A program to evaluate a control system based on feedback of aerodynamic pressure differentials
NASA Technical Reports Server (NTRS)
Levy, D. W.; Finn, P.; Roskam, J.
1981-01-01
The use of aerodynamic pressure differentials to position a control surface is evaluated. The system is a differential pressure command loop, analogous to a position command loop, where the surface is commanded to move until a desired differential pressure across the surface is achieved. This type of control is more direct and accurate because it is the differential pressure which causes the control forces and moments. A frequency response test was performed in a low speed wind tunnel to measure the performance of the system. Both pressure and position feedback were tested. The pressure feedback performed as well as position feedback implying that the actuator, with a break frequency on the order of 10 Rad/sec, was the limiting component. Theoretical considerations indicate that aerodynamic lags will not appear below frequencies of 50 Rad/sec, or higher.
Hydraulic High Pressure Valve Controller Using the In-Situ Pressure Difference
NASA Technical Reports Server (NTRS)
Badescu, Mircea (Inventor); Bar-Cohen, Yoseph (Inventor); Hall, Jeffery L. (Inventor); Sherrit, Stewart (Inventor); Bao, Xiaoqi (Inventor)
2016-01-01
A hydraulic valve controller that uses an existing pressure differential as some or all of the power source for valve operation. In a high pressure environment, such as downhole in an oil or gas well, the pressure differential between the inside of a pipe and the outside of the pipe may be adequately large to drive a linear slide valve. The valve is operated hydraulically by a piston in a bore. When a higher pressure is applied to one end of the bore and a lower pressure to the other end, the piston moves in response to the pressure differential and drives a valve attached to it. If the pressure differential is too small to drive the piston at a sufficiently high speed, a pump is provided to generate a larger pressure differential to be applied. The apparatus is conveniently constructed using multiport valves, which can be rotary valves.
Controlled differential pressure system for an enhanced fluid blending apparatus
Hallman, Jr., Russell Louis
2009-02-24
A system and method for producing a controlled blend of two or more fluids. Thermally-induced permeation through a permeable tube is used to mix a first fluid from outside the tube with a second fluid flowing through the tube. Mixture ratios may be controlled by adjusting the temperature of the first fluid or by adjusting the pressure drop through the permeable tube. The combination of a back pressure control valve and a differential regulator is used to control the output pressure of the blended fluid. The combination of the back pressure control valve and differential regulator provides superior flow control of the second dry gas. A valve manifold system may be used to mix multiple fluids, and to adjust the volume of blended fluid produced, and to further modify the mixture ratio.
Pressure compensated flow control valve
Minteer, Daniel J.
1999-01-01
The invention is an air flow control valve which is capable of maintaining a constant flow at the outlet despite changes in the inlet or outlet pressure. The device consists of a shell assembly with an inlet chamber and outlet chamber separated by a separation plate. The chambers are connected by an orifice. Also located within the inlet chamber is a port controller assembly. The port controller assembly consists of a differential pressure plate and port cap affixed thereon. The cap is able to slide in and out of the orifice separating the inlet and outlet chambers. When the pressure differential is sufficient, the differential pressure plate rises or falls to maintain a constant air flow. Movement of the port controller assembly does not require the use of seals, diaphragms, tight tolerances, bushings, bearings, hinges, guides, or lubricants.
Differential Pressure Switch after the Missile is erected in the tower and connected to Launch Control Circuitry. In addition, a procedure for the ’end to end’ of the L02 and Fuel Tank Pressure Meters is provided. (Author)
NASA Technical Reports Server (NTRS)
Hrabak, R. R.; Levy, D. W.; Finn, P.; Roskam, J.
1981-01-01
The use of pressure differentials in a flight control system was evaluated. The pressure profile around the test surface was determined using two techniques: (1) windtunnel data (actual); and (2) NASA/Langley Single Element Airfoil Computer Program (theoretical). The system designed to evaluate the concept of using pressure differentials is composed of a sensor drive and power amplifiers, actuator, position potentiometer, and a control surface. The characteristics (both desired and actual) of the system and each individual component were analyzed. The desired characteristics of the system as a whole are given. The flight control system developed, the testing procedures and data reduction methods used, and theoretical frequency response analysis are described.
Evaluation of MIL-L-23699 Lubricant Performance in the TF41-A-2 Engine
1975-05-01
provides the necessary signals to the cockpit indicator for the indication of engine oil pressure. The differential pressure switch controls a cockpit...light. If the light is on, it indicates that the differential oil pressure is low. The setting ot the differential pressure switch is 11 t 1 psi. The
The investigation of parachute fabric permeability under an unsteady pressure differential
NASA Astrophysics Data System (ADS)
Rondeau, Nichole C.
An apparatus for assessing permeability of textiles subjected to time-varying pressure differentials is presented. A Computer Numerically Controlled Piston Permeability Apparatus (CNC-PPA) that can control the volume flow rate through a fabric has been designed and built. This test device has been developed in an effort to improve the understanding and design choices for aerodynamic decelerators. Preliminary results for a low permeability fabric (PIA-C-44378, Type IV) under both steady and unsteady loads are presented. The results from this investigation do indicate a small effect of unsteady pressure differential on the fabric permeability. The fabric permeability is slightly higher than the static permeability when the pressure differential is increasing with respect to time and the opposite is true when the pressure differential is decreasing. This change in permeability is more pronounced as the pressure is higher and the pressure changes more rapidly with respect to time, suggesting dynamic permeability likely affects highly unsteady phenomena such as parachute opening.
Fuel cell system shutdown with anode pressure control
Clingerman, Bruce J.; Doan, Tien M.; Keskula, Donald H.
2002-01-01
A venting methodology and pressure sensing and vent valving arrangement for monitoring anode bypass valve operating during the normal shutdown of a fuel cell apparatus of the type used in vehicle propulsion systems. During a normal shutdown routine, the pressure differential between the anode inlet and anode outlet is monitored in real time in a period corresponding to the normal closing speed of the anode bypass valve and the pressure differential at the end of the closing cycle of the anode bypass valve is compared to the pressure differential at the beginning of the closing cycle. If the difference in pressure differential at the beginning and end of the anode bypass closing cycle indicates that the anode bypass valve has not properly closed, a system controller switches from a normal shutdown mode to a rapid shutdown mode in which the anode inlet is instantaneously vented by rapid vents.
System and method for bidirectional flow and controlling fluid flow in a conduit
Ortiz, Marcos German
1999-01-01
A system for measuring bidirectional flow, including backflow, of fluid in a conduit. The system utilizes a structural mechanism to create a pressure differential in the conduit. Pressure sensors are positioned upstream from the mechanism, at the mechanism, and downstream from the mechanism. Data from the pressure sensors are transmitted to a microprocessor or computer, and pressure differential detected between the pressure sensors is then used to calculate the backflow. Control signals may then be generated by the microprocessor or computer to shut off valves located in the conduit, upon the occurrence of backflow, or to control flow, total material dispersed, etc. in the conduit.
System and method for bidirectional flow and controlling fluid flow in a conduit
Ortiz, M.G.
1999-03-23
A system for measuring bidirectional flow, including backflow, of fluid in a conduit is disclosed. The system utilizes a structural mechanism to create a pressure differential in the conduit. Pressure sensors are positioned upstream from the mechanism, at the mechanism, and downstream from the mechanism. Data from the pressure sensors are transmitted to a microprocessor or computer, and pressure differential detected between the pressure sensors is then used to calculate the backflow. Control signals may then be generated by the microprocessor or computer to shut off valves located in the conduit, upon the occurrence of backflow, or to control flow, total material dispersed, etc. in the conduit. 3 figs.
Tank depletion flow controller
Georgeson, Melvin A.
1976-10-26
A flow control system includes two bubbler tubes installed at different levels within a tank containing such as radioactive liquid. As the tank is depleted, a differential pressure transmitter monitors pressure differences imparted by the two bubbler tubes at a remote, shielded location during uniform time intervals. At the end of each uniform interval, balance pots containing a dense liquid are valved together to equalize the pressures. The resulting sawtooth-shaped signal generated by the differential pressure transmitter is compared with a second sawtooth signal representing the desired flow rate during each time interval. Variations in the two signals are employed by a control instrument to regulate flow rate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xiaobing; Zheng, O'Neill; Niu, Fuxin
Most commercial ground source heat pump systems (GSHP) in the United States are in a distributed configuration. These systems circulate water or an anti-freeze solution through multiple heat pump units via a central pumping system, which usually uses variable speed pump(s). Variable speed pumps have potential to significantly reduce pumping energy use; however, the energy savings in reality could be far away from its potential due to improper pumping system design and controls. In this paper, a simplified hydronic pumping system was simulated with the dynamic Modelica models to evaluate three different pumping control strategies. This includes two conventional controlmore » strategies, which are to maintain a constant differential pressure across either the supply and return mains, or at the most hydraulically remote heat pump; and an innovative control strategy, which adjusts system flow rate based on the demand of each heat pump. The simulation results indicate that a significant overflow occurs at part load conditions when the variable speed pump is controlled to main a constant differential pressure across the supply and return mains of the piping system. On the other hand, an underflow occurs at part load conditions when the variable speed pump is controlled to maintain a constant differential pressure across the furthest heat pump. The flow-demand-based control can provide needed flow rate to each heat pump at any given time, and with less pumping energy use than the two conventional controls. Finally, a typical distributed GSHP system was studied to evaluate the energy saving potential of applying the flow-demand-based pumping control strategy. This case study shows that the annual pumping energy consumption can be reduced by 62% using the flow-demand-based control compared with that using the conventional pressure-based control to maintain a constant differential pressure a cross the supply and return mains.« less
Control of bed height in a fluidized bed gasification system
Mehta, Gautam I.; Rogers, Lynn M.
1983-12-20
In a fluidized bed apparatus a method for controlling the height of the fdized bed, taking into account variations in the density of the bed. The method comprises taking simultaneous differential pressure measurements at different vertical elevations within the vessel, averaging the differential pressures, determining an average fluidized bed density, then periodically calculating a weighting factor. The weighting factor is used in the determination of the actual bed height which is used in controlling the fluidizing means.
Stability analysis of coupled torsional vibration and pressure in oilwell drillstring system
NASA Astrophysics Data System (ADS)
Toumi, S.; Beji, L.; Mlayeh, R.; Abichou, A.
2018-01-01
To address security issues in oilwell drillstring system, the drilling operation handling which is in generally not autonomous but ensured by an operator may be drill bit destructive or fatal for the machine. To control of stick-slip phenomenon, the drillstring control at the right speed taking only the drillstring vibration is not sufficient as the mud dynamics and the pressure change around the drill pipes cannot be neglected. A coupled torsional vibration and pressure model is presented, and the well-posedness problem is addressed. As a Partial Differential Equation-Ordinary Differential Equation (PDE-ODE) coupled system, and in order to maintain a non destructive downhole pressure, we investigate the control stability with and without the damping term in the wave PDE. In terms of, the torsional variable, the downhole pressure, and the annulus pressure, the coupled system equilibrium is shown to be exponentially stable.
Low-Pressure Generator Makes Cleanrooms Cleaner
NASA Technical Reports Server (NTRS)
2005-01-01
Scientists at NASA's Kennedy Space Center work in cleanrooms: laboratories with high degrees of cleanliness provided by strict control of particles such as dust, lint, or human skin. They are contaminant-free facilities, where the air is repeatedly filtered, and surfaces are smooth to prevent particles from getting lodged. Technicians working in these environments wear specially designed cleanroom "bunny suits" and booties over their street clothes, as well as gloves and face masks to avoid any contamination that may be imparted from the outside world. Even normal paper is not allowed in cleanrooms, only cleanroom low-particulate paper. These are sensitive environments where precision work, like the production of silicon chips or hard disk drives, is performed. Often in cleanrooms, positive air pressure is used to force particles outside of the isolated area. The air pressure in the Kennedy cleanrooms is monitored using high-accuracy, low-differential pressure transducers that require periodic calibration. Calibration of the transducers is a tricky business. In prior years, the analysis was performed by sending the transducers to the Kennedy Standards Laboratory, where a very expensive cross-floated, labor- intensive, dead-weight test was conducted. In the early 1990s, scientists at Kennedy determined to develop a technique and find equipment to perform qualification testing on new low-differential pressure transducers in an accurate, cost-effective manner onsite, without requiring an environmentally controlled room. They decided to use the highly accurate, cost-effective Setra Model C264 as the test transducer. For qualification testing of the Setra, though, a portable, lower-cost calibrator was needed that could control the differential pressure to a high degree of resolution and transfer the accuracy of the Standards Laboratory testing to the qualification testing. The researchers decided that, to generate the low-differential pressure setpoints needed for qualification testing, very small gas volume changes could be made against the test article, and a corresponding pressure change would be detected by a pressure standard. This allowed the researchers to recreate cleanroom air pressure settings without the use of a cleanroom. Thus was born the low-differential pressure generator. In 1993, a prototype was developed using a pair of PVC tanks, a volume controller, and a 1-pound-per-square-inch pressure standard. By 1995, the prototype was perfected into the unit that is still used today.
Focus control system for stretched-membrane mirror module
Butler, B.L.; Beninga, K.J.
1991-05-21
A focus control system dynamically sets and controls the focal length of a reflective membrane supported between a perimeter frame. A rear membrane is also supported between the perimeter frame rearward and spaced apart from a back side of the reflective membrane. The space between the membranes defines a plenum space into which a mass of gas at a first pressure is inserted. The pressure differential between the first pressure and an external pressure, such as the atmospheric pressure, causes the reflective membrane to assume a first curvature relative to a reference plane associated with the perimeter frame. This curvature defines the focal length of the reflective membrane. The focal length is dynamically controlled by changing the volume of the plenum space, thereby changing the first pressure. The system can be used to change or maintain the pressure differential and hence the front membrane curvature. The plenum volume is changed by pushing or pulling on a central section of the rear membrane using a suitable actuator. Sensing means continuously sense the location of the reflective membrane relative to the reference plane. This sensed position is compared to a reference position, and a resulting error signal, comprising the difference between the sensed position and reference position, drives the actuator in a direction to minimize the difference. A vent value compensates for temperature changes or leaks in the closed volume by allowing the pressure differential to be adjusted as required to center the working range of the actuator about the desired focal length. 13 figures.
Focus control system for stretched-membrane mirror module
Butler, Barry L.; Beninga, Kelly J.
1991-01-01
A focus control system dynamically sets and controls the focal length of a reflective membrane supported between a perimeter frame. A rear membrane is also supported between the perimeter frame rearward and spaced apart from a back side of the reflective membrane. The space between the membranes defines a plenum space into which a mass of gas at a first pressure is inserted. The pressure differential between the first pressure and an external pressure, such as the atmospheric pressure, causes the reflective membrane to assume a first curvature relative to a reference plane associated with the perimeter frame. This curvature defines the focal length of the reflective membrane. The focal length is dynamically controlled by changing the volume of the plenum space, thereby changing the first pressure. The system can be used to change or maintain the pressure differential and hence the front membrane curvature. The plenum volume is changed by pushing or pulling on a central section of the rear membrane using a suitable actuator. Sensing means continuously sense the location of the reflective membrane relative to the reference plane. This sensed position is compared to a reference position, and a resulting error signal, comprising the difference between the sensed position and reference position, drives the actuator in a direction to minimize the difference. A vent value compensates for temperature changes or leaks in the closed volume by allowing the pressure differential to be adjusted as required to center the working range of the actuator about the desired focal length.
Leak Rate Quantification Method for Gas Pressure Seals with Controlled Pressure Differential
NASA Technical Reports Server (NTRS)
Daniels, Christopher C.; Braun, Minel J.; Oravec, Heather A.; Mather, Janice L.; Taylor, Shawn C.
2015-01-01
An enhancement to the pressure decay leak rate method with mass point analysis solved deficiencies in the standard method. By adding a control system, a constant gas pressure differential across the test article was maintained. As a result, the desired pressure condition was met at the onset of the test, and the mass leak rate and measurement uncertainty were computed in real-time. The data acquisition and control system were programmed to automatically stop when specified criteria were met. Typically, the test was stopped when a specified level of measurement uncertainty was attained. Using silicone O-ring test articles, the new method was compared with the standard method that permitted the downstream pressure to be non-constant atmospheric pressure. The two methods recorded comparable leak rates, but the new method recorded leak rates with significantly lower measurement uncertainty, statistical variance, and test duration. Utilizing this new method in leak rate quantification, projects will reduce cost and schedule, improve test results, and ease interpretation between data sets.
Liu, Xiaobing; Zheng, O'Neill; Niu, Fuxin
2016-01-01
Most commercial ground source heat pump systems (GSHP) in the United States are in a distributed configuration. These systems circulate water or an anti-freeze solution through multiple heat pump units via a central pumping system, which usually uses variable speed pump(s). Variable speed pumps have potential to significantly reduce pumping energy use; however, the energy savings in reality could be far away from its potential due to improper pumping system design and controls. In this paper, a simplified hydronic pumping system was simulated with the dynamic Modelica models to evaluate three different pumping control strategies. This includes two conventional controlmore » strategies, which are to maintain a constant differential pressure across either the supply and return mains, or at the most hydraulically remote heat pump; and an innovative control strategy, which adjusts system flow rate based on the demand of each heat pump. The simulation results indicate that a significant overflow occurs at part load conditions when the variable speed pump is controlled to main a constant differential pressure across the supply and return mains of the piping system. On the other hand, an underflow occurs at part load conditions when the variable speed pump is controlled to maintain a constant differential pressure across the furthest heat pump. The flow-demand-based control can provide needed flow rate to each heat pump at any given time, and with less pumping energy use than the two conventional controls. Finally, a typical distributed GSHP system was studied to evaluate the energy saving potential of applying the flow-demand-based pumping control strategy. This case study shows that the annual pumping energy consumption can be reduced by 62% using the flow-demand-based control compared with that using the conventional pressure-based control to maintain a constant differential pressure a cross the supply and return mains.« less
Fincke, James R.
2003-09-23
Oil field management systems and methods for managing operation of one or more wells producing a high void fraction multiphase flow. The system includes a differential pressure flow meter which samples pressure readings at various points of interest throughout the system and uses pressure differentials derived from the pressure readings to determine gas and liquid phase mass flow rates of the high void fraction multiphase flow. One or both of the gas and liquid phase mass flow rates are then compared with predetermined criteria. In the event such mass flow rates satisfy the predetermined criteria, a well control system implements a correlating adjustment action respecting the multiphase flow. In this way, various parameters regarding the high void fraction multiphase flow are used as control inputs to the well control system and thus facilitate management of well operations.
Control device for prosthetic urinary sphincter cuff
NASA Technical Reports Server (NTRS)
Reinicke, Robert H. (Inventor)
1983-01-01
A device for controlling flow of fluid to and from a resilient inflatable cuff implanted about the urethra to control flow of urine therethrough. The device comprises a flexible bulb reservoir and a control unit that includes a manually operated valve that opens automatically when the bulb is squeezed to force fluid into the cuff for closing the urethra. The control unit also includes a movable valve seat member having a relatively large area exposed to pressure of fluid in a chamber that is connected to the cuff and which moves to a position in which the valve member is unseated by an abutment when fluid pressure in the chamber exceeds a predetermined value to thereby relieve excess fluid pressure in the cuff. The arrangement is such that the valve element is held closed against the seat member by the full differential in fluid pressures acting on both sides of the valve element until the seat member is moved away from the valve element to thus insure positive closing of the valve element until the seat member is moved out of engagement with the valve element by excess pressure differential.
Spatial Characteristics of the Unsteady Differential Pressures on 16 percent F/A-18 Vertical Tails
NASA Technical Reports Server (NTRS)
Moses, Robert W.; Ashley, Holt
1998-01-01
Buffeting is an aeroelastic phenomenon which plagues high performance aircraft at high angles of attack. For the F/A-18 at high angles of attack, vortices emanating from wing/fuselage leading edge extensions burst, immersing the vertical tails in their turbulent wake. The resulting buffeting of the vertical tails is a concern from fatigue and inspection points of view. Previous flight and wind-tunnel investigations to determine the buffet loads on the tail did not provide a complete description of the spatial characteristics of the unsteady differential pressures. Consequently, the unsteady differential pressures were considered to be fully correlated in the analyses of buffet and buffeting. The use of fully correlated pressures in estimating the generalized aerodynamic forces for the analysis of buffeting yielded responses that exceeded those measured in flight and in the wind tunnel. To learn more about the spatial characteristics of the unsteady differential pressures, an available 16%, sting-mounted, F-18 wind-tunnel model was modified and tested in the Transonic Dynamics Tunnel (TDT) at the NASA Langley Research Center as part of the ACROBAT (Actively Controlled Response Of Buffet-Affected Tails) program. Surface pressures were measured at high angles of attack on flexible and rigid tails. Cross-correlation and cross-spectral analyses of the pressure time histories indicate that the unsteady differential pressures are not fully correlated. In fact, the unsteady differential pressure resemble a wave that travels along the tail. At constant angle of attack, the pressure correlation varies with flight speed.
NASA Technical Reports Server (NTRS)
Simon, Richard A.
1987-01-01
Simulation circuit operates under remote, automatic, or manual control to produce electrical outputs similar to pressure transducer. Specific circuit designed for simulations of Space Shuttle main engine. General circuit concept adaptable to other simulation and control systems involving several operating modes. Switches and amplifiers respond to external control signals and panel control settings to vary differential excitation of resistive bridge. Output voltage or passive terminal resistance made to equal pressure transducer in any of four operating modes.
Control of differential strain during heating and cooling of mixed conducting metal oxide membranes
Carolan, Michael Francis
2007-12-25
Method of operating an oxygen-permeable mixed conducting membrane having an oxidant feed side and a permeate side, which method comprises controlling the differential strain between the oxidant feed side and the permeate side by varying either or both of the oxygen partial pressure and the total gas pressure on either or both of the oxidant feed side and the permeate side of the membrane while changing the temperature of the membrane from a first temperature to a second temperature.
Simulation Analysis of Computer-Controlled pressurization for Mixture Ratio Control
NASA Technical Reports Server (NTRS)
Alexander, Leslie A.; Bishop-Behel, Karen; Benfield, Michael P. J.; Kelley, Anthony; Woodcock, Gordon R.
2005-01-01
A procedural code (C++) simulation was developed to investigate potentials for mixture ratio control of pressure-fed spacecraft rocket propulsion systems by measuring propellant flows, tank liquid quantities, or both, and using feedback from these measurements to adjust propellant tank pressures to set the correct operating mixture ratio for minimum propellant residuals. The pressurization system eliminated mechanical regulators in favor of a computer-controlled, servo- driven throttling valve. We found that a quasi-steady state simulation (pressure and flow transients in the pressurization systems resulting from changes in flow control valve position are ignored) is adequate for this purpose. Monte-Carlo methods are used to obtain simulated statistics on propellant depletion. Mixture ratio control algorithms based on proportional-integral-differential (PID) controller methods were developed. These algorithms actually set target tank pressures; the tank pressures are controlled by another PID controller. Simulation indicates this approach can provide reductions in residual propellants.
Check valve installation in pilot operated relief valve prevents reverse pressurization
NASA Technical Reports Server (NTRS)
Oswalt, L.
1966-01-01
Two check valves prevent reverse flow through pilot-operated relief valves of differential area piston design. Title valves control pressure flow to ensure that the piston dome pressure is always at least as great as the main relief valve discharge pressure.
Blais, P; Patel, A; Sayuk, G S; Gyawali, C P
2017-12-01
The upper esophageal sphincter (UES) reflexively responds to bolus presence within the esophageal lumen, therefore UES metrics can vary in achalasia. Within consecutive patients undergoing esophageal high-resolution manometry (HRM), 302 patients (58.2±1.0 year, 57% F) with esophageal outflow obstruction were identified, and compared to 16 asymptomatic controls (27.7±0.7 year, 56% F). Esophageal outflow obstruction was segregated into achalasia subtypes 1, 2, and 3, and esophagogastric junction outflow obstruction (EGJOO with intact peristalsis) using Chicago Classification v3.0. UES and lower esophageal sphincter (LES) metrics were compared between esophageal outflow obstruction and normal controls using univariate and multivariate analysis. Linear regression excluded multicollinearity of pressure metrics that demonstrated significant differences across individual subtype comparisons. LES integrated relaxation pressure (IRP) had utility in differentiating achalasia from controls (P<.0001), but no utility in segregating between subtypes (P=.27). In comparison to controls, patients collectively demonstrated univariate differences in UES mean basal pressure, relaxation time to nadir, recovery time, and residual pressure (UES-RP) (P≤.049). UES-RP was highest in type 2 achalasia (P<.0001 compared to other subtypes and controls). In multivariate analysis, only UES-RP retained significance in comparison between each of the subgroups (P≤.02 for each comparison). Intrabolus pressure was highest in type 3 achalasia; this demonstrated significant differences across some but not all subtype comparisons. Nadir UES-RP can differentiate achalasia subtypes within the esophageal outflow obstruction spectrum, with highest values in type 2 achalasia. This metric likely represents a surrogate marker for esophageal pressurization. © 2017 John Wiley & Sons Ltd.
Miniaturized pressurization system
Whitehead, John C.; Swink, Don G.
1991-01-01
The invention uses a fluid stored at a low pressure and provides the fluid at a high pressure. The invention allows the low pressure fluid to flow to a fluid bore of a differential pump and from the pump to a fluid pressure regulator. After flowing through the regulator the fluid is converted to a gas which is directed to a gas bore of the differential pump. By controlling the flow of gas entering and being exhausted from the gas bore, the invention provides pressure to the fluid. By setting the regulator, the high pressure fluid can be set at predetermined values. Because the invention only needs a low pressure fluid, the inventive apparatus has a low mass, and therefore would be useful in rocket propulsion systems.
A temperature and pressure controlled calibration system for pressure sensors
NASA Technical Reports Server (NTRS)
Chapman, John J.; Kahng, Seun K.
1989-01-01
A data acquisition and experiment control system capable of simulating temperatures from -184 to +220 C and pressures either absolute or differential from 0 to 344.74 kPa is developed to characterize silicon pressure sensor response to temperature and pressure. System software is described that includes sensor data acquisition, algorithms for numerically derived thermal offset and sensitivity correction, and operation of the environmental chamber and pressure standard. This system is shown to be capable of computer interfaced cryogenic testing to within 1 C and 34.47 Pa of single channel or multiplexed arrays of silicon pressure sensors.
Zhao, Bowen; Zhang, Hongwei; Xu, Qiang; Ge, Quanhu; Li, Bolong; Peng, Xinyu; Wu, Xiangwei
2017-05-01
To investigate the effects of long time different negative pressures on osteogenic diffe-rentiation of rabbit bone mesenchymal stem cells (BMSCs). The rabbit BMSCs were isolated and cultured by density gradient centrifugation. Flow cytometry was used to analyze expression of surface markers. The third passage cells cultured under condition of osteogenic induction and under different negative pressure of 0 mm Hg (control group), 75 mm Hg (low negative pressure group), and 150 mm Hg (high negative pressure group) (1 mm Hg=0.133 kPa), and the negative pressure time was 30 min/h. Cell growth was observed under phase contrast microscopy, and the growth curve was drawn; alkaline phosphatase (ALP) activity was detected by ELISA after induced for 3, 7, and 14 days. The mRNA and protein expressions of collagen type I (COL-I) and osteocalcin (OC) in BMSCs were analyzed by real-time fluorescence quantitative PCR and Western blot. The cultured cells were identified as BMSCs by flow cytometry. The third passage BMSCs exhibited typical long shuttle and irregular shape. Cell proliferation was inhibited with the increase of negative pressure. After induced for 4 days, the cell number of high negative pressure group was significantly less than that in control group and low negative pressure group ( P <0.05), but there was no significant difference between the low negative pressure group and the control group ( P >0.05); at 5-7 days, the cell number showed significant difference between 3 groups ( P <0.05). The greater the negative pressure was, the greater the inhibition of cell proliferation was. There was no significant difference in ALP activity between groups at 3 days after induction ( P >0.05); the ALP activity showed significant difference ( P <0.05) between the high negative pressure group and the control group at 7 days after induction; and significant difference was found in the ALP activity between 3 groups at 14 days after induction ( P <0.05). The greater the negative pressure was, the higher the ALP activity was. Real-time fluorescence quantitative PCR and Western blot detection showed that the mRNA and protein expressions of COL-I and OC protein were significantly higher in low negative pressure group and high negative pressure group than control group ( P <0.05), and in the high negative pressure group than the low negative pressure group ( P <0.05). With the increase of the negative pressure, the osteogenic differentiation ability of BMSCs increases gradually, but the cell proliferation is inhibited.
Controlled Tests of Eductors and Submersible Pumps
1994-09-01
5 1. " 20 25 3 0 510 15 20 25 30 Time (min) Plate B63 Slurry Specific Gravity H & H Submersible Pump Clean Sand Test 1 2 I S-SG Densit MeterI SG...22 Using Differential Pressure to Measure Specific Gravity ...... .32 4-Conclusions and Recommendations ..................... 34 References...33 Figure 21. Comparison of specific gravity of the slurry as measured by the nuclear density meter and differential pressure
49 CFR 178.338-14 - Gauging devices.
Code of Federal Regulations, 2011 CFR
2011-10-01
... gauging devices, which accurately indicate the maximum permitted liquid level at the loading pressure, in... trycock line, or a differential pressure liquid level gauge must be used as the primary control for... filling. (2) The design pressure of each liquid level gauging device must be at least that of the tank. (3...
49 CFR 178.338-14 - Gauging devices.
Code of Federal Regulations, 2014 CFR
2014-10-01
... gauging devices, which accurately indicate the maximum permitted liquid level at the loading pressure, in... trycock line, or a differential pressure liquid level gauge must be used as the primary control for... filling. (2) The design pressure of each liquid level gauging device must be at least that of the tank. (3...
49 CFR 178.338-14 - Gauging devices.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., a fixed trycock line, or a differential pressure liquid level gauge must be used as the primary... control for filling. (2) The design pressure of each liquid level gauging device must be at least that of... openings for dip tube gauging devices and pressure gauges in flammable cryogenic liquid service must be...
49 CFR 178.338-14 - Gauging devices.
Code of Federal Regulations, 2012 CFR
2012-10-01
... gauging devices, which accurately indicate the maximum permitted liquid level at the loading pressure, in... trycock line, or a differential pressure liquid level gauge must be used as the primary control for... filling. (2) The design pressure of each liquid level gauging device must be at least that of the tank. (3...
49 CFR 178.338-14 - Gauging devices.
Code of Federal Regulations, 2013 CFR
2013-10-01
... gauging devices, which accurately indicate the maximum permitted liquid level at the loading pressure, in... trycock line, or a differential pressure liquid level gauge must be used as the primary control for... filling. (2) The design pressure of each liquid level gauging device must be at least that of the tank. (3...
Sakai, Miho; Hayakawa, Yoshihiro; Funada, Yasuhiro; Ando, Takashi; Fukusaki, Eiichiro; Bamba, Takeshi
2017-09-15
In this study, we propose a novel variable sample injection system based on full-loop injection, named the split-flow sample introduction system, for application in supercritical fluid chromatography (SFC). In this system, the mobile phase is split by the differential pressure between two back pressure regulators (BPRs) after full-loop injection suitable for SFC, and this differential pressure determines the introduction rate. Nine compounds with a wide range of characteristics were introduced with high reproducibility and universality, confirming that a robust variable sample injection system was achieved. We also investigated the control factors of our proposed system. Sample introduction was controlled by the ratio between the column-side pressure drops in splitless and split flow, ΔP columnsideinsplitless and ΔP columnsideinsplit , respectively, where ΔP columnsideinsplitless is related to the mobile phase flow rate and composition and the column resistance. When all other conditions are kept constant, increasing the make-up flow induces an additional pressure drop on the column side of the system, which leads to a reduced column-side flow rate, and hence decreased the amount of sample injected, even when the net pressure drop on the column side remains the same. Thus, sample introduction could be highly controlled at low sample introduction rate, regardless of the introduction conditions. This feature is advantageous because, as a control factor, the solvent in the make-up pump is independent of the column-side pressure drop. Copyright © 2017. Published by Elsevier B.V.
Evaluation of handwriting kinematics and pressure for differential diagnosis of Parkinson's disease.
Drotár, Peter; Mekyska, Jiří; Rektorová, Irena; Masarová, Lucia; Smékal, Zdeněk; Faundez-Zanuy, Marcos
2016-02-01
We present the PaHaW Parkinson's disease handwriting database, consisting of handwriting samples from Parkinson's disease (PD) patients and healthy controls. Our goal is to show that kinematic features and pressure features in handwriting can be used for the differential diagnosis of PD. The database contains records from 37 PD patients and 38 healthy controls performing eight different handwriting tasks. The tasks include drawing an Archimedean spiral, repetitively writing orthographically simple syllables and words, and writing of a sentence. In addition to the conventional kinematic features related to the dynamics of handwriting, we investigated new pressure features based on the pressure exerted on the writing surface. To discriminate between PD patients and healthy subjects, three different classifiers were compared: K-nearest neighbors (K-NN), ensemble AdaBoost classifier, and support vector machines (SVM). For predicting PD based on kinematic and pressure features of handwriting, the best performing model was SVM with classification accuracy of Pacc=81.3% (sensitivity Psen=87.4% and specificity of Pspe=80.9%). When evaluated separately, pressure features proved to be relevant for PD diagnosis, yielding Pacc=82.5% compared to Pacc=75.4% using kinematic features. Experimental results showed that an analysis of kinematic and pressure features during handwriting can help assess subtle characteristics of handwriting and discriminate between PD patients and healthy controls. Copyright © 2016 Elsevier B.V. All rights reserved.
Static Feed Water Electrolysis Subsystem Testing and Component Development
NASA Technical Reports Server (NTRS)
Koszenski, E. P.; Schubert, F. H.; Burke, K. A.
1983-01-01
A program was carried out to develop and test advanced electrochemical cells/modules and critical electromechanical components for a static feed (alkaline electrolyte) water electrolysis oxygen generation subsystem. The accomplishments were refurbishment of a previously developed subsystem and successful demonstration for a total of 2980 hours of normal operation; achievement of sustained one-person level oxygen generation performance with state-of-the-art cell voltages averaging 1.61 V at 191 ASF for an operating temperature of 128F (equivalent to 1.51V when normalized to 180F); endurance testing and demonstration of reliable performance of the three-fluid pressure controller for 8650 hours; design and development of a fluid control assembly for this subsystem and demonstration of its performance; development and demonstration at the single cell and module levels of a unitized core composite cell that provides expanded differential pressure tolerance capability; fabrication and evaluation of a feed water electrolyte elimination five-cell module; and successful demonstration of an electrolysis module pressurization technique that can be used in place of nitrogen gas during the standby mode of operation to maintain system pressure and differential pressures.
Evaluation of Plastic Media Blasting Equipment
1987-04-01
the differential pressure across the filter element or by a timer with a differential pressure switch override. The timer and the differential pressure ...automatic. The mechanism should be activated by the differential pressure across the filter element or by a timer with a differential pressure switch override...The timer and the differential pressure switch settings should be adjustable. The dust then falls to the bottom of the baghouse for
NASA Astrophysics Data System (ADS)
Hsiao, B. S.; Shaw, M. T.; Samulski, E. T.
1987-06-01
A high-pressure apparatus in the form of a modified Instron capillary rheometer capable of measuring differential thermal analysis (DTA) data and pressure-volume-temperature (P-V-T) relations was constructed in our laboratory. Temperatures from 20 to 370 °C and pressures from 1 to 6000 bar are achievable with a data-acquisition and control system based on an APPLE II+ microcomputer. Measurements of pressure to an accuracy of 1%, temperature of 0.5%, and volume change of 0.1% have been obtained. Software was developed to operate the experiments at fixed heating or cooling rates as well as at a constant pressure or with isothermal pressure sweeps. Polymer samples were compressed into rods preceding the experiment by a vacuum molder to eliminate voids. Low-density polyethylene (LDPE) was run as an example to demonstrate the performance of this pressure apparatus. The results revealed an excellent match between our experimental data and the published data.
Wagner, Diane R; Lindsey, Derek P; Li, Kelvin W; Tummala, Padmaja; Chandran, Sheena E; Smith, R Lane; Longaker, Michael T; Carter, Dennis R; Beaupre, Gary S
2008-05-01
This study demonstrated the chondrogenic effect of hydrostatic pressure on human bone marrow stromal cells (MSCs) cultured in a mixed medium containing osteogenic and chondrogenic factors. MSCs seeded in type I collagen sponges were exposed to 1 MPa of intermittent hydrostatic pressure at a frequency of 1 Hz for 4 h per day for 10 days, or remained in identical culture conditions but without exposure to pressure. Afterwards, we compared the proteoglycan content of loaded and control cell/scaffold constructs with Alcian blue staining. We also used real-time PCR to evaluate the change in mRNA expression of selected genes associated with chondrogenic and osteogenic differentiation (aggrecan, type I collagen, type II collagen, Runx2 (Cbfa-1), Sox9, and TGF-beta1). With the hydrostatic pressure loading regime, proteoglycan staining increased markedly. Correspondingly, the mRNA expression of chondrogenic genes such as aggrecan, type II collagen, and Sox9 increased significantly. We also saw a significant increase in the mRNA expression of type I collagen, but no change in the expression of Runx2 or TGF-beta1 mRNA. This study demonstrated that hydrostatic pressure enhanced differentiation of MSCs in the presence of multipotent differentiation factors in vitro, and suggests the critical role that this loading regime may play during cartilage development and regeneration in vivo.
Development of a Self-Powered Food Sanitation Center
2002-11-01
This pump is capable of priming itself, up to 7 feet of water, and can operate dry without damage. The pump is actuated by a pressure - switch sensing...the pressure of the accumulator. The pressure - switch is set to 45 psi and has a 5 psi differential. 3.8 Mixing Valve The mixing valve...pressure of about 0.8 psi. When the boiler reaches about 0.7 psi, a pressure - switch deactivates the high-fire fuel-control solenoid, bypassing the
Field Effect Flow Control in a Polymer T-Intersection Microfluidic Network
NASA Technical Reports Server (NTRS)
Sniadecki, Nathan J.; Chang, Richard; Beamesderfer, Mike; Lee, Cheng S.; DeVoe, Don L.
2003-01-01
We present a study of induced pressure pumping in a polymer microchannel due to differential electroosmotic flow @OF) rates via field-effect flow control (FEFC). The experimental results demonstrate that the induced pressure pumping is dependent on the distance of the FEFC gate from the cathodic gate. A proposed flow model based on a linearly-decaying zeta potential profile is found to successfully predict experimental trends.
Wang, Yu; Koenig, Steven C; Slaughter, Mark S; Giridharan, Guruprasad A
2015-01-01
The risk for left ventricular (LV) suction during left ventricular assist devices (LVAD) support has been a clinical concern. Current development efforts suggest LVAD suction prevention and physiologic control algorithms may require chronic implantation of pressure or flow sensors, which can be unreliable because of baseline drift and short lifespan. To overcome this limitation, we designed a sensorless suction prevention and physiologic control (eSPPC) algorithm that only requires LVAD intrinsic parameters (pump speed and power). Two gain-scheduled, proportional-integral controllers maintain a differential pump speed (ΔRPM) above a user-defined threshold to prevent LV suction while maintaining an average reference differential pressure (ΔP) between the LV and aorta. ΔRPM is calculated from noisy pump speed measurements that are low-pass filtered, and ΔP is estimated using an extended Kalman filter. Efficacy and robustness of the eSPPC algorithm were evaluated in silico during simulated rest and exercise test conditions for 1) excessive ΔP setpoint (ES); 2) rapid eightfold increase in pulmonary vascular resistance (PVR); and 3) ES and PVR. Simulated hemodynamic waveforms (LV pressure and volume; aortic pressure and flow) using only intrinsic pump parameters showed the feasibility of our proposed eSPPC algorithm in preventing LV suction for all test conditions.
Method for automatically scramming a nuclear reactor
Ougouag, Abderrafi M.; Schultz, Richard R.; Terry, William K.
2005-12-27
An automatically scramming nuclear reactor system. One embodiment comprises a core having a coolant inlet end and a coolant outlet end. A cooling system operatively associated with the core provides coolant to the coolant inlet end and removes heated coolant from the coolant outlet end, thus maintaining a pressure differential therebetween during a normal operating condition of the nuclear reactor system. A guide tube is positioned within the core with a first end of the guide tube in fluid communication with the coolant inlet end of the core, and a second end of the guide tube in fluid communication with the coolant outlet end of the core. A control element is positioned within the guide tube and is movable therein between upper and lower positions, and automatically falls under the action of gravity to the lower position when the pressure differential drops below a safe pressure differential.
Device and method for measuring multi-phase fluid flow in a conduit using an elbow flow meter
Ortiz, Marcos G.; Boucher, Timothy J.
1997-01-01
A system for measuring fluid flow in a conduit. The system utilizes pressure transducers disposed generally in line upstream and downstream of the flow of fluid in a bend in the conduit. Data from the pressure transducers is transmitted to a microprocessor or computer. The pressure differential measured by the pressure transducers is then used to calculate the fluid flow rate in the conduit. Control signals may then be generated by the microprocessor or computer to control flow, total fluid dispersed, (in, for example, an irrigation system), area of dispersal or other desired effect based on the fluid flow in the conduit.
Special report: Occlusive cuff controller
NASA Technical Reports Server (NTRS)
Baker, J. T.
1975-01-01
A mechanical occlusive cuff controller suitable for blood flow experiments in space shuttle flights is described. The device requires 115 volt ac power and a pressurized gas source. Two occluding cuff pressures (30 and 50 mmHg) are selectable by a switch on the front panel. A screw driver adjustment allows accurate cuff pressurization levels for under or oversized limbs. Two pressurization cycles (20 second and 2 minutes) can be selected by a front panel switch. Adjustment of the timing cycles is also available through the front panel. A pushbutton hand switch allows remote start of the cuff inflation cycle. A stop/reset switch permits early termination of the cycle and disabling of the controller to prevent inadvertent reactivation. Pressure in the cuff is monitored by a differential aneroid barometer. In addition, an electrocardiogram trigger circuit permits the initiation of the pressurization cycle by an externally supplied ECG cycle.
Dynamic Hydrostatic Pressure Promotes Differentiation of Human Dental Pulp Stem Cells
Yu, V; Damek-Poprawa, M.; Nicoll, S. B.; Akintoye, S.O.
2009-01-01
The masticatory apparatus absorbs high occlusal forces, but uncontrolled parafunctional or orthodontic forces damage periodontal ligament (PDL), cause pulpal calcification, pulp necrosis and tooth loss. Morphology and functional differentiation of connective tissue cells can be controlled by mechanical stimuli but effects of uncontrolled forces on intra-pulpal homeostasis and ability of dental pulp stem cells (DPSCs) to withstand direct external forces are unclear. Using dynamic hydrostatic pressure (HSP), we tested the hypothesis that direct HSP disrupts DPSC survival and odontogenic differentiation. DPSCs from four teenage patients were subjected to HSP followed by assessment of cell adhesion, survival and recovery capacity based on odontogenic differentiation, mineralization and responsiveness to bone morphogenetic protein-2 (BMP-2). HSP down-regulated DPSC adhesion and survival but promoted differentiation by increasing mineralization, in vivo hard tissue regeneration and BMP-2 responsiveness despite reduced cell numbers. HSP-treated DPSCs displayed enhanced odontogenic differentiation, an indication of favorable recovery from HSP-induced cellular stress. PMID:19555657
Flow compensating pressure regulator
NASA Technical Reports Server (NTRS)
Baehr, E. F. (Inventor)
1978-01-01
An apparatus for regulating pressure of treatment fluid during ophthalmic procedures is described. Flow sensing and pressure regulating diaphragms are used to modulate a flow control valve. The pressure regulating diaphragm is connected to the flow control valve to urge the valve to an open position due to pressure being applied to the diaphragm by bias means such as a spring. The flow sensing diaphragm is mechanically connected to the flow control valve and urges it to an opened position because of the differential pressure on the diaphragm generated by a flow of incoming treatment fluid through an orifice in the diaphragm. A bypass connection with a variable restriction is connected in parallel relationship to the orifice to provide for adjusting the sensitivity of the flow sensing diaphragm. A multiple lever linkage system is utilized between the center of the second diaphragm and the flow control valve to multiply the force applied to the valve by the other diaphragm and reverse the direction of the force.
Differential pressure pin discharge apparatus
Oakley, David J.
1987-02-03
Disclosed is a discharge assembly for allowing elongate pins to be discharged from an area of relatively low pressure to an area of relatively greater pressure. The discharge assembly includes a duck valve having a lip piece made of flexible material. The flexible lip piece responds to a fluctuating pressure created downstream by an aspirator. The aspirator reduces the downstream pressure sensed by the duck valve when the discharge assembly is in the open position. This allows elongate pins to be moved through the duck valve with no backflow because the aspirator pressure is less than the pressure in the low pressure area from which the pins originate. Closure of the assembly causes the aspirator static pressure to force the flexible duck valve lip piece into a tightly sealed position also preventing backflow. The discharge assembly can be easily controlled using a single control valve which blocks the flow of aspirator gas and closes the pin passageway extending through the assembly.
Differential pressure pin discharge apparatus
Oakley, D.J.
1984-05-30
Disclosed is a discharge assembly for allowing elongate pins to be discharged from an area of relatively low pressure to an area of relatively greater pressure. The discharge assembly includes a duck valve having a lip piece made of flexible material. The flexible lip piece responds to a fluctuating pressure created downstream by an aspirator. The aspirator reduces the downstream pressure sensed by the duck valve when the discharge assembly is in the open position. This allows elongate pins to be moved through the duck valve with no backflow because the aspirator pressure is less than the pressure in the low pressure area from which the pins originate. Closure of the assembly causes the aspirator static pressure to force the flexible duck valve lip piece into a tightly sealed position also preventing backflow. The discharge assembly can be easily controlled using a single control valve which blocks the flow of aspirator gas and closes the pins passageway extending through the assembly.
Differential pressure pin discharge apparatus
Oakley, David J.
1987-01-01
Disclosed is a discharge assembly for allowing elongate pins to be discharged from an area of relatively low pressure to an area of relatively greater pressure. The discharge assembly includes a duck valve having a lip piece made of flexible material. The flexible lip piece responds to a fluctuating pressure created downstream by an aspirator. The aspirator reduces the downstream pressure sensed by the duck valve when the discharge assembly is in the open position. This allows elongate pins to be moved through the duck valve with no backflow because the aspirator pressure is less than the pressure in the low pressure area from which the pins originate. Closure of the assembly causes the aspirator static pressure to force the flexible duck valve lip piece into a tightly sealed position also preventing backflow. The discharge assembly can be easily controlled using a single control valve which blocks the flow of aspirator gas and closes the pin passageway extending through the assembly.
Self pressuring HTP feed systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitehead, J.
1999-10-14
Hydrogen peroxide tanks can be pressurized with decomposed HTP (high test hydrogen peroxide) originating in the tank itself. In rocketry, this offers the advantage of eliminating bulky and heavy inert gas storage. Several prototype self-pressurizing HTP systems have recently been designed and tested. Both a differential piston tank and a small gas-driven pump have been tried to obtain the pressure boost needed for flow through a gas generator and back to the tank. Results include terrestrial maneuvering tests of a prototype microsatellite, including warm gas attitude control jets.
Device and method for measuring multi-phase fluid flow in a conduit using an elbow flow meter
Ortiz, M.G.; Boucher, T.J.
1997-06-24
A system is described for measuring fluid flow in a conduit. The system utilizes pressure transducers disposed generally in line upstream and downstream of the flow of fluid in a bend in the conduit. Data from the pressure transducers is transmitted to a microprocessor or computer. The pressure differential measured by the pressure transducers is then used to calculate the fluid flow rate in the conduit. Control signals may then be generated by the microprocessor or computer to control flow, total fluid dispersed, (in, for example, an irrigation system), area of dispersal or other desired effect based on the fluid flow in the conduit. 2 figs.
Multiphase flow calculation software
Fincke, James R.
2003-04-15
Multiphase flow calculation software and computer-readable media carrying computer executable instructions for calculating liquid and gas phase mass flow rates of high void fraction multiphase flows. The multiphase flow calculation software employs various given, or experimentally determined, parameters in conjunction with a plurality of pressure differentials of a multiphase flow, preferably supplied by a differential pressure flowmeter or the like, to determine liquid and gas phase mass flow rates of the high void fraction multiphase flows. Embodiments of the multiphase flow calculation software are suitable for use in a variety of applications, including real-time management and control of an object system.
Mitchell, Mark A; Adamson, Trinka W; Singleton, Charles B; Roundtree, Marlana K; Bauer, Rudy W; Acierno, Mark J
2007-02-01
To evaluate a combination of 2 nonantibiotic microbicide compounds, sodium hypochlorite (NaOCl) and polyhexamethylene biguanide (PHMB), as a treatment to suppress or eliminate Salmonella spp from red-eared slider (RES) turtle (Trachemys scripta elegans) eggs and hatchlings. 2,738 eggs from 8 turtle farms in Louisiana. Eggs were randomly sorted into 3 or, when sufficient eggs were available, 4 treatment groups as follows: control, pressure-differential egg treatment with NaOCl and gentamicin, NaOCl and PHMB bath treatment, and pressure-differential egg treatment with NaOCl and PHMB. Bacterial cultures were performed from specimens of eggs and hatchlings and evaluated for Salmonella spp. RES turtle eggs treated with NaOCl and PHMB as a bath (odds ratio [OR], 0.2 [95% confidence interval (CI), 0.1 to 0.3]) or as a pressure-differential dip (OR, 0.01 [95% CI, 0.001 to 0.07]) or with gentamicin as a pressure-differential dip (OR, 0.1 [95% CI, 0.06 to 0.2]) were significantly less likely to have Salmonella-positive culture results than control-group eggs. Concern over reptile-associated salmonellosis in children in the United States is so great that federal regulations prohibit the sale of turtles that are < 10.2 cm in length. Currently, turtle farms treat eggs with gentamicin solution. Although this has reduced Salmonella shedding, it has also resulted in antimicrobial resistance. Results of our study indicate that a combination of NaOCl and PHMB may be used to suppress or eliminate Salmonella spp on RES turtle eggs and in hatchlings.
Differential pressure sensing system for airfoils usable in turbine engines
Yang, Wen-Ching; Stampahar, Maria E.
2005-09-13
A detection system for identifying airfoils having a cooling systems with orifices that are plugged with contaminants or with showerheads having a portion burned off. The detection system measures pressures at different locations and calculates or measures a differential pressure. The differential pressure may be compared with a known benchmark value to determine whether the differential pressure has changed. Changes in the differential pressure may indicate that one or more of the orifices in a cooling system of an airfoil are plugged or that portions of, or all of, a showerhead has burned off.
Differential pressure pin discharge apparatus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oakley, D.J.
Disclosed is a discharge assembly for allowing elongate pins to be discharged from an area of relatively low pressure to an area of relatively greater pressure. The discharge assembly includes a duck valve having a lip piece made of flexible material. The flexible lip piece responds to a fluctuating pressure created downstream by an aspirator. The aspirator reduces the downstream pressure sensed by the duck valve when the discharge assembly is in the open position. This allows elongate pins to be moved through the duck valve with no backflow because the aspirator pressure is less than the pressure in themore » low pressure area from which the pins originate. Closure of the assembly causes the aspirator static pressure to force the flexible duck valve lip piece into a tightly sealed position also preventing backflow. The discharge assembly can be easily controlled using a single control valve which blocks the flow of aspirator gas and closes the pins passageway extending through the assembly.« less
Limb neurovascular control during altered otolithic input in humans
NASA Technical Reports Server (NTRS)
Monahan, Kevin D.; Ray, Chester A.
2002-01-01
Head-down rotation (HDR), which activates the vestibulosympathetic reflex, increases leg muscle sympathetic nerve activity (MSNA) and produces calf vasoconstriction with no change in either cardiac output or arterial blood pressure. Based on animal studies, it was hypothesized that differential control of arm and leg MSNA explains why HDR does not alter arterial blood pressure. Fifteen healthy subjects were studied. Heart rate, arterial blood pressure, forearm and calf blood flow, and leg MSNA responses were measured during HDR in these subjects. Simultaneous recordings of arm and leg MSNA were obtained from five of the subjects. Forearm and calf blood flow, vascular conductances, and vascular resistances were similar before HDR, as were arm and leg MSNA. HDR elicited similar significant increases in leg (Delta 6 +/- 1 bursts min(-1); 59 +/- 16 % from baseline) and arm MSNA (Delta 5 +/- 1 bursts min(-1); 80 +/- 28 % from baseline). HDR significantly decreased calf (-19 +/- 2 %) and forearm vascular conductance (-12 +/- 2 %) and significantly increased calf (25 +/- 4 %) and forearm vascular resistance (15 +/- 2 %), with 60 % greater vasoconstriction in the calf than in the forearm. Arterial blood pressure and heart rate were not altered by HDR. These results indicate that there is no differential control of MSNA in the arm and leg during altered feedback from the otolith organs in humans, but that greater vasoconstriction occurs in the calf than in the forearm. These findings indicate that vasodilatation occurs in other vascular bed(s) to account for the lack of increase in arterial blood pressure during HDR.
Design and Implementation of Automatic Air Flow Rate Control System
NASA Astrophysics Data System (ADS)
Akbar, A.; Saputra, C.; Munir, M. M.; Khairurrijal
2016-08-01
Venturimeter is an apparatus that can be used to measure the air flow rate. In this experiment we designed a venturimeter which equipped with a valve that is used to control the air flow rate. The difference of pressure between the cross sections was measured with the differential pressure sensor GA 100-015WD which can calculate the difference of pressures from 0 to 3737.33 Pa. A 42M048C Z36 stepper motor was used to control the valve. The precision of this motor rotation is about 0.15 °. A Graphical User Interface (GUI) was developed to monitor and set the value of flow rate then an 8-bit microcontroller was used to process the control system In this experiment- the venturimeter has been examined to get the optimal parameter of controller. The results show that the controller can set the stable output air flow rate.
Comparing effects of perfusion and hydrostatic pressure on gene profiles of human chondrocyte.
Zhu, Ge; Mayer-Wagner, Susanne; Schröder, Christian; Woiczinski, Matthias; Blum, Helmut; Lavagi, Ilaria; Krebs, Stefan; Redeker, Julia I; Hölzer, Andreas; Jansson, Volkmar; Betz, Oliver; Müller, Peter E
2015-09-20
Hydrostatic pressure and perfusion have been shown to regulate the chondrogenic potential of articular chondrocytes. In order to compare the effects of hydrostatic pressure plus perfusion (HPP) and perfusion (P) we investigated the complete gene expression profiles of human chondrocytes under HPP and P. A simplified bioreactor was constructed to apply loading (0.1 MPa for 2 h) and perfusion (2 ml) through the same piping by pressurizing the medium directly. High-density monolayer cultures of human chondrocytes were exposed to HPP or P for 4 days. Controls (C) were maintained in static cultures. Gene expression was evaluated by sequencing (RNAseq) and quantitative real-time PCR analysis. Both treatments changed gene expression levels of human chondrocytes significantly. Specifically, HPP and P increased COL2A1 expression and decreased COL1A1 and MMP-13 expression. Despite of these similarities, RNAseq revealed a list of cartilage genes including ACAN, ITGA10 and TNC, which were differentially expressed by HPP and P. Of these candidates, adhesion related molecules were found to be upregulated in HPP. Both HPP and P treatment had beneficial effects on chondrocyte differentiation and decreased catabolic enzyme expression. The study provides new insight into how hydrostatic pressure and perfusion enhance cartilage differentiation and inhibit catabolic effects. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Mavkov, B.; Witrant, E.; Prieur, C.; Maljaars, E.; Felici, F.; Sauter, O.; the TCV-Team
2018-05-01
In this paper, model-based closed-loop algorithms are derived for distributed control of the inverse of the safety factor profile and the plasma pressure parameter β of the TCV tokamak. The simultaneous control of the two plasma quantities is performed by combining two different control methods. The control design of the plasma safety factor is based on an infinite-dimensional setting using Lyapunov analysis for partial differential equations, while the control of the plasma pressure parameter is designed using control techniques for single-input and single-output systems. The performance and robustness of the proposed controller is analyzed in simulations using the fast plasma transport simulator RAPTOR. The control is then implemented and tested in experiments in TCV L-mode discharges using the RAPTOR model predicted estimates for the q-profile. The distributed control in TCV is performed using one co-current and one counter-current electron cyclotron heating actuation.
Han, Ihn; Choi, Eun Ha
2017-05-30
Non-thermal atmospheric pressure plasma is ionized matter, composed of highly reactive species that include positive ions, negative ions, free radicals, neutral atoms, and molecules. Recent reports have suggested that non-thermal biocompatible plasma (NBP) can selectively kill a variety of cancer cells, and promote stem cell differentiation. However as of yet, the regulation of proliferation and differentiation potential of NBP has been poorly understood.Here, we investigated the effects of NBP on the osteogenic differentiation of precursor cell lines of osteoblasts, MC3T3 E1 and SaOS-2. For in vitro osteogenic differentiation, precursor cell lines were treated with NBP, and cultured with osteogenic induction medium. After 10 days of treatment, the NBP was shown to be effective in osteogenic differentiation in MC3T3 E1 cells by von Kossa and Alizarin Red S staining assay. Real-time PCR was then performed to investigate the expression of osteogenic specific genes, Runx2, OCN, COL1, ALP and osterix in MC3T3 E1 cells after treatment with NBP for 4 days. Furthermore, analysis of the protein expression showed that NBP treatment significantly reduced PI3K/AKT signaling and MAPK family signaling. However, p38 controlled phosphorylation of transcription factor forkhead box O1 (FoxO1) that related to cell differentiation with increased phosphorylated p38. These results suggest that non-thermal atmospheric pressure plasma can induce osteogenic differentiation, and enhance bone formation.
Kawanishi, Makoto; Oura, Atsuhiro; Furukawa, Katsuko; Fukubayashi, Toru; Nakamura, Kozo; Tateishi, Tetsuya; Ushida, Takashi
2007-05-01
Hydrostatic pressure is one of the most frequently used mechanical stimuli in chondrocyte experiments. A variety of hydrostatic pressure loading devices have been used in cartilage cell experiments. However, no gas-controlled system with other than a low pressure load was used up to this time. Hence we used a polyolefin bag from which gas penetration was confirmed. Chondrocytes were extracted from bovine normal knee joint cartilage. After 3 passages, dedifferentiated chondrocytes were applied to form a pellet. These pellets were cultured in chemically defined serum-free medium with ITS+Premix for 3 days. Then 5 MPa of cyclic hydrostatic pressure was applied at 0.5 Hz for 4 h per day for 4 days. Semiquantitative reverse transcriptase-polymerase chain reaction showed a 5-fold increase in the levels of aggrecan mRNA due to cyclic hydrostatic pressure load (p<0.01). Type II collagen mRNA levels were also upregulated 4-fold by a cyclic hydrostatic pressure load (p<0.01). Type I collagen mRNA levels were similarly reduced in the cyclic hydrostatic pressure load group and in the control group. The partial oxygen pressure (PO2) and partial carbon dioxide pressure (PCO2) of the medium in the bag reached equilibrium in 24 h, and no significant change was observed for 3 days afterwards. PO2 and PCO2 were very well controlled. The loaded pellet showed better safranin O/fast green staining than did the control pellet. Metachromatic staining by Alcian blue staining was found to be stronger in the loaded than in the control pellets. The extracellular matrices excretion of loaded pellets was higher than that of control pellets. These results suggest that gas-controlled cyclic hydrostatic pressure enhanced the cartilaginous matrix formation of dedifferentiated cells differentiated in vitro.
Rotman, Oren Moshe; Weiss, Dar; Zaretsky, Uri; Shitzer, Avraham; Einav, Shmuel
2015-09-18
High accuracy differential pressure measurements are required in various biomedical and medical applications, such as in fluid-dynamic test systems, or in the cath-lab. Differential pressure measurements using fluid-filled catheters are relatively inexpensive, yet may be subjected to common mode pressure errors (CMP), which can significantly reduce the measurement accuracy. Recently, a novel correction method for high accuracy differential pressure measurements was presented, and was shown to effectively remove CMP distortions from measurements acquired in rigid tubes. The purpose of the present study was to test the feasibility of this correction method inside compliant tubes, which effectively simulate arteries. Two tubes with varying compliance were tested under dynamic flow and pressure conditions to cover the physiological range of radial distensibility in coronary arteries. A third, compliant model, with a 70% stenosis severity was additionally tested. Differential pressure measurements were acquired over a 3 cm tube length using a fluid-filled double-lumen catheter, and were corrected using the proposed CMP correction method. Validation of the corrected differential pressure signals was performed by comparison to differential pressure recordings taken via a direct connection to the compliant tubes, and by comparison to predicted differential pressure readings of matching fluid-structure interaction (FSI) computational simulations. The results show excellent agreement between the experimentally acquired and computationally determined differential pressure signals. This validates the application of the CMP correction method in compliant tubes of the physiological range for up to intermediate size stenosis severity of 70%. Copyright © 2015 Elsevier Ltd. All rights reserved.
1982-08-01
19 3.2 Diesel Engine Speed Transducer 20 3.3 Pressure Transducer 20 3.4 Temperature Transducer 22 3.5 Differential Pressure Switch 22 3.6 Differential... Pressure Switch , Multi-Point 22 3.7 Current Measurement Transducer 23 - 3.8 Electrolyte Level Probes 23 3.9 Diagnostic Connector 24 3.10 Harness...12258933 Differential Pressure Switch - Multi-point 12258934 K -. Differential Pressure Switch 12258938 Electrolyte Level Sensor 12258935 Shunt 1000
ERIC Educational Resources Information Center
Papanastasiou, Tasos C.
1989-01-01
Discusses fluid mechanics for undergraduates including the differential Navier-Stokes equations, dimensional analysis and simplified dimensionless numbers, control volume principles, the Reynolds lubrication equation for confined and free surface flows, capillary pressure, and simplified perturbation techniques. Provides a vertical dip coating…
Differential Intracochlear Sound Pressure Measurements in Normal Human Temporal Bones
NASA Astrophysics Data System (ADS)
Nakajima, Hideko Heidi; Dong, Wei; Olson, Elizabeth S.; Merchant, Saumil N.; Ravicz, Michael E.; Rosowski, John J.
2009-02-01
We present the first simultaneous sound pressure measurements in scala vestibuli and scala tympani of the cochlea in human cadaveric temporal bones. Micro-scale fiberoptic pressure sensors enabled the study of differential sound pressure at the cochlear base. This differential pressure is the input to the cochlear partition, driving cochlear waves and auditory transduction. Results showed that: pressure of scala vestibuli was much greater than scala tympani except at low and high frequencies where scala tympani pressure affects the input to the cochlea; the differential pressure proved to be an excellent measure of normal ossicular transduction of sound (shown to decrease 30-50 dB with ossicular disarticulation, whereas the individual scala pressures were significantly affected by non-ossicular conduction of sound at high frequencies); the middle-ear gain and differential pressure were generally bandpass in frequency dependence; and the middle-ear delay in the human was over twice that of the gerbil. Concurrent stapes velocity measurements allowed determination of the differential impedance across the partition and round-window impedance. The differential impedance was generally resistive, while the round-window impedance was consistent with a compliance in conjunction with distributed inertia and damping. Our techniques can be used to study inner-ear conductive pathologies (e.g., semicircular dehiscence), as well as non-ossicular cochlear stimulation (e.g., round-window stimulation) - situations that cannot be completely quantified by measurements of stapes velocity or scala-vestibuli pressure by themselves.
Schwarzer, Michael; Schrepper, Andrea; Amorim, Paulo A; Osterholt, Moritz; Doenst, Torsten
2013-02-15
Years ago a debate arose as to whether two functionally different mitochondrial subpopulations, subsarcolemmal mitochondria (SSM) and interfibrillar mitochondria (IFM), exist in heart muscle. Nowadays potential differences are often ignored. Presumably, SSM are providing ATP for basic cell function, whereas IFM provide energy for the contractile apparatus. We speculated that two distinguishable subpopulations exist that are differentially affected by pressure overload. Male Sprague-Dawley rats were subjected to transverse aortic constriction for 20 wk or sham operation. Contractile function was assessed by echocardiography. Heart tissue was analyzed by electron microscopy. Mitochondria were isolated by differential centrifugation, and respiratory capacity was analyzed using a Clark electrode. Pressure overload induced left ventricular hypertrophy with increased posterior wall diameter and impaired contractile function. Mitochondrial state 3 respiration in control was 50% higher in IFM than in SSM. Pressure overload significantly impaired respiratory rates in both IFM and SSM, but in SSM to a lower extent. As a result, there were no differences between SSM and IFM after 20 wk of pressure overload. Pressure overload reduced total citrate synthase activity, suggesting reduced total mitochondrial content. Electron microscopy revealed normal morphology of mitochondria but reduced total mitochondrial volume density. In conclusion, IFM show greater respiratory capacity in the healthy rat heart and a greater depression of respiratory capacity by pressure overload than SSM. The differences in respiratory capacity of cardiac IFM and SSM in healthy hearts are eliminated with pressure overload-induced heart failure. The strong effect of pressure overload on IFM together with the simultaneous appearance of mitochondrial and contractile dysfunction may support the notion of IFM primarily producing ATP for contractile function.
Implanted Blood-Pressure-Measuring Device
NASA Technical Reports Server (NTRS)
Fischell, Robert E.
1988-01-01
Arterial pressure compared with ambient bodily-fluid pressure. Implanted apparatus, capable of measuring blood pressure of patient, includes differential-pressure transducer connected to pressure sensor positioned in major artery. Electrical signal is function of differential pressure between blood-pressure sensor and reference-pressure sensor transmitted through skin of patient to recorder or indicator.
Self-actuating reactor shutdown system
Barrus, Donald M.; Brummond, Willian A; Peterson, Leslie F.
1988-01-01
A control system for the automatic or self-actuated shutdown or "scram" of a nuclear reactor. The system is capable of initiating scram insertion by a signal from the plant protection system or by independent action directly sensing reactor conditions of low-flow or over-power. Self-actuation due to a loss of reactor coolant flow results from a decrease of pressure differential between the upper and lower ends of an absorber element. When the force due to this differential falls below the weight of the element, the element will fall by gravitational force to scram the reactor. Self-actuation due to high neutron flux is accomplished via a valve controlled by an electromagnet and a thermionic diode. In a reactor over-power, the diode will be heated to a change of state causing the electromagnet to be shorted thereby actuating the valve which provides the changed flow and pressure conditions required for scramming the absorber element.
Bateman, G A; Loiselle, A M
2007-01-01
Between 10 and 90% of patients with normal pressure hydrocephalus (NPH) treated with a shunt will improve but they risk significant morbidity/mortality from this procedure. NPH is treated hydrodynamically and it has been assumed that a hydrodynamic difference must exist to differentiate which patient will respond. The purpose of this study is to see whether MRI hydrodynamics can differentiate which patients will improve post shunting. Thirty-two patients with NPH underwent MRI with flow quantification measuring the degree of ventricular enlargement, sulcal compression, white matter disease, total blood inflow, sagittal sinus outflow, aqueduct stroke volume, relative compliance ratio and arteriovenous delay. Patients were followed up after shunt insertion to gauge the degree of improvement and were compared with 12 age-matched controls and 12 patients with Alzheimer's disease. 63% of patients improved with insertion. The responders were identical to the non-responders in all variables. The NPH patients were significantly different to the controls (e.g. Total blood inflow reduced 20%, sagittal sinus outflow reduced 35%, aqueduct stroke volume increased 210%, relative compliance ratio reduced 60% and arteriovenous delay reduced 57% with p = 0.007, 0.03, 0.04, 0.0002 and 0.0003 respectively. The patient's with Alzheimer's disease values were midway between the NPH and control patients. Significant hydrodynamic differences were noted between NPH and controls but these were unable to differentiate the responders from non-responders. The hydrodynamics of Alzheimer's disease makes exclusion of comorbidity from this disease difficult.
Fournier, R.O.
1991-01-01
Pore-fluid pressure (Pf) > Ph has been encountered at the bottom of 3 geothermal exploration wells that attained temperatures > 370??C (at Larderello, Italy, at Nesjavellir, Iceland, and at The Geysers, California). Chemical sealing by deposition of minerals in veins appears to have allowed the development of the high Pf encountered in the above wells. The upper limit for the magnitude of Pf that can be attained is controlled by either the onset of shear fracturing (where differential stress is relatively high) that reopens clogged veins, or the hydraulic opening of new or old fractures (at relatively low values of differential stress). -from Author
Chondrocyte response to cyclic hydrostatic pressure in alginate versus pellet culture.
Elder, Steven H; Sanders, Shawn W; McCulley, William R; Marr, Misti L; Shim, Joon W; Hasty, Karen A
2006-04-01
Cells are often cultured at high density (e.g., confluent monolayer and as pellets) to promote chondrogenic differentiation and to maintain the chondrocyte phenotype. They are also frequently suspended in hydrogels such as agarose or alginate for the same purposes. These culture techniques differ markedly with respect to frequency of direct contact between cells and overall intercellular spacing. Because these factors may significantly affect mechanotransduction, the purpose of this study was to determine if the response of articular chondrocytes to cyclic hydrostatic pressure would depend on the culture condition. Primary articular chondrocytes from young and mature pigs were cultured either as pellets or suspended in alginate beads. Both groups were exposed to dynamic hydrostatic pressure (4 MPa, 1 Hz, 5400 cycles per day) for 7 days. Cell proliferation was unaffected by pressure, but pressurized chondrocytes in pellet culture had significantly greater sGAG content and incorporated [3H]proline at a higher rate than nonpressurized controls. Electron microscopy revealed a fibrous extracellular matrix (ECM) surrounding pellets, but not cells in alginate. In addition, expression of Connexin 43 (Cx43) mRNA was slightly lower in alginate than in pellet cultures and was not significantly altered by loading. Thus, metabolic response of chondrocytes to dynamic hydrostatic pressure was affected by culture technique; chondrocytes cultured as pellets exhibited the classical anabolic response to dynamic hydrostatic pressure, but those in alginate did not. Although cell-ECM interaction could be important, the differential response is not likely attributable to differential expression of Cx43 mRNA. Copyright 2006 Orthopaedic Research Society
Recovering Aerodynamic Side Loads on Rocket Nozzles using Quasi-Static Strain-Gage Measurements
NASA Technical Reports Server (NTRS)
Brown, Andrew; Ruf, Joseph H.; McDaniels, David M.
2009-01-01
During over-expanded operation of rocket nozzles, which is defined to be when the exit pressure is greater than internal pressure over some part of the nozzle, the nozzle will experience a transverse forcing function due to the pressure differential across the nozzle wall. Over-expansion occurs during the nozzle start-up and shutdown transient, even in high-altitude engines, because most test facilities cannot completely reproduce the near-vacuum pressures at those altitudes. During this transient, the pressure differential moves axially down the nozzle as it becomes pressurized, but this differential is never perfectly symmetric circumferentially. The character of the forcing function is highly complex and defined by a series of restricted and free shock separations. The subject of this paper is the determination of the magnitude of this loading during sub-scale testing via measurement of the structural dynamic response of the nozzle and its support structure. An initial attempt at back-calculating this load using the inverse of the transfer function was performed, but this attempt was shown to be highly susceptible to numerical error. The final method chosen was to use statically calibrated strain data and to filter out the system fundamental frequency such that the measured response yields close to the correct dynamic loading function. This method was shown to capture 93% of the pressure spectral energy using controlled load shaker testing. This method is one of the only practical ways for the inverse determination of the forcing function for non-stationary excitations, and, to the authors' knowledge, has not been described in the literature to date.
Solovyev, Alexey; Mi, Qi; Tzen, Yi-Ting; Brienza, David; Vodovotz, Yoram
2013-01-01
Pressure ulcers are costly and life-threatening complications for people with spinal cord injury (SCI). People with SCI also exhibit differential blood flow properties in non-ulcerated skin. We hypothesized that a computer simulation of the pressure ulcer formation process, informed by data regarding skin blood flow and reactive hyperemia in response to pressure, could provide insights into the pathogenesis and effective treatment of post-SCI pressure ulcers. Agent-Based Models (ABM) are useful in settings such as pressure ulcers, in which spatial realism is important. Ordinary Differential Equation-based (ODE) models are useful when modeling physiological phenomena such as reactive hyperemia. Accordingly, we constructed a hybrid model that combines ODEs related to blood flow along with an ABM of skin injury, inflammation, and ulcer formation. The relationship between pressure and the course of ulcer formation, as well as several other important characteristic patterns of pressure ulcer formation, was demonstrated in this model. The ODE portion of this model was calibrated to data related to blood flow following experimental pressure responses in non-injured human subjects or to data from people with SCI. This model predicted a higher propensity to form ulcers in response to pressure in people with SCI vs. non-injured control subjects, and thus may serve as novel diagnostic platform for post-SCI ulcer formation. PMID:23696726
Apparatus Tests Peeling Of Bonded Rubbery Material
NASA Technical Reports Server (NTRS)
Crook, Russell A.; Graham, Robert
1996-01-01
Instrumented hydraulic constrained blister-peel apparatus obtains data on degree of bonding between specimen of rubbery material and rigid plate. Growth of blister tracked by video camera, digital clock, pressure transducer, and piston-displacement sensor. Cylinder pressure controlled by hydraulic actuator system. Linear variable-differential transformer (LVDT) and float provide second, independent measure of change in blister volume used as more precise volume feedback in low-growth-rate test.
