The control of invasive species on private property with neighbor-to-neighbor spillovers.
Fenichel, Eli P; Richards, Timothy J; Shanafelt, David W
2014-10-01
Invasive pests cross property boundaries. Property managers may have private incentives to control invasive species despite not having sufficient incentive to fully internalize the external costs of their role in spreading the invasion. Each property manager has a right to future use of his own property, but his property may abut others' properties enabling spread of an invasive species. The incentives for a foresighted property manager to control invasive species have received little attention. We consider the efforts of a foresighted property manager who has rights to future use of a property and has the ability to engage in repeated, discrete control activities. We find that higher rates of dispersal, associated with proximity to neighboring properties, reduce the private incentives for control. Controlling species at one location provides incentives to control at a neighboring location. Control at neighboring locations are strategic complements and coupled with spatial heterogeneity lead to a weaker-link public good problem, in which each property owner is unable to fully appropriate the benefits of his own control activity. Future-use rights and private costs suggest that there is scope for a series of Coase-like exchanges to internalize much of the costs associated with species invasion. Pigouvian taxes on invasive species potentially have qualitatively perverse behavioral effects. A tax with a strong income effect (e.g, failure of effective revenue recycling) can reduce the value of property assets and diminish the incentive to manage insects on one's own property.
The control of invasive species on private property with neighbor-to-neighbor spillovers
Fenichel, Eli P.; Richards, Timothy J.; Shanafelt, David W.
2013-01-01
Invasive pests cross property boundaries. Property managers may have private incentives to control invasive species despite not having sufficient incentive to fully internalize the external costs of their role in spreading the invasion. Each property manager has a right to future use of his own property, but his property may abut others’ properties enabling spread of an invasive species. The incentives for a foresighted property manager to control invasive species have received little attention. We consider the efforts of a foresighted property manager who has rights to future use of a property and has the ability to engage in repeated, discrete control activities. We find that higher rates of dispersal, associated with proximity to neighboring properties, reduce the private incentives for control. Controlling species at one location provides incentives to control at a neighboring location. Control at neighboring locations are strategic complements and coupled with spatial heterogeneity lead to a weaker-link public good problem, in which each property owner is unable to fully appropriate the benefits of his own control activity. Future-use rights and private costs suggest that there is scope for a series of Coase-like exchanges to internalize much of the costs associated with species invasion. Pigouvian taxes on invasive species potentially have qualitatively perverse behavioral effects. A tax with a strong income effect (e.g, failure of effective revenue recycling) can reduce the value of property assets and diminish the incentive to manage insects on one’s own property. PMID:25346573
Engine control techniques to account for fuel effects
Kumar, Shankar; Frazier, Timothy R.; Stanton, Donald W.; Xu, Yi; Bunting, Bruce G.; Wolf, Leslie R.
2014-08-26
A technique for engine control to account for fuel effects including providing an internal combustion engine and a controller to regulate operation thereof, the engine being operable to combust a fuel to produce an exhaust gas; establishing a plurality of fuel property inputs; establishing a plurality of engine performance inputs; generating engine control information as a function of the fuel property inputs and the engine performance inputs; and accessing the engine control information with the controller to regulate at least one engine operating parameter.
Electrical Control of Metallic Heavy-Metal-Ferromagnet Interfacial States
NASA Astrophysics Data System (ADS)
Bi, Chong; Sun, Congli; Xu, Meng; Newhouse-Illige, Ty; Voyles, Paul M.; Wang, Weigang
2017-09-01
Voltage-control effects provide an energy-efficient means of tailoring material properties, especially in highly integrated nanoscale devices. However, only insulating and semiconducting systems can be controlled so far. In metallic systems, there is no electric field due to electron screening effects and thus no such control effect exists. Here, we demonstrate that metallic systems can also be controlled electrically through ionic rather than electronic effects. In a Pt /Co structure, the control of the metallic Pt /Co interface can lead to unprecedented control effects on the magnetic properties of the entire structure. Consequently, the magnetization and perpendicular magnetic anisotropy of the Co layer can be independently manipulated to any desired state, the efficient spin toques can be enhanced about 3.5 times, and the switching current can be reduced about one order of magnitude. This ability to control a metallic system may be extended to control other physical phenomena.
Davaatseren, Munkhtugs; Chun, Ji-Yeon; Cho, Hyung-Yong; Min, Sang-Gi; Choi, Mi-Jung
2014-01-01
This study investigated the effects of NaCl replacers (KCl, CaSO4, and MgSO4) on the quality and sensorial properties of pork patty. In the characteristics of spray-dried salt particles, KCl showed the largest particle size with low viscosity in solution. Meanwhile CaSO4 treatment resulted in the smallest particle size and the highest viscosity (p<0.05). In comparison of the qualities of pork patties manufactured by varying level of Na replacers, MgSO4 treatment exhibited low cooking loss comparing to control (p<0.05). Textural properties of KCl and MgSO4 treatments showed similar pattern, i.e., low level of the replacers caused harder and less adhesive texture than those of control (p<0.05), whereas the hardness of these products was not different with control when the replacers were added more than 1.0%. The addition of CaSO4 also manifested harder and less adhesive than control (p<0.05), but the textural properties of CaSO4 treatment was not affected by level of Ca-salt. Eventually, sensorial properties indicated that KCl and CaSO4 influenced negative effects on pork patties. In contrast, MgSO4 showed better sensorial properties in juiciness intensity, tenderness intensity as well as overall acceptability than control, reflecting that MgSO4 was an effective Na-replacer in meat product formulation.
Wintz, Leslie R; Lavagnino, Michael; Gardner, Keri L; Sedlak, Aleksa M; Arnoczky, Steven P
2012-12-01
To describe the effect of systemically administered oxytetracycline on the viscoelastic properties of rat tail tendon fascicles (TTfs) to provide a mechanistic rationale for pharmacological treatment of flexural limb deformities in foals. TTfs from ten 1-month-old and ten 6-month-old male Sprague-Dawley rats. 5 rats in each age group were administered oxytetracycline (50 mg/kg, IP, q 24 h) for 4 days. The remaining 5 rats in each age group served as untreated controls. Five days after initiation of oxytetracycline treatment, TTfs were collected and their viscoelastic properties were evaluated via a stress-relaxation protocol. Maximum modulus and equilibrium modulus were compared via a 2-way ANOVA. Collagen fibril size, density, and orientation in TTfs were compared between treated and control rats. Viscoelastic properties were significantly decreased in TTfs from 1-month-old oxytetracycline-treated rats, compared with those in TTfs from 1-month-old control rats. Oxytetracycline had no effect on the viscoelastic properties of TTfs from 6-month-old rats. Collagen fibril size, density, and orientation in TTfs from 1-month-old rats did not differ between oxytetracycline-treated and control rats. Results confirmed that systemically administered oxytetracycline decreased the viscoelastic properties of TTfs from 1-month-old rats but not those of TTfs from 6-month-old rats. The decrease in viscoelastic properties associated with oxytetracycline treatment does not appear to be caused by altered collagen fibril diameter or organization. The age-dependent effect of oxytetracycline on the viscoelastic properties of tendons may be related to its effect on the maturation of the extracellular matrix of developing tendons.
Distinct cognitive control mechanisms as revealed by modality-specific conflict adaptation effects.
Yang, Guochun; Nan, Weizhi; Zheng, Ya; Wu, Haiyan; Li, Qi; Liu, Xun
2017-04-01
Cognitive control is essential to resolve conflict in stimulus-response compatibility (SRC) tasks. The SRC effect in the current trial is reduced after an incongruent trial as compared with a congruent trial, a phenomenon being termed conflict adaptation (CA). The CA effect is found to be domain-specific , such that it occurs when adjacent trials contain the same type of conflict, but disappears when the conflicts are of different types. Similar patterns have been observed when tasks involve different modalities, but the modality-specific effect may have been confounded by task switching. In the current study, we investigated whether or not cognitive control could transfer across auditory and visual conflicts when task-switching was controlled. Participants were asked to respond to a visual or auditory (Experiments 1A/B) stimulus, with conflict coming from either the same or a different modality. CA effects showed modality-specific patterns. To account for potential confounding effects caused by differences in task-irrelevant properties, we specifically examined the influence of task-irrelevant properties on CA effects within the visual modality (Experiments 2A/B). Significant CA effects were observed across different conflicts from distinct task-irrelevant properties, ruling out that the lack of cross-modal CA effects in Experiments 1A/B resulted from differences in task-irrelevant information. Task-irrelevant properties were further matched in Experiments 3A/B to examine the pure effect of modality. Results replicated Experiments 1A/B showing robust modality-specific CA effects. Taken together, we provide supporting evidences that modality affects cognitive control in conflict resolution, which should be taken into account in theories of cognitive control. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Fine tuning of graphene properties by modification with aryl halogens
NASA Astrophysics Data System (ADS)
Bouša, D.; Pumera, M.; Sedmidubský, D.; Šturala, J.; Luxa, J.; Mazánek, V.; Sofer, Z.
2016-01-01
Graphene and its derivatives belong to one of the most intensively studied materials. The radical reaction using halogen derivatives of arene-diazonium salts can be used for effective control of graphene's electronic properties. In our work we investigated the influence of halogen atoms (fluorine, chlorine, bromine and iodine) as well as their position on the benzene ring towards the electronic and electrochemical properties of modified graphenes. The electronegativity as well as the position of the halogen atoms on the benzene ring has crucial influence on graphene's properties due to the inductive and mesomeric effects. The results of resistivity measurement are in good agreement with the theoretical calculations of electron density within chemically modified graphene sheets. Such simple chemical modifications of graphene can be used for controllable and scalable synthesis of graphene with tunable transport properties.Graphene and its derivatives belong to one of the most intensively studied materials. The radical reaction using halogen derivatives of arene-diazonium salts can be used for effective control of graphene's electronic properties. In our work we investigated the influence of halogen atoms (fluorine, chlorine, bromine and iodine) as well as their position on the benzene ring towards the electronic and electrochemical properties of modified graphenes. The electronegativity as well as the position of the halogen atoms on the benzene ring has crucial influence on graphene's properties due to the inductive and mesomeric effects. The results of resistivity measurement are in good agreement with the theoretical calculations of electron density within chemically modified graphene sheets. Such simple chemical modifications of graphene can be used for controllable and scalable synthesis of graphene with tunable transport properties. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06295k
Remineralization Property of an Orthodontic Primer Containing a Bioactive Glass with Silver and Zinc
Lee, Seung-Min; Kim, In-Ryoung; Park, Bong-Soo; Ko, Ching-Chang; Son, Woo-Sung; Kim, Yong-Il
2017-01-01
White spot lesions (WSLs) are irreversible damages in orthodontic treatment due to excessive etching or demineralization by microorganisms. In this study, we conducted a mechanical and cell viability test to examine the antibacterial properties of 0.2% and 1% bioactive glass (BAG) and silver-doped and zinc-doped BAGs in a primer and evaluated their clinical applicability to prevent WSLs. The microhardness statistically significantly increased in the adhesive-containing BAG, while the other samples showed no statistically significant difference compared with the control group. The shear bond strength of all samples increased compared with that of the control group. The cell viability of the control and sample groups was similar within 24 h, but decreased slightly over 48 h. All samples showed antibacterial properties. Regarding remineralization property, the group containing 0.2% of the samples showed remineralization properties compared with the control group, but was not statistically significant; further, the group containing 1% of the samples showed a significant difference compared with the control group. Among them, the orthodontic bonding primer containing 1% silver-doped BAG showed the highest remineralization property. The new orthodontic bonding primer used in this study showed an antimicrobial effect, chemical remineralization effect, and WSL prevention as well as clinically applicable properties, both physically and biologically. PMID:29088092
LDEF-space environmental effects on materials: Composites and silicone coatings
NASA Technical Reports Server (NTRS)
Petrie, Brian C.
1992-01-01
The effects of long term low Earth orbit environments on thermal control coatings and organic matrix/fiber reinforced composites are discussed. Two diverse categories are reported here: silicone coatings and composites. For composites physical and structural properties were analyzed; results are reported on mass/dimensional loss, microcracking, short beam shear, coefficient of thermal expansion (CTE), and flexural properties. The changes in thermal control properties, mass, and surface chemistry and morphology are reported and analyzed for the silicone coatings.
LDEF-space environmental effects on materials: Composites and silicone coatings
NASA Technical Reports Server (NTRS)
Petrie, Brian C.
1991-01-01
The objective of the Lockheed experiment is to evaluate the effects of long term low Earth orbit environments on thermal control coatings and organic matrix/fiber reinforced composites. Two diverse categories are reported: silicone coatings and composites. For composites physical and structural properties were analyzed; results are reported on mass/dimensional loss, microcracking, short beam shear, CTE, and flexural properties. The changes in thermal control properties, mass, and surface chemistry and morphology are reported and analyzed for the silicon coatings.
Chung, Kyeongwoon; McAllister, Andrew; Bilby, David; ...
2015-09-03
Building molecular-design insights for controlling both the intrachain and the interchain properties of conjugated polymers (CPs) is essential to determine their characteristics and to optimize their performance in applications. However, most CP designs have focused on the conjugated main chain to control the intrachain properties, while the design of side chains is usually used to render CPs soluble, even though the side chains critically affect the interchain packing. Here, we present a straightforward and effective design strategy for modifying the optical and electrochemical properties of diketopyrrolopyrrole-based CPs by controlling both the intrachain and interchain properties in a single system. Themore » synthesized polymers, P1, P2 and P3, show almost identical optical absorption spectra in solution, manifesting essentially the same intrachain properties of the three CPs having restricted effective conjugation along the main chain. However, the absorption spectra of CP films are gradually tuned by controlling the interchain packing through the side-chain design. Here, based on the tailored optical properties, we demonstrate the encoding of latent optical information utilizing the CPs as security inks on a silica substrate, which reveals and conceals hidden information upon the reversible aggregation/deaggregation of CPs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, Kyeongwoon; McAllister, Andrew; Bilby, David
Building molecular-design insights for controlling both the intrachain and the interchain properties of conjugated polymers (CPs) is essential to determine their characteristics and to optimize their performance in applications. However, most CP designs have focused on the conjugated main chain to control the intrachain properties, while the design of side chains is usually used to render CPs soluble, even though the side chains critically affect the interchain packing. Here, we present a straightforward and effective design strategy for modifying the optical and electrochemical properties of diketopyrrolopyrrole-based CPs by controlling both the intrachain and interchain properties in a single system. Themore » synthesized polymers, P1, P2 and P3, show almost identical optical absorption spectra in solution, manifesting essentially the same intrachain properties of the three CPs having restricted effective conjugation along the main chain. However, the absorption spectra of CP films are gradually tuned by controlling the interchain packing through the side-chain design. Here, based on the tailored optical properties, we demonstrate the encoding of latent optical information utilizing the CPs as security inks on a silica substrate, which reveals and conceals hidden information upon the reversible aggregation/deaggregation of CPs.« less
NASA Astrophysics Data System (ADS)
Wei-Quan, Feng; Chun-Qing, Zhao; Zi-Cai, Shen; Yi-Gang, Ding; Fan, Zhang; Yu-Ming, Liu; Hui-Qi, Zheng; Xue, Zhao
In order to prevent detrimental effects of ESD caused by differential surface charging of spacecraft under space environments, an ITO transparent conductive coating is often deposited on the thermal control materials outside spacecraft. Since the ITO coating is exposed in space environment, the environment effects on electrical property of ITO coatings concern designers of spacecraft deeply. This paper introduces ground tests to simulate space radiation environmental effects on conductive property of ITO coating. Samples are made of ITO/OSR, ITO/Kapton/Al and ITO/FEP/Ag thermal control coatings. Simulated space radiation environment conditions are NUV of 500ESH, 40 keV electron of 2 × 1016 е/cm2, 40 keV proton of 2.5 × 1015 p/cm2. Conductive property is surface resistivity measured in-situ in vacuum. Test results proved that the surface resistivity for all ITO coatings have a sudden decrease in the beginning of environment test. The reasons for it may be the oxygen vacancies caused by vacuum and decayed RIC caused by radiation. Degradation in conductive properties caused by irradiation were found. ITO/FEP/Ag exhibits more degradation than other two kinds. The conductive property of ITO/kapton/Al is stable for vacuum irradiation. The analysis of SEM and XPS found more crackers and less Sn and In concentration after irradiation which may be the reason for conductive property degradation.
Autoclaving and clinical recycling: effects on mechanical properties of orthodontic wires.
Oshagh, M; Hematiyan, M R; Mohandes, Y; Oshagh, M R; Pishbin, L
2012-01-01
About half of the orthodontists recycle and reuse orthodontic wires because of their costs. So when talking about reuse and sterilization of wires, their effects on mechanical properties of wires should be clarified. The purpose of this study was to assess the effects of sterilization and clinical use on mechanical properties of stainless steel wires. Thirty stainless steel orthodontic wires were divided into three equal groups of control, autoclave (sterilized by autoclave), and recycle group (wires were used for orthodontic patients up to 4 weeks, cleaned by isopropyl alcohol and sterilized by autoclave). The mechanical properties (tensile test, three-point loading test for load-deflection curve) were determined. Fracture force, yield strength, stiffness and modulus of elasticity in recycle groups were significantly lower than the other groups (P < 0.05). Although recycle wires were softer than those of control group, relatively small differences and also various properties of available wires have obscured the clinical predictability of their application. There is seemingly no problem in terms of mechanical properties to recycle orthodontic wires.
32 CFR 34.23 - Property management system.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 32 National Defense 1 2010-07-01 2010-07-01 false Property management system. 34.23 Section 34.23... Requirements Property Standards § 34.23 Property management system. The recipient's property management system... control system shall be in effect to insure adequate safeguards to prevent loss, damage, or theft of the...
10 CFR 600.323 - Property management system.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Property management system. 600.323 Section 600.323 Energy....323 Property management system. The recipient's property management system must include the following... existence, current utilization, and continued need for the property. (d) A control system must be in effect...
32 CFR 34.23 - Property management system.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 32 National Defense 1 2011-07-01 2011-07-01 false Property management system. 34.23 Section 34.23... Requirements Property Standards § 34.23 Property management system. The recipient's property management system... control system shall be in effect to insure adequate safeguards to prevent loss, damage, or theft of the...
10 CFR 600.323 - Property management system.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Property management system. 600.323 Section 600.323 Energy....323 Property management system. The recipient's property management system must include the following... existence, current utilization, and continued need for the property. (d) A control system must be in effect...
Walker, Jason M; Bodamer, Emily; Krebs, Olivia; Luo, Yuanyuan; Kleinfehn, Alex; Becker, Matthew L; Dean, David
2017-04-10
Two distinct molecular masses of poly(propylene fumarate) (PPF) are combined with an additive manufacturing process to fabricate highly complex scaffolds possessing controlled chemical properties and porous architecture. Scaffolds were manufactured with two polymer molecular masses and two architecture styles. Degradation was assessed in an accelerated in vitro environment. The purpose of the degradation study is not to model or mimic in vivo degradation, but to efficiently compare the effect of modulating scaffold properties. This is the first study addressing degradation of chain-growth synthesized PPF, a process that allows for considerably more control over molecular mass distribution. It demonstrates that, with greater process control, not only is scaffold fabrication reproducible, but the mechanical properties and degradation kinetics can be tailored by altering the physical properties of the scaffold. This is a clear step forward in using PPF to address unmet medical needs while meeting regulatory demands and ultimately obtaining clinical relevancy.
Lee, Bumsu; Liu, Wenjing; Naylor, Carl H; Park, Joohee; Malek, Stephanie C; Berger, Jacob S; Johnson, A T Charlie; Agarwal, Ritesh
2017-07-12
Active control of light-matter interactions in semiconductors is critical for realizing next generation optoelectronic devices with real-time control of the system's optical properties and hence functionalities via external fields. The ability to dynamically manipulate optical interactions by applied fields in active materials coupled to cavities with fixed geometrical parameters opens up possibilities of controlling the lifetimes, oscillator strengths, effective mass, and relaxation properties of a coupled exciton-photon (or plasmon) system. Here, we demonstrate electrical control of exciton-plasmon coupling strengths between strong and weak coupling limits in a two-dimensional semiconductor integrated with plasmonic nanoresonators assembled in a field-effect transistor device by electrostatic doping. As a result, the energy-momentum dispersions of such an exciton-plasmon coupled system can be altered dynamically with applied electric field by modulating the excitonic properties of monolayer MoS 2 arising from many-body effects. In addition, evidence of enhanced coupling between charged excitons (trions) and plasmons was also observed upon increased carrier injection, which can be utilized for fabricating Fermionic polaritonic and magnetoplasmonic devices. The ability to dynamically control the optical properties of a coupled exciton-plasmonic system with electric fields demonstrates the versatility of the coupled system and offers a new platform for the design of optoelectronic devices with precisely tailored responses.
Effect of boron waste on the properties of mortar and concrete.
Topçu, Iker Bekir; Boga, Ahmet Raif
2010-07-01
Utilization of by-products or waste materials in concrete production are important subjects for sustainable development and industrial ecology concepts. The usages as mineral admixtures or fine aggregates improve the durability properties of concrete and thus increase the economic and environmental advantages for the concrete industry. The effect of clay waste (CW) containing boron on the mechanical properties of concrete was investigated. CW was added in different proportions as cement additive in concrete. The effect of CW on workability and strength of concrete were analysed by fresh and hardened concrete tests. The results obtained were compared with control concrete properties and Turkish standard values. The results showed that the addition of CW had a small effect upon the workability of the concrete but an important effect on the reduction of its strength. It was observed that strength values were quite near to that of control concrete when not more than 10% CW was used in place of cement. In addition to concrete specimens, replacing cement with CW produced mortar specimens, which were investigated for their strength and durability properties. The tests of SO( 4) (2-) and Cl(-) effect as well as freeze-thaw behaviour related to the durability of mortar were performed. Consequently, it can be said that some improvements were obtained in durability properties even if mechanical properties had decreased with increasing CW content.
Flying qualities and control system characteristics for superaugmented aircraft
NASA Technical Reports Server (NTRS)
Myers, T. T.; Mcruer, D. T.; Johnston, D. E.
1984-01-01
Aircraft-alone dynamics and superaugmented control system fundamental regulatory properties including stability and regulatory responses of the basic closed-loop systems; fundamental high and low frequency margins and governing factors; and sensitivity to aircraft and controller parameters are addressed. Alternative FCS mechanizations, and mechanizational side effects are also discussed. An overview of flying qualities considerations encompasses general pilot operations as a controller in unattended, intermittent and trim, and full-attention regulatory or command control; effective vehicle primary and secondary response properties to pilot inputs and disturbances; pilot control architectural possibilities; and comparison of superaugmented and conventional aircraft path responses for different forms of pilot control. Results of a simple experimental investigation into pilot dynamic behavior in attitude control of superaugmented aircraft configurations with high frequency time laps and time delays are presented.
[Research progress on wind erosion control with polyacrylamide (PAM).
Li, Yuan Yuan; Wang, Zhan Li
2016-03-01
Soil wind erosion is one of the main reasons for soil degradation in the northwest region of China. Polyacrylamide (PAM), as an efficient soil amendment, has gained extensive attention in recent years since it is effective in improving the structure of surface soil due to its special physical and chemical properties. This paper introduced the physical and chemical properties of PAM, reviewed the effects of PAM on soil wind erosion amount and threshold wind velocity, as well as the effect differences of PAM in soil wind erosion control under conditions of various methods and doses. Its effect was proved by comparing with other materials in detail. Furthermore, we analyzed the mecha-nism of wind erosion control with PAM according to its influence on soil physical characteristics. Comprehensive analysis showed that, although some problems existed in wind erosion control with (PAM), PAM as a sand fixation agent, can not only enhance the capacity of the soil resis-tance to wind erosion, but also improve soil physical properties to form better soil conditions. Besides, we proposed that combination of PAM and plant growth would increase the survival rate of plants greatly, control soil wind erosion in wind-erosive areas, and improve the quality of the ecological environment construction. Thus, PAM has practically important significance and wide application prospect in controlling soil wind erosion.
Impact of surface coal mining on soil hydraulic properties
X. Liu; J. Q. Wu; P. W. Conrad; S. Dun; C. S. Todd; R. L. McNearny; William Elliot; H. Rhee; P. Clark
2016-01-01
Soil erosion is strongly related to soil hydraulic properties. Understanding how surface coal mining affects these properties is therefore important in developing effective management practices to control erosion during reclamation. To determine the impact of mining activities on soil hydraulic properties, soils from undisturbed areas, areas of roughly graded mine...
W. J. Massman; J. M. Frank
2004-01-01
Some fires can be beneficial to soils but, if a fire is sufficiently intense, soil can be irreversible altered. We measured soil temperatures and heat fluxes at several soil depths before, during, and after a controlled surface burn at Manitou Experimental Forest (southern Colorado, USA) to evaluate its effects on the soil's thermophysical properties (thermal...
Stacy Pease; Peter F. Ffolliott; Leonard F. DeBano; Gerald J. Gottfried
2003-01-01
Determining the effects of mesquite (Prosopis velutina) overstory removal, posttreatment control of sprouting, and mulching treatments on herbage production (standing biomass) and selected soil chemical properties on the Santa Rita Experimental Range were the objectives of this study. Mesquite control consisted of complete overstory removals with and without the...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-31
... DEPARTMENT OF THE TREASURY Office of Foreign Assets Control Designation of Four Individuals... Foreign Assets Control (``OFAC'') is publishing the names of four individuals whose property and interests... Order 13581, of the four individuals identified in this notice were effective on December 19, 2013. FOR...
41 CFR 102-74.330 - What smoking restrictions apply to outside areas under Executive branch control?
Code of Federal Regulations, 2012 CFR
2012-01-01
... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false What smoking... MANAGEMENT REGULATION REAL PROPERTY 74-FACILITY MANAGEMENT Facility Management Smoking § 102-74.330 What smoking restrictions apply to outside areas under Executive branch control? Effective June 19, 2009...
41 CFR 102-74.330 - What smoking restrictions apply to outside areas under Executive branch control?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false What smoking... MANAGEMENT REGULATION REAL PROPERTY 74-FACILITY MANAGEMENT Facility Management Smoking § 102-74.330 What smoking restrictions apply to outside areas under Executive branch control? Effective June 19, 2009...
41 CFR 102-74.330 - What smoking restrictions apply to outside areas under Executive branch control?
Code of Federal Regulations, 2014 CFR
2014-01-01
... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false What smoking... MANAGEMENT REGULATION REAL PROPERTY 74-FACILITY MANAGEMENT Facility Management Smoking § 102-74.330 What smoking restrictions apply to outside areas under Executive branch control? Effective June 19, 2009...
41 CFR 102-74.330 - What smoking restrictions apply to outside areas under Executive branch control?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false What smoking... MANAGEMENT REGULATION REAL PROPERTY 74-FACILITY MANAGEMENT Facility Management Smoking § 102-74.330 What smoking restrictions apply to outside areas under Executive branch control? Effective June 19, 2009...
41 CFR 102-74.330 - What smoking restrictions apply to outside areas under Executive branch control?
Code of Federal Regulations, 2011 CFR
2011-01-01
... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false What smoking... MANAGEMENT REGULATION REAL PROPERTY 74-FACILITY MANAGEMENT Facility Management Smoking § 102-74.330 What smoking restrictions apply to outside areas under Executive branch control? Effective June 19, 2009...
1992-08-24
Rat Suprachiasmatic Nucleus: Electrical Properties, Neurotransmission, and Effects of Neuromodulators 12. PERSONAL AUTHOR(S) F. Edward Dudek 13a...intrinsic electrical properties, synaptic and non-synaptic transmission, and neuromodulation . We have studied the role of excitatory and inhibitory amino... Neuromodulation : Smithson. K.G.. MacVicar. B.A. and Hatton. G.I. (1983) The Biochemical Control of Neuronal Excitability. Oxford Polyethylene glycol
Effects of Uygur sand therapy on the mechanical properties of femurs in osteoarthritic rabbits.
Maitirouzi, Julaiti; Yanna, Li; Abulizi, Adinaer; Aihemaitiniyazi, Aizezi; Kuerban, Shataer; Shaojun, Huang
2017-01-01
To investigate the effects of Uygur sand therapy on the mechanical properties of the femur bone of osteoarthritic rabbits. Sixteen rabbits were injected with papain in the right posterior femoral articular cavity on the first, fourth and seventh day to establish the osteoarthritis (OA) rabbit model. Animals were divided into the experimental group and control group (8 rabbits each). The experimental group was treated with sand therapy, and the control group received no sand therapy treatment. Computed tomography (CT) scanning was used to collect the data of the femur before modeling, after modeling and 14 and 28 days after sand treatment. A 3D model of the femur was generated with the MIMIC software the bone layer was divided according to the different gray values and the change of the bone volume was analyzed. The body mesh is divided, and the material properties are given, then the three-point bending simulation is performed in Ansys. Additionally, the three-point bending test was performed on all the rabbits' femur to obtain the deflection and maximum stress values. And the effects of the sand treatment on the volume and mechanical properties of the bone were analyzed. Finally, the simulation results are compared with the experimental results, and the effects of sand treatment on the volume and mechanical properties of the bone are analyzed. (1) there is a tendency in the control group to convert the hard bone into dense bone and soft bone, while in the experimental group, the soft bone is converted into dense bone and hard bone obviously; (2) the morphological parameters of the experimental group are lower than those of the control group, whereas the maximum load, maximum normal stress, maximum shear stress of the experimental group are higher than those of the control group. (3) The mechanical test of three-point bending test was carried out using the three dimensional finite element model of rabbit femur. The sand therapy has positive effects on the volume distribution of bone layer and the mechanical properties of the femur of adult osteoarthritic rabbits.
Growth and quantum transport properties of vertical Bi2Se3 nanoplate films on Si substrates.
Li, Mingze; Wang, Zhenhua; Yang, Liang; Pan, Desheng; Li, Da; Gao, Xuan P A; Zhang, Zhidong
2018-08-03
Controlling the growth direction (planar versus vertical) and surface-to-bulk ratio can lead to lots of unique properties for two-dimensional layered materials. We report a simple method to fabricate continuous films of vertical Bi 2 Se 3 nanoplates on Si substrate and investigate the quantum transport properties of such films. In contrast to (001) oriented planar Bi 2 Se 3 nanoplate film, vertical Bi 2 Se 3 nanoplate films are enclosed by (015) facets, which possess high surface-to-bulk ratio that can enhance the quantum transport property of topological surface states. And by controlling the compactness of vertical Bi 2 Se 3 nanoplates, we realized an effective tuning of the weak antilocalization effect from topological surface states in Bi 2 Se 3 films. Our work paves a way for exploring the unique transport properties of this unconventional structure topological insulator film.
Controlled ripple texturing of suspended graphene and ultrathin graphite membranes.
Bao, Wenzhong; Miao, Feng; Chen, Zhen; Zhang, Hang; Jang, Wanyoung; Dames, Chris; Lau, Chun Ning
2009-09-01
Graphene is nature's thinnest elastic material and displays exceptional mechanical and electronic properties. Ripples are an intrinsic feature of graphene sheets and are expected to strongly influence electronic properties by inducing effective magnetic fields and changing local potentials. The ability to control ripple structure in graphene could allow device design based on local strain and selective bandgap engineering. Here, we report the first direct observation and controlled creation of one- and two-dimensional periodic ripples in suspended graphene sheets, using both spontaneously and thermally generated strains. We are able to control ripple orientation, wavelength and amplitude by controlling boundary conditions and making use of graphene's negative thermal expansion coefficient (TEC), which we measure to be much larger than that of graphite. These results elucidate the ripple formation process, which can be understood in terms of classical thin-film elasticity theory. This should lead to an improved understanding of suspended graphene devices, a controlled engineering of thermal stress in large-scale graphene electronics, and a systematic investigation of the effect of ripples on the electronic properties of graphene.
Scaling behavior of immersed granular flows
NASA Astrophysics Data System (ADS)
Amarsid, L.; Delenne, J.-Y.; Mutabaruka, P.; Monerie, Y.; Perales, F.; Radjai, F.
2017-06-01
The shear behavior of granular materials immersed in a viscous fluid depends on fluid properties (viscosity, density), particle properties (size, density) and boundary conditions (shear rate, confining pressure). Using computational fluid dynamics simulations coupled with molecular dynamics for granular flow, and exploring a broad range of the values of parameters, we show that the parameter space can be reduced to a single parameter that controls the packing fraction and effective friction coefficient. This control parameter is a modified inertial number that incorporates viscous effects.
NASA Technical Reports Server (NTRS)
Tesar, Delbert; Tosunoglu, Sabri; Lin, Shyng-Her
1990-01-01
Research results on general serial robotic manipulators modeled with structural compliances are presented. Two compliant manipulator modeling approaches, distributed and lumped parameter models, are used in this study. System dynamic equations for both compliant models are derived by using the first and second order influence coefficients. Also, the properties of compliant manipulator system dynamics are investigated. One of the properties, which is defined as inaccessibility of vibratory modes, is shown to display a distinct character associated with compliant manipulators. This property indicates the impact of robot geometry on the control of structural oscillations. Example studies are provided to illustrate the physical interpretation of inaccessibility of vibratory modes. Two types of controllers are designed for compliant manipulators modeled by either lumped or distributed parameter techniques. In order to maintain the generality of the results, neither linearization is introduced. Example simulations are given to demonstrate the controller performance. The second type controller is also built for general serial robot arms and is adaptive in nature which can estimate uncertain payload parameters on-line and simultaneously maintain trajectory tracking properties. The relation between manipulator motion tracking capability and convergence of parameter estimation properties is discussed through example case studies. The effect of control input update delays on adaptive controller performance is also studied.
Absence of a growth hormone effect on rat soleus atrophy during a 4-day spaceflight
NASA Technical Reports Server (NTRS)
Jiang, Bian; Roy, Roland R.; Navarro, Christine; Edgerton, V. R.
1993-01-01
The effect of a 4-day-long spaceflight on the size and the enzyme properties of soleus fibers of rats and the effects of exogenous growth hormone (GH) on the atrophic response of the soleus muscle were investigated in four groups of rats: (1) control, (2) control plus GH treatment, (3) flight, and (4) flight plus GH treatment. Results showed that the fiber size and the type of myosin heavy chain expressed fibers (but not the metabolic properties) of the soleus were affected by four days of weightlessness and that the effects were not ameliorated by the administration of growth hormone.
Paramasivan, Sathish; Jones, Damien; Baker, Leonie; Hanton, Lyall; Robinson, Simon; Wormald, Peter J; Tan, Lorwai
2014-01-01
Chitosan-dextran gel has been used as an antihemostatic agent and antiadhesive agent after endoscopic sinus surgery. Because Staphylococcus aureus biofilms have been implicated in recalcitrant chronic rhinosinusitis, this study aimed to further investigate the (i) anti-inflammatory, (ii) bacterial biofilm inhibition, (iii) antiproliferative effects, and (iv) wound-healing properties of chitosan and chitosan-dextran gel. Fibroblasts were isolated from human nasal tissue and were used to determine the effects of chitosan and chitosan-dextran gel on (i) cell proliferation, (ii) wound healing, (iii) inflammation in fibroblast cultures challenged with superantigens S. aureus enterotoxin B (SEB) and toxic shock syndrome toxin (TSST), and (iv) on S. aureus biofilms. Chitosan was highly effective at reducing IL-8 expression after TSST and SEB challenge. Chitosan was also effective at reducing IL-8 expression of nonchallenged fibroblasts showing its anti-inflammatory effects on fibroblasts in a diseased state. Chitosan-dextran gel showed strong antibiofilm properties at 50% (v/v) concentration in vitro. Dextran, on its own, showed antibiofilm properties at 1.25% (w/v) concentration. Chitosan, on its own, reduced proliferation of fibroblasts to 82% of control proliferation and chitosan-dextran gel reduced proliferation of the fibroblasts to 0.04% of control proliferation. Relative to the no treatment controls, chitosan-dextran gel significantly delayed the wound-healing rate over the first 48 hours of the experiment. Chitosan-dextran gel reduced fibroblast proliferation and wound-healing time, showing a possible mechanism of reducing adhesions in the postsurgical period. Chitosan reduced IL-8 levels, showing its anti-inflammatory properties. Chitosan-dextran gel and dextran treatment showed antibiofilm properties in our model.
Multiple Hierarchies and Organizational Control
ERIC Educational Resources Information Center
Evans, Peter B.
1975-01-01
Uses a control-loss model to explore the effects of multiple channels in formal organizations, and presents an argument for the superior control properties of dual hierarchies. Two variant forms of multiple hierarchies are considered. (Author)
Phase-I monitoring of standard deviations in multistage linear profiles
NASA Astrophysics Data System (ADS)
Kalaei, Mahdiyeh; Soleimani, Paria; Niaki, Seyed Taghi Akhavan; Atashgar, Karim
2018-03-01
In most modern manufacturing systems, products are often the output of some multistage processes. In these processes, the stages are dependent on each other, where the output quality of each stage depends also on the output quality of the previous stages. This property is called the cascade property. Although there are many studies in multistage process monitoring, there are fewer works on profile monitoring in multistage processes, especially on the variability monitoring of a multistage profile in Phase-I for which no research is found in the literature. In this paper, a new methodology is proposed to monitor the standard deviation involved in a simple linear profile designed in Phase I to monitor multistage processes with the cascade property. To this aim, an autoregressive correlation model between the stages is considered first. Then, the effect of the cascade property on the performances of three types of T 2 control charts in Phase I with shifts in standard deviation is investigated. As we show that this effect is significant, a U statistic is next used to remove the cascade effect, based on which the investigated control charts are modified. Simulation studies reveal good performances of the modified control charts.
NASA Astrophysics Data System (ADS)
Geng, Jialu; Wang, Caiping; Zhu, Honglang; Wang, Xiaojie
2018-03-01
Elastomeric matrix embedded with magnetic micro-sized particles has magnetically controllable properties, which has been investigated extensively in the last decades. In this study we develop a new magnetically controllable elastomeric material for acoustic applications at lower frequencies. The soft polyurethane foam is used as matrix material due to its extraordinary elastic and acoustic absorption properties. One-step method is used to synthesize polyurethane foam, in which all components including polyether polyols 330N, MDI, deionized water, silicone oil, carbonyl iron particle (CIP) and catalyst are put into one container for curing. Changing any component can induce the change of polyurethane foam's properties, such as physical and acoustic properties. The effect of the content of MDI on acoustic absorption is studied. The CIPs are aligned under extra magnetic field during the foaming process. And the property of polyurethane foam with aligned CIPs is also investigated. Scanning electron microscope (SEM) is used to observe the structure of pore and particle-chain. The two-microphone impedance tube and the transfer function method are used to test acoustic absorption property of the magnetic foams.
Muftić, Lisa R; Updegrove, Alexander H
2017-08-01
This study aims to clarify the relationships between parenting techniques, low self-control, and juvenile delinquency in Gottfredson and Hirschi's general theory of crime while controlling for alternative explanations of delinquency. We relied on a sample of 35,511 adolescent students from 31 countries from the International Self-Report Delinquency 2 Study. Results indicate that parenting exhibits a direct effect on adolescents' violence perpetration and property offending, and that while self-control weakens the strength of this relationship, it fails to fully mediate it. Males reported lower levels of self-control, exposure to poorer parenting techniques, and higher rates of violence perpetration and property offending. The relationship between parenting, self-control, and juvenile delinquency was similar for females and males. These results provide evidence that parenting has important implications for adolescents' involvement in delinquency above and beyond its influence on their level of self-control.
2004-01-01
Abstract Effects of dietary biotin supplementation on serum biotin levels and physical properties of sole horn of 40 Holstein cows were evaluated. The mean serum biotin level in biotin-supplemented cows after 10 mo of biotin supplementation (1163.2 ± 76.2 pg/mL) was significantly higher (P = 0.007) than that in control cows (382.0 ± 76.2 pg/mL). The sole horn of biotin-supplemented cows was significantly harder (P = 0.026) and had a significantly lower moisture content (P = 0.021) than that of control cows. No morphologic differences in horn tubules or intertubular horn were found between the biotin-supplemented and control cows. The total lipid content of sole horn was significantly higher (P = 0.030) in the biotin-supplemented cows than in the control cows. These results suggest that dietary biotin supplementation causes increases in serum biotin levels and changes in physical properties and fat content of sole horn. PMID:15188952
Modeling of inter-neuronal coupling medium and its impact on neuronal synchronization
Iqbal, Muhammad; Hong, Keum-Shik
2017-01-01
In this paper, modeling of the coupling medium between two neurons, the effects of the model parameters on the synchronization of those neurons, and compensation of coupling strength deficiency in synchronization are studied. Our study exploits the inter-neuronal coupling medium and investigates its intrinsic properties in order to get insight into neuronal-information transmittance and, there from, brain-information processing. A novel electrical model of the coupling medium that represents a well-known RLC circuit attributable to the coupling medium’s intrinsic resistive, inductive, and capacitive properties is derived. Surprisingly, the integration of such properties reveals the existence of a natural three-term control strategy, referred to in the literature as the proportional integral derivative (PID) controller, which can be responsible for synchronization between two neurons. Consequently, brain-information processing can rely on a large number of PID controllers based on the coupling medium properties responsible for the coherent behavior of neurons in a neural network. Herein, the effects of the coupling model (or natural PID controller) parameters are studied and, further, a supervisory mechanism is proposed that follows a learning and adaptation policy based on the particle swarm optimization algorithm for compensation of the coupling strength deficiency. PMID:28486505
Effects of uridine on kindling.
Zhao, Qian; Shatskikh, Tatiana; Marolewski, Ariane; Rusche, James R; Holmes, Gregory L
2008-07-01
The anticonvulsant effect of the nucleoside uridine has been studied for several decades with controversial results. One of its attractive properties is that as a natural endogenous molecule, it lacks the serious side effects of common antiepileptic drugs used today. In the current study, we examined the potential antiepileptogenic effect of uridine in the hippocampal kindling model, using once-daily stimulations. Uridine was administered once or three times daily; levetiracetam was administered as a positive control; and normal saline was used as a negative control. Rats receiving uridine or levetiracetam had slower kindling rates and shorter afterdischarge durations than the normal saline controls. These results are consistent with previous work using a rapid kindling model and suggest that uridine has antiepileptogenic properties. Because of its combination of low toxicity and efficacy, uridine is a possible candidate for the treatment of epilepsy.
36 CFR 60.2 - Effects of listing under Federal law.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Effects of listing under Federal law. 60.2 Section 60.2 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF... National Register, certain provisions of the Surface Mining and Control Act of 1977 require consideration...
36 CFR 60.2 - Effects of listing under Federal law.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Effects of listing under Federal law. 60.2 Section 60.2 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF... National Register, certain provisions of the Surface Mining and Control Act of 1977 require consideration...
36 CFR 60.2 - Effects of listing under Federal law.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Effects of listing under Federal law. 60.2 Section 60.2 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF... National Register, certain provisions of the Surface Mining and Control Act of 1977 require consideration...
36 CFR 60.2 - Effects of listing under Federal law.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Effects of listing under Federal law. 60.2 Section 60.2 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF... National Register, certain provisions of the Surface Mining and Control Act of 1977 require consideration...
Effect of acidity on the physicochemical properties of α- and β-chitin nanofibers.
Suenaga, Shin; Totani, Kazuhide; Nomura, Yoshihiro; Yamashita, Kazuhiko; Shimada, Iori; Fukunaga, Hiroshi; Takahashi, Nobuhide; Osada, Mitsumasa
2017-09-01
We have investigated whether acidity can be used to control the physicochemical properties of chitin nanofibers (ChNFs). In this study, we define acidity as the molar ratio of dissociated protons from the acid to the amino groups in the raw chitin powder. The effect of acidity on the physicochemical properties of α- and β-ChNFs was compared. The transmittance and viscosity of the β-ChNFs drastically and continuously increased with increasing acidity, while those of the α-ChNFs were not affected by acidity. These differences are because of the higher ability for cationization based on the more flexible crystal structure of β-chitin than α-chitin. In addition, the effect of the acid species on the transmittance of β-ChNFs was investigated. The transmittance of β-ChNFs can be expressed by the acidity regardless of the acid species, such as hydrochloric acid, phosphoric acid, and acetic acid. These results indicate that the acidity defined in this work is an effective parameter to define and control the physicochemical properties of ChNFs. Copyright © 2017 Elsevier B.V. All rights reserved.
Seyedmahmoud, Rasoul; Rainer, Alberto; Mozetic, Pamela; Maria Giannitelli, Sara; Trombetta, Marcella; Traversa, Enrico; Licoccia, Silvia; Rinaldi, Antonio
2015-01-01
Tissue engineering scaffolds produced by electrospinning are of enormous interest, but still lack a true understanding about the fundamental connection between the outstanding functional properties, the architecture, the mechanical properties, and the process parameters. Fragmentary results from several parametric studies only render some partial insights that are hard to compare and generally miss the role of parameters interactions. To bridge this gap, this article (Part-1 of 2) features a case study on poly-L-lactide scaffolds to demonstrate how statistical methods such as design of experiments can quantitatively identify the correlations existing between key scaffold properties and control parameters, in a systematic, consistent, and comprehensive manner disentangling main effects from interactions. The morphological properties (i.e., fiber distribution and porosity) and mechanical properties (Young's modulus) are "charted" as a function of molecular weight (MW) and other electrospinning process parameters (the Xs), considering the single effect as well as interactions between Xs. For the first time, the major role of the MW emerges clearly in controlling all scaffold properties. The correlation between mechanical and morphological properties is also addressed. © 2014 Wiley Periodicals, Inc.
Chansanroj, Krisanin; Petrović, Jelena; Ibrić, Svetlana; Betz, Gabriele
2011-10-09
Artificial neural networks (ANNs) were applied for system understanding and prediction of drug release properties from direct compacted matrix tablets using sucrose esters (SEs) as matrix-forming agents for controlled release of a highly water soluble drug, metoprolol tartrate. Complexity of the system was presented through the effects of SE concentration and tablet porosity at various hydrophilic-lipophilic balance (HLB) values of SEs ranging from 0 to 16. Both effects contributed to release behaviors especially in the system containing hydrophilic SEs where swelling phenomena occurred. A self-organizing map neural network (SOM) was applied for visualizing interrelation among the variables and multilayer perceptron neural networks (MLPs) were employed to generalize the system and predict the drug release properties based on HLB value and concentration of SEs and tablet properties, i.e., tablet porosity, volume and tensile strength. Accurate prediction was obtained after systematically optimizing network performance based on learning algorithm of MLP. Drug release was mainly attributed to the effects of SEs, tablet volume and tensile strength in multi-dimensional interrelation whereas tablet porosity gave a small impact. Ability of system generalization and accurate prediction of the drug release properties proves the validity of SOM and MLPs for the formulation modeling of direct compacted matrix tablets containing controlled release agents of different material properties. Copyright © 2011 Elsevier B.V. All rights reserved.
Hsu, Ben B Y; Seifter, Jason; Takacs, Christopher J; Zhong, Chengmei; Tseng, Hsin-Rong; Samuel, Ifor D W; Namdas, Ebinazar B; Bazan, Guillermo C; Huang, Fei; Cao, Yong; Heeger, Alan J
2013-03-26
Polymer light emitting field effect transistors are a class of light emitting devices that reveal interesting device physics. Device performance can be directly correlated to the most fundamental polymer science. Control over surface properties of the transistor dielectric can dramatically change the polymer morphology, introducing ordered phase. Electronic properties such as carrier mobility and injection efficiency on the interface can be promoted by ordered nanofibers in the polymer. Moreover, by controlling space charge in the polymer interface, the recombination zone can be spatially extended and thereby enhance the optical output.
A Microwave Thermostatic Reactor for Processing Liquid Materials Based on a Heat-Exchanger.
Zhou, Yongqiang; Zhang, Chun; Xie, Tian; Hong, Tao; Zhu, Huacheng; Yang, Yang; Liu, Changjun; Huang, Kama
2017-10-08
Microwaves have been widely used in the treatment of different materials. However, the existing adjustable power thermostatic reactors cannot be used to analyze materials characteristics under microwave effects. In this paper, a microwave thermostatic chemical reactor for processing liquid materials is proposed, by controlling the velocity of coolant based on PLC (programmable logic controller) in different liquid under different constant electric field intensity. A nonpolar coolant (Polydimethylsiloxane), which is completely microwave transparent, is employed to cool the liquid materials. Experiments are performed to measure the liquid temperature using optical fibers, the results show that the precision of temperature control is at the range of ±0.5 °C. Compared with the adjustable power thermostatic control system, the effect of electric field changes on material properties are avoided and it also can be used to detect the properties of liquid materials and special microwave effects.
A Microwave Thermostatic Reactor for Processing Liquid Materials Based on a Heat-Exchanger
Zhou, Yongqiang; Zhang, Chun; Xie, Tian; Hong, Tao; Yang, Yang; Liu, Changjun; Huang, Kama
2017-01-01
Microwaves have been widely used in the treatment of different materials. However, the existing adjustable power thermostatic reactors cannot be used to analyze materials characteristics under microwave effects. In this paper, a microwave thermostatic chemical reactor for processing liquid materials is proposed, by controlling the velocity of coolant based on PLC (programmable logic controller) in different liquid under different constant electric field intensity. A nonpolar coolant (Polydimethylsiloxane), which is completely microwave transparent, is employed to cool the liquid materials. Experiments are performed to measure the liquid temperature using optical fibers, the results show that the precision of temperature control is at the range of ±0.5 °C. Compared with the adjustable power thermostatic control system, the effect of electric field changes on material properties are avoided and it also can be used to detect the properties of liquid materials and special microwave effects. PMID:28991195
Changoor, Adele; Fereydoonzad, Liah; Yaroshinsky, Alex; Buschmann, Michael D
2010-06-01
In vitro electromechanical and biomechanical testing of articular cartilage provide critical information about the structure and function of this tissue. Difficulties obtaining fresh tissue and lengthy experimental testing procedures often necessitate a storage protocol, which may adversely affect the functional properties of cartilage. The effects of storage at either 4°C for periods of 6 days and 12 days, or during a single freeze-thaw cycle at -20°C were examined in young bovine cartilage. Non-destructive electromechanical measurements and unconfined compression testing on 3 mm diameter disks were used to assess cartilage properties, including the streaming potential integral (SPI), fibril modulus (Ef), matrix modulus (Em), and permeability (k). Cartilage disks were also examined histologically. Compared with controls, significant decreases in SPI (to 32.3±5.5% of control values, p<0.001), Ef (to 31.3±41.3% [corrected] of control values, p=0.046), Em (to 6.4±8.5% of control values, p<0.0001), and an increase in k (to 2676.7±2562.0% of control values, p=0.004) were observed at day 12 of refrigeration at 4°C, but no significant changes were detected at day 6. A trend toward detecting a decrease in SPI (to 94.2±6.2% of control values, p=0.083) was identified following a single freeze-thaw cycle, but no detectable changes were observed for any biomechanical parameters. All numbers are mean±95% confidence interval. These results indicate that fresh cartilage can be stored in a humid chamber at 4°C for a maximum of 6 days with no detrimental effects to cartilage electromechanical and biomechanical properties, while one freeze-thaw cycle produces minimal deterioration of biomechanical and electromechanical properties. A comparison to literature suggested that particular attention should be paid to the manner in which specimens are thawed after freezing, specifically by minimizing thawing time at higher temperatures.
Li, Zhenyu; Wang, Bin; Liu, Hong
2016-08-30
Satellite capturing with free-floating space robots is still a challenging task due to the non-fixed base and unknown mass property issues. In this paper gyro and eye-in-hand camera data are adopted as an alternative choice for solving this problem. For this improved system, a new modeling approach that reduces the complexity of system control and identification is proposed. With the newly developed model, the space robot is equivalent to a ground-fixed manipulator system. Accordingly, a self-tuning control scheme is applied to handle such a control problem including unknown parameters. To determine the controller parameters, an estimator is designed based on the least-squares technique for identifying the unknown mass properties in real time. The proposed method is tested with a credible 3-dimensional ground verification experimental system, and the experimental results confirm the effectiveness of the proposed control scheme.
Li, Zhenyu; Wang, Bin; Liu, Hong
2016-01-01
Satellite capturing with free-floating space robots is still a challenging task due to the non-fixed base and unknown mass property issues. In this paper gyro and eye-in-hand camera data are adopted as an alternative choice for solving this problem. For this improved system, a new modeling approach that reduces the complexity of system control and identification is proposed. With the newly developed model, the space robot is equivalent to a ground-fixed manipulator system. Accordingly, a self-tuning control scheme is applied to handle such a control problem including unknown parameters. To determine the controller parameters, an estimator is designed based on the least-squares technique for identifying the unknown mass properties in real time. The proposed method is tested with a credible 3-dimensional ground verification experimental system, and the experimental results confirm the effectiveness of the proposed control scheme. PMID:27589748
Magnetoelectrical control of nonreciprocal microwave response in a multiferroic helimagnet
NASA Astrophysics Data System (ADS)
Iguchi, Yusuke; Nii, Yoichi; Onose, Yoshinori
Control of physical property in terms of external fields is essential for contemporary technologies. The conductance can be controlled by a gate electric field in a field effect transistor, which is a main component of the integrated circuit. Optical phenomena induced by an electric field such as electroluminescence and electrochromism are useful for display and other technologies. Control of microwave propagation seems also imperative for future wireless communication technology. Microwave properties in solids are dominated mostly by magnetic excitations, which cannot be easily controlled by an electric field. One of the solutions for this problem is utilizing magnetically induced ferroelectrics (multiferroics). Here we show that microwave nonreciprocity, which is difference between oppositely propagating microwaves, can be reversed by the external electric field in a multiferroic helimagnet Ba2Mg2Fe12O22. This result offers a new avenue for the electrical control of microwave properties.
