xenon ultraviolet light device for isolation room disinfection in a United Kingdom hospital.

    PubMed

    Hosein, Ian; Madeloso, Rosie; Nagaratnam, Wijayaratnam; Villamaria, Frank; Stock, Eileen; Jinadatha, Chetan

    2016-09-01

    Pathogen transmission from contaminated surfaces can cause hospital-associated infections. Although pulsed xenon ultraviolet (PX-UV) light devices have been shown to decrease hospital room bioburden in the United States, their effectiveness in United Kingdom (UK) hospitals is less understood. Forty isolation rooms at the Queens Hospital (700 beds) in North London, UK, were sampled for aerobic bacteria after patient discharge, after manual cleaning with a hypochlorous acid-troclosene sodium solution, and after PX-UV disinfection. PX-UV device efficacy on known organisms was tested by exposing inoculated agar plates in a nonpatient care area. Turnaround times for device usage were recorded, and a survey of hospital staff for perceptions of the device was undertaken. After PX-UV disinfection, the bacterial contamination measured in colony forming units (CFU) decreased by 78.4%, a 91% reduction from initial bioburden levels prior to terminal cleaning. PX-UV exposure resulted in a 5-log CFU reduction for multidrug-resistant organisms (MDROs) on spiked plates. The average device turnaround time was 1 hour, with minimal impact on patient throughput. Ward staff were enthusiastic about device deployment, and device operators reported physical comfort in usage. PX-UV use decreased bioburden in patient discharge rooms and on agar plates spiked with MDROs. The implementation of the PX-UV device was well received by hospital cleaning and ward staff, with minimal disruption to patient flow. Copyright © 2016 Association for Professionals in Infection Control and Epidemiology, Inc. All rights reserved.

  12. Development of a Power Electronics Unit for the Space Station Plasma Contactor

    NASA Technical Reports Server (NTRS)

    Hamley, John A.; Hill, Gerald M.; Patterson, Michael J.; Saggio, Joseph, Jr.; Terdan, Fred; Mansell, Justin D.

    1994-01-01

    A hollow cathode plasma contactor has been baselined as a charge control device for the Space Station (SS) to prevent deleterious interactions of coated structural components with the ambient plasma. NASA LeRC Work Package 4 initiated the development of a plasma contactor system comprised of a Power Electronics Unit (PEU), an Expellant Management Unit (EMU), a command and data interface, and a Plasma Contactor Unit (PCU). A breadboard PEU was designed and fabricated. The breadboard PEU contains a cathode heater and discharge power supply, which were required to operate the PCU, a control and auxiliary power converter, an EMU interface, a command and telemetry interface, and a controller. The cathode heater and discharge supplies utilized a push-pull topology with a switching frequency of 20 kHz and pulse-width-modulated (PWM) control. A pulse ignition circuit derived from that used in arcjet power processors was incorporated in the discharge supply for discharge ignition. An 8088 based microcontroller was utilized in the breadboard model to provide a flexible platform for controller development with a simple command/data interface incorporating a direct connection to SS Mulitplexer/Demultiplexer (MDM) analog and digital I/O cards. Incorporating this in the flight model would eliminate the hardware and software overhead associated with a 1553 serial interface. The PEU autonomously operated the plasma contactor based on command inputs and was successfully integrated with a prototype plasma contactor unit demonstrating reliable ignition of the discharge and steady-state operation.

  13. Hierarchical and hybrid energy storage devices in data centers: Architecture, control and provisioning.

    PubMed

    Sun, Mengshu; Xue, Yuankun; Bogdan, Paul; Tang, Jian; Wang, Yanzhi; Lin, Xue

    2018-01-01

    Recently, a new approach has been introduced that leverages and over-provisions energy storage devices (ESDs) in data centers for performing power capping and facilitating capex/opex reductions, without performance overhead. To fully realize the potential benefits of the hierarchical ESD structure, we propose a comprehensive design, control, and provisioning framework including (i) designing power delivery architecture supporting hierarchical ESD structure and hybrid ESDs for some levels, as well as (ii) control and provisioning of the hierarchical ESD structure including run-time ESD charging/discharging control and design-time determination of ESD types, homogeneous/hybrid options, ESD provisioning at each level. Experiments have been conducted using real Google data center workloads based on realistic data center specifications.

  14. Hierarchical and hybrid energy storage devices in data centers: Architecture, control and provisioning

    PubMed Central

    Xue, Yuankun; Bogdan, Paul; Tang, Jian; Wang, Yanzhi; Lin, Xue

    2018-01-01

    Recently, a new approach has been introduced that leverages and over-provisions energy storage devices (ESDs) in data centers for performing power capping and facilitating capex/opex reductions, without performance overhead. To fully realize the potential benefits of the hierarchical ESD structure, we propose a comprehensive design, control, and provisioning framework including (i) designing power delivery architecture supporting hierarchical ESD structure and hybrid ESDs for some levels, as well as (ii) control and provisioning of the hierarchical ESD structure including run-time ESD charging/discharging control and design-time determination of ESD types, homogeneous/hybrid options, ESD provisioning at each level. Experiments have been conducted using real Google data center workloads based on realistic data center specifications. PMID:29351553

  15. Role of poloidal flows on the particle confinement time in a simple toroidal device : an experimental study

    NASA Astrophysics Data System (ADS)

    Kumar, Umesh; Ganesh, R.; Saxena, Y. C.; Thatipamula, Shekar G.; Sathyanarayana, K.; Raju, Daniel

    2017-10-01

    In magnetized toroidal devices without rotational transform also known as Simple Magnetized Torus (SMT). The device BETA at the IPR is one such SMT with a major radius of 45 cm, minor radius of 15 cm and a maximum toroidal field of 0.1 Tesla. Understanding confinement in such helical configurations is an important problem both for fundamental plasma physics and for Tokamak edge physics. In a recent series of experiments it was demonstrated experimentally that the mean plasma profiles, fluctuation, flow and turbulence depend crucially on the parallel connection length, which was controlled by external vertical field. In the present work, we report our experimental findings, wherein we measure the particle confinement time for hot cathode discharge and ECRH discharge, with variation in parallel connection length. As ECRH plasma don't have mean electric field and hence the poloidal rotation of plasma is absent. However, in hot cathode discharge, there exist strong poloidal flows due to mean electric field. An experimental comparison of these along with theoretical model with variation in connection length will be presented. We also present experimental measurements of variation of plasma confinement time with mass as well as the ratio of vertical field to toroidal magnetic field.

  16. On-line Monitoring Device for High-voltage Switch Cabinet Partial Discharge Based on Pulse Current Method

    NASA Astrophysics Data System (ADS)

    Y Tao, S.; Zhang, X. Z.; Cai, H. W.; Li, P.; Feng, Y.; Zhang, T. C.; Li, J.; Wang, W. S.; Zhang, X. K.

    2017-12-01

    The pulse current method for partial discharge detection is generally applied in type testing and other off-line tests of electrical equipment at delivery. After intensive analysis of the present situation and existing problems of partial discharge detection in switch cabinets, this paper designed the circuit principle and signal extraction method for partial discharge on-line detection based on a high-voltage presence indicating systems (VPIS), established a high voltage switch cabinet partial discharge on-line detection circuit based on the pulse current method, developed background software integrated with real-time monitoring, judging and analyzing functions, carried out a real discharge simulation test on a real-type partial discharge defect simulation platform of a 10KV switch cabinet, and verified the sensitivity and validity of the high-voltage switch cabinet partial discharge on-line monitoring device based on the pulse current method. The study presented in this paper is of great significance for switch cabinet maintenance and theoretical study on pulse current method on-line detection, and has provided a good implementation method for partial discharge on-line monitoring devices for 10KV distribution network equipment.

  17. Monitoring of tritium

    DOEpatents

    Corbett, James A.; Meacham, Sterling A.

    1981-01-01

    The fluid from a breeder nuclear reactor, which may be the sodium cooling fluid or the helium reactor-cover-gas, or the helium coolant of a gas-cooled reactor passes over the portion of the enclosure of a gaseous discharge device which is permeable to hydrogen and its isotopes. The tritium diffused into the discharge device is radioactive producing beta rays which ionize the gas (argon) in the discharge device. The tritium is monitored by measuring the ionization current produced when the sodium phase and the gas phase of the hydrogen isotopes within the enclosure are in equilibrium.

  18. Dissipated power and induced velocity fields data of a micro single dielectric barrier discharge plasma actuator for active flow control☆

    PubMed Central

    Pescini, E.; Martínez, D.S.; De Giorgi, M.G.; Francioso, L.; Ficarella, A.

    2015-01-01

    In recent years, single dielectric barrier discharge (SDBD) plasma actuators have gained great interest among all the active flow control devices typically employed in aerospace and turbomachinery applications [1,2]. Compared with the macro SDBDs, the micro single dielectric barrier discharge (MSDBD) actuators showed a higher efficiency in conversion of input electrical power to delivered mechanical power [3,4]. This article provides data regarding the performances of a MSDBD plasma actuator [5,6]. The power dissipation values [5] and the experimental and numerical induced velocity fields [6] are provided. The present data support and enrich the research article entitled “Optimization of micro single dielectric barrier discharge plasma actuator models based on experimental velocity and body force fields” by Pescini et al. [6]. PMID:26425667

  19. DISCHARGE DEVICE FOR RADIOACTIVE MATERIAL

    DOEpatents

    Ohlinger, L.A.

    1958-09-23

    A device is described fur unloading bodies of fissionable material from a neutronic reactor. It is comprised essentially of a wheeled flat car having a receptacle therein containing a liquid coolant fur receiving and cooling the fuel elements as they are discharged from the reactor, and a reciprocating plunger fur supporting the fuel element during discharge thereof prior to its being dropped into the coolant. The flat car is adapted to travel along the face of the reactor adjacent the discharge ends of the coolant tubes.

  20. HIGH ENERGY GASEOUS DISCHARGE DEVICES

    DOEpatents

    Josephson, V.

    1960-02-16

    The high-energy electrical discharge device described comprises an envelope, a pair of main discharge electrodes supported in opposition in the envelope, and a metallic shell symmetrically disposed around and spaced from the discharge path between the electrodes. The metallic shell comprises a first element of spaced helical turns of metallic material and a second element of spaced helical turns of methllic material insulatedly supported in superposition outside the first element and with the turns overlapping the gap between the turns of the first element.

  1. Dynamics and density distributions in a capillary-discharge waveguide with an embedded supersonic jet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matlis, N. H., E-mail: nmatlis@gmail.com; Gonsalves, A. J.; Steinke, S.

    We present an analysis of the gas dynamics and density distributions within a capillary-discharge waveguide with an embedded supersonic jet. This device provides a target for a laser plasma accelerator which uses longitudinal structuring of the gas-density profile to enable control of electron trapping and acceleration. The functionality of the device depends sensitively on the details of the density profile, which are determined by the interaction between the pulsed gas in the jet and the continuously-flowing gas in the capillary. These dynamics are captured by spatially resolving recombination light from several emission lines of the plasma as a function ofmore » the delay between the jet and the discharge. We provide a phenomenological description of the gas dynamics as well as a quantitative evaluation of the density evolution. In particular, we show that the pressure difference between the jet and the capillary defines three regimes of operation with qualitatively different longitudinal density profiles and show that jet timing provides a sensitive method for tuning between these regimes.« less

  2. Sterilization of medical equipment and contaminated articles by making use of a resistive barrier discharge

    NASA Astrophysics Data System (ADS)

    Uhm, Han S.; Kang, Jung G.; Choi, Eun H.; Cho, Guang S.

    2012-08-01

    Presented here is an apparatus consisting of an atmospheric resistive-barrier discharge for the sterilization of medical tools wrapped in typical hospital cloths, for the sterilization of manufactured drugs in typical packaging materials, and for the sterilization of biologically-contaminated articles. The sterilization apparatus consists of layers of the resistive-barrier discharge device operating at room temperature, a sterilization chamber, and an ozone destruction device. An electrical discharge in the resistive-barrier discharge system generates an atmospheric plasma in oxygen gas, generating ozone, which in turn efficiently sterilizes medical tools and biologically contaminated articles at room temperature. A sterilization experiment was carried out at an apparatus volume of 100 liters, with a sterilization chamber volume of 60 liters, and a discharge device volume of 40 liters. The sterilization in this experiment required 60 W of power for 5 hours of residence time. For a given sterilization time, the required electrical power was proportional to the apparatus volume. Ozone in the sterilization chamber was destroyed safely after sterilization.

  3. DSM-flux: A new technology for reliable Combined Sewer Overflow discharge monitoring with low uncertainties.

    PubMed

    Maté Marín, Ainhoa; Rivière, Nicolas; Lipeme Kouyi, Gislain

    2018-06-01

    In the past ten years, governments from the European Union have been encouraged to collect volume and quality data for all the effluent overflows from separated stormwater and combined sewer systems that result in a significant environmental impact on receiving water bodies. Methods to monitor and control these flows require improvements, particularly for complex Combined Sewer Overflow (CSO) structures. The DSM-flux (Device for Stormwater and combined sewer flows Monitoring and the control of pollutant fluxes) is a new pre-designed and pre-calibrated channel that provides appropriate hydraulic conditions suitable for measurement of overflow rates and volumes by means of one water level gauge. In this paper, a stage-discharge relation for the DSM-flux is obtained experimentally and validated for multiple inflow hydraulic configurations. Uncertainties in CSO discharges and volumes are estimated within the Guide to the expression of Uncertainty in Measurement (GUM) framework. Whatever the upstream hydraulic conditions are, relative uncertainties are lower than 15% and 2% for the investigated discharges and volumes, respectively. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Reversed field pinch operation with intelligent shell feedback control in EXTRAP T2R

    NASA Astrophysics Data System (ADS)

    Brunsell, P. R.; Kuldkepp, M.; Menmuir, S.; Cecconello, M.; Hedqvist, A.; Yadikin, D.; Drake, J. R.; Rachlew, E.

    2006-11-01

    Discharges in the thin shell reversed field pinch (RFP) device EXTRAP T2R without active feedback control are characterized by growth of non-resonant m = 1 unstable resistive wall modes (RWMs) in agreement with linear MHD theory. Resonant m = 1 tearing modes (TMs) exhibit initially fast rotation and the associated perturbed radial fields at the shell are small, but eventually TMs wall-lock and give rise to a growing radial field. The increase in the radial field at the wall due to growing RWMs and wall-locked TMs is correlated with an increase in the toroidal loop voltage, which leads to discharge termination after 3-4 wall times. An active magnetic feedback control system has been installed in EXTRAP T2R. A two-dimensional array of 128 active saddle coils (pair-connected into 64 independent m = 1 coils) is used with intelligent shell feedback control to suppress the m = 1 radial field at the shell. With feedback control, active stabilization of the full toroidal spectrum of 16 unstable m = 1 non-resonant RWMs is achieved, and TM wall locking is avoided. A three-fold extension of the pulse length, up to the power supply limit, is observed. Intelligent shell feedback control is able to maintain the plasma equilibrium for 10 wall times, with plasma confinement parameters sustained at values comparable to those obtained in thick shell devices of similar size.

  5. DEVICE AND METHOD FOR PRODUCING A HIGH INTENSITY ARC DISCHARGE

    DOEpatents

    Luce, J.S.

    1960-01-01

    A device is described for producing an energetic d-c carbon arc discharge between widely spaced electrodes with arc currents in excess of 100 amperes in a magnetic field of about 3000 gauss and witnin an evacuated enclo sure at a pressure of about 10/sup -5/ mm Hg. No defining electrodes are used in the device, thus essentially eliminating the problems of shorting which heretofore limited the amount of current that could be produced in an arc discharge. The energetic carbon arc discharge is sustained by the potential across the electrodes and by carbon ions and electrons released from the electrodes during arc operation. A large part of the potential drop of the arc occurs along the arc and many energetic electrons reach the anode because the arc pressure is relatively low, and few collisions occur. The carbon discharge is also an efficient ion pump.

  6. High intensity discharge device containing oxytrihalides

    DOEpatents

    Lapatovich, Walter P.; Keeffe, William M.; Liebermann, Richard W.; Maya, Jakob

    1987-01-01

    A fill composition for a high intensity discharge device including mercury, niobium oxytrihalide, and a molecular stabilization agent is provided. The molar ratio of niobium oxytrihalide to the molecular stabilization agent in the fill is in the range of from about 5:1 to about 7.5:1. Niobium oxytrihalide is present in the fill in sufficient amount to produce, by dissociation in the discharge, atomic niobium, niobium oxide, NbO, and niobium dioxide, NbO.sub.2, with the molar ratio of niobium-containing vapor species to mercury in the fill being in the range of from about 0.01:1 to about 0.50:1; and mercury pressure of about 1 to about 50 atmospheres at lamp operating temperature. There is also provided a high intensity discharge device comprising a sealed light-transmissive arc tube; the arc tube including the above-described fill; and an energizing means for producing an electric discharge within the arc tube.

  7. High intensity discharge device containing oxytrihalides

    DOEpatents

    Lapatovich, W.P.; Keeffe, W.M.; Liebermann, R.W.; Maya, J.

    1987-06-09

    A fill composition for a high intensity discharge device including mercury, niobium oxytrihalide, and a molecular stabilization agent is provided. The molar ratio of niobium oxytrihalide to the molecular stabilization agent in the fill is in the range of from about 5:1 to about 7.5:1. Niobium oxytrihalide is present in the fill in sufficient amount to produce, by dissociation in the discharge, atomic niobium, niobium oxide, NbO, and niobium dioxide, NbO[sub 2], with the molar ratio of niobium-containing vapor species to mercury in the fill being in the range of from about 0.01:1 to about 0.50:1; and mercury pressure of about 1 to about 50 atmospheres at lamp operating temperature. There is also provided a high intensity discharge device comprising a sealed light-transmissive arc tube; the arc tube including the above-described fill; and an energizing means for producing an electric discharge within the arc tube. 7 figs.

  8. Exploration of Gas Discharges with GaAs, GaP and ZnSe Electrodes Under Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Kurt, H. Hilal

    2018-03-01

    This work reports on the electrical and optical characterization of the atmospheric pressure glow discharge regimes for different semiconductor electrodes made of GaAs, GaP and ZnSe. The discharge cell is driven by DC feeding voltages at a wide pressure range of 0.66-120 kPa in argon and air media for different interelectrode gaps. The discharge phenomena including different stages of discharges such as glow and Townsend breakdown have been examined. In addition, the infrared sensitivities of the semiconducting materials are evaluated in the micro-discharge cell and discharge light emission measurements have been performed. The qualities of the semiconducting electrode samples can be determined by seeking the homogeneity of the discharge light emission for the optoelectronic device applications. Operation of optical devices under atmospheric pressures gives certain advantages for manufacturing of the devices including the material processing and surface treatment procedures. Besides, finite element analyses of the overall experimental system have been performed for the abovementioned semiconductors. The electron densities and potential patterns have been determined on the discharge cell plane between the electrodes. The findings have proven that the electron densities along the plasma cell depend on both the semiconductor type and plasma parameters.

  9. 46 CFR 154.906 - Inert gas generators.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...: (a) Produce an inert gas containing less than 5% oxygen by volume; (b) Have a device to continuously sample the discharge of the generator for oxygen content; and (c) Have an audible and visual alarm in the cargo control station that alarms when the inert gas contains 5% or more oxygen by volume. ...

  10. 46 CFR 154.906 - Inert gas generators.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...: (a) Produce an inert gas containing less than 5% oxygen by volume; (b) Have a device to continuously sample the discharge of the generator for oxygen content; and (c) Have an audible and visual alarm in the cargo control station that alarms when the inert gas contains 5% or more oxygen by volume. ...

  11. 46 CFR 154.906 - Inert gas generators.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...: (a) Produce an inert gas containing less than 5% oxygen by volume; (b) Have a device to continuously sample the discharge of the generator for oxygen content; and (c) Have an audible and visual alarm in the cargo control station that alarms when the inert gas contains 5% or more oxygen by volume. ...

  12. 46 CFR 154.906 - Inert gas generators.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...: (a) Produce an inert gas containing less than 5% oxygen by volume; (b) Have a device to continuously sample the discharge of the generator for oxygen content; and (c) Have an audible and visual alarm in the cargo control station that alarms when the inert gas contains 5% or more oxygen by volume. ...

  13. 46 CFR 154.906 - Inert gas generators.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...: (a) Produce an inert gas containing less than 5% oxygen by volume; (b) Have a device to continuously sample the discharge of the generator for oxygen content; and (c) Have an audible and visual alarm in the cargo control station that alarms when the inert gas contains 5% or more oxygen by volume. ...

  14. 77 FR 11401 - Marine Sanitation Devices (MSDs): No Discharge Zone (NDZ) for California State Marine Waters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-27

    ... Plastic Pollution Research and Control Act of 1987, and the Ocean Dumping Act, address pollution within... related legislation in 2003-2005 to limit pollution from large passenger and large oceangoing vessels. In...; (3) to further regulate landside sources of pollution; (4) to improve inspection and testing...

  15. 10 CFR 431.322 - Definitions concerning metal halide lamp ballasts and fixtures.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... main functions. Ballast means a device used with an electric discharge lamp to obtain necessary circuit... purpose of controlling the ballast and putting the ballast in standby mode. Electronic ballast means a... instead starts lamps with high ballast open circuit voltage. Pulse-start metal halide ballast means an...

  16. MULTI-ELECTRODE TUBE PULSE MEMORY CIRCUIT

    DOEpatents

    Gundlach, J.C.; Reeves, J.B.

    1958-05-20

    Control circuits are described for pulse memory devices for scalers and the like, and more particularly to a driving or energizing circuit for a polycathode gaseous discharge tube having an elongated anode and a successive series of cathodes spaced opposite the anode along its length. The circuit is so arranged as to utilize an arc discharge between the anode and a cathode to count a series of pulses. Upon application of an input pulse the discharge is made to occur between the anode and the next successive cathode, and an output pulse is produced when a particular subsequent cathode is reached. The circuit means for transfering the discharge by altering the anode potential and potential of the cathodes and interconnecting the cathodes constitutes the novel aspects of the invention. A low response time and reduced number of circuit components are the practical advantages of the described circuit.

  17. Hydrogen recycling in graphite at higher fluxes

    NASA Astrophysics Data System (ADS)

    Larsson, D.; Bergsåker, H.; Hedqvist, A.

    Understanding hydrogen recycling is essential for particle control in fusion devices with a graphite wall. At Extrap T2 three different models have been used. A zero-dimensional (0D) recycling model reproduces the density behavior in plasma discharges as well as in helium glow discharge. A more sophisticated one-dimensional (1D) model is used along with a simple mixing model to explain the results in isotopic exchange experiments. Due to high fluxes some changes in the models were needed. In the paper, the three models are discussed and the results are compared with experimental data.

  18. Effect of increased crystallinity of single-walled carbon nanotubes used as field emitters on their electrical properties

    NASA Astrophysics Data System (ADS)

    Shimoi, Norihiro

    2015-12-01

    Single-walled carbon nanotubes (SWCNTs) synthesized by arc discharge are expected to exhibit good field emission (FE) properties at a low driving voltage. We used a coating containing homogeneously dispersed highly crystalline SWCNTs produced by a high-temperature annealing process to fabricate an FE device by a wet-coating process at a low cost. Using the coating, we succeeded in reducing the power consumption of field emitters for planar lighting devices. SWCNTs synthesized by arc discharge have crystal defects in the carbon network, which are considered to induce inelastic electron tunneling that deteriorates the electrical conductivity of the SWCNTs. In this study, the blocking of the transport of electrons in SWCNTs with crystal defects is simulated using an inelastic electron tunneling model. We succeeded in clarifying the mechanism underlying the electrical conductivity of SWCNTs by controlling their crystallinity. In addition, it was confirmed that field emitters using highly crystalline SWCNTs can lead to new applications operating with low power consumption and new devices that may change our daily lives in the future.

  19. Effect of increased crystallinity of single-walled carbon nanotubes used as field emitters on their electrical properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimoi, Norihiro, E-mail: shimoi@mail.kankyo.tohoku.ac.jp

    2015-12-07

    Single-walled carbon nanotubes (SWCNTs) synthesized by arc discharge are expected to exhibit good field emission (FE) properties at a low driving voltage. We used a coating containing homogeneously dispersed highly crystalline SWCNTs produced by a high-temperature annealing process to fabricate an FE device by a wet-coating process at a low cost. Using the coating, we succeeded in reducing the power consumption of field emitters for planar lighting devices. SWCNTs synthesized by arc discharge have crystal defects in the carbon network, which are considered to induce inelastic electron tunneling that deteriorates the electrical conductivity of the SWCNTs. In this study, themore » blocking of the transport of electrons in SWCNTs with crystal defects is simulated using an inelastic electron tunneling model. We succeeded in clarifying the mechanism underlying the electrical conductivity of SWCNTs by controlling their crystallinity. In addition, it was confirmed that field emitters using highly crystalline SWCNTs can lead to new applications operating with low power consumption and new devices that may change our daily lives in the future.« less

  20. Customized electric power storage device for inclusion in a microgrid

    DOEpatents

    Goldsmith, Steven Y.; Wilson, David; Robinett, III, Rush D.

    2017-08-01

    An electric power storage device included in a microgrid is described herein. The electric power storage device has at least one of a charge rate, a discharge rate, or a power retention capacity that has been customized for the microgrid. The at least one of the charge rate, the discharge rate, or the power retention capacity of the electric power storage device is computed based at least in part upon specified power source parameters in the microgrid and specified load parameters in the microgrid.

  1. Pressure letdown method and device for coal conversion systems

    NASA Technical Reports Server (NTRS)

    Kendal, J. M.; Walsh, J. V. (Inventor)

    1983-01-01

    In combination with a reactor for a coal utilization system, a pressure letdown device accepts from a reactor, a polyphase fluid at an entrance pressure and an entrance velocity, and discharges the fluid from the device at a discharge pressure substantially lower than the entrance pressure and at a discharge temperature and a discharge velocity substantially equal to the entrance temperature and entrance velocity. The device is characterized by a series of pressure letdown stages including several symmetrical baffles, disposed in coaxially nested alignment. In each baffle several ports or apertures of uniform dimensions are defined. The number of ports or apertures for each baffle plate is unique with respect to the number of ports or apertures defined in each of the other baffles. The mass rate of flow for each port is a function of the area of the port, the pressure of the fluid as applied to the port, and a common pressure ratio established across the ports.

  2. Welding Experiments of Aluminum Alloy by Space GHTA Welding at ISS Orbital Pressure

    NASA Astrophysics Data System (ADS)

    Suita, Yoshikazu; Takai, Daisuke; Sugiyama, Satoshi; Terajima, Noboru; Tsukuda, Yoshiyuki; Fujisawa, Shoichiro; Imagawa, Kichiro

    As a feasible welding method in space, the authors previously proposed the space GHTA (Gas Hollow Tungsten Arc) welding process. However, space GHTA welding with a high-frequency device for arc start may cause electromagnetic noise problems for the computer equipment placed on the ISS (International Space Station). Therefore, in this report, welding experiments of space GHTA welding using aluminum alloy with a high-voltage DC device for arc start were carried out at the ISS orbital pressure, 10-5 Pa. It is clear from the experiments using a high-voltage DC device in a high-vacuum condition, that there is a shifting phenomenon in which the spark discharge shifts to either a glow discharge or an arc discharge when starting the arc. Welding projects in space need an arc discharge, so we investigated the effects of welding parameters on the arc formation ratio. As a result, space GHTA welding with a high-voltage DC device can be used for arc start when welding at the ISS orbital pressure.

  3. Automatic atrial capture device control in real-life practice: A multicenter experience.

    PubMed

    Giammaria, Massimo; Quirino, Gianluca; Alberio, Mariangela; Parravicini, Umberto; Cipolla, Eliana; Rossetti, Guido; Ruocco, Antonio; Senatore, Gaetano; Rametta, Francesco; Pistelli, Paolo

    2017-04-01

    Device-based fully automatic pacing capture detection is useful in clinical practice and important in the era of remote care management. The main objective of this study was to verify the effectiveness of the new ACAP Confirm® algorithm in managing atrial capture in the medium term in comparison with early post-implantation testing. Data were collected from 318 patients (66% male; mean age, 73±10 years); 237 of these patients underwent device implantation and 81 box changes in 31 Italian hospitals. Atrial threshold measurements were taken manually and automatically at different pulse widths before discharge and during follow-up (7±2 months) examination. The algorithm worked as expected in 73% of cases, considering all performed tests. The success rate was 65% and 88% pre-discharge and during follow-up examination ( p <0.001), respectively, in patients who had undergone implantation. We did not detect any difference in the performance of the algorithm as a result of the type of atrial lead used. The success rate was 70% during pre-discharge testing in patients undergoing device replacement. Considering all examination types, manual and automatic measurements yielded threshold values of 1.07±0.47 V and 1.03±0.47 V at 0.2-ms pulse duration ( p =0.37); 0.66±0.37 V and 0.67±0.36 V at 0.4 ms ( p =0.42); and 0.5±0.28 V and 0.5±0.29 V at 1 ms ( p =0.32). The results show that the algorithm works before discharge, and its reliability increases over the medium term. The algorithm also proved accurate in detecting the atrial threshold automatically. The possibility of activating it does not seem to be influenced by the lead type used, but by the time from implantation.

  4. Waveguiding and bending modes in a plasma photonic crystal bandgap device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, B., E-mail: bwang17@stanford.edu; Cappelli, M. A.

    2016-06-15

    Waveguiding and bending modes are investigated in a fully tunable plasma photonic crystal. The plasma device actively controls the propagation of free space electromagnetic waves in the S to X band of the microwave spectrum. An array of discharge plasma tubes form a square crystal lattice exhibiting a well-defined bandgap, with individual active switching of the plasma elements to allow for waveguiding and bending modes to be generated dynamically. We show, through simulations and experiments, the existence of transverse electric (TE) mode waveguiding and bending modes.

  5. An Oil/Water disperser device for use in an oil content Monitor/Control system

    NASA Astrophysics Data System (ADS)

    Kempel, F. D.

    1985-07-01

    This patent application discloses an oil content monitor/control unit system, including an oil/water disperser device, which is configured to automatically monitor and control processed effluent from an associated oil/water separator so that if the processed effluent exceeds predetermine in-port or at-sea oil concentration lmits, it is either recirculated to an associated oil/water separator via a ship's bilge for additional processing, or diverted to a holding tank for storage. On the other hand, if the oil concentration of the processed effluent is less than predetermine in-port or at-sea limits, it is discharged overboard. The oil/water disperser device is configured to break up any oil present in the processed effluent into uniform droplets for more accurate sensing of the oil present in the processed effluent into uniform droplets for more accurate sensing of the oil-in-water concentration level thereof. The oil/water disperser device has a flow-actuated variable orifice configured into a spring-loaded polyethylene plunger which provides the uniform distribution of oil droplets.

  6. 40 CFR Table 2 to Subpart Fffff of... - Initial Compliance With Emission and Opacity Limits

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... flow-weighted average concentration of particulate matter from one or more control devices applied to...). 4. Each discharge end at a new sinter plant a. The flow-weighted average concentration of... BOPF at a new or existing BOPF shop a. The average concentration of particulate matter from a primary...

  7. 40 CFR Table 2 to Subpart Fffff of... - Initial Compliance With Emission and Opacity Limits

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... flow-weighted average concentration of particulate matter from one or more control devices applied to...). 4. Each discharge end at a new sinter plant a. The flow-weighted average concentration of... BOPF at a new or existing BOPF shop a. The average concentration of particulate matter from a primary...

  8. 40 CFR Table 2 to Subpart Fffff of... - Initial Compliance With Emission and Opacity Limits

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... flow-weighted average concentration of particulate matter from one or more control devices applied to...). 4. Each discharge end at a new sinter plant a. The flow-weighted average concentration of... BOPF at a new or existing BOPF shop a. The average concentration of particulate matter from a primary...

  9. 40 CFR Table 2 to Subpart Fffff of... - Initial Compliance With Emission and Opacity Limits

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... flow-weighted average concentration of particulate matter from one or more control devices applied to...). 4. Each discharge end at a new sinter plant a. The flow-weighted average concentration of... BOPF at a new or existing BOPF shop a. The average concentration of particulate matter from a primary...

  10. Lunabotics Mining: Evolution of ARTEMIS PRIME

    NASA Technical Reports Server (NTRS)

    Bertke, Sarah; Gries, Christine; Huff, Amanda; Logan, Brittany; Oliver, Kaitlin; Rigney, Erica; Tyree, Whitney; Young, Maegan

    2010-01-01

    This slide presentation reviews the development of Amassing Regolith with Topper Engineers eMploying Innovative Solutions (ARTEMIS) in a competition to develop robotic lunar mining capabilities. The goal of the competition was to design, build and operate a remotely controlled device that is capable of excavating, transporting and discharging lunar regolith simulant in a lunar environment over a 13 minute period.

  11. Non-linear macro evolution of a dc driven micro atmospheric glow discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, S. F.; Zhong, X. X., E-mail: xxzhong@sjtu.edu.cn

    2015-10-15

    We studied the macro evolution of the micro atmospheric glow discharge generated between a micro argon jet into ambient air and static water. The micro discharge behaves similarly to a complex ecosystem. Non-linear behaviors are found for the micro discharge when the water acts as a cathode, different from the discharge when water behaves as an anode. Groups of snapshots of the micro discharge formed at different discharge currents are captured by an intensified charge-coupled device with controlled exposure time, and each group consisted of 256 images taken in succession. Edge detection methods are used to identify the water surfacemore » and then the total brightness is defined by adding up the signal counts over the area of the micro discharge. Motions of the water surface at different discharge currents show that the water surface lowers increasingly rapidly when the water acts as a cathode. In contrast, the water surface lowers at a constant speed when the water behaves as an anode. The light curves are similar to logistic growth curves, suggesting that a self-inhibition process occurs in the micro discharge. Meanwhile, the total brightness increases linearly during the same time when the water acts as an anode. Discharge-water interactions cause the micro discharge to evolve. The charged particle bomb process is probably responsible for the different behaviors of the micro discharges when the water acts as cathode and anode.« less

  12. Eight electrode optical readout gap

    DOEpatents

    Boettcher, G.E.; Crain, R.W.

    1984-01-01

    A protective device for a plurality of electrical circuits includes a plurality of isolated electrodes forming a gap with a common electrode. An output signal, electrically isolated from the circuits being monitored, is obtained by a photosensor viewing the discharge gap through an optical window. Radioactive stabilization of discharge characteristics is provided for slowly changing voltages and carbon tipped dynamic starters provide desirable discharge characteristics for rapidly varying voltages. A hydrogen permeation barrier is provided on external surfaces of the device.

  13. No Benefit in Neurologic Outcomes of Survivors of Out-of-Hospital Cardiac Arrest with Mechanical Compression Device.

    PubMed

    Newberry, Ryan; Redman, Ted; Ross, Elliot; Ely, Rachel; Saidler, Clayton; Arana, Allyson; Wampler, David; Miramontes, David

    2018-01-01

    Out-of-hospital cardiac arrest (OHCA) is a major cause of death and morbidity in the United States. Quality cardiopulmonary resuscitation (CPR) has proven to be a key factor in improving survival. The aim of our study was to investigate the outcomes of OHCA when mechanical CPR (LUCAS 2 Chest Compression System™) was utilized compared to conventional CPR. Although controlled trials have not demonstrated a survival benefit to the routine use of mechanical CPR devices, there continues to be an interest for their use in OHCA. We conducted a retrospective observational study of OHCA comparing the outcomes of mechanical and manual chest compressions in a fire department based EMS system serving a population of 1.4 million residents. Mechanical CPR devices were geographically distributed on 11 of 33 paramedic ambulances. Data were collected over a 36-month period and outcomes were dichotomized based on utilization of mechanical CPR. The primary outcome measure was survival to hospital discharge with a cerebral performance category (CPC) score of 1 or 2. This series had 3,469 OHCA reports, of which 2,999 had outcome data and met the inclusion criteria. Of these 2,236 received only manual CPR and 763 utilized a mechanical CPR device during the resuscitation. Return of spontaneous circulation (ROSC) was attained in 44% (334/763) of the mechanical CPR resuscitations and in 46% (1,020/2,236) of the standard manual CPR resuscitations (p = 0.32). Survival to hospital discharge was observed in 7% (52/763) of the mechanical CPR resuscitations and 9% (191/2,236) of the manual CPR group (p = 0.13). Discharge with a CPC score of 1 or 2 was observed in 4% (29/763) of the mechanical CPR resuscitation group and 6% (129/2,236) of the manual CPR group (p = 0.036). In our study, use of the mechanical CPR device was associated with a poor neurologic outcome at hospital discharge. However, this difference was no longer evident after logistic regression adjusting for confounding variables. Resuscitation management following institution of mechanical CPR, specifically medication and airway management, may account for the poor outcome reported. Further investigation of resuscitation management when a mechanical CPR device is utilized is necessary to optimize survival benefit.

  14. On the longitudinal distribution of electric field in the acceleration zones of plasma accelerators and thrusters with closed electron drift

    NASA Astrophysics Data System (ADS)

    Kim, V. P.

    2017-04-01

    The long-term experience in controlling the electric field distribution in the discharge gaps of plasma accelerators and thrusters with closed electron drift and the key ideas determining the concepts of these devices and tendencies of their development are analyzed. It is shown that an electrostatic mechanism of ion acceleration in plasma by an uncompensated space charge of the cloud of magnetized electrons "kept" to the magnetic field takes place in the acceleration zones and that the electric field distribution can be controlled by varying the magnetic field in the discharge gap. The role played by the space charge makes the mechanism of ion acceleration in this type of thrusters is fundamentally different from the acceleration mechanism operating in purely electrostatic thrusters.

  15. ESD robustness improving for the low-voltage triggering silicon-controlled rectifier by adding NWell at cathode

    NASA Astrophysics Data System (ADS)

    Jin, Xiangliang; Zheng, Yifei; Wang, Yang; Guan, Jian; Hao, Shanwan; Li, Kan; Luo, Jun

    2018-01-01

    The low-voltage triggering silicon-controlled rectifier (LVTSCR) device is widely used in on-chip electrostatic discharge (ESD) protection owing to its low trigger voltage and strong current-tolerating capability per area. In this paper, an improved LVTSCR by adding a narrow NWell (NW2) under the source region of NMOS is discussed, which is realized in a 0.5-μm CMOS process. A 2-dimension (2D) device simulation platform and a transmission line pulse (TLP) testing system are used to predict and characterize the proposed ESD protection devices. According to the measurement results, compared with the preliminary LVTSCR, the improved LVTSCR elevates the second breakdown current (It2) from 2.39 A to 5.54 A and increases the holding voltage (Vh) from 3.04 V to 4.09 V without expanding device area or sacrificing any ESD performances. Furthermore, the influence of the size of the narrow NWell under the source region of NMOS on holding voltage is also discussed.

  16. Path-oriented early reaction to approaching disruptions in ASDEX Upgrade and TCV in view of the future needs for ITER and DEMO

    NASA Astrophysics Data System (ADS)

    Maraschek, M.; Gude, A.; Igochine, V.; Zohm, H.; Alessi, E.; Bernert, M.; Cianfarani, C.; Coda, S.; Duval, B.; Esposito, B.; Fietz, S.; Fontana, M.; Galperti, C.; Giannone, L.; Goodman, T.; Granucci, G.; Marelli, L.; Novak, S.; Paccagnella, R.; Pautasso, G.; Piovesan, P.; Porte, L.; Potzel, S.; Rapson, C.; Reich, M.; Sauter, O.; Sheikh, U.; Sozzi, C.; Spizzo, G.; Stober, J.; Treutterer, W.; ZancaP; ASDEX Upgrade Team; TCV Team; the EUROfusion MST1 Team

    2018-01-01

    Routine reaction to approaching disruptions in tokamaks is currently largely limited to machine protection by mitigating an ongoing disruption, which remains a basic requirement for ITER and DEMO [1]. Nevertheless, a mitigated disruption still generates stress to the device. Additionally, in future fusion devices, high-performance discharge time itself will be very valuable. Instead of reacting only on generic features, occurring shortly before the disruption, the ultimate goal is to actively avoid approaching disruptions at an early stage, sustain the discharges whenever possible and restrict mitigated disruptions to major failures. Knowledge of the most relevant root causes and the corresponding chain of events leading to disruption, the disruption path, is a prerequisite. For each disruption path, physics-based sensors and adequate actuators must be defined and their limitations considered. Early reaction facilitates the efficiency of the actuators and enhances the probability of a full recovery. Thus, sensors that detect potential disruptions in time are to be identified. Once the entrance into a disruption path is detected, we propose a hierarchy of actions consisting of (I) recovery of the discharge to full performance or at least continuation with a less disruption-prone backup scenario, (II) complete avoidance of disruption to sustain the discharge or at least delay it for a controlled termination and, (III), only as last resort, a disruption mitigation. Based on the understanding of disruption paths, a hierarchical and path-specific handling strategy must be developed. Such schemes, testable in present devices, could serve as guidelines for ITER and DEMO operation. For some disruption paths, experiments have been performed at ASDEX Upgrade and TCV. Disruptions were provoked in TCV by impurity injection into ELMy H-mode discharges and in ASDEX Upgrade by forcing a density limit in H-mode discharges. The new approach proposed in this paper is discussed for these cases. For the H-mode density limit sensors used so far react too late. Thus a plasma-state boundary is proposed, that can serve as an adequate early sensor for avoiding density limit disruptions in H-modes and for recovery to full performance.

  17. Vessel Sewage Discharges

    EPA Pesticide Factsheets

    Vessel sewage discharges are regulated under Section 312 of the Clean Water Act, which is jointly implemented by the EPA and Coast Guard. This homepage links to information on marine sanitation devices and no discharge zones.

  18. Biocompatibility Analysis of an Electrically-Activated Silver-Based Antibacterial Surface System for Medical Device Applications

    DTIC Science & Technology

    2012-12-16

    sterilizing without causing toxicity in vivo. 1 Introduction As reported to the Centers for Disease Control and Pre- vention (CDC) between 2006 and...Owings MF. National Hospital Discharge Survey. Advance Data from Vital and Health Statistics. United States: Centers for Disease Control and Prevention...10.1007/s10856-012-4730-3. 19. Shirwaiker RA, Wysk RA, Kariyawasam S, Carrion H, Voigt RC. Micro-scale fabrication and characterization of a silver–polymer

  19. PLASMA DEVICE

    DOEpatents

    Baker, W.R.; Brathenahl, A.; Furth, H.P.

    1962-04-10

    A device for producing a confined high temperature plasma is described. In the device the concave inner surface of an outer annular electrode is disposed concentrically about and facing the convex outer face of an inner annular electrode across which electrodes a high potential is applied to produce an electric field there between. Means is provided to create a magnetic field perpendicular to the electric field and a gas is supplied at reduced pressure in the area therebetween. Upon application of the high potential, the gas between the electrodes is ionized, heated, and under the influence of the electric and magnetic fields there is produced a rotating annular plasma disk. The ionized plasma has high dielectric constant properties. The device is useful as a fast discharge rate capacitor, in controlled thermonuclear research, and other high temperature gas applications. (AEC)

  20. An aqueous electrolyte, sodium ion functional, large format energy storage device for stationary applications

    NASA Astrophysics Data System (ADS)

    Whitacre, J. F.; Wiley, T.; Shanbhag, S.; Wenzhuo, Y.; Mohamed, A.; Chun, S. E.; Weber, E.; Blackwood, D.; Lynch-Bell, E.; Gulakowski, J.; Smith, C.; Humphreys, D.

    2012-09-01

    An approach to making large format economical energy storage devices based on a sodium-interactive set of electrodes in a neutral pH aqueous electrolyte is described. The economics of materials and manufacturing are examined, followed by a description of an asymmetric/hybrid device that has λ-MnO2 positive electrode material and low cost activated carbon as the negative electrode material. Data presented include materials characterization of the active materials, cyclic voltammetry, galvanostatic charge/discharge cycling, and application-specific performance of an 80 V, 2.4 kW h pack. The results indicate that this set of electrochemical couples is stable, low cost, requires minimal battery management control electronics, and therefore has potential for use in stationary applications where device energy density is not a concern.

  1. Glow Discharge Plasma Demonstrated for Separation Control in the Low-Pressure Turbine

    NASA Technical Reports Server (NTRS)

    Ashpis, David e.; Hultgren, Lennart S.

    2004-01-01

    Flow separation in the low-pressure turbine (LPT) is a major barrier that limits further improvements of aerodynamic designs of turbine airfoils. The separation is responsible for performance degradation, and it prevents the design of highly loaded airfoils. The separation can be delayed, reduced, or eliminated completely if flow control techniques are used. Successful flow control technology will enable breakthrough improvements in gas turbine performance and design. The focus of this research project was the development and experimental demonstration of active separation control using glow discharge plasma (GDP) actuators in flow conditions simulating the LPT. The separation delay was shown to be successful, laying the foundation for further development of the technologies to practical application in the LPT. In a fluid mechanics context, the term "flow control" means a technology by which a very small input results in a very large effect on the flow. In this project, the interest is to eliminate or delay flow separation on LPT airfoils by using an active flow control approach, in which disturbances are dynamically inserted into the flow, they interact with the flow, and they delay separation. The disturbances can be inserted using a localized, externally powered, actuating device, examples are acoustic, pneumatic, or mechanical devices that generate vibrations, flow oscillations, or pulses. A variety of flow control devices have been demonstrated in recent years in the context of the external aerodynamics of aircraft wings and airframes, where the incoming flow is quiescent or of a very low turbulence level. However, the flow conditions in the LPT are significantly different because there are high levels of disturbances in the incoming flow that are characterized by high free-stream turbulence intensity. In addition, the Reynolds number, which characterizes the viscous forces in the flow and is related to the flow speed, is very low in the LPT passages.

  2. GASEOUS DISCHARGE DEVICE

    DOEpatents

    Gow, J.D.

    1961-01-10

    An extremely compact two-terminal gaseous discharge device is described that is capable of producing neutrons in copious quantities, relatively high energy ions, intense x rays, and the like. Principal novelty resides in the provision of a crossed electric-magnetic field region in the discharge envelope that traps electrons and accelerates them to very high energies to provide an intense ionizing medium adjacent the anode of the device for ionizing gas therein with extremely high efficiency. In addition, the crossed-field trapping region holds the electrons close to the anode whereby the acceleration of ions to the cathode is not materially effected by the electron sheath and the ions assume substantially the full energy of the anodecathode potential drop. (auth)

  3. Discharge source with gas curtain for protecting optics from particles

    DOEpatents

    Fornaciari, Neal R.; Kanouff, Michael P.

    2004-03-30

    A gas curtain device is employed to deflect debris that is generated by an extreme ultraviolet and soft x-ray radiation discharge source such as an electric discharge plasma source. The gas curtain device projects a stream of gas over the path of the radiation to deflect debris particles into a direction that is different from that of the path of the radiation. The gas curtain can be employed to prevent debris accumulation on the optics used in photolithography.

  4. HOLLOW CARBON ARC DISCHARGE

    DOEpatents

    Luce, J.S.

    1960-10-11

    A device is described for producing an energetic, direct current, hollow, carbon-arc discharge in an evacuated container and within a strong magnetic field. Such discharges are particularly useful not only in dissociation and ionization of high energy molecular ion beams, but also in acting as a shield or barrier against the instreaming of lowenergy neutral particles into a plasma formed within the hollow discharge when it is used as a dissociating mechanism for forming the plasma. There is maintained a predetermined ratio of gas particles to carbon particles released from the arc electrodes during operation of the discharge. The carbon particles absorb some of the gas particles and are pumped along and by the discharge out of the device, with the result that smaller diffusion pumps are required than would otherwise be necessary to dispose of the excess gas.

  5. METHOD AND APPARATUS FOR HANDLING RADIOACTIVE PRODUCTS

    DOEpatents

    Nicoll, D.

    1959-02-24

    A device is described for handling fuel elements being discharged from a nuclear reactor. The device is adapted to be disposed beneath a reactor within the storage canal for spent fuel elements. The device is comprised essentially of a cylinder pivotally mounted to a base for rotational motion between a vertical position. where the mouth of the cylinder is in the top portion of the container for receiving a fuel element discharged from a reactor into the cylinder, and a horizontal position where the mouth of the cylinder is remote from the top portion of the container and the fuel element is discharged from the cylinder into the storage canal. The device is operated by hydraulic pressure means and is provided with a means to prevent contaminated primary liquid coolant in the reactor system from entering the storage canal with the spent fuel element.

  6. V2O5 encapsulated MWCNTs in 2D surface architecture: Complete solid-state bendable highly stabilized energy efficient supercapacitor device

    NASA Astrophysics Data System (ADS)

    Pandit, Bidhan; Dubal, Deepak P.; Gómez-Romero, Pedro; Kale, Bharat B.; Sankapal, Babasaheb R.

    2017-03-01

    A simple and scalable approach has been reported for V2O5 encapsulation over interconnected multi-walled carbon nanotubes (MWCNTs) network using chemical bath deposition method. Chemically synthesized V2O5/MWCNTs electrode exhibited excellent charge-discharge capability with extraordinary cycling retention of 93% over 4000 cycles in liquid-electrolyte. Electrochemical investigations have been performed to evaluate the origin of capacitive behavior from dual contribution of surface-controlled and diffusion-controlled charge components. Furthermore, a complete flexible solid-state, flexible symmetric supercapacitor (FSS-SSC) device was assembled with V2O5/MWCNTs electrodes which yield remarkable values of specific power and energy densities along with enhanced cyclic stability over liquid configuration. As a practical demonstration, the constructed device was used to lit the ‘VNIT’ acronym assembled using 21 LED’s.

  7. H-mode achievement and edge features in RFX-mod tokamak operation

    NASA Astrophysics Data System (ADS)

    Spolaore, M.; Cavazzana, R.; Marrelli, L.; Carraro, L.; Franz, P.; Spagnolo, S.; Zaniol, B.; Zuin, M.; Cordaro, L.; Dal Bello, S.; De Masi, G.; Ferro, A.; Finotti, C.; Grando, L.; Grenfell, G.; Innocente, P.; Kudlacek, O.; Marchiori, G.; Martines, E.; Momo, B.; Paccagnella, R.; Piovesan, P.; Piron, C.; Puiatti, M. E.; Recchia, M.; Scarin, P.; Taliercio, C.; Vianello, N.; Zanotto, L.

    2017-11-01

    The RFX-mod experiment is a fusion device designed to operate as a reversed field pinch (RFP), with a major radius R = 2 m and a minor radius a = 0.459 m. Its high versatility recently allowed operating it also as an ohmic tokamak, allowing comparative studies between the two configurations in the same device. The device is equipped with a state of the art MHD mode feedback control system providing a magnetic boundary effective control, by applying resonant or non-resonant magnetic perturbations (MP), both in RFP and in tokamak configurations. In the fusion community the application of MPs is widely studied as a promising tool to limit the impact of plasma filaments and ELMs (edge localized modes) on plasma facing components. An important new research line is the exploitation of the RFX-mod active control system for ELM mitigation studies. As a first step in this direction, this paper presents the most recent achievements in term of RFX-mod tokamak explored scenarios, which allowed the first investigation of the ohmic and edge biasing induced H-mode. The production of D-shaped tokamak discharges and the design and deployment of an insertable polarized electrode were accomplished. Reproducible H-mode phases were obtained with insertable electrode negative biasing in single null discharges, representing an unexplored scenario with this technique. Important modifications of the edge plasma density and flow properties are observed. During the achieved H-mode ELM-like electromagnetic composite filamentary structures are observed. They are characterized by clear vorticity and parallel current density patterns.