Controls on Permeability Evolution in Fractured-Sorbing Media
NASA Astrophysics Data System (ADS)
Elsworth, D.
2017-12-01
A critical component in the desire to recover energy and fuels from the subsurface, or to sequester energy-related and other wastes, is the ability to control properties that influence the transport and storage of mass, fluids and energy. In fractured media, permeabilities are strongly dependent on effective stresses. In turn, effective stresses (M) are mediated by changes in fluid pressures (H), compositions of the permeating fluids and permeated rocks (C) and changes in temperature (T) - and sometimes influenced by biological (B) processes. First we explore the role of specific complex THMC(B) interactions in mediating changes in permeability in response to a change in spherical stress. These include the roles of differential strains, induced within shales by changes in pressure (H), gas concentration (C) or temperature (T), in driving changes in permeability, in particular where the effects of sorption are pronounced. We show that the influence of such pressure-, sorption- and thermally-induced changes in damage and porosity are countered, by the first order resetting effects of creep that influence the crack distribution within the fractured aggregate. Second, we explore linkages where friction and instability control the response to changes in differential stress. Changes in permeability are controlled by styles of deformation - brittle versus ductile - with modes of deformation in turn mediated by mineralogy of both native and altered mineral constituents, the evolving scale of deformation and in the progress of deformation through the dynamic loading cycle.
Quantification of peripheral and central blood pressure variability using a time-frequency method.
Kouchaki, Z; Butlin, M; Qasem, A; Avolio, A P
2016-08-01
Systolic blood pressure variability (BPV) is associated with cardiovascular events. As the beat-to-beat variation of blood pressure is due to interaction of several cardiovascular control systems operating with different response times, assessment of BPV by spectral analysis using the continuous measurement of arterial pressure in the finger is used to differentiate the contribution of these systems in regulating blood pressure. However, as baroreceptors are centrally located, this study considered applying a continuous aortic pressure signal estimated noninvasively from finger pressure for assessment of systolic BPV by a time-frequency method using Short Time Fourier Transform (STFT). The average ratio of low frequency and high frequency power band (LF PB /HF PB ) was computed by time-frequency decomposition of peripheral systolic pressure (pSBP) and derived central aortic systolic blood pressure (cSBP) in 30 healthy subjects (25-62 years) as a marker of balance between cardiovascular control systems contributing in low and high frequency blood pressure variability. The results showed that the BPV assessed from finger pressure (pBPV) overestimated the BPV values compared to that assessed from central aortic pressure (cBPV) for identical cardiac cycles (P<;0.001), with the overestimation being greater at higher power.
Circuit for detecting initial systole and dicrotic notch. [for monitoring arterial pressure
NASA Technical Reports Server (NTRS)
Gebben, V. D.; Webb, J. A., Jr. (Inventor)
1974-01-01
Circuitry is disclosed for processing an arterial pressure waveform to produce during any one cycle a pulse corresponding to the initial systole and a pulse corresponding to the dicrotic notch. In a first channel, an electrical analog of the arterial pressure waveform is filtered and then compared to the original waveform to produce an initial systole signal. In a second channel, the analog is differentiated, filtered, and fed through a gate controlled by pulses from the first channel to produce an electrical pulse corresponding to the dicrotic notch.
Field-effect Flow Control in Polymer Microchannel Networks
NASA Technical Reports Server (NTRS)
Sniadecki, Nathan; Lee, Cheng S.; Beamesderfer, Mike; DeVoe, Don L.
2003-01-01
A new Bio-MEMS electroosmotic flow (EOF) modulator for plastic microchannel networks has been developed. The EOF modulator uses field-effect flow control (FEFC) to adjust the zeta potential at the Parylene C microchannel wall. By setting a differential EOF pumping rate in two of the three microchannels at a T-intersection with EOF modulators, the induced pressure at the intersection generated pumping in the third, field-free microchannel. The EOF modulators are able to change the magnitude and direction of the pressure pumping by inducing either a negative or positive pressure at the intersection. The flow velocity is tracked by neutralized fluorescent microbeads in the microchannels. The proof-of-concept of the EOF modulator described here may be applied to complex plastic ,microchannel networks where individual microchannel flow rates are addressable by localized induced-pressure pumping.
Besch, Stephen R; Suchyna, Thomas; Sachs, Frederick
2002-10-01
We built a high-speed, pneumatic pressure clamp to stimulate patch-clamped membranes mechanically. The key control element is a newly designed differential valve that uses a single, nickel-plated piezoelectric bending element to control both pressure and vacuum. To minimize response time, the valve body was designed with minimum dead volume. The result is improved response time and stability with a threefold decrease in actuation latency. Tight valve clearances minimize the steady-state air flow, permitting us to use small resonant-piston pumps to supply pressure and vacuum. To protect the valve from water contamination in the event of a broken pipette, an optical sensor detects water entering the valve and increases pressure rapidly to clear the system. The open-loop time constant for pressure is 2.5 ms for a 100-mmHg step, and the closed-loop settling time is 500-600 micros. Valve actuation latency is 120 micros. The system performance is illustrated for mechanically induced changes in patch capacitance.
Fracture Sustainability Pressure, Temperature, Differential Pressure, and Aperture Closure Data
Tim Kneafsey
2016-09-30
In these data sets, the experiment time, actual date and time, room temperature, sample temperature, upstream and downstream pressures (measured independently), corrected differential pressure (measured independently and corrected for offset and room temperature) indication of aperture closure by linear variable differential transformer are presented. An indication of the sample is in the file name and in the first line of data.
Role of tempo entrainment in psychophysiological differentiation of happy and sad music?
Khalfa, Stéphanie; Roy, Mathieu; Rainville, Pierre; Dalla Bella, Simone; Peretz, Isabelle
2008-04-01
Respiration rate allows to differentiate between happy and sad excerpts which may be attributable to entrainment of respiration to the rhythm or the tempo rather than to emotions [Etzel, J.A., Johnsen, E.L., Dickerson, J., Tranel, D., Adolphs, R., 2006. Cardiovascular and respiratory responses during musical mood induction. Int. J. Psychophysiol. 61(1), 57-69]. In order to test for this hypothesis, this study intended to verify whether fast and slow rhythm, and/or tempo alone are sufficient to induce differential physiological effects. Psychophysiological responses (electrodermal responses, facial muscles activity, blood pressure, heart and respiration rate) were then measured in fifty young adults listening to fast/happy and slow/sad music, and to two control versions of these excerpts created by removing pitch variations (rhythmic version) and both pitch and temporal variations (beat-alone). The results indicate that happy and sad music are significantly differentiated (happy>sad) by diastolic blood pressure, electrodermal activity, and zygomatic activity, while the fast and slow rhythmic and tempo control versions did not elicit such differentiations. In contrast, respiration rate was faster with stimuli presented at fast tempi relative to slow stimuli in the beat-alone condition. It was thus demonstrated that the psychophysiological happy/sad distinction requires the tonal variations and cannot be explained solely by entrainment to tempo and rhythm. The tempo entrainment exists in the tempo alone condition but our results suggest this effect may disappear when embedded in music or with rhythm.
Constant-Differential-Pressure Two-Fluid Accumulator
NASA Technical Reports Server (NTRS)
Piecuch, Benjamin; Dalton, Luke T.
2010-01-01
A two-fluid accumulator has been designed, built, and demonstrated to provide an acceptably close approximation to constant differential static pressure between two fluids over the full ranges of (1) accumulator stroke, (2) rates of flow of the fluids, and (3) common static pressure applied to the fluids. Prior differential- pressure two-fluid accumulators are generally not capable of maintaining acceptably close approximations to constant differential pressures. The inadequacies of a typical prior differential-pressure two-fluid accumulator can be summarized as follows: The static differential pressure is governed by the intrinsic spring rate (essentially, the stiffness) of an accumulator tank. The spring rate can be tailored through selection of the tank-wall thickness, selection of the number and/or shape of accumulator convolutions, and/or selection of accumulator material(s). Reliance on the intrinsic spring rate of the tank results in three severe limitations: (1) The spring rate and the expulsion efficiency tend to be inversely proportional to each other: that is to say, as the stiffness (and thus the differential pressure) is increased, the range of motion of the accumulator is reduced. (2) As the applied common static pressure increases, the differential pressure tends to decrease. An additional disadvantage, which may or may not be considered limiting, depending on the specific application, is that an increase in stiffness entails an increase in weight. (3) The additional weight required by a low expulsion efficiency accumulator eliminates the advantage given to such gas storage systems. The high expulsion efficiency provided by this two-fluid accumulator allows for a lightweight, tightly packaged system, which can be used in conjunction with a fuel cell-based system.
NASA Technical Reports Server (NTRS)
Parrott, Tony L.; Zorumski, William E.; Rawls, John W., Jr.
1990-01-01
The feasibility is discussed for an experimental program for studying the behavior of acoustic wave propagation in the presence of strong gradients of pressure, temperature, and flow. Theory suggests that gradients effects can be experimentally observed as resonant frequency shifts and mode shape changes in a waveguide. A convenient experimental geometry for such experiments is the annular region between two co-rotating cylinders. Radial temperature gradients in a spinning annulus can be generated by differentially heating the two cylinders via electromagnetic induction. Radial pressure gradients can be controlled by varying the cylinder spin rates. Present technology appears adequate to construct an apparatus to allow independent control of temperature and pressure gradients. A complicating feature of a more advanced experiment, involving flow gradients, is the requirement for independently controlled cylinder spin rates. Also, the boundary condition at annulus terminations must be such that flow gradients are minimally disturbed. The design and construction of an advanced apparatus to include flow gradients will require additional technology development.
NASA Astrophysics Data System (ADS)
Satyanarayana, B.; Majumder, G.; Mondal, N. K.; Kalmani, S. D.; Shinde, R. R.; Joshi, A.
2014-10-01
Pilot unit of a closed loop gas mixing and distribution system for the INO project was designed and is being operated with 1.8meters × 1.9meters RPCs for about two years. A number of studies on controlling the flow and optimisation of the gas mixture through the RPC stack were carried out during this period. The gas system essentially measures and attempts to maintain absolute pressure inside the RPC gas volume. During typical Mumbai monsoon seasons, the barometric pressure changes rather rapidly, due to which the gas system fails to maintain the set differential pressure between the ambience and the RPC gas volume. As the safety bubblers on the RPC gas input lines are set to work on fixed pressure differentials, the ambient pressure changes lead to either venting out and thus wasting gas through safety bubblers or over pressuring the RPCs gas volume and thus degrading its performance. The above problem also leads to gas mixture contamination through minute leaks in gas gap. The problem stated above was solved by including the ambient barometric pressure as an input parameter in the closed loop. Using this, it is now possible to maintain any set differential pressure between the ambience and RPC gas volumes between 0 to 20mm of water column, thus always ensuring a positive pressure inside the RPC gas volume with respect to the ambience. This has resulted in improved performance of the gas system by maintaining the constant gas flow and reducing the gas toping up frequency. In this paper, we will highlight the design features and improvements of the closed loop gas system. We will present some of the performance studies and considerations for scaling up the system to be used with the engineering module and then followed by Iron Calorimeter detector (ICAL), which is designed to deploy about 30,000 RPCs of 1.8meters × 1.9 meters in area.
Differential pressure distribution measurement for the development of insect-sized wings
NASA Astrophysics Data System (ADS)
Takahashi, Hidetoshi; Matsumoto, Kiyoshi; Shimoyama, Isao
2013-05-01
This paper reports on the measurement of the differential pressure distribution over a flat, thin wing using a micro-electro-mechanical systems sensor. Sensors featuring a piezoresistive cantilever were attached to a polyimide/Cu wing. Because the weight of the cantilever element was less than 10 ng, the sensor can measure the differential pressure without interference from inertial forces, such as wing flapping motions. The dimensions of the sensor chips and the wing were 1.0 mm × 1.0 mm × 0.3 mm and 100 mm × 30 mm × 1 mm, respectively. The differential pressure distribution along the wing's chord direction was measured in a wind tunnel at an air velocity of 4.0 m s-1 by changing the angle of attack. It was confirmed that the pressure coefficient calculated by the measured differential pressure distribution was similar to the value measured by a load cell.
Mathematical Model of the Jet Engine Fuel System
NASA Astrophysics Data System (ADS)
Klimko, Marek
2015-05-01
The paper discusses the design of a simplified mathematical model of the jet (turbo-compressor) engine fuel system. The solution will be based on the regulation law, where the control parameter is a fuel mass flow rate and the regulated parameter is the rotational speed. A differential equation of the jet engine and also differential equations of other fuel system components (fuel pump, throttle valve, pressure regulator) will be described, with respect to advanced predetermined simplifications.
Cramer, Emily
2016-01-01
Abstract Hospital performance reports often include rankings of unit pressure ulcer rates. Differentiating among units on the basis of quality requires reliable measurement. Our objectives were to describe and apply methods for assessing reliability of hospital‐acquired pressure ulcer rates and evaluate a standard signal‐noise reliability measure as an indicator of precision of differentiation among units. Quarterly pressure ulcer data from 8,199 critical care, step‐down, medical, surgical, and medical‐surgical nursing units from 1,299 US hospitals were analyzed. Using beta‐binomial models, we estimated between‐unit variability (signal) and within‐unit variability (noise) in annual unit pressure ulcer rates. Signal‐noise reliability was computed as the ratio of between‐unit variability to the total of between‐ and within‐unit variability. To assess precision of differentiation among units based on ranked pressure ulcer rates, we simulated data to estimate the probabilities of a unit's observed pressure ulcer rate rank in a given sample falling within five and ten percentiles of its true rank, and the probabilities of units with ulcer rates in the highest quartile and highest decile being identified as such. We assessed the signal‐noise measure as an indicator of differentiation precision by computing its correlations with these probabilities. Pressure ulcer rates based on a single year of quarterly or weekly prevalence surveys were too susceptible to noise to allow for precise differentiation among units, and signal‐noise reliability was a poor indicator of precision of differentiation. To ensure precise differentiation on the basis of true differences, alternative methods of assessing reliability should be applied to measures purported to differentiate among providers or units based on quality. © 2016 The Authors. Research in Nursing & Health published by Wiley Periodicals, Inc. PMID:27223598
Measurement of the differential pressure of liquid metals
Metz, H.J.
1975-09-01
This patent relates to an improved means for measuring the differential pressure between any two points in a process liquid metal coolant loop, wherein the flow of liquid metal in a pipe is opposed by a permanent magnet liquid metal pump until there is almost zero flow shown by a magnetic type flowmeter. The pressure producing the liquid metal flow is inferred from the rate of rotation of the permanent magnet pump. In an alternate embodiment, a differential pressure transducer is coupled to a process pipeline by means of high-temperature bellows or diaphragm seals, and a permanent magnet liquid metal pump in the high-pressure transmission line to the pressure transducer can be utilized either for calibration of the transducer or for determining the process differential pressure as a function of the magnet pump speed. (auth)
Wang, Chunfei; Zhang, Guang; Wu, Taihu; Zhan, Ningbo; Wang, Yaling
2016-03-01
High-quality cardiopulmonary resuscitation contributes to cardiac arrest survival. The traditional chest compression (CC) standard, which neglects individual differences, uses unified standards for compression depth and compression rate in practice. In this study, an effective and personalized CC method for automatic mechanical compression devices is provided. We rebuild Charles F. Babbs' human circulation model with a coronary perfusion pressure (CPP) simulation module and propose a closed-loop controller based on a fuzzy control algorithm for CCs, which adjusts the CC depth according to the CPP. Compared with a traditional proportion-integration-differentiation (PID) controller, the performance of the fuzzy controller is evaluated in computer simulation studies. The simulation results demonstrate that the fuzzy closed-loop controller results in shorter regulation time, fewer oscillations and smaller overshoot than traditional PID controllers and outperforms the traditional PID controller for CPP regulation and maintenance.
Kim, Keun-Young; Lindsey, James D.; Angert, Mila; Patel, Ankur; Scott, Ray T.; Liu, Quan; Crowston, Jonathan G.; Ellisman, Mark H.; Perkins, Guy A.; Weinreb, Robert N.
2009-01-01
Purpose This study was conducted to determine whether elevated hydrostatic pressure alters mitochondrial structure, triggers release of the dynamin-related guanosine triphosphatase (GTPase) optic atrophy type 1 (OPA1) or cytochrome C from mitochondria, alters OPA1 gene expression, and can directly induce apoptotic cell death in cultured retinal ganglion cell (RGC)-5 cells. Methods Differentiated RGC-5 cells were exposed to 30 mmHg for three days in a pressurized incubator. As a control, differentiated RGC-5 cell cultures were incubated simultaneously in a conventional incubator. Live RGC-5 cells were then labeled with MitoTracker Red and mitochondrial morphology was assessed by fluorescence microscopy. Mitochondrial structural changes were also assessed by electron microscopy and three-dimenstional (3D) electron microscope tomography. OPA1 mRNA was measured by Taqman quantitative PCR. The cellular distribution of OPA1 protein and cytochrome C was assessed by immunocytochemistry and western blot. Caspase-3 activation was examined by western blot. Apoptotic cell death was evaluated by the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) method. Results Mitochondrial fission, characterized by the conversion of tubular fused mitochondria into isolated small organelles, was triggered after three days exposure to elevated hydrostatic pressure. Electron microscopy confirmed the fission and noted no changes to mitochondrial architecture, nor outer membrane rupture. Electron microscope tomography showed that elevated pressure depleted mitochondrial cristae content by fourfold. Elevated hydrostatic pressure increased OPA1 gene expression by 35±14% on day 2, but reduced expression by 36±4% on day 3. Total OPA1 protein content was not changed on day 2 or 3. However, pressure treatment induced release of OPA1 and cytochrome C from mitochondria to the cytoplasm. Elevated pressure also activated caspase-3 and induced apoptotic cell death. Conclusions Elevated hydrostatic pressure triggered mitochondrial changes including mitochondrial fission and abnormal cristae depletion, alteration of OPA1 gene expression, and release of OPA1 and cytochrome C into the cytoplasm before the onset of apoptotic cell death in differentiated RGC-5 cells. These results suggest that sustained moderate pressure elevation may directly damage RGC integrity by injuring mitochondria. PMID:19169378
Cho, Nakwon
1980-01-01
A fast-acting valve actuator utilizes a spring driven pneumatically loaded piston to drive a valve gate. Rapid exhaust of pressurized gas from the pneumatically loaded side of the piston facilitates an extremely rapid piston stroke. A flexible selector diaphragm opens and closes an exhaust port in response to pressure differentials created by energizing and de-energizing a solenoid which controls the pneumatic input to the actuator as well as selectively providing a venting action to one side of the selector diaphragm.
NASA Technical Reports Server (NTRS)
Lauer, H. V., Jr.; Ming, D. W.; Golden, D. C.; Lin, I.-C.; Boynton, W. V.
2000-01-01
Volatile-bearing minerals (e.g., Fe-oxyhydroxides, phyllosilicates, carbonates, and sulfates) may be important phases on the surface of Mars. In order to characterize these potential phases the Thermal Evolved-Gas Analyzer (TEGA), which was onboard the Mars Polar Lander, was to have performed differential scanning calorimetry (DSC) and evolved-gas analysis of soil samples collected from the surface. The sample chamber in TEGA operates at about 100 mbar (approximately 76 torr) with a N2, carrier gas flow of 0.4 seem. Essentially, no information exists on the effects of reduced pressure on the thermal properties of volatile-bearing minerals. In support of TEGA, we have constructed a laboratory analog for TEGA from commercial instrumentation. We connected together a commercial differential scanning calorimeter, a quadruple mass spectrometer, a vacuum pump, digital pressure gauge, electronic mass flow meter, gas "K" bottles, gas dryers, and high and low pressure regulators using a collection of shut off and needle valves. Our arrangement allows us to vary and control the pressure and carrier gas flow rate inside the calorimeter oven chamber.
Javanmard, F; Azadbakht, M; Pourmoradi, M
2016-01-01
In this study, the role of hydrostatic pressure on staurosporine-induced neural differentiation in mouse bone marrow mesenchymal stem cells were investigated. The cells were cultured in treatment medium containing 100 nM of staurosporine for 4 hours; then the cells were affected by hydrostatic pressure (0, 25,50, 100 mmHg). The percentage of cell viability by trypan blue staining and the percentage of cell death by Hoechst/PI differential staining were assessed. We obtained the total neurite length. Expression of β-tubulin III and GFAP (Glial fibrillary acidic protein) proteins were also analyzed by immunocytochemistry. The percentage of cell viability in treatments decreased relative to the increase in hydrostatic pressure and time (p Keywords: bone marrow mesenchymal stem cell, hydrostatic pressure, immunocytochemistry, neural differentiation, neurite length, cell differentiation.
In vitro performance and principles of anti-siphoning devices.
Freimann, Florian Baptist; Kimura, Takaoki; Stockhammer, Florian; Schulz, Matthias; Rohde, Veit; Thomale, Ulrich-Wilhelm
2014-11-01
Anti-siphon devices (ASDs) of various working principles were developed to overcome overdrainage-related complications associated with ventriculoperitoneal shunting. We aimed to provide comparative data on the pressure and flow characteristics of six different types of ASDs (gravity-assisted, membrane-controlled, and flow-regulated) in order to achieve a better understanding of these devices and their potential clinical application. We analyzed three gravity-dependent ASDs (ShuntAssistant [SA], Miethke; Gravity Compensating Accessory [GCA], Integra; SiphonX [SX], Sophysa), two membrane-controlled ASDs (Anti-Siphon Device [IASD], Integra; Delta Chamber [DC], Medtronic), and one flow-regulated ASD (SiphonGuard [SG], Codman). Defined pressure conditions within a simulated shunt system were generated (differential pressure 10-80 cmH2O), and the specific flow and pressure characteristics were measured. In addition, the gravity-dependent ASDs were measured in defined spatial positions (0-90°). The flow characteristics of the three gravity-assisted ASDs were largely dependent upon differential pressure and on their spatial position. All three devices were able to reduce the siphoning effect, but each to a different extent (flow at inflow pressure: 10 cmH2O, siphoning -20 cmH2O at 0°/90°: SA, 7.1 ± 1.2*/2.3 ± 0.5* ml/min; GCA, 10.5 ± 0.8/3.4 ± 0.4* ml/min; SX, 9.5 ± 1.2*/4.7 ± 1.9* ml/min, compared to control, 11.1 ± 0.4 ml/min [*p < 0.05]). The flow characteristics of the remaining ASDs were primarily dependent upon the inflow pressure effect (flow at 10 cmH2O, siphoning 0 cmH2O/ siphoning -20cmH2O: DC, 2.6 ± 0.1/ 4 ± 0.3* ml/min; IASD, 2.5 ± 0.2/ 0.8 ± 0.4* ml/min; SG, 0.8 ± 0.2*/ 0.2 ± 0.1* ml/min [*p < 0.05 vs. control, respectively]). The tested ASDs were able to control the siphoning effect within a simulated shunt system to differing degrees. Future comparative trials are needed to determine the type of device that is superior for clinical application.
Does teacher evaluation based on student performance predict motivation, well-being, and ill-being?
Cuevas, Ricardo; Ntoumanis, Nikos; Fernandez-Bustos, Juan G; Bartholomew, Kimberley
2018-06-01
This study tests an explanatory model based on self-determination theory, which posits that pressure experienced by teachers when they are evaluated based on their students' academic performance will differentially predict teacher adaptive and maladaptive motivation, well-being, and ill-being. A total of 360 Spanish physical education teachers completed a multi-scale inventory. We found support for a structural equation model that showed that perceived pressure predicted teacher autonomous motivation negatively, predicted amotivation positively, and was unrelated to controlled motivation. In addition, autonomous motivation predicted vitality positively and exhaustion negatively, whereas controlled motivation and amotivation predicted vitality negatively and exhaustion positively. Amotivation significantly mediated the relation between pressure and vitality and between pressure and exhaustion. The results underline the potential negative impact of pressure felt by teachers due to this type of evaluation on teacher motivation and psychological health. Copyright © 2018 Society for the Study of School Psychology. Published by Elsevier Ltd. All rights reserved.
Jenke, Christoph; Pallejà Rubio, Jaume; Kibler, Sebastian; Häfner, Johannes; Richter, Martin; Kutter, Christoph
2017-01-01
With the combination of micropumps and flow sensors, highly accurate and secure closed-loop controlled micro dosing systems for liquids are possible. Implementing a single stroke based control mode with piezoelectrically driven micro diaphragm pumps can provide a solution for dosing of volumes down to nanoliters or variable average flow rates in the range of nL/min to μL/min. However, sensor technologies feature a yet undetermined accuracy for measuring highly pulsatile micropump flow. Two miniaturizable in-line sensor types providing electrical readout—differential pressure based flow sensors and thermal calorimetric flow sensors—are evaluated for their suitability of combining them with mircopumps. Single stroke based calibration of the sensors was carried out with a new method, comparing displacement volumes and sensor flow volumes. Limitations of accuracy and performance for single stroke based flow control are described. Results showed that besides particle robustness of sensors, controlling resistive and capacitive damping are key aspects for setting up reproducible and reliable liquid dosing systems. Depending on the required average flow or defined volume, dosing systems with an accuracy of better than 5% for the differential pressure based sensor and better than 6.5% for the thermal calorimeter were achieved. PMID:28368344
1980-02-28
containing a command receiver, batteries, and a differential- pressure switch , all located immediately below the confluence point, with long leads and a...should break free, or during normal deflation at take- down. Purpose of the differential- pressure switch was to momentarily open the valves if the...otherwise was completely different. A differential- pressure switch of the type formerly used in the command package, but without the long pressure
Intensive Blood-Pressure Control in Hypertensive Chronic Kidney Disease
Appel, Lawrence J.; Wright, Jackson T.; Greene, Tom; Agodoa, Lawrence Y.; Astor, Brad C.; Bakris, George L.; Cleveland, William H.; Charleston, Jeanne; Contreras, Gabriel; Faulkner, Marquetta L.; Gabbai, Francis B.; Gassman, Jennifer J.; Hebert, Lee A.; Jamerson, Kenneth A.; Kopple, Joel D.; Kusek, John W.; Lash, James P.; Lea, Janice P.; Lewis, Julia B.; Lipkowitz, Michael S.; Massry, Shaul G.; Miller, Edgar R.; Norris, Keith; Phillips, Robert A.; Pogue, Velvie A.; Randall, Otelio S.; Rostand, Stephen G.; Smogorzewski, Miroslaw J.; Toto, Robert D.; Wang, Xuelei
2013-01-01
BACKGROUND In observational studies, the relationship between blood pressure and end-stage renal disease (ESRD) is direct and progressive. The burden of hypertension-related chronic kidney disease and ESRD is especially high among black patients. Yet few trials have tested whether intensive blood-pressure control retards the progression of chronic kidney disease among black patients. METHODS We randomly assigned 1094 black patients with hypertensive chronic kidney disease to receive either intensive or standard blood-pressure control. After completing the trial phase, patients were invited to enroll in a cohort phase in which the blood-pressure target was less than 130/80 mm Hg. The primary clinical outcome in the cohort phase was the progression of chronic kidney disease, which was defined as a doubling of the serum creatinine level, a diagnosis of ESRD, or death. Follow-up ranged from 8.8 to 12.2 years. RESULTS During the trial phase, the mean blood pressure was 130/78 mm Hg in the intensive-control group and 141/86 mm Hg in the standard-control group. During the cohort phase, corresponding mean blood pressures were 131/78 mm Hg and 134/78 mm Hg. In both phases, there was no significant between-group difference in the risk of the primary outcome (hazard ratio in the intensive-control group, 0.91; P = 0.27). However, the effects differed according to the baseline level of proteinuria (P = 0.02 for interaction), with a potential benefit in patients with a protein-to-creatinine ratio of more than 0.22 (hazard ratio, 0.73; P = 0.01). CONCLUSIONS In overall analyses, intensive blood-pressure control had no effect on kidney disease progression. However, there may be differential effects of intensive blood-pressure control in patients with and those without baseline proteinuria. (Funded by the National Institute of Diabetes and Digestive and Kidney Diseases, the National Center on Minority Health and Health Disparities, and others.) PMID:20818902
System for pressure letdown of abrasive slurries
Kasper, Stanley
1991-01-01
A system and method for releasing erosive slurries from containment at high pressure without subjecting valves to highly erosive slurry flow. The system includes a pressure letdown tank disposed below the high-pressure tank, the two tanks being connected by a valved line communicating the gas phases and a line having a valve and choke for a transfer of liquid into the letdown tank. The letdown tank has a valved gas vent and a valved outlet line for release of liquid. In operation, the gas transfer line is opened to equalize pressure between tanks so that a low level of liquid flow occurs. The letdown tank is then vented, creating a high-pressure differential between the tanks. At this point, flow between tanks is controlled by the choke. High-velocity, erosive flow through a high-pressure outlet valve is prevented by equalizing the start up pressure and thereafter limiting flow with the choke.
Maul, Timothy M.; Chew, Douglas W.; Nieponice, Alejandro
2011-01-01
Mesenchymal stem cell (MSC) therapy has demonstrated applications in vascular regenerative medicine. Although blood vessels exist in a mechanically dynamic environment, there has been no rigorous, systematic analysis of mechanical stimulation on stem cell differentiation. We hypothesize that mechanical stimuli, relevant to the vasculature, can differentiate MSCs toward smooth muscle (SMCs) and endothelial cells (ECs). This was tested using a unique experimental platform to differentially apply various mechanical stimuli in parallel. Three forces, cyclic stretch, cyclic pressure, and laminar shear stress, were applied independently to mimic several vascular physiologic conditions. Experiments were conducted using subconfluent MSCs for 5 days and demonstrated significant effects on morphology and proliferation depending upon the type, magnitude, frequency, and duration of applied stimulation. We have defined thresholds of cyclic stretch that potentiate SMC protein expression, but did not find EC protein expression under any condition tested. However, a second set of experiments performed at confluence and aimed to elicit the temporal gene expression response of a select magnitude of each stimulus revealed that EC gene expression can be increased with cyclic pressure and shear stress in a cell-contact-dependent manner. Further, these MSCs also appear to express genes from multiple lineages simultaneously which may warrant further investigation into post-transcriptional mechanisms for controlling protein expression. To our knowledge, this is the first systematic examination of the effects of mechanical stimulation on MSCs and has implications for the understanding of stem cell biology, as well as potential bioreactor designs for tissue engineering and cell therapy applications. PMID:21253809
1989-02-01
INDICATOR pPOST-FILTERED VITER RPUESIC POST-FILTRATION POLYMER SOLUTION MCUUM BREAKER FILTRATION POLYMER D*+RENTALkL PRESSURE SWITCH FEED PUMPS POLYMER...differential pressure switch signals the need for backwash of the operating filter. At this time, flow is S automatically switched to the standby filter...filter is undergoing backwash or on standby. High differential pressure across the filter bed, as sensed by a differential pressure switch , signals
Elastic properties of overpressured and unconsolidated sediments
Lee, Myung W.
2003-01-01
Differential pressure affects elastic velocities and Poisson?s ratio of sediments in such a way that velocities increase as differential pressure increases. Overpressured zones in sediments can be detected by observing an increase in Poisson?s ratio with a corresponding drop in elastic velocities. In highly overpressured sands, such as shallow water flow sands, the P-to S-wave velocity ratio (Vp/Vs) is very high, on the order of 10 or higher, due to the unconsolidated and uncemented nature of sediments. In order to predict elastic characteristics of highly overpressured sands, Biot-Gassmann theory by Lee (BGTL) is used with a variable exponent n that depends on differential pressure and the degree of consolidation/compaction. The exponent n decreases as differential pressure and the degree of consolidation increases, and, as n decreases, velocity increases and Vp/Vs decreases. The predicted velocity ratio by BGTL agrees well with the measured velocity ratio at low differential pressure for unconsolidated sediments.
Rotating pressure measurement system using an on board calibration standard
NASA Technical Reports Server (NTRS)
Senyitko, Richard G.; Blumenthal, Philip Z.; Freedman, Robert J.
1991-01-01
A computer-controlled multichannel pressure measurement system was developed to acquire detailed flow field measurements on board the Large Low Speed Centrifugal Compressor Research Facility at the NASA Lewis Research Center. A pneumatic slip ring seal assembly is used to transfer calibration pressures to a reference standard transducer on board the compressor rotor in order to measure very low differential pressures with the high accuracy required. A unique data acquisition system was designed and built to convert the analog signal from the reference transducer to the variable frequency required by the multichannel pressure measurement system and also to provide an output for temperature control of the reference transducer. The system also monitors changes in test cell barometric pressure and rotating seal leakage and provides an on screen warning to the operator if limits are exceeded. The methods used for the selection and testing of the the reference transducer are discussed, and the data acquisition system hardware and software design are described. The calculated and experimental data for the system measurement accuracy are also presented.
Seol, Geun Hee; Lee, Yun Hee; Kang, Purum; You, Ji Hye; Park, Mira; Min, Sun Seek
2013-07-01
The aim of this study was to investigate the effect of inhalation of Salvia sclarea (clary sage; clary) or Lavandula angustifolia (lavender) essential oil vapors on autonomic nervous system activity in female patients with urinary incontinence undergoing urodynamic assessment. STUDY DESIGN, LOCATION, AND SUBJECTS: This study was a double-blind, randomized, controlled trial carried out in 34 female patients with urinary incontinence. The subjects were randomized to inhale lavender, clary, or almond (control) oil at concentrations of 5% (vol/vol) each. Systolic blood pressure, diastolic blood pressure, pulse rate, respiratory rate, and salivary cortisol were measured before and after inhalation of these odors for 60 minutes. The clary oil group experienced a significant decrease in systolic blood pressure compared with the control (p=0.048) and lavender oil (p=0.026) groups, a significant decrease in diastolic blood pressure compared with the lavender oil group (p=0.034) and a significant decrease in respiratory rate compared with the control group (p<0.001). In contrast, the lavender oil group tended to increase systolic and diastolic blood pressure compared with the control group. Compared with the control group, inhalation of lavender oil (p=0.045) and clary oil (p<0.001) resulted in statistically significant reductions in respiratory rate. These results suggest that lavender oil inhalation may be inappropriate in lowering stress during urodynamic examinations, despite its antistress effects, while clary oil inhalation may be useful in inducing relaxation in female urinary incontinence patients undergoing urodynamic assessments.
Lee, Yun Hee; Kang, Purum; You, Ji Hye; Park, Mira; Min, Sun Seek
2013-01-01
Abstract Objectives The aim of this study was to investigate the effect of inhalation of Salvia sclarea (clary sage; clary) or Lavandula angustifolia (lavender) essential oil vapors on autonomic nervous system activity in female patients with urinary incontinence undergoing urodynamic assessment. Study design, location, and subjects This study was a double-blind, randomized, controlled trial carried out in 34 female patients with urinary incontinence. Outcome measure The subjects were randomized to inhale lavender, clary, or almond (control) oil at concentrations of 5% (vol/vol) each. Systolic blood pressure, diastolic blood pressure, pulse rate, respiratory rate, and salivary cortisol were measured before and after inhalation of these odors for 60 minutes. Results The clary oil group experienced a significant decrease in systolic blood pressure compared with the control (p=0.048) and lavender oil (p=0.026) groups, a significant decrease in diastolic blood pressure compared with the lavender oil group (p=0.034) and a significant decrease in respiratory rate compared with the control group (p<0.001). In contrast, the lavender oil group tended to increase systolic and diastolic blood pressure compared with the control group. Compared with the control group, inhalation of lavender oil (p=0.045) and clary oil (p<0.001) resulted in statistically significant reductions in respiratory rate. Conclusions These results suggest that lavender oil inhalation may be inappropriate in lowering stress during urodynamic examinations, despite its antistress effects, while clary oil inhalation may be useful in inducing relaxation in female urinary incontinence patients undergoing urodynamic assessments. PMID:23360656
An automatic, closed-circuit oxygen consumption apparatus for small animals.
Stock, M J
1975-11-01
An apparatus suitable for the continuous measurement of oxygen consumption of rats and mice is described. The system uses a motorized syringe dispenser to deliver fixed volumes of oxygen to a closed animal chamber. The dispenser is controlled by a micro-differential pressure switch to maintain chamber pressure slightly above ambient. The rate of oxygen consumption is determined by timing the interval between successive operations of the dispenser. The system has proved suitable for a range of experimental conditions and treatments.
Airplane automatic control force trimming device for asymmetric engine failures
NASA Technical Reports Server (NTRS)
Stewart, Eric C. (Inventor)
1987-01-01
The difference in dynamic pressure in the propeller slipstreams as measured by sensors is divided by the freestream dynamic pressure generating a quantity proportional to the differential thrust coefficient. This quantity is used to command an electric trim motor to change the position of trim tab thereby retrimming the airplane to the new asymmetric power condition. The change in position of the trim tab produced by the electric trim motor is summed with the pilot's input to produce the actual trim tab position.
The therapeutic effect of negative pressure in treating femoral head necrosis in rabbits.
Zhang, Yin-gang; Wang, Xuezhi; Yang, Zhi; Zhang, Hong; Liu, Miao; Qiu, Yushen; Guo, Xiong
2013-01-01
Because negative pressure can stimulate vascular proliferation, improve blood circulation and promote osteogenic differentiation of bone marrow stromal cells, we investigated the therapeutic effect of negative pressure on femoral head necrosis (FHN) in a rabbit model. Animals were divided into four groups (n = 60/group): [1] model control, [2] core decompression, [3] negative pressure and [4] normal control groups. Histological investigation revealed that at 4 and 8 weeks postoperatively, improvements were observed in trabecular bone shape, empty lacunae and numbers of bone marrow hematopoietic cells and fat cells in the negative pressure group compared to the core decompression group. At week 8, there were no significant differences between the negative pressure and normal control groups. Immunohistochemistry staining revealed higher expression of vascular endothelial growth factor (VEGF) and bone morphogenetic protein-2 (BMP-2) in the femoral heads in the negative pressure group compared with the core decompression group. Transmission electron microscopy revealed that cell organelles were further developed in the negative pressure group compared with the core decompression group. Microvascular ink staining revealed an increased number of bone marrow ink-stained blood vessels, a thicker vascular lumen and increased microvascular density in the negative pressure group relative to the core decompression group. Real-time polymerase chain reaction revealed that expression levels of both VEGF and BMP-2 were higher in the negative pressure group compared with the core decompression group. In summary, negative pressure has a therapeutic effect on FHN. This effect is superior to core decompression, indicating that negative pressure is a potentially valuable method for treating early FHN.
The Therapeutic Effect of Negative Pressure in Treating Femoral Head Necrosis in Rabbits
Zhang, Yin-gang; Wang, Xuezhi; Yang, Zhi; Zhang, Hong; Liu, Miao; Qiu, Yushen; Guo, Xiong
2013-01-01
Because negative pressure can stimulate vascular proliferation, improve blood circulation and promote osteogenic differentiation of bone marrow stromal cells, we investigated the therapeutic effect of negative pressure on femoral head necrosis (FHN) in a rabbit model. Animals were divided into four groups (n = 60/group): [1] model control, [2] core decompression, [3] negative pressure and [4] normal control groups. Histological investigation revealed that at 4 and 8 weeks postoperatively, improvements were observed in trabecular bone shape, empty lacunae and numbers of bone marrow hematopoietic cells and fat cells in the negative pressure group compared to the core decompression group. At week 8, there were no significant differences between the negative pressure and normal control groups. Immunohistochemistry staining revealed higher expression of vascular endothelial growth factor (VEGF) and bone morphogenetic protein-2 (BMP-2) in the femoral heads in the negative pressure group compared with the core decompression group. Transmission electron microscopy revealed that cell organelles were further developed in the negative pressure group compared with the core decompression group. Microvascular ink staining revealed an increased number of bone marrow ink-stained blood vessels, a thicker vascular lumen and increased microvascular density in the negative pressure group relative to the core decompression group. Real-time polymerase chain reaction revealed that expression levels of both VEGF and BMP-2 were higher in the negative pressure group compared with the core decompression group. In summary, negative pressure has a therapeutic effect on FHN. This effect is superior to core decompression, indicating that negative pressure is a potentially valuable method for treating early FHN. PMID:23383276
Staggs, Vincent S; Cramer, Emily
2016-08-01
Hospital performance reports often include rankings of unit pressure ulcer rates. Differentiating among units on the basis of quality requires reliable measurement. Our objectives were to describe and apply methods for assessing reliability of hospital-acquired pressure ulcer rates and evaluate a standard signal-noise reliability measure as an indicator of precision of differentiation among units. Quarterly pressure ulcer data from 8,199 critical care, step-down, medical, surgical, and medical-surgical nursing units from 1,299 US hospitals were analyzed. Using beta-binomial models, we estimated between-unit variability (signal) and within-unit variability (noise) in annual unit pressure ulcer rates. Signal-noise reliability was computed as the ratio of between-unit variability to the total of between- and within-unit variability. To assess precision of differentiation among units based on ranked pressure ulcer rates, we simulated data to estimate the probabilities of a unit's observed pressure ulcer rate rank in a given sample falling within five and ten percentiles of its true rank, and the probabilities of units with ulcer rates in the highest quartile and highest decile being identified as such. We assessed the signal-noise measure as an indicator of differentiation precision by computing its correlations with these probabilities. Pressure ulcer rates based on a single year of quarterly or weekly prevalence surveys were too susceptible to noise to allow for precise differentiation among units, and signal-noise reliability was a poor indicator of precision of differentiation. To ensure precise differentiation on the basis of true differences, alternative methods of assessing reliability should be applied to measures purported to differentiate among providers or units based on quality. © 2016 The Authors. Research in Nursing & Health published by Wiley Periodicals, Inc. © 2016 The Authors. Research in Nursing & Health published by Wiley Periodicals, Inc.
THE EFFECT OF PENETRATION ON THE INDOOR/OUTDOOR RATIO OF FINE PARTICLES
The paper discusses some measured values of penetration into an unoccupied research house in which most of the usual indoor sources of particles are absent, and in which the rate of entry of outdoor particles can be controlled by applied pressure differentials. (NOTE: Several re...
New insights into differential baroreflex control of heart rate in humans
NASA Technical Reports Server (NTRS)
Fadel, P. J.; Stromstad, M.; Wray, D. W.; Smith, S. A.; Raven, P. B.; Secher, N. H.
2003-01-01
Recent data indicate that bilateral carotid sinus denervation in patients results in a chronic impairment in the rapid reflex control of blood pressure during orthostasis. These findings are inconsistent with previous human experimental investigations indicating a minimal role for the carotid baroreceptor-cardiac reflex in blood pressure control. Therefore, we reexamined arterial baroreflex [carotid (CBR) and aortic baroreflex (ABR)] control of heart rate (HR) using newly developed methodologies. In 10 healthy men, 27 +/- 1 yr old, an abrupt decrease in mean arterial pressure (MAP) was induced nonpharmacologically by releasing a unilateral arterial thigh cuff (300 Torr) after 9 min of resting leg ischemia under two conditions: 1) ABR and CBR deactivation (control) and 2) ABR deactivation. Under control conditions, cuff release decreased MAP by 13 +/- 1 mmHg, whereas HR increased 11 +/- 2 beats/min. During ABR deactivation, neck suction was gradually applied to maintain carotid sinus transmural pressure during the initial 20 s after cuff release (suction). This attenuated the increase in HR (6 +/- 1 beats/min) and caused a greater decrease in MAP (18 +/- 2 mmHg, P < 0.05). Furthermore, estimated cardiac baroreflex responsiveness (DeltaHR/DeltaMAP) was significantly reduced during suction compared with control conditions. These findings suggest that the carotid baroreceptors contribute more importantly to the reflex control of HR than previously reported in healthy individuals.
NASA Astrophysics Data System (ADS)
Pandey, Sudip; Us Saleheen, Ahmad; Quetz, Abdiel; Chen, Jing-Han; Aryal, Anil; Dubenko, Igor; Stadler, Shane; Ali, Naushad
2018-05-01
The magnetic, thermal, and magnetocaloric properties of Ni45Mn43CrSn11 Heusler alloy have been investigated using differential scanning calorimetry and magnetization with hydrostatic pressure measurements. A shift in the martensitic transition temperature (TM) to higher temperatures was observed with the application of pressure. The application of pressure stabilizes the martensitic state and demonstrated that pressure can be a parameter used to control and tune the martensitic transition temperature (the temperature where the largest magnetocaloric effect is observed). The magnetic entropy change significantly decreases from 33 J/kg K to 16 J/kg K under the application of a hydrostatic pressure of 0.95 GPa. The critical field of the direct metamagnetic transition increases, whereas the initial susceptibility (dM/dH) in the low magnetic field region drastically decreases with increasing pressure. The relevant parameters that affect the magnetocaloric properties are discussed.
Castro-Sánchez, Adelaida María; Moreno-Lorenzo, Carmen; Matarán-Peñarrocha, Guillermo A.; Feriche-Fernández-Castanys, Belen; Granados-Gámez, Genoveva; Quesada-Rubio, José Manuel
2011-01-01
The objective of this study was to evaluate the efficacy of connective tissue massage to improve blood circulation and intermittent claudication symptoms in type 2 diabetic patients. A randomized, placebo-controlled trial was undertaken. Ninety-eight type 2 diabetes patients with stage I or II-a peripheral arterial disease (PAD) (Leriche-Fontaine classification) were randomly assigned to a massage group or to a placebo group treated using disconnected magnetotherapy equipment. Peripheral arterial circulation was determined by measuring differential segmental arterial pressure, heart rate, skin temperature, oxygen saturation and skin blood flow. Measurements were taken before and at 30 min, 6 months and 1 year after the 15-week treatment. After the 15-week program, the groups differed (P < .05) in differential segmental arterial pressure in right lower limb (lower one-third of thigh, upper and lower one-third of leg) and left lower limb (lower one-third of thigh and upper and lower one-third of leg). A significant difference (P < .05) was also observed in skin blood flow in digits 1 and 4 of right foot and digits 2, 4 and 5 of left foot. ANOVA results were significant (P < .05) for right and left foot oxygen saturation but not for heart rate and temperature. At 6 months and 1 year, the groups differed in differential segmental arterial pressure in upper third of left and right legs. Connective tissue massage improves blood circulation in the lower limbs of type 2 diabetic patients at stage I or II-a and may be useful to slow the progression of PAD. PMID:19933770
Forebody Aerodynamics of the F-18 High Alpha Research Vehicle with Actuated Forebody Strakes
NASA Technical Reports Server (NTRS)
Fisher, David F.; Murri, Daniel G.
2001-01-01
Extensive pressure measurements and off-surface flow visualization were obtained on the forebody and strakes of the NASA F-18 High Alpha Research Vehicle (HARV) equipped with actuated forebody strakes. Forebody yawing moments were obtained by integrating the circumferential pressures on the forebody and strakes. Results show that large yawing moments can be generated with forebody strakes. At a 50 deg-angle-of-attack, deflecting one strake at a time resulted in a forebody yawing moment control reversal for small strake deflection angles. However, deflecting the strakes differentially about a 20 deg symmetric strake deployment eliminated the control reversal and produced a near linear variation of forebody yawing moment with differential strake deflection. At an angle of attack of 50 deg and for 0 deg and 20 deg symmetric strake deployments, a larger forebody yawing moment was generated by the forward fuselage (between the radome and the apex of the leading-edge extensions) than on the radome where the actuated forebody strakes were located. Cutouts on the flight vehicle strakes that were not on the wind tunnel models are believed to be responsible for deficits in the suction peaks on the flight radome pressure distributions and differences in the forebody yawing moments.
Effect of Actuated Forebody Strakes on the Forebody Aerodynamics of the NASA F-18 HARV
NASA Technical Reports Server (NTRS)
Fisher, David F.; Murri, Daniel G.; Lanser, Wendy R.
1996-01-01
Extensive pressure measurements and off-surface flow visualization were obtained on the forebody and strakes of the NASA F-18 High Alpha Research Vehicle (HARV) equipped with actuated forebody strakes. Forebody yawing moments were obtained by integrating the circumferential pressures on the forebody and strakes. Results show that large yawing moments can be generated with forebody strakes. At angles of attack greater than 40 deg., deflecting one strake at a time resulted in a forebody yawing moment control reversal for small strake deflection angles. At alpha = 40 deg. and 50 deg., deflecting the strakes differentially about a 20 deg. symmetric strake deployment eliminated the control reversal and produced a near linear variation of forebody yawing moment with differential strake deflection. At alpha = 50 deg. and for 0 deg. and 20 deg. symmetric strake deployments, a larger forebody yawing moment was generated by the forward fuselage (between the radome and the apex of the leading-edge extensions), than on the radome where the actuated forebody strakes were located. Cutouts on the flight vehicle strakes that were not on the wind tunnel models are believed to be responsible for deficits in the suction peaks on the flight radome pressure distributions and differences in the forebody yawing moments.
Fuel supply device for supplying fuel to an engine combustor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindsay, M.H.; Kerr, W.B.
1990-05-29
This patent describes a variable flow rate fuel supply device for supplying fuel to an engine combustor. It comprises: fuel metering means having a fuel valve means for controlling the flow rate of fuel to the combustor; piston means for dividing a first cooling fluid chamber from a second cooling fluid chamber; coupling means for coupling the piston means to the fuel valve means; and cooling fluid supply means in communication with the first and second cooling fluid chamber for producing a first pressure differential across the piston means for actuating the fuel valve means in a first direction, andmore » for producing a second pressure differential across the piston means for actuating the valve means in a second direction opposite the first direction, to control the flow rate of the fuel through the fuel metering means and into the engine combustor; and means for positioning the fuel metering means within the second cooling air chamber enabling the cooling air supply means to both cool the fuel metering means and control the fuel supply rate of fuel supplied by the fuel metering means to the combustor.« less
Schandry, Rainer; Duschek, Stefan
2008-11-01
A number of studies have provided evidence for reduced cognitive performance due to chronically low blood pressure. The present studies explored whether these deficits can be reduced by pharmacological blood pressure elevation. Effects of the Camphor-Crataegus berry extract combination (Korodin(®)) were investigated in two studies with 40 and 48 hypotensive women based on a randomized, placebo controlled double blind design. The participants were presented with different tasks assessing performance in attention and cognition. Blood pressure was measured repeatedly during the experiment. The administration of the drug led to positive and differential effects on blood pressure and cognitive performance as compared to placebo. These effects were already visible within the time range of 2-5 min. A positive correlation between blood pressure increase and performance enhancement could be demonstrated for two of the four tasks. The results show that the application of Korodin(®) results in beneficial effects on resting blood pressure and cognitive performance. The positive association between the increase in blood pressure and cognitive enhancement suggests that blood pressure plays a causal role in the cognitive deficits in hypotension and underlines that they can be reduced through antihypotensive treatment.
Real Time Ferrograph Development.
1979-11-01
differential temperature of 65 0 C. Since opteo- electronic devices (photodiodes, photoresistors, etc.) have a maximum operating temperature around 85 0 C, it is...flow during the precipitation cycle. This regulator must keep the flow rate constant at any given temperature regardless of the differential pressure...across the sensing head. The pressure regulator achieved this by using the differential pressure across a fixed re;7trictor to move a bellows diaphragm
System for measuring multiphase flow using multiple pressure differentials
Fincke, James R.
2003-01-01
An improved method and system for measuring a multi-phase flow in a pressure flow meter. An extended throat venturi is used and pressure of the multi-phase flow is measured at three or more positions in the venturi, which define two or more pressure differentials in the flow conduit. The differential pressures are then used to calculate the mass flow of the gas phase, the total mass flow, and the liquid phase. The system for determining the mass flow of the high void fraction fluid flow and the gas flow includes taking into account a pressure drop experienced by the gas phase due to work performed by the gas phase in accelerating the liquid phase.
NASA Technical Reports Server (NTRS)
Lindsey, A. I.; Milam, M. D.
1974-01-01
Aerodynamic investigations were conducted in a transonic pressure tunnel on an 0.015 scale model of the space shuttle orbiter. Major test objectives were to determine: (1) transonic differential elevon/aileron lateral control optimization; (2) transonic elevon hinge moments; (3) transonic effects of the baseline 6 inch elevon/elevon and elevon/fuselage gaps; and (4) transonic effects of the short OMS pods. Six-component aerodynamic force and moment, and elevon hinge moment data, were recorded over an angle-of-attack range form -2 to +22 degrees.
Validation of Test Methods for Air Leak Rate Verification of Spaceflight Hardware
NASA Technical Reports Server (NTRS)
Oravec, Heather Ann; Daniels, Christopher C.; Mather, Janice L.
2017-01-01
As deep space exploration continues to be the goal of NASAs human spaceflight program, verification of the performance of spaceflight hardware becomes increasingly critical. Suitable test methods for verifying the leak rate of sealing systems are identified in program qualification testing requirements. One acceptable method for verifying the air leak rate of gas pressure seals is the tracer gas leak detector method. In this method, a tracer gas (commonly helium) leaks past the test seal and is transported to the leak detector where the leak rate is quantified. To predict the air leak rate, a conversion factor of helium-to-air is applied depending on the magnitude of the helium flow rate. The conversion factor is based on either the molecular mass ratio or the ratio of the dynamic viscosities. The current work was aimed at validating this approach for permeation-level leak rates using a series of tests with a silicone elastomer O-ring. An established pressure decay method with constant differential pressure was used to evaluate both the air and helium leak rates of the O-ring under similar temperature and pressure conditions. The results from the pressure decay tests showed, for the elastomer O-ring, that neither the molecular flow nor the viscous flow helium-to-air conversion factors were applicable. Leak rate tests were also performed using nitrogen and argon as the test gas. Molecular mass and viscosity based helium-to-test gas conversion factors were applied, but did not correctly predict the measured leak rates of either gas. To further this study, the effect of pressure boundary conditions was investigated. Often, pressure decay leak rate tests are performed at a differential pressure of 101.3 kPa with atmospheric pressure on the downstream side of the test seal. In space applications, the differential pressure is similar, but with vacuum as the downstream pressure. The same O-ring was tested at four unique differential pressures ranging from 34.5 to 137.9 kPa. Up to six combinations of upstream and downstream pressures for each differential pressure were compared. For a given differential pressure, the various combinations of upstream and downstream dry air pressures did not significantly affect the leak rate. As expected, the leak rate of the O-ring increased with increasing differential pressure. The results suggested that the current leak test pressure conditions, used to verify spacecraft sealing systems with elastomer seals, produce accurate values even though the boundary conditions do not model the space application.
Suchorska, B; Kunz, M; Schniepp, R; Jahn, K; Goetz, C; Tonn, J C; Peraud, A
2015-04-01
In idiopathic normal pressure hydrocephalus (NPH) ventriculoperitoneal (VP) shunt insertion is the method of choice to improve cardinal symptoms such as gait disturbance, urge incontinence and/or dementia. With reduced compliance, the brain of the elderly is prone for overdrainage complications. This was especially true with the use of differential pressure valve implantation. The present study compares clinical outcome and complication rates after VP shunt insertion with differential pressure valves in the early years and gravitational valves since 2005. The authors reviewed patients treated at our institution for NPH since 1995. Differential pressure valves were solely used in the initial years, while the treatment regimen changed to gravitational valves in 2005. Clinical improvement/surgical success rates as well as complications were compared between the two groups. Eighty-nine patients were enrolled for the present study. Mean age at the time of surgery was 73.5 ± 6.3 years. Male patients predominated with 73, compared with 16 female patients. Median follow-up time was 28 ± 26 months. Date of last follow-up was 1st October 2013. Forty-nine patients received a gravitational valve, while 40 were treated with differential pressure valves. In the gravitational group a significant improvement was observed after shunt insertion for gait disorder, cognitive impairment and urge incontinence (p < 0.0001, resp. p = 0.004), while a significant change in the differential pressure group was only seen for gait disorder (p = 0.03) but not for cognition or urinary incontinency (p > 0.05). The risk of hygroma as a sign of shunt overdrainage requiring surgical intervention was significantly higher in the differential pressure group (5 versus 0 in the gravitational group). Patients with NPH treated with gravitational valves in the present cohort showed a more profound improvement in their initial symptoms, including gait disorder, cognitive impairment and urinary incontinency without the risk of overdrainage complications requiring surgical intervention when compared with patients who received differential pressure valves in previous years.
Effect of deep pressure input on parasympathetic system in patients with wisdom tooth surgery.
Chen, Hsin-Yung; Yang, Hsiang; Meng, Ling-Fu; Chan, Pei-Ying Sarah; Yang, Chia-Yen; Chen, Hsin-Ming
2016-10-01
Deep pressure input is used to normalize physiological arousal due to stress. Wisdom tooth surgery is an invasive dental procedure with high stress levels, and an alleviation strategy is rarely applied during extraction. In this study, we investigated the effects of deep pressure input on autonomic responses to wisdom tooth extraction in healthy adults. A randomized, controlled, crossover design was used for dental patients who were allocated to experimental and control groups that received treatment with or without deep pressure input, respectively. Autonomic indicators, namely the heart rate (HR), percentage of low-frequency (LF) HR variability (LF-HRV), percentage of high-frequency (HF) HRV (HF-HRV), and LF/HF HRV ratio (LF/HF-HRV), were assessed at the baseline, during wisdom tooth extraction, and in the posttreatment phase. Wisdom tooth extraction caused significant autonomic parameter changes in both groups; however, differential response patterns were observed between the two groups. In particular, deep pressure input in the experimental group was associated with higher HF-HRV and lower LF/HF-HRV during extraction compared with those in the control group. LF/HF-HRV measurement revealed balanced sympathovagal activation in response to deep pressure application. The results suggest that the application of deep pressure alters the response of HF-HRV and facilitates maintaining sympathovagal balance during wisdom tooth extraction. Copyright © 2016. Published by Elsevier B.V.
Schwesig, René; Becker, Stephan; Lauenroth, Andreas; Kluttig, Alexander; Leuchte, Siegfried; Esperer, Hans Dieter
2009-12-01
Nigrostriatal and cerebellar systems are important postural subsystems in neurologic rehabilitation. In this study, we investigated the ability to differentiate both systems via posturography and spectral analysis. This cross-sectional study included 156 study subjects with 52 individuals in each group (healthy controls, Parkinson's disease and cerebellar disease patients). The mean age of all groups was 61.3+/-13.4 years. We used the interactive balance system (IBS) to differentiate vertical pressure fluctuations on four independent force plates, each supporting one heel or the toes of each leg in eight test positions. We also performed a frequency analysis of the force/time signal. The univariate, multifactor covariance analysis was used for statistical evaluation. Variance analysis of the Parkinson's group (mean/95% CI: 23.0/20.5-25.5) and control group (mean/95% CI: 16.7/14.2-19.2) revealed the greatest differences in frequency range F1. Subjects with cerebellar disease showed significant differences compared with controls in all frequency ranges. Furthermore, cerebellar disease subjects showed a consistently lower postural stability compared with the Parkinson's (p<0.001) and control groups (p<0.001). Results from the present study suggest that the cerebellar and nigrostriatal system can be effectively differentiated and assessed with frequency-analyzed posturographic parameters. Furthermore, the IBS allows a highly practical differential assessment in neurologic rehabilitation.
New Hardware for Tethered Balloons,
1980-01-01
package contained a differential- pressure switch , and a command receiver. Long wires extended up to the gas valves to actuate them, and a long tube was...similar in appear- ance to the former valve, but does contain batteries, an aneroid- operated switch, and a differential- pressure switch . Design is such...that either the aneroid-operated switch or the differential- pressure switch can be easily removed for checking Or setting in the laboratory. Likewise the
How implicit motives and everyday self-regulatory abilities shape cardiovascular risk in youth.
Ewart, Craig K; Elder, Gavin J; Smyth, Joshua M
2012-06-01
Tested hypotheses from social action theory that (a) implicit and explicit measures of agonistic (social control) motives and transcendence (self-control) motives differentially predict cardiovascular risk; and (b) implicit motives interact with everyday self-regulation behaviors to magnify risk. Implicit/explicit agonistic/transcendence motives were assessed in a multi-ethnic sample of 64 high school students with the Social Competence Interview (SCI). Everyday self-regulation was assessed with teacher ratings of internalizing, externalizing, and self-control behaviors. Ambulatory blood pressure and daily activities were measured over 48 h. Study hypotheses were supported: implicit goals predicted blood pressure levels but explicit self-reported coping goals did not; self-regulation indices did not predict blood pressure directly but interacted with implicit agonistic/transcendence motives to identify individuals at greatest risk (all p ≤ 0.05). Assessment of implicit motives by SCI, and everyday self-regulation by teachers may improve identification of youth at risk for cardiovascular disease.
Seafloor Pressure Array Studies at Ultra-Low Frequencies
1991-01-01
broadband instrument design and deployment. In order to measure broadband noise routinely, a low frequency pressure gauge designed for deep ocean...below the microseism band (Moore et al, 1981). A differential pressure gauge , developed for low frequency recordings by Cox et al (1984) and sensitive to...design differential pressure gauge (Cox et al, 1984) with a sensitivity -3- ULF Seafloor Pressure Array Studies range of 0.01-5 Hz. The high
Propellant-Flow-Actuated Rocket Engine Igniter
NASA Technical Reports Server (NTRS)
Wollen, Mark
2013-01-01
A rocket engine igniter has been created that uses a pneumatically driven hammer that, by specialized geometry, is induced into an oscillatory state that can be used to either repeatedly impact a piezoelectric crystal with sufficient force to generate a spark capable of initiating combustion, or can be used with any other system capable of generating a spark from direct oscillatory motion. This innovation uses the energy of flowing gaseous propellant, which by means of pressure differentials and kinetic motion, causes a hammer object to oscillate. The concept works by mass flows being induced through orifices on both sides of a cylindrical tube with one or more vent paths. As the mass flow enters the chamber, the pressure differential is caused because the hammer object is supplied with flow on one side and the other side is opened with access to the vent path. The object then crosses the vent opening and begins to slow because the pressure differential across the ball reverses due to the geometry in the tube. Eventually, the object stops because of the increasing pressure differential on the object until all of the kinetic energy has been transferred to the gas via compression. This is the point where the object reverses direction because of the pressure differential. This behavior excites a piezoelectric crystal via direct impact from the hammer object. The hammer strikes a piezoelectric crystal, then reverses direction, and the resultant high voltage created from the crystal is transferred via an electrode to a spark gap in the ignition zone, thereby providing a spark to ignite the engine. Magnets, or other retention methods, might be employed to favorably position the hammer object prior to start, but are not necessary to maintain the oscillatory behavior. Various manifestations of the igniter have been developed and tested to improve device efficiency, and some improved designs are capable of operation at gas flow rates of a fraction of a gram per second (0.001 lb/s) and pressure drops on the order of 30 to 50 kilopascal (a few psi). An analytical model has been created and tested in conjunction with a precisely calibrated reference model. The analytical model accurately captures the overall behavior of this innovation. The model is a simple "volume-orifice" concept, with each chamber considered a single temperature and pressure "node" connected to adjacent nodes, or to vent paths through flow control orifices. Mass and energy balances are applied to each node, with gas flow predicted using simple compressible flow equations.
Method for solvent extraction with near-equal density solutions
Birdwell, Joseph F.; Randolph, John D.; Singh, S. Paul
2001-01-01
Disclosed is a modified centrifugal contactor for separating solutions of near equal density. The modified contactor has a pressure differential establishing means that allows the application of a pressure differential across fluid in the rotor of the contactor. The pressure differential is such that it causes the boundary between solutions of near-equal density to shift, thereby facilitating separation of the phases. Also disclosed is a method of separating solutions of near-equal density.
Selected Physical Properties of 2-Chloroethyl-3-Chloropropyl Sulfide (CECPRS)
2010-10-01
Analysis * For this work, a TA Instruments 910 Differential Scanning Calorimeter and 2200 Controller were used. Prior to sample measurements, the DSC...controlled mass flow rate over a known time, concentrated, and the mass quantified by GC-FID analysis . This step enables vapor pressure measurements for low...Bellefonte, PA), with a 1.0 (im RTx-1 ( polydimethylsiloxane ) stationary phase, was maintained at 40 °C for 2 min following sample introduction, then heated
14 CFR 23.365 - Pressurized cabin loads.
Code of Federal Regulations, 2011 CFR
2011-01-01
... landing. (d) The airplane structure must be strong enough to withstand the pressure differential loads... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Structure Flight Loads § 23... structure must be strong enough to withstand the flight loads combined with pressure differential loads from...
Blood-Pressure Measuring System Gives Accurate Graphic Output
NASA Technical Reports Server (NTRS)
1965-01-01
The problem: To develop an instrument that will provide an external (indirect) measurement of arterial blood pressure in the form of an easily interpreted graphic trace that can be correlated with standard clinical blood-pressure measurements. From sphygmograms produced by conventional sphygmographs, it is very difficult to differentiate the systolic and diastolic blood-pressure pulses and to correlate these indices with the standard clinical values. It is nearly impossible to determine these indices when the subject is under physical or emotional stress. The solution: An electronic blood-pressure system, basically similar to conventional ausculatory sphygmomanometers, employing a standard occluding cuff, a gas-pressure source, and a gas-pressure regulator and valve. An electrical output transducer senses cuff pressure, and a microphone positioned on the brachial artery under the occluding cuff monitors the Korotkoff sounds from this artery. The output signals present the conventional systolic and diastolic indices in a clear, graphical display. The complete system also includes an electronic timer and cycle-control circuit.
Reactions to Media Violence: It’s in the Brain of the Beholder
Alia-Klein, Nelly; Wang, Gene-Jack; Preston-Campbell, Rebecca N.; Moeller, Scott J.; Parvaz, Muhammad A.; Zhu, Wei; Jayne, Millard C.; Wong, Chris; Tomasi, Dardo; Goldstein, Rita Z.; Fowler, Joanna S.; Volkow, Nora D.
2014-01-01
Media portraying violence is part of daily exposures. The extent to which violent media exposure impacts brain and behavior has been debated. Yet there is not enough experimental data to inform this debate. We hypothesize that reaction to violent media is critically dependent on personality/trait differences between viewers, where those with the propensity for physical assault will respond to the media differently than controls. The source of the variability, we further hypothesize, is reflected in autonomic response and brain functioning that differentiate those with aggression tendencies from others. To test this hypothesis we pre-selected a group of aggressive individuals and non-aggressive controls from the normal healthy population; we documented brain, blood-pressure, and behavioral responses during resting baseline and while the groups were watching media violence and emotional media that did not portray violence. Positron Emission Tomography was used with [18F]fluoro-deoxyglucose (FDG) to image brain metabolic activity, a marker of brain function, during rest and during film viewing while blood-pressure and mood ratings were intermittently collected. Results pointed to robust resting baseline differences between groups. Aggressive individuals had lower relative glucose metabolism in the medial orbitofrontal cortex correlating with poor self-control and greater glucose metabolism in other regions of the default-mode network (DMN) where precuneus correlated with negative emotionality. These brain results were similar while watching the violent media, during which aggressive viewers reported being more Inspired and Determined and less Upset and Nervous, and also showed a progressive decline in systolic blood-pressure compared to controls. Furthermore, the blood-pressure and brain activation in orbitofrontal cortex and precuneus were differentially coupled between the groups. These results demonstrate that individual differences in trait aggression strongly couple with brain, behavioral, and autonomic reactivity to media violence which should factor into debates about the impact of media violence on the public. PMID:25208327
Reactions to media violence: it's in the brain of the beholder.
Alia-Klein, Nelly; Wang, Gene-Jack; Preston-Campbell, Rebecca N; Moeller, Scott J; Parvaz, Muhammad A; Zhu, Wei; Jayne, Millard C; Wong, Chris; Tomasi, Dardo; Goldstein, Rita Z; Fowler, Joanna S; Volkow, Nora D
2014-01-01
Media portraying violence is part of daily exposures. The extent to which violent media exposure impacts brain and behavior has been debated. Yet there is not enough experimental data to inform this debate. We hypothesize that reaction to violent media is critically dependent on personality/trait differences between viewers, where those with the propensity for physical assault will respond to the media differently than controls. The source of the variability, we further hypothesize, is reflected in autonomic response and brain functioning that differentiate those with aggression tendencies from others. To test this hypothesis we pre-selected a group of aggressive individuals and non-aggressive controls from the normal healthy population; we documented brain, blood-pressure, and behavioral responses during resting baseline and while the groups were watching media violence and emotional media that did not portray violence. Positron Emission Tomography was used with [18F]fluoro-deoxyglucose (FDG) to image brain metabolic activity, a marker of brain function, during rest and during film viewing while blood-pressure and mood ratings were intermittently collected. Results pointed to robust resting baseline differences between groups. Aggressive individuals had lower relative glucose metabolism in the medial orbitofrontal cortex correlating with poor self-control and greater glucose metabolism in other regions of the default-mode network (DMN) where precuneus correlated with negative emotionality. These brain results were similar while watching the violent media, during which aggressive viewers reported being more Inspired and Determined and less Upset and Nervous, and also showed a progressive decline in systolic blood-pressure compared to controls. Furthermore, the blood-pressure and brain activation in orbitofrontal cortex and precuneus were differentially coupled between the groups. These results demonstrate that individual differences in trait aggression strongly couple with brain, behavioral, and autonomic reactivity to media violence which should factor into debates about the impact of media violence on the public.
Nori, Deepthi V; McCord, Bruce R
2015-09-01
This study reports the development of a two-step protocol using pressure cycling technology (PCT) and alkaline lysis for differential extraction of DNA from mixtures of sperm and vaginal epithelial cells recovered from cotton swabs. In controlled experiments, in which equal quantities of sperm and female epithelial cells were added to cotton swabs, 5 min of pressure pulsing in the presence of 0.4 M NaOH resulted in 104 ± 6% recovery of female epithelial DNA present on the swab. Following the pressure treatment, exposing the swabs to a second 5-min alkaline treatment at 95 °C without pressure resulted in the selective recovery of 69 ± 6% of the sperm DNA. The recovery of the vaginal epithelia and sperm DNA was optimized by examining the effect of sodium hydroxide concentration, incubation temperature, and time. Following the alkaline lysis steps, the samples were neutralized with 2 M Tris (pH 7.5) and purified with phenol-chloroform-isoamyl alcohol to permit downstream analysis. The total processing time to remove both fractions from the swab was less than 20 min. Short tandem repeat (STR) analysis of these fractions obtained from PCT treatment and alkaline lysis generated clean profiles of female epithelial DNA and male sperm DNA for 1:1 mixtures of female and male cells and predominant male profiles for mixtures up to 5:1 female to male cells. By reducing the time and increasing the recovery of DNA from cotton swabs, this new method presents a novel and potentially useful procedure for forensic differential extractions.
Weinrich, Lauren; LeChevallier, Mark; Haas, Charles N
2016-09-15
Biological fouling occurs on RO membranes when bacteria and nutrients are present in conditions that are conducive to growth and proliferation of the bacteria. Controlling microbial growth on the membranes is typically limited to biocide application (i.e., disinfectants) in seawater RO plants. However, biological growth and subsequent fouling has not been well-managed. Pretreatment has not been focused on nutrient limitation. This project used a biological assay, the assimilable organic carbon (AOC) test to evaluate pretreatment effects on the nutrient supply. The AOC test provided a useful surrogate measurement for the biodegradability or biofouling potential of RO feed water. Biofouling observed in controlled conditions at the bench- and pilot-scale resulted in statistically significant correlations between AOC and the operational effects caused by biofouling. Membrane fouling rates are observed through operational changes over time such as increased differential pressure between the membrane feed and concentrate locations and decreased permeate flux through the membrane. In full scale plants there were strong correlations when AOC was used as a predictor variable for increased differential pressure (0.28-0.55 bar from September-December 2012) and decreased specific flux (1.40 L per hour/(m(2) · bar)). Increased differential pressure was associated with RO membrane biological fouling when the median AOC was 50 μg/L during pilot testing. Conditions were also evaluated at the bench-scale using a flat sheet RO membrane. In a comparison test using 30 and 1000 μg/L AOC, fouling was detected on more portions of the membrane when AOC was higher. Biofilm and bacterial deposits were apparent from scanning electron microscope imaging and biomass measurements using ATP. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kocur, E; Kidawa, Z; Polakowski, P; Orszulak-Michalak, D; Karpinski, J; Rogulski, B; Wołkanin, P
1998-09-01
The aim of the present study was evaluation of correlation between big-endothelin concentration of the precursor substance of endothelin and mean values of blood pressure in 13 patients with compensates chronic renal failure. Their age ranged from 29 years to 55 years the mean age was 42.9 +/- 8.2 years. The patients were from the Consultational Nephrologic Outpatient Clinic. These patients were sent to the clinic after a hospital observation with recognised chronic renal failure (CRF), caused by chronic glomerulonephritis (without pathomorphological differentiation). The control group consistent of 10 healthy volunteers, an age ranged from 22 years to 49 years, a mean was 32.6 +/- 10.8 years. The following mean blood pressure values were found: in patient group a systolic pressure was 139.1 +/- 17.3 mm Hg and a diastolic pressure was 88.4 +/- 12.5 mm Hg and similar values in healthy control group were respectively: 118.6 +/- 4.0 and 72.4 +/- 5.9 mm Hg. Analogously the proendothelin concentration was 18.48 +/- 22.04 fmol/ml in patients with CRF and it was 4.67 +/- 0.27 fmol/ml in the control group. A positive correlation between mean blood systolic pressure values and the proendothelin concentration (r = 0.666, Y = 0.52X + 129.5; p < 0.05) in the was found patients group.