Magnetoelectrical control of nonreciprocal microwave response in a multiferroic helimagnet
NASA Astrophysics Data System (ADS)
Iguchi, Y.; Nii, Y.; Onose, Y.
2017-05-01
The control of physical properties by external fields is essential in many contemporary technologies. For example, conductance can be controlled by a gate electric field in a field effect transistor, which is a main component of integrated circuits. Optical phenomena induced by an electric field such as electroluminescence and electrochromism are useful for display and other technologies. Control of microwave propagation is also important for future wireless communication technology. Microwave properties in solids are dominated mostly by magnetic excitations, which cannot be easily controlled by an electric field. One solution to this problem is to use magnetically induced ferroelectrics (multiferroics). Here we show that microwave nonreciprocity, that is, different refractive indices for microwaves propagating in opposite directions, could be reversed by an external electric field in a multiferroic helimagnet Ba2Mg2Fe12O22. This approach offers an avenue for the electrical control of microwave properties.
Effect of early age woody and herbaceous competition control on wood properties of loblolly pine
F. Antony; L. R. Schimleck; L. Jordan; Alexander Clark; R. F. Daniels
2011-01-01
Early age competition control has been reported to significantly improve the growth and yield of plantation grown loblolly pine. The objective of this paper is to understand the changes in wood properties: basal area weighted whole disk SG, earlywood SG (EWSG), latewood SG (LWSG) and latewood percent (LWP) of 14 year-old trees which received early age herbaceous and...
Quality Control Review of the Defense Logistics Agency Audit Organization
2014-12-19
Management Information Distribution and Access System ( MIDAS ). The auditors used data generated from MIDAS to analyze property receipt transaction...However, because there was no evaluation of the effectiveness of controls over MIDAS , the auditors may not have assessed audit risk adequately...Operations in Afghanistan, auditors used property receipt transaction data that were generated from MIDAS to determine whether the audited entity had
Multifractal Properties of Process Control Variables
NASA Astrophysics Data System (ADS)
Domański, Paweł D.
2017-06-01
Control system is an inevitable element of any industrial installation. Its quality affects overall process performance significantly. The assessment, whether control system needs any improvement or not, requires relevant and constructive measures. There are various methods, like time domain based, Minimum Variance, Gaussian and non-Gaussian statistical factors, fractal and entropy indexes. Majority of approaches use time series of control variables. They are able to cover many phenomena. But process complexities and human interventions cause effects that are hardly visible for standard measures. It is shown that the signals originating from industrial installations have multifractal properties and such an analysis may extend standard approach to further observations. The work is based on industrial and simulation data. The analysis delivers additional insight into the properties of control system and the process. It helps to discover internal dependencies and human factors, which are hardly detectable.
Effect of nanopatterning on mechanical properties of Lithium anode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, Colin; Lee, Yong Min; Cho, Kuk Young
One of the challenges in developing Lithium anodes for Lithium ion batteries (LIB) is controlling the formation of Li dendrites during cycling of the battery. Nanostructuring and nanopatterning of electrodes shows a promising way to suppress the growth of Li dendrites. However, in order to control this behavior, a fundamental understanding of the effect of nanopatterning on the electromechanical properties of Li metal is necessary. In this paper, we have investigated the mechanical and wear properties of Li metal using Atomic Force Microscopy (AFM) in an airtight cell. By using different load regimes, we determined the mechanical properties of Limore » metal. Here, we show that as a result of nanopatterning, Li metal surface underwent work hardening due to residual compressive stress. The presence of such stresses can help to improve cycle lifetime of LIBs with Li anodes and obtain very high energy densities.« less
Effect of nanopatterning on mechanical properties of Lithium anode
Campbell, Colin; Lee, Yong Min; Cho, Kuk Young; ...
2018-02-06
One of the challenges in developing Lithium anodes for Lithium ion batteries (LIB) is controlling the formation of Li dendrites during cycling of the battery. Nanostructuring and nanopatterning of electrodes shows a promising way to suppress the growth of Li dendrites. However, in order to control this behavior, a fundamental understanding of the effect of nanopatterning on the electromechanical properties of Li metal is necessary. In this paper, we have investigated the mechanical and wear properties of Li metal using Atomic Force Microscopy (AFM) in an airtight cell. By using different load regimes, we determined the mechanical properties of Limore » metal. Here, we show that as a result of nanopatterning, Li metal surface underwent work hardening due to residual compressive stress. The presence of such stresses can help to improve cycle lifetime of LIBs with Li anodes and obtain very high energy densities.« less
Apollo Soyuz Test Project Weights and Mass Properties Operational Management System
NASA Technical Reports Server (NTRS)
Collins, M. A., Jr.; Hischke, E. R.
1975-01-01
The Apollo Soyuz Test Project (ASTP) Weights and Mass Properties Operational Management System was established to assure a timely and authoritative method of acquiring, controlling, generating, and disseminating an official set of vehicle weights and mass properties data. This paper provides an overview of the system and its interaction with the various aspects of vehicle and component design, mission planning, hardware and software simulations and verification, and real-time mission support activities. The effect of vehicle configuration, design maturity, and consumables updates is discussed in the context of weight control.
Zhang, Yifeng; Jiao, Shunshan; Lian, Zixuan; Deng, Yun; Zhao, Yanyun
2015-05-01
This study investigated the effect of single- and two-cycle high hydrostatic pressure (HHP) treatments on water properties, physicochemical, and microbial qualities of squids (Todarodes pacificus) during 4 °C storage for up to 10 d. Single-cycle treatments were applied at 200, 400, or 600 MPa for 20 min (S-200, S-400, and S-600), and two-cycle treatments consisted of two 10 min cycles at 200, 400, or 600 MPa, respectively (T-200, T-400, and T-600). HHP-treated samples had higher (P < 0.05) content of P2b (immobilized water) and P21 (myofibril water), but lower P22 (free water) than those of control. The single- and two-cycle HHP treatments at the same pressure level caused no significant difference in water state of squids. The two-cycle HHP treatment was more effective in controlling total volatile basic nitrogen, pH, and total plate counts (TPC) of squids during storage, in which TPC of S-600 and T-600 was 2.9 and 1.8 log CFU/g at 10 d, respectively, compared with 7.5 log CFU/g in control. HHP treatments delayed browning discoloration of the squids during storage, and the higher pressure level and two-cycle HHP were more effective. Water properties highly corresponded with color and texture indices of squids. This study demonstrated that the two-cycle HHP treatment was more effective in controlling microbial growth and quality deterioration while having similar impact on the physicochemical and water properties of squids in comparison with the single-cycle treatment, thus more desirable for extending shelf-life of fresh squids. © 2015 Institute of Food Technologists®
NASA Astrophysics Data System (ADS)
Gray, Nathan W.; Perez-Rubio, Victor; Bolke, Joseph G.; Alexander, W. B.
2014-10-01
Focal plane arrays (FPAs) made on InSb wafers are the key cost-driving component in IR imaging systems. The electronic and crystallographic properties of the wafer directly determine the imaging device performance. The "facet effect" describes the non-uniform electronic properties of crystals resulting from anisotropic dopant segregation during bulk growth. When the segregation coefficient of dopant impurities changes notably across the melt/solid interface of a growing crystal the result is non-uniform electronic properties across wafers made from these crystals. The effect is more pronounced in InSb crystals grown on the (111) axis compared with other orientations and crystal systems. FPA devices made on these wafers suffer costly yield hits due to inconsistent device response and performance. Historically, InSb crystal growers have grown approximately 9-19 degree off-axis from the (111) to avoid the facet effect and produced wafers with improved uniformity of electronic properties. It has been shown by researchers in the 1960s that control of the facet effect can produce uniform small diameter crystals. In this paper, we share results employing a process that controls the facet effect when growing large diameter crystals from which 4, 5, and 6" wafers can be manufactured. The process change resulted in an increase in wafers yielded per crystal by several times, all with high crystal quality and uniform electronic properties. Since the crystals are grown on the (111) axis, manufacturing (111) oriented wafers is straightforward with standard semiconductor equipment and processes common to the high-volume silicon wafer industry. These benefits result in significant manufacturing cost savings and increased value to our customers.
Sensitivity analysis of non-cohesive sediment transport formulae
NASA Astrophysics Data System (ADS)
Pinto, Lígia; Fortunato, André B.; Freire, Paula
2006-10-01
Sand transport models are often based on semi-empirical equilibrium transport formulae that relate sediment fluxes to physical properties such as velocity, depth and characteristic sediment grain sizes. In engineering applications, errors in these physical properties affect the accuracy of the sediment fluxes. The present analysis quantifies error propagation from the input physical properties to the sediment fluxes, determines which ones control the final errors, and provides insight into the relative strengths, weaknesses and limitations of four total load formulae (Ackers and White, Engelund and Hansen, van Rijn, and Karim and Kennedy) and one bed load formulation (van Rijn). The various sources of uncertainty are first investigated individually, in order to pinpoint the key physical properties that control the errors. Since the strong non-linearity of most sand transport formulae precludes analytical approaches, a Monte Carlo method is validated and used in the analysis. Results show that the accuracy in total sediment transport evaluations is mainly determined by errors in the current velocity and in the sediment median grain size. For the bed load transport using the van Rijn formula, errors in the current velocity alone control the final accuracy. In a final set of tests, all physical properties are allowed to vary simultaneously in order to analyze the combined effect of errors. The combined effect of errors in all the physical properties is then compared to an estimate of the errors due to the intrinsic limitations of the formulae. Results show that errors in the physical properties can be dominant for typical uncertainties associated with these properties, particularly for small depths. A comparison between the various formulae reveals that the van Rijn formula is more sensitive to basic physical properties. Hence, it should only be used when physical properties are known with precision.
Voltage-Controlled Switching and Thermal Effects in VO2 Nano-Gap Junctions
2014-06-09
Voltage-controlled switching and thermal effects in VO2 nano-gap junctions Arash Joushaghani,1 Junho Jeong,1 Suzanne Paradis,2 David Alain,2 J...2014) Voltage-controlled switching in lateral VO2 nano-gap junctions with different gap lengths and thermal properties was investigated. The effect of...indicate that the VO2 phase transition was likely initiated electroni- cally, which was sometimes followed by a secondary thermally-induced transition
3D effects on transport and plasma control in the TJ-II stellarator
NASA Astrophysics Data System (ADS)
Castejón, F.; Alegre, D.; Alonso, A.; Alonso, J.; Ascasíbar, E.; Baciero, A.; de Bustos, A.; Baiao, D.; Barcala, J. M.; Blanco, E.; Borchardt, M.; Botija, J.; Cabrera, S.; de la Cal, E.; Calvo, I.; Cappa, A.; Carrasco, R.; Castro, R.; De Castro, A.; Catalán, G.; Chmyga, A. A.; Chamorro, M.; Dinklage, A.; Eliseev, L.; Estrada, T.; Fernández-Marina, F.; Fontdecaba, J. M.; García, L.; García-Cortés, I.; García-Gómez, R.; García-Regaña, J. M.; Guasp, J.; Hatzky, R.; Hernanz, J.; Hernández, J.; Herranz, J.; Hidalgo, C.; Hollmann, E.; Jiménez-Denche, A.; Kirpitchev, I.; Kleiber, R.; Komarov, A. D.; Kozachoek, A. S.; Krupnik, L.; Lapayese, F.; Liniers, M.; Liu, B.; López-Bruna, D.; López-Fraguas, A.; López-Miranda, B.; López-Razola, J.; Losada, U.; de la Luna, E.; Martín de Aguilera, A.; Martín-Díaz, F.; Martínez, M.; Martín-Gómez, G.; Martín-Hernández, F.; Martín-Rojo, A. B.; Martínez-Fernández, J.; McCarthy, K. J.; Medina, F.; Medrano, M.; Melón, L.; Melnikov, A. V.; Méndez, P.; Merino, R.; Miguel, F. J.; van Milligen, B.; Molinero, A.; Momo, B.; Monreal, P.; Moreno, R.; Navarro, M.; Narushima, Y.; Nedzelskiy, I. S.; Ochando, M. A.; Olivares, J.; Oyarzábal, E.; de Pablos, J. L.; Pacios, L.; Panadero, N.; Pastor, I.; Pedrosa, M. A.; de la Peña, A.; Pereira, A.; Petrov, A.; Petrov, S.; Portas, A. B.; Poveda, E.; Rattá, G. A.; Rincón, E.; Ríos, L.; Rodríguez, C.; Rojo, B.; Ros, A.; Sánchez, J.; Sánchez, M.; Sánchez, E.; Sánchez-Sarabia, E.; Sarksian, K.; Satake, S.; Sebastián, J. A.; Silva, C.; Solano, E. R.; Soleto, A.; Sun, B. J.; Tabarés, F. L.; Tafalla, D.; Tallents, S.; Tolkachev, A.; Vega, J.; Velasco, G.; Velasco, J. L.; Wolfers, G.; Yokoyama, M.; Zurro, B.
2017-10-01
The effects of 3D geometry are explored in TJ-II from two relevant points of view: neoclassical transport and modification of stability and dispersion relation of waves. Particle fuelling and impurity transport are studied considering the 3D transport properties, paying attention to both neoclassical transport and other possible mechanisms. The effects of the 3D magnetic topology on stability, confinement and Alfvén Eigenmodes properties are also explored, showing the possibility of controlling Alfvén modes by modifying the configuration; the onset of modes similar to geodesic acoustic modes are driven by fast electrons or fast ions; and the weak effect of magnetic well on confinement. Finally, we show innovative power exhaust scenarios using liquid metals.
Silica-based mesoporous nanoparticles for controlled drug delivery
Kwon, Sooyeon; Singh, Rajendra K; Perez, Roman A; Abou Neel, Ensanya A
2013-01-01
Drug molecules with lack of specificity and solubility lead patients to take high doses of the drug to achieve sufficient therapeutic effects. This is a leading cause of adverse drug reactions, particularly for drugs with narrow therapeutic window or cytotoxic chemotherapeutics. To address these problems, there are various functional biocompatible drug carriers available in the market, which can deliver therapeutic agents to the target site in a controlled manner. Among the carriers developed thus far, mesoporous materials emerged as a promising candidate that can deliver a variety of drug molecules in a controllable and sustainable manner. In particular, mesoporous silica nanoparticles are widely used as a delivery reagent because silica possesses favourable chemical properties, thermal stability and biocompatibility. Currently, sol-gel-derived mesoporous silica nanoparticles in soft conditions are of main interest due to simplicity in production and modification and the capacity to maintain function of bioactive agents. The unique mesoporous structure of silica facilitates effective loading of drugs and their subsequent controlled release. The properties of mesopores, including pore size and porosity as well as the surface properties, can be altered depending on additives used to fabricate mesoporous silica nanoparticles. Active surface enables functionalisation to modify surface properties and link therapeutic molecules. The tuneable mesopore structure and modifiable surface of mesoporous silica nanoparticle allow incorporation of various classes of drug molecules and controlled delivery to the target sites. This review aims to present the state of knowledge of currently available drug delivery system and identify properties of an ideal drug carrier for specific application, focusing on mesoporous silica nanoparticles. PMID:24020012
Time-optical spinup maneuvers of flexible spacecraft
NASA Technical Reports Server (NTRS)
Singh, G.; Kabamba, P. T.; Mcclamroch, N. H.
1990-01-01
Attitude controllers for spacecraft have been based on the assumption that the bodies being controlled are rigid. Future spacecraft, however, may be quite flexible. Many applications require spinning up/down these vehicles. In this work the minimum time control of these maneuvers is considered. The time-optimal control is shown to possess an important symmetry property. Taking advantage of this property, the necessary and sufficient conditions for optimality are transformed into a system of nonlinear algebraic equations in the control switching times during one half of the maneuver, the maneuver time, and the costates at the mid-maneuver time. These equations can be solved using a homotopy approach. Control spillover measures are introduced and upper bounds on these measures are obtained. For a special case these upper bounds can be expressed in closed form for an infinite dimensional evaluation model. Rotational stiffening effects are ignored in the optimal control analysis. Based on a heuristic argument a simple condition is given which justifies the omission of these nonlinear effects. This condition is validated by numerical simulation.
NASA Astrophysics Data System (ADS)
Marshall, Ashley R.
Semiconductor quantum dots (QDs) are interesting materials that, after less than 40 years of research, are used in commercial products. QDs are now found in displays, such as Samsung televisions and the Kindle Fire, and have applications in lighting, bio-imaging, quantum computing, and photovoltaics. They offer a large range of desirable properties: a controllable band gap, solution processability, controlled energy levels, and are currently the best materials for multiple exciton generation. The tunable optoelectronic properties of QDs can be controlled using size, shape, composition, and surface treatments--as shown here. Due to the quasi-spherical shape of QDs the surface to volume ratio is high, i.e. many of the constituent atoms are found on the QD surface. This makes QDs highly sensitive to surface chemistry modifications. This thesis encompasses the effects of surface treatments for QDs of two semiconducting materials: lead chalcogenides and CsPbI3. Our group developed a new synthetic technique for lead chalcogenide QDs via the cation exchange of cadmium chalcogenides. An in-depth chemical analysis is paired with optical and electrical studies and we find that metal halide residue contributes to the oxidative stability and decreased trap state density in cation-exchanged PbS QDs. We exploit these properties to make air-stable QD photovoltaic devices from both PbS and PbSe QD materials. Beyond the effects of residual atoms left from the synthetic technique, I investigated how to controllably add atoms onto the surface of QDs. I found that by introducing metal halides as a post-treatment in an electronically coupled array I am able to control the performance parameters in QD photovoltaic devices. These treatments fully infiltrate the assembled film, even under short exposure times and allow me to add controlled quantities of surface atoms to study their effects on film properties and photovoltaic device performance. Finally, I sought to apply the knowledge of the lead chalcogenide QD surfaces to produce QD photovoltaics from a new material: CsPbI3. I fabricated the first perovskite QD photovoltaic devices and using similar treatment methods as the lead chalcogenide QD arrays, I am able to influence the photophysical properties of CsPbI3 QD arrays.
Reversible optical control of macroscopic polarization in ferroelectrics
NASA Astrophysics Data System (ADS)
Rubio-Marcos, Fernando; Ochoa, Diego A.; Del Campo, Adolfo; García, Miguel A.; Castro, Germán R.; Fernández, José F.; García, José E.
2018-01-01
The optical control of ferroic properties is a subject of fascination for the scientific community, because it involves the establishment of new paradigms for technology1-9. Domains and domain walls are known to have a great impact on the properties of ferroic materials1-24. Progress is currently being made in understanding the behaviour of the ferroelectric domain wall, especially regarding its dynamic control10-12,17,19. New research is being conducted to find effective methodologies capable of modulating ferroelectric domain motion for future electronics. However, the practical use of ferroelectric domain wall motion should be both stable and reversible (rewritable) and, in particular, be able to produce a macroscopic response that can be monitored easily12,17. Here, we show that it is possible to achieve a reversible optical change of ferroelectric domains configuration. This effect leads to the tuning of macroscopic polarization and its related properties by means of polarized light, a non-contact external control. Although this is only the first step, it nevertheless constitutes the most crucial one in the long and complex process of developing the next generation of photo-stimulated ferroelectric devices.
W.B. Patterson; M.A. Sword-Sayer; J.D. Haywood; S. Brooker
2004-01-01
The intensity and frequency of prescribed fire affects soil properties that control its quality. This project evaluates how six vegetation management treatments, four of which include biennial prescribed fire, affect the soil physical properties in two stands of longleaf pine (Pinus palustris Mill.) located on the Kisatchie National Forest, Rapides...
Effect of Six Site-Preperation Treatments on Piedmont Loblolly Pine Wood Properties at Age 15
Alexander Clark; M. Boyd Edwards
1999-01-01
The impact of weed control and fertilization on increased tree growth is positive and significant but the effects on wood properties are not well known. Incrernent cores were collectd from loblolly pine (pinus taeda L.) trees growing on an existing site-preparation experiment in the lower Piedmont of Georgia at age 15. The levels of site...
Ralph E.J. Boerner; Jennifer a. Brinkman; Daniel A. Yaussy
2007-01-01
This study presents an analysis of the effect of ecosystem restoration treatments on soil properties in the oak forests of southern Ohio. The treatments were (1) prescribed fire, (2) mechanical thinning, (3) fire and thinning, and (4) passive management (control). Fire and thinning resulted in increased mineral soil exposure, with the effect decreasing by the fourth...
Effect of Dermatan Sulfate on the Indentation and Tensile Properties of Articular Cartilage
Hall, Melanie L.; Krawczak, David A.; Simha, Narendra K.; Lewis, Jack L.
2009-01-01
Objective This paper examines the hypothesis that the dermatan sulfate (DS) chain on decorin is a load carrying element in cartilage and that its damage or removal will alter the material properties. Methods To test this hypothesis, indentation and tensile testing of cartilage from bovine patella was performed before and after digestion with chondroitinase B (cB). Removal of significant amounts of DS by cB digestion was verified by Western blot analysis of proteoglycans extracted from whole and sectioned specimens. Specimens (control and treated) were subjected to a series of step-hold displacements. Elastic modulus during the step rise (rapid modulus) and at equilibrium (equilibrium modulus), and the relaxation function during each step were measured for test (cB and buffer) and control (buffer alone) conditions. Results cB had no effect on any of the viscoelastic mechanical properties measured, either in indentation or tension Conclusion Removing or damaging approximately 50% of the dermatan sulfate had no effect on the mechanical properties, strongly suggesting that dermatan sulfate either carries very low load or no load. PMID:19036614
Fundamental Effects of Aging on Creep Properties of Solution-Treated Low-Carbon N-155 Alloy
NASA Technical Reports Server (NTRS)
Frey, D N; Freeman, J W; White, A E
1950-01-01
A method is developed whereby the fundamental mechanisms are investigated by which processing, heat treatment, and chemical composition control the properties of alloys at high temperatures. The method used metallographic examination -- both optical and electronic --studies of x-ray diffraction-line widths, intensities, and lattice parameters, and hardness surveys to evaluate fundamental structural conditions. Mechanical properties at high temperatures are then measured and correlated with these measured structural conditions. In accordance with this method, a study was made of the fundamental mechanism by which aging controlled the short-time creep and rupture properties of solution-treated low-carbon n-155 alloy at 1200 degrees F.
Relationship of oxygen dose to angiogenesis induction in irradiated tissue
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marx, R.E.; Ehler, W.J.; Tayapongsak, P.
1990-11-01
This study was accomplished in an irradiated rabbit model to assess the angiogenic properties of normobaric oxygen and hyperbaric oxygen as compared with air-breathing controls. Results indicated that normobaric oxygen had no angiogenic properties above normal revascularization of irradiated tissue than did air-breathing controls (p = 0.89). Hyperbaric oxygen demonstrated an eight- to ninefold increased vascular density over both normobaric oxygen and air-breathing controls (p = 0.001). Irradiated tissue develops a hypovascular-hypocellular-hypoxic tissue that does not revascularize spontaneously. Results failed to demonstrate an angiogenic effect of normobaric oxygen. It is suggested that oxygen in this sense is a drug requiringmore » hyperbaric pressures to generate therapeutic effects on chronically hypovascular irradiated tissue.« less
Moderators and mediators of the effects of interparental conflict on children's adjustment.
Kerig, P K
1998-06-01
Moderational and mediational models of the relationships among appraisals, interparental conflict, and children's adjustment were tested in a sample of 174 families with a school-age child. Parents rated children's exposure to interparental conflict and internalizing, externalizing, and total behavior problems. Children completed questionnaires regarding their appraisals of their parents' conflicts, including frequency and intensity, perceived threat, control, and self-blame, as well as measures of anxiety and depression. Results overall demonstrated more consistent support for the moderational than mediational hypotheses. Appraisals of conflict properties, threat, self-blame, and perceived control moderated the effects of interparental conflict on externalizing, total problems, and anxiety in boys. Conflict properties, threat, self-blame, perceived control, and self-calming acted as moderators of internalizing in girls.
An adaptive control system for a shell-and-tube heat exchanger
NASA Astrophysics Data System (ADS)
Skorospeshkin, M. V.; Sukhodoev, M. S.; Skorospeshkin, V. N.; Rymashevskiy, P. O.
2017-01-01
This article suggests an adaptive control system for a hydrocarbon perspiration temperature control. This control system consists of a PI-controller and a pseudolinear compensating device that modifies control system dynamic properties. As a result, the behaviour research of the developed temperature control system has been undertaken. This article shows high effectiveness of the represented adaptive control system during changing control object parameters.
NASA Astrophysics Data System (ADS)
Xia, Jinian; Huo, Xiangdong; Li, Liejun; Peng, Zhengwu; Chen, Songjun
2017-12-01
In this study, the TMCP parameters including non-recrystallization temperature (Tnr) and optimal isothermal temperature were determined by thermal simulation experiments, and a new Ti microalloyed high strength steel plate was developed by controlling thermo-mechanical control process (TMCP) schedule. The effects of TMCP process on microstructural features, precipitation behavior and mechanical properties of Ti microalloyed high strength steel plate were investigated. The results revealed that the double-stage rolling process consist of rolling in the γ recrystallization region and the γ non-recrystallization region was benefical to promoting the mechanical properties of Ti microalloyed steel by achieving grain refinement. It was also found that large amounts of fine TiC (<10 nm) particles were precipitated during the isothermal treatment at 600 °C, which generated a 215 MPa precipitation strengthening effect.
Regulation of Silk Material Structure by Temperature-Controlled Water Vapor Annealing
Hu, Xiao; Shmelev, Karen; Sun, Lin; Gil, Eun-Seok; Park, Sang-Hyug; Cebe, Peggy; Kaplan, David L.
2011-01-01
We present a simple and effective method to obtain refined control of the molecular structure of silk biomaterials through physical temperature-controlled water vapor annealing (TCWVA). The silk materials can be prepared with control of crystallinity, from a low content using conditions at 4°C (alpha-helix dominated silk I structure), to highest content of ~60% crystallinity at 100°C (beta-sheet dominated silk II structure). This new physical approach covers the range of structures previously reported to govern crystallization during the fabrication of silk materials, yet offers a simpler, green chemistry, approach with tight control of reproducibility. The transition kinetics, thermal, mechanical, and biodegradation properties of the silk films prepared at different temperatures were investigated and compared by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), uniaxial tensile studies, and enzymatic degradation studies. The results revealed that this new physical processing method accurately controls structure, in turn providing control of mechanical properties, thermal stability, enzyme degradation rate, and human mesenchymal stem cell interactions. The mechanistic basis for the control is through the temperature controlled regulation of water vapor, to control crystallization. Control of silk structure via TCWVA represents a significant improvement in the fabrication of silk-based biomaterials, where control of structure-property relationships is key to regulating material properties. This new approach to control crystallization also provides an entirely new green approach, avoiding common methods which use organic solvents (methanol, ethanol) or organic acids. The method described here for silk proteins would also be universal for many other structural proteins (and likely other biopolymers), where water controls chain interactions related to material properties. PMID:21425769
Nanoparticles in Polymers: Assembly, Rheology and Properties
NASA Astrophysics Data System (ADS)
Rao, Yuanqiao
Inorganic nanoparticles have the potential of providing functionalities that are difficult to realize using organic materials; and nanocomposites is an effective mean to impart processibility and construct bulk materials with breakthrough properties. The dispersion and assembly of nanoparticles are critical to both processibility and properties of the resulting product. In this talk, we will discuss several methods to control the hierarchical structure of nanoparticles in polymers and resulting rheological, mechanical and optical properties. In one example, polymer-particle interaction and secondary microstructure were designed to provide a low viscosity composition comprising exfoliated high aspect ratio clay nanoparticles; in another example, the microstructure control through templates was shown to enable unique thermal mechanical and optical properties. Jeff Munro, Stephanie Potisek, Phillip Hustad; all of the Dow Chemical Company are co-authors.
NASA Astrophysics Data System (ADS)
Roh, Jeongkyun; Lee, Taesoo; Kang, Chan-Mo; Kwak, Jeonghun; Lang, Philippe; Horowitz, Gilles; Kim, Hyeok; Lee, Changhee
2017-04-01
We demonstrated modulation of charge carrier densities in all-solution-processed organic field-effect transistors (OFETs) by modifying the injection properties with self-assembled monolayers (SAMs). The all-solution-processed OFETs based on an n-type polymer with inkjet-printed Ag electrodes were fabricated as a test platform, and the injection properties were modified by the SAMs. Two types of SAMs with different dipole direction, thiophenol (TP) and pentafluorobenzene thiol (PFBT) were employed, modifying the work function of the inkjet-printed Ag (4.9 eV) to 4.66 eV and 5.24 eV with TP and PFBT treatments, respectively. The charge carrier densities were controlled by the SAM treatment in both dominant and non-dominant carrier-channel regimes. This work demonstrates that control of the charge carrier densities can be efficiently achieved by modifying the injection property with SAM treatment; thus, this approach can achieve polarity conversion of the OFETs.
Yılmaz, İsmail; Dağlıoğlu, Orhan
2003-10-01
Oat bran was used as a fat substitute in the production of meatballs. The effect of oat bran addition on the fatty acid composition, trans fatty acids, total fat, some physicochemical and sensory properties of the samples was studied. Meatballs were produced with four different formulations; the addition of 5, 10, 15 and 20% oat bran. Control samples were formulated with 25% fat addition as in commercial production. The major fatty acids were cis-oleic, palmitic and stearic acid in all the meatball samples, those with oat bran added as well as the control. Meatballs containing oat bran had lower concentrations of total fat and total trans fatty acids than the control samples. Meatballs made with 20% oat bran had the highest protein, salt and ash contents, L value (lightness), b value (yellowness), and the lowest moisture content and a value (redness). There was no significant difference among the meatball samples with respect to sensory properties, and all samples had high acceptability.
Meena, Ganga Sahay; Singh, Ashish Kumar; Gupta, Vijay Kumar; Borad, Sanket; Arora, Sumit; Tomar, Sudhir Kumar
2018-04-01
Poor solubility is the major limiting factor in commercial applications of milk protein concentrates (MPC) powders. Retentate treatments such as pH adjustment using disodium phosphate (Na 2 HPO 4 ), also responsible for calcium chelation with homogenization and; its diafiltration with 150 mM NaCl solution were hypothesized to improve the functional properties of treated MPC70 powders. These treatments significantly improved the solubility, heat stability, water binding, dispersibility, bulk density, flowability, buffer index, foaming and emulsifying capacity of treated powders over control. Rheological behaviour of reconstituted MPC solutions was best explained by Herschel Bulkley model. Compared to rough, large globular structures with dents in control; majorly intact, separate, smaller particles of smooth surface, without any aggregation were observed in SEM micrograph of treated powders. Applied treatments are easy, cost-effective and capable to improve functional properties of treated powders that could replace control MPC70 powder in various food applications where protein functionality is of prime importance.
Ripple-modulated electronic structure of a 3D topological insulator.
Okada, Yoshinori; Zhou, Wenwen; Walkup, D; Dhital, Chetan; Wilson, Stephen D; Madhavan, V
2012-01-01
Three-dimensional topological insulators host linearly dispersing states with unique properties and a strong potential for applications. An important ingredient in realizing some of the more exotic states in topological insulators is the ability to manipulate local electronic properties. Direct analogy to the Dirac material graphene suggests that a possible avenue for controlling local properties is via a controlled structural deformation such as the formation of ripples. However, the influence of such ripples on topological insulators is yet to be explored. Here we use scanning tunnelling microscopy to determine the effects of one-dimensional buckling on the electronic properties of Bi(2)Te(3.) By tracking spatial variations of the interference patterns generated by the Dirac electrons we show that buckling imposes a periodic potential, which locally modulates the surface-state dispersion. This suggests that forming one- and two-dimensional ripples is a viable method for creating nanoscale potential landscapes that can be used to control the properties of Dirac electrons in topological insulators.
Polarity control at interfaces: Quantifying pseudo-solvent effects in nano-confined systems
Singappuli-Arachchige, Dilini; Manzano, J. Sebastian; Sherman, Lindy M.; ...
2016-08-02
Surface functionalization controls local environments and induces solvent-like effects at liquid–solid interfaces. We explored structure–property relationships between organic groups bound to pore surfaces of mesoporous silica nanoparticles and Stokes shifts of the adsorbed solvatochromic dye Prodan. Correlating shifts of the dye on the surfaces with its shifts in solvents resulted in a local polarity scale for functionalized pores. The scale was validated by studying the effects of pore polarity on quenching of Nile Red fluorescence and on the vibronic band structure of pyrene. Measurements were done in aqueous suspensions of porous particles, proving that the dielectric properties in the poresmore » are different from the bulk solvent. The precise control of pore polarity was used to enhance the catalytic activity of TEMPO in the aerobic oxidation of furfuryl alcohol in water. Furthermore, an inverse relationship was found between pore polarity and activity of TEMPO in the pores, demonstrating that controlling the local polarity around an active site allows modulating the activity of nanoconfined catalysts.« less
Xu, He; Li, Haiyan; Ke, Qinfei; Chang, Jiang
2015-04-29
The development of vascular scaffolds with controlled mechanical properties and stimulatory effects on biological activities of endothelial cells still remains a significant challenge to vascular tissue engineering. In this work, we reported an innovative approach to prepare a new type of vascular scaffolds with anisotropically and heterogeneously aligned patterns using electrospinning technique with unique wire spring templates, and further investigated the structural effects of the patterned electrospun scaffolds on mechanical properties and angiogenic differentiation of human umbilical vein endothelial cells (HUVECs). Results showed that anisotropically aligned patterned nanofibrous structure was obtained by depositing nanofibers on template in a structurally different manner, one part of nanofibers densely deposited on the embossments of wire spring and formed cylindrical-like structures in the transverse direction, while others loosely suspended and aligned along the longitudinal direction, forming a three-dimensional porous microstructure. We further found that such structures could efficiently control the mechanical properties of electrospun vascular scaffolds in both longitudinal and transverse directions by altering the interval distances between the embossments of patterned scaffolds. When HUVECs were cultured on scaffolds with different microstructures, the patterned scaffolds distinctively promoted adhesion of HUVECs at early stage and proliferation during the culture period. Most importantly, cells experienced a large shape change associated with cell cytoskeleton and nuclei remodeling, leading to a stimulatory effect on angiogenesis differentiation of HUVECs by the patterned microstructures of electrospun scaffolds, and the scaffolds with larger distances of intervals showed a higher stimulatory effect. These results suggest that electrospun scaffolds with the anisotropically and heterogeneously aligned patterns, which could efficiently control the mechanical properties and bioactivities of the scaffolds, might have great potential in vascular tissue engineering application.
Electrically controlled adjustable-resistance exercise equipment employing magnetorheological fluid
NASA Astrophysics Data System (ADS)
Lukianovich, Alex; Ashour, Osama N.; Thurston, Wilbert L.; Rogers, Craig A.; Chaudhry, Zaffir A.
1996-05-01
Magnetorheological (MR) fluids consist of stable suspensions of magnetic particles in a carrying fluid. The magnetorheological effect is one of the direct influences on the mechanical properties of a fluid. It represents a reversible increase, due to an external magnetic field, of the effective viscosity. Besides the variation of the rheological properties (viscosity, elasticity, and plasticity), the magnetic properties of the fluid (permeability and susceptibility), as well as the thermal and acoustic properties, are strongly influenced when an external magnetic field is applied. MR fluids have many appealing applications in the area of vibration control. The distinguishing feature of any MR fluid device is the absence of moving mechanical parts and the extreme simplicity of construction and technology. The most important element of any MR fluid device is an MR valve, which is functionally a controllable hydraulic resistance. As a demonstration of such devices, two commercially available pieces of exercise equipment, a cross stepper and a bench press, were modified to incorporate MR fluid and an external MR valve. As the magnetic field strength operating across the MR valve is adjusted, the viscosity of the flowing MR fluid changes and, accordingly, the needed force is adjusted.
NASA Astrophysics Data System (ADS)
Wang, Shu-Dong; Zhang, Sheng-Zhong; Liu, Hua; Zhang, You-Zhu
2014-04-01
In this research, the drug loaded polylactide nanofibers are fabricated by electrospinning. Morphology, microstructure and mechanical properties are characterized. Properties and mechanism of the controlled release of the nanofibers are investigated. The results show that the drug loaded polylactide nanofibers do not show dispersed phase, and there is a good compatibility between polylactide and drugs. FTIR spectra show that drugs are encapsulated inside the polylactide nanofibers, and drugs do not break the structure of polylcatide. Flexibility of drug loaded polylactide scaffolds is higher than that of the pure polylactide nanofibers. Release rate of the drug loaded nanofibers is significantly slower than that of the drug powder. Release rate increases with the increase of the drugs’ concentration. The research mechanism suggests a typical diffusion-controlled release of the three loaded drugs. Antibacterial and cell culture show that drug loaded nanofibers possess effective antibacterial activity and biocompatible properties.
ERIC Educational Resources Information Center
Tosun, Cemal; Taskesenligil, Yavuz
2013-01-01
The aim of this study was to investigate the effect of Problem-Based Learning (PBL) on undergraduate students' learning about solutions and their physical properties, and on their scientific processing skills. The quasi experimental study was carried out through non-equivalent control and comparison groups pre-post test design. The data were…
Deborah K. Kennard; H.L. Gholz
2001-01-01
We compared soil nutrient availabiiity and soil physical properties among four treatments (high-intensity fire, low- intensity fire, plant removal, and harvesting gap) and a control (intact forest understory) over a period of 18 months in a tropical dry forest in Bolivia. The effect of treatments on plant growth was tested using a shade intolerant tree species (
Mehdi Behzad; Medhi Tajvidi; Ghanbar Ehrahimi; Robert H. Falk
2004-01-01
In this study, effect of MAPE (maleic anhydride polyethylene) as the compatibilizer on the mechanical properties of wood-flour polyethylene composites has been investigated by using Dynamic Mechanical Analysis (DMA). Composites were made at 25% and 50% by weight fiber contents and 1% and 2% compatibilizer respectively. Controls were also made at the same fiber contents...
Effects of background gravity stimuli on gravity-controlled behavior
NASA Technical Reports Server (NTRS)
Mccoy, D. F.
1976-01-01
Physiological and developmental effects of altered gravity were researched. The stimulus properties of gravity have been found to possess reinforcing and aversive properties. Experimental approaches taken, used animals placed into fields of artificial gravity, in the form of parabolic or spiral centrifuges. Gravity preferences were noted and it was concluded that the psychophysics of gravity and background factors which support these behaviors should be further explored.
NASA Astrophysics Data System (ADS)
Liu, Huilong; Lü, Yanfei; Zhang, Jing; Xia, Jing; Pu, Xiaoyun; Dong, Yuan; Li, Shutao; Fu, Xihong; Zhang, Angfeng; Wang, Changjia; Tan, Yong; Zhang, Xihe
2015-01-01
This paper studies the propagation properties of controllable hollow flat-topped beams (CHFBs) in turbulent atmosphere based on ABCD matrix, sets up a propagation model and obtains an analytical expression for the propagation. With the help of numerical simulation, the propagation properties of CHFBs in different parameters are studied. Results indicate that in turbulent atmosphere, with the increase of propagation distance, the darkness of CHFBs gradually annihilate, and eventually evolve into Gaussian beams. Compared with the propagation properties in free space, the turbulent atmosphere enhances the diffraction effect of CHFBs and reduces the propagation distance for CHFBs to evolve into Gaussian beams. In strong turbulence atmospheric propagation, Airy disk phenomenon will disappear. The study on the propagation properties of CHFBs in turbulence atmosphere by using ABCD matrix is simple and convenient. This method can also be applied to study the propagation properties of other hollow laser beams in turbulent atmosphere.
Comparative study of modified bitumen binder properties collected from mixing plant and quarry.
NASA Astrophysics Data System (ADS)
Mustafa Kamal, M.; Abu Bakar, R.; Hadithon, K. A.
2017-11-01
Quality control and assurance are essential in pavement construction. In general, the properties of bitumen change as it ages in bulk storage, transport, and storage on site. The minimization of bituminous hardening during storing, transportation and mixing depends on careful control of binder temperature. Hence therefore, bitumen should always be stored and handled at the lowest temperature possible, consistent with efficient use. The objective of the work is to monitor the quality of bitumen samples collected from mixing plant and quarry. Results showed that, samples modified bitumen which collected from quarry showed some adverse effects on rheological properties and physical properties after subjecting to high temperature storage within a period of time. The dynamic stiffness, elastic properties and other common binder properties were deteriorated too. The chemical changes that occurred during storage were analysed using Fourier transform infra-red spectroscopy (FTIR). Thus studies developed an understanding of bitumen ageing in storage.
García, Mónica C; Manzo, Rubén H; Jimenez-Kairuz, Alvaro
2018-07-10
Polysaccharides-based delivery systems and interpolyelectrolyte complexes (IPECs) are interesting alternatives to control the release of drugs, thereby improving therapies. Benznidazole (BZ) is the selected drug for Chagas disease pharmacotherapy. However, its side effects limit its efficacy and safety. We developed novel multiparticulated BZ-loaded IPECs based on chitosan and alginic acid, and investigated their physicochemical and pharmacotechnical properties. IPECs were obtained using the casting solvent method, followed by wet granulation. They presented ionic interaction between the biopolymers, revealed that free BZ was uniformly distributed and showed adequate flow properties for hard gelatin-capsule formulation. The multiparticles exhibited mucoadhesion properties and revealed modulation of BZ release, depending on the release media, in accordance with the fluid uptake. The IPECs developed possess interesting properties that are promising for the design of novel alternatives to improve Chagas disease pharmacotherapy, which would diminish BZ's adverse effects and/or allow a reduction in the frequency of BZ administration. Copyright © 2018 Elsevier B.V. All rights reserved.
Effects of surface properties on droplet formation inside a microfluidic device
NASA Astrophysics Data System (ADS)
Steinhaus, Ben; Shen, Amy
2004-11-01
Micro-fluidic devices offer a unique method of creating and controlling droplets on small length scales. A microfluidic device is used to study the effects of surface properties on droplet formation of a 2-phase flow system. Four phase diagrams are generated to compare the dynamics of the 2 immiscible fluid system (silicone oil and water) inside microchannels with different surface properties. Results show that the channel surface plays an important role in determining the flow patterns and the droplet formation of the 2-phase fluid system.
Schnecker, Jörg; Wild, Birgit; Hofhansl, Florian; Eloy Alves, Ricardo J.; Bárta, Jiří; Čapek, Petr; Fuchslueger, Lucia; Gentsch, Norman; Gittel, Antje; Guggenberger, Georg; Hofer, Angelika; Kienzl, Sandra; Knoltsch, Anna; Lashchinskiy, Nikolay; Mikutta, Robert; Šantrůčková, Hana; Shibistova, Olga; Takriti, Mounir; Urich, Tim; Weltin, Georg; Richter, Andreas
2014-01-01
Enzyme-mediated decomposition of soil organic matter (SOM) is controlled, amongst other factors, by organic matter properties and by the microbial decomposer community present. Since microbial community composition and SOM properties are often interrelated and both change with soil depth, the drivers of enzymatic decomposition are hard to dissect. We investigated soils from three regions in the Siberian Arctic, where carbon rich topsoil material has been incorporated into the subsoil (cryoturbation). We took advantage of this subduction to test if SOM properties shape microbial community composition, and to identify controls of both on enzyme activities. We found that microbial community composition (estimated by phospholipid fatty acid analysis), was similar in cryoturbated material and in surrounding subsoil, although carbon and nitrogen contents were similar in cryoturbated material and topsoils. This suggests that the microbial community in cryoturbated material was not well adapted to SOM properties. We also measured three potential enzyme activities (cellobiohydrolase, leucine-amino-peptidase and phenoloxidase) and used structural equation models (SEMs) to identify direct and indirect drivers of the three enzyme activities. The models included microbial community composition, carbon and nitrogen contents, clay content, water content, and pH. Models for regular horizons, excluding cryoturbated material, showed that all enzyme activities were mainly controlled by carbon or nitrogen. Microbial community composition had no effect. In contrast, models for cryoturbated material showed that enzyme activities were also related to microbial community composition. The additional control of microbial community composition could have restrained enzyme activities and furthermore decomposition in general. The functional decoupling of SOM properties and microbial community composition might thus be one of the reasons for low decomposition rates and the persistence of 400 Gt carbon stored in cryoturbated material. PMID:24705618
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richard F. Daniels; Alexander Clark III
The forest industry will increasingly rely on fast-growing intensively managed southern pine plantations to furnish wood and fiber. Intensive silvicultural practices, including competition control, stand density control, fertilization, and genetic improvement are yielding tremendous gains in the quantity of wood production from commercial forest land. How these technologies affect wood properties was heretofore unknown, although there is concern about the suitability of fast-grown wood for traditional forest products. A four year study was undertaken to examine the effects of these intensive practices on the properties of loblolly and slash pine wood by applying a common sampling method over 10 existingmore » field experiments. Early weed control gets young pines off to a rapid start, often with dramatically increased growth rates. This response is all in juvenile wood however, which is low in density and strength. Similar results are found with early Nitrogen fertilization at the time of planting. These treatments increase the proportion of juvenile wood in the tree. Later, mid-rotation fertilization with Nitrogen and Phosphorus can have long term (4-8 year) growth gains. Slight reductions in wood density are short-lived (1-2 years) and occur while the tree is producing dense, stiff mature wood. Impacts of mid-rotation fertilization on wood properties for manufacturing are estimated to be minimal. Genetic differences are evident in wood density and other properties. Single family plantings showed somewhat more uniform properties than bulk improved or unimproved seedlots. Selection of genetic sources with optimal wood properties may counter some of the negative impacts of intensive weed control and fertilization. This work will allow forest managers to better predict the effects of their practices on the quality of their final product.« less
Laboratory investigation of lithium-bearing compounds for use in concrete.
DOT National Transportation Integrated Search
2002-06-01
Lithium nitrate and lithium hyroxide were evaluated in the laboratory to examine their effectiveness in controlling expansions resulting from alkali-silica reaction and their effect on concrete properties. The lithium compounds were more effective in...
Understanding Mechanical Response of Elastomeric Graphene Networks
Ni, Na; Barg, Suelen; Garcia-Tunon, Esther; Macul Perez, Felipe; Miranda, Miriam; Lu, Cong; Mattevi, Cecilia; Saiz, Eduardo
2015-01-01
Ultra-light porous networks based on nano-carbon materials (such as graphene or carbon nanotubes) have attracted increasing interest owing to their applications in wide fields from bioengineering to electrochemical devices. However, it is often difficult to translate the properties of nanomaterials to bulk three-dimensional networks with a control of their mechanical properties. In this work, we constructed elastomeric graphene porous networks with well-defined structures by freeze casting and thermal reduction, and investigated systematically the effect of key microstructural features. The porous networks made of large reduced graphene oxide flakes (>20 μm) are superelastic and exhibit high energy absorption, showing much enhanced mechanical properties than those with small flakes (<2 μm). A better restoration of the graphitic nature also has a considerable effect. In comparison, microstructural differences, such as the foam architecture or the cell size have smaller or negligible effect on the mechanical response. The recoverability and energy adsorption depend on density with the latter exhibiting a minimum due to the interplay between wall fracture and friction during deformation. These findings suggest that an improvement in the mechanical properties of porous graphene networks significantly depend on the engineering of the graphene flake that controls the property of the cell walls. PMID:26348898
Evaluation of the Neurobehavioral Properties of Naringin in Swiss Mice.
Ben-Azu, Benneth; Nwoke, Ekene Enekabokom; Umukoro, Solomon; Aderibigbe, Adegbuyi Oladele; Ajayi, Abayomi Mayowa; Iwalewa, Ezekiel O
2018-03-12
This study was carried out to investigate the neurobehavioral properties of naringin, a flavonoid compound formed from naringenin on behavioral models in mice. The neurobehavioral property of naringin (2.5, 5 and 10 mg/kg) administered intraperitoneally (i.p.) was assessed on novelty-induced rearing, locomotor behavior using open field test; anxiolytic effect was evaluated using hole-board, light and dark box, and elevated-plus maze paradigms. The anti-depressant-like property was also assessed using forced swim test (FST), tail suspension test (TST) and social interaction test (SIT). The cognitive enhancing effect of naringin was evaluated using Y-maze test. Intraperitoneal administration of naringin (2.5 and 5 mg/kg) demonstrated significant (p<0.05) increase in rearing behavior but not the spontaneous motor activity in comparison to control. In the anti-depressant test, naringin (2.5, 5 and 10 mg/kg, i.p.) significantly decreased the duration of immobility in the FST and TST, and increased the % social interaction preference in the SIT relative to controls, suggesting anti-depressant-like and increased social behaviors. Moreover, naringin also exhibited anxiolytic and memory enhancing properties in mice. These findings suggest that naringin possesses anti-depressant- and anxiolytic-like activities as well as memory enhancing effect in mice. © Georg Thieme Verlag KG Stuttgart · New York.
An evaluation of Orbital Workshop passive thermal control surfaces
NASA Technical Reports Server (NTRS)
Daniels, D. J.; Kawano, P. I.; Sieker, W. D.; Walters, D. E.; Witherspoon, G. F.; Grunditz, D. W.
1974-01-01
The optical properties of selected Orbital Workshop thermal control surfaces are discussed from the time of their installation through the end of the Skylab missions. The surfaces considered are the goldized Kapton tape on the habitation area sidewall, the S-13G white paint on the Workshop aft skirt, and the multilayer insulation system on the forward dome of the habitation area. A quantitative assessment of the effects of exposure to the ascent and orbital environments is made including the effects of rocket exhaust plume contamination. Although optical property degradation of the external surfaces was noted, satisfactory thermal performance was maintained throughout the Skylab missions.
Effect of baking soda in dentifrices on plaque removal.
Myneni, Srinivas R
2017-11-01
The prevention of dental caries and periodontal diseases targets control of dental plaque biofilm. In this context, chemical agents could represent a valuable complement to mechanical plaque control by reducing and controlling biofilm formation. The literature on the effectiveness of different dentifrices has not, however, been carefully categorized. A lack of consensus exists among dental professionals on a recommendation for a universal dentifrice for plaque control. The authors reviewed the scientific data on the different properties of sodium bicarbonate (baking soda)-containing dentifrices and their effectiveness in plaque removal. The results of the literature search show that baking soda-containing dentifrices are ideal candidates to be considered as a universal dentifrice because baking soda is inexpensive, abundant in supply, highly biocompatible, exhibits specific antibacterial properties to oral microorganisms, has low abrasivity, and is effective in plaque biofilm removal. Although some patients may benefit from desensitizing or high fluoride-containing dentifrices, those with routine needs may find using dentifrices containing baking soda and fluoride effective. Baking soda and fluoride dentifrices, therefore, may perhaps be considered as a criterion standard for patients with routine oral hygiene needs. Copyright © 2017 American Dental Association. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Advani, S.H.; Lee, T.S.; Moon, H.
1992-10-01
The analysis of pertinent energy components or affiliated characteristic times for hydraulic stimulation processes serves as an effective tool for fracture configuration designs optimization, and control. This evaluation, in conjunction with parametric sensitivity studies, provides a rational base for quantifying dominant process mechanisms and the roles of specified reservoir properties relative to controllable hydraulic fracture variables for a wide spectrum of treatment scenarios. Results are detailed for the following multi-task effort: (a) Application of characteristic time concept and parametric sensitivity studies for specialized fracture geometries (rectangular, penny-shaped, elliptical) and three-layered elliptic crack models (in situ stress, elastic moduli, and fracturemore » toughness contrasts). (b) Incorporation of leak-off effects for models investigated in (a). (c) Simulation of generalized hydraulic fracture models and investigation of the role of controllable vaxiables and uncontrollable system properties. (d) Development of guidelines for hydraulic fracture design and optimization.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Advani, S.H.; Lee, T.S.; Moon, H.
1992-10-01
The analysis of pertinent energy components or affiliated characteristic times for hydraulic stimulation processes serves as an effective tool for fracture configuration designs optimization, and control. This evaluation, in conjunction with parametric sensitivity studies, provides a rational base for quantifying dominant process mechanisms and the roles of specified reservoir properties relative to controllable hydraulic fracture variables for a wide spectrum of treatment scenarios. Results are detailed for the following multi-task effort: (a) Application of characteristic time concept and parametric sensitivity studies for specialized fracture geometries (rectangular, penny-shaped, elliptical) and three-layered elliptic crack models (in situ stress, elastic moduli, and fracturemore » toughness contrasts). (b) Incorporation of leak-off effects for models investigated in (a). (c) Simulation of generalized hydraulic fracture models and investigation of the role of controllable vaxiables and uncontrollable system properties. (d) Development of guidelines for hydraulic fracture design and optimization.« less
Programmable Extreme Chirality in the Visible by Helix-Shaped Metamaterial Platform.