  8. Discharge of thoracic patients on portable digital suction: Is it cost-effective?

    PubMed

    Southey, Dawn; Pullinger, Diane; Loggos, Spiros; Kumari, Nelam; Lengyel, Emma; Morgan, Ian; Yiu, Patrick; Nandi, Jayanta; Luckraz, Heyman

    2015-09-01

    A portable suction drainage device for patients undergoing thoracic surgical procedures was introduced into our service in January 2010. Patients who met strict discharge criteria were allowed to continue their treatment at home with the device. They were monitored in a designated follow-up clinic. Data were collected to identify the impact of this service in relation to the duration of follow-up required, bed-days saved, and potential cost/benefits. All patients who underwent a thoracic procedure from March 2012 to April 2014 and required suction postoperatively for air leak were included in the study. Patients were identified as suitable according to the discharge criteria. Data regarding patient demographics were collected prospectively on the thoracic database, and data on the drainage device were logged in a specific data sheet. Visits to the follow-up clinic were also recorded. During the study period, 50 patients stayed a total 1125 days on the portable suction system. Twenty were discharged home, equating to 772 bed-days saved (GBP 270,000 cost-saving). Clinic attendance totalled 162 visits (GBP 24,300 cost reimbursement for attendance). Six (30%) patients were readmitted on 9 occasions due to device malfunction or inability to cope at home. Careful identification of patients suitable for discharge with a portable suction device achieved a significant cost-saving and freed hospital beds, thus allowing increased surgical activity. Patients were also able to be cared for within their home environment and maintain their quality of life. © The Author(s) 2015.

  9. Nanoscale discharge electrode for minimizing ozone emission from indoor corona devices.

    PubMed

    Bo, Zheng; Yu, Kehan; Lu, Ganhua; Mao, Shun; Chen, Junhong; Fan, Fa-Gung

    2010-08-15

    Ground-level ozone emitted from indoor corona devices poses serious health risks to the human respiratory system and the lung function. Federal regulations call for effective techniques to minimize the indoor ozone production. In this work, stable atmospheric corona discharges from nanomaterials are demonstrated using horizontally suspended carbon nanotubes (CNTs) as the discharge electrode. Compared with the conventional discharges employing micro- or macroscale electrodes, the corona discharge from CNTs could initiate and operate at a much lower voltage due to the small electrode diameter, and is thus energy-efficient. Most importantly, the reported discharge is environmentally friendly since no ozone (below the detection limit of 0.5 ppb) was detected for area current densities up to 0.744 A/m(2) due to the significantly reduced number of electrons and plasma volume generated by CNT discharges. The resulting discharge current density depends on the CNT loading. Contrary to the conventional wisdom, negative CNT discharges should be used to enhance the current density owing to the efficient field emission of electrons from the CNT surface.

  10. Study on the mode-transition of nanosecond-pulsed dielectric barrier discharge between uniform and filamentary by controlling pressures and pulse repetition frequencies

    NASA Astrophysics Data System (ADS)

    Yu, S.; Pei, X.; Hasnain, Q.; Nie, L.; Lu, X.

    2016-02-01

    In this paper, we investigate the temporally resolved evolution of the nanosecond pulsed dielectric barrier discharge (DBD) in a moderate 6 mm discharge gap under various pressures and pulse repetition frequencies (PRFs) by intensified charge-coupled device (ICCD) images, using dry air and its components oxygen and nitrogen. It is found that the pressures are very different when the mode transits between uniform and filamentary in air, oxygen, and nitrogen. The PRFs can also obviously affect the mode-transition. The transition mechanism in the pulsed DBD is not Townsend-to-Streamer, which is dominant in the traditional alternating-voltage DBD. The pulsed DBD in a uniform mode develops in the form of plane ionization wave due to overlap of primary avalanches, while the increase in pressure disturbs the overlap and discharge develops in streamer, corresponding to the filamentary mode. Increasing the initial electron density by pre-ionization may contribute to discharge uniformity at higher pressures. We also found that the dependence of homogeneity upon PRF is a non-monotonic one.

  11. Efficacy of a Low-Cost Bubble CPAP System in Treatment of Respiratory Distress in a Neonatal Ward in Malawi

    PubMed Central

    Kawaza, Kondwani; Machen, Heather E.; Brown, Jocelyn; Mwanza, Zondiwe; Iniguez, Suzanne; Gest, Al; Smith, E. O'Brian; Oden, Maria; Richards-Kortum, Rebecca R.; Molyneux, Elizabeth

    2014-01-01

    Background Respiratory failure is a leading cause of neonatal mortality in the developing world. Bubble continuous positive airway pressure (bCPAP) is a safe, effective intervention for infants with respiratory distress and is widely used in developed countries. Because of its high cost, bCPAP is not widely utilized in low-resource settings. We evaluated the performance of a new bCPAP system to treat severe respiratory distress in a low resource setting, comparing it to nasal oxygen therapy, the current standard of care. Methods We conducted a non-randomized convenience sample study to test the efficacy of a low-cost bCPAP system treating newborns with severe respiratory distress in the neonatal ward of Queen Elizabeth Central Hospital, in Blantyre, Malawi. Neonates weighing >1,000 g and presenting with severe respiratory distress who fulfilled inclusion criteria received nasal bCPAP if a device was available; if not, they received standard care. Clinical assessments were made during treatment and outcomes compared for the two groups. Findings 87 neonates (62 bCPAP, 25 controls) were recruited. Survival rate for neonates receiving bCPAP was 71.0% (44/62) compared with 44.0% (11/25) for controls. 65.5% (19/29) of very low birth weight neonates receiving bCPAP survived to discharge compared to 15.4% (1/13) of controls. 64.6% (31/48) of neonates with respiratory distress syndrome (RDS) receiving bCPAP survived to discharge, compared to 23.5% (4/17) of controls. 61.5% (16/26) of neonates with sepsis receiving bCPAP survived to discharge, while none of the seven neonates with sepsis in the control group survived. Interpretation Use of a low-cost bCPAP system to treat neonatal respiratory distress resulted in 27% absolute improvement in survival. The beneficial effect was greater for neonates with very low birth weight, RDS, or sepsis. Implementing appropriate bCPAP devices could reduce neonatal mortality in developing countries. PMID:24489715

  12. Efficacy of a low-cost bubble CPAP system in treatment of respiratory distress in a neonatal ward in Malawi.

    PubMed

    Kawaza, Kondwani; Machen, Heather E; Brown, Jocelyn; Mwanza, Zondiwe; Iniguez, Suzanne; Gest, Al; O'Brian Smith, E; Oden, Maria; Richards-Kortum, Rebecca R; Molyneux, Elizabeth

    2016-09-01

    Respiratory failure is a leading cause of neonatal mortality in the developing world. Bubble continuous positive airway pressure (bCPAP) is a safe, effective intervention for infants with respiratory distress and is widely used in developed countries. Because of its high cost, bCPAP is not widely utilized in low-resource settings. We evaluated the performance of a new bCPAP system to treat severe respiratory distress in a low resource setting, comparing it to nasal oxygen therapy, the current standard of care. We conducted a non-randomized convenience sample study to test the efficacy of a low-cost bCPAP system treating newborns with severe respiratory distress in the neonatal ward of Queen Elizabeth Central Hospital, in Blantyre, Malawi. Neonates weighing >1,000 g and presenting with severe respiratory distress who fulfilled inclusion criteria received nasal bCPAP if a device was available; if not, they received standard care. Clinical assessments were made during treatment and outcomes compared for the two groups. 87 neonates (62 bCPAP, 25 controls) were recruited. Survival rate for neonates receiving bCPAP was 71.0% (44/62) compared with 44.0% (11/25) for controls. 65.5% (19/29) of very low birth weight neonates receiving bCPAP survived to discharge compared to 15.4% (1/13) of controls. 64.6% (31/48) of neonates with respiratory distress syndrome (RDS) receiving bCPAP survived to discharge, compared to 23.5% (4/17) of controls. 61.5% (16/26) of neonates with sepsis receiving bCPAP survived to discharge, while none of the seven neonates with sepsis in the control group survived. Use of a low-cost bCPAP system to treat neonatal respiratory distress resulted in 27% absolute improvement in survival. The beneficial effect was greater for neonates with very low birth weight, RDS, or sepsis. Implementing appropriate bCPAP devices could reduce neonatal mortality in developing countries.

  13. Efficacy of a low-cost bubble CPAP system in treatment of respiratory distress in a neonatal ward in Malawi.

    PubMed

    Kawaza, Kondwani; Machen, Heather E; Brown, Jocelyn; Mwanza, Zondiwe; Iniguez, Suzanne; Gest, Al; Smith, E O'Brian; Oden, Maria; Richards-Kortum, Rebecca R; Molyneux, Elizabeth

    2014-01-01

    Respiratory failure is a leading cause of neonatal mortality in the developing world. Bubble continuous positive airway pressure (bCPAP) is a safe, effective intervention for infants with respiratory distress and is widely used in developed countries. Because of its high cost, bCPAP is not widely utilized in low-resource settings. We evaluated the performance of a new bCPAP system to treat severe respiratory distress in a low resource setting, comparing it to nasal oxygen therapy, the current standard of care. We conducted a non-randomized convenience sample study to test the efficacy of a low-cost bCPAP system treating newborns with severe respiratory distress in the neonatal ward of Queen Elizabeth Central Hospital, in Blantyre, Malawi. Neonates weighing >1,000 g and presenting with severe respiratory distress who fulfilled inclusion criteria received nasal bCPAP if a device was available; if not, they received standard care. Clinical assessments were made during treatment and outcomes compared for the two groups. 87 neonates (62 bCPAP, 25 controls) were recruited. Survival rate for neonates receiving bCPAP was 71.0% (44/62) compared with 44.0% (11/25) for controls. 65.5% (19/29) of very low birth weight neonates receiving bCPAP survived to discharge compared to 15.4% (1/13) of controls. 64.6% (31/48) of neonates with respiratory distress syndrome (RDS) receiving bCPAP survived to discharge, compared to 23.5% (4/17) of controls. 61.5% (16/26) of neonates with sepsis receiving bCPAP survived to discharge, while none of the seven neonates with sepsis in the control group survived. Use of a low-cost bCPAP system to treat neonatal respiratory distress resulted in 27% absolute improvement in survival. The beneficial effect was greater for neonates with very low birth weight, RDS, or sepsis. Implementing appropriate bCPAP devices could reduce neonatal mortality in developing countries.

  14. Isotope effects on desorption kinetics of hydrogen isotopes implanted into stainless steel by glow discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsuyama, M.; Kondo, M.; Noda, N.

    2015-03-15

    In a fusion device the control of fuel particles implies to know the desorption rate of hydrogen isotopes by the plasma-facing materials. In this paper desorption kinetics of hydrogen isotopes implanted into type 316L stainless steel by glow discharge have been studied by experiment and numerical calculation. The temperature of a maximum desorption rate depends on glow discharge time and heating rate. Desorption spectra observed under various experimental conditions have been successfully reproduced by numerical simulations that are based on a diffusion-limited process. It is suggested, therefore, that desorption rate of a hydrogen isotope implanted into the stainless steel ismore » limited by a diffusion process of hydrogen isotope atoms in bulk. Furthermore, small isotope effects were observed for the diffusion process of hydrogen isotope atoms. (authors)« less

  15. Exploration of high harmonic fast wave heating on the National Spherical Torus Experiment

    NASA Astrophysics Data System (ADS)

    Wilson, J. R.; Bell, R. E.; Bernabei, S.; Bitter, M.; Bonoli, P.; Gates, D.; Hosea, J.; LeBlanc, B.; Mau, T. K.; Medley, S.; Menard, J.; Mueller, D.; Ono, M.; Phillips, C. K.; Pinsker, R. I.; Raman, R.; Rosenberg, A.; Ryan, P.; Sabbagh, S.; Stutman, D.; Swain, D.; Takase, Y.; Wilgen, J.

    2003-05-01

    High harmonic fast wave (HHFW) heating has been proposed as a particularly attractive means for plasma heating and current drive in the high beta plasmas that are achievable in spherical torus (ST) devices. The National Spherical Torus Experiment (NSTX) [M. Ono, S. M. Kaye, S. Neumeyer et al., in Proceedings of the 18th IEEE/NPSS Symposium on Fusion Engineering, Albuquerque, 1999 (IEEE, Piscataway, NJ, 1999), p. 53] is such a device. An rf heating system has been installed on the NSTX to explore the physics of HHFW heating, current drive via rf waves and for use as a tool to demonstrate the attractiveness of the ST concept as a fusion device. To date, experiments have demonstrated many of the theoretical predictions for HHFW. In particular, strong wave absorption on electrons over a wide range of plasma parameters and wave parallel phase velocities, wave acceleration of energetic ions, and indications of current drive for directed wave spectra have been observed. In addition HHFW heating has been used to explore the energy transport properties of NSTX plasmas, to create H-mode discharges with a large fraction of bootstrap current and to control the plasma current profile during the early stages of the discharge.

  16. Investigation and control of the {{\\rm{O}}}_{3}- to {NO}-transition in a novel sub-atmospheric pressure dielectric barrier discharge

    NASA Astrophysics Data System (ADS)

    Bansemer, Robert; Schmidt-Bleker, Ansgar; van Rienen, Ursula; Weltmann, Klaus-Dieter

    2017-06-01

    A novel flow-driven dielectric barrier discharge concept is presented, which uses a Venturi pump to transfer plasma-generated reactive oxygen and nitrogen species from a sub-atmospheric pressure (200{--}600 {mbar}) discharge region to ambient pressure and can be operated with air. By adjusting the working pressure of the device, the plasma chemistry can be tuned continuously from an ozone ({{{O}}}3)-dominated mode to a nitrogen oxides ({{NO}}x)-only mode. The plasma source is characterized focusing on the mechanisms effecting this mode change. The composition of the device’s output gas was determined using Fourier-transform infrared spectroscopy. The results are correlated to measurements of discharge chamber pressure and temperature as well as of input power. It is found that the mode-change temperature can be controlled by the discharge chamber pressure. The source concept is capable of generating an {{NO}}x-dominated plasma chemistry at gas temperatures distinctly below 400 {{K}}. Through mixing of the processed gas stream with a second flow of pressurized air required for the operation of the Venturi pump, the resulting product gas stream remains close to room temperature. A reduced zero-dimensional reaction kinetics model with only seven reactions is capable of describing the observed pressure- and temperature-dependence of the {{{O}}}3 to {{NO}}x mode-change.

  17. Trajectories of charged particles in radial electric and uniform axial magnetic fields

    NASA Technical Reports Server (NTRS)

    Englert, G. W.

    1979-01-01

    Trajectories of charged particles were determined over a wide range of parameters characterizing motion in cylindrical low-pressure gas discharges and plasma heating devices which have steady radial electric fields perpendicular to uniform steady magnetic fields. Consideration was given to radial distributions characteristic of fields measured in a modified Penning discharge, in two NASA Lewis burnout-type plasma heating devices, and that estimated for the Ixion device. Numerical calculations of trajectories for such devices showed that differences between cyclotron frequency and qB/m and between azimuthal drift and a guiding center approximation are appreciable.

  18. One-dimensional Numerical Model of Transient Discharges in Air of a Spatial Plasma Ignition Device

    NASA Astrophysics Data System (ADS)

    Saceleanu, Florin N.

    This thesis examines the modes of discharge of a plasma ignition device. Oscilloscope data of the discharge voltage and current are analyzed for various pressures in air at ambient temperature. It is determined that the discharge operates in 2 modes: a glow discharge and a postulated streamer discharge. Subsequently, a 1-dimensional fluid simulation of plasma using the finite volume method (FVM) is developed to gain insight into the particle kinetics. Transient results of the simulation agree with theories of electric discharges; however, quasi-steady state results were not reached due to high diffusion time of ions in air. Next, an ordinary differential equation (ODE) is derived to understand the discharge transition. Simulated results were used to estimate the voltage waveform, which describes the ODE's forcing function; additional simulated results were used to estimate the discharge current and the ODE's non-linearity. It is found that the ODE's non-linearity increases exponentially for capacitive discharges. It is postulated that the non-linearity defines the mode transition observed experimentally. The research is motivated by Spatial Plasma Discharge Ignition (SPDI), an innovative ignition system postulated to increase combustion efficiency in automobile engines for up to 9%. The research thus far can only hypothesize SPDI's benefits on combustion, based on the literature review and the modes of discharge.

  19. Current halo structures in high-current plasma experiments: θ-pinch

    NASA Astrophysics Data System (ADS)

    Matveev, Yu. V.

    2007-03-01

    Experimental data elucidating mechanisms for halo formation in θ-pinch discharges are presented and discussed. The experiments were performed with different gases (H2, D2, He, and Ar) in a theta-pinch device with a porcelain vacuum chamber and an excitation coil 15 cm in diameter and 30 cm in length. The stored energy, the current in the excitation coil, and the current half-period were W = 10 kJ, I = 400 kA, and T/2 = 14 μs, respectively. It is found that the plasma rings (halos) surrounding the pinch core arise as a result of coaxial pinch stratification due to both the excitation of closed currents (inductons) inside the pinch and the radial convergence of the plasma current sheaths produced after the explosion of T-layers formed near the wall in the initial stage of the discharge. It is concluded that halo structures observed in pinches, tokamaks, and other high-current devices used in controlled fusion research have the same nature.

  20. MHD control experiments in the Extrap T2R Reversed Field Pinch

    NASA Astrophysics Data System (ADS)

    Marrelli, L.; Bolzonella, T.; Brunsell, P.; Cecconello, M.; Drake, J.; Franz, P.; Gregoratto, D.; Manduchi, G.; Martin, P.; Ortolani, S.; Paccagnella, R.; Piovesan, P.; Spizzo, G.; Yadikin, D.; Zanca, P.

    2004-11-01

    We report here on MHD active control experiments performed in the Extrap T2R device, which has been recently equipped with a set of 32 feedback controlled saddle coils couples. Experiments aiming at selectively exciting a resonant resistive instability in order to actively induce Quasi Single Helicity states will be presented. Open loop experiments have in fact shown that a spectrum with one dominant mode can be excited in a high aspect ratio device like T2R. In addition, evidences of controlled braking of tearing modes, which spontaneously rotate in T2R, have been gathered, allowing the determination of a threshold for mode wall locking. Different feedback control schemes have been implemented. In particular, mode suppression schemes proved successful in delaying resistive wall modes growth and in increasing the discharge duration: this suggests a hybrid mode control scenario, in which RWM are suppressed and QSH is induced. Radiation imaging and internal magnetic field reconstructions performed with the ORBIT code will be presented.

  1. Customized electric power storage device for inclusion in a collective microgrid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinett, III, Rush D.; Wilson, David G.; Goldsmith, Steven Y.

    An electric power storage device is described herein, wherein the electric power storage device is included in a microgrid. The electric power storage device has at least one of a charge rate, a discharge rate, or a power retention capacity that has been customized for a collective microgrid. The collective microgrid includes at least two connected microgrids. The at least one of the charge rate, the discharge rate, or the power retention capacity of the electric power storage device is computed based at least in part upon specified power source parameters in the at least two connected microgrids and specifiedmore » load parameters in the at least two connected microgrids.« less

  2. Overview of Initial NSTX-U Experimental Operations

    NASA Astrophysics Data System (ADS)

    Battaglia, Devon; the NSTX-U Team

    2016-10-01

    Initial operation of the National Spherical Torus Experiment Upgrade (NSTX-U) has satisfied a number of commissioning milestones, including demonstration of discharges that exceed the field and pulse length of NSTX. ELMy H-mode operation at the no-wall βN limit is obtained with Boronized wall conditioning. Peak H-mode parameters include: Ip = 1 MA, BT0 = 0.63 T, WMHD = 330 kJ, βN = 4, βN/li = 6, κ = 2.3, τE , tot >50 ms. Access to high-performance H-mode scenarios with long MHD-quiescent periods is enabled by the resilient timing of the L-H transition via feedback control of the diverting time and shape, and correction of the dominant n =1 error fields during the Ip ramp. Stationary L-mode discharges have been realized up to 1 MA with 2 s discharges achieved at Ip = 650 kA. The long-pulse L-mode discharges enabled by the new central solenoid supported initial experiments on error field measurements and correction, plasma shape control, controlled discharge ramp-down, L-mode transport and fast ion physics. Increased off-axis current drive and reduction of fast ion instabilities has been observed with the new, more tangential neutral beamline. The initial results support that access to increased field, current and heating at low-aspect-ratio expands the regimes available to develop scenarios, diagnostics and predictive models that inform the design and optimization of future burning plasma tokamak devices, including ITER. Work Supported by U.S. DOE Contract No. DE-AC02-09CH11466.

  3. Design and fabrication of a magnetically actuated non-invasive reusable drug delivery device.

    PubMed

    Dsa, Joyline; Goswami, Manish; Singh, B R; Bhatt, Nidhi; Sharma, Pankaj; Chauhan, Meenakshi K

    2018-07-01

    We present a novel approach of designing and fabricating a noninvasive drug delivery device which is capable of delivering the drug to the target site in a controlled manner. The device utilizes a reservoir which can be reused once the drug has completely diffused from it. This micro-reservoir based fabricated device has been successfully tested using niosomes of insulin drug filled in, which was then sealed with a magnetic membrane of 20 µm thick and was actuated by applying magnetic field. The deflection of the membrane on application of magnetic field results in the drug release from the reservoir. The discharge of the drug solution and the release rates was controlled by external magnetic field. The simulation of the membrane deflection using COMSOL software was carried out to optimize the concentration of the ferrous nanopowder in PDMS matrix. The characterization of the devices was implemented in-vitro on water and in-vivo on Wistar rats. It was also validated using high-performance liquid chromatography (HPLC) by observing characteristic peak of insulin. The blood samples showed the retention time of 2.79 min at λ max of 280 nm which further authenticated the effectiveness of the proposed work. This noninvasive fabricated device provides reusability, precise control and can enable the patient or a physician to actively administrate the drug when required.

  4. ZnO Nanowire-Based Corona Discharge Devices Operated Under Hundreds of Volts.

    PubMed

    Yang, Wenming; Zhu, Rong; Zong, Xianli

    2016-12-01

    Minimizing the voltage of corona discharges, especially when using nanomaterials, has been of great interest in the past decade or so. In this paper, we report a new corona discharge device by using ZnO nanowires operated in atmospheric air to realize continuous corona discharge excited by hundreds of volts. ZnO nanowires were synthesized on microelectrodes using electric-field-assisted wet chemical method, and a thin tungsten film was deposited on the microchip to enhance discharging performance. The testing results showed that the corona inception voltages were minimized greatly by using nanowires compared to conventional dischargers as a result of the local field enhancement of nanowires. The corona could be continuously generated and self-sustaining. It was proved that the law of corona inception voltage obeyed the conventional Peek's breakdown criterion. An optimal thickness of tungsten film coated over ZnO nanowires was figured out to obtain the lowest corona inception voltage. The ion concentration of the nanowire-based discharger attained 10(17)/m(3) orders of magnitude, which is practicable for most discharging applications.

  5. Predictors of survival and ability to wean from short-term mechanical circulatory support device following acute myocardial infarction complicated by cardiogenic shock.

    PubMed

    Garan, A Reshad; Eckhardt, Christina; Takeda, Koji; Topkara, Veli K; Clerkin, Kevin; Fried, Justin; Masoumi, Amirali; Demmer, Ryan T; Trinh, Pauline; Yuzefpolskaya, Melana; Naka, Yoshifumi; Burkhoff, Dan; Kirtane, Ajay; Colombo, Paolo C; Takayama, Hiroo

    2017-11-01

    Cardiogenic shock following acute myocardial infarction (AMI-CS) portends a poor prognosis. Short-term mechanical circulatory support devices (MCSDs) provide hemodynamic support for patients with cardiogenic shock but predictors of survival and the ability to wean from short-term MCSDs remain largely unknown. All patients > 18 years old treated at our institution with extra-corporeal membrane oxygenation or short-term surgical ventricular assist device for AMI-CS were studied. We collected acute myocardial infarction details with demographic and hemodynamic variables. Primary outcomes were survival to discharge and recovery from MCSD (i.e. survival without heart replacement therapy including durable ventricular assist device or heart transplant). One hundred and twenty-four patients received extra-corporeal membrane oxygenation or short-term surgical ventricular assist device following acute myocardial infarction from 2007 to 2016; 89 received extra-corporeal membrane oxygenation and 35 short-term ventricular assist device. Fifty-five (44.4%) died in the hospital and 69 (55.6%) survived to discharge. Twenty-six (37.7%) required heart replacement therapy (four transplant, 22 durable ventricular assist device) and 43 (62.3%) were discharged without heart replacement therapy. Age and cardiac index at MCSD implantation were predictors of survival to discharge; patients over 60 years with cardiac index <1.5 l/min per m 2 had a low likelihood of survival. The angiographic result after revascularization predicted recovery from MCSD (odds ratio 9.00, 95% confidence interval 2.45-32.99, p=0.001), but 50% of those optimally revascularized still required heart replacement therapy. Cardiac index predicted recovery from MCSD among this group (odds ratio 4.06, 95% confidence interval 1.45-11.55, p=0.009). Among AMI-CS patients requiring short-term MCSDs, age and cardiac index predict survival to discharge. Angiographic result and cardiac index predict ventricular recovery but 50% of those optimally revascularized still required heart replacement therapy.

  6. Control of plasma properties in a short direct-current glow discharge with active boundaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, S. F.; Demidov, V. I., E-mail: vladimir.demidov@mail.wvu.edu; West Virginia University, Morgantown, West Virginia 26506

    2016-02-15

    To demonstrate controlling electron/metastable density ratio and electron temperature by applying negative voltages to the active (conducting) discharge wall in a low-pressure plasma with nonlocal electron energy distribution function, modeling has been performed in a short (lacking the positive-column region) direct-current glow discharge with a cold cathode. The applied negative voltage can modify the trapping of the low-energy part of the energetic electrons that are emitted from the cathode sheath and that arise from the atomic and molecular processes in the plasma within the device volume. These electrons are responsible for heating the slow, thermal electrons, while production of slowmore » electrons (ions) and metastable atoms is mostly due to the energetic electrons with higher energies. Increasing electron temperature results in increasing decay rate of slow, thermal electrons (ions), while decay rate of metastable atoms and production rates of slow electrons (ions) and metastable atoms practically are unchanged. The result is in the variation of electron/metastable density ratio and electron temperature with the variation of the wall negative voltage.« less

  7. 40 CFR 63.11149 - What are the standards and compliance requirements for new sources?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... discharge to the atmosphere exhaust gases that contain total PM in excess of 0.6 pound per ton of copper... collected gas stream to a baghouse or other PM control device. (3) You must operate one or more capture... paragraph as an alternative to the requirements in 40 CFR 63.6(e)(3). In the event of an emergency situation...

  8. High Current, Multi-Filament Photoconductive Semiconductor Switching

    DTIC Science & Technology

    2011-06-01

    linear PCSS triggered with a 100 fs laser pulse . Figure 1. A generic photoconductive semiconductor switch rapidly discharges a charged capacitor...switching is the most critical challenge remaining for photoconductive semiconductor switch (PCSS) applications in Pulsed Power. Many authors have...isolation and control, pulsed or DC charging, and long device lifetime, provided the current per filament is limited to 20-30A for short pulse (10

  9. Home monitoring after ambulatory implanted primary cardiac implantable electronic devices: The home ambulance pilot study.

    PubMed

    Parahuleva, Mariana S; Soydan, Nedim; Divchev, Dimitar; Lüsebrink, Ulrich; Schieffer, Bernhard; Erdogan, Ali

    2017-11-01

    The Home Monitoring (HM) system of cardiac implantable electronic devices (CIEDs) permits early detection of arrhythmias or device system failures. The aim of this pilot study was to examine how the safety and efficacy of the HM system in patients after ambulatory implanted primary CIEDs compare to patients with a standard procedure and hospitalization. We hypothesized that HM and their modifications would be a useful extension of the present concepts for ambulatory implanted CIEDs. This retrospective analysis evaluates telemetric data obtained from 364 patients in an ambulatory single center over 6 years. Patients were assigned to an active group (n = 217), consisting of those who were discharged early on the day of implantation of the primary CIED, or to a control group (n = 147), consisting of those discharged and followed up with the HM system according to usual medical practices. The mean duration of hospitalization was 73.2% shorter in the active group than in the control group, corresponding to 20.5 ± 13 fewer hours (95% confidence interval [CI]: 6.3-29.5; P < 0.01) spent in the hospital (7.5 ± 1.5 vs 28 ± 4.5 h). This shorter mean hospital stay was attributable to a 78.8% shorter postoperative period in the active group. The proportion of patients with treatment-related adverse events was 11% (n = 23) in the active group and 17% (n = 25) in the control group (95% CI: 5.5-8.3; P = 0.061). This 6% absolute risk reduction (95% CI: 3.3-9.1; P = 0.789) confirmed the noninferiority of the ambulatory implanted CIED when compared with standard management of these patients. Early discharge with the HM system after ambulatory CIED implantation was safe and not inferior to the classic medical procedure. Thus, together with lower costs, HM and its modifications would be a useful extension of the present concepts for ambulatory implanted CIEDs. © 2017 Wiley Periodicals, Inc.

  10. High performance advanced tokamak regimes in DIII-D for next-step experiments

    NASA Astrophysics Data System (ADS)

    Greenfield, C. M.; Murakami, M.; Ferron, J. R.; Wade, M. R.; Luce, T. C.; Petty, C. C.; Menard, J. E.; Petrie, T. W.; Allen, S. L.; Burrell, K. H.; Casper, T. A.; DeBoo, J. C.; Doyle, E. J.; Garofalo, A. M.; Gorelov, I. A.; Groebner, R. J.; Hobirk, J.; Hyatt, A. W.; Jayakumar, R. J.; Kessel, C. E.; La Haye, R. J.; Jackson, G. L.; Lohr, J.; Makowski, M. A.; Pinsker, R. I.; Politzer, P. A.; Prater, R.; Strait, E. J.; Taylor, T. S.; West, W. P.; DIII-D Team

    2004-05-01

    Advanced Tokamak (AT) research in DIII-D [K. H. Burrell for the DIII-D Team, in Proceedings of the 19th Fusion Energy Conference, Lyon, France, 2002 (International Atomic Energy Agency, Vienna, 2002) published on CD-ROM] seeks to provide a scientific basis for steady-state high performance operation in future devices. These regimes require high toroidal beta to maximize fusion output and poloidal beta to maximize the self-driven bootstrap current. Achieving these conditions requires integrated, simultaneous control of the current and pressure profiles, and active magnetohydrodynamic stability control. The building blocks for AT operation are in hand. Resistive wall mode stabilization via plasma rotation and active feedback with nonaxisymmetric coils allows routine operation above the no-wall beta limit. Neoclassical tearing modes are stabilized by active feedback control of localized electron cyclotron current drive (ECCD). Plasma shaping and profile control provide further improvements. Under these conditions, bootstrap supplies most of the current. Steady-state operation requires replacing the remaining Ohmic current, mostly located near the half radius, with noninductive external sources. In DIII-D this current is provided by ECCD, and nearly stationary AT discharges have been sustained with little remaining Ohmic current. Fast wave current drive is being developed to control the central magnetic shear. Density control, with divertor cryopumps, of AT discharges with edge localized moding H-mode edges facilitates high current drive efficiency at reactor relevant collisionalities. A sophisticated plasma control system allows integrated control of these elements. Close coupling between modeling and experiment is key to understanding the separate elements, their complex nonlinear interactions, and their integration into self-consistent high performance scenarios. Progress on this development, and its implications for next-step devices, will be illustrated by results of recent experiment and simulation efforts.

  11. New device for time-averaged measurement of volatile organic compounds (VOCs).

    PubMed

    Santiago Sánchez, Noemí; Tejada Alarcón, Sergio; Tortajada Santonja, Rafael; Llorca-Pórcel, Julio

    2014-07-01

    Contamination by volatile organic compounds (VOCs) in the environment is an increasing concern since these compounds are harmful to ecosystems and even to human health. Actually, many of them are considered toxic and/or carcinogenic. The main sources of pollution come from very diffuse focal points such as industrial discharges, urban water and accidental spills as these compounds may be present in many products and processes (i.e., paints, fuels, petroleum products, raw materials, solvents, etc.) making their control difficult. The presence of these compounds in groundwater, influenced by discharges, leachate or effluents of WWTPs is especially problematic. In recent years, law has been increasingly restrictive with the emissions of these compounds. From an environmental point of view, the European Water Framework Directive (2000/60/EC) sets out some VOCs as priority substances. This binding directive sets guidelines to control compounds such as benzene, chloroform, and carbon tetrachloride to be at a very low level of concentration and with a very high frequency of analysis. The presence of VOCs in the various effluents is often highly variable and discontinuous since it depends on the variability of the sources of contamination. Therefore, in order to have complete information of the presence of these contaminants and to effectively take preventive measures, it is important to continuously control, requiring the development of new devices which obtain average concentrations over time. As of today, due to technical limitations, there are no devices on the market that allow continuous sampling of these compounds in an efficient way and to facilitate sufficient detection limits to meet the legal requirements which are capable of detecting very sporadic and of short duration discharges. LABAQUA has developed a device which consists of a small peristaltic pump controlled by an electronic board that governs its operation by pre-programming. A constant flow passes through a glass cell containing adsorbent material where the VOCs are retained. The adsorbent used, made in LABAQUA, is a mixture of alginic acid and activated carbon. Due to its high permeability it allows the passage and retention of THMs in a suitable way, thus solving many of the problems of other common adsorbents. Also, to avoid degradation of the adsorbent, it is wrapped in a low density polyethylene (LDPE) membrane. After a sampling period of between 1 and 14 days, the adsorbent is collected and analyzed in the laboratory to quantify the VOC average concentration. This device resolves some of the limitations of the classical sampling system (spot samples), since we will take into account the fluctuations in the concentration of VOCs by averaging the same over time. This study presents the results obtained by the device for quantifying the VOCs legislated in the Directive 2000/60/EC. We present the validation of linearity over time and the limits of quantification, as well as the results of sample rate (Rs) obtained for each compound. The results demonstrate the high robustness and high sensitivity of the device. In addition the system has been validated in real waste water samples, comparing the results obtained with this device with the values of classical spot sampling, obtaining excellent results. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Analyzing Conductivity Profiles in Stream Waters Influenced by Mine Water Discharges

    NASA Astrophysics Data System (ADS)

    Räsänen, Teemu; Hämäläinen, Emmy; Hämäläinen, Matias; Turunen, Kaisa; Pajula, Pasi; Backnäs, Soile

    2015-04-01

    Conductivity is useful as a general measure of stream water quality. Each stream inclines to have a quite constant range of conductivity that can be used as a baseline for comparing and detecting influence of contaminant sources. Conductivity in natural streams and rivers is affected primarily by the geology of the watershed. Thus discharges from ditches and streams affect not only the flow rate in the river but also the water quality and conductivity. In natural stream waters, the depth and the shape of the river channel change constantly, which changes also the water flow. Thus, an accurate measuring of conductivity or other water quality indicators is difficult. Reliable measurements are needed in order to have holistic view about amount of contaminants, sources of discharges and seasonal variation in mixing and dilution processes controlling the conductivity changes in river system. We tested the utility of CastAway-CTD measuring device (SonTek Inc) to indicate the influence of mine waters as well as mixing and dilution occurring in the recipient river affected by treated dewatering and process effluent water discharges from a Finnish gold mine. The CastAway-CTD measuring device is a small, rugged and designed for profiling of depths of up to 100m. Device measures temperature, salinity, conductivity and sound of speed using 5 Hz response time. It has also built-in GPS which produces location information. CTD casts are normally used to produce vertical conductivity profile for rather deep waters like seas or lakes. We did seasonal multiple Castaway-CTD measurements during 2013 and 2014 and produced scaled vertical and horizontal profiles of conductivity and water temperature at the river. CastAway-CTD measurement pinpoints how possible contaminants behave and locate in stream waters. The conductivity profiles measured by CastAway-CTD device show the variation in maximum conductivity values vertically in measuring locations and horizontally in measured cross-sections. The data from field measurements was combined with detailed water quality analysis and processed by data analysis with Matlab to produce more holistic information about the behavior, mixing and dilution of possible contaminants at the river. Moreover, the results can be used to improve water sampling procedures for more representative sampling and to plan continuous monitoring site locations and measuring device mounting places.

  13. Magnetically switched power supply system for lasers

    NASA Technical Reports Server (NTRS)

    Pacala, Thomas J. (Inventor)

    1987-01-01

    A laser power supply system is described in which separate pulses are utilized to avalanche ionize the gas within the laser and then produce a sustained discharge to cause the gas to emit light energy. A pulsed voltage source is used to charge a storage device such as a distributed capacitance. A transmission line or other suitable electrical conductor connects the storage device to the laser. A saturable inductor switch is coupled in the transmission line for containing the energy within the storage device until the voltage level across the storage device reaches a predetermined level, which level is less than that required to avalanche ionize the gas. An avalanche ionization pulse generating circuit is coupled to the laser for generating a high voltage pulse of sufficient amplitude to avalanche ionize the laser gas. Once the laser gas is avalanche ionized, the energy within the storage device is discharged through the saturable inductor switch into the laser to provide the sustained discharge. The avalanche ionization generating circuit may include a separate voltage source which is connected across the laser or may be in the form of a voltage multiplier circuit connected between the storage device and the laser.

  14. Pressure ulcer management in paraplegic patients with a novel negative pressure device: a randomised controlled trial.

    PubMed

    Dwivedi, M K; Srivastava, R N; Bhagat, A K; Agarwal, R; Baghel, K; Jain, A; Raj, S

    2016-04-01

    A randomised controlled trial to compare negative pressure wound therapy (NPWT) using our innovative negative pressure device (NPD) and the standard pressure ulcer (PU) wound dressing of in traumatic paraplegia patients. This study was conducted in the Department of Orthopaedic Surgery at King George's Medical University, Lucknow, India. Traumatic paraplegia patients with sacral pressure ulcers of stage 3 and 4 were randomised into two groups, receiving either standard wound dressings or NPWT with NPD. The outcomes monitored were length, width (surface area), depth of PU, exudates, discharge, tissue type (necrotic, slough and red granulating tissue), and cost-effectiveness during 0 to 9 weeks follow-up. Length and width were significantly (p<0.01) decreased in NPWT group as compared with standard care group at week 9. At weeks 1, 2 and 3, depth was significantly (p<0.05) higher in NPWT group, whereas at week 9 a significant reduction (p=0.01) was observed. Exudates were significantly (p=0.001) lower in NPWT group at weeks 4 and 9. Conversion of slough into red granulation tissue was significantly higher in NPWT group (p=0.001). Discharge became significantly (p=0.001) lower in NPWT at week 2 and no discharge was observed after week 6. In all parameters, decrease was larger in NPWT group compared with standard care, which was significant for exudates type (p=0.03) and tissue type (p=0.004). Our NPD is better than standard wound care procedures and cost-effective for management of PU.

  15. Portable rotating discharge plasma device

    NASA Astrophysics Data System (ADS)

    Dwyer, B. L.; Brooks, N. H.; Lee, R. L.

    2011-10-01

    We constructed two devices for the purpose of educational demonstration: a rotating tube containing media of two densities to demonstrate axial confinement and a similar device that uses pressure variation to convert a long plasma glow discharge into a long straight arc. In the first device, the buoyant force is countered by the centripetal force, which confines less dense materials to the center of the column. Similarly, a plasma arc heats the gas through which it passes, creating a hot gaseous bubble that is less dense than the surrounding medium. Rotating its containment envelope stabilizes this gas bubble in an analogous manner to an air bubble in a rotating tube of water. In addition to stabilization, the rotating discharge also exhibits a decrease in buoyancy-driven convection currents. This limits the power loss to the walls, which decreases the field strength requirement for maintaining the arc. These devices demonstrate principles of electrodynamics, plasma physics, and fluid mechanics. They are portable and safe for classroom use. Work supported by US DOE under DE-FC02-04ER54698 and the National Undergraduate Fellowship in Fusion Science and Engineering.

  16. 46 CFR 53.05-5 - Discharge capacities and valve markings.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Discharge capacities and valve markings. 53.05-5 Section 53.05-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING HEATING BOILERS Pressure Relieving Devices (Article 4) § 53.05-5 Discharge capacities and valve markings. The discharge capacities and valve markings must...

  17. 46 CFR 53.05-5 - Discharge capacities and valve markings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Discharge capacities and valve markings. 53.05-5 Section 53.05-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING HEATING BOILERS Pressure Relieving Devices (Article 4) § 53.05-5 Discharge capacities and valve markings. The discharge capacities and valve markings must...

  18. 46 CFR 53.05-5 - Discharge capacities and valve markings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Discharge capacities and valve markings. 53.05-5 Section 53.05-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING HEATING BOILERS Pressure Relieving Devices (Article 4) § 53.05-5 Discharge capacities and valve markings. The discharge capacities and valve markings must...

  19. 46 CFR 53.05-5 - Discharge capacities and valve markings.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Discharge capacities and valve markings. 53.05-5 Section 53.05-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING HEATING BOILERS Pressure Relieving Devices (Article 4) § 53.05-5 Discharge capacities and valve markings. The discharge capacities and valve markings must...

  20. 46 CFR 53.05-5 - Discharge capacities and valve markings.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Discharge capacities and valve markings. 53.05-5 Section 53.05-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING HEATING BOILERS Pressure Relieving Devices (Article 4) § 53.05-5 Discharge capacities and valve markings. The discharge capacities and valve markings must...

  1. In-vessel visible inspection system on KSTAR

    NASA Astrophysics Data System (ADS)

    Chung, Jinil; Seo, D. C.

    2008-08-01

    To monitor the global formation of the initial plasma and damage to the internal structures of the vacuum vessel, an in-vessel visible inspection system has been installed and operated on the Korean superconducting tokamak advanced research (KSTAR) device. It consists of four inspection illuminators and two visible/H-alpha TV cameras. Each illuminator uses four 150W metal-halide lamps with separate lamp controllers, and programmable progressive scan charge-coupled device cameras with 1004×1004 resolution at 48frames/s and a resolution of 640×480 at 210frames/s are used to capture images. In order to provide vessel inspection capability under any operation condition, the lamps and cameras are fully controlled from the main control room and protected by shutters from deposits during plasma operation. In this paper, we describe the design and operation results of the visible inspection system with the images of the KSTAR Ohmic discharges during the first plasma campaign.

  2. A Planar Hall Thruster for Investigating Electron Mobility in ExB Devices (Preprint)

    DTIC Science & Technology

    2007-08-24

    Hall thruster that emits and collects the Hall current across a planar discharge channel is described. The planar Hall thruster (PHT) is being investigated for use as a test bed to study electron mobility in ExB devices. The planar geometry attempts to de-couple the complex electron motion found in annular thrusters by using simplified geometry. During this initial test, the PHT was operated at discharge voltages between 50-150 V to verify operability and stability of the device. Hall current was emitted by hollow cathode electron sources and

  3. Standards for discharge measurement with standardized nozzles and orifices

    NASA Technical Reports Server (NTRS)

    1940-01-01

    The following standards give the standardized forms for two throttling devices, standard nozzles and standard orifices, and enable them to be used in circular pipes without calibration. The definition of the standards are applicable in principle to the calibration and use of nonstandardized throttling devices, such as the venturi tube. The standards are valid, likewise, as a basis for discharge measurements in the German acceptance standards.

  4. Micro hollow cathode discharge jets utilizing solid fuel

    NASA Astrophysics Data System (ADS)

    Nikic, Dejan

    2017-10-01

    Micro hollow cathode discharge devices with a solid fuel layer embedded between the electrodes have demonstrated an enhanced jetting process. Outlined are series of experiments in various pressure and gas conditions as well as vacuum. Examples of use of these devices in series and parallel configurations are presented. Evidence of utilization of solid fuel is obtained through optical spectroscopy and analysis of remaining fuel layer.

  5. Particulate and aerosol detector

    NASA Technical Reports Server (NTRS)

    Wortman, J. J.; Donovan, R. P.; Brooks, A. D.; Monteith, L. K.; Kinard, W. H.; Oneil, R. L. (Inventor)

    1976-01-01

    A device is described for counting aerosols and sorting them according to either size, mass or energy. The component parts are an accelerator, a capacitor sensor and a readout. The accelerator is a means for accelerating the aerosols toward the face of the capacitor sensor with such force that they partially penetrate the capacitor sensor, momentarily discharging it. The readout device is a means for counting the number of discharges of the capacitor sensor and measuring the amplitudes of these different discharges. The aerosols are accelerated by the accelerator in the direction of the metal layer with such force that they penetrate the metal and damage the oxide layers, thereby allowing the electrical charge on the capacitor to discharge through the damaged region. Each incident aerosol initiates a discharge path through the capacitor in such a fashion as to vaporize the conducting path. Once the discharge action is complete, the low resistance path no longer exists between the two capacitor plates and the capacitor is again able to accept a charge. The active area of the capacitor is reduced in size by the damaged area each time a discharge occurs.

  6. A fast and low-power microelectromechanical system-based non-volatile memory device

    PubMed Central

    Lee, Sang Wook; Park, Seung Joo; Campbell, Eleanor E. B.; Park, Yung Woo

    2011-01-01

    Several new generation memory devices have been developed to overcome the low performance of conventional silicon-based flash memory. In this study, we demonstrate a novel non-volatile memory design based on the electromechanical motion of a cantilever to provide fast charging and discharging of a floating-gate electrode. The operation is demonstrated by using an electromechanical metal cantilever to charge a floating gate that controls the charge transport through a carbon nanotube field-effect transistor. The set and reset currents are unchanged after more than 11 h constant operation. Over 500 repeated programming and erasing cycles were demonstrated under atmospheric conditions at room temperature without degradation. Multinary bit programming can be achieved by varying the voltage on the cantilever. The operation speed of the device is faster than a conventional flash memory and the power consumption is lower than other memory devices. PMID:21364559

  7. Floating Gate sensor for in-vivo dosimetry in radiation therapies. Design and first characterization.

    NASA Astrophysics Data System (ADS)

    Faigon, A.; Martinez Vazquez, I.; Carbonetto, S.; García Inza, M.; G

    2017-01-01

    A floating gate dosimeter was designed and fabricated in a standard CMOS technology. The design guides and characterization are presented. The characterization included the controlled charging by tunneling of the floating gate, and its discharging under irradiation while measuring the transistor drain current whose change is the measure of the absorbed dose. The resolution of the obtained device is close to 1 cGy satisfying the requirements for most radiation therapies dosimetry. Pending statistical proofs, the dosimeter is a potential candidate for wide in-vivo control of radiotherapy treatments.

  8. 33 CFR 154.525 - Monitoring devices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Monitoring devices. 154.525... Monitoring devices. The COTP may require the facility to install monitoring devices if the installation of monitoring devices at the facility would significantly limit the size of a discharge of oil or hazardous...

  9. Prospective cohort study of a new vacuum delivery device to assist with complicated labour in low-resource settings.

    PubMed

    Khan, Mishal; Hashmani, Farah Naz; Ahmed, Sajjad; Ahmed, Owais; Asim, Shabnam S; Wajahat, Yasmin; Sobani, Shoaib; Syed, Shershah; Qazi, Fahad

    2015-02-01

    Currently available vacuum devices used to assist women undergoing complicated labour are unsuitable for use in low-resource settings. The objective of this study was to evaluate the safety and feasibility of a new low-cost vacuum device, named Koohi Goth Vacuum Delivery System (KGVDS), designed for use in low-resource settings. A hospital-based, multicentre, prospective cohort study with no control group was conducted in Karachi, Pakistan. After training, KGVDS devices were made available for use by labour room staff at their discretion when instrumental delivery was indicated. Women to whom KGVDS was applied were followed from the start of labour until discharge. Feasibility was assessed in terms of successful expulsion of the foetal head following application of KGVDS and ease of use ratings. Safety was assessed by observing maternal and newborn post-delivery outcomes prior to discharge. Koohi Goth Vacuum Delivery System was applied to 137 women requiring instrumental delivery, of whom 111 (81%; 95% CI = 74-88%) successfully expelled the foetal head assisted by KGVDS and 103 (75%) stated that they would agree to use KGVDS again. There were no serious maternal or neonatal injuries or infections related to KGVDS use. The mean score for 'ease of use' given by doctors and midwives using the device was 8 of 10. Koohi Goth Vacuum Delivery System was feasible and safe to use for assisting complicated deliveries in low-resource hospitals in this initial evaluation. Our results indicate that this new device may have the potential to improve birth outcomes in settings where most mortality occurs and that further evaluations should be conducted. © 2014 John Wiley & Sons Ltd.

  10. Characterization system for research on energy storage capacitors.

    PubMed

    Noriega, J R; Iyore, O D; Budime, C; Gnade, B; Vasselli, J

    2013-05-01

    In this work a characterization system for high energy-density capacitors is described and demonstrated. Capacitors are being designed using thin-film technology in an attempt to achieve higher energy-density levels by operating the devices at a high voltage. These devices are fabricated from layers of 100 nm aluminum and a layer of polyvinylidene fluoride-hexafluoropropylene on a polyethylene naphthalate plastic substrate. The devices have been designed to store electrical charge at up to 200 V. Characterizations of these devices focus on the measurement of capacitance vs bias voltage and temperature, equivalent series resistance, and charge/discharge cycles. For the purpose of the characterization of these capacitors, an electronic charge/discharge interface was designed and tested.

  11. Exploration of High Harmonic Fast Wave Heating on the National Spherical Torus Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J.R. Wilson; R.E. Bell; S. Bernabei

    2003-02-11

    High Harmonic Fast Wave (HHFW) heating has been proposed as a particularly attractive means for plasma heating and current drive in the high-beta plasmas that are achievable in spherical torus (ST) devices. The National Spherical Torus Experiment (NSTX) [Ono, M., Kaye, S.M., Neumeyer, S., et al., Proceedings, 18th IEEE/NPSS Symposium on Fusion Engineering, Albuquerque, 1999, (IEEE, Piscataway, NJ (1999), p. 53.)] is such a device. An radio-frequency (rf) heating system has been installed on NSTX to explore the physics of HHFW heating, current drive via rf waves and for use as a tool to demonstrate the attractiveness of the STmore » concept as a fusion device. To date, experiments have demonstrated many of the theoretical predictions for HHFW. In particular, strong wave absorption on electrons over a wide range of plasma parameters and wave parallel phase velocities, wave acceleration of energetic ions, and indications of current drive for directed wave spectra have been observed. In addition HHFW heating has been used to explore the energy transport properties of NSTX plasmas, to create H-mode (high-confinement mode) discharges with a large fraction of bootstrap current and to control the plasma current profile during the early stages of the discharge.« less

  12. Time-lag properties of corona streamer discharges between impulse sphere and dc needle electrodes under atmospheric air conditions.

    PubMed

    Okano, Daisuke

    2013-02-01

    In this study of corona streamer discharges from an impulse generator using a dc power supply, the relationship of the discharge time-lag with the dc bias voltage between the sphere-to-needle electrodes under atmospheric conditions is investigated. Devices utilizing corona discharges have been used to purify air or water, destroy bacteria, and to remove undesirable substances, and in order to achieve fast response times and high power efficiencies in such devices, it is important to minimize the time-lag of the corona discharge. Our experimental results show that (a) the discharge path of a negatively biased needle electrode will be straighter than that of a positively biased needle and (b) the discharge threshold voltage in both the positive and the negative needle electrodes is nearly equal to 33 kV. By expressing the discharge voltage as a power function of time-lag, the extent of corona generation can be quantitatively specified using the exponent of this power function. The observed behavior of a corona streamer discharge between the negative spherical and the positive needle electrodes indicates that the largest power exponent is associated with the shortest time-lag, owing to the reduction in the statistical time-lag in the absence of a formative time-lag.