Torija, Antonio J; Ruiz, Diego P; Ramos-Ridao, A F
2013-07-01
A subjective and physical categorization of an ambient sound is the first step to evaluate the soundscape and provides a basis for designing or adapting this ambient sound to match people's expectations. For this reason, the main goal of this work is to develop a categorization and differentiation analysis of soundscapes on the basis of acoustical and perceptual variables. A hierarchical cluster analysis, using 15 semantic-differential attributes and acoustical descriptors to include an equivalent sound-pressure level, maximum-minimum sound-pressure level, impulsiveness of the sound-pressure level, sound-pressure level time course, and spectral composition, was conducted to classify soundscapes into different typologies. This analysis identified 15 different soundscape typologies. Furthermore, based on a discriminant analysis the acoustical descriptors, the crest factor (impulsiveness of the sound-pressure level), and the sound level at 125 Hz were found to be the acoustical variables with the highest impact in the differentiation of the recognized types of soundscapes. Finally, to determine how the different soundscape typologies differed from each other, both subjectively and acoustically, a study was performed.
Cené, Crystal W; Halladay, Jacqueline R; Gizlice, Ziya; Donahue, Katrina E; Cummings, Doyle M; Hinderliter, Alan; Miller, Cassandra; Johnson, Larry F; Garcia, Beverly; Tillman, Jim; Little, Edwin P; Rachide, Marjorie R; Keyserling, Thomas C; Ammerman, Alice; Zhou, Haibo; Wu, Jia-Rong; DeWalt, Darren
2017-04-01
The Southeastern United States has the highest prevalence of hypertension and African Americans have disproportionately worse blood pressure control. The authors sought to evaluate the effect of a multicomponent practice-based quality improvement intervention on lowering mean systolic blood pressure (SBP) at 12 and 24 months compared with baseline among 525 patients, and to assess for a differential effect of the intervention by race (African Americans vs white). At 12 months, both African Americans (-5.0 mm Hg) and whites (-7.8 mm Hg) had a significant decrease in mean SBP compared with baseline, with no significant between-group difference. Similarly, at 24 months, mean SBP decreased in both African Americans (-6.0 mm Hg) and whites (-7.2 mm Hg), with no significant difference between groups. Notably, no significant racial disparity in mean SBP at baseline was shown. The intervention was effective in lowering mean SBP in both African Americans and whites but there was no differential effect of the intervention by race. ©2016 Wiley Periodicals, Inc.
Absence of remote earthquake triggering within the Coso and Salton Sea geothermal production fields
NASA Astrophysics Data System (ADS)
Zhang, Qiong; Lin, Guoqing; Zhan, Zhongwen; Chen, Xiaowei; Qin, Yan; Wdowinski, Shimon
2017-01-01
Geothermal areas are long recognized to be susceptible to remote earthquake triggering, probably due to the high seismicity rates and presence of geothermal fluids. However, anthropogenic injection and extraction activity may alter the stress state and fluid flow within the geothermal fields. Here we examine the remote triggering phenomena in the Coso geothermal field and its surrounding areas to assess possible anthropogenic effects. We find that triggered earthquakes are absent within the geothermal field but occur in the surrounding areas. Similar observation is also found in the Salton Sea geothermal field. We hypothesize that continuous geothermal operation has eliminated any significant differential pore pressure between fractures inside the geothermal field through flushing geothermal precipitations and sediments out of clogged fractures. To test this hypothesis, we analyze the pore-pressure-driven earthquake swarms, and they are found to occur outside or on the periphery of the geothermal production field. Therefore, our results suggest that the geothermal operation has changed the subsurface fracture network, and differential pore pressure is the primary controlling factor of remote triggering in geothermal fields.
Axially Tapered And Bilayer Microchannels For Evaporative Cooling Devices
Nilson, Robert; Griffiths, Stewart
2005-10-04
The invention consists of an evaporative cooling device comprising one or more microchannels whose cross section is axially reduced to control the maximum capillary pressure differential between liquid and vapor phases. In one embodiment, the evaporation channels have a rectangular cross section that is reduced in width along a flow path. In another embodiment, channels of fixed width are patterned with an array of microfabricated post-like features such that the feature size and spacing are gradually reduced along the flow path. Other embodiments incorporate bilayer channels consisting of an upper cover plate having a pattern of slots or holes of axially decreasing size and a lower fluid flow layer having channel widths substantially greater than the characteristic microscale dimensions of the patterned cover plate. The small dimensions of the cover plate holes afford large capillary pressure differentials while the larger dimensions of the lower region reduce viscous flow resistance.
Zellner, J; Mueller, M; Xin, Y; Krutsch, W; Brandl, A; Kujat, R; Nerlich, M; Angele, P
2015-06-01
This study analyses the influence of dynamic hydrostatic pressure on chondrogenesis of human meniscus-derived fibrochondrocytes and explores the differences in chondrogenic differentiation under loading conditions between cells derived from the avascular inner zone and vascularized outer region of the meniscus. Aggregates of human fibrochondrocytes with cell origin from the inner region or with cell origin from the outer region were generated. From the two groups of either cell origin, aggregates were treated with dynamic hydrostatic pressure (1Hz for 4h; 0.55-5.03MPa, cyclic sinusoidal) from day 1 to day 7. The other aggregates served as unloaded controls. At day 0, 7, 14 and 21 aggregates were harvested for evaluation including histology, immunostaining and ELISA analysis for glycosaminoglycan (GAG) and collagen II. Loaded aggregates were found to be macroscopically larger and revealed immunohistochemically enhanced chondrogenesis compared to the corresponding controls. Loaded or non-loaded meniscal cells from the outer zone showed a higher potential and earlier onset of chondrogenesis compared to the cells from the inner part of the meniscus. This study suggests that intrinsic factors like cell properties in the different areas of the meniscus and their reaction on mechanical load might play important roles in designing Tissue Engineering strategies for meniscal repair in vivo. Copyright © 2015 Elsevier Ltd. All rights reserved.
Yamada, S; Ishikawa, M; Yamamoto, K
2016-07-01
CSF volumes in the basal cistern and Sylvian fissure are increased in both idiopathic normal pressure hydrocephalus and Alzheimer disease, though the differences in these volumes in idiopathic normal pressure hydrocephalus and Alzheimer disease have not been well-described. Using CSF segmentation and volume quantification, we compared the distribution of CSF in idiopathic normal pressure hydrocephalus and Alzheimer disease. CSF volumes were extracted from T2-weighted 3D spin-echo sequences on 3T MR imaging and quantified semi-automatically. We compared the volumes and ratios of the ventricles and subarachnoid spaces after classification in 30 patients diagnosed with idiopathic normal pressure hydrocephalus, 10 with concurrent idiopathic normal pressure hydrocephalus and Alzheimer disease, 18 with Alzheimer disease, and 26 control subjects 60 years of age or older. Brain to ventricle ratios at the anterior and posterior commissure levels and 3D volumetric convexity cistern to ventricle ratios were useful indices for the differential diagnosis of idiopathic normal pressure hydrocephalus or idiopathic normal pressure hydrocephalus with Alzheimer disease from Alzheimer disease, similar to the z-Evans index and callosal angle. The most distinctive characteristics of the CSF distribution in idiopathic normal pressure hydrocephalus were small convexity subarachnoid spaces and the large volume of the basal cistern and Sylvian fissure. The distribution of the subarachnoid spaces in the idiopathic normal pressure hydrocephalus with Alzheimer disease group was the most deformed among these 3 groups, though the mean ventricular volume of the idiopathic normal pressure hydrocephalus with Alzheimer disease group was intermediate between that of the idiopathic normal pressure hydrocephalus and Alzheimer disease groups. The z-axial expansion of the lateral ventricle and compression of the brain just above the ventricle were the common findings in the parameters for differentiating idiopathic normal pressure hydrocephalus from Alzheimer disease. © 2016 by American Journal of Neuroradiology.
Optical zero-differential pressure switch and its evaluation in a multiple pressure measuring system
NASA Technical Reports Server (NTRS)
Powell, J. A.
1977-01-01
The design of a clamped-diaphragm pressure switch is described in which diaphragm motion is detected by a simple fiber-optic displacement sensor. The switch was evaluated in a pressure measurement system where it detected the zero crossing of the differential pressure between a static test pressure and a tank pressure that was periodically ramped from near zero to fullscale gage pressure. With a ramping frequency of 1 hertz and a full-scale tank pressure of 69 N/sq cm gage (100 psig), the switch delay was as long as 2 milliseconds. Pressure measurement accuracies were 0.25 to 0.75 percent of full scale. Factors affecting switch performance are also discussed.
Acute baroreflex resetting: differential control of pressure and nerve activity.
Drummond, H A; Seagard, J L
1996-03-01
This study evaluated acute resetting of carotid baroreflex control of arterial blood pressure and renal or thoracic sympathetic nerve activity in thiopental-anesthetized mongrel dogs with the use of a vascularly isolated carotid sinus preparation, the experimental model used previously to characterize acute resetting in carotid baroreceptor afferent fibers. Carotid baroreceptors were conditioned with a pulsatile pressure for 20 minutes at three pressure ranges: low (50 to 75 mm Hg), mid (100 to 125), or high (150 to 175). Blood pressure and nerve activity were recorded in response to slow ramp increases in sinus pressure; nonlinear regression and best-fit analyses were used for determination of curve fit parameters of the blood pressure and nerve activity versus sinus pressure response curves. Carotid sinus pressure thresholds for blood pressure and renal nerve activity responses at all conditioning pressures were significantly different; however, only the pressure threshold for thoracic nerve activity at the low conditioning pressure was significantly different from the responses at other conditioning pressures. Average renal activity resetting (0.506 +/- 0.072) was significantly greater than blood pressure resetting (0.335 +/- 0.046) in the same dogs, and thoracic activity (0.200 +/- 0.057) was not different from blood pressure resetting (0.194 +/- 0.031) in the same dogs. In a previous investigation, our laboratory had demonstrated that type 1 carotid baroreceptors acutely reset at a value of about 0.15. These results indicate that (1) renal and thoracic nerve activities and blood pressure acutely reset to a greater degree than type 1 carotid baroreceptors and that (2) renal activity acutely resets to a greater degree than blood pressure and thoracic nerve activity.
Wong, Marcy; Siegrist, Mark; Goodwin, Kelly
2003-10-01
Endochondral ossification is regulated by many factors, including mechanical stimuli, which can suppress or accelerate chondrocyte maturation. Mathematical models of endochondral ossification have suggested that tension (or shear stress) can accelerate the formation of endochondral bone, while hydrostatic stress preserves the cartilage phenotype. The goal of this study was to test this hypothesis by examining the expression of hypertrophic chondrocyte markers (transcription factor Cbfa1, MMP-13, type X collagen, VEGF, CTGF) and cartilage matrix proteins under cyclic tension and cyclic hydrostatic pressure. Chondrocyte-seeded alginate constructs were exposed to one of the two loading modes for a period of 3 h per day for 3 days. Gene expression was analyzed using real-time RT-PCR. Cyclic tension upregulated the expression of Cbfa1, MMP-13, CTGF, type X collagen and VEGF and downregulated the expression of TIMP-1. Cyclic tension also upregulated the expression of type 2 collagen, COMP and lubricin, but did not change the expression of SOX9 and aggrecan. Cyclic hydrostatic pressure downregulated the expression of MMP-13 and type I collagen and upregulated expression of TIMP-1 compared to the unloaded controls. Hydrostatic pressure may slow chondrocyte differentiation and have a chondroprotective, anti-angiogenic influence on cartilage tissue. Our results suggest that cyclic tension activates the Cbfa1/MMP-13 pathway and increases the expression of terminal differentiation hypertrophic markers. Mammalian chondrocytes appear to have evolved complex mechanoresponsive mechanisms, the effects of which can be observed in the histomorphologic establishment of the cartilaginous skeleton during development and maturation.
Influence of Containment on the Growth of Germanium-Silicon in Microgravity
NASA Technical Reports Server (NTRS)
Volz, M. P.; Mazuruk, K.; Croll, A.; Sorgenfrei, T.
2017-01-01
A series of Ge(sub 1-x)Si(sub x) crystal growth experiments are planned to be conducted in the Low Gradient Furnace (LGF) onboard the International Space Station. The primary objective of the research is to determine the influence of containment on the processing-induced defects and impurity incorporation in germanium-silicon alloy crystals. A comparison will be made between crystals grown by the normal and 'detached' Bridgman methods and the ground-based float zone technique. 'Detached' or 'dewetted' Bridgman growth is similar to regular Bridgman growth in that most of the melt is in contact with the crucible wall, but the crystal is separated from the wall by a small gap, typically of the order of 10-100 microns. A meniscus bridges this gap between the top of the crystal and the crucible wall. Theoretical models indicate that an important parameter governing detachment is the pressure differential across this meniscus. An experimental method has been developed to control this pressure differential in microgravity that does not require connection of the ampoule volume to external gases or changes in the temperature profile during growth. Experiments will be conducted with positive, negative or zero pressure differential across the meniscus. Characterization results of ground-based experiments, including etch pit density, synchrotron white beam X-ray topography and double axis X-ray diffraction will also be described.
Jones, Corinne A; Ciucci, Michelle R
2015-01-01
Background Parkinson disease (PD) has detrimental effects on swallowing function. Treatment options are largely behavioral; thus, patients would benefit from an earlier start to therapy. Early swallowing changes in PD are not well-known, so patients do not typically receive swallowing treatment until later in the progression of PD. Objective We used predictive modeling to determine what quantitative swallowing variables best differentiate individuals with early to mid-stage PD from healthy controls. Methods Participants included twenty-six individuals with early to mid-stage PD and 26 healthy, age- and sex-matched controls. Swallowing was evaluated by simultaneous high-resolution manometry and videofluoroscopy as well as the Sydney Swallow Questionnaire (SSQ). Binomial logistic regression was performed on 4 sets of data: 1) high-resolution manometry only; 2) videofluoroscopy only; 3) SSQ only; and 4) all data combined. Results A model from a combined data set had the highest accuracy in differentiating individuals with PD from controls. The model included maximum pressure in the velopharynx (soft palate), pressure variability in the velopharynx, and the SSQ item concerning difficulty with saliva swallowing. No significant models could be generated using the videofluoroscopy data. Conclusions Individuals with PD show quantitative changes in pressure generation and are able to self-assess aspects of swallowing function in the early and mid-stages of PD, even in the absence of swallowing changes seen on videofluoroscopy. A multimodal approach for the assessment of swallowing may be more accurate for determining subtle swallowing changes that occur in the early stages of PD. PMID:26891176
Jones, Corinne A; Ciucci, Michelle R
2016-01-01
Parkinson disease (PD) has detrimental effects on swallowing function. Treatment options are largely behavioral; thus, patients would benefit from an earlier start to therapy. Early swallowing changes in PD are not well-known, so patients do not typically receive swallowing treatment until later in the progression of PD. We used predictive modeling to determine what quantitative swallowing variables best differentiate individuals with early to mid-stage PD from healthy controls. Participants included twenty-six individuals with early to mid-stage PD and 26 healthy, age- and sex-matched controls. Swallowing was evaluated by simultaneous high-resolution manometry and videofluoroscopy as well as the Sydney Swallow Questionnaire (SSQ). Binomial logistic regression was performed on 4 sets of data: 1) high-resolution manometry only; 2) videofluoroscopy only; 3) SSQ only; and 4) all data combined. A model from a combined data set had the highest accuracy in differentiating individuals with PD from controls. The model included maximum pressure in the velopharynx (soft palate), pressure variability in the velopharynx, and the SSQ item concerning difficulty with swallowing saliva. No significant models could be generated using the videofluoroscopy data. Individuals with PD show quantitative changes in pressure generation and are able to self-assess aspects of swallowing function in the early and mid-stages of PD, even in the absence of swallowing changes seen on videofluoroscopy. A multimodal approach for the assessment of swallowing may be more accurate for determining subtle swallowing changes that occur in the early stages of PD.
On Small Disturbance Ascent Vent Behavior
NASA Technical Reports Server (NTRS)
Woronowicz, Michael
2015-01-01
As a spacecraft undergoes ascent in a launch vehicle, its ambient pressure environment transitions from one atmosphere to high vacuum in a matter of a few minutes. Venting of internal cavities is necessary to prevent the buildup of pressure differentials across cavity walls. These pressure differentials are often restricted to low levels to prevent violation of container integrity. Such vents usually consist of fixed orifices, ducts, or combinations of both. Duct conductance behavior is fundamentally different from that for orifices in pressure driven flows governing the launch vehicle ascent depressurization environment. Duct conductance is governed by the average pressure across its length, while orifice conductance is dictated by a pressure ratio. Hence, one cannot define a valid equivalent orifice for a given duct across a range of pressure levels. This presentation discusses development of expressions for these two types of vent elements in the limit of small pressure differentials, explores conditions for their validity, and compares their features regarding ascent depressurization performance.
Lim, Einly; Salamonsen, Robert Francis; Mansouri, Mahdi; Gaddum, Nicholas; Mason, David Glen; Timms, Daniel L; Stevens, Michael Charles; Fraser, John; Akmeliawati, Rini; Lovell, Nigel Hamilton
2015-02-01
The present study investigates the response of implantable rotary blood pump (IRBP)-assisted patients to exercise and head-up tilt (HUT), as well as the effect of alterations in the model parameter values on this response, using validated numerical models. Furthermore, we comparatively evaluate the performance of a number of previously proposed physiologically responsive controllers, including constant speed, constant flow pulsatility index (PI), constant average pressure difference between the aorta and the left atrium, constant average differential pump pressure, constant ratio between mean pump flow and pump flow pulsatility (ratioP I or linear Starling-like control), as well as constant left atrial pressure ( P l a ¯ ) control, with regard to their ability to increase cardiac output during exercise while maintaining circulatory stability upon HUT. Although native cardiac output increases automatically during exercise, increasing pump speed was able to further improve total cardiac output and reduce elevated filling pressures. At the same time, reduced venous return associated with upright posture was not shown to induce left ventricular (LV) suction. Although P l a ¯ control outperformed other control modes in its ability to increase cardiac output during exercise, it caused a fall in the mean arterial pressure upon HUT, which may cause postural hypotension or patient discomfort. To the contrary, maintaining constant average pressure difference between the aorta and the left atrium demonstrated superior performance in both exercise and HUT scenarios. Due to their strong dependence on the pump operating point, PI and ratioPI control performed poorly during exercise and HUT. Our simulation results also highlighted the importance of the baroreflex mechanism in determining the response of the IRBP-assisted patients to exercise and postural changes, where desensitized reflex response attenuated the percentage increase in cardiac output during exercise and substantially reduced the arterial pressure upon HUT. Copyright © 2014 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Spacecraft compartment venting
NASA Astrophysics Data System (ADS)
Scialdone, John J.
1998-10-01
At various times, concerns have been expressed that rapid decompressions of compartments of gas pockets and thermal blankets during spacecraft launches may have caused pressure differentials across their walls sufficient to cause minor structural failures, separations of adhesively-joined parts, ballooning, and flapping of blankets. This paper presents a close form equation expressing the expected pressure differentials across the walls of a compartment as a function of the external to the volume pressure drops, the pressure at which the rates occur and the vent capability of the compartment. The pressure profiles measured inside the shrouds of several spacecraft propelled by several vehicles and some profiles obtained from ground vacuum systems have been included. The equation can be used to design the appropriate vent, which will preclude excessive pressure differentials. Precautions and needed approaches for the evaluations of the expected pressures have been indicated. Methods to make a rapid assessment of the response of the compartment to rapid external pressure drops have been discussed. These are based on the evaluation of the compartment vent flow conductance, the volume and the length of time during which the rapid pressure drop occurs.
Spacecraft Compartment Venting
NASA Technical Reports Server (NTRS)
Scialdone, John J.
1998-01-01
At various time concerns have been expressed that rapid decompressions of compartments of gas pockets and thermal blankets during spacecraft launches may have caused pressure differentials across their walls sufficient to cause minor structural failures, separations of adhesively-joined parts, ballooning, and flapping of blankets. This paper presents a close form equation expressing the expected pressure differentials across the walls of a compartment as a function of the external to the volume pressure drops, the pressure at which the rates occur and the vent capability of the compartment. The pressure profiles measured inside the shrouds of several spacecraft propelled by several vehicles and some profiles obtained from ground vacuum systems have been included. The equation can be used to design the appropriate vent, which will preclude excessive pressure differentials. Precautions and needed approaches for the evaluations of the expected pressures have been indicated. Methods to make a rapid assessment of the response of the compartment to rapid external pressure drops have been discussed. These are based on the evaluation of the compartment vent flow conductance, the volume and the length of time during which the rapid pressure drop occurs.
The Effect of Superior Semicircular Canal Dehiscence on Intracochlear Sound Pressures
NASA Astrophysics Data System (ADS)
Nakajima, Hideko Heidi; Pisano, Dominic V.; Merchant, Saumil N.; Rosowski, John J.
2011-11-01
Semicircular canal dehiscence (SCD) is a pathological opening in the bony wall of the inner ear that can result in conductive hearing loss. The hearing loss is variable across patients, and the precise mechanism and source of variability is not fully understood. We use intracochlear sound pressure measurements in cadaveric preparations to study the effects of SCD size. Simultaneous measurement of basal intracochlear sound pressures in scala vestibuli (SV) and scala tympani (ST) quantifies the complex differential pressure across the cochlear partition, the stimulus that excites the partition. Sound-induced pressures in SV and ST, as well as stapes velocity and ear-canal pressure are measured simultaneously for various sizes of SCD followed by SCD patching. At low frequencies (<600 Hz) our results show that SCD decreases the pressure in both SV and ST, as well as differential pressure, and these effects become more pronounced as dehiscence size is increased. For frequencies above 1 kHz, the smallest pinpoint dehiscence can have the larger effect on the differential pressure in some ears. These effects due to SCD are reversible by patching the dehiscence.
Zhao, Yin-Hua; Lv, Xin; Liu, Yan-Li; Zhao, Ying; Li, Qiang; Chen, Yong-Jin; Zhang, Min
2015-05-01
Our previous studies have shown that hydrostatic pressure can serve as an active regulator for bone marrow mesenchymal stem cells (BMSCs). The current work further investigates the roles of cytoskeletal regulatory proteins Ras homolog gene family member A (RhoA) and Ras-related C3 botulinum toxin substrate 1 (Rac1) in hydrostatic pressure-related effects on BMSCs. Flow cytometry assays showed that the hydrostatic pressure promoted cell cycle initiation in a RhoA- and Rac1-dependent manner. Furthermore, fluorescence assays confirmed that RhoA played a positive and Rac1 displayed a negative role in the hydrostatic pressure-induced F-actin stress fiber assembly. Western blots suggested that RhoA and Rac1 play central roles in the pressure-inhibited ERK phosphorylation, and Rac1 but not RhoA was involved in the pressure-promoted JNK phosphorylation. Finally, real-time polymerase chain reaction (PCR) experiments showed that pressure promoted the expression of osteogenic marker genes in BMSCs at an early stage of osteogenic differentiation through the up-regulation of RhoA activity. Additionally, the PCR results showed that pressure enhanced the expression of chondrogenic marker genes in BMSCs during chondrogenic differentiation via the up-regulation of Rac1 activity. Collectively, our results suggested that RhoA and Rac1 are critical to the pressure-induced proliferation and differentiation, the stress fiber assembly, and MAPK activation in BMSCs. Copyright © 2015. Published by Elsevier B.V.
Detached Growth of Germanium by Directional Solidification
NASA Technical Reports Server (NTRS)
Palosz, W.; Volz, M.; Cobb, S.; Motakef, S.; Szofran, F. R.
2004-01-01
Detached crystal growth technique (dewetting) offers improvement in the quality of the grown crystals by preventing sticking to the walls of the crucible and thus reducing the possibility of parasitic nucleation and formation of lattice defects upon cooling. One of the factors relevant for the phenomena is the pressure differential across the meniscus at the crystal-melt interface. We investigated this effect experimentally. The growth took place in closed ampoules under the pressure of an inert gas (forming gas: 96% Ar + 4% H2). The pressure above the melt was adjustable and allowed for a control of the pressure difference between the top and bottom menisci. The crystals were characterized, particularly by taking profilometer measurements along the grown crystals surface. The effects of the experimental conditions on the detachment were compared with those predicted based on the theory of Duffar et al.
Design of Novel FBG-Based Sensor of Differential Pressure with Magnetic Transfer.
Lyu, Guohui; Che, Guohang; Li, Junqing; Jiang, Xu; Wang, Keda; Han, Yueqiang; Gao, Laixu
2017-02-15
In this paper, a differential pressure sensor with magnetic transfer is proposed, in which the non-electric measurement based on the fiber Bragg grating (FBG) with the position limiting mechanism is implemented without the direct contact of the sensing unit with the measuring fluid. The test shows that the designed sensor is effective for measuring differential pressure in the range of 0~10 kPa with a sensitivity of 0.0112 nm/kPa, which can be used in environments with high temperature, strong corrosion and high overload measurements.
Bus Vent Design Evolution for the Solar Dynamics Observatory
NASA Technical Reports Server (NTRS)
Woronowicz, Michael
2010-01-01
As a spacecraft undergoes ascent in a launch vehicle, its pressure environment transitions from one atmosphere to high vacuum in a matter of minutes. Venting of internal cavities is necessary to prevent the buildup of pressure differentials across cavity walls. Opposing the need to vent these volumes freely into space are thermal, optical, and electrostatic requirements for limiting or prohibiting the intrusion of unwanted energy into the same cavities. Bus vent design evolution is discussed for the Solar Dynamics Observatory. Design changes were influenced by a number of factors and concerns, such as contamination control, electrostatic discharge, changes in bus material, and driving fairing ascent pressure for a launch vehicle that was just entering service as this satellite project had gotten underway.
The Effect of Superior Semicircular Canal Dehiscence on Intracochlear Sound Pressures
Pisano, Dominic V.; Niesten, Marlien E.F.; Merchant, Saumil N.; Nakajima, Hideko Heidi
2013-01-01
Semicircular canal dehiscence (SCD) is a pathological opening in the bony wall of the inner ear that can result in conductive hearing loss. The hearing loss is variable across patients, and the precise mechanism and source of variability are not fully understood. Simultaneous measurements of basal intracochlear sound pressures in scala vestibuli (SV) and scala tympani (ST) enable quantification of the differential pressure across the cochlear partition, the stimulus that excites the cochlear partition. We used intracochlear sound pressure measurements in cadaveric preparations to study the effects of SCD size. Sound-induced pressures in SV and ST, as well as stapes velocity and ear-canal pressure were measured simultaneously for various sizes of SCD followed by SCD patching. Our results showed that at low frequencies (<600 Hz), SCD decreased the pressure in both SV and ST, as well as differential pressure, and these effects became more pronounced as dehiscence size was increased. Near 100 Hz, SV decreased about 10 dB for a 0.5 mm dehiscence and 20 dB for a 2 mm dehiscence, while ST decreased about 8 dB for a 0.5 mm dehiscence and 18 dB for a 2mm dehiscence. Differential pressure decreased about 10 dB for a 0.5 mm dehiscence and about 20 dB for a 2 mm dehiscense at 100 Hz. In some ears, for frequencies above 1 kHz, the smallest pinpoint dehiscence had bigger effects on the differential pressure (10 dB decrease) than larger dehiscenses (less than 10 dB decrease), suggesting larger hearing losses in this frequency range. These effects due to SCD were reversible by patching the dehiscence. We also showed that under certain circumstances such as SCD, stapes velocity is not related to how the ear can transduce sound across the cochlear partition because it is not directly related to the differential pressure, emphasizing that certain pathologies cannot be fully assessed by measurements such as stapes velocity. PMID:22814034
Development of a high temperature capacitive pressure transducer
NASA Technical Reports Server (NTRS)
Egger, R. L.
1977-01-01
High temperature pressure transducers capable of continuous operation while exposed to 650 C were developed and evaluated over a full-scale differential pressure range of + or - 69 kPa. The design of the pressure transducers was based on the use of a diaphragm to respond to pressure, variable capacitive elements arranged to operate as a differential capacitor to measure diaphragm response and on the use of fused silica for the diaphragm and its supporting assembly. The uncertainty associated with measuring + or - 69 kPa pressures between 20C and 650C was less than + or - 6%.
Output characteristics of a series three-port axial piston pump
NASA Astrophysics Data System (ADS)
Zhang, Xiaogang; Quan, Long; Yang, Yang; Wang, Chengbin; Yao, Liwei
2012-05-01
Driving a hydraulic cylinder directly by a closed-loop hydraulic pump is currently a key research area in the field of electro-hydraulic control technology, and it is the most direct means to improve the energy efficiency of an electro-hydraulic control system. So far, this technology has been well applied to the pump-controlled symmetric hydraulic cylinder. However, for the differential cylinder that is widely used in hydraulic technology, satisfactory results have not yet been achieved, due to the asymmetric flow constraint. Therefore, based on the principle of the asymmetric valve controlled asymmetric cylinder in valve controlled cylinder technology, an innovative idea for an asymmetric pump controlled asymmetric cylinder is put forward to address this problem. The scheme proposes to transform the oil suction window of the existing axial piston pump into two series windows. When in use, one window is connected to the rod chamber of the hydraulic cylinder and the other is linked with a low-pressure oil tank. This allows the differential cylinders to be directly controlled by changing the displacement or rotation speed of the pumps. Compared with the loop principle of offsetting the area difference of the differential cylinder through hydraulic valve using existing technology, this method may simplify the circuits and increase the energy efficiency of the system. With the software SimulationX, a hydraulic pump simulation model is set up, which examines the movement characteristics of an individual piston and the compressibility of oil, as well as the flow distribution area as it changes with the rotation angle. The pump structure parameters, especially the size of the unloading groove of the valve plate, are determined through digital simulation. All of the components of the series arranged three distribution-window axial piston pump are designed, based on the simulation analysis of the flow pulse characteristics of the pump, and then the prototype pump is made. The basic characteristics, such as the pressure, flow and noise of the pumps under different rotation speeds, are measured on the test bench. The test results verify the correctness of the principle. The proposed research lays a theoretical foundation for the further development of a new pump-controlled cylinder system.
Involvement of WNK1-mediated potassium channels in the sexual dimorphism of blood pressure.
Yu, Guofeng; Cheng, Mengting; Wang, Wei; Zhao, Rong; Liu, Zhen
2017-04-01
Potassium homeostasis plays an essential role in the control of blood pressure. It is unknown, however, whether potassium balance is involved in the gender-associated blood pressure differences. We therefore investigated the possible mechanism of sexual dimorphism in blood pressure regulation by measuring the blood pressure, plasma potassium, renal actions of potassium channels and upstream regulator in male and female mice. Here we found that female mice exhibited lower blood pressure and higher plasma K + level as compared to male littermates. Western blot analyses of mouse kidney extract revealed a significant decrease in renal outer medullary potassium (ROMK) channel expression, while large-conductance Ca 2+ -activated K + (BK) channel and Na-K-2Cl cotransporter (NKCC2) as well as the upstream regulator with-no-lysine kinase 1 (WNK1) enhanced in female mice under normal condition. Surprisingly, both dietary K + loading and K + depletion eliminated the differences in plasma K + and blood pressure between females and males, and the differences of renal K + channels and WNK1 also attenuated in both groups of mice. These findings indicated the existence of a close correlation between K + homeostasis and sex-associated blood pressure. Moreover, the differential regulation of ROMK, BK-α and NKCC2 between female and male mice, at least, were partly mediated via WNK1 pathway, which may contribute to the sexual dimorphism of plasma K + and blood pressure control. Copyright © 2017 Elsevier Inc. All rights reserved.
System Would Regulate Low Gas Pressure
NASA Technical Reports Server (NTRS)
Frazer, Robert E.
1994-01-01
System intended to maintain gases in containers at pressures near atmospheric. Includes ballast volume in form of underinflated balloon that communicates with working volume. Balloon housed in rigid chamber not subjected to extremes of temperature of working volume. Pressure in chamber surrounding balloon regulated at ambient atmospheric pressure or at constant small differential pressure above or below ambient. Expansion and contraction of balloon accommodates expansion or contraction of gas during operational heating or cooling in working volume, maintaining pressure in working volume at ambient or constant differential above or below ambient. Gas lost from system due to leakage or diffusion, low-pressure sensor responds, signaling valve actuators to supply more gas to working volume. If pressure rises too high, overpressure relief valve opens before excessive pressure damages system.
Fuel control for gas turbine with continuous pilot flame
Swick, Robert M.
1983-01-01
An improved fuel control for a gas turbine engine having a continuous pilot flame and a fuel distribution system including a pump drawing fuel from a source and supplying a line to the main fuel nozzle of the engine, the improvement being a control loop between the pump outlet and the pump inlet to bypass fuel, an electronically controlled throttle valve to restrict flow in the control loop when main nozzle demand exists and to permit substantially unrestricted flow without main nozzle demand, a minimum flow valve in the control loop downstream of the throttle valve to maintain a minimum pressure in the loop ahead of the flow valve, a branch tube from the pilot flame nozzle to the control loop between the throttle valve and the minimum flow valve, an orifice in the branch tube, and a feedback tube from the branch tube downstream of the orifice to the minimum flow valve, the minimum flow valve being operative to maintain a substantially constant pressure differential across the orifice to maintain constant fuel flow to the pilot flame nozzle.
A transmission-line model of back-cavity dynamics for in-plane pressure-differential microphones.
Kim, Donghwan; Kuntzman, Michael L; Hall, Neal A
2014-11-01
Pressure-differential microphones inspired by the hearing mechanism of a special parasitoid fly have been described previously. The designs employ a beam structure that rotates about two pivots over an enclosed back volume. The back volume is only partially enclosed due to open slits around the perimeter of the beam. The open slits enable incoming sound waves to affect the pressure profile in the microphone's back volume. The goal of this work is to study the net moment applied to pressure-differential microphones by an incoming sound wave, which in-turn requires modeling the acoustic pressure distribution within the back volume. A lumped-element distributed transmission-line model of the back volume is introduced for this purpose. It is discovered that the net applied moment follows a low-pass filter behavior such that, at frequencies below a corner frequency depending on geometrical parameters of the design, the applied moment is unaffected by the open slits. This is in contrast to the high-pass filter behavior introduced by barometric pressure vents in conventional omnidirectional microphones. The model accurately predicts observed curvature in the frequency response of a prototype pressure-differential microphone 2 mm × 1 mm × 0.5 mm in size and employing piezoelectric readout.
Early differentiation of the Moon: Experimental and modeling studies
NASA Technical Reports Server (NTRS)
Longhi, J.
1986-01-01
Major accomplishments include the mapping out of liquidus boundaries of lunar and meteoritic basalts at low pressure; the refinement of computer models that simulate low pressure fractional crystallization; the development of a computer model to calculate high pressure partial melting of the lunar and Martian interiors; and the proposal of a hypothesis of early lunar differentiation based upon terrestrial analogs.
One-stage free-vortex aerodynamic window with pressure ratio 100 and atmospheric exhaust
NASA Astrophysics Data System (ADS)
Malkov, Victor M.; Trilis, A. V.; Savin, Andrew V.; Druzhinin, S. L.
2005-03-01
The aerodynamic windows (AW) are intended for a high power extraction from the gas laser optical cavity, where the pressure is much lower than environment pressure. The main requirements for the aerodynamic windows are to satisfy a low level of optical disturbances in a laser beam extraction channel and an air leakage absence into the optical cavity. Free vortex AW are most economic from a point of working gas consumption and the greatest pressure differential is realized on them at an exhaust to atmosphere. For ideal gas it is possible to receive as much as large pressure differential, however for real gas a pressure differential more than P>=50 is difficult to achieve. To achieve the pressure ratio 100 in free vortex single-stage AW the method of stabilizing of boundary layer was used. The gas of curtain was decelerated in the diffuser and was exhausted into the atmosphere straightly. The pressure recovery improvement was achieved by using the boundary layer blowing inside the diffuser. Only 10% of total mass flow was used for boundary layer blowing.
HIF isoforms in the skin differentially regulate systemic arterial pressure
Cowburn, Andrew S.; Takeda, Norihiko; Boutin, Adam T.; Kim, Jung-Whan; Sterling, Jane C.; Nakasaki, Manando; Southwood, Mark; Goldrath, Ananda W.; Jamora, Colin; Nizet, Victor; Chilvers, Edwin R.; Johnson, Randall S.
2013-01-01
Vascular flow through tissues is regulated via a number of homeostatic mechanisms. Localized control of tissue blood flow, or autoregulation, is a key factor in regulating tissue perfusion and oxygenation. We show here that the net balance between two hypoxia-inducible factor (HIF) transcription factor isoforms, HIF-1α and HIF-2α, is an essential mechanism regulating both local and systemic blood flow in the skin of mice. We also show that balance of HIF isoforms in keratinocyte-specific mutant mice affects thermal adaptation, exercise capacity, and systemic arterial pressure. The two primary HIF isoforms achieve these effects in opposing ways that are associated with HIF isoform regulation of nitric oxide production. We also show that a correlation exists between altered levels of HIF isoforms in the skin and the degree of idiopathic hypertension in human subjects. Thus, the balance between HIF-1α and HIF-2α expression in keratinocytes is a control element of both tissue perfusion and systemic arterial pressure, with potential implications in human hypertension. PMID:24101470
Xia, Min; Li, Pin-Lan; Li, Ningjun
2008-01-01
The present study was designed to take advantage of telemetry data acquisition and develop an easy and reliable system to servocontrol renal perfusion pressure (RPP). Digitized pressure signals from lower abdominal aorta in rats, reflecting RPP, was obtained by a telemetry device and dynamically exported into an Excel worksheet. A computer program (LabVIEW) compared the RPP data with a preselected pressure range and drove a bidirectional syringe pump to control the inflation of a vascular occluder around the aorta above renal arteries. When RPP was higher than the preselected range, the syringe pump inflated the occluder and decreased RPP, and vice versa. If RPP was within range, there was no action. In this way, RPP was servocontrolled within the desired range. In experiments with norepinephrine- or ANG II-induced acute increases in systemic arterial pressure (120–145 mmHg), the system controlled RPP at a constant range of 100–105 mmHg within 30–50 s and differentiated the pressure-dependent and -independent effects on renal functions. In Dahl S rats with high-salt-induced hypertension, this system maintained RPP at 100–120 mmHg over 10 days, while systemic arterial pressures were 150 ± 5.9 mmHg in uncontrolled animals. This system also has the ability of simultaneity and multiplexing to control multiple animals. Our results suggest that this is an effective and reliable system to servocontrol RPP, which can be easily established with general computer knowledge. This system provides a powerful tool and may greatly facilitate the studies in pressure-dependent/-independent effects of a variety of cardiovascular factors. PMID:18815205
Francel, P C; Stevens, F A; Tompkins, P; Pollay, M
2001-02-01
The proper functioning of shunt valves in vivo is dependent on many factors, including the valve itself, the anti-siphon device or ASD (if included), patency of inlet and outlet tubing, and location of the valve. One important, but sometimes overlooked, consideration in valve function is the valve location relative to the tip of the ventricular inlet catheter. As with any pressure measurement, the zero or reference position is an important concept. In the case of shunt valves, the position of the proximal inlet catheter tip is fixed and therefore serves as the reference point for all pressure measurements. This study was conducted to document the importance of this relationship for the pressure/flow characteristics of the shunt valve. We bench-tested differential pressure valves (with integral anti-gravity devices; AGDs) from three manufacturers. Valves were connected to an "infinite" reservoir, and the starting head pressure for each was determined from product inserts. The inlet catheter tip was fixed at this position, and the valve body was moved in relation to the inlet catheter tip. Outflow rates were determined gravimetrically for positions varying between 4 cm above and 8 cm below the inlet catheter tip. All differential pressure valves utilized in this study that contained AGDs showed significant increases in outflow rate as the valve body was moved incrementally below the level of the inlet catheter tip. To allow functioning as a zero-hydrostatic pressure differential pressure valve, the AGD and the inlet catheter tip should be aligned at the same horizontal level.
Atmospheric pressure and temperature profiling using near IR differential absorption lidar
NASA Technical Reports Server (NTRS)
Korb, C. L.; Schwemmer, G. K.; Dombrowski, M.; Weng, C. Y.
1983-01-01
The present investigation is concerned with differential absorption lidar techniques for remotely measuring the atmospheric temperature and pressure profile, surface pressure, and cloud top pressure-height. The procedure used in determining the pressure is based on the conduction of high-resolution measurements of absorption in the wings of lines in the oxygen A band. Absorption with respect to these areas is highly pressure sensitive in connection with the mechanism of collisional line broadening. The method of temperature measurement utilizes a determination of the absorption at the center of a selected line in the oxygen A band which originates from a quantum state with high ground state energy.
NASA Technical Reports Server (NTRS)
Yen, D. H. Y.; Maestrello, L.; Padula, S.
1975-01-01
The response of a clamped panel to supersonically convected turbulence is considered. A theoretical model in the form of an integro-differential equation is employed that takes into account the coupling between the panel motion and the surrounding acoustic medium. The kernels of the integrals, which represent induced pressures due to the panel motion, are Green's functions for sound radiations under various moving and stationary sources. An approximate analysis is made by following a finite-element Ritz-Galerkin procedure. Preliminary numerical results, in agreement with experimental findings, indicate that the acoustic damping is the controlling mechanism of the response.
Piston rod seal for a Stirling engine
Shapiro, Wilbur
1984-01-01
In a piston rod seal for a Stirling engine, a hydrostatic bearing and differential pressure regulating valve are utilized to provide for a low pressure differential across a rubbing seal between the hydrogen and oil so as to reduce wear on the seal.
Low Differential Pressure Generator
NASA Technical Reports Server (NTRS)
Stout, Stephen J. (Inventor); Deyoe, Richard T. (Inventor)
1997-01-01
A method and apparatus for evaluating low differential pressure transducers includes a pressure generator in the form of a piston-cylinder assembly having a piston that may be manually positioned precisely within the cylinder to change the volume and thus the pressure at respective sides of the piston. At one side of the piston the cylinder communicates with a first chamber and at the other side of the piston the cylinder communicates with a second chamber, the first and second chambers being formed within a common tank by a partition wall. The chambers each communicate with the transducer to be evaluated and a standard pre-calibrated transducer the transducers being connected fluidly in parallel so that a pressure differential between air in the two chambers resulting from movement of the piston within the cylinder is communicated to both the transducer to be evaluated and the standard transducer, and the outputs of the transducers is observed and recorded.
Xie, Bo; Xing, Yonghao; Wang, Yanshuang; Chen, Jian; Chen, Deyong; Wang, Junbo
2015-09-21
This paper presents the fabrication and characterization of a resonant pressure microsensor based on SOI-glass wafer-level vacuum packaging. The SOI-based pressure microsensor consists of a pressure-sensitive diaphragm at the handle layer and two lateral resonators (electrostatic excitation and capacitive detection) on the device layer as a differential setup. The resonators were vacuum packaged with a glass cap using anodic bonding and the wire interconnection was realized using a mask-free electrochemical etching approach by selectively patterning an Au film on highly topographic surfaces. The fabricated resonant pressure microsensor with dual resonators was characterized in a systematic manner, producing a quality factor higher than 10,000 (~6 months), a sensitivity of about 166 Hz/kPa and a reduced nonlinear error of 0.033% F.S. Based on the differential output, the sensitivity was increased to two times and the temperature-caused frequency drift was decreased to 25%.
A Lateral Differential Resonant Pressure Microsensor Based on SOI-Glass Wafer-Level Vacuum Packaging
Xie, Bo; Xing, Yonghao; Wang, Yanshuang; Chen, Jian; Chen, Deyong; Wang, Junbo
2015-01-01
This paper presents the fabrication and characterization of a resonant pressure microsensor based on SOI-glass wafer-level vacuum packaging. The SOI-based pressure microsensor consists of a pressure-sensitive diaphragm at the handle layer and two lateral resonators (electrostatic excitation and capacitive detection) on the device layer as a differential setup. The resonators were vacuum packaged with a glass cap using anodic bonding and the wire interconnection was realized using a mask-free electrochemical etching approach by selectively patterning an Au film on highly topographic surfaces. The fabricated resonant pressure microsensor with dual resonators was characterized in a systematic manner, producing a quality factor higher than 10,000 (~6 months), a sensitivity of about 166 Hz/kPa and a reduced nonlinear error of 0.033% F.S. Based on the differential output, the sensitivity was increased to two times and the temperature-caused frequency drift was decreased to 25%. PMID:26402679
Zhao, Ying; Yi, Fei-Zhou; Zhao, Yin-Hua; Chen, Yong-Jin; Ma, Heng; Zhang, Min
2016-10-01
This study aimed to investigate the differential and synergistic effects of mechanical stimulation and estrogen on the proliferation and osteogenic or chondrogenic differentiation potential of bone marrow mesenchymal stem cells (BMSCs) and the roles of estrogen receptor (ER) in them. BMSCs were isolated and cultured using the whole bone marrow adherence method, and flow cytometry was used to identify the surface marker molecules of BMSCs. Cells were pre-treated with 1 nM 17β-estradiol or 1 nM of the estrogen receptor antagonist tamoxifen. Then, the cells were stimulated with hydrostatic pressure. Assessment included flow cytometry analysis of the cell cycle; immunofluorescent staining for F-actin; protein quantification for MAPK protein; and mRNA analysis for Col I, OCN, OPN and BSP after osteogenic induction and Sox-9, Aggrecan and Col-II after chondrogenic induction. Hydrostatic pressure (90 kPa/1 h) and 1 nM 17β-estradiol enhanced the cellular proliferation ability and the cytoskeleton activity but without synergistic biological effects. Estrogen activated ERKs and JNKs simultaneously and promoted the osteogenic differentiation, whereas the pressure just caused JNK-1/2 activation and promoted the chondrogenic differentiation of BMSCs. Estrogen had antagonism effect on chondrogenic promotion of hydrostatic pressure. Mechanobiological effects of hydrostatic pressure are closely associated with ERα activity. MAPK molecules and F-actin were likely to be important mediator molecules in the ER-mediated mechanotransduction of BMSCs.
Debiève, F; Depoix, C; Gruson, D; Hubinont, C
2013-09-01
Timely regulated changes in oxygen partial pressure are important for placental formation. Disturbances could be responsible for pregnancy-related diseases like preeclampsia and intrauterine growth restriction. We aimed to (i) determine the effect of oxygen partial pressure on cytotrophoblast differentiation; (ii) measure mRNA expression and protein secretion from genes associated with placental angiogenesis; and (iii) determine the reversibility of these effects at different oxygen partial pressures. Term cytotrophoblasts were incubated at 21% and 2.5% O2 for 96 hr, or were switched between the two oxygen concentrations after 48 hr. Real-time PCR and enzyme-linked immunosorbent assays (ELISAs) were used to evaluate cell fusion and differentiation, measuring transcript levels for those genes involved in cell fusion and placental angiogenesis, including VEGF, PlGF, VEGFR1, sVEGFR1, sENG, INHA, and GCM1. Cytotrophoblasts underwent fusion and differentiation in 2.5% O2 . PlGF expression was inhibited while sVEGFR1 expression increased. VEGF and sENG mRNA expressions increased in 2.5% compared to 21% O2 , but no protein was detected in the cell supernatants. Finally, GCM1 mRNA expression increased during trophoblast differentiation at 21% O2 , but was inhibited at 2.5% O2 . These mRNA expression effects were reversed by returning the cells to 21% O2 . Thus, low-oxygen partial pressure does not inhibit term-cytotrophoblast cell fusion and differentiation in vitro. Lowering the oxygen partial pressure from 21% to 2.5% caused normal-term trophoblasts to reversibly modify their expression of genes associated with placental angiogenesis. This suggests that modifications observed in pregnancy diseases such as preeclampsia or growth retardation are probably due to an extrinsic effect on trophoblasts. Copyright © 2013 Wiley Periodicals, Inc.
Moore, Dana W.; Kovanlikaya, Ilhami; Heier, Linda A.; Raj, Ashish; Huang, Chaorui; Chu, King-Wai; Relkin, Norman R.
2012-01-01
Current radiologic diagnosis of normal pressure hydrocephalus (NPH) requires a subjective judgment of whether lateral ventricular enlargement is disproportionate to cerebral atrophy based on visual inspection of brain images. We investigated whether quantitative measurements of lateral ventricular volume and total cortical thickness (a correlate of cerebral atrophy) could be used to more objectively distinguish NPH from normal controls (NC), Alzheimer's (AD), and Parkinson's disease (PD). Volumetric MRIs were obtained prospectively from patients with NPH (n = 5), PD (n = 5), and NC (5). Additional NC (n = 5) and AD patients (n = 10) from the ADNI cohort were examined. Although mean ventricular volume was significantly greater in the NPH group than all others, the range of values overlapped those of the AD group. Individuals with NPH could be better distinguished when ventricular volume and total cortical thickness were considered in combination. This pilot study suggests that volumetric MRI measurements hold promise for improving NPH differential diagnosis. PMID:21860791
System and process for upgrading hydrocarbons
Bingham, Dennis N.; Klingler, Kerry M.; Smith, Joseph D.; Turner, Terry D.; Wilding, Bruce M.
2015-08-25
In one embodiment, a system for upgrading a hydrocarbon material may include a black wax upgrade subsystem and a molten salt gasification (MSG) subsystem. The black wax upgrade subsystem and the MSG subsystem may be located within a common pressure boundary, such as within a pressure vessel. Gaseous materials produced by the MSG subsystem may be used in the process carried out within the black wax upgrade subsystem. For example, hydrogen may pass through a gaseous transfer interface to interact with black wax feed material to hydrogenate such material during a cracking process. In one embodiment, the gaseous transfer interface may include one or more openings in a tube or conduit which is carrying the black wax material. A pressure differential may control the flow of hydrogen within the tube or conduit. Related methods are also disclosed.
Evaluation of non-thermal plasma-induced anticancer effects on human colon cancer cells
Choi, Jae-Sun; Kim, Jeongho; Hong, Young-Jun; Bae, Woom-Yee; Choi, Eun Ha; Jeong, Joo-Won; Park, Hun-Kuk
2017-01-01
Non-thermal atmospheric-pressure plasma has been introduced in various applications such as sterilization, wound healing, blood coagulation, and other biomedical applications. The most attractive application of non-thermal atmospheric-pressure plasma is in cancer treatment, where the plasma is used to produce reactive oxygen species (ROS) to facilitate cell apoptosis. We investigate the effects of different durations of exposure to dielectric-barrier discharge (DBD) plasma on colon cancer cells using measurement of cell viability and ROS levels, western blot, immunocytochemistry, and Raman spectroscopy. Our results suggest that different kinds of plasma-treated cells can be differentiated from control cells using the Raman data. PMID:28663896
Makarov, Alexey A; Schafer, Wes A; Helmy, Roy
2015-02-17
The market of protein therapeutics is exploding, and characterization methods for proteins are being further developed to understand and explore conformational structures with regards to function and activity. There are several spectroscopic techniques that allow for analyzing protein secondary structure in solution. However, a majority of these techniques need to use purified protein, concentrated enough in the solution to produce a relevant spectrum. In this study, we describe a novel approach which uses ultrahigh pressure liquid chromatography (UHPLC) coupled with mass-spectrometry (MS) to explore compressibility of the secondary structure of proteins under increasing pressure detected by hydrogen-deuterium exchange (HDX). Several model proteins were used for these studies. The studies were conducted with UHPLC in isocratic mode at constant flow rate and temperature. The pressure was modified by a backpressure regulator up to about 1200 bar. It was found that the increase of retention factors upon pressure increase, at constant flow rate and temperature, was based on reduction of the proteins' molecular molar volume. The change in the proteins' molecular molar volume was caused by changes in protein folding, as was revealed by differential deuterium exchange. The degree of protein folding under certain UHPLC conditions can be controlled by pressure, at constant temperature and flow rate. By modifying pressure during UHPLC separation, it was possible to achieve changes in protein folding, which were manifested as changes in the number of labile protons exchanged to deuterons, or vice versa. Moreover, it was demonstrated with bovine insulin that a small difference in the number of protons exchanged to deuterons (based on protein folding under pressure) could be observed between batches obtained from different sources. The use of HDX during UHPLC separation allowed one to examine protein folding by pressure at constant flow rate and temperature in a mixture of sample solution with minimal amounts of sample used for analysis.
RADON PRESSURE DIFFERENTIAL PROJECT - PHASE I - FLORIDA RESEARCH PROGRAM
The report gives results of tests on 70 central Florida houses to assess and characterize pressure differentials in new (age 5 years or less) Florida houses. Blower door tests determined house airtightness and air distribution system leakage. The 70 houses had an average airtight...
Oxidation Behavior of Carbon Fiber-Reinforced Composites
NASA Technical Reports Server (NTRS)
Sullivan, Roy M.
2008-01-01
OXIMAP is a numerical (FEA-based) solution tool capable of calculating the carbon fiber and fiber coating oxidation patterns within any arbitrarily shaped carbon silicon carbide composite structure as a function of time, temperature, and the environmental oxygen partial pressure. The mathematical formulation is derived from the mechanics of the flow of ideal gases through a chemically reacting, porous solid. The result of the formulation is a set of two coupled, non-linear differential equations written in terms of the oxidant and oxide partial pressures. The differential equations are solved simultaneously to obtain the partial vapor pressures of the oxidant and oxides as a function of the spatial location and time. The local rate of carbon oxidation is determined at each time step using the map of the local oxidant partial vapor pressure along with the Arrhenius rate equation. The non-linear differential equations are cast into matrix equations by applying the Bubnov-Galerkin weighted residual finite element method, allowing for the solution of the differential equations numerically.
NASA Astrophysics Data System (ADS)
Rodi, A. R.; Leon, D. C.
2012-05-01
Geometric altitude data from a combined Global Navigation Satellite System (GNSS) and inertial measurement unit (IMU) system on the University of Wyoming King Air research aircraft are used to estimate acceleration effects on static pressure measurement. Using data collected during periods of accelerated flight, comparison of measured pressure with that derived from GNSS/IMU geometric altitude show that errors exceeding 150 Pa can occur which is significant in airspeed and atmospheric air motion determination. A method is developed to predict static pressure errors from analysis of differential pressure measurements from a Rosemount model 858 differential pressure air velocity probe. The method was evaluated with a carefully designed probe towed on connecting tubing behind the aircraft - a "trailing cone" - in steady flight, and shown to have a precision of about ±10 Pa over a wide range of conditions including various altitudes, power settings, and gear and flap extensions. Under accelerated flight conditions, compared to the GNSS/IMU data, this algorithm predicts corrections to a precision of better than ±20 Pa. Some limiting factors affecting the precision of static pressure measurement on a research aircraft are examined.
Active control of combustion instabilities
NASA Astrophysics Data System (ADS)
Al-Masoud, Nidal A.
A theoretical analysis of active control of combustion thermo-acoustic instabilities is developed in this dissertation. The theoretical combustion model is based on the dynamics of a two-phase flow in a liquid-fueled propulsion system. The formulation is based on a generalized wave equation with pressure as the dependent variable, and accommodates all influences of combustion, mean flow, unsteady motions and control inputs. The governing partial differential equations are converted to an equivalent set of ordinary differential equations using Galerkin's method by expressing the unsteady pressure and velocity fields as functions of normal mode shapes of the chamber. This procedure yields a representation of the unsteady flow field as a system of coupled nonlinear oscillators that is used as a basis for controllers design. Major research attention is focused on the control of longitudinal oscillations with both linear and nonlinear processes being considered. Starting with a linear model using point actuators, the optimal locations of actuators and sensors are developed. The approach relies on the quantitative measures of the degree of controllability and component cost. These criterion are arrived at by considering the energies of the system's inputs and outputs. The optimality criteria for sensor and actuator locations provide a balance between the importance of the lower order (controlled) and the higher (residual) order modes. To address the issue of uncertainties in system's parameter, the minimax principles based controller is used. The minimax corresponds to finding the best controller for the worst parameter deviation. In other words, choosing controller parameters to minimize, and parameter deviation to maximize some quadratic performance metric. Using the minimax-based controller, a remarkable improvement in the control system's ability to handle parameter uncertainties is achieved when compared to the robustness of the regular control schemes such as LQR and LQG. Since the observed instabilities are harmonic, the concept of "harmonic input" is successfully implemented using a parametric controller to eliminate the thermo-acoustic instability. This control scheme relies on the determination of a phase-shift to maximize the energy dissipation and a controller gain to assure stability and minimize a pre-specified performance index. The closed loop control law design is based on finding an optimal phase angle such that the heat release produced by secondary oscillatory fuel injection is out of phase with the mode's pressure oscillations, thus maximizing energy dissipation, and on finding the limits on the controller gain that ensures system stability. The optimal gains are determined using ITA, ISE, ITAE performance indices. Simulations show successful implementation of the proposed technique.
NASA Technical Reports Server (NTRS)
Olson, Sandra L.; Beeson, Harold; Fernandez-Pello, A. Carlos
2014-01-01
Repeated Test 1 extinction tests near the upward flammability limit are expected to follow a Poisson process trend. This Poisson process trend suggests that rather than define a ULOI and MOC (which requires two limits to be determined), it might be better to define a single upward limit as being where 1/e (where e (approx. equal to 2.7183) is the characteristic time of the normalized Poisson process) of the materials burn, or, rounding, where approximately 1/3 of the samples fail the test (and burn). Recognizing that spacecraft atmospheres will not bound the entire oxygen-pressure parameter space, but actually lie along the normoxic atmosphere control band, we can focus the materials flammability testing along this normoxic band. A Normoxic Upward Limiting Pressure (NULP) is defined that determines the minimum safe total pressure for a material within the constant partial pressure control band. Then, increasing this pressure limit by a factor of safety, we can define the material as being safe to use at the NULP + SF (where SF is on the order of 10 kilopascal, based on existing flammability data). It is recommended that the thickest material to be tested with the current Test 1 igniter should be 3 mm thick (1/8 inches) to avoid the problem of differentiating between an ignition limit and a true flammability limit.
Viña-Almunia, Jose; Mas-Bargues, Cristina; Borras, Consuelo; Gambini, Juan; El Alami, Marya; Sanz-Ros, Jorge; Peñarrocha, Miguel; Vina, Jose
To analyze, in vitro, the influence of O₂ pressure on the adhesion, proliferation, and osteogenic differentiation of human dental pulp stem cells (DPSC) on β-tricalcium phosphate (β-TCP) scaffold. DPSC, positive for the molecular markers CD133, Oct4, Nestin, Stro-1, and CD34, and negative for CD45, were isolated from extracted third molars. Experiments were started by seeding 200,000 cells on β-TCP cultured under 3% or 21% O₂ pressure. No osteogenic medium was used. Eight different cultures were performed at each time point under each O₂ pressure condition. Cell adhesion, proliferation, and differentiation over the biomaterial were evaluated at 7, 13, 18, and 23 days of culture. Cell adhesion was determined by light microscopy, proliferation by DNA quantification, and osteogenic differentiation by alkaline phosphatase (ALP) activity analysis. DPSC adhered to β-TCP with both O₂ conditions. Cell proliferation was found from day 7 of culture. Higher values were recorded at 3% O₂ in each time point. Statistically significant differences were recorded at 23 days of culture (P = .033). ALP activity was not detectable at 7 days. There was, however, an increase in ALP activity over time in both groups. At 13, 18, and 23 days of culture, higher ALP activity was recorded under 3% O₂ pressure. Statistical differences were found at day 23 (P = .014). DPSC display capacity of adhering to β-TCP under 3% or 21% O₂ pressure conditions. Cell proliferation on β-TCP phosphate is significantly higher at 3% than at 21% O₂ pressure, the most frequently used O₂ tension. β-TCP can itself promote osteogenic differentiation of DPSC and is enhanced under 3% O₂ compared with 21%.
Demirkol, Demet; Ataman, Yasemin; Gündoğdu, Gökhan
2017-09-08
This case report presents differential lung ventilation in an infant. The aim is to define an alternative technique for performing differential lung ventilation in children. To the best of our knowledge, this is the first report of this kind. A 4.2-kg, 2.5-month-old Asian boy was referred to our facility with refractory hypoxemia and hypercarbia due to asymmetric lung disease with atelectasis of the left lung and hyperinflation of the right lung. He was unresponsive to conventional ventilator strategies; different ventilator settings were required. To perform differential lung ventilation, two separate single-lumen endotracheal tubes were inserted into the main bronchus of each lung by tracheotomy; the tracheal tubes were attached to discrete ventilators. The left lung was ventilated with a lung salvage strategy using high-frequency oscillatory ventilation, and the right lung was ventilated with a lung-protective strategy using pressure-regulated volume control mode. Differential lung ventilation was performed successfully with this technique without complications. Differential lung ventilation may be a lifesaving procedure in select patients who have asymmetric lung disease. Inserting two single-lumen endotracheal tubes via tracheotomy for differential lung ventilation can be an effective and safe alternative method.
Relationships between treated hypertension and subsequent mortality in an insured population.
Ivanovic, Brian; Cumming, Marianne E; Pinkham, C Allen
2004-01-01
To investigate if a mortality differential exists between insurance policyholders with treated hypertension and policyholders who are not under such treatment, where both groups are noted to have the same blood pressure at the time of policy issue. Hypertension is a known mortality risk factor in the insured and general population. Treatment for hypertension is very common in the insured population, especially as age increases. At the time of insurance application, a subset of individuals with treated hypertension will have blood pressures that are effectively controlled and are in the normal range. These individuals often meet established preferred underwriting criteria for blood pressure. In some life insurance companies, they may be offered insurance at the same rates as individuals who are not hypertensive with the same blood pressure. Such companies make the assumption that the pharmacologically induced normotensive state confers no excess risk relative to the natural normotensive state. Given the potential pricing implications of this decision, we undertook an investigation to test this hypothesis. We studied internal data on direct and reinsurance business between 1975 and 2001 followed through anniversaries in 2002 or prior termination with an average duration of 5.2 years per policy. Actual-to-expected analyses and Cox proportional hazards models were used to assess if a mortality differential existed between policyholders coded for hypertension and policyholders with the same blood pressure that were not coded as hypertensive. Eight thousand six hundred forty-seven deaths were observed during follow-up in the standard or preferred policy cohort. Within the same blood pressure category, mortality was higher in policyholders identified as treated hypertensives compared with those in the subset of individuals who were not coded for hypertension. This finding was present in males and females and persisted across age groups in almost all age-gender-smoking status subsets examined. The differential in mortality was 125% to 160% of standard mortality based on the ratio of actual-to-expected claims. In this insured cohort, a designation of treated hypertension is associated with increased relative mortality compared to life insurance policyholders not so coded.
DEVELOPMENT OF AG-1 SECTION FI ON METAL MEDIA FILTERS - 9061
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adamson, D; Charles A. Waggoner, C
Development of a metal media standard (FI) for ASME AG-1 (Code on Nuclear Air and Gas Treatment) has been under way for almost ten years. This paper will provide a brief history of the development process of this section and a detailed overview of its current content/status. There have been at least two points when dramatic changes have been made in the scope of the document due to feedback from the full Committee on Nuclear Air and Gas Treatment (CONAGT). Development of the proposed section has required resolving several difficult issues associated with scope; namely, filtering efficiency, operating conditions (mediamore » velocity, pressure drop, etc.), qualification testing, and quality control/acceptance testing. A proposed version of Section FI is currently undergoing final revisions prior to being submitted for balloting. The section covers metal media filters of filtering efficiencies ranging from medium (less than 99.97%) to high (99.97% and greater). Two different types of high efficiency filters are addressed; those units intended to be a direct replacement of Section FC fibrous glass HEPA filters and those that will be placed into newly designed systems capable of supporting greater static pressures and differential pressures across the filter elements. Direct replacements of FC HEPA filters in existing systems will be required to meet equivalent qualification and testing requirements to those contained in Section FC. A series of qualification and quality assurance test methods have been identified for the range of filtering efficiencies covered by this proposed standard. Performance characteristics of sintered metal powder vs. sintered metal fiber media are dramatically different with respect to parameters like differential pressures and rigidity of the media. Wide latitude will be allowed for owner specification of performance criteria for filtration units that will be placed into newly designed systems. Such allowances will permit use of the most appropriate metal media for a system as specified by the owner with respect to material of manufacture, media velocity, system maximum static pressure, maximum differential pressure across the filter, and similar parameters.« less
A flatness-based control approach to drug infusion for cardiac function regulation
NASA Astrophysics Data System (ADS)
Rigatos, Gerasimos; Zervos, Nikolaos; Melkikh, Alexey
2016-12-01
A new control method based on differential flatness theory is developed in this article, aiming at solving the problem of regulation of haemodynamic parameters, Actually control of the cardiac output (volume of blood pumped out by heart per unit of time) and of the arterial blood pressure is achieved through the administered infusion of cardiovascular drugs, such as dopamine and sodium nitroprusside. Time delays between the control inputs and the system's outputs are taken into account. Using the principle of dynamic extension, which means that by considering certain control inputs and their derivatives as additional state variables, a state-space description for the heart's function is obtained. It is proven that the dynamic model of the heart is a differentially flat one. This enables its transformation into a linear canonical and decoupled form, for which the design of a stabilizing feedback controller becomes possible. The proposed feedback controller is of proven stability and assures fast and accurate tracking of the reference setpoints by the outputs of the heart's dynamic model. Moreover, by using a Kalman Filter-based disturbances' estimator, it becomes possible to estimate in real-time and compensate for the model uncertainty and external perturbation inputs that affect the heart's model.
Lee, M.W.
2002-01-01
The classical Biot-Gassmann theory (BGT) generally overestimates shear-wave velocities of water-saturated sediments. To overcome this problem, a new theory is developed based on BGT and on the velocity ratio as a function of G(1 - ??)n, where ?? is porosity and n and G are constants. Based on laboratory data measured at ultrasonic frequencies, parameters for the new formulation are derived. This new theory is extended to include the effect of differential pressure and consolidation on the velocity ratio by making n a function of differential pressure and the rate of porosity reduction with respect to differential pressure. A scale G is introduced to compensate for discrepancies between measured and predicted velocities, mainly caused by the presence of clay in the matrix. As differential pressure increases and the rate of porosity reduction with respect to differential pressure decreases, the exponent n decreases and elastic velocities increase. Because velocity dispersion is not considered, this new formula is optimum for analyzing velocities measured at ultrasonic frequencies or for sediments having low dispersion characteristics such as clean sandstone with high permeability and lack of grain-scale local flow. The new formula is applied to predict velocities from porosity or from porosity and P-wave velocity and is in good agreement with laboratory and well log data. ?? 2004 Kluwer Academic Publishers. Printed in the Netherlands.
Han, Lijuan; Li, Lin; Li, Bing; Zhao, Lei; Liu, Guoqin; Liu, Xinqi; Wang, Xuede
2014-04-24
Moderate and high microfluidization pressures (60 and 120 MPa) and different treatment times (once and twice) were used to investigate the effect of high-pressure microfluidization (HPM) treatment on the crystallization behavior and physical properties of binary mixtures of palm stearin (PS) and palm olein (PO). The polarized light microscopy (PLM), texture analyzer, X-ray diffraction (XRD) and differential scanning calorimetry (DSC) techniques were applied to analyze the changes in crystal network structure, hardness, polymorphism and thermal property of the control and treated blends. PLM results showed that HPM caused significant reductions in maximum crystal diameter in all treated blends, and thus led to changes in the crystal network structure, and finally caused higher hardness in than the control blends. The XRD study demonstrated that HPM altered crystalline polymorphism. The HPM-treated blends showed a predominance of the more stable β' form, which is of more interest for food applications, while the control blend had more α- and β-form. This result was further confirmed by DSC observations. These changes in crystallization behavior indicated that HPM treatment was more likely to modify the crystallization processes and nucleation mechanisms.
Glueck, Charles J; Morrison, John A; Friedman, Lisa Aronson; Goldenberg, Naila; Stroop, Davis M; Wang, Ping
2006-04-01
Adolescent girls with polycystic ovary syndrome (PCOS) have increased levels of factors constituting the metabolic syndrome: centripetal obesity, hypertension, hypertriglyceridemia, low high-density lipoprotein cholesterol (HDL-C), and hyperinsulinemia. Given the strong association reported between early, persistent obesity and development of metabolic syndrome 10 years later in girls, we speculated that if adolescent girls without PCOS had obesity measures similar to girls with PCOS, they would exhibit similar metabolic syndrome-cardiovascular disease risk factors. Within this context, we compared 37 adolescent girls with PCOS and 2 samples of normal, regularly cycling adolescent girls (controls) of similar ages, selected from the Cincinnati Clinic of the National Heart, Lung, and Blood Institute Growth and Health Study. The first sample included 157 controls selected using a stratified random sample based on age. As expected, girls with PCOS had higher body mass index (BMI), waist circumference, insulin, systolic blood pressure (SBP) and diastolic blood pressure, triglycerides (TGs), lower HDL-C, and higher low-density lipoprotein cholesterol (LDL-C) and free testosterone (FT) than controls. A second sample consisted of girls matched one to one with girls with PCOS for BMI and age. Comparisons of group differences were not significant for insulin, lipids, or blood pressure; girls with PCOS had a trend toward higher values for waist circumference (median, 92.7 vs 87.5 cm; P = .07) and much higher median FT (4.25 vs 1.42 ng/mL, P = .0001). After matching for BMI and age, by conditional regression analysis, we showed that the groups were not differentiated (P > .15) by insulin, HDL-C, LDL-C, TG, SBP, or diastolic blood pressure, but were differentiated by higher FT (P = .0024) and waist circumference (P = .0024) in PCOS than in controls. Prospective longitudinal analyses of NHGS controls showed that changes in BMI from ages 9 to 10 years to ages 15 to 16 years were positively associated with changes in waist circumference (P < .0001), LDL-C (P = .01), TG (P = .008), and SBP (P = .002). These findings suggest that if adolescent girls achieve adiposity equal to girls with PCOS, they then acquire major components of the metabolic syndrome, and excluding high FT and waist circumference, comparable increased cardiovascular disease risk.
Advanced Photonic Sensors Enabled by Semiconductor Bonding
2010-05-31
a dry scroll backing pump to maintain the high differential pressure between the UV gun and the sample/analysis chamber. We also replaced the...semiconductor materials in an ultra-high vacuum (UHV) environment where the properties of the interface can be controlled with atomic-level precision. Such...year research program, we designed and constructed a unique system capable of fusion bonding two wafers in an ultra-high vacuum environment. This system
Oxygen Equipment and Rapid Decompression Studies
1979-03-01
defined and discussed by Fritz Haber anti Hans Clamann (3) of the USAF School of Aviation Medicine.* These authors define two factors in a...for the pattern of airflow through the pene- tration; and (vi) maintenance of critical flow. The equation for rapid decompression as presented by Haber ...galley, controlling the pressure differential between the two compartments. Using the equation of Haber and Clamann (7), a decompression for the galley
49 CFR 173.167 - Consumer commodities.
Code of Federal Regulations, 2014 CFR
2014-10-01
...-toxic aerosols only), Class 3 (Packing Group II and III only), Division 6.1 (Packing Group III only.... Additionally, except for the pressure differential requirements in § 173.27(c), the requirements of § 173.27 do... appropriate, in accordance with subpart E of part 172 of this subchapter; and (2) Pressure differential...
Simulation of the planetary interior differentiation processes in the laboratory.
Fei, Yingwei
2013-11-15
A planetary interior is under high-pressure and high-temperature conditions and it has a layered structure. There are two important processes that led to that layered structure, (1) percolation of liquid metal in a solid silicate matrix by planet differentiation, and (2) inner core crystallization by subsequent planet cooling. We conduct high-pressure and high-temperature experiments to simulate both processes in the laboratory. Formation of percolative planetary core depends on the efficiency of melt percolation, which is controlled by the dihedral (wetting) angle. The percolation simulation includes heating the sample at high pressure to a target temperature at which iron-sulfur alloy is molten while the silicate remains solid, and then determining the true dihedral angle to evaluate the style of liquid migration in a crystalline matrix by 3D visualization. The 3D volume rendering is achieved by slicing the recovered sample with a focused ion beam (FIB) and taking SEM image of each slice with a FIB/SEM crossbeam instrument. The second set of experiments is designed to understand the inner core crystallization and element distribution between the liquid outer core and solid inner core by determining the melting temperature and element partitioning at high pressure. The melting experiments are conducted in the multi-anvil apparatus up to 27 GPa and extended to higher pressure in the diamond-anvil cell with laser-heating. We have developed techniques to recover small heated samples by precision FIB milling and obtain high-resolution images of the laser-heated spot that show melting texture at high pressure. By analyzing the chemical compositions of the coexisting liquid and solid phases, we precisely determine the liquidus curve, providing necessary data to understand the inner core crystallization process.