Esposito, Marco; Tasco, Vittorianna; Todisco, Francesco; Cuscunà, Massimo; Benedetti, Alessio; Scuderi, Mario; Nicotra, Giuseppe; Passaseo, Adriana
2016-09-14
The capability to fully control the chiro-optical properties of metamaterials in the visible range enables a number of applications from integrated photonics to life science. To achieve this goal, a simultaneous control over complex spatial and localized structuring as well as material composition at the nanoscale is required. Here, we demonstrate how circular dichroic bands and optical rotation can be effectively and independently tailored throughout the visible regime as a function of the fundamental meta-atoms properties and of their three dimensional architecture in a the helix-shaped metamaterials. The record chiro-optical effects obtained in the visible range are accompanied by an additional control over optical efficiency, even in the plasmonic context. These achievements pave the way toward fully integrated chiral photonic devices.
Biologically inspired rate control of chaos.
Olde Scheper, Tjeerd V
2017-10-01
The overall intention of chaotic control is to eliminate chaos and to force the system to become stable in the classical sense. In this paper, I demonstrate a more subtle method that does not eliminate all traces of chaotic behaviour; yet it consistently, and reliably, can provide control as intended. The Rate Control of Chaos (RCC) method is derived from metabolic control processes and has several remarkable properties. RCC can control complex systems continuously, and unsupervised, it can also maintain control across bifurcations, and in the presence of significant systemic noise. Specifically, I show that RCC can control a typical set of chaotic models, including the 3 and 4 dimensional chaotic Lorenz systems, in all modes. Furthermore, it is capable of controlling spatiotemporal chaos without supervision and maintains control of the system across bifurcations. This property of RCC allows a dynamic system to operate in parameter spaces that are difficult to control otherwise. This may be particularly interesting for the control of forced systems or dynamic systems that are chaotically perturbed. These control properties of RCC are applicable to a range of dynamic systems, thereby appearing to have far-reaching effects beyond just controlling chaos. RCC may also point to the existence of a biochemical control function of an enzyme, to stabilise the dynamics of the reaction cascade.
Groenbaek, Marie; Jensen, Sidsel; Neugart, Susanne; Schreiner, Monika; Kidmose, Ulla; Kristensen, Hanne L
2016-04-15
We investigated how concentrations of sensory relevant compounds: glucosinolates (GLSs), flavonoid glycosides, hydroxycinnamic acid derivatives and sugars in kale responded to split dose and reduced nitrogen (N) fertilization, plant age and controlled frost exposure. In addition, frost effects on sensory properties combined with N supply were assessed. Seventeen week old kale plants showed decreased aliphatic GLSs at split dose N fertilization; whereas reduced N increased aliphatic and total GLSs. Ontogenetic effects were demonstrated for all compounds: sugars, aliphatic and total GLSs increased throughout plant development, whereas kaempferol and total flavonoid glycosides showed higher concentrations in 13 week old plants. Controlled frost exposure altered sugar composition slightly, but not GLSs or flavonoid glycosides. Reduced N supply resulted in less bitterness, astringency and pungent aroma, whereas frost exposure mainly influenced aroma and texture. N treatment explained most of the sensory variation. Producers should not rely on frost only to obtain altered sensory properties. Copyright © 2015 Elsevier Ltd. All rights reserved.
Smirnov, Serguei; Anoshkin, Ilya V; Demchenko, Petr; Gomon, Daniel; Lioubtchenko, Dmitri V; Khodzitsky, Mikhail; Oberhammer, Joachim
2018-06-21
Materials with tunable dielectric properties are valuable for a wide range of electronic devices, but are often lossy at terahertz frequencies. Here we experimentally report the tuning of the dielectric properties of single-walled carbon nanotubes under light illumination. The effect is demonstrated by measurements of impedance variations at low frequency as well as complex dielectric constant variations in the wide frequency range of 0.1-1 THz by time domain spectroscopy. We show that the dielectric constant is significantly modified for varying light intensities. The effect is also practically applied to phase shifters based on dielectric rod waveguides, loaded with carbon nanotube layers. The carbon nanotubes are used as tunable impedance surface controlled by light illumination, in the frequency range of 75-500 GHz. These results suggest that the effect of dielectric constant tuning with light, accompanied by low transmission losses of the carbon nanotube layer in such an ultra-wide band, may open up new directions for the design and fabrication of novel Terahertz and optoelectronic devices.
Effect of strain on the electronic structure of graphene
NASA Astrophysics Data System (ADS)
Martinez, Edgar; Cifuentes, Eduardo; de Coss, Romeo
2008-03-01
Graphene has been attracting interest due to its remarkable physical properties resulting from an electron spectrum resembling relativistic dynamics (Dirac fermions). Thus, is desirable to know methods for controling the charge carriers in graphene. In this work, we propose that the electronic properties of graphene can be modulated via isotropic and uniaxial strain. We have studied the electronic structure of graphene under mechanical deformation by means of first principles calculations. We present results for the charge distribution, electronic density of states, and band structure. We focus the analysis on the behavior of the Dirac cones and the number of the charge carriers as a function of strain. We find that an isotropic tensile strain increases the effective mass of carriers and an isotropic compression strain decrease it. Uniaxial tensile strain induce a similar behavior, as strain increase effective mass increase. Thus, our results show that strain allows controllable tuning of the graphene electronic properties. This research was supported by Consejo Nacional de Ciencia y Tecnolog'ia (Conacyt) under Grant No. 43830-F.
76 FR 50813 - Designation of Two Entities Pursuant to Executive Order 13382
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-16
... DEPARTMENT OF THE TREASURY Office of Foreign Assets Control Designation of Two Entities Pursuant... newly designated entities whose property and interests in property are blocked pursuant to Executive... entities identified in this notice is effective on August 10, 2011. FOR FURTHER INFORMATION CONTACT...
41 CFR 109-27.5009 - Control of hypodermic needles and syringes.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Control of hypodermic... SUPPLY AND PROCUREMENT 27-INVENTORY MANAGEMENT 27.50-Inventory Management Policies, Procedures, and Guidelines § 109-27.5009 Control of hypodermic needles and syringes. Effective procedures and practices shall...
41 CFR 109-27.5008 - Control of drug substances and potable alcohol.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Control of drug... REGULATIONS SUPPLY AND PROCUREMENT 27-INVENTORY MANAGEMENT 27.50-Inventory Management Policies, Procedures, and Guidelines § 109-27.5008 Control of drug substances and potable alcohol. Effective procedures and...
[Effects of simulated hypoxia on dielectric properties of mouse erythrocytes].
Ma, Qing; Tang, Zhi-Yuan; Wang, Qin-Wen; Zhao, Xin
2008-02-01
To explore the influence of simulated altitude hypoxia on dielectric properties of mouse erythrocytes. Experimental animals were divided into the plain control group(control) and simulated altitude hypoxia group (altitude). The AC impedance of mouse erythrocytes was measured with the Agilent 4294A impedance analyzer, the influence of simulated altitude hypoxia on dielectric properties of mouse erythrocytes was observed by cell dielectric spectroscopy, Cole-Cole plots, loss factor spectrum, loss tangent spectrum, and curve fitting analysis of Cole-Cole equation. After mice were exposed to hypoxia at simulated 5000 m altitude for 4 weeks, permittivity at low frequency (epsilonl) and dielectric increment (deltaepsilon) increased 57% and 59% than that of control group respectively, conductivity at low frequency (kappal) and conductivity at high frequency (kappah) reduced 49% and 11% than that of control group respectively. The simulated altitude hypoxia could arise to increase dielectric capability and depress conductive performance on mouse erythrocytes.
Nam, Woo Hyun; Lim, Young Soo; Kim, Woochul; Seo, Hyeon Kook; Dae, Kyun Seong; Lee, Soonil; Seo, Won-Seon; Lee, Jeong Yong
2017-06-14
We report synergistically enhanced thermoelectric properties through the independently controlled charge and thermal transport properties in a TiO 2 -reduced graphene oxide (RGO) nanocomposite. By the consolidation of TiO 2 -RGO hybrid powder using spark plasma sintering, we prepared an interface-controlled TiO 2 -RGO nanocomposite where its grain boundaries are covered with the RGO network. Both the enhancement in electrical conductivity and the reduction in thermal conductivity were simultaneously achieved thanks to the beneficial effects of the RGO network, and detailed mechanisms are discussed. This led to the gigantic increase in the ratio of electrical to thermal conductivity by six orders of magnitude and also the synergistic enhancement in the thermoelectric figure of merit by two orders. Our results present a strategy for the realization of 'phonon-glass electron-crystals' through interface control using graphene in graphene hybrid thermoelectric materials.
Xianjun Li; Yiqiang Wu; Zhiyong Cai; Jerrold E. Winandy
2013-01-01
The main objective of this study is to evaluate the effect the oxalic acid (OA) and steam pretreatment on the primary properties of rice straw medium-density fiberboard (MDF). The results show the IB strength increased about 9.6% and 13.4% for steam-treated MDF (PC) and OA-treated MDF compared with raw control panels, while OA pretreatment has a slight negative effect...
Viscoelastic characterization of thin-film polymers exposed to low Earth orbit
NASA Technical Reports Server (NTRS)
Letton, Alan; Farrow, Allan; Strganac, Thomas
1993-01-01
The materials made available through the Long Duration Exposure Facility (LDEF) satellite provide a set of specimens that can be well characterized and have a known exposure history with reference to atomic oxygen and ultraviolet radiation exposure. Mechanical characteristics measured from control samples and exposed samples provide a data base for predicting the behavior of polymers in low earth orbit. Samples of 1.0 mil thick low density polyethylene were exposed to the low earth orbit environment for a period of six years. These materials were not directly exposed to ram atomic oxygen and offer a unique opportunity for measuring the effect of atomic oxygen and UV radiation on mechanical properties with little concern to the effect of erosion. The viscoelastic characteristics of these materials were measured and compared to the viscoelastic characteristics of control samples. To aid in differentiating the effects of changes in crystallinity resulting from thermal cycling, from the effects of changes in chemical structure resulting from atomic oxygen/UV attack to the polymer, a second set of control specimens, annealed to increase crystallinity, were measured as well. The resulting characterization of these materials will offer insight into the impact of atomic oxygen/UV on the mechanical properties of polymeric materials. The viscoelastic properties measured for the control, annealed, and exposed specimens were the storage and loss modulus as a function of frequency and temperature. From these datum is calculated the viscoelastic master curve derived using the principle of time/temperature superposition. Using the master curve, the relaxation modulus is calculated using the method of Ninomiya and Ferry. The viscoelastic master curve and the stress relaxation modulus provide a direct measure of the changes in the chemical or morphological structure. In addition, the effect of these changes on long-term and short-term mechanical properties is known directly. It should be noted that the dependence on directionality for the polymer films was considered since these films were manufactured by a blown-film process.
Lee, Ya-yun; Lin, Keh-chung; Wu, Ching-yi; Liao, Ching-hua; Lin, Jui-chi; Chen, Chia-ling
2015-10-01
Mirror therapy (MT) combined with mesh glove (MG) afferent stimulation (MT + MG) has been suggested as an effective intervention for motor recovery in patients with stroke. This study aimed to further determine the treatment effects of the MT + MG approach on muscular properties, sensorimotor functions, and daily function. This was a single-blind, randomized, placebo-controlled study. Forty-eight participants with chronic stroke were recruited from medical centers and were randomly assigned to the MT, MT + MG, and MT with sham MG stimulation (MT + sham) groups. The intervention consisted of 1.5 hrs/day, 5 days/wk for 4 wks. Primary outcomes were the Fugl-Meyer Assessment and muscular properties (muscle tone and stiffness). Secondary outcomes included measures of sensorimotor and daily functions. Compared with the MT and MT + sham groups, the MT + MG group demonstrated improved muscular properties. The MT + MG and MT + sham groups showed greater improvement in manual dexterity and daily function than the MT group did. No beneficial effects on the Fugl-Meyer Assessment and other sensorimotor outcomes were found for the MT + MG group. Although no significant group differences were found in the Fugl-Meyer Assessment, MT + MG induced distinctive effects on muscular properties, manual dexterity, and daily function.
H∞ control of combustion in diesel engines using a discrete dynamics model
NASA Astrophysics Data System (ADS)
Hirata, Mitsuo; Ishizuki, Sota; Suzuki, Masayasu
2016-09-01
This paper proposes a control method for combustion in diesel engines using a discrete dynamics model. The proposed two-degree-of-freedom control scheme achieves not only good feedback properties such as disturbance suppression and robust stability but also a good transient response. The method includes a feedforward controller constructed from the inverse model of the plant, and a feedback controller designed by an Hcontrol method, which reduces the effect of the turbocharger lag. The effectiveness of the proposed method is evaluated via numerical simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoen, Ben; Wiser, Ryan; Cappers, Peter
2013-08-21
This report summarizes a new analysis, building on previously published research, about wind energy’s effects on residential property values. This study helps fill research gaps by collecting and analyzing data from 27 counties across nine U.S. states, related to 67 different wind facilities, and constructs a pooled model that investigates average effects near the turbines across the sample while controlling for local variables, such as sale prices of nearby homes.
Zhu, JiangLing; Shi, Yue; Fang, LeQi; Liu, XingE; Ji, ChengJun
2015-06-01
The physical and mechanical properties of wood affect the growth and development of trees, and also act as the main criteria when determining wood usage. Our understanding on patterns and controls of wood physical and mechanical properties could provide benefits for forestry management and bases for wood application and forest tree breeding. However, current studies on wood properties mainly focus on wood density and ignore other wood physical properties. In this study, we established a comprehensive database of wood physical properties across major tree species in China. Based on this database, we explored spatial patterns and driving factors of wood properties across major tree species in China. Our results showed that (i) compared with wood density, air-dried density, tangential shrinkage coefficient and resilience provide more accuracy and higher explanation power when used as the evaluation index of wood physical properties. (ii) Among life form, climatic and edaphic variables, life form is the dominant factor shaping spatial patterns of wood physical properties, climatic factors the next, and edaphic factors have the least effects, suggesting that the effects of climatic factors on spatial variations of wood properties are indirectly induced by their effects on species distribution.
Design and Control of Modular Spine-Like Tensegrity Structures
NASA Technical Reports Server (NTRS)
Mirletz, Brian T.; Park, In-Won; Flemons, Thomas E.; Agogino, Adrian K.; Quinn, Roger D.; SunSpiral, Vytas
2014-01-01
We present a methodology enabled by the NASA Tensegrity Robotics Toolkit (NTRT) for the rapid structural design of tensegrity robots in simulation and an approach for developing control systems using central pattern generators, local impedance controllers, and parameter optimization techniques to determine effective locomotion strategies for the robot. Biomimetic tensegrity structures provide advantageous properties to robotic locomotion and manipulation tasks, such as their adaptability and force distribution properties, flexibility, energy efficiency, and access to extreme terrains. While strides have been made in designing insightful static biotensegrity structures, gaining a clear understanding of how a particular structure can efficiently move has been an open problem. The tools in the NTRT enable the rapid exploration of the dynamics of a given morphology, and the links between structure, controllability, and resulting gait efficiency. To highlight the effectiveness of the NTRT at this exploration of morphology and control, we will provide examples from the designs and locomotion of four different modular spine-like tensegrity robots.
Chen, Jun; Wang, Fangfang; Huang, Qingzhen; Hu, Lei; Song, Xiping; Deng, Jinxia; Yu, Ranbo; Xing, Xianran
2013-01-01
Control of negative thermal expansion is a fundamentally interesting topic in the negative thermal expansion materials in order for the future applications. However, it is a challenge to control the negative thermal expansion in individual pure materials over a large scale. Here, we report an effective way to control the coefficient of thermal expansion from a giant negative to a near zero thermal expansion by means of adjusting the spontaneous volume ferroelectrostriction (SVFS) in the system of PbTiO3-(Bi,La)FeO3 ferroelectrics. The adjustable range of thermal expansion contains most negative thermal expansion materials. The abnormal property of negative or zero thermal expansion previously observed in ferroelectrics is well understood according to the present new concept of spontaneous volume ferroelectrostriction. The present studies could be useful to control of thermal expansion of ferroelectrics, and could be extended to multiferroic materials whose properties of both ferroelectricity and magnetism are coupled with thermal expansion.
Chen, Jun; Wang, Fangfang; Huang, Qingzhen; Hu, Lei; Song, Xiping; Deng, Jinxia; Yu, Ranbo; Xing, Xianran
2013-01-01
Control of negative thermal expansion is a fundamentally interesting topic in the negative thermal expansion materials in order for the future applications. However, it is a challenge to control the negative thermal expansion in individual pure materials over a large scale. Here, we report an effective way to control the coefficient of thermal expansion from a giant negative to a near zero thermal expansion by means of adjusting the spontaneous volume ferroelectrostriction (SVFS) in the system of PbTiO3-(Bi,La)FeO3 ferroelectrics. The adjustable range of thermal expansion contains most negative thermal expansion materials. The abnormal property of negative or zero thermal expansion previously observed in ferroelectrics is well understood according to the present new concept of spontaneous volume ferroelectrostriction. The present studies could be useful to control of thermal expansion of ferroelectrics, and could be extended to multiferroic materials whose properties of both ferroelectricity and magnetism are coupled with thermal expansion. PMID:23949238
NASA Astrophysics Data System (ADS)
Lv, Chen; Zhang, Junzhi; Li, Yutong
2014-11-01
Because of the damping and elastic properties of an electrified powertrain, the regenerative brake of an electric vehicle (EV) is very different from a conventional friction brake with respect to the system dynamics. The flexibility of an electric drivetrain would have a negative effect on the blended brake control performance. In this study, models of the powertrain system of an electric car equipped with an axle motor are developed. Based on these models, the transfer characteristics of the motor torque in the driveline and its effect on blended braking control performance are analysed. To further enhance a vehicle's brake performance and energy efficiency, blended braking control algorithms with compensation for the powertrain flexibility are proposed using an extended Kalman filter. These algorithms are simulated under normal deceleration braking. The results show that the brake performance and blended braking control accuracy of the vehicle are significantly enhanced by the newly proposed algorithms.
Effects of fiber/matrix interactions on the properties of graphite/epoxy composites
NASA Technical Reports Server (NTRS)
Mcmahon, P. E.; Ying, L.
1982-01-01
A state-of-the-art literature review of the interactions between fibers and resin within graphite epoxy composite materials was performed. Emphasis centered on: adhesion theory; wetting characteristics of carbon fiber; load transfer mechanisms; methods to evaluate and measure interfacial bond strengths; environmental influence at the interface; and the effect of the interface/interphase on composite performance, with particular attention to impact toughness. In conjunction with the literature review, efforts were made to design experiments to study the wetting behavior of carbon fibers with various finish variants and their effect on adhesion joint strength. The properties of composites with various fiber finishes were measured and compared to the base-line properties of a control. It was shown that by tailoring the interphase properties, a 30% increase in impact toughness was achieved without loss of mechanical properties at both room and elevated temperatures.
Design and Performance of Property Gradient Ternary Nitride Coating Based on Process Control.
Yan, Pei; Chen, Kaijie; Wang, Yubin; Zhou, Han; Peng, Zeyu; Jiao, Li; Wang, Xibin
2018-05-09
Surface coating is an effective approach to improve cutting tool performance, and multiple or gradient coating structures have become a common development strategy. However, composition mutations at the interfaces decrease the performance of multi-layered coatings. The key mitigation technique has been to reduce the interface effect at the boundaries. This study proposes a structure design method for property-component gradient coatings based on process control. The method produces coatings with high internal cohesion and high external hardness, which could reduce the composition and performance mutations at the interface. A ZrTiN property gradient ternary nitride coating was deposited on cemented carbide by multi-arc ion plating with separated Ti and Zr targets. The mechanical properties, friction behaviors, and cutting performances were systematically investigated, compared with a single-layer coating. The results indicated that the gradient coating had better friction and wear performance with lower wear rate and higher resistance to peeling off during sliding friction. The gradient coating had better wear and damage resistance in cutting processes, with lower machined surface roughness Ra. Gradient-structured coatings could effectively inhibit micro crack initiation and growth under alternating force and temperature load. This method could be extended to similar ternary nitride coatings.
A robust control scheme for flexible arms with friction in the joints
NASA Technical Reports Server (NTRS)
Rattan, Kuldip S.; Feliu, Vicente; Brown, H. Benjamin, Jr.
1988-01-01
A general control scheme to control flexible arms with friction in the joints is proposed in this paper. This scheme presents the advantage of being robust in the sense that it minimizes the effects of the Coulomb friction existing in the motor and the effects of changes in the dynamic friction coefficient. A justification of the robustness properties of the scheme is given in terms of the sensitivity analysis.
Stability of model-based event-triggered control systems: a separation property
NASA Astrophysics Data System (ADS)
Hao, Fei; Yu, Hao
2017-04-01
To save resource of communication, this paper investigates the model-based event-triggered control systems. Two main problems are considered in this paper. One is, for given plant and model, to design event conditions to guarantee the stability of the systems. The other is to consider the effect of the model matrices on the stability. The results show that the closed-loop systems can be asymptotically stabilised with any model matrices in compact sets if the parameters in the event conditions are within the designed ranges. Then, a separation property of model-based event-triggered control is proposed. Namely, the design of the controller gain and the event condition can be separated from the selection of the model matrices. Based on this property, an adaption mechanism is introduced to the model-based event-triggered control systems, which can further improve the sampling performance. Finally, a numerical example is given to show the efficiency and feasibility of the developed results.
Use of viscous fibres in beverages for appetite control: a review of studies.
Ho, Irene H H; Matia-Merino, Lara; Huffman, Lee M
2015-01-01
Dietary fibres, particularly viscous fibres appear to be more effective for appetite control (reduce subjective appetite, energy intake and/or body weight). Three types of viscous fibres, pectin, alginate and cereal beta-glucan, were identified as potential satiety-enhancing ingredients. The aim of this review was to collect evidence from human intervention studies evaluating pectins, alginates and beta-glucans in beverages, liquid preloads and liquid test meals for their satiety effects. Our focused, narrative review of several satiety studies shows an overall consistent result on the effectiveness of pectin, alginate and beta-glucan for appetite control. Beverages or liquid test meals are probably the better delivery mode for these fibres, as their effect on satiety is affected by their physico-chemical properties. Most, if not all, of these reviewed studies gave little or no consideration to the potential effects of common food processing (e.g. pasteurisation, ultra-high temperature process) on the physico-chemical properties of these fibre-containing beverages. This is one of the research gaps we have identified warranting further work, which is likely to be of significance from the industry and consumer perspective.
Reduced atomic shadowing in HiPIMS: Role of the thermalized metal ions
NASA Astrophysics Data System (ADS)
Oliveira, João Carlos; Ferreira, Fábio; Anders, André; Cavaleiro, Albano
2018-03-01
In magnetron sputtering, the ability to tailor film properties depends primarily on the control of the flux of particles impinging on the growing film. Among deposition mechanisms, the shadowing effect leads to the formation of a rough surface and a porous, columnar microstructure. Re-sputtered species may be re-deposited in the valleys of the films surface and thereby contribute to a reduction of roughness and to fill the underdense regions. Both effects are non-local and they directly compete to shape the final properties of the deposited films. Additional control of the bombarding flux can be obtained by ionizing the sputtered flux, because ions can be controlled with respect to their energy and impinging direction, such as in High-Power Impulse Magnetron Sputtering (HiPIMS). In this work, the relation between ionization of the sputtered species and thin film properties is investigated in order to identify the mechanisms which effectively influence the shadowing effect in Deep Oscillation Magnetron Sputtering (DOMS), a variant of HiPIMS. The properties of two Cr films deposited using the same averaged target power by d.c. magnetron sputtering and DOMS have been compared. Additionally, the angle distribution of the Cr species impinging on the substrate was simulated using Monte Carlo-based programs while the energy distribution of the energetic particles bombarding the substrate was evaluated by energy-resolved mass analysis. It was found that the acceleration of the thermalized chromium ions at the substrate sheath in DOMS significantly reduces the high angle component of their impinging angle distribution and, thus, efficiently reduces atomic shadowing. Therefore, a high degree of ionization in HiPIMS results in almost shadowing effect-free film deposition and allows us to deposit dense and compact films without the need of high energy particle bombardment during growth.
Etude de l'effet du gonflement par les solvants sur les proprietes du caoutchouc butyle
NASA Astrophysics Data System (ADS)
Nohile, Cedrick
Polymers and in particular elastomers are widely used for personal protective equipment against chemical and biological hazards. Among them, butyl rubber is one of the most effective elastomers against chemicals. However, if this rubber has a very good resistance to a wide range of them, it is sensitive to non polar solvents. These solvents will easily swell the material and may dramatically affect its properties. This situation may involve a large risk for. butyl rubber protective equipment users. It is thus essential to improve the understanding of the effect of solvents on the properties of butyl rubber. The research that was carried out had two objectives: to identify the parameters controlling the resistance of butyl rubber to solvents and to study the effect of swelling on the properties of butyl rubber. The results show that the resistance of butyl rubber to solvents appears to be controlled by three main parameters: the chemical class of the solvent, its saturation vapor pressure and its molar volume. In addition, swelling affects butyl rubber mechanical properties in a permanent way. The effects can be attributed to the extraction of plasticizers by the solvent and to the degradation of the physico-chemical structure of the polymer network. This chemical degradation was linked to a phenomenon of differential swelling which seems to be controlled by the solvent flow inside the material. These results question some general beliefs within the field of protection against chemical risks. They also open new perspectives for the development of predictive tools relative to the behavior of butyl rubber in the presence of solvents
75 FR 10345 - Designation of Entities and Individual Pursuant to Executive Order 13382
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-05
... DEPARTMENT OF THE TREASURY Office of Foreign Assets Control Designation of Entities and Individual... four newly-designated entities and one individual whose property and interests in property are blocked... Order 13382, of the entities and individual identified in this notice is effective on February 10, 2010...
Mechanical Response of Elastomers to Magnetic Fields
NASA Technical Reports Server (NTRS)
Munoz, B. C.; Jolly, M. R.
1996-01-01
Elastomeric materials represent an important class of engineering materials, which are widely used to make components of structures, machinery, and devices for vibration and noise control. Elastomeric material possessing conductive or magnetic properties have been widely used in applications such as conductive and magnetic tapes, sensors, flexible permanent magnets, etc. Our interest in these materials has focussed on understanding and controlling the magnitude and directionality of their response to applied magnetic fields. The effect of magnetic fields on the mechanical properties of these materials has not been the subject of many published studies. Our interest and expertise in controllable fluids have given us the foundation to make a transition to controllable elastomers. Controllable elastomers are materials that exhibit a change in mechanical properties upon application of an external stimuli, in this case a magnetic field. Controllable elastomers promise to have more functionality than conventional elastomers and therefore could share the broad industrial application base with conventional elastomers. As such, these materials represent an attractive class of smart materials, and may well be a link that brings the applications of modern control technologies, intelligent structures and smart materials to a very broad industrial area. This presentation will cover our research work in the area of controllable elastomers at the Thomas Lord Research Center. More specifically, the presentation will discuss the control of mechanical properties and mathematical modeling of the new materials prepared in our laboratories along with experiments to achieve adaptive vibration control using the new materials.
Radiation modification of Ni nanotubes by electrons
NASA Astrophysics Data System (ADS)
Kozlovskiy, A.; Kaikanov, M.; Tikhonov, A.; Kenzhina, I.; Ponomarev, D.; Zdorovets, M.
2017-10-01
Electron irradiation of metal nanostructures is an effective tool for stimulating a controlled modification of the structural and conductive material properties. Use of the electron irradiation with energies less than 500 keV allows conducting controlled annealing of nanotube defects, which leads to the improvement of the conductive properties due to decreasing resistance. In this case, the use of radiation doses above 150 kGy induces the samples destruction, caused by the thermal heating of nanotubes, leading to the crystal lattice destruction and the sample amorphization.
Containerless measurements on liquids at high temperatures
NASA Technical Reports Server (NTRS)
Weber, Richard
1993-01-01
The application of containerless techniques for measurements of the thermophysical properties of high temperature liquids is reviewed. Recent results obtained in the materials research laboratories at Intersonics are also presented. Work to measure high temperature liquid properties is motivated by both the need for reliable property data for modeling of industrial processes involving molten materials and generation of data form basic modeling of materials behavior. The motivation for this work and examples of variations in thermophysical property values from the literature are presented. The variations may be attributed to changes in the specimen properties caused by chemical changes in the specimen and/or to measurement errors. The two methods used to achieve containerless conditions were aeroacoustic levitation and electromagnetic levitation. Their qualities are presented. The accompanying slides show the layout of levitation equipment and present examples of levitated metallic and ceramic specimens. Containerless techniques provide a high degree of control over specimen chemistry, nucleation and allow precise control of liquid composition to be achieved. Effects of minor additions can thus be measured in a systematic way. Operation in reduced gravity enables enhanced control of liquid motion which can allow measurement of liquid transport properties. Examples of nucleation control, the thermodynamics of oxide contamination removal, and control of the chromium content of liquid aluminum oxide by high temperature containerless processes are presented. The feasibility of measuring temperature, emissivity, liquidus temperature, enthalpy, surface tension, density, viscosity, and thermal diffusivity are discussed in the final section of the paper.
García-Sifuentes, Celia Olivia; Pacheco-Aguilar, Ramón; Scheuren-Acevedo, Susana María; Carvallo-Ruiz, Gisela; Garcia-Sanchez, Guillermina; Gollas-Galván, Teresa; Hernández-López, Jorge
2013-06-01
The effect of ante-mortem hypoxia on the physicochemical and functional properties of raw and cooked white shrimp was studied. Hue angle was greater (p ≤ 0.05) for stressed raw shrimp compared to control (greener color); whereas a lower angle was detected for cooked stressed shrimp (redder/orange coloration). In addition, hue angle increased (p ≤ 0.05) over the ice storage period for control and stressed shrimp (raw and/or cooked). Muscle hardness and shear force showed no differences when comparing control and stressed shrimp (raw and/or cooked). However, during ice storage, shear force increased (p ≤ 0.05) by 22% and 9% for control and stressed raw shrimp, respectively; in contrast, shear force and muscle hardness decreased for cooked shrimp (p ≤ 0.05). Control showed more (p ≤ 0.05) elasticity than stressed cooked shrimp. Stressed raw shrimp showed a water holding capacity 10.8% lower (p ≤ 0.05) than control. However, during the storage, water holding capacity increased (p ≤ 0.05) reaching similar values to control after day 4. Muscle protein solubility of stressed shrimp was 31% lower than control; however, no differences (p > 0.05) were observed after the second day. The thermal stability of myosin (T max) showed differences (p ≤ 0.05) among control and stressed shrimp, whereas no differences for ΔH were observed. Results showed the influence of ante-mortem hypoxia on the physicochemical and functional properties of white shrimp muscle.
Ewe, Joo-Ann; Loo, Su-Yi
2016-06-15
The primary objective of this study was to evaluate the physicochemical and rheological properties of butter produced by Lactobacillus helveticus fermented cream. The incorporation of putative probiotic - the L. helveticus, to ferment cream prior to butter production was anticipated to alter the nutritional composition of butter. Changes in crude macronutrients and the resultant modification relating to textural properties of butter induced upon metabolic activities of L. helveticus in cream were focused in this research. Fermented butter (LH-butter) was produced by churning the cream that was fermented by lactobacilli at 37 °C for 24 h. Physicochemical analysis, proximate analysis and rheology properties of LH-butter were compared with butter produced using unfermented cream (control). LH-butter showed a significantly (P<0.05) higher fat content and acid value; lower moisture and ash; and was softer than the control. Cream fermentation modified nutritional and textural properties of butter in which LH-butter contained higher health beneficial unsaturated fatty acids than the control and thus rendered the product softer. Its enrichment with probiotics could thus further enhance its functional property. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Jha, Praveen Kumar; Mahto, Vikas; Saxena, Vinod Kumar
2018-05-01
A new type of oil-in-water (O/W) Pickering emulsion systems, which were prepared by polymers such as xanthan gum, carboxymethyl cellulose (CMC), and sodium lignosulfonate have been investigated for their properties as multifunctional emulsion muds with respect to rheological control and filtration control properties. Diesel oil was used as dispersed phase and KCl-brine as continuous phase in the developed emulsions. Initially, rheological parameters like apparent viscosity, plastic viscosity, gel strength, and filtration control properties were measured using recommended practices. Emulsion stability was analyzed using steady state shear stress-shear rate and oscillatory (dynamic) rheological measurement techniques. The emulsions were found to exhibit shear-thinning (pseudoplastic) behavior. Experiments conducted for oscillatory rheological measurements have shown that emulsions are stable as per the stability criteria G' (elastic modulus) > G'' (loss modulus) and both are independent of changing ω (Frequency). These fluids have shown stable properties upto 70°C which shows that they can be used as drilling muds for drilling oil and gas wells.
Choi, Yeon Sik; Kim, Sung Kyun; Williams, Findlay; Calahorra, Yonatan; Elliott, James A; Kar-Narayan, Sohini
2018-06-19
Crystal structure is crucial in determining the properties of piezoelectric polymers, particularly at the nanoscale where precise control of the crystalline phase is possible. Here, we investigate the electromechanical properties of three distinct crystalline phases of Nylon-11 nanowires using advanced scanning probe microscopy techniques. Stiff α-phase nanowires exhibited a low piezoelectric response, while relatively soft δ'-phase nanowires displayed an enhanced piezoelectric response.
Olden, Julian D; Tamayo, Mariana
2014-01-01
Economic evaluations of invasive species are essential for providing comprehensive assessments of the benefits and costs of publicly-funded management activities, yet many previous investigations have focused narrowly on expenditures to control spread and infestation. We use hedonic modeling to evaluate the economic effects of Eurasian milfoil (Myriophyllum spicatum) invasions on lakefront property values of single-family homes in an urban-suburban landscape. Milfoil often forms dense canopies at the water surface, diminishing the value of ecosystem services (e.g., recreation, fishing) and necessitating expensive control and management efforts. We compare 1,258 lakeshore property sale transactions (1995-2006) in 17 lakes with milfoil and 24 un-invaded lakes in King County, Washington (USA). After accounting for structural (e.g., house size), locational (e.g., boat launch), and environmental characteristics (e.g., water clarity) of lakes, we found that milfoil has a significant negative effect on property sales price ($94,385 USD lower price), corresponding to a 19% decline in mean property values. The aggregate cost of milfoil invading one additional lake in the study area is, on average, $377,542 USD per year. Our study illustrates that invasive aquatic plants can significantly impact property values (and associated losses in property taxes that reduce local government revenue), justifying the need for management strategies that prevent and control invasions. We recommend coordinated efforts across Lake Management Districts to focus institutional support, funding, and outreach to prevent the introduction and spread of milfoil. This effort will limit opportunities for re-introduction from neighboring lakes and incentivize private landowners and natural resource agencies to commit time and funding to invasive species management.
Structure and Electronic Properties of Interface-Confined Oxide Nanostructures
Liu, Yun; Ning, Yanxiao; Yu, Liang; ...
2017-09-16
The controlled fabrication of nanostructures has often made use of a substrate template to mediate and control the growth kinetics. Electronic substrate-mediated interactions have been demonstrated to guide the assembly of organic molecules or the nucleation of metal atoms but usually at cryogenic temperatures, where the diffusion has been limited. Combining STM, STS, and DFT studies, we report that the strong electronic interaction between transition metals and oxides could indeed govern the growth of low-dimensional oxide nanostructures. As a demonstration, a series of FeO triangles, which are of the same structure and electronic properties but with different sizes (side lengthmore » >3 nm), are synthesized on Pt(111). The strong interfacial interaction confines the growth of FeO nanostructures, leading to a discrete size distribution and a uniform step structure. Given the same interfacial configuration, as-grown FeO nanostructures not only expose identical edge/surface structure but also exhibit the same electronic properties, as manifested by the local density of states and local work functions. We expect the interfacial confinement effect can be generally applied to control the growth of oxide nanostructures on transition metal surfaces. These oxide nanostructures of the same structure and electronic properties are excellent models for studies of nanoscale effects and applications.« less
Structure and Electronic Properties of Interface-Confined Oxide Nanostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yun; Ning, Yanxiao; Yu, Liang
The controlled fabrication of nanostructures has often made use of a substrate template to mediate and control the growth kinetics. Electronic substrate-mediated interactions have been demonstrated to guide the assembly of organic molecules or the nucleation of metal atoms but usually at cryogenic temperatures, where the diffusion has been limited. Combining STM, STS, and DFT studies, we report that the strong electronic interaction between transition metals and oxides could indeed govern the growth of low-dimensional oxide nanostructures. As a demonstration, a series of FeO triangles, which are of the same structure and electronic properties but with different sizes (side lengthmore » >3 nm), are synthesized on Pt(111). The strong interfacial interaction confines the growth of FeO nanostructures, leading to a discrete size distribution and a uniform step structure. Given the same interfacial configuration, as-grown FeO nanostructures not only expose identical edge/surface structure but also exhibit the same electronic properties, as manifested by the local density of states and local work functions. We expect the interfacial confinement effect can be generally applied to control the growth of oxide nanostructures on transition metal surfaces. These oxide nanostructures of the same structure and electronic properties are excellent models for studies of nanoscale effects and applications.« less
Engineered Nanomaterials, Sexy New Technology and Potential Hazards
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beaulieu, R A
Engineered nanomaterials enhance exciting new applications that can greatly benefit society in areas of cancer treatments, solar energy, energy storage, and water purification. While nanotechnology shows incredible promise in these and other areas by exploiting nanomaterials unique properties, these same properties can potentially cause adverse health effects to workers who may be exposed during work. Dispersed nanoparticles in air can cause adverse health effects to animals not merely due to their chemical properties but due to their size, structure, shape, surface chemistry, solubility, carcinogenicity, reproductive toxicity, mutagenicity, dermal toxicity, and parent material toxicity. Nanoparticles have a greater likelihood of lungmore » deposition and blood absorption than larger particles due to their size. Nanomaterials can also pose physical hazards due to their unusually high reactivity, which makes them useful as catalysts, but has the potential to cause fires and explosions. Characterization of the hazards (and potential for exposures) associated with nanomaterial development and incorporation in other products is an essential step in the development of nanotechnologies. Developing controls for these hazards are equally important. Engineered controls should be integrated into nanomaterial manufacturing process design according to 10CFR851, DOE Policy 456.1, and DOE Notice 456.1 as safety-related hardware or administrative controls for worker safety. Nanomaterial hazards in a nuclear facility must also meet control requirements per DOE standards 3009, 1189, and 1186. Integration of safe designs into manufacturing processes for new applications concurrent with the developing technology is essential for worker safety. This paper presents a discussion of nanotechnology, nanomaterial properties/hazards and controls.« less
Chou, Leo Y T; Song, Fayi; Chan, Warren C W
2016-04-06
DNA assembly of nanoparticles is a powerful approach to control their properties and prototype new materials. However, the structure and properties of DNA-assembled nanoparticles are labile and sensitive to interactions with counterions, which vary with processing and application environment. Here we show that substituting polyamines in place of elemental counterions significantly enhanced the structural rigidity and plasmonic properties of DNA-assembled metal nanoparticles. These effects arose from the ability of polyamines to condense DNA and cross-link DNA-coated nanoparticles. We further used polyamine wrapped DNA nanostructures as structural templates to seed the growth of polymer multilayers via layer-by-layer assembly, and controlled the degree of DNA condensation, plasmon coupling efficiency, and material responsiveness to environmental stimuli by varying polyelectrolyte composition. These results highlight counterion engineering as a versatile strategy to tailor the properties of DNA-nanoparticle assemblies for various applications, and should be applicable to other classes of DNA nanostructures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stanford, Michael; Noh, Joo Hyon; Koehler, Michael R.
Atomically thin transition metal dichalcogenides (TMDs) are currently receiving significant attention due to their promising opto-electronic properties. Tuning optical and electrical properties of mono and few-layer TMDs, such as tungsten diselenide (WSe 2), by controlling the defects, is an intriguing opportunity to synthesize next generation two dimensional material opto-electronic devices. Here, we report the effects of focused helium ion beam irradiation on the structural, optical and electrical properties of few-layer WSe 2, via high resolution scanning transmission electron microscopy, Raman spectroscopy, and electrical transport measurements. By controlling the ion irradiation dose, we selectively introduce precise defects in few-layer WSe 2more » thereby locally tuning the resistivity and transport properties of the material. Hole transport in the few layer WSe 2 is degraded more severely relative to electron transport after helium ion irradiation. Moreover, by selectively exposing material with the ion beam, we demonstrate a simple yet highly tunable method to create lateral homo-junctions in few layer WSe 2 flakes, which constitutes an important advance towards two dimensional opto-electronic devices.« less
Tuning nonlinear optical absorption properties of WS₂ nanosheets.
Long, Hui; Tao, Lili; Tang, Chun Yin; Zhou, Bo; Zhao, Yuda; Zeng, Longhui; Yu, Siu Fung; Lau, Shu Ping; Chai, Yang; Tsang, Yuen Hong
2015-11-14
To control the optical properties of two-dimensional (2D) materials is a long-standing goal, being of both fundamental and technological significance. Tuning nonlinear optical absorption (NOA) properties of 2D transition metal dichalcogenides in a cost effective way has emerged as an important research topic because of its possibility to custom design NOA properties, implying enormous applications including optical computers, communications, bioimaging, and so on. In this study, WS2 with different size and thickness distributions was fabricated. The results demonstrate that both NOA onset threshold, F(ON), and optical limiting threshold, F(OL), of WS2 under the excitation of a nanosecond pulsed laser can be tuned over a wide range by controlling its size and thickness. The F(ON) and F(OL) show a rapid decline with the decrease of size and thickness. Due to the edge and quantum confinement effect, WS2 quantum dots (2.35 nm) exhibit the lowest F(ON) (0.01 J cm(-2)) and F(OL) (0.062 J cm(-2)) among all the samples, which are comparable to the lowest threshold achieved in graphene based materials, showing great potential as NOA materials with tunable properties.
Stanford, Michael; Noh, Joo Hyon; Koehler, Michael R.; ...
2016-06-06
Atomically thin transition metal dichalcogenides (TMDs) are currently receiving significant attention due to their promising opto-electronic properties. Tuning optical and electrical properties of mono and few-layer TMDs, such as tungsten diselenide (WSe 2), by controlling the defects, is an intriguing opportunity to synthesize next generation two dimensional material opto-electronic devices. Here, we report the effects of focused helium ion beam irradiation on the structural, optical and electrical properties of few-layer WSe 2, via high resolution scanning transmission electron microscopy, Raman spectroscopy, and electrical transport measurements. By controlling the ion irradiation dose, we selectively introduce precise defects in few-layer WSe 2more » thereby locally tuning the resistivity and transport properties of the material. Hole transport in the few layer WSe 2 is degraded more severely relative to electron transport after helium ion irradiation. Moreover, by selectively exposing material with the ion beam, we demonstrate a simple yet highly tunable method to create lateral homo-junctions in few layer WSe 2 flakes, which constitutes an important advance towards two dimensional opto-electronic devices.« less
Raloxifene improves skeletal properties in an animal model of cystic chronic kidney disease
Newman, Christopher L.; Creecy, Amy; Granke, Mathilde; Nyman, Jeffry S.; Tian, Nannan; Hammond, Max A.; Wallace, Joseph M.; Brown, Drew M.; Chen, Neal; Moe, Sharon M.; Allen, Matthew R.
2015-01-01
Patients with chronic kidney disease (CKD) have an increased risk of fracture. Raloxifene is a mild anti-resorptive agent that reduces fracture risk in the general population. Here we assessed the impact of raloxifene on the skeletal properties of animals with progressive CKD. Male Cy/+ rats that develop autosomal dominant cystic kidney disease were treated with either vehicle or raloxifene for five weeks. They were assessed for changes in mineral metabolism and skeletal parameters (microCT, histology, whole bone mechanics, and material properties). Their normal littermates served as controls. Animals with CKD had significantly higher parathyroid hormone levels compared to normal controls as well as inferior structural and mechanical skeletal properties. Raloxifene treatment resulted in lower bone remodeling rates and higher cancellous bone volume in the rats with CKD. While it had little effect on cortical bone geometry it resulted in higher energy to fracture and modulus of toughness values than vehicle-treated rats with CKD, achieving levels equivalent to normal controls. Animals treated with raloxifene had superior tissue-level mechanical properties as assessed by nanoindentation and higher collagen D-periodic spacing as assessed by atomic force microscopy. Thus, raloxifene can positively impact whole bone mechanical properties in CKD through its impact on skeletal material properties. PMID:26489025
Remote Control of Intact Mammalian Brain Circuits Using Pulsed Ultrasound
2012-12-31
our work is that we have begun to gain an understanding of what properties of ultrasound waveforms make them effective for neuromodulation . The next...our work is that we have begun to gain an understanding of what properties of ultrasound waveforms make them effective for neuromodulation . The next...ultrasound for neuromodulation based in part upon our advancements made. We expect an additional one or two manuscripts will be published in the
Morouço, Pedro; Biscaia, Sara; Viana, Tânia; Franco, Margarida; Malça, Cândida; Mateus, Artur; Moura, Carla; Ferreira, Frederico C; Mitchell, Geoffrey; Alves, Nuno M
2016-01-01
Biomaterial properties and controlled architecture of scaffolds are essential features to provide an adequate biological and mechanical support for tissue regeneration, mimicking the ingrowth tissues. In this study, a bioextrusion system was used to produce 3D biodegradable scaffolds with controlled architecture, comprising three types of constructs: (i) poly( ε -caprolactone) (PCL) matrix as reference; (ii) PCL-based matrix reinforced with cellulose nanofibers (CNF); and (iii) PCL-based matrix reinforced with CNF and hydroxyapatite nanoparticles (HANP). The effect of the addition and/or combination of CNF and HANP into the polymeric matrix of PCL was investigated, with the effects of the biomaterial composition on the constructs (morphological, thermal, and mechanical performances) being analysed. Scaffolds were produced using a single lay-down pattern of 0/90°, with the same processing parameters among all constructs being assured. The performed morphological analyses showed a satisfactory distribution of CNF within the polymer matrix and high reliability was obtained among the produced scaffolds. Significant effects on surface wettability and thermal properties were observed, among scaffolds. Regarding the mechanical properties, higher scaffold stiffness in the reinforced scaffolds was obtained. Results from the cytotoxicity assay suggest that all the composite scaffolds presented good biocompatibility. The results of this first study on cellulose and hydroxyapatite reinforced constructs with controlled architecture clearly demonstrate the potential of these 3D composite constructs for cell cultivation with enhanced mechanical properties.
Webb, Brett T; McGilvray, Kirk C; Smirnova, Natalia P; Hansen, Thomas R; Norrdin, Robert W
2013-11-01
Transplacental viral infection of the fetus can result in abnormal trabecular and cortical bone modeling in long bones through impaired bone resorption and formation. Although such infections are frequently associated with neonatal fractures in humans and animals, their effect on the biomechanical properties of the developing skeleton remain poorly understood. The goal of this study was to determine the effects of transplacental bovine viral diarrhea virus (BVDV) infection on the biomechanical properties of fetal femora. Pregnant heifers were inoculated intranasally with non-cytopathic BVDV or media alone on day 75 of gestation to produce persistently infected (PI) and control fetuses, respectively, which were then removed on days 192 and 245 of gestation. Histomorphometry, compositional analysis and 'four-point bending until failure' were performed on fetal femora. Altered cortical geometry largely accounted for differences in calculated elastic modulus (PI vs. control, and day 192 vs. day 245) and ultimate stress (day 192 vs. day 245). Fetal infection with BVDV did not significantly impair inherent biomechanical properties of bone but rather resulted in decreased periosteal apposition rates, manifested as smaller femoral mid-diaphyseal diameters. There were no differences between PI and control fetuses in cortical thickness ratio, ash density or calcium/phosphorous content; however, cortical thickness ratio decreased with fetal age. Thus even when cortical thickness ratios are similar, differences in mid-diaphyseal diameter affect the error associated with the calculation of stress and strain by classical beam theory equations. Copyright © 2013. Published by Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Helmuth, R.A.
1979-03-01
Progress is reported on the energy conservation potential of Portland cement particle size distribution control. Results of preliminary concrete tests, Series IIIa and Series IIIb, effects of particle size ranges on strength and drying shrinkage, are presented. Series IV, effects of mixing and curing temperature, tests compare the properties of several good particle size controlled cements with normally ground cements at low and high temperatures. The work on the effects of high alkali and high sulfate clinker cements (Series V) has begun.
NASA Astrophysics Data System (ADS)
Davies, Kirsten; Doolan, Corinna; van den Honert, Robin; Shi, Rose
2014-09-01
In 2009-2010 Sydney Water, the primary water utility in Sydney, conducted a comprehensive Smart Metering trial in residential homes in the suburb of Westleigh, in Sydney's north. The trial involved 1923 participants residing in 630 households. A whole-of-community method of engagement was applied to capture the views of residents from 12 to 70+ years of age. The trial examined the effects of the technology on the water consumption of an intervention group compared with that of a matched control group. After removing properties that had been sold since the beginning of the trial, properties in the study group were matched with a control group property on the basis of the household size, property size and the presence (or otherwise) of a swimming pool. The effects of the technology on consumption were measured and analyzed for the period July 2009 to June 2010, coupled with qualitative information that was collected throughout the duration of the study. A key finding was that households with the in-home display (IHD) installed, reduced their consumption by an average of over 6.8% over the study period when compared to the control group. Since completion of the study the community has not had any further interventions. The trial created an opportunity to examine the longer-term effects of the technology (June 2008 to September 2013). Consumption data collected over the 3 year posttrial period revealed that the participant group consumed 6.4% per month less water when compared to the pretrial period, whilst the matched control group consumed 1.3% per month more water when compared to the pretrial period. The reduced consumption of the participant group was maintained over time, demonstrating the long-term value of this technology.
Physical properties and consumer liking of cookies prepared by replacing sucrose with tagatose.
Taylor, T P; Fasina, O; Bell, L N
2008-04-01
The objective of this study was to investigate the suitability of tagatose, a minimally absorbed prebiotic monosaccharide, as a replacement for sucrose in cookies. A sucrose-containing cookie recipe was prepared as the control. Sucrose was replaced with tagatose at various levels ranging from 25% to 100%. Cookies containing fructose were also prepared for comparison due to the structural similarities between tagatose and fructose. The rheological properties of the dough were measured using texture profile analysis. The baked cookies were evaluated for spread, color, and hardness. For tagatose-containing cookies, the extent of likeness was evaluated by 53 untrained panelists using a 9-point hedonic scale. When sucrose was replaced by tagatose, doughs with similar rheological properties to the control resulted. The tagatose-containing cookies were harder and darker with a lower spread than the control. Sensory data indicated that panelists liked the brown color of the 100% tagatose cookies better than the control, but disliked their sweetness. Overall likeness scores of the control and cookies made by replacing half of the sucrose with tagatose were the same. Tagatose appears to be suitable as a partial replacer for sucrose in cookies based on similar dough properties, cookie properties, and likeness scores. Using tagatose to replace sucrose in foods would reduce the amount of metabolizeable sugars in the diet as well as provide the desirable prebiotic effect.
Vieira-Junior, W F; Lima, D A N L; Tabchoury, C P M; Ambrosano, G M B; Aguiar, F H B; Lovadino, J R
2016-01-01
The purpose of this study was to investigate the effects on the enamel properties and effectiveness of bleaching using 35% hydrogen peroxide (HP) when applying toothpastes with different active agents prior to dental bleaching. Seventy enamel blocks (4 × 4 × 2 mm) were submitted to in vitro treatment protocols in a tooth-brushing machine (n=10): with distilled water and exposure to placebo gel (negative control [NC]) or HP bleaching (positive control [PC]); and brushing with differing toothpastes prior to HP bleaching, including potassium nitrate toothpaste (PN) containing NaF, conventional sodium monofluorophosphate toothpaste (FT), arginine-based toothpastes (PA and SAN), or a toothpaste containing bioactive glass (NM). Color changes were determined using the CIE L*a*b* system (ΔE, ΔL, Δa, and Δb), and a roughness (Ra) analysis was performed before and after treatments. Surface microhardness (SMH) and cross-sectional microhardness (CSMH) were analyzed after treatment. Data were analyzed with repeated measures ANOVA for Ra, one-way ANOVA (SMH, ΔE, ΔL, Δa, and Δb), split-plot ANOVA (CSMH), and Tukey post hoc test (α<0.05). The relationship between the physical surface properties and color properties was evaluated using a multivariate Canonical correlation analysis. Color changes were statistically similar in the bleached groups. After treatments, SMH and CSMH decreased in PC. SMH increased significantly in the toothpaste groups vs the negative and positive control (NM > PA = SAN > all other groups) or decreased HP effects (CSMH). Ra increased in all bleached groups, with the exception of NM, which did not differ from the NC. The variation in the color variables (ΔL, Δa, and Δb) explained 21% of the variation in the physical surface variables (Ra and SMH). The application of toothpaste prior to dental bleaching did not interfere with the effectiveness of treatment. The bioactive glass based toothpaste protected the enamel against the deleterious effects of dental bleaching.
The effect of water harvesting techniques on runoff, sedimentation, and soil properties.