  13. Time-lag properties of corona streamer discharges between impulse sphere and dc needle electrodes under atmospheric air conditions

    NASA Astrophysics Data System (ADS)

    Okano, Daisuke

    2013-02-01

    In this study of corona streamer discharges from an impulse generator using a dc power supply, the relationship of the discharge time-lag with the dc bias voltage between the sphere-to-needle electrodes under atmospheric conditions is investigated. Devices utilizing corona discharges have been used to purify air or water, destroy bacteria, and to remove undesirable substances, and in order to achieve fast response times and high power efficiencies in such devices, it is important to minimize the time-lag of the corona discharge. Our experimental results show that (a) the discharge path of a negatively biased needle electrode will be straighter than that of a positively biased needle and (b) the discharge threshold voltage in both the positive and the negative needle electrodes is nearly equal to 33 kV. By expressing the discharge voltage as a power function of time-lag, the extent of corona generation can be quantitatively specified using the exponent of this power function. The observed behavior of a corona streamer discharge between the negative spherical and the positive needle electrodes indicates that the largest power exponent is associated with the shortest time-lag, owing to the reduction in the statistical time-lag in the absence of a formative time-lag.

  14. Chemical waste disposal in space by plasma discharge

    NASA Technical Reports Server (NTRS)

    Baird, James K.

    1991-01-01

    An inductively coupled plasma discharge apparatus operating at 13.56 MHz and with electrical power up to 2.5 kW was constructed. The efficiency of this device to destroy various gases expected to be carried aboard the Space Station was tested. By expressing the efficiency of the device in terms of G-value (the number of molecules decomposed per 100 eV of energy absorbed), the results are compared with known efficiencies of ionizing radiation to destroy these same gases. In the case of ammonia, it was found that in the inductively coupled device, the destruction efficiency, G(-NH3) varied from 6.0 to 32.0 molecules/100 eV, depending on conditions. It was also found that capacitatively coupled discharges were less efficient in destroying NH2 than the inductively coupled discharge. In the case NH2 destruction, it was found that the G(-NH3) was a qualitative guide to the efficiencies of plasmas. The plasma device was also used to destroy nitrous oxide and methane. It is shown how the G-value for the destruction of any gas can be computed theoretically from a knowledge of the electron velocity distribution, the various electron molecule scattering cross sections, and the rate constants for the reactions of secondary species.

  15. Dose-current discharge correlation analysis in a Mather type Plasma Focus device for medical applications

    NASA Astrophysics Data System (ADS)

    Sumini, M.; Mostacci, D.; Tartari, A.; Mazza, A.; Cucchi, G.; Isolan, L.; Buontempo, F.; Zironi, I.; Castellani, G.

    2017-11-01

    In a Plasma Focus device the plasma collapses into the pinch where it reaches thermonuclear conditions for a few tens of nanoseconds, becoming a multi-radiation source. The nature of the radiation generated depends on the gas filling the chamber and the device working parameters. The self-collimated electron beam generated in the backward direction with respect to the plasma motion is one of the main radiation sources of interest also for medical applications. The electron beam may be guided against a high Z material target to produce an X-ray beam. This technique offers an ultra-high dose rate source of X-rays, able to deliver during the pinch a massive dose (up to 1 Gy per discharge for the PFMA-3 test device), as measured with EBT3 GafchromicⒸfilm tissue equivalent dosimeters. Given the stochastic behavior of the discharge process, a reliable on-line estimate of the dose-delivered is a very challenging task, in some way preventing a systematic application as a potentially interesting therapy device. This work presents an approach to linking the dose registered by the EBT3 GafchromicⒸfilms with the information contained in the signal recorded during the current discharge process. Processing the signal with the Wigner-Ville distribution, a spectrogram was obtained, displaying the information on intensity at various frequency scales, identifying the band of frequencies representative of the pinch events and define some patterns correlated with the dose.

  16. CUSP-PINCH DEVICE

    DOEpatents

    Baker, W.R.; Watteau, J.P.H.

    1962-06-01

    An ion-electron plasma heating device of the pinch tube class is designed with novel means for counteracting the instabilities of an ordinary linear pinch discharge. A plasma-forming discharge is created between two spacedapart coaxial electiodes through a gas such as deuterium. A pair of spaced coaxial magnetic field coils encircle the discharge and carry opposing currents so that a magnetic field having a cuspate configuration is created around the plasma, the field being formed after the plasma has been established but before significant instability arises. Thus, containment time is increased and intensified heating is obtained. In addition to the pinch compression heating additional heating is obtained by high-frequency magnetic field modulation. (AEC)

  17. Safety and efficacy of prophylactic negative pressure wound therapy following open saphenous vein harvest in cardiac surgery: a feasibility study.

    PubMed

    Lee, Arthur J; Sheppard, Christina E; Kent, William D T; Mewhort, Holly; Sikdar, Khokan C; Fedak, Paul W M

    2017-03-01

    Surgical site complications following great saphenous vein (GSV) harvest presents a significant risk of morbidity. Negative pressure wound therapy (NPWT) has shown promise in the treatment and prophylaxis of open wounds and surgical incisions but has not been studied following GSV harvest. We performed a feasibility study examining the use of NPWT following GSV harvest for coronary bypass surgery. Sixty-four patients were recruited in this single-centre, single-blind, randomized controlled trial. The primary endpoint assessed feasibility by examining rates of device complication and malfunction. Secondary endpoints included rates of surgical site infection, lower leg complications, discharge date, and quality of life at discharge and 6 weeks. NPWT was delivered using the Prevena NPWT device. There were no complications associated with NPWT which required intervention aside from discontinuation. NPWT was tolerated in 91% (30/33) of patients for the duration of treatment with an average of 4.8 days (±1.45 days). Device malfunction which required discontinuation was 6% (2/33) and involved a malfunctioning pressure sensor and did not affect patient care or present safety concerns. One patient had allergic contact dermatitis to the adhesive and had the device removed. NPWT patients had an earlier date of discharge (6 vs 10 days, P = 0.008), increased ability for self-care ( P = 0.0234) and quality of life ( P = 0.039) at initial assessment, and increased mobility at initial and follow-up assessment ( P = 0.0117 and 0.0123). The use of NPWT following GSV harvest is safe, well tolerated and improves postoperative recovery with prolonged impact on mobility at 6 weeks. https://clinicaltrials.gov/ct2/show/NCT01698372 ; registration number: NCT01698372. © The Author 2016. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  18. Patient perceptions of environmental control units: experiences of Veterans with spinal cord injuries and disorders receiving inpatient VA healthcare.

    PubMed

    Etingen, Bella; Martinez, Rachael N; Vallette, Marissa A; Dendinger, Ryan; Bidassie, Balmatee; Miskevics, Scott; Khan, Hira T; Cozart, Huberta T; Locatelli, Sara M; Weaver, Frances M

    2018-05-01

    To assess patients' perceptions of environmental control units (ECUs) at Veterans Affairs Spinal Cord Injury Centers. A brief questionnaire was conducted with patients in real-time while they were hospitalised ("on-the-spot questionnaire"); a survey was mailed to patients who had recently been discharged from a hospital stay ("discharge survey"). Data were analysed using descriptive statistics. Seventy on-the-spot questionnaires and 80 discharge surveys were collected. ECU features used most frequently were comparable in responses from both surveys: watching TV/movies (81%, 85%), calling the nurse (68%, 61%), turning lights on/off (63%, 52%), adjusting the bed (53%, 33%), and playing games (39%, 24%). Many on-the-spot questionnaire respondents felt the ECU met their need for independence a great deal (42%). Most respondents to both surveys were satisfied with the ECU (71%, 57%). Areas for improvement included user training, improved functionality of the device and its features, and device design. ECUs were well-accepted by persons with spinal cord injuries/disorders (SCI/D) in the inpatient setting, and increased patients' perceptions of independence. To maximise usability and satisfaction, facilities should ensure that comprehensive training on ECU use and features available is offered to all patients, and resources are available for timely troubleshooting and maintenance. Implications for rehabilitation An environmental control unit (ECU) is a form of assistive technology that allows individuals with disabilities (such as spinal cord injuries and disorders [SCI/D]) to control functional and entertainment-related aspects of their environment. ECU use can increase functioning, independence and psychosocial well-being among individuals with SCI/D, by allowing users to reclaim control over day-to-day activities that are otherwise limited by their disability. Our study results indicate that, among persons with SCI/D, ECUs are well-accepted and increase perceptions of independence. To maximise usability and patient satisfaction, facilities should ensure that comprehensive training on how to use ECUs and what features are available is offered to all patients, and resources are available for timely troubleshooting and maintenance.

  19. Outcomes associated with warfarin use in older patients with heart failure and atrial fibrillation and a cardiovascular implantable electronic device: findings from the ADHERE registry linked to Medicare claims.

    PubMed

    Hess, Paul L; Greiner, Melissa A; Fonarow, Gregg C; Klaskala, Winslow; Mills, Roger M; Setoguchi, Soko; Al-Khatib, Sana M; Hernandez, Adrian F; Curtis, Lesley H

    2012-11-01

    Warfarin use and associated outcomes in patients with heart failure and atrial fibrillation and a cardiovascular implantable electronic device have not been described previously. We hypothesized that warfarin is underused and is associated with lower risks of mortality, thromboembolic events, and myocardial infarction. Using data from a clinical registry linked with Medicare claims, we examined warfarin use at discharge and 30-day and 1-year Kaplan-Meier estimates of all-cause mortality and cumulative incidence rates of mortality, thromboembolic events, myocardial infarction, and bleeding events in patients 65 years or older, with a history of atrial fibrillation and a cardiovascular implantable electronic device admitted with heart failure between 2001 and 2006, who were naïve to anticoagulation therapy at admission. We compared outcomes between patients who were or were not prescribed warfarin at discharge and tested associations between treatment and outcomes. Of 2586 eligible patients in 252 hospitals, 2049 were discharged without a prescription for warfarin. At 1 year, the group discharged without warfarin had a higher mortality rate after discharge (37.4% vs 28.8%; P < 0.001) but similar rates of thromboembolism, myocardial infarction, and bleeding events. After adjustment, treatment with warfarin was associated with lower risk of all-cause death 1 year after discharge (hazard ratio: 0.76, 95% confidence interval: 0.63-0.92). Among older patients with heart failure and atrial fibrillation and a cardiovascular implantable electronic device, 4 of 5 were discharged without a prescription for warfarin. Warfarin nonuse was associated with a higher risk of death 1 year after discharge. Clin. Cardiol. 2011 DOI: 10.1002/clc.22064 Damon M. Seils, MA, Duke University, assisted with manuscript preparation. Mr. Seils did not receive compensation for his assistance apart from his employment at the institution where the study was conducted. This study was supported by a research agreement between Duke University and Janssen Pharmaceuticals. The authors have no other funding, financial relationships, or conflicts of interest to disclose. © 2012 Wiley Periodicals, Inc.

  20. Measurements and Simulations of Surface Dielectric Barrier Discharges Used as Plasma Actuators

    NASA Technical Reports Server (NTRS)

    Hoskinson, Alan R.

    2012-01-01

    This report is a Ph.D. dissertation performed under NRA cooperative agreement and submitted as part of the final report. Asymmetric surface dielectric barrier discharges (DBDs) have shown promise for use as aerodynamic actuators for active flow control. In this project we studied DBD actuators experimentally and numerically. Our DBDs used a symmetric triangular high voltage waveform to generate plasma in atmospheric pressure air. Time-averaged measurements indicated that the induced force of a single barrier actuator design (one electrode insulated from the plasma) can be increased exponentially above the results of previous studies by decreasing both the length and thickness of the electrode exposed to the plasma. This increased force may allow these devices to control flow separation in a wider range of flow environments. Experiments using an intensified digital camera to examine the plasma on time scales of a few nanoseconds showed that, in addition to the previously-observed filamentary and jet-like plasma structures, discharges with very thin exposed electrodes exhibited a weak but constant plasma immediately adjacent to those electrodes. In double-barrier actuators (both electrodes insulated), decreasing the diameter of the narrower electrode lead to increasing forces, and recorded images showed the simultaneous existence of both filamentary and jet-like plasma structures. The development and application of a time-dependent, two-dimensional computational fluid plasma model has aided in understanding the detailed physics of surface DBDs at all-time scales. For simulated single-barrier discharges, the model qualitatively reproduced the filamentary and jet-like micro-discharge structures. The model was somewhat successful in reproducing the observed characteristics of double-barrier actuators. For both actuator geometries, the model indicated that the majority of the forces induced on the neutral gas occur in between micro-discharges as the plasmas decay.

  1. Electrosurgery reduces blood loss and immediate postoperative inflammation compared to cold instruments for midline celiotomy in dogs: A randomized controlled trial

    PubMed Central

    Meakin, Lee B.; Murrell, Jo C.; Doran, Ivan C. P.; Knowles, Toby G.; Tivers, Michael S.

    2017-01-01

    Abstract Objectives To compare the use of an electrosurgical device with traditional cold instruments (scalpel and scissors) for midline celiotomy incision. Study design Prospective randomized controlled clinical trial. Sample population: One hundred and twenty client‐owned dogs undergoing abdominal surgery. Methods Dogs were prospectively recruited and randomized to receive electroincision or cold instrument incision. For cold incision, surgeons used basic surgical instruments including scalpel and scissors. For electroincision, surgeons only used the electrosurgical device in cutting mode. Time for the approach, blood loss, and the incision length were recorded. A blinded observer assessed pain and incision redness, swelling, and discharge at 24 and 48 hours postoperative (graded 0‐3). Owner assessment of incision healing was recorded by telephone interview. Results Blood loss during surgery was significantly lower for electroincision (mean 0.7, SD 1.7 mL) than cold incision (mean 3.0, SD 4.3 mL, P < .0001) with no significant difference in incision length or time for approach. Electroincision was associated with significantly less incision redness (cold median 1, range 0‐3; electroincision median 0, range 0‐2, P = .02) and less incision discharge (cold median 0.5 range 0‐3; electroincision median 0, range 0‐1, P = .006) at 24 hours postoperative. There was no significant difference in pain scores or incision healing in dogs receiving the two techniques. No incisional hernias were reported. A surgical site infection occurred in 1 dog (cold incision). Conclusions Electroincision for a celiotomy approach in the dog reduces blood loss, and incision redness and discharge in the immediate postoperative period without affecting the occurrence of wound complications such as infection and dehiscence (including linea alba). PMID:28314089

  2. Internal defibrillation: pain perception of low energy shocks.

    PubMed

    Steinhaus, David M; Cardinal, Debbie S; Mongeon, Luc; Musley, Shailesh Kumar; Foley, Laura; Corrigan, Susie

    2002-07-01

    Recently, device-based low energy cardoversion shocks have been used as therapy for AF. However, discomfort from internal low energy electrical shocks is poorly understood. The aim of this study was to evaluate pain perception with low energy internal discharges. Eighteen patients with ICD devices for malignant ventricular arrhythmias were recruited to receive shocks of 0.4 and 2 J in the nonsedated state. Discharges were delivered in a blinded, random order and questionnaires were used to determine discomfort levels and tolerability. Patients perceived discharges at these energies as relatively uncomfortable, averaging a score of 7.3 on a discomfort scale of 0-10, and could not distinguish 0.4-J shocks from 2-J shocks. Second shocks were perceived as more uncomfortable than initial discharges, regardless of the order in which the shocks were delivered. Despite the perceived discomfort, 83% of patients stated that they would tolerate discharges of this magnitude once per month, and 44% would tolerate weekly discharges. Patients perceive low energy discharges as painful and cannot distinguish between shocks of 0.4 and 2 J. The results suggest that ICD systems developed to treat atrial tachyarrhythmias should minimize the number of shocks delivered to terminate an atrial tachyarrhythmia episode. The majority of the patients tolerated low energy shocks provided the discharges are infrequent (once per month).

  3. Graphene-Based Ultra-Light Batteries for Aircraft

    NASA Technical Reports Server (NTRS)

    Calle, Carlos I.; Kaner, Richard B.

    2014-01-01

    Develop a graphene-based ultracapacitor prototype that is flexible, thin, lightweight, durable, low cost, and safe and that will demonstrate the feasibility for use in aircraft center dot These graphene-based devices store charge on graphene sheets and take advantage of the large accessible surface area of graphene (2,600 m2/g) to increase the electrical energy that can be stored. center dot The proposed devices should have the electrical storage capacity of thin-film-ion batteries but with much shorter charge/discharge cycle times as well as longer lives center dot The proposed devices will be carbon-based and so will not have the same issues with flammability or toxicity as the standard lithium-based storage cells There are two main established methods for the storage and delivery of electrical energy: center dot Batteries - Store energy with electrochemical reactions - High energy densities - Slow charge/discharge cycles - Used in applications requiring large amounts of energy ? aircraft center dot Electrochemical capacitors - Store energy in electrochemical double layers - Fast charge/discharge cycles - Low energy densities - Used in electronics devices - Large capacitors are used in truck engine cranking

  4. Wireless device for activation of an underground shock wave absorber

    NASA Astrophysics Data System (ADS)

    Chikhradze, M.; Akhvlediani, I.; Bochorishvili, N.; Mataradze, E.

    2011-10-01

    The paper describes the mechanism and design of the wireless device for activation of energy absorber for localization of blast energy in underground openings. The statistics shows that the greatest share of accidents with fatal results associate with explosions in coal mines due to aero-methane and/or air-coal media explosion. The other significant problem is terrorist or accidental explosions in underground structures. At present there are different protective systems to reduce the blast energy. One of the main parts of protective Systems is blast Identification and Registration Module. The works conducted at G. Tsulukidze Mining Institute of Georgia enabled to construct the wireless system of explosion detection and mitigation of shock waves. The system is based on the constant control on overpressure. The experimental research continues to fulfill the system based on both threats, on the constant control on overpressure and flame parameters, especially in underground structures and coal mines. Reaching the threshold value of any of those parameters, the system immediately starts the activation. The absorber contains a pyrotechnic device ensuring the discharge of dispersed water. The operational parameters of wireless device and activation mechanisms of pyrotechnic element of shock wave absorber are discussed in the paper.

  5. Triggering regime of oil-filled trigatron dischargers

    NASA Astrophysics Data System (ADS)

    Kapishnikov, N. K.; Muratov, V. M.

    1986-11-01

    A comparative analysis made in [1, 2] of different types of regulable high-voltage dischargers with liquid insulation showed that trigatrons are currently the most promising for use in high-voltage pulse-operated devices due to their simplicity and reliability. Two basic mechanisms of discharge initiation can be realized in trigatrons — initiation by intensification of the field in the region of the control electrode [2, 3], and triggering by a spark in the ignition gap [4, 5]. The first type of trigatron has been studied sufficiently only for short voltage periods [3, 6, 7], so it is used mainly in switching the pulse-shaping lines of powerful nanosecond pulse generators with “rapid” (0.5 1.5 μsec) charging [8, 9]. Almost no use is now made of the second type of trigatron switch in high-voltage pulse technology due to its unsatisfactory time characteristics. Here we report results of a study of the time characteristics of both types of oil-filled trigatrons operating in a regime whereby they form the leading edge of rectangular voltage pulses with amplitudes up to 800 kV and durations of 1 100 μsec. The goal is to find the optimum conditions for triggering of trigatron dischargers with liquid insulation in the region of microsecond voltage discharges. Experiments were conducted on the unit in [10]. The test discharger was placed in a cylindrical chamber 45 cm in diameter and 27 cm in length. The high-voltage electrode of the discharger was in the form of a cylinder 20 cm in diameter positioned coaxially inside the chamber. The 10-mm-diameter ground electrode was positioned radially in a branch pipe 8 cm long. The control electrode was placed in a 2-cm-diameter hole in the center of the ground electrode. The chamber with the test discharge was filled with transformer oil with a breakdown voltage of about 50 kV. The oil was not replaced or cleaned during the experiment. We did not find that contamination of the oil by discharge products had any effect on the time characteristics of either type of discharger. The results were analyzed by the least squares method, with 50 measurements to a point (it was found that time lag of the discharger triggering conforms approximately to a normal distribution law for both types of discharger).

  6. Visualization by discharge illumination technique and modification by plasma actuator of rarefied Mach 2 airflow around a cylinder

    NASA Astrophysics Data System (ADS)

    Leger, L.; Sellam, M.; Barbosa, E.; Depussay, E.

    2013-06-01

    The use of plasma actuators for flow control has received considerable attention in recent years. This kind of device seems to be an appropriate means of raising abilities in flow control thanks to total electric control, no moving parts and a fast response time. The experimental work presented here shows, firstly, the non-intrusive character of the visualization of the density field of an airflow around a cylinder obtained using a plasma luminescence technique. Experiments are made in a continuous supersonic wind tunnel. The static pressure in the flow is 8 Pa, the mean free path is about 0.3 mm and the airflow velocity is 510 m s-1. Pressure measurements obtained by means of glass Pitot tube without the visualization discharge are proposed. Measured and simulated pressure profiles are in good agreement in the region near the cylinder. There is good correlation between numerical simulations of the supersonic flow field, analytical model predictions and experimental flow visualizations obtained by a plasma luminescence technique. Consequently, we show that the plasma luminescence technique is non-intrusive. Secondly, the effect of a dc discharge on a supersonic rarefied air flow around a cylinder is studied. An electrode is flush mounted on the cylinder. Stagnation pressure profiles are examined for different electrode positions on the cylinder. A shock wave modification depending on the electrode location is observed. The discharge placed at the upstream stagnation point induces an upstream shift of the bow shock, whereas a modification of the shock wave shape is observed when it is placed at 45° or 90°.

  7. Theoretical and experimental investigation into high current hollow cathode arc attachment

    NASA Astrophysics Data System (ADS)

    Downey, Ryan T.

    This research addresses several concerns of the mechanisms controlling performance and lifetime of high-current single-channel-hollow-cathodes, the central electrode and primary life-limiting component in Magnetoplasmadynamic thrusters. Specifically covered are the trends, and the theorized governing mechanisms, seen in the discharge efficiency and power, the size of the plasma attachment to the cathode (the active zone), cathode exit plume plasma density and energy, along with plasma property distributions of the internal plasma column (the IPC) of a single-channel-hollow-cathode. Both experiment and computational modeling were employed in the analysis of the cathodes. Employing Tantalum and Tungsten cathodes (of 2, 6 and 10 mm inner diameter), experiments were conducted to measure the temperature profile of operating cathodes, the width of the active zone, the discharge voltage, power, plasma arc resistance and efficiency, with mass flow rates of 50 to 300 sccm of Argon, and discharge currents of 15 to 50 Amps. Langmuir probing was used to obtain measurements for the electron temperature, plasma density and plasma potential at the cathode exit plane (down stream tip). A computational model was developed to predict the distribution of plasma inside the cathode, based upon experimentally determined boundary conditions. It was determined that the peak cathode temperature is a function of both interior cathode density and discharge current, though the location of the peak temperature is controlled gas density but not discharge current. The active zone width was found to be an increasing function of the discharge current, but a decreasing function of the mass flow rate. The width of the active zone was found to not be controlled by the magnitude of the peak cathode wall temperature. The discharge power consumed per unit of mass throughput is seen as a decreasing function of the mass flow rate, showing the increasing efficiency of the cathode. Finally, this new understanding of the mechanisms of the plasma attachment phenomena of a single-channel-hollow-cathode were extrapolated to the multi-channel-hollow-cathode environment, to explain performance characteristics of these devices seen in previous research.

  8. Production of high transient heat and particle fluxes in a linear plasma device

    NASA Astrophysics Data System (ADS)

    De Temmerman, G.; Zielinski, J. J.; van der Meiden, H.; Melissen, W.; Rapp, J.

    2010-08-01

    We report on the generation of high transient heat and particle fluxes in a linear plasma device by pulsed operation of the plasma source. A capacitor bank is discharged into the source to transiently increase the discharge current up to 1.7 kA, allowing peak densities and temperature of 70×1020 m-3 and 6 eV corresponding to a surface power density of about 400 MW m-2.

  9. Metal impurity fluxes and plasma-surface interactions in EXTRAP T2R

    NASA Astrophysics Data System (ADS)

    Bergsåker, H.; Menmuir, S.; Rachlew, E.; Brunsell, P. R.; Frassinetti, L.; Drake, J. R.

    2008-03-01

    The EXTRAP T2R is a large aspect ratio Reversed Field Pinch device. The main focus of interest for the experiments is the active feedback control of resistive wall modes [1]. With feedback it has been possible to prolong plasma discharges in T2R from about 20 ms to nearly 100 ms. In a series of experiments in T2R, in H- and D- plasmas with and without feedback, quantitative spectroscopy and passive collector probes have been used to study the flux of metal impurities. Time resolved spectroscopic measurements of Cr and Mo lines showed large metal release towards discharge termination without feedback. Discharge integrated fluxes of Cr, Fe, Ni and Mo were also measured with collector probes at wall position. Reasonable quantitative agreement was found between the spectroscopic and collector probe measurements. The roles of sputtering, thermal evaporation and arcing in impurity production are evaluated based on the composition of the measured impurity flux.

  10. Equalizer system and method for series connected energy storing devices

    DOEpatents

    Rouillard, Jean; Comte, Christophe; Hagen, Ronald A.; Knudson, Orlin B.; Morin, Andre; Ross, Guy

    1999-01-01

    An apparatus and method for regulating the charge voltage of a number of electrochemical cells connected in series is disclosed. Equalization circuitry is provided to control the amount of charge current supplied to individual electrochemical cells included within the series string of electrochemical cells without interrupting the flow of charge current through the series string. The equalization circuitry balances the potential of each of the electrochemical cells to within a pre-determined voltage setpoint tolerance during charging, and, if necessary, prior to initiating charging. Equalization of cell potentials may be effected toward the end of a charge cycle or throughout the charge cycle. Overcharge protection is also provided for each of the electrochemical cells coupled to the series connection. During a discharge mode of operation in accordance with one embodiment, the equalization circuitry is substantially non-conductive with respect to the flow of discharge current from the series string of electrochemical cells. In accordance with another embodiment, equalization of the series string of cells is effected during a discharge cycle.

  11. An Inductorless Self-Controlled Rectifier for Piezoelectric Energy Harvesting

    PubMed Central

    Lu, Shaohua; Boussaid, Farid

    2015-01-01

    This paper presents a high-efficiency inductorless self-controlled rectifier for piezoelectric energy harvesting. High efficiency is achieved by discharging the piezoelectric device (PD) capacitance each time the current produced by the PD changes polarity. This is achieved automatically without the use of delay lines, thereby making the proposed circuit compatible with any type of PD. In addition, the proposed rectifier alleviates the need for an inductor, making it suitable for on-chip integration. Reported experimental results show that the proposed rectifier can harvest up to 3.9 times more energy than a full wave bridge rectifier. PMID:26610492

  12. An Inductorless Self-Controlled Rectifier for Piezoelectric Energy Harvesting.

    PubMed

    Lu, Shaohua; Boussaid, Farid

    2015-11-19

    This paper presents a high-efficiency inductorless self-controlled rectifier for piezoelectric energy harvesting. High efficiency is achieved by discharging the piezoelectric device (PD) capacitance each time the current produced by the PD changes polarity. This is achieved automatically without the use of delay lines, thereby making the proposed circuit compatible with any type of PD. In addition, the proposed rectifier alleviates the need for an inductor, making it suitable for on-chip integration. Reported experimental results show that the proposed rectifier can harvest up to 3.9 times more energy than a full wave bridge rectifier.

  13. STABILIZED PINCH MACHINE

    DOEpatents

    Anderson, O.A.

    1962-04-24

    A device for heating and confining a high temperature gas or plasma utilizing the linear pinch effect is described. The pinch discharge produced is the form of an elongated cylinder. The electrical discharge current is returned in parallel along an axial and a concentric conductor whereby the magnetic field of the conductors compresses and stabilizes the pinch discharge against lateral instability. (AEC)

  14. 50 KW Class Krypton Hall Thruster Performance

    NASA Technical Reports Server (NTRS)

    Jacobson, David T.; Manzella, David H.

    2003-01-01

    The performance of a 50-kilowatt-class Hall thruster designed for operation on xenon propellant was measured using kryton propellant. The thruster was operated at discharge power levels ranging from 6.4 to 72.5 kilowatts. The device produced thrust ranging from 0.3 to 2.5 newtons. The thruster was operated at discharge voltages between 250 and 1000 volts. At the highest anode mass flow rate and discharge voltage and assuming a 100 percent singly charged condition, the discharge specific impulse approached the theoretical value. Discharge specific impulse of 4500 seconds was demonstrated at a discharge voltage of 1000 volts. The peak discharge efficiency was 64 percent at 650 volts.

  15. Boundary-Layer Separation Control under Low-Pressure Turbine Airfoil Conditions using Glow-Discharge Plasma Actuators

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.; Ashpis, David E.

    2003-01-01

    Modem low-pressure turbines, in general, utilize highly loaded airfoils in an effort to improve efficiency and to lower the number of airfoils needed. Typically, the airfoil boundary layers are turbulent and fully attached at takeoff conditions, whereas a substantial fraction of the boundary layers on the airfoils may be transitional at cruise conditions due to the change of density with altitude. The strong adverse pressure gradients on the suction side of these airfoils can lead to boundary-layer separation at the latter low Reynolds number conditions. Large separation bubbles, particularly those which fail to reattach, cause a significant degradation of engine efficiency. A component efficiency drop of the order 2% may occur between takeoff and cruise conditions for large commercial transport engines and could be as large as 7% for smaller engines at higher altitude. An efficient means of of separation elimination/reduction is, therefore, crucial to improved turbine design. Because the large change in the Reynolds number from takeoff to cruise leads to a distinct change in the airfoil flow physics, a separation control strategy intended for cruise conditions will need to be carefully constructed so as to incur minimum impact/penalty at takeoff. A complicating factor, but also a potential advantage in the quest for an efficient strategy, is the intricate interplay between separation and transition for the situation at hand. Volino gives a comprehensive discussion of several recent studies on transition and separation under low-pressure-turbine conditions, among them one in the present facility. Transition may begin before or after separation, depending on the Reynolds number and other flow conditions. If the transition occurs early in the boundary layer then separation may be reduced or completely eliminated. Transition in the shear layer of a separation bubble can lead to rapid reattachment. This suggests using control mechanisms to trigger and enhance early transition. Gad-el-Hak provides a review of various techniques for flow control in general and Volino discusses recent studies on separation control under low-pressure-turbine conditions utilizing passive as well as active devices. As pointed out by Volino, passive devices optimized for separation control at low Reynolds numbers tend to increase losses at high Reynolds numbers, Active devices have the attractive feature that they can be utilized only in operational regimes where they are needed and when turned off would not affect the flow. The focus in the present paper is an experimental Separation is induced on a flat plate installed in a closed-circuit wind tunnel by a shaped insert on the opposite wall. The flow conditions represent flow over the suction surface of a modem low-pressure-turbine airfoil ('Pak-B'). The Reynolds number, based on wetted plate length and nominal exit velocity, is varied from 50,000 to 300,000, covering cruise to takeoff conditions. Low (0.2%) and high (2.5%) Gee-stream turbulence intensities are set using passive grids. A spanwise-oriented phased-plasma-array actuator, fabricated on a printed circuit board, is surface- flush-mounted upstream of the separation point and can provide forcing in a wide frequency range. Static surface pressure measurements and hot-wire anemometry of the base and controlled flows are performed and indicate that the glow-discharge plasma actuator is an effective device for separation control. of active separation control using glow discharge plasma actuators.

  16. Paul Ion Trap as a Diagnostic for Plasma Focus

    NASA Astrophysics Data System (ADS)

    Sadat Kiai, S. M.; Adlparvar, S.; Zirak, A.; Alhooie, Samira; Elahi, M.; Sheibani, S.; Safarien, A.; Farhangi, S.; Dabirzadeh, A. A.; Khalaj, M. M.; Mahlooji, M. S.; KaKaei, S.; Talaei, A.; Kashani, A.; Tajik Ahmadi, H.; Zahedi, F.

    2010-02-01

    The plasma discharge contamination by high and low Z Impurities affect the rate of nuclear fusion reaction products, specially when light particles have to be confined. These impurities should be analyzed and can be fairly controlled. This paper reports on the development of a Paul ion trap with ion sources by impact electron ionization as a diagnostic for the 10 kJ Iranian sunshine plasma focus device. Preliminary results of the residual gas are analyzed and presented.

  17. Apparatus and method for generating swirling flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haden, Robert E.; Lorentz, Donald G.

    An apparatus and method for generating a swirl is disclosed that is used to induce an axi-symmetric swirling flow to an incoming flow. The disclosed subject matter induces a uniform and axi-symmetric swirl, circumferentially around a discharge location, thus imparting a more accurate, repeatable, continuous, and controllable swirl and mixing condition of interest. Moreover, the disclosed subject matter performs the swirl injection at a lower pressure drop in comparison to a more traditional methods and devices.

  18. Understanding the scaling of electron kinetics in the transition from collisional to collisionless conditions in microscale gas discharges

    NASA Astrophysics Data System (ADS)

    Tan, Xi; Go, David B.

    2018-02-01

    When gas discharge and plasma devices shrink to the microscale, the electrode distance in the device approaches the mean free path of electrons and they experience few collisions. As microscale gas discharge and plasma devices become more prevalent, the behavior of discharges at these collisionless and near-collisionless conditions need to be understood. In conditions where the characteristic length d is much greater than the mean free path λ (i.e., macroscopic conditions), electron energy distributions (EEDs) and rate coefficients scale with the reduced electric field E/p. However, when d is comparable with or much lower than λ, this E/p scaling breaks. In this work, particle-in-cell/Monte Carlo collision simulations are used to explore the behavior of the EED and subsequent reaction rate coefficients in microscale field emission-driven Townsend discharges for both an atomic (argon) and a molecular (hydrogen) gas. To understand the behavior, a pseudo-analytical model is developed for the spatially integrated EED and rate coefficients in the collisional to collisionless transition regime based on the weighted sum of a fully collisional, two-temperature Maxwellian EED and the ballistic EED. The theory helps clarify the relative contribution of ballistic electrons in these extreme conditions and can be used to more accurately predict when macroscopic E/p scaling fails at the microscale.

  19. Apparatus for atmospheric pressure pin-to-hole spark discharge and uses thereof

    DOEpatents

    Dobrynin, Danil V.; Fridman, Alexander; Cho, Young I.; Fridman, Gregory; Friedman, Gennady

    2016-12-06

    Disclosed herein are atmospheric pressure pin-to-hole pulsed spark discharge devices and methods for creating plasma. The devices include a conduit for fluidically communicating a gas, a plasma, or both, therethrough, portion of the conduit capable of being connected to a gas supply, and a second portion of the conduit capable of emitting a plasma; a positive electrode comprising a sharp tip; and a ground plate electrode. Disclosed are methods for treating a skin ulcer using non-thermal plasma include flowing a gas through a cold spark discharge zone simultaneously with the creation of a pulsed spark discharge to give rise to a non-thermal plasma emitted from a conduit, the non-thermal plasma comprising NO; and contacting a skin ulcer with said non-thermal plasma for sufficient time and intensity to give rise to treatment of the skin ulcer.

  20. Evaluation of an impedance threshold device in patients receiving active compression-decompression cardiopulmonary resuscitation for out of hospital cardiac arrest.

    PubMed

    Plaisance, Patrick; Lurie, Keith G; Vicaut, Eric; Martin, Dominique; Gueugniaud, Pierre-Yves; Petit, Jean-Luc; Payen, Didier

    2004-06-01

    The purpose of this multicentre clinical randomized controlled blinded prospective trial was to determine whether an inspiratory impedance threshold device (ITD), when used in combination with active compression-decompression (ACD) cardiopulmonary resuscitation (CPR), would improve survival rates in patients with out-of-hospital cardiac arrest. Patients were randomized to receive either a sham (n = 200) or an active impedance threshold device (n = 200) during advanced cardiac life support performed with active compression-decompression cardiopulmonary resuscitation. The primary endpoint of this study was 24 h survival. The 24 h survival rates were 44/200 (22%) with the sham valve and 64/200 (32%) with the active valve (P = 0.02). The number of patients who had a return of spontaneous circulation (ROSC), intensive care unit (ICU) admission, and hospital discharge rates was 77 (39%), 57 (29%), and 8 (4%) in the sham valve group versus 96 (48%) (P = 0.05), 79 (40%) (P = 0.02), and 10 (5%) (P = 0.6) in the active valve group. Six out of ten survivors in the active valve group and 1/8 survivors in the sham group had normal neurological function at hospital discharge (P = 0.1). The use of an impedance valve in patients receiving active compression-decompression cardiopulmonary resuscitation for out-of-hospital cardiac arrest significantly improved 24 h survival rates.

  1. Self-charging metering and dispensing device for fluids

    NASA Technical Reports Server (NTRS)

    Hooper, S. L.; Setzer, D. (Inventor)

    1984-01-01

    A self-metering and dispensing device for fluids obtained from a pressurized fluid supply is discussed. Tubing and valving means permit the introduction of fluid into and discharge from a closed cylindrical reservoir. The reservoir contains a slideably disposed piston co-acting with a coil compression spring, with piston travel determining the amount of fluid in the reservoir. Once the determined amount of fluid is introduced into the reservoir, the fluid is discharged by the force of the coil compression spring acting upon the piston.

  2. ARC DISCHARGE AND METHOD OF PRODUCING THE SAME

    DOEpatents

    Neidigh, R.V.

    1960-03-15

    A device for producing an energetic gas arc discharge between spaced electrodes in an evacuated chamber and within a magnetic field is described. Gas is fed into the arc in a direction normal to a refluxing stream of electrons and at a pressure higher than the pressure within the chamber to establish a pressure gradient along the arc discharge formed between the electrodes. This pressure gradient establishes rotating, time varying, radial electrical fields in the volume surroundimg the discharge, causing the discharge to rotate about the arc center line.

  3. Predictors of outcome for cats with ureteral obstructions after interventional management using ureteral stents or a subcutaneous ureteral bypass device.

    PubMed

    Horowitz, Cara; Berent, Allyson; Weisse, Chick; Langston, Cathy; Bagley, Demetrius

    2013-12-01

    Novel treatment alternatives for feline ureteral obstruction(s) include placement of a double pigtail ureteral stent and a subcutaneous ureteral bypass (SUB) device. This study evaluated parameters for the prediction of hospitalization times, peri-operative survival, renal recovery and long-term survival in cats with benign ureteral obstructions after successful decompression with either a ureteral stent or SUB device. The medical records of 41 cats treated for benign ureteral obstruction(s) were retrospectively reviewed. Preoperative historical, biochemical and imaging parameters, along with intra- and postoperative biochemical parameters and complications were evaluated for predictors of hospitalization length, survival to discharge, 3-, 6- and 9-month post-procedure creatinine, and overall survival time. All patients had successful decompression of their renal pelvis. Hospitalization time was positively associated with presenting creatinine, perioperative complications, post-procedure creatinine and potassium, but was negatively associated with post-procedure sodium. No parameters were associated with survival to discharge. A higher creatinine at discharge was positively associated with a higher creatinine at follow-up. A decreased overall survival was associated with a higher presenting blood urea nitrogen, higher creatinine at hospital discharge and in over-hydrated patients during hospitalization. Cats with International Renal Interest Society stage 1 and 2 kidney disease, versus stage 3 and 4, at 3 months and 6 months post-procedure, lived longer. Cats with ureteral obstruction(s) treated with a ureteral stent or SUB device had an overall good survival and no admitting parameter was associated with survival to discharge. No single parameter was associated with all outcomes in this study, making predicting patient survival and cost prior to ureteral decompression difficult.

  4. Experimental Discussion on a 6-kW, 2-kWh Battery Energy Storage System Using a Bidirectional Isolated DC/DC Converter

    NASA Astrophysics Data System (ADS)

    Abe, Takahiro; Tan, Nadia Mei Lin; Akagi, Hirofumi

    This paper presents an experimental discussion on a 6-kW, full-bridge, zero-voltage switching bidirectional isolated dc/dc converter for a 53.2-V, 2-kWh Li-ion battery energy storage system. The combination of high-frequency switching devices, 600-V/200-A IGBTs and 100-V/500-A MOSFETs with a high-frequency transformer reduces the weight and physical size of the bidirectional isolated dc/dc converter. The dc voltage on the high-voltage side of the converter is controlled in a range of 300V to 355V as the battery voltage on the low-voltage side varies from 50V to 59V. Experimental verification of bidirectional power flow into (battery charging) or out of (battery discharging) the Li-ion battery bank is also presented. The maximal efficiency of the dc/dc converter is measured to be 98.1% during charging and 98.2% during discharging, excluding the gate drive loss and control circuit loss.

  5. Gate protective device for SOS array

    NASA Technical Reports Server (NTRS)

    Meyer, J. E., Jr.; Scott, J. H.

    1972-01-01

    Protective gate device consisting of alternating heavily doped n(+) and p(+) diffusions eliminates breakdown voltages in silicon oxide on sapphire arrays caused by electrostatic discharge from person or equipment. Diffusions are easily produced during normal double epitaxial processing. Devices with nine layers had 27-volt breakdown.

  6. Acceleration Modes and Transitions in Pulsed Plasma Accelerators

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Greve, Christine M.

    2018-01-01

    Pulsed plasma accelerators typically operate by storing energy in a capacitor bank and then discharging this energy through a gas, ionizing and accelerating it through the Lorentz body force. Two plasma accelerator types employing this general scheme have typically been studied: the gas-fed pulsed plasma thruster and the quasi-steady magnetoplasmadynamic (MPD) accelerator. The gas-fed pulsed plasma accelerator is generally represented as a completely transient device discharging in approximately 1-10 microseconds. When the capacitor bank is discharged through the gas, a current sheet forms at the breech of the thruster and propagates forward under a j (current density) by B (magnetic field) body force, entraining propellant it encounters. This process is sometimes referred to as detonation-mode acceleration because the current sheet representation approximates that of a strong shock propagating through the gas. Acceleration of the initial current sheet ceases when either the current sheet reaches the end of the device and is ejected or when the current in the circuit reverses, striking a new current sheet at the breech and depriving the initial sheet of additional acceleration. In the quasi-steady MPD accelerator, the pulse is lengthened to approximately 1 millisecond or longer and maintained at an approximately constant level during discharge. The time over which the transient phenomena experienced during startup typically occur is short relative to the overall discharge time, which is now long enough for the plasma to assume a relatively steady-state configuration. The ionized gas flows through a stationary current channel in a manner that is sometimes referred to as the deflagration-mode of operation. The plasma experiences electromagnetic acceleration as it flows through the current channel towards the exit of the device. A device that had a short pulse length but appeared to operate in a plasma acceleration regime different from the gas-fed pulsed plasma accelerators was developed by Cheng, et al. The Coaxial High ENerGy (CHENG) thruster operated on the 10-microseconds timescales of pulsed plasma thrusters, but claimed high thrust density, high efficiency and low electrode erosion rates, which are more consistent with the deflagration mode of acceleration. Separate work on gas-fed pulsed plasma thrusters (PPTs) by Ziemer, et al. identified two separate regimes of performance. The regime at higher mass bits (termed Mode I in that work) possessed relatively constant thrust efficiency (ratio of jet kinetic energy to input electrical energy) as a function of mass bit. In the second regime at very low mass bits (termed Mode II), the efficiency increased with decreasing mass bit. Work by Poehlmann et al. and by Sitaraman and Raja sought to understand the performance of the CHENG thruster and the Mode I / Mode II performance in PPTs by modeling the acceleration using the Hugoniot Relation, with the detonation and deflagration modes representing two distinct sets of solutions to the relevant conservation laws. These works studied the proposal that, depending upon the values of the various controllable parameters, the accelerator would operate in either the detonation or deflagration mode. In the present work, we propose a variation on the explanation for the differences in performance between the various pulsed plasma accelerators. Instead of treating the accelerator as if it were only operating in one mode or the other during a pulse, we model the initial stage of the discharge in all cases as an accelerating current sheet (detonation mode). If the current sheet reaches the exit of the accelerator before the discharge is completed, the acceleration mode transitions to the deflagration mode type found in the quasi-steady MPD thrusters. This modeling method is used to demonstrate that standard gas-fed pulsed plasma accelerators, the CHENG thruster, and the quasi-steady MPD accelerator are variations of the same device, with the overall acceleration of the plasma depending upon the behavior of the plasma discharge during initial transient phase and the relative lengths of the detonation and deflagration modes of operation.

  7. Pneumatic wrench retains or discharges nuts or bolts as desired

    NASA Technical Reports Server (NTRS)

    Bouille, J. R.

    1966-01-01

    Pneumatic wrench grips, screws or unscrews, and discharges a nut or bolt as desired. The device consists of a standard pneumatic wrench modified with a special hex bolt head socket assembly and a diaphragm air cylinder.

  8. High to ultra-high power electrical energy storage.

    PubMed

    Sherrill, Stefanie A; Banerjee, Parag; Rubloff, Gary W; Lee, Sang Bok

    2011-12-14

    High power electrical energy storage systems are becoming critical devices for advanced energy storage technology. This is true in part due to their high rate capabilities and moderate energy densities which allow them to capture power efficiently from evanescent, renewable energy sources. High power systems include both electrochemical capacitors and electrostatic capacitors. These devices have fast charging and discharging rates, supplying energy within seconds or less. Recent research has focused on increasing power and energy density of the devices using advanced materials and novel architectural design. An increase in understanding of structure-property relationships in nanomaterials and interfaces and the ability to control nanostructures precisely has led to an immense improvement in the performance characteristics of these devices. In this review, we discuss the recent advances for both electrochemical and electrostatic capacitors as high power electrical energy storage systems, and propose directions and challenges for the future. We asses the opportunities in nanostructure-based high power electrical energy storage devices and include electrochemical and electrostatic capacitors for their potential to open the door to a new regime of power energy.

  9. DNA hydrogel-based supercapacitors operating in physiological fluids

    PubMed Central

    Hur, Jaehyun; Im, Kyuhyun; Hwang, Sekyu; Choi, ByoungLyong; Kim, Sungjee; Hwang, Sungwoo; Park, Nokyoung; Kim, Kinam

    2013-01-01

    DNA nanostructures have been attractive due to their structural properties resulting in many important breakthroughs especially in controlled assemblies and many biological applications. Here, we report a unique energy storage device which is a supercapacitor that uses nanostructured DNA hydrogel (Dgel) as a template and layer-by-layer (LBL)-deposited polyelectrolyte multilayers (PEMs) as conductors. Our device, named as PEM-Dgel supercapacitor, showed excellent performance in direct contact with physiological fluids such as artificial urine and phosphate buffered saline without any need of additional electrolytes, and exhibited almost no cytotoxicity during cycling tests in cell culture medium. Moreover, we demonstrated that the PEM-Dgel supercapacitor has greater charge-discharge cycling stability in physiological fluids than highly concentrated acid electrolyte solution which is normally used for supercapacitor operation. These conceptually new supercapacitors have the potential to be a platform technology for the creation of implantable energy storage devices for packageless applications directly utilizing biofluids. PMID:23412432

  10. A Plasma Focus Device with a 2-MA Discharge Current as a Hard X-Ray Source

    NASA Astrophysics Data System (ADS)

    Yurkov, D. I.; Dulatov, A. K.; Lemeshko, B. D.; Andreev, D. A.; Golikov, A. V.; Mikhailov, Yu. V.; Prokuratov, I. A.; Selifanov, A. N.; Fatiev, T. S.

    2018-04-01

    A device based on a pulsed current generator with capacitive energy storage loaded on a plasma focus (PF) chamber is described. The device provides a discharge current amplitude of up to 2 MA in the PF chamber at a stored energy in the capacitor bank of up to 150 kJ. The PF chamber is designed to study hard X-ray (HXR) emission. It has windows for output of HXR emission in the cathode direction, as well as a special insert for output of HXR emission into the anode cavity. A study of operation of the chamber as a part of the setup with the use of various X-ray targets on the anode has been carried out. At a discharge current of 1.5MA, an HXR pulse with an average duration of 16 ns and energy spectrum from 10 to 200 keV, which provides an absorbed dose in the irradiated samples on the order of 1 Sv, is generated in the PF chamber.

  11. The STPX Spheromak System: Recent Measurements and Observations

    NASA Astrophysics Data System (ADS)

    Williams, R. L.; Clark, J.; Richardson, M.; Williams, R. E.

    2016-10-01

    We present results of recent measurements made to characterize the plasma formed in the STPX* Spheromak plasma device installed at the Florida A. and M University. The toroidal plasma is formed using a pulsed cylindrical gun discharge and, when fully operational, is designed to approach a density of 1021 /m3 and electron temperatures in the range of 100-350 eV. The diagnostic devices used for these recent measurements include Langmuir probes, electrostatic triple probes, optical spectrometers, CCD detectors, laser probes and magnetic field coils. These probes have been tested using both a static and the pulsed discharges created in the device, and we report the latest measurements. The voltage and current profiles of the pulsed discharge as well as the pulsed magnetic field coils are discussed. Progress in modeling this spheromak using NIMROD and other simulation codes will be discussed. Our recent results of an ongoing study of the topology of magnetic helicity are presented in a separate poster. Spheromak Turbulent Physics Experiment.

  12. 33 CFR 154.525 - Monitoring devices.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... monitoring devices at the facility would significantly limit the size of a discharge of oil or hazardous... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Monitoring devices. 154.525...) POLLUTION FACILITIES TRANSFERRING OIL OR HAZARDOUS MATERIAL IN BULK Equipment Requirements § 154.525...

  13. 33 CFR 154.525 - Monitoring devices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... monitoring devices at the facility would significantly limit the size of a discharge of oil or hazardous... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Monitoring devices. 154.525...) POLLUTION FACILITIES TRANSFERRING OIL OR HAZARDOUS MATERIAL IN BULK Equipment Requirements § 154.525...

  14. 33 CFR 154.525 - Monitoring devices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... monitoring devices at the facility would significantly limit the size of a discharge of oil or hazardous... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Monitoring devices. 154.525...) POLLUTION FACILITIES TRANSFERRING OIL OR HAZARDOUS MATERIAL IN BULK Equipment Requirements § 154.525...

  15. 33 CFR 154.525 - Monitoring devices.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... monitoring devices at the facility would significantly limit the size of a discharge of oil or hazardous... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Monitoring devices. 154.525...) POLLUTION FACILITIES TRANSFERRING OIL OR HAZARDOUS MATERIAL IN BULK Equipment Requirements § 154.525...

  16. Optimization of PEDOT films in ionic liquid supercapacitors: demonstration as a power source for polymer electrochromic devices.

    PubMed

    Österholm, Anna M; Shen, D Eric; Dyer, Aubrey L; Reynolds, John R

    2013-12-26

    We report on the optimization of the capacitive behavior of poly(3,4-ethylenedioxythiophene) (PEDOT) films as polymeric electrodes in flexible, Type I electrochemical supercapacitors (ESCs) utilizing ionic liquid (IL) and organic gel electrolytes. The device performance was assessed based on figures of merit that are critical to evaluating the practical utility of electroactive polymer ESCs. PEDOT/IL devices were found to be highly stable over hundreds of thousands of cycles and could be reversibly charged/discharged at scan rates between 500 mV/s and 2 V/s depending on the polymer loading. Furthermore, these devices exhibit leakage currents and self-discharge rates that are comparable to state of the art electrochemical double-layer ESCs. Using an IL as device electrolyte allowed an extension of the voltage window of Type I ESCs by 60%, resulting in a 2.5-fold increase in the energy density obtained. The efficacies of tjese PEDOT ESCs were assessed by using them as a power source for a high-contrast and fast-switching electrochromic device, demonstrating their applicability in small organic electronic-based devices.