Simulation of the Planetary Interior Differentiation Processes in the Laboratory
Fei, Yingwei
2013-01-01
A planetary interior is under high-pressure and high-temperature conditions and it has a layered structure. There are two important processes that led to that layered structure, (1) percolation of liquid metal in a solid silicate matrix by planet differentiation, and (2) inner core crystallization by subsequent planet cooling. We conduct high-pressure and high-temperature experiments to simulate both processes in the laboratory. Formation of percolative planetary core depends on the efficiency of melt percolation, which is controlled by the dihedral (wetting) angle. The percolation simulation includes heating the sample at high pressure to a target temperature at which iron-sulfur alloy is molten while the silicate remains solid, and then determining the true dihedral angle to evaluate the style of liquid migration in a crystalline matrix by 3D visualization. The 3D volume rendering is achieved by slicing the recovered sample with a focused ion beam (FIB) and taking SEM image of each slice with a FIB/SEM crossbeam instrument. The second set of experiments is designed to understand the inner core crystallization and element distribution between the liquid outer core and solid inner core by determining the melting temperature and element partitioning at high pressure. The melting experiments are conducted in the multi-anvil apparatus up to 27 GPa and extended to higher pressure in the diamond-anvil cell with laser-heating. We have developed techniques to recover small heated samples by precision FIB milling and obtain high-resolution images of the laser-heated spot that show melting texture at high pressure. By analyzing the chemical compositions of the coexisting liquid and solid phases, we precisely determine the liquidus curve, providing necessary data to understand the inner core crystallization process. PMID:24326245
Karamesinis, Konstantinos; Spyropoulou, Anastasia; Dalagiorgou, Georgia; Katsianou, Maria A; Nokhbehsaim, Marjan; Memmert, Svenja; Deschner, James; Vastardis, Heleni; Piperi, Christina
2017-01-01
The present study aimed to investigate the long-term effects of hydrostatic pressure on chondrocyte differentiation, as indicated by protein levels of transcription factors SOX9 and RUNX2, on transcriptional activity of SOX9, as determined by pSOX9 levels, and on the expression of polycystin-encoding genes Pkd1 and Pkd2. ATDC5 cells were cultured in insulin-supplemented differentiation medium (ITS) and/or exposed to 14.7 kPa of hydrostatic pressure for 12, 24, 48, and 96 h. Cell extracts were assessed for SOX9, pSOX9, and RUNX2 using western immunoblotting. The Pkd1 and Pkd2 mRNA levels were detected by real-time PCR. Hydrostatic pressure resulted in an early drop in SOX9 and pSOX9 protein levels at 12 h followed by an increase from 24 h onwards. A reverse pattern was followed by RUNX2, which reached peak levels at 24 h of hydrostatic pressure-treated chondrocytes in ITS culture. Pkd1 and Pkd2 mRNA levels increased at 24 h of combined hydrostatic pressure and ITS treatment, with the latter remaining elevated up to 96 h. Our data indicate that long periods of continuous hydrostatic pressure stimulate chondrocyte differentiation through a series of molecular events involving SOX9, RUNX2, and polycystins-1, 2, providing a theoretical background for functional orthopedic mechanotherapies.
Apparatus and method for polymer synthesis using arrays
Brennan, Thomas M.
1995-01-01
A polymer synthesis apparatus (20) for building a polymer chain including a head assembly (21) having an array of nozzles (22) with each nozzle coupled to a reservoir (23) of liquid reagent (24) , and a base assembly (25) having an array of reaction wells (26). A transport mechanism (27) aligns the reaction wells (26) and selected nozzles (22) for deposition of the liquid reagent (24) into selected reaction wells (26). A sliding seal (30) is positioned between the head assembly (21) and the base assembly (25) to form a common chamber (31) enclosing both the reaction well (26) and the nozzles (22) therein. A gas inlet (70) into the common chamber (31), upstream from the nozzles (22), and a gas outlet (71) out of the common chamber (31) , downstream from the nozzles (22) , sweeps the common chamber ( 31 ) of toxic fumes emitted by the reagents. Each reaction well (26) includes an orifice (74) extending into the well (26) which is of a size and dimension to form a capillary liquid seal to retain the reagent solution (76) in the well (26) for polymer chain growth therein. A pressure regulating device (82) is provided for controlling a pressure differential, between a first gas pressure exerted on the reaction well (26) and a second gas pressure exerted on an exit (80) of the orifice, such that upon the pressure differential exceeding a predetermined amount, the reagent solution (76) is expelled from the well (26) through the orifice (74). A method of synthesis of a polymer chain in a synthesis apparatus (20) is also included.
Apparatus and method for polymer synthesis using arrays
Brennan, Thomas M.
1996-01-01
A polymer synthesis apparatus (20) for building a polymer chain including a head assembly (21) having an array of nozzles (22) with each nozzle coupled to a reservoir (23) of liquid reagent (24), and a base assembly (25) having an array of reaction wells (26). A transport mechanism (27) aligns the reaction wells (26) and selected nozzles (22) for deposition of the liquid reagent (24) into selected reaction wells (26). A sliding seal (30) is positioned between the head assembly (21) and the base assembly (25) to form a common chamber (31) enclosing both the reaction well (26) and the nozzles (22) therein. A gas inlet (70) into the common chamber (31), upstream from the nozzles (22), and a gas outlet (71) out of the common chamber (31), downstream from the nozzles (22), sweeps the common chamber (31) of toxic fumes emitted by the reagents. Each reaction well ( 26) includes an orifice (74) extending into the well (26) which is of a size and dimension to form a capillary liquid seal to retain the reagent solution (76) in the well (26) for polymer chain growth therein. A pressure regulating device (82 ) is provided for controlling a pressure differential, between a first gas pressure exerted on the reaction well (26) and a second gas pressure exerted on an exit (80) of the orifice, such that upon the pressure differential exceeding a predetermined amount, the reagent solution (76) is expelled from the well (26) through the orifice (74). A method of synthesis of a polymer chain in a synthesis apparatus (20) is also included.
Vikan, A; Clausen, S E
1993-09-01
Tests showed that 4- to 6-year-old children believe that people can be influenced or "controlled" both by thinking (e.g., both wishful thinking and magical behavior) and by realistic means (e.g., positive reinforcement, example, and group pressure). Belief in control by thinking did not vary by the subjects' sex or age, influence type (wishing or magical behavior), or target response (behavior, emotion, or thought). Quantitative measures, however, suggested that magical behavior was seen by subjects as being more efficient than wishing, and that emotion was considered easier to influence than thinking. Beliefs in control by thinking were not related to a measure of fantasy-reality differentiation (realism).
Lee, Yun Jin; Kim, Jung Yoon
2016-03-01
The objective of this study was to evaluate the effect of pressure ulcer classification system education on clinical nurses' knowledge and visual differential diagnostic ability of pressure ulcer (PU) classification and incontinence-associated dermatitis (IAD). One group pre and post-test was used. A convenience sample of 407 nurses, participating in PU classification education programme of continuing education, were enrolled. The education programme was composed of a 50-minute lecture on PU classification and case-studies. The PU Classification system and IAD knowledge test (PUCS-KT) and visual differential diagnostic ability tool (VDDAT), consisting of 21 photographs including clinical information were used. Paired t-test was performed using SPSS/WIN 20.0. The overall mean difference of PUCS-KT (t = -11·437, P<0·001) and VDDAT (t = -21·113, P<0·001) was significantly increased after PU classification education. Overall understanding of six PU classification and IAD after education programme was increased, but lacked visual differential diagnostic ability regarding Stage III PU, suspected deep tissue injury (SDTI), and Unstageable. Continuous differentiated education based on clinical practice is needed to improve knowledge and visual differential diagnostic ability for PU classification, and comparison experiment study is required to examine effects of education programmes. © 2016 Medicalhelplines.com Inc and John Wiley & Sons Ltd.
Passive Resistor Temperature Compensation for a High-Temperature Piezoresistive Pressure Sensor.
Yao, Zong; Liang, Ting; Jia, Pinggang; Hong, Yingping; Qi, Lei; Lei, Cheng; Zhang, Bin; Li, Wangwang; Zhang, Diya; Xiong, Jijun
2016-07-22
The main limitation of high-temperature piezoresistive pressure sensors is the variation of output voltage with operating temperature, which seriously reduces their measurement accuracy. This paper presents a passive resistor temperature compensation technique whose parameters are calculated using differential equations. Unlike traditional experiential arithmetic, the differential equations are independent of the parameter deviation among the piezoresistors of the microelectromechanical pressure sensor and the residual stress caused by the fabrication process or a mismatch in the thermal expansion coefficients. The differential equations are solved using calibration data from uncompensated high-temperature piezoresistive pressure sensors. Tests conducted on the calibrated equipment at various temperatures and pressures show that the passive resistor temperature compensation produces a remarkable effect. Additionally, a high-temperature signal-conditioning circuit is used to improve the output sensitivity of the sensor, which can be reduced by the temperature compensation. Compared to traditional experiential arithmetic, the proposed passive resistor temperature compensation technique exhibits less temperature drift and is expected to be highly applicable for pressure measurements in harsh environments with large temperature variations.
Passive Resistor Temperature Compensation for a High-Temperature Piezoresistive Pressure Sensor
Yao, Zong; Liang, Ting; Jia, Pinggang; Hong, Yingping; Qi, Lei; Lei, Cheng; Zhang, Bin; Li, Wangwang; Zhang, Diya; Xiong, Jijun
2016-01-01
The main limitation of high-temperature piezoresistive pressure sensors is the variation of output voltage with operating temperature, which seriously reduces their measurement accuracy. This paper presents a passive resistor temperature compensation technique whose parameters are calculated using differential equations. Unlike traditional experiential arithmetic, the differential equations are independent of the parameter deviation among the piezoresistors of the microelectromechanical pressure sensor and the residual stress caused by the fabrication process or a mismatch in the thermal expansion coefficients. The differential equations are solved using calibration data from uncompensated high-temperature piezoresistive pressure sensors. Tests conducted on the calibrated equipment at various temperatures and pressures show that the passive resistor temperature compensation produces a remarkable effect. Additionally, a high-temperature signal-conditioning circuit is used to improve the output sensitivity of the sensor, which can be reduced by the temperature compensation. Compared to traditional experiential arithmetic, the proposed passive resistor temperature compensation technique exhibits less temperature drift and is expected to be highly applicable for pressure measurements in harsh environments with large temperature variations. PMID:27455271
Colten-Bradley, Virginia
1987-01-01
Evaluation of the effects of pressure on the temperature of interlayer water loss (dehydration) by smectites under diagenetic conditions indicates that smectites are stable as hydrated phases in the deep subsurface. Hydraulic and differential pressure conditions affect dehydration differently. The temperature of dehydration increase with pore fluid pressure and interlayer water density. The temperatures of dehydration increase with pore fluid pressure and interlayer water density. The temperatures of dehydration under differential-presssure conditions are inversely related to pressure and interlayer water density. The model presented assumes the effects of pore fluid composition and 2:1 layer reactivity to be negligible. Agreement between theoretical and experimental results validate this assumption. Additional aspects of the subject are discussed.
Variable pressure ionization detector for gas chromatography
Buchanan, Michelle V.; Wise, Marcus B.
1988-01-01
Method and apparatus for differentiating organic compounds based on their electron affinity. An electron capture detector cell (ECD) is operated at pressures ranging from atmospheric to less than 1 torr. Through variation of the pressure within the ECD cell, the organic compounds are induced to either capture or emit electrons. Differentiation of isomeric compounds can be obtianed when, at a given pressure, one isomer is in the emission mode and the other is in the capture mode. Output of the ECD is recorded by chromatogram. The invention also includes a method for obtaining the zero-crossing pressure of a compound, defined as the pressure at which the competing emission and capture reactions are balanced and which may be correlated to the electron affinity of a compound.
Precision Adjustable Liquid Regulator (ALR)
NASA Astrophysics Data System (ADS)
Meinhold, R.; Parker, M.
2004-10-01
A passive mechanical regulator has been developed for the control of fuel or oxidizer flow to a 450N class bipropellant engine for use on commercial and interplanetary spacecraft. There are several potential benefits to the propulsion system, depending on mission requirements and spacecraft design. This system design enables more precise control of main engine mixture ratio and inlet pressure, and simplifies the pressurization system by transferring the function of main engine flow rate control from the pressurization/propellant tank assemblies, to a single component, the ALR. This design can also reduce the thermal control requirements on the propellant tanks, avoid costly Qualification testing of biprop engines for missions with more stringent requirements, and reduce the overall propulsion system mass and power usage. In order to realize these benefits, the ALR must meet stringent design requirements. The main advantage of this regulator over other units available in the market is that it can regulate about its nominal set point to within +/-0.85%, and change its regulation set point in flight +/-4% about that nominal point. The set point change is handled actively via a stepper motor driven actuator, which converts rotary into linear motion to affect the spring preload acting on the regulator. Once adjusted to a particular set point, the actuator remains in its final position unpowered, and the regulator passively maintains outlet pressure. The very precise outlet regulation pressure is possible due to new technology developed by Moog, Inc. which reduces typical regulator mechanical hysteresis to near zero. The ALR requirements specified an outlet pressure set point range from 225 to 255 psi, and equivalent water flow rates required were in the 0.17 lb/sec range. The regulation output pressure is maintained at +/-2 psi about the set point from a P (delta or differential pressure) of 20 to over 100 psid. Maximum upstream system pressure was specified at 320 psi. The regulator is fault tolerant in that it was purposely designed with no shutoff capability, such that the minimum flow position of the poppet still allows the subsystem to provide adequate flow to the main engine for basic operation.
Differential Measurement Periodontal Structures Mapping System
NASA Technical Reports Server (NTRS)
Companion, John A. (Inventor)
1998-01-01
This invention relates to a periodontal structure mapping system employing a dental handpiece containing first and second acoustic sensors for locating the Cemento-Enamel Junction (CEJ) and measuring the differential depth between the CEJ and the bottom of the periodontal pocket. Measurements are taken at multiple locations on each tooth of a patient, observed, analyzed by an optical analysis subsystem, and archived by a data storage system for subsequent study and comparison with previous and subsequent measurements. Ultrasonic transducers for the first and second acoustic sensors are contained within the handpiece and in connection with a control computer. Pressurized water is provided for the depth measurement sensor and a linearly movable probe sensor serves as the sensor for the CEJ finder. The linear movement of the CEJ sensor is obtained by a control computer actuated by the prober. In an alternate embodiment, the CEJ probe is an optical fiber sensor with appropriate analysis structure provided therefor.
BMP signaling is required for development of the ciliary body.
Zhao, Shulei; Chen, Qin; Hung, Fang-Cheng; Overbeek, Paul A
2002-10-01
The ciliary body in the eye secretes aqueous humor and glycoproteins of the vitreous body and maintains the intraocular pressure. The ciliary muscle controls the shape of the lens through the ciliary zonules to focus the image onto the retina. During embryonic development, the ciliary epithelium is derived from the optic vesicle, but the molecular signals that control morphogenesis of the ciliary body are unknown. We report that lens-specific expression of a transgenic protein, Noggin, can block BMP signaling in the mouse eye and result in failure in formation of the ciliary processes. Co-expression of transgenic BMP7 restores normal development of the ciliary epithelium. Ectopic expression of Noggin also promotes differentiation of retinal ganglion cells. These results indicate that BMP signaling is required for development of the ciliary body and may also play a role in regulation of neuronal differentiation in the developing eye.
Park, Steve; Kim, Hyunjin; Vosgueritchian, Michael; Cheon, Sangmo; Kim, Hyeok; Koo, Ja Hoon; Kim, Taeho Roy; Lee, Sanghyo; Schwartz, Gregory; Chang, Hyuk; Bao, Zhenan
2014-11-19
The first stretchable energy-harvesting electronic-skin device capable of differentiating and generating energy from various mechanical stimuli, such as normal pressure, lateral strain, bending, and vibration, is presented. A pressure sensitivity of 0.7 kPa(-1) is achieved in the pressure region <1 kPa with power generation of tens of μW cm(-2) from a gentle finger touch. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Li, Ji; Hu, Guoqing; Zhou, Yonghong; Zou, Chong; Peng, Wei; Alam SM, Jahangir
2017-01-01
As a high performance-cost ratio solution for differential pressure measurement, piezo-resistive differential pressure sensors are widely used in engineering processes. However, their performance is severely affected by the environmental temperature and the static pressure applied to them. In order to modify the non-linear measuring characteristics of the piezo-resistive differential pressure sensor, compensation actions should synthetically consider these two aspects. Advantages such as nonlinear approximation capability, highly desirable generalization ability and computational efficiency make the kernel extreme learning machine (KELM) a practical approach for this critical task. Since the KELM model is intrinsically sensitive to the regularization parameter and the kernel parameter, a searching scheme combining the coupled simulated annealing (CSA) algorithm and the Nelder-Mead simplex algorithm is adopted to find an optimal KLEM parameter set. A calibration experiment at different working pressure levels was conducted within the temperature range to assess the proposed method. In comparison with other compensation models such as the back-propagation neural network (BP), radius basis neural network (RBF), particle swarm optimization optimized support vector machine (PSO-SVM), particle swarm optimization optimized least squares support vector machine (PSO-LSSVM) and extreme learning machine (ELM), the compensation results show that the presented compensation algorithm exhibits a more satisfactory performance with respect to temperature compensation and synthetic compensation problems. PMID:28422080
Li, Ji; Hu, Guoqing; Zhou, Yonghong; Zou, Chong; Peng, Wei; Alam Sm, Jahangir
2017-04-19
As a high performance-cost ratio solution for differential pressure measurement, piezo-resistive differential pressure sensors are widely used in engineering processes. However, their performance is severely affected by the environmental temperature and the static pressure applied to them. In order to modify the non-linear measuring characteristics of the piezo-resistive differential pressure sensor, compensation actions should synthetically consider these two aspects. Advantages such as nonlinear approximation capability, highly desirable generalization ability and computational efficiency make the kernel extreme learning machine (KELM) a practical approach for this critical task. Since the KELM model is intrinsically sensitive to the regularization parameter and the kernel parameter, a searching scheme combining the coupled simulated annealing (CSA) algorithm and the Nelder-Mead simplex algorithm is adopted to find an optimal KLEM parameter set. A calibration experiment at different working pressure levels was conducted within the temperature range to assess the proposed method. In comparison with other compensation models such as the back-propagation neural network (BP), radius basis neural network (RBF), particle swarm optimization optimized support vector machine (PSO-SVM), particle swarm optimization optimized least squares support vector machine (PSO-LSSVM) and extreme learning machine (ELM), the compensation results show that the presented compensation algorithm exhibits a more satisfactory performance with respect to temperature compensation and synthetic compensation problems.
Velocity ratio and its application to predicting velocities
Lee, Myung W.
2003-01-01
The velocity ratio of water-saturated sediment derived from the Biot-Gassmann theory depends mainly on the Biot coefficient?a property of dry rock?for consolidated sediments with porosity less than the critical porosity. With this theory, the shear moduli of dry sediments are the same as the shear moduli of water-saturated sediments. Because the velocity ratio depends on the Biot coefficient explicitly, Biot-Gassmann theory accurately predicts velocity ratios with respect to differential pressure for a given porosity. However, because the velocity ratio is weakly related to porosity, it is not appropriate to investigate the velocity ratio with respect to porosity (f). A new formulation based on the assumption that the velocity ratio is a function of (1?f)n yields a velocity ratio that depends on porosity, but not on the Biot coefficient explicitly. Unlike the Biot-Gassmann theory, the shear moduli of water-saturated sediments depend not only on the Biot coefficient but also on the pore fluid. This nonclassical behavior of the shear modulus of water-saturated sediment is speculated to be an effect of interaction between fluid and the solid matrix, resulting in softening or hardening of the rock frame and an effect of velocity dispersion owing to local fluid flow. The exponent n controls the degree of softening/hardening of the formation. Based on laboratory data measured near 1 MHz, this theory is extended to include the effect of differential pressure on the velocity ratio by making n a function of differential pressure and consolidation. However, the velocity dispersion and anisotropy are not included in the formulation.
NASA Astrophysics Data System (ADS)
Roquer, T.; Arancibia, G.; Rowland, J. V.; Iturrieta, P. C.; Morata, D.; Cembrano, J. M.
2017-12-01
Paleofluid-transporting systems can be recognized as meshes of fracture-filled veins in eroded zones of extinct hydrothermal systems. Here we conducted meso-microstructural analysis and mechanical modeling from two exhumed exposures of the faults governing regional tectonics of the Southern Andes: the Liquiñe-Ofqui Fault System (LOFS) and the Andean Transverse Faults (ATF). A total of 107 fractures in both exposures were analyzed. The ATF specific segment shows two tectonic solutions that can be modeled as Andersonian and non-Andersonian tectonic regimes: (1) shear (mode II/III) failure occurs at differential stresses > 28 MPa and fluid pressures < 40-80% lithostatic in the Andersonian regime; and (2) sporadic hybrid extensional + shear (modes I + II/III) failure occurs at differential stresses < 20 MPa and anomalously high fluid pressures > 85-98% lithostatic in the non-Andersonian regime. Additionally, the LOFS exposure cyclically fails in extension (mode I) or extension + shear (modes I + II/III) in the Andersonian regime, at differential stresses < 28 MPa and fluid pressures > 40-80% lithostatic. In areas of spatial interaction between ATF and LOFS, these conditions might favor: (1) the storage of overpressured fluids in hydrothermal systems associated with the ATF faults, and (2) continuous fluid flow through vertical conduits in the LOFS faults. These observations suggest that such intersections are highly probable locations for concentrated hydrothermal activity, which must be taken into consideration for further geothermal exploration. ACKNOWLEDGEMENTS. PhD CONICYT grants, Centro de Excelencia en Geotermia de los Andes (CEGA-FONDAP/CONICYT Project #15090013), FONDECYT Project #1130030 and Project CONICYT REDES #140036.
NASA Technical Reports Server (NTRS)
Chen, C. H. S.
1975-01-01
The derivation is presented of the differential stiffness for triangular solid of revolution elements. The derivation takes into account the element rigid body rotation only, the rotation being about the circumferential axis. Internal pressurization of a pneumatic tire is used to illustrate the application of this feature.
NASA Technical Reports Server (NTRS)
Jackson, M. E.
1995-01-01
This report presents the Space Station Furnace Facility (SSFF) thermal control system (TCS) preliminary control system design and analysis. The SSFF provides the necessary core systems to operate various materials processing furnaces. The TCS is defined as one of the core systems, and its function is to collect excess heat from furnaces and to provide precise cold temperature control of components and of certain furnace zones. Physical interconnection of parallel thermal control subsystems through a common pump implies the description of the TCS by coupled nonlinear differential equations in pressure and flow. This report formulates the system equations and develops the controllers that cause the interconnected subsystems to satisfy flow rate tracking requirements. Extensive digital simulation results are presented to show the flow rate tracking performance.
Burke, Lauri
2012-01-01
Additionally, this research establishes a methodology to calculate the injectivity of a target formation. Because injectivity describes the pressure increase due to the introduction of fluids into a formation, the relevant application of injectivity is to determine the pressure increase, due to an injection volume and flow rate, that will induce fractures in the reservoir rocks. This quantity is defined mathematically as the maximum pressure differential between the hydrostatic gradient and the fracture gradient of the target formation. Injectivity is mathematically related to the maximum pressure differential of the formation, and can be used to determine the upper limit for the pressure increase that an injection target can withstand before fracturing.
Mizuno, Hiroyuki; Hoshide, Satoshi; Tomitani, Naoko; Kario, Kazuomi
2017-10-01
Data are sparse regarding ambulatory blood pressure (BP) reduction of up-titration from a standard dose to a high dose in both nifedipine controlled-release (CR) and amlodipine. This was a prospective, randomized, multicenter, open-label trial. Fifty-one uncontrolled hypertensives medicated by two or more antihypertensive drugs including a renin-angiotensin system inhibitor and a calcium antagonist were randomly assigned to either the nifedipine CR (80 mg)/candesartan (8 mg) group or the amlodipine (10 mg)/candesartan (8 mg) group. The changes in 24-hr BP were comparable between the groups. The nifedipine group demonstrated a significant decrease in their urinary albumin creatinine ratio, whereas the amlodipine group demonstrated a significant decrease in their NTproBNP level. However, there was no significant difference in any biomarkers between the two groups. Nifedipine showed an almost equal effect on ambulatory blood pressure as amlodipine. Their potentially differential effects on renal protection and NTproBNP should be tested in larger samples.
Meyer, E G; Buckley, C T; Steward, A J; Kelly, D J
2011-10-01
Mechanical signals can play a key role in regulating the chondrogenic differentiation of mesenchymal stem cells (MSCs). The objective of this study was to determine if the long-term application of cyclic hydrostatic pressure could be used to improve the functional properties of cartilaginous tissues engineered using bone marrow derived MSCs. MSCs were isolated from the femora of two porcine donors, expanded separately under identical conditions, and then suspended in cylindrical agarose hydrogels. Constructs from both donors were maintained in a chemically defined media supplemented with TGF-β3 for 42 days. TGF-β3 was removed from a subset of constructs from day 21 to 42. Loaded groups were subjected to 10 MPa of cyclic hydrostatic pressurisation at 1 Hz for one hour/day, five days/week. Loading consisted either of continuous hydrostatic pressure (CHP) initiated at day 0, or delayed hydrostatic pressure (DHP) initiated at day 21. Free swelling (FS) constructs were cultured in parallel as controls. Constructs were assessed at days 0, 21 and 42. MSCs isolated from both donors were morphologically similar, demonstrated comparable colony forming unit-fibroblast (CFU-F) numbers, and accumulated near identical levels of collagen and GAG following 42 days of free swelling culture. Somewhat unexpectedly the two donors displayed a differential response to hydrostatic pressure. For one donor the application of CHP resulted in increased collagen and GAG accumulation by day 42, resulting in an increased dynamic modulus compared to FS controls. In contrast, CHP had no effect on matrix accumulation for the other donor. The application of DHP had no effect on either matrix accumulation or construct mechanical properties for both donors. Variability in the response to hydrostatic pressure was also observed for three further donors. In conclusion, this study demonstrates that the application of long-term hydrostatic pressure can be used to improve the functional properties of cartilaginous tissues engineered using bone marrow derived MSCs by enhancing collagen and GAG accumulation. The response to such loading however is donor dependent, which has implications for the clinical utilisation of such a stimulus when engineering cartilaginous grafts using autologous MSCs. Copyright © 2011 Elsevier Ltd. All rights reserved.
Thieme, K; Turk, D C; Gracely, R H; Flor, H
2016-10-01
Determination of psychophysiological effects of operant behavioural (OBT) and cognitive behavioural treatment (CBT) for fibromyalgia patients. One hundred and fifteen female patients randomized to OBT (N = 43), CBT (N = 42), or whole-body infrared heat (IH) (N = 30) were compared before and after group treatment as well as at 6- and 12-month follow-ups using intent-to-treat analysis (12 drop-outs). Thirty matched pain-free controls (CON) served as reference group for the initial psychophysiological analysis. Surface electromyogram (EMG), blood pressure, heart rate (HR) and skin conductance levels (SCL) were continuously recorded during adaptation, baseline, social conflict, mental arithmetic and relaxation tasks. At baseline, fibromyalgia patients showed higher SCL and HR, lower diastolic blood pressure and EMG in comparison to controls. OBT and CBT compared to IH significantly reduced pain intensity [OBT: effect size (ES) = 1.21 CI: 0.71-1.71, CBT: ES = 1.23, CI: 0.72-1.74]. OBT increased diastolic blood pressure [ES = 1.13, CI: 0.63-1.63 and CBT reduced SCL (ES) = -0.66, CI: -1.14-0.18] 12 months after treatment. Both CBT and OBT significantly increased EMG levels (OBT: ES = 0.97, CI: 0.48-1.46, CBT: ES = 1.17, CI: 0.67-1.68). In contrast, the IH group did not show any significant changes in the psychophysiological parameters. Increased diastolic blood pressure and decreased pain after OBT suggest a reactivation of baroreflex-mechanisms in fibromyalgia and a normalization of the blood pressure and pain functional relationship. Reduced SCL following CBT may indicate reduced general arousal levels. Increased muscle tension after CBT and OBT suggest a normalization of physical parameters. The reduction in pain seems to be mediated by different psychophysiological processes, providing support for mechanism-based treatments might be indicated for CBT and OBT. WHAT DOES THIS STUDY ADD?: Differential physiological stress responses followed different psychological interventions. While OBT influenced blood pressure by restoring blood pressure-pain interaction, CBT reduced stress-related sudomotor activity. These results implicate specific mediating mechanisms in fibromyalgia suggesting a basis for matching based on specific patient psychophysiological features. © 2016 European Pain Federation - EFIC®
Investigation of the effects of extravehicular activity (EVA) gloves on performance
NASA Technical Reports Server (NTRS)
Bishu, Ram R.; Klute, Glenn
1993-01-01
The objective was to assess the effects of extravehicular activity (EVA) gloves at different pressures on human hand capabilities. A factorial experiment was performed in which three types of EVA gloves were tested at five pressure differentials. The independent variables tested in this experiment were gender, glove type, pressure differential, and glove make. Six subjects participated in an experiment where a number of dexterity measures, namely time to tie a rope, and the time to assemble a nut and bolt were recorded. Tactility was measured through a two point discrimination test. The results indicate that with EVA gloves strength is reduced by nearly 50 percent, there is a considerable reduction in dexterity, performance decrements increase with increasing pressure differential, and some interesting gender glove interactions were observed, some of which may have been due to the extent (or lack of) fit of the glove to the hand. The implications for the designer are discussed.
Operation of mixed conducting metal oxide membrane systems under transient conditions
Carolan, Michael Francis [Allentown, PA
2008-12-23
Method of operating an oxygen-permeable mixed conducting membrane having an oxidant feed side, an oxidant feed surface, a permeate side, and a permeate surface, which method comprises controlling the differential strain between the permeate surface and the oxidant feed surface at a value below a selected maximum value by varying the oxygen partial pressure on either or both of the oxidant feed side and the permeate side of the membrane.
Modeling and control of a brushless DC axial flow ventricular assist device.
Giridharan, Guruprasad A; Skliar, Mikhail; Olsen, Donald B; Pantalos, George M
2002-01-01
This article presents an integrated model of the human circulatory system that incorporates circulatory support by a brushless DC axial flow ventricular assist device (VAD), and a feedback VAD controller designed to maintain physiologically sufficient perfusion. The developed integrated model combines a network type model of the circulatory system with a nonlinear dynamic model of the brushless DC pump We show that maintaining a reference differential pressure between the left ventricle and aorta leads to adequate perfusion for different pathologic cases, ranging from normal heart to left heart asystole, and widely varying physical activity scenarios from rest to exercise.
Thompson, Katherine A.; Kelly, Nichole R.; Schvey, Natasha A.; Brady, Sheila M.; Courville, Amber B.; Tanofsky-Kraff, Marian; Yanovski, Susan Z.; Yanovski, Jack A.; Shomaker, Lauren B.
2016-01-01
Appearance-related pressures have been associated with binge eating in previous studies. Yet, it is unclear if these pressures are associated with emotional eating or if specific sources of pressure are differentially associated with emotional eating. We studied the associations between multiple sources of appearance-related pressures, including pressure to be thin and pressure to increase muscularity, and emotional eating in 300 adolescents (Mage = 15.3, SD = 1.4, 60% female). Controlling for age, race, puberty, body mass index (BMI) z-score, and sex, both pressure to be thin and pressure to be more muscular from same-sex peers were positively associated with emotional eating in response to feeling angry/frustrated and unsettled (ps<.05). Pressure from same-sex peers to be more muscular also was associated with eating when depressed (p<.05), and muscularity pressure from opposite-sex peers related to eating in response to anger/frustration (p<.05). All associations were fully mediated by internalization of appearance ideals according to Western cultural standards (ps<.001). Associations of pressures from mothers and fathers with emotional eating were non-significant. Results considering sex as a moderator of the associations between appearance-related pressures and emotional eating were non-significant. Findings illustrate that both pressure to be thin and muscular from peers are related to more frequent emotional eating among both boys and girls, and these associations are explained through internalization of appearance-related ideals. PMID:28038437
Senses & Sensibility: Predator-Prey Experiments Reveal How Fish Perceive & Respond to Threats
ERIC Educational Resources Information Center
Jones, Jason; Holloway, Barbara; Ketcham, Elizabeth; Long, John
2008-01-01
The predator-prey relationship is one of the most recognizable and well-studied animal relationships. One of the more striking aspects of this relationship is the differential natural selection pressure placed on predators and their prey. This differential pressure results from differing costs of failure, the so-called life-dinner principle. If a…
Obese children experience higher plantar pressure and lower foot sensitivity than non-obese.
da Rocha, Emmanuel Souza; Bratz, Denise Tiane Klein; Gubert, Larissa Colaço; de David, Ana; Carpes, Felipe P
2014-08-01
Children obesity is a risk factor for several dysfunctions and diseases, with negative effects on the morphology of the locomotor system, plantar pressure and body stability. A relationship between postural control and sensorimotor information has been assumed. However, there is few data on the effects of children obesity on the availability of sensorial information from the foot during standing. Twenty obese and twenty non-obese children were evaluated for foot sensitivity and plantar pressure during unipedal and bipedal stance. Data were compared between obese and non-obese participants, between foot regions and between legs. Obese children experiences higher plantar pressure and have lower foot sensitivity than non-obese. Additionally, obese children had similar sensitivity for different foot regions, as compared to the non-obese. Children obesity negatively influences foot sensitivity. Bipedal stance seemed more sensitive to differentiate between obese and non-obese. Higher plantar pressure and lower foot sensitivity in obese children may affect performance of weight bearing activities, contribute to higher risk of foot injuries and have potential implication for children footwear design and clinical physical examination. Copyright © 2014 Elsevier Ltd. All rights reserved.
Effects of intermediate wettability on entry capillary pressure in angular pores.
Rabbani, Harris Sajjad; Joekar-Niasar, Vahid; Shokri, Nima
2016-07-01
Entry capillary pressure is one of the most important factors controlling drainage and remobilization of the capillary-trapped phases as it is the limiting factor against the two-phase displacement. It is known that the entry capillary pressure is rate dependent such that the inertia forces would enhance entry of the non-wetting phase into the pores. More importantly the entry capillary pressure is wettability dependent. However, while the movement of a meniscus into a strongly water-wet pore is well-defined, the invasion of a meniscus into a weak or intermediate water-wet pore especially in the case of angular pores is ambiguous. In this study using OpenFOAM software, high-resolution direct two-phase flow simulations of movement of a meniscus in a single capillary channel are performed. Interface dynamics in angular pores under drainage conditions have been simulated under constant flow rate boundary condition at different wettability conditions. Our results shows that the relation between the half corner angle of pores and contact angle controls the temporal evolution of capillary pressure during the invasion of a pore. By deviating from pure water-wet conditions, a dip in the temporal evolution of capillary pressure can be observed which will be pronounced in irregular angular cross sections. That enhances the pore invasion with a smaller differential pressure. The interplay between the contact angle and pore geometry can have significant implications for enhanced remobilization of ganglia in intermediate contact angles in real porous media morphologies, where pores are very heterogeneous with small shape factors. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Zhang, Xinglei; Jia, Bin; Huang, Keke; Hu, Bin; Chen, Rong; Chen, Huanwen
2010-10-01
A novel strategy to trace the origins of commercial pharmaceutical products has been developed based on the direct chemical profiling of the pharmaceutical products by surface desorption atmospheric pressure chemical ionization mass spectrometry (DAPCI-MS). Besides the unambiguous identification of active drug components, various compounds present in the matrixes are simultaneously detected without sample pretreatment, providing valuable information for drug quality control and origin differentiation. Four sources of commercial amoxicillin products made by different manufacturers have been successfully differentiated. This strategy has been extended to secerning six sources of Liuwei Dihuang Teapills, which are herbal medicine preparations with extremely complex matrixes. The photolysis status of chemical drug products and the inferior natural herd medicine products prepared with different processes (e.g., extra heating) were also screened using the method reported here. The limit of detection achieved in the MS/MS experiments was estimated to be 1 ng/g for amoxicillin inside the capsule product. Our experimental data demonstrate that DAPCI-MS is a useful tool for rapid pharmaceutical analysis, showing promising perspectives for tracking the entire pharmaceutical supply chain to prevent counterfeit intrusions.
Automatic transducer switching provides accurate wide range measurement of pressure differential
NASA Technical Reports Server (NTRS)
Yoder, S. K.
1967-01-01
Automatic pressure transducer switching network sequentially selects any one of a number of limited-range transducers as gas pressure rises or falls, extending the range of measurement and lessening the chances of damage due to high pressure.
Development of a Nutritional Delivery System to Feed Crew in a Pressurized Suit
NASA Technical Reports Server (NTRS)
Glass, J. W.; Leonig, M. L.; Douglas, G. L.
2014-01-01
The contingency scenario for an emergency cabin depressurization event may require crewmembers to subsist in a pressurized suit for up to 144 hours. This scenario requires the capability for safe nutrition delivery through a helmet feed port against a 4 psi pressure differential to enable crewmembers to maintain strength and cognition to perform critical tasks. Two nutritional delivery prototypes were developed and analyzed for compatibility with the helmet feed port interface and for operational effectiveness against the pressure differential. The bag-in-bag (BiB) prototype, designed to equalize the suit pressure with the beverage pouch and enable a crewmember to drink normally, delivered water successfully to three different subjects in suits pressurized to 4 psi. The Boa restrainer pouch, designed to provide mechanical leverage to overcome the pressure differential, did not operate sufficiently. Guidelines were developed and compiled for contingency beverages that provide macro-nutritional requirements, a minimum one-year shelf life, and compatibility with the delivery hardware. Evaluation results and food product parameters have the potential to be used to improve future prototype designs and develop complete nutritional beverages for contingency events. These feeding capabilities would have additional use on extended surface mission EVAs, where the current in-suit drinking device may be insufficient.
Suited Contingency Ops Food - 2
NASA Technical Reports Server (NTRS)
Glass, J. W.; Leong, M. L.; Douglas, G. L.
2014-01-01
The contingency scenario for an emergency cabin depressurization event may require crewmembers to subsist in a pressurized suit for up to 144 hours. This scenario requires the capability for safe nutrition delivery through a helmet feed port against a 4 psi pressure differential to enable crewmembers to maintain strength and cognition to perform critical tasks. Two nutritional delivery prototypes were developed and analyzed for compatibility with the helmet feed port interface and for operational effectiveness against the pressure differential. The bag-in-bag (BiB) prototype, designed to equalize the suit pressure with the beverage pouch and enable a crewmember to drink normally, delivered water successfully to three different subjects in suits pressurized to 4 psi. The Boa restrainer pouch, designed to provide mechanical leverage to overcome the pressure differential, did not operate sufficiently. Guidelines were developed and compiled for contingency beverages that provide macro-nutritional requirements, a minimum one-year shelf life, and compatibility with the delivery hardware. Evaluation results and food product parameters have the potential to be used to improve future prototype designs and develop complete nutritional beverages for contingency events. These feeding capabilities would have additional use on extended surface mission EVAs, where the current in-suit drinking device may be insufficient.
A Hydraulic Blowdown Servo System For Launch Vehicle
NASA Astrophysics Data System (ADS)
Chen, Anping; Deng, Tao
2016-07-01
This paper introduced a hydraulic blowdown servo system developed for a solid launch vehicle of the family of Chinese Long March Vehicles. It's the thrust vector control (TVC) system for the first stage. This system is a cold gas blowdown hydraulic servo system and consist of gas vessel, hydraulic reservoir, servo actuator, digital control unit (DCU), electric explosion valve, and pressure regulator etc. A brief description of the main assemblies and characteristics follows. a) Gas vessel is a resin/carbon fiber composite over wrapped pressure vessel with a titanium liner, The volume of the vessel is about 30 liters. b) Hydraulic reservoir is a titanium alloy piston type reservoir with a magnetostrictive sensor as the fluid level indicator. The volume of the reservoir is about 30 liters. c) Servo actuator is a equal area linear piston actuator with a 2-stage low null leakage servo valve and a linear variable differential transducer (LVDT) feedback the piston position, Its stall force is about 120kN. d) Digital control unit (DCU) is a compact digital controller based on digital signal processor (DSP), and deployed dual redundant 1553B digital busses to communicate with the on board computer. e) Electric explosion valve is a normally closed valve to confine the high pressure helium gas. f) Pressure regulator is a spring-loaded poppet pressure valve, and regulates the gas pressure from about 60MPa to about 24MPa. g) The whole system is mounted in the aft skirt of the vehicle. h) This system delivers approximately 40kW hydraulic power, by contrast, the total mass is less than 190kg. the power mass ratio is about 0.21. Have finished the development and the system test. Bench and motor static firing tests verified that all of the performances have met the design requirements. This servo system is complaint to use of the solid launch vehicle.
On the Normal Force Mechanotransduction of Human Umbilical Vein Endothelial Cells
NASA Astrophysics Data System (ADS)
Vahabikashi, Amir; Wang, Qiuyun; Wilson, James; Wu, Qianhong; Vucbmss Team
2016-11-01
In this paper, we report a cellular biomechanics study to examine the normal force mechanotransduction of Human Umbilical Vein Endothelial Cells (HUVECs) with their implications on hypertension. Endothelial cells sense mechanical forces and adjust their structure and function accordingly. The mechanotransduction of normal forces plays a vital role in hypertension due to the higher pressure buildup inside blood vessels. Herein, HUVECs were cultured to full confluency and then exposed to different mechanical loadings using a novel microfluidic flow chamber. One various pressure levels while keeps the shear stress constant inside the flow chamber. Three groups of cells were examined, the control group (neither shear nor normal stresses), the normal pressure group (10 dyne/cm2 of shear stress and 95 mmHg of pressure), and the hypertensive group (10 dyne/cm2 of shear stress and 142 mmHg of pressure). Cellular response characterized by RT-PCR method indicates that, COX-2 expressed under normal pressure but not high pressure; Mn-SOD expressed under both normal and high pressure while this response was stronger for normal pressure; FOS and e-NOS did not respond under any condition. The differential behavior of COX-2 and Mn-SOD in response to changes in pressure, is instrumental for better understanding the pathogenesis of hypertensive cardiovascular diseases. This research was supported by the National Science Foundation under Award #1511096.
The fragmentation threshold and implications for explosive eruptions
NASA Astrophysics Data System (ADS)
Kennedy, B.; Spieler, O.; Kueppers, U.; Scheu, B.; Mueller, S.; Taddeucci, J.; Dingwell, D.
2003-04-01
The fragmentation threshold is the minimum pressure differential required to cause a porous volcanic rock to form pyroclasts. This is a critical parameter when considering the shift from effusive to explosive eruptions. We fragmented a variety of natural volcanic rock samples at room temperature (20oC) and high temperature (850oC) using a shock tube modified after Aldibirov and Dingwell (1996). This apparatus creates a pressure differential which drives fragmentation. Pressurized gas in the vesicles of the rock suddenly expands, blowing the sample apart. For this reason, the porosity is the primary control on the fragmentation threshold. On a graph of porosity against fragmentation threshold, our results from a variety of natural samples at both low and high temperatures all plot on the same curve and show the threshold increasing steeply at low porosities. A sharp decrease in the fragmentation threshold occurs as porosity increases from 0- 15%, while a more gradual decrease is seen from 15- 85%. The high temperature experiments form a curve with less variability than the low temperature experiments. For this reason, we have chosen to model the high temperature thresholds. The curve can be roughly predicted by the tensile strength of glass (140 MPa) divided by the porosity. Fractured phenocrysts in the majority of our samples reduces the overall strength of the sample. For this reason, the threshold values can be more accurately predicted by % matrix x the tensile strength/ porosity. At very high porosities the fragmentation threshold varies significantly due to the effect of bubble shape and size distributions on the permeability (Mueller et al, 2003). For example, high thresholds are seen for samples with very high permeabilities, where gas flow reduces the local pressure differential. These results allow us to predict the fragmentation threshold for any volcanic rock for which the porosity and crystal contents are known. During explosive eruptions, the fragmentation threshold may be exceeded in two ways: (1) by building an overpressure within the vesicles above the fragmentation threshold or (2) by unloading and exposing lithostatically pressurised magma to lower pressures. Using this data, we can in principle estimate the height of dome collapse or amount of overpressure necessary to produce an explosive eruption.
A wet/wet differential pressure sensor for measuring vertical hydraulic gradient.
Fritz, Brad G; Mackley, Rob D
2010-01-01
Vertical hydraulic gradient is commonly measured in rivers, lakes, and streams for studies of groundwater-surface water interaction. While a number of methods with subtle differences have been applied, these methods can generally be separated into two categories; measuring surface water elevation and pressure in the subsurface separately or making direct measurements of the head difference with a manometer. Making separate head measurements allows for the use of electronic pressure sensors, providing large datasets that are particularly useful when the vertical hydraulic gradient fluctuates over time. On the other hand, using a manometer-based method provides an easier and more rapid measurement with a simpler computation to calculate the vertical hydraulic gradient. In this study, we evaluated a wet/wet differential pressure sensor for use in measuring vertical hydraulic gradient. This approach combines the advantage of high-temporal frequency measurements obtained with instrumented piezometers with the simplicity and reduced potential for human-induced error obtained with a manometer board method. Our results showed that the wet/wet differential pressure sensor provided results comparable to more traditional methods, making it an acceptable method for future use.
Kamra, Leena
2015-11-01
Continuous monitoring of radon along with meteorological parameters has been carried out in a seismically active area of Garhwal region, northwest Himalaya, within the frame work of earthquake precursory research. Radon measurements are carried out by using a gamma ray detector installed in the air column at a depth of 10m in a 68m deep borehole. The analysis of long time series for 2006-2012 shows strong seasonal variability masked by diurnal and multi-day variations. Isolation of a seasonal cycle by minimising short-time by 31 day running average shows a strong seasonal variation with unambiguous dependence on atmospheric temperature and pressure. The seasonal characteristics of radon concentrations are positively correlated to atmospheric temperature (R=0.95) and negatively correlated to atmospheric pressure (R=-0.82). The temperature and pressure variation in their annual progressions are negatively correlated. The calculations of partial correlation coefficient permit us to conclude that atmospheric temperature plays a dominant role in controlling the variability of radon in borehole, 71% of the variability in radon arises from the variation in atmospheric temperature and about 6% of the variability is contributed by atmospheric pressure. The influence of pressure variations in an annual cycle appears to be a pseudo-effect, resulting from the negative correlation between temperature and pressure variations. Incorporation of these results explains the varying and even contradictory claims regarding the influence of the pressure variability on radon changes in the published literature. Temperature dependence, facilitated by the temperature gradient in the borehole, controls the transportation of radon from the deep interior to the surface. Copyright © 2015 Elsevier Ltd. All rights reserved.
Variability in Benthic Exchange Rate, Depth, and Residence Time Beneath a Shallow Coastal Estuary
NASA Astrophysics Data System (ADS)
Russoniello, Christopher J.; Heiss, James W.; Michael, Holly A.
2018-03-01
Hydrodynamically driven benthic exchange of water between the water column and shallow seabed aquifer is a significant and dynamic component of coastal and estuarine fluid budgets. Associated exchange of solutes promotes ecologically important chemical reactions, so quantifying benthic exchange rates, depths, and residence times constrains coastal chemical cycling estimates. We present the first combined field, numerical, and analytical modeling investigation of wave-induced exchange. Temporal variability of exchange was calculated with data collected by instruments deployed in a shallow estuary for 11 days. Differential pressure sensors recorded pressure gradients across the seabed, and up- and down-looking ADCPs recorded currents and pressures to determine wave parameters, surface-water currents, and water depth. Wave-induced exchange was calculated (1) directly from differential pressure measurements, and indirectly with an analytical model based on wave parameters from (2) ADCP and (3) wind data. Wave-induced exchange from pressure measurements and ADCP-measured wave parameters matched well, but both exceeded wind-based values. Exchange induced by tidal pumping and current-bed form interaction—the other primary drivers in shallow coastal waters were calculated from tidal stage variation and ADCP-measured currents. Exchange from waves (mean = 20.0 cm/d; range = 1.75-92.3 cm/d) greatly exceeded exchange due to tides (mean = 3.7 cm/d) and current-bed form interaction (mean = 6.5 × 10-2 cm/d). Groundwater flow models showed aquifer properties affect wave-driven benthic exchange: residence time and depth increased and exchange rates decreased with increasing hydraulic diffusivity (ratio of aquifer permeability to compressibility). This new understanding of benthic exchange will help managers assess its control over chemical fluxes to marine systems.
Yurimoto, Terumi; Hara, Shintaro; Isoyama, Takashi; Saito, Itsuro; Ono, Toshiya; Abe, Yusuke
2016-09-01
Estimation of pressure and flow has been an important subject for developing implantable artificial hearts. To realize real-time viscosity-adjusted estimation of pressure head and pump flow for a total artificial heart, we propose the table estimation method with quasi-pulsatile modulation of rotary blood pump in which systolic high flow and diastolic low flow phased are generated. The table estimation method utilizes three kinds of tables: viscosity, pressure and flow tables. Viscosity is estimated from the characteristic that differential value in motor speed between systolic and diastolic phases varies depending on viscosity. Potential of this estimation method was investigated using mock circulation system. Glycerin solution diluted with salty water was used to adjust viscosity of fluid. In verification of this method using continuous flow data, fairly good estimation could be possible when differential pulse width modulation (PWM) value of the motor between systolic and diastolic phases was high. In estimation under quasi-pulsatile condition, inertia correction was provided and fairly good estimation was possible when the differential PWM value was high, which was not different from the verification results using continuous flow data. In the experiment of real-time estimation applying moving average method to the estimated viscosity, fair estimation could be possible when the differential PWM value was high, showing that real-time viscosity-adjusted estimation of pressure head and pump flow would be possible with this novel estimation method when the differential PWM value would be set high.
NASA Astrophysics Data System (ADS)
Girault, Frédéric; Schubnel, Alexandre; Pili, Éric
2017-09-01
In seismically active fault zones, various crustal fluids including gases are released at the surface. Radon-222, a radioactive gas naturally produced in rocks, is used in volcanic and tectonic contexts to illuminate crustal deformation or earthquake mechanisms. At some locations, intriguing radon signals have been recorded before, during, or after tectonic events, but such observations remain controversial, mainly because physical characterization of potential radon anomalies from the upper crust is lacking. Here we conducted several month-long deformation experiments under controlled dry upper crustal conditions with a triaxial cell to continuously monitor radon emission from crustal rocks affected by three main effects: a fluid pressure pulse, micro-crack closure, and differential stress increase to macroscopic failure. We found that these effects are systematically associated with a variety of radon signals that can be explained using a first-order advective model of radon transport. First, connection to a source of deep fluid pressure (a fluid pressure pulse) is associated with a large transient radon emission increase (factor of 3-7) compared with the background level. We reason that peak amplitude is governed by the accumulation time and the radon source term, and that peak duration is controlled by radioactive decay, permeability, and advective losses of radon. Second, increasing isostatic compression is first accompanied by an increase in radon emission followed by a decrease beyond a critical pressure representing the depth below which crack closure hampers radon emission (150-250 MPa, ca. 5.5-9.5 km depth in our experiments). Third, the increase of differential stress, and associated shear and volumetric deformation, systematically triggers significant radon peaks (ca. 25-350% above background level) before macroscopic failure, by connecting isolated cracks, which dramatically enhances permeability. The detection of transient radon signals before rupture indicates that connection of initially isolated cracks in crustal rocks may occur before rupture and potentially lead to radon transients measurable at the surface in tectonically active regions. This study offers thus an experimental and physical basis for understanding predicted or reported radon anomalies.
NASA Astrophysics Data System (ADS)
Schubnel, A.; Girault, F.; Pili, E.
2017-12-01
In seismically active fault zones, various crustal fluids including gases are released at the surface. Radon-222, a radioactive gas naturally produced in rocks, is used in volcanic and tectonic contexts to illuminate crustal deformation or earthquake mechanisms. At some locations, intriguing radon signals have been recorded before, during, or after tectonic events, but such observations remain controversial, mainly because physical characterization of potential radon anomalies from the upper crust is lacking. Here we conducted several month-long deformation experiments under controlled dry upper crustal conditions with a triaxial cell to continuously monitor radon emission from crustal rocks affected by three main effects: a fluid pressure pulse, micro-crack closure, and differential stress increase to macroscopic failure. We found that these effects are systematically associated with a variety of radon signals that can be explained using a first-order advective model of radon transport. First, connection to a source of deep fluid pressure (a fluid pressure pulse) is associated with a large transient radon emission increase (factor of 3-7) compared with the background level. We reason that peak amplitude is governed by the accumulation time and the radon source term, and that peak duration is controlled by radioactive decay, permeability, and advective losses of radon. Second, increasing isostatic compression is first accompanied by an increase in radon emission followed by a decrease beyond a critical pressure representing the depth below which crack closure hampers radon emission (150-250 MPa, ca. 5.5-9.5 km depth in our experiments). Third, the increase of differential stress, and associated shear and volumetric deformation, systematically triggers significant radon peaks (ca. 25-350% above background level) before macroscopic failure, by connecting isolated cracks, which dramatically enhances permeability. The detection of transient radon signals before rupture indicates that connection of initially isolated cracks in crustal rocks may occur before rupture and potentially lead to radon transients measurable at the surface in tectonically active regions. This study offers thus an experimental and physical basis for understanding predicted or reported radon anomalies.
Re-electrospraying splash-landed proteins and nanoparticles.
Benner, W Henry; Lewis, Gregory S; Hering, Susanne V; Selgelke, Brent; Corzett, Michelle; Evans, James E; Lightstone, Felice C
2012-03-06
FITC-albumin, Lsr-F, or fluorescent polystyrene latex particles were electrosprayed from aqueous buffer and subjected to dispersion by differential electrical mobility at atmospheric pressure. A resulting narrow size cut of singly charged molecular ions or particles was passed through a condensation growth tube collector to create a flow stream of small water droplets, each carrying a single ion or particle. The droplets were splash landed (impacted) onto a solid or liquid temperature controlled surface. Small pools of droplets containing size-selected particles, FITC-albumin, or Lsr-F were recovered, re-electrosprayed, and, when analyzed a second time by differential electrical mobility, showed increased homogeneity. Transmission electron microscopy (TEM) analysis of the size-selected Lsr-F sample corroborated the mobility observation.
NASA Astrophysics Data System (ADS)
Borgardt, Elena; Panchenko, Olha; Hackemüller, Franz Josef; Giffin, Jürgen; Bram, Martin; Müller, Martin; Lehnert, Werner; Stolten, Detlef
2018-01-01
Differential pressure electrolysis offers the potential for more efficient hydrogen compression. Due to the differential pressures acting within the electrolytic cell, the porous transport layer (PTL) is subjected to high stress. For safety reasons, the PTL's mechanical stability must be ensured. However, the requirements for high porosity and low thickness stand in contrast to that for mechanical stability. Porous transport layers for polymer electrolyte membrane (PEM) electrolysis are typically prepared by means of the thermal sintering of titanium powder. Thus far, the factors that influence the mechanical strength of the sintered bodies and how all requirements can be simultaneously fulfilled have not been investigated. Here, the static and dynamic mechanical properties of thin sintered titanium sheets are investigated ex-situ via tensile tests and periodic loading in a test cell, respectively. In order for a sintered PTL with a thickness of 500 μm and porosities above 25% to be able to withstand 50 bar differential pressure in the cell, the maximum flow field width should be limited to 3 mm. Thus, a method was developed to test the suitability of PTL materials for use in electrolysis for various differential pressures and flow field widths.
18F-FDG PET-CT pattern in idiopathic normal pressure hydrocephalus.
Townley, Ryan A; Botha, Hugo; Graff-Radford, Jonathan; Boeve, Bradley F; Petersen, Ronald C; Senjem, Matthew L; Knopman, David S; Lowe, Val; Jack, Clifford R; Jones, David T
2018-01-01
Idiopathic normal pressure hydrocephalus (iNPH) is an important and treatable cause of neurologic impairment. Diagnosis is complicated due to symptoms overlapping with other age related disorders. The pathophysiology underlying iNPH is not well understood. We explored FDG-PET abnormalities in iNPH patients in order to determine if FDG-PET may serve as a biomarker to differentiate iNPH from common neurodegenerative disorders. We retrospectively compared 18 F-FDG PET-CT imaging patterns from seven iNPH patients (mean age 74 ± 6 years) to age and sex matched controls, as well as patients diagnosed with clinical Alzheimer's disease dementia (AD), Dementia with Lewy Bodies (DLB) and Parkinson's Disease Dementia (PDD), and behavioral variant frontotemporal dementia (bvFTD). Partial volume corrected and uncorrected images were reviewed separately. Patients with iNPH, when compared to controls, AD, DLB/PDD, and bvFTD, had significant regional hypometabolism in the dorsal striatum, involving the caudate and putamen bilaterally. These results remained highly significant after partial volume correction. In this study, we report a FDG-PET pattern of hypometabolism in iNPH involving the caudate and putamen with preserved cortical metabolism. This pattern may differentiate iNPH from degenerative diseases and has the potential to serve as a biomarker for iNPH in future studies. These findings also further our understanding of the pathophysiology underlying the iNPH clinical presentation.
do Carmo, Jussara M.; da Silva, Alexandre A.; Romero, Damian G.; Hall, John E.
2017-01-01
Interactions of hypothalamic signaling pathways that control body temperature (BT), blood pressure (BP), and energy balance are poorly understood. We investigated whether the chronic BP and metabolic actions of leptin are differentially modulated by changes in ambient temperature (TA). Mean arterial pressure (MAP), heart rate (HR), BT, motor activity (MA), and oxygen consumption (Vo2) were measured 24 h/d at normal laboratory TA (23°C), at thermoneutral zone (TNZ, 30°C) for mice or during cold exposure (15°C) in male wild-type mice. After control measurements, leptin (4 μg/kg/min) or saline vehicle was infused for 7 d. At TNZ, leptin reduced food intake (−11.0 ± 0.5 g cumulative deficit) and body weight by 6% but caused no changes in MAP or HR. At 15°C, leptin infusion did not alter food intake but increased MAP and HR (8 ± 1 mmHg and 33 ± 7 bpm), while Vo2 increased by ∼10%. Leptin reduced plasma glucose and insulin levels at 15°C but not at 30°C. These results demonstrate that the chronic anorexic effects of leptin are enhanced at TNZ, while its effects on insulin and glucose levels are attenuated and its effects on BP and HR are abolished. Conversely, cold TA caused resistance to leptin’s anorexic effects but amplified its effects to raise BP and reduce insulin and glucose levels. Thus, the brain circuits by which leptin regulates food intake and cardiovascular function are differentially influenced by changes in TA.—Do Carmo, J. M., da Silva, A. A., Romero, D. G., Hall, J. E. Changes in ambient temperature elicit divergent control of metabolic and cardiovascular actions by leptin. PMID:28228474
Harrow, Jeffrey John; Mayrovitz, Harvey N.
2014-01-01
Objective Characterization of a non-invasive method of quantifying subepidermal moisture (SEM) surrounding stages III and IV pressure ulcers (PrUs) in spinal cord injury (SCI). Design Prospective, single-visit, single-rater, observational study, using repeated-measures analysis. Method Setting-inpatient units of one VA SCI Center. Participants Convenience sample of 16 subjects with SCI with stage III or IV PrUs over sacrum or ischium. Interventions Measurement with the MoistureMeter-D, a hand-held device using 300 MHz electromagnetic waves. Outcome measures Dielectric constant, a dimensionless number which increases with the moisture content. Each subject had a PrU site and a control site. Measurements were made at each site, on intact skin, at four points spaced angularly around the site, in triplicate. Results (1) Short-term, single-rater relative error was 2.5%. (2) Order effect: first readings were higher than second readings in 55 of 64 measurement sets. Order effect was significant for control sites (P < 0.0001) but not for PrU sites. (3) Angular effect: SEM varied by angle at the PrU sites (P < 0.01); 12 o'clock position the highest and 6 o'clock the lowest. (4) Ability to differentiate PrUs from intact skin: SEM at PrU sites was greater by 9.0% than control sites (P < 0.05). (5) Site effect: SEM was higher at sacral locations than ischial at control sites by 20% (P < 0.005). Conclusions SEM differentiates PrUs from intact skin. Future study designs must take into account order, angular, and site effects on this measure. This information will inform designers of future studies of SEM in healing of PrUs. PMID:25398030
do Carmo, Jussara M; da Silva, Alexandre A; Romero, Damian G; Hall, John E
2017-06-01
Interactions of hypothalamic signaling pathways that control body temperature (BT), blood pressure (BP), and energy balance are poorly understood. We investigated whether the chronic BP and metabolic actions of leptin are differentially modulated by changes in ambient temperature ( T A ). Mean arterial pressure (MAP), heart rate (HR), BT, motor activity (MA), and oxygen consumption ( V o 2 ) were measured 24 h/d at normal laboratory T A (23°C), at thermoneutral zone (TNZ, 30°C) for mice or during cold exposure (15°C) in male wild-type mice. After control measurements, leptin (4 μg/kg/min) or saline vehicle was infused for 7 d. At TNZ, leptin reduced food intake (-11.0 ± 0.5 g cumulative deficit) and body weight by 6% but caused no changes in MAP or HR. At 15°C, leptin infusion did not alter food intake but increased MAP and HR (8 ± 1 mmHg and 33 ± 7 bpm), while V o 2 increased by ∼10%. Leptin reduced plasma glucose and insulin levels at 15°C but not at 30°C. These results demonstrate that the chronic anorexic effects of leptin are enhanced at TNZ, while its effects on insulin and glucose levels are attenuated and its effects on BP and HR are abolished. Conversely, cold T A caused resistance to leptin's anorexic effects but amplified its effects to raise BP and reduce insulin and glucose levels. Thus, the brain circuits by which leptin regulates food intake and cardiovascular function are differentially influenced by changes in T A -Do Carmo, J. M., da Silva, A. A., Romero, D. G., Hall, J. E. Changes in ambient temperature elicit divergent control of metabolic and cardiovascular actions by leptin. © FASEB.
Petrogenesis of high-Ti and low-Ti basalts: high-pressure and high-temperature experimental study
NASA Astrophysics Data System (ADS)
Yang, J.; WANG, C.; Jin, Z.
2017-12-01
Geochemical and petrological studies have revealed the existence of high-Ti and low-Ti basalts in large igneous provinces. However, the petrogenesis of them are still under debate. Several different mechanisms have been proposed: (1) the high-Ti basalts are formed by the melting of mantle plume containing recycled oceanic crust or delaminated lower crust (Spandler et al., 2008) while low-Ti basalts are formed by the melting of subcontinental lithospheric mantle (Xiao et al., 2004); (2) both of them are from mantle plume or asthenospheric source, but the production of high-Ti basalts are associated with the thick lithosphere and relevant low degrees of melting while the low-Ti basalts are controlled by the thin lithosphere with high degrees of melting (Arndt et al., 1993; Xu et al., 2001). Almost all authors emphasize the role of partial melting but less discuss the crystallization differentiation process. The low Mg# (< 0.7) of these basalts provides that they are far away from direct melting of mantle peridotite. In addition, seismic data indicate unusually high seismic velocities bodies beneath LIPs which explained by the fractionated cumulates from picritic magmas (Farnetani et al., 1996). Therefore, we believed that the crystallization differentiation process might play a more significant role in the genesis of high-Ti and low-Ti basalts. In order to investigate the generation of these basalts, a series of high pressure and high temperature partial crystallization experiments were performed by using piston-cylinder and multi-anvil press at pressures of 1.5, 3.0 and 5.0 GPa and a temperature range of 1200-1700°. Two synthetic picrite glass with different chemical compositions were used as starting materials. Our experimental results show that Ti is preferred to be concentrated in the residual melt during crystallization differentiation. For the same melt fraction, the residual melt of higher pressure experiments has relatively higher TiO2 concentration and higher Mg#. Thus, we propose that most of the high-Ti and low-Ti basalts are inherited from picritic parental magmas which could be formed by high degree partial melting of garnet peridotite. The high-Ti basalts are generated through relatively high pressure crystallization process while the low-Ti basalts are generated at relatively low pressure.
Development of a 5,000 m(3) super-pressure balloon with a diamond-shaped net
NASA Astrophysics Data System (ADS)
Saito, Yoshitaka; Tanaka, Shigeki; Nakashino, Kyoichi; Matsushima, Kiyoho; Goto, Ken; Furuta, Ryosuke; Domoto, Kodai; Akita, Daisuke; Hashimoto, Hiroyuki
A light super-pressure balloon of which weight will be comparable to the weight of the zero-pressure balloon has been developed using a method to cover a balloon with a diamond-shaped net of high-tensile fibers. The goal is to fly a payload of 900 kg to the altitude of 37 km with a 300,000 m(3) balloon. A flight test of a 3,000 m(3) balloon in the tandem balloon configuration with a 15,000 m(3) zero-pressure balloon was performed in 2012. Although a small gas leak occurred in the super-pressure balloon at the differential pressure of 400 to 500 Pa, the differential pressure reached the highest value of 814 Pa and kept positive through the level flight lasting for 25 minutes due to its slow leakage. To avoid a possible stress concentration to films at the polar area, a new design setting the meridian length of the balloon gore film equal to the length of the net was adopted. A 3-m balloon with the design was developed and its capacity to resist pressure at room temperature and at -30 (°) C was checked through the ground inflation tests. In 2013, a balloon of the same model was launched in the tandem balloon configuration with 2 kg rubber balloons. It was confirmed that the balloon could withstand the maximum differential pressure of 6,280 Pa, could withstand the differential pressure of 5,600 Pa for 2 hours, and there was a small gas leak through a hole with an area of 0.4 mm(2) which was also found in the ground leakage test. These results indicated that the improvement was adequate and there was no problem for the super-pressure balloon to fly in the environment of the stratosphere except for the problem of the small gas leak. In 2014, a flight test of a 5,000 m(3) balloon will be performed. In this paper, after reviewing the method to cover a balloon with a diamond-shaped net, the current status of the development will be reported.
Method and system for measuring multiphase flow using multiple pressure differentials
Fincke, James R.
2001-01-01
An improved method and system for measuring a multiphase flow in a pressure flow meter. An extended throat venturi is used and pressure of the multiphase flow is measured at three or more positions in the venturi, which define two or more pressure differentials in the flow conduit. The differential pressures are then used to calculate the mass flow of the gas phase, the total mass flow, and the liquid phase. The method for determining the mass flow of the high void fraction fluid flow and the gas flow includes certain steps. The first step is calculating a gas density for the gas flow. The next two steps are finding a normalized gas mass flow rate through the venturi and computing a gas mass flow rate. The following step is estimating the gas velocity in the venturi tube throat. The next step is calculating the pressure drop experienced by the gas-phase due to work performed by the gas phase in accelerating the liquid phase between the upstream pressure measuring point and the pressure measuring point in the venturi throat. Another step is estimating the liquid velocity in the venturi throat using the calculated pressure drop experienced by the gas-phase due to work performed by the gas phase. Then the friction is computed between the liquid phase and a wall in the venturi tube. Finally, the total mass flow rate based on measured pressure in the venturi throat is calculated, and the mass flow rate of the liquid phase is calculated from the difference of the total mass flow rate and the gas mass flow rate.
[Differentiation between moisture lesions and pressure ulcers using photographs in a critical area].
Valls-Matarín, Josefa; Del Cotillo-Fuente, Mercedes; Pujol-Vila, María; Ribal-Prior, Rosa; Sandalinas-Mulero, Inmaculada
2016-01-01
To identify difficulties for nurses in differentiating between moisture lesions and pressure ulcers, proper classification of pressure ulcers to assess the adequate classification of the Grupo Nacional para el Estudio y Asesoramiento de Úlceras por Presión y Heridas Crónicas (GNEAUPP) and the degree of agreement in the correct assessment by type and category of injury. Cross-sectional study in a critical area during 2014. All nurses who agreed to participate were included. They performed a questionnaire with 14 photographs validated by experts of moisture lesions or pressure ulcers in the sacral area and buttocks, with 6 possible answers: Pressure ulcer category I, II, III, IV, moisture lesions and unknown. Demographics and knowledge of the classification system of the pressure ulcers were collected according to GNEAUPP. It involved 98% of the population (n=56); 98.2% knew the classification system of the GNEAUPP; 35.2% of moisture lesions were considered as pressure ulcers, most of them as a category II (18.9%). The 14.8% of the pressure ulcers photographs were identified as moisture lesions and 16.1% were classified in another category. The agreement between nurses earned a global Kappa index of .38 (95% CI: .29-.57). There are difficulties differentiating between pressure ulcers and moisture lesions, especially within initial categories. Nurses have the perception they know the pressure ulcers classification, but they do not classify them correctly. The degree of concordance in the diagnosis of skin lesions was low. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.
Zucker, Noah A; Tsodikov, Alex; Mist, Scott D; Cina, Stephen; Napadow, Vitaly; Harris, Richard E
2017-08-01
Fibromyalgia is a chronic pain condition with few effective treatments. Many fibromyalgia patients seek acupuncture for analgesia; however, its efficacy is limited and not fully understood. This may be due to heterogeneous pathologies among participants in acupuncture clinical trials. We hypothesized that pressure pain tenderness would differentially classify treatment response to verum and sham acupuncture in fibromyalgia patients. Baseline pressure pain sensitivity at the thumbnail at baseline was used in linear mixed models as a modifier of differential treatment response to sham versus verum acupuncture. Similarly, needle-induced sensation was also analyzed to determine its differential effect of treatment on clinical pain. A cohort of 114 fibromyalgia patients received baseline pressure pain testing and were randomized to either verum (N = 59) or sham (N = 55) acupuncture. Participants received treatments from once a week to three times a week, increasing in three-week blocks for a total of 18 treatments. Clinical pain was measured on a 101-point visual analog scale, and needle sensation was measured by questionnaire throughout the trial. Participants who had higher pain pressure thresholds had greater reduction in clinical pain following verum acupuncture while participants who had lower pain pressure thresholds showed better analgesic response to sham acupuncture. Moreover, patients with lower pressure pain thresholds had exacerbated clinical pain following verum acupuncture. Similar relationships were observed for sensitivity to acupuncture needling. These findings suggest that acupuncture efficacy in fibromyalgia may be underestimated and a more personalized treatment for fibromyalgia may also be possible. © 2017 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com
Acoustic imaging of a duct spinning mode by the use of an in-duct circular microphone array.
Wei, Qingkai; Huang, Xun; Peers, Edward
2013-06-01
An imaging method of acoustic spinning modes propagating within a circular duct simply with surface pressure information is introduced in this paper. The proposed method is developed in a theoretical way and is demonstrated by a numerical simulation case. Nowadays, the measurements within a duct have to be conducted using in-duct microphone array, which is unable to provide information of complete acoustic solutions across the test section. The proposed method can estimate immeasurable information by forming a so-called observer. The fundamental idea behind the testing method was originally developed in control theory for ordinary differential equations. Spinning mode propagation, however, is formulated in partial differential equations. A finite difference technique is used to reduce the associated partial differential equations to a classical form in control. The observer method can thereafter be applied straightforwardly. The algorithm is recursive and, thus, could be operated in real-time. A numerical simulation for a straight circular duct is conducted. The acoustic solutions on the test section can be reconstructed with good agreement to analytical solutions. The results suggest the potential and applications of the proposed method.
Differential diagnosis of normal pressure hydrocephalus by MRI mean diffusivity histogram analysis.
Ivkovic, M; Liu, B; Ahmed, F; Moore, D; Huang, C; Raj, A; Kovanlikaya, I; Heier, L; Relkin, N
2013-01-01
Accurate diagnosis of normal pressure hydrocephalus is challenging because the clinical symptoms and radiographic appearance of NPH often overlap those of other conditions, including age-related neurodegenerative disorders such as Alzheimer and Parkinson diseases. We hypothesized that radiologic differences between NPH and AD/PD can be characterized by a robust and objective MR imaging DTI technique that does not require intersubject image registration or operator-defined regions of interest, thus avoiding many pitfalls common in DTI methods. We collected 3T DTI data from 15 patients with probable NPH and 25 controls with AD, PD, or dementia with Lewy bodies. We developed a parametric model for the shape of intracranial mean diffusivity histograms that separates brain and ventricular components from a third component composed mostly of partial volume voxels. To accurately fit the shape of the third component, we constructed a parametric function named the generalized Voss-Dyke function. We then examined the use of the fitting parameters for the differential diagnosis of NPH from AD, PD, and DLB. Using parameters for the MD histogram shape, we distinguished clinically probable NPH from the 3 other disorders with 86% sensitivity and 96% specificity. The technique yielded 86% sensitivity and 88% specificity when differentiating NPH from AD only. An adequate parametric model for the shape of intracranial MD histograms can distinguish NPH from AD, PD, or DLB with high sensitivity and specificity.
NASA Technical Reports Server (NTRS)
Bachmann, K. J.; Cardelino, B. H.; Moore, C. E.; Cardelino, C. A.; Sukidi, N.; McCall, S.