Al-Seekh, Saleh H; Mohammad, Ayed G
2009-07-01
This study addressed the hydrological processes of runoff and sedimentation, soil moisture content, and properties under the effect of different water harvesting techniques (treatments). The study was conducted at three sites, representing environmental condition gradients, located in the southern part of the West Bank. For each treatment, the study evaluated soil chemical and physical properties, soil moisture at 30 cm depth, surface runoff and sedimentation at each site. Results showed that runoff is reduced by 65-85% and sedimentation by 58-69% in stone terraces and semi-circle bunds compared to the control at the semi-humid site. In addition, stone terraces and contour ridges significantly reduced the amount of total runoff by 80% and 73%, respectively, at the arid site. Soil moisture content was significantly increased by water harvesting techniques compared to the control in all treatments at the three study sites. In addition, the difference between the control and the water harvesting structures were higher in the arid and semi-arid areas than in the semi-humid area. Soil and water conservation, via utilization of water harvesting structures, is an effective principle for reducing the negative impact of high runoff intensity and subsequently increasing soil moisture storage from rainfall. Jessour systems in the valley and stone terraces were effective in increasing soil moisture storage, prolonging the growing season for natural vegetation, and decreasing the amount of supplemental irrigation required for growing fruit trees.
The Effect of Water Harvesting Techniques on Runoff, Sedimentation, and Soil Properties
NASA Astrophysics Data System (ADS)
Al-Seekh, Saleh H.; Mohammad, Ayed G.
2009-07-01
This study addressed the hydrological processes of runoff and sedimentation, soil moisture content, and properties under the effect of different water harvesting techniques (treatments). The study was conducted at three sites, representing environmental condition gradients, located in the southern part of the West Bank. For each treatment, the study evaluated soil chemical and physical properties, soil moisture at 30 cm depth, surface runoff and sedimentation at each site. Results showed that runoff is reduced by 65-85% and sedimentation by 58-69% in stone terraces and semi-circle bunds compared to the control at the semi-humid site. In addition, stone terraces and contour ridges significantly reduced the amount of total runoff by 80% and 73%, respectively, at the arid site. Soil moisture content was significantly increased by water harvesting techniques compared to the control in all treatments at the three study sites. In addition, the difference between the control and the water harvesting structures were higher in the arid and semi-arid areas than in the semi-humid area. Soil and water conservation, via utilization of water harvesting structures, is an effective principle for reducing the negative impact of high runoff intensity and subsequently increasing soil moisture storage from rainfall. Jessour systems in the valley and stone terraces were effective in increasing soil moisture storage, prolonging the growing season for natural vegetation, and decreasing the amount of supplemental irrigation required for growing fruit trees.
Diabetes Mellitus Alters the Mechanical Properties of the Native Tendon in an Experimental Rat Model
Fox, Alice J. S.; Bedi, Asheesh; Deng, Xiang-Hua; Ying, Liang; Harris, Paul E.; Warren, Russell F.; Rodeo, Scott A.
2017-01-01
The purpose of this study was to determine the effect of the diabetic phenotype on the mechanical properties of the native patellar tendon and its enthesis. Diabetes was induced via intraperitoneal injection of streptozotocin in Lewis rats. Control (n = 18) and diabetic animals(n = 20) were killed at 12 and 19 days for analysis. Statistical comparisons were performed using Student’s t-tests and a two-tailed Fisher test with significance set at p < 0.05. Pre- and post-injection intraperitoneal glucose tolerance tests demonstrated significant impairment of glycemic control in the diabetic compared to control animals (p = 0.001). Mean serum hemoglobin A1c levels at 19 days was 10.6 ± 2.7% and 6.0 ± 1.0% for the diabetic and control groups, respectively (p = 0.0001). Fifteen of sixteen diabetic animals demonstrated intrasubstance failure of the patellar tendon, while only 7 of 14 control specimens failed within the tendon substance. The Young’s modulus of the diabetic tendon was significantly lower than control specimens by 19 days post-induction (161 ± 10 N m−2 compared to 200 ± 46 N m−2, respectively) (p = 0.02). The metabolic condition of poorly controlled diabetes negatively affects the mechanical properties of the native patellar tendon. These altered structural properties may predispose diabetic patients to a greater risk of tendinopathy and/or traumatic rupture. PMID:21246619
Commentary: Synthetic Anabolic-Androgenic Steroids: A Plea for Controlled Substance Status.
ERIC Educational Resources Information Center
Taylor, William N.
1987-01-01
The widespread abuse of synthetic anabolic-androgenic steriods, their habit-forming properties, and their other adverse effects are good reasons for reclassification of steriods as controlled substances under federal law, a step which may combat their abuse. (Author/CB)
NASA Astrophysics Data System (ADS)
Mengual, Carmen; Schoebitz, Mauricio; Azcon, Rosario; Torres, Pilar; Caravaca, Fuensanta; Roldan, Antonio
2014-05-01
The re-establishment of autochthonous shrub species is an essential strategy for recovering degraded soils under semiarid Mediterranean conditions. A field assay was carried out to determine the combined effects of the inoculation with native rhizobacteria (B. megaterium, Enterobacter sp, B. thuringiensis and Bacillus sp) and the addition of composted sugar beet (SB) residue on physicochemical soil properties and Lavandula dentata L. establishment. One year after planting, Bacillus sp. and B. megaterium+SB were the most effective treatments for increasing shoot dry biomass (by 5-fold with respect to control) and Enterobacter sp+SB was the most effective treatments for increasing dry root biomass. All the treatments evaluated significantly increased the foliar nutrient content (NPK) compared to control values (except B. thuringiensis+SB). The organic amendment had significantly increased available phosphorus content in rhizosphere soil by 29% respect to the control. Enterobacter sp combined with sugar beet residue improved total N content in soil (by 46% respect to the control) as well as microbiological and biochemical properties. The selection of the most efficient rhizobacteria strains and their combined effect with organic residue seems to be a critical point that drives the effectiveness of using these biotechnological tools for the revegetation and rehabilitation of degraded soils under semiarid conditions.
31 CFR 543.303 - Effective date.
Code of Federal Regulations, 2012 CFR
2012-07-01
... FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY CôTE D'IVOIRE SANCTIONS REGULATIONS General... prohibitions and directives contained in this part as follows: (a) With respect to a person whose property and interests in property are blocked pursuant to § 543.201(a)(1), 12:01 a.m. eastern standard time, February 8...
Effect of Salmonella infection on cecal tonsil regulatory T cell properties in chickens
USDA-ARS?s Scientific Manuscript database
Two experiments were conducted to study Regulatory T cell (Treg) properties post-Salmonella infection in broiler birds. Four-day-old broiler chicks were orally infected with 5x106 CFU/ml Salmonella enteritidis or sterile PBS (control). Samples were collected at 4, 7, 10, and 14 d post-infection. ...
Effect of pulsed electric field on the rheological and colour properties of soy milk.
Xiang, Bob Y; Simpson, Marian V; Ngadi, Michael O; Simpson, Benjamin K
2011-12-01
The effects of pulsed electric field (PEF) treatments on rheological and colour properties of soy milk were evaluated. Flow behaviour, viscosity and rheological parameters of PEF-treated soy milk were monitored using a controlled stress rheometer. For PEF treatments, electric field intensity of 18, 20 and 22 kV cm(-1) and number of pulses of 25, 50, 75 and 100 were used. For the measurements of rheological properties of soy milk shear rates between 0 and 200 s(-1) was used. The rheological behaviour of control and the PEF-treated soy milk were described using a power law model. The PEF treatments affected the rheological properties of soy milk. Apparent viscosity of soy milk increased from 6.62 to 7.46 (10(-3) Pa s) with increase in electric field intensity from 18 to 22 kV cm(-1) and increase in the number of pulses from 0 to 100. The consistency index (K) of soy milk also changed with PEF treatments. Lightness (L*), red/greenness (a*) and yellowness/blueness (b*) of soy milk were affected by PEF treatments.
Scopolamine effects on visual discrimination: modifications related to stimulus control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evans, H.L.
1975-01-01
Stumptail monkeys (Macaca arctoides) performed a discrete trial, three-choice visual discrimination. The discrimination behavior was controlled by the shape of the visual stimuli. Strength of the stimuli in controlling behavior was systematically related to a physical property of the stimuli, luminance. Low luminance provided weak control, resulting in a low accuracy of discrimination, a low response probability and maximal sensitivity to scopolamine (7.5-60 ..mu..g/kg). In contrast, high luminance provided strong control of behavior and attenuated the effects of scopolamine. Methylscopolamine had no effect in doses of 30 to 90 ..mu..g/kg. Scopolamine effects resembled the effects of reducing stimulus control inmore » undrugged monkeys. Since behavior under weak control seems to be especially sensitive to drugs, manipulations of stimulus control may be particularly useful whenever determination of the minimally-effective dose is important, as in behavioral toxicology. Present results are interpreted as specific visual effects of the drug, since nonsensory factors such as base-line response rate, reinforcement schedule, training history, motor performance and motivation were controlled. Implications for state-dependent effects of drugs are discussed.« less
NASA Astrophysics Data System (ADS)
Meixner, T.; Papuga, S. A.; Luketich, A. M.; Rockhill, T.; Gallo, E. L.; Anderson, J.; Salgado, L.; Pope, K.; Gupta, N.; Korgaonkar, Y.; Guertin, D. P.
2017-12-01
Green Infrastructure (GI) is often viewed as a mechanism to minimize the effects of urbanization on hydrology, water quality, and other ecosystem services (including the urban heat island). Quantifying the effects of GI requires field measurements of the dimensions of biogeochemical, ecosystem, and hydrologic function that we expect GI to impact. Here we investigated the effect of GI features in Tucson, Arizona which has a low intensity winter precipitation regime and a high intensity summer regime. We focused on understanding the effect of GI on soil hydraulic and biogeochemical properties as well as the effect on vegetation and canopy temperature. Our results demonstrate profound changes in biogeochemical and hydrologic properties and vegetation growth between GI systems and nearby control sites. In terms of hydrologic properties GI soils had increased water holding capacity and hydraulic conductivity. GI soils also have higher total carbon, total nitrogen, and organic matter in general than control soils. Furthermore, we tested the sampled soils (control and GI) for differences in biogeochemical response upon wetting. GI soils had larger respiration responses indicating greater biogeochemical activity overall. Long-term Lidar surveys were used to investigate the differential canopy growth of GI systems versus control sites. The results of this analysis indicate that while a significant amount of time is needed to observe differences in canopy growth GI features due increase tree size and thus likely impact street scale ambient temperatures. Additionally monitoring of transpiration, soil moisture, and canopy temperature demonstrates that GI features increase vegetation growth and transpiration and reduce canopy temperatures. These biogeochemical and ecohydrologic results indicate that GI can increase the biogeochemical processing of soils and increase tree growth and thus reduce urban ambient temperatures.
Dewetting Properties of Metallic Liquid Film on Nanopillared Graphene
Li, Xiongying; He, Yezeng; Wang, Yong; Dong, Jichen; Li, Hui
2014-01-01
In this work, we report simulation evidence that the graphene surface decorated by carbon nanotube pillars shows strong dewettability, which can give it great advantages in dewetting and detaching metallic nanodroplets on the surfaces. Molecular dynamics (MD) simulations show that the ultrathin liquid film first contracts then detaches from the graphene on a time scale of several nanoseconds, as a result of the inertial effect. The detaching velocity is in the order of 10 m/s for the droplet with radii smaller than 50 nm. Moreover, the contracting and detaching behaviors of the liquid film can be effectively controlled by tuning the geometric parameters of the liquid film or pillar. In addition, the temperature effects on the dewetting and detaching of the metallic liquid film are also discussed. Our results show that one can exploit and effectively control the dewetting properties of metallic nanodroplets by decorating the surfaces with nanotube pillars. PMID:24487279
Metasurface Mirrors for External Control of Mie Resonances.
van de Groep, Jorik; Brongersma, Mark L
2018-06-13
The ability to control and structurally tune the optical resonances of semiconductor nanostructures has far-reaching implications for a wide range of optical applications, including photodetectors, (bio)sensors, and photovoltaics. Such control is commonly obtained by tailoring the nanostructure's geometry, material, or dielectric environment. Here, we combine insights from the field of coherent optics and metasurface mirrors to effectively turn Mie resonances on and off with high spatial control and in a polarization-dependent fashion. We illustrate this in an integrated device by manipulating the photocurrent spectra of a single-nanowire photodetector placed on a metasurface mirror. This approach can be generalized to control spectral, angle-dependent, absorption, and scattering properties of semiconductor nanostructures with an engineered metasurface and without a need to alter their geometric or materials properties.
Guo, Nan; Jiao, Ting
2011-08-01
To study the effect of surface organic modified nano-silicon-oxide (SiO(x)) on mechanical properties of A-2186 silicone elastomers. Surface organic modified nano-silicon-oxide (SiO(x)) was added into A-2186 silicone elastomers by weight percentage of 2%, 4% and 6%. The one without addition served as a control. Standard specimens were made according to American Society for Testing Materials (ASTM). Their tensile strength, elongation at break, tear strength, and Shore A hardness were measured. The results were analyzed statistically by SPSS 10.0 software package. The tensile strength in the experimental groups was significantly lower than the control group (P<0.001).The elongation in the experimental groups was lower than the control group, but there was no significant difference between the 2wt% group and the control group (P=0.068). The tear strength in both the 2wt= group and 4wt= group were higher than the control group, and the difference was statistically significant; in addition, the tear strength in 2wt= group was higher than 4wt= group, which also showed statistical significance (P<0.001). With the increase of the added amount of surface modified nano-SiO(x), Shore A hardness increased and there was significant difference among them (P<0.001). Adding surface modified nano-SiO(x) has an effect on mechanical properties of A-2186 silicone elastomer, when 2wt= and 4wt= are added, tear strength of A-2186 improves significantly, with an increase of Shore A hardness and an decrease of tensile strength.
NASA Astrophysics Data System (ADS)
Lone, Abdul Gaffar; Bhowmik, R. N.
2018-04-01
We have prepared α-Fe1.6Ga0.4O3 (Ga doped α-Fe2O3) system in rhombohedral phase. The material has shown room temperature ferroelectric and ferromagnetic properties. The existence of magneto-electric coupling at room temperature has been confirmed by the experimental observation of magnetic field controlled electric properties and electric field controlled magnetization. The current-voltage characteristics were controlled by external magnetic field. The magnetic state switching and exchange bias effect are highly sensitive to the polarity and ON and OFF modes of external electric field. Such materials can find novel applications in magneto-electronic devices, especially in the field of electric field controlled spintronics devices and energy storage devices which need low power consumption.
Electronic properties of T graphene-like C-BN sheets: A density functional theory study
NASA Astrophysics Data System (ADS)
Majidi, R.
2015-11-01
We have used density functional theory to study the electronic properties of T graphene-like C, C-BN and BN sheets. The planar T graphene with metallic property has been considered. The results show that the presence of BN has a considerable effect on the electronic properties of T graphene. The T graphene-like C-BN and BN sheets show semiconducting properties. The energy band gap is increased by enhancing the number of BN units. The possibility of opening and controlling band gap opens the door for T graphene in switchable electronic devices.
Preparation and properties of polytetrafluoroethylene impregnated with rhenium oxides
NASA Technical Reports Server (NTRS)
Leibecki, H. F.; Easter, R. W.
1973-01-01
The results of tests carried out to determine the properties of polytetrafluorethylene (PTFE) impregnated with rhenium oxides are presented. The tests included measurement of physical properties of the impregnated material and investigation of the effects of preparation process variables. Based on the latter tests a mechanism to describe the permeation process is postulated which identifies the rate controlling step to be diffusion of ReF6 molecules into the solid during the initial ReF6 soak. Physical property tests indicated that the electronic conductance is increased by many orders of magnitude while the desirable properties of the PTFE remain virtually unchanged.
Controlling Defects in Graphene for Optimizing the Electrical Properties of Graphene Nanodevices
2015-01-01
Structural defects strongly impact the electrical transport properties of graphene nanostructures. In this Perspective, we give a brief overview of different types of defects in graphene and their effect on transport properties. We discuss recent experimental progress on graphene self-repair of defects, with a focus on in situ transmission electron microscopy studies. Finally, we present the outlook for graphene self-repair and in situ experiments. PMID:25864552
Mukherjee, A; Lal, R; Zimmerman, A R
2014-07-15
Short and long-term impacts of biochar on soil properties under field conditions are poorly understood. In addition, there is a lack of field reports of the impacts of biochar on soil physical properties, gaseous emissions and C stability, particularly in comparison with other amendments. Thus, three amendments - biochar produced from oak at 650°C, humic acid (HA) and water treatment residual - (WTR) were added to a scalped silty-loam soil @ 0.5% (w/w) in triplicated plots under soybean. Over the 4-month active growing season, all amendments significantly increased soil pH, but the effect of biochar was the greatest. Biochar significantly increased soil-C by 7%, increased sub-nanopore surface area by 15% and reduced soil bulk density by 13% compared to control. However, only WTR amendment significantly increased soil nanopore surface area by 23% relative to the control. While total cumulative CH4 and CO2 emissions were not significantly affected by any amendment, cumulative N2O emission was significantly decreased in the biochar-amended soil (by 92%) compared to control over the growing period. Considering both the total gas emissions and the C removed from the atmosphere as crop growth and C added to the soil, WTR and HA resulted in net soil C losses and biochar as a soil C gain. However, all amendments reduced the global warming potential (GWP) of the soil and biochar addition even produced a net negative GWP effect. The short observation period, low application rate and high intra-treatment variation resulted in fewer significant effects of the amendments on the physicochemical properties of the soils than one might expect indicating further possible experimentation altering these variables. However, there was clear evidence of amendment-soil interaction processes affecting both soil properties and gaseous emissions, particularly for biochar, that might lead to greater changes with additional field emplacement time. Copyright © 2014 Elsevier B.V. All rights reserved.
Antibacterial and physical properties of EGCG-containing glass ionomer cements.
Hu, Jieqiong; Du, Xijin; Huang, Cui; Fu, Dongjie; Ouyang, Xiaobai; Wang, Yake
2013-10-01
To evaluate the effect of the addition of epigallocatechin-3-gallate (EGCG) on the antibacterial and physical properties of glass ionomer cement (GIC). A conventional GIC, Fuji IX, was used as a control. EGCG was incorporated into GIC at 0.1% (w/w) and used as the experimental group. Chlorhexidine (CHX) was added into GIC at 1% (w/w) as a positive control. The anti-biofilm effect of the materials was assessed by a colorimetric technique (MTT assay) and scanning electron microscopy (SEM). The leaching antibacterial activity of the materials on Streptococcus mutans was evaluated by an agar-diffusion test. The flexural strength of the materials was evaluated using a universal testing machine and the surface microhardness was measured using a microhardness tester. The fluoride-releasing property of the materials was tested by ion chromatography. The optical density (OD) values of the GIC-EGCG group were significantly decreased at 4h compared with the GIC group, but only a slightly decreased tendency was observed at 24h (P>0.05). No inhibition zones were detected in the GIC group during the study period. Significant differences were found between each group (P<0.05). Compared with the control group, there was a significant increase in the flexural strength and surface microhardness for the GIC-EGCG group (P<0.05). The fluoride ion release was not influenced by EGCG-incorporation (P>0.05). These findings suggested that GIC-containing 0.1% (w/w) EGCG is a promising restorative material with improved mechanical properties and a tendency towards preferable antibacterial properties. Modification of the glass ionomer cements with EGCG to improve the antibacterial and physical properties showed some encouraging results. This suggested that the modification of GIC with EGCG might be an effective strategy to be used in the dental clinic. However, this was only an in vitro study and clinical trials would need to verify true outcomes. Copyright © 2013 Elsevier Ltd. All rights reserved.
Miranda, Ranulfo Benedito de Paula; Miranda, Walter Gomes; Lazar, Dolores Ribeiro Ricci; Ussui, Valter; Marchi, Juliana; Cesar, Paulo Francisco
2018-02-01
To investigate the effect of titania addition (0, 10 and 30mol%) on the microstructure, relative density, Young's modulus (E), Poisson's ratio (υ), mechanical properties (flexural strength, σ f , and Weibull modulus, m) of a Y-TZP/TiO 2 composite. The effect of the presence of a biomimetic coating on the microstructure and mechanical properties was also evaluated. Y-TZP (3mol% of yttria) and Y-TZP/TiO 2 composite (10 or 30mol% of titania) were synthesized by co-precipitation. The powders were pressed and sintered at 1400°C/2h. The surfaces, with and without biomimetic coating, were characterized by X-ray diffraction analysis and scanning electron microscopy. The relative density was measured by the Archimedes' principle. E and υ were measured by ultrasonic pulse-echo method. For the mechanical properties the specimens (n=30 for each group) were tested in a universal testing machine. Titania addition increased the grain size of the composite and caused a significant decrease in the flexural strength (in MPa, control 815.4 a ; T10 455.7 b and T30 336.0 c ), E (in GPa, control 213.4 a ; T10 155.8 b and T30 134.0 c ) and relative density (control 99.0% a ; T10 94.4% c and T30 96.3% b ) of the Y-TZP/TiO 2 composite. The presence of 30% titania caused substantial increase in m and υ. Biomimetic coating did not affect the mechanical properties of the composite. The Y-TZP/TiO 2 composite coated with a layer of CaP has great potential to be used as implant material. Although addition of titania affected the properties of the composite, the application of a biomimetic coating did not jeopardize its reliability. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Hunter, Shawn A; Noyes, Frank R; Haridas, Balakrishna; Levy, Martin S; Butler, David L
2003-12-15
Meniscus transplantation frequently is one of the only options available for treating symptomatic younger patients with tibiofemoral pain and early arthrosis after a prior meniscectomy. However, clinical results indicate that current meniscal allografts may undergo degenerative changes due to enzymatic degradation during the remodeling phase. The objective of this study was to evaluate the effects of glutaraldehyde-induced matrix stabilization on the material properties of porcine meniscus prior to surgical implantation. Protocols for fabricating heart-valve replacements were examined, followed by an exploration of the effects of reducing glutaraldehyde concentration and exposure time. Cylindrical meniscus specimens were tested in uniaxial confined compression under a 0.196 MPa compressive stress, and aggregate modulus (H(A)), permeability (k), and compressive strains at equilibrium (epsilon(eq)) were calculated from the creep response. Compared to controls, the mean values for H(A) and k increased, on average, by 213 and 709%, respectively, and epsilon(eq) decreased by 57% for all "heart-valve" treatments. Reducing tissue exposure time to glutaraldehyde had little effect, but decreasing glutaraldehyde concentration to 0.02% resulted in tissues with material properties no different from the untreated controls. We conclude that minimal concentrations of glutaraldehyde (less than 0.2%) should be used in future studies to preserve normal meniscus properties. Copyright 2003 Wiley Periodicals, Inc. J Biomed Mater Res 67A: 1245-1254, 2003
Thermoelectric properties of hole-doped SrTiO3 thin films
NASA Astrophysics Data System (ADS)
Ferreiro-Vila, Elias; Sarantopoulos, Alexandros; Leboran, Victor; Bui, Cong-Tinh; Rivadulla, Francisco; Condense matter Chemistry Group Team
2014-03-01
Two dimensional conductors are expected to show an improved thermoelectric performance due the positive effect of quantum confinement on the thermoelectric power, and the decrease of thermal conductivity by interface boundary scattering. The recent report of a large increase of the thermoelectric power in quantum wells of Nb-doped SrTiO3 (STO) seems to be in agreement with this hypothesis. However, extrinsic effects like the existence of oxygen vacancies that propagate away from the interface cannot be ruled out, and the results are far from clear. Here we will show the thermoelectric properties (electrical conductivity, Seebeck coefficient, and Hall effect), of epitaxial thin-films of (La,Nb)-doped STO. The films have been deposited by PLD on different substrates (STO, LAO...) to study the effect of tensile/compressive stress on the thermoelectric properties of the system. The oxygen pressure during the deposition was carefully controlled to tune the amount of oxygen vacancies and to compare with the cation doping. We have performed a systematic study of the transport properties as a function of thickness and doping, which along with the effect of stress, allows to understand the effect of charge density and dimensionality in an oxide system with promising thermoelectric properties.
Choi, Yun-Sang; Choi, Ji-Hun; Han, Doo-Jeong; Kim, Hack-Youn; Lee, Mi-Ai; Jeong, Jong-Youn; Chung, Hai-Jung; Kim, Cheon-Jei
2010-03-01
The effects of substituting olive, grape seed, corn, canola, or soybean oil and rice bran fiber on the chemical composition, cooking characteristics, fatty acid composition, and sensory properties of low-fat frankfurters were investigated. Ten percent of the total fat content of frankfurters with a total fat content of 30% (control) was partially replaced by one of the vegetable oils to reduce the pork fat content by 10%. The moisture and ash content of low-fat frankfurters with vegetable oil and rice bran fiber were all higher than the control (P<0.05). Low-fat frankfurters had reduced-fat content, energy values, cholesterol and trans-fat levels, and increased pH, cooking yield and TBA values compared to the controls (P<0.05). Low-fat frankfurters with reduced-fat content plus rice bran fiber had sensory properties similar to control frankfurters containing pork fat. Crown Copyright 2009. Published by Elsevier Ltd. All rights reserved.
Effects of Grain Size on the Fatigue Properties in Cold-Expanded Austenitic HNSs
NASA Astrophysics Data System (ADS)
Shin, Jong-Ho; Kim, Young-Deak; Lee, Jong-Wook
2018-05-01
Cold-expanded austenitic high nitrogen steel (HNS) was subjected to investigate the effects of grain size on the stress-controlled high cycle fatigue (HCF) as well as the strain-controlled low cycle fatigue (LCF) properties. The austenitic HNSs with two different grain sizes (160 and 292 μm) were fabricated by the different hot forging strain. The fine-grained (FG) specimen exhibited longer LCF life and higher HCF limit than those of the coarse-grained (CG) specimen. Fatigue crack growth testing showed that crack propagation rate in the FG specimen was the same as that in the CG specimen, implying that crack propagation rate did not affect the discrepancy of LCF life and HCF limit between two cold-expanded HNSs. Therefore, it was estimated that superior LCF and HCF properties in the FG specimen resulted from the retardation of the fatigue crack initiation as compared with the CG specimen. Transmission electron microscopy showed that the effective grain size including twin boundaries are much finer in the FG specimen than that in the CG specimen, which can give favorable contributions to strengthening.
Investigation of fabrication and environmental effects on bioceramic bone scaffolds
NASA Astrophysics Data System (ADS)
Vivanco Morales, Juan Francisco
2011-12-01
Bioactive ceramic materials like tricalcium phosphates (TCP) have been emerging as viable material alternatives to the current therapies of bone scaffolding to target fracture healing and osteoporosis. Once scaffolds are implanted at the defect site they should provide mechanical and biological functions, ultimately serving to facilitate with surrounding native tissue. Optimal osteogenic signal expression and subsequent differentiation of cells seeded on the scaffold in both in vivo and in vitro conditions is known to be influenced by scaffold properties and biomechanical environmental conditions. Thus, the objective of this research was to investigate the effect of fabrication and environmental variables on the properties of bioceramic scaffolds for bone tissue engineering applications. Specifically, the effect of sintering temperature in the range of 950°C -1150°C of a cost-effective on a large scale manufacturing process, on the physical and mechanical properties of bioceramic bone scaffolds, was investigated. In addition, the effect of a controlled environment was investigated by implementing a bioreactor and bone loading system to study the response of ex vivo trabecular bone to compressive load while perfused with culture medium. Collectively, this thesis demonstrates that: (1) the sintering temperature to fabricate bioceramic scaffolds can be tuned to structural properties, and (2) the use of a controlled mechanical and biochemical environment can enhance bone tissue development. These findings support the development of clinically successful bioceramic scaffolds that may stimulate bone regeneration and scaffold integration while providing structural integrity.
de Castro, Ricardo Dias; Mota, Ana Carolina Loureiro Gama; de Oliveira Lima, Edeltrudes; Batista, André Ulisses Dantas; de Araújo Oliveira, Julyana; Cavalcanti, Alessandro Leite
2015-04-28
Given the high prevalence of oral candidiasis and the restricted number of antifungal agents available to control infection, this study investigated the in vitro antifungal activity of alcohol vinegar on Candida spp. and its effect on the physical properties of acrylic resins. Tests to determine the Minimum Inhibitory Concentration (MIC) and Minimum Fungicidal Concentration (MFC) of vinegar alcohol (0.04 g/ml of acetic acid) and nystatin (control) were performed. The antifungal activity of alcohol vinegar was assessed through microbial growth kinetic assays and inhibition of Candida albicans adhesion to acrylic resin at different intervals of time. Surface roughness and color of the acrylic resin were analyzed using a roughness meter and color analyzer device. Alcohol vinegar showed MIC75% and MFC62.5% of 2.5 mg/ml, with fungicidal effect from 120 min, differing from nystatin (p < 0.0001), which showed fungistatic effect. Alcohol vinegar caused greater inhibition of C. albicans adhesion to the acrylic resin (p ≤ 0.001) compared to nystatin and did not change the roughness and color parameters of the material. Alcohol vinegar showed antifungal properties against Candida strains and caused no physical changes to the acrylic resin.
NASA Astrophysics Data System (ADS)
Shih, Grace Hwei-Pyng
Nanostructured composites are attracting intense interest for electronic and optoelectronic device applications, specifically as active elements in thin film photovoltaic (PV) device architectures. These systems implement fundamentally different concepts of enhancing energy conversion efficiencies compared to those seen in current commercial devices. This is possible through considerable flexibility in the manipulation of device-relevant properties through control of the interplay between the nanostructure and the optoelectronic response. In the present work, inorganic nanocomposites of semiconductor Ge embedded in transparent conductive indium tin oxide (ITO) as well as Ge in zinc oxide (ZnO) were produced by a single step RF-magnetron sputter deposition process. It is shown that, by controlling the design of the nanocomposites as well as heat treatment conditions, decreases in the physical dimensions of Ge nanophase size provided an effective tuning of the optical absorption and charge transport properties. This effect of changes in the optical properties of nanophase semiconductors with respect to size is known as the quantum confinement effect. Variation in the embedding matrix material between ITO and ZnO with corresponding characterization of optoelectronic properties exhibit notable differences in the presence and evolution of an interfacial oxide within these composites. Further studies of interfacial structures were performed using depth-profiling XPS and Raman spectroscopy, while study of the corresponding electronic effects were performed using room temperature and temperature-dependent Hall Effect. Optical absorption was noted to shift to higher onset energies upon heat treatment with a decrease in the observed Ge domain size, indicating quantum confinement effects within these systems. This contrasts to previous investigations that have involved the introduction of nanoscale Ge into insulating, amorphous oxides. Comparison of these different matrix chemistries highlights the overarching role of interfacial structures on quantum-size characteristics. The opportunity to tune the spectral response of these PV materials, via control of semiconductor phase assembly in the nanocomposite, directly impacts the potential for the use of these materials as sensitizing elements for enhanced solar cell conversion efficiency.
Changes in antioxidant activity and phenolic acid composition of tarhana with steel-cut oats.
Kilci, A; Gocmen, D
2014-02-15
Steel-cut oats (SCO) was used to replace wheat flour in the tarhana formulation (control) at the levels of 10%, 20%, 30% and 40% (w/w). Control sample included no SCO. Substitution of wheat flour in tarhana formulation with SCO affected the mineral contents positively. SCO additions also increased phenolic acid contents of tarhana samples. The most abundant phenolic acids were ferulic and vanillic acids, followed by syringic acid in the samples with SCO. Tarhana samples with SCO also showed higher antioxidant activities than the control. Compared with the control, the total phenolic content increased when the level of SCO addition was increased. SCO addition did not have a deteriorative effect on sensory properties of tarhana samples and resulted in acceptable soup properties in terms of overall acceptability. SCO addition improved the nutritional and functional properties of tarhana by causing increases in antioxidant activity, phenolic content and phenolic acids. Copyright © 2013 Elsevier Ltd. All rights reserved.
Nonclassical Properties of Q-Deformed Superposition Light Field State
NASA Technical Reports Server (NTRS)
Ren, Min; Shenggui, Wang; Ma, Aiqun; Jiang, Zhuohong
1996-01-01
In this paper, the squeezing effect, the bunching effect and the anti-bunching effect of the superposition light field state which involving q-deformation vacuum state and q-Glauber coherent state are studied, the controllable q-parameter of the squeezing effect, the bunching effect and the anti-bunching effect of q-deformed superposition light field state are obtained.
Jang, Jinhyeong; Hong, Jisu; Cha, Chaenyung
2017-05-01
Graphene oxide (GO) is increasingly investigated as a reinforcing nanofiller for various hydrogels for biomedical applications for its superior mechanical strength. However, the reinforcing mechanism of GO in different hydrogel conditions has not been extensively explored and elucidated to date. Herein, we systematically examine the effects of various types of precursor molecules (monomers vs. macromers) as well as mode of GO incorporation (physical vs. covalent) on the mechanical properties of resulting composite hydrogels. Two hydrogel types, (1) polyacrylamide hydrogels with varying concentrations of acrylamide monomers and (2) poly(ethylene glycol) (PEG) hydrogels with varying molecular weights of PEG macromers, are used as model systems. In addition, incorporation of GO is also controlled by using either unmodified GO or methacrylic GO (MGO) which allows for covalent incorporation. The results in this study demonstrate that the interaction between GO and the surrounding network and its effect on the mechanical properties (i.e. rigidity and toughness) of composite hydrogels are highly dependent on both the type and concentration of precursors and the mode of crosslinking. We expect this study will provide an important guideline for future research efforts on controlling the mechanical properties of GO-based composite hydrogels. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhao, Ziwen; Cheng, Xueli; He, Ting; Xue, Fei; Zhang, Wei; Chen, Na; Wen, Jianxiang; Zeng, Xianglong; Wang, Tingyun
2017-09-01
Effect of controlling recrystallization from the melt (1000 °C) on the residual stress and structural properties of a Ge core fiber via molten core drawing (MCD) method is investigated. Ge core fibers is investigated using Raman spectroscopy, scanning electron microscope (SEM), and X-ray diffraction (XRD). Compared with the as-drawn Ge fiber, the Raman peak of the recrystallized Ge fiber shift from 300 cm-1 to 300.6 cm-1 and full width at half maximum (FWHM) decreased from 5.36 cm-1 to 4.48 cm-1. The Ge crystal grains which sizes are of 200-600 nm were formed during the process of recrystallization; the XRD peak of (1 1 1) plane is observed after recrystallization. These results show that controlling recrystallization allows the release of the thermal stress, and improvement of the crystal quality of Ge core.
Impact of drought on crime in California: A synthetic control approach.
Goin, Dana E; Rudolph, Kara E; Ahern, Jennifer
2017-01-01
Climate and weather have been linked to criminal activity. The connection between climatological conditions and crime is of growing importance as we seek to understand the societal implications of climate change. This study describes the mechanisms theorized to link annual variations in climate to crime in California and examines the effect of drought on statewide crime rates from 2011-2015. California has suffered severe drought since 2011, resulting in intensely dry winters and several of the hottest days on record. It is likely that the drought increased economic stress and shifted routine activities of the population, potentially increasing the likelihood of crime. We used a synthetic control method to estimate the impact of California's drought on both property and violent crimes. We found a significant increase in property crimes during the drought, but no effect on violent crimes. This result was robust to several sensitivity analyses, including a negative control.
Impact of drought on crime in California: A synthetic control approach
Rudolph, Kara E.; Ahern, Jennifer
2017-01-01
Climate and weather have been linked to criminal activity. The connection between climatological conditions and crime is of growing importance as we seek to understand the societal implications of climate change. This study describes the mechanisms theorized to link annual variations in climate to crime in California and examines the effect of drought on statewide crime rates from 2011–2015. California has suffered severe drought since 2011, resulting in intensely dry winters and several of the hottest days on record. It is likely that the drought increased economic stress and shifted routine activities of the population, potentially increasing the likelihood of crime. We used a synthetic control method to estimate the impact of California’s drought on both property and violent crimes. We found a significant increase in property crimes during the drought, but no effect on violent crimes. This result was robust to several sensitivity analyses, including a negative control. PMID:28977002
Yılmaz, Ismail
2004-06-01
Rye bran was used as a fat substitute in the production of meatballs. The effect of rye bran addition on the fatty acid composition, trans fatty acids, total fat, some physico-chemical and sensory properties of the samples was studied. Meatballs were produced with four different formulations including 5%, 10%, 15% and 20% rye bran addition. Control samples were formulated with 10% fat addition. Meatballs containing rye bran had lower concentrations of total fat and total trans fatty acids than the control samples. Meatballs made with addition of 20% rye bran had the highest protein, ash contents, L value (lightness), b value (yellowness), and the lowest moisture, salt content and weight losses and a value (redness). There was a significant difference among the meatball samples in respect to sensory properties and 5%, 10% rye bran added meatballs and control samples had high acceptability.
Development of a Hot Working Steel Based on a Controlled Gas-Metal-Reaction
NASA Astrophysics Data System (ADS)
Ritzenhoff, Roman; Gharbi, Mohammad Malekipour
As a result of cost sensitiveness, the demand on hot working steels with advanced characteristics and properties are ascending. We have used a controlled gas-metal-reaction in a P-ESR furnace to produce high quality hot working steel. These types of materials are also known as High Nitrogen Steels (HNS). An overview of the development in a pressurized induction furnace to the final industrial scale using P-ESR will be provided. Different heat treatment strategies are conducted and their effect on mechanical properties is investigated.
Retrieval of all effective susceptibilities in nonlinear metamaterials
NASA Astrophysics Data System (ADS)
Larouche, Stéphane; Radisic, Vesna
2018-04-01
Electromagnetic metamaterials offer a great avenue to engineer and amplify the nonlinear response of materials. Their electric, magnetic, and magnetoelectric linear and nonlinear response are related to their structure, providing unprecedented liberty to control those properties. Both the linear and the nonlinear properties of metamaterials are typically anisotropic. While the methods to retrieve the effective linear properties are well established, existing nonlinear retrieval methods have serious limitations. In this work, we generalize a nonlinear transfer matrix approach to account for all nonlinear susceptibility terms and show how to use this approach to retrieve all effective nonlinear susceptibilities of metamaterial elements. The approach is demonstrated using sum frequency generation, but can be applied to other second-order or higher-order processes.
Dynamic Control over the Optical Transmission of Nanoscale Dielectric Metasurface by Alkali Vapors.
Bar-David, Jonathan; Stern, Liron; Levy, Uriel
2017-02-08
In recent years, dielectric and metallic nanoscale metasurfaces are attracting growing attention and are being used for variety of applications. Resulting from the ability to introduce abrupt changes in optical properties at nanoscale dimensions, metasurfaces enable unprecedented control over light's different degrees of freedom, in an essentially two-dimensional configuration. Yet, the dynamic control over metasurface properties still remains one of the ultimate goals of this field. Here, we demonstrate the optical resonant interaction between a form birefringent dielectric metasurface made of silicon and alkali atomic vapor to control and effectively tune the optical transmission pattern initially generated by the nanoscale dielectric metasurface. By doing so, we present a controllable metasurface system, the output of which may be altered by applying magnetic fields, changing input polarization, or shifting the optical frequency. Furthermore, we also demonstrate the nonlinear behavior of our system taking advantage of the saturation effect of atomic transition. The demonstrated approach paves the way for using metasurfaces in applications where dynamic tunability of the metasurface is in need, for example, for scanning systems, tunable focusing, real time displays, and more.
Liu, Fei; Jiang, Yanfeng; Du, Bingjian; Chai, Zhi; Jiao, Tong; Zhang, Chunyue; Ren, Fazheng; Leng, Xiaojing
2013-06-19
This paper describes an investigation into the properties of a doubly emulsified film incorporated with protein-polysaccharide microcapsules, which serves as a multifunctional food packaging film prepared using common edible materials in place of petroleum--based plastics. The relationships between the microstructural properties and controlled release features of a series of water-in-oil-in-water (W/O/W) microcapsulated edible films prepared in thermodynamically incompatible conditions were analyzed. The hydrophilic riboflavin (V(B2)) nano-droplets (13-50 nm) dispersed in α-tocopherol (V(E)) oil phase were embedded in whey protein-polysaccharide (WPs) microcapsules with a shell thickness of 20-56 nm. These microcapsules were then integrated in 103 μm thick WPs films. Different polysaccharides, including gum arabic (GA), low-methoxyl pectin (LMP), and κ-carrageenan (KCG), exhibited different in vitro synergistic effects on the ability of both films to effect enteric controlled release of both vitamins. GA, which showed a strong emulsifying ability, also showed better control of V(E) than other polysaccharides, and the highly charged KCG showed better control of V(B2) than GA did.
NASA Astrophysics Data System (ADS)
Hansen, A. M.; Kraus, T. E. C.; Pellerin, B. A.; Fleck, J.
2014-12-01
Many studies use optical properties to infer dissolved organic matter (DOM) composition and origin; however, there are few controlled studies which examine the effects of environmental processing on different DOM sources. Our goal was to better understand the roles DOM plays in wetland environments of the Sacramento-San Joaquin Delta. Therefore, five endmember sources of DOM from this region were selected for use in this study: peat soil (euic, thermic Typic Medisaprists); three aquatic macrophytes (white rice (Oryza sativa); tule (Schoenoplectus acutus); cattail (Typha spp.)); and one diatom (Thalassiosira weissflogii). We measured DOM concentrations (mg C/L) and optical properties (absorbance and fluorescence) of these sources following biological and photochemical degradation over a three month period. DOM concentration decreased by over 90% in plant and algal leachates following 3 months of biodegradation, while photoexposure had negligible effects. The fluorescence index (FI), humic index (HI), specific UV absorbance at 254 nm (SUVA), and carbon-normalized fluorescence of Peaks C and A increased with biodegradation, whereas Peak T decreased. Photoexposure resulted in a decrease of the FI, HI and SUVA values. Our results emphasize the need to better understand how environmental processing affects DOM properties in aquatic environments; the frequently opposing effects of biodegradation and photodegradation, which occur simultaneously in nature, make it challenging to decipher the original DOM source without considering multiple parameters. This dataset can help us better identify which optical properties, either individual or in combination, can provide insight into how biogeochemical processes affect DOM in aquatic environments.
NASA Astrophysics Data System (ADS)
Schümann, M.; Morich, J.; Kaufhold, T.; Böhm, V.; Zimmermann, K.; Odenbach, S.
2018-05-01
Magnetorheological elastomers are a type of smart hybrid material which combines elastic properties of a soft elastomer matrix with magnetic properties of magnetic micro particles. This leads to a material with magnetically controllable mechanical properties of which the magnetorheological effect is the best known. The addition of electroconductive particles to the polymer mix adds electrical properties to the material behaviour. The resulting electrical resistance of the sample can be manipulated by external magnetic fields and mechanical loads. This results in a distinct interplay of mechanical, electrical and magnetic effects with a highly complex time behaviour. In this paper a mechanical characterisation on multiple time scales was conducted to get an insight on the short and long-term electrical and mechanical behaviour of this novel material. The results show a complex resistivity behaviour on several timescales, sensitive to magnetic fields and strain velocity. The observed material exhibits fatigue and relaxation behaviour, whereas the magnetorheological effect appears not to interfere with the piezoresistive properties.
NASA Technical Reports Server (NTRS)
Mcdanels, D. L.; Hoffman, C. A.
1984-01-01
Composite panels containing up to 40 vol % discontinuous silicon carbide SiC whisker, nodule, or particulate reinforcement in several aluminum matrices are commercially fabricated and the mechanical properties and microstructual characteristics are evaluated. The yield and tensile strengths and the ductility are controlled primarily by the matrix alloy, the temper condition, and the reinforcement content. Particulate and nodule reinforcements are as effective as whisker reinforcement. Increased ductility is attributed to purer, more uniform starting materials and to more mechanical working during fabrication. Comparing mechanical properties with those of other aluminum alloys shows that these low cost, lightweight composites demonstrate very good potential for application to aerospace structures.
NASA Astrophysics Data System (ADS)
Kim, Do-Kyung; Lee, Gyu-Jeong; Lee, Jae-Hyun; Kim, Min-Hoi; Bae, Jin-Hyuk
2018-05-01
We suggest a viable surface control method to improve the electrical properties of organic nonvolatile memory transistors. For viable surface control, the surface of the ferroelectric insulator in the memory field-effect transistors was modified using a smooth-contact-curing process. For the modification of the ferroelectric polymer, during the curing of the ferroelectric insulators, the smooth surface of a soft elastomer contacts intimately with the ferroelectric surface. This smooth-contact-curing process reduced the surface roughness of the ferroelectric insulator without degrading its ferroelectric properties. The reduced roughness of the ferroelectric insulator increases the mobility of the organic field-effect transistor by approximately eight times, which results in a high memory on–off ratio and a low-voltage reading operation.
Toodehzaeim, Mohammad Hossein; Zandi, Hengameh; Meshkani, Hamidreza; Hosseinzadeh Firouzabadi, Azadeh
2018-01-01
Statement of the Problem: Orthodontic appliances facilitate microbial plaque accumulation and increase the chance of white spot lesions. There is a need for new plaque control methods independent of patient's cooperation. Purpose: The aim of this study was to determine the effects of incorporating copper oxide (CuO) nanoparticles on antimicrobial properties and bond strength of orthodontic adhesive. Materials and Method: CuO nanoparticles were added to the composite transbond XT at concentrations of 0.01, 0.5 and 1 wt.%. To evaluate the antimicrobial properties of composites containing nanoparticles, the disk agar diffusion test was used. For this purpose, 10 discs from each concentration of nano-composites (totally 30 discs) and 10 discs from conventional composite (as the control group) were prepared. Then the diameter of streptococcus mutans growth inhibition around each disc was determined in blood agar medium. To evaluate the shear bond strength, with each concentration of nano-composites as well as the control group (conventional composite), 10 metal brackets were bonded to the human premolars and shear bond strength was determined using a universal testing machine. Results: Nano-composites in all three concentrations showed significant antimicrobial effect compared to the control group (p< 0.001). With increasing concentration of nanoparticles, antimicrobial effect showed an upward trend, although statistically was not significant. There was no significant difference between the shear bond strength of nano-composites compared to control group (p= 0.695). Conclusion: Incorporating CuO nanoparticles into adhesive in all three studied concentrations added antimicrobial effects to the adhesive with no adverse effects on shear bond strength. PMID:29492409
Toodehzaeim, Mohammad Hossein; Zandi, Hengameh; Meshkani, Hamidreza; Hosseinzadeh Firouzabadi, Azadeh
2018-03-01
Orthodontic appliances facilitate microbial plaque accumulation and increase the chance of white spot lesions. There is a need for new plaque control methods independent of patient's cooperation. The aim of this study was to determine the effects of incorporating copper oxide (CuO) nanoparticles on antimicrobial properties and bond strength of orthodontic adhesive. CuO nanoparticles were added to the composite transbond XT at concentrations of 0.01, 0.5 and 1 wt.%. To evaluate the antimicrobial properties of composites containing nanoparticles, the disk agar diffusion test was used. For this purpose, 10 discs from each concentration of nano-composites (totally 30 discs) and 10 discs from conventional composite (as the control group) were prepared. Then the diameter of streptococcus mutans growth inhibition around each disc was determined in blood agar medium. To evaluate the shear bond strength, with each concentration of nano-composites as well as the control group (conventional composite), 10 metal brackets were bonded to the human premolars and shear bond strength was determined using a universal testing machine. Nano-composites in all three concentrations showed significant antimicrobial effect compared to the control group ( p < 0.001). With increasing concentration of nanoparticles, antimicrobial effect showed an upward trend, although statistically was not significant. There was no significant difference between the shear bond strength of nano-composites compared to control group ( p = 0.695). Incorporating CuO nanoparticles into adhesive in all three studied concentrations added antimicrobial effects to the adhesive with no adverse effects on shear bond strength.
Thermal control of electroosmotic flow in a microchannel through temperature-dependent properties.
Kwak, Ho Sang; Kim, Hyoungsoo; Hyun, Jae Min; Song, Tae-Ho
2009-07-01
A numerical investigation is conducted on the electroosmotic flow and associated heat transfer in a two-dimensional microchannel. The objective of this study is to explore a new conceptual idea that is control of an electroosmotic flow by using a thermal field effect through the temperature-dependent physical properties. Two exemplary problems are examined: a flow in a microchannel with a constant vertical temperature difference between two horizontal walls and a flow in a microchannel with the wall temperatures varying horizontally in a sinusoidal manner. The results of numerical computations showed that a proper control of thermal field may be a viable means to manipulate various non-plug-like flow patterns. A constant vertical temperature difference across the channel produces a shear flow. The horizontally-varying thermal condition results in spatial variation of physical properties to generate fluctuating flow patterns. The temperature variation at the wall with alternating vertical temperature gradient induces a wavy flow.
Nadgorny, Milena; Gentekos, Dillon T; Xiao, Zeyun; Singleton, S Parker; Fors, Brett P; Connal, Luke A
2017-10-01
Molecular weight and dispersity (Ð) influence physical and rheological properties of polymers, which are of significant importance in polymer processing technologies. However, these parameters provide only partial information about the precise composition of polymers, which is reflected by the shape and symmetry of molecular weight distribution (MWD). In this work, the effect of MWD symmetry on thermal and rheological properties of polymers with identical molecular weights and Ð is demonstrated. Remarkably, when the MWD is skewed to higher molecular weight, a higher glass transition temperature (T g ), increased stiffness, increased thermal stability, and higher apparent viscosities are observed. These observed differences are attributed to the chain length composition of the polymers, easily controlled by the synthetic strategy. This work demonstrates a versatile approach to engineer the properties of polymers using controlled synthesis to skew the shape of MWD. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A perspective on CELSS control issues
NASA Technical Reports Server (NTRS)
Blackwell, Ann L.
1990-01-01
Some issues of Closed Ecological Life Support System (CELSS) analysis and design are effectively addressed from a systems control perspective. CELSS system properties that may be elucidated using control theory in conjunction with mathematical and simulation modeling are enumerated. The approach that is being taken to the design of a control strategy for the Crop Growth Research Chamber (CGRC) and the relationship of that approach to CELSS plant growth unit subsystems control is described.
Dust Emissions from Undisturbed and Disturbed, Crusted Playa Surfaces: Cattle Trampling Effect
USDA-ARS?s Scientific Manuscript database
Dry playa lake beds can be a significant source of fine dust emissions during high wind events in arid and semiarid landscapes. The physical and chemical properties of the playa surface control the amount and properties of the dust emitted. In this study, we use a field wind tunnel to quantify the...
USDA-ARS?s Scientific Manuscript database
Soil hydraulic properties, which control surface fluxes and storage of water and chemicals in the soil profile, vary in space and time. Spatial variability above the measurement scale (e.g., soil area of 0.07 m2 or support volume of 14 L) must be upscaled appropriately to determine “effective” hydr...
41 CFR 102-193.10 - What are the goals of the Federal Records Management Program?
Code of Federal Regulations, 2010 CFR
2010-07-01
... maintenance of management controls that prevent the creation of unnecessary records and promote effective and... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false What are the goals of the Federal Records Management Program? 102-193.10 Section 102-193.10 Public Contracts and Property...
``Effect of Polyalkylthiophene Microstructure on Physical and Optoelectronic Properties''
NASA Astrophysics Data System (ADS)
Minkler, Michael J., Jr.; Beckingham, Bryan S.
Conjugated polymers have been of widespread interest as flexible semiconductors for organic electronic devices such as solar cells, field effect transistor,s and light-emitting diodes. Of particular interest have been alkyl-substituted polythiophenes due to their well-controlled synthesis, favorable optoelectronic properties, and solubility in organic solvents. Importantly, relatively small changes to the chemical microstructure in poly(3-alkylthiophenes) (P3ATs) can have a significant effect on the resulting physical and optoelectronic properties. For instance, the addition of aliphatic side chains onto unsubstituted polythiophene provides solubility but also greatly decreases conductivity in comparison to unsubstituted polythiophene (PT). In this work, we use Grignard metathesis polymerization to synthesize poly(3-hexylthiophene) (P3HT), PT, and statistical copolymers (P[3HT-co-T]) over a range of compositions. We examine the physical properties (melting temperature, crystallinity, etc) by differential scanning calorimetry and wide angle X-ray scattering, optoelectronic properties by UV/Vis spectroscopy, and solubility in organic solvents of these copolymers in order to gain insights into the interplay of microstructure and properties in this class of materials.
Yang, Peng-Fei; Huang, Ling-Wei; Nie, Xiao-Tong; Yang, Yue; Wang, Zhe; Ren, Li; Xu, Hui-Yun; Shang, Peng
2018-06-01
The purpose of the present study was to characterize the dynamic alterations of bone composition parameters and mechanical properties to disuse and mechanical intervention. A tail suspension hindlimb unloading model and an in vivo axial tibia loading model in rats were used. A moderate mechanical loading that was capable of engendering 800 µε tibia strain was applied to the right tibia of rats in both control and hindlimb unloading group across 28 days of the experimental period. The contralateral tibia served as control. Hindlimb unloading led to bone loss in tibia from day 14. Bone mineral density, mineral content and mechanical properties responded differently with microstructure to disuse in timing course. Mechanical loading of 800 µε tibia strain failed to alter the bone of the control group, but minimized the detrimental effects of unloading by completely prohibiting the decrease of bone mineral content and main mechanical properties after 28 days. Less obvious influence of mechanical loading on bone microstructure was found. The moderate mechanical loading is not able to stimulate the mechanical response of healthy tibia, but indeed lead to discordant recovery of bone composition parameters and mechanical properties.