  17. Radical production efficiency and electrical characteristics of a coplanar barrier discharge built by multilayer ceramic technology

    NASA Astrophysics Data System (ADS)

    Jõgi, Indrek; Erme, Kalev; Levoll, Erik; Stamate, Eugen

    2017-11-01

    The present study investigated the electrical characteristics and radical production efficiency of a coplanar barrier discharge (CBD) device manufactured by Kyocera by multilayer ceramic technology. The device consisted of a number of linear electrodes with electrode and gap widths of 0.75 mm, immersed into a ceramic dielectric barrier. A closed flow-through system necessary for the measurements was prepared by placing a quartz plate at a height of 3 mm from the ceramic barrier. The production of nitrogen radicals was determined from the removal of a trace amount of NO in pure N2 gas, while the production of oxygen radicals was determined by ozone production in pure O2 or synthetic air. The production efficiency of N and O radicals and NO oxidation in synthetic air was comparable with the efficiency of a volume barrier discharge device. The power density per unit of surface area of the CBD device was more than two times larger than that of a similar volume barrier discharge setup, which makes the CBD device a compact alternative for gas treatment. The production of ozone and different nitrogen oxides was also evaluated for the open system of the CBD which is usable for surface treatment. The ozone concentration of this system was nearly independent from the input power, while the concentration of nitrogen oxides increased with input power. The open system of the CBD was additionally tested for the treatment of a silicon surface. An increase of applied power decreased the time required to reduce the water contact angle below 10 degrees but also started to have an impact on the surface roughness.

  18. Electrochemical energy storage device based on carbon dioxide as electroactive species

    DOEpatents

    Nemeth, Karoly; van Veenendaal, Michel Antonius; Srajer, George

    2013-03-05

    An electrochemical energy storage device comprising a primary positive electrode, a negative electrode, and one or more ionic conductors. The ionic conductors ionically connect the primary positive electrode with the negative electrode. The primary positive electrode comprises carbon dioxide (CO.sub.2) and a means for electrochemically reducing the CO.sub.2. This means for electrochemically reducing the CO.sub.2 comprises a conductive primary current collector, contacting the CO.sub.2, whereby the CO.sub.2 is reduced upon the primary current collector during discharge. The primary current collector comprises a material to which CO.sub.2 and the ionic conductors are essentially non-corrosive. The electrochemical energy storage device uses CO.sub.2 as an electroactive species in that the CO.sub.2 is electrochemically reduced during discharge to enable the release of electrical energy from the device.

  19. Douching with Water Works device for perceived vaginal odor with or without complaints of discharge in women with no infectious cause of vaginitis: a pilot study.

    PubMed

    Chatwani, Ashwin J; Hassan, Sarmina; Rahimi, Salma; Jeronis, Stacey; Dandolu, Vani

    2006-01-01

    To determine if douching with Water Works device for 1 month can (1) lower or eliminate perceived vaginal odor by subject; (2) have any effects on vaginal ecosystem. Ten women with perceived vaginal odor with or without discharge, douched every day for 4 weeks in an open-label, nonrandomized pilot study. Primary outcome measures included perceived vaginal odor by subject, lactobacilli score from Nugent slide, and acceptance of the Water Works douching system. Secondary outcome included the safety of using this douching device. At week 4, there was improvement in vaginal odor (P=.0006) and there was no significant change in lactobacilli score. Douching with Water Works device is associated with reduction or elimination of vaginal odor without adversely affecting the vaginal ecosystem.

  20. Microplasma Ionization of Volatile Organics for Improving Air/Water Monitoring Systems On-Board the International Space Station

    NASA Astrophysics Data System (ADS)

    Bernier, Matthew C.; Alberici, Rosana M.; Keelor, Joel D.; Dwivedi, Prabha; Zambrzycki, Stephen C.; Wallace, William T.; Gazda, Daniel B.; Limero, Thomas F.; Symonds, Josh M.; Orlando, Thomas M.; Macatangay, Ariel; Fernández, Facundo M.

    2016-07-01

    Low molecular weight polar organics are commonly observed in spacecraft environments. Increasing concentrations of one or more of these contaminants can negatively impact Environmental Control and Life Support (ECLS) systems and/or the health of crew members, posing potential risks to the success of manned space missions. Ambient plasma ionization mass spectrometry (MS) is finding effective use as part of the analytical methodologies being tested for next-generation space module environmental analysis. However, ambient ionization methods employing atmospheric plasmas typically require relatively high operation voltages and power, thus limiting their applicability in combination with fieldable mass spectrometers. In this work, we investigate the use of a low power microplasma device in the microhollow cathode discharge (MHCD) configuration for the analysis of polar organics encountered in space missions. A metal-insulator-metal (MIM) structure with molybdenum foil disc electrodes and a mica insulator was used to form a 300 μm diameter plasma discharge cavity. We demonstrate the application of these MIM microplasmas as part of a versatile miniature ion source for the analysis of typical volatile contaminants found in the International Space Station (ISS) environment, highlighting their advantages as low cost and simple analytical devices.

  1. Microplasma Ionization of Volatile Organics for Improving Air/Water Monitoring Systems On-Board the International Space Station.

    PubMed

    Bernier, Matthew C; Alberici, Rosana M; Keelor, Joel D; Dwivedi, Prabha; Zambrzycki, Stephen C; Wallace, William T; Gazda, Daniel B; Limero, Thomas F; Symonds, Josh M; Orlando, Thomas M; Macatangay, Ariel; Fernández, Facundo M

    2016-07-01

    Low molecular weight polar organics are commonly observed in spacecraft environments. Increasing concentrations of one or more of these contaminants can negatively impact Environmental Control and Life Support (ECLS) systems and/or the health of crew members, posing potential risks to the success of manned space missions. Ambient plasma ionization mass spectrometry (MS) is finding effective use as part of the analytical methodologies being tested for next-generation space module environmental analysis. However, ambient ionization methods employing atmospheric plasmas typically require relatively high operation voltages and power, thus limiting their applicability in combination with fieldable mass spectrometers. In this work, we investigate the use of a low power microplasma device in the microhollow cathode discharge (MHCD) configuration for the analysis of polar organics encountered in space missions. A metal-insulator-metal (MIM) structure with molybdenum foil disc electrodes and a mica insulator was used to form a 300 μm diameter plasma discharge cavity. We demonstrate the application of these MIM microplasmas as part of a versatile miniature ion source for the analysis of typical volatile contaminants found in the International Space Station (ISS) environment, highlighting their advantages as low cost and simple analytical devices. Graphical Abstract ᅟ.

  2. 40 CFR 202.10 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... need of each individual customer. (d) Cutout or by-pass or similar devices means devices which vary the exhaust system gas flow so as to discharge the exhaust gas and acoustic energy to the atmosphere without... rails. (n) Muffler means a device for abating the sound of escaping gases of an internal combustion...

  3. 40 CFR 202.10 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... need of each individual customer. (d) Cutout or by-pass or similar devices means devices which vary the exhaust system gas flow so as to discharge the exhaust gas and acoustic energy to the atmosphere without... rails. (n) Muffler means a device for abating the sound of escaping gases of an internal combustion...

  4. 40 CFR 202.10 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... need of each individual customer. (d) Cutout or by-pass or similar devices means devices which vary the exhaust system gas flow so as to discharge the exhaust gas and acoustic energy to the atmosphere without... rails. (n) Muffler means a device for abating the sound of escaping gases of an internal combustion...

  5. 40 CFR 202.10 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... need of each individual customer. (d) Cutout or by-pass or similar devices means devices which vary the exhaust system gas flow so as to discharge the exhaust gas and acoustic energy to the atmosphere without... rails. (n) Muffler means a device for abating the sound of escaping gases of an internal combustion...

  6. 46 CFR 98.25-40 - Valves, fittings, and accessories.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... located at the highest practical point. The thermometer well shall terminate in the liquid space and be... and discharge liquid and vapor shut-off valves, safety relief valves, liquid level gaging devices... to the tanks, except safety devices and liquid level gaging devices, shall have manually operated...

  7. 46 CFR 98.25-40 - Valves, fittings, and accessories.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... located at the highest practical point. The thermometer well shall terminate in the liquid space and be... and discharge liquid and vapor shut-off valves, safety relief valves, liquid level gaging devices... to the tanks, except safety devices and liquid level gaging devices, shall have manually operated...

  8. 46 CFR 98.25-40 - Valves, fittings, and accessories.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... located at the highest practical point. The thermometer well shall terminate in the liquid space and be... and discharge liquid and vapor shut-off valves, safety relief valves, liquid level gaging devices... to the tanks, except safety devices and liquid level gaging devices, shall have manually operated...

  9. 46 CFR 98.25-40 - Valves, fittings, and accessories.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... located at the highest practical point. The thermometer well shall terminate in the liquid space and be... and discharge liquid and vapor shut-off valves, safety relief valves, liquid level gaging devices... to the tanks, except safety devices and liquid level gaging devices, shall have manually operated...

  10. 49 CFR 180.417 - Reporting and record retention requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... with the National Board, or copy the information contained on the cargo tank's identification and ASME.... (b) Test or inspection reporting. Each person performing a test or inspection as specified in § 180... (type of device, set to discharge pressure, pressure at which device opened, pressure at which device re...

  11. 49 CFR 180.417 - Reporting and record retention requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... with the National Board, or copy the information contained on the cargo tank's identification and ASME.... (b) Test or inspection reporting. Each person performing a test or inspection as specified in § 180... (type of device, set to discharge pressure, pressure at which device opened, pressure at which device re...

  12. Validating the Goldstein-Wehner Law for the Stratified Positive Column of DC Discharge in an Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Lisovskiy, V. A.; Koval, V. A.; Artushenko, E. P.; Yegorenkov, V. D.

    2012-01-01

    In this paper we suggest a simple technique for validating the Goldstein-Wehner law for a stratified positive column of dc glow discharge while studying the properties of gas discharges in an undergraduate laboratory. To accomplish this a simple device with a pre-vacuum mechanical pump, dc source and gas pressure gauge is required. Experiments may…

  13. 5.8kV SiC PiN Diode for Switching of High-Efficiency Inductive Pulsed Plasma Thruster Circuits

    NASA Technical Reports Server (NTRS)

    Toftul, Alexandra; Polzin, Kurt A.; Hudgins, Jerry L.

    2014-01-01

    Inductive Pulsed Plasma Thruster (IPPT) pulse circuits, such as those needed to operate the Pulsed Inductive Thruster (PIT), are required to quickly switch capacitor banks operating at a period of µs while conducting current at levels on the order of at least 10 kA. [1,2] For all iterations of the PIT to date, spark gaps have been used to discharge the capacitor bank through an inductive coil. Recent availability of fast, high-power solid state switching devices makes it possible to consider the use of semiconductor switches in modern IPPTs. In addition, novel pre-ionization schemes have led to a reduction in discharge energy per pulse for electric thrusters of this type, relaxing the switching requirements for these thrusters. [3,4] Solid state switches offer the advantage of greater controllability and reliability, as well as decreased drive circuit dimensions and mass relative to spark gap switches. The use of solid state devices such as Integrated Gate Bipolar Transistors (IGBTs), Gate Turn-off Thyristors (GTOs) and Silicon-Controlled Rectifiers (SCRs) often involves the use of power diodes. These semiconductor devices may be connected antiparallel to the switch for protection from reverse current, or used to reduce power loss in a circuit by clamping off current ringing. In each case, higher circuit efficiency may be achieved by using a diode that is able to transition, or 'switch,' from the forward conducting state ('on' state) to the reverse blocking state ('off' state) in the shortest amount of time, thereby minimizing current ringing and switching losses. Silicon Carbide (SiC) PiN diodes offer significant advantages to conventional fast-switching Silicon (Si) diodes for high power and fast switching applications. A wider band gap results in a breakdown voltage 10 times that of Si, so that a SiC device may have a thinner drift region for a given blocking voltage. [5] This leads to smaller, lighter devices for high voltage applications, as well as reduced forward conduction losses, faster reverse recovery time (faster turn-off), and lower-magnitude reverse recovery current. In addition, SiC devices have lower leakage current as compared to their Si counterparts, and a high thermal conductivity, potentially allowing the former to operate at higher temperatures with a smaller, lighter heatsink (or no heatsink at all).

  14. 50 CFR 404.7 - Regulated activities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... vessel engine cooling water, weather deck runoff, and vessel engine exhaust; (f) Discharging or... operations, or discharges incidental to vessel use such as deck wash, approved marine sanitation device effluent, cooling water, and engine exhaust; (g) Touching coral, living or dead; (h) Possessing fishing...

  15. IV INTERNATIONAL CONFERENCE ON ATOM AND MOLECULAR PULSED LASERS (AMPL'99): Efficient long-pulse XeCl laser with a prepulse formed by an inductive energy storage device

    NASA Astrophysics Data System (ADS)

    Baksht, E. Kh; Panchenko, Aleksei N.; Tarasenko, Viktor F.

    2000-06-01

    An efficient electric-discharge XeCl laser is developed, which is pumped by a self-sustained discharge with a prepulse formed by a generator with an inductive energy storage device and a semiconductor current interrupter on a basis of semiconductor opening switch (SOS) diodes. An output energy up to 800 mJ, a pulse length up to 450 ns, and a total laser efficiency of 2.2% were attained by using spark UV preionisation.

  16. Progress of long pulse discharges by ECH in LHD

    NASA Astrophysics Data System (ADS)

    Yoshimura, Y.; Kasahara, H.; Tokitani, M.; Sakamoto, R.; Ueda, Y.; Ito, S.; Okada, K.; Kubo, S.; Shimozuma, T.; Igami, H.; Takahashi, H.; Tsujimura, T. I.; Makino, R.; Kobayashi, S.; Mizuno, Y.; Akiyama, T.; Ashikawa, N.; Masuzaki, S.; Motojima, G.; Shoji, M.; Suzuki, C.; Tanaka, H.; Tanaka, K.; Tokuzawa, T.; Tsuchiya, H.; Yamada, I.; Goto, Y.; Yamada, H.; Mutoh, T.; Komori, A.; Takeiri, Y.; the LHD Experiment Group

    2016-04-01

    Using ion cyclotron heating and electron cyclotron heating (ECH), or solo ECH, trials of steady state plasma sustainment have been conducted in the superconducting helical/stellarator, large helical device (LHD) (Ida K et al 2015 Nucl. Fusion 55 104018). In recent years, the ECH system has been upgraded by applying newly developed 77 and 154 GHz gyrotrons. A new gas fueling system applied to the steady state operations in the LHD realized precise feedback control of the line average electron density even when the wall condition varied during long pulse discharges. Owing to these improvements in the ECH and the gas fueling systems, a stable 39 min discharge with a line average electron density n e_ave of 1.1  ×  1019 m-3, a central electron temperature T e0 of over 2.5 keV, and a central ion temperature T i0 of 1.0 keV was successfully performed with ~350 kW EC-waves. The parameters are much improved from the previous 65 min discharge with n e_ave of 0.15  ×  1019 m-3 and T e0 of 1.7 keV, and the 30 min discharge with n e_ave of 0.7  ×  1019 m-3 and T e0 of 1.7 keV.

  17. Coupled microwave ECR and radio-frequency plasma source for plasma processing

    DOEpatents

    Tsai, Chin-Chi; Haselton, Halsey H.

    1994-01-01

    In a dual plasma device, the first plasma is a microwave discharge having its own means of plasma initiation and control. The microwave discharge operates at electron cyclotron resonance (ECR), and generates a uniform plasma over a large area of about 1000 cm.sup.2 at low pressures below 0.1 mtorr. The ECR microwave plasma initiates the second plasma, a radio frequency (RF) plasma maintained between parallel plates. The ECR microwave plasma acts as a source of charged particles, supplying copious amounts of a desired charged excited species in uniform manner to the RF plasma. The parallel plate portion of the apparatus includes a magnetic filter with static magnetic field structure that aids the formation of ECR zones in the two plasma regions, and also assists in the RF plasma also operating at electron cyclotron resonance.

  18. Coupled microwave ECR and radio-frequency plasma source for plasma processing

    DOEpatents

    Tsai, C.C.; Haselton, H.H.

    1994-03-08

    In a dual plasma device, the first plasma is a microwave discharge having its own means of plasma initiation and control. The microwave discharge operates at electron cyclotron resonance (ECR), and generates a uniform plasma over a large area of about 1000 cm[sup 2] at low pressures below 0.1 mtorr. The ECR microwave plasma initiates the second plasma, a radio frequency (RF) plasma maintained between parallel plates. The ECR microwave plasma acts as a source of charged particles, supplying copious amounts of a desired charged excited species in uniform manner to the RF plasma. The parallel plate portion of the apparatus includes a magnetic filter with static magnetic field structure that aids the formation of ECR zones in the two plasma regions, and also assists in the RF plasma also operating at electron cyclotron resonance. 4 figures.

  19. A Study on Performance and Safety Tests of Defibrillator Equipment.

    PubMed

    Tavakoli Golpaygani, A; Movahedi, M M; Reza, M

    2017-12-01

    Nowadays, more than 10,000 different types of medical devices can be found in hospitals. This way, medical electrical equipment is being employed in a wide variety of fields in medical sciences with different physiological effects and measurements. Hospitals and medical centers must ensure that their critical medical devices are safe, accurate, reliable and operational at the required level of performance. Defibrillators are critical resuscitation devices. The use of reliable defibirillators has led to more effective treatments and improved patient safety through better control and management of complications during Cardiopulmonary Resuscitation (CPR). The metrological reliability of twenty frequent use, manual defibrillators in use ten hospitals (4 private and 6 public) in one of the provinces of Iran according to international and national standards was evaluated. Quantitative analysis of control and instrument accuracy showed the amount of the obtained results in many units are critical which had less value over the standard limitations especially in devices with poor battery. For the accuracy of delivered energy analysis, only twelve units delivered acceptable output values and the precision in the output energy measurements especialy in weak battry condition, after activation of discharge alarm, were low. Obtained results indicate a need for new and severe regulations on periodic performance verifications and medical equipment quality control program especially for high risk instruments. It is also necessary to provide training courses on the fundumentals of operation and performane parameters for medical staff in the field of meterology in medicine and how one can get good accuracy results especially in high risk medical devices.

  20. A Study on Performance and Safety Tests of Defibrillator Equipment

    PubMed Central

    Tavakoli Golpaygani, A.; Movahedi, M.M.; Reza, M.

    2017-01-01

    Introduction: Nowadays, more than 10,000 different types of medical devices can be found in hospitals. This way, medical electrical equipment is being employed in a wide variety of fields in medical sciences with different physiological effects and measurements. Hospitals and medical centers must ensure that their critical medical devices are safe, accurate, reliable and operational at the required level of performance. Defibrillators are critical resuscitation devices. The use of reliable defibirillators has led to more effective treatments and improved patient safety through better control and management of complications during Cardiopulmonary Resuscitation (CPR). Materials and Methods: The metrological reliability of twenty frequent use, manual defibrillators in use ten hospitals (4 private and 6 public) in one of the provinces of Iran according to international and national standards was evaluated. Results: Quantitative analysis of control and instrument accuracy showed the amount of the obtained results in many units are critical which had less value over the standard limitations especially in devices with poor battery. For the accuracy of delivered energy analysis, only twelve units delivered acceptable output values and the precision in the output energy measurements especialy in weak battry condition, after activation of discharge alarm, were low. Conclusion: Obtained results indicate a need for new and severe regulations on periodic performance verifications and medical equipment quality control program especially for high risk instruments. It is also necessary to provide training courses on the fundumentals of operation and performane parameters for medical staff in the field of meterology in medicine and how one can get good accuracy results especially in high risk medical devices. PMID:29445716

  1. Thermal Properties of Microstrain Gauges Used for Protection of Lithium-Ion Cells of Different Designs

    NASA Technical Reports Server (NTRS)

    Jeevarajan, Judith

    2011-01-01

    The purpose of this innovation is to use microstrain gauges to monitor minute changes in temperature along with material properties of the metal cans and pouches used in the construction of lithium-ion cells. The sensitivity of the microstrain gauges to extremely small changes in temperatures internal to the cells makes them a valuable asset in controlling the hazards in lithium-ion cells. The test program on lithium-ion cells included various cell configurations, including the pouch type configurations. The thermal properties of microstrain gauges have been found to contribute significantly as safety monitors in lithium-ion cells that are designed even with hard metal cases. Although the metal cans do not undergo changes in material property, even under worst-case unsafe conditions, the small changes in thermal properties observed during charge and discharge of the cell provide an observable change in resistance of the strain gauge. Under abusive or unsafe conditions, the change in the resistance is large. This large change is observed as a significant change in slope, and this can be used to prevent cells from going into a thermal runaway condition. For flexible metal cans or pouch-type lithium-ion cells, combinations of changes in material properties along with thermal changes can be used as an indication for the initiation of an unsafe condition. Lithium-ion cells have a very high energy density, no memory effect, and almost 100-percent efficiency of charge and discharge. However, due to the presence of a flammable electrolyte, along with the very high energy density and the capability of releasing oxygen from the cathode, these cells can go into a hazardous condition of venting, fire, and thermal runaway. Commercial lithium-ion cells have current and voltage monitoring devices that are used to control the charge and discharge of the batteries. Some lithium-ion cells have internal protective devices, but when used in multi-cell configurations, these protective devices either do not protect or are themselves a hazard to the cell due to their limitations. These devices do not help in cases where the cells develop high impedance that suddenly causes them to go into a thermal runaway condition. Temperature monitoring typically helps with tracking the performance of a battery. But normal thermistors or thermal sensors do not provide the accuracy needed for this and cannot track a change in internal cell temperatures until it is too late to stop a thermal runaway.

  2. Feasibility of early discharge after implantable cardioverter-defibrillator procedures.

    PubMed

    Choudhuri, Indrajit; Desai, Dipan; Walburg, Jon; August, Phyllis; Keller, Seth I; Suri, Ranjit

    2012-10-01

    Registry data demonstrate considerably low complication rates after implantable cardioverter-defibrillator (ICD) procedures for primary prevention of sudden death. Yet standard of care includes postimplant overnight in-hospital observation that may levy substantial unnecessary financial burden on health care systems. In appropriate patients, discharge soon after implant could translate into significant cost savings, if such practice does not result in complications. We applied a simple clinical algorithm to assess feasibility of discharge on the same day of ICD implantation in patients at low risk for procedural complications. We prospectively randomized primary prevention ICD candidates at low risk for complications (not pacing-dependent or requiring bridging heparin anticoagulation) to next-day discharge with overnight in-hospital observation, or same-day discharge with remote monitoring for 24 hours after ICD implant. Implants were performed via cephalic vein access, and randomization occurred after 4-hours clinical observation and device interrogation. All patients were followed for a minimum of 6 weeks to assess acute procedural complications. 71 patients comprised the study cohort (mean age 62, 79% male) after 3 were excluded. The most common indication for ICD implant was ischemic cardiomyopathy with ejection fraction ≤35%. Device data obtained through 24-hour remote monitoring was comparable to 4-hour postimplant parameters in same-day discharge patients. No acute complications occurred in same-day discharge patients; 1 next-day discharge patient developed pneumothorax. ICD implantation with same-day discharge is reasonable in patients at low risk for complications. Remote monitoring can be useful in indicating lead-parameter stability during the immediate postoperative period. © 2012 Wiley Periodicals, Inc.

  3. [Automatic adjustment control system for DC glow discharge plasma source].

    PubMed

    Wan, Zhen-zhen; Wang, Yong-qing; Li, Xiao-jia; Wang, Hai-zhou; Shi, Ning

    2011-03-01

    There are three important parameters in the DC glow discharge process, the discharge current, discharge voltage and argon pressure in discharge source. These parameters influence each other during glow discharge process. This paper presents an automatic control system for DC glow discharge plasma source. This system collects and controls discharge voltage automatically by adjusting discharge source pressure while the discharge current is constant in the glow discharge process. The design concept, circuit principle and control program of this automatic control system are described. The accuracy is improved by this automatic control system with the method of reducing the complex operations and manual control errors. This system enhances the control accuracy of glow discharge voltage, and reduces the time to reach discharge voltage stability. The glow discharge voltage stability test results with automatic control system are provided as well, the accuracy with automatic control system is better than 1% FS which is improved from 4% FS by manual control. Time to reach discharge voltage stability has been shortened to within 30 s by automatic control from more than 90 s by manual control. Standard samples like middle-low alloy steel and tin bronze have been tested by this automatic control system. The concentration analysis precision has been significantly improved. The RSDs of all the test result are better than 3.5%. In middle-low alloy steel standard sample, the RSD range of concentration test result of Ti, Co and Mn elements is reduced from 3.0%-4.3% by manual control to 1.7%-2.4% by automatic control, and that for S and Mo is also reduced from 5.2%-5.9% to 3.3%-3.5%. In tin bronze standard sample, the RSD range of Sn, Zn and Al elements is reduced from 2.6%-4.4% to 1.0%-2.4%, and that for Si, Ni and Fe is reduced from 6.6%-13.9% to 2.6%-3.5%. The test data is also shown in this paper.

  4. 46 CFR 56.50-20 - Pressure relief piping.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PIPING SYSTEMS AND... authorized by the Marine Safety Center. (b) Discharge lines (reproduces 122.6.2(d)). Discharge lines from pressure-relieving safety devices shall be designed to facilitate drainage. (c) Stop valves. Stop valves...

  5. 46 CFR 56.50-20 - Pressure relief piping.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PIPING SYSTEMS AND... authorized by the Marine Safety Center. (b) Discharge lines (reproduces 122.6.2(d)). Discharge lines from pressure-relieving safety devices shall be designed to facilitate drainage. (c) Stop valves. Stop valves...

  6. Circuit analysis on the inductance evolution based on electrical signal from various type plasma focus device

    NASA Astrophysics Data System (ADS)

    Mohamad, Saiful Najmee; Ismail, Fairuz Diana; Noorden, Ahmad Fakhrurrazi Ahmad; Haider, Zuhaib; Ali, Jalil

    2017-03-01

    Numerous configurations of plasma focus devices (PFD) have been introduced around the globe. The distinct electrode configuration of the PFD will give out different inductance profile. A circuit analysis has been done to study on the significant difference between the inductance evolution in a coaxial discharge based on various published results of PFD. The discharge current signal, tube voltage and current derivative of the particular shots from distinct PFD was digitized and analyze. The investigation was piloted for three different types of PFD. It was observed that there is a significant difference for the normalize inductance profile during the discharge between the individual PFD with different electrode configuration. The depletion of the radial start current with the normalised inductance development for Mather type (PF-1000) is found to be 25.9% from static discharge. The current depletion continues to drop 1.1% and 1.3% more for a Spherical type (PNK-13) and Filippov type (PF-3) respectively.

  7. Carbon Coating Of Copper By Arc-Discharge Pyrolysis

    NASA Technical Reports Server (NTRS)

    Ebihara, Ben T.; Jopek, Stanley

    1988-01-01

    Adherent, abrasion-resistant coat deposited with existing equipment. Carbon formed and deposited as coating on copper substrate by pyrolysis of hydrocarbon oil in electrical-arc discharges. Technique for producing carbon deposits on copper accomplished with electrical-discharge-machining equipment used for cutting metals. Applications for new coating technique include the following: solar-energy-collecting devices, coating of metals other than copper with carbon, and carburization of metal surfaces.

  8. Exploration of the Townsend regime by discharge light emission in a gas discharge device

    NASA Astrophysics Data System (ADS)

    Hilal Yucel, Kurt

    2014-01-01

    The Townsend discharge mechanism has been explored in a planar microelectronic gas discharge device (MGDD) with different applied voltages U and interelectrode distance d under various pressures in air. The anode and the cathode of the MGDD are formed by a transparent SnO2 covered glass and a GaAs semiconductor, respectively. In the experiments, the discharge is found to be unstable just below the breakdown voltage Ub, whereas the discharge passes through a homogeneous stable Townsend mode beyond the breakdown voltage. The measurements are made by an electrical circuit and a CCD camera by recording the currents and light emission (LE) intensities. The intensity profiles, which are converted from the 3D light emission images along the semiconductor diameter, have been analysed for different system parameters. Different instantaneous conductivity σt regimes are found below and beyond the Townsend region. These regimes govern the current and spatio-temporal LE stabilities in the plasma system. It has been proven that the stable LE region increases up to 550 Torr as a function of pressure for small d. If the active area of the semiconductor becomes larger and the interlectrode distance d becomes smaller, the stable LE region stays nearly constant with pressure.

  9. Plasma channel optical pumping device and method

    DOEpatents

    Judd, O.P.

    1983-06-28

    A device and method are disclosed for optically pumping a gaseous laser using blackbody radiation produced by a plasma channel which is formed from an electrical discharge between two electrodes spaced at opposite longitudinal ends of the laser. A preionization device which can comprise a laser or electron beam accelerator produces a preionization beam which is sufficient to cause an electrical discharge between the electrodes to initiate the plasma channel along the preionization path. The optical pumping energy is supplied by a high voltage power supply rather than by the preionization beam. High output optical intensities are produced by the laser due to the high temperature blackbody radiation produced by the plasma channel, in the same manner as an exploding wire type laser. However, unlike the exploding wire type laser, the disclosed invention can be operated in a repetitive manner by utilizing a repetitive pulsed preionization device. 5 figs.

  10. Effect of Electrostatic Discharge on Electrical Characteristics of Discrete Electronic Components

    NASA Technical Reports Server (NTRS)

    Wysocki, Phil; Vashchenko, Vladislav; Celaya, Jose; Saha, Sankalita; Goebel, Kai

    2009-01-01

    This article reports on preliminary results of a study conducted to examine how temporary electrical overstress seed fault conditions in discrete power electronic components that cannot be detected with reliability tests but impact longevity of the device. These defects do not result in formal parametric failures per datasheet specifications, but result in substantial change in the electrical characteristics when compared with pristine device parameters. Tests were carried out on commercially available 600V IGBT devices using transmission line pulse (TLP) and system level ESD stress. It was hypothesized that the ESD causes local damage during the ESD discharge which may greatly accelerate degradation mechanisms and thus reduce the life of the components. This hypothesis was explored in simulation studies where different types of damage were imposed to different parts of the device. Experimental results agree qualitatively with the simulation for a number of tests which will motivate more in-depth modeling of the damage.

  11. Douching With Water Works Device for Perceived Vaginal Odor With or Without Complaints of Discharge in Women With No Infectious Cause of Vaginitis: A Pilot Study

    PubMed Central

    Chatwani, Ashwin J.; Hassan, Sarmina; Rahimi, Salma; Jeronis, Stacey; Dandolu, Vani

    2006-01-01

    Objective. To determine if douching with Water Works device for 1 month can (1) lower or eliminate perceived vaginal odor by subject; (2) have any effects on vaginal ecosystem. Methods. Ten women with perceived vaginal odor with or without discharge, douched every day for 4 weeks in an open-label, nonrandomized pilot study. Primary outcome measures included perceived vaginal odor by subject, lactobacilli score from Nugent slide, and acceptance of the Water Works douching system. Secondary outcome included the safety of using this douching device. Results. At week 4, there was improvement in vaginal odor (P = .0006) and there was no significant change in lactobacilli score. Conclusion. Douching with Water Works device is associated with reduction or elimination of vaginal odor without adversely affecting the vaginal ecosystem. PMID:17485816

  12. Study on the mode-transition of nanosecond-pulsed dielectric barrier discharge between uniform and filamentary by controlling pressures and pulse repetition frequencies

    NASA Astrophysics Data System (ADS)

    Yu, Sizhe; Lu, Xinpei

    2016-09-01

    We investigate the temporally resolved evolution of the nanosecond pulsed dielectric barrier discharge (DBD) in a moderate 6mm gap under various pressures and pulse repetition frequencies (PRFs) by intensified charge-coupled device (ICCD) images, using synthetic air and its components oxygen and nitrogen. It is found that the pressures are very different when the DBD mode transits between uniform and filamentary in air, oxygen, and nitrogen. The PRFs can also obviously affect the mode-transition. The transition mechanism in the pulsed DBD is not Townsend-to-streamer, which is dominant in the traditional alternating-voltage DBDs. The pulsed DBD in a uniform mode develops in the form of plane ionization wave, due to overlap of primary avalanches, while the increase in pressure disturbs the overlap and DBD develops in streamer instead, corresponding to the filamentary mode. Increasing the initiatory electron density by pre-ionization methods may contribute to discharge uniformity at higher pressures. We also find that the dependence of uniformity upon PRF is non-monotonic.

  13. Dielectric barrier discharge plasma actuator for flow control

    NASA Astrophysics Data System (ADS)

    Opaits, Dmitry Florievich

    Electrohydrodynamic (EHD) and magnetohydrodynamic phenomena are being widely studied for aerodynamic applications. The major effects of these phenomena are heating of the gas, body force generation, and enthalpy addition or extraction, [1, 2, 3]. In particular, asymmetric dielectric barrier discharge (DBD) plasma actuators are known to be effective EHD device in aerodynamic control, [4, 5]. Experiments have demonstrated their effectiveness in separation control, acoustic noise reduction, and other aeronautic applications. In contrast to conventional DBD actuators driven by sinusoidal voltages, we proposed and used a voltage profile consisting of nanosecond pulses superimposed on dc bias voltage. This produces what is essentially a non-self-sustained discharge: the plasma is generated by repetitive short pulses, and the pushing of the gas occurs primarily due to the bias voltage. The advantage of this non-self-sustained discharge is that the parameters of ionizing pulses and the driving bias voltage can be varied independently, which adds flexibility to control and optimization of the actuators performance. Experimental studies were conducted of a flow induced in a quiescent room air by a single DBD actuator. A new approach for non-intrusive diagnostics of plasma actuator induced flows in quiescent gas was proposed, consisting of three elements coupled together: the Schlieren technique, burst mode of plasma actuator operation, and 2-D numerical fluid modeling. During the experiments, it was found that DBD performance is severely limited by surface charge accumulation on the dielectric. Several ways to mitigate the surface charge were found: using a reversing DC bias potential, three-electrode configuration, slightly conductive dielectrics, and semi conductive coatings. Force balance measurements proved the effectiveness of the suggested configurations and advantages of the new voltage profile (pulses+bias) over the traditional sinusoidal one at relatively low voltages. In view of practical applications certain questions have been also addressed, such as electrodynamic effects which accompany scaling of the actuators to real size models, and environmental effects of ozone production by the plasma actuators.

  14. Real-time radiative divertor feedback control development for the NSTX-U tokamak using a vacuum ultraviolet spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soukhanovskii, V. A., E-mail: vlad@llnl.gov; Kaita, R.; Stratton, B.

    2016-11-15

    A radiative divertor technique is planned for the NSTX-U tokamak to prevent excessive erosion and thermal damage of divertor plasma-facing components in H-mode plasma discharges with auxiliary heating up to 12 MW. In the radiative (partially detached) divertor, extrinsically seeded deuterium or impurity gases are used to increase plasma volumetric power and momentum losses. A real-time feedback control of the gas seeding rate is planned for discharges of up to 5 s duration. The outer divertor leg plasma electron temperature T{sub e} estimated spectroscopically in real time will be used as a control parameter. A vacuum ultraviolet spectrometer McPherson Modelmore » 251 with a fast charged-coupled device detector is developed for temperature monitoring between 5 and 30 eV, based on the Δn = 0, 1 line intensity ratios of carbon, nitrogen, or neon ion lines in the spectral range 300–1600 Å. A collisional-radiative model-based line intensity ratio will be used for relative calibration. A real-time T{sub e}-dependent signal within a characteristic divertor detachment equilibration time of ∼10–15 ms is expected.« less

  15. Real-time radiative divertor feedback control development for the NSTX-U tokamak using a vacuum ultraviolet spectrometer

    DOE PAGES

    Soukhanovskii, V. A.; Kaita, R.; Stratton, B.

    2016-08-04

    Here, a radiative divertor technique is planned for the NSTX-U tokamak to prevent excessive erosion and thermal damage of divertor plasma-facing components in H-mode plasma discharges with auxiliary heating up to 12 MW. In the radiative (partially detached) divertor, extrinsically seeded deuterium or impurity gases are used to increase plasma volumetric power and momentum losses. A real-time feedback control of the gas seeding rate is planned for discharges of up to 5 s duration. The outer divertor leg plasma electron temperature T e estimated spectroscopically in real time will be used as a control parameter. A vacuum ultraviolet spectrometer McPhersonmore » Model 251 with a fast charged-coupled device detector is developed for temperature monitoring between 5 and 30 eV, based on the Δn = 0, 1 line intensity ratios of carbon, nitrogen, or neon ion lines in the spectral range 300–1600 Å. A collisional-radiative model-based line intensity ratio will be used for relative calibration. A real-time T e-dependent signal within a characteristic divertor detachment equilibration time of ~10–15 ms is expected.« less

  16. KSC Electrostatic Discharge (ESD) Issues

    NASA Technical Reports Server (NTRS)

    Buhler, Charles

    2008-01-01

    Discussion of key electrostatic issues that have arisen during the past few years at KSC that the Electrostatics Laboratory has studied. The lab has studied in depth the Space Shuttle's Thermal Control System Blankets, the International Space Station Thermal Blanket, the Pan/Tilt Camera Blankets, the Kapton Purge Barrier Curtain, the Aclar Purge Barrier Curtain, the Thrust Vector Controller Blankets, the Tyvek Reaction Control System covers, the AID-PAK and FLU-9 pyro inflatable devices, the Velostat Solid Rocket Booster mats, and the SCAPE suits. In many cases these materials are insulating meaning that they might be a source of unsafe levels of electrostatic discharge (ESD). For each, the lab provided in-depth testing of each material within its current configuration to ensure that it does not cause an ESD concern that may violate the safety of the astronauts, the workers and equipment for NASA. For example the lab provides unique solutions and testing such as Spark Incendivity Testing that checks whether a material is capable of generating a spark strong enough to ignite a flammable gas. The lab makes recommendations to changes in specifications, procedures, and material if necessary. The lab also consults with a variety of non-safety related ESD issues for the agency.

  17. Arc discharge regulation of a megawatt hot cathode bucket ion source for the experimental advanced superconducting tokamak neutral beam injector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie Yahong; Hu Chundong; Liu Sheng

    2012-01-15

    Arc discharge of a hot cathode bucket ion source tends to be unstable what attributes to the filament self-heating and energetic electrons backstreaming from the accelerator. A regulation method, which based on the ion density measurement by a Langmuir probe, is employed for stable arc discharge operation and long pulse ion beam generation. Long pulse arc discharge of 100 s is obtained based on this regulation method of arc power. It establishes a foundation for the long pulse arc discharge of a megawatt ion source, which will be utilized a high power neutral beam injection device.

  18. Arc discharge regulation of a megawatt hot cathode bucket ion source for the experimental advanced superconducting tokamak neutral beam injector.

    PubMed

    Xie, Yahong; Hu, Chundong; Liu, Sheng; Jiang, Caichao; Li, Jun; Liang, Lizhen

    2012-01-01

    Arc discharge of a hot cathode bucket ion source tends to be unstable what attributes to the filament self-heating and energetic electrons backstreaming from the accelerator. A regulation method, which based on the ion density measurement by a Langmuir probe, is employed for stable arc discharge operation and long pulse ion beam generation. Long pulse arc discharge of 100 s is obtained based on this regulation method of arc power. It establishes a foundation for the long pulse arc discharge of a megawatt ion source, which will be utilized a high power neutral beam injection device.

  19. LABORATORY ANALYSES OF CORONA DISCHARGES

    EPA Science Inventory

    The paper discusses an experimental research program to characterize corona generation from different electrode geometries in a range of conditions comparable to those found in electrostatic precipitators (ESPs). A wire-parallel plate device and a wire-cylinder device were used t...

  20. Ferroelectric polarization induces electronic nonlinearity in ion-doped conducting polymers

    PubMed Central

    Fabiano, Simone; Sani, Negar; Kawahara, Jun; Kergoat, Loïg; Nissa, Josefin; Engquist, Isak; Crispin, Xavier; Berggren, Magnus

    2017-01-01

    Poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) is an organic mixed ion-electron conducting polymer. The PEDOT phase transports holes and is redox-active, whereas the PSS phase transports ions. When PEDOT is redox-switched between its semiconducting and conducting state, the electronic and optical properties of its bulk are controlled. Therefore, it is appealing to use this transition in electrochemical devices and to integrate those into large-scale circuits, such as display or memory matrices. Addressability and memory functionality of individual devices, within these matrices, are typically achieved by nonlinear current-voltage characteristics and bistability—functions that can potentially be offered by the semiconductor-conductor transition of redox polymers. However, low conductivity of the semiconducting state and poor bistability, due to self-discharge, make fast operation and memory retention impossible. We report that a ferroelectric polymer layer, coated along the counter electrode, can control the redox state of PEDOT. The polarization switching characteristics of the ferroelectric polymer, which take place as the coercive field is overcome, introduce desired nonlinearity and bistability in devices that maintain PEDOT in its highly conducting and fast-operating regime. Memory functionality and addressability are demonstrated in ferro-electrochromic display pixels and ferro-electrochemical transistors. PMID:28695197

  1. Operating range of a gas electron multiplier for portal imaging

    NASA Astrophysics Data System (ADS)

    Wallmark, M.; Brahme, A.; Danielsson, M.; Fonte, P.; Iacobaeus, C.; Peskov, V.; Östling, J.

    2001-09-01

    At the Karolinska Institute in Stockholm, Sweden a new detector for portal imaging is under development, which could greatly improve the alignment of the radiation beam with respect to the tumor during radiation treatment. The detector is based on solid converters combined with gas electron multipliers (GEMs) as an amplification structure. The detector has a large area and will be operated in a very high rate environment in the presence of heavy ionizing particles. As was discovered recently high rates and alpha particles could cause discharges in GEM and discharge propagation from GEM to GEM and to the readout electronics. Since reliability is one of the main requirements for the portal imaging device, we performed systematic studies to find a safe operating range of the device, free from typical high rate problems, such as discharges.

  2. METHOD AND APPARATUS FOR PRODUCING INTENSE ENERGETIC GAS DISCHARGES

    DOEpatents

    Bell, P.R.; Luce, J.S.

    1960-01-01

    A device for producing an energetic gas arc discharge employing the use of gas-fed hollow cathode and anode electrodes is reported. The rate of feed of the gas to the electrodes is regulated to cause complete space charge neutralization to occur within the electrodes. The arc discharge is closely fitted within at least one of the electrodes so tint the gas fed to this electrode is substantially completely ionized before it is emitted into the vacuum chamber. It is this electrode design and the axial potential gradient that exists in the arc which permits the arc to be operated in low pressures and at volthges and currents that permit the arc to be energetic. The use of the large number of energetic ions that are accelerated toward the cathode as a propulsion device for a space vehicle is set forth.

  3. Deep breathing exercises performed 2 months following cardiac surgery: a randomized controlled trial.

    PubMed

    Westerdahl, Elisabeth; Urell, Charlotte; Jonsson, Marcus; Bryngelsson, Ing-Liss; Hedenström, Hans; Emtner, Margareta

    2014-01-01

    Postoperative breathing exercises are recommended to cardiac surgery patients. Instructions concerning how long patients should continue exercises after discharge vary, and the significance of treatment needs to be determined. Our aim was to assess the effects of home-based deep breathing exercises performed with a positive expiratory pressure device for 2 months following cardiac surgery. The study design was a prospective, single-blinded, parallel-group, randomized trial. Patients performing breathing exercises 2 months after cardiac surgery (n = 159) were compared with a control group (n = 154) performing no breathing exercises after discharge. The intervention consisted of 30 slow deep breaths performed with a positive expiratory pressure device (10-15 cm H2O), 5 times a day, during the first 2 months after surgery. The outcomes were lung function measurements, oxygen saturation, thoracic excursion mobility, subjective perception of breathing and pain, patient-perceived quality of recovery (40-Item Quality of Recovery score), health-related quality of life (36-Item Short Form Health Survey), and self-reported respiratory tract infection/pneumonia and antibiotic treatment. Two months postoperatively, the patients had significantly reduced lung function, with a mean decrease in forced expiratory volume in 1 second to 93 ± 12% (P< .001) of preoperative values. Oxygenation had returned to preoperative values, and 5 of 8 aspects in the 36-Item Short Form Health Survey were improved compared with preoperative values (P< .01). There were no significant differences between the groups in any of the measured outcomes. No significant differences in lung function, subjective perceptions, or quality of life were found between patients performing home-based deep breathing exercises and control patients 2 months after cardiac surgery.

  4. Thermal-Responsive Polymers for Enhancing Safety of Electrochemical Storage Devices.

    PubMed

    Yang, Hui; Leow, Wan Ru; Chen, Xiaodong

    2018-03-01

    Thermal runway constitutes the most pressing safety issue in lithium-ion batteries and supercapacitors of large-scale and high-power density due to risks of fire or explosion. However, traditional strategies for averting thermal runaway do not enable the charging-discharging rate to change according to temperature or the original performance to resume when the device is cooled to room temperature. To efficiently control thermal runaway, thermal-responsive polymers provide a feasible and reversible strategy due to their ability to sense and subsequently act according to a predetermined sequence when triggered by heat. Herein, recent research progress on the use of thermal-responsive polymers to enhance the thermal safety of electrochemical storage devices is reviewed. First, a brief discussion is provided on the methods of preventing thermal runaway in electrochemical storage devices. Subsequently, a short review is provided on the different types of thermal-responsive polymers that can efficiently avoid thermal runaway, such as phase change polymers, polymers with sol-gel transitions, and polymers with positive temperature coefficients. The results represent the important development of thermal-responsive polymers toward the prevention of thermal runaway in next-generation smart electrochemical storage devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Hollow-Cathode Source Generates Plasma

    NASA Technical Reports Server (NTRS)

    Deininger, W. D.; Aston, G.; Pless, L. C.

    1989-01-01

    Device generates argon, krypton, or xenon plasma via thermionic emission and electrical discharge within hollow cathode and ejects plasma into surrounding vacuum. Goes from cold start up to full operation in less than 5 s after initial application of power. Exposed to moist air between operations without significant degradation of starting and running characteristics. Plasma generated by electrical discharge in cathode barrel sustained and aided by thermionic emission from emitter tube. Emitter tube does not depend on rare-earth oxides, making it vulnerable to contamination by exposure to atmosphere. Device modified for use as source of plasma in laboratory experiments or industrial processes.

  6. Emergency department evaluation after conducted energy weapon use: review of the literature for the clinician.

    PubMed

    Vilke, Gary M; Bozeman, William P; Chan, Theodore C

    2011-05-01

    Conductive energy weapons (CEWs) are used daily by law enforcement, and patients are often brought to an emergency department (ED) for medical clearance. To review the medical literature on the topic of CEWs and to offer evidence-based recommendations to Emergency Physicians for evaluation and treatment of patients who have received a CEW exposure. A MEDLINE literature search from 1988 to 2010 was performed and limited to human studies published from January 1988 to January 20, 2010 for English language articles with the following keywords: TASER, conductive energy device(s), electronic weapon(s), conductive energy weapon(s), non-lethal weapon(s), conducted energy device(s), conducted energy weapon(s), conductive electronic device(s), and electronic control device(s). Studies identified then underwent a structured review from which results could be evaluated. There were 140 articles on CEWs screened, and 20 appropriate articles were rigorously reviewed and recommendations given. These studies did not report any evidence of dangerous laboratory abnormalities, physiologic changes, or immediate or delayed cardiac ischemia or dysrhythmias after exposure to CEW electrical discharges of up to 15 s. The current medical literature does not support routine performance of laboratory studies, electrocardiograms, or prolonged ED observation or hospitalization for ongoing cardiac monitoring after CEW exposure in an otherwise asymptomatic awake and alert patient. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Achieving femoral artery hemostasis after cardiac catheterization: a comparison of methods.

    PubMed

    Schickel, S I; Adkisson, P; Miracle, V; Cronin, S N

    1999-11-01

    Cardiac catheterization is a common procedure that involves the introduction of a small sheath (5F-8F) into the femoral artery for insertion of other diagnostic catheters. After cardiac catheterization, local compression of the femoral artery is required to prevent bleeding and to achieve hemostasis. Traditional methods of achieving hemostasis require significant time and close supervision by medical personnel and can contribute to patients' discomfort. VasoSeal is a recently developed device that delivers absorbable collagen into the supra-arterial space to promote hemostasis. To compare outcomes between patients receiving a collagen plug and patients in whom a traditional method of achieving hemostasis was used after diagnostic cardiac catheterization. An outcomes tracking tool was used to analyze the medical records of 95 patients in whom a traditional method was used (traditional group) and 81 patients in whom VasoSeal was used (device group) to achieve hemostasis. Complications at the femoral access site, patients' satisfaction, and times to hemostasis, ambulation, and discharge were compared. Hematomas of 6-cm diameter occurred in 5.3% of the traditional group; no complications occurred in the device group. The device group also achieved hemostasis faster and had earlier ambulation (P < .001). Patients in the device group were discharged a mean of 5 hours sooner than patients in the traditional group (P < .05). No significant differences were found in patients' satisfaction. VasoSeal is a safe and effective method of achieving hemostasis after cardiac catheterization that can hasten time to hemostasis, ambulation, and discharge.

  8. Pulse switching for high energy lasers

    NASA Technical Reports Server (NTRS)

    Laudenslager, J. B.; Pacala, T. J. (Inventor)

    1981-01-01

    A saturable inductor switch for compressing the width and sharpening the rise time of high voltage pulses from a relatively slow rise time, high voltage generator to an electric discharge gas laser (EDGL) also provides a capability for efficient energy transfer from a high impedance primary source to an intermediate low impedance laser discharge network. The switch is positioned with respect to a capacitive storage device, such as a coaxial cable, so that when a charge build-up in the storage device reaches a predetermined level, saturation of the switch inductor releases or switches energy stored in the capactive storage device to the EDGL. Cascaded saturable inductor switches for providing output pulses having rise times of less than ten nanoseconds and a technique for magnetically biasing the saturable inductor switch are disclosed.

  9. Pulsed-discharge carbon dioxide lasers

    NASA Technical Reports Server (NTRS)

    Willetts, David V.

    1990-01-01

    The purpose is to attempt a general introduction to pulsed carbon dioxide lasers of the kind used or proposed for laser radar applications. Laser physics is an excellent example of a cross-disciplinary topic, and the molecular spectroscopy, energy transfer, and plasma kinetics of the devices are explored. The concept of stimulated emission and population inversions is introduced, leading on to the molecular spectroscopy of the CO2 molecule. This is followed by a consideration of electron-impact pumping, and the pertinent energy transfer and relaxation processes which go on. Since the devices are plasma pumped, it is necessary to introduce a complex subject, but this is restricted to appropriate physics of glow discharges. Examples of representative devices are shown. The implications of the foregoing to plasma chemistry and gas life are discussed.