1999-01-01
The purpose of this paper is to review modeling and real-time monitoring by robust methods of reflectance spectroscopy of organometallic chemical vapor deposition (OMCVD) processes in extreme regimes of pressure. The merits of p-polarized reflectance spectroscopy under the conditions of chemical beam epitaxy (CBE) and of internal transmission spectroscopy and principal angle spectroscopy at high pressure are assessed. In order to extend OMCVD to materials that exhibit large thermal decomposition pressure at their optimum growth temperature we have designed and built a differentially-pressure-controlled (DCP) OMCVD reactor for use at pressures greater than or equal to 6 atm. We also describe a compact hard-shell (CHS) reactor for extending the pressure range to 100 atm. At such very high pressure the decomposition of source vapors occurs in the vapor phase, and is coupled to flow dynamics and transport. Rate constants for homogeneous gas phase reactions can be predicted based on a combination of first principles and semi-empirical calculations. The pressure dependence of unimolecular rate constants is described by RRKM theory, but requires variational and anharmonicity corrections not included in presently available calculations with the exception of ammonia decomposition. Commercial codes that include chemical reactions and transport exist, but do not adequately cover at present the kinetics of heteroepitaxial crystal growth.
Color film preservation system: Breadboard development
NASA Technical Reports Server (NTRS)
1984-01-01
The development of an economically feasible system to prevent and/or substantially reduce the degradation of the color dyes of the retinal reflex images recorded on color slide films is discussed. Three different types of film storage systems were designed, fabricated, and tested. An extruded plastic cylindrical container was pressurized and no observable leakage occurred, indicating that long term storage is possible. An operational breadboard was fabricated. The system offers the capability to determine purging requirements to achieve various levels of oxygen concentration and precise leakage of various container configurations. The system has digitial display of oxygen content of the container, automatic control of the oxygen content as well as of the container to atmosphere pressure differential, and flow rate readout during purging.
NASA Astrophysics Data System (ADS)
Li, Liang; Jia, Gang; Chen, Jie; Zhu, Hongjun; Cao, Dongpu; Song, Jian
2015-08-01
Direct yaw moment control (DYC), which differentially brakes the wheels to produce a yaw moment for the vehicle stability in a steering process, is an important part of electric stability control system. In this field, most control methods utilise the active brake pressure with a feedback controller to adjust the braked wheel. However, the method might lead to a control delay or overshoot because of the lack of a quantitative project relationship between target values from the upper stability controller to the lower pressure controller. Meanwhile, the stability controller usually ignores the implementing ability of the tyre forces, which might be restrained by the combined-slip dynamics of the tyre. Therefore, a novel control algorithm of DYC based on the hierarchical control strategy is brought forward in this paper. As for the upper controller, a correctional linear quadratic regulator, which not only contains feedback control but also contains feed forward control, is introduced to deduce the object of the stability yaw moment in order to guarantee the yaw rate and side-slip angle stability. As for the medium and lower controller, the quantitative relationship between the vehicle stability object and the target tyre forces of controlled wheels is proposed to achieve smooth control performance based on a combined-slip tyre model. The simulations with the hardware-in-the-loop platform validate that the proposed algorithm can improve the stability of the vehicle effectively.
Method of fabricating an article with cavities. [with thin bottom walls
NASA Technical Reports Server (NTRS)
Dale, W. J.; Jurscaga, G. M. (Inventor)
1974-01-01
An article having a cavity with a thin bottom wall is provided by assembling a thin sheet, for example, a metal sheet, adjacent to the surface of a member having one or more apertures. A bonding adhesive is interposed between the thin sheet and the subadjacent member, and the thin sheet is subjected to a high fluid pressure. In order to prevent the differential pressure from being exerted against the thin sheet, the aperture is filled with a plug of solid material having a linear coefficient of thermal expansion higher than that of the member. When the assembly is subjected to pressure, the material is heated to a temperature such that its expansion exerts a pressure against the thin sheet thus reducing the differential pressure.
Non-linear Heart Rate and Blood Pressure Interaction in Response to Lower-Body Negative Pressure
Verma, Ajay K.; Xu, Da; Garg, Amanmeet; Cote, Anita T.; Goswami, Nandu; Blaber, Andrew P.; Tavakolian, Kouhyar
2017-01-01
Early detection of hemorrhage remains an open problem. In this regard, blood pressure has been an ineffective measure of blood loss due to numerous compensatory mechanisms sustaining arterial blood pressure homeostasis. Here, we investigate the feasibility of causality detection in the heart rate and blood pressure interaction, a closed-loop control system, for early detection of hemorrhage. The hemorrhage was simulated via graded lower-body negative pressure (LBNP) from 0 to −40 mmHg. The research hypothesis was that a significant elevation of causal control in the direction of blood pressure to heart rate (i.e., baroreflex response) is an early indicator of central hypovolemia. Five minutes of continuous blood pressure and electrocardiogram (ECG) signals were acquired simultaneously from young, healthy participants (27 ± 1 years, N = 27) during each LBNP stage, from which heart rate (represented by RR interval), systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean arterial pressure (MAP) were derived. The heart rate and blood pressure causal interaction (RR↔SBP and RR↔MAP) was studied during the last 3 min of each LBNP stage. At supine rest, the non-baroreflex arm (RR→SBP and RR→MAP) showed a significantly (p < 0.001) higher causal drive toward blood pressure regulation compared to the baroreflex arm (SBP→RR and MAP→RR). In response to moderate category hemorrhage (−30 mmHg LBNP), no change was observed in the traditional marker of blood loss i.e., pulse pressure (p = 0.10) along with the RR→SBP (p = 0.76), RR→MAP (p = 0.60), and SBP→RR (p = 0.07) causality compared to the resting stage. Contrarily, a significant elevation in the MAP→RR (p = 0.004) causality was observed. In accordance with our hypothesis, the outcomes of the research underscored the potential of compensatory baroreflex arm (MAP→RR) of the heart rate and blood pressure interaction toward differentiating a simulated moderate category hemorrhage from the resting stage. Therefore, monitoring baroreflex causality can have a clinical utility in making triage decisions to impede hemorrhage progression. PMID:29114227
Mozaffari, Mahmood S; Baban, Babak; Liu, Jun Yao; Abebe, Worku; Sullivan, Jennifer C; El-Marakby, Ahmed
2011-03-01
We tested the hypothesis that pressure overload exacerbates oxidative stress associated with augmented mitochondrial permeability transition (MPT) pore opening and cell death in ischemic-reperfused hearts. Pressure overload decreased the level of reduced glutathione but increased nitrotyrosine and 8-hydroxydeoxyguanosine levels in ischemic-reperfused hearts. The activity of catalase, but not superoxide dismutase (SOD), was lower in ischemic-reperfused hearts perfused at higher pressure. Mitochondria from ischemic-reperfused hearts subjected to higher perfusion pressure displayed significantly greater [³H]-2-deoxyglucose-6-P entrapment suggestive of greater MPT pore opening and consistent with greater necrosis and apoptosis. Tempol (SOD mimetic) reduced infarct size in both groups but it remained greater in the higher pressure group. By contrast, uric acid (peroxynitrite scavenger) markedly reduced infarct size at higher pressure, effectively eliminating the differential between the two groups. Inhibition of xanthine oxidase, with allopurinol, reduced infarct size but did not eliminate the differential between the two groups. However, amobarbital (inhibitor of mitochondrial complex I) or apocynin [inhibitor of NAD(P)H oxidase] reduced infarct size at both pressures and also abrogated the differential between the two groups. Consistent with the effect of apocynin, pressure-overloaded hearts displayed significantly higher NAD(P)H oxidase activity. Furthermore, pressure-overloaded hearts displayed increased nitric oxide synthase activity which, along with increased propensity to superoxide generation, may underlie uric acid-induced cardioprotection. In conclusion, increased oxidative and nitrosative stress, coupled with lack of augmented SOD and catalase activities, contributes importantly to the exacerbating impact of pressure overload on MPT pore opening and cell death in ischemic-reperfused hearts.
Tan, Eric J; Thomas, Neil; Rossell, Susan L
2014-04-01
Speech disturbances in schizophrenia impact on the individual's communicative ability. Although they are considered a core feature of schizophrenia, comparatively little work has been done to examine their impact on the life experiences of patients. This study aimed to examine the relationship between schizophrenia speech disturbances, including those traditionally known as formal thought disorder (TD), and quality of life (QoL). It assessed effects on functioning (objective QoL) and satisfaction (subjective QoL) concurrently, while controlling for the influence of neurocognition and depression. Fifty-four patients with schizophrenia/schizoaffective disorder were administered the MATRICS Consensus Cognitive Battery (MCCB), the PANSS, MADRS (with separate ratings for negative TD [verbal underproductivity] and positive TD [verbal disorganisation and pressured speech]) and Lehman's QOLI assessing both objective and subjective QoL. Ratings of positive and negative TD, depression, and general neurocognition were entered into hierarchical regressions to explore their relationship with both life functioning and satisfaction. Verbal underproductivity was a significant predictor of objective QoL, while pressured speech had a trend association with subjective QoL. This suggests a differential relationship between speech disturbances and QoL. Verbal underproductivity seems to affect daily functioning and relations with others, while pressured speech is predictive of satisfaction with life. The impact of verbal underproductivity on QoL suggests it to be an important target for rehabilitation in schizophrenia. Copyright © 2014 Elsevier Inc. All rights reserved.
Making Large Composite Vessels Without Autoclaves
NASA Technical Reports Server (NTRS)
Sigur, W. A.
1989-01-01
Method for making fiber-reinforced composite structure relies on heating and differential thermal expansion to provide temperature and pressure necessary to develop full strength, without having to place structure in large, expensive autoclave. Layers of differentially expanding material squeeze fiber-reinforce composite between them when heated. Method suitable for such cylindrical structures as pressure vessels and tanks. Used for both resin-matrix and metal-matrix composites.
Mechanical counter pressure on the arm counteracts adverse effects of hypobaric exposures
NASA Technical Reports Server (NTRS)
Tanaka, Kunihiko; Limberg, Ryan; Webb, Paul; Reddig, Mike; Jarvis, Christine W.; Hargens, Alan R.
2003-01-01
INTRODUCTION: Current space suits have limited movement due to gas pressurization during exposure to the vacuum of space. Alternatively, if pressure is applied by an elastic garment vs. pneumatic garment to produce mechanical counter pressure (MCP), several advantages are possible. In this study, we investigate local microcirculatory and other effects produced with and without a prototype MCP glove and sleeve during exposure to varying levels of vacuum. METHODS: The entire arms of eight male volunteers were studied at normal ambient pressure and during 5 min exposures to -50, -100, and -150 mm Hg with and without the MCP glove and sleeve. Pressure distribution, skin microvascular flow, and temperature were measured. RESULTS: The MCP glove and sleeve generated over 200 mm Hg on the middle finger, dorsum of the hand, and the wrist. However, pressure was significantly lower on the forearm and the upper arm. Without the glove and sleeve, only two of eight subjects tolerated -100 mm Hg. Also, no subject tolerated -150 mm Hg. However, subjects tolerated all vacuum pressures wearing the glove and sleeve. Skin microvascular flow and temperature remained within control values with the glove and sleeve at a chamber pressure of -150 mm Hg. DISCUSSION: The MCP glove and sleeve counteracts adverse effects of vacuum exposures due to lower pressure differentials. Pressure levels over the hand and wrist are similar to those of the current U.S. space suit glove and sleeve, but additional development is required to increase MCP over the forearm and upper arm.
Thompson, Katherine A; Kelly, Nichole R; Schvey, Natasha A; Brady, Sheila M; Courville, Amber B; Tanofsky-Kraff, Marian; Yanovski, Susan Z; Yanovski, Jack A; Shomaker, Lauren B
2017-01-01
Appearance-related pressures have been associated with binge eating in previous studies. Yet, it is unclear if these pressures are associated with emotional eating or if specific sources of pressure are differentially associated with emotional eating. We studied the associations between multiple sources of appearance-related pressures, including pressure to be thin and pressure to increase muscularity, and emotional eating in 300 adolescents (M age =15.3, SD=1.4, 60% female). Controlling for age, race, puberty, body mass index (BMI) z-score, and sex, both pressure to be thin and pressure to be more muscular from same-sex peers were positively associated with emotional eating in response to feeling angry/frustrated and unsettled (ps<0.05). Pressure from same-sex peers to be more muscular also was associated with eating when depressed (p<0.05), and muscularity pressure from opposite-sex peers related to eating in response to anger/frustration (p<0.05). All associations were fully mediated by internalization of appearance ideals according to Western cultural standards (ps<0.001). Associations of pressures from mothers and fathers with emotional eating were non-significant. Results considering sex as a moderator of the associations between appearance-related pressures and emotional eating were non-significant. Findings illustrate that both pressure to be thin and muscular from peers are related to more frequent emotional eating among both boys and girls, and these associations are explained through internalization of appearance-related ideals. Copyright © 2016 Elsevier Ltd. All rights reserved.
Antov, Martin I; Wölk, Christoph; Stockhorst, Ursula
2013-10-01
Stress is a process of multiple neuroendocrine changes over time. We examined effects of the first-wave and second-wave stress response on acquisition and immediate extinction of differential fear conditioning, assessed by skin conductance responses. In Experiment 1, we placed acquisition either close to the (second-wave) salivary cortisol peak, induced by a psychosocial stressor (experimental group, EG), or after non-stressful pretreatment (control group, CG). Contrary to predictions, groups did not differ in differential responding. In the EG only, mean differential responding was negatively correlated with cortisol increases. In Experiment 2, we placed conditioning near the first-wave stress response, induced by a cold pressor test (CPT), or after a warm-water condition (CG). CPT-stress increased extinction resistance. Moreover, acquisition performance after CPT was positively correlated with first-wave blood pressure increases. Data suggest that mediators of the first-wave stress response enhance fear maintenance whereas second-wave cortisol responsivity to stress might attenuate fear learning. Copyright © 2013 Elsevier B.V. All rights reserved.
14 CFR 25.365 - Pressurized compartment loads.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Pressurized compartment loads. For airplanes with one or more pressurized compartments the following apply: (a... differential loads from zero up to the maximum relief valve setting. (b) The external pressure distribution in... zero up to the maximum allowed during landing. (d) The airplane structure must be designed to be able...
Occupational role stress is associated with higher cortisol reactivity to acute stress.
Wirtz, Petra H; Ehlert, Ulrike; Kottwitz, Maria U; La Marca, Roberto; Semmer, Norbert K
2013-04-01
We investigated whether occupational role stress is associated with differential levels of the stress hormone cortisol in response to acute psychosocial stress. Forty-three medication-free nonsmoking men aged between 22 and 65 years (mean ± SEM: 44.5 ± 2) underwent an acute standardized psychosocial stress task combining public speaking and mental arithmetic in front of an audience. We assessed occupational role stress in terms of role conflict and role ambiguity (combined into a measure of role uncertainty) as well as further work characteristics and psychological control variables including time pressure, overcommitment, perfectionism, and stress appraisal. Moreover, we repeatedly measured salivary cortisol and blood pressure levels before and after stress exposure, and several times up to 60 min thereafter. Higher role uncertainty was associated with a more pronounced cortisol stress reactivity (p = .016), even when controlling for the full set of potential confounders (p < .001). Blood pressure stress reactivity was not associated with role uncertainty. Our findings suggest that occupational role stress in terms of role uncertainty acts as a background stressor that is associated with increased HPA-axis reactivity to acute stress. This finding may represent a potential mechanism regarding how occupational role stress may precipitate adverse health outcomes.
Multi-interface Level Sensors and New Development in Monitoring and Control of Oil Separators
Bukhari, Syed Faisal Ahmed; Yang, Wuqiang
2006-01-01
In the oil industry, huge saving may be made if suitable multi-interface level measurement systems are employed for effectively monitoring crude oil separators and efficient control of their operation. A number of techniques, e.g. externally mounted displacers, differential pressure transmitters and capacitance rod devices, have been developed to measure the separation process with gas, oil, water and other components. Because of the unavailability of suitable multi-interface level measurement systems, oil separators are currently operated by the trial-and-error approach. In this paper some conventional techniques, which have been used for level measurement in industry, and new development are discussed.
Molecular dispersion spectroscopy based on Fabry-Perot quantum cascade lasers.
Sterczewski, Lukasz A; Westberg, Jonas; Wysocki, Gerard
2017-01-15
Two Fabry-Perot quantum cascade lasers are used in a differential dual comb configuration to perform rapidly swept dispersion spectroscopy of low-pressure nitrous oxide with <1 ms acquisition time. Active feedback control of the laser injection current enables simultaneous wavelength modulation of both lasers at kilohertz rates. The system demonstrates similar performance in both absorption and dispersion spectroscopy modes and achieves a noise-equivalent absorption figure of merit in the low 10-4/Hz range.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Babarit, A.; Wendt, F.; Yu, Y. -H.
2017-04-01
In this article, we investigate the energy absorption performance of a fixed-bottom pressure-differential wave energy converter. Two versions of the technology are considered: one has the moving surfaces on the bottom of the air chambers whereas the other has the moving surfaces on the top. We developed numerical models in the frequency domain, thereby enabling the power absorption of the two versions of the device to be assessed. It is observed that the moving surfaces on the top allow for easier tuning of the natural period of the system. Taking into account stroke limitations, the design is optimized. Results indicatemore » that the pressure-differential wave energy converter is a highly efficient technology both with respect to energy absorption and selected economic performance indicators.« less
Physiological Response of Plants Grown on Porous Ceramic Tubes
NASA Technical Reports Server (NTRS)
Tsao, David; Okos, Martin
1997-01-01
This research involves the manipulation of the root-zone water potential for the purposes of discriminating the rate limiting step in the inorganic nutrient uptake mechanism utilized by higher plants. This reaction sequence includes the pathways controlled by the root-zone conditions such as water tension and gradient concentrations. Furthermore, plant based control mechanisms dictated by various protein productions are differentiated as well. For the nutrients limited by the environmental availability, the kinetics were modeled using convection and diffusion equations. Alternatively, for the nutrients dependent upon enzyme manipulations, the uptakes are modeled using Michaelis-Menten kinetics. In order to differentiate between these various mechanistic steps, an experimental apparatus known as the Porous Ceramic Tube - Nutrient Delivery System (PCT-NDS) was used. Manipulation of the applied suction pressure circulating a nutrient solution through this system imposes a change in the matric component of the water potential. This compensates for the different osmotic components of water potential dictated by nutrient concentration. By maintaining this control over the root-zone conditions, the rate limiting steps in the uptake of the essential nutrients into tomato plants (Lycopersicon esculentum cv. Cherry Elite) were differentiated. Results showed that the uptake of some nutrients were mass transfer limited while others were limited by the enzyme kinetics. Each of these were adequately modeled with calculations and discussions of the parameter estimations provided.
NASA Astrophysics Data System (ADS)
Hill, Marc; Rizzello, Gianluca; Seelecke, Stefan
2017-08-01
Due to their many features including lightweight and low energy consumption, dielectric elastomer (DE) membrane actuators are of interest for a number of industrial applications, such as pumping systems or valve control units. In particular, the use of DEs in valve control units offers advantages over traditional solenoid valves, including lower power requirements and relative simplicity in achieving proportional control. Additionally, DEs generate low thermal dissipation and are capable of virtually silent operation. The contribution of this work is the development of a new valve system based on a circular DE membrane pre-loaded with a linear spring. The valve is designed for pressurized air and operates by actuating a lever mechanism that opens and closes an outlet port. After presenting the operating principle and system design, several experiments are presented to compare actuator force, stroke, and dissipated energy for several pressure differentials and associated volume flows. It is observed that the DE-driven valve achieves a performance similar to a solenoid-based valve, while requiring a significantly lower amount of input energy. In addition, it is shown that DE-membrane valves can be controlled proportionally by simply adjusting the actuator voltage.
Hart, Roger C; Herring, G C; Balla, R Jeffrey
2007-06-15
Nonintrusive, off-body flow barometry in Mach 2 airflow has been demonstrated in a large-scale supersonic wind tunnel using seedless laser-induced thermal acoustics (LITA). The static pressure of the gas flow is determined with a novel differential absorption measurement of the ultrasonic sound produced by the LITA pump process. Simultaneously, the streamwise velocity and static gas temperature of the same spatially resolved sample volume were measured with this nonresonant time-averaged LITA technique. Mach number, temperature, and pressure have 0.2%, 0.4%, and 4% rms agreement, respectively, in comparison with known free-stream conditions.
NASA Technical Reports Server (NTRS)
Hart, Roger C.; Herring, Gregory C.; Balla, Robert J.
2007-01-01
Nonintrusive, off-body flow barometry in Mach-2 airflow has been demonstrated in a large-scale supersonic wind tunnel using seedless laser-induced thermal acoustics (LITA). The static pressure of the gas flow is determined with a novel differential absorption measurement of the ultrasonic sound produced by the LITA pump process. Simultaneously, stream-wise velocity and static gas temperature of the same spatially-resolved sample volume were measured with this nonresonant time-averaged LITA technique. Mach number, temperature and pressure have 0.2%, 0.4%, and 4% rms agreement, respectively, in comparison with known free-stream conditions.
NASA Astrophysics Data System (ADS)
Gratier, Jean-Pierre; Noiriel, Catherine; Renard, Francois
2015-04-01
Natural deformation of rocks is often associated with stress-driven differentiation processes leading to irreversible transformations of their microstructures. The development mechanisms of such processes during diagenesis, tectonic, metamorphism or fault differentiation are poorly known as they are difficult to reproduce experimentally due to the very slow kinetics of stress-driven chemical processes. Here, we show that experimental compaction with development of differentiated layering, similar to what happens in natural deformation, can be obtained by indenter techniques in laboratory conditions. Samples of plaster mixed with clay and of diatomite loosely interbedded with volcanic dust were loaded in presence of their saturated aqueous solutions during several months at 40°C and 150°C, respectively. High-resolution X-ray microtomography and scanning electron microscopy observations show that the layering development is a pressure solution self-organized process. Stress-driven dissolution of the soluble minerals (either gypsum or silica) is initiated in the areas initially richer in insoluble minerals (clays or volcanic dust) because the kinetics of diffusive mass transfer along the soluble/insoluble mineral interfaces is much faster than along the healed boundaries of the soluble minerals. The passive concentration of insoluble minerals amplifies the localization of dissolution along some layers oriented perpendicular to the maximum compressive stress. Conversely, in the areas with initial low content in insoluble minerals and clustered soluble minerals, dissolution is slower. Consequently, these areas are less deformed, they host the re-deposition of the soluble species and they act as rigid objects that concentrate the dissolution near their boundaries thus amplifying the differentiation. A crucial parameter required for self-organized process of pressure solution is the presence of a fluid that is a good solvent of at least some of the rock-forming minerals. Another general requirement for the development of such differentiated layering is the heterogeneous mixing of variously soluble and insoluble species. From a general point of view, the development of diagenetic or tectonic layering has crucial consequences in geological processes. The main one is to modify the composition and microstructure of rocks by dissolution of the most soluble species, passive concentration of the insoluble species and re-deposition of the dissolved species at a distance that depends on the transport efficiency (diffusion or advection). Consequently, layering development modifies both the rheological and the transfer properties of rocks. It is the most common strain localization process in the upper crust when a reactive fluid phase is present, complementary to other strain localization processes in the lithosphere. A specific effect is the development of anisotropic properties that may favor local sliding on weak surfaces. This is particularly important in fault zones where pressure solution processes are at work. Modeling of differentiated layering during natural deformation must be rooted in the stress-driven dissolution and transport properties of the various minerals forming the rocks, and on the evolution of their rheological properties. The strength evolution can be taken into account through a weakening factor in the zone of dissolution and a strengthening factor in the zone of deposition. The kinetics evolution is controlled by the critical parameters of pressure solution.
NASA Astrophysics Data System (ADS)
Snider, Barbara L.; Harmon, Kenneth M.
1994-03-01
Differential scanning calorimetry of hexamethonium chloride dihydrate shows an endothermic transition of 2.70 kcal mol -1 at 36.81°C. This correlates well with the temperatures observed by IR spectra (36°C) and equilibrium dissociation vapor pressure studies (37°C) for the transition between Type I planar cluster and Type II extended linear HOH⋯Cl - hydrogen bonding, and with the value of 2.77 kcal mol -1 for this transition derived by Hess' law treatment of dissociation vapor pressure data. Differential scanning calorimetry of hexamethonium bromide shows a rapid endothermic transition of 2.38 kcal mol -1 at 35.15°C and a very slow endothermic transition of about 12-13 kcal mol -1 centered near 50°C. This latter endotherm corresponds to the transition between Type I and Type II HOH⋯Br - hydrogen bonding observed by IR and vapor pressure studies at 49°C. The nature of the 35.15°C endotherm is not known. Hexamethonium bromide also shows a third endotherm at 142.91°C, which presumably results from melting of hydrate in the sealed DSC cell. Combined analysis of differential scanning calorimetry and dissociation vapor pressure data predicts a value of about -13 kcal mol -1 for an exothermic disproportionation at 52°C of two hexamethonium bromide monohydrate to Type II dihydrate and anhydrous bromide.
Case study of controlled recirculation at a Wyoming trona mine
Pritchard, C.; Scott, D.; Frey, G.
2015-01-01
Controlled recirculation has been used in the metal/nonmetal mining industry for energy savings when heating and cooling air, in undersea mining and for increasing airflow to mining areas. For safe and effective use of controlled district recirculation, adequate airflow to dilute contaminants must exist prior to implementation, ventilation circuit parameters must be accurately quantified, ventilation network modeling must be up to date, emergency planning scenarios must be performed and effective monitoring and control systems must be installed and used. Safety and health issues that must be considered and may be improved through the use of controlled district recirculation include blasting fumes, dust, diesel emissions, radon and contaminants from mine fires. Controlled recirculation methods are expected to become more widely used as mines reach greater working depths, requiring that these health and safety issues be well understood. The U.S. National Institute for Occupational Safety and Health (NIOSH) conducted two controlled recirculation tests over three days at a Wyoming trona mine, utilizing an inline booster fan to improve airflow to a remote and difficult-to-ventilate development section. Test results were used to determine the effect that recirculation had on air qualities and quantities measured in that section and in other adjacent areas. Pre-test conditions, including ventilation quantities and pressures, were modeled using VnetPC. During each test, ventilation quantities and pressures were measured, as well as levels of total dust. Sulfur hexafluoride (SF6) tracer gas was used to simulate a mine contaminant to monitor recirculation wave cycles. Results showed good correlation between the model results and measured values for airflows, pressure differentials, tracer gas arrival times, mine gasses and dust levels. PMID:26251567
Disturbance torque rejection properties of the NASA/JPL 70-meter antenna axis servos
NASA Technical Reports Server (NTRS)
Hill, R. E.
1989-01-01
Analytic methods for evaluating pointing errors caused by external disturbance torques are developed and applied to determine the effects of representative values of wind and friction torque. The expressions relating pointing errors to disturbance torques are shown to be strongly dependent upon the state estimator parameters, as well as upon the state feedback gain and the flow versus pressure characteristics of the hydraulic system. Under certain conditions, when control is derived from an uncorrected estimate of integral position error, the desired type 2 servo properties are not realized and finite steady-state position errors result. Methods for reducing these errors to negligible proportions through the proper selection of control gain and estimator correction parameters are demonstrated. The steady-state error produced by a disturbance torque is found to be directly proportional to the hydraulic internal leakage. This property can be exploited to provide a convenient method of determining system leakage from field measurements of estimator error, axis rate, and hydraulic differential pressure.
Channel-wing System for Thrust Deflection and Force/Moment Generation
NASA Technical Reports Server (NTRS)
Englar, Robert J. (Inventor); Bushnell, Dennis M. (Inventor)
2006-01-01
An aircraft comprising a Channel Wing having blown c h - ne1 circulation control wings (CCW) for various functions. The blown channel CCW includes a channel that has a rounded or near-round trailing edge. The channel further has a trailing-edge slot that is adjacent to the rounded trailing edge of the channel. The trailing-edge slot has an inlet connected to a source of pressurized air and is capable of tangentially discharging pressurized air over the rounded trailing edge. The aircraft further has a propeller that is located in the channel and ahead of the rounded trailing edge of the channel. The propeller provides a propeller thrust exhaust stream across the channel wing to propel the aircraft through the air and to provide high lift. The pressurized air being discharged over the rounded trailing edge provides a high lift that is obtained independent of an aircraft angle of attack, thus preventing the asymmetry. separated flow, and stall experienced by the CC wing at the high angle of attack it required for high lift generation. The aircraft can further include blown outboard circulation control wings (CCW) that are synergistically connected to the blown channel CCWs. The blown outboard CCWs provide additional high lift, control thrust/drag interchange, and can provide all three aerodynamic moments when differential blowing is applied front-to-rear or left-to-right. Both the blown channel CCW and the outboard CCW also have leading-edge blowing slots to prevent flow separation or to provide aerodynamic moments for control.
Fission gas release restrictor for breached fuel rod
Kadambi, N. Prasad; Tilbrook, Roger W.; Spencer, Daniel R.; Schwallie, Ambrose L.
1986-01-01
In the event of a breach in the cladding of a rod in an operating liquid metal fast breeder reactor, the rapid release of high-pressure gas from the fission gas plenum may result in a gas blanketing of the breached rod and rods adjacent thereto which impairs the heat transfer to the liquid metal coolant. In order to control the release rate of fission gas in the event of a breached rod, the substantial portion of the conventional fission gas plenum is formed as a gas bottle means which includes a gas pervious means in a small portion thereof. During normal reactor operation, as the fission gas pressure gradually increases, the gas pressure interiorly of and exteriorly of the gas bottle means equalizes. In the event of a breach in the cladding, the gas pervious means in the gas bottle means constitutes a sufficient restriction to the rapid flow of gas therethrough that under maximum design pressure differential conditions, the fission gas flow through the breach will not significantly reduce the heat transfer from the affected rod and adjacent rods to the liquid metal heat transfer fluid flowing therebetween.
Felt-Bersma, R J; Klinkenberg-Knol, E C; Meuwissen, S G
1990-06-01
Anal manometry, rectal capacity measurement, and the saline-infusion test were performed in 350 patients, 178 of whom had fecal incontinence and 172 of whom were continent. Anal manometry was also performed in 80 control subjects, whose results were compared with the patients. Women and older patients exhibited lower pressures. Compared with continent patients, incontinent patients had lower anal sphincter pressures at rest and during squeeze, a smaller rectal capacity, and leaked earlier and more with the saline infusion test. Differentiation between incontinent and continent patients was not possible with a single test because there was complete overlap. The maximum squeeze pressure showed the best discrimination. Combining the three tests did not show better discrimination than any individual test. Anal pressure and rectal capacity below the normal range only were found in very few incontinent patients. The authors' study demonstrates that no prediction can be made about continence with anorectal function tests. Therefore, in the individual patient, an abnormal result in one test must be interpreted with caution and only in relationship with other tests, especially when therapeutic surgery is considered.
Unsteady surface pressure measurements on a slender delta wing undergoing limit cycle wing rock
NASA Technical Reports Server (NTRS)
Arena, Andrew S., Jr.; Nelson, Robert C.
1991-01-01
An experimental investigation of slender wing limit cycle motion known as wing rock was investigated using two unique experimental systems. Dynamic roll moment measurements and visualization data on the leading edge vortices were obtained using a free to roll apparatus that incorporates an airbearing spindle. In addition, both static and unsteady surface pressure data was measured on the top and bottom surfaces of the model. To obtain the unsteady surface pressure data a new computer controller drive system was developed to accurately reproduce the free to roll time history motions. The data from these experiments include, roll angle time histories, vortex trajectory data on the position of the vortices relative to the model's surface, and surface pressure measurements as a function of roll angle when the model is stationary or undergoing a wing rock motion. The roll time history data was numerically differentiated to determine the dynamic roll moment coefficient. An analysis of these data revealed that the primary mechanism for the limit cycle behavior was a time lag in the position of the vortices normal to the wing surface.
High Precision Pressure Measurement with a Funnel
ERIC Educational Resources Information Center
Lopez-Arias, T.; Gratton, L. M.; Oss, S.
2008-01-01
A simple experimental device for high precision differential pressure measurements is presented. Its working mechanism recalls that of a hydraulic press, where pressure is supplied by insufflating air under a funnel. As an application, we measure air pressure inside a soap bubble. The soap bubble is inflated and connected to a funnel which is…
Boillot, A; Massol, J; Maupoil, V; Grelier, R; Bernard, B; Capellier, G; Berthelot, A; Barale, F
1997-03-01
a) To investigate responsiveness to exogenous catecholamines in rat endotoxin shock by studying both myocardial and vascular functional parameters, and to determine the relationship of these parameters with other relevant biological parameters of the adrenergic pathway, such as myocardial beta-adrenergic receptors and cyclic adenosine monophosphate (cAMP); b) to investigate the role of tumor necrosis factor (TNF)-alpha via prophylactic anti-TNF-alpha monoclonal antibody administration. Experimental, comparative hospital. Laboratory in a university hospital. Male Sprague-Dawley rats, weighing 280 to 340 g. Intravenous injection of Escherichia coli endotoxin (5 mg/100 g) in the first group; injection of the same dose of endotoxin preceded by 2 mg/100 g of anti-TNF-alpha monoclonal antibody in the second group; injection of saline in the third (control) group. TNF-alpha concentration was measured before and during the first 3 hrs in all three groups. Myocardial and vascular functional parameters were obtained, respectively, from Langendorff perfused hearts and isolated aortic rings. Adrenergic biochemical parameters (catecholamines, density and affinity of beta-receptors, and isoproterenol-stimulated myocardial cAMP) were determined 3 hrs after injections in the three groups. After endotoxin injection, serum TNF-alpha concentrations peaked at 60 mins (2496 +/- 412 pg/mL) and returned slowly to control values at 3 hrs; serum TNF-alpha concentrations remained under the limit of detection in the other two groups. When compared with the control group, plasma concentrations of epinephrine and norepinephrine were significantly (p < .05) increased. Baseline values for differential left ventricular pressure and coronary flow were significantly (p < .001, p < .01, respectively) reduced in the endotoxin group; heart rate remained unchanged. In the endotoxin and control groups, isoproterenol induced a similar increase in differential left ventricular pressure and in heart rate. Anti-TNF-alpha antibody increased cardiac response by partially preventing the decrease by endotoxin in differential left intraventricular pressure. Maximal specific binding of 125iodocyanopindolol and myocardial cAMP accumulation were significantly (p < .01) reduced in the endotoxin group in comparison with the control group. Anti-TNF-alpha antibody prevented the endotoxin-induced decrease in cAMP synthesis (p < .05) but did not modify the density of receptors. Affinity of receptors was similar in the three groups. In aortic rings, endotoxin administration significantly (p < .01) shifted the dose-response curve to norepinephrine to the right, both in the presence and absence of endothelium. NG-monomethyl-L-arginine significantly increased the contractions to attain the control level: p < .001 in the presence of endothelium; p < .05 in the absence of endothelium. Anti-TNF-alpha antibody did not prevent endotoxin-induced vascular hyporeactivity to norepinephrine in either endothelium-intact or -denuded rings, but partially attenuated the decrease in maximal response. In ex vivo experiments, 3 hrs after endotoxin injection, vascular responsiveness was sharply decreased. This impaired response was improved in vitro by the inhibition of nitric oxide. The heart response to isoproterenol, nevertheless, was maintained, even though there was an obvious decrease in receptor density and an impaired myocardial accumulation of cAMP. Anti-TNF-alpha antibody partially prevented the alteration of both myocardial pressure response to isoproterenol and biochemical parameters, and was not efficacious in preventing vascular hyporeactivity to vasoconstrictor agents.
Hanssen, Benjamin L.; Jamie, Joanne F.; Jamie, Ian M.; Siderhurst, Matthew S.; Taylor, Phillip W.
2016-01-01
The Queensland fruit fly, Bactrocera tryoni (Froggatt) (Q-fly), is a major horticultural pest in Eastern Australia. Effective monitoring, male annihilation technique (MAT) and mass trapping (MT) are all important for control and require strong lures to attract flies to traps or toxicants. Lure strength is thought to be related in part to volatility, but little vapour pressure data are available for most Q-fly lures. Raspberry ketone (4-(4-hydroxyphenyl)-2-butanone) and analogs that had esters (acetyl, difluoroacetyl, trifluoroacetyl, formyl, propionyl) and ethers (methyl ether, trimethylsilyl ether) in replacement of the phenolic group, and in one case also had modification of the 2-butanone side chain, were measured for their vapour pressures by differential scanning calorimetry (DSC), and their attractiveness to Q-fly was assessed in small cage environmentally controlled laboratory bioassays. Maximum response of one category of compounds, containing both 2-butanone side chain and ester group was found to be higher than that of the other group of compounds, of which either of 2-butanone or ester functionality was modified. However, linear relationship between vapour pressure and maximum response was not significant. The results of this study indicate that, while volatility may be a factor in lure effectiveness, molecular structure is the dominating factor for the series of molecules investigated. PMID:27196605
Effects of oxygen partial pressure on Li-air battery performance
NASA Astrophysics Data System (ADS)
Kwon, Hyuk Jae; Lee, Heung Chan; Ko, Jeongsik; Jung, In Sun; Lee, Hyun Chul; Lee, Hyunpyo; Kim, Mokwon; Lee, Dong Joon; Kim, Hyunjin; Kim, Tae Young; Im, Dongmin
2017-10-01
For application in electric vehicles (EVs), the Li-air battery system needs an air intake system to supply dry oxygen at controlled concentration and feeding rate as the cathode active material. To facilitate the design of such air intake systems, we have investigated the effects of oxygen partial pressure (≤1 atm) on the performance of the Li-air cell, which has not been systematically examined. The amounts of consumed O2 and evolved CO2 from the Li-air cell are measured with a custom in situ differential electrochemical gas chromatography-mass spectrometry (DEGC-MS). The amounts of consumed O2 suggest that the oxygen partial pressure does not affect the reaction mechanism during discharge, and the two-electron reaction occurs under all test conditions. On the other hand, the charging behavior varies by the oxygen partial pressure. The highest O2 evolution ratio is attained under 70% O2, along with the lowest CO2 evolution. The cell cycle life also peaks at 70% O2 condition. Overall, an oxygen partial pressure of about 0.5-0.7 atm maximizes the Li-air cell capacity and stability at 1 atm condition. The findings here indicate that the appropriate oxygen partial pressure can be a key factor when developing practical Li-air battery systems.
Atmospheric pressure plasma accelerates tail regeneration in tadpoles Xenopus laevis
NASA Astrophysics Data System (ADS)
Rivie, A.; Martus, K.; Menon, J.
2017-08-01
Atmospheric pressure plasma is a partially ionized gas composed of neutral and charged particles, including electrons and ions, as well as reactive oxygen species (ROS). Recently, it is utilized as possible therapy in oncology, sterilization, skin diseases, wound healing and tissue regeneration. In this study we focused on effect of plasma exposure on tail regeneration of tadpoles, Xenopus leavis with special emphasis on role of ROS, antioxidant defenses and morphological features of the regenerate. When amputated region of the tail was exposed to the helium plasma it resulted in a faster rate of growth, elevated ROS and increase in antioxidant enzymes in the regenerate compared to that of untreated control. An increase in nitric oxide (free radical) as well as activity of nitric oxide synthase(s) were observed once the cells of the regeneration blastema - a mass of proliferating cells are ready for differentiation. Microscopically the cells of the regenerate of plasma treated tadpoles show altered morphology and characteristics of cellular hypoxia and oxidative stress. We summarize that plasma exposure accelerates the dynamics of wound healing and tail regeneration through its effects on cell proliferation and differentiation as well as angiogenesis mediated through ROS signaling.
A Model for the Oxidation of Carbon Silicon Carbide Composite Structures
NASA Technical Reports Server (NTRS)
Sullivan, Roy M.
2004-01-01
A mathematical theory and an accompanying numerical scheme have been developed for predicting the oxidation behavior of carbon silicon carbide (C/SiC) composite structures. The theory is derived from the mechanics of the flow of ideal gases through a porous solid. The result of the theoretical formulation is a set of two coupled nonlinear differential equations written in terms of the oxidant and oxide partial pressures. The differential equations are solved simultaneously to obtain the partial vapor pressures of the oxidant and oxides as a function of the spatial location and time. The local rate of carbon oxidation is determined using the map of the local oxidant partial vapor pressure along with the Arrhenius rate equation. The nonlinear differential equations are cast into matrix equations by applying the Bubnov-Galerkin weighted residual method, allowing for the solution of the differential equations numerically. The numerical method is demonstrated by utilizing the method to model the carbon oxidation and weight loss behavior of C/SiC specimens during thermogravimetric experiments. The numerical method is used to study the physics of carbon oxidation in carbon silicon carbide composites.
NASA Astrophysics Data System (ADS)
Peselnick, L.
1982-08-01
An ultrasonic method is presented which combines features of the differential path and the phase comparison methods. The proposed differential path phase comparison method, referred to as the `hybrid' method for brevity, eliminates errors resulting from phase changes in the bond between the sample and buffer rod. Define r(P) [and R(P)] as the square of the normalized frequency for cancellation of sample waves for shear [and for compressional] waves. Define N as the number of wavelengths in twice the sample length. The pressure derivatives r'(P) and R' (P) for samples of Alcoa 2024-T4 aluminum were obtained by using the phase comparison and the hybrid methods. The values of the pressure derivatives obtained by using the phase comparison method show variations by as much as 40% for small values of N (N < 50). The pressure derivatives as determined from the hybrid method are reproducible to within ±2% independent of N. The values of the pressure derivatives determined by the phase comparison method for large N are the same as those determined by the hybrid method. Advantages of the hybrid method are (1) no pressure dependent phase shift at the buffer-sample interface, (2) elimination of deviatoric stress in the sample portion of the sample assembly with application of hydrostatic pressure, and (3) operation at lower ultrasonic frequencies (for comparable sample lengths), which eliminates detrimental high frequency ultrasonic problems. A reduction of the uncertainties of the pressure derivatives of single crystals and of low porosity polycrystals permits extrapolation of such experimental data to deeper mantle depths.
Dipla, Konstantina; Kousoula, Dimitra; Zafeiridis, Andreas; Karatrantou, Konstantina; Nikolaidis, Michalis G; Kyparos, Antonios; Gerodimos, Vassilis; Vrabas, Ioannis S
2016-06-01
What is the central question of this study? In obesity, the exaggerated blood pressure response to voluntary exercise is linked to hypertension, yet the mechanisms are not fully elucidated. We examined whether involuntary contractions elicit greater haemodynamic responses and altered neural control of blood pressure in normotensive obese versus lean women. What is the main finding and its importance? During involuntary contractions induced by whole-body vibration, there were augmented blood pressure and spontaneous baroreflex responses in obese compared with lean women. This finding is suggestive of an overactive mechanoreflex in the exercise-induced hypertensive response in obesity. Passive contractions did not elicit differential heart rate responses in obese compared with lean women, implying other mechanisms for the blunted heart rate response reported during voluntary exercise in obesity. In obesity, the exaggerated blood pressure (BP) response to exercise is linked to hypertension, yet the mechanisms are not fully elucidated. In this study, we examined whether involuntary mechanical oscillations, induced by whole-body vibration (WBV), elicit greater haemodynamic responses and altered neural control of BP in obese versus lean women. Twenty-two normotensive, premenopausal women (12 lean and 10 obese) randomly underwent a passive WBV (25 Hz) and a control protocol (similar posture without WVB). Beat-by-beat BP, heart rate, stroke volume, systemic vascular resistance, cardiac output, parasympathetic output (evaluated by heart rate variability) and spontaneous baroreceptor sensitivity (sBRS) were assessed. We found that during WBV, obese women exhibited an augmented systolic BP response compared with lean women that was correlated with body fat percentage (r = 0.77; P < 0.05). The exaggerated BP rise was driven mainly by the greater increase in cardiac output index in obese versus lean women, associated with a greater stroke volume index in obese women. Involuntary contractions did not elicit a differential magnitude of responses in heart rate, heart rate variability indices and systemic vascular resistance in obese versus lean women; however, they did result in greater sBRS responses (P < 0.05) in obese women. In conclusion, involuntary contractions elicited an augmented BP and sBRS response in normotensive obese versus lean women. The greater elevations in circulatory haemodynamics in obese women are suggestive of an overactive mechanoreflex in the exercise-induced hypertensive response in obesity. © 2016 The Authors. Experimental Physiology © 2016 The Physiological Society.
Fluidic angular velocity sensor
NASA Technical Reports Server (NTRS)
Berdahl, C. M. (Inventor)
1986-01-01
A fluidic sensor providing a differential pressure signal proportional to the angular velocity of a rotary input is described. In one embodiment the sensor includes a fluid pump having an impeller coupled to a rotary input. A housing forming a constricting fluid flow chamber is connected to the fluid input of the pump. The housing is provided with a fluid flow restrictive input to the flow chamber and a port communicating with the interior of the flow chamber. The differential pressure signal measured across the flow restrictive input is relatively noise free and proportional to the square of the angular velocity of the impeller. In an alternative embodiment, the flow chamber has a generally cylindrical configuration and plates having flow restrictive apertures are disposed within the chamber downstream from the housing port. In this embodiment, the differential pressure signal is found to be approximately linear with the angular velocity of the impeller.
Goto, Makiko; Ikeyama, Kazuyuki; Tsutsumi, Moe; Denda, Sumiko; Denda, Mitsuhiro
2010-07-01
We have previously suggested that a variety of environmental factors might be first sensed by epidermal keratinocytes, which represent the frontier of the body. To further examine this idea, in the present study, we examined the intracellular calcium responses of cultured keratinocytes to external hydraulic pressure. First, we compared the responses of undifferentiated and differentiated keratinocytes with those of fibroblasts, vascular endothelial cells (VEC), and lymphatic endothelial cells. Elevation of intracellular calcium was observed after application of pressure to keratinocytes, fibroblasts, and VEC. The calcium propagation extended over a larger area and continued for a longer period of time in differentiated keratinocytes, as compared with the other cells. The response of the keratinocytes was dramatically reduced when the cells were incubated in medium without calcium. Application of a non-selective transient receptor potential (TRP) channel blocker also attenuated the calcium response. These results suggest that differentiated keratinocytes are sensitive to external pressure and that TRP might be involved in the mechanism of their response. (c) 2010 Wiley-Liss, Inc.
Analytic Formulation and Numerical Implementation of an Acoustic Pressure Gradient Prediction
NASA Technical Reports Server (NTRS)
Lee, Seongkyu; Brentner, Kenneth S.; Farassat, F.; Morris, Philip J.
2008-01-01
Two new analytical formulations of the acoustic pressure gradient have been developed and implemented in the PSU-WOPWOP rotor noise prediction code. The pressure gradient can be used to solve the boundary condition for scattering problems and it is a key aspect to solve acoustic scattering problems. The first formulation is derived from the gradient of the Ffowcs Williams-Hawkings (FW-H) equation. This formulation has a form involving the observer time differentiation outside the integrals. In the second formulation, the time differentiation is taken inside the integrals analytically. This formulation avoids the numerical time differentiation with respect to the observer time, which is computationally more efficient. The acoustic pressure gradient predicted by these new formulations is validated through comparison with available exact solutions for a stationary and moving monopole sources. The agreement between the predictions and exact solutions is excellent. The formulations are applied to the rotor noise problems for two model rotors. A purely numerical approach is compared with the analytical formulations. The agreement between the analytical formulations and the numerical method is excellent for both stationary and moving observer cases.
Role of Re-entry Tears on the Dynamics of Type B Dissection Flap.
Canchi, Saranya; Guo, Xiaomei; Phillips, Matt; Berwick, Zachary; Kratzberg, Jarin; Krieger, Joshua; Roeder, Blayne; Haulon, Stephan; Chambers, Sean; Kassab, Ghassan S
2018-01-01
Mortality during follow-up after acute Type B aortic dissection is substantial with aortic expansion observed in over 59% of the patients. Lumen pressure differential is considered a prime contributing factor for aortic dilation after propagation. The objective of the study was to evaluate the relationship between changes in vessel geometry with and without lumen pressure differential post propagation in an ex vivo porcine model with comparison with patient clinical data. A pulse duplicator system was utilized to propagate the dissection within descending thoracic porcine aortic vessels for set proximal (%circumference of the entry tear: 40%, axial length: 2 cm) and re-entry (50% of distal vessel circumference) tear geometry. Measurements of lumen pressure differential were made along with quantification of vessel geometry (n = 16). The magnitude of mean lumen pressure difference measured after propagation was low (~ 5 mmHg) with higher pressures measured in false lumen and as anticipated the pressure difference approached zero after the creation of distal re-entry tear. False lumen Dissection Ratio (FDR) defined as arc length of dissected wall divided by arc length of dissection flap, had mean value of 1.59 ± 0.01 at pressure of 120/80 mmHg post propagation with increasing values with increase in pulse pressure that was not rescued with the creation of distal re-entry tear (p < 0.01). An average FDR of 1.87 ± 0.27 was measured in patients with acute Type B dissection. Higher FDR value (FDR = 1 implies zero dissection) in the presence of distal re-entry tear demonstrates an acute change in vessel morphology in response to the dissection independent of local pressure changes challenges the re-apposition of the aortic wall.
Pressure suppression containment system for boiling water reactor
Gluntz, Douglas M.; Nesbitt, Loyd B.
1997-01-01
A system for suppressing the pressure inside the containment of a BWR following a postulated accident. A piping subsystem is provided which features a main process pipe that communicates the wetwell airspace to a connection point downstream of the guard charcoal bed in an offgas system and upstream of the main bank of delay charcoal beds which give extensive holdup to offgases. The main process pipe is fitted with both inboard and outboard containment isolation valves. Also incorporated in the main process pipe is a low-differential-pressure rupture disk which prevents any gas outflow in this piping whatsoever until or unless rupture occurs by virtue of pressure inside this main process pipe on the wetwell airspace side of the disk exceeding the design opening (rupture) pressure differential. The charcoal holds up the radioactive species in the noncondensable gas from the wetwell plenum by adsorption, allowing time for radioactive decay before the gas is vented to the environs.
NASA Astrophysics Data System (ADS)
Canbay, Canan Aksu; Polat, Tercan
2017-09-01
In this work the effects of the applied pressure on the characteristic transformation temperatures, the high temperature order-disorder phase transitions, the variation in diffraction peaks and the surface morphology of the CuAlMnNi shape memory alloy was investigated. The evolution of the transformation temperatures was studied by differential scanning calorimetry (DSC) with different heating and cooling rates. The differential thermal analysis measurements were performed to obtain the ordered-disordered phase transformations from room temperature to 900 °C. The characteristic transformation temperatures and the thermodynamic parameters were highly sensitive to variations in the applied pressure and also the applied pressure affected the thermodynamic parameters. The activation energy of the sample according to applied pressure values calculated by Kissinger method. The structural changes of the samples were studied by X-ray diffraction (XRD) measurements and by optical microscope observations at room temperature.
Efthymiou, George S.; Shuler, Michael L.
1989-08-29
An improved multilayer continuous biological membrane reactor and a process to eliminate diffusional limitations in membrane reactors in achieved by causing a convective flux of nutrient to move into and out of an immobilized biocatalyst cell layer. In a pressure cycled mode, by increasing and decreasing the pressure in the respective layers, the differential pressure between the gaseous layer and the nutrient layer is alternately changed from positive to negative. The intermittent change in pressure differential accelerates the transfer of nutrient from the nutrient layers to the biocatalyst cell layer, the transfer of product from the cell layer to the nutrient layer and the transfer of byproduct gas from the cell layer to the gaseous layer. Such intermittent cycling substantially eliminates mass transfer gradients in diffusion inhibited systems and greatly increases product yield and throughput in both inhibited and noninhibited systems.
Differential absorption lidar measurements of atmospheric temperature and pressure profiles
NASA Technical Reports Server (NTRS)
Korb, C. L.
1981-01-01
The theory and methodology of using differential absorption lidar techniques for the remote measurement of atmospheric pressure profiles, surface pressure, and temperature profiles from ground, air, and space-based platforms are presented. Pressure measurements are effected by means of high resolution measurement of absorption at the edges of the oxygen A band lines where absorption is pressure dependent due to collisional line broadening. Temperature is assessed using measurements of the absorption at the center of the oxygen A band line originating from a quantum state with high ground state energy. The population of the state is temperature dependent, allowing determination of the temperature through the Boltzmann term. The results of simulations of the techniques using Voigt profile and variational analysis are reported for ground-based, airborne, and Shuttle-based systems. Accuracies in the 0.5-1.0 K and 0.1-0.3% range are projected.
Safety Analysis LOX-30 Liquid Oxygen Generator.
1978-05-22
Valve. Protects the LOX—30 plant against over—pressurization. Valve opens at approximately 100 psig. (3) Oil Pressure Switch . Protects compressor...29 psig. d. Cryogenerator. •0 (1) 011 Pressure Switch . Prevents cryogenerator damage due to inadequate lubrication. The switch initiates system shut...when helium pressure is less than 200 psig, will result in compressor shut—down within ten seconds. (2) Differential Pressure Switch (2 each). These
Rongeat, Carine; Llamas-Jansa, Isabel; Doppiu, Stefania; Deledda, Stefano; Borgschulte, Andreas; Schultz, Ludwig; Gutfleisch, Oliver
2007-11-22
Among the thermodynamic properties of novel materials for solid-state hydrogen storage, the heat of formation/decomposition of hydrides is the most important parameter to evaluate the stability of the compound and its temperature and pressure of operation. In this work, the desorption and absorption behaviors of three different classes of hydrides are investigated under different hydrogen pressures using high-pressure differential scanning calorimetry (HP-DSC). The HP-DSC technique is used to estimate the equilibrium pressures as a function of temperature, from which the heat of formation is derived. The relevance of this procedure is demonstrated for (i) magnesium-based compounds (Ni-doped MgH2), (ii) Mg-Co-based ternary hydrides (Mg-CoHx) and (iii) Alanate complex hydrides (Ti-doped NaAlH4). From these results, it can be concluded that HP-DSC is a powerful tool to obtain a good approximation of the thermodynamic properties of hydride compounds by a simple and fast study of desorption and absorption properties under different pressures.
Gravitropism in Higher Plant Shoots 1
Mueller, Wesley J.; Salisbury, Frank B.; Blotter, P. Thomas
1984-01-01
Dimensional changes during gravitropic bending of cocklebur (Xanthium strumarium L.) dicot stems were measured using techniques of stereo photogrammetry. The differential growth is from an increased growth rate on the bottom of the stem and a stopping or contraction of the top. Contraction of the top was especially evident upon release and immediate bending of horizontal stems that had been restrained between stiff wires for 36 hours. The energy for this could have been stored in both the top and bottom, since the bottom elongated, and the top contracted. Forces developed during bending were measured by fastening a stem tip to the end of a bar with attached strain gauges and recording electrical output from the strain gauges. Restrained mature cocklebur stems continued to accumulate potential energy for bending for about 120 hours, after which the recorded force reached a maximum. Pressures within castor bean (Ricinus communis L.) stems were also measured with 3.5-millimeter diameter pressure transducers. As expected, the pressure on the bottom of the restrained plants increased with time; pressures decreased in vertical controls, tops of restrained stems, and bottoms of free-bending stems. Pressures increased in tops of free-bending stems. When restrained plants were released, pressure on the bottom decreased and pressure on the top increased. Results suggest a possible role for cell contraction in the top of stems bending upward in response to gravity. Images Fig. 5 Fig. 11 PMID:16663987
Differential Post-Exercise Blood Pressure Responses between Blacks and Caucasians
Yan, Huimin; Behun, Michael A.; Cook, Marc D.; Ranadive, Sushant M.; Lane-Cordova, Abbi D.; Kappus, Rebecca M.; Woods, Jeffrey A.; Wilund, Kenneth R.; Baynard, Tracy; Halliwill, John R.; Fernhall, Bo
2016-01-01
Post-exercise hypotension (PEH) is widely observed in Caucasians (CA) and is associated with histamine receptors 1- and 2- (H1R and H2R) mediated post-exercise vasodilation. However, it appears that blacks (BL) may not exhibit PEH following aerobic exercise. Hence, this study sought to determine the extent to which BL develop PEH, and the contribution of histamine receptors to PEH (or lack thereof) in this population. Forty-nine (22 BL, 27 CA) young and healthy subjects completed the study. Subjects were randomly assigned to take either a combined H1R and H2R antagonist (fexofenadine and ranitidine) or a control placebo. Supine blood pressure (BP), cardiac output and peripheral vascular resistance measurements were obtained at baseline, as well as at 30 min, 60 min and 90 min after 45 min of treadmill exercise at 70% heart rate reserve. Exercise increased diastolic BP in young BL but not in CA. Post-exercise diastolic BP was also elevated in BL after exercise with histamine receptor blockade. Moreover, H1R and H2R blockade elicited differential responses in stroke volume between BL and CA at rest, and the difference remained following exercise. Our findings show differential BP responses following exercise in BL and CA, and a potential role of histamine receptors in mediating basal and post-exercise stroke volume in BL. The heightened BP and vascular responses to exercise stimulus is consistent with the greater CVD risk in BL. PMID:27074034
Differential Post-Exercise Blood Pressure Responses between Blacks and Caucasians.
Yan, Huimin; Behun, Michael A; Cook, Marc D; Ranadive, Sushant M; Lane-Cordova, Abbi D; Kappus, Rebecca M; Woods, Jeffrey A; Wilund, Kenneth R; Baynard, Tracy; Halliwill, John R; Fernhall, Bo
2016-01-01
Post-exercise hypotension (PEH) is widely observed in Caucasians (CA) and is associated with histamine receptors 1- and 2- (H1R and H2R) mediated post-exercise vasodilation. However, it appears that blacks (BL) may not exhibit PEH following aerobic exercise. Hence, this study sought to determine the extent to which BL develop PEH, and the contribution of histamine receptors to PEH (or lack thereof) in this population. Forty-nine (22 BL, 27 CA) young and healthy subjects completed the study. Subjects were randomly assigned to take either a combined H1R and H2R antagonist (fexofenadine and ranitidine) or a control placebo. Supine blood pressure (BP), cardiac output and peripheral vascular resistance measurements were obtained at baseline, as well as at 30 min, 60 min and 90 min after 45 min of treadmill exercise at 70% heart rate reserve. Exercise increased diastolic BP in young BL but not in CA. Post-exercise diastolic BP was also elevated in BL after exercise with histamine receptor blockade. Moreover, H1R and H2R blockade elicited differential responses in stroke volume between BL and CA at rest, and the difference remained following exercise. Our findings show differential BP responses following exercise in BL and CA, and a potential role of histamine receptors in mediating basal and post-exercise stroke volume in BL. The heightened BP and vascular responses to exercise stimulus is consistent with the greater CVD risk in BL.
Provan, Sella A; Semb, Anne Grete; Hisdal, Jonny; Stranden, Einar; Agewall, Stefan; Dagfinrud, Hanne; Angel, Kristin; Atar, Dan; Kvien, Tore K
2011-05-01
To compare markers of cardiovascular disease (CVD) risk between patients with rheumatoid arthritis (RA) in an active disease state and those with RA in remission, and to compare both groups with community controls. 113 patients with RA and 86 community controls were assessed across a panel of biomarkers for CVD. RA in remission was defined as Clinical Disease Activity Index ≤2.8. Community controls were selected at random by Statistics Norway, and controls were matched with patients in the cohorts in strata using details of age, sex and residential area. A panel of biomarkers (N-terminal pro-brain natriuretic peptide (NT-proBNP), total cholesterol, reactive hyperaemia index (RHI), pressure measurements, measures of arterial stiffness and intima-media thickness) were compared between patients with active RA and those with RA in remission. Both groups were compared with controls. In addition, biomarker levels were compared across subgroups based on anticyclic citrullinated peptide status, level of joint destruction and presence of extra-articular manifestations. Patients with active RA had significantly higher levels of NT-proBNP, brachial systolic pressure, augmentation index and central systolic pressure but lower cholesterol than patients in remission and controls. In addition, patients with active RA had significantly higher levels of pulse wave velocity and worse RHI than patients in remission. Comparison across other subgroups gave less consistent differentiations in levels of CVD risk markers. Patients with active RA, but not those in remission, had significantly increased levels of CVD risk markers. These results link inflammatory activity to markers of CVD risk in patients with RA and may indirectly support the notion that remission in RA confers diminished cardiovascular morbidity.
N2 and CO2 capillary breakthrough experiments on Opalinus Clay
NASA Astrophysics Data System (ADS)
Amann, Alexandra; Busch, Andreas; Krooss, Bernhard M.
2013-04-01
The aim of this project was to identify the critical capillary pressures on the drainage and the imbibition path for clay-rich rocks, at a burial depth of 1500 m (30 MPa confining pressure, 45°C). The experiments were performed on fully water-saturated sample plugs of 38 mm diameter and 5 to 20 mm length. The capillary breakthrough pressure was determined by step-wise increase of the differential pressure (drainage), the capillary snap-off pressure was determined from the final pressure difference at the end of a spontaneous imbibition phase. The confining pressure was kept constant throughout the experiment, which resulted in a continuous change of effective stress. The measurements were performed in a closed system and the pressure response was interpreted in terms of different flow mechanisms (diffusion-controlled vs. viscous flow). In total, four breakthrough experiments with N2 and five experiments with CO2 were conducted. Because of very low flow rates and high critical capillary pressures the experiments took rather long. In some cases the experiments were allowed to run for half a year (drainage experiments). Substantial differences were observed between gas breakthrough (drainage) and snap-off (imbibition) pressures. As expected, breakthrough pressures were always higher than the snap-off pressures. For three samples a pbreakthrough/psnap-off ratio of 1.6 to 1.9 was observed, for one sample a ratio of 4. A clear permeability-capillary pressure relationship could not be identified. Based on (omnidirectional) Hg-injection porosimetry results, and assuming perfectly water wet mineral surfaces, gas breakthrough pressures were predicted to occur at approximately 16 MPa for N2 and 5.7 MPa for CO2. The gas breakthrough experiments, however, produced different results. Even though a relatively homogeneous sample set was chosen, with permeability coefficients ranging between 1E-21 and 6E-21 m², the critical capillary breakthrough pressures for nitrogen ranged between 3.4 and 12.3 MPa and snap-off pressures from 0.5 to 6.4 MPa. The CO2 experiments yielded breakthrough pressures of 14.0 to 17.5 MPa and snap-off pressures of 3.5 to 10 MPa. No significant changes in single-phase water permeability coefficients before and after the gas breakthrough experiments were observed. In our contribution we will discuss the following points: 1. Gas fluxes occurring during gas breakthrough experiments may be extremely low. Therefore an unambigous identification of gas breakthrough is not always possible. Besides viscous or diffusive transport, dissolution of CO2 in the pore water may affect the observed pressure changes in the upstream and downstream compartments. All of these processes occur simultaneously and can only be partly discriminated. Gas fluxes detected during the diffusion-controlled flow regimes result in nominal effective gas permeability coefficients as low as 6E-25 m² to 7E-24m². 2. The application of purely capillary-controlled flow models may not be justified. o Gas breakthrough is controlled by effective stress, i.e. the opening of pores or small fissures. o Assumptions about wettability (completely water-wet mineral surfaces) may be incorrect.
Development of MCAERO wing design panel method with interactive graphics module
NASA Technical Reports Server (NTRS)
Hawk, J. D.; Bristow, D. R.
1984-01-01
A reliable and efficient iterative method has been developed for designing wing section contours corresponding to a prescribed subcritical pressure distribution. The design process is initialized by using MCAERO (MCAIR 3-D Subsonic Potential Flow Analysis Code) to analyze a baseline configuration. A second program DMCAERO is then used to calculate a matrix containing the partial derivative of potential at each control point with respect to each unknown geometry parameter by applying a first-order expansion to the baseline equations in MCAERO. This matrix is calculated only once but is used in each iteration cycle to calculate the geometry perturbation and to analyze the perturbed geometry. The potential on the new geometry is calculated by linear extrapolation from the baseline solution. This extrapolated potential is converted to velocity by numerical differentiation, and velocity is converted to pressure by using Bernoulli's equation. There is an interactive graphics option which allows the user to graphically display the results of the design process and to interactively change either the geometry or the prescribed pressure distribution.
[A case of ring melanoma found while treating traumatic glaucoma].
Manabe, Kazuyo; Jo, Nobuo; Tateno, Hiroko; Shishidon, Nami; Takahashi, Kanji; Iwashita, Kenshiro; Isei, Taiki; Ohe, Chisato; Sakaida, Noriko; Uemura, Yoshiko
2013-04-01
Ring melanoma, a malignant melanoma which infiltrates over 180 degrees degrees of the ciliary body is very rare in Japan. We report a case of ring melanoma found while treating treatment of traumatic glaucoma with an ultrasound biomicroscope (UBM). A 44-year old woman presented with high intraocular pressure after blunt trauma in her left eye. Best-corrected visual acuity OS was 1.2, and intraocular pressure was 30 mmHg. Gonioscopy showed about 180 degrees of the angle recession. Intraocular pressure was difficult to control in spite of anti-glaucoma drug treatment. Rapid progression of iris elevation and 360 degrees thickening of the ciliary body were detected by UBM. We detected atypical cells with melanine granules in the aqueous fluid and positive findings in PET-CT, leading to a diagnosis of ciliary body malignant melanoma. Consequently we enucleated the left eye. The histopathological diagnosis was ring melanoma. Ring melanoma is an important element in the differential diagnosis for untreatable secondary glaucoma.
Recrystallization of fluconazole using the supercritical antisolvent (SAS) process.
Park, Hee Jun; Kim, Min-Soo; Lee, Sibeum; Kim, Jeong-Soo; Woo, Jong-Soo; Park, Jeong-Sook; Hwang, Sung-Joo
2007-01-10
The supercritical antisolvent (SAS) process was used to modify solid state characteristics of fluconazole. Fluconazole was recrystallized at various temperatures (60-80 degrees C) and pressures (8-16MPa) using dichloromethane (DCM) as a solvent. Acetone and ethanol were also employed as solvents. The fluconazole polymorphs prepared by the SAS process were characterized by differential scanning calorimetry (DSC), thermogravimetry analysis (TGA), powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). Furthermore, the equilibrium solubility of the samples in aqueous solution was determined. Fluconazole anhydrate form I was obtained at low temperature (40 degrees C) and anhydrate form II was obtained at high temperature (80 degrees C). The variation of pressure during the SAS process may influence the preferred orientation. Anhydrate forms I and II were also obtained using various solvents. Therefore, it was shown that solid state characteristics of fluconazole, including the polymorphic form and preferred orientation, can be controlled by changing operating conditions of the SAS process such as temperature, pressure, and solvent.
Cardiovascular simulator improvement: pressure versus volume loop assessment.
Fonseca, Jeison; Andrade, Aron; Nicolosi, Denys E C; Biscegli, José F; Leme, Juliana; Legendre, Daniel; Bock, Eduardo; Lucchi, Julio Cesar
2011-05-01
This article presents improvement on a physical cardiovascular simulator (PCS) system. Intraventricular pressure versus intraventricular volume (PxV) loop was obtained to evaluate performance of a pulsatile chamber mimicking the human left ventricle. PxV loop shows heart contractility and is normally used to evaluate heart performance. In many heart diseases, the stroke volume decreases because of low heart contractility. This pathological situation must be simulated by the PCS in order to evaluate the assistance provided by a ventricular assist device (VAD). The PCS system is automatically controlled by a computer and is an auxiliary tool for VAD control strategies development. This PCS system is according to a Windkessel model where lumped parameters are used for cardiovascular system analysis. Peripheral resistance, arteries compliance, and fluid inertance are simulated. The simulator has an actuator with a roller screw and brushless direct current motor, and the stroke volume is regulated by the actuator displacement. Internal pressure and volume measurements are monitored to obtain the PxV loop. Left chamber internal pressure is directly obtained by pressure transducer; however, internal volume has been obtained indirectly by using a linear variable differential transformer, which senses the diaphragm displacement. Correlations between the internal volume and diaphragm position are made. LabVIEW integrates these signals and shows the pressure versus internal volume loop. The results that have been obtained from the PCS system show PxV loops at different ventricle elastances, making possible the simulation of pathological situations. A preliminary test with a pulsatile VAD attached to PCS system was made. © 2011, Copyright the Authors. Artificial Organs © 2011, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Johannes, Amélie; Zollhoefer, Bernd; Eujen, Ulrike; Kredel, Markus; Rauch, Stefan; Roewer, Norbert; Muellenbach, Ralf M
2013-04-01
Oxygenation during high-frequency oscillatory ventilation is secured by a high level of mean airway pressure. Our objective was to identify a pressure difference between the airway opening of the respiratory circuit and the trachea during application of different oscillatory frequencies. Six female Pietrain pigs (57.1 ± 3.6 kg) were first ventilated in a conventional mechanical ventilation mode. Subsequently, the animals were switched to high-frequency oscillatory ventilation by setting mean airway opening pressure 5 cmH(2)O above the one measured during controlled mechanical ventilation. Measurements at the airway opening and at tracheal levels were performed in healthy lungs and after induction of acute lung injury by surfactant depletion. During high-frequency oscillatory ventilation, the airway opening pressure was set at a constant level. The pressure amplitude was fixed at 90 cmH(2)O. Starting from an oscillatory frequency of 3 Hz, the frequency was increased in steps of 3 Hz to 15 Hz and then decreased accordingly. At each frequency, measurements were performed in the trachea through a side-lumen of the endotracheal tube and the airway opening pressure was recorded. The pressure difference was calculated. At every oscillatory frequency, a pressure loss towards the trachea could be shown. This pressure difference increased with higher oscillatory frequencies (3 Hz 2.2 ± 2.1 cmH(2)O vs. 15 Hz 7.5 ± 1.8 cmH(2)O). The results for healthy and injured lungs were similar. Tracheal pressures decreased with higher oscillatory frequencies. This may lead to pulmonary derecruitment. This has to be taken into consideration when increasing oscillatory frequencies and differentiated pressure settings are mandatory.
Results from Evaluation of Proposed ASME AG-1 Section FI Metal Media Filters - 13063
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, John A.; Giffin, Paxton K.; Parsons, Michael S.
High efficiency particulate air (HEPA) filtration technology is commonly used in Department of Energy (DOE) facilities that require control of radioactive particulate matter (PM) emissions due to treatment or management of radioactive materials. Although HEPA technology typically makes use of glass fiber media, metal and ceramic media filters are also capable of filtering efficiencies beyond the required 99.97%. Sintered metal fiber filters are good candidates for use in DOE facilities due to their resistance to corrosive environments and resilience at high temperature and elevated levels of relative humidity. Their strength can protect them from high differential pressure or pressure spikesmore » and allow for back pulse cleaning, extending filter lifetime. Use of these filters has the potential to reduce the cost of filtration in DOE facilities due to life cycle cost savings. ASME AG-1 section FI has not been approved due to a lack of protocols and performance criteria for qualifying section FI filters. The Institute for Clean Energy Technology (ICET) with the aid of the FI project team has developed a Section FI test stand and test plan capable of assisting in the qualification ASME AG-1 section FI filters. Testing done at ICET using the FI test stand evaluates resistance to rated air flow, test aerosol penetration and resistance to heated air of the section FI filters. Data collected during this testing consists of temperature, relative humidity, differential pressure, flow rate, upstream particle concentration, and downstream particle concentration. (authors)« less
Compensated vibrating optical fiber pressure measuring device
Fasching, George E.; Goff, David R.
1987-01-01
A microbending optical fiber is attached under tension to a diaphragm to se a differential pressure applied across the diaphragm which it causes it to deflect. The fiber is attached to the diaphragm so that one portion of the fiber, attached to a central portion of the diaphragm, undergoes a change in tension; proportional to the differential pressure applied to the diaphragm while a second portion attached at the periphery of the diaphragm remains at a reference tension. Both portions of the fiber are caused to vibrate at their natural frequencies. Light transmitted through the fiber is attenuated by both portions of the tensioned sections of the fiber by an amount which increases with the curvature of fiber bending so that the light signal is modulated by both portions of the fiber at separate frequencies. The modulated light signal is transduced into a electrical signal. The separate modulation signals are detected to generate separate signals having frequencies corresponding to the reference and measuring vibrating sections of the continuous fiber, respectively. A signal proportional to the difference between these signals is generated which is indicative of the measured pressure differential across the diaphragm. The reference portion of the fiber is used to compensate the pressure signal for zero and span changes resulting from ambient temperature and humidity effects upon the fiber and the transducer fixture.
Differential absorption lidars for remote sensing of atmospheric pressure and temperature profiles
NASA Technical Reports Server (NTRS)
Korb, C. Laurence; Schwemmer, Geary K.; Famiglietti, Joseph; Walden, Harvey; Prasad, Coorg
1995-01-01
A near infrared differential absorption lidar technique is developed using atmospheric oxygen as a tracer for high resolution vertical profiles of pressure and temperature with high accuracy. Solid-state tunable lasers and high-resolution spectrum analyzers are developed to carry out ground-based and airborne measurement demonstrations and results of the measurements presented. Numerical error analysis of high-altitude airborne and spaceborne experiments is carried out, and system concepts developed for their implementation.