Self-organized magnetic particles to tune the mechanical behavior of a granular system
NASA Astrophysics Data System (ADS)
Cox, Meredith; Wang, Dong; Barés, Jonathan; Behringer, Robert P.
2016-09-01
Above a certain density a granular material jams. This property can be controlled by either tuning a global property, such as the packing fraction or by applying shear strain, or at the micro-scale by tuning grain shape, inter-particle friction or externally controlled organization. Here, we introduce a novel way to change a local granular property by adding a weak anisotropic magnetic interaction between particles. We measure the evolution of the pressure, P, and coordination number, Z, for a packing of 2D photo-elastic disks, subject to uniaxial compression. A fraction R m of the particles have embedded cuboidal magnets. The strength of the magnetic interactions between particles is too weak to have a strong direct effect on P or Z when the system is jammed. However, the magnetic interactions play an important role in the evolution of latent force networks when systems containing a large enough fraction of the particles with magnets are driven through unjammed to jammed states. In this case, a statistically stable network of magnetic chains self-organizes before jamming and overlaps with force chains once jamming occurs, strengthening the granular medium. This property opens a novel way to control mechanical properties of granular materials.
The effects of intrinsic properties and defect structures on the indentation size effect in metals
NASA Astrophysics Data System (ADS)
Maughan, Michael R.; Leonard, Ariel A.; Stauffer, Douglas D.; Bahr, David F.
2017-08-01
The indentation size effect has been linked to the generation of geometrically necessary dislocations that may be impacted by intrinsic materials properties, such as stacking fault energy, and extrinsic defects, such as statistically stored dislocations. Nanoindentation was carried out at room temperature and elevated temperatures on four different metals in a variety of microstructural conditions. A size effect parameter was determined for each material set combining the effects of temperature and existing dislocation structure. Extrinsic defects, particularly dislocation density, dominate the size effect parameter over those due to intrinsic properties such as stacking fault energy. A multi-mechanism description using a series of mechanisms, rather than a single mechanism, is presented as a phenomenological explanation for the observed size effect in these materials. In this description, the size effect begins with a volume scale dominated by sparse sources, next is controlled by the ability of dislocations to cross-slip and multiply, and then finally at larger length scales work hardening and recovery dominate the effect.
Exploring ways to control the properties of polymer thin films
NASA Astrophysics Data System (ADS)
Clough, Andrew R.
Understanding the causes of deviations from bulk-like properties observed in polymer thin films is of interest both from a fundamental standpoint and in order to tailor the properties of polymer thin films used by industry as coatings and in the production of microelectronic devices. As thicknesses are decreased below 100 nm, interfacial effects start to become important. In addition, a confinement effect occurs when the film thickness becomes comparable to the unperturbed size of the polymer chain. In this thesis, we modify polymer films in a controllable way in order to study how some of these properties may be related and potentially adjusted. One of these properties is the glass transition temperature, which is seen to vary with the film thickness for films thinner than 100 nm. While there appears to be a consensus that the variation is attributable to the interactions the polymer has with the film interfaces, important questions concerning how the observed changes may affect the onset of large scale, liquid-like motions in the films have been seldom investigated. We modify the substrate interface with grafted polymer chains, which is known to instill interfacial slippage, to investigate the relation, if any, between the glass transition temperature and large scale chain motions in the films. As another part of the effort to find ways to control the properties of polymer films, we study the effect of swelling films with solvents of different qualities. Studies have shown that modifying the solvent quality used when preparing films by spin-coating, in which solvent from a polymer solution is rapidly removed to form thin uniform films, can affect some properties by modifying the degree of inter-chain entanglement in the film. As it is often difficult to spin-coat films when the solvent is poor, we investigate whether solvent swelling can also be used to modify this entanglement. We find that solvent swelling is able to modify the degree of entanglement in the films. Most importantly, swelling with a poor solvent allows us to reduce the degree of inter-chain entanglement, bringing the film further from equilibrium.
Lezon, Christian; Bozzini, Clarisa; Agûero Romero, Alan; Pinto, Patricia; Champin, Graciela; Alippi, Rosa M; Boyer, Patricia; Bozzini, Carlos E
2016-05-01
Both undernutrition and hypoxia exert a negative influence on both growth pattern and bone mechanical properties in developing rats. The present study explored the effects of chronic food restriction on both variables in growing rats exposed to simulated high-altitude hypoxia. Male rats (n 80) aged 28 d were divided into normoxic (Nx) and hypoxic (Hx) groups. Hx rats were exposed to hypobaric air (380 mmHg) in decompression chambers. At T0, Nx and Hx rats were subdivided into four equal subgroups: normoxic control and hypoxic controls, and normoxic growth-restricted and hypoxic growth-restricted received 80 % of the amount of food consumed freely by their respective controls for a 4-week period. Half of these animals were studied at the end of this period (T4). The remaining rats in each group continued under the same environmental conditions, but food was offered ad libitum to explore the type of catch-up growth during 8 weeks. Structural bone properties (strength and stiffness) were evaluated in the right femur midshaft by the mechanical three-point bending test; geometric properties (length, cross-sectional area, cortical mass, bending cross-sectional moment of inertia) and intrinsic properties of the bone tissue (elastic modulus) were measured or derived from appropriate equations. Bone mineralisation was assessed by ash measurement of the left femur. These data indicate that the growth-retarded effects of diminished food intake, induced either by food restriction or hypoxia-related inhibition of appetite, generated the formation of corresponding smaller bones in which subnormal structural and geometric properties were observed. However, they seemed to be appropriate to the body mass of the animals and suggest, therefore, that the bones were not osteopenic. When food restriction was imposed in Hx rats, the combined effects of both variables were additive, inducing a further reduction of bone mass and bone load-carrying capacity. In all cases, the mechanical properties of the mineralised tissue were unaffected. This and the capacity of the treated bones to undergone complete catch-up growth with full restoration of the biomechanical properties suggest that undernutrition, under either Nx or Hx conditions, does not affect bone behaviour because it remains appropriate to its mechanical functions.
Heat treatment effect on the mechanical properties of industrial drawn copper wires
NASA Astrophysics Data System (ADS)
Beribeche, Abdellatif; Boumerzoug, Zakaria; Ji, Vincent
2013-12-01
In this present investigation, the mechanical properties of industrial drawn copper wires have been studied by tensile tests. The effect of prior heat treatments at 500°C on the drawn wires behavior was the main goal of this investigation. We have found that the mechanical behavior of drawn wires depends strongly on those treatments. SEM observations of the wire cross section after tensile tests have shown that the mechanism of rupture was mainly controlled by the void formation.
How clear-cutting affects fire severity and soil properties in a Mediterranean ecosystem.
Francos, Marcos; Pereira, Paulo; Mataix-Solera, Jorge; Arcenegui, Victoria; Alcañiz, Meritxell; Úbeda, Xavier
2018-01-15
Forest management practices in Mediterranean ecosystems are frequently employed to reduce both the risk and severity of wildfires. However, these pre-fire treatments may influence the effects of wildfire events on soil properties. The aim of this study is to examine the short-term effects of a wildfire that broke out in 2015 on the soil properties of three sites: two exposed to management practices in different years - 2005 (site M05B) and 2015 (site M15B) - and one that did not undergo any management (NMB) and to compare their properties with those recorded in a plot (Control) unaffected by the 2015 wildfire. We analyzed aggregate stability (AS), soil organic matter (SOM) content, total nitrogen (TN), carbon/nitrogen ratio (C/N), inorganic carbon (IC), pH, electrical conductivity (EC), extractable calcium (Ca), magnesium (Mg), sodium (Na), and potassium (K), microbial biomass carbon (C mic ) and basal soil respiration (BSR). In the managed plots, a clear-cutting operation was conducted, whereby part of the vegetation was cut and left covering the soil surface. The AS values recorded at the Control site were significantly higher than those recorded at M05B, whereas the TN and SOM values at NMB were significantly higher than those recorded at M05B. IC was significantly higher at M05B than at the other plots. There were no significant differences in C/N ratio between the analyzed sites. Soil pH at M05B was significantly higher than the value recorded at the Control plot. Extractable Ca was significantly higher at NMB than at both M05B and the Control, while extractable Mg was significantly lower at M05B than at NMB. Extractable K was significantly lower at the Control than at the three fire-affected plots. C mic was significantly higher at NMB than at the Control. BSR, BSR/C and BSR/C mic values at the fire-affected sites were significantly lower than those recorded at the Control. No significant differences were identified in C mic /C. Overall, a comparison of the pre-fire treatments showed that NMB was the practice that had the least negative effects on the soil properties studied, followed by M15B, and that fire severity was highest at M05B due to the accumulation of dead plant fuel. Copyright © 2017 Elsevier Ltd. All rights reserved.
Barrier properties of heat treated starch Pickering emulsions.
Sjöö, Malin; Emek, Sinan Cem; Hall, Tina; Rayner, Marilyn; Wahlgren, Marie
2015-07-15
There is a recognized technological need for delivery systems encapsulating lipophilic substances in food and pharmaceutical products. Pickering emulsions can provide well-defined and highly stable systems, but may not provide good enough barrier properties. Starch granules, recently being used for Pickering stabilization, have the advantage of the ability to swell during gelatinization. Hence, this property could be used to tune and control barrier properties. Oil-in-water Pickering emulsions stabilized by starch were subject to heat treatment at different conditions. The influence of temperature, time, and storage on emulsion drop characteristics was evaluated. In order to further evaluate the barrier properties, lipolysis using the pH-stat method was applied and the effect of starch concentration, treatment temperature, and preliminary oral conditions were also investigated. A better encapsulating barrier was obtained by starch swelling at the oil drop interface. This was seen as reduced lipase activity. The internal oil drop size remained intact and the starch was kept at the interface during heat treatment. The extent of swelling could be controlled by the heating conditions and had impact on the ability to prevent lipase transport through the starch barrier layer. Addition of α-amylase simulating oral digestion only had minor impact on the barrier effect. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Thenozhi, Suresh; Tang, Yu
2018-01-01
Frequency response functions (FRF) are often used in the vibration controller design problems of mechanical systems. Unlike linear systems, the FRF derivation for nonlinear systems is not trivial due to their complex behaviors. To address this issue, the convergence property of nonlinear systems can be studied using convergence analysis. For a class of time-invariant nonlinear systems termed as convergent systems, the nonlinear FRF can be obtained. The present paper proposes a nonlinear FRF based adaptive vibration controller design for a mechanical system with cubic damping nonlinearity and a satellite system. Here the controller gains are tuned such that a desired closed-loop frequency response for a band of harmonic excitations is achieved. Unlike the system with cubic damping, the satellite system is not convergent, therefore an additional controller is utilized to achieve the convergence property. Finally, numerical examples are provided to illustrate the effectiveness of the proposed controller.
Correlation effects in focused transmission through disordered media (Conference Presentation)
NASA Astrophysics Data System (ADS)
Hsu, Chia Wei; Liew, Seng Fatt; Goetschy, Arthur; Cao, Hui; Stone, A. Douglas
2017-02-01
By controlling the many degrees of freedom in the incident wavefront, one can manipulate wave propagation in complex structures. Such wavefront-shaping methods have been used extensively for controlling light transmitted into wavelength-scale regions (speckles), a property that is insensitive to correlations in the speckle pattern. Extending coherent control to larger regions is of great interest both scientifically and for applications such as optical communications, photothermal therapy, and the imaging of large objects within or behind a diffusive medium. However, waves diffusing through a disordered medium are known to exhibit non-local intensity correlations, and their effect on coherent control has not been fully understood. Here, we demonstrate the effects of correlations with wavefront-shaping experiments on a scattering sample of zinc oxide microparticles. Long-range correlations substantially increase the dynamic range of coherent control over light transmitted onto larger target regions, far beyond what would be achievable if correlations were negligible. This and other effects of correlations emerge when the number of speckles targeted, M2, exceeds the dimensionless conductance g. Using a filtered random matrix ensemble appropriate for describing coherent diffusion and the lateral spreading in an open geometry, we show analytically that M2/g appears as the controlling parameter in universal scaling laws for several statistical properties of interest--predictions that we quantitatively confirm with experimental data. Our work elucidates the roles of speckle correlations and provides a general theoretical framework for modeling open systems in wavefront-shaping experiments.
Effects of geometry and cell-matrix interactions on the mechanics of 3D engineered microtissues
NASA Astrophysics Data System (ADS)
Bose, Prasenjit; Eyckmans, Jeroen; Chen, Christopher; Reich, Daniel
Approaches to measure and control cell-extracellular matrix (ECM) interactions in a dynamic mechanical environment are important both for studies of mechanobiology and for tissue design for bioengineering applications. We have developed a microtissue-based platform capable of controlling the ECM alignment of 3D engineered microtissues while simultaneously permitting measurement of cellular contractile forces and the tissues' mechanical properties. The tissues self-assemble from cell-laden collagen gels placed in micro-fabricated wells containing sets of flexible elastic pillars. Tissue geometry and ECM alignment are controlled by the pillars' number, shape and location. Optical tracking of the pillars provides readout of the tissues' contractile forces. Magnetic materials bound to selected pillars allow quasi-static or dynamic stretching of the tissue, and together with simultaneous measurements of the tissues' local dynamic strain field, enable characterization of the mechanical properties of the system, including their degree of anisotropy. Results on the effects of symmetry and degree of ECM alignment and organization on the role of cell-ECM interactions in determining tissue mechanical properties will be discussed. This work is supported by NSF CMMI-1463011 and CMMI-1462710.
Amadei, Carlo Alberto; Montessori, Andrea; Kadow, Julian P; Succi, Sauro; Vecitis, Chad D
2017-04-18
Active research in nanotechnology contemplates the use of nanomaterials for environmental engineering applications. However, a primary challenge is understanding the effects of nanomaterial properties on industrial device performance and translating unique nanoscale properties to the macroscale. One emerging example consists of graphene oxide (GO) membranes for separation processes. Thus, here we investigate how individual GO properties can impact GO membrane characteristics and water permeability. GO chemistry and morphology were controlled with easy-to-implement photoreduction and sonication techniques and were quantitatively correlated, offering a valuable tool for accelerating characterization. Chemical GO modification allows for fine control of GO oxidation state, allowing control of GO architectural laminate (GOAL) spacing and permeability. Water permeability was measured for eight GOALs characterized by different GOAL chemistry and morphology and indicates that GOAL nanochannel height dictates water transport. The experimental outputs were corroborated with mesoscale water transport simulations of relatively large domains (thousands of square nanometers) and indicate a no-slip Darcy-like behavior inside the GOAL nanochannels. The experimental and simulation evidence presented in this study helps create a clearer picture of water transport in GOAL and can be used to rationally design more effective and efficient GO membranes.
Shavisi, Nassim; Khanjari, Ali; Basti, Afshin Akhondzadeh; Misaghi, Ali; Shahbazi, Yasser
2017-02-01
This study was conducted to examine the effects of polylactic acid (PLA) film containing propolis ethanolic extract (PE), cellulose nanoparticle (CN) and Ziziphora clinopodioides essential oil (ZEO) on chemical, microbial and sensory properties of minced beef during storage at refrigerated temperature for 11days. The initial total volatile base nitrogen (TVB-N) was 8.2mg/100g and after 7days reached to 29.1mg/100g in control, while it was lower than 25mg/100g for treated samples. At the end of storage time in control samples peroxide value (PV) reached to 2.01meqperoxide/1000g lipid, while the values for the treated samples remained lower than 2meqperoxide/1000g lipid. Final microbial population decreased approximately 1-3logCFU/g in treated samples compared to control (P<0.05). Films containing 2% ZEO alone and in combination with different concentrations of PE and CN extended the shelf life of minced beef during storage in refrigerated condition for at least 11days without any unfavorable organoleptic properties. Copyright © 2016. Published by Elsevier Ltd.
Jeong, Kiyoung; O, Hyeonbin; Shin, So Yeon; Kim, Young-Soon
2018-04-10
This study evaluated the influence of different factors on pork hams cooked by sous-vide method. The quality and structural and microbiological properties of the treated samples were compared with those of controls. Samples were subjected to treatment at different combinations of temperature (61 °C or 71 °C), time (45 or 90 min), and vacuum degree (98.81% or 96.58%). The control sample was air packaged and boiled for 45 min in boiling water. Temperature and vacuum degree affected quality properties, while the effect of time was limited. Samples cooked at 61 °C showed higher moisture content, redness, and pink color of the meat juice, whereas samples cooked at 71 °C showed higher cooking loss rate, lightness, and volatile basic nitrogen values. Texture analysis indicated tenderer meat for the treatment group than the control. No microbial growth was detected in any treatment groups. Meat cooked at 61 °C and 98.81% vacuum showed more spacious arrangement of meat fiber. Copyright © 2018 Elsevier Ltd. All rights reserved.
Kondo, Cláudia Seiko; Macchionne, Mariângela; Nakagawa, Naomi Kondo; de Carvalho, Carlos Roberto Ribeiro; King, Malcolm; Saldiva, Paulo Hilário Nascimento; Lorenzi-Filho, Geraldo
2002-01-01
The use of intravenous (IV) furosemide is common practice in patients under mechanical ventilation (MV), but its effects on respiratory mucus are largely unknown. Furosemide can affect respiratory mucus either directly through inhibition of the NaK(Cl)2 co-transporter on the basolateral surface of airway epithelium or indirectly through increased diuresis and dehydration. We investigated the physical properties and transportability of respiratory mucus obtained from 26 patients under MV distributed in two groups, furosemide (n = 12) and control (n = 14). Mucus collection was done at 0, 1, 2, 3 and 4 hours. The rheological properties of mucus were studied with a microrheometer, and in vitro mucociliary transport (MCT) (frog palate), contact angle (CA) and cough clearance (CC) (simulated cough machine) were measured. After the administration of furosemide, MCT decreased by 17 ± 19%, 24 ± 11%, 18 ± 16% and 18 ± 13% at 1, 2, 3 and 4 hours respectively, P < 0.001 compared with control. In contrast, no significant changes were observed in the control group. The remaining parameters did not change significantly in either group. Our results support the hypothesis that IV furosemide might acutely impair MCT in patients under MV. PMID:11940271
Mechanistic Effects of Porosity on Structural Composite Materials
NASA Astrophysics Data System (ADS)
Siver, Andrew
As fiber reinforced composites continue to gain popularity as primary structures in aerospace, automotive, and powersports industries, quality control becomes an extremely important aspect of materials and mechanical engineering. The ability to recognize and control manufacturing induced defects can greatly reduce the likelihood of unexpected catastrophic failure. Porosity is the result of trapped volatiles or air bubbles during the layup process and can significantly compromise the strength of fiber reinforced composites. A comprehensive study was performed on an AS4C-UF3352 TCR carbon fiber-epoxy prepreg system to determine the effect of porosity on flexural, shear, low-velocity impact, and damage residual strength properties. Autoclave cure pressure was controlled to induce varying levels of porosity to construct six laminates with porosity concentrations between 0-40%. Porosity concentrations were measured using several destructive and nondestructive techniques including resin burnoff, sectioning and optical analysis, and X-ray computed tomography (CT) scanning. Ultrasonic transmission, thermography, and CT scanning provided nondestructive imaging to evaluate impact damage. A bilinear relationship accurately characterizes the change in mechanical properties with increasing porosity. Strength properties are relatively unaffected when porosity concentrations are below approximately 2.25% and decrease linearly by up to 40% in high porosity specimens.
Fu, Wei; Watanabe, Yurika; Inoue, Keita; Moriguchi, Natsumi; Fusa, Kazunao; Yanagisawa, Yuya; Mutoh, Takaaki; Nakamura, Takashi
2018-04-15
The effect of pre-cooked cheeses of different emulsifying conditions on the viscosities, mechanical properties, fat globules, and microstructure of processed cheese was investigated, and changes in protein network relating to the creaming effect and the occurrence of yielding point were discussed. The addition of pre-cooked cheeses with a short stirring time had no obvious impact on the fat globules and protein network. The random network brought low viscosities and a gradual increase in the fracture stress/strain curve. The addition of pre-cooked cheeses with the long stirring time caused protein network to become fine-stranded. The fine-stranded network caused creaming effect, and brought yielding points in the mechanical properties. The pre-cooked cheese with the small fat globules also caused fat globules to become smaller, and give the processed cheese more firmness. This study provides a potential solution to control the functional properties of processed cheese by using a variety of pre-cooked cheeses. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Girina, O.; Fonstein, N.; Yakubovsky, O.; Panahi, D.; Bhattacharya, D.; Jansto, S.
The influence of Nb, Mo, Cr and B on phase transformations and mechanical properties are studied in a 0.15C-2.0Mn-0.3Si-0.020Ti dual phase steel separately and in combination. The formation and decomposition of austenite together with recrystallization of ferrite are evaluated by dilatometry and constructed CCT-diagrams in laboratory processed cold rolled material cooled after full austenitization and from intercritical temperature range. The effect of alloying elements on formation of austenite through their effect on initial hot rolled structure is taken into account. The interpretation of phase transformations during heating and cooling is supported by metallography. The effect of alloying elements on mechanical properties and structure are evaluated by annealing simulations. It has been shown that mechanical properties are strongly influenced by alloying additions such as Nb, Mo, Cr and B through their effect on ferrite formation during continuous cooling and corresponding enrichment of remaining austenite by carbon. Depending on combined effect of these alloying elements, different phase transformations can be promoted during cooling. This allows controlling of final microstructural constituents and mechanical properties.
NASA Astrophysics Data System (ADS)
Zhao, Xu-Wen; Gao, Guan-Yin; Yan, Jian-Min; Chen, Lei; Xu, Meng; Zhao, Wei-Yao; Xu, Zhi-Xue; Guo, Lei; Liu, Yu-Kuai; Li, Xiao-Guang; Wang, Yu; Zheng, Ren-Kui
2018-05-01
Copper-based ZrCuSiAs-type compounds of LnCuChO (Ln =Bi and lanthanides, Ch =S , Se, Te) with a layered crystal structure continuously attract worldwide attention in recent years. Although their high-temperature (T ≥ 300 K) electrical properties have been intensively studied, their low-temperature electronic transport properties are little known. In this paper, we report the integration of ZrCuSiAs-type copper oxyselenide thin films of B i0.94P b0.06CuSeO (BPCSO) with perovskite-type ferroelectric Pb (M g1 /3N b2 /3 ) O3-PbTi O3 (PMN-PT) single crystals in the form of ferroelectric field effect devices that allow us to control the electronic properties (e.g., carrier density, magnetoconductance, dephasing length, etc.) of BPCSO films in a reversible and nonvolatile manner by polarization switching at room temperature. Combining ferroelectric gating and magnetotransport measurements with the Hikami-Larkin-Nagaoka theory, we demonstrate two-dimensional (2D) electronic transport characteristics and weak antilocalization effect as well as strong carrier-density-mediated competition between weak antilocalization and weak localization in BPCSO films. Our results show that ferroelectric gating using PMN-PT provides an effective and convenient approach to probe the carrier-density-related 2D electronic transport properties of ZrCuSiAs-type copper oxyselenide thin films.
NASA Technical Reports Server (NTRS)
Molusis, J. A.; Mookerjee, P.; Bar-Shalom, Y.
1983-01-01
Effect of nonlinearity on convergence of the local linear and global linear adaptive controllers is evaluated. A nonlinear helicopter vibration model is selected for the evaluation which has sufficient nonlinearity, including multiple minimum, to assess the vibration reduction capability of the adaptive controllers. The adaptive control algorithms are based upon a linear transfer matrix assumption and the presence of nonlinearity has a significant effect on algorithm behavior. Simulation results are presented which demonstrate the importance of the caution property in the global linear controller. Caution is represented by a time varying rate weighting term in the local linear controller and this improves the algorithm convergence. Nonlinearity in some cases causes Kalman filter divergence. Two forms of the Kalman filter covariance equation are investigated.
Kemmitt, Gregory M; DeBoer, Gerrit; Ouimette, David; Iamauti, Marilene
2008-12-01
The demethylation inhibitor (DMI) fungicide myclobutanil can be an effective component of spray programmes designed to control the highly destructive plant pathogen Phakopsora pachyrhizi Syd. & P. Syd., causal agent of Asian soybean rust. Myclobutanil is known from previous studies in grapevines to be xylem mobile. This study investigates the mobility profile of myclobutanil in soybean as an important component of its effective field performance. Over a 12 day period under greenhouse conditions, a constant uptake of myclobutanil from leaflet surfaces into the leaflet tissue was observed. Once in the leaflet, myclobutanil was seen to redistribute throughout the tissue, although no movement out of leaflets occurred owing to a lack of phloem mobility. The ability of myclobutanil to redistribute over distance within the soybean plant was revealed when visualizing movement of the compound to foliage above the point of application on the plant stem. An efficacy bioassay demonstrated that the systemic properties of myclobutanil allow control of disease at a point remote from the initial site of compound application. It is suggested that the high degree of xylem systemicity displayed by myclobutanil in soybean foliage is a contributory factor towards its commercial effectiveness for control of Asian soybean rust.
NASA Astrophysics Data System (ADS)
Vaxenburg, Roman; Lifshitz, Efrat
2012-02-01
Tunability of energy levels and wavefunctions of carriers in colloidal quantum dots (CQDs) has a marked effect on numerous physical aspects, such as Coulomb interactions and charge separation, which in turn has a direct impact on the functioning of CQD-based opto-electronic devices. The electronic properties of CQDs are conventionally controlled by variation of their size. Here we demonstrate a theoretical approach to engineer the electronic properties of IV-VI CQDs by introducing an alloy composition in core and core/shell heterostructures, having the general chemical formula PbSexS1-x/PbSeyS1-y (0 ≤ x ≤ 1, 0 ≤ y ≤ 1), while maintaining a constant size. The theoretical model considered an effective mass anisotropy and smooth potential step at the core/shell interface. The model revealed the influence induced by variation of chemical composition and core-to-shell division on the band-gap energy, remote states’ density, internal charge separation, electron-hole Coulomb interaction, and optical transition oscillator strength.
Stimulus-responsive hydrogels: Theory, modern advances, and applications
Koetting, Michael C.; Peters, Jonathan T.; Steichen, Stephanie D.; Peppas, Nicholas A.
2016-01-01
Over the past century, hydrogels have emerged as effective materials for an immense variety of applications. The unique network structure of hydrogels enables very high levels of hydrophilicity and biocompatibility, while at the same time exhibiting the soft physical properties associated with living tissue, making them ideal biomaterials. Stimulus-responsive hydrogels have been especially impactful, allowing for unprecedented levels of control over material properties in response to external cues. This enhanced control has enabled groundbreaking advances in healthcare, allowing for more effective treatment of a vast array of diseases and improved approaches for tissue engineering and wound healing. In this extensive review, we identify and discuss the multitude of response modalities that have been developed, including temperature, pH, chemical, light, electro, and shear-sensitive hydrogels. We discuss the theoretical analysis of hydrogel properties and the mechanisms used to create these responses, highlighting both the pioneering and most recent work in all of these fields. Finally, we review the many current and proposed applications of these hydrogels in medicine and industry. PMID:27134415
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wan, Piaopiao; Hood, Zachary D.; Oak Ridge National Lab.
Introducing defects into semiconductors with well-controlled exposed facets offers an effective route for the development of photocatalytic materials with greatly improved properties. Here, we report a facile ethylene glycol reduction procedure to make anatase titanium dioxide (TiO 2) with different concentrations of exposed {001} and {101} facets, leading to different surficial defects. TiO 2 with increased concentrations of {101} facets shows a 5-fold improvement in photocurrent generation as well as improved photocatalytic activity towards water splitting under visible light irradiation. Thus, the improved activity is ascribed to the oxygen vacancies as well as the variable surface chemical states, which collectivelymore » induce a slower recombination rate of photo-induced electron-hole pairs. This work also highlights a feasible strategy to obtain the defective TiO 2 and explore the synergistic effect of surface defects and different concentrations of exposed {001} and {101} facets for photocurrent and photocatalytic properties under visible light irradiation.« less
Chen, Lin; Chen, Jianshe; Ren, Jiaoyan; Zhao, Mouming
2011-03-23
Soy protein isolate (SPI) was modified by ultrasound pretreatment (200 W, 400 W, 600 W) and controlled papain hydrolysis, and the emulsifying properties of SPIH (SPI hydrolysates) and USPIH (ultrasound pretreated SPIH) were investigated. Analysis of mean droplet sizes and creaming indices of emulsions formed by SPIH and USPIH showed that some USPIH had markedly improved emulsifying capability and emulsion stabilization against creaming during quiescent storage. Compared with control SPI and SPIH-0.58% degree of hydrolysis (DH), USPIH-400W-1.25% (USPIH pretreated under 400W sonication and hydrolyzed to 1.25% DH) was capable of forming a stable fine emulsion (d43=1.79 μm) at a lower concentration (3.0% w/v). A variety of physicochemical and interfacial properties of USPIH-400W products have been investigated in relation to DH and emulsifying properties. SDS-PAGE showed that ultrasound pretreatment could significantly improve the accessibility of some subunits (α-7S and A-11S) in soy proteins to papain hydrolysis, resulting in changes in DH, protein solubility (PS), surface hydrophobicity (H0), and secondary structure for USPIH-400W. Compared with control SPI and SPIH-0.58%, USPIH-400W-1.25% had a higher protein adsorption fraction (Fads) and a lower saturation surface load (Γsat), which is mainly due to its higher PS and random coil content, and may explain its markedly improved emulsifying capability. This study demonstrated that combined ultrasound pretreatment and controlled enzymatic hydrolysis could be an effective method for the functionality modification of globular proteins.
Effect of synthesis conditions on the nanopowder properties of Ce{sub 0.9}Zr{sub 0.1}O{sub 2}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zimicz, M.G.; Fabregas, I.O.; Lamas, D.G.
Graphical abstract: . The synthesis of nanocrystalline Ce{sub 0.9}Zr{sub 0.1}O{sub 2} powders via the gel-combustion method, using different fuels, and following either stoichiometric or non-stoichiometric pH-controlled routes is investigated. Research highlights: {yields} All samples exhibited the fluorite-type crystal structure, nanometric average crystallite size and negligible carbon content. {yields} Synthesis conditions strongly affect the average crystallite size, the degree of agglomeration, the specific surface area and the pore volume. {yields} Our results indicate that, by controlling the synthesis conditions it is possible to obtain solids with custom-made morphological properties. -- Abstract: In this work, the synthesis of nanocrystalline Ce{sub 0.9}Zr{sub 0.1}O{submore » 2} powders via the gel-combustion method, using different fuels, and following either stoichiometric or non-stoichiometric pH-controlled routes is investigated. The objective is to evaluate the effect of synthesis conditions on the textural and morphological properties, and the crystal structure of the synthesized materials. The solids were characterized by nitrogen physisorption, Scanning Electron Microscopy (SEM), X-ray powder diffraction (XPD), and Carbon-Hydrogen-Nitrogen Elemental Analysis (CHN). All the powders exhibited nanometric crystallite size, fluorite-type structure and negligible carbon content. Synthesis conditions strongly affect the average crystallite size, the degree of agglomeration, the specific surface area and the pore volume. Our results indicate that, by controlling the synthesis conditions it is possible to obtain solids with custom-made morphological properties.« less
Antifungal effect of essential oils on southern yellow pine
Vina W. Yang; Carol A. Clausen
2007-01-01
Moisture management remains the most critical factor for controlling mold growth on wood and wood products during storage, construction, and while in service. When moisture management practices fail to adequately control moisture, plant extracts demonstrating antifungal properties may provide protection for these applications. The objective of this study was to...
DOT National Transportation Integrated Search
2013-12-01
The Kansas Department of Transportation (KDOT) has controlled harmful alkali-silica reactions (ASR) : through testing and selective use of sand and gravel aggregates for more than 70 years. ASR can also be : controlled through the addition of a non-r...
Rheological properties and baking performance of new oat beta-glucan-rich hydrocolloids.
Lee, Suyong; Warner, Kathleen; Inglett, George E
2005-12-14
Two new oat beta-glucan hydrocolloids (designated C-trim20 and C-trim30) obtained through a thermal-shearing process were evaluated for their potential use in food products as functional ingredients. Their rheological characteristics were investigated using steady and dynamic shear measurements. Both samples exhibited typical shear-thinning and viscoelastic properties of random coil polysaccharides. The Cross equation was also used to examine the dependence of their apparent viscosity on shear rates. Furthermore, the effects of flour replacement with C-trim20 on the physical, rheological, and sensory properties of cookies were studied. The cookies containing C-trim20 exhibited reduced spreading characteristics compared with the control due to their increased elastic properties. Also, higher water content and water activity were observed in the C-trim20 cookies. However, flour replacement with C-trim20 up to 10% produced cookies with instrumental texture properties similar to those of the control, which was in good agreement with the sensory results.
Dispersion controlled by permeable surfaces: surface properties and scaling
Ling, Bowen; Tartakovsky, Alexandre M.; Battiato, Ilenia
2016-08-25
Permeable and porous surfaces are common in natural and engineered systems. Flow and transport above such surfaces are significantly affected by the surface properties, e.g. matrix porosity and permeability. However, the relationship between such properties and macroscopic solute transport is largely unknown. In this work, we focus on mass transport in a two-dimensional channel with permeable porous walls under fully developed laminar flow conditions. By means of perturbation theory and asymptotic analysis, we derive the set of upscaled equations describing mass transport in the coupled channel–porous-matrix system and an analytical expression relating the dispersion coefficient with the properties of themore » surface, namely porosity and permeability. Our analysis shows that their impact on the dispersion coefficient strongly depends on the magnitude of the Péclet number, i.e. on the interplay between diffusive and advective mass transport. Additionally, we demonstrate different scaling behaviours of the dispersion coefficient for thin or thick porous matrices. Our analysis shows the possibility of controlling the dispersion coefficient, i.e. transverse mixing, by either active (i.e. changing the operating conditions) or passive mechanisms (i.e. controlling matrix effective properties) for a given Péclet number. By elucidating the impact of matrix porosity and permeability on solute transport, our upscaled model lays the foundation for the improved understanding, control and design of microporous coatings with targeted macroscopic transport features.« less
Aligned Single Wall Carbon Nanotube Polymer Composites Using an Electric Field
NASA Technical Reports Server (NTRS)
Park, Cheol; Wiklinson, John; Banda, Sumanth; Ounaies, Zoubeida; Wise, Kristopher E.; Sauti, Godfrey; Lillehei, Peter T.; Harrison, Joycelyn S.
2005-01-01
While high shear alignment has been shown to improve the mechanical properties of single wall carbon nanotubes (SWNT)-polymer composites, it is difficult to control and often results in degradation of the electrical and dielectric properties of the composite. Here, we report a novel method to actively align SWNTs in a polymer matrix, which allows for control over the degree of alignment of SWNTs without the side effects of shear alignment. In this process, SWNTs are aligned via field-induced dipolar interactions among the nanotubes under an AC electric field in a liquid matrix followed by immobilization by photopolymerization while maintaining the electric field. Alignment of SWNTs was controlled as a function of magnitude, frequency, and application time of the applied electric field. The degree of SWNT alignment was assessed using optical microscopy and polarized Raman spectroscopy and the morphology of the aligned nanocomposites was investigated by high resolution scanning electron microscopy. The structure of the field induced aligned SWNTs is intrinsically different from that of shear aligned SWNTs. In the present work, SWNTs are not only aligned along the field, but also migrate laterally to form thick, aligned SWNT percolative columns between the electrodes. The actively aligned SWNTs amplify the electrical and dielectric properties in addition to improving the mechanical properties of the composite. All of these properties of the aligned nanocomposites exhibited anisotropic characteristics, which were controllable by tuning the applied field conditions.
Control of polymerization shrinkage and stress in nanogel-modified monomer and composite materials
Moraes, Rafael R.; Garcia, Jeffrey W.; Barros, Matthew D.; Lewis, Steven H.; Pfeifer, Carmem S.; Liu, JianCheng; Stansbury, Jeffrey W.
2011-01-01
Objectives This study demonstrates the effects of nano-scale prepolymer particles as additives to model dental monomer and composite formulations. Methods Discrete nanogel particles were prepared by solution photopolymerization of isobornyl methacrylate and urethane dimethacrylate in the presence of a chain transfer agent, which also provided a means to attach reactive groups to the prepolymer. Nanogel was added to triethylene glycol dimethacrylate (TEGDMA) in increments between 5 and 40 wt% with resin viscosity, reaction kinetics, shrinkage, mechanical properties, stress and optical properties evaluated. Maximum loading of barium glass filler was determined as a function of nanogel content and composites with varied nanogel content but uniform filler loading were compared in terms of consistency, conversion, shrinkage and mechanical properties. Results High conversion, high molecular weight internally crosslinked and cyclized nanogel prepolymer was efficiently prepared and redispersed into TEGDMA with an exponential rise in viscosity accompanying nanogel content. Nanogel addition at any level produced no deleterious effects on reaction kinetics, conversion or mechanical properties, as long as reactive nanogels were used. A reduction in polymerization shrinkage and stress was achieved in proportion to nanogel content. Even at high nanogel concentrations, the maximum loading of glass filler was only marginally reduced relative to the control and high strength composite materials with low shrinkage were obtained. Significance The use of reactive nanogels offers a versatile platform from which resin and composite handling properties can be adjusted while the polymerization shrinkage and stress development that challenge the adhesive bonding of dental restoratives are controllably reduced. PMID:21388669
Control of polymerization shrinkage and stress in nanogel-modified monomer and composite materials.
Moraes, Rafael R; Garcia, Jeffrey W; Barros, Matthew D; Lewis, Steven H; Pfeifer, Carmem S; Liu, JianCheng; Stansbury, Jeffrey W
2011-06-01
This study demonstrates the effects of nano-scale prepolymer particles as additives to model dental monomer and composite formulations. Discrete nanogel particles were prepared by solution photopolymerization of isobornyl methacrylate and urethane dimethacrylate in the presence of a chain transfer agent, which also provided a means to attach reactive groups to the prepolymer. Nanogel was added to triethylene glycol dimethacrylate (TEGDMA) in increments between 5 and 40 wt% with resin viscosity, reaction kinetics, shrinkage, mechanical properties, stress and optical properties evaluated. Maximum loading of barium glass filler was determined as a function of nanogel content and composites with varied nanogel content but uniform filler loading were compared in terms of consistency, conversion, shrinkage and mechanical properties. High conversion, high molecular weight internally crosslinked and cyclized nanogel prepolymer was efficiently prepared and redispersed into TEGDMA with an exponential rise in viscosity accompanying nanogel content. Nanogel addition at any level produced no deleterious effects on reaction kinetics, conversion or mechanical properties, as long as reactive nanogels were used. A reduction in polymerization shrinkage and stress was achieved in proportion to nanogel content. Even at high nanogel concentrations, the maximum loading of glass filler was only marginally reduced relative to the control and high strength composite materials with low shrinkage were obtained. The use of reactive nanogels offers a versatile platform from which resin and composite handling properties can be adjusted while the polymerization shrinkage and stress development that challenge the adhesive bonding of dental restoratives are controllably reduced. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Semi-active control of helicopter vibration using controllable stiffness and damping devices
NASA Astrophysics Data System (ADS)
Anusonti-Inthra, Phuriwat
Semi-active concepts for helicopter vibration reduction are developed and evaluated in this dissertation. Semi-active devices, controllable stiffness devices or controllable orifice dampers, are introduced; (i) in the blade root region (rotor-based concept) and (ii) between the rotor and the fuselage as semi-active isolators (in the non-rotating frame). Corresponding semi-active controllers for helicopter vibration reduction are also developed. The effectiveness of the rotor-based semi-active vibration reduction concept (using stiffness and damping variation) is demonstrated for a 4-bladed hingeless rotor helicopter in moderate- to high-speed forward flight. A sensitivity study shows that the stiffness variation of root element can reduce hub vibrations when proper amplitude and phase are used. Furthermore, the optimal semi-active control scheme can determine the combination of stiffness variations that produce significant vibration reduction in all components of vibratory hub loads simultaneously. It is demonstrated that desired cyclic variations in properties of the blade root region can be practically achieved using discrete controllable stiffness devices and controllable dampers, especially in the flap and lag directions. These discrete controllable devices can produce 35--50% reduction in a composite vibration index representing all components of vibratory hub loads. No detrimental increases are observed in the lower harmonics of blade loads and blade response (which contribute to the dynamic stresses) and controllable device internal loads, when the optimal stiffness and damping variations are introduced. The effectiveness of optimal stiffness and damping variations in reducing hub vibration is retained over a range of cruise speeds and for variations in fundamental rotor properties. The effectiveness of the semi-active isolator is demonstrated for a simplified single degree of freedom system representing the semi-active isolation system. The rotor, represented by a lumped mass under harmonic force excitation, is supported by a spring and a parallel damper on the fuselage (assumed to have infinite mass). Properties of the spring or damper can then be controlled to reduce transmission of the force into the fuselage or the support structure. This semi-active isolation concept can produce additional 30% vibration reduction beyond the level achieved by a passive isolator. Different control schemes (i.e. open-loop, closed-loop, and closed-loop adaptive schemes) are developed and evaluated to control transmission of vibratory loads to the support structure (fuselage), and it is seen that a closed-loop adaptive controller is required to retain vibration reduction effectiveness when there is a change in operating condition. (Abstract shortened by UMI.)
Evaluation of Antimicrobial and Healing Activities of Frog Skin on Guinea Pigs Wounds
Rezazade Bazaz, Mahere; Mashreghi, Mohammad; Mahdavi Shahri, Nasser; Mashreghi, Mansour; Asoodeh, Ahmad; Behnam Rassouli, Morteza
2015-01-01
Background: Frog skin secretions have potentials against a wide spectrum of bacteria. Also, frog skin compositions have healing properties. Objectives: The aim of this study was to investigate the antibacterial potentials along with healing properties of frog skin Rana ridibunda, a species which thoroughly lives in Iran marshes, as a biological dressing on wounds. Materials and Methods: In this study, excisional wounds, dressed with frog skin, were compared between experimental and control groups of guinea pigs. In the experimental groups, wounds were dressed with the dermal (FS) and epidermal (RFS) sides of fresh frog R. ridibunda skin, while only usual cotton gauze covered the wounds of the control group. Furthermore, microbial samples were taken on different days (0, 3, 5, and 7 days post injury) to count the number of the colony-forming units. Additionally, the microbial penetration test was performed on frog skin and then the progression of wound closure was evaluated. Results: In the microbial studies, the bacterial load considerably declined in the wounds treated with FS and RFS compared with the control wounds. On day 7 post injury, the numbers of the colony-forming units for the FS, RFS, and control groups were 6.75, 105, and 375, respectively. In the penetration test, fresh frog skin showed to be a bacterial resistant dressing. The results revealed that the rate of wound closure in the experimental groups significantly was accelerated in comparison with that in the control group. Conclusions: Our results demonstrated the antimicrobial properties of frog skin as a wound dressing, which has antimicrobial effects per se. This biological dressing shows promise as an effective biological wound dressing insofar as not only is it capable of resisting microbes and accelerating wound healing but also it is cost-effective and easy to use. PMID:26468364
Controlling the Mechanical Properties of Bulk Metallic Glasses by Superficial Dealloyed Layer
Wang, Chaoyang; Li, Man; Zhu, Mo; Wang, Han; Qin, Chunling; Zhao, Weimin
2017-01-01
Cu50Zr45Al5 bulk metallic glass (BMG) presents high fracture strength. For improving its plasticity and controlling its mechanical properties, superficial dealloying of the BMG was performed. A composite structure containing an inner rod-shaped Cu-Zr-Al amorphous core with high strength and an outer dealloyed nanoporous layer with high energy absorption capacity was obtained. The microstructures and mechanical properties of the composites were studied in detail. It was found, for the first time, that the mechanical properties of Cu50Zr45Al5 BMG can be controlled by adjusting the width of the buffer deformation zone in the dealloyed layer, which can be easily manipulated with different dealloying times. As a result, the compressive strength, compressive strain, and energy absorption capacity of the BMGs can be effectively modulated from 0.9 to 1.5 GPa, from 2.9% to 4.7%, and from 29.1 to 40.2 MJ/m3, respectively. The paper may open a door for developing important engineering materials with regulable and comprehensive performances. PMID:29077072
Isolation, characterization of wheat gluten and its regeneration properties.
Kaushik, Ravinder; Kumar, Naveen; Sihag, Manvesh Kumar; Ray, Aradhita
2015-09-01
In order to assess the effectiveness of different drying methods on physicochemical and reconstitution properties of wheat gluten, four wheat cultivars were selected and milled. Gluten was extracted and its wet and dry gluten content and water holding capacity were estimated. The washed starch and other flour constituents were dried. Isolated gluten was dried using three treatments viz. oven drying, vacuum drying and freeze drying. Dried gluten of four wheat cultivars were characterized for its water and oil absorption properties and thermal properties. The dried gluten and washed and dried flour constituents were then reconstituted and this flour was checked for flour quality (SDS volume, texture analysis and falling number). Only reconstituted flour using freeze dried gluten showed no significant difference to control flour in SDS volume and dough strength. In Falling number all reconstituted flour samples showed significant difference to control flour.
Controlling the mechanical properties of carbon steel by thermomechanical treatment
NASA Astrophysics Data System (ADS)
Balavar, Mohsen; Mirzadeh, Hamed
2018-01-01
The effect of thermomechanical processing and heat treatment on the microstructure and mechanical properties of low carbon steel was studied. It was revealed that the dual phase ferritic-martensitic microstructure shows a good combination of tensile strength and ductility along with superior work hardening response. On the other hand, the bimodal-sized structure containing ultrafine grained (UFG) and micron-sized ferrite phase can be easily produced by cold rolling and annealing of the dual phase starting microstructure. This steel showed high yield stress, tensile strength, and ductility, but poor work hardening ability. The full annealed ferritic-pearlitic sheet with banded morphology exhibited low strength and high total elongation with the appearance of the yield point phenomenon. The martensitic steels, however, had high tensile strength and low ductility. By comparing the tensile properties of these steels, it was shown that it is possible to control the mechanical properties of low carbon steel by simple processing routes.
Hormonal control of implantation.
Sandra, Olivier
2016-06-01
In mammals, implantation represents a key step of pregnancy and its progression conditions not only the success of pregnancy but health of the offspring. Implantation requires a complex and specific uterine tissue, the endometrium, whose biological functions are tightly regulated by numerous signals, including steroids and polypeptide hormones. Endometrial tissue is endowed with dynamic properties that associate its ability to control the developmental trajectory of the embryo (driver property) and its ability to react to embryos displaying distinct capacities to develop to term (sensor property). Since dynamical properties of the endometrium can be affected by pre- and post-conceptional environment, determining how maternal hormonal signals and their biological actions are affected by environmental factors (e.g. nutrition, stress, infections) is mandatory to reduce or even to prevent their detrimental effects on endometrial physiology in order to preserve the optimal functionality of this tissue. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhou, Yaqing; Wang, Qiyuan; Huang, Rujin; Liu, Suixin; Tie, Xuexi; Su, Xiaoli; Niu, Xinyi; Zhao, Zhuzi; Ni, Haiyan; Wang, Meng; Zhang, Yonggang; Cao, Junji
2017-09-01
An intensive measurement campaign was conducted in Beijing during the Asia-Pacific Economic Cooperation (APEC) Summit 2014 to investigate the effectiveness of stringent emission controls on aerosol optical properties and direct radiative forcing (DRF). Average values of PM2.5, light scattering (bscat), and light absorption (babs) coefficients decreased by 40, 64, and 56%, respectively, during the APEC control period compared with noncontrol periods. For the APEC control period, the PM2.5 mass scattering and absorption efficiencies were both smaller than the noncontrol period by a factor of 2. Calculations based on a revised IMPROVE method and linear regression showed that sulfate, nitrate, organic matter, elemental carbon, and fine soil contributed comparably to the light extinction coefficient (bext) in both periods, but the bext values were 27-64% lower during the APEC period. A positive matrix factorization receptor model showed that bext from two secondary aerosol sources, biomass burning, traffic-related emissions, and coal burning decreased by 26-87% during the APEC control period. The average DRF calculated from the Tropospheric Ultraviolet and Visible radiation model was -11.9 and -4.6 W m-2 at the surface during the noncontrol and APEC control periods, respectively, suggesting an overall cooling effect. The reduction of DRF from each emission source ranged from 30-80% during the APEC control period. The results suggest that the pollution control measures implemented for APEC substantially reduced air pollution and could help mitigate the cooling effects of aerosols at the surface in Beijing.
NASA Astrophysics Data System (ADS)
Ardila, L. C.; Garciandia, F.; González-Díaz, J. B.; Álvarez, P.; Echeverria, A.; Petite, M. M.; Deffley, R.; Ochoa, J.
Powder quality control is essential to obtain parts with suitable mechanical properties in Selective Laser Melting manufacturing technique. One of the most important advantages of suchtechnique is that it allows an efficient use of the material, due to the possibility to recycle and reuse un-melted powder. Nevertheless, powder material properties may change due to repeated recycling, affecting this way the mechanicalbehavior of parts. In this paper the effect of powder reuse on its quality and on the mechanical properties of the resulting melted parts is studied via self-developed recycling methodology. The material considered for investigation was IN718, a nickel superalloy widely used in industry. After recycling powder up to 14 times, no significant changes were observed in powder and test parts properties. The results obtained in this work will help to validate powder recycling methodology for its use in current industrial Selective Laser Melting manufacturing.
Effect of decompression drying treatment on physical properties of solid foods.
Morikawa, Takuya; Takada, Norihisa; Miura, Makoto
2017-04-01
This study used a decompression drying instrument to investigate the effects of a drying treatment on the physical properties of solid foods. Commercial tofu was used as a model food and was treated at different temperature and pressure conditions in a drying chamber. Overall, high temperatures resulted in better drying. Additionally, pressure in the chamber influenced the drying conditions of samples. Differences in physical properties, such as food texture, shrinkage, and color were observed among some samples, even with similar moisture content. This was caused by differences in moisture distribution in the food, which seems to have manifested as a thin, dried film on the surfaces of samples. It caused inefficient drying and changes in physical properties. Control of the drying conditions (i.e. pressure and heat supply) has relations with not only physical properties, but also the drying efficiency of solid foods.
Tavakolpour, Yousef; Moosavi-Nasab, Marzieh; Niakousari, Mehrdad; Haghighi-Manesh, Soroush
2016-03-01
The essential oil (EO) from dried ground powder leaves and stems of Thymua danesis was extracted using hydrodistillation (HD), ohmic extraction (OE), ultrasound-assisted HD and ultrasound-assisted OE methods. Then, the antioxidant, antimicrobial, and sensory properties of the EO were investigated both in vitro and in food systems. Thyme EO extracted by ultrasound-assisted HD method had promising antibacterial activities against Escherichia coli and Staphylococcus aureus and had the best antioxidant properties when tested in vitro. In food systems, higher concentrations of the EO were needed to exert similar antibacterial and antioxidant effects. Furthermore, thyme EO added yogurt and drink yogurt revealed better sensory properties than the control and fresh samples. Essential oil from Thymua danesis has a good potential to be used as an antioxidant, antimicrobial, and flavoring agent in food systems and the extraction method effects on the antioxidant and antimicrobial properties of the thyme extract.
Physical and mechanical properties of PMMA bone cement reinforced with nano-sized titania fibers.
Khaled, S M Z; Charpentier, Paul A; Rizkalla, Amin S
2011-02-01
X-ray contrast medium (BaSO(4) or ZrO(2)) used in commercially available PMMA bone cements imparts a detrimental effect on mechanical properties, particularly on flexural strength and fracture toughness. These lower properties facilitate the chance of implant loosening resulting from cement mantle failure. The present study was performed to examine the mechanical properties of a commercially available cement (CMW1) by introducing novel nanostructured titania fibers (n-TiO(2) fibers) into the cement matrix, with the fibers acting as a reinforcing phase. The hydrophilic nature of the n-TiO(2) fibers was modified by using a bifunctional monomer, methacrylic acid. The n-TiO(2) fiber content of the cement was varied from 0 to 2 wt%. Along with the mechanical properties (fracture toughness (K (IC)), flexural strength (FS), and flexural modulus (FM)) of the reinforced cements the following properties were investigated: complex viscosity-versus-time, maximum polymerization temperature (T (max)), dough time (t (dough)), setting time (t (set)), radiopacity, and in vitro biocompatibility. On the basis of the determined mechanical properties, the optimized composition was found at 1 wt% n-TiO(2) fibers, which provided a significant increase in K (IC) (63%), FS (20%), and FM (22%), while retaining the handling properties and in vitro biocompatibility compared to that exhibited by the control cement (CMW1). Moreover, compared to the control cement, there was no significant change in the radiopacity of any of the reinforced cements at p = 0.05. This study demonstrated a novel pathway to augment the mechanical properties of PMMA-based cement by providing an enhanced interfacial interaction and strong adhesion between the functionalized n-TiO( 2) fibers and PMMA matrix, which enhanced the effective load transfer within the cement.