  10. Treatment of Candida albicans biofilms with low-temperature plasma induced by dielectric barrier discharge and atmospheric pressure plasma jet

    NASA Astrophysics Data System (ADS)

    Koban, Ina; Matthes, Rutger; Hübner, Nils-Olaf; Welk, Alexander; Meisel, Peter; Holtfreter, Birte; Sietmann, Rabea; Kindel, Eckhard; Weltmann, Klaus-Dieter; Kramer, Axel; Kocher, Thomas

    2010-07-01

    Because of some disadvantages of chemical disinfection in dental practice (especially denture cleaning), we investigated the effects of physical methods on Candida albicans biofilms. For this purpose, the antifungal efficacy of three different low-temperature plasma devices (an atmospheric pressure plasma jet and two different dielectric barrier discharges (DBDs)) on Candida albicans biofilms grown on titanium discs in vitro was investigated. As positive treatment controls, we used 0.1% chlorhexidine digluconate (CHX) and 0.6% sodium hypochlorite (NaOCl). The corresponding gas streams without plasma ignition served as negative treatment controls. The efficacy of the plasma treatment was determined evaluating the number of colony-forming units (CFU) recovered from titanium discs. The plasma treatment reduced the CFU significantly compared to chemical disinfectants. While 10 min CHX or NaOCl exposure led to a CFU log10 reduction factor of 1.5, the log10 reduction factor of DBD plasma was up to 5. In conclusion, the use of low-temperature plasma is a promising physical alternative to chemical antiseptics for dental practice.

  11. Initial Development of an Exploding Aerosol Can Simulator

    DOT National Transportation Integrated Search

    1998-04-01

    A device was constructed to simulate an exploding aerosol can. The device consisted of a cylindrical pressure vessel for storage of flammable propellants and base product and a high-rate discharge (HRD) valve for quick release of the constituents. Si...

  12. 40 CFR 140.5 - Analytical procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 140.5 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) MARINE SANITATION DEVICE STANDARD § 140.5 Analytical procedures. In determining the composition and quality of effluent discharge from marine sanitation devices, the procedures contained in 40 CFR part 136...

  13. Accuracy of patient's turnover time prediction using RFID technology in an academic ambulatory surgery center.

    PubMed

    Marchand-Maillet, Florence; Debes, Claire; Garnier, Fanny; Dufeu, Nicolas; Sciard, Didier; Beaussier, Marc

    2015-02-01

    Patients flow in outpatient surgical unit is a major issue with regards to resource utilization, overall case load and patient satisfaction. An electronic Radio Frequency Identification Device (RFID) was used to document the overall time spent by the patients between their admission and discharge from the unit. The objective of this study was to evaluate how a RFID-based data collection system could provide an accurate prediction of the actual time for the patient to be discharged from the ambulatory surgical unit after surgery. This is an observational prospective evaluation carried out in an academic ambulatory surgery center (ASC). Data on length of stay at each step of the patient care, from admission to discharge, were recorded by a RFID device and analyzed according to the type of surgical procedure, the surgeon and the anesthetic technique. Based on these initial data (n = 1520), patients were scheduled in a sequential manner according to the expected duration of the previous case. The primary endpoint was the difference between actual and predicted time of discharge from the unit. A total of 414 consecutive patients were prospectively evaluated. One hundred seventy four patients (42%) were discharged at the predicted time ± 30 min. Only 24% were discharged behind predicted schedule. Using an automatic record of patient's length of stay would allow an accurate prediction of the discharge time according to the type of surgery, the surgeon and the anesthetic procedure.

  14. Military Handbook: Electrostatic Discharge Control Handbook for Protection of Electrical and Electronic Parts, Assemblies and Equipment (Excluding Electrically Initiated Explosive Devices (Metric)

    DTIC Science & Technology

    1994-07-31

    everything that is received in ESD protective packaging materials treated as ESDS? YES/NO 40.1.13 Is the use of personal hygiene products , food, drinks...Does the training explain why food, drinks, smoking, personal hygiene products or common plastics are not to be used in ESD protective work areas? YES...trays? YES/NO 40.5.13 Are drinking, eating, smoking, the use of personal hygiene products and common plastics prohibited in the ESD protected work area

  15. Remote and chronic access to the third cerebral ventricle of the unrestrained prepubertal rhesus monkey.

    PubMed

    Gay, V L; Mikuma, N; Plant, T M

    1993-03-01

    One channel of a commercially available standard-size three-channel fluid swivel was modified to permit continuous access to the brain of unrestrained prepubertal rhesus monkeys via a continuous length of small-bore Teflon tube originating from a swivel device on top of the animal's cage and terminating in the third cerebral ventricle. This system was employed to achieve continuous access to the third cerebroventricle in four monkeys for periods of up to 12 mo. The value of the system for studies of the neurochemical control of hypothalamic-releasing factor secretion was established by monitoring adenohypophysial responses to neurotransmitter receptor agonists infused into the third ventricle. Specifically, repetitive infusions of morphine (30 micrograms/infusion) elicited a robust train of prolactin discharges, and third ventricular administration of N-methyl-DL-aspartic acid (NMA; 20 micrograms) resulted in striking discharges of LH.

  16. KTX circuit model and discharge waveform prediction

    NASA Astrophysics Data System (ADS)

    Bai, Wei; Lan, T.; Mao, W. Z.; You, W.; Li, H.; Liu, A. D.; Xie, J. L.; Wan, S. D.; Liu, W. D.; Yang, L.; Fu, P.; Xiao, C. J.; Ding, W. X.

    2013-10-01

    The Keda Torus eXperiment (KTX) is a constructing reversed field pinch (RFP) device in University of Science and Technology of China. The KTX power supply system includes the Ohmic heating, field shaping and toroidal power supply systems, which produce the Ohmic field, equilibrium field and toroidal field, respectively. The detailed circuit model will be introduced in this poster. Another purpose is to predict its discharge waveforms using the modified Bessel function mode (MBFM), which describes the evolution of plasma current and magnetic flux in RFP base on Taylor theory. Furthermore, the power supply requirements of external field shaping winding are also predicted in the model, which will be very helpful for the design of plasma equilibrium controlling system. Supported by ITER-China program (No. 2011GB106000), NNSFC (Nos. 10990210, 10990211, 10335060 and 10905057), CPSF (No. 20080440104), YIF (No. WK2030040019) and KIPCAS (No. kjcx-yw-n28).

  17. Two examples of intelligent systems based on smart materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unsworth, J.

    1994-12-31

    Two intelligent systems are described which are based on smart materials. The operation of the systems also rely on conventional well known technologies such as electronics, signal conditioning, signal processing, microprocessors and engineering design. However without the smart materials the development and integration into the intelligent systems would not have been possible. System 1 is a partial discharge monitor for on-line continuous checking of the condition of electrical power transformers. The ultrasonic and radio frequency detectors in this system rely on special piezoelectric composite integrated with a compact annular metal ring. Partial discharges set up ultrasonic and radio frequency signalsmore » which are received by the integrated detectors. The signals are amplified, conditioned, signal processed, the time interval between the two signals measured and the level of partial discharge activity averaged and assessed for numerous pairs and alarms triggered on remote control panels if the level is dangerous. The system has the capability of initiating automatic shutdown of the transformer once it is linked into the control computers of the electrical power authority. System 2 is called a Security Cradle and is an intelligent 3D shield designed to use the properties of electro active polymers to prevent hardware hackers from stealing valuable of sensitive information from memory devices (e.g., EPROMS) housed in computer or microprocessor installations.« less

  18. Self-pulsing in a low-current hollow cathode discharge: From Townsend to glow discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, Yu; School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081; Xie, Kan, E-mail: xiekan@bit.edu.cn

    We investigate the self-pulsing phenomenon of a low current cavity discharge in a cylindrical hollow cathode in pure argon. The waveforms of pulsed current and voltage are measured, and the time-averaged and time-resolved images of hollow cathode discharge are recorded by using high-speed intensified charge coupled device camera. The results show that the self-pulsing is a mode transition between low-current stage of Townsend discharge and high-current stage of glow discharge. During the self-pulsing, the current rising time relates to the dissipation of space charges, and the decay time relates to the reconstruction of the virtual anode by the accumulation ofmore » positive ions. Whether or not space charges can form and keep the virtual anode is responsible for the discharge mode and hence plays an important role in the self-pulsing phenomenon in low current hollow cathode discharge.« less

  19. An evaluation of touchscreen versus keyboard/mouse interaction for large screen process control displays.

    PubMed

    Noah, Benjamin; Li, Jingwen; Rothrock, Ling

    2017-10-01

    The objectives of this study were to test the effect of interaction device on performance in a process control task (managing a tank farm). The study compared the following two conditions: a) 4K-resolution 55" screen with a 21" touchscreen versus b) 4K-resolution 55″ screen with keyboard/mouse. The touchscreen acted both as an interaction device for data entry and navigation and as an additional source of information. A within-subject experiment was conducted among 20 college engineering students. A primary task of preventing tanks from overfilling as well as a secondary task of manual logging with situation awareness questions were designed for the study. Primary Task performance (including tank level at discharge, number of tank discharged and performance score), Secondary Task Performance (including Tank log count, performance score), system interaction times, subjective workload, situation awareness questionnaire, user experience survey regarding usability and condition comparison were used as the measures. Parametric data resulted in two metrics statistically different means between the two conditions: The 4K-keyboard condition resulted in faster Detection + Navigation time compared to the 4K-touchscreen condition, by about 2 s, while participants within the 4K-touchscreen condition were about 2 s faster in data entry than in the 4K-keyboard condition. No significant results were found for: performance on the secondary task, situation awareness, and workload. Additionally, no clear significant differences were found in the non-parametric data analysis. However, participants showed a slight preference for the 4K-touchscreen condition compared to the 4K-keyboard condition in subjective responses in comparing the conditions. Introducing the touchscreen as an additional/alternative input device showed to have an effect in interaction times, which suggests that proper design considerations need to be made. While having values shown on the interaction device provides value, a potential issue of visual distraction exists when having an additional visual display. The allocation of visual attention between primary displays and the touchscreen should be further investigated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Multicenter Evaluation of Octreotide as Secondary Prophylaxis in Patients With Left Ventricular Assist Devices and Gastrointestinal Bleeding.

    PubMed

    Shah, Keyur B; Gunda, Sampath; Emani, Sitaramesh; Kanwar, Manreet K; Uriel, Nir; Colombo, Paolo C; Uber, Patricia A; Sears, Melissa L; Chuang, Joyce; Farrar, David J; Brophy, Donald F; Smallfield, George B

    2017-11-01

    Gastrointestinal (GI) bleeding is one of the most common complications after continuous-flow left ventricular assist device implantation. More than one third of patients with incident bleed go on to develop recurrent GI bleeding. Octreotide, a somatostatin analog, is proposed to reduce the risk of recurrent GI bleeding in this population. This multicenter, retrospective analysis evaluated 51 continuous-flow left ventricular assist device patients who received secondary prophylaxis with octreotide after their index GI bleed from 2009 to 2015. All patients had a hospitalization for GI bleed and received octreotide after discharge. Patient demographics, medical and medication history, and clinical characteristics of patients who rebled after receiving octreotide were compared with non-rebleeders. These data were also compared with matched historical control patients previously enrolled in the HMII (HeartMate II) clinical trials, none of whom received octreotide, to provide a context for the bleeding rates. Twelve patients (24%) who received secondary octreotide prophylaxis developed another GI bleed, whereas 39 (76%) did not. There were similar intergroup demographics; however, significantly more bleeders had a previous GI bleeding history before left ventricular assist device placement (33% versus 5%; P =0.02) and greater frequency of angiodysplasia confirmed during endoscopy (58% versus 23%; P =0.03). Fewer patients in this study experienced a recurrent GI bleed compared with a matched historical control group that did not receive octreotide (24% versus 43%; P =0.04). Patients with continuous-flow left ventricular assist device receiving secondary prophylaxis with octreotide had a significantly lower GI bleed recurrence compared with historical controls not treated with octreotide. Additional prospective studies are needed to confirm these data. © 2017 American Heart Association, Inc.

  1. Optimal read/write memory system components

    NASA Technical Reports Server (NTRS)

    Kozma, A.; Vander Lugt, A.; Klinger, D.

    1972-01-01

    Two holographic data storage and display systems, voltage gradient ionization system, and linear strain manipulation system are discussed in terms of creating fast, high bit density, storage device. Components described include: novel mounting fixture for photoplastic arrays; corona discharge device; and block data composer.

  2. Method and apparatus for measuring low currents in capacitance devices

    DOEpatents

    Kopp, M.K.; Manning, F.W.; Guerrant, G.C.

    1986-06-04

    A method and apparatus for measuring subnanoampere currents in capacitance devices is reported. The method is based on a comparison of the voltages developed across the capacitance device with that of a reference capacitor in which the current is adjusted by means of a variable current source to produce a stable voltage difference. The current varying means of the variable current source is calibrated to provide a read out of the measured current. Current gain may be provided by using a reference capacitor which is larger than the device capacitance with a corresponding increase in current supplied through the reference capacitor. The gain is then the ratio of the reference capacitance to the device capacitance. In one illustrated embodiment, the invention makes possible a new type of ionizing radiation dose-rate monitor where dose-rate is measured by discharging a reference capacitor with a variable current source at the same rate that radiation is discharging an ionization chamber. The invention eliminates high-megohm resistors and low current ammeters used in low-current measuring instruments.

  3. Lithium-manganese dioxide cells for implantable defibrillator devices-Discharge voltage models

    NASA Astrophysics Data System (ADS)

    Root, Michael J.

    The discharge potential behavior of lithium-manganese dioxide cells designed for implantable cardiac defibrillators was characterized as a function of extent of cell depletion for tests designed to discharge the cells for times between 1 and 7 years. The discharge potential curves may be separated into two segments from 0 ≤ x ≤ ∼0.51 and ∼0.51 ≤ x ≤ 1.00, where x is the dimensionless extent of discharge referenced to the rated cell capacity. The discharge potentials conform to Tafel kinetics in each segment. This behavior allows the discharge potential curves to be predicted for an arbitrary discharge load and long term discharge performance may be predicted from short term test results. The discharge potentials may subsequently be modeled by fitting the discharge curves to empirical functions like polynomials and Padé approximants. A function based on the Nernst equation that includes a term accounting for nonideal interactions between lithium ions and the cathode host material, such as the Redlich-Kister relationship, also may be used to predict discharge behavior.

  4. 36 CFR 13.1 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-loading weapons do not contain a powder charge; and any other implement capable of discharging a missile into the air or under the water does not contain a missile or similar device within the loading or... designed to discharge missiles into the air or under the water. [71 FR 69333, Nov. 30, 2006, as amended at...

  5. 36 CFR 13.1 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-loading weapons do not contain a powder charge; and any other implement capable of discharging a missile into the air or under the water does not contain a missile or similar device within the loading or... designed to discharge missiles into the air or under the water. [71 FR 69333, Nov. 30, 2006, as amended at...

  6. 36 CFR 13.1 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-loading weapons do not contain a powder charge; and any other implement capable of discharging a missile into the air or under the water does not contain a missile or similar device within the loading or... designed to discharge missiles into the air or under the water. [71 FR 69333, Nov. 30, 2006, as amended at...

  7. 18 CFR 1304.101 - Nonnavigable houseboats.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... follows with a properly installed and operating Marine Sanitation Device (MSD) or Sewage Holding Tank and... or Type II MSD. (2) Nonnavigable houseboats moored in: “No Discharge Lakes” must be equipped with... equipped with a Type I or Type II MSD, it must be secured to prevent discharge into the lake. (d) Approved...

  8. Traveling wire electrode increases productivity of Electrical Discharge Machining /EDM/ equipment

    NASA Technical Reports Server (NTRS)

    Kotora, J., Jr.; Smith, S. V.

    1967-01-01

    Traveling wire electrode on electrical discharge machining /EDM/ equipment reduces the time requirements for precision cutting. This device enables cutting with a minimum of lost material and without inducing stress beyond that inherent in the material. The use of wire increases accuracy and enables tighter tolerances to be maintained.

  9. 30 CFR 7.102 - Exhaust gas cooling efficiency test.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Intended for Use in Areas of Underground Coal Mines Where Permissible Electric Equipment is Required § 7... discharge from the exhaust conditioner. The temperature measuring device shall be accurate to ±4 °F (±2 °C). (3) Determine the exhaust gas temperature at discharge from the exhaust conditioner before the...

  10. Characterization of the Electron Energy Distribution Function in a Penning Discharge

    NASA Astrophysics Data System (ADS)

    Skoutnev, Valentin; Dourbal, Paul; Raitses, Yevgeny

    2017-10-01

    Slow and fast sweeping Langmuir probe diagnostics were implemented to measure the electron energy distribution function (EEDF) in a cross-field Penning discharge undergoing rotating spoke phenomenon. The EEDF was measured using the Druyvesteyn method. Rotating spoke occurs in a variety of ExB devices and is characterized primarily by azimuthal light, density, and potential fluctuations on the order of a few kHz, but is theoretically still not well understood. Characterization of a time-resolved EEDF of the spoke would be important for understanding physical mechanisms responsible for the spoke and its effects on Penning discharges, Hall thrusters, sputtering magnetrons, and other ExB devices. In this work, preliminary results of measurements of the EEDF using slow and fast Langmuir probes that sweep below and above the fundamental spoke frequency will be discussed. This work was supported by the Air Force Office of Scientific Research (AFOSR).

  11. A low-ignition energy, SCB, thermite igniter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bickes, R.W. Jr.; Grubelich, M.C.; Wackerbarth, D.E.

    1996-06-01

    The authors describe threshold ignition studies for semiconductor bridge, SCB, ignition of aluminum/copper oxide (Al/CuO) thermite as a function of the capacitor discharge unit (CDU) firing set discharge capacitance, the charge holder material and the morphology of the CuO. All of the tests were carried out with the devices cooled to 0 F ({minus}18 C). They compared ignition thresholds using a brass charge holder and a G10 charge holder; G10 is a non-conducting, fiber-glass-epoxy composite material. They determined that at 50 V on the discharge capacitor, the thresholds were 30.1 {micro}F and 2.0 {micro}F respectively. The tests revealed that differentmore » CuO morphologies affected the function time (interval between start of the firing set current and the output of the thermite device) but did not significantly affect the threshold sensitivity.« less

  12. Comparative analysis of cellulose pressboard and aramid paper used in air insulation systems of high-voltage devices

    NASA Astrophysics Data System (ADS)

    Turba, Tomasz; Frącz, Paweł

    2017-10-01

    The paper presents results of a comparative analysis of parameters of two kinds of solid dielectrics used in air insulation systems to prevent occurring partial discharges. The research works regarded materials made of: cellulose pressboard and aramid paper. All measurements were performed under laboratory conditions by changing the value of partial discharges generation voltage until breakdown occurred in the inhomogeneous environment that was simulated using needle-plate (made of copper) electrode system. The main contribution which resulted from studies is a statement that potential use of aramid paper as a dielectric can extend the life of a high voltage electric device as compared to standard cellulose pressboard usage due to higher electric resistances to breakdown or detection of corona voltage. Results shown that the aramid paper has greater electric resistance to breakdown in comparison to cellulose with no difference between both on detecting corona of partial discharge.

  13. Understanding the failure mechanisms of microwave bipolar transistors caused by electrostatic discharge

    NASA Astrophysics Data System (ADS)

    Jin, Liu; Yongguang, Chen; Zhiliang, Tan; Jie, Yang; Xijun, Zhang; Zhenxing, Wang

    2011-10-01

    Electrostatic discharge (ESD) phenomena involve both electrical and thermal effects, and a direct electrostatic discharge to an electronic device is one of the most severe threats to component reliability. Therefore, the electrical and thermal stability of multifinger microwave bipolar transistors (BJTs) under ESD conditions has been investigated theoretically and experimentally. 100 samples have been tested for multiple pulses until a failure occurred. Meanwhile, the distributions of electric field, current density and lattice temperature have also been analyzed by use of the two-dimensional device simulation tool Medici. There is a good agreement between the simulated results and failure analysis. In the case of a thermal couple, the avalanche current distribution in the fingers is in general spatially unstable and results in the formation of current crowding effects and crystal defects. The experimental results indicate that a collector-base junction is more sensitive to ESD than an emitter-base junction based on the special device structure. When the ESD level increased to 1.3 kV, the collector-base junction has been burnt out first. The analysis has also demonstrated that ESD failures occur generally by upsetting the breakdown voltage of the dielectric or overheating of the aluminum-silicon eutectic. In addition, fatigue phenomena are observed during ESD testing, with devices that still function after repeated low-intensity ESDs but whose performances have been severely degraded.

  14. Intracardiac electrocardiographic assessment of precordial TASER shocks in human subjects: A pilot study.

    PubMed

    Stopyra, Jason P; Winslow, James E; Fitzgerald, David M; Bozeman, William P

    2017-11-01

    Case reports of cardiac arrest in temporal proximity to Conducted Electrical Weapon(CEW) exposure raise legitimate concerns about this as a rare possibility. In this pilot study, we respectfully navigate the oversight and regulatory hurdles and demonstrate the intra-shock electrocardiographic effects of an intentional transcardiac CEW discharge using subcutaneous probes placed directly across the precordium of patients with a previously implanted intracardiac EKG sensing lead. Adults scheduled to undergo diagnostic EP studies or replacement of an implanted cardiac device were enrolled. Sterile subcutaneous electrodes were placed at the right sternoclavicular junction and the left lower costal margin at the midclavicular line. A standard police issue TASER Model X26 CEW was attached to the subcutaneous electrodes and a 5 s discharge was delivered. Continuous surface and intracardiac EKG monitoring was performed. A total of 157 subjects were reviewed for possible inclusion and 21 were interviewed. Among these, 4 subjects agreed and completed the study protocol. All subjects tolerated the 5 s CEW discharge without clinical complications. There were no significant changes in mean heart rate or blood pressure. Interrogation of the devices after CEW discharge revealed no ventricular pacing, dysrhythmias, damage or interference with the implanted devices. In this pilot study, we have successfully navigated the regulatory hurdles and demonstrated the feasibility of performing intracardiac EKG recording during intentional precordial CEW discharges in humans. While no CEW-associated dysrhythmias were noted, the size of this preliminary dataset precludes making conclusions about the risk of such events. Larger studies are warranted and should consider exploring variations of the CEW electrode position in relation to the cardiac silhouette. Copyright © 2017. Published by Elsevier Ltd.

  15. Atmospheric pressure plasma jet's characterization and surface wettability driven by neon transformer

    NASA Astrophysics Data System (ADS)

    Elfa, R. R.; Nafarizal, N.; Ahmad, M. K.; Sahdan, M. Z.; Soon, C. F.

    2017-03-01

    Atmospheric pressure plasma driven by Neon transformer power supply argon is presented in this paper. Atmospheric pressure plasma system has attracted researcher interest over low pressure plasma as it provides a flexibility process, cost-efficient, portable device and vacuum-free device. Besides, another golden key of this system is the wide promising application in the field of work cover from industrial and engineering to medical. However, there are still numbers of fundamental investigation that are necessary such as device configuration, gas configuration and its effect. Dielectric barrier discharge which is also known as atmospheric pressure plasma discharge is created when there is gas ionization process occur which enhance the movement of atom and electron and provide energetic particles. These energetic particles can provide modification and cleaning property to the sample surface due to the bombardment of the high reactive ion and radicals to the sample surface. In order to develop atmospheric pressure plasma discharge, a high voltage and high frequency power supply is needed. In this work, we used a neon transformer power supply as the power supply. The flow of the Ar is feed into 10 mm cylinder quartz tube with different treatment time in order to investigate the effect of the plasma discharge. The analysis of each treatment time is presented by optical emission spectroscopy (OES) and water contact angle (WCA) measurement. The increase of gas treatment time shows increases intensity of reactive Ar and reduces the angle of water droplets in water contact angle. Treatment time of 20 s microslide glass surface shows that the plasma needle discharges have modified the sample surface from hydrophilic surface to superhydrophilic surface. Thus, this leads to another interesting application in reducing sample surface adhesion to optimize productivity in the industry of paintings, semiconductor and more.

  16. Resonance fluorescence revival in a voltage-controlled semiconductor quantum dot

    NASA Astrophysics Data System (ADS)

    Reigue, Antoine; Lemaître, Aristide; Gomez Carbonell, Carmen; Ulysse, Christian; Merghem, Kamel; Guilet, Stéphane; Hostein, Richard; Voliotis, Valia

    2018-02-01

    We demonstrate systematic resonance fluorescence recovery with near-unity emission efficiency in single quantum dots embedded in a charge-tunable device in a wave-guiding geometry. The quantum dot charge state is controlled by a gate voltage, through carrier tunneling from a close-lying Fermi sea, stabilizing the resonantly photocreated electron-hole pair. The electric field cancels out the charging/discharging mechanisms from nearby traps toward the quantum dots, responsible for the usually observed inhibition of the resonant fluorescence. Fourier transform spectroscopy as a function of the applied voltage shows a strong increase in the coherence time though not reaching the radiative limit. These charge controlled quantum dots can act as quasi-perfect deterministic single-photon emitters, with one laser pulse converted into one emitted single photon.

  17. Space charge effects for multipactor in coaxial lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorolla, E., E-mail: eden.sorolla@xlim.fr; Sounas, A.; Mattes, M.

    2015-03-15

    Multipactor is a hazardous vacuum discharge produced by secondary electron emission within microwave devices of particle accelerators and telecommunication satellites. This work analyzes the dynamics of the multipactor discharge within a coaxial line for the mono-energetic electron emission model taking into account the space charge effects. The steady-state is predicted by the proposed model and an analytical expression for the maximum number of electrons released by the discharge presented. This could help to link simulations to experiments and define a multipactor onset criterion.

  18. Lightweight Portable Plasma Medical Device - Plasma Engineering Research Laboratory

    DTIC Science & Technology

    2015-12-01

    Wang, W. Zheng, and Y. N. Wang, "Optical study of radicals (OH, O, H, N) in a needle-plate negative pulsed streamer corona discharge ," Plasma...needle- plate bi-directional pulsed corona discharge ," European Physical Journal D, vol. 38, pp. 515-522, Jun 2006. 155 [35] W. Wang, S. Wang...F. Liu, W. Zheng, and D. Wang, "Optical study of OH radical in a wire-plate pulsed corona discharge ," Spectrochimica Acta Part A: Molecular and

  19. Lightweight Portable Plasma Medical Device - Plasma Engineering Research Laboratory

    DTIC Science & Technology

    2014-10-01

    34Optical study of radicals (OH, O, H, N) in a needle- plate negative pulsed streamer corona discharge ," Plasma Chemistry and Plasma Processing, vol. 26...pulsed corona discharge ," European Physical Journal D, vol. 38, pp. 515-522, Jun 2006. [35] W. Wang, S. Wang, F. Liu, W. Zheng, and D. Wang, "Optical...study of OH radical in a wire-plate pulsed corona discharge ," Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 63, pp. 477

  20. Fast repetition rate (FRR) flasher

    DOEpatents

    Kolber, Zbigniew; Falkowski, Paul

    1997-02-11

    A fast repetition rate (FRR) flasher suitable for high flash photolysis including kinetic chemical and biological analysis. The flasher includes a power supply, a discharge capacitor operably connected to be charged by the power supply, and a flash lamp for producing a series of flashes in response to discharge of the discharge capacitor. A triggering circuit operably connected to the flash lamp initially ionizes the flash lamp. A current switch is operably connected between the flash lamp and the discharge capacitor. The current switch has at least one insulated gate bipolar transistor for switching current that is operable to initiate a controllable discharge of the discharge capacitor through the flash lamp. Control means connected to the current switch for controlling the rate of discharge of the discharge capacitor thereby to effectively keep the flash lamp in an ionized state between Successive discharges of the discharge capacitor. Advantageously, the control means is operable to discharge the discharge capacitor at a rate greater than 10,000 Hz and even up to a rate greater than about 250,000 Hz.

  1. Water balance in irrigation districts. Uncertainty in on-demand pressurized networks

    NASA Astrophysics Data System (ADS)

    Sánchez-Calvo, Raúl; Rodríguez-Sinobas, Leonor; Juana, Luis; Laguna, Francisco Vicente

    2015-04-01

    In on-demand pressurized irrigation distribution networks, applied water volume is usually controlled opening a valve during a calculated time interval, and assuming constant flow rate. In general, pressure regulating devices for controlling the discharged flow rate by irrigation units are needed due to the variability of pressure conditions. A pressure regulating valve PRV is the commonly used pressure regulating device in a hydrant, which, also, executes the open and close function. A hydrant feeds several irrigation units, requiring a wide range in flow rate. In addition, some flow meters are also available, one as a component of the hydrant and the rest are placed downstream. Every land owner has one flow meter for each group of field plots downstream the hydrant. Ideal PRV performance would maintain a constant downstream pressure. However, the true performance depends on both upstream pressure and the discharged flow rate. Theoretical flow rates values have been introduced into a PRV behavioral model, validated in laboratory, coupled with an on-demand irrigation district waterworks, composed by a distribution network and a multi-pump station. Variations on flow rate are simulated by taking into account the consequences of variations on climate conditions and also decisions in irrigation operation, such us duration and frequency application. The model comprises continuity, dynamic and energy equations of the components of both the PRV and the water distribution network. In this work the estimation of water balance terms during the irrigation events in an irrigation campaign has been simulated. The effect of demand concentration peaks has been estimated.

  2. Device for providing high-intensity ion or electron beam

    DOEpatents

    McClanahan, Edwin D.; Moss, Ronald W.

    1977-01-01

    A thin film of a low-thermionic-work-function material is maintained on the cathode of a device for producing a high-current, low-pressure gas discharge by means of sputter deposition from an auxiliary electrode. The auxiliary electrode includes a surface with a low-work-function material, such as thorium, uranium, plutonium or one of the rare earth elements, facing the cathode but at a disposition and electrical potential so as to extract ions from the gas discharge and sputter the low-work-function material onto the cathode. By continuously replenishing the cathode film, high thermionic emissions and ion plasmas can be realized and maintained over extended operating periods.

  3. PLASMA DEVICE

    DOEpatents

    Baker, W.R.

    1961-08-22

    A device is described for establishing and maintaining a high-energy, rotational plasma for use as a fast discharge capacitor. A disc-shaped, current- conducting plasma is formed in an axinl magnetic field and a crossed electric field, thereby creating rotational kinetic enengy in the plasma. Such energy stored in the rotation of the plasma disc is substantial and is convertible tc electrical energy by generator action in an output line electrically coupled to the plasma volume. Means are then provided for discharging the electrical energy into an external circuit coupled to the output line to produce a very large pulse having an extremely rapid rise time in the waveform thereof. (AE C)

  4. High-performance computing-based exploration of flow control with micro devices.

    PubMed

    Fujii, Kozo

    2014-08-13

    The dielectric barrier discharge (DBD) plasma actuator that controls flow separation is one of the promising technologies to realize energy savings and noise reduction of fluid dynamic systems. However, the mechanism for controlling flow separation is not clearly defined, and this lack of knowledge prevents practical use of this technology. Therefore, large-scale computations for the study of the DBD plasma actuator have been conducted using the Japanese Petaflops supercomputer 'K' for three different Reynolds numbers. Numbers of new findings on the control of flow separation by the DBD plasma actuator have been obtained from the simulations, and some of them are presented in this study. Knowledge of suitable device parameters is also obtained. The DBD plasma actuator is clearly shown to be very effective for controlling flow separation at a Reynolds number of around 10(5), and several times larger lift-to-drag ratio can be achieved at higher angles of attack after stall. For higher Reynolds numbers, separated flow is partially controlled. Flow analysis shows key features towards better control. DBD plasma actuators are a promising technology, which could reduce fuel consumption and contribute to a green environment by achieving high aerodynamic performance. The knowledge described above can be obtained only with high-end computers such as the supercomputer 'K'. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  5. Electronic Switch Arrays for Managing Microbattery Arrays

    NASA Technical Reports Server (NTRS)

    Mojarradi, Mohammad; Alahmad, Mahmoud; Sukumar, Vinesh; Zghoul, Fadi; Buck, Kevin; Hess, Herbert; Li, Harry; Cox, David

    2008-01-01

    Integrated circuits have been invented for managing the charging and discharging of such advanced miniature energy-storage devices as planar arrays of microscopic energy-storage elements [typically, microscopic electrochemical cells (microbatteries) or microcapacitors]. The architecture of these circuits enables implementation of the following energy-management options: dynamic configuration of the elements of an array into a series or parallel combination of banks (subarrarys), each array comprising a series of parallel combination of elements; direct addressing of individual banks for charging/or discharging; and, disconnection of defective elements and corresponding reconfiguration of the rest of the array to utilize the remaining functional elements to obtain the desited voltage and current performance. An integrated circuit according to the invention consists partly of a planar array of field-effect transistors that function as switches for routing electric power among the energy-storage elements, the power source, and the load. To connect the energy-storage elements to the power source for charging, a specific subset of switches is closed; to connect the energy-storage elements to the load for discharging, a different specific set of switches is closed. Also included in the integrated circuit is circuitry for monitoring and controlling charging and discharging. The control and monitoring circuitry, the switching transistors, and interconnecting metal lines are laid out on the integrated-circuit chip in a pattern that registers with the array of energy-storage elements. There is a design option to either (1) fabricate the energy-storage elements in the corresponding locations on, and as an integral part of, this integrated circuit; or (2) following a flip-chip approach, fabricate the array of energy-storage elements on a separate integrated-circuit chip and then align and bond the two chips together.

  6. Dielectric Surface Effects on Transient Arcs in Lightning Arrester Devices

    DTIC Science & Technology

    2011-06-01

    pp. 816– 823, 1971. [13] V. I. Gibalov and G. J. Pietsch , “The development of dielectric barrier discharges in gas gaps and on surfaces,” J. Phys. D...Appl. Phys., vol. 33, p. 2618, 2000. [14] D. Braun, V. Gibalov, and G. Pietsch , “Two-dimensional modelling of the dielectric barrier discharge in air

  7. Plasma Discharges in Gas Bubbles in Liquid Water: Breakdown Mechanisms and Resultant Chemistry

    NASA Astrophysics Data System (ADS)

    Gucker, Sarah M. N.

    The use of atmospheric pressure plasmas in gases and liquids for purification of liquids has been investigated by numerous researchers, and is highly attractive due to their strong potential as a disinfectant and sterilizer. However, the fundamental understanding of plasma production in liquid water is still limited. Despite the decades of study dedicated to electrical discharges in liquids, many physical aspects of liquids, such as the high inhomogeneity of liquids, complicate analyses. For example, the complex nonlinearities of the fluid have intricate effects on the electric field of the propagating streamer. Additionally, the liquid material itself can vaporize, leading to discontinuous liquid-vapor boundaries. Both can and do often lead to notable hydrodynamic effects. The chemistry of these high voltage discharges on liquid media can have circular effects, with the produced species having influence on future discharges. Two notable examples include an increase in liquid conductivity via charged species production, which affects the discharge. A second, more complicated scenario seen in some liquids (such as water) is the doubling or tripling of molecular density for a few molecule layers around a high voltage electrode. These complexities require technological advancements in optical diagnostics that have only recently come into being. This dissertation investigates several aspects of electrical discharges in gas bubbles in liquids. Two primary experimental configurations are investigated: the first allows for single bubble analysis through the use of an acoustic trap. Electrodes may be brought in around the bubble to allow for plasma formation without physically touching the bubble. The second experiment investigates the resulting liquid phase chemistry that is driven by the discharge. This is done through a dielectric barrier discharge with a central high voltage surrounded by a quartz discharge tube with a coil ground electrode on the outside. The plasma is created either through flowing gas around the high voltage electrode in the discharge tube or self-generated by the plasma as in the steam discharge. This second method allows for large scale processing of contaminated water and for bulk chemical and optical analysis. Breakdown mechanisms of attached and unattached gas bubbles in liquid water were investigated using the first device. The breakdown scaling relation between breakdown voltage, pressure and dimensions of the discharge was studied. A Paschen-like voltage dependence for air bubbles in liquid water was discovered. The results of high-speed photography suggest the physical charging of the bubble due to a high voltage pulse; this charging can be significant enough to produce rapid kinetic motion of the bubble about the electrode region as the applied electric field changes over a voltage pulse. Physical deformation of the bubble is observed. This charging can also prevent breakdown from occurring, necessitating higher applied voltages to overcome the phenomenon. This dissertation also examines the resulting chemistry from plasma interacting with the bubble-liquid system. Through the use of optical emission spectroscopy, plasma parameters such as electron density, gas temperature, and molecular species production and intensity are found to have a time-dependence over the ac voltage cycle. This dependence is also source gas type dependent. These dependencies afford effective control over plasma-driven decomposition. The effect of plasma-produced radicals on various wastewater simulants is studied. Various organic dyes, halogenated compounds, and algae water are decomposed and assessed. Toxicology studies with melanoma cells exposed to plasma-treated dye solutions are completed, demonstrating the non-cytotoxic quality of the decomposition process. Thirdly, this dissertation examines the steam plasma system, developed through this research to circumvent the acidification associated with gas-feed discharges. This steam plasma creates its own gas pocket via field emission. This steam plasma is shown to have strong decontamination properties, with residual effects lasting beyond two weeks that continue to decompose contaminants. Finally, a "two-dimensional bubble" was developed and demonstrated as a novel diagnostic device to study the gas-water interface, the reaction zone. This device is shown to provide convenient access to the reaction zone and decomposition of various wastewater simulants is investigated.

  8. Characterization of the C-2W Plasma Guns

    NASA Astrophysics Data System (ADS)

    Dubois, Ami; Sokolov, Vladimir; Korepanov, Sergey; Osin, Dima; Player, Gabriel; TAE Team

    2017-10-01

    Previous use of coaxial arc discharge plasma guns on the C-2U device exhibited great success in plasma stabilization and improved confinement. On the C-2W experiment, arc discharge plasma guns will again be used to facilitate the electrical connection between the plasma core and the divertor electrodes in order to maintain the electrode edge biasing and induce E x B shear to control plasma rotation. Each plasma gun contains an internal solenoid used to shape the plasma stream. Characterization of electron density (ne) , electron temperature (Te) , floating potential (Vf) , and total plasma flux in an arc discharge lasting 6 ms without the internal solenoid are presented. A Langmuir probe located 27 cm axially outside of the plasma gun anode measures a bell-like radial ne profile with peak ne 1018 m-3 and Te 2 - 10 eV. Observed spectral lines of impurity ions provide an estimate of Te, and Balmer series line ratios of the main ion component are used to evaluate ne at both the probe location and near the plasma gun anode. A calorimeter measures the plasma flux to be constant and equivalent to 1 kA.

  9. A randomised controlled trial investigating the analgesic efficacy of transversus abdominis plane block for adult laparoscopic appendicectomy.

    PubMed

    Tupper-Carey, Darell Alexander; Fathil, Shahridan Mohd; Tan, Yin Kiat Glenn; Kan, Yuk Man; Cheong, Chern Yuen; Siddiqui, Fahad Javaid; Assam, Pryseley Nkouibert

    2017-08-01

    We conducted a single-centre, prospective randomised clinical trial to investigate the analgesic efficacy of transversus abdominis plane (TAP) block in adult patients undergoing laparoscopic appendicectomy. Patients undergoing urgent laparoscopic appendicectomy under general anaesthesia alone (control group) and general anaesthesia supplemented by TAP block (TAP intervention group) were compared. All patients received a multimodal analgesia regime, which included postoperative morphine via a patient-controlled analgesia device. The primary endpoints were morphine consumption at 12 hours and 24 hours postoperatively. Secondary endpoints included pain scores, incidence of nausea and vomiting, and time to hospital discharge. A total of 58 patients were recruited, with 29 patients in each group. Mean postoperative morphine consumption at 12 hours (control group: 11.45 ± 7.64 mg, TAP intervention group: 9.79 ± 8.09 mg; p = 0.4264) and 24 hours (control group: 13.38 ± 8.72 mg, TAP intervention group: 11.31 ± 8.66 mg; p = 0.3686) for the control and TAP intervention groups were not statistically different. Secondary outcomes were also not different between the two groups. Length of stay in the post-anaesthesia care unit was significantly shorter for the TAP intervention group, with a trend toward faster hospital discharge being observed. TAP block, a regional anaesthetic procedure performed immediately prior to skin incision for laparoscopic appendicectomy, did not significantly improve postoperative analgesia outcomes. Copyright: © Singapore Medical Association

  10. Review of electric discharge microplasmas generated in highly fluctuating fluids: Characteristics and application to nanomaterials synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stauss, Sven, E-mail: sven.stauss@plasma.k.u-tokyo.ac.jp; Terashima, Kazuo, E-mail: kazuo@plasma.k.u-tokyo.ac.jp; Muneoka, Hitoshi

    2015-05-15

    Plasma-based fabrication of novel nanomaterials and nanostructures is indispensible for the development of next-generation electronic devices and for green energy applications. In particular, controlling the interactions between plasmas and materials interfaces, and the plasma fluctuations, is crucial for further development of plasma-based processes and bottom-up growth of nanomaterials. Electric discharge microplasmas generated in supercritical fluids represent a special class of high-pressure plasmas, where fluctuations on the molecular scale influence the discharge properties and the possible bottom-up growth of nanomaterials. This review discusses an anomaly observed for direct current microplasmas generated near the critical point, a local decrease in the breakdownmore » voltage. This anomalous behavior is suggested to be caused by the concomitant decrease of the ionization potential due to the formation of clusters near the critical point, and the formation of extended electron mean free paths caused by the high-density fluctuation near the critical point. It is also shown that in the case of dielectric barrier microdischarges generated close to the critical point, the high-density fluctuation of the supercritical fluid persists. The final part of the review discusses the application of discharges generated in supercritical fluids to synthesis of nanomaterials, in particular, molecular diamond—so-called diamondoids—by microplasmas generated inside conventional batch-type and continuous flow microreactors.« less

  11. Effect of Propellant Feed System Coupling and Hydraulic Parameters on Analysis of Chugging

    NASA Technical Reports Server (NTRS)

    Wood, Don J.; Dorsch, Robert G.

    1967-01-01

    A digital distributed parameter model was used to study the effects of propellant-feed- system coupling and various hydraulic parameters on the analytical prediction of chugging instabilities. Coupling between the combustion chamber and feed system was controlled by varying the compliance of the injector-dome region. The coupling with the feed system above the pump was varied by changing the amount of cavitation compliance at the pump inlet. The stability limits and chugging frequencies proved to be strongly dependent on the degree of feed-system coupling. The maximum stability condition occurred with intermediate coupling. Under conditions of a high degree of feed-system-combustor coupling, the stability limits and chugging frequencies were primarily dependent on the feed-system characteristics; the responses were characterized by beating patterns. For the system analyzed, the pump suction line had little effect on the stability limits or chugging frequencies. Beating, present under the condition of near zero injector -dome compliance, was eliminated when the suction line was decoupled by employing a sufficiently high value of pump-inlet compliance. Under conditions of maximum feed-system coupling, the magnitude and distribution of line losses in the discharge line had a significant effect on the stability limits but had negligible effect on the chugging frequency and beating characteristics. Also, the length of the discharge line greatly affected the stability limits, chugging frequency, and beating characteristics. The length of the suction line, however, had little effect on the stability limits and chugging frequency but did influence the beating pattern. A resistive-shunt device attached to the pump discharge line to suppress chugging was investigated. The analysis showed that the device was effective under conditions of high feed-system coupling.

  12. 40 CFR 1700.4 - Discharges requiring control.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Discharges requiring control. 1700.4 Section 1700.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY AND DEPARTMENT OF DEFENSE... FOR VESSELS OF THE ARMED FORCES Discharge Determinations § 1700.4 Discharges requiring control. For...

  13. 40 CFR 1700.4 - Discharges requiring control.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Discharges requiring control. 1700.4 Section 1700.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY AND DEPARTMENT OF DEFENSE... FOR VESSELS OF THE ARMED FORCES Discharge Determinations § 1700.4 Discharges requiring control. For...

  14. 40 CFR 1700.4 - Discharges requiring control.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Discharges requiring control. 1700.4 Section 1700.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY AND DEPARTMENT OF DEFENSE... FOR VESSELS OF THE ARMED FORCES Discharge Determinations § 1700.4 Discharges requiring control. For...

  15. 40 CFR 1700.4 - Discharges requiring control.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Discharges requiring control. 1700.4 Section 1700.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY AND DEPARTMENT OF DEFENSE... FOR VESSELS OF THE ARMED FORCES Discharge Determinations § 1700.4 Discharges requiring control. For...

  16. 40 CFR 1700.4 - Discharges requiring control.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Discharges requiring control. 1700.4 Section 1700.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY AND DEPARTMENT OF DEFENSE... FOR VESSELS OF THE ARMED FORCES Discharge Determinations § 1700.4 Discharges requiring control. For...

  17. Fast repetition rate (FRR) flasher

    DOEpatents

    Kolber, Z.; Falkowski, P.

    1997-02-11

    A fast repetition rate (FRR) flasher is described suitable for high flash photolysis including kinetic chemical and biological analysis. The flasher includes a power supply, a discharge capacitor operably connected to be charged by the power supply, and a flash lamp for producing a series of flashes in response to discharge of the discharge capacitor. A triggering circuit operably connected to the flash lamp initially ionizes the flash lamp. A current switch is operably connected between the flash lamp and the discharge capacitor. The current switch has at least one insulated gate bipolar transistor for switching current that is operable to initiate a controllable discharge of the discharge capacitor through the flash lamp. Control means connected to the current switch for controlling the rate of discharge of the discharge capacitor thereby to effectively keep the flash lamp in an ionized state between successive discharges of the discharge capacitor. Advantageously, the control means is operable to discharge the discharge capacitor at a rate greater than 10,000 Hz and even up to a rate greater than about 250,000 Hz. 14 figs.

  18. Partial Discharge Ultrasound Detection Using the Sagnac Interferometer System

    PubMed Central

    Li, Xiaomin; Gao, Yan; Zhang, Hongjuan; Wang, Dong; Jin, Baoquan

    2018-01-01

    Partial discharge detection is crucial for electrical cable safety evaluation. The ultrasonic signals frequently generated in the partial discharge process contains important characteristic information. However, traditional ultrasonic transducers are easily subject to strong electromagnetic interference in environments with high voltages and strong magnetic fields. In order to overcome this problem, an optical fiber Sagnac interferometer system is proposed for partial discharge ultrasound detection. Optical fiber sensing and time-frequency analysis of the ultrasonic signals excited by the piezoelectric ultrasonic transducer is realized for the first time. The effective frequency band of the Sagnac interferometer system was up to 175 kHz with the help of a designed 10 kV partial discharge simulator device. Using the cumulative histogram method, the characteristic ultrasonic frequency band of the partial discharges was between 28.9 kHz and 57.6 kHz for this optical fiber partial discharge detection system. This new ultrasound sensor can be used as an ideal ultrasonic source for the intrinsically safe detection of partial discharges in an explosive environment. PMID:29734682

  19. Greener corona discharge for enhanced wind generation with a simple dip-coated carbon nanotube decoration

    NASA Astrophysics Data System (ADS)

    Wu, Yishan; Li, Jun; Ye, Jianchun; Chen, Xiaohong; Li, Huili; Huang, Sumei; Zhao, Ran; Ou-Yang, Wei

    2017-10-01

    Corona discharge-induced wind (CDIW) has been widely utilized in production lines in the food and semiconductor industries and in indoor devices such as electrostatic precipitators. Some ozone is inevitably emitted, posing serious health risks to respiratory system and lung function of a human being. In this work, a greener corona discharge with enhanced wind generation for a needle-to-cylinder discharge structure is demonstrated using a simple dip-coating method to attach carbon nanotubes (CNTs) to the discharge electrode of a stainless steel needle. Compared with a conventional discharge electrode without CNT decoration, the velocity of the CDIW is greatly enhanced, the onset voltage is lowered, the energy conversion efficiency is greatly improved and the concentration of generated ozone is much reduced, making this easy method of CNT decoration a promising candidate for greener corona discharge systems. In addition, several impact factors for improved performance are discussed mathematically and phenomenologically, providing an insight into the corona discharge and wind generation.

  20. Testing electroexplosive devices by programmed pulsing techniques

    NASA Technical Reports Server (NTRS)

    Rosenthal, L. A.; Menichelli, V. J.

    1976-01-01

    A novel method for testing electroexplosive devices is proposed wherein capacitor discharge pulses, with increasing energy in a step-wise fashion, are delivered to the device under test. The size of the energy increment can be programmed so that firing takes place after many, or after only a few, steps. The testing cycle is automatically terminated upon firing. An energy-firing contour relating the energy required to the programmed step size describes the single-pulse firing energy and the possible sensitization or desensitization of the explosive device.

  1. Sub-micro-Newton resolution thrust balance.

    PubMed

    Hathaway, G

    2015-10-01

    Herein is described a sensitive vacuum balance for measuring the thrust produced by small (∼0.5 kg) thrusters typically employed in microsat station-keeping. The balance is based on a torsion design but incorporates jewel-pivot bearings instead of the more typical torsion spring bearings. Novel tilt control allows maintenance of true verticality of the bearing axis even while under vacuum. The low moment of inertia design allows it to measure small thrusts from high-voltage devices without direct wire conductor connections. Calibration by several means is described including use of a previously calibrated dielectric barrier discharge thruster.

  2. Moderation of neoclassical impurity accumulation in high temperature plasmas of helical devices

    NASA Astrophysics Data System (ADS)

    Velasco, J. L.; Calvo, I.; Satake, S.; Alonso, A.; Nunami, M.; Yokoyama, M.; Sato, M.; Estrada, T.; Fontdecaba, J. M.; Liniers, M.; McCarthy, K. J.; Medina, F.; Van Milligen, B. Ph; Ochando, M.; Parra, F.; Sugama, H.; Zhezhera, A.; The LHD Experimental Team; The TJ-II Team

    2017-01-01

    Achieving impurity and helium ash control is a crucial issue in the path towards fusion-grade magnetic confinement devices, and this is particularly the case of helical reactors, whose low-collisionality ion-root operation scenarios usually display a negative radial electric field which is expected to cause inwards impurity pinch. In this work we discuss, based on experimental measurements and standard predictions of neoclassical theory, how plasmas of very low ion collisionality, similar to those observed in the impurity hole of the large helical device (Yoshinuma et al and The LHD Experimental Group 2009 Nucl. Fusion 49 062002, Ida et al and The LHD Experimental Group 2009 Phys. Plasmas 16 056111 and Yokoyama et al and LHD Experimental Group 2002 Nucl. Fusion 42 143), can be an exception to this general rule, and how a negative radial electric field can coexist with an outward impurity flux. This interpretation is supported by comparison with documented discharges available in the International Stellarator-Heliotron Profile Database, and it can be extrapolated to show that achievement of high ion temperature in the core of helical devices is not fundamentally incompatible with low core impurity content.

  3. Investigation on the Micro-Discharge Characteristics of Dielectric Barrier Discharge in a Needle-Plate Geometry

    NASA Astrophysics Data System (ADS)

    Li, Xuechen; Niu, Dongying; Jia, Pengying; Zhao, Na; Yuan, Ning

    2011-04-01

    In this study, a dielectric barrier discharge device with needle-plate electrodes was used to investigate the characteristics of the micro-discharge in argon at one atmospheric pressure by an optical method. The results show that there are two discharge modes in the dielectric barrier discharge, namely corona mode and filamentary mode. The corona discharge only occurs in the vicinity of the needle tip when the applied voltage is very low. However, the filamentary discharge mode can occur, and micro-discharge bridges the two electrodes when the applied voltage reaches a certain value. The extended area of micro-discharge on the dielectric plate becomes larger with the increase in applied voltage or decrease in gas pressure. The variance of the light emission waveforms is studied as a function of the applied voltage. Results show that very narrow discharge pulse only appears at the negative half cycle of the applied voltage in the corona discharge mode. However, broad hump (about several microseconds) can be discerned at both the negative half cycle and the positive half cycle for a high voltage in the filamentary mode. Furthermore, the inception voltage decreases and the width of the discharge hump increases with the increase in applied voltage. These experimental phenomena can be explained qualitatively by analyzing the discharge mechanism.