Differential high pressure survival in stationary-phase Escherichia coli MG1655
NASA Astrophysics Data System (ADS)
Griffin, Patrick L.; Kish, Adrienne; Steele, Andrew; Hemley, Russell J.
2011-06-01
Hydrostatic pressure exerts a profound influence on nearly all facets of cellular structure and function with exposures to sufficiently high pressure leading to microbial inactivation. We report the first observation of a persistent, pressure-resistant subpopulation within stationary-phase samples of Escherichia coli MG1655, a mesophilic bacterium adapted to surface pressure. This high pressure-resistant subpopulation exhibits pressure survival ranging from 0.6 to 2.0 orders of magnitude greater survival than high pressure treatments at pressures of 225-400 MPa. We also examine some aspects of pressure treatment protocol that may influence the measurements of high pressure survival.
A Model for the Oxidation of C/SiC Composite Structures
NASA Technical Reports Server (NTRS)
Sullivan, Roy M.
2003-01-01
A mathematical theory and an accompanying numerical scheme have been developed for predicting the oxidation behavior of C/SiC composite structures. The theory is derived from the mechanics of the flow of ideal gases through a porous solid. Within the mathematical formulation, two diffusion mechanisms are possible: (1) the relative diffusion of one species with respect to the mixture, which is concentration gradient driven and (2) the diffusion associated with the average velocity of the gas mixture, which is total gas pressure gradient driven. The result of the theoretical formulation is a set of two coupled nonlinear differential equations written in terms of the oxidant and oxide partial pressures. The differential equations must be solved simultaneously to obtain the partial vapor pressures of the oxidant and oxides as a function of space and time. The local rate of carbon oxidation is determined as a function of space and time using the map of the local oxidant partial vapor pressure along with the Arrhenius rate equation. The nonlinear differential equations are cast into matrix equations by applying the Bubnov-Galerkin weighted residual method, allowing for the solution of the differential equations numerically. The end result is a numerical scheme capable of determining the variation of the local carbon oxidation rates as a function of space and time for any arbitrary C/SiC composite structures.
Turbine combustor with fuel nozzles having inner and outer fuel circuits
Uhm, Jong Ho; Johnson, Thomas Edward; Kim, Kwanwoo
2013-12-24
A combustor cap assembly for a turbine engine includes a combustor cap and a plurality of fuel nozzles mounted on the combustor cap. One or more of the fuel nozzles would include two separate fuel circuits which are individually controllable. The combustor cap assembly would be controlled so that individual fuel circuits of the fuel nozzles are operated or deliberately shut off to provide for physical separation between the flow of fuel delivered by adjacent fuel nozzles and/or so that adjacent fuel nozzles operate at different pressure differentials. Operating a combustor cap assembly in this fashion helps to reduce or eliminate the generation of undesirable and potentially harmful noise.
[Sleep disorders and epilepsy].
Aoki, Ryo; Ito, Hiroshi
2014-05-01
It has been reported that patients with epilepsy often have insomnia and/or daytime sleepiness; the symptomatologic features differ in seizure types. Not only the administration of anti-epileptics, but also inappropriate sleep hygiene cause daytime sleepiness. In subjective assessment of sleepiness, we need to pay attention if it can correctly assess or not. The prevalence of obstructive sleep apnea in patients with epilepsy is approximately 10-30%. Sleep apnea deteriorates the seizure control because of worsen sleep condition by sleep apnea, especially in elderly patients. Some researchers report that continuous positive airway pressure was effective for seizure control. Patients with epilepsy occasionally have REM sleep behavior disorder as comorbidity. Examination using polysomnography is required for differential diagnosis.
NASA Technical Reports Server (NTRS)
Roskam, J.; Muirhead, V. U.; Smith, H. W.; Peschier, T. D.
1977-01-01
The construction, calibration, and properties of a facility for measuring sound transmission through aircraft type panels are described along with the theoretical and empirical methods used. Topics discussed include typical noise source, sound transmission path, and acoustic cabin properties and their effect on interior noise. Experimental results show an average sound transmission loss in the mass controlled frequency region comparable to theoretical predictions. The results also verify that transmission losses in the stiffness controlled region directly depend on the fundamental frequency of the panel. Experimental and theoretical results indicate that increases in this frequency, and consequently in transmission loss, can be achieved by applying pressure differentials across the specimen.
Schneider, Bradley B.; Coy, Stephen L.; Krylov, Evgeny V.; Nazarov, Erkinjon G.
2013-01-01
Differential mobility spectrometry (DMS) separates ions on the basis of the difference in their migration rates under high versus low electric fields. Several models describing the physical nature of this field mobility dependence have been proposed but emerging as a dominant effect is the clusterization model sometimes referred to as the dynamic cluster-decluster model. DMS resolution and peak capacity is strongly influenced by the addition of modifiers which results in the formation and dissociation of clusters. This process increases selectivity due to the unique chemical interactions that occur between an ion and neutral gas phase molecules. It is thus imperative to bring the parameters influencing the chemical interactions under control and find ways to exploit them in order to improve the analytical utility of the device. In this paper we describe three important areas that need consideration in order to stabilize and capitalize on the chemical processes that dominate a DMS separation. The first involves means of controlling the dynamic equilibrium of the clustering reactions with high concentrations of specific reagents. The second area involves a means to deal with the unwanted heterogeneous cluster ion populations emitted from the electrospray ionization process that degrade resolution and sensitivity. The third involves fine control of parameters that affect the fundamental collision processes, temperature and pressure. PMID:20065515
The Effects of Core Composition on Iron Isotope Fractionation During Planetary Differentiation
NASA Astrophysics Data System (ADS)
Elardo, S. M.; Shahar, A.; Caracas, R.; Mock, T. D.; Sio, C. K. I.
2018-05-01
High pressure and temperature isotope exchange experiments and density functional theory calculations show how the composition of planetary cores affects the fractionation of iron isotopes during planetary differentiation.
Fetterman, Christina D; Rannala, Bruce; Walter, Michael A
2008-09-24
Members of the forkhead gene family act as transcription regulators in biological processes including development and metabolism. The evolution of forkhead genes has not been widely examined and selection pressures at the molecular level influencing subfamily evolution and differentiation have not been explored. Here, in silico methods were used to examine selection pressures acting on the coding sequence of five multi-species FOX protein subfamily clusters; FoxA, FoxD, FoxI, FoxO and FoxP. Application of site models, which estimate overall selection pressures on individual codons throughout the phylogeny, showed that the amino acid changes observed were either neutral or under negative selection. Branch-site models, which allow estimated selection pressures along specified lineages to vary as compared to the remaining phylogeny, identified positive selection along branches leading to the FoxA3 and Protostomia clades in the FoxA cluster and the branch leading to the FoxO3 clade in the FoxO cluster. Residues that may differentiate paralogs were identified in the FoxA and FoxO clusters and residues that differentiate orthologs were identified in the FoxA cluster. Neutral amino acid changes were identified in the forkhead domain of the FoxA, FoxD and FoxP clusters while positive selection was identified in the forkhead domain of the Protostomia lineage of the FoxA cluster. A series of residues under strong negative selection adjacent to the N- and C-termini of the forkhead domain were identified in all clusters analyzed suggesting a new method for refinement of domain boundaries. Extrapolation of domains among cluster members in conjunction with selection pressure information allowed prediction of residue function in the FoxA, FoxO and FoxP clusters and exclusion of known domain function in residues of the FoxA and FoxI clusters. Consideration of selection pressures observed in conjunction with known functional information allowed prediction of residue function and refinement of domain boundaries. Identification of residues that differentiate orthologs and paralogs provided insight into the development and functional consequences of paralogs and forkhead subfamily composition differences among species. Overall we found that after gene duplication of forkhead family members, rapid differentiation and subsequent fixation of amino acid changes through negative selection has occurred.
Pulse thermal energy transport/storage system
Weislogel, Mark M.
1992-07-07
A pulse-thermal pump having a novel fluid flow wherein heat admitted to a closed system raises the pressure in a closed evaporator chamber while another interconnected evaporator chamber remains open. This creates a large pressure differential, and at a predetermined pressure the closed evaporator is opened and the opened evaporator is closed. This difference in pressure initiates fluid flow in the system.
Multiplexing Transducers Based on Tunnel-Diode Oscillators
NASA Technical Reports Server (NTRS)
Chui, Talso; Penanen, Konstantin; Young, Joseph
2006-01-01
Multiplexing and differential transducers based on tunnel-diode oscillators (TDOs) would be developed, according to a proposal, for operation at very low and/or widely varying temperatures in applications that involve requirements to minimize the power and mass of transducer electronic circuitry. It has been known since 1975 that TDOs are useful for making high-resolution (of the order of 10(exp -9)) measurements at low temperatures. Since that time, TDO transducers have been found to offer the following additional advantages, which the present proposal is intended to exploit: TDO transducers can operate at temperatures ranging from 1 K to about 400 K. Most electronic components other than tunnel diodes do not operate over such a wide temperature range. TDO transducers can be made to operate at very low power - typically, <1 mW. Inasmuch as the response of a TDO transducer is a small change in an arbitrarily set oscillation frequency, the outputs of many TDOs operating at sufficiently different set frequencies can be multiplexed through a single wire. Inasmuch as frequencies can be easily subtracted by means of mixing circuitry, one can easily use two TDOs to make differential measurements. Differential measurements are generally more precise and less susceptible to environmental variations than are absolute measurements. TDO transducers are tolerant to ionizing radiation. Ultimately, the response of a TDO transducer is measured by use of a frequency counter. Because frequency counting can be easily implemented by use of clock signals available from most microprocessors, it is not necessary to incorporate additional readout circuitry that would, if included, add to the mass and power consumption of the transducer circuitry. In one example of many potential variations on the basic theme of the proposal, the figure schematically depicts a conceptual differential-pressure transducer containing a symmetrical pair of TDOs. The differential pressure would be exerted on an electrically conductive and grounded diaphragm, which, at zero differential pressure, would nominally be sprung to a middle position between two capacitor plates that would be parts of the two TDOs. The frequencies of the two TDOs would vary in opposite directions as variations in differential pressure bent the diaphragm away from one capacitor plate and toward the other. The outputs of the TDOs would be mixed and lowpass filtered to obtain a signal at the difference between the frequencies of the two TDOs. The difference frequency would be measured by a frequency counter and converted to differential pressure by a computer.
14 CFR 25.841 - Pressurized cabins.
Code of Federal Regulations, 2013 CFR
2013-01-01
... differentials up to the maximum relief valve setting in combination with landing loads. (8) The pressure sensors... located and the sensing system designed so that, in the event of loss of cabin pressure in any passenger... increase the hazards resulting from decompression. [Doc. No. 5066, 29 FR 18291, Dec. 24, 1964, as amended...
14 CFR 25.841 - Pressurized cabins.
Code of Federal Regulations, 2010 CFR
2010-01-01
... differentials up to the maximum relief valve setting in combination with landing loads. (8) The pressure sensors... located and the sensing system designed so that, in the event of loss of cabin pressure in any passenger... increase the hazards resulting from decompression. [Doc. No. 5066, 29 FR 18291, Dec. 24, 1964, as amended...
14 CFR 25.841 - Pressurized cabins.
Code of Federal Regulations, 2014 CFR
2014-01-01
... differentials up to the maximum relief valve setting in combination with landing loads. (8) The pressure sensors... located and the sensing system designed so that, in the event of loss of cabin pressure in any passenger... increase the hazards resulting from decompression. [Doc. No. 5066, 29 FR 18291, Dec. 24, 1964, as amended...
14 CFR 25.841 - Pressurized cabins.
Code of Federal Regulations, 2011 CFR
2011-01-01
... differentials up to the maximum relief valve setting in combination with landing loads. (8) The pressure sensors... located and the sensing system designed so that, in the event of loss of cabin pressure in any passenger... increase the hazards resulting from decompression. [Doc. No. 5066, 29 FR 18291, Dec. 24, 1964, as amended...
14 CFR 25.841 - Pressurized cabins.
Code of Federal Regulations, 2012 CFR
2012-01-01
... differentials up to the maximum relief valve setting in combination with landing loads. (8) The pressure sensors... located and the sensing system designed so that, in the event of loss of cabin pressure in any passenger... increase the hazards resulting from decompression. [Doc. No. 5066, 29 FR 18291, Dec. 24, 1964, as amended...
Gregurech, S.
1984-08-01
A saturation meter for use in a pressurized water reactor plant comprising a differential pressure transducer having a first and second pressure sensing means and an alarm. The alarm is connected to the transducer and is preset to activate at a level of saturation prior to the formation of a steam void in the reactor vessel.
49 CFR 232.103 - General requirements for all train brake systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
... the air compressor governor starting or loading pressure. (l) Except as otherwise provided in this... brake pipe air pressure: Road Service 90 Switch Service 60 (2) Minimum differential between brake pipe and main reservoir air pressures, with brake valve in running position 15 (3) Safety valve for...
49 CFR 232.103 - General requirements for all train brake systems.
Code of Federal Regulations, 2012 CFR
2012-10-01
... the air compressor governor starting or loading pressure. (l) Except as otherwise provided in this... brake pipe air pressure: Road Service 90 Switch Service 60 (2) Minimum differential between brake pipe and main reservoir air pressures, with brake valve in running position 15 (3) Safety valve for...
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The first controlled-temperature ice plug in the bend of an offshore gas trunkline has been carried out for Phillips Petroleum Co. Norway on its Norpipe A.S. platform in the German sector of the North Sea. The procedure was part of a subsea valve repair operation. The ice plug was successfully formed offshore and tested to a differential pressure of 1,450 psi. Repair of two valves required only 5 days during which time gas production was operating at close to 50--60% via the platform bypass, says the service company. The paper discusses the procedure.
NASA Technical Reports Server (NTRS)
1979-01-01
Hardware and controls developed for an electrolysis demonstration unit for use with the life sciences payload program and in NASA's regenerative life support evaluation program are described. Components discussed include: the electrolysis module; power conditioner; phase separator-pump and hydrogen differential regulator; pressure regulation of O2, He, and N2; air-cooled heat exchanger; water accumulator; fluid flow sight gage assembly; catalytic O2/H2 sensor; gas flow sensors; low voltage power supply; 100 Amp DC contactor assembly; and the water purifier design.
Noise Control: Pile Driver Demonstration Project, Waterloo, Iowa.
1981-07-01
SCHOMER CERL-08684--00-10 UNCLASSIFIED CERL-TR-N-111 Na MEuuIllllImN IiMMEIIMMMM . i ljj.25 fL l1. MICROCOP )IY RLSOUtiION TLSI CIIARi construction Unte...cycle the hammer is assisted by steam or air pressure, the hammer is called "double-acting," " compound ," or "differential" according to its specific... compound was applied in an unconstrained form in rings about 0.025 m (1 in.) thick at 2.4-m (8-ft.) intervals on the piles. As discussed in a later
Mobility of an elastic glove for extravehicular activity without prebreathing.
Tanaka, Kunihiko; Ikeda, Mizuki; Mochizuki, Yosuke; Katafuchi, Tetsuro
2011-09-01
The current U.S. extravehicular activity (EVA) suit is pressurized at 0.29 atm, which is much lower than the pressures of sea level and inside a space station. Higher pressure can reduce the risk of decompression sickness (DCS), but mobility would be sacrificed. We have demonstrated that a glove and sleeve made of elastic material increased mobility when compared with those made of nonelastic material, such as that found in the current suit. We hypothesized that an elastic glove of 0.65 atm that has no risk of DCS also has greater mobility compared with a non-elastic glove of 0.29 atm. The right hands of 10 healthy volunteers were studied in a chamber with their bare hands at normal ambient pressure, after donning a non-elastic glove with a pressure differential of 0.29 atm, and after donning an elastic glove with a pressure differential of 0.29 and 0.65 atm. Range of motion (ROM) of the index finger and surface electromyography (EMG) amplitudes during finger flexion were measured. ROM with gloves was significantly smaller than that of bare hands, but was similar between conditions of gloves regardless of elasticity and pressure differentials. However, EMG amplitudes with the elastic glove of 0.29 and 0.65 atm were significantly smaller than those with the non-elastic glove of 0.29 atm. The results suggest that mobility of the elastic glove of 0.65 atm may be better than that of the non-elastic glove of 0.29 atm, similar to that used in the current EVA suit.
Heat and mass transfer of a low-pressure Mars greenhouse: Simulation and experimental analysis
NASA Astrophysics Data System (ADS)
Hublitz, Inka
Biological life support systems based on plant growth offer the advantage of producing fresh food for the crew during a long surface stay on Mars. Greenhouses on Mars are also used for air and water regeneration and waste treatment. A major challenge in developing a Mars greenhouse is its interaction with the thin and cold Mars environment. Operating a Mars greenhouse at low interior pressure reduces the pressure differential across the structure and therefore saves structural mass as well as reduces leakage. Experiments were conducted to analyze the heating requirements as well as the temperature and humidity distribution within a small-scale greenhouse that was placed in a chamber simulating the temperatures, pressure and light conditions on Mars. Lettuce plants were successfully grown inside of the Mars greenhouse for up to seven days. The greenhouse atmosphere parameters, including temperature, total pressure, oxygen and carbon dioxide concentration were controlled tightly; radiation level, relative humidity and plant evapo-transpiration rates were measured. A vertical stratification of temperature and humidity across the greenhouse atmosphere was observed. Condensation formed on the inside of the greenhouse when the shell temperature dropped below the dew-point. During the night cycles frost built up on the greenhouse base plate and the lower part of the shell. Heat loss increased significantly during the night cycle. Due to the placement of the heating system and the fan blowing warm air directly on the upper greenhouse shell, condensation above the plants was avoided and therefore the photosynthetically active radiation at plant level was kept constant. Plant growth was not affected by the temperature stratification due to the tight temperature control of the warmer upper section of the greenhouse, where the lettuce plants were placed. A steady state and a transient heat transfer model of the low pressure greenhouse were developed for the day and the night cycle. Furthermore, low pressure psychrometric relations for closed systems and modified atmospheres were generated to calculate the properties of the moist air in order to predict condensate formation. The results of this study improve the design of the environmental control system leading to an optimization of plant growth conditions.
Xiong, Xingjiang; Yang, Xiaochen; Feng, Bo; Liu, Wei; Duan, Lian; Gao, Ao; Li, Haixia; Ma, Jizheng; Du, Xinliang; Li, Nan; Wang, Pengqian; Su, Kelei; Chu, Fuyong; Zhang, Guohao; Li, Xiaoke; Wang, Jie
2013-01-01
Objectives. To assess the clinical effectiveness and adverse effects of Zhen Gan Xi Feng Decoction (ZGXFD) for essential hypertension (EH). Methods. Five major electronic databases were searched up to August 2012 to retrieve any potential randomized controlled trials designed to evaluate the clinical effectiveness of ZGXFD for EH reported in any language, with main outcome measure as blood pressure (BP). Results. Six randomized trials were included. Methodological quality of the trials was evaluated as generally low. Four trials compared prescriptions based on ZGXFD with antihypertensive drugs. Meta-analysis showed that ZGXFD was more effective in BP control and TCM syndrome and symptom differentiation (TCM-SSD) scores than antihypertensive drugs. Two trials compared the combination of modified ZGXFD plus antihypertensive drugs with antihypertensive drugs. Meta-analysis showed that there is significant beneficial effect on TCM-SSD scores. However, no significant effect on BP was found. The safety of ZGXFD is still uncertain. Conclusions. ZGXFD appears to be effective in improving blood pressure and hypertension-related symptoms for EH. However, the evidence remains weak due to poor methodological quality of the included studies. More rigorous trials are warranted to support their clinical use.
1989-08-03
holes drilled in the seafloor from the D/V JOIDES Resolution through petrological , geochemical and paleomagnetic studies of the samples and logging...seismome- ters and/or hydrophones (or differential pressure gauges , DPG). Testing of the new instruments at very early stages is important to ensure...resolved using ocean bottom seismometers, suspended hydrophones and differential pressure gauges assisted by an orbiting radar altimeter (GEOSAT
Restrike Particle Beam Experiments on a Dense Plasma Focus.
1980-11-30
differentially pumped drift tube as shown in Figure 1. However, even the lOI of gas pressure in the drift space is sufficient to establish an equilibrium...pumped drift tube concept are five-fold: 1) Lower energy attenuation of the beam by neutral gas 2) Lower lateral spread of the beam caused by multiple...relatively low gas pressure through the use of a differentially pumped drift tube . The path makes it possible to observe ion energies to considerably lower
The Streaming Potential Generated by Flow of Wet Steam in Capillary Tubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marsden, S.S. Jr.; Tyran, Craig K.
1986-01-21
For a constant pressure differential, the flow of wet steam generated electric potentials which increased with time and did not reach equilibrium values. These potentials were found to increase to values greater than 100 volts. The reason for this kind of potential build-up behavior was the presence of tiny flowing water slugs which were interspersed with electrically nonconductive steam vapor slugs. The measured electric potential for wet steam increased with pressure differential, but the relationship was not linear. The increase in potential with pressure drop was attributed both to an increase in fluid flow rate and changes in the wetmore » steam quality.« less
Flowrate testing of the bag filter LANCS-BOP 6CPVC-1.5-2SPVC (LANCS Industries) at 1 psig
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, Murray E.; Currie, Karissa Lyn; Berg, Charlotte Katherine
2016-09-13
The air flowrate through a flexible HEPA grade filter (Part LANCS-BOP 6CPVC-1.5-2SPVC www.lancsindustries.com) was measured at 48 ALPM for a differential pressure drop of 1.0 psig (28 inWC, 7.0 kPa). These filters are rated by the manufacturer to have a flowrate of 3 ALPM at a differential pressure drop of 1 inWC (0.25 kPa). The Los Alamos National Laboratory Aerosol Engineering Facility used one of their test rigs (originally developed to measure the pressure drop in capsule HEPA filters) to measure the airflow through the LANCS bag filter.
Rugged switch responds to minute pressure differentials
NASA Technical Reports Server (NTRS)
Friend, L. C.; Shaub, K. D.
1967-01-01
Pressure responsive switching device exhibits high sensitivity but is extremely rugged and resistant to large amplitude shock and velocity loading. This snap-action, single pole-double throw switch operates over a wide temperature range.
Common pressure vessel battery performance
NASA Technical Reports Server (NTRS)
Otzinger, B.
1978-01-01
Performance tests run on two common pressure vessel type nickel hydrogen batteries are described and the results presented. The study included: (1) charge retention tests, (2) synchronous eclipse season cycling tests, and (3) temperature differential tests.
Ultra-thin nanocrystalline diamond membranes as pressure sensors for harsh environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Janssens, S. D., E-mail: stoffel.d.janssens@gmail.com; Haenen, K., E-mail: ken.haenen@uhasselt.be; IMOMEC, IMEC vzw, Wetenschapspark 1, B-3590 Diepenbeek
2014-02-17
Glass and diamond are suitable materials for harsh environments. Here, a procedure for fabricating ultra-thin nanocrystalline diamond membranes on glass, acting as an electrically insulating substrate, is presented. In order to investigate the pressure sensing properties of such membranes, a circular, highly conductive boron-doped nanocrystalline diamond membrane with a resistivity of 38 mΩ cm, a thickness of 150 nm, and a diameter of 555 μm is fabricated in the middle of a Hall bar structure. During the application of a positive differential pressure under the membrane (0–0.7 bar), four point piezoresistive effect measurements are performed. From these measurements, it can be concluded that the resistancemore » response of the membrane, as a function of differential pressure, is highly linear and sensitive.« less
NASA Astrophysics Data System (ADS)
Brakensiek, Nickolas L.; Kidd, Brian; Mesawich, Michael; Stevens, Don, Jr.; Gotlinsky, Barry
2003-06-01
A design of experiment (DOE) was implemented to show the effects of various point of use filters on the coat process. The DOE takes into account the filter media, pore size, and pumping means, such as dispense pressure, time, and spin speed. The coating was executed on a TEL Mark 8 coat track, with an IDI M450 pump, and PALL 16 stack Falcon filters. A KLA 2112 set at 0.69 μm pixel size was used to scan the wafers to detect and identify the defects. The process found for DUV42P to maintain a low defect coating irrespective of the filter or pore size is a high start pressure, low end pressure, low dispense time, and high dispense speed. The IDI M450 pump has the capability to compensate for bubble type defects by venting the defects out of the filter before the defects are in the dispense line and the variable dispense rate allows the material in the dispense line to slow down at the end of dispense and not create microbubbles in the dispense line or tip. Also the differential pressure sensor will alarm if the pressure differential across the filter increases over a user-determined setpoint. The pleat design allows more surface area in the same footprint to reduce the differential pressure across the filter and transport defects to the vent tube. The correct low defect coating process will maximize the advantage of reducing filter pore size or changing the filter media.
Enhancing cuttings removal with gas blasts while drilling on Mars
NASA Astrophysics Data System (ADS)
Zacny, K. A.; Quayle, M. C.; Cooper, G. A.
2005-04-01
Future missions to Mars envision use of drills for subsurface exploration. Since the Martian atmosphere precludes the use of liquids for cuttings removal, proposed drilling machines utilize mechanical cuttings removal systems such as augers. However, an auger can substantially contribute to the total power requirements, and in the worst scenario it can choke. A number of experiments conducted under Martian pressures showed that intermittent blasts of gas at low differential pressures can effectively lift the cuttings out of the hole. A gas flushing system could be incorporated into the drill assembly for assistance in clearing the holes of rock cuttings or for redundancy in case of auger jamming. A number of variables such as the particle size distribution of the rock powder, the type of gas used, the bit and auger side clearances, the initial mass of cuttings, and the ambient pressure were investigated and found to affect the efficiency. In all tests the initial volume of gas was close to 1 L and the differential pressure was varied to achieve desired clearing efficiencies. Particles were being lifted out of the hole at a maximum speed of 6 m/s at a differential pressure of 25 torr and ambient pressure of 5 torr. Flushing tests lasted on average for 2 s. The power required to compress the thin Martian atmosphere to achieve a sufficient gas blast every minute or so at 10% efficiency was calculated to be of the order of a few watts.
An Investigation Into Low Fuel Pressure Warnings on a Macchi-Viper Aircraft
1988-05-01
was sufficient To activate the low pressure warning light. The pressure switch is normally set to a differential of between 2.5 - 3 psi. Partial...only a 2.1 psig margin for light illumination, if the pressure switch is set at 3 psig, and gives little scope for extra pipe or filter losses when... pressure switch is set between 2.5 - 3 psig. Any untoward pressure resistance in the fuel delivery line and filtering system would soon erode this
Rohwer, V G; Bonier, F; Martin, P R
2015-10-22
Climatic selective pressures are thought to dominate biotic selective pressures at higher latitudes. However, few studies have experimentally tested how these selective pressures differentially act on traits across latitudes because traits can rarely be manipulated independently of the organism in nature. We overcame this challenge by using an extended phenotype-active bird nests-and conducted reciprocal transplant experiments between a subarctic and temperate site, separated by 14° of latitude. At the subarctic site, biotic selective pressures (nest predation) favoured smaller, non-local temperate nests, whereas climatic selective pressures (temperature) favoured larger local nests, particularly at colder temperatures. By contrast, at the temperate site, climatic and biotic selective pressures acted similarly on temperate and subarctic nests. Our results illustrate a functional trade-off in the subarctic between nest morphologies favoured by biotic versus climatic selective pressures, with climate favouring local nest morphologies. At our temperate site, however, allocative trade-offs in the time and effort devoted to nest construction favour smaller, local nests. Our findings illustrate a conflict between biotic and climatic selective pressures at the northern extremes of a species geographical range, and suggest that trade-offs between trait function and trait elaboration act differentially across latitude to create broad geographic variation in traits. © 2015 The Author(s).
NASA Astrophysics Data System (ADS)
Haase, S.; Rauber, M.
2015-09-01
In automotive PEM fuel cell systems, one of the most important targets is to reduce the parasitic power of balance of plant components, e.g. the air supply. This can be achieved for example by decreasing air stoichiometry. However, this could lead to bad flow sharing in the fuel cell stack. Therefore the fluid distribution in the flow field has to be evaluated, understood and optimized. This work evaluates the effect of GDL intrusion on the pressure drop via ex-situ determination of GDL intrusion using CFD simulation. The intruded GDL geometries, evaluated by an optical microscope with 200 times enlargement, are transferred to pressure drop behaviors by a numerical CFD model. These results are compared to the results of the differential pressure method of mapping the pressure distribution, described in [43]. The intrusion of the GDL leads to homogeneous flow distribution up to clamping pressures of 2.5 MPa. The inhomogeneous intrusion, induced by cracked fibers that extend into the channel, dominates the flow at higher clamping pressures and leads to the exponential increase in pressure drop in the differential pressure method. For clamping pressures used in typical fuel cell applications, the results of both methods show homogeneous flow through the channels.
Rohwer, V. G.; Bonier, F.; Martin, P. R.
2015-01-01
Climatic selective pressures are thought to dominate biotic selective pressures at higher latitudes. However, few studies have experimentally tested how these selective pressures differentially act on traits across latitudes because traits can rarely be manipulated independently of the organism in nature. We overcame this challenge by using an extended phenotype—active bird nests—and conducted reciprocal transplant experiments between a subarctic and temperate site, separated by 14° of latitude. At the subarctic site, biotic selective pressures (nest predation) favoured smaller, non-local temperate nests, whereas climatic selective pressures (temperature) favoured larger local nests, particularly at colder temperatures. By contrast, at the temperate site, climatic and biotic selective pressures acted similarly on temperate and subarctic nests. Our results illustrate a functional trade-off in the subarctic between nest morphologies favoured by biotic versus climatic selective pressures, with climate favouring local nest morphologies. At our temperate site, however, allocative trade-offs in the time and effort devoted to nest construction favour smaller, local nests. Our findings illustrate a conflict between biotic and climatic selective pressures at the northern extremes of a species geographical range, and suggest that trade-offs between trait function and trait elaboration act differentially across latitude to create broad geographic variation in traits. PMID:26490789
Lattice strain of osmium diboride under high pressure and nonhydrostatic stress
NASA Astrophysics Data System (ADS)
Kavner, Abby; Weinberger, Michelle B.; Shahar, Anat; Cumberland, Robert W.; Levine, Jonathan B.; Kaner, Richard B.; Tolbert, Sarah H.
2012-07-01
The lattice strain behavior of osmium diboride—a member of a group of third-row transition metal borides associated with hard/superhard behavior—has been studied using radial diffraction in a diamond anvil cell under high pressure and non-hydrostatic stress. We interpret the average values of the measured lattice strains as a lower-bound to the lattice-plane dependent yield strengths using existing estimates for the elastic constants of OsB2, with a yield strength of 11 GPa at 27.5 GPa of hydrostatic pressure. The measured differential lattice strains show significant plane-dependent anisotropy, with the (101) lattice plane showing the largest differential strain and the (001) lattice plane showing the least strain. At the highest pressure, the a-axis develops a larger compressive strain and supports a larger differential strain than either the b or c axes. This causes an increase in the c/a ratio and a decrease in the a/b ratio especially in the maximum stress direction. The large strength anisotropy of this material points to possible ways to modulate directional mechanical properties by taking advantage of the interplay between aggregate polycrystalline texture with directional mechanical properties.
Rowan Gorilla I rigged up, heads for eastern Canada
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1984-03-01
Designed to operate in very hostile offshore environments, the first of the Rowan Gorilla class of self-elevating drilling rigs has been towed to its drilling assignment offshore Nova Scotia. About 40% larger than other jackups, these rigs can operate in 300 ft of water, drilling holes as deep as 30,000 ft. They also feature unique high-pressure and solids control systems that are expected to improve drilling procedures and efficiencies. A quantitative formation pressure evaluation program for the Hewlett-Packard HP-41 handheld calculator computes formation pressures by three independent methods - the corrected d exponent, Bourgoyne and Young, and normalized penetration ratemore » techniques for abnormal pressure detection and computation. Based on empirically derived drilling rate equations, each of the methods can be calculated separately, without being dependent on or influenced by the results or stored data from the other two subprograms. The quantitative interpretation procedure involves establishing a normal drilling rate trend and calculating the pore pressure from the magnitude of the drilling rate trend or plotting parameter increases above the trend line. Mobil's quick, accurate program could aid drilling operators in selecting the casing point, minimizing differential sticking, maintaining the proper mud weights to avoid kicks and lost circulation, and maximizing penetration rates.« less
Pressure-Flow Analysis for the Assessment of Pediatric Oropharyngeal Dysphagia.
Ferris, Lara; Rommel, Nathalie; Doeltgen, Sebastian; Scholten, Ingrid; Kritas, Stamatiki; Abu-Assi, Rammy; McCall, Lisa; Seiboth, Grace; Lowe, Katie; Moore, David; Faulks, Jenny; Omari, Taher
2016-10-01
To determine which objective pressure-impedance measures of pharyngeal swallowing function correlated with clinically assessed severity of oropharyngeal dysphagia (OPD) symptoms. Forty-five children with OPD and 34 control children without OPD were recruited and up to 5 liquid bolus swallows were recorded with a solid-state high-resolution manometry with impedance catheter. Individual measures of pharyngeal and upper esophageal sphincter (UES) function and a swallow risk index composite score were derived for each swallow, and averaged data for patients with OPD were compared with those of control children without OPD. Clinical severity of OPD symptoms and oral feeding competency was based on the validated Dysphagia Disorders Survey and Functional Oral Intake Scale. Those objective measures that were markers of UES relaxation, UES opening, and pharyngeal flow resistance differentiated patients with and without OPD symptoms. Patients demonstrating abnormally high pharyngeal intrabolus pressures and high UES resistance, markers of outflow obstruction, were most likely to have signs and symptoms of overt Dysphagia Disorders Survey (OR 9.24, P = .05, and 9.7, P = .016, respectively). Pharyngeal motor patterns can be recorded in children by the use of HRIM and pharyngeal function can be defined objectively with the use of pressure-impedance measures. Objective measurements suggest that pharyngeal dysfunction is common in children with clinical signs of OPD. A key finding of this study was evidence of markers of restricted UES opening. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Bullard, Brad
1998-01-01
During mainstage testing of the 60,000 lbf thrust Fastrac thrust chamber at MSFC's Test Stand 116 (TS 116), sustained, large amplitude oscillations near 530 Hz were observed in the pressure data. These oscillations were detected both in the RP-1 feedline, downstream of the cavitating venturi, and in the combustion chamber. The driver of the instability is believed to be feedline excitation driven by either periodic cavity collapse at the exit of the cavitating venturi or combustion instability. In covitating venturi, static pressure drops as the flow passes through a constriction resembling a converging-diverging nozzle until the vapor pressure is reached. At the venturi throat, the flow is essentially choked, which is why these devices are typically used for mass flow rate control and disturbance isolation. Typically, a total pressure drop of 15% or more across the venturi is required for cavitation. For much larger pressure differentials, unstable cavities can form and subsequently collapse downstream of the throat. Although the disturbances generated by cavitating venturis is generally considered to be broad-band, this type of phenomena could generate periodic behavior capable of exciting the feedline. An excitation brought about by combustion instability would result from the coupling of a combustion chamber acoustic mode and a feedline resonance frequency. This type of coupling is referred to as "buzz" and is not uncommon for engines in this thrust range.
Background Higher ambient fine particulate matter (PM2.5) levels can be associated with increased blood pressure and vascular dysfunction. Objectives To determine the differential effects on blood pressure and vascular function of daily changes in community ambient-...
Wireless Prototype Based on Pressure and Bending Sensors for Measuring Gate Quality
Grenez, Florent; Villarejo, María Viqueira; Zapirain, Begoña García; Zorrilla, Amaia Méndez
2013-01-01
This paper presents a technological solution based on sensors controlled remotely in order to monitor, track and evaluate the gait quality in people with or without associated pathology. Special hardware simulating a shoe was developed, which consists of three pressure sensors, two bending sensors, an Arduino mini and a Bluetooth module. The obtained signals are digitally processed, calculating the standard deviation and establishing thresholds obtained empirically. A group of users was chosen with the aim of executing two modalities: natural walking and dragging the left foot. The gait was parameterized with the following variables: as far as pressure sensors are concerned, one pressure sensor under the first metatarsal (right sensor), another one under the fifth metatarsal (left) and a third one under the heel were placed. With respect to bending sensors, one bending sensor was placed for the ankle movement and another one for the foot sole. The obtained results show a rate accuracy oscillating between 85% (right sensor) and 100% (heel and bending sensors). Therefore, the developed prototype is able to differentiate between healthy gait and pathological gait, and it will be used as the base of a more complex and integral technological solution, which is being developed currently. PMID:23899935
Dynamic response of a collidant impacting a low pressure airbag
NASA Astrophysics Data System (ADS)
Dreher, Peter A.
There are many uses of low pressure airbags, both military and commercial. Many of these applications have been hampered by inadequate and inaccurate modeling tools. This dissertation contains the derivation of a four degree-of-freedom system of differential equations from physical laws of mass and energy conservation, force equilibrium, and the Ideal Gas Law. Kinematic equations were derived to model a cylindrical airbag as a single control volume impacted by a parallelepiped collidant. An efficient numerical procedure was devised to solve the simplified system of equations in a manner amenable to discovering design trends. The largest public airbag experiment, both in scale and scope, was designed and built to collect data on low-pressure airbag responses, otherwise unavailable in the literature. The experimental results were compared to computational simulations to validate the simplified numerical model. Experimental response trends are presented that will aid airbag designers. The two objectives of using a low pressure airbag to demonstrate the feasibility to (1) accelerate a munition to 15 feet per second velocity from a bomb bay, and (2) decelerate humans hitting trucks below the human tolerance level of 50 G's, were both met.
MHD pulsatile flow of engine oil based carbon nanotubes between two concentric cylinders
NASA Astrophysics Data System (ADS)
Haq, Rizwan Ul; Shahzad, Faisal; Al-Mdallal, Qasem M.
In this article, thermal performance of engine oil in the presence of both single and multiple wall carbon nanotubes (SWCNTs and MWCNTs) between two concentric cylinders is presented. Flow is driven with oscillatory pressure gradient and magneto-hydrodynamics (MHDs) effects are also introduced to control the random motion of the nanoparticles. Arrived broad, it is perceived that the inclusion of nanoparticles increases the thermal conductivity of working fluid significantly for both turbulent and laminar regimes. Fundamental momentum and energy equations are based upon partial differential equations (PDEs) that contain thermos-physical properties of both SWCNTs and MWCNTs. The solution has been evaluated for each mixture, namely: SWCNT-engine oil and MWCNT-engine oil. Results are determined for each velocity, temperature, pressure and stress gradient. Graphical results for the numerical values of the emerging parameters, namely: Hartmann number (M), the solid volume fraction of the nanoparticles (ϕ), Reynolds number (Reω), and the pulsation parameter based on the periodic pressure gradient are analyzed for pressure difference, frictional forces, velocity profile, temperature profile, crux, streamlines and vorticity phenomena. In addition, the assets of various parameters on the flow quantities of observation are investigated.
Wireless prototype based on pressure and bending sensors for measuring gait [corrected] quality.
Grenez, Florent; Viqueira Villarejo, María; García Zapirain, Begoña; Méndez Zorrilla, Amaia
2013-07-29
This paper presents a technological solution based on sensors controlled remotely in order to monitor, track and evaluate the gait quality in people with or without associated pathology. Special hardware simulating a shoe was developed, which consists of three pressure sensors, two bending sensors, an Arduino mini and a Bluetooth module. The obtained signals are digitally processed, calculating the standard deviation and establishing thresholds obtained empirically. A group of users was chosen with the aim of executing two modalities: natural walking and dragging the left foot. The gait was parameterized with the following variables: as far as pressure sensors are concerned, one pressure sensor under the first metatarsal (right sensor), another one under the fifth metatarsal (left) and a third one under the heel were placed. With respect to bending sensors, one bending sensor was placed for the ankle movement and another one for the foot sole. The obtained results show a rate accuracy oscillating between 85% (right sensor) and 100% (heel and bending sensors). Therefore, the developed prototype is able to differentiate between healthy gait and pathological gait, and it will be used as the base of a more complex and integral technological solution, which is being developed currently.
Amrani, Amira; van Helden, Jacques; Bergon, Aurélie; Aouane, Aicha; Ben Hania, Wajdi; Tamburini, Christian; Loriod, Béatrice; Imbert, Jean; Ollivier, Bernard; Pradel, Nathalie; Dolla, Alain
2016-08-01
Desulfovibrio piezophilus strain C1TLV30(T) is a mesophilic piezophilic sulfate-reducer isolated from Wood Falls at 1700 m depth in the Mediterranean Sea. In this study, we analysed the effect of the hydrostatic pressure on this deep-sea living bacterium at the physiologic and transcriptomic levels. Our results showed that lactate oxidation and energy metabolism were affected by the hydrostatic pressure. Especially, acetyl-CoA oxidation pathway and energy conservation through hydrogen and formate recycling would be more important when the hydrostatic pressure is above (26 MPa) than below (0.1 MPa) the optimal one (10 MPa). This work underlines also the role of the amino acid glutamate as a piezolyte for the Desulfovibrio genus. The transcriptomic analysis revealed 146 differentially expressed genes emphasizing energy production and conversion, amino acid transport and metabolism and cell motility and signal transduction mechanisms as hydrostatic pressure responding processes. This dataset allowed us to identify a sequence motif upstream of a subset of differentially expressed genes as putative pressure-dependent regulatory element. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.
Pleger, Lyn; Sager, Fritz
2016-09-18
Evaluations can only serve as a neutral evidence base for policy decision-making as long as they have not been altered along non-scientific criteria. Studies show that evaluators are repeatedly put under pressure to deliver results in line with given expectations. The study of pressure and influence to misrepresent findings is hence an important research strand for the development of evaluation praxis. A conceptual challenge in the area of evaluation ethics research is the fact that pressure can be not only negative, but also positive. We develop a heuristic model of influence on evaluations that does justice to this ambivalence of influence: the BUSD-model (betterment, undermining, support, distortion). The model is based on the distinction of two dimensions, namely 'explicitness of pressure' and 'direction of influence'. We demonstrate how the model can be applied to understand pressure and offer a practical tool to distinguish positive from negative influence in the form of three so-called differentiators (awareness, accordance, intention). The differentiators comprise a practical component by assisting evaluators who are confronted with influence. Copyright © 2016 Elsevier Ltd. All rights reserved.
Pulse transit time differential measurement by fiber Bragg grating pulse recorder.
Umesh, Sharath; Padma, Srivani; Ambastha, Shikha; Kalegowda, Anand; Asokan, Sundarrajan
2015-05-01
The present study reports a noninvasive technique for the measurement of the pulse transit time differential (PTTD) from the pulse pressure waveforms obtained at the carotid artery and radial artery using fiber Bragg grating pulse recorders (FBGPR). PTTD is defined as the time difference between the arrivals of a pulse pressure waveform at the carotid and radial arterial sites. The PTTD is investigated as an indicator of variation in the systolic blood pressure. The results are validated against blood pressure variation obtained from a Mindray Patient Monitor. Furthermore, the pulse wave velocity computed from the obtained PTTD is compared with the pulse wave velocity obtained from the color Doppler ultrasound system and is found to be in good agreement. The major advantage of the PTTD measurement via FBGPRs is that the data acquisition system employed can simultaneously acquire pulse pressure waveforms from both FBGPRs placed at carotid and radial arterial sites with a single time scale, which eliminates time synchronization complexity.
Pressure suppression containment system for boiling water reactor
Gluntz, D.M.; Nesbitt, L.B.
1997-01-21
A system is disclosed for suppressing the pressure inside the containment of a BWR following a postulated accident. A piping subsystem is provided which features a main process pipe that communicates the wetwell airspace to a connection point downstream of the guard charcoal bed in an offgas system and upstream of the main bank of delay charcoal beds which give extensive holdup to offgases. The main process pipe is fitted with both inboard and outboard containment isolation valves. Also incorporated in the main process pipe is a low-differential-pressure rupture disk which prevents any gas outflow in this piping whatsoever until or unless rupture occurs by virtue of pressure inside this main process pipe on the wetwell airspace side of the disk exceeding the design opening (rupture) pressure differential. The charcoal holds up the radioactive species in the noncondensable gas from the wetwell plenum by adsorption, allowing time for radioactive decay before the gas is vented to the environs. 3 figs.
Bustamante, Eliseo; Guijarro, Enrique; García-Diego, Fernando-Juan; Balasch, Sebastián; Hospitaler, Antonio; Torres, Antonio G.
2012-01-01
The rearing of poultry for meat production (broilers) is an agricultural food industry with high relevance to the economy and development of some countries. Periodic episodes of extreme climatic conditions during the summer season can cause high mortality among birds, resulting in economic losses. In this context, ventilation systems within poultry houses play a critical role to ensure appropriate indoor climatic conditions. The objective of this study was to develop a multisensor system to evaluate the design of the ventilation system in broiler houses. A measurement system equipped with three types of sensors: air velocity, temperature and differential pressure was designed and built. The system consisted in a laptop, a data acquisition card, a multiplexor module and a set of 24 air temperature, 24 air velocity and two differential pressure sensors. The system was able to acquire up to a maximum of 128 signals simultaneously at 5 second intervals. The multisensor system was calibrated under laboratory conditions and it was then tested in field tests. Field tests were conducted in a commercial broiler farm under four different pressure and ventilation scenarios in two sections within the building. The calibration curves obtained under laboratory conditions showed similar regression coefficients among temperature, air velocity and pressure sensors and a high goodness fit (R2 = 0.99) with the reference. Under field test conditions, the multisensor system showed a high number of input signals from different locations with minimum internal delay in acquiring signals. The variation among air velocity sensors was not significant. The developed multisensor system was able to integrate calibrated sensors of temperature, air velocity and differential pressure and operated succesfully under different conditions in a mechanically-ventilated broiler farm. This system can be used to obtain quasi-instantaneous fields of the air velocity and temperature, as well as differential pressure maps to assess the design and functioning of ventilation system and as a verification and validation (V&V) system of Computational Fluid Dynamics (CFD) simulations in poultry farms. PMID:22778611
Hamilton, Robert; Fuller, Jennifer; Baldwin, Kevin; Vespa, Paul; Hu, Xiao; Bergsneider, Marvin
2016-01-01
The diversion of cerebrospinal fluid (CSF) remains the principal treatment option for patients with normal-pressure hydrocephalus (NPH). External lumbar drain (ELD) and overnight intracranial pressure (ICP) monitoring are popular prognostic tests for differentiating which patients will benefit from shunting. Using the morphological clustering and analysis of continuous intracranial pulse (MOCAIP) algorithm to extract morphological metrics from the overnight ICP signal, we hypothesize that changes in the third peak of the ICP pulse pressure waveform can be used to differentiate ELD responders and nonresponders. Our study involved 66 patients (72.2 ± 9.8 years) undergoing evaluation for possible NPH, which included overnight ICP monitoring and ELD. ELD outcome was based on clinical notes and divided into nonresponders and responders. MOCAIP was used to extract mean ICP, ICP wave amplitude (waveAmp), and a metric derived to study P3 elevation (P3ratio). Of the 66 patients, 7 were classified as nonresponders and 25 as significant responders. The mean ICP and waveAmp did not vary significantly (p = 0.19 and p = 0.41) between the outcome groups; however, the P3ratio did show a significant difference (p = 0.04). Initial results suggest that the P3ratio might be used as a prognostic indicator for ELD outcome.
Properties of meso-Erythritol; phase state, accommodation coefficient and saturation vapour pressure
NASA Astrophysics Data System (ADS)
Emanuelsson, Eva; Tschiskale, Morten; Bilde, Merete
2016-04-01
Introduction Saturation vapour pressure and the associated temperature dependence (enthalpy ΔH), are key parameters for improving predictive atmospheric models. Generally, the atmospheric aerosol community lack experimentally determined values of these properties for relevant organic aerosol compounds (Bilde et al., 2015). In this work we have studied the organic aerosol component meso-Erythritol. Methods Sub-micron airborne particles of meso-Erythritol were generated by nebulization from aqueous solution, dried, and a mono disperse fraction of the aerosol was selected using a differential mobility analyser. The particles were then allowed to evaporate in the ARAGORN (AaRhus Atmospheric Gas phase OR Nano particle) flow tube. It is a temperature controlled 3.5 m long stainless steel tube with an internal diameter of 0.026 m (Bilde et al., 2003, Zardini et al., 2010). Changes in particle size as function of evaporation time were determined using a scanning mobility particle sizer system. Physical properties like air flow, temperature, humidity and pressure were controlled and monitored on several places in the setup. The saturation vapour pressures were then inferred from the experimental results in the MATLAB® program AU_VaPCaP (Aarhus University_Vapour Pressure Calculation Program). Results Following evaporation, meso-Erythriol under some conditions showed a bimodal particle size distribution indicating the formation of particles of two different phase states. The issue of physical phase state, along with critical assumptions e.g. the accommodation coefficient in the calculations of saturation vapour pressures of atmospheric relevant compounds, will be discussed. Saturation vapour pressures from the organic compound meso-Erythritol will be presented at temperatures between 278 and 308 K, and results will be discussed in the context of atmospheric chemistry. References Bilde, M. et al., (2015), Chemical Reviews, 115 (10), 4115-4156. Bilde, M. et. al., (2003), Environmental Science and Technology 37(7), 1371-1378. Zardini, A. A. et al., (2010), Journal of Aerosol Science, 41, 760-770.
Compartment Venting Analyses of Ares I First Stage Systems Tunnel
NASA Technical Reports Server (NTRS)
Wang, Qunzhen; Arner, Stephen
2009-01-01
Compartment venting analyses have been performed for the Ares I first stage systems tunnel using both the lumped parameter method and the three-dimensional (31)) transient computational fluid dynamics (CFD) approach. The main objective of venting analyses is to predict the magnitudes of differential pressures across the skin so the integrity of solid walls can be evaluated and properly designed. The lumped parameter method assumes the gas pressure and temperature inside the systems tunnel are spatially uniform, which is questionable since the tunnel is about 1,700 in. long and 4 in. wide. Therefore, 31) transient CFD simulations using the commercial CFD code FLUENT are performed in order to examine the gas pressure and temperature variations inside the tunnel. It was found that the uniform pressure and temperature assumptions inside the systems tunnel are valid during ascent. During reentry, the uniform pressure assumption is also reasonable but the uniform temperature assumption is not valid. Predicted pressure and temperature inside the systems tunnel using CFD are also compared with those from the lumped parameter method using the NASA code CHCHVENT. In general, the average pressure and temperature inside the systems tunnel from CFD are between the burst and crush results from CHCHVENT during both ascent and reentry. The skin differential pressure and pressure inside the systems tunnel relative to freestream pressure from CHCHVENT as well as velocity vectors and streamlines are also discussed in detail.
Deformation of Reservoir Sandstones by Elastic versus Inelastic Deformation Mechanisms
NASA Astrophysics Data System (ADS)
Pijnenburg, R.; Verberne, B. A.; Hangx, S.; Spiers, C. J.
2016-12-01
Hydrocarbon or groundwater production from sandstone reservoirs can result in surface subsidence and induced seismicity. Subsidence results from combined elastic and inelastic compaction of the reservoir due to a change in the effective stress state upon fluid extraction. The magnitude of elastic compaction can be accurately described using poroelasticity theory. However inelastic or time-dependent compaction is poorly constrained. Specifically, the underlying microphysical processes controlling sandstone compaction remain poorly understood. We use sandstones recovered by the field operator (NAM) from the Slochteren gas reservoir (Groningen, NE Netherlands) to study the importance of elastic versus inelastic deformation processes upon simulated pore pressure depletion. We conducted conventional triaxial tests under true in-situ conditions of pressure and temperature. To investigate the effect of applied differential stress (σ1 - σ3 = 0 - 50 MPa) and initial sample porosity (φi = 12 - 24%) on instantaneous and time-dependent inelastic deformation, we imposed multiple stages of axial loading and relaxation. The results show that inelastic strain develops at all stages of loading, and that its magnitude increases with increasing value of differential stress and initial porosity. The stress sensitivity of the axial creep strain rate and microstructural evidence suggest that inelastic compaction is controlled by a combination of intergranular slip and intragranular cracking. Intragranular cracking is shown to be more pervasive with increasing values of initial porosity. The results are consistent with a conceptual microphysical model, involving deformation by poro-elasticity combined with intergranular sliding and grain contact failure. This model aims to predict sandstone deformation behavior for a wide range of stress conditions.
Kaneto, C.M.; Nascimento, J.S.; Moreira, M.C.R.; Ludovico, N.D.; Santana, A.P.; Silva, R.A.A.; Silva-Jardim, I.; Santos, J.L.; Sousa, S.M.B.; Lima, P.S.P.
2017-01-01
Recent evidence suggests that cell-derived circulating miRNAs may serve as biomarkers of cardiovascular diseases. However, a few studies have investigated the potential of circulating miRNAs as biomarkers for left ventricular hypertrophy (LVH). In this study, we aimed to characterize the miRNA profiles that could distinguish hypertensive patients with LHV, hypertensive patients without LVH and control subjects, and identify potential miRNAs as biomarkers of LVH. LVH was defined by left ventricular mass indexed to body surface area >125 g/m2 in men and >110 g/m2 in women and patients were classified as hypertensive when presenting a systolic blood pressure of 140 mmHg or more, or a diastolic blood pressure of 90 mmHg or more. We employed miRNA PCR array to screen serum miRNAs profiles of patients with LVH, essential hypertension and healthy subjects. We identified 75 differentially expressed miRNAs, including 49 upregulated miRNAs and 26 downregulated miRNAs between LVH and control patients. We chose 2 miRNAs with significant differences for further testing in 59 patients. RT-PCR analysis of serum samples confirmed that miR-7-5p and miR-26b-5p were upregulated in the serum of LVH hypertensive patients compared with healthy subjects. Our findings suggest that these miRNAs may play a role in the pathogenesis of hypertensive LVH and may represent novel biomarkers for this disease. PMID:29069223
Laminar Motion of the Incompressible Fluids in Self-Acting Thrust Bearings with Spiral Grooves
Velescu, Cornel; Popa, Nicolae Calin
2014-01-01
We analyze the laminar motion of incompressible fluids in self-acting thrust bearings with spiral grooves with inner or external pumping. The purpose of the study is to find some mathematical relations useful to approach the theoretical functionality of these bearings having magnetic controllable fluids as incompressible fluids, in the presence of a controllable magnetic field. This theoretical study approaches the permanent motion regime. To validate the theoretical results, we compare them to some experimental results presented in previous papers. The laminar motion of incompressible fluids in bearings is described by the fundamental equations of fluid dynamics. We developed and particularized these equations by taking into consideration the geometrical and functional characteristics of these hydrodynamic bearings. Through the integration of the differential equation, we determined the pressure and speed distributions in bearings with length in the “pumping” direction. These pressure and speed distributions offer important information, both quantitative (concerning the bearing performances) and qualitative (evidence of the viscous-inertial effects, the fluid compressibility, etc.), for the laminar and permanent motion regime. PMID:24526896
Laminar motion of the incompressible fluids in self-acting thrust bearings with spiral grooves.
Velescu, Cornel; Popa, Nicolae Calin
2014-01-01
We analyze the laminar motion of incompressible fluids in self-acting thrust bearings with spiral grooves with inner or external pumping. The purpose of the study is to find some mathematical relations useful to approach the theoretical functionality of these bearings having magnetic controllable fluids as incompressible fluids, in the presence of a controllable magnetic field. This theoretical study approaches the permanent motion regime. To validate the theoretical results, we compare them to some experimental results presented in previous papers. The laminar motion of incompressible fluids in bearings is described by the fundamental equations of fluid dynamics. We developed and particularized these equations by taking into consideration the geometrical and functional characteristics of these hydrodynamic bearings. Through the integration of the differential equation, we determined the pressure and speed distributions in bearings with length in the "pumping" direction. These pressure and speed distributions offer important information, both quantitative (concerning the bearing performances) and qualitative (evidence of the viscous-inertial effects, the fluid compressibility, etc.), for the laminar and permanent motion regime.
NASA Technical Reports Server (NTRS)
Clanton, Stephen E.; Holt, James M.; Turner, Larry D. (Technical Monitor)
2001-01-01
A challenging part of International Space Station (ISS) thermal control design is the ability to incorporate design changes into an integrated system without negatively impacting performance. The challenge presents itself in that the typical ISS Internal Active Thermal Control System (IATCS) consists of an integrated hardware/software system that provides active coolant resources to a variety of users. Software algorithms control the IATCS to specific temperatures, flow rates, and pressure differentials in order to meet the user-defined requirements. What may seem to be small design changes imposed on the system may in fact result in system instability or the temporary inability to meet user requirements. The purpose of this paper is to provide a brief description of the solution process and analyses used to implement one such design change that required the incorporation of an automatic coolant bypass in the ISS Node 2 element.
Niederdorfer, Robert; Peter, Hannes; Battin, Tom J
2016-10-03
Small-scale hydraulics affects microbial behaviour at the cell level 1 , trophic interactions in marine aggregates 2 and the physical structure and function of stream biofilms 3,4 . However, it remains unclear how hydraulics, predictably changing from small streams to large rivers, impacts the structure and biodiversity of complex microbial communities in these ecosystems. Here, we present experimental evidence unveiling hydraulics as a hitherto poorly recognized control of microbial lifestyle differentiation in fluvial ecosystems. Exposing planktonic source communities from stream and floodplain ecosystems to different hydraulic environments revealed strong selective hydraulic pressures but only minor founder effects on the differentiation of attached biofilms and suspended aggregates and their biodiversity dynamics. Key taxa with a coherent phylogenetic underpinning drove this differentiation. Only a few resident and phylogenetically related taxa formed the backbone of biofilm communities, whereas numerous resident taxa characterized aggregate communities. Our findings unveil fundamental differences between biofilms and aggregates and build the basis for a mechanistic understanding of how hydraulics drives the distribution of microbial diversity along the fluvial continuum 5-7 .
Simplified combustion noise theory yielding a prediction of fluctuating pressure level
NASA Technical Reports Server (NTRS)
Huff, R. G.
1984-01-01
The first order equations for the conservation of mass and momentum in differential form are combined for an ideal gas to yield a single second order partial differential equation in one dimension and time. Small perturbation analysis is applied. A Fourier transformation is performed that results in a second order, constant coefficient, nonhomogeneous equation. The driving function is taken to be the source of combustion noise. A simplified model describing the energy addition via the combustion process gives the required source information for substitution in the driving function. This enables the particular integral solution of the nonhomogeneous equation to be found. This solution multiplied by the acoustic pressure efficiency predicts the acoustic pressure spectrum measured in turbine engine combustors. The prediction was compared with the overall sound pressure levels measured in a CF6-50 turbofan engine combustor and found to be in excellent agreement.
Yu, Xiaodong; Zhang, Jian; Zhou, Ling
2014-01-01
Based on the theory of hydraulic transients and the method of characteristics (MOC), a mathematic model of the differential surge tank with pressure-reduction orifices (PROs) and overflow weirs for transient calculation is proposed. The numerical model of hydraulic transients is established using the data of a practical hydropower station; and the probable transients are simulated. The results show that successive load rejection is critical for calculating the maximum pressure in spiral case and the maximum rotating speed of runner when the bifurcated pipe is converging under the surge tank in a diversion-type hydropower station; the pressure difference between two sides of breast wall is large during transient conditions, and it would be more serious when simultaneous load rejections happen after load acceptance; the reasonable arrangement of PROs on breast wall can effectively decrease the pressure difference.
Yu, Xiaodong; Zhang, Jian
2014-01-01
Based on the theory of hydraulic transients and the method of characteristics (MOC), a mathematic model of the differential surge tank with pressure-reduction orifices (PROs) and overflow weirs for transient calculation is proposed. The numerical model of hydraulic transients is established using the data of a practical hydropower station; and the probable transients are simulated. The results show that successive load rejection is critical for calculating the maximum pressure in spiral case and the maximum rotating speed of runner when the bifurcated pipe is converging under the surge tank in a diversion-type hydropower station; the pressure difference between two sides of breast wall is large during transient conditions, and it would be more serious when simultaneous load rejections happen after load acceptance; the reasonable arrangement of PROs on breast wall can effectively decrease the pressure difference. PMID:25133213
Puetzer, Jennifer; Williams, John; Gillies, Allison; Bernacki, Susan
2013-01-01
This study investigates the effects of cyclic hydrostatic pressure (CHP) on chondrogenic differentiation of human adipose-derived stem cells (hASCs) in three-dimensional (3-D) agarose constructs maintained in a complete growth medium without soluble chondrogenic inducing factors. hASCs were seeded in 2% agarose hydrogels and exposed to 7.5 MPa CHP for 4 h per day at a frequency of 1 Hz for up to 21 days. On days 0, 7, 14, and 21, the expression levels of collagen II, Sox9, aggrecan, and cartilage oligomeric matrix protein (COMP) were examined by real-time reverse transcriptase–polymerase chain reaction analysis. Gene expression analysis found collagen II mRNA expression in only the CHP-loaded construct at day 14 and at no other time during the study. CHP-loaded hASCs exhibited upregulated mRNA expression of Sox9, aggrecan, and COMP at day 7 relative to unloaded controls, suggesting that CHP initiated chondrogenic differentiation of hASCs in a manner similar to human bone marrow-derived mesenchymal stem cells (hMSC). By day 14, however, loaded hASC constructs exhibited significantly lower mRNA expression of the chondrogenic markers than unloaded controls. Additionally, by day 21, the samples exhibited little measurable mRNA expression at all, suggesting a decreased viability. Histological analysis validated the lack of mRNA expression at day 21 for both the loaded and unloaded control samples with a visible decrease in the cell number and change in morphology. A comparative study with hASCs and hMSCs further examined long-term cell viability in 3-D agarose constructs of both cell types. Decreased cell metabolic activity was observed throughout the 21-day experimental period in both the CHP-loaded and control constructs of both hMSCs and hASCs, suggesting a decrease in cell metabolic activity, alluding to a decrease in cell viability. This suggests that a 2% agarose hydrogel may not optimally support hASC or hMSC viability in a complete growth medium in the absence of soluble chondrogenic inducing factors over long culture durations. This is the first study to examine the ability of mechanical stimuli alone, in the absence of chondrogenic factors transforming growth factor beta (TGF-β)3, TGF-β1 and/or bone morphogenetic protein 6 (BMP6) to induce hASC chondrogenic differentiation. The findings of this study suggest that CHP initiates hASC chondrogenic differentiation, even in the absence of soluble chondrogenic inductive factors, confirming the importance of considering both mechanical stimuli and appropriate 3-D culture for cartilage tissue engineering using hASCs. PMID:22871265
Powers, Daryl E; Millman, Jeffrey R; Bonner-Weir, Susan; Rappel, Michael J; Colton, Clark K
2010-01-01
Oxygen level in mammalian cell culture is often controlled by placing culture vessels in humidified incubators with a defined gas phase partial pressure of oxygen (pO(2gas)). Because the cells are consuming oxygen supplied by diffusion, a difference between pO(2gas) and that experienced by the cells (pO(2cell)) arises, which is maximal when cells are cultured in vessels with little or no oxygen permeability. Here, we demonstrate theoretically that highly oxygen-permeable silicone rubber membranes can be used to control pO(2cell) during culture of cells in monolayers and aggregates much more accurately and can achieve more rapid transient response following a disturbance than on polystyrene and fluorinated ethylene-propylene copolymer membranes. Cell attachment on silicone rubber was achieved by physical adsorption of fibronectin or Matrigel. We use these membranes for the differentiation of mouse embryonic stem cells to cardiomyocytes and compare the results with culture on polystyrene or on silicone rubber on top of polystyrene. The fraction of cells that are cardiomyocyte-like increases with decreasing pO(2) only when using oxygen-permeable silicone membrane-based dishs, which contract on silicone rubber but not polystyrene. The high permeability of silicone rubber results in pO(2cell) being equal to pO(2gas) at the tissue-membrane interface. This, together with geometric information from histological sections, facilitates development of a model from which the pO(2) distribution within the resulting aggregates is computed. Silicone rubber membranes have significant advantages over polystyrene in controlling pO(2cell), and these results suggest they are a valuable tool for investigating pO(2) effects in many applications, such as stem cell differentiation. Copyright 2009 American Institute of Chemical Engineers
Marcombe, Sébastien; Paris, Margot; Paupy, Christophe; Bringuier, Charline; Yebakima, André; Chandre, Fabrice; David, Jean-Philippe; Corbel, Vincent; Despres, Laurence
2013-01-01
Effective vector control is currently challenged worldwide by the evolution of resistance to all classes of chemical insecticides in mosquitoes. In Martinique, populations of the dengue vector Aedes aegypti have been intensively treated with temephos and deltamethrin insecticides over the last fifty years, resulting in heterogeneous levels of resistance across the island. Resistance spreading depends on standing genetic variation, selection intensity and gene flow among populations. To determine gene flow intensity, we first investigated neutral patterns of genetic variability in sixteen populations representative of the many environments found in Martinique and experiencing various levels of insecticide pressure, using 6 microsatellites. Allelic richness was lower in populations resistant to deltamethrin, and consanguinity was higher in populations resistant to temephos, consistent with a negative effect of insecticide pressure on neutral genetic diversity. The global genetic differentiation was low, suggesting high gene flow among populations, but significant structure was found, with a pattern of isolation-by-distance at the global scale. Then, we investigated adaptive patterns of divergence in six out of the 16 populations using 319 single nucleotide polymorphisms (SNPs). Five SNP outliers displaying levels of genetic differentiation out of neutral expectations were detected, including the kdr-V1016I mutation in the voltage-gated sodium channel gene. Association tests revealed a total of seven SNPs associated with deltamethrin resistance. Six other SNPs were associated with temephos resistance, including two non-synonymous substitutions in an alkaline phosphatase and in a sulfotransferase respectively. Altogether, both neutral and adaptive patterns of genetic variation in mosquito populations appear to be largely driven by insecticide pressure in Martinique.
Further Characterization of an Active Clearance Control Concept
NASA Technical Reports Server (NTRS)
Taylor, Shawn C.; Steinetz, Bruce M.; Oswald, Jay J.
2007-01-01
A new test chamber and precision hydraulic actuation system were incorporated into an active clearance control (ACC) test rig at NASA Glenn Research Center. Using the improved system, a fast-acting, mechanically-actuated, ACC concept was evaluated at engine simulated temperatures and pressure differentials up to 1140 F and 120 psig, on the basis of secondary seal leakage and kinematic controllability. During testing, the ACC concept tracked a simulated flight clearance transient profile at 1140 F, 120 psig, with a maximum error of only 0.0012 in. Comparison of average dynamic leakage of the system with average static leakage did not show significant differences between the two operating conditions. Calculated effective clearance values for the rig were approximately 0.0002 in. at 120 psig, well below the industry specified effective clearance threshold of 0.001 in.
Modular fuel-cell stack assembly
Patel, Pinakin [Danbury, CT; Urko, Willam [West Granby, CT
2008-01-29
A modular multi-stack fuel-cell assembly in which the fuel-cell stacks are situated within a containment structure and in which a gas distributor is provided in the structure and distributes received fuel and oxidant gases to the stacks and receives exhausted fuel and oxidant gas from the stacks so as to realize a desired gas flow distribution and gas pressure differential through the stacks. The gas distributor is centrally and symmetrically arranged relative to the stacks so that it itself promotes realization of the desired gas flow distribution and pressure differential.
Innes, Jacqueline K.; Calder, Philip C.
2018-01-01
A large body of evidence supports the cardioprotective effects of the long-chain omega-3 polyunsaturated fatty acids (PUFAs), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA). There is increasing interest in the independent effects of EPA and DHA in the modulation of cardiometabolic risk factors. This systematic review aims to appraise the latest available evidence of the differential effects of EPA and DHA on such risk factors. A systematic literature review was conducted up to May 2017. Randomised controlled trials were included if they met strict eligibility criteria, including EPA or DHA > 2 g/day and purity ≥ 90%. Eighteen identified articles were included, corresponding to six unique studies involving 527 participants. Both EPA and DHA lowered triglyceride concentration, with DHA having a greater triglyceride-lowering effect. Whilst total cholesterol levels were largely unchanged by EPA and DHA, DHA increased high-density lipoprotein (HDL) cholesterol concentration, particularly HDL2, and increased low-density lipoprotein (LDL) cholesterol concentration and LDL particle size. Both EPA and DHA inhibited platelet activity, whilst DHA improved vascular function and lowered heart rate and blood pressure to a greater extent than EPA. The effects of EPA and DHA on inflammatory markers and glycaemic control were inconclusive; however both lowered oxidative stress. Thus, EPA and DHA appear to have differential effects on cardiometabolic risk factors, but these need to be confirmed by larger clinical studies. PMID:29425187
D-DIA High Pressure Facility at the Australian Synchrotron: First Results
NASA Astrophysics Data System (ADS)
Rushmer, T. A.; Wykes, J.
2016-12-01
The recent acquisition of a D-DIA type cubic multi-anvil apparatus for use at the Australian Synchrotron provides exciting opportunities for conducting a wide range of in situ experiments at high pressure and temperature. The MQ-AS D-DIA apparatus was designed as a mobile system capable of moving between beamlines. The apparatus was installed at the XAS beamline in May, 2016 and experiments performed since then include 1) a proof-of-concept in situ U and Th L3-edge XANES study of MORB liquid; 2) a proof-of-concept falling sphere viscometry of silicate liquid; and 3) room temperature transmission XANES in the high pressure assembly at energies as low as the Ga K-edge and as high as Sb K-edge. The MQ-AS D-DIA apparatus comprises a 350 ton ram in a four post press frame. The press is installed on a positioning table with motorised X-Y-Z-θ axes capable of positioning accuracy of <10 microns. The Rockland Research D-DIA module is equipped with 4 mm and 6 mm TEL anvils, capable of producing maximum sample pressure of 6 GPa. Stepper motors drive the main and differential ram hydraulic pressure generators in a control loop closed by pressure transducers. Samples are heated by graphite resistance furnaces driven by a Eurotherm 3504 PID controller driving a 5 V 200 A step down transformer via a phase angle power controller. Temperature is monitored via a thermocouple and power by true RMS voltage and current transducers. The XAS beamline at the Australian Synchrotron comprises a 1.9 T 40 pole wiggler, a bendable collimating mirror, a Si(111) / Si(311) DCM and a toroidal focussing mirror. Accessible energies are 5-34 keV with photon fluxes of 108-1012 photons/sec at the sample. Here we present an overview of our recent results. More detailed results of the in situ U and Th L3-edge XANES study are presented by Mallmann et al. (this meeting). In situ imaging and XRD experiments with the D-DIA apparatus on the AS Imaging and Medical Beamline are planned for the coming year.
2013-01-01
Introduction Notochordal cells (NCs) pattern aneural and avascular intervertebral discs (IVDs), and their disappearance, is associated with onset of IVD degeneration. This study induced and characterized the maturation of nucleus pulposus (NP) tissue from a gelatinous NC-rich structure to a matrix-rich structure populated by small NP cells using dynamic pressurization in an ex vivo culture model, and also identified soluble factors from NCs with therapeutic potential. Methods Porcine NC-rich NP tissue was cultured and loaded with hydrostatic pressure (0.5 to 2 MPa at 0.1 Hz for 2 hours) either Daily, for 1 Dose, or Control (no pressurization) groups for up to eight days. Cell phenotype and tissue maturation was characterized with measurements of cell viability, cytomorphology, nitric oxide, metabolic activity, matrix composition, gene expression, and proteomics. Results Daily pressurization induced transition of NCs to small NP cells with 73.8%, 44%, and 28% NCs for Control, 1 Dose and Daily groups, respectively (P < 0.0002) and no relevant cell death. Dynamic loading matured NP tissue by significantly increasing metabolic activity and accumulating Safranin-O-stained matrix. Load-induced maturation was also apparent from the significantly decreased glycolytic, cytoskeletal (Vimentin) and stress-inducible (HSP70) proteins assessed with proteomics. Loading increased the production of bioactive proteins Sonic Hedgehog (SHH) and Noggin, and maintained Semaphorin3A (Sema3A). Discussion NP tissue maturation was induced from dynamic hydrostatic pressurization in a controlled ex vivo environment without influence from systemic effects or surrounding structures. NCs transitioned into small nonvacuolated NP cells probably via differentiation as evidenced by high cell viability, lack of nitric oxide and downregulation of stress-inducible and cytoskeletal proteins. SHH, Sema3A, and Noggin, which have patterning and neurovascular-inhibiting properties, were produced in both notochordal and matured porcine NP. Results therefore provide an important piece of evidence suggesting the transition of NCs to small NP cells is a natural part of aging and not the initiation of degeneration. Bioactive candidates identified from young porcine IVDs may be isolated and harnessed for therapies to target discogenic back pain. PMID:24427812
Purmessur, Devina; Guterl, Clare C; Cho, Samuel K; Cornejo, Marisa C; Lam, Ying W; Ballif, Bryan A; Laudier, James C Iatridis; Iatridis, James C
2013-01-01
Notochordal cells (NCs) pattern aneural and avascular intervertebral discs (IVDs), and their disappearance, is associated with onset of IVD degeneration. This study induced and characterized the maturation of nucleus pulposus (NP) tissue from a gelatinous NC-rich structure to a matrix-rich structure populated by small NP cells using dynamic pressurization in an ex vivo culture model, and also identified soluble factors from NCs with therapeutic potential. Porcine NC-rich NP tissue was cultured and loaded with hydrostatic pressure (0.5 to 2 MPa at 0.1 Hz for 2 hours) either Daily, for 1 Dose, or Control (no pressurization) groups for up to eight days. Cell phenotype and tissue maturation was characterized with measurements of cell viability, cytomorphology, nitric oxide, metabolic activity, matrix composition, gene expression, and proteomics. Daily pressurization induced transition of NCs to small NP cells with 73.8%, 44%, and 28% NCs for Control, 1 Dose and Daily groups, respectively (P < 0.0002) and no relevant cell death. Dynamic loading matured NP tissue by significantly increasing metabolic activity and accumulating Safranin-O-stained matrix. Load-induced maturation was also apparent from the significantly decreased glycolytic, cytoskeletal (Vimentin) and stress-inducible (HSP70) proteins assessed with proteomics. Loading increased the production of bioactive proteins Sonic Hedgehog (SHH) and Noggin, and maintained Semaphorin3A (Sema3A). NP tissue maturation was induced from dynamic hydrostatic pressurization in a controlled ex vivo environment without influence from systemic effects or surrounding structures. NCs transitioned into small nonvacuolated NP cells probably via differentiation as evidenced by high cell viability, lack of nitric oxide and downregulation of stress-inducible and cytoskeletal proteins. SHH, Sema3A, and Noggin, which have patterning and neurovascular-inhibiting properties, were produced in both notochordal and matured porcine NP. Results therefore provide an important piece of evidence suggesting the transition of NCs to small NP cells is a natural part of aging and not the initiation of degeneration. Bioactive candidates identified from young porcine IVDs may be isolated and harnessed for therapies to target discogenic back pain.