Ung, Roth-Visal; Rouleau, Pascal; Guertin, Pierre A
2012-05-01
Chronic spinal cord injury may be complicated by weight loss, muscle atrophy, and bone loss. The authors identified a combination pharmacotherapy using buspirone, carbidopa, and L-DOPA (BCD) that elicits bouts of locomotor-like movements in spinal cord-transected (Tx) mice. They then evaluated the effects of 8 weeks of treadmill training in Tx mice that received BCD or BCD + clenbuterol, a monoaminergic agent with anabolic properties, on locomotor function, muscle atrophy, adipose tissue loss, and bone density measures. Induced locomotor movement, adipose tissue, skeletal muscle, and femoral bone properties were compared in unoperated control mice, operated controls (untreated, untrained Tx mice), and 2 groups of treated, trained Tx mice (Tx + BCD, Tx + BCD + clenbuterol) that also received training. BCD- and BCD + clenbuterol-treated mice showed comparable levels of locomotor movements that significantly improved over time. Soleus muscle mass and soleus and extensor digitorum longus cross-sectional area significantly increased in both groups of BCD-treated mice, with greater effects in BCD + clenbuterol-treated animals. Fiber type conversion, adipose tissues, bone mineral density, and content were reduced in all Tx groups compared with unoperated control mice. These findings suggest that locomotor movement and muscle properties can be restored to near-normal levels after several weeks of BCD treatment, regular training, and clenbuterol in completely paraplegic animals.
Effects on Magnetic Properties of GaMnAs Induced by Proximity of Topological Insulator Bi2Se3
NASA Astrophysics Data System (ADS)
Bac, Seul-Ki; Lee, Hakjoon; Lee, Sangyeop; Choi, Seonghoon; Lee, Sanghoon; Liu, X.; Dobrowolska, M.; Furdyna, J. K.
2018-04-01
Effects induced by a topological insulator Bi2Se3 on the magnetic properties of an adjacent GaMnAs film have been investigated using transport measurements. We observed three conspicuous effects in the GaMnAs layer induced by the proximity of the Bi2Se3 overlayer. First, our resistivity data as a function of temperature show that the GaMnAs layer adjacent to the Bi2Se3 displayed strongly metallic behavior, as compared with the GaMnAs control specimen. Second, the Curie temperature of the GaMnAs in the bilayer was observed to be higher than that of the control layer, in our case by nearly a factor of two. Finally, we observed significant changes in the in-plane magnetic anisotropy of the GaMnAs in the bilayer, in the form of much higher values of both cubic and uniaxial anisotropy parameters. This latter feature manifests itself in a rather spectacular increase of the coercive field observed in magnetization reversal across the in-plane hard axis. These results suggest that proximity of an adjacent Bi2Se3 layer represents an important tool for modifying and controlling the ferromagnetic properties of GaMnAs film, and could thus be used to optimize this and similar materials for applications in spintronic devices.
48 CFR 1245.511 - Audit of property control system.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Audit of property control... 1245.511 Audit of property control system. (a) The property administrator (or other Government official authorized by the contracting officer) shall audit the contractor's property control system whenever there...
Effect of Molecular Rotation on Charge Transport Phenomena
NASA Astrophysics Data System (ADS)
Garg, O. P.; Lamba, Vijay Kr; Kaushik, D. K.
2015-12-01
The study of electron transport properties of molecular systems could be explained on the basis of the Landauer formalism. Unfortunately, due to the complexity of the experimental setup, most of these measurements have no control over the details of the electrode geometry, rotation of molecules, variation in angle of contacts, effect of fano resonances associated with side groups attached to rigid backbones, which results in a spectrum of IV-characteristics. Theoretical models can therefore help to understand and helps to develop new applications such as molecular sensors, etc. Thus we used simulation methods that generate the required structural ensemble, which is then analyzed with Green’s function methods to characterize the electronic transport properties. In present work we had discussed applications of this approach to understand the conductance in molecular system in the direction of controlling electron transport through molecules and studied the effect of rotation of sandwiched molecule.
Magnetic and Optical Properties of Submicron-Size Hollow Spheres
Ye, Quan-Lin; Yoshikawa, Hirofumi; Awaga, Kunio
2010-01-01
Magnetic hollow spheres with a controlled diameter and shell thickness have emerged as an important class of magnetic nanomaterials. The confined hollow geometry and pronouncedly curved surfaces induce unique physical properties different from those of flat thin films and solid counterparts. In this paper, we focus on recent progress on submicron-size spherical hollow magnets (e.g., cobalt- and iron-based materials), and discuss the effects of the hollow shape and the submicron size on magnetic and optical properties.
Effects of regular exercise training on skeletal muscle contractile function
NASA Technical Reports Server (NTRS)
Fitts, Robert H.
2003-01-01
Skeletal muscle function is critical to movement and one's ability to perform daily tasks, such as eating and walking. One objective of this article is to review the contractile properties of fast and slow skeletal muscle and single fibers, with particular emphasis on the cellular events that control or rate limit the important mechanical properties. Another important goal of this article is to present the current understanding of how the contractile properties of limb skeletal muscle adapt to programs of regular exercise.
Cruel, M; Granke, M; Bosser, C; Audran, M; Hoc, T
2017-06-01
Alcohol-induced secondary osteoporosis in men has been characterized by higher fracture prevalence and a modification of bone microarchitecture. Chronic alcohol consumption impairs bone cell activity and results in an increased fragility. A few studies highlighted effects of heavy alcohol consumption on some microarchitectural parameters of trabecular bone. But to date and to our knowledge, micro- and macro-mechanical properties of bone of alcoholic subjects have not been investigated. In the present study, mechanical properties and microarchitecture of trabecular bone samples from the iliac crest of alcoholic male patients (n=15) were analyzed and compared to a control group (n=8). Nanoindentation tests were performed to determine the tissue's micromechanical properties, micro-computed tomography was used to measure microarchitectural parameters, and numerical simulations provided the apparent mechanical properties of the samples. Compared to controls, bone tissue from alcoholic patients exhibited an increase of micromechanical properties at tissue scale, a significant decrease of apparent mechanical properties at sample scale, and significant changes in several microarchitectural parameters. In particular, a crucial role of structure model index (SMI) on mechanical properties was identified. 3D microarchitectural parameters are at least as important as bone volume fraction to predict bone fracture risk in the case of alcoholic patients. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
An alternative to real estate ownership.
Scarborough, Sydney
2004-05-01
Partnering with healthcare real estate managers and investors is one way to generate capital, improve cash flow, and minimize the management costs of developing and operating outpatient properties without sacrificing control of strategic locations or facilities. Eight simple steps can help you identify and select viable strategic healthcare real estate partners and negotiate effective monetization (sale of property title) agreements with them.
Charles R. Frihart; Daniel J. Yelle; John Ralph; Robert J. Moon; Donald S. Stone; Joseph E. Jakes
2008-01-01
Chemical additions to wood often change its bulk properties, which can be determined using conventional macroscopic mechanical tests. However, the controlling interactions between chemicals and wood take place at and below the scale of individual cells and cell walls. To better understand the effects of chemical additions to wood, we have adapted and extended two...
Lin, Wen-Hsu; Cochran, John K; Mieczkowski, Thomas
2011-01-01
Using a national probability sample of adolescents (12–17), this study applies general strain theory to how violent victimization, vicarious violent victimization, and dual violent victimization affect juvenile violent/property crime and drug use. In addition, the mediating effect and moderating effect of depression, low social control, and delinquent peer association on the victimization–delinquency relationship is also examined. Based on SEM analyses and contingency tables, the results indicate that all three types of violent victimization have significant and positive direct effects on violent/property crime and drug use. In addition, the expected mediating effects and moderating effects are also found. Limitations and future directions are discussed.
Physiochemical properties and application of hyaluronic acid: a systematic review.
Salwowska, Natalia M; Bebenek, Katarzyna A; Żądło, Dominika A; Wcisło-Dziadecka, Dominika L
2016-12-01
Hyaluronic acid is a widely available, biocompatible, polysaccharide with distinguishing physiochemical properties which inspire its application throughout several fields of medicine. We aim to investigate the application of hyaluronic acid and its effectiveness throughout several fields of medicine, including several therapies administered and prescribed by general health practitioners. We conducted a systematic review on randomized controlled trials about the physiochemical properties of hyaluronic acid and its application through primary care. Studies included in this review were peer reviewed and met our inclusion criteria. Factors were clustered into the following: uses throughout several fields of medicine, physiochemical properties, bioavailability, tolerance, effectiveness, and adverse effects. Therapies with hyaluronic acid provided long-lasting, pain relieving, moisturizing, lubricating, and dermal filling effect. Tissue hydration, elasticity, and durability improved. Adjunct therapy with hyaluronic acid provides longer-lasting therapeutic effect when compared to the use of glucocorticosteroids and NSAIDs in osteoarthritic chronic diseases, is well-established in ophthalmology due to its lubricating properties for the corneal endothelium, and improves tissue hydration and cellular resistance to mechanical damage in aesthetic dermatology, and has marginal adverse effects. Several trials indicated its role in tumor markers, liver diseases, and in pharmaceuticals, but further research would be necessary to draw conclusive results in those fields. © 2016 Wiley Periodicals, Inc.
Loudiyi, M; Aït-Kaddour, A
2018-03-21
Chemical composition, sensory characteristics, textural and functional properties are among the most important characteristics, which directly relates to the global quality of cheese and to consumer acceptability. A number of factors including milk composition, processing conditions and salt content, influences these properties. The past decades many investigations were performed on the possibilities to reduce salt content of cheese due to its adverse health effects, the current lifestyle and the awareness of the consumers for nutrition quality products. Due to the multiple potential effects of reducing NaCl (simple reduction or substitution) on cheese attributes, it is of utmost importance to identify and understand those effects in order to control the global quality and safety of the final product. In the present review a collection of the different results and conclusions drawn after studying the effect of salts by conventional (e.g. wet chemistry) and instrumental (e.g. spectral) methods on chemical, structural, textural, sensory and heating properties of cheese are presented.
Zuurman, Lineke; Passier, Paul C C M; de Kam, Marieke L; Kleijn, Huub J; Cohen, Adam F; van Gerven, Joop M A
2010-11-01
An ideal drug for outpatient treatments under conscious sedation would have both sedative and analgesic properties. CB1/CB2 agonists are expected to have sedative, amnestic, analgesic and anti-emetic properties. The main objective of this first study in humans was to assess the sedative properties of intravenous Org 26828. In addition, pharmacokinetics, amnestic properties, postural stability, and behavioural and cardiovascular effects were studied. Midazolam intravenous 0.1 mg/kg and placebo were used as controls. The pharmacokinetic parameters (Cmax and AUC0-inf) of the main metabolite Org 26761 were proportional to dose. No effects were observed after doses up to 0.3 μg/kg of Org 26828. Dose-related effects were observed at higher doses. Although subjects reported subjective sedation after administration of Org 26828 at 3 and 6 μg/kg, the observed sedation was considerably less than after midazolam. Doses higher than the maximum tolerated dose of 1 μg/kg of Org 26828 caused unpleasant central nervous system effects (anxiety, paranoia, hallucinations). Therefore, Org 26828 is not suitable for providing sedation for outpatient surgical procedures.
NASA Technical Reports Server (NTRS)
Hirt, Stefanie M.; Anderson, Bernhard H.
2009-01-01
The effectiveness of microramp flow control devices in controlling an oblique shock interaction was tested in the 15- by 15-Centimeter Supersonic Wind Tunnel at NASA Glenn Research Center. Fifteen microramp geometries were tested varying the height, chord length, and spacing between ramps. Measurements of the boundary layer properties downstream of the shock reflection were analyzed using design of experiments methods. Results from main effects, D-optimal, full factorial, and central composite designs were compared. The designs provided consistent results for a single variable optimization.
Itthivadhanapong, Pimchada; Jantathai, Srinual; Schleining, Gerhard
2016-06-01
This study aimed to compare the effects of 1 % addition of four selected hydrocolloids (xanthan, guar, hypdroxypropylmethylcellulose and carrageenan) on quality characteristics of batter and of black waxy rice steamed cake compared to a control without hydrocolloids. Dynamic frequency sweeps of the batters at 25 °C indicated that all formulations exhibited gel-like behaviour with storage moduli (G') higher than loss moduli (G″). Hydrocolloids increased the apparent viscosity and the thixotropic behaviour, depending on the type of hydrocolloids. Xanthan had the greatest effects on both moduli, whereas carrageenan had the smallest effects. During a storage period of 4 days the cakes with xanthan remained softer than control samples. The overall acceptability of cake with xanthan and guar were higher than control. This study is the first report on using black waxy rice flour as a main raw material in gluten free cake. The results of this study provided useful information for selection hydrocolloids as ingredients that can help to improve the physical properties of waxy rice steamed cake.
Zhao, Ying-Ying; Wang, Jing; Kuang, Hao; Hu, Feng-Xia; Liu, Yao; Wu, Rong-Rong; Zhang, Xi-Xiang; Sun, Ji-Rong; Shen, Bao-Gen
2015-04-24
Memory effect of electric-field control on magnetic behavior in magnetoelectric composite heterostructures has been a topic of interest for a long time. Although the piezostrain and its transfer across the interface of ferroelectric/ferromagnetic films are known to be important in realizing magnetoelectric coupling, the underlying mechanism for nonvolatile modulation of magnetic behaviors remains a challenge. Here, we report on the electric-field control of magnetic properties in wide-band (011)-Pr0.7Sr0.3MnO3/0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 heterostructures. By introducing an electric-field-induced in-plane anisotropic strain field during the cooling process from room temperature, we observe an in-plane anisotropic, nonvolatile modulation of magnetic properties in a wide-band Pr0.7Sr0.3MnO3 film at low temperatures. We attribute this anisotropic memory effect to the preferential seeding and growth of ferromagnetic (FM) domains under the anisotropic strain field. In addition, we find that the anisotropic, nonvolatile modulation of magnetic properties gradually diminishes as the temperature approaches FM transition, indicating that the nonvolatile memory effect is temperature dependent. By taking into account the competition between thermal energy and the potential barrier of the metastable magnetic state induced by the anisotropic strain field, this distinct memory effect is well explained, which provides a promising approach for designing novel electric-writing magnetic memories.
Analysis of horse movements from non-commercial horse properties in New Zealand.
Rosanowski, S M; Cogger, N; Rogers, C W; Bolwell, C F; Benschop, J; Stevenson, M A
2013-09-01
To investigate property-level factors associated with the movement of horses from non-commercial horse properties, including the size and location of the property, number and reason for keeping horses. Using a cross-sectional survey 2,912 questionnaires were posted to randomly selected non-commercial horse properties listed in a rural property database. The survey collected information about the number of horses, and reasons for keeping horses on the property, and any movement of horses in the previous 12 months. Three property-level outcomes were investigated; the movement status of the property, the frequency of movement events, and the median distance travelled from a property. Associations were examined using logistic regression and Kruskal-Wallis analysis of variance. In total 62.0% (488/791) of respondents reported at least one movement event in the year prior to the survey, for a total of 22,050 movement events. The number of movement events from a property varied significantly by the number of horses on the property (p<0.02), while the median distance travelled per property varied significantly by both region (p<0.03) and property size (p<0.01). Region, property size, the number of horses kept, and keeping horses for competition, recreation, racing or as pets were all significantly associated with movement status in the multivariable analyses (p<0.001). This study showed that there are characteristics of non-commercial horse properties that influence movement behaviour. During an exotic disease outbreak the ability to identify properties with these characteristics for targeted control will enhance the effectiveness of control measures.
Doping effect in Si nanocrystals
NASA Astrophysics Data System (ADS)
Li, Dongke; Xu, Jun; Zhang, Pei; Jiang, Yicheng; Chen, Kunji
2018-06-01
Intentional doping in semiconductors is a fundamental issue since it can control the conduction type and ability as well as modify the optical and electronic properties. To realize effective doping is the basis for developing semiconductor devices. However, by reducing the size of a semiconductor, like Si, to the nanometer scale, the doping effects become complicated due to the coupling between the quantum confinement effect and the surfaces and/or interfaces effect. In particular, by introducing phosphorus or boron impurities as dopants into material containing Si nanocrystals with a dot size of less than 10 nm, it exhibits different behaviors and influences on the physical properties from its bulk counterpart. Understanding the doping effects in Si nanocrystals is currently a challenge in order to further improve the performance of the next generation of nano-electronic and photonic devices. In this review, we present an overview of the latest theoretical studies and experimental results on dopant distributions and their effects on the electronic and optical properties of Si nanocrystals. In particular, the advanced characterization techniques on dopant distribution, the carrier transport process as well as the linear and nonlinear optical properties of doped Si nanocrystals, are systematically summarized.
Whole-body vibration training induces hypertrophy of the human patellar tendon.
Rieder, F; Wiesinger, H-P; Kösters, A; Müller, E; Seynnes, O R
2016-08-01
Animal studies suggest that regular exposure to whole-body vibration (WBV) induces an anabolic response in bone and tendon. However, the effects of this type of intervention on human tendon properties and its influence on the muscle-tendon unit function have never been investigated. The aim of this study was to investigate the effect of WBV training on the patellar tendon mechanical, material and morphological properties, the quadriceps muscle architecture and the knee extension torque-angle relationship. Fifty-five subjects were randomized into either a vibration, an active control, or an inactive control group. The active control subjects performed isometric squats on a vibration platform without vibration. Muscle and tendon properties were measured using ultrasonography and dynamometry. Vibration training induced an increase in proximal (6.3%) and mean (3.8%) tendon cross-sectional area, without any appreciable change in tendon stiffness and modulus or in muscle architectural parameters. Isometric torque at a knee angle of 90° increased in active controls (6.7%) only and the torque-angle relation remained globally unchanged in all groups. The present protocol did not appreciably alter knee extension torque production or the musculo-tendinous parameters underpinning this function. Nonetheless, this study shows for the first time that WBV elicits tendon hypertrophy in humans. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, H.; School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona 85287-6106; Prioli, R.
The properties of InAs quantum dots (QDs) have been studied for application in intermediate band solar cells. It is found that suppression of plastic relaxation in the QDs has a significant effect on the optoelectronic properties. Partial capping plus annealing is shown to be effective in controlling the height of the QDs and in suppressing plastic relaxation. A force balancing model is used to explain the relationship between plastic relaxation and QD height. A strong luminescence has been observed from strained QDs, indicating the presence of localized states in the desired energy range. No luminescence has been observed from plasticallymore » relaxed QDs.« less
Peterman, Amber
2011-01-01
This paper evaluates effects of community-level women's property and inheritance rights on women's economic outcomes using a 13 year longitudinal panel from rural Tanzania. In the preferred model specification, inverse probability weighting is applied to a woman-level fixed effects model to control for individual-level time invariant heterogeneity and attrition. Results indicate that changes in women's property and inheritance rights are significantly associated with women's employment outside the home, self-employment and earnings. Results are not limited to sub-groups of marginalised women. Findings indicate lack of gender equity in sub-Saharan Africa may inhibit economic development for women and society as a whole.
Effect of ionizing radiation on structural and conductive properties of copper nanotubes
NASA Astrophysics Data System (ADS)
Zdorovets, M. V.; Borgekov, D. B.; Kenzhina, I. E.; Kozlovskiy, A. L.
2018-01-01
The use of electron radiation is an effective tool for stimulating a controlled modification of structural and conductive properties of nanomaterials in modern materials science. The paper presents the results of studies of the influence of various types of radiation on structural and conductive properties of copper nanotubes obtained by electrochemical synthesis in pores of templates based on polyethylene terephthalate. Such methods as SEM, X-ray diffraction and EDS show that irradiation with a stream of high-energy electrons with doses of 50-250 kGy makes it possible to modify the crystal structure of nanotubes, increasing their conductivity and decreasing the resistance of nanostructures without destroying the structure.
Control of the inversion-channel MOS properties by Mg doping in homoepitaxial p-GaN layers
NASA Astrophysics Data System (ADS)
Takashima, Shinya; Ueno, Katsunori; Matsuyama, Hideaki; Inamoto, Takuro; Edo, Masaharu; Takahashi, Tokio; Shimizu, Mitsuaki; Nakagawa, Kiyokazu
2017-12-01
Lateral GaN MOSFETs on homoepitaxial p-GaN layers with different Mg doping concentrations ([Mg]) have been evaluated to investigate the impact of [Mg] on MOS channel properties. It is demonstrated that the threshold voltage (V th) can be controlled by [Mg] along with the theoretical curve. The field effect mobility also shows [Mg] dependence and a maximum field effect mobility of 123 cm2 V-1 s-1 is achieved on [Mg] = 6.5 × 1016 cm-3 layer with V th = 3.0 V. The obtained results indicate that GaN MOSFETs can be designed on the basis of the doping concentration of the p-GaN layer with promising characteristics for the realization of power MOSFETs.
Magnetic and optoelectronic properties of gold nanocluster-thiophene assembly.
Qin, Wei; Lohrman, Jessica; Ren, Shenqiang
2014-07-07
Nanohybrids consisting of Au nanocluster and polythiophene nanowire assemblies exhibit unique thermal-responsive optical behaviors and charge-transfer controlled magnetic and optoelectronic properties. The ultrasmall Au nanocluster enhanced photoabsorption and conductivity effectively improves the photocurrent of nanohybrid based photovoltaics, leading to an increase of power conversion efficiency by 14 % under AM 1.5 illumination. In addition, nanohybrids exhibit electric field controlled spin resonance and magnetic field sensing behaviors, which open up the potential of charge-transfer complex system where the magnetism and optoelectronics interact. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A hysteretic model considering Stribeck effect for small-scale magnetorheological damper
NASA Astrophysics Data System (ADS)
Zhao, Yu-Liang; Xu, Zhao-Dong
2018-06-01
Magnetorheological (MR) damper is an ideal semi-active control device for vibration suppression. The mechanical properties of this type of devices show strong nonlinear characteristics, especially the performance of the small-scale dampers. Therefore, developing an ideal model that can accurately describe the nonlinearity of such device is crucial to control design. In this paper, the dynamic characteristics of a small-scale MR damper developed by our research group is tested, and the Stribeck effect is observed in the low velocity region. Then, an improved model based on sigmoid model is proposed to describe this Stribeck effect observed in the experiment. After that, the parameters of this model are identified by genetic algorithms, and the mathematical relationship between these parameters and the input current, excitation frequency and amplitude is regressed. Finally, the predicted forces of the proposed model are validated with the experimental data. The results show that this model can well predict the mechanical properties of the small-scale damper, especially the Stribeck effect in the low velocity region.
2018-01-01
Oxide and nitride thin-films of Ti, Hf, and Si serve numerous applications owing to the diverse range of their material properties. It is therefore imperative to have proper control over these properties during materials processing. Ion-surface interactions during plasma processing techniques can influence the properties of a growing film. In this work, we investigated the effects of controlling ion characteristics (energy, dose) on the properties of the aforementioned materials during plasma-enhanced atomic layer deposition (PEALD) on planar and 3D substrate topographies. We used a 200 mm remote PEALD system equipped with substrate biasing to control the energy and dose of ions by varying the magnitude and duration of the applied bias, respectively, during plasma exposure. Implementing substrate biasing in these forms enhanced PEALD process capability by providing two additional parameters for tuning a wide range of material properties. Below the regimes of ion-induced degradation, enhancing ion energies with substrate biasing during PEALD increased the refractive index and mass density of TiOx and HfOx and enabled control over their crystalline properties. PEALD of these oxides with substrate biasing at 150 °C led to the formation of crystalline material at the low temperature, which would otherwise yield amorphous films for deposition without biasing. Enhanced ion energies drastically reduced the resistivity of conductive TiNx and HfNx films. Furthermore, biasing during PEALD enabled the residual stress of these materials to be altered from tensile to compressive. The properties of SiOx were slightly improved whereas those of SiNx were degraded as a function of substrate biasing. PEALD on 3D trench nanostructures with biasing induced differing film properties at different regions of the 3D substrate. On the basis of the results presented herein, prospects afforded by the implementation of this technique during PEALD, such as enabling new routes for topographically selective deposition on 3D substrates, are discussed. PMID:29554799
Wang, Linlin; Liu, Qi; Jing, Dongdong; Zhou, Shanyu; Shao, Longquan
2014-04-01
The aim of this study was to evaluate the effect of TiO2 nanoparticles on the mechanical and anti-ageing properties of a medical silicone elastomer and to assess the biocompatibility of this novel combination. TiO2 (P25, Degussa, Germany) nanoparticles were mixed with the silicone elastomer (MDX4-4210, Dow Corning, USA) at 2%, 4%, and 6% (w/w) using silicone fluid as diluent (Q7-9180, Dow Corning, USA). Blank silicone elastomer served as the control material. The physical properties and biocompatibility of the composites were examined. The tensile strength was tested for 0% and 6% (w/w) before and after artificial ageing. SEM analysis was performed. TiO2 nanoparticles improved the tensile strength and Shore A hardness of the silicone elastomer (P<0.05). However, a decrease in the elongation at break and tear strength was found for the 6% (w/w) composite (P<0.05). All the ageing methods had no effect on the tensile strength of the 6% (w/w) composite (P>0.05), but thermal ageing significantly decreased the tensile strength of the control group (P<0.05). Cellular viability assays indicated that the composite exhibited biocompatibility. We obtained a promising restorative material which yields favourable physical and anti-ageing properties and is biocompatible in our in vitro cellular studies. Copyright © 2014 Elsevier Ltd. All rights reserved.
An integrated control scheme for space robot after capturing non-cooperative target
NASA Astrophysics Data System (ADS)
Wang, Mingming; Luo, Jianjun; Yuan, Jianping; Walter, Ulrich
2018-06-01
How to identify the mass properties and eliminate the unknown angular momentum of space robotic system after capturing a non-cooperative target is of great challenge. This paper focuses on designing an integrated control framework which includes detumbling strategy, coordination control and parameter identification. Firstly, inverted and forward chain approaches are synthesized for space robot to obtain dynamic equation in operational space. Secondly, a detumbling strategy is introduced using elementary functions with normalized time, while the imposed end-effector constraints are considered. Next, a coordination control scheme for stabilizing both base and end-effector based on impedance control is implemented with the target's parameter uncertainty. With the measurements of the forces and torques exerted on the target, its mass properties are estimated during the detumbling process accordingly. Simulation results are presented using a 7 degree-of-freedom kinematically redundant space manipulator, which verifies the performance and effectiveness of the proposed method.
Ogura, Tatsuki; Date, Yasuhiro; Masukujane, Masego; Coetzee, Tidimalo; Akashi, Kinya; Kikuchi, Jun
2016-01-01
Effective use of agricultural residual biomass may be beneficial for both local and global ecosystems. Recently, biochar has received attention as a soil enhancer, and its effects on plant growth and soil microbiota have been investigated. However, there is little information on how the physical, chemical, and biological properties of soil amended with biochar are affected. In this study, we evaluated the effects of the incorporation of torrefied plant biomass on physical and structural properties, elemental profiles, initial plant growth, and metabolic and microbial dynamics in aridisol from Botswana. Hemicellulose in the biomass was degraded while cellulose and lignin were not, owing to the relatively low-temperature treatment in the torrefaction preparation. Water retentivity and mineral availability for plants were improved in soils with torrefied biomass. Furthermore, fertilization with 3% and 5% of torrefied biomass enhanced initial plant growth and elemental uptake. Although the metabolic and microbial dynamics of the control soil were dominantly associated with a C1 metabolism, those of the 3% and 5% torrefied biomass soils were dominantly associated with an organic acid metabolism. Torrefied biomass was shown to be an effective soil amendment by enhancing water retentivity, structural stability, and plant growth and controlling soil metabolites and microbiota. PMID:27313139
NASA Astrophysics Data System (ADS)
Ogura, Tatsuki; Date, Yasuhiro; Masukujane, Masego; Coetzee, Tidimalo; Akashi, Kinya; Kikuchi, Jun
2016-06-01
Effective use of agricultural residual biomass may be beneficial for both local and global ecosystems. Recently, biochar has received attention as a soil enhancer, and its effects on plant growth and soil microbiota have been investigated. However, there is little information on how the physical, chemical, and biological properties of soil amended with biochar are affected. In this study, we evaluated the effects of the incorporation of torrefied plant biomass on physical and structural properties, elemental profiles, initial plant growth, and metabolic and microbial dynamics in aridisol from Botswana. Hemicellulose in the biomass was degraded while cellulose and lignin were not, owing to the relatively low-temperature treatment in the torrefaction preparation. Water retentivity and mineral availability for plants were improved in soils with torrefied biomass. Furthermore, fertilization with 3% and 5% of torrefied biomass enhanced initial plant growth and elemental uptake. Although the metabolic and microbial dynamics of the control soil were dominantly associated with a C1 metabolism, those of the 3% and 5% torrefied biomass soils were dominantly associated with an organic acid metabolism. Torrefied biomass was shown to be an effective soil amendment by enhancing water retentivity, structural stability, and plant growth and controlling soil metabolites and microbiota.
Sensory evaluation of dry-fermented sausage containing ground deodorized yellow mustard.
Li, Shuliu; Aliani, Michel; Holley, Richard A
2013-10-01
Ground deodorized yellow mustard is used as a binder and meat protein substitute in cooked processed meat products. Recent studies have shown that it has the potential to be used in uncooked processed meat products because of its natural antimicrobial properties. In the present study, ground deodorized yellow mustard was added to uncooked dry-fermented sausage during manufacture at 1% to 4% (w/w) and analyzed for its effects on starter cultures, physico-chemical properties, and consumer acceptability. Mustard had a nondose-dependent inhibitory effect on the Staphylococcus starter culture, had no effect on water activity or instrumental texture, and tended to accelerate sausage pH reduction. At 3% and 4% mustard, consumer scores on all sensory attributes as well as overall acceptability were significantly lower. The appearance and color of 3% and 4% mustard-treated sausages were liked slightly, whereas flavor, texture, and overall acceptability scores were reduced. The control without mustard and 1% mustard-treated sausages had similar sensory properties and were the most acceptable, while 2% mustard-treated sausages were given "like moderately" and "like slightly" descriptors. Sensory results mean that at concentrations necessary for mandated regulatory control of Escherichia coli O157:H7 in dry sausages, mustard may have a negative effect on consumer acceptance. © 2013 Institute of Food Technologists®
Ogura, Tatsuki; Date, Yasuhiro; Masukujane, Masego; Coetzee, Tidimalo; Akashi, Kinya; Kikuchi, Jun
2016-06-17
Effective use of agricultural residual biomass may be beneficial for both local and global ecosystems. Recently, biochar has received attention as a soil enhancer, and its effects on plant growth and soil microbiota have been investigated. However, there is little information on how the physical, chemical, and biological properties of soil amended with biochar are affected. In this study, we evaluated the effects of the incorporation of torrefied plant biomass on physical and structural properties, elemental profiles, initial plant growth, and metabolic and microbial dynamics in aridisol from Botswana. Hemicellulose in the biomass was degraded while cellulose and lignin were not, owing to the relatively low-temperature treatment in the torrefaction preparation. Water retentivity and mineral availability for plants were improved in soils with torrefied biomass. Furthermore, fertilization with 3% and 5% of torrefied biomass enhanced initial plant growth and elemental uptake. Although the metabolic and microbial dynamics of the control soil were dominantly associated with a C1 metabolism, those of the 3% and 5% torrefied biomass soils were dominantly associated with an organic acid metabolism. Torrefied biomass was shown to be an effective soil amendment by enhancing water retentivity, structural stability, and plant growth and controlling soil metabolites and microbiota.
Effects of multiwall carbon nanotubes on viscoelastic properties of magnetorheological elastomers
NASA Astrophysics Data System (ADS)
Aziz, Siti Aishah Abdul; Amri Mazlan, Saiful; Intan Nik Ismail, Nik; Ubaidillah, U.; Choi, Seung-Bok; Khairi, Muntaz Hana Ahmad; Azhani Yunus, Nurul
2016-07-01
The effect of different types of multiwall carbon nanotubes (MWCNTs) on the morphological, magnetic and viscoelastic properties of magnetorheological elastomers (MREs) are studied in this work. A series of natural rubber MRE are prepared by adding MWCNTs as a new additive in MRE. Effects of functionalized MWCNT namely carboxylated MWCNT (COOH-MWCNT) and hydroxylated MWCNT (OH-MWCNT) on the rheological properties of MREs are investigated and the pristine MWCNTs is referred as a control. Epoxidised palm oil (EPO) is used as a medium to disperse carbonyl iron particle (CIP) and sonicate the MWCNTs. Morphological and magnetic properties of MREs are characterized by field emission scanning electron microscopy (FESEM) and vibrating sample magnetometer (VSM), respectively. Rheological properties under different magnetic field are evaluated by using parallel plate rheometer. From the results obtained, FESEM images indicate that COOH-MWCNT and CIP have better compatibility which leads to the formation of interconnected network in the matrix. In addition, by adding functionalized COOH-MWCNT, it is shown that the saturation magnetization is 5% higher than the pristine MWCNTs. It is also found that with the addition of COOH-MWCNT, the magnetic properties are improved parallel with enhancement of MR effect particularly at low strain amplitude. It is finally shown that the use of EPO also can contribute to the enhancement of MR performance.
Point Defect Properties of Cd(Zn)Te and TlBr for Room-Temperature Gamma Radiation Detectors
NASA Astrophysics Data System (ADS)
Lordi, Vincenzo
2013-03-01
The effects of various crystal defects in CdTe, Cd1-xZnxTe (CZT), and TlBr are critical for their performance as room-temperature gamma radiation detectors. We use predictive first principles theoretical methods to provide fundamental, atomic scale understanding of the defect properties of these materials to enable design of optimal growth and processing conditions, such as doping, annealing, and stoichiometry. Several recent cases will be reviewed, including (i) accurate calculations of the thermodynamic and electronic properties of native point defects and point defect complexes in CdTe and CZT; (ii) the effects of Zn alloying on the native point defect properties of CZT; (iii) point defect diffusion and binding related to Te clustering in Cd(Zn)Te; (iv) the profound effect of native point defects--principally vacancies--on the intrinsic material properties of TlBr, particularly electronic and ionic conductivity; (v) tailored doping of TlBr to independently control the electronic and ionic conductivity; and (vi) the effects of metal impurities on the electronic properties and device performance of TlBr detectors. Prepared by LLNL under Contract DE-AC52-07NA27344 with support from the National Nuclear Security Administration Office of Nonproliferation and Verification Research and Development NA-22.
Tracking Emissions Using New Fenceline Monitoring Technology
New cost-effective approaches to measuring air pollutants at the fenceline or in communities near industrial facilities can help identify and control air pollution that may drift across property lines.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azuma, Chiori; Kawano, Takuto; Kakemoto, Hirofumi
2014-11-07
The addition of photo-controllable properties to tungsten trioxide (WO{sub 3}) is of interest for developing practical applications of WO{sub 3} as well as for interpreting such phenomena from scientific viewpoints. Here, a sputtered crystalline WO{sub 3} thin film generated thermoelectric power due to ultraviolet (UV) light-induced band-gap excitation and was accompanied by a photochromic reaction resulting from generating W{sup 5+} ions. The thermoelectric properties (electrical conductivity (σ) and Seebeck coefficient (S)) and coloration of WO{sub 3} could be reversibly switched by alternating the external stimulus between UV light irradiation and dark storage. After irradiating the film with UV light, σmore » increased, whereas the absolute value of S decreased, and the photochromic (coloration) reaction was detected. Notably, the opposite behavior was exhibited by WO{sub 3} after dark storage, and this reversible cycle could be repeated at least three times. Moreover, photo-thermoelectric effects (photo-conductive effect (photo-conductivity, σ{sub photo}) and photo-Seebeck effect (photo-Seebeck coefficient, S{sub photo})) were also detected in response to visible-light irradiation of the colored WO{sub 3} thin films. Under visible-light irradiation, σ{sub photo} and the absolute value of S{sub photo} increased and decreased, respectively. These effects are likely attributable to the excitation of electrons from the mid-gap visible light absorption band (W{sup 5+} state) to the conduction band of WO{sub 3}. Our findings demonstrate that the simultaneous, reversible switching of multiple properties of WO{sub 3} thin film is achieved by the application of an external stimulus and that this material exhibits photo-thermoelectric effects when irradiated with visible-light.« less
41 CFR 109-27.5008 - Control of drug substances and potable alcohol.
Code of Federal Regulations, 2011 CFR
2011-01-01
... substances and potable alcohol. 109-27.5008 Section 109-27.5008 Public Contracts and Property Management..., and Guidelines § 109-27.5008 Control of drug substances and potable alcohol. Effective procedures and... alcohol from receipt to the point of use. Such procedures shall, as a minimum, provide for safeguarding...
NASA Astrophysics Data System (ADS)
Pérez, Nicolás; Moya, C.; Tartaj, P.; Labarta, A.; Batlle, X.
2017-01-01
The control of magnetic interactions is becoming essential to expand/improve the applicability of magnetic nanoparticles (NPs). Here, we show that an optimized microemulsion method can be used to obtain homogenous silica coatings on even single magnetic nuclei of highly crystalline Fe3-xO4 NPs (7 and 16 nm) derived from a high-temperature method. We show that the thickness of this coating is controlled almost at will allowing much higher average separation among particles as compared to the oleic acid coating present on pristine NPs. Magnetic susceptibility studies show that the thickness of the silica coating allows the control of magnetic interactions. Specifically, as this effect is better displayed for the smallest particles, we show that dipole-dipole interparticle interactions can be tuned progressively for the 7 nm NPs, from almost non-interacting to strongly interacting particles at room temperature. The quantitative analysis of the magnetic properties unambiguously suggests that dipolar interactions significantly broaden the effective distribution of energy barriers by spreading the distribution of activation magnetic volumes.
Temperament and character properties of primary focal hyperhidrosis patients
2013-01-01
Background Primary focal hyperhidrosis is a health problem, which has negative effects on the patient's quality of life and significantly affects the patients’ daily activities, social and business life. The aim of this study is to evaluate temperament and character properties of patients diagnosed with primary focal hyperhidrosis. Methods Fifty-six primary focal hyperhidrosis (22.42 ± 7.80) and 49 control subjects (24.48 ± 5.17) participated in the study. Patients who met the diagnostic criteria for PFH were referred to psychiatry clinic where the subjects were evaluated through Structured Clinical Interview for DSM Disorders-I and Temperament and Character Inventory. Results In order to examine the difference between the PFH and control group in terms of temperament and character properties, one-way Multivariate Analysis of Variance (MANOVA) was conducted. In terms of temperament properties, PFH group took significantly higher scores than control group in Fatigability and asthenia dimension. In terms of character properties, PFH group scored significantly lower than control group in Purposefulness , Resourcefulness , Self-Directedness and scored significantly higher than control group in Self-forgetfulness and Self-Transcendence. Conclusion Temperament and character features of PFH patients were different from healthy group and it was considered that these features were affected by many factors including genetic, biological, environmental, socio-cultural elements. During the follow-up of PFH cases, psychiatric evaluation is important and interventions, especially psychotherapeutic interventions can increase the chances of success of the dermatological treatments and can have a positive impact on the quality of life and social cohesion of chronic cases. PMID:23311945
Photonic Resins: Designing Optical Appearance via Block Copolymer Self-Assembly.
Song, Dong-Po; Jacucci, Gianni; Dundar, Feyza; Naik, Aditi; Fei, Hua-Feng; Vignolini, Silvia; Watkins, James J
2018-03-27
Despite a huge variety of methodologies having been proposed to produce photonic structures by self-assembly, the lack of an effective fabrication approach has hindered their practical uses. These approaches are typically limited by the poor control in both optical and mechanical properties. Here we report photonic thermosetting polymeric resins obtained through brush block copolymer (BBCP) self-assembly. We demonstrate that the control of the interplay between order and disorder in the obtained photonic structure offers a powerful tool box for designing the optical appearance of the polymer resins in terms of reflected wavelength and scattering properties. The obtained materials exhibit excellent mechanical properties with hardness up to 172 MPa and Young's modulus over 2.9 GPa, indicating great potential for practical uses as photonic coatings on a variety of surfaces.
Hodograph analysis in aircraft trajectory optimization
NASA Technical Reports Server (NTRS)
Cliff, Eugene M.; Seywald, Hans; Bless, Robert R.
1993-01-01
An account is given of key geometrical concepts involved in the use of a hodograph as an optimal control theory resource which furnishes a framework for geometrical interpretation of the minimum principle. Attention is given to the effects of different convexity properties on the hodograph, which bear on the existence of solutions and such types of controls as chattering controls, 'bang-bang' control, and/or singular control. Illustrative aircraft trajectory optimization problems are examined in view of this use of the hodograph.
[Effects of menthol as an additive in tobacco products and the need for regulation].
Kahnert, S; Nair, U; Mons, U; Pötschke-Langer, M
2012-03-01
Menthol is the most widely used and the most prominent tobacco additive in tobacco products advertised and marketed by the tobacco industry. Besides its characteristic flavor, it possesses a variety of pharmacological properties facilitating tobacco smoke inhalation and potentiating dependence. These properties of menthol not only favor tobacco initiation and consumption but can also prevent smoking cessation. This article summarizes the effect of menthol as an additive in tobacco products and its effect on tobacco consumption that causes a number of chronic diseases and premature death and, therefore, counteracts tobacco control measures. Currently, there is no legislative regulation in Germany that considers the health hazard, addiction-enhancing and attractiveness-increasing properties of additives permitted in tobacco products. Effective regulation or even a ban could contribute to a reduction of tobacco consumption and, hence, save many people from a long-lasting tobacco dependence.
Dual-cycle dielectrophoretic collection rates for probing the dielectric properties of nanoparticles
Bakewell, David J; Holmes, David
2013-01-01
A new DEP spectroscopy method and supporting theoretical model is developed to systematically quantify the dielectric properties of nanoparticles using continuously pulsed DEP collection rates. Initial DEP collection rates, that are dependent on the nanoparticle dielectric properties, are an attractive alternative to the crossover frequency method for determining dielectric properties. The new method introduces dual-cycle amplitude modulated and frequency-switched DEP (dual-cycle DEP) where the first collection rate with a fixed frequency acts as a control, and the second collection rate frequency is switched to a chosen value, such that, it can effectively probe the dielectric properties of the nanoparticles. The application of the control means that measurement variation between DEP collection experiments is reduced so that the frequency-switched probe collection is more effective. A mathematical model of the dual-cycle method is developed that simulates the temporal dynamics of the dual-cycle DEP nanoparticle collection system. A new statistical method is also developed that enables systematic bivariate fitting of the multifrequency DEP collection rates to the Clausius–Mossotti function, and is instrumental for determining dielectric properties. A Monte-Carlo simulation validates that collection rates improve estimation of the dielectric properties, compared with the crossover method, by exploiting a larger number of independent samples. Experiments using 200 nm diameter latex nanospheres suspended in 0.2 mS/m KCl buffer yield a nanoparticle conductivity of 26 mS/m that lies within 8% of the expected value. The results show that the dual-frequency method has considerable promise particularly for automated DEP investigations and associated technologies. PMID:23172363
DOE Office of Scientific and Technical Information (OSTI.GOV)
Babeyko, A.Yu.; Sobolev, S.V.; Sinelnikov, E.D.
1994-09-01
In-situ elastic properties in deep boreholes are controlled by several factors, mainly by lithology, petrofabric, fluid-filled cracks and pores. In order to separate the effects of different factors it is useful to extract lithology-controlled part from observed in-situ velocities. For that purpose we calculated mineralogical composition and isotropic crack-free elastic properties in the lower part of the Kola borehole from bulk chemical compositions of core samples. We use a new technique of petrophysical modeling based on thermodynamic approach. The reasonable accuracy of the modeling is confirmed by comparison with the observations of mineralogical composition and laboratory measurements of density andmore » elastic wave velocities in upper crustal crystalline rocks at high confining pressure. Calculations were carried out for 896 core samples from the depth segment of 6840-10535m. Using these results we estimate density and crack-free isotropic elastic properties of 554 lithology-defined layers composing this depth segment. Average synthetic P-wave velocity appears to be 2.7% higher than the velocity from Vertical Seismic Profiling (VSP), and 5% higher than sonic log velocity. Average synthetic S-wave velocity is 1.4% higher than that from VSP. These differences can be explained by superposition of effects of fabric-related anisotropy, cracks aligned parallel to the foliation plain, and randomly oriented cracks, with the effects of cracks being the predominant control. Low sonic log velocities are likely caused by drilling-induced cracking (hydrofractures) in the borehole walls. The calculated synthetic density and velocity cross-sections can be used for much more detailed interpretations, for which, however, new, more detailed and reliable seismic data are required.« less
Evaluating Glucocorticoid Administration on Biomechanical Properties of Rats’ Tibial Diaphysis
Freidouni, Mohammadjavad; Nejati, Hossein; Salimi, Maryam; Bayat, Mohammad; Amini, Abdollah; Noruzian, Mohsen; Asgharie, Mohammad Ali; Rezaian, Milad
2015-01-01
Background: Osteoporosis is a disease, which causes bone loss and fractures. Although glucocorticoids effectively suppress inflammation, their chronic use is accompanied by bone loss with a tendency toward secondary osteoporosis. Objectives: This study took into consideration the importance of cortical bone in the entire bone's mechanical competence. Hence, the aim of this study was to assess the effects of different protocols of glucocorticoid administration on the biomechanical properties of tibial bone diaphysis in rats compared to control and low-level laser-treated rats. Materials and Methods: This experimental study was conducted at Shahid Beheshti University of Medical Sciences, Tehran, Iran. We used systematic random sampling to divide 40 adult male rats into 8 groups with 5 rats in each group. Groups were as follows: 1) control, 2) dexamethasone (7 mg/week), 3) dexamethasone (0.7 mg/week), 4) methylprednisolone (7 mg/kg/week), 5) methylprednisolone (5 mg/kg twice weekly), 6) dexamethasone (7 mg/kg three times per week), 7) dexamethasone (0.7 mg/kg thrice per week), and 8) low-level laser-treated rats. The study periods were 4-7 weeks. At the end of the treatment periods, we examined the mechanical properties of tibial bone diaphysis. Data were analyzed by statistical analyses. Results: Glucocorticoid-treated rats showed weight loss and considerable mortality (21%). The biomechanical properties (maximum force) of glucocorticoid-treated rats in groups 4 (62 ± 2.9), 6 (63 ± 5.1), and 7 (60 ± 5.3) were comparable with the control (46 ± 1.5) and low-level laser-treated (57 ± 3.2) rats. Conclusions: In contrast to the findings in humans and certain other species, glucocorticoid administration caused anabolic effect on the cortical bone of tibia diaphysis bone in rats. PMID:26019900
NASA Astrophysics Data System (ADS)
Obeidat, Abdalla; Jaradat, Adnan; Hamdan, Bushra; Abu-Ghazleh, Hind
2018-04-01
The best spherical cutoff radius, long range interaction and temperature controller were determined using surface tension, density, and diffusion coefficients of van Leeuwen and Smit methanol. A quite good range of cutoff radii from 0.75 to 1.45 nm has been studied on Coulomb cut-off and particle mesh Ewald (PME) long range interaction to determine the best cutoff radius and best long range interaction as well for four sets of temperature: 200, 230, 270 and 300 K. To determine the best temperature controller, the cutoff radius of 1.25 nm was fixed using PME long range interaction on calculating the above properties at low temperature range: 200-300 K.
Control design methods for floating wind turbines for optimal disturbance rejection
NASA Astrophysics Data System (ADS)
Lemmer, Frank; Schlipf, David; Cheng, Po Wen
2016-09-01
An analysis of the floating wind turbine as a multi-input-multi-output system investigating the effect of the control inputs on the system outputs is shown. These effects are compared to the ones of the disturbances from wind and waves in order to give insights for the selection of the control layout. The frequencies with the largest impact on the outputs due to limited effect of the controlled variables are identified. Finally, an optimal controller is designed as a benchmark and compared to a conventional PI-controller using only the rotor speed as input. Here, the previously found system properties, especially the difficulties to damp responses to wave excitation, are confirmed and verified through a spectral analysis with realistic environmental conditions. This comparison also assesses the quality of the employed simplified linear simulation model compared to the nonlinear model and shows that such an efficient frequency-domain evaluation for control design is feasible.
Polyvinyl alcohol membranes as alkaline battery separators
NASA Technical Reports Server (NTRS)
Sheibley, D. W.; Gonzalez-Sanabria, O.; Manzo, M. A.
1982-01-01
Polyvinly alcohol (PVA) cross-linked with aldehyde reagents yields membranes that demonstrate properties that make them suitable for use as alkaline battery separators. Film properties can be controlled by the choice of cross-linker, cross-link density and the method of cross-linking. Three methods of cross-linking and their effects on film properties are discussed. Film properties can also be modified by using a copolymer of vinyl alcohol and acrylic acid as the base for the separator and cross-linking it similarly to the PVA. Fillers can be incorporated into the films to further modify film properties. Results of separator screening tests and cell tests for several variations of PBA films are discussed.
S-induced modifications of the optoelectronic properties of ZnO mesoporous nanobelts
Fabbri, Filippo; Nasi, Lucia; Fedeli, Paolo; Ferro, Patrizia; Salviati, Giancarlo; Mosca, Roberto; Calzolari, Arrigo; Catellani, Alessandra
2016-01-01
The synthesis of ZnO porous nanobelts with high surface-to-volume ratio is envisaged to enhance the zinc oxide sensing and photocatalytic properties. Yet, controlled stoichiometry, doping and compensation of as-grown n-type behavior remain open problems for this compound. Here, we demonstrate the effect of residual sulfur atoms on the optical properties of ZnO highly porous, albeit purely wurtzite, nanobelts synthesized by solvothermal decomposition of ZnS hybrids. By means of combined cathodoluminescence analyses and density functional theory calculations, we attribute a feature appearing at 2.36 eV in the optical emission spectra to sulfur related intra-gap states. A comparison of different sulfur configurations in the ZnO matrix demonstrates the complex compensating effect on the electronic properties of the system induced by S-inclusion. PMID:27301986
Effect of PVA fiber content on creep property of fiber reinforced high-strength concrete columns
NASA Astrophysics Data System (ADS)
Xu, Zongnan; Wang, Tao; Wang, Weilun
2018-04-01
The effect of PVA (polyvinyl alcohol) fiber content on the creep property of fiber reinforced high-strength concrete columns was investigated. The correction factor of PVA fiber content was proposed and the creep prediction model of ACI209 was modified. Controlling the concrete strength as C80, changing the content of PVA fiber (volume fraction 0%, 0.25%, 0.5%, 1% respectively), the creep experiment of PVA fiber reinforced concrete columns was carried out, the creep coefficient of each specimen was calculated to characterize the creep property. The influence of PVA fiber content on the creep property was analyzed based on the creep coefficient and the calculation results of several frequently used creep prediction models. The correction factor of PVA fiber content was proposed to modify the ACI209 creep prediction model.
NASA Astrophysics Data System (ADS)
Xie, Guoxin; Luo, Jianbin; Liu, Shuhai; Guo, Dan
2011-01-01
The effect of external electrical potentials (EEPs) on aqueous surfactant films nanoconfined in a ball-plate configuration has been investigated by measuring the dynamic film thickness with an interferometer. Experimental results indicate that the film formation properties of the surfactant solutions in the nanogap under applied EEPs are strongly dependent on the interfacial adsorbed surfactant structure. Effective control over the film formation properties by applying EEPs depends on the signs of the charges on the solid surface and the surfactant headgroups, the surfactant concentration, and the magnitude of EEPs. Remarkable alterations of the film formation properties in the nanogap by EEPs can be observed except when the surface charge is the same in sign as the headgroups and the surfactant concentration is above the critical micelle concentration. Mechanisms of these phenomena have been discussed in this work.
McGann, Megan E; Bonitsky, Craig M; Ovaert, Timothy C; Wagner, Diane R
2014-06-01
Given the important role of the collagenous structure in cartilage mechanics, there is considerable interest in the relationship between collagen crosslinking and the mechanical behavior of the cartilage matrix. While crosslink-induced alterations to the elastic modulus of cartilage have been described, changes to time-dependent behavior have not yet been determined. The objective of the study was to quantify changes to cartilage material properties, including viscoelastic coefficients, with crosslinking via indentation. To accomplish this, a semi-autonomous microindentation stress relaxation protocol was first developed, validated and then applied to cartilage specimens before and after crosslinking. The change in mechanical properties with crosslinking was analyzed both in the unloading portions of the test via the Oliver-Pharr method and in the holding portion with an inverse iterative finite element model that represented cartilage as a biphasic poroviscoelastic material. Although both techniques suggested a similar increase in equilibrium modulus in the crosslinked specimens as compared to the controls, distinct differences in the control specimens were apparent, suggesting that the two different techniques may be capturing different aspects of the material behavior. No differences in time-dependent properties were observed between the crosslinked and the control specimens. These results give further insight into the effects of crosslinking in cartilage mechanical behavior. Additionally, the microindentation stress relaxation protocol may enable increased automation for high-throughput testing. Copyright © 2014 Elsevier Ltd. All rights reserved.
Effect of electromagnetic fields on some biomechanical and biochemical properties of rat’s blood
NASA Astrophysics Data System (ADS)
Mohaseb, M. A.; Shahin, F. A.; Ali, F. M.; Baieth, H. A.