  4. 33 CFR 157.12 - Oil discharge monitoring and control system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Oil discharge monitoring and... CARRYING OIL IN BULK Design, Equipment, and Installation § 157.12 Oil discharge monitoring and control system. (a) Each vessel must have an oil discharge monitoring and control system (monitoring system) that...

  5. 33 CFR 157.12 - Oil discharge monitoring and control system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Oil discharge monitoring and... CARRYING OIL IN BULK Design, Equipment, and Installation § 157.12 Oil discharge monitoring and control system. (a) Each vessel must have an oil discharge monitoring and control system (monitoring system) that...

  6. 33 CFR 157.12 - Oil discharge monitoring and control system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Oil discharge monitoring and... CARRYING OIL IN BULK Design, Equipment, and Installation § 157.12 Oil discharge monitoring and control system. (a) Each vessel must have an oil discharge monitoring and control system (monitoring system) that...

  7. 33 CFR 157.12 - Oil discharge monitoring and control system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Oil discharge monitoring and... CARRYING OIL IN BULK Design, Equipment, and Installation § 157.12 Oil discharge monitoring and control system. (a) Each vessel must have an oil discharge monitoring and control system (monitoring system) that...

  8. 33 CFR 157.12 - Oil discharge monitoring and control system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Oil discharge monitoring and... CARRYING OIL IN BULK Design, Equipment, and Installation § 157.12 Oil discharge monitoring and control system. (a) Each vessel must have an oil discharge monitoring and control system (monitoring system) that...

  9. An oxygen-independent and membrane-less glucose biobattery/supercapacitor hybrid device.

    PubMed

    Xiao, Xinxin; Conghaile, Peter Ó; Leech, Dónal; Ludwig, Roland; Magner, Edmond

    2017-12-15

    Enzymatic biofuel cells can generate electricity directly from the chemical energy of biofuels in physiological fluids, but their power density is significantly limited by the performance of the cathode which is based on oxygen reduction for in vivo applications. An oxygen-independent and membrane-less glucose biobattery was prepared that consists of a dealloyed nanoporous gold (NPG) supported glucose dehydrogenase (GDH) bioanode, immobilised with the assistance of conductive polymer/Os redox polymer composites, and a solid-state NPG/MnO 2 cathode. In a solution containing 10mM glucose, a maximum power density of 2.3µWcm -2 at 0.21V and an open circuit voltage (OCV) of 0.49V were registered as a biobattery. The potential of the discharged MnO 2 could be recovered, enabling a proof-of-concept biobattery/supercapacitor hybrid device. The resulting device exhibited a stable performance for 50 cycles of self-recovery and galvanostatic discharge as a supercapacitor at 0.1mAcm -2 over a period of 25h. The device could be discharged at current densities up to 2mAcm -2 supplying a maximum instantaneous power density of 676 μW cm -2 , which is 294 times higher than that from the biobattery alone. A mechanism for the recovery of the potential of the cathode, analogous to that of RuO 2 (Electrochim. Acta 42(23), 3541-3552) is described. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Device Stores and Discharges Metered Fluid

    NASA Technical Reports Server (NTRS)

    Hooper, S. L.; Setzer, D.

    1983-01-01

    Hand-held container accepts measured amount of liquid from pressurized supply. Supply pressure drives spring-loaded piston that stores enough mechanical energy to discharge measured liquid into another container. Original application of container was to rehydrate sterilized pre-packaged food in zerogravity environment of space vehicles. Possible terrestrial applicatios include dispensing of toxic fluids or metering of fluids for household, commercial or laboratory uses.

  11. Discharging Static Electricity From Inside A Glass Tube

    NASA Technical Reports Server (NTRS)

    Ellsbury, Walter L.

    1994-01-01

    Device that contains emitter of alpha particles discharges static electricity from inside wall of glass tube of volumetric-flow calibrator. Includes cylinder that has wall thickness of 1/16 in., diameter about 1/2 in. smaller than inside diameter of tube, and height that extends about 1/2 in. above piston that moves along tube and is part of calibrator.

  12. Inpatient rehabilitation outcomes for patients receiving left ventricular assist device.

    PubMed

    Alsara, Osama; Reeves, Ronald K; Pyfferoen, Mary D; Trenary, Tamra L; Engen, Deborah J; Vitse, Merri L; Kessler, Stacy M; Kushwaha, Sudhir S; Clavell, Alfredo L; Thomas, Randal J; Lopez-Jimenez, Francisco; Park, Soon J; Perez-Terzic, Carmen M

    2014-10-01

    The aim of this study was to evaluate outcomes of patients participating in inpatient rehabilitation program after left ventricular assist device (LVAD) implantation. Medical records of 94 patients who received LVADs between January 1, 2008, and June 30, 2010, at the Mayo Clinic in Rochester, MN, were retrospectively reviewed for demographic data, and inpatient rehabilitation functional outcomes were measured by the Functional Independence Measure scale. After successful implantation of LVAD, the patients were either discharged directly home from acute care (44%) or admitted to inpatient rehabilitation (56%). The patients admitted to inpatient rehabilitation were older than those discharged home. They were also more medically complex and more likely to have the LVAD placed as destination therapy. At discharge, significant improvement occurred in 17 of the 18 activities evaluated by the Functional Independence Measure scale. The mean total Functional Independence Measure scale score at admission was 77.1 compared with a score of 95.2 at discharge (P < 0.0001). Approximately half of the patients who received LVAD therapy were admitted in the inpatient rehabilitation. After the implantation of LVAD and inpatient rehabilitation, significant functional improvements were observed. Further studies addressing the role of inpatient rehabilitation for LVAD patients are warranted.

  13. Atomic-scale characterization of hydrogenated amorphous-silicon films and devices. Annual subcontract report, 14 February 1994--14 April 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallagher, A.; Tanenbaum, D.; Laracuente, A.

    1995-08-01

    Properties of the hydrogenated amorphous silicon (a-Si:H) films used in photovoltaic (PV) panels are reported. The atomic-scale topology of the surface of intrinsic a-Si:H films, measured by scanning tunneling microscopy (STM) as a function of film thickness, are reported and diagnosed. For 1-500-nm-thick films deposited under normal device-quality conditions from silane discharges, most portions of these surfaces are uniformly hilly without indications of void regions. However, the STM images indicate that 2-6-nm silicon particulates are continuously deposited into the growing film from the discharge and fill approximately 0.01% of the film volume. Although the STM data are not sensitive tomore » the local electronic properties near these particulates, it is very likely that the void regions grow around them and have a deleterious effect on a-Si:H photovoltaics. Preliminary observations of particulates in the discharge, based on light scattering, confirm that particulates are present in the discharge and that many collect and agglomerate immediately downstream of the electrodes. Progress toward STM measurements of the electronic properties of cross-sectioned a-Si:H PV cells is also reported.« less

  14. Spatially resolved high-resolution x-ray spectroscopy of high-current plasma-focus discharges.

    PubMed

    Zając, S; Rzadkiewicz, J; Rosmej, O; Scholz, M; Yongtao, Zhao; Gójska, A; Paduch, M; Zielińska, E

    2010-10-01

    Soft x-ray emission from a Mather-type plasma-focus device (PF-1000) operated at ∼400 kJ was measured. The high density and temperature plasma were generated by the discharge in the deuterium-argon gas mixture in the modified (high-current) plasma-focus configuration. A spherically bent mica crystal spectrograph viewing the axial output of the pinch region was used to measure the x-ray spectra. Spatially resolved spectra including the characteristic x-ray lines of highly ionized Ar and continua were recorded by means of an x-ray film. The x-ray emission of PF-1000 device was studied at different areas of the pinch.

  15. Spatially resolved high-resolution x-ray spectroscopy of high-current plasma-focus discharges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ZajaPc, S.; Rzadkiewicz, J.; Scholz, M.

    Soft x-ray emission from a Mather-type plasma-focus device (PF-1000) operated at {approx}400 kJ was measured. The high density and temperature plasma were generated by the discharge in the deuterium-argon gas mixture in the modified (high-current) plasma-focus configuration. A spherically bent mica crystal spectrograph viewing the axial output of the pinch region was used to measure the x-ray spectra. Spatially resolved spectra including the characteristic x-ray lines of highly ionized Ar and continua were recorded by means of an x-ray film. The x-ray emission of PF-1000 device was studied at different areas of the pinch.

  16. Circuit engineering principles for construction of bipolar large-scale integrated circuit storage devices and very large-scale main memory

    NASA Astrophysics Data System (ADS)

    Neklyudov, A. A.; Savenkov, V. N.; Sergeyez, A. G.

    1984-06-01

    Memories are improved by increasing speed or the memory volume on a single chip. The most effective means for increasing speeds in bipolar memories are current control circuits with the lowest extraction times for a specific power consumption (1/4 pJ/bit). The control current circuitry involves multistage current switches and circuits accelerating transient processes in storage elements and links. Circuit principles for the design of bipolar memories with maximum speeds for an assigned minimum of circuit topology are analyzed. Two main classes of storage with current control are considered: the ECL type and super-integrated injection type storage with data capacities of N = 1/4 and N 4/16, respectively. The circuits reduce logic voltage differentials and the volumes of lexical and discharge buses and control circuit buses. The limiting speed is determined by the antiinterference requirements of the memory in storage and extraction modes.

  17. Numerical simulation of the coaxial magneto-plasma accelerator and non-axisymmetric radio frequency discharge

    NASA Astrophysics Data System (ADS)

    Kuzenov, V. V.; Ryzhkov, S. V.; Frolko, P. A.

    2017-05-01

    The paper presents the results of mathematical modeling of physical processes in electronic devices such as helicon discharge and coaxial pulsed plasma thruster. A mathematical model of coaxial magneto-plasma accelerator (with a preionization helicon discharge), which allows estimating the transformation of one form of energy to another, as well as to evaluate the level of the contribution of different types of energy, the increase in mass of the accelerated plasmoid in the process of changing the speed. Main plasma parameters with experimental data were compared.

  18. Note: Arc discharge plasma source with plane segmented LaB{sub 6} cathode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akhmetov, T. D., E-mail: t.d.akhmetov@inp.nsk.su; Davydenko, V. I.; Ivanov, A. A.

    2016-05-15

    A plane cathode composed of close-packed hexagonal LaB{sub 6} (lanthanum hexaboride) segments is described. The 6 cm diameter circular cathode is heated by radiation from a graphite foil flat spiral. The cathode along with a hollow copper anode is used for the arc discharge plasma production in a newly developed linear plasma device. A separately powered coil located around the anode is used to change the magnetic field strength and geometry in the anode region. Different discharge regimes were realized using this coil.

  19. Long-term survival following in-hospital cardiac arrest: A matched cohort study☆

    PubMed Central

    Feingold, Paul; Mina, Michael J.; Burke, Rachel M.; Hashimoto, Barry; Gregg, Sara; Martin, Greg S.; Leeper, Kenneth; Buchman, Timothy

    2016-01-01

    Background Each year, 200,000 patients undergo an in-hospital cardiac arrest (IHCA), with approximately 15–20% surviving to discharge. Little is known, however, about the long-term prognosis of these patients after discharge. Previous efforts to describe out-of-hospital survival of IHCA patients have been limited by small sample sizes and narrow patient populations Methods A single institution matched cohort study was undertaken to describe mortality following IHCA. Patients surviving to discharge following an IHCA between 2008 and 2010 were matched on age, sex, race and hospital admission criteria with non-IHCA hospital controls and follow-up between 9 and 45 months. Kaplan–Meier curves and Cox PH models assessed differences in survival. Results Of the 1262 IHCAs, 20% survived to hospital discharge. Of those discharged, survival at 1 year post-discharge was 59% for IHCA patients and 82% for controls (p < 0.0001). Hazard ratios (IHCA vs. controls) for mortality were greatest within the 90 days following discharge (HR = 2.90, p < 0.0001) and decreased linearly thereafter, with those surviving to one year post-discharge having an HR for mortality below 1.0. Survival after discharge varied amongst IHCA survivors. When grouped by discharge destination, out of hospital survival varied; in fact, IHCA patients discharged home without services demonstrated no survival difference compared to their non-IHCA controls (HR 1.10, p = 0.72). IHCA patients discharged to long-term hospital care or hospice, however, had a significantly higher mortality compared to matched controls (HR 3.91 and 20.3, respectively; p < 0.0001). Conclusion Among IHCA patients who survive to hospital discharge, the highest risk of death is within the first 90 days after discharge. Additionally, IHCA survivors overall have increased long-term mortality vs. controls. Survival rates were varied widely with different discharge destinations, and those discharged to home, skilled nursing facilities or to rehabilitation services had survival rates no different than controls. Thus, increased mortality was primarily driven by patients discharged to long-term care or hospice. PMID:26703463

  20. A liquid-delivery device that provides precise reward control for neurophysiological and behavioral experiments.

    PubMed

    Mitz, Andrew R

    2005-10-15

    Behavioral neurophysiology and other kinds of behavioral research often involve the delivery of liquid rewards to experimental subjects performing some kind of operant task. Available systems use gravity or pumps to deliver these fluids, but such methods are poorly suited to moment-to-moment control of the volume, timing, and type of fluid delivered. The design described here overcomes these limitations using an electronic control unit, a pressurized reservoir unit, and an electronically controlled solenoid. The control unit monitors reservoir pressure and provides precisely timed solenoid activation signals. It also stores calibration tables and does on-the-fly interpolation to support computer-controlled delivery calibrated directly in milliliters. The reservoir provides pressurized liquid to a solenoid mounted near the subject. Multiple solenoids, each supplied by a separate reservoir unit and control unit, can be stacked in close proximity to allow instantaneous selection of which liquid reward is delivered. The precision of droplet delivery was verified by weighing discharged droplets on a commercial analytical balance.

  1. Method for preventing jamming conditions in a compression device

    DOEpatents

    Williams, Paul M.; Faller, Kenneth M.; Bauer, Edward J.

    2002-06-18

    A compression device for feeding a waste material to a reactor includes a waste material feed assembly having a hopper, a supply tube and a compression tube. Each of the supply and compression tubes includes feed-inlet and feed-outlet ends. A feed-discharge valve assembly is located between the feed-outlet end of the compression tube and the reactor. A feed auger-screw extends axially in the supply tube between the feed-inlet and feed-outlet ends thereof. A compression auger-screw extends axially in the compression tube between the feed-inlet and feed-outlet ends thereof. The compression tube is sloped downwardly towards the reactor to drain fluid from the waste material to the reactor and is oriented at generally right angle to the supply tube such that the feed-outlet end of the supply tube is adjacent to the feed-inlet end of the compression tube. A programmable logic controller is provided for controlling the rotational speed of the feed and compression auger-screws for selectively varying the compression of the waste material and for overcoming jamming conditions within either the supply tube or the compression tube.

  2. The logistics and cost-effectiveness of circulatory support: advantages of the ABIOMED BVS 5000.

    PubMed

    Couper, G S; Dekkers, R J; Adams, D H

    1999-08-01

    In 1994, the ABIOMED BVS 5000 was incorporated into our acute cardiac assist armamentarium. This report is a general overview of our experience. A hypothetical cost analysis focusing on specific devices and device-related personnel contrasted the BVS 5000 with our prior model of centrifugal pump use. In 3 years, 22 patients were supported with the BVS 5000, as a biventricular assist device in 40%, right ventricular assist device in 27%, and left ventricular assist device in 32%. Indications were postcardiotomy support in 12, acute myocarditis in 2, bridge to transplant in 4, and failed heart transplant in 4. The cost analysis was performed retrospectively. The actual cost of disposable blood pumps, including replacement pumps, and cannulae constituted the BVS cost. The hypothetical centrifugal costs included the disposables, replacement cones, as well as the labor costs of the continuous perfusionist coverage. Of the 22 patients, 10 (45%) were weaned and 13 (59%) were successfully discharged. Five patients were transplanted while on BVS 5000 support, accounting for a higher rate of discharge. Comparison of "actual" BVS costs with "projected" centrifugal costs revealed differences based upon the intended application of the BVS. In bridge-to-transplant patients with long duration of support, the daily cost of support was dramatically lower with the BVS 5000. For short-term postcardiotomy support, acute myocarditis, or failed transplant, the differences were small. Because the BVS 5000 was readily managed by the intensive care unit nursing staff, this system displaced centrifugal systems in our program. Outcome measures of weaning and successful discharge were improved relative to our prior experience with centrifugal pumps. Even without taking indirect costs into account, the hypothetical cost analysis supported continued use of the BVS system for acute cardiac assistance.

  3. Inadvertent defibrillator lead placement into the left ventricle after MitraClip implantation: A case report.

    PubMed

    Santarpia, Giuseppe; Passafaro, Francesco; Pasceri, Eugenia; Mongiardo, Annalisa; Curcio, Antonio; Indolfi, Ciro

    2018-05-01

    Inadvertent pacemaker/defibrillator lead placement into the left ventricle is an unusual cardiac device-related complication and its diagnosis is not always easy and often misunderstood. Thromboembolic events are frequently associated with this procedural complication. Percutaneous lead extraction should be performed when diagnosis is made early after device implantation while long-life oral anticoagulation is a wise option when the diagnosis is delayed and the lead is not removed. A 65-year-old man affected by dilated cardiomyopathy, previously treated with a percutaneous mitral valve repair, with 2 MitraClip devices, and later with dual chamber cardioverter/defibrillator implantation, returned in outpatient clinics 2 months after discharge for deterioration of dyspnea; transthoracic echocardiography revealed that the shock lead had been accidentally placed in the apex of the left ventricle. The unintentional lead malposition through the iatrogenic atrial septal defect and its presence into the mitral valve orifice, together with the 2 clip devices implanted, generated an acceleration of transvalvular diastolic flow, determining a moderate stenosis of the mitral valve, as well as promoting a worsening of the degree of valvular regurgitation. Oral anticoagulation therapy was started and a mechanical lead extraction was percutaneously performed. A new defibrillator lead was later appropriately positioned in the apex of the right ventricle. The patient was discharged 3 days after intervention and the follow-up, performed 1 month after discharge, was uneventful. Complex interventional procedures and implantation of multiple devices can increase procedural troubles and the risk of mechanical complications related to pacemaker/defibrillator implantation. Careful observation of the QRS complex morphology on the electrocardiogram (ECG), during paced rhythm, and the achievement of the echocardiographic examination, in the postprocedural phase, allow an early diagnosis of lead malposition.

  4. ELM mitigation techniques

    NASA Astrophysics Data System (ADS)

    Evans, T. E.

    2013-07-01

    Large edge-localized mode (ELM) control techniques must be developed to help ensure the success of burning and ignited fusion plasma devices such as tokamaks and stellarators. In full performance ITER tokamak discharges, with QDT = 10, the energy released by a single ELM could reach ˜30 MJ which is expected to result in an energy density of 10-15 MJ/m2on the divertor targets. This will exceed the estimated divertor ablation limit by a factor of 20-30. A worldwide research program is underway to develop various types of ELM control techniques in preparation for ITER H-mode plasma operations. An overview of the ELM control techniques currently being developed is discussed along with the requirements for applying these techniques to plasmas in ITER. Particular emphasis is given to the primary approaches, pellet pacing and resonant magnetic perturbation fields, currently being considered for ITER.

  5. Novel aspects of plasma control in ITER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humphreys, D.; Jackson, G.; Walker, M.

    2015-02-15

    ITER plasma control design solutions and performance requirements are strongly driven by its nuclear mission, aggressive commissioning constraints, and limited number of operational discharges. In addition, high plasma energy content, heat fluxes, neutron fluxes, and very long pulse operation place novel demands on control performance in many areas ranging from plasma boundary and divertor regulation to plasma kinetics and stability control. Both commissioning and experimental operations schedules provide limited time for tuning of control algorithms relative to operating devices. Although many aspects of the control solutions required by ITER have been well-demonstrated in present devices and even designed satisfactorily formore » ITER application, many elements unique to ITER including various crucial integration issues are presently under development. We describe selected novel aspects of plasma control in ITER, identifying unique parts of the control problem and highlighting some key areas of research remaining. Novel control areas described include control physics understanding (e.g., current profile regulation, tearing mode (TM) suppression), control mathematics (e.g., algorithmic and simulation approaches to high confidence robust performance), and integration solutions (e.g., methods for management of highly subscribed control resources). We identify unique aspects of the ITER TM suppression scheme, which will pulse gyrotrons to drive current within a magnetic island, and turn the drive off following suppression in order to minimize use of auxiliary power and maximize fusion gain. The potential role of active current profile control and approaches to design in ITER are discussed. Issues and approaches to fault handling algorithms are described, along with novel aspects of actuator sharing in ITER.« less

  6. Novel aspects of plasma control in ITER

    DOE PAGES

    Humphreys, David; Ambrosino, G.; de Vries, Peter; ...

    2015-02-12

    ITER plasma control design solutions and performance requirements are strongly driven by its nuclear mission, aggressive commissioning constraints, and limited number of operational discharges. In addition, high plasma energy content, heat fluxes, neutron fluxes, and very long pulse operation place novel demands on control performance in many areas ranging from plasma boundary and divertor regulation to plasma kinetics and stability control. Both commissioning and experimental operations schedules provide limited time for tuning of control algorithms relative to operating devices. Although many aspects of the control solutions required by ITER have been well-demonstrated in present devices and even designed satisfactorily formore » ITER application, many elements unique to ITER including various crucial integration issues are presently under development. We describe selected novel aspects of plasma control in ITER, identifying unique parts of the control problem and highlighting some key areas of research remaining. Novel control areas described include control physics understanding (e.g. current profile regulation, tearing mode suppression (TM)), control mathematics (e.g. algorithmic and simulation approaches to high confidence robust performance), and integration solutions (e.g. methods for management of highly-subscribed control resources). We identify unique aspects of the ITER TM suppression scheme, which will pulse gyrotrons to drive current within a magnetic island, and turn the drive off following suppression in order to minimize use of auxiliary power and maximize fusion gain. The potential role of active current profile control and approaches to design in ITER are discussed. Finally, issues and approaches to fault handling algorithms are described, along with novel aspects of actuator sharing in ITER.« less

  7. Development of alternative plasma sources for cavity ring-down measurements of mercury.

    PubMed

    Duan, Yixiang; Wang, Chuji; Scherrer, Susan T; Winstead, Christopher B

    2005-08-01

    We have been exploring innovative technologies for elemental and hyperfine structure measurements using cavity ring-down spectroscopy (CRDS) combined with various plasma sources. A laboratory CRDS system utilizing a tunable dye laser is employed in this work to demonstrate the feasibility of the technology. An in-house fabricated sampling system is used to generate aerosols from solution samples and introduce the aerosols into the plasma source. The ring-down signals are monitored using a photomultiplier tube and recorded using a digital oscilloscope interfaced to a computer. Several microwave plasma discharge devices are tested for mercury CRDS measurement. Various discharge tubes have been designed and tested to reduce background interference and increase the sample path length while still controlling turbulence generated from the plasma gas flow. Significant background reduction has been achieved with the implementation of the newly designed tube-shaped plasma devices, which has resulted in a detection limit of 0.4 ng/mL for mercury with the plasma source CRDS. The calibration curves obtained in this work readily show that linearity over 2 orders of magnitude can be obtained with plasma-CRDS for mercury detection. In this work, the hyperfine structure of mercury at the experimental plasma temperatures is clearly identified. We expect that plasma source cavity ring-down spectroscopy will provide enhanced capabilities for elemental and isotopic measurements.

  8. Understanding and predicting the dynamics of tokamak discharges during startup and rampdown

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, G. L.; Politzer, P. A.; Humphreys, D. A.

    Understanding the dynamics of plasma startup and termination is important for present tokamaks and for predictive modeling of future burning plasma devices such as ITER. We report on experiments in the DIII-D tokamak that explore the plasma startup and rampdown phases and on the benchmarking of transport models. Key issues have been examined such as plasma initiation and burnthrough with limited inductive voltage and achieving flattop and maximum burn within the technical limits of coil systems and their actuators while maintaining the desired q profile. Successful rampdown requires scenarios consistent with technical limits, including controlled H-L transitions, while avoiding verticalmore » instabilities, additional Ohmic transformer flux consumption, and density limit disruptions. Discharges were typically initiated with an inductive electric field typical of ITER, 0.3 V/m, most with second harmonic electron cyclotron assist. A fast framing camera was used during breakdown and burnthrough of low Z impurity charge states to study the formation physics. An improved 'large aperture' ITER startup scenario was developed, and aperture reduction in rampdown was found to be essential to avoid instabilities. Current evolution using neoclassical conductivity in the CORSICA code agrees with rampup experiments, but the prediction of the temperature and internal inductance evolution using the Coppi-Tang model for electron energy transport is not yet accurate enough to allow extrapolation to future devices.« less

  9. Plasma mixing glow discharge device for analytical applications

    DOEpatents

    Pinnaduwage, Lal A.

    1999-01-01

    An instrument for analyzing a sample has an enclosure that forms a chamber containing an anode which divides the chamber into a discharge region and an analysis region. A gas inlet and outlet are provided to introduce and exhaust a rare gas into the discharge region. A cathode within the discharge region has a plurality of pins projecting in a geometric pattern toward the anode for exciting the gas and producing a plasma discharge between the cathode and the anode. Low energy electrons (e.g. <0.5 eV) pass into the analysis region through an aperture. The sample to be analyzed is placed into the analysis region and bombarded by the metastable rare gas atoms and the low energy electrons extracted into from the discharge region. A mass or optical spectrometer can be coupled to a port of the analysis region to analyze the resulting ions and light emission.

  10. Plasma mixing glow discharge device for analytical applications

    DOEpatents

    Pinnaduwage, L.A.

    1999-04-20

    An instrument for analyzing a sample has an enclosure that forms a chamber containing an anode which divides the chamber into a discharge region and an analysis region. A gas inlet and outlet are provided to introduce and exhaust a rare gas into the discharge region. A cathode within the discharge region has a plurality of pins projecting in a geometric pattern toward the anode for exciting the gas and producing a plasma discharge between the cathode and the anode. Low energy electrons (e.g. <0.5 eV) pass into the analysis region through an aperture. The sample to be analyzed is placed into the analysis region and bombarded by the metastable rare gas atoms and the low energy electrons extracted into from the discharge region. A mass or optical spectrometer can be coupled to a port of the analysis region to analyze the resulting ions and light emission. 3 figs.

  11. Electric-discharge-pumped nitrogen ion laser

    NASA Technical Reports Server (NTRS)

    Laudenslager, J. B.; Pacala, T. J.; Wittig, C.

    1976-01-01

    The routine operation is described of an N2(+) laser oscillating on the first negative band system of N2(+) which is produced in a preionized transverse discharge device. The discharge design incorporates features which favor the efficient production of the excitation transfer reaction of He2(+) with N2. A capacitive discharge switched by means of a high-current grounded grid thyratron is used to meet the design requirement of a volumetric discharge in high-pressure gas mixtures where the electric discharge need not have an ultrafast rise time (greater than 10 nsec) but should be capable of transferring large quantities of stored electric energy to the gas. A peak power of 180 kW in an 8-nsec laser pulse was obtained with a 0.1% mixture of N2 in helium at a total pressure of 3 atm. The most intense laser oscillations were observed on the (0,1) vibrational transition at 427.8 microns.

  12. Effect of distribution, interface property and density of hydrogel-embedded vertically aligned carbon nanotube arrays on the properties of a flexible solid state supercapacitor

    NASA Astrophysics Data System (ADS)

    Zhu, Qi; Yuan, Xietao; Zhu, Yihao; Ni, Jiangfeng; Zhang, Xiaohua; Yang, Zhaohui

    2018-05-01

    In this paper we fabricate a robust flexible solid-state supercapacitor (FSC) device by embedding a conductive poly(vinyl alcohol) hydrogel into aligned carbon nanotube (CNT) arrays. We carefully investigate the effect of distribution, interface properties and densification of CNTs in the gel matrix on the electrochemical properties of an FSC. The total electrochemical capacitance of the device is measured to be 227 mF cm‑3 with a maximum energy density of 0.02 mWh cm‑3, which is dramatically enhanced compared with a similar device composed of non-parallel CNTs. Additionally, controllable in situ electrochemical oxidation greatly improved the compatibility between the hydrophobic CNTs and the hydrophilic hydrogel, which decreased the resistance of the device and introduced extra pseudocapacitance. After such oxidation treatment the energy storage ability further doubled to 430 mF cm‑3 with a maximum energy density of 0.04 mWh cm‑3 . The FSCs based on densified CNT arrays exhibited a much higher volumetric capacitance of 1140 mF cm‑3 and a larger energy density of 0.1 mWh cm‑3, with a large power density of 14 mW cm‑3. All devices show excellent stability of capacitance after at least 10 000 charge–discharge cycles with a loss of less than 2%. These easy-to-assemble hybrid arrays thus potentially provide a new method for manufacturing wearable devices and implantable medical devices.

  13. Effect of distribution, interface property and density of hydrogel-embedded vertically aligned carbon nanotube arrays on the properties of a flexible solid state supercapacitor.

    PubMed

    Zhu, Qi; Yuan, Xietao; Zhu, Yihao; Ni, Jiangfeng; Zhang, Xiaohua; Yang, Zhaohui

    2018-05-11

    In this paper we fabricate a robust flexible solid-state supercapacitor (FSC) device by embedding a conductive poly(vinyl alcohol) hydrogel into aligned carbon nanotube (CNT) arrays. We carefully investigate the effect of distribution, interface properties and densification of CNTs in the gel matrix on the electrochemical properties of an FSC. The total electrochemical capacitance of the device is measured to be 227 mF cm -3 with a maximum energy density of 0.02 mWh cm -3 , which is dramatically enhanced compared with a similar device composed of non-parallel CNTs. Additionally, controllable in situ electrochemical oxidation greatly improved the compatibility between the hydrophobic CNTs and the hydrophilic hydrogel, which decreased the resistance of the device and introduced extra pseudocapacitance. After such oxidation treatment the energy storage ability further doubled to 430 mF cm -3 with a maximum energy density of 0.04 mWh cm -3 . The FSCs based on densified CNT arrays exhibited a much higher volumetric capacitance of 1140 mF cm -3 and a larger energy density of 0.1 mWh cm -3 , with a large power density of 14 mW cm -3 . All devices show excellent stability of capacitance after at least 10 000 charge-discharge cycles with a loss of less than 2%. These easy-to-assemble hybrid arrays thus potentially provide a new method for manufacturing wearable devices and implantable medical devices.

  14. High Per formance and Flexible Supercapacitors based on Carbonized Bamboo Fibers for Wide Temperature Applications

    PubMed Central

    Zequine, Camila; Ranaweera, C. K.; Wang, Z.; Singh, Sweta; Tripathi, Prashant; Srivastava, O. N.; Gupta, Bipin Kumar; Ramasamy, K.; Kahol, P. K.; Dvornic, P. R.; Gupta, Ram K.

    2016-01-01

    High performance carbonized bamboo fibers were synthesized for a wide range of temperature dependent energy storage applications. The structural and electrochemical properties of the carbonized bamboo fibers were studied for flexible supercapacitor applications. The galvanostatic charge-discharge studies on carbonized fibers exhibited specific capacity of ~510F/g at 0.4 A/g with energy density of 54 Wh/kg. Interestingly, the carbonized bamboo fibers displayed excellent charge storage stability without any appreciable degradation in charge storage capacity over 5,000 charge-discharge cycles. The symmetrical supercapacitor device fabricated using these carbonized bamboo fibers exhibited an areal capacitance of ~1.55 F/cm2 at room temperature. In addition to high charge storage capacity and cyclic stability, the device showed excellent flexibility without any degradation to charge storage capacity on bending the electrode. The performance of the supercapacitor device exhibited ~65% improvement at 70 °C compare to that at 10 °C. Our studies suggest that carbonized bamboo fibers are promising candidates for stable, high performance and flexible supercapacitor devices. PMID:27546225

  15. High Per formance and Flexible Supercapacitors based on Carbonized Bamboo Fibers for Wide Temperature Applications.

    PubMed

    Zequine, Camila; Ranaweera, C K; Wang, Z; Singh, Sweta; Tripathi, Prashant; Srivastava, O N; Gupta, Bipin Kumar; Ramasamy, K; Kahol, P K; Dvornic, P R; Gupta, Ram K

    2016-08-22

    High performance carbonized bamboo fibers were synthesized for a wide range of temperature dependent energy storage applications. The structural and electrochemical properties of the carbonized bamboo fibers were studied for flexible supercapacitor applications. The galvanostatic charge-discharge studies on carbonized fibers exhibited specific capacity of ~510F/g at 0.4 A/g with energy density of 54 Wh/kg. Interestingly, the carbonized bamboo fibers displayed excellent charge storage stability without any appreciable degradation in charge storage capacity over 5,000 charge-discharge cycles. The symmetrical supercapacitor device fabricated using these carbonized bamboo fibers exhibited an areal capacitance of ~1.55 F/cm(2) at room temperature. In addition to high charge storage capacity and cyclic stability, the device showed excellent flexibility without any degradation to charge storage capacity on bending the electrode. The performance of the supercapacitor device exhibited ~65% improvement at 70 °C compare to that at 10 °C. Our studies suggest that carbonized bamboo fibers are promising candidates for stable, high performance and flexible supercapacitor devices.

  16. High Per formance and Flexible Supercapacitors based on Carbonized Bamboo Fibers for Wide Temperature Applications

    NASA Astrophysics Data System (ADS)

    Zequine, Camila; Ranaweera, C. K.; Wang, Z.; Singh, Sweta; Tripathi, Prashant; Srivastava, O. N.; Gupta, Bipin Kumar; Ramasamy, K.; Kahol, P. K.; Dvornic, P. R.; Gupta, Ram K.

    2016-08-01

    High performance carbonized bamboo fibers were synthesized for a wide range of temperature dependent energy storage applications. The structural and electrochemical properties of the carbonized bamboo fibers were studied for flexible supercapacitor applications. The galvanostatic charge-discharge studies on carbonized fibers exhibited specific capacity of ~510F/g at 0.4 A/g with energy density of 54 Wh/kg. Interestingly, the carbonized bamboo fibers displayed excellent charge storage stability without any appreciable degradation in charge storage capacity over 5,000 charge-discharge cycles. The symmetrical supercapacitor device fabricated using these carbonized bamboo fibers exhibited an areal capacitance of ~1.55 F/cm2 at room temperature. In addition to high charge storage capacity and cyclic stability, the device showed excellent flexibility without any degradation to charge storage capacity on bending the electrode. The performance of the supercapacitor device exhibited ~65% improvement at 70 °C compare to that at 10 °C. Our studies suggest that carbonized bamboo fibers are promising candidates for stable, high performance and flexible supercapacitor devices.

  17. Characterization of Bonding Between Poly(dimethylsiloxane) and Cyclic Olefin Coplymer Using Corona Discharge Induced Grafting Polymerization

    PubMed Central

    Liu, Ke; Gu, Pan; Hamaker, Kiri; Fan, Z. Hugh

    2011-01-01

    Thermoplastics have been increasingly used for fabricating microfluidic devices because of their low cost, mechanical/biocompatible attributes, and well-established manufacturing processes. However, there is sometimes a need to integrate such a device with components made from other materials such as polydimethylsiloxane (PDMS). Bonding thermoplastics with PDMS to produce hybrid devices is not straightforward. We have reported our method to modify the surface property of a cyclic olefin copolymer (COC) substrate by using corona discharge and grafting polymerization of 3-(trimethoxysilyl)propyl methacrylate; the modified surface enabled strong bonding of COC with PDMS. In this paper, we report our studies on the surface modification mechanism using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and contact angle measurement. Using this bonding method, we fabricated a three-layer (COC/PDMS/COC) hybrid device consisting of elastomer-based valve arrays. The microvalve operation was confirmed through the displacement of a dye solution in a fluidic channel when the elastomer membrane was pneumatically actuated. Valve-enabled microfluidic handling was demonstrated. PMID:21962541

  18. Scaling the Shear-flow Stabilized Z-pinch to Reactor Conditions

    NASA Astrophysics Data System (ADS)

    McLean, H. S.; Schmidt, A.; Shumlak, U.; Nelson, B. A.; Golingo, R. P.; Cleveau, E.

    2015-11-01

    We present a conceptual design along with scaling calculations for a pulsed fusion reactor based on the shear-flow-stabilized Z-pinch device. Experiments performed on the ZaP device, at the University of Washington, have demonstrated stable operation for durations of 20 usec at ~100kA discharge current for pinches that are ~1 cm in diameter and 100 cm long. The inverse of the pinch diameter and plasma energy density scale strongly with pinch current and calculations show that maintaining stabilization durations of ~7 usec for increased discharge current (~15x) in a shortened pinch (10 cm) results in a pinch diameter of ~200 um and plasma conditions that approach those needed to support significant fusion burn and energy gain (Ti ~ 30keV, density ~ 3e26/m3, ntau ~1.4e20 sec/m3). Compelling features of the concept include operation at modest discharge current (1.5 MA) and voltage (40kV) along with direct adoption of liquid metals for at least one electrode--technological capabilities that have been proven in existing, commercial, pulse power devices such as large ignitrons. LLNL-ABS-674920. This work performed under the auspices of the U.S. Department of Energy ARPAe ALPHA Program by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  19. Supercapacitors based on c-type cytochromes using conductive nanostructured networks of living bacteria.

    PubMed

    Malvankar, Nikhil S; Mester, Tünde; Tuominen, Mark T; Lovley, Derek R

    2012-02-01

    Supercapacitors have attracted interest in energy storage because they have the potential to complement or replace batteries. Here, we report that c-type cytochromes, naturally immersed in a living, electrically conductive microbial biofilm, greatly enhance the device capacitance by over two orders of magnitude. We employ genetic engineering, protein unfolding and Nernstian modeling for in vivo demonstration of charge storage capacity of c-type cytochromes and perform electrochemical impedance spectroscopy, cyclic voltammetry and charge-discharge cycling to confirm the pseudocapacitive, redox nature of biofilm capacitance. The biofilms also show low self-discharge and good charge/discharge reversibility. The superior electrochemical performance of the biofilm is related to its high abundance of cytochromes, providing large electron storage capacity, its nanostructured network with metallic-like conductivity, and its porous architecture with hydrous nature, offering prospects for future low cost and environmentally sustainable energy storage devices. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Cardiac pacemaker battery discharge after external electrical cardioversion for broad QRS Complex Tachycardia.

    PubMed

    Annamaria, Martino; Andrea, Scapigliati; Michela, Casella; Tommaso, Sanna; Gemma, Pelargonio; Antonio, Dello Russo; Roberto, Zamparelli; Stefano, De Paulis; Fulvio, Bellocci; Rocco, Schiavello

    2008-08-01

    External electrical cardioversion or defibrillation may be necessary in patients with implanted cardiac pacemaker (PM) or implantable cardioverter defibrillator (ICD). Sudden discharge of high electrical energy employed in direct current (DC) transthoracic countershock may damage the PM/ICD system resulting in a series of possible device malfunctions. For this reason, when defibrillation or cardioversion must be attempted in a patient with a PM or ICD, some precautions should be taken, particularly in PM dependent patients, in order to prevent damage to the device. We report the case of a 76-year-old woman with a dual chamber PM implanted in the right subclavicular region, who received two consecutive transthoracic DC shocks to treat haemodynamically unstable broad QRS complex tachycardia after cardiac surgery performed with a standard sternotomic approach. Because of the sternal wound and thoracic drainage tubes together with the severe clinical compromise, the anterior paddle was positioned near the pulse generator. At the following PM test, a complete battery discharge was detected.

  1. Two-stage plasma gun based on a gas discharge with a self-heating hollow emitter.

    PubMed

    Vizir, A V; Tyunkov, A V; Shandrikov, M V; Oks, E M

    2010-02-01

    The paper presents the results of tests of a new compact two-stage bulk gas plasma gun. The plasma gun is based on a nonself-sustained gas discharge with an electron emitter based on a discharge with a self-heating hollow cathode. The operating characteristics of the plasma gun are investigated. The discharge system makes it possible to produce uniform and stable gas plasma in the dc mode with a plasma density up to 3x10(9) cm(-3) at an operating gas pressure in the vacuum chamber of less than 2x10(-2) Pa. The device features high power efficiency, design simplicity, and compactness.

  2. The cold and atmospheric-pressure air surface barrier discharge plasma for large-area sterilization applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Dacheng; Department of Aeronautics, Fujian Key Laboratory for Plasma and Magnetic Resonance, School of Physics and Mechanical and Electrical Engineering, Xiamen University, Xiamen, Fujian 361005; Zhao Di

    2011-04-18

    This letter reports a stable air surface barrier discharge device for large-area sterilization applications at room temperature. This design may result in visually uniform plasmas with the electrode area scaled up (or down) to the required size. A comparison for the survival rates of Escherichia coli from air, N{sub 2} and O{sub 2} surface barrier discharge plasmas is presented, and the air surface plasma consisting of strong filamentary discharges can efficiently kill Escherichia coli. Optical emission measurements indicate that reactive species such as O and OH generated in the room temperature air plasmas play a significant role in the sterilizationmore » process.« less

  3. Development of high-availability ATCA/PCIe data acquisition instrumentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Correia, Miguel; Sousa, Jorge; Batista, Antonio J.N.

    2015-07-01

    Latest Fusion energy experiments envision a quasi-continuous operation regime. In consequence, the largest experimental devices, currently in development, specify high-availability (HA) requirements for the whole plant infrastructure. HA features enable the whole facility to perform seamlessly in the case of failure of any of its components, coping with the increasing duration of plasma discharges (steady-state) and assuring safety of equipment, people, environment and investment. IPFN developed a control and data acquisition system, aiming for fast control of advanced Fusion devices, which is thus required to provide such HA features. The system is based on in-house developed Advanced Telecommunication Computing Architecturemore » (ATCA) instrumentation modules - IO blades and data switch blades, establishing a PCIe network on the ATCA shelf's back-plane. The data switch communicates to an external host computer through a PCIe data network. At the hardware management level, the system architecture takes advantage of ATCA native redundancy and hot swap specifications to implement fail-over substitution of IO or data switch blades. A redundant host scheme is also supported by the ATCA/PCIe platform. At the software level, PCIe provides implementation of hot plug services, which translate the hardware changes to the corresponding software/operating system devices. The paper presents how the ATCA and PCIe based system can be setup to perform with the desired degree of HA, thus being suitable for advanced Fusion control and data acquisition systems. (authors)« less

  4. Two-Dimensional Si-Nanodisk Array Fabricated Using Bio-Nano-Process and Neutral Beam Etching for Realistic Quantum Effect Devices

    NASA Astrophysics Data System (ADS)

    Huang, Chi-Hsien; Igarashi, Makoto; Woné, Michel; Uraoka, Yukiharu; Fuyuki, Takashi; Takeguchi, Masaki; Yamashita, Ichiro; Samukawa, Seiji

    2009-04-01

    A high-density, large-area, and uniform two-dimensional (2D) Si-nanodisk array was successfully fabricated using the bio-nano-process, advanced etching techniques, including a treatment using nitrogen trifluoride and hydrogen radical (NF3 treatment) and a damage-free chlorine neutral beam (NB). By using the surface oxide formed by neutral beam oxidation (NBO) for the preparation of a 2D nanometer-sized iron core array as an etching mask, a well-ordered 2D Si-nanodisk array was obtained owing to the dangling bonds of the surface oxide. By changing the NF3 treatment time without changing the quantum effect of each nanodisk, we could control the gap between adjacent nanodisks. A device with two electrodes was fabricated to investigate the electron transport in a 2D Si-nanodisk array. Current fluctuation and time-dependent currents were clearly observed owing to the charging-discharging of the nanodisks adjacent to the current percolation path. The new structure may have great potential for future novel quantum effect devices.

  5. Research on power equalization using a low-loss DC-DC chopper for lithium-ion batteries in electric vehicle

    NASA Astrophysics Data System (ADS)

    Wei, Y. W.; Liu, G. T.; Xiong, S. N.; Cheng, J. Z.; Huang, Y. H.

    2017-01-01

    In the near future, electric vehicle is entirely possible to replace traditional cars due to its zero pollution, small power consumption and low noise. Lithium-ion battery, which owns lots of advantages such as lighter and larger capacity and longer life, has been widely equipped in different electric cars all over the world. One disadvantage of this energy storage device is state of charge (SOC) difference among these cells in each series branch. If equalization circuit is not allocated for series-connected batteries, its safety and lifetime are declined due to over-charge or over-discharge happened, unavoidably. In this paper, a novel modularized equalization circuit, based on DC-DC chopper, is proposed to supply zero loss in theory. The proposed circuit works as an equalizer when Lithium-ion battery pack is charging or discharging or standing idle. Theoretical analysis and control method have been finished, respectively. Simulation and small scale experiments are applied to verify its real effect.

  6. Association between cell-derived microparticles and adverse events in patients with nonpulsatile left ventricular assist devices

    PubMed Central

    Nascimbene, Angelo; Hernandez, Ruben; George, Joggy K.; Parker, Anita; Bergeron, Angela L.; Pradhan, Subhashree; Vijayan, K. Vinod; Civitello, Andrew; Simpson, Leo; Nawrot, Maria; Lee, Vei-Vei; Mallidi, Hari R.; Delgado, Reynolds M.; Dong, Jing Fei; Frazier, O.H.

    2014-01-01

    BACKGROUND Continuous-flow left ventricular assist devices (LVADs) expose blood cells to high shear stress, potentially resulting in the production of microparticles that express phosphatidylserine (PS+) and promote coagulation and inflammation. In this prospective study, we attempted to determine whether PS+ microparticle levels correlate with clinical outcomes in LVAD-supported patients. METHODS We enrolled 20 patients undergoing implantation of the HeartMate II LVAD and 10 healthy controls who provided reference values for the microparticle assays. Plasma was collected before LVAD implantation, at discharge, at 3-month follow-up, and when an adverse clinical event occurred. We quantified PS+ microparticles in the plasma using flow cytometry. RESULTS During the study period, 8 patients developed adverse clinical events: ventricular tachycardia storm (n=1), non–ST-elevation myocardial infarction (n=2), arterial thrombosis (n=2), gastrointestinal bleeding (n=2), and stroke (n=3). Levels of PS+ microparticles were higher in patients at baseline than in healthy controls (2.11%±1.26 vs 0.69±0.46, P=0.007). After LVAD implantation, patient PS+ microparticle levels increased to 2.39%±1.22 at discharge and then leveled to 1.97%±1.25 at 3-month follow-up. Importantly, patients who developed an adverse event had significantly higher levels of PS+ microparticles than did patients with no events (3.82%±1.17 vs 1.57%±0.59, P<0.001), even though the 2 patient groups did not markedly differ in other clinical and hematologic parameters. CONCLUSIONS Our results suggest that an elevation of PS+ microparticle levels may be associated with adverse clinical events. Thus, measuring PS+ microparticle levels in LVAD-supported patients may help identify patients at increased risk for adverse events. PMID:24656391

  7. The eddy current probe array for Keda Torus eXperiment.

    PubMed

    Li, Zichao; Li, Hong; Tu, Cui; Hu, Jintong; You, Wei; Luo, Bing; Tan, Mingsheng; Adil, Yolbarsop; Wu, Yanqi; Shen, Biao; Xiao, Bingjia; Zhang, Ping; Mao, Wenzhe; Wang, Hai; Wen, Xiaohui; Zhou, Haiyang; Xie, Jinlin; Lan, Tao; Liu, Adi; Ding, Weixing; Xiao, Chijin; Liu, Wandong

    2016-11-01

    In a reversed field pinch device, the conductive shell is placed as close as possible to the plasma so as to balance the plasma during discharge. Plasma instabilities such as the resistive wall mode and certain tearing modes, which restrain the plasma high parameter operation, respond closely with conditions in the wall, in essence the eddy current present. Also, the effect of eddy currents induced by the external coils cannot be ignored when active control is applied to control instabilities. One diagnostic tool, an eddy current probe array, detects the eddy current in the composite shell. Magnetic probes measuring differences between the inner and outer magnetic fields enable estimates of the amplitude and angle of these eddy currents. Along with measurements of currents through the copper bolts connecting the poloidal shield copper shells, we can obtain the eddy currents over the entire shell. Magnetic field and eddy current resolutions approach 2 G and 6 A, respectively. Additionally, the vortex electric field can be obtained by eddy current probes. As the conductivity of the composite shell is high, the eddy current probe array is very sensitive to the electric field and has a resolution of 0.2 mV/cm. In a bench test experiment using a 1/4 vacuum vessel, measurements of the induced eddy currents are compared with simulation results based on a 3D electromagnetic model. The preliminary data of the eddy currents have been detected during discharges in a Keda Torus eXperiment device. The typical value of toroidal and poloidal eddy currents across the magnetic probe coverage rectangular area could reach 3.0 kA and 1.3 kA, respectively.

  8. Determination of plasma displacement based on eddy current diagnostics for the Keda Torus eXperiment

    NASA Astrophysics Data System (ADS)

    Tu, Cui; Li, Hong; Liu, Adi; Li, Zichao; Zhang, Yuan; You, Wei; Tan, Mingsheng; Luo, Bing; Adil, Yolbarsop; Hu, Jintong; Wu, Yanqi; Yan, Wentan; Xie, Jinlin; Lan, Tao; Mao, Wenzhe; Ding, Weixing; Xiao, Chijin; Zhuang, Ge; Liu, Wandong

    2017-10-01

    The measurement of plasma displacement is one of the most basic diagnostic tools in the study of plasma equilibrium and control in a toroidal magnetic confinement configuration. During pulse discharge, the eddy current induced in the vacuum vessel and shell will produce an additional magnetic field at the plasma boundary, which will have a significant impact on the measurement of plasma displacement using magnetic probes. In the newly built Keda Torus eXperiment (KTX) reversed field pinch device, the eddy current in the composite shell can be obtained at a high spatial resolution. This device offers a new way to determine the plasma displacement for KTX through the multipole moment expansion of the eddy current, which can be obtained by unique probe arrays installed on the inner and outer surfaces of the composite shell. In an ideal conductor shell approximation, the method of multipole moment expansion of the poloidal eddy current for measuring the plasma displacement in toroidal coordinates, is more accurate than the previous method based on symmetrical magnetic probes, which yielded results in cylindrical coordinates. Through an analytical analysis of many current filaments and numerical simulations of the current distribution in toroidal coordinates, the scaling relation between the first moment of the eddy current and the center of gravity of the plasma current is obtained. In addition, the origin of the multipole moment expansion of the eddy current in KTX is retrieved simultaneously. Preliminary data on the plasma displacement have been collected using these two methods during short pulse discharges in the KTX device, and the results of the two methods are in reasonable agreement.