Advanced Poincaré plot analysis differentiates between hypertensive pregnancy disorders.
Seeck, A; Baumert, M; Fischer, C; Khandoker, A; Faber, R; Voss, A
2011-10-01
Hypertensive pregnancy disorders affect 6% to 8% of all pregnancies and can result in severe complications for the mother and the foetus of which pre-eclampsia (PE) has the worst perinatal outcome. Several studies suggested that the autonomic nervous system plays an important role in the process of developing hypertensive pregnancy disorders, especially PE. The aim of this retrospective study was to investigate whether women with PE could be differentiated from women with various other hypertensive pregnancy disorders, by employing an enhanced Poincaré plot analysis (PPA), the segmented Poincaré plot analysis (SPPA), to their beat-to-beat interval and blood pressure signals. Sixty-nine pregnant women with hypertensive disorders (29 PE, 40 with chronic or gestational hypertension) were included. The SPPA as well as the traditional PPA found significant differences between PE and other hypertensive disorders of diastolic blood pressure (p < 0.001 versus p < 0.001) but only the SPPA method revealed significant differences (p < 0.001) also of the systolic blood pressure. Further on, linear discrimination analysis demonstrated that indices derived from SPPA are more suitable for differentiation between chronic and gestational hypertension and PE than those from traditional PPA (area under the ROC curve 0.85 versus 0.69). Therefore this procedure could contribute to the differential diagnosis of hypertensive pregnancy disorders.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The most common method of measuring air leakage is to perform single (or solo) blower door pressurization and/or depressurization test. In detached housing, the single blower door test measures leakage to the outside. In attached housing, however, this "solo" test method measures both air leakage to the outside and air leakage between adjacent units through common surfaces. Although minimizing leakage to neighboring units is highly recommended to avoid indoor air quality issues between units, reduce pressure differentials between units, and control stack effect, the energy benefits of air sealing can be significantly overpredicted if the solo air leakage number ismore » used in the energy analysis. Guarded blower door testing is more appropriate for isolating and measuring leakage to the outside in attached housing. This method uses multiple blower doors to depressurize adjacent spaces to the same level as the unit being tested. Maintaining a neutral pressure across common walls, ceilings, and floors acts as a "guard" against air leakage between units. The resulting measured air leakage in the test unit is only air leakage to the outside. Although preferred for assessing energy impacts, the challenges of performing guarded testing can be daunting.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunt, Simon A., E-mail: simon.hunt@ucl.ac.uk; McCormack, Richard J.; Bailey, Edward
A new multi-anvil deformation apparatus, based on the widely used 6-8 split-cylinder, geometry, has been developed which is capable of deformation experiments at pressures in excess of 18 GPa at room temperature. In 6-8 (Kawai-type) devices eight cubic anvils are used to compress the sample assembly. In our new apparatus two of the eight cubes which sit along the split-cylinder axis have been replaced by hexagonal cross section anvils. Combining these anvils hexagonal-anvils with secondary differential actuators incorporated into the load frame, for the first time, enables the 6-8 multi-anvil apparatus to be used for controlled strain-rate deformation experiments to highmore » strains. Testing of the design, both with and without synchrotron-X-rays, has demonstrated the Deformation T-Cup (DT-Cup) is capable of deforming 1–2 mm long samples to over 55% strain at high temperatures and pressures. To date the apparatus has been calibrated to, and deformed at, 18.8 GPa and deformation experiments performed in conjunction with synchrotron X-rays at confining pressures up to 10 GPa at 800 °C.« less
Shaft seal assembly and method
NASA Technical Reports Server (NTRS)
Keba, John E. (Inventor)
2007-01-01
A pressure-actuated shaft seal assembly and associated method for controlling the flow of fluid adjacent a rotatable shaft are provided. The seal assembly includes one or more seal members that can be adjusted between open and closed positions, for example, according to the rotational speed of the shaft. For example, the seal member can be configured to be adjusted according to a radial pressure differential in a fluid that varies with the rotational speed of the shaft. In addition, in the closed position, each seal member can contact a rotatable member connected to the shaft to form a seal with the rotatable member and prevent fluid from flowing through the assembly. Thus, the seal can be closed at low speeds of operation and opened at high speeds of operation, thereby reducing the heat and wear in the seal assembly while maintaining a sufficient seal during all speeds of operation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dyachenko, Sergey A.; Zlotnik, Anatoly; Korotkevich, Alexander O.
Here, we develop an operator splitting method to simulate flows of isothermal compressible natural gas over transmission pipelines. The method solves a system of nonlinear hyperbolic partial differential equations (PDEs) of hydrodynamic type for mass flow and pressure on a metric graph, where turbulent losses of momentum are modeled by phenomenological Darcy-Weisbach friction. Mass flow balance is maintained through the boundary conditions at the network nodes, where natural gas is injected or withdrawn from the system. Gas flow through the network is controlled by compressors boosting pressure at the inlet of the adjoint pipe. Our operator splitting numerical scheme ismore » unconditionally stable and it is second order accurate in space and time. The scheme is explicit, and it is formulated to work with general networks with loops. We test the scheme over range of regimes and network configurations, also comparing its performance with performance of two other state of the art implicit schemes.« less
Research on Buckling State of Prestressed Fiber-Strengthened Steel Pipes
NASA Astrophysics Data System (ADS)
Wang, Ruheng; Lan, Kunchang
2018-01-01
The main restorative methods of damaged oil and gas pipelines include welding reinforcement, fixture reinforcement and fiber material reinforcement. Owing to the severe corrosion problems of pipes in practical use, the research on renovation and consolidation techniques of damaged pipes gains extensive attention by experts and scholars both at home and abroad. The analysis of mechanical behaviors of reinforced pressure pipelines and further studies focusing on “the critical buckling” and intensity of pressure pipeline failure are conducted in this paper, providing theoretical basis to restressed fiber-strengthened steel pipes. Deformation coordination equations and buckling control equations of steel pipes under the effect of prestress is deduced by using Rayleigh Ritz method, which is an approximation method based on potential energy stationary value theory and minimum potential energy principle. According to the deformation of prestressed steel pipes, the deflection differential equation of prestressed steel pipes is established, and the critical value of buckling under prestress is obtained.
Atmospheric pressure plasma analysis by modulated molecular beam mass spectrometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aranda Gonzalvo, Y.; Whitmore, T.D.; Rees, J.A.
Fractional number density measurements for a rf plasma 'needle' operating at atmospheric pressure have been obtained using a molecular beam mass spectrometer (MBMS) system designed for diagnostics of atmospheric plasmas. The MBMS system comprises three differentially pumped stages and a mass/energy analyzer and includes an automated beam-to-background measurement facility in the form of a software-controlled chopper mechanism. The automation of the beam modulation allows the neutral components in the plasma to be rapidly and accurately measured using the mass spectrometer by threshold ionization techniques. Data are reported for plasma generated by a needle plasma source operated using a helium/air mixture.more » In particular, data for the conversion of atmospheric oxygen and nitrogen into nitric oxide are discussed with reference to its significance for medical applications such as disinfecting wounds and dental cavities and for microsurgery.« less
Skin blood flow with elastic compressive extravehicular activity space suit.
Tanaka, Kunihiko; Gotoh, Taro M; Morita, Hironobu; Hargens, Alan R
2003-10-01
During extravehicular activity (EVA), current space suits are pressurized with 100% oxygen at approximately 222 mmHg. A tight elastic garment, or mechanical counter pressure (MCP) suit that generates pressure by compression, may have several advantages over current space suit technology. In this study, we investigated local microcirculatory effects produced with negative ambient pressure with an MCP sleeve. The MCP glove and sleeve generated pressures similar to the current space suit. MCP remained constant during negative pressure due to unchanged elasticity of the material. Decreased skin capillary blood flow and temperature during MCP compression was counteracted by greater negative pressure or a smaller pressure differential.
NASA Technical Reports Server (NTRS)
Steurer, Wolfgang
1992-01-01
The vapor phase pyrolysis process is designed exclusively for the lunar production of oxygen. In this concept, granulated raw material (soil) that consists almost entirely of metal oxides is vaporized and the vapor is raised to a temperature where it dissociates into suboxides and free oxygen. Rapid cooling of the dissociated vapor to a discrete temperature causes condensation of the suboxides, while the oxygen remains essentially intact and can be collected downstream. The gas flow path and flow rate are maintained at an optimum level by control of the pressure differential between the vaporization region and the oxygen collection system with the aid of the environmental vacuum.
NASA Astrophysics Data System (ADS)
Alekseenko, S. V.; Shtork, S. I.; Yusupov, R. R.
2018-03-01
The effect of the method of gas-phase injection into a swirled fluid flow on parameters of a precessing vortex core is studied experimentally. Conditions of the appearance of the vortex-core precession effect were modeled in a hydrodynamic sudden expansion vortex chamber. The dependences of the vortexcore precession frequency, flow-pulsation level, and full pressure differential in the vortex chamber on the consumption gas content in the flow have been obtained. The results of measurements permit one to determine optimum conditions for the most effective control of vortex-core precession.
Sugimoto, Asuna; Miyazaki, Aya; Kawarabayashi, Keita; Shono, Masayuki; Akazawa, Yuki; Hasegawa, Tomokazu; Ueda-Yamaguchi, Kimiko; Kitamura, Takamasa; Yoshizaki, Keigo; Fukumoto, Satoshi; Iwamoto, Tsutomu
2017-12-18
The extracellular environment regulates the dynamic behaviors of cells. However, the effects of hydrostatic pressure (HP) on cell fate determination of mesenchymal stem cells (MSCs) are not clearly understood. Here, we established a cell culture chamber to control HP. Using this system, we found that the promotion of osteogenic differentiation by HP is depend on bone morphogenetic protein 2 (BMP2) expression regulated by Piezo type mechanosensitive ion channel component 1 (PIEZO1) in MSCs. The PIEZO1 was expressed and induced after HP loading in primary MSCs and MSC lines, UE7T-13 and SDP11. HP and Yoda1, an activator of PIEZO1, promoted BMP2 expression and osteoblast differentiation, whereas inhibits adipocyte differentiation. Conversely, PIEZO1 inhibition reduced osteoblast differentiation and BMP2 expression. Furthermore, Blocking of BMP2 function by noggin inhibits HP induced osteogenic maker genes expression. In addition, in an in vivo model of medaka with HP loading, HP promoted caudal fin ray development whereas inhibition of piezo1 using GsMTx4 suppressed its development. Thus, our results suggested that PIEZO1 is responsible for HP and could functions as a factor for cell fate determination of MSCs by regulating BMP2 expression.
Roberts, H W; Kirkpatrick, T C
2016-08-01
To evaluate whether objective data could be obtained regarding internal pressure conditions of a molar tooth with canals prepared but not filled exposed to reduced barometric pressures that could be experienced by aircrew. The root canals of five mandibular molars were prepared but not filled. Root apices were sealed with a resin-modified glass-ionomer liner and root surfaces sealed with a dental adhesive. The sealed root surfaces were then coated with a polyvinylsiloxane (PVS) adhesive and the teeth inserted into cylinders of PVS impression material to the level of the cervical enamel junction. Barometric pressure transducers were placed in the pulp chambers with the endodontic access sealed with cotton and a provisional restoration. The specimens were then subjected to a manually controlled, atmospheric altitude challenge consisting of a slow ascent and descent to a simulated 25 000 feet above sea level followed by a rapid altitude climb and descent. The real-time difference between intracanal and simulated atmospheric pressures were recorded and correlated (Pearson's, P = 0.05). No tooth material fractured, and there was no failure of the provisional restorations. Barometric pressures inside the closed prepared molar canals and the ambient atmospheric pressure were found to correlate (r(2) = 0.97-0.99; P < 0.0001), but pressure equalization lags were observed. However, no differences greater than six pounds per square inch (310 torr) were noted. This pilot study established a protocol that demonstrated that objective data regarding barometric pressures within the prepared canals of molars can be obtained at simulated altitude conditions. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.
Regional foot pressure during running, cutting, jumping, and landing.
Orendurff, Michael S; Rohr, Eric S; Segal, Ava D; Medley, Jonathan W; Green, John R; Kadel, Nancy J
2008-03-01
Evaluating shoes during sport-related movements may provide a better assessment of plantar loads associated with repetitive injury and provide more specific data for comparing shoe cushioning characteristics. Accelerating, cutting, and jumping pressures will be higher than in straight running, differentiating regional shoe cushioning performance in sport-specific movements. Controlled laboratory study. Peak pressures on seven anatomic regions of the foot were assessed in 10 male college athletes during running straight ahead, accelerating, cutting left, cutting right, jump take-off, and jump landing wearing Speed TD and Air Pro Turf Low shoes (Nike, Beaverton, Ore). Pedar insoles (Novel, Munich, Germany) were sampled at 99 Hz during the 6 movements. Cutting and jumping movements demonstrated more than double the pressure at the heel compared with running straight, regardless of shoe type. The Air Pro Turf showed overall lower pressure for all movement types (P<.0377). Cutting to the left, the Air Pro Turf shoe had lower heel pressures (36.6 +/- 12.5 N/cm(2)) than the Speed TD (50.3 +/- 11.2 N/cm(2)) (P<.0001), and the Air Pro Turf had lower great toe pressures than the Speed TD (44.8 +/- 8.1 N/cm(2) vs 54.4 +/- 8.4 N/cm(2); P= .0002). The Air Pro Turf also had significantly lower pressures than the Speed TD at the central forefoot during acceleration (38.2 +/- 8.3 N/cm(2) vs 50.8 +/- 7.4 N/cm(2); P<.0001). Sport-related movements load the plantar surface of the foot more than running straight. Shoe cushioning characteristics were more robustly assessed during sport-related movements (4 significant results detected) compared with running straight (1 significant result detected). There is an interaction between shoe cushioning characteristics and sport-related movements that may influence plantar pressure and repetitive stress injuries.
NASA Astrophysics Data System (ADS)
Kavner, A.; Armentrout, M. M.; Xie, M.; Weinberger, M.; Kaner, R. B.; Tolbert, S. H.
2010-12-01
A strong synergy ties together the high-pressure subfields of mineral physics, solid-state physics, and materials engineering. The catalog of studies measuring the mechanical properties of materials subjected to large differential stresses in the diamond anvil cell demonstrates a significant pressure-enhancement of strength across many classes of materials, including elemental solids, salts, oxides, silicates, and borides and nitrides. High pressure techniques—both radial diffraction and laser heating in the diamond anvil cell—can be used to characterize the behavior of ultrahard materials under extreme conditions, and help test hypotheses about how composition, structure, and bonding work together to govern the mechanical properties of materials. The principles that are elucidated by these studies can then be used to help design engineering materials to encourage desired properties. Understanding Earth and planetary interiors requires measuring equations of state of relevant materials, including oxides, silicates, and metals under extreme conditions. If these minerals in the diamond anvil cell have any ability to support a differential stress, the assumption of quasi-hydrostaticity no longer applies, with a resulting non-salubrious effect on attempts to measure equation of state. We illustrate these applications with the results of variety of studies from our laboratory and others’ that have used high-pressure radial diffraction techniques and also laser heating in the diamond anvil cell to characterize the mechanical properties of a variety of ultrahard materials, especially osmium metal, osmium diboride, rhenium diboride, and tungsten tetraboride. We compare ambient condition strength studies such as hardness testing with high-pressure studies, especially radial diffraction under differential stress. In addition, we outline criteria for evaluating mechanical properties of materials at combination high pressures and temperatures. Finally, we synthesize our understanding of mechanical properties and composite behavior to suggest new approaches to designing high-pressure experiments to target specific measurements of a wide variety of mechanical properties.
Werther Evaldsson, Anna; Ingvarsson, Annika; Waktare, Johan; Smith, Gustav J; Thilén, Ulf; Stagmo, Martin; Roijer, Anders; Rådegran, Goran; Meurling, Carl
2017-10-26
Right ventricular (RV) dysfunction may be caused by either pressure or volume overload. RV function is conventionally assessed with echocardiography using tricuspid annular plane systolic excursion (TAPSE), RV fractional area change (RVFAC), tricuspid lateral annular systolic velocity (S') and RV index of myocardial performance (RIMP). The purpose of this study was to evaluate whether RV global longitudinal strain (RVGLS) and RV-free wall strain (RV-free) could add additional information to differentiate these two causes of RV overload. The study enrolled 89 patients with an echocardiographic trans-tricuspid gradient >30 mmHg. Forty-five patients with pulmonary arterial hypertension or chronic thromboembolic pulmonary hypertension (pressure overload) were compared with 44 patients with an atrial septum defect (volume overload). RV size was larger in the volume group (P<0·05). TAPSE and S' were lower in the pressure group (P<0·05, P<0·01). RVFAC was lower in the pressure group (P<0·001) as well as RVGLS (-12·1 ± 3·3% versus -20·2 ± 3·4%, P<0·001) and RV-free (-12·9 ± 3·3% versus -19·4 ± 3·4%, P<0·001). In this study, RVGLS and RV-free could more accurately discriminate RV pressure from volume overload than conventional measures. The reason could be that TAPSE and S' are unable to differentiate active deformation from passive entrainment caused by the left ventricle. The pressure group had evidence of marked RV hypertrophy despite standard functional parameters (TAPSE and S) within normal range. This would enhance the value of strain to more sensitively detect abnormal function. A cut-off value of below -16% for RVGLS and RV-free predicts RV pressure overload with high accuracy. © 2017 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.
King, Sibella G; Ahuja, Kiran D K; Wass, Jezreel; Shing, Cecilia M; Adams, Murray J; Davies, Justin E; Sharman, James E; Williams, Andrew D
2013-05-01
Aortic pulse wave velocity (PWV) and augmentation index (AIx) are independent predictors of cardiovascular risk and mortality, but little is known about the effect of air temperature changes on these variables. Our study investigated the effect of exposure to whole-body mild-cold on measures of arterial stiffness (aortic and brachial PWV), and on central haemodynamics [including augmented pressure (AP), AIx], and aortic reservoir components [including reservoir and excess pressures (P ex)]. Sixteen healthy volunteers (10 men, age 43 ± 19 years; mean ± SD) were randomised to be studied under conditions of 12 °C (mild-cold) and 21 °C (control) on separate days. Supine resting measures were taken at baseline (ambient temperature) and after 10, 30, and 60 min exposure to each experimental condition in a climate chamber. There was no significant change in brachial blood pressure between mild-cold and control conditions. However, compared to control, AP [+2 mmHg, 95 % confidence interval (CI) 0.36-4.36; p = 0.01] and AIx (+6 %, 95 % CI 1.24-10.1; p = 0.02) increased, and time to maximum P ex (a component of reservoir function related to timing of peak aortic in-flow) decreased (-7 ms, 95 % CI -15.4 to 2.03; p = 0.01) compared to control. Yet there was no significant change in aortic PWV (+0.04 m/s, 95 % CI -0.47 to 0.55; p = 0.87) or brachial PWV (+0.36 m/s; -0.41 to 1.12; p = 0.35) between conditions. We conclude that mild-cold exposure increases central haemodynamic stress and alters timing of peak aortic in-flow without differentially affecting arterial stiffness.
Goitom, Eyerusalem; Kilsdonk, Laurens J; Brans, Kristien; Jansen, Mieke; Lemmens, Pieter; De Meester, Luc
2018-01-01
There is growing evidence of rapid genetic adaptation of natural populations to environmental change, opening the perspective that evolutionary trait change may subsequently impact ecological processes such as population dynamics, community composition, and ecosystem functioning. To study such eco-evolutionary feedbacks in natural populations, however, requires samples across time. Here, we capitalize on a resurrection ecology study that documented rapid and adaptive evolution in a natural population of the water flea Daphnia magna in response to strong changes in predation pressure by fish, and carry out a follow-up mesocosm experiment to test whether the observed genetic changes influence population dynamics and top-down control of phytoplankton. We inoculated populations of the water flea D. magna derived from three time periods of the same natural population known to have genetically adapted to changes in predation pressure in replicate mesocosms and monitored both Daphnia population densities and phytoplankton biomass in the presence and absence of fish. Our results revealed differences in population dynamics and top-down control of algae between mesocosms harboring populations from the time period before, during, and after a peak in fish predation pressure caused by human fish stocking. The differences, however, deviated from our a priori expectations. An S-map approach on time series revealed that the interactions between adults and juveniles strongly impacted the dynamics of populations and their top-down control on algae in the mesocosms, and that the strength of these interactions was modulated by rapid evolution as it occurred in nature. Our study provides an example of an evolutionary response that fundamentally alters the processes structuring population dynamics and impacts ecosystem features.
Proposed moduli of dry rock and their application to predicting elastic velocities of sandstones
Lee, Myung W.
2005-01-01
Velocities of water-saturated isotropic sandstones under low frequency can be modeled using the Biot-Gassmann theory if the moduli of dry rocks are known. On the basis of effective medium theory by Kuster and Toksoz, bulk and shear moduli of dry sandstone are proposed. These moduli are related to each other through a consolidation parameter and provide a new way to calculate elastic velocities. Because this parameter depends on differential pressure and the degree of consolidation, the proposed moduli can be used to calculate elastic velocities of sedimentary rocks under different in-place conditions by varying the consolidation parameter. This theory predicts that the ratio of P-wave to S-wave velocity (Vp/Vs) of a dry rock decreases as differential pressure increases and porosity decreases. This pattern of behavior is similar to that of water-saturated sedimentary rocks. If microcracks are present in sandstones, the velocity ratio usually increases as differential pressure increases. This implies that this theory is optimal for sandstones having intergranular porosities. Even though the accurate behavior of the consolidation parameter with respect to differential pressure or the degree of consolidation is not known, this theory presents a new way to predict S-wave velocity from P-wave velocity and porosity and to calculate elastic velocities of gas-hydrate-bearing sediments. For given properties of sandstones such as bulk and shear moduli of matrix, only the consolidation parameter affects velocities, and this parameter can be estimated directly from the measurements; thus, the prediction of S-wave velocity is accurate, reflecting in-place conditions.
Differential-optoacoustic absorption detector
NASA Technical Reports Server (NTRS)
Shumate, M. S.
1977-01-01
Two-cell spectrophone detects trace amounts of atmospheric pollutants by measuring absorption coefficients of gases with various laser sources. Device measures pressure difference between two tapered cells with differential manometer. Background signal is reduced by balanced window heating and balanced carrier gas absorption in two cells.
Carlson, DA; Omari, T; Lin, Z; Rommel, N; Starkey, K; Kahrilas, PJ; Tack, J; Pandolfino, JE
2016-01-01
Background High-resolution impedance manometry (HRIM) allows evaluation of esophageal bolus retention, flow, and pressurization. We aimed to perform a collaborative analysis of HRIM metrics to evaluate patients with non-obstructive dysphagia. Methods 14 asymptomatic controls (58% female; ages 20 – 50) and 41 patients (63% female; ages 24 – 82), 18 evaluated for dysphagia, 23 for reflux (‘non-dysphagia patients’), with esophageal motility diagnoses of normal motility or ineffective esophageal motility were evaluated with HRIM and a global dysphagia symptom score (Brief Esophageal Dysphagia Questionnaire). HRIM were analyzed to assess Chicago Classification metrics, automated pressure-flow metrics, the esophageal impedance integral (EII) ratio, and the bolus flow time (BFT). Key Results Significant symptom-metric correlations were detected only with basal EGJ pressure, EII ratio, and BFT. The EII ratio, BFT, and impedance ratio differed between controls and dysphagia patients, while the EII ratio in the upright position was the only measure that differentiated dysphagia from non-dysphagia patients. Conclusions & Inferences The EII ratio and BFT appear to offer an improved diagnostic evaluation in patients with non-obstructive dysphagia without a major esophageal motility disorder. Bolus retention as measured with the EII ratio appears to carry the strongest association with dysphagia, and thus may aid in the characterization of symptomatic patients with otherwise normal manometry. PMID:27647522
Carlson, D A; Omari, T; Lin, Z; Rommel, N; Starkey, K; Kahrilas, P J; Tack, J; Pandolfino, J E
2017-03-01
High-resolution impedance manometry (HRIM) allows evaluation of esophageal bolus retention, flow, and pressurization. We aimed to perform a collaborative analysis of HRIM metrics to evaluate patients with non-obstructive dysphagia. Fourteen asymptomatic controls (58% female; ages 20-50) and 41 patients (63% female; ages 24-82), 18 evaluated for dysphagia and 23 for reflux (non-dysphagia patients), with esophageal motility diagnoses of normal motility or ineffective esophageal motility, were evaluated with HRIM and a global dysphagia symptom score (Brief Esophageal Dysphagia Questionnaire). HRIM was analyzed to assess Chicago Classification metrics, automated pressure-flow metrics, the esophageal impedance integral (EII) ratio, and the bolus flow time (BFT). Significant symptom-metric correlations were detected only with basal EGJ pressure, EII ratio, and BFT. The EII ratio, BFT, and impedance ratio differed between controls and dysphagia patients, while the EII ratio in the upright position was the only measure that differentiated dysphagia from non-dysphagia patients. The EII ratio and BFT appear to offer an improved diagnostic evaluation in patients with non-obstructive dysphagia without a major esophageal motility disorder. Bolus retention as measured with the EII ratio appears to carry the strongest association with dysphagia, and thus may aid in the characterization of symptomatic patients with otherwise normal manometry. © 2016 John Wiley & Sons Ltd.
Fine, Michael L; Lahiri, Shweta; Sullivan, Amanda D H; Mayo, Mark; Newton, Scott H; Sismour, Edward N
2014-07-01
Locked pectoral spines of the Channel Catfish Ictalurus punctatus more than double the fish's width and complicate ingestion by gape-limited predators. The spine mates with the pectoral girdle, a robust structure that anchors the spine. This study demonstrates that both spine and girdle exhibit negative allometric growth and that pectoral spines and girdles are lighter in domesticated than in wild Channel Catfish. This finding could be explained by changes in selection pressure for spine growth during domestication or by an epigenetic effect in which exposure to predators in wild fish stimulates pectoral growth. We tested the epigenetic hypothesis by exposing domesticated Channel Catfish fingerlings to Largemouth Bass Micropterus salmoides predators for 13 weeks. Spines and girdles grow isometrically in the fingerlings, and regression analysis indicates no difference in proportional pectoral growth between control and predator-exposed fish. Therefore a change in selection pressure likely accounts for smaller pectoral growth in domesticated Channel Catfish. Decreasing spine growth in older fish suggests anti-predator functions are most important in smaller fish. Additionally, growth of the appendicular and axial skeleton is controlled differentially, and mechanical properties of the spine and not just its length are an important component of this defensive adaptation. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.
The equilibrium of overpressurized polytropes
NASA Astrophysics Data System (ADS)
Huré, J.-M.; Hersant, F.; Nasello, G.
2018-03-01
We investigate the impact of an external pressure on the structure of self-gravitating polytropes for axially symmetric ellipsoids and rings. The confinement of the fluid by photons is accounted for through a boundary condition on the enthalpy H. Equilibrium configurations are determined numerically from a generalized `self-consistent-field' method. The new algorithm incorporates an intraloop re-scaling operator R(H), which is essential for both convergence and getting self-normalized solutions. The main control parameter is the external-to-core enthalpy ratio. In the case of uniform rotation rate and uniform surrounding pressure, we compute the mass, the volume, the rotation rate and the maximum enthalpy. This is repeated for a few polytropic indices, n. For a given axial ratio, overpressurization globally increases all output quantities, and this is more pronounced for large n. Density profiles are flatter than in the absence of an external pressure. When the control parameter asymptotically tends to unity, the fluid converges towards the incompressible solution, whatever the index, but becomes geometrically singular. Equilibrium sequences, obtained by varying the axial ratio, are built. States of critical rotation are greatly exceeded or even disappear. The same trends are observed with differential rotation. Finally, the typical response to a photon point source is presented. Strong irradiation favours sharp edges. Applications concern star-forming regions and matter orbiting young stars and black holes.
Baroreceptors mask sympathetic responses to high intraocular pressure in dogs.
Yahagi, Toru; Koyama, Shozo; Osaka, Kazumasa; Koyama, Haruhide
2008-05-30
These experiments were designed to investigate whether increasing intraocular pressure (IOP) in anesthetized dogs produces differential control of sympathetic nerve activities to various organs (heart, kidney, liver, and spleen) and if these sympathetic responses are modified by baroreceptors. We performed simultaneous multi-recordings of cardiac, renal, hepatic and splenic sympathetic nerve activities (CNA, RNA, HNA and SpNA, respectively) during 2 min of increasing IOP to a mean pressure of 30 mmHg. After increasing IOP in dogs with the intact baroreceptors, all of measured nerve activities did not change significantly throughout the experiment. In dogs with denervation of baroreceptors (cervical vagotomy with denervation of the carotid sinus and aortic nerves), only RNA and CNA showed significant increases in response to the increased IOP. However, time course changes in HNA and SpNA did not show any significant differences as compared with the baseline or that of the control group. These results indicate that systemic sympathetic nerve responses to increasing IOP are masked by systemic baroreceptors. As animals were denervated of their systemic baroreceptors, the unidirectional sympathoexcitatory responses to increased IOP were observed on CNA and RNA, but not on HNA and SpNA. These sympathetic outflow, when systemic baroreceptors are impaired as observed in old age, may play an important role in management of glaucoma attack with the use of adrenolytic drugs.
Intermittent midline suprasternal neck mass caused by superior herniation of the thymus.
Su, Siew Choo; Hess, Thomas; Whybourne, Annie; Chang, Anne B
2015-03-01
Neck masses in infants and children have a wide differential diagnosis. However, neck masses apparent only during raised intrathoracic pressure are rare with a limited number of causes, including superior herniation of the normal thymus, apical lung herniation, jugular phlebectasia and laryngocoele. These conditions can easily be differentiated from one another by imaging. We present an infant with intermittent suprasternal neck mass visible only during increased intrathoracic pressure, produced either by crying or straining. Diagnosis of superior herniation of the thymus into the neck was confirmed by ultrasonography with the characteristic sonographic appearances of the normal thymus as well as its shape, size and location. Ultrasonography should be the first imaging modality of choice. Management of superior herniation of the thymus into the neck should be conservative as the thymus naturally involutes with increasing age. Awareness of the differential diagnosis of neck swelling present only on Vasalva manoeuvre or increased intrathoracic pressure is important to prevent unnecessary tests, avoid radiation, biopsy and surgery. © 2014 The Authors. Journal of Paediatrics and Child Health © 2014 Paediatrics and Child Health Division (Royal Australasian College of Physicians).
Static strength of molybdenum to 92 GPa under radial X-ray diffraction
NASA Astrophysics Data System (ADS)
Xiong, L.; Tu, P.; Li, B.; Wu, S. Y.; Hao, J. B.; Bai, L. G.; Li, X. D.; Liu, J.
2018-06-01
The high-pressure strength of molybdenum (Mo) to 92 GPa has been studied by radial X-ray diffraction (RXRD) technique. The ratio of t/G is found to decrease above ˜24 GPa, showing the yield of Mo which is caused by plastic deformation at this pressure. Combined with high-pressure shear modulus, it was found that the differential stress corresponding to the yield of Mo at 24 GPa due to plastic deformation is 1.73 GPa. The second increase of t values occurs after ˜66 GPa, suggesting the strength of Mo with a differential stress of ˜1.93 GPa. In addition, the maximum difference stress of molybdenum at 87 GPa is 3.01 GPa.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colby, Robert J.; Alsem, Daan H.; Liyu, Andrey V.
2015-06-01
The development of environmental transmission electron microscopy (TEM) has enabled in situ experiments in a gaseous environment with high resolution imaging and spectroscopy. Addressing scientific challenges in areas such as catalysis, corrosion, and geochemistry can require pressures much higher than the ~20 mbar achievable with a differentially pumped, dedicated environmental TEM. Gas flow stages, in which the environment is contained between two semi-transparent thin membrane windows, have been demonstrated at pressures of several atmospheres. While this constitutes significant progress towards operando measurements, the design of many current gas flow stages is such that the pressure at the sample cannot necessarilymore » be directly inferred from the pressure differential across the system. Small differences in the setup and design of the gas flow stage can lead to very different sample pressures. We demonstrate a method for measuring the gas pressure directly, using a combination of electron energy loss spectroscopy and TEM imaging. This method requires only two energy filtered TEM images, limiting the measurement time to a few seconds and can be performed during an ongoing experiment at the region of interest. This approach provides a means to ensure reproducibility between different experiments, and even between very differently designed gas flow stages.« less
High-resolution Esophageal Manometry Patterns in Children and Adolescents With Rumination Syndrome.
Righini Grunder, Franziska; Aspirot, Ann; Faure, Christophe
2017-12-01
Rumination is defined by effortless regurgitation within seconds or minutes of ingested food. The aim of this study was to determine the high-resolution esophageal manometry (HREM) pattern in children with rumination syndrome. HREM was evaluated in 15 pediatric patients with rumination syndrome according to the Rome criteria and compared with 15 controls. Primary rumination was defined as a clinical rumination episode associated with a rise of gastric pressure above 30 mmHg. Secondary rumination was defined as a clinical rumination episode associated with a rise of gastric pressure above 30 mmHg during a transient lower esophageal sphincter relaxation (TLESR). Ninety-two episodes of rumination were demonstrated during HREM study in 12 of the 15 patients (80%; 1-29 episodes per patient; median intragastric pressure 49.6 mmHg). Primary rumination occurred in 3 patients and secondary rumination in 5 patients. One patient had primary and secondary rumination episodes. In 3 patients, classification of rumination episodes was not possible due to repetitive swallowing leading to lower esophageal sphincter relaxation. In the control group, no episodes of rumination occurred. The sensitivity and the specificity of the HREM study (association of a clinical rumination episode with a rise in gastric pressure >30 mmHg) to confirm the diagnosis of rumination were 80% and 100%, respectively. HREM allows confirming diagnosis of rumination syndrome and to differentiate between primary and secondary rumination in the presence of objective rumination episodes. Further research is needed to study whether HREM results may influence treatment and outcome of children with rumination syndrome.
Xiong, Xingjiang; Yang, Xiaochen; Feng, Bo; Liu, Wei; Duan, Lian; Gao, Ao; Li, Haixia; Ma, Jizheng; Du, Xinliang; Li, Nan; Wang, Pengqian; Su, Kelei; Chu, Fuyong; Zhang, Guohao; Li, Xiaoke; Wang, Jie
2013-01-01
Objectives. To assess the clinical effectiveness and adverse effects of Zhen Gan Xi Feng Decoction (ZGXFD) for essential hypertension (EH). Methods. Five major electronic databases were searched up to August 2012 to retrieve any potential randomized controlled trials designed to evaluate the clinical effectiveness of ZGXFD for EH reported in any language, with main outcome measure as blood pressure (BP). Results. Six randomized trials were included. Methodological quality of the trials was evaluated as generally low. Four trials compared prescriptions based on ZGXFD with antihypertensive drugs. Meta-analysis showed that ZGXFD was more effective in BP control and TCM syndrome and symptom differentiation (TCM-SSD) scores than antihypertensive drugs. Two trials compared the combination of modified ZGXFD plus antihypertensive drugs with antihypertensive drugs. Meta-analysis showed that there is significant beneficial effect on TCM-SSD scores. However, no significant effect on BP was found. The safety of ZGXFD is still uncertain. Conclusions. ZGXFD appears to be effective in improving blood pressure and hypertension-related symptoms for EH. However, the evidence remains weak due to poor methodological quality of the included studies. More rigorous trials are warranted to support their clinical use. PMID:23573163
Frequency Modulation and Spatiotemporal Stability of the sCPG in Preterm Infants with RDS
Barlow, Steven M.; Burch, Mimi; Venkatesan, Lalit; Harold, Meredith; Zimmerman, Emily
2012-01-01
The nonnutritive suck (NNS) is an observable and accessible motor behavior which is often used to make inference about brain development and pre-feeding skill in preterm and term infants. The purpose of this study was to model NNS burst compression pressure dynamics in the frequency and time domain among two groups of preterm infants, including those with respiratory distress syndrome (RDS, N = 15) and 17 healthy controls. Digitized samples of NNS compression pressure waveforms recorded at a 1-week interval were collected 15 minutes prior to a scheduled feed. Regression analysis and ANOVA revealed that healthy preterm infants produced longer NNS bursts and the mean burst initiation cycle frequencies were higher when compared to the RDS group. Moreover, the initial 5 cycles of the NNS burst manifest a frequency modulated (FM) segment which is a significant feature of the suck central pattern generator (sCPG), and differentially expressed in healthy and RDS infants. The NNS burst structure revealed significantly lower spatiotemporal index values for control versus RDS preterm infants during FM, and provides additional information on the microstructure of the sCPG which may be used to gauge the developmental status and progression of oromotor control systems among these fragile infants. PMID:22888359
Flexible Microsensor Array for the Root Zone Monitoring of Porous Tube Plant Growth System
NASA Technical Reports Server (NTRS)
Sathyan, Sandeep; Kim, Chang-Soo; Porterfield, D. Marshall; Nagle, H. Troy; Brown, Christopher S.
2004-01-01
Control of oxygen and water in the root zone is vital to support plant growth in the microgravity environment. The ability to control these sometimes opposing parameters in the root zone is dependent upon the availability of sensors to detect these elements and provide feedback for control systems. In the present study we demonstrate the feasibility of using microsensor arrays on a flexible substrate for dissolved oxygen detection, and a 4-point impedance microprobe for surface wetness detection on the surface of a porous tube (PT) nutrient delivery system. The oxygen microsensor reported surface oxygen concentrations that correlated with the oxygen concentrations of the solution inside the PT when operated at positive pressures. At negative pressures the microsensor shows convergence to zero saturation (2.2 micro mol/L) values due to inadequate water film formation on porous tube surface. The 4-point microprobe is useful as a wetness detector as it provides a clear differentiation between dry and wet surfaces. The unique features of the dissolved oxygen microsensor array and 4-point microprobe include small and simple design, flexibility and multipoint sensing. The demonstrated technology is anticipated to provide low cost, and highly reliable sensor feedback monitoring plant growth nutrient delivery system in both terrestrial and microgravity environments.
Precise nanoliter fluid handling system with integrated high-speed flow sensor.
Haber, Carsten; Boillat, Marc; van der Schoot, Bart
2005-04-01
A system for accurate low-volume delivery of liquids in the micro- to nanoliter range makes use of an integrated miniature flow sensor as part of an intelligent feedback control loop driving a micro-solenoid valve. The flow sensor is hydraulically connected with the pressurized system liquid in the dispensing channel and located downstream from the pressure source, above the solenoid valve. The sensor operates in a differential mode and responds in real-time to the internal flow-pulse resulting from the brief opening interval of the solenoid valve leading to a rapid ejection of a fluid droplet. The integral of the flow-pulse delivered by the sensor is directly proportional to the volume of the ejected droplet from the nozzle. The quantitative information is utilized to provide active control of the effectively dispensed or aspirated volume by adjusting the solenoid valve accordingly. This process significantly enhances the precision of the fluid delivery. The system furthermore compensates automatically for any changes in the viscosity of the dispensed liquid. The data delivered by the flow sensor can be saved and backtracked in order to confirm and validate the aspiration and dispensing process in its entirety. The collected dispense information can be used for quality control assessments and automatically be made part of an electronic record.
Geoscience Applications of Synchrotron X-ray Computed Microtomography
NASA Astrophysics Data System (ADS)
Rivers, M. L.
2009-05-01
Computed microtomography is the extension to micron spatial resolution of the CAT scanning technique developed for medical imaging. Synchrotron sources are ideal for the method, since they provide a monochromatic, parallel beam with high intensity. High energy storage rings such as the Advanced Photon Source at Argonne National Laboratory produce x-rays with high energy, high brilliance, and high coherence. All of these factors combine to produce an extremely powerful imaging tool for earth science research. Techniques that have been developed include: - Absorption and phase contrast computed tomography with spatial resolution approaching one micron - Differential contrast computed tomography, imaging above and below the absorption edge of a particular element - High-pressure tomography, imaging inside a pressure cell at pressures above 10GPa - High speed radiography, with 100 microsecond temporal resolution - Fluorescence tomography, imaging the 3-D distribution of elements present at ppm concentrations. - Radiographic strain measurements during deformation at high confining pressure, combined with precise x- ray diffraction measurements to determine stress. These techniques have been applied to important problems in earth and environmental sciences, including: - The 3-D distribution of aqueous and organic liquids in porous media, with applications in contaminated groundwater and petroleum recovery. - The kinetics of bubble formation in magma chambers, which control explosive volcanism. - Accurate crystal size distributions in volcanic systems, important for understanding the evolution of magma chambers. - The equation-of-state of amorphous materials at high pressure using both direct measurements of volume as a function of pressure and also by measuring the change x-ray absorption coefficient as a function of pressure. - The formation of frost flowers on Arctic sea-ice, which is important in controlling the atmospheric chemistry of mercury. - The distribution of cracks in rocks at potential nuclear waste repositories. - The location and chemical speciation of toxic elements such as arsenic and nickel in soils and in plant tissues in contaminated Superfund sites. - The strength of earth materials under the pressure and temperature conditions of the Earth's mantle, providing insights into plate tectonics and the generation of earthquakes.
Leak test fixture and method for using same
Hawk, Lawrence S.
1976-01-01
A method and apparatus are provided which are especially useful for leak testing seams such as an end closure or joint in an article. The test does not require an enclosed pressurized volume within the article or joint section to be leak checked. A flexible impervious membrane is disposed over an area of the seamed surfaces to be leak checked and sealed around the outer edges. A preselected vacuum is applied through an opening in the membrane to evacuate the area between the membrane and the surface being leak checked to essentially collapse the membrane to conform to the article surface or joined adjacent surfaces. A pressure differential is concentrated at the seam bounded by the membrane and only the seam experiences a pressure differential as air or helium molecules are drawn into the vacuum system through a leak in the seam. A helium detector may be placed in a vacuum exhaust line from the membrane to detect the helium. Alternatively, the vacuum system may be isolated at a preselected pressure and leaks may be detected by a subsequent pressure increase in the vacuum system.
Analytic Formulation and Numerical Implementation of an Acoustic Pressure Gradient Prediction
NASA Technical Reports Server (NTRS)
Lee, Seongkyu; Brentner, Kenneth S.; Farassat, Fereidoun
2007-01-01
The scattering of rotor noise is an area that has received little attention over the years, yet the limited work that has been done has shown that both the directivity and intensity of the acoustic field may be significantly modified by the presence of scattering bodies. One of the inputs needed to compute the scattered acoustic field is the acoustic pressure gradient on a scattering surface. Two new analytical formulations of the acoustic pressure gradient have been developed and implemented in the PSU-WOPWOP rotor noise prediction code. These formulations are presented in this paper. The first formulation is derived by taking the gradient of Farassat's retarded-time Formulation 1A. Although this formulation is relatively simple, it requires numerical time differentiation of the acoustic integrals. In the second formulation, the time differentiation is taken inside the integrals analytically. The acoustic pressure gradient predicted by these new formulations is validated through comparison with the acoustic pressure gradient determined by a purely numerical approach for two model rotors. The agreement between analytic formulations and numerical method is excellent for both stationary and moving observers case.
Study on the technology of dual-tube layered injection in ASP flooding
NASA Astrophysics Data System (ADS)
Yang, Ye; Zhang, Yongping; Xu, Dekui; Cai, Meng; Yang, Zhigang; Wang, Hailong; Song, Xingliang
2017-10-01
For the single-tube layered injection technology cannot solve the problem of interlayer pressure difference is greater than 2MPa injection wells, through the development of dual-tube packer, dual-tube injection allocator, downhole plug, the ground pressure regulator and molecular weight regulator. Dual-tube layered injection technology is formed. According to the data of ASP flooding injection wells in the field, the whole well is divided into high permeability and low permeability oil reservoir. Two separate injection channels can be formed by using dual-tube packer and dual-tube injection allocator. Through the use of the ground pressure regulator, the problem of the high permeability layer and low permeability layer of the injection pressure difference is solved. Through the use of the ground molecular weight regulator, the problem that the same molecular weight ASP solution is not suitable for high and low permeability is solved. By replacing the downhole plug, the grouping transformation of some oil layer can be achieved. The experiment and field application of 3 wells results show that: the flow control range is 20m3/d-70m3/d; the max. Throttling differential pressure is 3.5MPa; the viscosity loss rate of solution is less than 5%; and the molecular weight adjusting range is 20%-50%. The utilization degree of oil layer is obviously increased through the use of the dual-tube layered injection technology.
Early Planetary Differentiation: Comparative Planetology
NASA Technical Reports Server (NTRS)
Jones, John H.
2006-01-01
We currently have extensive data for four different terrestrial bodies of the inner solar system: Earth, the Moon, Mars, and the Eucrite Parent Body [EPB]. All formed early cores; but all(?) have mantles with elevated concentrations of highly sidero-phile elements, suggestive of the addition of a late "veneer". Two appear to have undergone extensive differentiation consistent with a global magma ocean. One appears to be inconsistent with a simple model of "low-pressure" chondritic differentiation. Thus, there seems to be no single, simple paradigm for understand-ing early differentiation.
Estimation of Saxophone Control Parameters by Convex Optimization.
Wang, Cheng-I; Smyth, Tamara; Lipton, Zachary C
2014-12-01
In this work, an approach to jointly estimating the tone hole configuration (fingering) and reed model parameters of a saxophone is presented. The problem isn't one of merely estimating pitch as one applied fingering can be used to produce several different pitches by bugling or overblowing. Nor can a fingering be estimated solely by the spectral envelope of the produced sound (as it might for estimation of vocal tract shape in speech) since one fingering can produce markedly different spectral envelopes depending on the player's embouchure and control of the reed. The problem is therefore addressed by jointly estimating both the reed (source) parameters and the fingering (filter) of a saxophone model using convex optimization and 1) a bank of filter frequency responses derived from measurement of the saxophone configured with all possible fingerings and 2) sample recordings of notes produced using all possible fingerings, played with different overblowing, dynamics and timbre. The saxophone model couples one of several possible frequency response pairs (corresponding to the applied fingering), and a quasi-static reed model generating input pressure at the mouthpiece, with control parameters being blowing pressure and reed stiffness. Applied fingering and reed parameters are estimated for a given recording by formalizing a minimization problem, where the cost function is the error between the recording and the synthesized sound produced by the model having incremental parameter values for blowing pressure and reed stiffness. The minimization problem is nonlinear and not differentiable and is made solvable using convex optimization. The performance of the fingering identification is evaluated with better accuracy than previous reported value.
NASA Astrophysics Data System (ADS)
Rodi, A. R.; Leon, D. C.
2012-11-01
A method is described that estimates the error in the static pressure measurement on an aircraft from differential pressure measurements on the hemispherical surface of a Rosemount model 858AJ air velocity probe mounted on a boom ahead of the aircraft. The theoretical predictions for how the pressure should vary over the surface of the hemisphere, involving an unknown sensitivity parameter, leads to a set of equations that can be solved for the unknowns - angle of attack, angle of sideslip, dynamic pressure and the error in static pressure - if the sensitivity factor can be determined. The sensitivity factor was determined on the University of Wyoming King Air research aircraft by comparisons with the error measured with a carefully designed sonde towed on connecting tubing behind the aircraft - a trailing cone - and the result was shown to have a precision of about ±10 Pa over a wide range of conditions, including various altitudes, power settings, and gear and flap extensions. Under accelerated flight conditions, geometric altitude data from a combined Global Navigation Satellite System (GNSS) and inertial measurement unit (IMU) system are used to estimate acceleration effects on the error, and the algorithm is shown to predict corrections to a precision of better than ±20 Pa under those conditions. Some limiting factors affecting the precision of static pressure measurement on a research aircraft are discussed.
Ye, Rui; Hao, Jin; Song, Jinlin; Zhao, Zhihe; Fang, Shanbao; Wang, Yating; Li, Juan
2014-06-01
Chondrocytes integrate numerous microenvironmental cues to mount physiologically relevant differentiation responses, and the regulation of mechanical signaling in chondrogenic differentiation is now coming into intensive focus. To facilitate tissue-engineered chondrogenesis by mechanical strategy, a thorough understanding about the interactional roles of chemical factors under mechanical stimuli in regulating chondrogenesis is in great need. Therefore, this study attempts to investigate the interaction of rat MSCs with their microenvironment by imposing dynamic and static hydrostatic pressure through modulating gaseous tension above the culture medium. Under dynamic pressure, chemical parameters (pH, pO2, and pCO2) were kept in homeostasis. In contrast, pH was remarkably reduced due to increased pCO2 under static pressure. MSCs under the dynamically pressured microenvironment exhibited a strong accumulation of GAG within and outside the alginate beads, while cells under the statically pressured environment lost newly synthesized GAG into the medium with a speed higher than its production. In addition, the synergic influence on expression of chondrogenic genes was more persistent under dynamic pressure than that under static pressure. This temporal contrast was similar to that of activation of endogenous TGF-β1. Taken altogether, it indicates that a loading strategy which can keep a homeostatic chemical microenvironment is preferred, since it might sustain the stimulatory effects of mechanical stimuli on chondrogenesis via activation of endogenous TGF-β1. © 2013 Wiley Periodicals, Inc.
On the anomaly of velocity-pressure decoupling in collocated mesh solutions
NASA Technical Reports Server (NTRS)
Kim, Sang-Wook; Vanoverbeke, Thomas
1991-01-01
The use of various pressure correction algorithms originally developed for fully staggered meshes can yield a velocity-pressure decoupled solution for collocated meshes. The mechanism that causes velocity-pressure decoupling is identified. It is shown that the use of a partial differential equation for the incremental pressure eliminates such a mechanism and yields a velocity-pressure coupled solution. Example flows considered are a three dimensional lid-driven cavity flow and a laminar flow through a 90 deg bend square duct. Numerical results obtained using the collocated mesh are in good agreement with the measured data and other numerical results.
Heart rate differentiates urgency and emergency in hypertensive crisis.
Al Bannay, Rashed; Böhm, Michael; Husain, Aysha
2013-08-01
To study the clinical significance of presenting blood pressure parameters and heart rate in patients with hypertensive crisis. In patients admitted with hypertensive crisis between January 2011 and May 2011, demography, mode of presentation, co-morbidities, blood pressure readings, and heart rate at presentation were documented. Further clustering of hypertensive crisis into emergency or urgency was based on the presence or absence of target organ involvement. The relationship between blood pressure parameters, heart rate, and other variables was analyzed. 189 patients in sinus rhythm were enrolled in this pilot study. The rate of hypertensive urgency was 56 %, whereas the rate of hypertensive emergency was 44 %, respectively. Subjects with hypertensive emergency had a higher mean heart rate (93 ± 22.7 bpm) than those with urgency (81 ± 11.5 bpm) (P = 0.015). Women had higher heart rates (92 ± 18.5 bpm) than men (86 ± 17.6 bpm) (P = 0.014). Heart rates below 100 bpm had a specificity of 94 %, classifying patients as hypertensive urgency. Tachycardia had a powerful statistical association with hypertensive left ventricular failure (P < 0.0001). Other hemodynamic parameters, including systolic blood pressure, diastolic blood pressure, pulse pressure, and mean blood pressure relates neither to urgency nor to emergency. Diabetic patients with HBA1c levels of more than 53 mmol/mol had a heart rate of more than 100 bpm (P = 0.015) during hypertensive crisis. Normal heart rate is characteristic of hypertensive urgency. Tachycardia in this setting is an ominous sign and denotes hypertensive complications in particular left ventricular failure. Among diabetics, elevated heart rate is associated with poor glycemic control.
Rühle, K H; Karweina, D; Domanski, U; Nilius, G
2009-07-01
The function of automatic CPAP devices is difficult to investigate using clinical examinations due to the high variability of breathing disorders. With a flow generator, however, identical breathing patterns can be reproduced so that comparative studies on the behaviour of pressure of APAP devices are possible. Because the algorithms of APAP devices based on the experience of users can be modified without much effort, also previously investigated devices should regularly be reviewed with regard to programme changes. Had changes occurred in the algorithms of 3 selected devices--compared to the previously published benchmark studies? Do the current versions of these investigated devices differentiate between open and closed apnoeas? With a self-developed respiratory pump, sleep-related breathing patterns and, with the help of a computerised valve, resistances of the upper respiratory tract were simulated. Three different auto-CPAP devices were subjected to a bench test with and without feedback (open/closed loop). Open loop: the 3 devices showed marked differences in the rate of pressure rise but did not differ from the earlier published results. From an initial pressure of 4 mbar the pressure increased to 10 mbar after a different number of apnoeas (1-6 repetitive apnoeas). Only one device differentiated between closed and open apnoeas. Closed loop: due to the pressure increase, the flow generator simulated reduced obstruction of the upper airways (apnoeas changed to hypopnoeas, hypopnoeas changed to flattening) but different patterns of pressure regulation could still be observed. By applying bench-testing, the algorithms of auto-CPAP devices can regularly be reviewed to detect changes in the software. The differentiation between open and closed apnoeas should be improved in several APAP devices.
NASA Astrophysics Data System (ADS)
Siguier, J.; Guigue, P.; Karama, M.; Mistou, S.; Dalverny, O.; Granier, S.
Long duration super-pressure balloons are a great challenge in scientific ballooning. Whatever the balloon type considered (spherical, pumpkin,...), it is necessary to have good knowledge of the mechanical behavior of the envelope regarding the flight level and the life-span of the balloon. For this reason CNES, ONERA and ENIT are carrying out a research program of modelization and experimentation in order to predict the envelope shape of a balloon in different conditions of temperature and differential pressure. On the one hand, we define the mechanical laws of envelope materials, that is the elasticity, plasticity and viscosity properties of polymers, and find the parameters of the law with unidirectional tests. These laws are introduced in a finite element code which predict the stress and strain state of a complex envelope structure. On the other hand, we are developing an experimental set-up to measure the 3D strain of a balloon sub-system, that is including the envelope, assemblies and apex parts, with realistic flight conditions. This facility, called NIRVANA, is a 1m3 vacuum chamber with cooled screens equipped with a stereoscopic CCD measurement system. We can submit a 1,5m diameter sample to differential pressure, regulate the temperature from +20°C to -120°C and apply a load to tendons of up to 6 tons if required. This paper presents the first results of the modelizations and m asurements of ane envelope sample submitted to axisymetrical stress due to the differential pressure. This sample consists of a 50μm multi-layer polymer film with an assembly, used in 10m diameter STRATEOLE super-pressure balloons. The modelization gives results which largely agree with the experiment and enable us to continue with cold conditions and more complex structures.
NASA Astrophysics Data System (ADS)
Siguier, J.-M.; Guigue, P.; Karama, M.; Mistou, S.; Dalverny, O.; Granier, S.
2004-01-01
Long duration super-pressure balloons constitute a great challenge in scientific ballooning. For any type of balloons (spherical, pumpkin, …), it is necessary to have a good knowledge of the mechanical behavior of envelopes regarding the level and the lifetime of the flight. For this reason CNES, ONERA and ENIT are carrying out a research program of modelization and experimentation in order to predict the envelope shape of a balloon in different conditions of temperature and differential pressure. This study was conducted in two parts. During the first one, we defined, with parameters obtained from unidirectional tests, the mechanical laws (elasticity, plasticity and viscosity properties of polymers) of materials involved in the envelope. These laws are introduced in a finite element code, which predicts the stress and strain status of a complex envelope structure. During the second one, we developed an experimental set-up to measure the 3D strain on a balloon subsystem, which includes envelope, assemblies and apex parts, in real flight conditions. This facility, called NIRVANA, is a 1 m 3 vacuum chamber with cooled screens equipped with a stereoscopic CCD measurement system. A 1.5 m diameter sample can be tested under differential pressure, regulated temperature (from +20 to -120 °C) and a load (up to 6 tonnes) applied on tendons. This paper presents the first results obtained from the modelizations and measurements done on an envelope sample submitted to axisymmetrical stress due to the differential pressure. This sample consists of a 50 μm multilayer polymer film with an assembly, used in 10 m diameter STRATEOLE super-pressure balloons. The modelization gives results in good accordance with the experiments and will enable us to follow this work with cold conditions, time dependence (creeping) and more complex structures.
Smirl, Jonathan D; Wright, Alexander D; Ainslie, Philip N; Tzeng, Yu-Chieh; van Donkelaar, Paul
2018-01-01
Cerebral pressure-flow dynamics are typically reported between mean arterial pressure and mean cerebral blood velocity. However, by reporting only mean responses, potential differential regulatory properties associated with systole and diastole may have been overlooked. Twenty young adults (16 male, age: 26.7 ± 6.6 years, BMI: 24.9 ± 3.0 kg/m 2 ) were recruited for this study. Middle cerebral artery velocity was indexed via transcranial Doppler. Cerebral pressure-flow dynamics were assessed using transfer function analysis at both 0.05 and 0.10 Hz using squat-stand manoeuvres. This method provides robust and reliable measures for coherence (correlation index), phase (timing buffer) and gain (amplitude buffer) metrics. There were main effects for both cardiac cycle and frequency for phase and gain metrics (p < 0.001). The systolic phase (mean ± SD) was elevated at 0.05 (1.07 ± 0.51 radians) and 0.10 Hz (0.70 ± 0.46 radians) compared to the diastolic phase (0.05 Hz: 0.59 ± 0.14 radians; 0.10 Hz: 0.33 ± 0.11 radians). Conversely, the systolic normalized gain was reduced (0.05 Hz: 0.49 ± 0.12%/%; 0.10 Hz: 0.66 ± 0.20%/%) compared to the diastolic normalized gain (0.05 Hz: 1.46 ± 0.43%/%; 0.10 Hz: 1.97 ± 0.48%/%). These findings indicate there are differential systolic and diastolic aspects of the cerebral pressure-flow relationship. The oscillations associated with systole are extensively buffered within the cerebrovasculature, whereas diastolic oscillations are relatively unaltered. This indicates that the brain is adapted to protect itself against large increases in systolic blood pressure, likely as a mechanism to prevent cerebral haemorrhages.
NASA Technical Reports Server (NTRS)
Flamant, Cyrille N.; Schwemmer, Geary K.; Korb, C. Laurence; Evans, Keith D.; Palm, Stephen P.
1999-01-01
Remote airborne measurements of the vertical and horizontal structure of the atmospheric pressure field in the lower troposphere are made with an oxygen differential absorption lidar (DIAL). A detailed analysis of this measurement technique is provided which includes corrections for imprecise knowledge of the detector background level, the oxygen absorption fine parameters, and variations in the laser output energy. In addition, we analyze other possible sources of systematic errors including spectral effects related to aerosol and molecular scattering interference by rotational Raman scattering and interference by isotopic oxygen fines.
Energy measurement using flow computers and chromatography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beeson, J.
1995-12-01
Arkla Pipeline Group (APG), along with most transmission companies, went to electronic flow measurement (EFM) to: (1) Increase resolution and accuracy; (2) Real time correction of flow variables; (3) Increase speed in data retrieval; (4) Reduce capital expenditures; and (5) Reduce operation and maintenance expenditures Prior to EFM, mechanical seven day charts were used which yielded 800 pressure and differential pressure readings. EFM yields 1.2-million readings, a 1500 time improvement in resolution and additional flow representation. The total system accuracy of the EFM system is 0.25 % compared with 2 % for the chart system which gives APG improved accuracy.more » A typical APG electronic measurement system includes a microprocessor-based flow computer, a telemetry communications package, and a gas chromatograph. Live relative density (specific gravity), BTU, CO{sub 2}, and N{sub 2} are updated from the chromatograph to the flow computer every six minutes which provides accurate MMBTU computations. Because the gas contract length has changed from years to monthly and from a majority of direct sales to transports both Arkla and its customers wanted access to actual volumes on a much more timely basis than is allowed with charts. The new electronic system allows volumes and other system data to be retrieved continuously, if EFM is on Supervisory Control and Data Acquisition (SCADA) or daily if on dial up telephone. Previously because of chart integration, information was not available for four to six weeks. EFM costs much less than the combined costs of telemetry transmitters, pressure and differential pressure chart recorders, and temperature chart recorder which it replaces. APG will install this equipment on smaller volume stations at a customers expense. APG requires backup measurement on metering facilities this size. It could be another APG flow computer or chart recorder, or the other companies flow computer or chart recorder.« less
Active control of panel vibrations induced by a boundary layer flow
NASA Technical Reports Server (NTRS)
Chow, Pao-Liu
1995-01-01
The problems of active and passive control of sound and vibration has been investigated by many researchers for a number of years. However, few of the articles are concerned with the sound and vibration with flow-structure interaction. Experimental and numerical studies on the coupling between panel vibration and acoustic radiation due to flow excitation have been done by Maestrello and his associates at NASA/Langley Research Center. Since the coupled system of nonlinear partial differential equations is formidable, an analytical solution to the full problem seems impossible. For this reason, we have to simplify the problem to that of the nonlinear panel vibration induced by a uniform flow or a boundary-layer flow with a given wall pressure distribution. Based on this simplified model, we have been able to consider the control and stabilization of the nonlinear panel vibration, which have not been treated satisfactorily by other authors. Although the sound radiation has not been included, the vibration suppression will clearly reduce the sound radiation power from the panel. The major research findings are presented in three sections. In section two we describe results on the boundary control of nonlinear panel vibration, with or without flow excitation. Sections three and four are concerned with some analytical and numerical results in the optimal control of the linear and nonlinear panel vibrations, respectively, excited by the flow pressure fluctuations. Finally, in section five, we draw some conclusions from research findings.
NASA Astrophysics Data System (ADS)
Blatter, Dawnika L.; Sisson, Thomas W.; Hankins, W. Ben
2013-09-01
This study focuses on the production of convergent margin calc-alkaline andesites by crystallization-differentiation of basaltic magmas in the lower to middle crust. Previous experimental studies show that dry, reduced, subalkaline basalts differentiate to tholeiitic (high Fe/Mg) daughter liquids, but the influences of H2O and oxidation on differentiation are less well established. Accordingly, we performed crystallization experiments at controlled oxidized fO2 (Re-ReO2 ≈ ΔNi-NiO + 2) on a relatively magnesian basalt (8.7 wt% MgO) typical of mafic magmas erupted in the Cascades near Mount Rainier, Washington. The basalt was synthesized with 2 wt% H2O and run at 900, 700, and 400 MPa and 1,200 to 950 °C. A broadly clinopyroxenitic crystallization interval dominates near the liquidus at 900 and 700 MPa, consisting of augite + olivine + orthopyroxene + Cr-spinel (in decreasing abundance). With decreasing temperature, plagioclase crystallizes, Fe-Ti-oxide replaces spinel, olivine dissolves, and finally amphibole appears, producing gabbroic and then amphibole gabbroic crystallization stages. Enhanced plagioclase stability at lower pressure narrows the clinopyroxenitic interval and brings the gabbroic interval toward the liquidus. Liquids at 900 MPa track along Miyashiro's (Am J Sci 274(4):321-355, 1974) tholeiitic versus calc-alkaline boundary, whereas those at 700 and 400 MPa become calc-alkaline at silica contents ≥56 wt%. This difference is chiefly due to higher temperature appearance of magnetite (versus spinel) at lower pressures. Although the evolved liquids are similar in many respects to common calc-alkaline andesites, the 900 and 700 MPa liquids differ in having low CaO concentrations due to early and abundant crystallization of augite, with the result that those liquids become peraluminous (ASI: molar Al/(Na + K + 2Ca) > 1) at ≥61 wt% SiO2, similar to liquids reported in other studies of the high-pressure crystallization of hydrous basalts (Müntener and Ulmer in Geophys Res Lett 33(21):L21308, 2006). The lower-pressure liquids (400 MPa) have this same trait, but to a lesser extent due to more abundant near-liquidus plagioclase crystallization. A compilation of >6,500 analyses of igneous rocks from the Cascades and the Sierra Nevada batholith, representative of convergent margin (arc) magmas, shows that ASI increases continuously and linearly with SiO2 from basalts to rhyolites or granites and that arc magmas are not commonly peraluminous until SiO2 exceeds 69 wt%. These relations are consistent with plagioclase accompanying mafic silicates over nearly all the range of crystallization (or remelting). The scarcity of natural peraluminous andesites shows that progressive crystallization-differentiation of primitive basalts in the deep crust, producing early clinopyroxenitic cumulates and evolved liquids, does not dominate the creation of intermediate arc magmas or of the continental crust. Instead, mid- to upper-crustal differentiation and/or open-system processes are critical to the production of intermediate arc magmas. Primary among the open-system processes may be extraction of highly evolved (granitic, rhyolitic) liquids at advanced degrees of basalt solidification (or incipient partial melting of predecessor gabbroic intrusions) and mixing of such liquids into replenishing basalts. Furthermore, if the andesitic-composition continents derived from basaltic sources, the arc ASI-SiO2 relation shows that the mafic component returned to the mantle was gabbroic in composition, not pyroxenitic.
Blatter, Dawnika L.; Sisson, Thomas W.; Hankins, W. Ben
2013-01-01
This study focuses on the production of convergent margin calc-alkaline andesites by crystallization–differentiation of basaltic magmas in the lower to middle crust. Previous experimental studies show that dry, reduced, subalkaline basalts differentiate to tholeiitic (high Fe/Mg) daughter liquids, but the influences of H2O and oxidation on differentiation are less well established. Accordingly, we performed crystallization experiments at controlled oxidized fO2 (Re–ReO2 ≈ ΔNi–NiO + 2) on a relatively magnesian basalt (8.7 wt% MgO) typical of mafic magmas erupted in the Cascades near Mount Rainier, Washington. The basalt was synthesized with 2 wt% H2O and run at 900, 700, and 400 MPa and 1,200 to 950 °C. A broadly clinopyroxenitic crystallization interval dominates near the liquidus at 900 and 700 MPa, consisting of augite + olivine + orthopyroxene + Cr-spinel (in decreasing abundance). With decreasing temperature, plagioclase crystallizes, Fe–Ti-oxide replaces spinel, olivine dissolves, and finally amphibole appears, producing gabbroic and then amphibole gabbroic crystallization stages. Enhanced plagioclase stability at lower pressure narrows the clinopyroxenitic interval and brings the gabbroic interval toward the liquidus. Liquids at 900 MPa track along Miyashiro’s (Am J Sci 274(4):321–355, 1974) tholeiitic versus calc-alkaline boundary, whereas those at 700 and 400 MPa become calc-alkaline at silica contents ≥56 wt%. This difference is chiefly due to higher temperature appearance of magnetite (versus spinel) at lower pressures. Although the evolved liquids are similar in many respects to common calc-alkaline andesites, the 900 and 700 MPa liquids differ in having low CaO concentrations due to early and abundant crystallization of augite, with the result that those liquids become peraluminous (ASI: molar Al/(Na + K + 2Ca) > 1) at ≥61 wt% SiO2, similar to liquids reported in other studies of the high-pressure crystallization of hydrous basalts (Müntener and Ulmer in Geophys Res Lett 33(21):L21308, 2006). The lower-pressure liquids (400 MPa) have this same trait, but to a lesser extent due to more abundant near-liquidus plagioclase crystallization. A compilation of >6,500 analyses of igneous rocks from the Cascades and the Sierra Nevada batholith, representative of convergent margin (arc) magmas, shows that ASI increases continuously and linearly with SiO2 from basalts to rhyolites or granites and that arc magmas are not commonly peraluminous until SiO2 exceeds 69 wt%. These relations are consistent with plagioclase accompanying mafic silicates over nearly all the range of crystallization (or remelting). The scarcity of natural peraluminous andesites shows that progressive crystallization–differentiation of primitive basalts in the deep crust, producing early clinopyroxenitic cumulates and evolved liquids, does not dominate the creation of intermediate arc magmas or of the continental crust. Instead, mid- to upper-crustal differentiation and/or open-system processes are critical to the production of intermediate arc magmas. Primary among the open-system processes may be extraction of highly evolved (granitic, rhyolitic) liquids at advanced degrees of basalt solidification (or incipient partial melting of predecessor gabbroic intrusions) and mixing of such liquids into replenishing basalts. Furthermore, if the andesitic-composition continents derived from basaltic sources, the arc ASI–SiO2 relation shows that the mafic component returned to the mantle was gabbroic in composition, not pyroxenitic.
NASA Astrophysics Data System (ADS)
Liu, Jiafu; McInnes, Colin R.
2018-03-01
This paper considers utilizing solar radiation pressure (SRP) to actively control the surface shape of a reflector consisting of a rigid hoop and slack membrane with embedded reflectivity control devices. The full nonlinear static partial differential governing equations for a reflector with negligible elastic deformations are established for the circumferential, radial and transverse directions respectively, in which the SRP force with ideal/non-perfect models, the centripetal force caused by the rotation of the reflector and the internal stresses are considered. The inverse problem is then formulated by assuming that the required surface shape is known, and then the governing algebraic-differential equations used to determine the required surface reflectivity, together with the internal stresses where are presented accordingly. The validity of the approach is verified by comparing the results in this paper with corresponding published results as benchmarks. The feasible regions of the angular velocity and Sun angle for a paraboloidal reflector with an invariant radius and focal length (case 1), and the achievable focal lengths with a specific angular velocity and Sun angle (case 2) are presented for two SRP models respectively, both by considering the constraints on the reflectivity and internal stresses. It is then found that the feasible region is toward a larger angular velocity and Sun angle when using the non-perfect SRP model, compared with the ideal one in case 1. The angular velocity of the spinning reflector should be within a certain range to make the required reflectivity profiles within a practical range, i.e., [0, 0.88], as indicated from prior NASA solar sail studies. In case 2, it is found that the smallest achievable focal length of the reflector with the non-perfect SRP model is smaller than that with the ideal SRP model. It is also found that the stress level is extremely low for all cases considered and that the typical real material strength available for the reflector is sufficient to withstand these internal stresses.
Development of a distributed-parameter mathematical model for simulation of cryogenic wind tunnels
NASA Technical Reports Server (NTRS)
Tripp, J. S.
1983-01-01
A one-dimensional distributed-parameter dynamic model of a cryogenic wind tunnel was developed which accounts for internal and external heat transfer, viscous momentum losses, and slotted-test-section dynamics. Boundary conditions imposed by liquid-nitrogen injection, gas venting, and the tunnel fan were included. A time-dependent numerical solution to the resultant set of partial differential equations was obtained on a CDC CYBER 203 vector-processing digital computer at a usable computational rate. Preliminary computational studies were performed by using parameters of the Langley 0.3-Meter Transonic Cryogenic Tunnel. Studies were performed by using parameters from the National Transonic Facility (NTF). The NTF wind-tunnel model was used in the design of control loops for Mach number, total temperature, and total pressure and for determining interactions between the control loops. It was employed in the application of optimal linear-regulator theory and eigenvalue-placement techniques to develop Mach number control laws.