2017-06-01
In order to study the effect of electromagnetic fields (0.3 mT, 50 Hz) on some biomechanical and biochemical properties of rats’ blood, healthy thirty male albino rats of 150 ± 10 g were divided into three equal groups namely A, B1, B2. Group A used as a control group, group B1 was continuously exposed to a magnetic field of (0.3 mT, 50 Hz) for a period of 21 days for direct effect studies. Group B2 was continuously exposed to the same magnetic field for the same period of time, then was housed away from the magnetic field for a period of 45 days for delayed effects studies. After examination, the results indicated that the apparent viscosity and the consistency index increased significantly and very high significantly for groub B1 and B2 compared to control at P<0.05. Red blood cell counts (RBCs) membrane elasticity had significantly and very high significantly decreased for groups B1 and B2. Moreover, delayed effects studies indicated that there is deterioration in the bone marrow functions. These results are supported by the blood film image, where irregularities and deformations in the RBCs membranes had been occurred. We conclude that the cell membrane properties are highly affected by the extremely low frequency (ELF) magnetic fields, which proved to be biologically toxic.
The Effect of Water Chemistry on the Release of Iron from Pipe Walls
Colored water problems originating from distribution system materials may be reduced by controlling corrosion, iron released from corrosion scales, and better understanding of the form and properties of the iron particles. The objective of this research was to evaluate the effect...
The effects of minor elements in La0.6Sr0.4Co0.2Fe0.8O3-δ cathodes on oxygen reduction reaction
NASA Astrophysics Data System (ADS)
Oishi, Junya; Otomo, Junichiro; Oshima, Yoshito; Koyama, Michihisa
2015-03-01
It is known that the minor elements affect the performance of solid oxide fuel cell (SOFC). In this study, we focus on the influence of minor elements on the SOFC cathode properties. The Ca, Ba, Al, and Si, which originate from raw materials and production processes for SOFC cathodes, are investigated as minor elements that may have effect on the properties of La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) cathode. To examine the effects of minor elements on the cathode properties, Ca, Ba, Al, and Si with a controlled concentration are added to the LSCF reference sample. Conductivity relaxation measurements are conducted to determine the chemical diffusion coefficient (Dchem) and surface exchange coefficient (ktr), which governs the overpotential characteristics of the LSCF cathode. The results show that Al and Si have negative effects on both Dchem and ktr while Ca and Ba do not alter Dchem and show weakly positive effects on ktr. The effects of Ca and Ba for the cathode properties are discussed on the basis of XPS measurements.
Nguyen, Caroline Tram; Chambers, Mark S; Powers, John M; Kiat-Amnuay, Sudarat
2013-06-01
There are reports of dissatisfaction with color instability and reduced lifetime of extraoral maxillofacial prostheses. Previous studies showed that UV mineral-based light-protecting agent (LP) improved color stability of MDX4-4210/Type A silicone elastomer. However, effects of this agent and opacifiers on mechanical properties of the elastomer are unknown. The purpose of this study was to evaluate the effect of 2 commonly used opacifiers and LP, a new opacifier, when combined with pigments on the mechanical properties of MDX4-4210/Type A silicone elastomer before and after artificial aging. Two commonly used opacifiers, titanium white dry pigment (TW) and silicone intrinsic white (SW) and LP were each combined with MDX4-4210/type A. Artists' oil pigment was then combined with the LP and TW groups, and silicone intrinsic pigments were combined with the SW group with 5 colors (no pigment=control, red, yellow, blue, or a combination of the 3 pigments). Ten dumbbell-shaped and 10 trouser-shaped specimens of each opacifier + pigment mixture, plus a control group with no opacifier and no pigment, were made for a total of 320 specimens. Half of the specimens (n=5) were aged in a chamber at 450 kJ/m(2). Specimens were tested for hardness (ASTM D2240), tensile strength (ASTM D412), tear strength (ASTM D624), and percentage elongation in a universal testing machine. A 3-way ANOVA and the Fisher PLSD test were performed (α=.05) for each mechanical property. After accelerated aging, values of Shore A hardness were the lowest for LP with all 5 pigments and the control, followed by SW and TW (P<.001). After accelerated aging, tear strength, tensile strength, and elongation decreased significantly (P<.001) for LP, whereas changes for SW and TW varied depending on the pigment. The mechanical properties of specimens with the light-protecting opacifier were adversely affected after being subjected to artificial aging. SW and TW preserved the mechanical properties of silicone in this study. Copyright © 2013 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.
Hurtaud, C; Faucon, F; Couvreur, S; Peyraud, J-L
2010-04-01
The aim of this experiment was to compare the effects of increasing amounts of extruded linseed in dairy cow diet on milk fat yield, milk fatty acid (FA) composition, milk fat globule size, and butter properties. Thirty-six Prim'Holstein cows at 104 d in milk were sorted into 3 groups by milk production and milk fat globule size. Three diets were assigned: a total mixed ration (control) consisting of corn silage (70%) and concentrate (30%), or a supplemented ration based on the control ration but where part of the concentrate energy was replaced on a dry matter basis by 2.1% (LIN1) or 4.3% (LIN2) extruded linseed. The increased amounts of extruded linseed linearly decreased milk fat content and milk fat globule size and linearly increased the percentage of milk unsaturated FA, specifically alpha-linolenic acid and trans FA. Extruded linseed had no significant effect on butter color or on the sensory properties of butters, with only butter texture in the mouth improved. The LIN2 treatment induced a net improvement of milk nutritional properties but also created problems with transforming the cream into butter. The butters obtained were highly spreadable and melt-in-the-mouth, with no pronounced deficiency in taste. The LIN1 treatment appeared to offer a good tradeoff of improved milk FA profile and little effect on butter-making while still offering butters with improved functional properties. Copyright (c) 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Han, Ying; Kiat-amnuay, Sudarat; Powers, John M; Zhao, Yimin
2008-12-01
Contemporary silicone-based elastomeric prostheses tend to degrade over time because of the effect of mechanical loading. Little has been reported on how the mechanical properties of a maxillofacial prosthetic elastomer may be affected by the addition of nanosized oxide particles used as an opacifier. The purpose of this study was to evaluate the effect of different concentrations of nanosized oxides of various composition on the mechanical properties of a commercially available silicone elastomer. Nanosized oxides (Ti, Zn, or Ce) were added in various concentrations (0.5%, 1.0%, 1.5%, 2.0%, 2.5%, or 3.0% by weight) to a commercial silicone elastomer (A-2186), commonly used for fabricating extraoral maxillofacial prostheses. Silicone elastomer A-2186 without nanosized oxides served as a control group. Specimens (n=5) were polymerized according to manufacturer's recommendations and tested for tensile strength (ASTM D412) and tear strength (ASTM D624), and percent elongation in a universal testing machine. Uniformity of particle dispersion within the processed elastomer was assessed using scanning electron microscopic imaging. For each property, a 2-way ANOVA was performed evaluating the effect of oxide type and strength, and Fisher's PLSD test was used for pairwise comparisons (alpha=.05). SEM examination indicated that all 3 nanosized oxides distribute evenly throughout the silicone specimens, except for the 3.0% group, which are partly agglomerated. The 2.0% and 2.5% groups of all nanosized oxides demonstrated significantly higher tensile and tear strengths and percent elongation (P<.001) than the control group. CeO(2) had significantly lower tensile strength than TiO2 and ZnO (P<.05). The ZnO group had significantly higher tear strength than TiO(2) and CeO(2) (P <.05). Most of specimens became somewhat harder when compared with the control group. CeO(2) group had significantly higher Shore A hardness than TiO(2) and ZnO (P<.001). There was no significant difference of percent elongation among the type of nanosized oxides. Incorporation of Ti, Zn, or Ce nano-oxides at concentrations of 2.0% and 2.5% improved the overall mechanical properties of the silicone A-2186 maxillofacial elastomer.
Electrotunable lubricity with ionic liquid nanoscale films.
Fajardo, O Y; Bresme, F; Kornyshev, A A; Urbakh, M
2015-01-09
One of the main challenges in tribology is finding the way for an in situ control of friction without changing the lubricant. One of the ways for such control is via the application of electric fields. In this respect a promising new class of lubricants is ionic liquids, which are solvent-free electrolytes, and their properties should be most strongly affected by applied voltage. Based on a minimal physical model, our study elucidates the connection between the voltage effect on the structure of the ionic liquid layers and their lubricating properties. It reveals two mechanisms of variation of the friction force with the surface charge density, consistent with recent AFM measurements, namely via the (i) charge effect on normal and in-plane ordering in the film and (ii) swapping between anion and cation layers at the surfaces. We formulate conditions that would warrant low friction coefficients and prevent wear by resisting "squeezing-out" of the liquid under compression. These results give a background for controllable variation of friction.
NASA Astrophysics Data System (ADS)
Yonekawa, M.; Ishii, T.; Ohmi, M.; Takada, F.; Hoshiya, T.; Niimi, M.; Ioka, I.; Miwa, Y.; Tsuji, H.
2002-12-01
In order to investigate effects of neutron irradiation on fatigue properties of nuclear materials, a remote-controlled high temperature fatigue test machine was developed at the hot laboratory of the Japan Materials Testing Reactor (JMTR) in the Japan Atomic Energy Research Institute (JAERI). A small-sized fatigue specimen having double blades to measure strain with a laser extensometer was designed for this machine. A strain amplitude in fatigue tests of a completely reversed push-pull type using a triangular wave was controlled with an accuracy of ±3% of the total strain range during test. Low cycle fatigue tests of type 304 stainless steel irradiated in JMTR at 823 K up to a fast neutron fluence of 1×10 25 n/m 2 ( E>1 MeV) were performed in total strain ranges of 0.7-1.4% at 823 K using the designed small-sized specimens.
da Silva, Karla Patrícia Chaves; de Campos Takaki, Galba Maria; da Silva, Leonildo Bento Galiza; Saukas, Tomoe Noda; Santos, André Souza; Mota, Rinaldo Aparecido
2013-01-01
To assess the potency of the PPD-mallein produced in Brazil, five animals were from a property identified as a focus of glanders. These animals had suggestive clinical signs of the disease and the other five, from a property free from glanders, showed no clinical signs and were serology negative (control group). PPD-mallein from Burkholderia mallei was obtained by precipitation with trichloroacetic acid and ammonium sulfate. The animals were inoculated according to the criteria established by Department of Agriculture, Livestock and Supply (MAPA) for the diagnosis of glanders. After 48 h of application of PPD-mallein, there was swelling in the area of application, presence of ocular secretion and tears in sick animals. The control group showed no inflammatory reaction at the site of inoculation of PPD-mallein. This immunogen produced in Brazil and still being tested was effective for identifying the infection in true positive animals and excluding the truly negative ones, being a new possibility for diagnosis and control of glanders.
Komorowski, James R; Tuzcu, Mehmet; Sahin, Nurhan; Juturu, Vijaya; Orhan, Cemal; Ulas, Mustafa; Sahin, Kazim
2012-10-01
Chromium picolinate (CrPic) has shown both antidepressant and antidiabetic properties. In this study, the effects of CrPic on serotonergic properties and carbohydrate metabolism in diabetic rats were evaluated. Sixty male Sprague-Dawley rats were divided into four groups. (1) The control group received only standard diet (8 % fat). (2) The CrPic group was fed standard diet and CrPic (80 μg CrPic per kilogram body mass (b.m.)/day), for 10 weeks (microgram/kilogram b.m./day). (3) The HFD/STZ group fed a high-fat diet (HFD, 40 % fat) for 2 weeks and then received streptozotocin (STZ, 40 mg/kg, i.p.) (i.v.) HFD-STZ-CrPic group treated as the previous group and then were administered CrPic. CrPic administration to HFD/STZ-treated rats increased brain chromium levels and improved all measurements of carbohydrate metabolism and serotonergic properties (P<0.001). CrPic also significantly increased levels of insulin, tryptophan, and serotonin (P<0.001) in the serum and brain, and decreased cortisol levels in the serum (P<0.01). Except chromium levels, no significant effect of CrPic supplementation was detected on the overall measured parameters in the control group. CrPic administration was well tolerated without any adverse events. The results support the use of CrPic supplementation which improves serotonergic properties of brain in diabetes.
Sahu, B B; Yin, Y Y; Tsutsumi, T; Hori, M; Han, Jeon G
2016-05-14
Control of the plasma densities and energies of the principal plasma species is crucial to induce modification of the plasma reactivity, chemistry, and film properties. This work presents a systematic and integrated approach to the low-temperature deposition of hydrogenated amorphous silicon nitride films looking into optimization and control of the plasma processes. Radiofrequency (RF) and ultrahigh frequency (UHF) power are combined to enhance significantly the nitrogen plasma and atomic-radical density to enforce their effect on film properties. This study presents an extensive investigation of the influence of combining radiofrequency (RF) and ultrahigh frequency (UHF) power as a power ratio (PR = RF : UHF), ranging from 4 : 0 to 0 : 4, on the compositional, structural, and optical properties of the synthesized films. The data reveal that DF power with a characteristic bi-Maxwellian electron energy distribution function (EEDF) is effectively useful for enhancing the ionization and dissociation of neutrals, which in turn helps in enabling high rate deposition with better film properties than that of SF operations. Utilizing DF PECVD, a wide-bandgap of ∼3.5 eV with strong photoluminescence features can be achieved only by using a high-density plasma and high nitrogen atom density at room temperature. The present work also proposes the suitability of the DF PECVD approach for industrial applications.
NASA Astrophysics Data System (ADS)
Maughan, Bret
Organic semiconductor interfaces are promising materials for use in next-generation electronic and optoelectronic devices. Current models for metal-organic interfacial electronic structure and dynamics are inadequate for strongly hybridized systems. This work aims to address this issue by identifying the factors most important for understanding chemisorbed interfaces with an eye towards tuning the interfacial properties. Here, I present the results of my research on chemisorbed interfaces formed between thin-films of phthalocyanine molecules grown on monocrystalline Cu(110). Using atomically-resolved nanoscale imaging in combination with surface-sensitive photoemission techniques, I show that single-molecule level interactions control the structural and electronic properties of the interface. I then demonstrate that surface modifications aimed at controlling interfacial interactions are an effective way to tailor the physical and electronic structure of the interface. This dissertation details a systematic investigation of the effect of molecular and surface functionalization on interfacial interactions. To understand the role of molecular structure, two types of phthalocyanine (Pc) molecules are studied: non-planar, dipolar molecules (TiOPc), and planar, non-polar molecules (H2Pc and CuPc). Multiple adsorption configurations for TiOPc lead to configuration-dependent self-assembly, Kondo screening, and electronic energy-level alignment. To understand the role of surface structure, the Cu(110) surface is textured and passivated by oxygen chemisorption prior to molecular deposition, which gives control over thin-film growth and interfacial electronic structure in H2Pc and CuPc films. Overall, the work presented here demonstrates a method for understanding interfacial electronic structure of strongly hybridized interfaces, an important first step towards developing more robust models for metal-organic interfaces, and reliable, predictive tuning of interfacial properties.
NASA Astrophysics Data System (ADS)
Li, Yana; Wu, Tong; Jin, Keying; Qian, Yao; Qian, Naxin; Jiang, Kedan; Wu, Wenhua; Tong, Guoxiu
2016-11-01
We developed a coordinated self-assembly/precipitate transfer/sintering method that allows the controllable synthesis of Fe3O4/NiFe2O4/Ni heterostructure porous rods (HPRs). A series of characterizations confirms that changing [Ni2+] can effectively control the crystal size, internal strain, composition, textural characteristics, and properties of HPRs. Molar percentages of Ni and NiFe2O4 in HPRs increase with [Ni2+] in various Boltzmann function modes. Saturation magnetization Ms and coercivity Hc show U-shaped change trends because of crystal size, composition, and interface magnetic coupling. High magnetic loss is maintained after decorating NiFe2O4 and Ni on the surface of Fe3O4 PRs. Controlling the NiFe2O4 interface layers and Ni content can improve impedance matching and dielectric losses, thereby leading to lighter weight, stronger absorption, and broader absorption band of Fe3O4/NiFe2O4/Ni HPRs than Fe3O4 PRs. An optimum EM wave absorbing property was exhibited by Fe3O4/NiFe2O4/Ni HPRs formed at [Ni2+] = 0.05 M. The maximum reflection loss (RL) reaches -58.4 dB at 13.68 GHz, which corresponds to a 2.1 mm matching thickness. The absorbing bandwidth (RL ≤ -20 dB) reaches 14.4 GHz with the sample thickness at 1.6-2.4 and 2.8-10.0 mm. These excellent properties verify that Fe3O4/NiFe2O4/Ni HPRs are promising candidates for new and effective absorptive materials.
NASA Astrophysics Data System (ADS)
Huang, Tao; An, Qi; Luan, Xinglong; Zhang, Qian; Zhang, Yihe
2016-01-01
A variety of small molecules with diameters around 1 nm possess a range of functions, such as antibiotic, antimicrobic, anticoagulant, pesticidal and chemotherapy effects, making these molecules especially useful in various applications ranging from medical treatment to environmental microbiological control. However, the long-term steady delivery (release or permeation) of these small molecules with adjustable and controllable speeds has remained an especially challenging task. In this study, we prepared covalently cross-linked free-standing few-layered GO films using a layer-by-layer technique in combination with photochemical cross-linkages, and achieved a controlled release of positively charged, negatively charged, and zwitterionic small molecules with adjustable and controllable speeds. The steady delivery of the small molecule lasted up to 9 days. Other functionalities, such as graphene-enhanced Raman spectra and electrochemical properties that could also be integrated or employed in delivery systems, were also studied for our films. We expect the special molecular delivery properties of our films to lead to new possibilities in drug/fertilizer delivery and environmental microbiological control applications.A variety of small molecules with diameters around 1 nm possess a range of functions, such as antibiotic, antimicrobic, anticoagulant, pesticidal and chemotherapy effects, making these molecules especially useful in various applications ranging from medical treatment to environmental microbiological control. However, the long-term steady delivery (release or permeation) of these small molecules with adjustable and controllable speeds has remained an especially challenging task. In this study, we prepared covalently cross-linked free-standing few-layered GO films using a layer-by-layer technique in combination with photochemical cross-linkages, and achieved a controlled release of positively charged, negatively charged, and zwitterionic small molecules with adjustable and controllable speeds. The steady delivery of the small molecule lasted up to 9 days. Other functionalities, such as graphene-enhanced Raman spectra and electrochemical properties that could also be integrated or employed in delivery systems, were also studied for our films. We expect the special molecular delivery properties of our films to lead to new possibilities in drug/fertilizer delivery and environmental microbiological control applications. Electronic supplementary information (ESI) available: AFM images of GO and GO films, UV-vis spectra of delayed release, and permeation fidelities. See DOI: 10.1039/c5nr08129g
Chiu, Chun-Hsiang; Hsi, Hsing-Cheng; Lin, Hong-Ping; Chang, Tien-Chin
2015-06-30
This research investigated the effects of manganese oxide (MnOx) impregnation on the physical/chemical properties and multi pollutant control effectiveness of Hg(0) and NO using a V2O5-WO3/TiO2-SiO2 selective catalytic reduction (SCR) catalyst. Raw and MnOx-treated SCR samples were bean-shaped nanoparticles with sizes within 10-30 nm. Impregnating MnOx of ≤ 5 wt% caused limited changes in physical properties of the catalyst. The decrease in surface area when the impregnated MnOx amount was 10 wt% may stem from the pore blockage and particle growth or aggregation of the catalyst. Mn(4+) was the main valence state of impregnated MnOx. Apparent crystallinity of MnOx was not observed based on X-ray diffraction. MnOx impregnation enhanced the Hg(0) oxidation and NO/SO2 removal of SCR catalyst. The 5 and 10% MnOx-impregnated samples had the greatest multi pollutant control potentials for Hg(0) oxidation and NO removal; however, the increasing SO2 removal that may be mainly due to SO2-SO3 conversion should be cautioned. HCl and O2 greatly promoted Hg(0) oxidation. SO2 enhanced Hg(0) oxidation at ≤ 200 ppm while NO and NH3 consistently inhibited Hg(0) oxidation. Elevating flue gas temperature enhanced Hg(0) oxidation. Overall, MnOx-impregnated catalysts show stable and consistent multi pollutant removal effectiveness under the test conditions. Copyright © 2015 Elsevier B.V. All rights reserved.
Allosteric control in a metalloprotein dramatically alters function
Baxter, Elizabeth Leigh; Zuris, John A.; Wang, Charles; Vo, Phu Luong T.; Axelrod, Herbert L.; Cohen, Aina E.; Paddock, Mark L.; Nechushtai, Rachel; Onuchic, Jose N.; Jennings, Patricia A.
2013-01-01
Metalloproteins (MPs) comprise one-third of all known protein structures. This diverse set of proteins contain a plethora of unique inorganic moieties capable of performing chemistry that would otherwise be impossible using only the amino acids found in nature. Most of the well-studied MPs are generally viewed as being very rigid in structure, and it is widely thought that the properties of the metal centers are primarily determined by the small fraction of amino acids that make up the local environment. Here we examine both theoretically and experimentally whether distal regions can influence the metal center in the diabetes drug target mitoNEET. We demonstrate that a loop (L2) 20 Å away from the metal center exerts allosteric control over the cluster binding domain and regulates multiple properties of the metal center. Mutagenesis of L2 results in significant shifts in the redox potential of the [2Fe-2S] cluster and orders of magnitude effects on the rate of [2Fe-2S] cluster transfer to an apo-acceptor protein. These surprising effects occur in the absence of any structural changes. An examination of the native basin dynamics of the protein using all-atom simulations shows that twisting in L2 controls scissoring in the cluster binding domain and results in perturbations to one of the cluster-coordinating histidines. These allosteric effects are in agreement with previous folding simulations that predicted L2 could communicate with residues surrounding the metal center. Our findings suggest that long-range dynamical changes in the protein backbone can have a significant effect on the functional properties of MPs. PMID:23271805
Effects of Long-Term Water-Aging on Novel Anti-Biofilm and Protein-Repellent Dental Composite
Zhang, Ning; Zhang, Ke; Melo, Mary A. S.; Weir, Michael D.; Xu, David J.; Bai, Yuxing; Xu, Hockin H. K.
2017-01-01
The aims of this study were to: (1) synthesize an anti-biofilm and protein-repellent dental composite by combining 2-methacryloyloxyethyl phosphorylcholine (MPC) with quaternary ammonium dimethylaminohexadecyl methacrylate (DMAHDM); and (2) evaluate the effects of water-aging for 180 days on protein resistance, bacteria-killing ability, and mechanical properties of MPC-DMAHDM composite. MPC and DMAHDM were added into a resin composite. Specimens were stored in distilled water at 37 °C for 1, 30, 90, and 180 days. Mechanical properties were measured in three-point flexure. Protein attachment onto the composite was evaluated by a micro bicinchoninic acid approach. An oral plaque microcosm biofilm model was employed to evaluate oral biofilm viability vs. water-aging time. Mechanical properties of the MPC-DMAHDM composite after 180-day immersion matched those of the commercial control composite. The composite with 3% MPC + 1.5% DMAHDM had much stronger resistance to protein adhesion than control (p < 0.05). MPC + DMAHDM achieved much stronger biofilm-eradicating effects than MPC or DMAHDM alone (p < 0.05). Biofilm colony-forming units on the 3% MPC + 1.5% DMAHDM composite were three orders of magnitude lower than commercial control. The protein-repellent and antibacterial effects were durable and showed no loss in water-aging from 1 to 180 days. The novel MPC-DMAHDM composite possessed strong and durable resistance to protein adhesion and potent bacteria-eradicating function, while matching the load-bearing ability of a commercial dental composite. The novel MPC-DMAHDM composite represents a promising means of suppressing oral plaque growth, acid production, and secondary caries. PMID:28106774
2017-01-01
The aim of this study was to identify the optimal and superior type of natural calcium for replacing phosphate in cooked ground pork products. To achieve this, 0.5% eggshell calcium (ESC), oyster shell calcium (OSC), marine algae calcium (MAC), or milk calcium (MC) was added to ground pork meat products. The effect of this substitution was studied by comparing the substituted products with products containing 0.3% phosphate blend (control). ESC was considered an ideal phosphate replacer for minimizing the cooking loss, which likely resulted from the increase in the pH of the product. Among the other natural calcium types, OSC treatment did not cause a significant increase in pH, but it lowered the cooking loss. CIE L* values were higher (p<0.05) in products treated with OSC or MC than the control, and lowest (p<0.05) in the products with ESC. However, products with ESC had higher (p<0.05) CIE a* and CIE b* values than the control and products treated with other powders. Compared to the control, products treated with ESC and OSC had similar substitution effects on the textural properties of the products. Therefore, the results of this study suggested that the combined use of ESC and OSC could be a potentially effective method for replacing synthetic phosphate in ground pork products. PMID:28747832
Yuan, Chaolei; Fitzpatrick, Rob; Mosley, Luke M; Marschner, Petra
2015-11-15
Sulfuric material is formed upon oxidation of sulfidic material; it is extremely acidic, and therefore, an environmental hazard. One option for increasing pH of sulfuric material may be stimulation of bacterial sulfate reduction. We investigated the effects of organic carbon addition and pH increase on sulfate reduction after re-flooding in ten sulfuric materials with four treatments: control, pH increase to 5.5 (+pH), organic carbon addition with 2% w/w finely ground wheat straw (+C), and organic carbon addition and pH increase (+C+pH). After 36 weeks, in five of the ten soils, only treatment +C+pH significantly increased the concentration of reduced inorganic sulfur (RIS) compared to the control and increased the soil pore water pH compared to treatment+pH. In four other soils, pH increase or/and organic carbon addition had no significant effect on RIS concentration compared to the control. The RIS concentration in treatment +C+pH as percentage of the control was negatively correlated with soil clay content and initial nitrate concentration. The results suggest that organic carbon addition and pH increase can stimulate sulfate reduction after re-flooding, but the effectiveness of this treatment depends on soil properties. Copyright © 2015 Elsevier B.V. All rights reserved.
Mohammad Zadeh, Elham; O'Keefe, Sean F; Kim, Young-Teck; Cho, Jin-Hun
2018-04-01
The effects of transglutaminase on soy protein isolate (SPI) film forming solution and films were investigated by rheological behavior and physicochemical properties based on different manufacturing conditions (enzyme treatments, enzyme incubation times, and protein denaturation temperatures). Enzymatic crosslinking reaction and changes in molecular weight distribution were confirmed by viscosity measurement and SDS-PAGE, respectively, compared to 2 controls: the nonenzyme treated and the deactivated enzyme treated. Films treated with both the enzyme and the deactivated enzyme showed significant increase in tensile strength (TS), percent elongation (%E), and initial contact angle of films compared to the nonenzyme control film due to the bulk stabilizers in the commercial enzyme. Water absorption property, protein solubility, Fourier transform infrared (FTIR) and X-ray diffraction (XRD) spectroscopy revealed that enzyme treated SPI film matrix in the molecular structure level, resulted in the changes in physicochemical properties. Based on our observation, the enzymatic treatment at appropriate conditions is a practical and feasible way to control the physical properties of protein based biopolymeric film for many different scientific and industrial areas. Enzymes can make bridges selectively among different amino acids in the structure of protein matrix. Therefore, protein network is changed after enzyme treatment. The behavior of biopolymeric materials is dependent on the network structure to be suitable in different applications such as bioplastics applied in food and pharmaceutical products. In the current research, transglutaminase, as an enzyme, applied in soy protein matrix in different types of forms, activated and deactivated, and different preparation conditions to investigate its effects on different properties of the new bioplastic film. © 2018 Institute of Food Technologists®.
NASA Astrophysics Data System (ADS)
MacFarlane, J.; Vanorio, T.
2016-12-01
Calcium-Silicate-Hydrates (C-S-H) are a complex family of hydrates known to form within hyper-alkaline geothermal systems as well as concrete. Within both environments the formation of C-S-H can be linked to the lime-pozzolan reaction. Pozzolan's defined as a siliceous or alumino-siliceous material, which in itself possesses little or no cementing property, but in the presence of moisture chemically reacts with calcium hydroxide at ordinary temperatures to form cementitious compounds. C-S-H fibers have been discovered in a low permeability, caprock layer beneath the Campi Flegrei caldera, as well as within ancient Roman concrete made using volcanic ash and fluids from the Campi Flegrei region over 2000 years ago. By replicating the recipe for Roman concrete, fibrous minerals have been formed in laboratory experiments and imaged using a scanning electron microscope. The formation of C-S-H within concrete has been shown to depend on the mineral ions present, among other factors. Here, we report on how the geothermal fluid composition effects the elastic and transport properties of laboratory samples. Samples were made using the same volcanic ash as the Romans, called Pozzolana, slaked lime and geothermal fluid. Two geothermal fluids from the Campi Flegrei region were compared, as well as deionized water as a control. Preliminary results have shown changes in both the elastic and transport properties between sample sets made with geothermal fluid and the control. These changes are attributed to the structure of the C-S-H that forms in the lime-pozzolan reaction. Understanding how the geothermal fluid composition controls the properties of this reaction has implications for the understanding of both geothermal systems and concrete engineering.
Point defects in Cd(Zn)Te and TlBr: Theory
NASA Astrophysics Data System (ADS)
Lordi, Vincenzo
2013-09-01
The effects of various crystal defects on the performances of CdTe, CdZnxTe (CZT), and TlBr for room-temperature high-energy radiation detection are examined using first-principles theoretical methods. The predictive, parameter-free, atomistic approaches used provide fundamental understanding of defect properties that are difficult to measure and also allow rapid screening of possibilities for material engineering, such as optimal doping and annealing conditions. Several recent examples from the author's work are reviewed, including: (i) accurate calculations of the thermodynamic and electronic properties of native point defects and point defect complexes in CdTe and CZT; (ii) the effects of Zn alloying on the native point defect properties in CZT; (iii) point defect diffusion and binding leading to Te clustering in Cd(Zn)Te; (iv) the profound effect of native point defects—principally vacancies—on the intrinsic material properties of TlBr, particularly its electronic and ionic conductivity; and (v) a study on doping TlBr to independently control the electronic and ionic conductivity.
Magnetic Nanoparticles: Surface Effects and Properties Related to Biomedicine Applications
Issa, Bashar; Obaidat, Ihab M.; Albiss, Borhan A.; Haik, Yousef
2013-01-01
Due to finite size effects, such as the high surface-to-volume ratio and different crystal structures, magnetic nanoparticles are found to exhibit interesting and considerably different magnetic properties than those found in their corresponding bulk materials. These nanoparticles can be synthesized in several ways (e.g., chemical and physical) with controllable sizes enabling their comparison to biological organisms from cells (10–100 μm), viruses, genes, down to proteins (3–50 nm). The optimization of the nanoparticles’ size, size distribution, agglomeration, coating, and shapes along with their unique magnetic properties prompted the application of nanoparticles of this type in diverse fields. Biomedicine is one of these fields where intensive research is currently being conducted. In this review, we will discuss the magnetic properties of nanoparticles which are directly related to their applications in biomedicine. We will focus mainly on surface effects and ferrite nanoparticles, and on one diagnostic application of magnetic nanoparticles as magnetic resonance imaging contrast agents. PMID:24232575
Imparato, Giorgia; Urciuolo, Francesco; Casale, Costantino; Netti, Paolo A
2013-10-01
The realization of thick and viable tissues equivalents in vitro is one of the mayor challenges in tissue engineering, in particular for their potential use in tissue-on-chip technology. In the present study we succeeded in creating 3D viable dermis equivalent tissue, via a bottom-up method, and proved that the final properties, in terms of collagen assembly and organization of the 3D tissue, are tunable and controllable by micro-scaffold properties and degradation rate. Gelatin porous microscaffolds with controlled stiffness and degradation rate were realized by changing the crosslinking density through different concentrations of glyceraldehyde. Results showed that by modulating the crosslinking density of the gelatin microscaffolds it is possible to guide the process of collagen deposition and assembly within the extracellular space and match the processes of scaffold degradation, cell traction and tissue maturation to obtain firmer collagen network able to withstand the effect of contraction. © 2013 Published by Elsevier Ltd.
Benjakul, Soottawat; Karnjanapratum, Supatra
2018-09-01
Whole wheat cracker fortified with tuna bone bio-calcium (Bio-Ca) powder was developed as health-promoting food rich in calcium. Fortification with different levels of Bi-Ca, over the range of 0-50% of whole wheat flour (w/w) on quality and sensory properties of crackers, were determined. Color, thickness, weight and textural properties of crackers varied with the different levels of Bio-Ca powder added, but it was found that up to 30% could be added without detrimental effect on sensory properties. Scanning electron microscopic images showed that the developed crackers were less porous and had a denser structure, compared to the control. Based on scanning electron microscopy-energy dispersive X-ray spectroscopic (SEM-EDX), the cracker containing Bio-Ca powder had calcium and phosphorous distribution with higher intensity, compared to the control. The fortified crackers were rich in calcium and phosphorous with higher protein content but lower fat, carbohydrate, cholesterol and energy value, compared to the control. Copyright © 2018 Elsevier Ltd. All rights reserved.
Pandey, Sudip; Quetz, Abdiel; Aryal, Anil; Dubenko, Igor; Mazumdar, Dipanjan; Stadler, Shane; Ali, Naushad
2017-11-01
Self-controlled hyperthermia is a non-invasive technique used to kill or destroy cancer cells while preserving normal surrounding tissues. We have explored bulk magnetic Ni-Si and Ni-Al alloys as a potential thermoseeds. The structural, magnetic and magnetocaloric properties of the samples were investigated, including saturation magnetisation, Curie temperature (T C ), and magnetic and thermal hysteresis, using room temperature X-ray diffraction and magnetometry. The annealing time, temperature and the effects of homogenising the thermoseeds were studied to determine the functional hyperthermia applications. The bulk Ni-Si and Ni-Al binary alloys have Curie temperatures in the desired range, 316 K-319 K (43 °C-46 °C), which is suitable for magnetic hyperthermia applications. We have found that T C strictly follows a linear trend with doping concentration over a wide range of temperature. The magnetic ordering temperature and the magnetic properties can be controlled through substitution in these binary alloys.
31 CFR 588.302 - Effective date.
Code of Federal Regulations, 2010 CFR
2010-07-01
... FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY WESTERN BALKANS STABILIZATION REGULATIONS General... interests in property are blocked pursuant to § 588.201(a)(1), 12:01 a.m. eastern daylight time, June 27...
Teardown analysis for detecting shelf-life degradation
NASA Technical Reports Server (NTRS)
Eckstein, A. S.
1971-01-01
Analysis is guideline in examining component materials, analytically determining physical properties and chemical compositions, and developing control data necessary for ascertaining effects of environments and their influence on deterioration and degradation mechanisms.
Control of thermoacoustic instability with a drum-like silencer
NASA Astrophysics Data System (ADS)
Zhang, Guangyu; Wang, Xiaoyu; Li, Lei; Jing, Xiaodong; Sun, Xiaofeng
2017-10-01
Theoretical investigation is carried out by a novel method of controlling thermoacoustic instability with a drum-like silencer. It is shown that by decreasing the frequency of thermoacoustic system, the instability can be suppressed with the help of drum-like silencer. The purely reactive silencer, which is composed of a flexible membrane and a backing cavity, is usually known as a noise control device that works effectively in low frequency bandwidth without any aerodynamic loss. In present research, the silencer is exploited in a Rijke tube, as a means of decreasing the natural frequency of the system, and consequently changing the resonance period of the system. The "transfer element method" (TEM) is used to consider the interactions between the acoustic waves and the flexible membranes of the silencer. The effects of all possible properties of the silencer on the growth rate and resonance frequency of the thermoacoustic system are explored. According to the calculation results, it is found that for some properties of the silencer, the resonance frequencies are greatly decreased and then the phase difference between the unsteady heat release and the pressure fluctuation is increased. Consequently, the instability is suppressed with some dissipation that can not be able to control its onset in the original system. Therefore, when the damping is low, but not zero, it is effective to control thermoacoustic instability with this technique.
Panahandeh, Narges; Torabzadeh, Hassan; Aghaee, Mohammadamin; Hasani, Elham; Safa, Saeed
2018-01-01
The aim of this study is to investigate the physical properties of conventional and resin-modified glass ionomer cements (GICs) compared to GICs supplemented with zinc oxide (ZnO) nanofiller particles at 5% (w/w). In this in vitro study, ZnO nanoparticles of different morphologies (nanospherical, nanorod, and nanoflower) were incorporated to glass ionomer powder. The samples were subjected to the flexural strength ( n = 20) and surface hardness test ( n = 12) using a universal testing machine and a Vickers hardness machine, respectively. Surface analysis and crystal structure of samples were performed with scanning electron microscope and X-radiation diffraction, respectively. The data were analyzed using one-way ANOVA, Shapiro-Wilk, and Tukey's tests ( P < 0.05). Flexural strength of glass ionomer containing nanoparticles was not significantly different from the control group ( P > 0.05). The surface hardness of the glass ionomer containing nanospherical or nanoflower ZnO was significantly lower than the control group ( P < 0.05). However, the surface hardness of glass ionomer containing nanorod ZnO was not significantly different from the control group ( P = 0.868). Incorporation of nanospherical and nanoflower ZnO to glass ionomer decreased their surface hardness, without any changes on their flexural strength. Incorporation of nanorod ZnO particles caused no effect on the mechanical properties.
NASA Astrophysics Data System (ADS)
Prem Ananth, K.; Nathanael, A. Joseph; Jose, Sujin P.; Oh, Tae Hwan; Mangalaraj, D.; Ballamurugan, A. M.
2015-10-01
Hydroxyapatite (HAp) and β-tricalcium phosphate (β-TCP) bioactive materials have been used as individual coatings on steel implants employed in the fields of orthopedics and dentistry due to their excellent properties, which foster effective healing of the repair site. However, slow dissolution of HAp and fairly little fast dissolution of β-TCP present a major obstacle for such applications and this leads to the focus on the investigation of a mixture of HAp and β-TCP composite that forms biphasic calcium phosphate (BCP). The BCP coatings were achieved by thickness controlled electrophoretic deposition on piranha treated 316L SS. This method is well controlled and the anticipated dissolution rate could be attained with faster formation of new bone at the implant site, when compared to the individual HAp or β-TCP coating. The structural, functional, morphological and elemental composition of the coatings were characterized by using various analytical techniques. The BCP coating has been shown to have a role in obstructing the corrosion to a greater extent when in contact with SBF solution. The BCP coating also shows excellent in vitro and mechanical properties and osteoblasts cellular tests revealed that the coating was more effective in improving biocompatibility. This makes it an ideal candidate material for hard tissue replacement.
Navy Public Works Administration.
1980-06-01
Real Property by Lease or Space Controlled or to be Leased by the GSA SECNAVINST 11011.18. Subj: Leasing of Department of the Navy Non -Excess Real... equivalent of the specific job order. It is normally initiated by the Control Section Inspector/Estimator or other specifically authorized personnel...49 U.S.C. 1431 An Act to establish a means for effective coordination of Federal research and activities in noise control , to authorize the
Effects of motivation on car-following
NASA Technical Reports Server (NTRS)
Boesser, T.
1982-01-01
Speed- and distance control by automobile-drivers is described best by linear models when the leading vehicles speed varies randomly and when the driver is motivated to keep a large distance. A car-following experiment required subjects to follow at 'safe' or at 'close' distance. Transfer-characteristics of the driver were extended by 1 octave when following 'closely'. Nonlinear properties of drivers control-movements are assumed to reflect different motivation-dependent control strategies.
Switched impulsive control of the endocrine disruptor diethylstilbestrol singular model
NASA Astrophysics Data System (ADS)
Zamani, Iman; Shafiee, Masoud; Ibeas, Asier; de la Sen, M.
2014-12-01
In this work, a switched and impulsive controller is designed to control the Endocrine Disruptor Diethylstilbestrol mechanism which is usually modeled as a singular system. Then the exponential stabilization property of the proposed switched and impulsive singular model is discussed under matrix inequalities. A design algorithm is given and applied for the physiological process of endocrine disruptor diethylstilbestrol model to illustrate the effectiveness of the results.
Finite Size Effects in Submonolayer Catalysts Investigated by CO Electrosorption on PtsML/Pd(100).
Yuan, Qiuyi; Doan, Hieu A; Grabow, Lars C; Brankovic, Stanko R
2017-10-04
A combination of scanning tunneling microscopy, subtractively normalized interfacial Fourier transform infrared spectroscopy (SNIFTIRS), and density functional theory (DFT) is used to quantify the local strain in 2D Pt clusters on the 100 facet of Pd and its effect on CO chemisorption. Good agreement between SNIFTIRS experiments and DFT simulations provide strong evidence that, in the absence of coherent strain between Pt and Pd, finite size effects introduce local compressive strain, which alters the chemisorption properties of the surface. Though this effect has been widely neglected in prior studies, our results suggest that accurate control over cluster sizes in submonolayer catalyst systems can be an effective approach to fine-tune their catalytic properties.
Pyka, Grzegorz; Kerckhofs, Greet; Papantoniou, Ioannis; Speirs, Mathew; Schrooten, Jan; Wevers, Martine
2013-01-01
Additive manufacturing (AM) is a production method that enables the building of porous structures with a controlled geometry. However, there is a limited control over the final surface of the product. Hence, complementary surface engineering strategies are needed. In this work, design of experiments (DoE) was used to customize post AM surface treatment for 3D selective laser melted Ti6Al4V open porous structures for bone tissue engineering. A two-level three-factor full factorial design was employed to assess the individual and interactive effects of the surface treatment duration and the concentration of the chemical etching solution on the final surface roughness and beam thickness of the treated porous structures. It was observed that the concentration of the surface treatment solution was the most important factor influencing roughness reduction. The designed beam thickness decreased the effectiveness of the surface treatment. In this case study, the optimized processing conditions for AM production and the post-AM surface treatment were defined based on the DoE output and were validated experimentally. This allowed the production of customized 3D porous structures with controlled surface roughness and overall morphological properties, which can assist in more controlled evaluation of the effect of surface roughness on various functional properties. PMID:28788357
Pyka, Grzegorz; Kerckhofs, Greet; Papantoniou, Ioannis; Speirs, Mathew; Schrooten, Jan; Wevers, Martine
2013-10-22
Additive manufacturing (AM) is a production method that enables the building of porous structures with a controlled geometry. However, there is a limited control over the final surface of the product. Hence, complementary surface engineering strategies are needed. In this work, design of experiments (DoE) was used to customize post AM surface treatment for 3D selective laser melted Ti6Al4V open porous structures for bone tissue engineering. A two-level three-factor full factorial design was employed to assess the individual and interactive effects of the surface treatment duration and the concentration of the chemical etching solution on the final surface roughness and beam thickness of the treated porous structures. It was observed that the concentration of the surface treatment solution was the most important factor influencing roughness reduction. The designed beam thickness decreased the effectiveness of the surface treatment. In this case study, the optimized processing conditions for AM production and the post-AM surface treatment were defined based on the DoE output and were validated experimentally. This allowed the production of customized 3D porous structures with controlled surface roughness and overall morphological properties, which can assist in more controlled evaluation of the effect of surface roughness on various functional properties.
Solid film lubricants and thermal control coatings flown aboard the EOIM-3 MDA sub-experiment
NASA Technical Reports Server (NTRS)
Murphy, Taylor J.; David, Kaia E.; Babel, Hank W.
1995-01-01
Additional experimental data were desired to support the selection of candidate thermal control coatings and solid film lubricants for the McDonnell Douglas Aerospace (MDA) Space Station hardware. The third Evaluation of Oxygen Interactions With Materials Mission (EOIM-3) flight experiment presented an opportunity to study the effects of the low Earth orbit environment on thermal control coatings and solid film lubricants. MDA provided five solid film lubricants and two anodic thermal control coatings for EOIM-3. The lubricant sample set consisted of three solid film lubricants with organic binders one solid film lubricant with an inorganic binder, and one solid film lubricant with no binder. The anodize coating sample set consisted of undyed sulfuric acid anodize and cobalt sulfide dyed sulfuric acid anodize, each on two different substrate aluminum alloys. The organic and inorganic binders in the solid film lubricants experienced erosion, and the lubricating pigments experienced oxidation. MDA is continuing to assess the effect of exposure to the low Earth orbit environment on the life and friction properties of the lubricants. Results to date support the design practice of shielding solid film lubricants from the low Earth orbit environment. Post-flight optical property analysis of the anodized specimens indicated that there were limited contamination effects and some atomic oxygen and ultraviolet radiation effects. These effects appeared to be within the values predicted by simulated ground testing and analysis of these materials, and they were different for each coating and substrate.
NASA Astrophysics Data System (ADS)
Yazdanpanah, Najme; Mahmoodabadi, Majid
2010-05-01
Soil salinity and sodicity are escalating problems worldwide, especially in Iran since 90 percent of the country is located in arid and semi-arid. Reclamation of sodic soils involves replacement of exchangeable Na by Ca. While some researches have been undertaken in the controllable laboratory conditions using soil column with emphasis on soil properties, the properties of effluent as a measure of soil reclamation remain unstudied. In addition, little attention has been paid to the temporal variability of effluent quality. The objective of this study was to investigate the effect of different amendments consist of gypsum, manure, pistachio residue, and their combination for ameliorating a calcareous saline sodic soil. Temporal variability of effluent properties during reclamation period was studied, as well. A laboratory experiment was conducted to evaluate the effect of different amendments using soil columns. The amendment treatments were: control, manure, pistachio residue, gypsum powder (equivalent of gypsum requirement), manure+gypsum and pistachio residue+gypsum, which were applied once in the beginning of the experiment. The study was performed in 120 days period and totally four irrigation treatments were supplied to each column. After irrigations, the effluent samples were collected every day at the bottom of the soil columns and were analyzed. The results show that for all treatments, cations (e.g. Ca, Mg, Na and K) in the outflow decreased with time, exponentially. Manure treatment resulted in highest rate of Ca, Mg, Na leaching from soil solution, in spite of the control which had the lowest rate. In addition, pistachio residue had the most effect on K leaching. Manure treatment showed the most EC and SAR in the leachate, while gypsum application leads to the least rate of them. The findings of this research reveal different rates of cations leaching from soil profile, which is important in environmental issues. Keywords: Saline sodic soil, Reclamation, Organic Matter, Gypsum, Leachate.
Zhang, Haoshu; Dudley, Edward G.
2017-01-01
ABSTRACT In this study, the effect of individual lecithin phospholipids on the antimicrobial properties of eugenol against Escherichia coli C600 was investigated. We tested five major phospholipids common in soy or egg lecithin (1,2-dihexadecanoyl-sn-glycero-3-phosphocholine [DPPC], 1,2-dioctadecanoyl-sn-glycero-3-phosphocholine [DSPC], 1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine [DPPE], 1,2-dihexadecanoyl-sn-glycero-3-phosphate [sodium salt] [DPPA], and 1,2-dihexadecanoyl-sn-glycero-3-phospho-l-serine [DPPS]) and one synthetic cationic phospholipid (1,2-dioctadecanoyl-sn-glycero-3-ethylphosphocholine [18:0 EPC]). Among the six phospholipids, DPPC, DSPC, DPPE, DPPA, and the cationic 18:0 EPC showed critical synergistic concentrations that significantly improved the inactivation effect of eugenol against E. coli after 30 min of exposure. At the critical synergistic concentration, an additional ca. 0.4 to 1.9 log reduction (ca. 0.66 to 2.17 log CFU/ml reduction) in the microbial population was observed compared to eugenol-only (control) treatments (ca. 0.25 log reduction). In all cases, increasing the phospholipid amount above the critical synergistic concentration (which was different for each phospholipid) resulted in antimicrobial properties similar to those seen with the eugenol-only (control) treatments. DPPS did not affect the antimicrobial properties of eugenol at the tested concentrations. The critical synergistic concentration of phospholipids was correlated with their critical micelle concentrations (CMC). IMPORTANCE Essential oils (EOs) are naturally occurring antimicrobials, with limited use in food due to their hydrophobicity and strong aroma. Lecithin is used as a natural emulsifier to stabilize EOs in aqueous systems. We previously demonstrated that, within a narrow critical-concentration window, lecithin can synergistically enhance the antimicrobial properties of eugenol. Since lecithin is a mixture of different phospholipids, we aimed to identify which phospholipids are crucial for the observed synergistic effect. This research studied the bioactivity of lecithin phospholipids, contributing to a rational design in using lecithin to effectively control foodborne pathogens in foods. PMID:28842540
Reliable actuators for twin rotor MIMO system
NASA Astrophysics Data System (ADS)
Rao, Vidya S.; V. I, George; Kamath, Surekha; Shreesha, C.
2017-11-01
Twin Rotor MIMO System (TRMS) is a bench mark system to test flight control algorithms. One of the perturbations on TRMS which is likely to affect the control system is actuator failure. Therefore, there is a need for a reliable control system, which includes H infinity controller along with redundant actuators. Reliable control refers to the design of a control system to tolerate failures of a certain set of actuators or sensors while retaining desired control system properties. Output of reliable controller has to be transferred to the redundant actuator effectively to make the TRMS reliable even under actual actuator failure.
Effects of biochar amendment on chloropicrin adsorption and degradation in soil
USDA-ARS?s Scientific Manuscript database
Application of biochar in agricultural soil can improve soil properties. The characteristics of biochar vary with pyrolysis temperature. Chloropicrin (CP) is an effective fumigant for controlling soil-borne diseases. We investigated the characteristics of biochars prepared at 300°C, 500°C and 700°C ...
On the dynamics of a generalized predator-prey system with Z-type control.
Lacitignola, Deborah; Diele, Fasma; Marangi, Carmela; Provenzale, Antonello
2016-10-01
We apply the Z-control approach to a generalized predator-prey system and consider the specific case of indirect control of the prey population. We derive the associated Z-controlled model and investigate its properties from the point of view of the dynamical systems theory. The key role of the design parameter λ for the successful application of the method is stressed and related to specific dynamical properties of the Z-controlled model. Critical values of the design parameter are also found, delimiting the λ-range for the effectiveness of the Z-method. Analytical results are then numerically validated by the means of two ecological models: the classical Lotka-Volterra model and a model related to a case study of the wolf-wild boar dynamics in the Alta Murgia National Park. Investigations on these models also highlight how the Z-control method acts in respect to different dynamical regimes of the uncontrolled model. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Jing; Liu, Song; Qin, Yukun; Chen, Xiaolin; Xing, Rong'e.; Yu, Huahua; Li, Kecheng; Li, Pengcheng
2017-09-01
Encapsulation of water-soluble nitrogen fertilizers by membranes can be used to control the release of nutrients to maximize the fertilization effect and reduce environmental pollution. In this research, we formulated a new double-coated controlled-release fertilizer (CRF) by using food-grade microcrystalline wax (MW) and marine polysaccharide derivatives (calcium alginate and chitosan-glutaraldehyde copolymer). The pellets of water-soluble nitrogen fertilizer were coated with the marine polysaccharide derivatives and MW. A convenient and eco-friendly method was used to prepare the CRF. Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) were used to characterize the morphology and composition of the products. The nitrogen-release properties were determined in water using UV-Vis spectrophotometry. The controlled-release properties of the fertilizer were improved dramatically after coating with MW and the marine polysaccharide derivatives. The results show that the double-coated CRFs can release nitrogen in a controlled manner, have excellent controlled-release features, and meet the European Standard for CRFs.
NASA Technical Reports Server (NTRS)
Heinrich, J.
1980-01-01
The microstructure of reaction sintered silicon nitride (RSSN) was changed over a wide range by varying the grain density, grain size of the silicon starting powder, nitriding conditions, and by introducing artificial pores. The influence of single microstructural parameters on mechanical properties like room temperature strength, creep behavior, and resistance to thermal shock was investigated. The essential factors influencing these properties were found to be total porosity, pore size distribution, and the fractions of alpha and beta Si3N4. In view of high temperature engineering applications of RSSN, potentials for optimizing the material's properties by controlled processing are discussed.
Lee, Jai-Sung; Bae, Inhyu
2018-02-01
Effects of quality, physicochemical properties and antioxidants in Camembert cheese added with red ginseng powder (RGP) were investigated. Cheese samples were prepared with 0.05%, 0.10%, 0.15% and 0.20% RGP. and then monitored during ripening at 14°C for 28 d. The pH of the RGP amended treatment groups increased during the ripening period relative to the control ( p <0.05). Moreover, the 1,2-Diphenyl-1-picrylhydrazyle (DPPH) was highest in the 0.15% RGP group from 21 d to 28 d. ABTS + radical scavenging activity was increased just like DPPH as the ripening period passed, 0.10% treatment was highest at from 7 d to 21 d. 0.15% RGP was contents of ginsenosides : 10,999.7 ppm. The Free fatty acids (FFA), controls with 0.15% treatment, while the total fat (TF) and monounsaturated fat (MuSF) were higher in the control than the 0.15% RGP group ( p <0.05). The total free amino acid (FAA) was increased in the control, and 0.15% RGP, and control was highest at then 0.15% RGP. The samples had average contents of fat and protein were 29% and 18-20% respectively. Additionally, the L* value decreased, while the a* and b* values increased as the amount of RGP added increased. Sensory evaluation revealed that texture and total acceptability were higher in the control group at 12 d. Although the addition of RGP did not exert a better effect on the ripening of the camembert cheese, but the ripening grade was similar to that of the common camembert cheese, and the additional function of the cheese was reinforced. Functional cheese could be developed.