  9. Spatial-temporal evolution of self-organized loop-patterns on a water surface and a diffuse discharge in the gap

    NASA Astrophysics Data System (ADS)

    Li, Xuechen; Geng, Jinling; Jia, Pengying; Zhang, Panpan; Zhang, Qi; Li, Yaru

    2017-11-01

    Excited by an alternating current voltage, a patterned discharge and a diffuse discharge are generated in a needle to liquid configuration. Using an intensified charge-coupled device (ICCD), temporal evolution of the discharge between the two electrodes is investigated for the diffuse mode and the patterned mode, respectively. For the diffuse mode, the positive discharge is in a glow regime, and the negative discharge is in a Townsend discharge regime. For the patterned mode, the discharge always belongs to the Townsend discharge regime. Moreover, in the patterned mode, various patterns including the single loop, single loop with the surrounding corona, triple loops, and concentric loops with a central spot are observed on the water surface with the increasing positive peak-value of the applied voltage (Upp). Temporally resolved images of the loop-patterns are captured on the water surface. From the electrical measurements and the ICCD imaging, it is found that the loop pattern emerges after the discharge bridges the two electrodes. Then, it begins to evolve and finally degenerates with the decrease in the discharge current. The pattern does not disappear until the discharge quenches. Formation of the loop-patterns is attributed to the role of negative ions.

  10. 75 FR 29757 - New York State Prohibition of Discharges of Vessel Sewage; Final Affirmative Determination

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-27

    ..., 4 dispose of wastes to an on-site septic system, 21 dispose to a holding tank and 62 dispose to a... and regulated septic tanks or holding tanks for transport to a sewage treatment plant. Online maps are... are in a No Discharge Zone. A Type III marine sanitation device (holding tank) is the only type that...

  11. The Use of DC Glow Discharges as Undergraduate Educational Tools

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephanie A. Wissel and Andrew Zwicker, Jerry Ross, and Sophia Gershman

    2012-10-09

    Plasmas have a beguiling way of getting students excited and interested in physics. We argue that plasmas can and should be incorporated into the undergraduate curriculum as both demonstrations and advanced investigations of electromagnetism and quantum effects. Our device, based on a direct current (DC) glow discharge tube, allows for a number of experiments into topics such as electrical breakdown, spectroscopy, magnetism, and electron temperature.

  12. Evaluating the performance of microbial fuel cells powering electronic devices

    NASA Astrophysics Data System (ADS)

    Dewan, Alim; Donovan, Conrad; Heo, Deukhyoun; Beyenal, Haluk

    A microbial fuel cell (MFC) is capable of powering an electronic device if we store the energy in an external storage device, such as a capacitor, and dispense that energy intermittently in bursts of high-power when needed. Therefore its performance needs to be evaluated using an energy-storing device such as a capacitor which can be charged and discharged rather than other evaluation techniques, such as continuous energy dissipation through a resistor. In this study, we develop a method of testing microbial fuel cell performance based on storing energy in a capacitor. When a capacitor is connected to a MFC it acts like a variable resistor and stores energy from the MFC at a variable rate. In practice the application of this method to testing microbial fuel cells is very challenging and time consuming; therefore we have custom-designed a microbial fuel cell tester (MFCT). The MFCT evaluates the performance of a MFC as a power source. It uses a capacitor as an energy storing device and waits until a desired amount of energy is stored then discharges the capacitor. The entire process is controlled using an analog-to-digital converter (ADC) board controlled by a custom-written computer program. The utility of our method and the MFCT is demonstrated using a laboratory microbial fuel cell (LMFC) and a sediment microbial fuel cell (SMFC). We determine (1) how frequently a MFC can charge a capacitor, (2) which electrode is current-limiting, (3) what capacitor value will allow the maximum harvested energy from a MFC, which is called the "optimum charging capacitor value," and (4) what capacitor charging potential will harvest the maximum energy from a MFC, which is called the "optimum charging potential." Using a LMFC we find that (1) the time needed to charge a 3-F capacitor from 0 to 500 mV is 108 min, (2) the optimum charging capacitor value is 3 F, and (3) the optimum charging potential is 300 mV. Using a SMFC we find that (1) the time needed to charge a 3-F capacitor from 0 to 500 mV is 5 min, (2) the optimum charging capacitor value is 3 F, and (3) the optimum charging potential is 500 mV. Our results demonstrate that the developed method and the MFCT can be used to evaluate and optimize energy harvesting when a MFC is used with a capacitor to power wireless sensors monitoring the environment.

  13. Heat recovery system employing a temperature controlled variable speed fan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, W.T.

    1986-05-20

    A heat recovery system is described for use in recovering heat from an industrial process producing a heated fluid comprising: a source of inlet air; a housing coupled to the source and including a heat exchanger; means for passing the heated fluid through the heat exchanger; the housing including means for moving a variable volume of air adjustable over a continuous range from the source through the heat exchanger; air discharge means communicating with the housing for discharging air which has passed through the heat exchanger; a control system including first temperature sensing means for sensing the discharge temperature ofmore » the discharge air moving through the discharge means and a control circuit coupled to the first temperature sensing means and to the moving means for varying the volume of air moved in response to the sensed discharge temperature to control the temperature of discharge air passing through the discharge means at a first predetermined value; and the control system including second temperature sensing means for sensing the temperature of the source of inlet air and valve means coupled to and controlled by the control circuit to cause liquid to bypass the heat exchanger when the inlet air temperature rises above a second predetermined value.« less

  14. Ion energy distributions in bipolar pulsed-dc discharges of methane measured at the biased cathode

    NASA Astrophysics Data System (ADS)

    Corbella, C.; Rubio-Roy, M.; Bertran, E.; Portal, S.; Pascual, E.; Polo, M. C.; Andújar, J. L.

    2011-02-01

    The ion fluxes and ion energy distributions (IED) corresponding to discharges in methane (CH4) were measured in time-averaged mode with a compact retarding field energy analyser (RFEA). The RFEA was placed on a biased electrode at room temperature, which was powered by either radiofrequency (13.56 MHz) or asymmetric bipolar pulsed-dc (250 kHz) signals. The shape of the resulting IED showed the relevant populations of ions bombarding the cathode at discharge parameters typical in the material processing technology: working pressures ranging from 1 to 10 Pa and cathode bias voltages between 100 and 200 V. High-energy peaks in the IED were detected at low pressures, whereas low-energy populations became progressively dominant at higher pressures. This effect is attributed to the transition from collisionless to collisional regimes of the cathode sheath as the pressure increases. On the other hand, pulsed-dc plasmas showed broader IED than RF discharges. This fact is connected to the different working frequencies and the intense peak voltages (up to 450 V) driven by the pulsed power supply. This work improves our understanding in plasma processes at the cathode level, which are of crucial importance for the growth and processing of materials requiring controlled ion bombardment. Examples of industrial applications with these requirements are plasma cleaning, ion etching processes during fabrication of microelectronic devices and plasma-enhanced chemical vapour deposition of hard coatings (diamond-like carbon, carbides and nitrides).

  15. Beam heated linear theta-pinch device for producing hot plasmas

    DOEpatents

    Bohachevsky, Ihor O.

    1981-01-01

    A device for producing hot plasmas comprising a single turn theta-pinch coil, a fast discharge capacitor bank connected to the coil, a fuel element disposed along the center axis of the coil, a predetermined gas disposed within the theta-pinch coil, and a high power photon, electron or ion beam generator concentrically aligned to the theta-pinch coil. Discharge of the capacitor bank generates a cylindrical plasma sheath within the theta-pinch coil which heats the outer layer of the fuel element to form a fuel element plasma layer. The beam deposits energy in either the cylindrical plasma sheath or the fuel element plasma layer to assist the implosion of the fuel element to produce a hot plasma.

  16. Electrochromic device using mercaptans and organothiolate compounds

    DOEpatents

    Lampert, Carl M.; Ma, Yan-ping; Doeff, Marca M.; Visco, Steven

    1995-01-01

    An electrochromic cell is disclosed which comprises an electrochromic layer and a composite ion counter electrode for transporting ions. The counter electrode further comprises a polymer electrolyte material and an organosulfur material in which, in its discharged state, the organosulfur material is further comprised of a mercaptan or an organothiolate. In one preferred embodiment, both the electrochromic electrode and the counter electrode are transparent either to visible light or to the entire electromagnetic spectrum in both charged and discharged states. An electrochromic device is disclosed which comprises one or more electrochromic electrodes encased in glass or plastic plates on the inner surface of each of which is formed a transparent electrically conductive film. Electrical contacts, which are in electrical contact with the conductive films, facilitate external electrical connection.

  17. Microwave discharge electrodeless lamps (MDEL). Part VII. Photo-isomerization of trans-urocanic acid in aqueous media driven by UV light from a novel Hg-free Dewar-like microwave discharge thermally-insulated electrodeless lamp (MDTIEL). Performance evaluation.

    PubMed

    Horikoshi, Satoshi; Sato, Tatsuro; Sakamoto, Kazutami; Abe, Masahiko; Serpone, Nick

    2011-07-01

    A novel mercury-free Dewar-like (double-walled structure) microwave discharge thermally-insulated electrodeless lamp (MDTIEL) was fabricated and its performance evaluated using the photo-isomerization of trans-urocanic acid (trans-UA) in aqueous media as a test process driven by the emitted UV light when ignited with microwave radiation. The photo-isomerization processes trans-UA → cis-UA and cis-UA → trans-UA were re-visited using light emitted from a conventional high-pressure Hg light source and examined for the influence of UV light irradiance and solution temperature; the temperature dependence of the trans → cis process displayed a negative activation energy, E(a) = -1.3 cal mol(-1). To control the photo-isomerization of urocanic acid from the heat usually dissipated by a microwave discharge electrodeless lamp (single-walled MDEL), it was necessary to suppress the microwave-initiated heat. For comparison, the gas-fill in the MDEL lamp, which typically consists of a mixture of Hg and Ar, was changed to the more eco-friendly N(2) gas in the novel MDTIEL device. The dynamics of the photo-isomerization of urocanic acid driven by the UV wavelengths of the N(2)-MDTIEL light source were compared to those from the more conventional single-walled N(2)-MDEL and Hg/Ar-MDEL light sources, and with those from the Hg lamp used to irradiate, via a fiber optic, the photoreactor located in the wave-guide of the microwave apparatus. The heating efficiency of a solution with the double-walled N(2)-MDTIEL was compared to the efficiency from the single-walled N(2)-MDEL device. Advantages of N(2)-MDTIEL are described from a comparison of the dynamics of the trans-UA → cis-UA process on the basis of unit surface area of the lamp and unit power consumption. The considerably lower temperature on the external surface of the N(2)-MDTIEL light source should make it attractive in carrying out photochemical reactions that may be heat-sensitive such as the photothermochromic urocanic acid system.

  18. Recent Advances in Lighting Science

    NASA Astrophysics Data System (ADS)

    Lapatovich, Walter P.

    2004-10-01

    Lighting is a global industry supplying a wide array of devices and systems that emit light ranging from incandescent lamps to light emitting diodes to electric discharge lamps. Electric discharge lamps are the most familiar plasma devices to most people. This work focuses on plasma light sources, some advances in this area and recent trends. Plasma light sources fall into two broad categories, namely low pressure and high pressure. The low-pressure lamps operate in the range of 40 to 500 Pa while the high-pressure lamps operate in the range of 0.1 to 15 MPa. The corresponding electron temperatures are about 1eV and 0.5 eV for the low and high-pressure lamps respectively. High-pressure lamps are treated under the assumption of local thermodynamic equilibrium wherein the gas temperature is equilibrated with the electron temperature. They are often called high intensity discharge lamps because of their intrinsically high radiance. Within these two broad categories are many subgroups, perhaps the most important being mercury and non-mercury containing lamps. An example of a low pressure, mercury-containing lamp is the ubiquitous fluorescent lamp. Attempts to improve the efficiency of these lamps center around inductive excitation techniques and two-photon phosphor development. The plasma research on mercury-free low-pressure lamps is focused on finding substitutes for a mercury-rare gas discharge. Several ultraviolet emitting candidates have been explored which emit both UV and visible. Longer wavelength UV is of interest because of the parallel development of phosphors mated with LED excitation wavelengths around 380nm. Several examples will be discussed. There have been major advances in high intensity discharge lamps with and without mercury. Mercury containing metal halide lamps are now being fabricated from translucent ceramic envelopes instead of the conventional vitreous silica. The higher temperature tolerant envelope materials permit using discharges in vapors hitherto unacceptable because of chemical reactions. Temperature driven chemical reactions (which affect lamp life, starting and stability) are better understood. Lamps are better designed with finite element thermal modeling and thermodynamic computational tools. Improved understanding of molecular processes in the energy transport within the plasma has opened possibilities for new types of light sources relying heavily on molecular emission. Examples of lamps containing sulfur, indium, thallium and rare earth halides will be discussed. General trends in plasma based light source have been towards lower wattage, directed visible output, high quality visible output, longer life and mercury-free lamps. Consumer demand for high tech, high performance lighting devices has broadened the use of HID lamps in automobiles, video/data display and medical/technical applications. Short arc gap lamps (1mm) with a luminance exceeding that of the sun's surface (1600cd/mm2 -as observed from earth), and operating with extreme line broadening lead the video projection market. Low wattage HID lamps coupled with tailored optics can direct the light output more precisely leading to reduced light pollution and better system throughput. Tailoring of the driving electrical waveforms have enabled stable operation, controlled the effects of species segregation and improved lamp life and performance.

  19. The effect of working gas pressure on the switching rate of a kivotron

    NASA Astrophysics Data System (ADS)

    Bokhan, P. A.; Gugin, P. P.; Zakrevsky, D. E.; Lavrukhin, M. A.

    2016-05-01

    The switching rate in gas-discharge devices (kivotrons) based on an "open" discharge with counterpropagating electron beams is studied experimentally. Structures with a total cathode area of 2 cm2 were used. A monotonic reduction in the switching time with an increase in the working gas pressure and in the voltage amplitude at the time of breakdown is demonstrated. The minimum switching time is ~240 ps at a voltage of 17 kV. The maximum current rise rate, which is limited by the discharge circuit inductance, is 3 × 1012 A/s.

  20. Negative hydrogen ion production in a helicon plasma source

    NASA Astrophysics Data System (ADS)

    Santoso, J.; Manoharan, R.; O'Byrne, S.; Corr, C. S.

    2015-09-01

    In order to develop very high energy (>1 MeV) neutral beam injection systems for applications, such as plasma heating in fusion devices, it is necessary first to develop high throughput negative ion sources. For the ITER reference source, this will be realised using caesiated inductively coupled plasma devices, containing either hydrogen or deuterium discharges, operated with high rf input powers (up to 90 kW per driver). It has been suggested that due to their high power coupling efficiency, helicon devices may be able to reduce power requirements and potentially obviate the need for caesiation due to the high plasma densities achievable. Here, we present measurements of negative ion densities in a hydrogen discharge produced by a helicon device, with externally applied DC magnetic fields ranging from 0 to 8.5 mT at 5 and 10 mTorr fill pressures. These measurements were taken in the magnetised plasma interaction experiment at the Australian National University and were performed using the probe-based laser photodetachment technique, modified for the use in the afterglow of the plasma discharge. A peak in the electron density is observed at ˜3 mT and is correlated with changes in the rf power transfer efficiency. With increasing magnetic field, an increase in the negative ion fraction from 0.04 to 0.10 and negative ion densities from 8 × 1014 m-3 to 7 × 1015 m-3 is observed. It is also shown that the negative ion densities can be increased by a factor of 8 with the application of an external DC magnetic field.

  1. Solid-State Thin-Film Supercapacitors with Ultrafast Charge/Discharge Based on N-Doped-Carbon-Tubes/Au-Nanoparticles-Doped-MnO2 Nanocomposites.

    PubMed

    Lv, Qiying; Wang, Shang; Sun, Hongyu; Luo, Jun; Xiao, Jian; Xiao, JunWu; Xiao, Fei; Wang, Shuai

    2016-01-13

    Although carbonaceous materials possess long cycle stability and high power density, their low-energy density greatly limits their applications. On the contrary, metal oxides are promising pseudocapacitive electrode materials for supercapacitors due to their high-energy density. Nevertheless, poor electrical conductivity of metal oxides constitutes a primary challenge that significantly limits their energy storage capacity. Here, an advanced integrated electrode for high-performance pseudocapacitors has been designed by growing N-doped-carbon-tubes/Au-nanoparticles-doped-MnO2 (NCTs/ANPDM) nanocomposite on carbon fabric. The excellent electrical conductivity and well-ordered tunnels of NCTs together with Au nanoparticles of the electrode cause low internal resistance, good ionic contact, and thus enhance redox reactions for high specific capacitance of pure MnO2 in aqueous electrolyte, even at high scan rates. A prototype solid-state thin-film symmetric supercapacitor (SSC) device based on NCTs/ANPDM exhibits large energy density (51 Wh/kg) and superior cycling performance (93% after 5000 cycles). In addition, the asymmetric supercapacitor (ASC) device assembled from NCTs/ANPDM and Fe2O3 nanorods demonstrates ultrafast charge/discharge (10 V/s), which is among the best reported for solid-state thin-film supercapacitors with both electrodes made of metal oxide electroactive materials. Moreover, its superior charge/discharge behavior is comparable to electrical double layer type supercapacitors. The ASC device also shows superior cycling performance (97% after 5000 cycles). The NCTs/ANPDM nanomaterial demonstrates great potential as a power source for energy storage devices.

  2. Baking and helium glow discharge cleaning of SST-1 Tokamak with graphite plasma facing components

    NASA Astrophysics Data System (ADS)

    Semwal, P.; Khan, Z.; Raval, D. C.; Dhanani, K. R.; George, S.; Paravastu, Y.; Prakash, A.; Thankey, P.; Ramesh, G.; Khan, M. S.; Saikia, P.; Pradhan, S.

    2017-04-01

    Graphite plasma facing components (PFCs) were installed inside the SST-1 vacuum vessel. Prior to installation, all the graphite tiles were baked at 1000 °C in a vacuum furnace operated below 1.0 × 10-5 mbar. However due to the porous structure of graphite, they absorb a significant amount of water vapour from air during the installation process. Rapid desorption of this water vapour requires high temperature bake-out of the PFCs at ≥ 250 °C. In SST-1 the PFCs were baked at 250 °C using hot nitrogen gas facility to remove the absorbed water vapour. Also device with large graphite surface area has the disadvantage that a large quantity of hydrogen gets trapped inside it during plasma discharges which makes density control difficult. Helium glow discharge cleaning (He-GDC) effectively removes this stored hydrogen as well as other impurities like oxygen and hydrocarbon within few nano-meters from the surface by particle induced desorption. Before plasma operation in SST-1 tokamak, both baking of PFCs and He-GDC were carried out so that these impurities were removed effectively. The mean desorption yield of hydrogen was found to be 0.24. In this paper the results of baking and He-GDC experiments of SST-1 will be presented in detail.

  3. Pattern formation based on complex coupling mechanism in dielectric barrier discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Weibo; College of Aeronautical Engineering, Binzhou University, Binzhou 256603; Dong, Lifang, E-mail: donglfhbu@163.com, E-mail: pyy1616@163.com

    2016-08-15

    The pattern formation of cinque-dice square superlattice pattern (CDSSP) is investigated based on the complex coupling mechanism in a dielectric barrier discharge (DBD) system. The spatio-temporal structure of CDSSP obtained by using an intensified-charge coupled device indicates that CDSSP is an interleaving of two kinds of subpatterns (mixture of rectangle and square, and dot-line square) which discharge twice in one half voltage, respectively. Selected by the complex coupling of two subpatterns, the CDSSP can be formed and shows good stability. This investigation based on gas discharge theory together with nonlinear theory may provide a deeper understanding for the nonlinear characteristicsmore » and even the formation mechanism of patterns in DBD.« less

  4. Correlation of the neutron yield from the plasma focus upon variations in the magnetic field energy of the discharge circuit

    NASA Astrophysics Data System (ADS)

    Ablesimov, V. E.; Dolin, Yu. N.; Kalinychev, A. E.; Tsibikov, Z. S.

    2017-10-01

    The relation between neutron yield Y and magnetic field energy variations Δ W in the discharge circuit has been studied for a Mather-type plasma-focus camera. The activation technique (activation of silver isotopes) has been used to measure the integral yield of DD neutrons from the source. The time dependence of the neutron yield has been recorded by scintillation detectors. For the device used in the investigations, the neutron yield exhibits a linear dependence on variations in the magnetic field energy Δ W in the discharge circuit at the instant of neutron generation. It is also found that this dependence is related to the initial deuteron pressure in the discharge chamber.

  5. Rapid removal of bacterial endotoxin and natural organic matter in water by dielectric barrier discharge plasma: Efficiency and toxicity assessment.

    PubMed

    Zhang, Can; Fang, Zhendong; Liu, Wenjun; Tian, Fang; Bai, Miao

    2016-11-15

    Low-temperature plasma was used to control bacteria, endotoxins and natural organic matter (NOM) in water by a dielectric barrier discharge (DBD) device. Results indicate that DBD plasma has an obvious inactivation effect on various bacteria in water. The degree of inactivation from difficult to easy is as follows: Bacillus subtilis>Escherichia coli>Staphylococcus aureus. Activated ultrapure water treated using DBD plasma exhibited a sustained sterilization effect, but this sterilization effect decreased gradually after 1h. The total-endotoxin (free-endotoxin and bound-endotoxin) released by Escherichia coli during inactivation, as well as artificially simulated endotoxin in a control solution, was significantly controlled by DBD plasma. Both the metabolites that appeared after inactivation of microorganisms by plasma treatment, and the NOM in filtration effluent of a water treatment plant were well removed by DBD plasma if the treatment duration was sufficiently long. However, the acute toxicity increased significantly, and persisted for at least 2h, indicating that some long-life active substances were generated during the DBD process. Therefore, the removal of bacteria, endotoxins or NOM does not mean a safe water is produced. It is also important to eliminate the toxicity and byproducts produced during water treatment for the continuous promotion and industrial application of DBD plasma. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Mode suppression of a two-dimensional potential relaxation instability in a weakly magnetized discharge plasma

    NASA Astrophysics Data System (ADS)

    Gyergyek, T.; Čerček, M.; Jelić, N.; Stanojević, M.

    1993-05-01

    A potential relaxation instability (PRI) is modulated by an external signal using an additional grid to modulate the radial plasma potential profile in a magnetized plasma column in a linear magnetized discharge plasma device. It is observed that the electrode current oscillations follow the van der Pol equation with an external forcing term, and the linear growth rate of the instability is measured.

  7. SUNIST Microwave Power System

    NASA Astrophysics Data System (ADS)

    Feng, Songlin; Yang, Xuanzong; Feng, Chunhua; Wang, Long; Rao, Jun; Feng, Kecheng

    2005-06-01

    Experiments on the start-up and formation of spherical tokamak plasmas by electron cyclotron heating alone without ohmic heating and electrode discharge assisted electron cyclotron wave current start-up will be carried out on the SUNIST (Sino United Spherical Tokamak) device. The 2.45 GHz/100kW/30 ms microwave power system and 1000 V/50 A power supply for electrode discharge are ready for experiments with non-inductive current drive.

  8. Optimization of discharge circuit of the TEA CO II laser with two discharge channels

    NASA Astrophysics Data System (ADS)

    Hu, Xiao Yong; Zhang, LiLi; Ren, DeMing; Qu, YanChen; Zhao, WeiJiang; Song, BaoAn

    2007-01-01

    In order to achieve the highest peak power of radiation pulse and highest output energy, the primary circuit parameters are investigated to optimize the discharge circuit performance of the laser. The structure and the discharge circuit of the laser are discussed at first. To realize synchronous discharge in two discharge channels, the conjunct electrode device for two pairs of discharge electrodes is designed. Finally, the results of the experiments on the primary circuit parameters are given. The discharge is most stable at a pressure of 5.33×10 4Pa when the pressure of gaseous mixture CO II:N II:He=1:1:3 is changed from 2.67×10 4 Pa to 6.67×10 4 Pa. The ratio of storage capacitance to peak capacitance is chosen to be about 1.5-7/3, because residual voltage is lower on this condition and residual voltage is adverse to discharge. When the inductance 330μH is used, the homogeneous glow discharge in a widest voltage range is obtained. The duration of when the stimuli voltage is increased in homogeneous glow discharge condition. The discharge circuit allows charge and discharge and the magnitude of residual voltage decrease the homogeneous glow discharge in a wide range of pressure of gaseous mixture when these circuit parameters are used. Thus it offers reference to the improvement of output characteristic of TEA CO II laser with two discharge channels.

  9. A non-randomised, controlled clinical trial of an innovative device for negative pressure wound therapy of pressure ulcers in traumatic paraplegia patients.

    PubMed

    Srivastava, Rajeshwar N; Dwivedi, Mukesh K; Bhagat, Amit K; Raj, Saloni; Agarwal, Rajiv; Chandra, Abhijit

    2016-06-01

    The conventional methods of treatment of pressure ulcers (PUs) by serial debridement and daily dressings require prolonged hospitalisation, associated with considerable morbidity. There is, however, recent evidence to suggest that negative pressure wound therapy (NPWT) accelerates healing. The commercial devices for NPWT are costly, cumbersome, and electricity dependent. We compared PU wound healing in traumatic paraplegia patients by conventional dressing and by an innovative negative pressure device (NPD). In this prospective, non-randomised trial, 48 traumatic paraplegia patients with PUs of stages 3 and 4 were recruited. Patients were divided into two groups: group A (n = 24) received NPWT with our NPD, and group B (n = 24) received conventional methods of dressing. All patients were followed up for 9 weeks. At week 9, all patients on NPD showed a statistically significant improvement in PU healing in terms of slough clearance, granulation tissue formation, wound discharge and culture. A significant reduction in wound size and ulcer depth was observed in NPD as compared with conventional methods at all follow-up time points (P = 0·0001). NPWT by the innovative device heals PUs at a significantly higher rate than conventional treatment. The device is safe, easy to apply and cost-effective. © 2014 The Authors. International Wound Journal © 2014 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  10. A Review of Control Strategy of the Large-scale of Electric Vehicles Charging and Discharging Behavior

    NASA Astrophysics Data System (ADS)

    Kong, Lingyu; Han, Jiming; Xiong, Wenting; Wang, Hao; Shen, Yaqi; Li, Ying

    2017-05-01

    Large scale access of electric vehicles will bring huge challenges to the safe operation of the power grid, and it’s important to control the charging and discharging of the electric vehicle. First of all, from the electric quality and network loss, this paper points out the influence on the grid caused by electric vehicle charging behaviour. Besides, control strategy of electric vehicle charging and discharging has carried on the induction and the summary from the direct and indirect control. Direct control strategy means control the electric charging behaviour by controlling its electric vehicle charging and discharging power while the indirect control strategy by means of controlling the price of charging and discharging. Finally, for the convenience of the reader, this paper also proposed a complete idea of the research methods about how to study the control strategy, taking the adaptability and possibility of failure of electric vehicle control strategy into consideration. Finally, suggestions on the key areas for future research are put up.

  11. METHOD OF PRODUCING ENERGETIC PLASMA FOR NEUTRON PRODUCTION

    DOEpatents

    Bell, P.R.; Simon, A.; Mackin, R.J. Jr.

    1961-01-24

    A method is given for producing an energetic plasma for neutron production. An energetic plasma is produced in a small magnetically confined subvolume of the device by providing a selected current of energetic molecular ions at least greater than that required for producing a current of atomic ions sufficient to achieve "burnout" of neutral particles in the subvolume. The atomic ions are provided by dissociation of the molecular ions by an energetic arc discharge within the subvolume. After burnout, the arc discharge is terminated, the magnetic fields increased, and cold fuel feed is substituted for the molecular ions. After the subvolume is filled with an energetic plasma, the size of the magnetically confined subvolume is gradually increased until the entire device is filled with an energetic neutron producing plasma. The reactions which take place in the device to produce neutrons will generate a certain amount of heat energy which may be converted by the use of a conventional heat cycle to produce electrical energy.

  12. Graphene-Based Systems for Energy Storage

    NASA Technical Reports Server (NTRS)

    Calle, Carlos I.; Mackey, Paul J.; Johansen, Michael R.; Phillips, James, III; Hogue, Michael; Kaner, Richard B.; El-Kady, Maher

    2016-01-01

    Development of graphene-based energy storage devices based on the Laser Scribe system developed by the University of California Los Angeles. These devices These graphene-based devices store charge on graphene sheets and take advantage of the large accessible surface area of graphene (2,600 m2g) to increase the electrical energy that can be stored. The proposed devices should have the electrical storage capacity of thin-film-ion batteries but with much shorter charge discharge cycle times as well as longer lives The proposed devices will be carbon-based and so will not have the same issues with flammability or toxicity as the standard lithium-based storage cells.

  13. APPARATUS FOR CONTROLLING THE POSITION OF AN ION BEAM IN A CALUTRON

    DOEpatents

    Lawrence, E.O.

    1958-01-01

    ABS>This patent relates to improvements in electric discharge devices of the calutron type for separation of the isotopes of an element from the freely occurring composition. The improvement constitutes means for the continuous control of the path of an ion beam to obtain maximum reception in a receiver compartment. Withdrawal of the ions from the source is accomplished by an accelerator electrode placed at a positive potential with respect to the receiver. The ions are projected through a magnetic field perpendicular to the direction of motion towards a receiver. In order to obtain a signal representative of the magnitude of ions received from a particular ion-beam in its compartment, an electrode is disposed in the compartment. The signal from the compartment electrode controls the voltage of the acccleratimg electrodc through appropriate circuitry to maintain the path of the particular ion beam optimum for maximum ion current in the compartment.

  14. A translational platform for prototyping closed-loop neuromodulation systems

    PubMed Central

    Afshar, Pedram; Khambhati, Ankit; Stanslaski, Scott; Carlson, David; Jensen, Randy; Linde, Dave; Dani, Siddharth; Lazarewicz, Maciej; Cong, Peng; Giftakis, Jon; Stypulkowski, Paul; Denison, Tim

    2013-01-01

    While modulating neural activity through stimulation is an effective treatment for neurological diseases such as Parkinson's disease and essential tremor, an opportunity for improving neuromodulation therapy remains in automatically adjusting therapy to continuously optimize patient outcomes. Practical issues associated with achieving this include the paucity of human data related to disease states, poorly validated estimators of patient state, and unknown dynamic mappings of optimal stimulation parameters based on estimated states. To overcome these challenges, we present an investigational platform including: an implanted sensing and stimulation device to collect data and run automated closed-loop algorithms; an external tool to prototype classifier and control-policy algorithms; and real-time telemetry to update the implanted device firmware and monitor its state. The prototyping system was demonstrated in a chronic large animal model studying hippocampal dynamics. We used the platform to find biomarkers of the observed states and transfer functions of different stimulation amplitudes. Data showed that moderate levels of stimulation suppress hippocampal beta activity, while high levels of stimulation produce seizure-like after-discharge activity. The biomarker and transfer function observations were mapped into classifier and control-policy algorithms, which were downloaded to the implanted device to continuously titrate stimulation amplitude for the desired network effect. The platform is designed to be a flexible prototyping tool and could be used to develop improved mechanistic models and automated closed-loop systems for a variety of neurological disorders. PMID:23346048

  15. A translational platform for prototyping closed-loop neuromodulation systems.

    PubMed

    Afshar, Pedram; Khambhati, Ankit; Stanslaski, Scott; Carlson, David; Jensen, Randy; Linde, Dave; Dani, Siddharth; Lazarewicz, Maciej; Cong, Peng; Giftakis, Jon; Stypulkowski, Paul; Denison, Tim

    2012-01-01

    While modulating neural activity through stimulation is an effective treatment for neurological diseases such as Parkinson's disease and essential tremor, an opportunity for improving neuromodulation therapy remains in automatically adjusting therapy to continuously optimize patient outcomes. Practical issues associated with achieving this include the paucity of human data related to disease states, poorly validated estimators of patient state, and unknown dynamic mappings of optimal stimulation parameters based on estimated states. To overcome these challenges, we present an investigational platform including: an implanted sensing and stimulation device to collect data and run automated closed-loop algorithms; an external tool to prototype classifier and control-policy algorithms; and real-time telemetry to update the implanted device firmware and monitor its state. The prototyping system was demonstrated in a chronic large animal model studying hippocampal dynamics. We used the platform to find biomarkers of the observed states and transfer functions of different stimulation amplitudes. Data showed that moderate levels of stimulation suppress hippocampal beta activity, while high levels of stimulation produce seizure-like after-discharge activity. The biomarker and transfer function observations were mapped into classifier and control-policy algorithms, which were downloaded to the implanted device to continuously titrate stimulation amplitude for the desired network effect. The platform is designed to be a flexible prototyping tool and could be used to develop improved mechanistic models and automated closed-loop systems for a variety of neurological disorders.

  16. Detection of UV-treatment effects on plankton by rapid analytic tools for ballast water compliance monitoring immediately following treatment

    NASA Astrophysics Data System (ADS)

    Bradie, Johanna; Gianoli, Claudio; He, Jianjun; Lo Curto, Alberto; Stehouwer, Peter; Veldhuis, Marcel; Welschmeyer, Nick; Younan, Lawrence; Zaake, André; Bailey, Sarah

    2018-03-01

    Non-indigenous species seriously threaten native biodiversity. To reduce establishments, the International Maritime Organization established the Convention for the Control and Management of Ships' Ballast Water and Sediments which limits organism concentrations at discharge under regulation D-2. Most ships will comply by using on-board treatment systems to disinfect their ballast water. Port state control officers will need simple, rapid methods to detect compliance. Appropriate monitoring methods may be dependent on treatment type, since different treatments will affect organisms by a variety of mechanisms. Many indicative tools have been developed, but must be examined to ensure the measured variable is an appropriate signal for the response of the organisms to the applied treatment. We assessed the abilities of multiple analytic tools to rapidly detect the effects of a ballast water treatment system based on UV disinfection. All devices detected a large decrease in the concentrations of vital organisms ≥ 50 μm and organisms < 10 μm (mean 82.7-99.7% decrease across devices), but results were more variable for the ≥ 10 to < 50 μm size class (mean 9.0-99.9% decrease across devices). Results confirm the necessity to choose tools capable of detecting the damage inflicted on living organisms, as examined herein for UV-C treatment systems.

  17. Response of lead-acid batteries to chopper-controlled discharge: Preliminary results

    NASA Technical Reports Server (NTRS)

    Cataldo, R. L.

    1978-01-01

    The preliminary results of simulated electric vehicle, chopper, speed controller discharge of a battery show energy output losses up to 25 percent compared to constant current discharges at the same average discharge current of 100 amperes. These energy losses are manifested as temperature rises during discharge, amounting to a two-fold increase for a 400-ampere pulse compared to the constant current case. Because of the potentially large energy inefficiency, the results suggest that electric vehicle battery/speed controller interaction must be carefully considered in vehicle design.

  18. Response of lead-acid batteries to chopper-controlled discharge

    NASA Technical Reports Server (NTRS)

    Cataldo, R. L.

    1978-01-01

    The preliminary results of simulated electric vehicle, chopper, speed controller discharge of a battery show energy output losses at up to 25 percent compared to constant current discharges at the same average discharge current of 100 A. These energy losses are manifested as temperature rises during discharge, amounting to a two-fold increase for a 400-A pulse compared to the constant current case. Because of the potentially large energy inefficiency, the results suggest that electric vehicle battery/speed controller interaction must be carefully considered in vehicle design.

  19. Ozone generation in a kHz-pulsed He-O2 capillary dielectric barrier discharge operated in ambient air

    NASA Astrophysics Data System (ADS)

    Sands, Brian L.; Ganguly, Biswa N.

    2013-12-01

    The generation of reactive oxygen species using nonequilibrium atmospheric pressure plasma jet devices has been a subject of recent interest due to their ability to generate localized concentrations from a compact source. To date, such studies with plasma jet devices have primarily utilized radio-frequency excitation. In this work, we characterize ozone generation in a kHz-pulsed capillary dielectric barrier discharge configuration comprised of an active discharge plasma jet operating in ambient air that is externally grounded. The plasma jet flow gas was composed of helium with an admixture of up to 5% oxygen. A unipolar voltage pulse train with a 20 ns pulse risetime was used to drive the discharge at repetition rates between 2-25 kHz. Using UVLED absorption spectroscopy centered at 255 nm near the Hartley-band absorption peak, ozone was detected over 1 cm from the capillary axis. We observed roughly linear scaling of ozone production with increasing pulse repetition rate up to a "turnover frequency," beyond which ozone production steadily dropped and discharge current and 777 nm O(5P→5S°) emission sharply increased. The turnover in ozone production occurred at higher pulse frequencies with increasing flow rate and decreasing applied voltage with a common energy density of 55 mJ/cm3 supplied to the discharge. The limiting energy density and peak ozone production both increased with increasing O2 admixture. The power dissipated in the discharge was obtained from circuit current and voltage measurements using a modified parallel plate dielectric barrier discharge circuit model and the volume-averaged ozone concentration was derived from a 2D ozone absorption measurement. From these measurements, the volume-averaged efficiency of ozone production was calculated to be 23 g/kWh at conditions for peak ozone production of 41 mg/h at 11 kV applied voltage, 3% O2, 2 l/min flow rate, and 13 kHz pulse repetition rate, with 1.79 W dissipated in the discharge.

  20. Stability of DIII-D high-performance, negative central shear discharges

    DOE PAGES

    Hanson, Jeremy M.; Berkery, John W.; Bialek, James M.; ...

    2017-03-20

    Tokamak plasma experiments on the DIII-D device demonstrate high-performance, negative central shear (NCS) equilibria with enhanced stability when the minimum safety factor q min exceeds 2, qualitatively confirming theoretical predictions of favorable stability in the NCS regime. The discharges exhibit good confinement with an L-mode enhancement factor H 89 = 2.5, and are ultimately limited by the ideal-wall external kink stability boundary as predicted by ideal MHD theory, as long as tearing mode (TM) locking events, resistive wall modes (RWMs), and internal kink modes are properly avoided or controlled. Although the discharges exhibit rotating TMs, locking events are avoided asmore » long as a threshold minimum safety factor value q min > 2 is maintained. Fast timescale magnetic feedback control ameliorates RWM activity, expanding the stable operating space and allowing access to β N values approaching the ideal-wall limit. Quickly growing and rotating instabilities consistent with internal kink mode dynamics are encountered when the ideal-wall limit is reached. The RWM events largely occur between the no- and ideal-wall pressure limits predicted by ideal MHD. However, evaluating kinetic contributions to the RWM dispersion relation results in a prediction of passive stability in this regime due to high plasma rotation. In addition, the ideal MHD stability analysis predicts that the ideal-wall limit can be further increased to β N > 4 by broadening the current profile. Furthermore, this path toward improved stability has the potential advantage of being compatible with the bootstrap-dominated equilibria envisioned for advanced tokamak (AT) fusion reactors.« less

  1. Stability of DIII-D high-performance, negative central shear discharges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanson, Jeremy M.; Berkery, John W.; Bialek, James M.

    Tokamak plasma experiments on the DIII-D device demonstrate high-performance, negative central shear (NCS) equilibria with enhanced stability when the minimum safety factor q min exceeds 2, qualitatively confirming theoretical predictions of favorable stability in the NCS regime. The discharges exhibit good confinement with an L-mode enhancement factor H 89 = 2.5, and are ultimately limited by the ideal-wall external kink stability boundary as predicted by ideal MHD theory, as long as tearing mode (TM) locking events, resistive wall modes (RWMs), and internal kink modes are properly avoided or controlled. Although the discharges exhibit rotating TMs, locking events are avoided asmore » long as a threshold minimum safety factor value q min > 2 is maintained. Fast timescale magnetic feedback control ameliorates RWM activity, expanding the stable operating space and allowing access to β N values approaching the ideal-wall limit. Quickly growing and rotating instabilities consistent with internal kink mode dynamics are encountered when the ideal-wall limit is reached. The RWM events largely occur between the no- and ideal-wall pressure limits predicted by ideal MHD. However, evaluating kinetic contributions to the RWM dispersion relation results in a prediction of passive stability in this regime due to high plasma rotation. In addition, the ideal MHD stability analysis predicts that the ideal-wall limit can be further increased to β N > 4 by broadening the current profile. Furthermore, this path toward improved stability has the potential advantage of being compatible with the bootstrap-dominated equilibria envisioned for advanced tokamak (AT) fusion reactors.« less

  2. Same-day discharge after coronary stenting and femoral artery device closure: A randomized study in stable and low-risk acute coronary syndrome patients.

    PubMed

    Clavijo, Leonardo C; Cortes, Guillermo A; Jolly, Aaron; Tun, Han; Mehra, Anilkumar; Gaglia, Michael A; Shavelle, David; Matthews, Ray V

    2016-01-01

    To compare same-day (SD) vs. delayed hospital discharge (DD) after single and multivessel coronary stenting facilitated by femoral closure device in patients with stable angina and low-risk acute coronary syndrome (ACS). University of Southern California patients were screened and coronary stenting was performed in 2480 patients. Four hundred ninety-three patients met screening criteria and consented. Four hours after percutaneous coronary intervention, 100 were randomized to SD (n=50) or DD (n=50). Patients were followed for one year; outcomes-, patient satisfaction-, and cost analyses were performed. Groups were well distributed, with similar baseline demographic and angiographic characteristics. Mean age was 58.1±8.8years and 86% were male. Non-ST-elevation myocardial infarction and unstable angina were the clinical presentations in 30% and 44% of the SD and DD groups, respectively (p=0.2). Multivessel stenting was performed in 36% and 30% of SD and DD groups, respectively (p=0.14). At one year, two patients from each group (4%) required unplanned revascularization and one patient in the SD group had a gastrointestinal bleed that required a blood transfusion. Six SD and four DD patients required repeat hospitalization (p=0.74). There were no femoral artery vascular complications in either group. Patient satisfaction scores were equivalent. SD discharge was associated with $1200 savings per patient. SD discharge after uncomplicated single and multivessel coronary stenting of patients with stable, low-risk ACS, via the femoral approach facilitated by a closure device, is associated with similar clinical outcomes, patient satisfaction, and cost savings compared to overnight (DD) hospital stay. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Laser-bulge based ultrasonic bonding method for fabricating multilayer thermoplastic microfluidic devices

    NASA Astrophysics Data System (ADS)

    Liang, Chao; Liu, Chong; Liu, Ziyang; Meng, Fanjian; Li, Jingmin

    2017-11-01

    Ultrasonic bonding is a commonly-used method for fabrication of thermoplastic microfluidic devices. However, due to the existence of the energy director (a convex structure to concentrate the ultrasonic energy), it is difficult to control its molten polymer flow, which may result in a small gap between the bonding interface or microchannel clogging. In this paper, we present an approach to address these issues. Firstly, the microchannels were patterned onto the PMMA sheets using hot embossing with the wire electrical discharge machined molds. Then, a small bulge, which was formed at the edge of the laser-ablated groove (LG), was generated around the microchannel using a CO2 laser ablation system. By using the bulge to concentrate the ultrasonic energy, there was no need for fabricating the complicated and customized energy director. When the bulge was melted, it was able to flow into the LG which overcame the ‘gap’ and ‘clogging’ problems. Here, two types of two-layer microfluidic devices and a five-layer micromixer were fabricated to validate its performance. Our results showed that these thermoplastic microdevices can be successfully bonded by using this method. The liquid leakage was not observed in both the capillary-driven flowing test and the pressure-driven mixing experiments. It is a potential method for bonding the thermoplastic microfluidic devices.

  4. Dusty Plasma Experimental (DPEx) device for complex plasma experiments with flow

    NASA Astrophysics Data System (ADS)

    Jaiswal, S.; Bandyopadhyay, P.; Sen, A.

    2015-11-01

    A versatile table-top dusty plasma experimental device to study flow induced excitations of linear and nonlinear waves/structures in a complex plasma is presented. In this Π-shaped apparatus, a DC glow discharge plasma is produced between a disc shaped anode and a grounded long cathode tray by applying a high voltage DC in the background of a neutral gas (argon) and subsequently a dusty plasma is created by introducing micron sized dust particles that get charged and levitated in the sheath region. A flow of the dust particles is induced in a controlled manner by adjusting the pumping speed and the gas flow rate into the device. A full characterisation of the plasma, using Langmuir and emissive probe data, and that of the dusty plasma using particle tracking data with the help of an idl based (super) Particle Identification and Tracking (sPIT) code is reported. Experimental results on the variation of the dust flow velocity as a function of the neutral pressure and the gas flow rate are given. The neutral drag force acting on the particles and the Epstein coefficient are estimated from the initial acceleration of the particles. The potential experimental capabilities of the device for conducting fundamental studies of flow induced instabilities are discussed.

  5. The efficacy of computer-enabled discharge communication interventions: a systematic review.

    PubMed

    Motamedi, Soror Mona; Posadas-Calleja, Juan; Straus, Sharon; Bates, David W; Lorenzetti, Diane L; Baylis, Barry; Gilmour, Janet; Kimpton, Shandra; Ghali, William A

    2011-05-01

    Traditional manual/dictated discharge summaries are inaccurate, inconsistent and untimely. Computer-enabled discharge communications may improve information transfer by providing a standardised document that immediately links acute and community healthcare providers. To conduct a systematic review evaluating the efficacy of computer-enabled discharge communication compared with traditional communication for patients discharged from acute care hospitals. MEDLINE, EMBASE, Cochrane CENTRAL Register of Controlled Trials and MEDLINE In-Process. Keywords from three themes were combined: discharge communication, electronic/online/web-based and controlled interventional studies. Study types included: clinical trials, quasiexperimental studies with concurrent controls and controlled before--after studies. Interventions included: (1) automatic population of a discharge document by computer database(s); (2) transmission of discharge information via computer technology; or (3) computer technology providing a 'platform' for dynamic discharge communication. Controls included: no intervention or traditional manual/dictated discharge summaries. Primary outcomes included: mortality, readmission and adverse events/near misses. Secondary outcomes included: timeliness, accuracy, quality/completeness and physician/patient satisfaction. Description of interventions and study outcomes were extracted by two independent reviewers. 12 unique studies were identified: eight randomised controlled trials and four quasi-experimental studies. Pooling/meta-analysis was not possible, given the heterogeneity of measures and outcomes reported. The primary outcomes of mortality and readmission were inconsistently reported. There was no significant difference in mortality, and one study reported reduced long-term readmission. Intervention groups experienced reductions in perceived medical errors/adverse events, and improvements in timeliness and physician/patient satisfaction. Computer-enabled discharge communications appear beneficial with respect to a number of important secondary outcomes. Primary outcomes of mortality and readmission are less commonly reported in this literature and require further study.

  6. ROTATING PLASMA DEVICE

    DOEpatents

    Boyer, K.; Hammel, J.E.; Longmire, C.L.; Nagle, D.E.; Ribe, F.L.; Tuck, J.L.

    1961-10-24

    ABS>A method and device are described for obtaining fusion reactions. The basic concept is that of using crossed electric and magnetic fields to induce a plasma rotation in which the ionized particles follow a circumferential drift orbit on wldch a cyclotron mode of motion is superimposed, the net result being a cycloidal motion about the axis of symmetry. The discharge tube has a radial electric field and a longitudinal magnetic field. Mirror machine geometry is utilized. The device avoids reliance on the pinch effect and its associated instability problems. (AEC)

  7. Devices and methods of operation thereof for providing stable flow for centrifugal compressors

    NASA Technical Reports Server (NTRS)

    Skoch, Gary J. (Inventor); Stevens, Mark A. (Inventor); Jett, Thomas A. (Inventor)

    2008-01-01

    Centrifugal compressor flow stabilizing devices and methods of operation thereof are disclosed that act upon the flow field discharging from the impeller of a centrifugal compressor and modify the flow field ahead of the diffuser vanes such that flow conditions contributing to rotating stall and surge are reduced or even eliminated. In some embodiments, shaped rods and methods of operation thereof are disclosed, whereas in other embodiments reverse-tangent air injection devices and methods are disclosed.

  8. An Experimental Study of the Plasma Focus Device as a Charged Particle Accelerator

    DTIC Science & Technology

    1988-11-01

    The dense plasma focus has been investigated at many laboratories as a possible fusion device. Typical plasma parameters for this device are electron...temperatures of 1 keV, densities of 10 to the 19th power per cc, and confinement times of 100 ns. Characteristic of the plasma focus discharge are...neutrons. The emphasis of this work is to investigate the electron and ion emission from the plasma focus and the development of appropriate diagnostics to

  9. Safety and efficiency of emergency department interrogation of cardiac devices

    PubMed Central

    Neuenschwander, James F.; Peacock, W. Frank; Migeed, Madgy; Hunter, Sara A.; Daughtery, John C.; McCleese, Ian C.; Hiestand, Brian C.

    2016-01-01

    Objective Patients with implanted cardiac devices may wait extended periods for interrogation in emergency departments (EDs). Our purpose was to determine if device interrogation could be done safely and faster by ED staff. Methods Prospective randomized, standard therapy controlled, trial of ED staff device interrogation vs. standard process (SP), with 30-day follow-up. Eligibility criteria: ED presentation with a self-report of a potential device related complaint, with signed informed consent. SP interrogation was by company representative or hospital employee. Results Of 60 patients, 42 (70%) were male, all were white, with a median (interquartile range) age of 71 (64 to 82) years. No patient was lost to follow up. Of all patients, 32 (53%) were enrolled during business hours. The overall median (interquartile range) ED vs. SP time to interrogation was 98.5 (40 to 260) vs. 166.5 (64 to 412) minutes (P=0.013). While ED and SP interrogation times were similar during business hours, 102 (59 to 138) vs. 105 (64 to 172) minutes (P=0.62), ED interrogation times were shorter vs. SP during non-business hours; 97 (60 to 126) vs. 225 (144 to 412) minutes, P=0.002, respectively. There was no difference in ED length of stay between the ED and SP interrogation, 249 (153 to 390) vs. 246 (143 to 333) minutes (P=0.71), regardless of time of presentation. No patient in any cohort suffered an unplanned medical contact or post-discharge adverse device related event. Conclusion ED staff cardiac device interrogations are faster, and with similar 30-day outcomes, as compared to SP. PMID:28168230

  10. Safety and efficiency of emergency department interrogation of cardiac devices.

    PubMed

    Neuenschwander, James F; Peacock, W Frank; Migeed, Madgy; Hunter, Sara A; Daughtery, John C; McCleese, Ian C; Hiestand, Brian C

    2016-12-01

    Patients with implanted cardiac devices may wait extended periods for interrogation in emergency departments (EDs). Our purpose was to determine if device interrogation could be done safely and faster by ED staff. Prospective randomized, standard therapy controlled, trial of ED staff device interrogation vs. standard process (SP), with 30-day follow-up. Eligibility criteria: ED presentation with a self-report of a potential device related complaint, with signed informed consent. SP interrogation was by company representative or hospital employee. Of 60 patients, 42 (70%) were male, all were white, with a median (interquartile range) age of 71 (64 to 82) years. No patient was lost to follow up. Of all patients, 32 (53%) were enrolled during business hours. The overall median (interquartile range) ED vs. SP time to interrogation was 98.5 (40 to 260) vs. 166.5 (64 to 412) minutes (P=0.013). While ED and SP interrogation times were similar during business hours, 102 (59 to 138) vs. 105 (64 to 172) minutes (P=0.62), ED interrogation times were shorter vs. SP during non-business hours; 97 (60 to 126) vs. 225 (144 to 412) minutes, P=0.002, respectively. There was no difference in ED length of stay between the ED and SP interrogation, 249 (153 to 390) vs. 246 (143 to 333) minutes (P=0.71), regardless of time of presentation. No patient in any cohort suffered an unplanned medical contact or post-discharge adverse device related event. ED staff cardiac device interrogations are faster, and with similar 30-day outcomes, as compared to SP.