Ciofi-Silva, Caroline Lopes; Hansen, Lisbeth Lima; Almeida, Alda Graciele Claudio dos Santos; Kawagoe, Julia Yaeko; Padoveze, Maria Clara; Graziano, Kazuko Uchikawa
2016-01-01
ABSTRACT Objective: to analyze the scientific evidence on aerosols generated during cleaning activities of health products in the Central Service Department (CSD) and the impact of the negative pressure of the ambient air in the cleaning area to control the dispersion of aerosols to adjacent areas. Method: for this literature systematic review the following searches were done: search guidelines, manuals or national and international technical standards given by experts; search in the portal and databases PubMed, Scopus, CINAHL and Web of Science; and a manual search of scientific articles. Results: the five technical documents reviewed recommend that the CSD cleaning area should have a negative differential ambient air pressure, but scientific articles on the impact of this intervention were not found. The four articles included talked about aerosols formed after the use of a ultrasonic cleaner (an increased in the contamination especially during use) and pressurized water jet (formation of smaller aerosols 5μm). In a study, the aerosols formed from contaminated the hot tap water with Legionella pneumophila were evaluated. Conclusions: there is evidence of aerosol formation during cleanup activities in CSD. Studies on occupational diseases of respiratory origin of workers who work in CSD should be performed. PMID:27598374
Allergenic properties and differential response of walnut subjected to processing treatments
USDA-ARS?s Scientific Manuscript database
Walnut is one of the most frequently involved foods in anaphylactic reactions. We investigated changes in walnut allergenicity after physical treatments by in vitro techniques and physiologically relevant assays. Changes in the allergenicity of walnut subjected to high pressure and thermal/pressur...
Flow Field Measurements Using Hotwire Anemometry.
1987-09-01
is connected to the differential pressure transducer, the other is connected to an absolute pressure transducer. Static pressure from the absolute ...and intercept data. The seventh variable contains the calibration tunnel temperature in degrees Farenheit . This is0* . used for hotwire compensation...output is then directed to channel five of the Relay Multiplexer. Voltage output from the signal amplifier is zeroed at 0 degrees AOA and is positive for
Saggese, Taryn; Thambyah, Ashvin; Wade, Kelly; McGlashan, Susan Read
2018-05-01
Objective The nucleus pulposus of the human intervertebral disc contains 2 cell types: notochordal (NC) and mature nucleus pulposus (MNP) cells. NC cell loss is associated with disc degeneration and this process may be initiated by mechanical stress and/or nutrient deprivation. This study aimed to investigate the functional responses of NC and MNP cells to hydrostatic pressures and glucose restriction. Design Bovine MNP and NC cells were cultured in 3-dimensional alginate beads under low (0.4-0.8 MPa) and high (1.6-2.4 MPa) dynamic pressure for 24 hours. Cells were cultured in either physiological (5.5 mM) glucose media or glucose-restriction (0.55 mM) media. Finally, the combined effect of glucose restriction and high pressure was examined. Results Cell viability and notochordal phenotypic markers were not significantly altered in response to pressure or glucose restriction. MNP cells responded to low pressure with an increase in glycosaminoglycan (GAG) production while high pressure significantly decreased ACAN gene expression compared with atmospheric controls. NC cells showed no response in matrix gene expression or GAG production with either loading regime. Glucose restriction decreased NC cell TIMP-1 expression but had no effect on MNP cells. The combination of glucose restriction and high pressure only affected MNP cell gene expression, with decreased ACAN, Col2α1, and ADAMTS-5 expression. Conclusion This study shows that NC cells are more resistant to acute mechanical stresses than MNP cells and provides a strong rationale for future studies to further our understanding the role of NC cells within the disc, and the effects of long-term exposure to physical stresses.
Pressure and shear stress in trabecular bone marrow during whole bone loading.
Metzger, Thomas A; Schwaner, Stephen A; LaNeve, Anthony J; Kreipke, Tyler C; Niebur, Glen L
2015-09-18
Skeletal adaptation to mechanical loading is controlled by mechanobiological signaling. Osteocytes are highly responsive to applied strains, and are the key mechanosensory cells in bone. However, many cells residing in the marrow also respond to mechanical cues such as hydrostatic pressure and shear stress, and hence could play a role in skeletal adaptation. Trabecular bone encapsulates marrow, forming a poroelastic solid. According to the mechanical theory, deformation of the pores induces motion in the fluid-like marrow, resulting in pressure and velocity gradients. The latter results in shear stress acting between the components of the marrow. To characterize the mechanical environment of trabecular bone marrow in situ, pore pressure within the trabecular compartment of whole porcine femurs was measured with miniature pressure transducers during stress-relaxation and cyclic loading. Pressure gradients ranging from 0.013 to 0.46 kPa/mm were measured during loading. This range was consistent with calculated pressure gradients from continuum scale poroelastic models with the same permeability. Micro-scale computational fluid dynamics models created from computed tomography images were used to calculate the micromechanical stress in the marrow using the measured pressure differentials as boundary conditions. The volume averaged shear stress in the marrow ranged from 1.67 to 24.55 Pa during cyclic loading, which exceeds the mechanostimulatory threshold for mesenchymal lineage cells. Thus, the loading of bone through activities of daily living may be an essential component of bone marrow health and mechanobiology. Additional studies of cell-level interactions during loading in healthy and disease conditions will provide further incite into marrow mechanobiology. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ojeda, Norma B.; Royals, Thomas P.
2013-01-01
This study tested the hypothesis that Rho kinase contributes to the enhanced pressor response to acute angiotensin II in intact male growth-restricted and gonadectomized female growth-restricted rats. Mean arterial pressure (MAP) and renal function were determined in conscious animals pretreated with enalapril (250 mg/l in drinking water) for 1 wk to block the endogenous renin-angiotensin system and normalize blood pressure (baseline). Blood pressure and renal hemodynamics did not differ at baseline. Acute Ang II (100 ng·kg−1·min−1) induced a greater increase in MAP and renal vascular resistance and enhanced reduction in glomerular filtration rate in intact male growth-restricted rats compared with intact male controls (P < 0.05). Cotreatment with the Rho kinase inhibitor fasudil (33 μg·kg−1·min−1) significantly attenuated these hemodynamic changes (P < 0.05), but it did not abolish the differential increase in blood pressure above baseline, suggesting that the impact of intrauterine growth restriction on blood pressure in intact male growth-restricted rats is independent of Rho kinase. Gonadectomy in conjunction with fasudil returned blood pressure back to baseline in male growth-restricted rats, and yet glomerular filtration rate remained significantly reduced (P < 0.05). Thus, these data suggest a role for enhanced renal sensitivity to acute Ang II in the developmental programming of hypertension in male growth-restricted rats. However, inhibition of Rho kinase had no effect on the basal or enhanced increase in blood pressure induced by acute Ang II in the gonadectomized female growth-restricted rat. Therefore, these studies suggest that Rho kinase inhibition exerts a sex-specific effect on blood pressure sensitivity to acute Ang II in growth-restricted rats. PMID:23344570
Ojeda, Norma B; Royals, Thomas P; Alexander, Barbara T
2013-04-01
This study tested the hypothesis that Rho kinase contributes to the enhanced pressor response to acute angiotensin II in intact male growth-restricted and gonadectomized female growth-restricted rats. Mean arterial pressure (MAP) and renal function were determined in conscious animals pretreated with enalapril (250 mg/l in drinking water) for 1 wk to block the endogenous renin-angiotensin system and normalize blood pressure (baseline). Blood pressure and renal hemodynamics did not differ at baseline. Acute Ang II (100 ng·kg(-1)·min(-1)) induced a greater increase in MAP and renal vascular resistance and enhanced reduction in glomerular filtration rate in intact male growth-restricted rats compared with intact male controls (P < 0.05). Cotreatment with the Rho kinase inhibitor fasudil (33 μg·kg(-1)·min(-1)) significantly attenuated these hemodynamic changes (P < 0.05), but it did not abolish the differential increase in blood pressure above baseline, suggesting that the impact of intrauterine growth restriction on blood pressure in intact male growth-restricted rats is independent of Rho kinase. Gonadectomy in conjunction with fasudil returned blood pressure back to baseline in male growth-restricted rats, and yet glomerular filtration rate remained significantly reduced (P < 0.05). Thus, these data suggest a role for enhanced renal sensitivity to acute Ang II in the developmental programming of hypertension in male growth-restricted rats. However, inhibition of Rho kinase had no effect on the basal or enhanced increase in blood pressure induced by acute Ang II in the gonadectomized female growth-restricted rat. Therefore, these studies suggest that Rho kinase inhibition exerts a sex-specific effect on blood pressure sensitivity to acute Ang II in growth-restricted rats.
Measuring Viscosities of Gases at Atmospheric Pressure
NASA Technical Reports Server (NTRS)
Singh, Jag J.; Mall, Gerald H.; Hoshang, Chegini
1987-01-01
Variant of general capillary method for measuring viscosities of unknown gases based on use of thermal mass-flowmeter section for direct measurement of pressure drops. In technique, flowmeter serves dual role, providing data for determining volume flow rates and serving as well-characterized capillary-tube section for measurement of differential pressures across it. New method simple, sensitive, and adaptable for absolute or relative viscosity measurements of low-pressure gases. Suited for very complex hydrocarbon mixtures where limitations of classical theory and compositional errors make theoretical calculations less reliable.
Cryogenic instrumentation for ITER magnets
NASA Astrophysics Data System (ADS)
Poncet, J.-M.; Manzagol, J.; Attard, A.; André, J.; Bizel-Bizellot, L.; Bonnay, P.; Ercolani, E.; Luchier, N.; Girard, A.; Clayton, N.; Devred, A.; Huygen, S.; Journeaux, J.-Y.
2017-02-01
Accurate measurements of the helium flowrate and of the temperature of the ITER magnets is of fundamental importance to make sure that the magnets operate under well controlled and reliable conditions, and to allow suitable helium flow distribution in the magnets through the helium piping. Therefore, the temperature and flow rate measurements shall be reliable and accurate. In this paper, we present the thermometric chains as well as the venturi flow meters installed in the ITER magnets and their helium piping. The presented thermometric block design is based on the design developed by CERN for the LHC, which has been further optimized via thermal simulations carried out by CEA. The electronic part of the thermometric chain was entirely developed by the CEA and will be presented in detail: it is based on a lock-in measurement and small signal amplification, and also provides a web interface and software to an industrial PLC. This measuring device provides a reliable, accurate, electromagnetically immune, and fast (up to 100 Hz bandwidth) system for resistive temperature sensors between a few ohms to 100 kΩ. The flowmeters (venturi type) which make up part of the helium mass flow measurement chain have been completely designed, and manufacturing is on-going. The behaviour of the helium gas has been studied in detailed thanks to ANSYS CFX software in order to obtain the same differential pressure for all types of flowmeters. Measurement uncertainties have been estimated and the influence of input parameters has been studied. Mechanical calculations have been performed to guarantee the mechanical strength of the venturis required for pressure equipment operating in nuclear environment. In order to complete the helium mass flow measurement chain, different technologies of absolute and differential pressure sensors have been tested in an applied magnetic field to identify equipment compatible with the ITER environment.
NASA Astrophysics Data System (ADS)
Seno, Tetsuzo
2009-05-01
We construct the differential stress profile across the fore arc in a subduction zone from the force balance between the shear stress, τ, at seismogenic megathrust and the lithostatic pressure. We assume that τ is written by μ (1 - λ) σn, where λ is the pore fluid pressure ratio, μ is the coefficient of static friction, and σn is the normal stress. Given a density structure of the fore-arc wedge, we determine λ by comparing calculated fore-arc stresses with observed ones, as 0.95-0.98 in Shikoku, Miyagi, Peru, north Chile, and south Chile and 0.90-0.93 in south Vancouver Island and Washington. The parameter τ averaged over the seismogenic megathrust is of the order of ˜10 MPa. Stress drops of great earthquakes in these zones occupy 14-87% and not a constant fraction of τ. They, on the other hand, increase linearly with 1 - λ. We propose a simple fault model in which the area of asperities as a fraction of the total fault area is proportional to 1 - λ. Variation of fractional area of asperities thus may explain the observed correlation and the regional variation of λ. Assuming that the differential stress at summit of the Andean mountains is zero, not at the coast as observed at present, we determine λ to be 0.84 in north Chile in the mountain building stage. Such a smaller value of λ, along with λ < ˜0.4 in collision zones previously obtained and >˜0.9 in subduction zones, would suggest that variation of λ controls the tectonic style of the Earth.
Rational ideation and empiric validation of an innovative digital dermographic tester.
Lembo, C; Patruno, C; Balato, N; Ayala, F; Balato, A; Lembo, S
2018-04-01
Dermographism is a condition characterized by a weal response to a combination of pressure and traction on skin surface, and its diagnosis is based on medical history, clinical criteria and provocation test. The Dermographic Tester ® , a pen-sized tool containing a spring-loaded blunt tip, is the most widely used instrument for the provocation test, and it exerts increasing pressures on the skin surface according to an arbitrary units (AU) scale. Analysing the mechanism of function and trying to convert the AUs to SI units (g/mm 2 ), we found that this instrument had some defects and limits that would compromise a true and repeatable quantification of the weal response threshold. Consequently, we decided to develop a new instrument, the Digital Dermographic Tester (DDT), which is engineered with an inside force sensor to implement features lacking in the current tools, in the hope of enhancing the precision of the provocation test. To validate the effectiveness and accuracy of the DDT. We tested the DDT on 213 participants purposely sampled to obtain three groups, each with a different pattern of reaction to mechanical stimuli. Based on anamnestic, diagnostic and symptomatic criteria, patients were divided into dermographic urticaria (DU), spontaneous urticaria (SU) and healthy control (HC) groups. The DDT was used to apply 12 levels of pressure to the skin surface, and a frequency distribution of positive reactions was displayed for each group. A force of 36-40 g/mm 2 appropriately differentiated physiological from pathological conditions with high sensitivity and specificity. The DDT was found to be capable of differentiating patients with DU patients from those with SU and from HCs, and was able to precisely identify the weal elicitation threshold. © 2017 British Association of Dermatologists.
Genetic modification of human trabecular meshwork with lentiviral vectors.
Loewen, N; Fautsch, M P; Peretz, M; Bahler, C K; Cameron, J D; Johnson, D H; Poeschla, E M
2001-11-20
Glaucoma, a group of optic neuropathies, is the leading cause of irreversible blindness. Neuronal apoptosis in glaucoma is primarily associated with high intraocular pressure caused by chronically impaired outflow of aqueous humor through the trabecular meshwork, a reticulum of mitotically inactive endothelial-like cells located in the angle of the anterior chamber. Anatomic, genetic, and expression profiling data suggest the possibility of using gene transfer to treat glaucomatous intraocular pressure dysregulation, but this approach will require stable genetic modification of the differentiated aqueous outflow tract. We injected transducing unit-normalized preparations of either of two lentiviral vectors or an oncoretroviral vector as a single bolus into the aqueous circulation of cultured human donor eyes, under perfusion conditions that mimicked natural anterior chamber flow and maintained viability ex vivo. Reporter gene expression was assessed in trabecular meshwork from 3 to 16 days after infusion of 1.0 x 10(8) transducing units of each vector. The oncoretroviral vector failed to transduce the trabecular meshwork. In contrast, feline immunodeficiency virus and human immunodeficiency virus vectors produced efficient, localized transduction of the trabecular meshwork in situ. The results demonstrate that lentiviral vectors permit efficient genetic modification of the human trabecular meshwork when delivered via the afferent aqueous circulation, a clinically accessible route. In addition, controlled comparisons in this study establish that feline and human immunodeficiency virus vectors are equivalently efficacious in delivering genes to this terminally differentiated human tissue.
Tang, Min; Zhao, Rui; van de Velde, Helgi; Tross, Jennifer G; Mitsiades, Constantine; Viselli, Suzanne; Neuwirth, Rachel; Esseltine, Dixie-Lee; Anderson, Kenneth; Ghobrial, Irene M; San Miguel, Jesús F; Richardson, Paul G; Tomasson, Michael H; Michor, Franziska
2016-08-15
Since the pioneering work of Salmon and Durie, quantitative measures of tumor burden in multiple myeloma have been used to make clinical predictions and model tumor growth. However, such quantitative analyses have not yet been performed on large datasets from trials using modern chemotherapy regimens. We analyzed a large set of tumor response data from three randomized controlled trials of bortezomib-based chemotherapy regimens (total sample size n = 1,469 patients) to establish and validate a novel mathematical model of multiple myeloma cell dynamics. Treatment dynamics in newly diagnosed patients were most consistent with a model postulating two tumor cell subpopulations, "progenitor cells" and "differentiated cells." Differential treatment responses were observed with significant tumoricidal effects on differentiated cells and less clear effects on progenitor cells. We validated this model using a second trial of newly diagnosed patients and a third trial of refractory patients. When applying our model to data of relapsed patients, we found that a hybrid model incorporating both a differentiation hierarchy and clonal evolution best explains the response patterns. The clinical data, together with mathematical modeling, suggest that bortezomib-based therapy exerts a selection pressure on myeloma cells that can shape the disease phenotype, thereby generating further inter-patient variability. This model may be a useful tool for improving our understanding of disease biology and the response to chemotherapy regimens. Clin Cancer Res; 22(16); 4206-14. ©2016 AACR. ©2016 American Association for Cancer Research.
Maie, Takashi; Schoenfuss, Heiko L; Blob, Richard W
2013-07-01
Gobiid fishes possess a distinctive ventral sucker, formed from fusion of the pelvic fins. This sucker is used to adhere to a wide range of substrates including, in some species, the vertical cliffs of waterfalls that are climbed during upstream migrations. Previous studies of waterfall-climbing goby species have found that pressure differentials and adhesive forces generated by the sucker increase with positive allometry as fish grow in size, despite isometry or negative allometry of sucker area. To produce such scaling patterns for pressure differential and adhesive force, waterfall-climbing gobies might exhibit allometry for other muscular or skeletal components of the pelvic sucker that contribute to its adhesive function. In this study, we used anatomical dissections and modeling to evaluate the potential for allometric growth in the cross-sectional area, effective mechanical advantage (EMA), and force generating capacity of major protractor and retractor muscles of the pelvic sucker (m. protractor ischii and m. retractor ischii) that help to expand the sealed volume of the sucker to produce pressure differentials and adhesive force. We compared patterns for three Hawaiian gobiid species: a nonclimber (Stenogobius hawaiiensis), an ontogenetically limited climber (Awaous guamensis), and a proficient climber (Sicyopterus stimpsoni). Scaling patterns were relatively similar for all three species, typically exhibiting isometric or negatively allometric scaling for the muscles and lever systems examined. Although these scaling patterns do not help to explain the positive allometry of pressure differentials and adhesive force as climbing gobies grow, the best climber among the species we compared, S. stimpsoni, does exhibit the highest calculated estimates of EMA, muscular input force, and output force for pelvic sucker retraction at any body size, potentially facilitating its adhesive ability. Copyright © 2013 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Neveu, M. C.; Stocker, D. P.
1985-01-01
High pressure differential scanning calorimetry (DSC) was studied as an alternate method for performing high temperature fuel thermal stability research. The DSC was used to measure the heat of reaction versus temperature of a fuel sample heated at a programmed rate in an oxygen pressurized cell. Pure hydrocarbons and model fuels were studied using typical DSC operating conditions of 600 psig of oxygen and a temperature range from ambient to 500 C. The DSC oxidation onset temperature was determined and was used to rate the fuels on thermal stability. Kinetic rate constants were determined for the global initial oxidation reaction. Fuel deposit formation is measured, and the high temperature volatility of some tetralin deposits is studied by thermogravimetric analysis. Gas chromatography and mass spectrometry are used to study the chemical composition of some DSC stressed fuels.
DSS 13 antenna monitor system. [Deep Space Network
NASA Technical Reports Server (NTRS)
Siev, B.; Bayergo, D.
1979-01-01
The development of a monitor system for the DSS 13 antenna is presented. The system checks for accumulator pressures, differential pressures, wind velocity, power supplies, fluid temperatures, and fluid levels. It was concluded that the system performed properly in high winds and correctly reported all malfunctions.
Iverson, R.M.
1993-01-01
Macroscopic frictional slip in water-saturated granular media occurs commonly during landsliding, surface faulting, and intense bedload transport. A mathematical model of dynamic pore-pressure fluctuations that accompany and influence such sliding is derived here by both inductive and deductive methods. The inductive derivation shows how the governing differential equations represent the physics of the steadily sliding array of cylindrical fiberglass rods investigated experimentally by Iverson and LaHusen (1989). The deductive derivation shows how the same equations result from a novel application of Biot's (1956) dynamic mixture theory to macroscopic deformation. The model consists of two linear differential equations and five initial and boundary conditions that govern solid displacements and pore-water pressures. Solid displacements and water pressures are strongly coupled, in part through a boundary condition that ensures mass conservation during irreversible pore deformation that occurs along the bumpy slip surface. Feedback between this deformation and the pore-pressure field may yield complex system responses. The dual derivations of the model help explicate key assumptions. For example, the model requires that the dimensionless parameter B, defined here through normalization of Biot's equations, is much larger than one. This indicates that solid-fluid coupling forces are dominated by viscous rather than inertial effects. A tabulation of physical and kinematic variables for the rod-array experiments of Iverson and LaHusen and for various geologic phenomena shows that the model assumptions commonly are satisfied. A subsequent paper will describe model tests against experimental data. ?? 1993 International Association for Mathematical Geology.
Gender Gap Linked to Differential Socialization for High-Achieving Senior Mathematics Students.
ERIC Educational Resources Information Center
Campbell, James R.; Beaudry, Jeffrey S.
1998-01-01
Examined whether 11th-grade girls and boys enrolled in advanced mathematics courses nationwide were socialized in similar ways, using Campbell's differential socialization paradigm. Results uncovered a gender gap favoring boys. Self-imposed pressure and persistence had important direct effects on achievement. Self-concept had important direct…
Physiological and psychological effects of gardening activity in older adults.
Hassan, Ahmad; Qibing, Chen; Tao, Jiang
2018-04-06
Gardening has long been one of most enjoyable pastimes among older adults. Whether gardening activities contribute to the well-being of older adults is a major question. Therefore, the aim of the present study was to clarify the psychophysiological relaxing effects of gardening activities on older adults living in modern institutional care. The study participants were 40 older women aged 79.5 ± 8.09 years (mean ± SD). A cross-over study design was used to investigate the physiological and psychological responses to environments with and without plants. Physiological evaluation was carried out using blood pressure and electroencephalography, and psychological evaluation was carried out using the State-Trait Anxiety Inventory and Semantic Differential method. Blood pressure was significantly lower, and changes in brainwaves were observed. Psychological responses showed that participants were more "comfortable and relaxed" after the plant task than after the control task. In addition, total anxiety levels were significantly lower after carrying out the plant task than after the control task. Our research suggests that gardening activities might enhance physiological and psychological relaxation in older adults. Geriatr Gerontol Int 2018; ••: ••-••. © 2018 Japan Geriatrics Society.
Lester, Mark E; Cavanaugh, James T; Foreman, K Bo; Shaffer, Scott W; Marcus, Robin; Dibble, Leland E
2017-10-01
The ability to adapt postural responses to sensory illusions diminishes with age and is further impaired by Parkinson disease. However, limited information exists regarding training-related adaptions of sensory reweighting in these populations. This study sought to determine whether Parkinson disease or age would differentially affect acute postural recovery or adaptive postural responses to novel or repeated exposure to sensory illusions using galvanic vestibular stimulation during quiet stance. Acutely, individuals with Parkinson disease demonstrated larger center of pressure coefficient of variation compared to controls. Unlike individuals with Parkinson disease and asymptomatic older adults, healthy young adults acutely demonstrated a reduction in Sample Entropy to the sensory illusion. Following a period of consolidation Sample Entropy increased in the healthy young group, which coincided with a decreased center of pressure coefficient of variation. Similar changes were not observed in the Parkinson disease or older adult groups. Taken together, these results suggest that young adults learn to adapt to vestibular illusion in a more robust manner than older adults or those with Parkinson disease. Further investigation into the nature of this adaptive difference is warranted. Published by Elsevier Ltd.
Wang, Hua; Wang, Kai; Xiao, Guanjun; Ma, Junfeng; Wang, Bingying; Shen, Sile; Fu, Xueqi; Zou, Guangtian; Zou, Bo
2015-10-08
Although High hydrostatic pressure (HHP) as an important physical and chemical tool has been increasingly applied to research of organism, the response mechanisms of organism to HHP have not been elucidated clearly thus far. To identify mutagenic mechanisms of HHP on organisms, here, we treated Drosophila melanogaster (D. melanogaster) eggs with HHP. Approximately 75% of the surviving flies showed significant morphological abnormalities from the egg to the adult stages compared with control flies (p < 0.05). Some eggs displayed abnormal chorionic appendages, some larvae were large and red, and some adult flies showed wing abnormalities. Abnormal wing phenotypes of D. melanogaster induced by HHP were used to investigate the mutagenic mechanisms of HHP on organism. Thus 285 differentially expressed genes associated with wing mutations were identified using Affymetrix Drosophila Genome Array 2.0 and verified with RT-PCR. We also compared wing development-related central genes in the mutant flies with control flies using DNA sequencing to show two point mutations in the vestigial (vg) gene. This study revealed the mutagenic mechanisms of HHP-induced mutagenesis in D. melanogaster and provided a new model for the study of evolution on organisms.
Evans, CE; Mylchreest, S; Andrew, JG
2006-01-01
Background Cyclic hydrostatic pressure within bone has been proposed both as a stimulus of aseptic implant loosening and associated bone resorption and of bone formation. We showed previously that cyclical hydrostatic pressure influenced macrophage synthesis of several factors linked to osteoclastogenesis. The osteoprotegerin/soluble receptor activator of NF-kappa β ligand /receptor activator of NF-kappa β (OPG/ RANKL/ RANK) triumvirate has been implicated in control of bone resorption under various circumstances. We studied whether cyclical pressure might affect bone turnover via effects on OPG/ sRANKL/ RANK. Methods In this study, cultures of human osteoblasts or macrophages (supplemented with osteoclastogenic factors) or co-cultures of macrophages and osteoblasts (from the same donor), were subjected to cyclic hydrostatic pressure. Secretion of OPG and sRANKL was assayed in the culture media and the cells were stained for RANK and osteoclast markers. Data were analysed by nonparametric statistics. Results In co-cultures of macrophages and osteoblasts, pressure modulated secretion of sRANKL or OPG in a variable manner. Examination of the OPG:sRANKL ratio in co cultures without pressurisation showed that the ratio was greater in donors <70 years at the time of operation (p < 0.05 Mann Whitney U) than it was in patients >70 years. However, with pressure the difference in the OPG:sRANKL ratios between young and old donors was not significant. It was striking that in some patients the OPG:sRANKL ratio increased with pressure whereas in some it decreased. The tendency was for the ratio to decrease with pressure in patients younger than 70 years, and increase in patients ≥ 70 years (Fishers exact p < 0.01). Cultures of osteoblasts alone showed a significant increase in both sRANKL and OPG with pressure, and again there was a decrease in the ratio of OPG:RANKL. Secretion of sRANKL by cultures of macrophages alone was not modulated by pressure. Only sRANKL was assayed in this study, but transmembrane RANKL may also be important in this system. Macrophages subjected to pressure (both alone and in co-culture) stained more strongly for RANK on immunohistochemstry than non-pressurized controls and 1,25-dihydroxyvitamin D3 (1,25 D3) further increased this. Immunocytochemical staining also demonstrated that more cells in pressurized co-cultures exhibited osteoclast markers (tartrate-resistant acid phosphatase, vitronectin receptor and multinuclearity) than did unpressurized controls. Conclusion These data show that in co-cultures of osteoblasts and macrophages the ratio of OPG : sRANKL was decreased by pressure in younger patients but increased in older patients. As falls in this ratio promote bone resorption, this finding may be important in explaining the relatively high incidence of osteolysis around orthopaedic implants in young patients. The finding that secretion of OPG and sRANKL by osteoblasts in monoculture was sensitive to hydrostatic pressure, and that hydrostatic pressure stimulated the differentiation of macrophages into cells exhibiting osteoclast markers indicates that both osteoblasts and preosteoclasts are sensitive to cyclic pressure. However, the effects of pressure on cocultures were not simply additive and coculture appears useful to examine the interaction of these cell types. These findings have implications for future therapies for aseptic loosening and for the development of tests to predict the development of this condition. PMID:16519799
NASA Astrophysics Data System (ADS)
Reyes, Javier; Lara, Luis E.; Morata, Diego
2017-07-01
A remarkable expression of intraplate volcanism is the occurrence of evolutionary stages with important variations of magmatic processes and products. Plumbing systems and storage conditions seem to be different for shield and rejuvenated volcanism, two classical stages notably preserved in Robinson Crusoe Island, Juan Fernández Ridge in the SE Pacific Ocean. We here present first order geochemical features for rocks from both shield and rejuvenated stages and through geothermobarometry and textural analysis we unravel their contrasting ascent and storage history. The shield stage ( 3.8 Ma) is represented by a 900 m thick sequence of basalt, picrobasalt and picrite lava flows forming subsets according their chemistry and mineralogy: 'differentiated', 'near-primitive' and 'olivine-rich' lavas. Pressure estimates for in equilibrium assemblages are < 3.2 kbar, and temperature ranges around 1321 °C for the 'near-primitive' and 1156-1181 °C for the 'differentiated' groups. Volcanic rocks from the rejuvenated stage ( 0.9 Ma) fill the eroded morphology of the shield pile with basanite and picrite lava flows with two compositional varieties: the primitive 'high-Mg' group that crystallized clinopyroxene at pressures < 3.7 kbar and olivine at temperatures in the range 1316-1354 °C; and the 'low-Mg' group that carries notably zoned crystals formed at a wide range of pressures (0-10.8 kbar) and temperatures (1256-1295 °C). This allows us to infer contrasting patterns of ascent and storage during these archetypical stages in Robinson Crusoe Island, which also controlled volcanic processes on surface and finally shaped the island. We propose the existence of shallow magmatic reservoirs in the shield stage, where the ascending magmas would have been stored and differentiated. On the other hand, rejuvenated magmas experimented rapid ascent with polybaric crystallization and sometimes short-time storage in low-volume reservoirs. Similar conditions have been proposed in other oceanic islands suggesting that shallow reservoirs in the shield stage and deeper crystallization of more alkaline magmas in the rejuvenated stage seems to describe a global pattern.
Mechanical behavior in the Nankai inner accretionary prism, IODP Site C0002
NASA Astrophysics Data System (ADS)
Valdez, R. D., II; Saffer, D. M.
2017-12-01
Understanding the processes that control seismogenesis and stress state at subduction zones requires knowledge of fault zone and sediment physical and mechanical properties. As part of the International Ocean Discovery Program (IODP) Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE), Expedition 348 drilled into the Kumano forearc basin and underlying inner accretionary prism at Site C0002, located 35 km landward of the trench. One primary objective was to sample and characterize the mechanical behavior of the inner accretionary prism. Here we report on the frictional and unconfined compressive strength (UCS) of mudstone samples and a clay-rich shear zone recovered from 2182-2209 meters below sea floor (mbsf), determined from triaxial deformation tests at confining pressures from 1 to 7 MPa (UCS measurements on mudstones) and 36 MPa (strength of fault zone). Our results show that at a confining pressure of 1 MPa, the wall rock sediments fail at a peak differential stress of 9.1 MPa with a residual stress of 2.8 MPa. A clear peak and evolution to residual strength remains present at 7 MPa, and both the peak and residual strengths of the mudstones increases systematically with confining pressure. At a confining pressure of 36 MPa, the shear zone sediment yields at a differential stress of 25.2 MPa followed by strain-hardening to a maximum stress of 33.1 MPa. The shear zone is frictionally weaker than the surrounding mudstones, with a friction coefficient (μ) of 0.26-0.31, versus µ = 0.45 for the wall rock. The suite of tests defines a UCS for the mudstone of 7.9 MPa. Our friction data suggest that the inner wedge may be weaker than commonly assumed in applications of critical wedge theory to estimate the properties and conditions in accretionary prisms. One key implication is that for a given basal detachment friction coefficient, higher basal pore pressures (or lower wedge pore pressures) would be required to sustain observed taper angles. Additionally, the UCS we define is significantly lower than predicted by widely-adopted empirical relations between P wave velocity and UCS for shales (UCS of 15.5 MPa), suggesting that existing analyses of stress magnitudes from borehole breakout widths may overestimate horizontal stress magnitudes.
Fault gouge rheology under confined, high-velocity conditions
NASA Astrophysics Data System (ADS)
Reches, Z.; Madden, A. S.; Chen, X.
2012-12-01
We recently developed the experimental capability to investigate the shear properties of fine-grain gouge under confined conditions and high-velocity. The experimental system includes a rotary apparatus that can apply large displacements of tens of meters, slip velocity of 0.001- 2.0 m/s, and normal stress of 35 MPa (Reches and Lockner, 2010). The key new component is a Confined ROtary Cell (CROC) that can shear a gouge layer either dry or under pore-pressure. The pore pressure is controlled by two syringe pumps. CROC includes a ring-shape gouge chamber of 62.5 mm inner diameter, 81.25 mm outer diameter, and up to 3 mm thick gouge sample. The lower, rotating part of CROC contains the sample chamber, and the upper, stationary part includes the loading, hollow cylinder and setting for temperature, and dilation measurements, and pore-pressure control. Each side of the gouge chamber has two pairs of industrial, spring-energized, self-lubricating, teflon-graphite seals, built for particle media and can work at temperature up to 250 ded C. The space between each of the two sets of seals is pressurized by nitrogen. This design generates 'zero-differential pressure' on the inner seal (which is in contact with the gouge powder), and prevents gouge leaks. For the preliminary dry experiments, we used ~2.0 mm thick layers of room-dry kaolinite powder. Total displacements were on the order of meters and normal stress up to 4 MPa. The initial shear was accommodated by multiple internal slip surfaces within the kaolinite layer accommodated as oriented Riedel shear structures. Later, the shear was localized within a thin, plate-parallel Y-surface. The kaolinite layer was compacted at a quasi-asymptotic rate, and displayed a steady-state friction coefficient of ~ 0.5 with no clear dependence on slip velocity up to 0.15 m/s. Further experiments with loose quartz sand (grain size ~ 125 micron) included both dry runs and pore-pressure (distilled water) controlled runs. The sand was pressurized through a porous metal (Mott) plug. Comparison with effective stress calculations indicates the same friction coefficient of ~ 1.0 for the sand layer under dry and pressurized conditions. Both kaolinite and quartz sand experiments developed localized shear zones that were examined at the nano- and micro- scales with AFM, SEM and TEM. These zones displayed reduced grain sizes and cementation by local agglomeration. Kaolinite grains sheared in CROC experiment; scale bar = 1 micron.
Development of Algorithms for Control of Humidity in Plant Growth Chambers
NASA Technical Reports Server (NTRS)
Costello, Thomas A.
2003-01-01
Algorithms were developed to control humidity in plant growth chambers used for research on bioregenerative life support at Kennedy Space Center. The algorithms used the computed water vapor pressure (based on measured air temperature and relative humidity) as the process variable, with time-proportioned outputs to operate the humidifier and de-humidifier. Algorithms were based upon proportional-integral-differential (PID) and Fuzzy Logic schemes and were implemented using I/O Control software (OPTO-22) to define and download the control logic to an autonomous programmable logic controller (PLC, ultimate ethernet brain and assorted input-output modules, OPTO-22), which performed the monitoring and control logic processing, as well the physical control of the devices that effected the targeted environment in the chamber. During limited testing, the PLC's successfully implemented the intended control schemes and attained a control resolution for humidity of less than 1%. The algorithms have potential to be used not only with autonomous PLC's but could also be implemented within network-based supervisory control programs. This report documents unique control features that were implemented within the OPTO-22 framework and makes recommendations regarding future uses of the hardware and software for biological research by NASA.
Browning, Colette; Chapman, Anna; Yang, Hui; Liu, Shuo; Zhang, Tuohong; Enticott, Joanne C; Thomas, Shane A
2016-01-01
Objective To assess the effectiveness of a coach-led motivational interviewing (MI) intervention in improving glycaemic control, as well as clinical, psychosocial and self-care outcomes of individuals with type 2 diabetes mellitus (T2DM) compared with usual care. Design Pragmatic cluster randomised controlled trial (RCT). Setting Community Health Stations (CHSs) in Fengtai district, Beijing, China. Participants Of the 41 randomised CHSs (21 intervention and 20 control), 21 intervention CHSs (372 participants) and 18 control CHSs (296 participants) started participation. Intervention Intervention participants received telephone and face-to-face MI health coaching in addition to usual care from their CHS. Control participants received usual care only. Medical fees were waived for both groups. Outcome measures Outcomes were assessed at baseline, 6 and 12 months. Primary outcome measure was glycated haemoglobin (HbA1c). Secondary outcomes included a suite of anthropometric, blood pressure (BP), fasting blood, psychosocial and self-care measures. Results At 12 months, no differential treatment effect was found for HbA1c (adjusted difference 0.02, 95% CI −0.40 to 0.44, p=0.929), with both treatment and control groups showing significant improvements. However, two secondary outcomes: psychological distress (adjusted difference −2.38, 95% CI −4.64 to −0.12, p=0.039) and systolic BP (adjusted difference −3.57, 95% CI −6.08 to −1.05, p=0.005) were robust outcomes consistent with significant differential treatment effects, as supported in sensitivity analyses. Interestingly, in addition to HbA1c, both groups displayed significant improvements in triglycerides, LDL cholesterol and HDL cholesterol. Conclusions In line with the current Chinese primary healthcare reform, this study is the first large-scale cluster RCT to be implemented within real-world CHSs in China, specifically addressing T2DM. Although a differential treatment effect was not observed for HbA1c, numerous outcomes (including HbA1c) improved in both groups, supporting the establishment of regular, free clinical health checks for people with T2DM in China. Trial registration number ISRCTN01010526; Pre-results. PMID:26944692
Pressure Seal For Frequently Opened Hatch
NASA Technical Reports Server (NTRS)
Kennedy, Steven E.; Kramer, Joel M.
1994-01-01
Pressure-assisted seal for frequently opened hatch includes two sealing rings retained positively so not pulled out during opening. Seal makes contact with hatch well before hatch starts to squeeze rings extending distance over which seal becomes engaged. Improvements include more-secure mounting, redundancy, and better initial sealing action. Also minimizes loss of gas during closure by deflecting inward and closing gap. This action helps differential pressure to force hatch closed.
Comparison of forward (ear-canal) and reverse (round-window) sound stimulation of the cochlea.
Stieger, Christof; Rosowski, John J; Nakajima, Hideko Heidi
2013-07-01
The cochlea is normally driven with "forward" stimulation, in which sound is introduced to the ear canal. Alternatively, the cochlea can be stimulated at the round window (RW) using an actuator. During RW "reverse" stimulation, the acoustic flow starting at the RW does not necessarily take the same path as during forward stimulation. To understand the differences between forward and reverse stimulation, we measured ear-canal pressure, stapes velocity, RW velocity, and intracochlear pressures in scala vestibuli (SV) and scala tympani (ST) of fresh human temporal bones. During forward stimulation, the cochlear drive (differential pressure across the partition) results from the large difference in magnitude between the pressures of SV and ST, which occurs due to the high compliance of the RW. During reverse stimulation, the relatively high impedance of the middle ear causes the pressures of SV and ST to have similar magnitudes, and the differential pressure results primarily from the difference in phase of the pressures. Furthermore, the sound path differs between forward and reverse stimulation, such that motion through a third window is more significant during reverse stimulation. Additionally, we determined that although stapes velocity is a good estimate of cochlear drive during forward stimulation, it is not a good measure during reverse stimulation. This article is part of a special issue entitled "MEMRO 2012". Copyright © 2012 Elsevier B.V. All rights reserved.
Mitchell, E S; Slettenaar, M; vd Meer, N; Transler, C; Jans, L; Quadt, F; Berry, M
2011-10-24
The combination of theobromine and caffeine, methylxanthines found in chocolate, has previously been shown to improve mood and cognition. However, it is unknown whether these molecules act synergistically. This study tested the hypothesis that a combination of caffeine and theobromine has synergistic effects on cognition, mood and blood pressure in 24 healthy female subjects. The effects of theobromine (700 mg), caffeine (120 mg) or the combination of both, or placebo were tested on mood (the Bond-Lader visual analog scale), psychomotor performance (the Digit Symbol Substitution Test (DSST)) and blood pressure before and at 1, 2 and 3 h after administration. Theobromine alone decreased self-reported calmness 3h after ingestion and lowered blood pressure relative to placebo 1 h after ingestion. Caffeine increased self-reported alertness 1, 2 and 3h after ingestion and contentedness 1 and 2 h after ingestion, and increased blood pressure relative to placebo (at 1 h). The combination of caffeine+theobromine had similar effects as caffeine alone on mood, but with no effect on blood pressure. There was no treatment effect on DSST performance. Together these results suggest that theobromine and caffeine could have differential effects on mood and blood pressure. It was tentatively concluded that caffeine may have more CNS-mediated effects on alertness, while theobromine may be acting primarily via peripheral physiological changes. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
2010-01-01
Topics covered include: Software Tool Integrating Data Flow Diagrams and Petri Nets; Adaptive Nulling for Interferometric Detection of Planets; Reducing the Volume of NASA Earth-Science Data; Reception of Multiple Telemetry Signals via One Dish Antenna; Space-Qualified Traveling-Wave Tube; Smart Power Supply for Battery-Powered Systems; Parallel Processing of Broad-Band PPM Signals; Inexpensive Implementation of Many Strain Gauges; Constant-Differential-Pressure Two-Fluid Accumulator; Inflatable Tubular Structures Rigidized with Foams; Power Generator with Thermo-Differential Modules; Mechanical Extraction of Power From Ocean Currents and Tides; Nitrous Oxide/Paraffin Hybrid Rocket Engines; Optimized Li-Ion Electrolytes Containing Fluorinated Ester Co-Solvents; Probabilistic Multi-Factor Interaction Model for Complex Material Behavior; Foldable Instrumented Bits for Ultrasonic/Sonic Penetrators; Compact Rare Earth Emitter Hollow Cathode; High-Precision Shape Control of In-Space Deployable Large Membrane/Thin-Shell Reflectors; Rapid Active Sampling Package; Miniature Lightweight Ion Pump; Cryogenic Transport of High-Pressure-System Recharge Gas; Water-Vapor Raman Lidar System Reaches Higher Altitude; Compact Ku-Band T/R Module for High-Resolution Radar Imaging of Cold Land Processes; Wide-Field-of-View, High-Resolution, Stereoscopic Imager; Electrical Capacitance Volume Tomography with High-Contrast Dielectrics; Wavefront Control and Image Restoration with Less Computing; Polarization Imaging Apparatus; Stereoscopic Machine-Vision System Using Projected Circles; Metal Vapor Arcing Risk Assessment Tool; Performance Bounds on Two Concatenated, Interleaved Codes; Parameterizing Coefficients of a POD-Based Dynamical System; Confidence-Based Feature Acquisition; Algorithm for Lossless Compression of Calibrated Hyperspectral Imagery; Universal Decoder for PPM of any Order; Algorithm for Stabilizing a POD-Based Dynamical System; Mission Reliability Estimation for Repairable Robot Teams; Processing AIRS Scientific Data Through Level 3; Web-Based Requesting and Scheduling Use of Facilities; AutoGen Version 5.0; Time-Tag Generation Script; PPM Receiver Implemented in Software; Tropospheric Emission Spectrometer Product File Readers; Reporting Differences Between Spacecraft Sequence Files; Coordinating "Execute" Data for ISS and Space Shuttle; Database for Safety-Oriented Tracking of Chemicals; Apparatus for Cold, Pressurized Biogeochemical Experiments; Growing B Lymphocytes in a Three-Dimensional Culture System; Tissue-like 3D Assemblies of Human Broncho-Epithelial Cells; Isolation of Resistance-Bearing Microorganisms; Oscillating Cell Culture Bioreactor; and Liquid Cooling/Warming Garment.
High Pressure Strength Study on NaCl
NASA Astrophysics Data System (ADS)
Mi, Z.; Shieh, S. R.; High Pressure Mineral Physics Group
2010-12-01
Yield strength is regarded as one important property related to rheological characteristics of minerals in the Earth’s interior. The strength study of NaCl, a popular pressure medium in static high pressure experiments, has been carried out under non-hydrostatic conditions in a diamond anvil cell up to 43 GPa at room temperature using radial energy dispersive X-ray diffraction technique. Phase transformation from B1 (rock salt structure) to B2 (CsCl structure) starts at 29.4 GPa, and is complete at 32.1 GPa. Bulk modulus obtained by third order Birch-Manurgham equation of state is 25.5 GPa with pressure derivative 4.6 for B1 phase, and 30.78 GPa with pressure derivative 4.32 GPa for B2 phase, which are in a good agreement with previous studies. The differential stress of NaCl B1 phase shows very gentle increase with pressure, which indicates that NaCl is a very good pressure-transmitting medium at pressure below 30 GPa. However, the differential stress increases more abruptly for B2 phase and this may imply that NaCl can no longer be regarded as a “soft” pressure medium at very high pressures. For B1 phase, (111) is the strongest plane and (200) is the weakest plane, while (200) becomes the strongest plane in B2 phase. Pure NaCl is weaker than mixture MgO and NaCl, which indicates that soft material become stronger when mixed with hard material. The yield strength of B2 obtained through energy dispersive X-ray diffraction technique increase linearly, while the value derived by pressure gradient method shows jagged trend.
Solid oxide fuel cell hybrid system: Control strategy for stand-alone configurations
NASA Astrophysics Data System (ADS)
Ferrari, Mario L.
2011-03-01
The aim of this study is the development and testing of a control system for solid oxide fuel cell hybrid systems through dynamic simulations. Due to the complexity of these cycles, several parameters, such as the turbine rotational speed, the temperatures within the fuel cell, the differential pressure between the anodic and the cathodic side and the Steam-To-Carbon Ratio need to be monitored and kept within safe limits. Furthermore, in stand-alone conditions the system response to load variations is required to meet the global plant power demand at any time, supporting global load variations and avoiding dangerous or unstable conditions. The plant component models and their integration were carried out in previous studies. This paper focuses on the control strategy required for managing the net electrical power from the system, avoiding malfunctions or damage. Once the control system was developed and tuned, its performance was evaluated by simulating the transient behaviour of the whole hybrid cycle: the results for several operating conditions are presented and discussed.
Scheper, M C; Pacey, V; Rombaut, L; Adams, R D; Tofts, L; Calders, P; Nicholson, L L; Engelbert, R H H
2017-03-01
Lowered pressure-pain thresholds have been demonstrated in adults with Ehlers-Danlos syndrome hypermobility type (EDS-HT), but whether these findings are also present in children is unclear. Therefore, the objectives of the study were to determine whether generalized hyperalgesia is present in children with hypermobility syndrome (HMS)/EDS-HT, explore potential differences in pressure-pain thresholds between children and adults with HMS/EDS-HT, and determine the discriminative value of generalized hyperalgesia. Patients were classified in 1 of 3 groups: HMS/EDS-HT, hypermobile (Beighton score ≥4 of 9), and healthy controls. Descriptive data of age, sex, body mass index, Beighton score, skin laxity, and medication usage were collected. Generalized hyperalgesia was quantified by the average pressure-pain thresholds collected from 12 locations. Confounders collected were pain locations/intensity, fatigue, and psychological distress. Comparisons between children with HMS/EDS-HT and normative values, between children and adults with HMS/EDS-HT, and corrected confounders were analyzed with multivariate analysis of covariance. The discriminative value of generalized hyperalgesia employed to differentiate between HMS/EDS-HT, hypermobility, and controls was quantified with logistic regression. Significantly lower pressure-pain thresholds were found in children with HMS/EDS-HT compared to normative values (range -22.0% to -59.0%; P ≤ 0.05). When applying a threshold of 30.8 N/cm 2 for males and 29.0 N/cm 2 for females, the presence of generalized hyperalgesia discriminated between individuals with HMS/EDS-HT, hypermobility, and healthy controls (odds ratio 6.0). Children and adults with HMS/EDS-HT are characterized by hypermobility, chronic pain, and generalized hyperalgesia. The presence of generalized hyperalgesia may indicate involvement of the central nervous system in the development of chronic pain. © 2016, American College of Rheumatology.
Economic method for measuring ultra-low flow rates of fluids
NASA Technical Reports Server (NTRS)
Bogdanovic, J. A.; Keller, W. F.
1970-01-01
Capillary tube flowmeter measures ultra-low flows of very corrosive fluids /such as chlorine trifluoride and liquid fluorine/ and other liquids with reasonable accuracy. Flowmeter utilizes differential pressure transducer and operates on the principle that for laminar flow in the tube, pressure drop is proportional to flow rate.
Elastin Is Differentially Regulated by Pressure Therapy in a Porcine Model of Hypertrophic Scar.
Carney, Bonnie C; Liu, Zekun; Alkhalil, Abdulnaser; Travis, Taryn E; Ramella-Roman, Jessica; Moffatt, Lauren T; Shupp, Jeffrey W
Beneficial effects of pressure therapy for hypertrophic scars have been reported, but the mechanisms of action are not fully understood. This study evaluated elastin and its contribution to scar pliability. The relationship between changes in Vancouver Scar Scale (VSS) scores of pressure-treated scars and differential regulation of elastin was assessed. Hypertrophic scars were created and assessed weekly using VSS and biopsy procurement. Pressure treatment began on day 70 postinjury. Treated scars were compared with untreated shams. Treatment lasted 2 weeks, through day 84, and scars were assessed weekly through day 126. Transcript and protein levels of elastin were quantified. Pressure treatment resulted in lower VSS scores compared with sham-treated scars. Pliability (VSSP) was a key contributor to this difference. At day 70 pretreatment, VSSP = 2. Without treatment, sham-treated scars became less pliable, while pressure-treated scars became more pliable. The percentage of elastin in scars at day 70 was higher than in uninjured skin. Following treatment, the percentage of elastin increased and continued to increase through day 126. Untreated sham scars did not show a similar increase. Quantification of Verhoeff-Van Gieson staining corroborated the findings and immunofluorescence revealed the alignment of elastin fibers. Pressure treatment results in increased protein level expression of elastin compared with sham-untreated scars. These findings further characterize the extracellular matrix's response to the application of pressure as a scar treatment, which will contribute to the refinement of rehabilitation practices and ultimately improvements in functional and psychosocial outcomes for patients.
Geometric pumping in autophoretic channels.
Michelin, Sébastien; Montenegro-Johnson, Thomas D; De Canio, Gabriele; Lobato-Dauzier, Nicolas; Lauga, Eric
2015-08-07
Many microfluidic devices use macroscopic pressure differentials to overcome viscous friction and generate flows in microchannels. In this work, we investigate how the chemical and geometric properties of the channel walls can drive a net flow by exploiting the autophoretic slip flows induced along active walls by local concentration gradients of a solute species. We show that chemical patterning of the wall is not required to generate and control a net flux within the channel, rather channel geometry alone is sufficient. Using numerical simulations, we determine how geometric characteristics of the wall influence channel flow rate, and confirm our results analytically in the asymptotic limit of lubrication theory.
Redundancy management of electrohydraulic servoactuators by mathematical model referencing
NASA Technical Reports Server (NTRS)
Campbell, R. A.
1971-01-01
A description of a mathematical model reference system is presented which provides redundancy management for an electrohydraulic servoactuator. The mathematical model includes a compensation network that calculates reference parameter perturbations induced by external disturbance forces. This is accomplished by using the measured pressure differential data taken from the physical system. This technique was experimentally verified by tests performed using the H-1 engine thrust vector control system for Saturn IB. The results of these tests are included in this report. It was concluded that this technique improves the tracking accuracy of the model reference system to the extent that redundancy management of electrohydraulic servosystems may be performed using this method.
Intrinsically safe moisture blending system
Hallman Jr., Russell L.; Vanatta, Paul D.
2012-09-11
A system for providing an adjustable blend of fluids to an application process is disclosed. The system uses a source of a first fluid flowing through at least one tube that is permeable to a second fluid and that is disposed in a source of the second fluid to provide the adjustable blend. The temperature of the second fluid is not regulated, and at least one calibration curve is used to predict the volumetric mixture ratio of the second fluid with the first fluid from the permeable tube. The system typically includes a differential pressure valve and a backpressure control valve to set the flow rate through the system.
Thermodynamic properties, melting temperature and viscosity of the mantles of Super Earths
NASA Astrophysics Data System (ADS)
Stamenkovic, V.; Spohn, T.; Breuer, D.
2010-12-01
The recent dicscovery of extrasolar planets with radii of about twice the Earth radius and masses of several Earth masses such as e.g., Corot-7b (approx 5Mearth and 1.6Rearth, Queloz et al. 2009) has increased the interest in the properties of rock at extremely high pressures. While the pressure at the Earth’s core-mantle boundary is about 135GPa, pressures at the base of the mantles of extraterrestrial rocky planets - if these are at all differentiated into mantles and cores - may reach Tera Pascals. Although the properties and the mineralogy of rock at extremely high pressure is little known there have been speculations about mantle convection, plate tectonics and dynamo action in these “Super-Earths”. We assume that the mantles of these planets can be thought of as consisting of perovskite but we discuss the effects of the post-perovskite transition and of MgO. We use the Keane equation of state and the Slater relation (see e.g., Stacey and Davies 2004) to derive an infinite pressure value for the Grüneisen parameter of 1.035. To derive this value we adopted the infinite pressure limit for K’ (pressure derivative of the bulk modulus) of 2.41 as derived by Stacey and Davies (2004) by fitting PREM. We further use the Lindeman law to calculate the melting curve. We gauge the melting curve using the available experimental data for pressures up to 120GPa. The melting temperature profile reaches 6000K at 135GPa and increases to temperatures between 12,000K and 24,000K at 1.1TPa with a preferred value of 21,000K. We find the adiabatic temperature increase to reach 2,500K at 135GPa and 5,400K at 1.1TPa. To calculate the pressure dependence of the viscosity we assume that the rheology is diffusion controlled and calculate the partial derivative with respect to pressure of the activation enthalpy. We cast the partial derivative in terms of an activation volume and use the semi-empirical homologous temperature scaling (e.g., Karato 2008). We find that the activation volume decreases from 2.4cm^3/mol at 135GPa to 1.6cm^3/mol at 1.1TPa. An estimate of the viscosity increase across the mantle to a pressure of 1.1TPa using the adiabat calculated above results in an increase of the viscosity of 19 orders of magnitude. This value raises questions about the differentiation of these planets, heat transfer in their deep interiors, and magnetic field generation.(Ref.: Karato, S. 2008. Deformation of Earth Materials, Cambridge University Press.; Stacey, F.D., Davies, P.M. 2004. PEPI 142: 137; Queloz, D. et al., 2009. Astronomy and Astrophysics 506: 303.)
Park, Jaewoo; Bazylewski, Paul; Fanchini, Giovanni
2016-05-14
A new generation of membranes for water purification based on weakly oxidized and nanoporous few-layer graphene is here introduced. These membranes dramatically decrease the high energy requirements of water purification by reverse osmosis. They combine the advantages of porous and non-oxidized single-layer graphene, offering energy-efficient water filtration at relatively low differential pressures, and highly oxidized graphene oxide, exhibiting high performance in terms of impurity adsorption. In the reported fabrication process, leaks between juxtaposed few-layer graphene flakes are sealed by thermally annealed colloidal silica, in a treatment that precedes the opening of (sub)nanometre-size pores in graphene. This process, explored for the first time in this work, results in nanoporous graphene flakes that are water-tight at the edges without occluding the (sub)nanopores. With this method, removal of impurities from water occurs through a combination of size-based pore rejection and pore-edge adsorption. Thinness of graphene flakes allows these membranes to achieve water purification from metal ions in concentrations of few parts-per-million at differential pressures as low as 30 kPa, outperforming existing graphene or graphene oxide purification systems with comparable flow rates.
Porous graphene-based membranes for water purification from metal ions at low differential pressures
NASA Astrophysics Data System (ADS)
Park, Jaewoo; Bazylewski, Paul; Fanchini, Giovanni
2016-05-01
A new generation of membranes for water purification based on weakly oxidized and nanoporous few-layer graphene is here introduced. These membranes dramatically decrease the high energy requirements of water purification by reverse osmosis. They combine the advantages of porous and non-oxidized single-layer graphene, offering energy-efficient water filtration at relatively low differential pressures, and highly oxidized graphene oxide, exhibiting high performance in terms of impurity adsorption. In the reported fabrication process, leaks between juxtaposed few-layer graphene flakes are sealed by thermally annealed colloidal silica, in a treatment that precedes the opening of (sub)nanometre-size pores in graphene. This process, explored for the first time in this work, results in nanoporous graphene flakes that are water-tight at the edges without occluding the (sub)nanopores. With this method, removal of impurities from water occurs through a combination of size-based pore rejection and pore-edge adsorption. Thinness of graphene flakes allows these membranes to achieve water purification from metal ions in concentrations of few parts-per-million at differential pressures as low as 30 kPa, outperforming existing graphene or graphene oxide purification systems with comparable flow rates.
NASA Astrophysics Data System (ADS)
Farsiani, Yasaman; Elbing, Brian
2015-11-01
Adding trace amounts of long chain polymers into a liquid flow is known to reduce skin friction drag by up to 80%. While polymer drag reduction (PDR) has been successfully implemented in internal flows, diffusion and degradation have limited its external flow applications. A weakness in many previous PDR studies is that there was no characterization of the polymer being injected into the turbulent boundary layer, which can be accomplished by testing a sample in a pressure-drop tube. An implicit assumption in polymer characterization is that the flow is fully developed at the differential pressure measurement. While available data in the literature shows that the entry length to achieve fully developed flow increases with polymeric solutions, it is unclear how long is required to achieve fully developed flow for non-Newtonian turbulent flows. In the present study, the pressure-drop is measured across a 1.05 meter length section of a 1.04 cm inner diameter pipe. Differential pressure is measured with a pressure transducer for different entry lengths, flow and polymer solution properties. This presentation will present preliminary data on the required entrance length as well as characterization of polymer solution an estimate of the mean molecular weight.
System and method measuring fluid flow in a conduit
Ortiz, Marcos German; Kidd, Terrel G.
1999-01-01
A system for measuring fluid mass flow in a conduit in which there exists a pressure differential in the fluid between at least two spaced-apart locations in the conduit. The system includes a first pressure transducer disposed in the side of the conduit at a first location for measuring pressure of fluid at that location, a second or more pressure transducers disposed in the side of the conduit at a second location, for making multiple measurements of pressure of fluid in the conduit at that location, and a computer for computing the average pressure of the multiple measurements at the second location and for computing flow rate of fluid in the conduit from the pressure measurement by the first pressure transducer and from the average pressure calculation of the multiple measurements.
NASA Astrophysics Data System (ADS)
Sanip, S. M.; Saidin, M. A. R.; Aziz, M.; Ismail, A. F.
2010-03-01
A simple hydrogen adsorption measurement system utilizing the volumetri differential pressure technique has been designed, fabricated and calibrated. Hydroge adsorption measurements have been carried out at temperatures 298 K and 77 K on activate carbon and carbon nanotubes with different surface areas. The adsorption data obtained will b helpful in understanding the adsorption property of the studied carbon materials using th fundamentals of adsorption theory. The principle of the system follows the Sievert-type metho The system measures a change in pressure between the reference cell, R1 and the sample cell S1, S2, S3 over a certain temperature range. R1, S1, S2, and S3 having known fixed volume The sample temperatures will be monitored by thermocouple TC while the pressures in R1 an S1, S2, S3 will be measured using a digital pressure transducer. The maximum operatin pressure of the pressure transducer is 20 bar and calibrated with an accuracy of ±0.01 bar. Hig purity hydrogen is being used in the system and the amount of samples for the study is betwee 1.0-2.0 grams. The system was calibrated using helium gas without any samples in S1, S2 an S3. This will provide a correction factor during the adsorption process providing an adsorption free reference point when using hydrogen gas resulting in a more accurate reading of th adsorption process by eliminating the errors caused by temperature expansion effects and oth non-adsorption related phenomena. The ideal gas equation of state is applied to calculate th hydrogen adsorption capacity based on the differential pressure measurements. Activated carbo with a surface area of 644.87 m2/g showed a larger amount of adsorption as compared to multiwalled nanotubes (commercial) with a surface area of 119.68 m2/g. This study als indicated that there is a direct correlation between the amounts of hydrogen adsorbed an surface area of the carbon materials under the conditions studied and that the adsorption significant at 77 K.
Reversal of gene dysregulation in cultured cytotrophoblasts reveals possible causes of preeclampsia
Zhou, Yan; Gormley, Matthew J.; Hunkapiller, Nathan M.; Kapidzic, Mirhan; Stolyarov, Yana; Feng, Victoria; Nishida, Masakazu; Drake, Penelope M.; Bianco, Katherine; Wang, Fei; McMaster, Michael T.; Fisher, Susan J.
2013-01-01
During human pregnancy, a subset of placental cytotrophoblasts (CTBs) differentiates into cells that aggressively invade the uterus and its vasculature, anchoring the progeny and rerouting maternal blood to the placenta. In preeclampsia (PE), CTB invasion is limited, reducing placental perfusion and/or creating intermittent flow. This syndrome, affecting 4%–8% of pregnancies, entails maternal vascular alterations (e.g., high blood pressure, proteinuria, and edema) and, in some patients, fetal growth restriction. The only cure is removal of the faulty placenta, i.e., delivery. Previously, we showed that defective CTB differentiation contributes to the placental component of PE, but the causes were unknown. Here, we cultured CTBs isolated from PE and control placentas for 48 hours, enabling differentiation and invasion. In various severe forms of PE, transcriptomics revealed common aberrations in CTB gene expression immediately after isolation, including upregulation of SEMA3B, which resolved in culture. The addition of SEMA3B to normal CTBs inhibited invasion and recreated aspects of the PE phenotype. Additionally, SEMA3B downregulated VEGF signaling through the PI3K/AKT and GSK3 pathways, effects that were observed in PE CTBs. We propose that, in severe PE, the in vivo environment dysregulates CTB gene expression; the autocrine actions of the upregulated molecules (including SEMA3B) impair CTB differentiation, invasion and signaling; and patient-specific factors determine the signs. PMID:23934129
DNS of High Pressure Supercritical Combustion
NASA Astrophysics Data System (ADS)
Chong, Shao Teng; Raman, Venkatramanan
2016-11-01
Supercritical flows have always been important to rocket motors, and more recently to aircraft engines and stationary gas turbines. The purpose of the present study is to understand effects of differential diffusion on reacting scalars using supercritical isotropic turbulence. Focus is on fuel and oxidant reacting in the transcritical region where density, heat capacity and transport properties are highly sensitive to variations in temperature and pressure. Reynolds and Damkohler number vary as a result and although it is common to neglect differential diffusion effects if Re is sufficiently large, this large variation in temperature with heat release can accentuate molecular transport differences. Direct numerical simulations (DNS) for one step chemistry reaction between fuel and oxidizer are used to examine the differential diffusion effects. A key issue investigated in this paper is if the flamelet progress variable approach, where the Lewis number is usually assumed to be unity and constant for all species, can be accurately applied to simulate supercritical combustion.
Collins, Thomas S; Zweigenbaum, Jerry; Ebeler, Susan E
2014-11-15
Commercial samples of 63 American whiskeys, including bourbon whiskeys, Tennessee whiskeys, rye whiskeys and other blended whiskeys were analysed using ultra high pressure liquid chromatography (UHPLC) coupled with quadrupole time-of-flight (QTOF) mass spectrometry (MS). The non-volatile composition of the whiskeys was used to model differences among the samples using discriminant analysis. The blended American whiskeys were readily distinguished from the remaining types. Additionally, most Tennessee whiskeys could be differentiated from bourbon and rye whiskeys. Similarly, younger (<4 years old) and older (>8 years old) whiskeys could be separated. The compounds important for differentiating among these whiskeys included wood derived phenolic compounds, lignan derived compounds and several C8 and larger lipids. A number of additional compounds differentiated the whiskeys but could not be identified using MS and MS/MS data alone. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amundson, Lucas M.; Owen, Ben C.; Gallardo, Vanessa A.
2011-01-01
Positive-mode atmospheric pressure chemical ionization tandem mass spectrometry (APCI-MS n ) was tested for the differentiation of regioisomeric aromatic ketocarboxylic acids. Each analyte forms exclusively an abundant protonated molecule upon ionization via positive-mode APCI in a commercial linear quadrupole ion trap (LQIT) mass spectrometer. Energy-resolved collision-activated dissociation (CAD) experiments carried out on the protonated analytes revealed fragmentation patterns that varied based on the location of the functional groups. Unambiguous differentiation between the regioisomers was achieved in each case by observing different fragmentation patterns, different relative abundances of ion-molecule reaction products, or different relative abundances of fragment ions formed at differentmore » collision energies. The mechanisms of some of the reactions were examined by H/D exchange reactions and molecular orbital calculations.« less
Relationship of vitamin D levels to blood pressure in a biethnic population.
Sakamoto, R; Jaceldo-Siegl, K; Haddad, E; Oda, K; Fraser, G E; Tonstad, S
2013-08-01
Accumulating epidemiological and clinical studies have suggested that vitamin D insufficiency may be associated with hypertension. Blacks tend to have lower vitamin D levels than Whites, but it is unclear whether this difference explains the higher blood pressure (BP) observed in Blacks in a population with healthy lifestyle practices. We examined cross-sectional data in the Adventist Health Study-2 (AHS-2), a cohort of non-smoking, mostly non-drinking men and women following a range of diets from vegan to non-vegetarian. Each participant provided dietary, demographic, lifestyle and medical history data. Measurements of weight, height, waist circumference, percent body fat and blood pressure and fasting blood samples were obtained from a randomly selected non-diabetic sample of 284 Blacks and 284 Whites aged 30-95 years. Multiple regression analyses were used to assess independent relationships between blood pressure and 25(OH)D levels. Levels of 25(OH)D were inversely associated with systolic BP in Whites after control for age, gender, BMI, and use of BP-lowering medications (β-coefficient -0.23 [95% CI, -0.43, -0.03; p = 0.02]). This relationship was not seen in Blacks (β-coefficient 0.08 [95% CI, -0.14, 0.30; p = 0.4]). Results were similar when controlling for waist circumference or percentage body fat instead of BMI. No relationship between serum 25(OH)D and diastolic BP was seen. Systolic BP is inversely associated with 25(OH)D levels in Whites but not in Blacks. Vitamin D may not be a major contributor to the White-Black differential in BP. Copyright © 2012 Elsevier B.V. All rights reserved.
Hooper, Lee; Kroon, Paul A; Rimm, Eric B; Cohn, Jeffrey S; Harvey, Ian; Le Cornu, Kathryn A; Ryder, Jonathan J; Hall, Wendy L; Cassidy, Aedín
2008-07-01
The beneficial effects of flavonoid consumption on cardiovascular risk are supported by mechanistic and epidemiologic evidence. We aimed to systematically review the effectiveness of different flavonoid subclasses and flavonoid-rich food sources on cardiovascular disease (CVD) and risk factors--ie, lipoproteins, blood pressure, and flow-mediated dilatation (FMD). Methods included a structured search strategy on MEDLINE, EMBASE, and Cochrane databases; formal inclusion or exclusion, data extraction, and validity assessment; and meta-analysis. One hundred thirty-three trials were included. No randomized controlled trial studied effects on CVD morbidity or mortality. Significant heterogeneity confirmed differential effects between flavonoid subclasses and foods. Chocolate increased FMD after acute (3.99%; 95% CI: 2.86, 5.12; 6 studies) and chronic (1.45%; 0.62, 2.28; 2 studies) intake and reduced systolic (-5.88 mm Hg; -9.55, -2.21; 5 studies) and diastolic (-3.30 mm Hg; -5.77, -0.83; 4 studies) blood pressure. Soy protein isolate (but not other soy products or components) significantly reduced diastolic blood pressure (-1.99 mm Hg; -2.86, -1.12; 9 studies) and LDL cholesterol (-0.19 mmol/L; -0.24, -0.14; 39 studies). Acute black tea consumption increased systolic (5.69 mm Hg; 1.52, 9.86; 4 studies) and diastolic (2.56 mm Hg; 1.03, 4.10; 4 studies) blood pressure. Green tea reduced LDL (-0.23 mmol/L; -0.34, -0.12; 4 studies). For many of the other flavonoids, there was insufficient evidence to draw conclusions about efficacy. To date, the effects of flavonoids from soy and cocoa have been the main focus of attention. Future studies should focus on other commonly consumed subclasses (eg, anthocyanins and flavanones), examine dose-response effects, and be of long enough duration to allow assessment of clinically relevant endpoints.
Spijkers, Léon J A; Janssen, Ben J A; Nelissen, Jelly; Meens, Merlijn J P M T; Wijesinghe, Dayanjan; Chalfant, Charles E; De Mey, Jo G R; Alewijnse, Astrid E; Peters, Stephan L M
2011-01-01
We have previously shown that essential hypertension in humans and spontaneously hypertensive rats (SHR), is associated with increased levels of ceramide and marked alterations in sphingolipid biology. Pharmacological elevation of ceramide in isolated carotid arteries of SHR leads to vasoconstriction via a calcium-independent phospholipase A(2), cyclooxygenase-1 and thromboxane synthase-dependent release of thromboxane A(2). This phenomenon is almost absent in vessels from normotensive Wistar Kyoto (WKY) rats. Here we investigated whether lowering of blood pressure can reverse elevated ceramide levels and reduce ceramide-mediated contractions in SHR. For this purpose SHR were treated for 4 weeks with the angiotensin II type 1 receptor antagonist losartan or the vasodilator hydralazine. Both drugs decreased blood pressure equally (SBP untreated SHR: 191±7 mmHg, losartan: 125±5 mmHg and hydralazine: 113±14 mmHg). The blood pressure lowering was associated with a 20-25% reduction in vascular ceramide levels and improved endothelial function of isolated carotid arteries in both groups. Interestingly, losartan, but not hydralazine treatment, markedly reduced sphingomyelinase-induced contractions. While both drugs lowered cyclooxygenase-1 expression, only losartan and not hydralazine, reduced the endothelial expression of calcium-independent phospholipase A(2). The latter finding may explain the effect of losartan treatment on sphingomyelinase-induced vascular contraction. In summary, this study corroborates the importance of sphingolipid biology in blood pressure control and specifically shows that blood pressure lowering reduces vascular ceramide levels in SHR and that losartan treatment, but not blood pressure lowering per se, reduces ceramide-mediated arterial contractions.
Spijkers, Léon J. A.; Janssen, Ben J. A.; Nelissen, Jelly; Meens, Merlijn J. P. M. T.; Wijesinghe, Dayanjan; Chalfant, Charles E.; De Mey, Jo G. R.; Alewijnse, Astrid E.; Peters, Stephan L. M.
2011-01-01
Background We have previously shown that essential hypertension in humans and spontaneously hypertensive rats (SHR), is associated with increased levels of ceramide and marked alterations in sphingolipid biology. Pharmacological elevation of ceramide in isolated carotid arteries of SHR leads to vasoconstriction via a calcium-independent phospholipase A2, cyclooxygenase-1 and thromboxane synthase-dependent release of thromboxane A2. This phenomenon is almost absent in vessels from normotensive Wistar Kyoto (WKY) rats. Here we investigated whether lowering of blood pressure can reverse elevated ceramide levels and reduce ceramide-mediated contractions in SHR. Methods and Findings For this purpose SHR were treated for 4 weeks with the angiotensin II type 1 receptor antagonist losartan or the vasodilator hydralazine. Both drugs decreased blood pressure equally (SBP untreated SHR: 191±7 mmHg, losartan: 125±5 mmHg and hydralazine: 113±14 mmHg). The blood pressure lowering was associated with a 20–25% reduction in vascular ceramide levels and improved endothelial function of isolated carotid arteries in both groups. Interestingly, losartan, but not hydralazine treatment, markedly reduced sphingomyelinase-induced contractions. While both drugs lowered cyclooxygenase-1 expression, only losartan and not hydralazine, reduced the endothelial expression of calcium-independent phospholipase A2. The latter finding may explain the effect of losartan treatment on sphingomyelinase-induced vascular contraction. Conclusion In summary, this study corroborates the importance of sphingolipid biology in blood pressure control and specifically shows that blood pressure lowering reduces vascular ceramide levels in SHR and that losartan treatment, but not blood pressure lowering per se, reduces ceramide-mediated arterial contractions. PMID:22195025
A Polymer Visualization System with Accurate Heating and Cooling Control and High-Speed Imaging
Wong, Anson; Guo, Yanting; Park, Chul B.; Zhou, Nan Q.
2015-01-01
A visualization system to observe crystal and bubble formation in polymers under high temperature and pressure has been developed. Using this system, polymer can be subjected to a programmable thermal treatment to simulate the process in high pressure differential scanning calorimetry (HPDSC). With a high-temperature/high-pressure view-cell unit, this system enables in situ observation of crystal formation in semi-crystalline polymers to complement thermal analyses with HPDSC. The high-speed recording capability of the camera not only allows detailed recording of crystal formation, it also enables in situ capture of plastic foaming processes with a high temporal resolution. To demonstrate the system’s capability, crystal formation and foaming processes of polypropylene/carbon dioxide systems were examined. It was observed that crystals nucleated and grew into spherulites, and they grew at faster rates as temperature decreased. This observation agrees with the crystallinity measurement obtained with the HPDSC. Cell nucleation first occurred at crystals’ boundaries due to CO2 exclusion from crystal growth fronts. Subsequently, cells were nucleated around the existing ones due to tensile stresses generated in the constrained amorphous regions between networks of crystals. PMID:25915031