  11. Global helium particle balance in LHD

    NASA Astrophysics Data System (ADS)

    Motojima, G.; Masuzaki, S.; Tokitani, M.; Kasahara, H.; Yoshimura, Y.; Kobayashi, M.; Sakamoto, R.; Morisaki, T.; Miyazawa, J.; Akiyama, T.; Ohno, N.; Mutoh, T.; Yamada, H.; LHD Experiment Group

    2015-08-01

    Global helium particle balance in long-pulse discharges is analyzed for the first time in the Large Helical Device (LHD) with the plasma-facing components of the first wall and the divertor tiles composed of stainless steel and carbon, respectively. During the 2-min discharge sustained by ion cyclotron resonance heating (ICRH) and electron cyclotron heating (ECH), helium is observed to be highly retained in the wall (regarded as both the first wall and the divertor tiles). Almost all (about 96%) puffed helium particles (1.3 × 1022 He) are absorbed in the wall near the end of the discharge. Even though a dynamic retention is eliminated, 56% is still absorbed. The analysis is also applied to longer pulse discharges over 40 min by ICRH and ECH, indicating that the helium wall retention is dynamically changed in time. At the initial phase of the discharge, a mechanism for adsorbing helium other than dynamical retention is invoked.

  12. Heat Evolution and Electrical Work of Batteries as a Function of Discharge Rate: Spontaneous and Reversible Processes and Maximum Work

    ERIC Educational Resources Information Center

    Noll, Robert J.; Hughes, Jason M.

    2018-01-01

    Many types of batteries power an ever-growing number of devices. Electrochemical devices like batteries and fuel cells can, in principle, exceed Carnot efficiency for energy conversion. In this novel laboratory experiment, students explore the partitioning of the enthalpy change of a battery's electrochemical reaction between useful electrical…

  13. Cathode luminescence light source for broadband applications in the visible spectrum

    NASA Technical Reports Server (NTRS)

    Foster, John E. (Inventor)

    2007-01-01

    A device and method for generating cathode luminescence is provided. The device and method generate broad spectrum electromagnetic radiation in the visible. A layer of particles, such as quartz or alumina powder, is exposed to electrons in a plasma discharge. Surface excitation of these particles or the generations/excitation of F-center sites give rise to luminescence.

  14. Early discharge with tube feeding at home for preterm infants is associated with longer duration of breast feeding.

    PubMed

    Meerlo-Habing, Z E; Kosters-Boes, E A; Klip, H; Brand, P L P

    2009-07-01

    Mothers of preterm infants are more likely to discontinue breast feeding early than mothers of term infants. We evaluated the effect of early discharge with tube feeding of preterm infants under close supervision by paediatric nurse specialists on the duration of breast feeding. Case-control study. Medium/high-care neonatal unit of a large district general hospital. Preterm infants (<37 weeks' gestational age). Early discharge with tube feeding under close supervision by paediatric nurse specialists or regular follow-up of preterm infants discharged with oral feeding. Duration of breast feeding assessed by telephone interview 6 months after birth. There were 50 preterm infants in the early discharge group and 78 in the control group. Mothers in the early discharge group continued to breast feed longer than mothers in the control group (log rank test, p = 0.028). Four months after discharge, 63% of preterm infants in the control group were fed formula compared to 36% in the early discharge group (95% CI for difference 9% to 43%, p = 0.04). The relative risk of breast feeding cessation 6 months after birth in the early discharge group compared to the control group was 0.63 (95% CI 0.41 to 0.96). After adjustment for smoking, gestational age and birth weight, this relative risk was 0.67 (95% CI 0.43 to 1.05). Close supervision and follow-up by paediatric nurse specialists of preterm infants discharged early with tube feeding appears to increase duration of breast feeding. A randomised controlled trial to confirm these findings is warranted.

  15. Discharge dynamics of self-oriented microplasma coupling between cross adjacent cavities in micro-structure device driven by a bipolar pulse waveform

    NASA Astrophysics Data System (ADS)

    Wang, Yaogong; Zhang, Xiaoning; Liu, Lingguang; Zhou, Xuan; Liu, Chunliang; Zhang, Qiaogen

    2018-04-01

    The excitation dynamics and self-oriented plasma coupling of a micro-structure plasma device with a rectangular cross-section are investigated. The device consists of 7 × 7 microcavity arrays, which are blended into a unity by a 50 μm-thick bulk area above them. The device is operated in argon with a pressure of 200 Torr, driven by a bipolar pulse waveform of 20 kHz. The discharge evolution is characterized by means of electrical measurements and optical emission profiles. It has been found that different emission patterns are observed within microcavities. The formation of these patterns induced by the combined action between the applied electric field and surface deactivation is discussed. The microplasma distribution in some specific regions along the diagonal direction of cavities in the bulk area is observed, and self-oriented microplasma coupling is explored, while the plasma interaction occurred between cross adjacent cavities, contributed by the ionization wave propagation. The velocity of ionization wave propagation is measured to be 1.2 km/s to 3.5 km/s. The exploration of this plasma interaction in the bulk area is of value to applications in electromagnetics and signal processing.

  16. Characterization of bonding between poly(dimethylsiloxane) and cyclic olefin copolymer using corona discharge induced grafting polymerization.

    PubMed

    Liu, Ke; Gu, Pan; Hamaker, Kiri; Fan, Z Hugh

    2012-01-01

    Thermoplastics have been increasingly used for fabricating microfluidic devices because of their low cost, mechanical/biocompatible attributes, and well-established manufacturing processes. However, there is sometimes a need to integrate such a device with components made from other materials such as polydimethylsiloxane (PDMS). Bonding thermoplastics with PDMS to produce hybrid devices is not straightforward. We have reported our method to modify the surface property of a cyclic olefin copolymer (COC) substrate by using corona discharge and grafting polymerization of 3-(trimethoxysilyl)propyl methacrylate; the modified surface enabled strong bonding of COC with PDMS. In this paper, we report our studies on the surface modification mechanism using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and contact angle measurement. Using this bonding method, we fabricated a three-layer (COC/PDMS/COC) hybrid device consisting of elastomer-based valve arrays. The microvalve operation was confirmed through the displacement of a dye solution in a fluidic channel when the elastomer membrane was pneumatically actuated. Valve-enabled microfluidic handling was demonstrated. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Formation mechanism of dot-line square superlattice pattern in dielectric barrier discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Weibo; Dong, Lifang, E-mail: donglfhbu@163.com, E-mail: pyy1616@163.com; Wang, Yongjie

    We investigate the formation mechanism of the dot-line square superlattice pattern (DLSSP) in dielectric barrier discharge. The spatio-temporal structure studied by using the intensified-charge coupled device camera shows that the DLSSP is an interleaving of three different subpatterns in one half voltage cycle. The dot square lattice discharges first and, then, the two kinds of line square lattices, which form square grid structures discharge twice. When the gas pressure is varied, DLSSP can transform from square superlattice pattern (SSP). The spectral line profile method is used to compare the electron densities, which represent the amounts of surface charges qualitatively. Itmore » is found that the amount of surface charges accumulated by the first discharge of DLSSP is less than that of SSP, leading to a bigger discharge area of the following discharge (lines of DLSSP instead of halos of SSP). The spatial distribution of the electric field of the surface charges is simulated to explain the formation of DLSSP. This paper may provide a deeper understanding for the formation mechanism of complex superlattice patterns in DBD.« less

  18. Effectiveness of a discharge education program in reducing the severity of postpartum depression: a randomized controlled evaluation study.

    PubMed

    Ho, Shiao-Ming; Heh, Shu-Shya; Jevitt, Cecilia M; Huang, Lian-Hua; Fu, Yu-Ying; Wang, Li-Lin

    2009-10-01

    The effectiveness of a hospital discharge education program including information on postnatal depression was evaluated to reduce psychological morbidity after childbirth. A randomized controlled trial (RCT) was conducted in a regional hospital in Taipei. Two hundred first-time mothers agreed to take part and were randomly allocated to an intervention group (n=100) or control group (n=100). The intervention group received discharge education on postnatal depression provided by postpartum ward nurses. The control group received general postpartum education. The main outcome measure was the Edinburgh Postnatal Depression Scale (EPDS) administered by postal questionnaire at six weeks and three months after delivery. Women who received discharge education intervention on postnatal depression were less likely to have high depression scores when compared to the control group at three months postpartum. A discharge educational intervention including postnatal depression information given to women during the postpartum stay benefits psychological well-being. A postpartum discharge education program including information on postnatal depression should be integrated into postpartum discharge care in general practice. 2009 Elsevier Ireland Ltd.

  19. Preliminary Results Of A 600 Joules Small Plasma Focus Device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, S. H.; Yap, S. L.; Wong, C. S.

    Preliminary results of a 600 J (3.7 muF, 18 kV) Mather type plasma focus device operated at low pressure will be presented. The discharge is formed between a solid anode with length of 6 cm and six symmetrically and coaxially arranged cathode rods of same lengths. The cathode base is profiled in a knife-edge design and a set of coaxial plasma gun are attached to it in order to initiate the breakdown and enhance the current sheath formation. The experiments have been performed in argon gas under a low pressure condition of several microbars. The discharge current and the voltagemore » across the electrodes during the discharge are measured with high voltage probe and current coil. The current and voltage characteristics are used to determine the possible range of operating pressure that gives good focusing action. At a narrow pressure regime of 9.0+-0.5 mubar, focusing action is observed with good reproducibility. Preliminary result of ion beam energy is presented. More work will be carried out to investigate the radiation output.« less

  20. Ventricular tachycardia

    MedlinePlus

    ... called ablation ) may be done. An implantable cardioverter defibrillator (ICD) may be used. It is a device ... V tach; Tachycardia - ventricular Patient Instructions Implantable cardioverter defibrillator - discharge Images Implantable cardioverter-defibrillator References Garan H. ...

  1. Electrochromic device using mercaptans and organothiolate compounds

    DOEpatents

    Lampert, C.M.; Ma, Y.P.; Doeff, M.M.; Visco, S.

    1995-08-15

    An electrochromic cell is disclosed which comprises an electrochromic layer and a composite ion counter electrode for transporting ions. The counter electrode further comprises a polymer electrolyte material and an organosulfur material in which, in its discharged state, the organosulfur material is further comprised of a mercaptan or an organothiolate. In one preferred embodiment, both the electrochromic electrode and the counter electrode are transparent either to visible light or to the entire electromagnetic spectrum in both charged and discharged states. An electrochromic device is disclosed which comprises one or more electrochromic electrodes encased in glass or plastic plates on the inner surface of each of which is formed a transparent electrically conductive film. Electrical contacts, which are in electrical contact with the conductive films, facilitate external electrical connection. 5 figs.

  2. 33 CFR 151.10 - Control of oil discharges.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Control of oil discharges. 151.10...) POLLUTION VESSELS CARRYING OIL, NOXIOUS LIQUID SUBSTANCES, GARBAGE, MUNICIPAL OR COMMERCIAL WASTE, AND... Treaty as it Pertains to Pollution from Ships Oil Pollution § 151.10 Control of oil discharges. (a) When...

  3. 33 CFR 151.10 - Control of oil discharges.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Control of oil discharges. 151.10...) POLLUTION VESSELS CARRYING OIL, NOXIOUS LIQUID SUBSTANCES, GARBAGE, MUNICIPAL OR COMMERCIAL WASTE, AND... Treaty as it Pertains to Pollution from Ships Oil Pollution § 151.10 Control of oil discharges. (a) When...

  4. 33 CFR 151.10 - Control of oil discharges.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Control of oil discharges. 151.10...) POLLUTION VESSELS CARRYING OIL, NOXIOUS LIQUID SUBSTANCES, GARBAGE, MUNICIPAL OR COMMERCIAL WASTE, AND... Treaty as it Pertains to Pollution from Ships Oil Pollution § 151.10 Control of oil discharges. (a) When...

  5. System and method for mass production of graphene platelets in arc plasma

    DOEpatents

    Keidar, Michael; Shashurin, Alexey

    2017-12-12

    A system and method for producing graphene includes a discharge assembly and a substrate assembly. The discharge assembly includes a cathode and an anode, which in one embodiment are offset from each other. The anode produces a flux stream that is deposited onto a substrate. A collection device removes the deposited material from the rotating substrate. The flux stream can be a carbon vapor, with the deposited flux being graphene.

  6. Ultrafast-Charging Supercapacitors Based on Corn-Like Titanium Nitride Nanostructures.

    PubMed

    Yang, Peihua; Chao, Dongliang; Zhu, Changrong; Xia, Xinhui; Zhang, Yongqi; Wang, Xingli; Sun, Peng; Tay, Beng Kang; Shen, Ze Xiang; Mai, Wenjie; Fan, Hong Jin

    2016-06-01

    Ultrahigh rates realized by ALD-made TiN . The symmetric full-cell supercapacitors deliver a typical capacitance of 20.7 F cm -3 at a scan rate of 1 V s -1 , and retain 4.3 F cm -3 at high rate of 100 V s -1 . The devices can be charged and discharged for 20 000 cycles with negligible capacitance loss and with an ultralow self-discharge current (≈1 μA).

  7. Finding of No Significant Impact & Tiered Environmental Assessment: Public Law 84-99 Rehabilitation Program Dry Creek Flood Risk Reduction Project Hawarden, Sioux County, Iowa

    DTIC Science & Technology

    2014-11-01

    by the National Pollutant Discharge Elimination System (NPDES) permit (i.e., silt trapping devices) would be implemented as required to minimize...Natural Resources MBTA Migratory Bird Treaty Act NEPA National Environmental Policy Act NPDES National Pollutant Discharge Elimination System NWI...disturbance, bank disturbance, and riparian vegetation. This condition does not further restrict otherwise authorized drainage ditch maintenance activities

  8. [Wearable Automatic External Defibrillators].

    PubMed

    Luo, Huajie; Luo, Zhangyuan; Jin, Xun; Zhang, Leilei; Wang, Changjin; Zhang, Wenzan; Tu, Quan

    2015-11-01

    Defibrillation is the most effective method of treating ventricular fibrillation(VF), this paper introduces wearable automatic external defibrillators based on embedded system which includes EGG measurements, bioelectrical impedance measurement, discharge defibrillation module, which can automatic identify VF signal, biphasic exponential waveform defibrillation discharge. After verified by animal tests, the device can realize EGG acquisition and automatic identification. After identifying the ventricular fibrillation signal, it can automatic defibrillate to abort ventricular fibrillation and to realize the cardiac electrical cardioversion.

  9. Optimal hydraulic design of new-type shaft tubular pumping system

    NASA Astrophysics Data System (ADS)

    Zhu, H. G.; Zhang, R. T.; Zhou, J. R.

    2012-11-01

    Based on the characteristics of large flow rate, low-head, short annual operation time and high reliability of city flood-control pumping stations, a new-type shaft tubular pumping system featuring shaft suction box, siphon-type discharge passage with vacuum breaker as cutoff device was put forward, which possesses such advantages as simpler structure, reliable cutoff and higher energy performance. According to the design parameters of a city flood control pumping station, a numerical computation model was set up including shaft-type suction box, siphon-type discharge passage, pump impeller and guide vanes. By using commercial CFD software Fluent, RNG κ-epsilon turbulence model was adopted to close the three-dimensional time-averaged incompressible N-S equations. After completing optimal hydraulic design of shaft-type suction box, and keeping the parameters of total length, maximum width and outlet section unchanged, siphon-type discharge passages of three hump locations and three hump heights were designed and numerical analysis on the 9 hydraulic design schemes of pumping system were proceeded. The computational results show that the changing of hump locations and hump heights directly affects the internal flow patterns of discharge passages and hydraulic performances of the system, and when hump is located 3.66D from the inlet section and hump height is about 0.65D (D is the diameter of pump impeller), the new-type shaft tubular pumping system achieves better energy performances. A pumping system model test of the optimal designed scheme was carried out. The result shows that the highest pumping system efficiency reaches 75.96%, and when at design head of 1.15m the flow rate and system efficiency were 0.304m3/s and 63.10%, respectively. Thus, the validity of optimal design method was verified by the model test, and a solid foundation was laid for the application and extension of the new-type shaft tubular pumping system.

  10. Inkjet-Printed Lithium-Sulfur Microcathodes for All-Printed, Integrated Nanomanufacturing.

    PubMed

    Milroy, Craig A; Jang, Seonpil; Fujimori, Toshihiko; Dodabalapur, Ananth; Manthiram, Arumugam

    2017-03-01

    Improved thin-film microbatteries are needed to provide appropriate energy-storage options to power the multitude of devices that will bring the proposed "Internet of Things" network to fruition (e.g., active radio-frequency identification tags and microcontrollers for wearable and implantable devices). Although impressive efforts have been made to improve the energy density of 3D microbatteries, they have all used low energy-density lithium-ion chemistries, which present a fundamental barrier to miniaturization. In addition, they require complicated microfabrication processes that hinder cost-competitiveness. Here, inkjet-printed lithium-sulfur (Li-S) cathodes for integrated nanomanufacturing are reported. Single-wall carbon nanotubes infused with electronically conductive straight-chain sulfur (S@SWNT) are adopted as an integrated current-collector/active-material composite, and inkjet printing as a top-down approach to achieve thin-film shape control over printed electrode dimensions is used. The novel Li-S cathodes may be directly printed on traditional microelectronic semicoductor substrates (e.g., SiO 2 ) or on flexible aluminum foil. Profilometry indicates that these microelectrodes are less than 10 µm thick, while cyclic voltammetry analyses show that the S@SWNT possesses pseudocapacitive characteristics and corroborates a previous study suggesting the S@SWNT discharge via a purely solid-state mechanism. The printed electrodes produce ≈800 mAh g -1 S initially and ≈700 mAh g -1 after 100 charge/discharge cycles at C/2 rate. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Does arousal interfere with operant conditioning of spike-wave discharges in genetic epileptic rats?

    PubMed

    Osterhagen, Lasse; Breteler, Marinus; van Luijtelaar, Gilles

    2010-06-01

    One of the ways in which brain computer interfaces can be used is neurofeedback (NF). Subjects use their brain activation to control an external device, and with this technique it is also possible to learn to control aspects of the brain activity by operant conditioning. Beneficial effects of NF training on seizure occurrence have been described in epileptic patients. Little research has been done about differentiating NF effectiveness by type of epilepsy, particularly, whether idiopathic generalized seizures are susceptible to NF. In this experiment, seizures that manifest themselves as spike-wave discharges (SWDs) in the EEG were reinforced during 10 sessions in 6 rats of the WAG/Rij strain, an animal model for absence epilepsy. EEG's were recorded before and after the training sessions. Reinforcing SWDs let to decreased SWD occurrences during training; however, the changes during training were not persistent in the post-training sessions. Because behavioural states are known to have an influence on the occurrence of SWDs, it is proposed that the reinforcement situation increased arousal which resulted in fewer SWDs. Additional tests supported this hypothesis. The outcomes have implications for the possibility to train SWDs with operant learning techniques. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  12. Constricted glow discharge plasma source

    DOEpatents

    Anders, Andre; Anders, Simone; Dickinson, Michael; Rubin, Michael; Newman, Nathan

    2000-01-01

    A constricted glow discharge chamber and method are disclosed. The polarity and geometry of the constricted glow discharge plasma source is set so that the contamination and energy of the ions discharged from the source are minimized. The several sources can be mounted in parallel and in series to provide a sustained ultra low source of ions in a plasma with contamination below practical detection limits. The source is suitable for applying films of nitrides such as gallium nitride and oxides such as tungsten oxide and for enriching other substances in material surfaces such as oxygen and water vapor, which are difficult process as plasma in any known devices and methods. The source can also be used to assist the deposition of films such as metal films by providing low-energy ions such as argon ions.

  13. Characterization of microwave discharge plasmas for surface processing

    NASA Astrophysics Data System (ADS)

    Nikolic, Milka

    We have developed several diagnostic techniques to characterize two types of microwave (MW) discharge plasmas: a supersonic flowing argon MW discharge maintained in a cylindrical quartz cavity at frequency ƒ = 2.45 GHz and a pulse repetitive MW discharge in air at ƒ = 9.5 GHz. Low temperature MW discharges have been proven to posses attractive properties for plasma cleaning and etching of niobium surfaces of superconductive radio frequency (SRF) cavities. Plasma based surface modification technologies offer a promising alternative for etching and cleaning of SRF cavities. These technologies are low cost, environmentally friendly and easily controllable, and present a possible alternative to currently used acid based wet technologies, such as buffered chemical polishing (BCP), or electrochemical polishing (EP). In fact, weakly ionized. non-equilibrium, and low temperature gas discharges represent a powerful tool for surface processing due to the strong chemical reactivity of plasma radicals. Therefore, characterizing these discharges by applying non-perturbing, in situ measurement techniques is of vital importance. Optical emission spectroscopy has been employed to analyze the molecular structure and evaluate rotational and vibrational temperatures in these discharges. The internal plasma structure was studied by applying a tomographic numerical method based on the two-dimensional Radon formula. An automated optical measurement system has been developed for reconstruction of local plasma parameters. It was found that excited argon states are concentrated near the tube walls, thus confirming the assumption that the post discharge plasma is dominantly sustained by a travelling surface wave. Employing a laser induced fluorescence technique in combination with the time synchronization device allowed us to obtain time-resolved population densities of some excited atomic levels in argon. We have developed a technique for absolute measurements of electron density based on the time-resolved absolute intensity of a Nitrogen spectral band belonging to the Second Positive System, the kinetic model and the detailed particle balance of the N2 (C 3piu) state. Measured electron density waveforms are in fair agreement with electron densities obtained using the Stark broadening technique. In addition, time dependent population densities of Ar I metastable and resonant levels were obtained by employing a kinetic model developed based on analysis of population density rates of excited Ar I p levels. Both the experimental results and numerical models for both types of gas discharges indicate that multispecies chemistry of gases plays an important role in understanding the dynamics and characterizing the properties of these discharges.

  14. Enhancing mercury removal across air pollution control devices for coal-fired power plants by desulfurization wastewater evaporation.

    PubMed

    Bin, Hu; Yang, Yi; Cai, Liang; Yang, Linjun; Roszak, Szczepan

    2017-10-09

    Desulfurization wastewater evaporation technology is used to enhance the removal of gaseous mercury (Hg) in conventional air pollution control devices (APCDs) for coal-fired power plants. Studies have affirmed that gaseous Hg is oxidized and removed by selective catalytic reduction (SCR), an electrostatic precipitator (ESP) and wet flue gas desulfurization (WFGD) in a coal-fired thermal experiment platform with WFGD wastewater evaporation. Effects of desulfurization wastewater evaporation position, evaporation temperature and chlorine ion concentration on Hg oxidation were studied as well. The Hg 0 oxidation efficiency was increased ranging from 30% to 60%, and the gaseous Hg removal efficiency was 62.16% in APCDs when wastewater evaporated before SCR. However, the Hg 0 oxidation efficiency was 18.99% and the gaseous Hg removal efficiency was 40.19% in APCDs when wastewater evaporated before ESP. The results show that WFGD wastewater evaporation before SCR is beneficial to improve the efficiency of Hg oxidized and removed in APCDs. Because Hg 2+ can be easily removed in ACPDs and WFGD wastewater in power plants is enriched with chlorine ions, this method realizes WFGD wastewater zero discharge and simultaneously enhances Hg removal in APCDs.

  15. Compression device for feeding a waste material to a reactor

    DOEpatents

    Williams, Paul M.; Faller, Kenneth M.; Bauer, Edward J.

    2001-08-21

    A compression device for feeding a waste material to a reactor includes a waste material feed assembly having a hopper, a supply tube and a compression tube. Each of the supply and compression tubes includes feed-inlet and feed-outlet ends. A feed-discharge valve assembly is located between the feed-outlet end of the compression tube and the reactor. A feed auger-screw extends axially in the supply tube between the feed-inlet and feed-outlet ends thereof. A compression auger-screw extends axially in the compression tube between the feed-inlet and feed-outlet ends thereof. The compression tube is sloped downwardly towards the reactor to drain fluid from the waste material to the reactor and is oriented at generally right angle to the supply tube such that the feed-outlet end of the supply tube is adjacent to the feed-inlet end of the compression tube. A programmable logic controller is provided for controlling the rotational speed of the feed and compression auger-screws for selectively varying the compression of the waste material and for overcoming jamming conditions within either the supply tube or the compression tube.

  16. NASA Tech Briefs, February 2006

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Topics discussed include: Nearly Direct Measurement of Relative Permittivity; DCS-Neural-Network Program for Aircraft Control and Testing; Dielectric Heaters for Testing Spacecraft Nuclear Reactors; Using Doppler Shifts of GPS Signals To Measure Angular Speed; Monitoring Temperatures of Tires Using Luminescent Materials; Highly Efficient Multilayer Thermoelectric Devices; Very High-Speed Digital Video Capability for In-Flight Use; MMIC DHBT Common-Base Amplifier for 172 GHz; Modular, Microprocessor-Controlled Flash Lighting System; Generic Environment for Simulating Launch Operations; Modular Aero-Propulsion System Simulation; X-Windows Socket Widget Class; Infrastructure for Rapid Development of Java GUI Programs; Processing Raman Spectra of High-Pressure Hydrogen Flames; X-Windows Information Sharing Protocol Widget Class; Simulating Humans as Integral Parts of Spacecraft Missions; Analyzing Power Supply and Demand on the ISS; Polyimides From a-BPDA and Aromatic Diamines; Making Plant-Support Structures From Waste Plant Fiber; Large Deployable Reflectarray Antenna; Periodically Discharging, Gas-Coalescing Filter; Ion Milling On Steps for Fabrication of Nanowires; Neuro-Prosthetic Implants With Adjustable Electrode Arrays; Microfluidic Devices for Studying Biomolecular Interactions; Studying Functions of All Yeast Genes Simultaneously; Polarization Phase-Compensating Coats for Metallic Mirrors; Tunable-Bandwidth Filter System; Methodology for Designing Fault-Protection Software; and Ground-Based Localization of Mars Rovers.

  17. Automated Characterization of Rotating MHD Modes and Subsequent Locking in a Tokamak

    NASA Astrophysics Data System (ADS)

    Riquezes, Juan; Sabbagh, Steven; Berkery, Jack

    2016-10-01

    Disruption avoidance in tokamaks is highly desired to maintain steady plasma operation, and is critical for future reactor-scale devices, such as ITER, to avoid potential damage to device components. This high priority research is being conducted at PPPL by analyzing data from NSTX and its upgrade, NSTX-U. A key cause of disruptions is the physical event chain that comprises the appearance of rotating MHD modes, their slowing by resonant field drag mechanisms, and their subsequent locking. The present research aims to define algorithms to automatically find and characterize such physical event chains in the machine database. Characteristics such as identification of a mode locking time based on a loss of torque balance and bifurcation of the mode rotation frequency are examined to determine the reliability of such events in predicting disruptions. A goal is to detect such behavior as early as possible during a plasma discharge, and to further examine potential ways to forecast it. This capability could be used to provide a warning to use active mode control as a disruption avoidance mechanism, or to trigger a controlled plasma shutdown if desired. Supported by US DOE Contracts DE-FG02-99ER54524 and DE-AC02-09CH11466.

  18. A solar charge and discharge controller for wireless sensor nodes

    NASA Astrophysics Data System (ADS)

    Dang, Yibo; Shen, Shu

    2018-02-01

    Aiming at the energy supply problem that restricts the life of wireless sensor nodes, a solar energy charge and discharge controller suitable for wireless sensor nodes is designed in this paper. A Microcontroller is used as the core of the solar charge and discharge controller. The software of the solar charge and discharge controller adopts the C language to realize the program of the main control module. Firstly, the function of monitoring solar panel voltage and lithium battery voltage are simulated by Protel software, and the charge time is tested in cloudy and overcast outdoor environment. The results of the experiment show that our controller meets the power supply demand of wireless sensor nodes.

  19. Negative hydrogen ion production in a helicon plasma source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santoso, J., E-mail: Jesse.Santoso@anu.edu.au; Corr, C. S.; Manoharan, R.

    2015-09-15

    In order to develop very high energy (>1 MeV) neutral beam injection systems for applications, such as plasma heating in fusion devices, it is necessary first to develop high throughput negative ion sources. For the ITER reference source, this will be realised using caesiated inductively coupled plasma devices, containing either hydrogen or deuterium discharges, operated with high rf input powers (up to 90 kW per driver). It has been suggested that due to their high power coupling efficiency, helicon devices may be able to reduce power requirements and potentially obviate the need for caesiation due to the high plasma densities achievable. Here,more » we present measurements of negative ion densities in a hydrogen discharge produced by a helicon device, with externally applied DC magnetic fields ranging from 0 to 8.5 mT at 5 and 10 mTorr fill pressures. These measurements were taken in the magnetised plasma interaction experiment at the Australian National University and were performed using the probe-based laser photodetachment technique, modified for the use in the afterglow of the plasma discharge. A peak in the electron density is observed at ∼3 mT and is correlated with changes in the rf power transfer efficiency. With increasing magnetic field, an increase in the negative ion fraction from 0.04 to 0.10 and negative ion densities from 8 × 10{sup 14 }m{sup −3} to 7 × 10{sup 15 }m{sup −3} is observed. It is also shown that the negative ion densities can be increased by a factor of 8 with the application of an external DC magnetic field.« less

  20. Electrostatic Power Generation from Negatively Charged, Simulated Lunar Regolith

    NASA Technical Reports Server (NTRS)

    Choi, Sang H.; King, Glen C.; Kim, Hyun-Jung; Park, Yeonjoon

    2010-01-01

    Research was conducted to develop an electrostatic power generator for future lunar missions that facilitate the utilization of lunar resources. The lunar surface is known to be negatively charged from the constant bombardment of electrons and protons from the solar wind. The resulting negative electrostatic charge on the dust particles, in the lunar vacuum, causes them to repel each other minimizing the potential. The result is a layer of suspended dust about one meter above the lunar surface. This phenomenon was observed by both Clementine and Surveyor spacecrafts. During the Apollo 17 lunar landing, the charged dust was a major hindrance, as it was attracted to the astronauts' spacesuits, equipment, and the lunar buggies. The dust accumulated on the spacesuits caused reduced visibility for the astronauts, and was unavoidably transported inside the spacecraft where it caused breathing irritation [1]. In the lunar vacuum, the maximum charge on the particles can be extremely high. An article in the journal "Nature", titled "Moon too static for astronauts?" (Feb 2, 2007) estimates that the lunar surface is charged with up to several thousand volts [2]. The electrostatic power generator was devised to alleviate the hazardous effects of negatively charged lunar soil by neutralizing the charged particles through capacitive coupling and thereby simultaneously harnessing power through electric charging [3]. The amount of power generated or collected is dependent on the areal coverage of the device and hovering speed over the lunar soil surface. A thin-film array of capacitors can be continuously charged and sequentially discharged using a time-differentiated trigger discharge process to produce a pulse train of discharge for DC mode output. By controlling the pulse interval, the DC mode power can be modulated for powering devices and equipment. In conjunction with a power storage system, the electrostatic power generator can be a power source for a lunar rover or other systems. The negatively charged lunar soil would also be neutralized mitigating some of the adverse effects resulting from lunar dust.

  1. Effectiveness of sediment-control techniques used during highway construction in central Pennsylvania

    USGS Publications Warehouse

    Reed, Lloyd A.

    1978-01-01

    A different method for controlling erosion and sediment transport during highway construction was used in each of four adjacent drainage basins in central Pennsylvania. The basins ranged in size from 240 to 490 acres (97 to 198 hectares), and the area disturbed by highway construction in each basin ranged from 20 to 48 acres (8 to 19 hectares). Sediment discharge was measured from each basin for 3 years before construction began and for 2 years during construction. In one of the basins affected by the construction, three offstream ponds were constructed to intercept runoff from the construction area before it reached the stream. In another basin, a large onstream pond was constructed to trap runoff from the construction area after it reached the stream. In a third area, seeding, mulching, and rock dams were used to limit erosion. In the fourth area, no sediment controls were used. The effectiveness of the various sediment-control measures were determined by comparing the sediment loads transported from the basins with sediment controls to those without controls. For most storms the offstream ponds trapped about 60 percent of the sediment that reached them. The large onstream pond had a trap efficiency of about 80 percent, however, it remained turbid and kept the stream flow turbid for long periods following storm periods. Samples of runoff water from the construction area were collected above and below rock dams to determine the reduction in sediment as the flow passed through the device. Rock dams in streams had a trap efficiency of about 5 percent. Seeding and mulching may reduce sediment discharge by 20 percent during construction, and straw bales placed to trap runoff water may reduce sediment loads downstream by 5 percent.

  2. 75 FR 39502 - Privacy Act of 1974; System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-09

    ..., eyeglasses, hearing aids, prosthetic devices, diet/special nourishment plans, blood donor records, charges... years; patient accountability (admission/discharge) 5 years; blood donor 5 years or when no longer...

  3. Implantable cardioverter defibrillator - discharge

    MedlinePlus

    ... defibrillation. This device can also work as a pacemaker. What to Expect at Home When you leave ... pubmed/23265327 . Swerdlow CD, Wang PL, Zipes DP. Pacemakers and implantable cardioverter-defibrillators. In: Mann DL, Zipes ...

  4. Design and Testing of a Small Inductive Pulsed Plasma Thruster

    NASA Technical Reports Server (NTRS)

    Martin, Adam K.; Eskridge, Richard H.; Dominguez, Alexandra; Polzin, Kurt A.; Riley, Daniel P.; Kimberlin, Adam C.

    2015-01-01

    The design and testing of a small inductive pulsed plasma thruster (IPPT), shown in Fig. 1 with all the major subsystems required for a thruster of this kind are described. Thrust measurements and imaging of the device operated in rep-rated mode are presented to quantify the performance envelope of the device. The small IPPT described in this paper was designed to serve as a test-bed for the pulsed gas-valves and solid-state switches required for a IPPTs. A modular design approach was used to permit future modifications and upgrades. The thruster consists of the following sub-systems: a) a multi-turn, spiral-wound acceleration coil (27 cm o.d., 10 cm i.d.) driven by a 10 microFarad capacitor and switched with a high-voltage thyristor, b) a fast pulsed gas-valve, and c.) a glow-discharge pre-ionizer (PI) circuit. The acceleration-coil circuit may be operated at voltages up to 4 kV (the thyristor limit is 4.5 kV). The device may be operated at rep-rates up to 30 Hz with the present gas-valve. Thrust measurements and imaging of the device operated in rep-rated mode will be presented. The pre-ionizer consists of a 0.3 microFarad capacitor charged to 4 kV and connected to two annular stainless-steel electrodes bounding the area of the coil-face. The 4 kV potential is held across them and when the gas is puffed in over the coil, the PI circuit is completed, and a plasma is formed. Even at the less than optimal base-pressure in the chamber (approximately 5 × 10(exp -4) torr), the PI held-off the applied voltage, and only discharged upon command. For a capacitor charge of 2 kV the peak coil current is 4.1 kA, and during this pulse a very bright discharge (much brighter than from the PI alone) was observed (see Fig. 2). Interestingly, for discharges at this charge voltage the PI was not required as the current rise rate, dI/dt, of the coil itself was sufficient to ionize the gas.

  5. Heat flow calorimeter. [measures output of Ni-Cd batteries

    NASA Technical Reports Server (NTRS)

    Fletcher, J. C.; Johnston, W. V. (Inventor)

    1974-01-01

    Heat flow calorimeter devices are used to measure heat liberated from or absorbed by an object. This device is capable of measuring the thermal output of sealed nickel-cadmium batteries or cells during charge-discharge cycles. An elongated metal heat conducting rod is coupled between the calorimeter vessel and a heat sink, thus providing the only heat exchange path from the calorimeter vessel itself.

  6. Surface breakdown igniter for mercury arc devices

    DOEpatents

    Bayless, John R.

    1977-01-01

    Surface breakdown igniter comprises a semiconductor of medium resistivity which has the arc device cathode as one electrode and has an igniter anode electrode so that when voltage is applied between the electrodes a spark is generated when electrical breakdown occurs over the surface of the semiconductor. The geometry of the igniter anode and cathode electrodes causes the igniter discharge to be forced away from the semiconductor surface.

  7. Hopper apparatuses for processing a bulk solid, and related systems and methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westover, Tyler Lott; Ryan, John Chadron Benjamin; Matthews, Austin Colter

    A hopper apparatus comprises a movable wall comprising opposing walls movably connected to a support assembly and oriented at acute angles relative to a central vertical axis of the support assembly, and movement control devices configured and positioned to move the opposing walls along the support assembly to control dimensions of a discharge outlet at least partially defined by converging ends of the opposing walls; a liner assembly comprising liner structures at least partially overlying inner surfaces of the opposing walls and configured to remain at least partially stationary relative to the opposing walls during movement of the opposing walls;more » and pressure sensors between the inner surfaces of opposing walls and portions of the liner structures thereover. A bulk solids processing system and a method of processing a bulk solid are also described.« less

  8. Mechanical thrombectomy in acute embolic stroke: preliminary results with the revive device.

    PubMed

    Rohde, Stefan; Haehnel, Stefan; Herweh, Christian; Pham, Mirko; Stampfl, Sibylle; Ringleb, Peter A; Bendszus, Martin

    2011-10-01

    The purpose of this study was to evaluate the safety and technical feasibility of a new thrombectomy device (Revive; Micrus Endovascular) in the endovascular treatment of acute ischemic stroke. Ten patients with acute large vessel occlusions were treated with the Revive device between October 2010 and December 2010. Mean National Institutes of Health Stroke Scale on admission was 19.0; mean duration of symptoms was 172 minutes. Recanalization was assessed using the Thrombolysis In Cerebral Infarction score. Clinical outcome (National Institutes of Health Stroke Scale) after thrombectomy was determined on Day 1, at discharge, and at Day 30. Vessel recanalization (Thrombolysis In Cerebral Infarction 2b or 3) was successful in all patients without device-related complications. Mean National Institutes of Health Stroke Scale 24 hours after the intervention, at discharge, and at Day 30 was 14.0, 11.5, and 5.1, respectively. At Day 30, 6 patients had a clinical improvement of >8 points or an National Institutes of Health Stroke Scale of 0 to 1, 1 patient showed minor improvement, and 3 patients had died. Symptomatic intracranial hemorrhage occurred in 2 patients, of which 1 was fatal. Thrombectomy with the Revive device in patients with stroke with acute large vessel occlusions demonstrated to be technically safe and highly effective. Clinical safety and efficacy have to be established in larger clinical trials.

  9. Application of new point measurement device to quantify groundwater-surface water interactions

    NASA Astrophysics Data System (ADS)

    Cremeans, M. M.; Devlin, J. F.; McKnight, U. S.; Bjerg, P. L.

    2018-04-01

    The streambed point velocity probe (SBPVP) measures in situ groundwater velocities at the groundwater-surface water interface without reliance on hydraulic conductivity, porosity, or hydraulic gradient information. The tool operates on the basis of a mini-tracer test that occurs on the probe surface. The SBPVP was used in a meander of the Grindsted Å (stream), Denmark, to determine the distribution of flow through the streambed. These data were used to calculate the contaminant mass discharge of chlorinated ethenes into the stream. SBPVP data were compared with velocities estimated from hydraulic head and temperature gradient data collected at similar scales. Spatial relationships of water flow through the streambed were found to be similar by all three methods, and indicated a heterogeneous pattern of groundwater-surface water exchange. The magnitudes of estimated flow varied to a greater degree. It was found that pollutants enter the stream in localized regions of high flow which do not always correspond to the locations of highest pollutant concentration. The results show the combined influence of flow and concentration on contaminant discharge and illustrate the advantages of adopting a flux-based approach to risk assessment at the groundwater-surface water interface. Chlorinated ethene mass discharges, expressed in PCE equivalents, were determined to be up to 444 kg/yr (with SBPVP data) which compared well with independent estimates of mass discharge up to 438 kg/yr (with mini-piezometer data from the streambed) and up to 372 kg/yr crossing a control plane on the streambank (as determined in a previous, independent study).

  10. Antimicrobial and osteogenic properties of a hydrophilic-modified nanoscale hydroxyapatite coating on titanium.

    PubMed

    Murakami, Asuka; Arimoto, Takafumi; Suzuki, Dai; Iwai-Yoshida, Misato; Otsuka, Fukunaga; Shibata, Yo; Igarashi, Takeshi; Kamijo, Ryutaro; Miyazaki, Takashi

    2012-04-01

    Hydroxyapatite (HA)-coated titanium (Ti) is commonly used for implantable medical devices. This study examined in vitro osteoblast gene expression and antimicrobial activity against early and late colonizers of supra-gingival plaque on nanoscale HA-coated Ti prepared by discharge in a physiological buffered solution. The HA-coated Ti surface showed super-hydrophilicity, whereas the densely sintered HA and Ti surfaces alone showed lower hydrophilicity. The sintered HA and HA-coated Ti surfaces enhanced osteoblast phenotypes in comparison with the bare Ti surface. The HA-coated Ti enabled antimicrobial activity against early colonizers of supra-gingival plaques, namely Streptococcus mitis and Streptococcus gordonii. Such antimicrobial activity may be caused by the surface hydrophilicity, thereby leading to a repulsion force between the HA-coated Ti surface and the bacterial cell membranes. On the contrary, the sintered HA sample was susceptible to infection of microorganisms. Thus, hydrophilic-modified HA-coated Ti may have potential for use in implantable medical devices. From the Clinical Editor: This study establishes that Hydroxyapatite (HA)-coated titanium (Ti) surface of implanted devices may result in an optimal microenvironment to control and prevent infections and may have potential future clinical applications. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Cold atmospheric plasma treatment inhibits growth in colorectal cancer cells.

    PubMed

    Schneider, Christin; Arndt, Stephanie; Zimmermann, Julia L; Li, Yangfang; Karrer, Sigrid; Bosserhoff, Anja-Katrin

    2018-06-01

    Plasma oncology is a relatively new field of research. Recent developments have indicated that cold atmospheric plasma (CAP) technology is an interesting new therapeutic approach to cancer treatment. In this study, p53 wildtype (LoVo) and human p53 mutated (HT29 and SW480) colorectal cancer cells were treated with the miniFlatPlaSter - a device particularly developed for the treatment of tumor cells - that uses the Surface Micro Discharge (SMD) technology for plasma production in air. The present study analyzed the effects of plasma on colorectal cancer cells in vitro and on normal colon tissue ex vivo. Plasma treatment had strong effects on colon cancer cells, such as inhibition of cell proliferation, induction of cell death, and modulation of p21 expression. In contrast, CAP treatment of murine colon tissue ex vivo for up to 2 min did not show any toxic effect on normal colon cells compared to H2O2 positive control. In summary, these results suggest that the miniFlatPlaSter plasma device is able to kill colorectal cancer cells independent of their p53 mutation status. Thus, this device presents a promising new approach in colon cancer therapy.

  12. Abatement of waste gases and water during the processes of semiconductor fabrication.

    PubMed

    Wen, Rui-mei; Liang, Jun-wu

    2002-10-01

    The purpose of this article is to examine the methods and equipment for abating waste gases and water produced during the manufacture of semiconductor materials and devices. Three separating methods and equipment are used to control three different groups of electronic wastes. The first group includes arsine and phosphine emitted during the processes of semiconductor materials manufacture. The abatement procedure for this group of pollutants consists of adding iodates, cupric and manganese salts to a multiple shower tower (MST) structure. The second group includes pollutants containing arsenic, phosphorus, HF, HCl, NO2, and SO3 emitted during the manufacture of semiconductor materials and devices. The abatement procedure involves mixing oxidants and bases in an oval column with a separator in the middle. The third group consists of the ions of As, P and heavy metals contained in the waste water. The abatement procedure includes adding CaCO3 and ferric salts in a flocculation-sedimentation compact device equipment. Test results showed that all waste gases and water after the abatement procedures presented in this article passed the discharge standards set by the State Environmental Protection Administration of China.

  13. Electric converters of electromagnetic strike machine with capacitor supply

    NASA Astrophysics Data System (ADS)

    Usanov, K. M.; Volgin, A. V.; Kargin, V. A.; Moiseev, A. P.; Chetverikov, E. A.

    2018-03-01

    The application of pulse linear electromagnetic engines in small power strike machines (energy impact is 0.01...1.0 kJ), where the characteristic mode of rare beats (pulse seismic vibrator, the arch crash device bins bulk materials), is quite effective. At the same time, the technical and economic performance of such machines is largely determined by the ability of the power source to provide a large instantaneous power of the supply pulses in the winding of the linear electromagnetic motor. The use of intermediate energy storage devices in power systems of rare-shock LEME makes it possible to obtain easily large instantaneous powers, forced energy conversion, and increase the performance of the machine. A capacitor power supply of a pulsed source of seismic waves is proposed for the exploration of shallow depths. The sections of the capacitor storage (CS) are connected to the winding of the linear electromagnetic motor by thyristor dischargers, the sequence of activation of which is determined by the control device. The charge of the capacitors to the required voltage is made directly from the battery source, or through the converter from a battery source with a smaller number of batteries.

  14. Low temperature plasma biomedicine: A tutorial review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graves, David B., E-mail: graves@berkeley.edu

    2014-08-15

    Gas discharge plasmas formed at atmospheric pressure and near room temperature have recently been shown to be potentially useful for surface and wound sterilization, antisepsis, bleeding cessation, wound healing, and cancer treatment, among other biomedical applications. This tutorial review summarizes the field, stressing the likely role of reactive oxygen and nitrogen species created in these plasmas as the biologically and therapeutically active agents. Reactive species, including radicals and non-radical compounds, are generated naturally within the body and are now understood to be essential for normal biological functions. These species are known to be active agents in existing therapies for woundmore » healing, infection control, and cancer treatment. But they are also observed at elevated levels in persons with many diseases and are associated with aging. The physical and chemical complexity of plasma medical devices and their associated biochemical effects makes the development of safe, effective plasma medical devices and procedures a challenge, but encouragingly rapid progress has been reported around the world in the last several years.« less

  15. Low temperature plasma biomedicine: A tutorial reviewa)

    NASA Astrophysics Data System (ADS)

    Graves, David B.

    2014-08-01

    Gas discharge plasmas formed at atmospheric pressure and near room temperature have recently been shown to be potentially useful for surface and wound sterilization, antisepsis, bleeding cessation, wound healing, and cancer treatment, among other biomedical applications. This tutorial review summarizes the field, stressing the likely role of reactive oxygen and nitrogen species created in these plasmas as the biologically and therapeutically active agents. Reactive species, including radicals and non-radical compounds, are generated naturally within the body and are now understood to be essential for normal biological functions. These species are known to be active agents in existing therapies for wound healing, infection control, and cancer treatment. But they are also observed at elevated levels in persons with many diseases and are associated with aging. The physical and chemical complexity of plasma medical devices and their associated biochemical effects makes the development of safe, effective plasma medical devices and procedures a challenge, but encouragingly rapid progress has been reported around the world in the last several years.

  16. Second-generation microstimulator.

    PubMed

    Arcos, Isabel; Davis, R; Fey, K; Mishler, D; Sanderson, D; Tanacs, C; Vogel, M J; Wolf, R; Zilberman, Y; Schulman, J

    2002-03-01

    The first-generation injectable microstimulator was glass encased with an external tantalum capacitor electrode. This second-generation device uses a hermetically sealed ceramic case with platinum electrodes. Zener diodes protect the electronics from defibrillation shocks and from electrostatic discharge. The capacitor is sealed inside the case so that it cannot be inadvertently damaged by surgical instruments. This microstimulator, referred to as BION, is the main component of a 255-channel wireless stimulating system. BION devices have been implanted in rats for periods of up to 5 months. Results show benign tissue reactions resulting in identical encapsulation around BION and controls. Stimulation threshold levels did not change significantly over time and ranged between 0.81 to 1.35 mA for all the animals at a 60 micros pulse width. All of the tests performed to date indicate that the BION is safe and effective for long-term human implant. We have elected to develop BION applications by seeking collaboration with the research community through our BION Technology Partnership.

  17. Bioelectronic neural pixel: Chemical stimulation and electrical sensing at the same site

    PubMed Central

    Jonsson, Amanda; Inal, Sahika; Uguz, Ilke; Williamson, Adam J.; Kergoat, Loïg; Rivnay, Jonathan; Khodagholy, Dion; Berggren, Magnus; Bernard, Christophe; Malliaras, George G.

    2016-01-01

    Local control of neuronal activity is central to many therapeutic strategies aiming to treat neurological disorders. Arguably, the best solution would make use of endogenous highly localized and specialized regulatory mechanisms of neuronal activity, and an ideal therapeutic technology should sense activity and deliver endogenous molecules at the same site for the most efficient feedback regulation. Here, we address this challenge with an organic electronic multifunctional device that is capable of chemical stimulation and electrical sensing at the same site, at the single-cell scale. Conducting polymer electrodes recorded epileptiform discharges induced in mouse hippocampal preparation. The inhibitory neurotransmitter, γ-aminobutyric acid (GABA), was then actively delivered through the recording electrodes via organic electronic ion pump technology. GABA delivery stopped epileptiform activity, recorded simultaneously and colocally. This multifunctional “neural pixel” creates a range of opportunities, including implantable therapeutic devices with automated feedback, where locally recorded signals regulate local release of specific therapeutic agents. PMID:27506784

  18. Proceedings of the twenty sixth international symposium on discharges and electrical insulation in vacuum. V. 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2014-07-01

    Vacuum science and technology has made vital contributions in high technology areas like space, high energy particle accelerators, plasma devices, pulse power, electronics, vacuum interrupters, thin films, melting and refining of metals/alloys, extraction and processing of advanced materials. Vacuum discharges, vacuum arc physics and technology and various applications towards vacuum interrupters, pulse power and particle accelerator are the main themes for this symposium. Papers relevant to INIS are indexed separately.

  19. Proceedings of the twenty sixth international symposium on discharges and electrical insulation in vacuum. V. 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2014-07-01

    Vacuum science and technology has made vital contributions in high technology areas like space, high energy particle accelerators, plasma devices, pulse power, electronics, vacuum interrupters, thin films, melting and refining of metals/alloys, extraction and processing of advanced materials. Vacuum discharges, vacuum arc physics and technology and various applications towards vacuum interrupters, pulse power and particle accelerator are the main themes for this symposium. Papers relevant to INIS are indexed separately.

  20. Transfer of a cold atmospheric pressure plasma jet through a long flexible plastic tube

    NASA Astrophysics Data System (ADS)

    Kostov, Konstantin G.; Machida, Munemasa; Prysiazhnyi, Vadym; Honda, Roberto Y.

    2015-04-01

    This work proposes an experimental configuration for the generation of a cold atmospheric pressure plasma jet at the downstream end of a long flexible plastic tube. The device consists of a cylindrical dielectric chamber where an insulated metal rod that serves as high-voltage electrode is inserted. The chamber is connected to a long (up to 4 m) commercial flexible plastic tube, equipped with a thin floating Cu wire. The wire penetrates a few mm inside the discharge chamber, passes freely (with no special support) along the plastic tube and terminates a few millimeters before the tube end. The system is flushed with Ar and the dielectric barrier discharge (DBD) is ignited inside the dielectric chamber by a low frequency ac power supply. The gas flow is guided by the plastic tube while the metal wire, when in contact with the plasma inside the DBD reactor, acquires plasma potential. There is no discharge inside the plastic tube, however an Ar plasma jet can be extracted from the downstream tube end. The jet obtained by this method is cold enough to be put in direct contact with human skin without an electric shock. Therefore, by using this approach an Ar plasma jet can be generated at the tip of a long plastic tube far from the high-voltage discharge region, which provides the safe operation conditions and device flexibility required for medical treatment.

Top