Lee, Jai-Sung; Bae, Inhyu
2018-01-01
Effects of quality, physicochemical properties and antioxidants in Camembert cheese added with red ginseng powder (RGP) were investigated. Cheese samples were prepared with 0.05%, 0.10%, 0.15% and 0.20% RGP. and then monitored during ripening at 14°C for 28 d. The pH of the RGP amended treatment groups increased during the ripening period relative to the control (p<0.05). Moreover, the 1,2-Diphenyl-1-picrylhydrazyle (DPPH) was highest in the 0.15% RGP group from 21 d to 28 d. ABTS+ radical scavenging activity was increased just like DPPH as the ripening period passed, 0.10% treatment was highest at from 7 d to 21 d. 0.15% RGP was contents of ginsenosides : 10,999.7 ppm. The Free fatty acids (FFA), controls with 0.15% treatment, while the total fat (TF) and monounsaturated fat (MuSF) were higher in the control than the 0.15% RGP group (p<0.05). The total free amino acid (FAA) was increased in the control, and 0.15% RGP, and control was highest at then 0.15% RGP. The samples had average contents of fat and protein were 29% and 18-20% respectively. Additionally, the L* value decreased, while the a* and b* values increased as the amount of RGP added increased. Sensory evaluation revealed that texture and total acceptability were higher in the control group at 12 d. Although the addition of RGP did not exert a better effect on the ripening of the camembert cheese, but the ripening grade was similar to that of the common camembert cheese, and the additional function of the cheese was reinforced. Functional cheese could be developed. PMID:29725225
Khalid, Iqbal; Nadeem, Amana; Ahmed, Rauf; Husnain, Anwer
2014-01-01
Objectives of the present study were to investigate the physico-chemical properties of municipal solid waste (MSW)-enriched compost and its effect on nutrient mineralization and subsequent plant growth. The enrichment of MSW compost by inorganic salts enhanced the humification rate and reduced the carbon nitrogen (C/N) ratio in less time than control compost. The chemical properties of compost, C/N ratio, humic acid, fulvic acid, degree of polymerization and humification index revealed the significant correlation amid properties. A laboratory-scale experiment evaluated the conjunctive effect of MSW compost and inorganic fertilizer on tomato plants in a pot experiment. In the pot experiment five treatments, Inorganic fertilizer (T1), enriched compost (T2), enriched compost 80% + 20% inorganic fertilizer (T3), enriched compost 60% + 40% inorganic fertilizer (T4) were defined including control (Ts), applied at the rate of 110 kg-N/ha and results revealed that all treatments significantly enhanced horticultural production of tomato plant; however T4 was most effectual as compared with control, T1, T2 and T3. Augmentation in organic matter and available phosphorus (P) potassium (K) and nitrogen (N) were also observed in compost treatments. The leachability and phytoavailability of phosphorus (P), potassium (K) and nitrogen (N) from sandy soil, amended with enriched, control compost and inorganic fertilizer at rates of 200, 400 and 600 kg-N/ha were evaluated in a lysimeter study. Results illustrated that concentration of mineral nitrogen was elevated in the leachate of inorganic fertilizer than enriched and control composts; therefore compost fortifies soil with utmost nutrients for plants' growth.
Seo, Hyun-Woo; Seo, Jin-Kyu; Yang, Han-Sul
2016-01-01
This study investigated the effects of bovine plasma protein (PP) hydrolysates on the antioxidant and quality properties of pork patties during storage. Pork patties were divided into 4 groups: without butylated hydroxytoluene (BHT) and PP hydrolysates (control), 0.02% BHT (T1), 1% PP hydrolysates (T2), and 2% PP hydrolysates (T3). Pork patty supplemented with PP hydrolysates had higher pH values and lower weight loss during cooking than the control patties. Results showed that lightness and hardness both decreased upon the addition of PP hydrolysates. All samples containing BHT and PP hydrolysates had reduced TBARS and peroxide values during storage. In particular, 2% PP hydrolysates were more effective in delaying lipid oxidation than were the other treatments. It was concluded that treatment with 2% PP hydrolysates can enhance the acceptance of pork patty.
Controllable continuous evolution of electronic states in a single quantum ring
NASA Astrophysics Data System (ADS)
Chakraborty, Tapash; Manaselyan, Aram; Barseghyan, Manuk; Laroze, David
2018-02-01
An intense terahertz laser field is shown to have a profound effect on the electronic and optical properties of quantum rings where the isotropic and anisotropic quantum rings can now be treated on equal footing. We have demonstrated that in isotropic quantum rings the laser field creates unusual Aharonov-Bohm oscillations that are usually expected in anisotropic rings. Furthermore, we have shown that intense laser fields can restore the isotropic physical properties in anisotropic quantum rings. In principle, all types of anisotropies (structural, effective masses, defects, etc.) can evolve as in isotropic rings in our present approach. Most importantly, we have found a continuous evolution of the energy spectra and intraband optical characteristics of structurally anisotropic quantum rings to those of isotropic rings in a controlled manner with the help of a laser field.
Green pastures: Do US real estate prices respond to population health?
Nau, Claudia; Bishai, David
2018-01-01
We investigate whether communities with improving population health will subsequently experience rising real estate prices. Home price indices (HPIs) for 371 MSAs from 1990 to 2010 are regressed against life-expectancy five years prior. HPIs come from the Federal Housing Finance Agency. Life expectancy estimates come from the Institute of Health Metrics. Our analysis uses random and fixed effect models with a comprehensive set of controls. Life expectancy predicted increases in the HPI controlling for potential confounders. We found that, this effect varied spatially. Communities that invest their revenue from property taxes in public health infrastructure could benefit from a virtuous cycle of better health leading to higher property values. Communities that do not invest in health could enter vicious cycles and this could widen geospatial health and wealth disparities. Copyright © 2017 Elsevier Ltd. All rights reserved.
Song, Boqi; Peng, Limin; Fu, Feng; Liu, Meihong; Zhang, Houjiang
2016-11-22
Perforated wooden panels are typically utilized as a resonant sound absorbing material in indoor noise control. In this paper, the absorption properties of wooden panels perforated with tiny holes of 1-3 mm diameter were studied both experimentally and theoretically. The Maa-MPP (micro perforated panels) model and the Maa-Flex model were applied to predict the absorption regularities of finely perforated wooden panels. A relative impedance comparison and full-factorial experiments were carried out to verify the feasibility of the theoretical models. The results showed that the Maa-Flex model obtained good agreement with measured results. Control experiments and measurements of dynamic mechanical properties were carried out to investigate the influence of the wood characteristics. In this study, absorption properties were enhanced by sound-induced vibration. The relationship between the dynamic mechanical properties and the panel mass-spring vibration absorption was revealed. While the absorption effects of wood porous structure were not found, they were demonstrated theoretically by using acoustic wave propagation in a simplified circular pipe with a suddenly changed cross-section model. This work provides experimental and theoretical guidance for perforation parameter design.
Chemical control of the viscoelastic properties of vinylogous urethane vitrimers
Denissen, Wim; Droesbeke, Martijn; Nicolaÿ, Renaud; Leibler, Ludwik; Winne, Johan M.; Du Prez, Filip E.
2017-01-01
Vinylogous urethane based vitrimers are polymer networks that have the intrinsic property to undergo network rearrangements, stress relaxation and viscoelastic flow, mediated by rapid addition/elimination reactions of free chain end amines. Here we show that the covalent exchange kinetics significantly can be influenced by combination with various simple additives. As anticipated, the exchange reactions on network level can be further accelerated using either Brønsted or Lewis acid additives. Remarkably, however, a strong inhibitory effect is observed when a base is added to the polymer matrix. These effects have been mechanistically rationalized, guided by low-molecular weight kinetic model experiments. Thus, vitrimer elastomer materials can be rationally designed to display a wide range of viscoelastic properties. PMID:28317893
Charging effect at grain boundaries of MoS2
NASA Astrophysics Data System (ADS)
Yan, Chenhui; Dong, Xi; Li, Connie H.; Li, Lian
2018-05-01
Grain boundaries (GBs) are inherent extended defects in chemical vapor deposited (CVD) transition metal dichalcogenide (TMD) films. Characterization of the atomic structure and electronic properties of these GBs is crucial for understanding and controlling the properties of TMDs via defect engineering. Here, we report the atomic and electronic structure of GBs in CVD grown MoS2 on epitaxial graphene/SiC(0001). Using scanning tunneling microscopy/spectroscopy, we find that GBs mostly consist of arrays of dislocation cores, where the presence of mid-gap states shifts both conduction and valence band edges by up to 1 eV. Our findings demonstrate the first charging effect near GBs in CVD grown MoS2, providing insights into the significant impact GBs can have on materials properties.
Microstructural Influence on Mechanical Properties in Plasma Microwelding of Ti6Al4V Alloy
NASA Astrophysics Data System (ADS)
Baruah, M.; Bag, S.
2016-11-01
The complexity of joining Ti6Al4V alloy enhances with reduction in sheet thickness. The present work puts emphasis on microplasma arc welding (MPAW) of 500-μm-thick Ti6Al4V alloy in butt joint configuration. Using controlled and regulated arc current, the MPAW process is specifically designed to use in joining of thin sheet components over a wide range of process parameters. The weld quality is assessed by carefully controlling the process parameters and by reducing the formation of oxides. The combined effect of welding speed and current on the weld joint properties is evaluated for joining of Ti6Al4V alloy. The macro- and microstructural characterizations of the weldment by optical microscopy as well as the analysis of mechanical properties by microtensile and microhardness test have been performed. The weld joint quality is affected by specifically designed fixture that controls the oxidation of the joint and introduces high cooling rate. Hence, the solidified microstructure of welded specimen influences the mechanical properties of the joint. The butt joint of titanium alloy by MPAW at optimal process parameters is of very high quality, without any internal defects and with minimum residual distortion.
NASA Astrophysics Data System (ADS)
Wang, Anqi; Wang, Yan; Sun, Changjiao; Wang, Chunxin; Cui, Bo; Zhao, Xiang; Zeng, Zhanghua; Yao, Junwei; Yang, Dongsheng; Liu, Guoqiang; Cui, Haixin
2018-01-01
Nano-delivery systems for the active ingredients of pesticides can improve the utilization rates of pesticides and prolong their control effects. This is due to the nanocarrier envelope and controlled release function. However, particles containing active ingredients in controlled release pesticide formulations are generally large and have wide size distributions. There have been limited studies about the effect of particle size on the controlled release properties and biological activities of pesticide delivery systems. In the current study, avermectin (Av) nano-delivery systems were constructed with different particle sizes and their performances were evaluated. The Av release rate in the nano-delivery system could be effectively controlled by changing the particle size. The biological activity increased with decreasing particle size. These results suggest that Av nano-delivery systems can significantly improve the controllable release, photostability, and biological activity, which will improve efficiency and reduce pesticide residues.
Product interactions and feedback in diffusion-controlled reactions
NASA Astrophysics Data System (ADS)
Roa, Rafael; Siegl, Toni; Kim, Won Kyu; Dzubiella, Joachim
2018-02-01
Steric or attractive interactions among reactants or between reactants and inert crowders can substantially influence the total rate of a diffusion-influenced reaction in the liquid phase. However, the role of the product species, which has typically different physical properties than the reactant species, has been disregarded so far. Here we study the effects of reactant-product and product-product interactions as well as asymmetric diffusion properties on the rate of diffusion-controlled reactions in the classical Smoluchowski-setup for chemical transformations at a perfect catalytic sphere. For this, we solve the diffusion equation with appropriate boundary conditions coupled by a mean-field approach on the second virial level to account for the particle interactions. We find that all particle spatial distributions and the total rate can change significantly, depending on the diffusion and interaction properties of the accumulated products. Complex competing and self-regulating (homeostatic) or self-amplifying effects are observed for the system, leading to both decrease and increase in the rates, as the presence of interacting products feeds back to the reactant flux and thus the rate with which the products are generated.
Ullah, Naveed; Khan, Mir Azam; Asif, Afzal Haq; Khan, Taous; Ahmad, Waqar
2013-01-01
Gentamicin is a potent antibiotic, effective against Gram negative bacteria. The most common adverse effect of gentamicin is nephrotoxicity. Present study was aimed to explore the protective potentials of Citrullus colocynthis against gentamicin induced nephrotoxicity due to its strong antioxidant properties. Toxic doses of gentamicin (80 mg/kg/day, i.m.) were administered alone and as co-therapy with the extract of C. colocynthis (25 mg/kg/day, p.o.). Physiological, biochemical and histological examinations were performed to compare the experimental and toxic groups (n = 6) with control group animals. Co-therapy of C. colocynthis with gentamicin protected changes in the body weight, blood urea nitrogen, creatinine clearance, proteins and lactate dehydrogenase excretions. However, a significant rise in serum creatinine and serum uric acid with fall in serum calcium and serum potassium was observed, which were significantly different from control group animals. Necrotic and ruptured tubules were also found abundantly. This study revealed that co-theapy of C. colocynthis with gentamicin for twenty one days, failed to protect renal injury associated by gentamicin in spite of its strong antioxidant properties.
2015-01-01
Inspired by the lotus effect in nature, surface roughness engineering has led to novel materials and applications in many fields. Despite the rapid progress in superhydrophobic and superoleophobic materials, this concept of Mother Nature’s choice is yet to be applied in the design of advanced nanocarriers for drug delivery. Pioneering work has emerged in the development of nanoparticles with rough surfaces for gene delivery; however, the preparation of nanoparticles with hydrophilic compositions but with enhanced hydrophobic property at the nanoscale level employing surface topology engineering remains a challenge. Herein we report for the first time the unique properties of mesoporous hollow silica (MHS) nanospheres with controlled surface roughness. Compared to MHS with a smooth surface, rough mesoporous hollow silica (RMHS) nanoparticles with the same hydrophilic composition show unusual hydrophobicity, leading to higher adsorption of a range of hydrophobic molecules and controlled release of hydrophilic molecules. RMHS loaded with vancomycin exhibits an enhanced antibacterial effect. Our strategy provides a new pathway in the design of novel nanocarriers for diverse bioapplications. PMID:27162988
THE EFFECT OF IRRADIATION OF THE BODY ON THE VIRULENCE OF TYPHOID FEVER BACILLI (in Russian)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chekatilo, G.A.
1958-03-01
The study was carried out on the pathogenic properties of typhoid fever bacilli from the organism of irradiated (by 100, 200, and 300 r) and non- irradiated (control) guinea pigs. The animals were infected intracutaneously, after irradiation. The pathogenic properties of the microbes, isolated from the cutaneous foci, were examined by intraperitoneal inoculation of white mice with the dose of 15 and 30 million microbes. The total of 156 strains were examined and 762 mice were infected. lt was established that the mortality of mice infected with the bacterial cultures isolated from irradiated guinea pigs was higher than in micemore » infected with cultures isolated from non-irradiated mice (54.5% in the experimental group, as against 38% in the control group). Besides, it was revealed that the longer the microbes remained in the tissues of the macroorganism the greater became their virulence. This property was more pronounced in irradiated animals. Therefore, increase of the microbe virulence in the irradiated orgaaism is connected with the effect of irradiation which acts upon the microbes through the organism. (tr-auth)« less
Plasmonic response in nanoporous metal: dependence on network topology
NASA Astrophysics Data System (ADS)
Galí, Marc A.; Tai, Matthew C.; Arnold, Matthew D.; Cortie, Michael B.; Gentle, Angus R.; Smith, Geoffrey B.
2015-12-01
The optical and electrical responses of open, nanoscale, metal networks are of interest in a variety of technologies including transparent conducting electrodes, charge storage, and surfaces with controlled spectral selectivity. The properties of such nanoporous structures depend on the shape and extent of individual voids and the associated hyper-dimensional connectivity and density of the metal filaments. Unfortunately, a quantitative understanding of this dependence is at present only poorly developed. Here we address this problem using numerical simulations applied to a systematically designed series of prototypical sponges. The sponges are produced by a Monte Carlo simulation of the dealloying of Ag-Al alloys containing from 60% to 85% Al. The result is a series of Ag sponges of realistic morphology. The optical properties of the sponges are then calculated by the discrete dipole approximation and the results used to construct an 'effective medium' model for each sponge. We show how the resulting effective medium can be correlated with the associated morphological characteristics of each target and how the optical properties are primarily controlled by the density of the sponge and its state of percolation.
Jin, Sang-Keun; Ha, So-Ra; Choi, Jung-Seok
2015-12-01
This study was performed to investigate the effect of extract from heart wood of Caesalpinia sappan on the physico-chemical properties and to find the appropriate addition level in the emulsion-type pork sausage during cold storage. The pH of treatments with C. sappan extract was significantly lower than control and T1 during cold storage periods (P<0.05). Also, the reduction of moisture content, and the increase of cooking loss significantly occurred by the addition of 0.2% C. sappan extract. Also, the texture properties and sensory of sausages containing C. sappan extract were decreased compared to control. Inclusion of the C. sappan extract in sausages resulted in lower lightness and higher yellowness, chroma and hue values. However, the antioxidant, antimicrobial activity, and volatile basic nitrogen in the emulsion-type pork sausages with C. sappan extract showed increased quality characteristics during cold storage. In conclusion, the proper addition level of C. sappan extract was 0.1% on the processing of emulsion-type pork sausage. Copyright © 2015 Elsevier Ltd. All rights reserved.
Evaluation of rice flour for use in vanilla ice cream.
Cody, T L; Olabi, A; Pettingell, A G; Tong, P S; Walker, J H
2007-10-01
The effects of varying concentrations (2, 4, and 6%) of 2 types of rice flours (RF 1 and RF 2) on the physicochemical properties and sensory characteristics of vanilla ice cream samples were assessed at different fat levels (0, 4, and 10%) and storage conditions (control vs. heat-shocked). Fat and total solids were measured as well as hardness, viscosity, and melting rate. Eight trained panelists conducted descriptive sensory analyses of the samples at 0 and 7 wk. The 2% rice flour level and to a certain extent the 4% usage level generally improved texture while affecting to a lesser extent the flavor characteristics of the samples compared with the control. The RF 2 generally had a more significant effect than RF 1, especially on the texture attributes. Although the rice flour reduced the negative impact of temperature abuse on textural properties, the samples still deteriorated in textural properties (more icy) under temperature abuse conditions. In addition, rice starch does lower perceived sweetness and can have a "flour flavor" at high usage levels. The use of rice flour appears to be most advantageous for low fat ice cream samples.
Cisplatin loaded PMMA: mechanical properties, surface analysis and effects on Saos-2 cell culture.
Özben, Hakan; Eralp, Levent; Baysal, Gökhan; Cort, Ayşegül; Sarkalkan, Nazli; Özben, Tomris
2013-01-01
Despite wide resection and systemic chemotherapy, bone tumors may present with local recurrences, metastases and pathological fractures. Application of bone cement containing antineoplastic drug to fill the defect after resection of metastatic lesions and to support implants has been suggested to prevent local tumor growth and implant failures. In this study, we aimed to demonstrate the effects of the addition of cisplatin which is a widely used antineoplastic drug for osteosarcoma, on the mechanical properties of bone cement, and to evaluate the cytotoxic effects of eluted cisplatin on Saos-2 cell culture. Two cement samples were prepared by mixing 100 mg and 300 mg of cisplatin powder with 40 g cement powder. The bone cement of the control group did not contain cisplatin. Mechanical analyses included 4-point bending, compression and shear testing. For cytotoxicity analysis, samples were incubated in Dulbecco's Modified Eagle's medium for 15 days. Mediums were applied to Saos-2 cell culture and cell viability was measured. Surface analyses were performed by scanning electron microscope (SEM). The addition of cisplatin did not alter the mechanical properties of bone cement. It was observed that the eluted cisplatin had cytotoxic effects on Saos-2 cells. SEM analyses demonstrated cisplatin granules on the surface of cement samples. Cisplatin maintains its cytotoxic property when released from bone cement without compromising the mechanical stability. Application of cisplatin loaded bone cement may help local control of tumor growth. We believe that our study will shed light on to these new practices for the treatment of bone cancers and will encourage future studies.
Controllability of multi-agent systems with periodically switching topologies and switching leaders
NASA Astrophysics Data System (ADS)
Tian, Lingling; Zhao, Bin; Wang, Long
2018-05-01
This paper considers controllability of multi-agent systems with periodically switching topologies and switching leaders. The concept of m-periodic controllability is proposed, and a criterion for m-periodic controllability is established. The effect of the duration of subsystems on controllability is analysed by utilising a property of analytic functions. In addition, the influence of switching periods on controllability is investigated, and an algorithm is proposed to search for the fewest periods to ensure controllability. A necessary condition for m-periodic controllability is obtained from the perspective of eigenvectors of the subsystems' Laplacian matrices. For a system with switching leaders, it is proved that switching-leader controllability is equivalent to multiple-leader controllability. Furthermore, both the switching order and the tenure of agents being leaders have no effect on the controllability. Some examples are provided to illustrate the theoretical results.
Shinn, Sara Elizabeth; Proctor, Andrew; Gilley, Alex D; Cho, Sungeun; Martin, Elizabeth; Anthony, Nicholas B
2016-04-15
Eggs rich in trans, trans conjugated linoleic acid (CLA) are significantly more viscous, have more phospholipids containing linoleic acid (LA), and more saturated triacylglycerol species than control eggs. However, the fatty acid (FA) composition of yolk plasma and granule fractions are unreported. Furthermore, there are no reports of mayonnaise rheological properties or emulsion stability by using CLA-rich eggs. Therefore, the objectives were (1) compare the FA composition of CLA-rich yolk granules and plasma, relative to standard control and LA-rich control yolks, (2) compare the rheological properties of mayonnaise prepared with CLA-rich eggs to control eggs and (3) compare the emulsion stability of CLA-yolk mayonnaise. CLA-rich eggs and soy control eggs were produced by adding 10% CLA-rich soy oil or 10% of control unmodified soy oil to the hen's diet. The eggs were used in subsequent mayonnaise preparation. CLA-yolk mayonnaise was more viscous, had greater storage modulus, resisted thinning, and was a more stable emulsion, relative to mayonnaise prepared with control yolks or soy control yolks. Copyright © 2015 Elsevier Ltd. All rights reserved.
Perspective. Extremely fine tuning of doping enabled by combinatorial molecular-beam epitaxy
Wu, J.; Bozovic, I.
2015-04-06
Chemical doping provides an effective method to control the electric properties of complex oxides. However, the state-of-art accuracy in controlling doping is limited to about 1%. This hampers elucidation of the precise doping dependences of physical properties and phenomena of interest, such as quantum phase transitions. Using the combinatorial molecular beam epitaxy, we improve the accuracy in tuning the doping level by two orders of magnitude. We illustrate this novel method by two examples: a systematic investigation of the doping dependence of interface superconductivity, and a study of the competing ground states in the vicinity of the insulator-to-superconductor transition.
Investigation of α-MnO 2 Tunneled Structures as Model Cation Hosts for Energy Storage
Housel, Lisa M.; Wang, Lei; Abraham, Alyson; ...
2018-02-19
Future advances in energy storage systems rely on identification of appropriate target materials and deliberate synthesis of the target materials with control of their physiochemical properties in order to disentangling the contributions of distinct properties to the functional electrochemistry. Furthermore, this goal demands systematic inquiry using model materials that provide the opportunity for significant synthetic versatility and control. Ideally, a material family that enables direct manipulation of characteristics including composition, defects and crystallite size while remaining within the defined structural framework would be necessary. Accomplishing this through direct synthetic methods is desirable to minimize the complicating effects of secondary processing.
Investigation of α-MnO 2 Tunneled Structures as Model Cation Hosts for Energy Storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Housel, Lisa M.; Wang, Lei; Abraham, Alyson
Future advances in energy storage systems rely on identification of appropriate target materials and deliberate synthesis of the target materials with control of their physiochemical properties in order to disentangling the contributions of distinct properties to the functional electrochemistry. Furthermore, this goal demands systematic inquiry using model materials that provide the opportunity for significant synthetic versatility and control. Ideally, a material family that enables direct manipulation of characteristics including composition, defects and crystallite size while remaining within the defined structural framework would be necessary. Accomplishing this through direct synthetic methods is desirable to minimize the complicating effects of secondary processing.
Results of the examination of LDEF polyurethane thermal control coatings
NASA Technical Reports Server (NTRS)
Golden, Johnny L.
1994-01-01
This report summarizes the condition of polyurethane thermal control coatings subjected to 69 months of low earth orbit (LEO) exposure on the Long Duration Exposure Facility (LDEF) mission. Specimens representing all environmental aspects obtainable by LDEF were analyzed. Widely varying changes in the thermo-optical and mechanical properties of these materials were observed, depending on atomic oxygen and ultraviolet radiation fluences. High atomic oxygen fluences, regardless of ultraviolet radiation exposure levels, resulted in near original optical properties for these coatings but with a degradation in their mechanical condition. A trend in solar absorptance increase with ultraviolet radiation fluence was observed. Contamination, though observed, exhibited minimal effects.
Photonic Resins: Designing Optical Appearance via Block Copolymer Self-Assembly
2018-01-01
Despite a huge variety of methodologies having been proposed to produce photonic structures by self-assembly, the lack of an effective fabrication approach has hindered their practical uses. These approaches are typically limited by the poor control in both optical and mechanical properties. Here we report photonic thermosetting polymeric resins obtained through brush block copolymer (BBCP) self-assembly. We demonstrate that the control of the interplay between order and disorder in the obtained photonic structure offers a powerful tool box for designing the optical appearance of the polymer resins in terms of reflected wavelength and scattering properties. The obtained materials exhibit excellent mechanical properties with hardness up to 172 MPa and Young’s modulus over 2.9 GPa, indicating great potential for practical uses as photonic coatings on a variety of surfaces. PMID:29681653
Atomic engineering of mixed ferrite and core-shell nanoparticles.
Morrison, Shannon A; Cahill, Christopher L; Carpenter, Everett E; Calvin, Scott; Harris, Vincent G
2005-09-01
Nanoparticulate ferrites such as manganese zinc ferrite and nickel zinc ferrite hold great promise for advanced applications in power electronics. The use of these materials in current applications requires fine control over the nanoparticle size as well as size distribution to maximize their packing density. While there are several techniques for the synthesis of ferrite nanoparticles, reverse micelle techniques provide the greatest flexibility and control over size, crystallinity, and magnetic properties. Recipes for the synthesis of manganese zinc ferrite, nickel zinc ferrite, and an enhanced ferrite are presented along with analysis of the crystalline and magnetic properties. Comparisons are made on the quality of nanoparticles produced using different surfactant systems. The importance of various reaction conditions is explored with a discussion on the corresponding effects on the magnetic properties, particle morphology, stoichiometry, crystallinity, and phase purity.
Effects of fiber, matrix, and interphase on carbon fiber composite compression strength
NASA Technical Reports Server (NTRS)
Nairn, John A.; Harper, Sheila I.; Bascom, Willard D.
1994-01-01
The major goal of this project was to obtain basic information on compression failure properties of carbon fiber composites. To do this, we investigated fiber effects, matrix effects, and fiber/matrix interface effects. Using each of nine fiber types, we prepared embedded single-fiber specimens, single-ply specimens, and full laminates. From the single-fiber specimens, in addition to the standard fragmentation test analysis, we were able to use the low crack density data to provide information about the distribution of fiber flaws. The single-ply specimens provided evidence of a correlation between the size of kink band zones and the quality of the interface. Results of the laminate compression experiments mostly agreed with the results from single-ply experiments, although the ultimate compression strengths of laminates were higher. Generally, these experiments showed a strong effect of interfacial properties. Matrix effects were examined using laminates subjected to precracking under mixed-mode loading conditions. A large effect of precracking conditions on the mode 1 toughness of the laminates was found. In order to control the properties of the fiber/matrix interface, we prepared composites of carbon fiber and polycarbonate and subjected these to annealing. The changes in interfacial properties directly correlated with changes in compression strength.
A magneto-rheological fluid mount featuring squeeze mode: analysis and testing
NASA Astrophysics Data System (ADS)
Chen, Peng; Bai, Xian-Xu; Qian, Li-Jun; Choi, Seung-Bok
2016-05-01
This paper presents a mathematical model for a new semi-active vehicle engine mount utilizing magneto-rheological (MR) fluids in squeeze mode (MR mount in short) and validates the model by comparing analysis results with experimental tests. The proposed MR mount is mainly comprised of a frame for installation, a main rubber, a squeeze plate and a bobbin for coil winding. When the magnetic fields on, MR effect occurs in the upper gap between the squeeze plate and the bobbin, and the dynamic stiffness can be controlled by tuning the applied currents. Employing Bingham model and flow properties between parallel plates of MR fluids, a mathematical model for the squeeze type of MR mount is formulated with consideration of the fluid inertia, MR effect and hysteresis property. The field-dependent dynamic stiffness of the MR mount is then analyzed using the established mathematical model. Subsequently, in order to validate the mathematical model, an appropriate size of MR mount is fabricated and tested. The field-dependent force and dynamic stiffness of the proposed MR mount are evaluated and compared between the model and experimental tests in both time and frequency domains to verify the model efficiency. In addition, it is shown that both the damping property and the stiffness property of the proposed MR mount can be simultaneously controlled.
Hu, Shengliang
2016-02-01
We report recent progress in tuning optical properties and photocatalytic activities of carbon-based quantum dots (carbon-based QDs) through their surface groups. It is increasingly clear that the properties of carbon-based QDs are more dependent on their surface groups than on their size. The present challenge remains as to how to control the type, number, and conformation of the heterogeneous groups on the surface of carbon-based QDs when considering their target applications. By reviewing the related achievements, this personal account aims to help us understand the roles different surface groups play in tuning the properties of carbon-based QDs. A number of significant accomplishments have demonstrated that surface groups possess strong power in engineering electronic structure and controlling photogenerated charge behaviors of carbon-based QDs. However, effective strategies for modifying carbon-based QDs with diverse heterogeneous groups are still needed. © 2015 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lee, Ji Hye; Song, Dae Woong; Park, Young Hwan; Um, In Chul
2016-08-01
Regenerated silk film has been increasingly attracting the research community's attention for biomedical applications due to its good biocompatibility and excellent cyto-compatibility. However, some limitations regarding its mechanical properties, such as brittleness, have restricted the use of silk films for industrial biomedical applications. In this study, regenerated silk films with different residual sericin content were prepared applying controlled degumming conditions to evaluate the effect of sericin content on the structure and properties of the films generated. When the residual sericin content increased to 0.6%, crystallinity index and breaking strength of silk films were increased. Above this value, these parameters then decreased. A 1.5 fold increase of silk film elongation properties was obtained when incorporating 16% sericin. Regardless of sericin content, all regenerated silk films showed excellent cyto-compatibility, comparable to the one obtained with tissue culture plates. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Bai, Gang; Xie, Qiyun; Liu, Zhiguo; Wu, Dongmei
2015-08-01
A nonlinear thermodynamic formalism has been proposed to calculate the physical properties of the epitaxial SrTiO3 films containing vertical nano-pillar array on Si-substrate. The out-of-plane stress induced by the mismatch between film and nano-pillars provides an effective way to tune the physical properties of ferroelectric SrTiO3 films. Tensile out-of-plane stress raises the phase transition temperature and increases the out-of-plane polarization, but decreases the out-of-plane dielectric constant below Curie temperature, pyroelectric coefficient, and piezoelectric coefficient. These results showed that by properly controlling the out-of-plane stress, the out-of-plane stress induced paraelectric-ferroelectric phase transformation will appear near room temperature. Excellent dielectric, pyroelectric, piezoelectric properties of these SrTiO3 films similar to PZT and other lead-based ferroelectrics can be expected.
Effects of C3+ ion irradiation on structural, electrical and magnetic properties of Ni nanotubes
NASA Astrophysics Data System (ADS)
Shlimas, D. I.; Kozlovskiy, A. L.; Zdorovets, M. V.; Kadyrzhanov, K. K.; Uglov, V. V.; Kenzhina, I. E.; Shumskaya, E. E.; Kaniukov, E. Y.
2018-03-01
Ion irradiation is an attractive method for obtaining nanostructures that can be used under extreme conditions. Also, it is possible to control the technological process that allows obtaining nanomaterials with new properties at ion irradiation. In this paper, we study the effect of irradiation with 28 MeV C3+ ions and fluences up to 5 × 1011 cm-2 on the structure and properties of template-synthesized nickel nanotubes with a length of 12 μm, with diameters of 400 nm, and a wall thickness of 100 nm. It is demonstrated that the main factor influencing the degradation of nanostructures under irradiation in PET template is the processes of mixing the material of nanostructures with the surrounding polymer. The influence of irradiation with various fluences on the crystal structure, electrical and magnetic properties of nickel nanotubes is studied.
Romero-Freire, A; Martin Peinado, F J; van Gestel, C A M
2015-05-30
Soil contamination with lead is a worldwide problem. Pb can cause adverse effects, but its mobility and availability in the terrestrial environment are strongly controlled by soil properties. The present study investigated the influence of different soil properties on the solubility of lead in laboratory spiked soils, and its toxicity in three bioassays, including Lactuca sativa root elongation and Vibrio fischeri illumination tests applied to aqueous extracts and basal soil respiration assays. Final aim was to compare soil-dependent toxicity with guideline values. The L. sativa bioassay proved to be more sensitive to Pb toxicity than the V. fischeri and soil respiration tests. Toxicity was significantly correlated with soil properties, with soil pH, carbonate and organic carbon content being the most important factors. Therefore, these variables should be considered when defining guideline values. Copyright © 2015 Elsevier B.V. All rights reserved.
Electrowetting of Weak Polyelectrolyte-Coated Surfaces.
Sénéchal, Vincent; Saadaoui, Hassan; Rodriguez-Hernandez, Juan; Drummond, Carlos
2017-05-23
Polymer coatings are commonly used to modify interfacial properties like wettability, lubrication, or biocompatibility. These properties are determined by the conformation of polymer molecules at the interface. Polyelectrolytes are convenient elementary bricks to build smart materials, given that polyion chain conformation is very sensitive to different environmental variables. Here we discuss the effect of an applied electric field on the properties of surfaces coated with poly(acrylic acid) brushes. By combining atomic force microscopy, quartz crystal microbalance, and contact angle experiments, we show that it is possible to precisely tune polyion chain conformation, surface adhesion, and surface wettability using very low applied voltages if the polymer grafting density and environmental conditions (pH and ionic strength) are properly formulated. Our results indicate that the effective ionization degree of the grafted weak polyacid can be finely controlled with the externally applied field, with important consequences for the macroscopic surface properties.
Biodegradable ceramic-polymer composites for biomedical applications: A review.
Dziadek, Michal; Stodolak-Zych, Ewa; Cholewa-Kowalska, Katarzyna
2017-02-01
The present work focuses on the state-of-the-art of biodegradable ceramic-polymer composites with particular emphasis on influence of various types of ceramic fillers on properties of the composites. First, the general needs to create composite materials for medical applications are briefly introduced. Second, various types of polymeric materials used as matrices of ceramic-containing composites and their properties are reviewed. Third, silica nanocomposites and their material as well as biological characteristics are presented. Fourth, different types of glass fillers including silicate, borate and phosphate glasses and their effect on a number of properties of the composites are described. Fifth, wollastonite as a composite modifier and its effect on composite characteristics are discussed. Sixth, composites containing calcium phosphate ceramics, namely hydroxyapatite, tricalcium phosphate and biphasic calcium phosphate are presented. Finally, general possibilities for control of properties of composite materials are highlighted. Copyright © 2016 Elsevier B.V. All rights reserved.
Plasmonic metamaterials with tuneable optical properties
NASA Astrophysics Data System (ADS)
Zayats, Anatoly
2008-03-01
Negative refraction in metamaterials has recently attracted significant attention due to its possible numerous applications in high-resolution imaging and photolithography with the so-called ``perfect lenses,'' for electromagnetic shielding (invisibility cloak), optical signal manipulation, etc. Among various realizations of negative index materials, plasmonic nanostructures play a prominent role as they allow negative refraction properties to be engineered in the visible and near infrared spectral ranges. The coupling of light to plasmonic modes, that are collective electronic excitations in metallic nanostructures, provides the possibility to confine the electromagnetic field on the sub-wavelength scale and manipulate it with high precision to achieve the desired mode dispersion and, thus, reflection, absorption and transmission properties of the nanostructures. In this talk we will discuss various pathways to control dispersion of the electromagnetic waves in plasmonic metamaterials, including plasmon polaritonic crystals and plasmonic nanorod arrays, and the approaches to active tuneability of their optical properties using optical and electric control signals. Both approaches take advantage of the very high sensitivity of surface plasmon mode dispersion on the refractive index of the dielectric adjacent to metallic nanostructure. Hybridization of plasmonic nanostructures with molecular species exhibiting nonlinear optical response allows the development of metamaterials with high effective nonlinear susceptibility due to the electromagnetic field enhancement related to plasmonic excitations. Signal and control light are then coupled to plasmonic modes that strongly interact via nonlinearity introduced by the hybridization. Concurrently, the use of electro-optically active dielectrics incorporated into plasmonic nanostructures provides the route to control optical signals electronically. Plasmonic metamaterials with tuneable optical properties can be used to control negative refraction and electromagnetic field propagation in various applications in nanophotonics, optoelectronics and optical communications.
Robust fault-tolerant tracking control design for spacecraft under control input saturation.
Bustan, Danyal; Pariz, Naser; Sani, Seyyed Kamal Hosseini
2014-07-01
In this paper, a continuous globally stable tracking control algorithm is proposed for a spacecraft in the presence of unknown actuator failure, control input saturation, uncertainty in inertial matrix and external disturbances. The design method is based on variable structure control and has the following properties: (1) fast and accurate response in the presence of bounded disturbances; (2) robust to the partial loss of actuator effectiveness; (3) explicit consideration of control input saturation; and (4) robust to uncertainty in inertial matrix. In contrast to traditional fault-tolerant control methods, the proposed controller does not require knowledge of the actuator faults and is implemented without explicit fault detection and isolation processes. In the proposed controller a single parameter is adjusted dynamically in such a way that it is possible to prove that both attitude and angular velocity errors will tend to zero asymptotically. The stability proof is based on a Lyapunov analysis and the properties of the singularity free quaternion representation of spacecraft dynamics. Results of numerical simulations state that the proposed controller is successful in achieving high attitude performance in the presence of external disturbances, actuator failures, and control input saturation. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Automatic control of the preload in adaptive friction drives of chemical production machines
NASA Astrophysics Data System (ADS)
Balakin, P. D.
2017-08-01
Being based on the principle of providing the systems with adaptation property to the real parameters and operational condition, the energy effective mechanical system constructed on the base of friction gear with automated preload is offered and this allows keeping mechanical efficiency value adequate transforming drive path to in the terms of multimode operation. This is achieved by integrated control loop, operating on the basis of the laws of motion with the energy of the main power flow by changing automatically the kinematic dimension of the section and, hence, the value of preload in the friction contact. The given ratios of forces and deformations in the control loop are required at the stage of conceptual design to determine design dimensions of power transmission elements with new properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Jiqiang; Chen, Zhiguo, E-mail: zgchen@mail.csu.edu.cn; Hunan University of Humanities, Science and Technology, Loudi 417000
The precipitation behavior and property of Al−Cu alloy during stress aging under various loading orientations were investigated using single crystals. The resulting microstructures and the strength property were examined by transmission electron microscope (TEM) and compression test, respectively, and the effect of the distribution of θ′-plates on strength property were discussed. The results show that the precipitation distribution of θ′ was significantly affected by the loading orientation during stress aging of Al−Cu single crystals. Loading along close to 〈011〉{sub Al} directions provided more uniform precipitation distribution of θ′ as compared to loading along close to 〈001〉{sub Al} directions, and thereforemore » provided higher strengthening stress of the θ′-plates for the stress aging sample. The results suggested that regulating the distribution of θ′ and therefore improving strength property are possible via controlling the loading orientation during stress aging. - Highlights: • We studied the effect of loading directions on stress aging of Al−Cu single crystal. • Precipitation distribution of θ′ was noticeably affected by the loading direction. • Loading along close to 〈011〉{sub Al} directions reduced the stress-orienting effect. • The strength property is closely related to the precipitation distribution of θ′. • It is possible to regulate the distribution of θ′ and improve strength property.« less
Mieszala, Maxime; Hasegawa, Madoka; Guillonneau, Gaylord; Bauer, Jens; Raghavan, Rejin; Frantz, Cédric; Kraft, Oliver; Mischler, Stefano; Michler, Johann; Philippe, Laetitia
2017-02-01
By designing advantageous cellular geometries and combining the material size effects at the nanometer scale, lightweight hybrid microarchitectured materials with tailored structural properties are achieved. Prior studies reported the mechanical properties of high strength cellular ceramic composites, obtained by atomic layer deposition. However, few studies have examined the properties of similar structures with metal coatings. To determine the mechanical performance of polymer cellular structures reinforced with a metal coating, 3D laser lithography and electroless deposition of an amorphous layer of nickel-boron (NiB) is used for the first time to produce metal/polymer hybrid structures. In this work, the mechanical response of microarchitectured structures is investigated with an emphasis on the effects of the architecture and the amorphous NiB thickness on their deformation mechanisms and energy absorption capability. Microcompression experiments show an enhancement of the mechanical properties with the NiB thickness, suggesting that the deformation mechanism and the buckling behavior are controlled by the brittle-to-ductile transition in the NiB layer. In addition, the energy absorption properties demonstrate the possibility of tuning the energy absorption efficiency with adequate designs. These findings suggest that microarchitectured metal/polymer hybrid structures are effective in producing materials with unique property combinations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ren, Juan; Yu, Shiyan; Gao, Nan; Zou, Qingze
2013-11-01
In this paper, a control-based approach to replace the conventional method to achieve accurate indentation quantification is proposed for nanomechanical measurement of live cells using atomic force microscope. Accurate indentation quantification is central to probe-based nanomechanical property measurement. The conventional method for in-liquid nanomechanical measurement of live cells, however, fails to accurately quantify the indentation as effects of the relative probe acceleration and the hydrodynamic force are not addressed. As a result, significant errors and uncertainties are induced in the nanomechanical properties measured. In this paper, a control-based approach is proposed to account for these adverse effects by tracking the same excitation force profile on both a live cell and a hard reference sample through the use of an advanced control technique, and by quantifying the indentation from the difference of the cantilever base displacement in these two measurements. The proposed control-based approach not only eliminates the relative probe acceleration effect with no need to calibrate the parameters involved, but it also reduces the hydrodynamic force effect significantly when the force load rate becomes high. We further hypothesize that, by using the proposed control-based approach, the rate-dependent elastic modulus of live human epithelial cells under different stress conditions can be reliably quantified to predict the elasticity evolution of cell membranes, and hence can be used to predict cellular behaviors. By implementing the proposed approach, the elastic modulus of HeLa cells before and after the stress process were quantified as the force load rate was changed over three orders of magnitude from 0.1 to 100 Hz, where the amplitude of the applied force and the indentation were at 0.4-2 nN and 250-450 nm, respectively. The measured elastic modulus of HeLa cells showed a clear power-law dependence on the load rate, both before and after the stress process. Moreover, the elastic modulus of HeLa cells was substantially reduced by two to five times due to the stress process. Thus, our measurements demonstrate that the control-based protocol is effective in quantifying and characterizing the evolution of nanomechanical properties during the stress process of live cells.
NASA Astrophysics Data System (ADS)
Jung, E.; Yoon, H.
2016-12-01
Natural disasters are substantial source of social and economic damage around the globe. The amount of damage is larger when such catastrophe events happen in urbanized areas where the wealth is concentrated. Disasters cause losses in real estate assets, incurring additional cost of repair and maintenance of the properties. For this reason, natural hazard risk such as flooding and landslide is regarded as one of the important determinants of homebuyers' choice and preference. In this research, we aim to reveal whether the past records of flood affect real estate market values in Busan, Korea in 2014, under a hypothesis that homebuyers' perception of natural hazard is reflected on housing values, using the Mahalanobis-metric matching method. Unlike conventionally used hedonic pricing model to estimate capitalization of flood risk into the sales price of properties, the analytical method we adopt here enables inferring causal effects by efficiently controlling for observed/unobserved omitted variable bias. This matching approach pairs each inundated property (treatment variable) with a non-inundated property (control variable) with the closest Mahalanobis distance between them, and comparing their effects on residential property sales price (outcome variable). As a result, we expect price discounts for inundated properties larger than the one for comparable non-inundated properties. This research will be valuable in establishing the mitigation policies of future climate change to relieve the possible negative economic consequences from the disaster by estimating how people perceive and respond to natural hazard. This work was supported by the Korea Environmental Industry and Technology Institute (KEITI) under Grant (No. 2014-001-310007).
Thomas, S.; Kuiper, B.; Hu, J.; ...
2017-10-27
With reduced dimensionality, it is often easier to modify the properties of ultrathin films than their bulk counterparts. Strain engineering, usually achieved by choosing appropriate substrates, has been proven effective in controlling the properties of perovskite oxide films. An emerging alternative route for developing new multifunctional perovskite is by modification of the oxygen octahedral structure. Here we report the control of structural oxygen octahedral rotation in ultrathin perovskite SrRuO 3 films by the deposition of a SrTiO 3 capping layer, which can be lithographically patterned to achieve local control. Here, using a scanning Sagnac magnetic microscope, we show an increasemore » in the Curie temperature of SrRuO 3 due to the suppression octahedral rotations revealed by the synchrotron x-ray diffraction. Lastly, this capping-layer-based technique may open new possibilities for developing functional oxide materials.« less
Thomas, S; Kuiper, B; Hu, J; Smit, J; Liao, Z; Zhong, Z; Rijnders, G; Vailionis, A; Wu, R; Koster, G; Xia, J
2017-10-27
With reduced dimensionality, it is often easier to modify the properties of ultrathin films than their bulk counterparts. Strain engineering, usually achieved by choosing appropriate substrates, has been proven effective in controlling the properties of perovskite oxide films. An emerging alternative route for developing new multifunctional perovskite is by modification of the oxygen octahedral structure. Here we report the control of structural oxygen octahedral rotation in ultrathin perovskite SrRuO_{3} films by the deposition of a SrTiO_{3} capping layer, which can be lithographically patterned to achieve local control. Using a scanning Sagnac magnetic microscope, we show an increase in the Curie temperature of SrRuO_{3} due to the suppression octahedral rotations revealed by the synchrotron x-ray diffraction. This capping-layer-based technique may open new possibilities for developing functional oxide materials.
Distributed Secure Coordinated Control for Multiagent Systems Under Strategic Attacks.
Feng, Zhi; Wen, Guanghui; Hu, Guoqiang
2017-05-01
This paper studies a distributed secure consensus tracking control problem for multiagent systems subject to strategic cyber attacks modeled by a random Markov process. A hybrid stochastic secure control framework is established for designing a distributed secure control law such that mean-square exponential consensus tracking is achieved. A connectivity restoration mechanism is considered and the properties on attack frequency and attack length rate are investigated, respectively. Based on the solutions of an algebraic Riccati equation and an algebraic Riccati inequality, a procedure to select the control gains is provided and stability analysis is studied by using Lyapunov's method.. The effect of strategic attacks on discrete-time systems is also investigated. Finally, numerical examples are provided to illustrate the effectiveness of theoretical analysis.
Electrical properties of granite with implications for the lower crust.
Olhoeft, G.R.
1981-01-01
The electrical properties of granite appear to be dominantly controlled by the amount of free water in the granite and by temperature. Minor contributions to the electrical properties are provided by hydrostatic and lithostatic pressure, structurally bound water, oxygen fugacity, and other parameters. The effect of sulphur fugacity may be important but is experimentally unconfirmed. In addition to changing the magnitude of electrical properties, the amount and chemistry of water in granite significantly changes the temperature dependence of the electrical properties. With increasing temperature, changes in water content retain large, but lessened, effects on electrical properties. Near room temperature, a monolayer of water will decrease the electrical resistivity by an order of magnitude. Several weight-percent water may decrease the electrical resistivity by as much as nine orders of magnitude and decrease the thermal activation energy by a factor of five. At elevated temperatures just below granitic melting, a few weight-percent water may still decrease the resistivity by as much as 3 orders of magnitude and the activation energy by a factor of two.-Author
Contamination control by use of ethylene oxide
NASA Technical Reports Server (NTRS)
Stroud, R. H.; Lyle, R. G.
1972-01-01
The uses of ethylene oxide as a decontaminating agent for planetary quarantine related applications are reported. Aspects discussed include: applications and limitations, chemical and physical properties, germicidal activity, methods of applications, and effects on personnel.
Waveguides with Absorbing Boundaries: Nonlinearity Controlled by an Exceptional Point and Solitons
NASA Astrophysics Data System (ADS)
Midya, Bikashkali; Konotop, Vladimir V.
2017-07-01
We reveal the existence of continuous families of guided single-mode solitons in planar waveguides with weakly nonlinear active core and absorbing boundaries. Stable propagation of TE and TM-polarized solitons is accompanied by attenuation of all other modes, i.e., the waveguide features properties of conservative and dissipative systems. If the linear spectrum of the waveguide possesses exceptional points, which occurs in the case of TM polarization, an originally focusing (defocusing) material nonlinearity may become effectively defocusing (focusing). This occurs due to the geometric phase of the carried eigenmode when the surface impedance encircles the exceptional point. In its turn, the change of the effective nonlinearity ensures the existence of dark (bright) solitons in spite of focusing (defocusing) Kerr nonlinearity of the core. The existence of an exceptional point can also result in anomalous enhancement of the effective nonlinearity. In terms of practical applications, the nonlinearity of the reported waveguide can be manipulated by controlling the properties of the absorbing cladding.
Antiobesity Effect of Exopolysaccharides Isolated from Kefir Grains.
Lim, Juha; Kale, Madhuvanti; Kim, Dong-Hyeon; Kim, Hong-Seok; Chon, Jung-Whan; Seo, Kun-Ho; Lee, Hyeon Gyu; Yokoyama, Wallace; Kim, Hyunsook
2017-11-22
Physiological properties of water-soluble exopolysaccharides (EPS) and residues after EPS removal (Res) from the probiotic kefir were determined in high-fat (HF) diet-fed C57BL/6J mice. EPS solutions showed rheological properties and lower viscosity compared to those of β-glucan (BG). EPS significantly suppressed the adipogenesis of 3T3-L1 preadipocytes in a dose-dependent manner. Mice were fed HF diets containing 5% EPS, 5% BG, 8% Res, or 5% microcrystalline cellulose (control) for 4 weeks. Compared with the control, EPS supplementation significantly reduced HF diet-induced body weight gain, adipose tissue weight, and plasma very-low-density lipoprotein cholesterol concentration (P < 0.05). Res and BG significantly reduced body weight gain; however, reduction in adipose tissue weight was not statistically significant, suggesting that the antiobesity effect of EPS occurs due to viscosity and an additional factor. EPS supplementation significantly enhanced abundance of Akkermansia spp. in feces. These data indicate that EPS shows significant antiobesity effects possibly via intestinal microbiota alterations.
Rowenczyk, Laura; Picard, Céline; Duclairoir-Poc, Cécile; Hucher, Nicolas; Orange, Nicole; Feuilloley, Marc; Grisel, Michel
2016-08-20
Model emulsions were developed with or without commercial titanium dioxide nanoparticles (NP) carrying various surface treatments in order to get close physicochemical properties whatever the NP surface polarity (hydrophilic and hydrophobic). Rheology and texturometry highlighted that the macroscopic properties of the three formulated emulsions were similar. However, characterizations by optical microscopy, static light scattering and zetametry showed that their microstructures reflected the diversity of the incorporated NP surface properties. In order to use these model emulsions as tools for biological evaluations of the NP in use, they had to show the lowest initial microbiological charge and, specifically for the NP-free emulsion, the lowest bactericidal effect. Hence, formulae were developed preservative-free and a thermal sterilization step was conducted. Efficiency of the sterilization and its impact on the emulsion integrity were monitored. Results highlighted the effect of the NP surface properties: only the control emulsion and the emulsion containing hydrophilic NP fulfilled both requirements. To ensure the usability of these model emulsions as tools to evaluate the 'NP effect' on representative bacteria of the skin microflora (S. aureus and P. fluorescens), impact on the bacterial growth was measured on voluntary inoculated formulae. Copyright © 2016 Elsevier B.V. All rights reserved.
Kim, Min-Woo; Jung, Wan-Gil; Hyun-Cho; Bae, Tae-Sung; Chang, Sung-Jin; Jang, Ja-Soon; Hong, Woong-Ki; Kim, Bong-Joong
2015-06-04
Single-crystalline vanadium dioxide (VO2) nanostructures have recently attracted great attention because of their single domain metal-insulator transition (MIT) nature that differs from a bulk sample. The VO2 nanostructures can also provide new opportunities to explore, understand, and ultimately engineer MIT properties for applications of novel functional devices. Importantly, the MIT properties of the VO2 nanostructures are significantly affected by stoichiometry, doping, size effect, defects, and in particular, strain. Here, we report the effect of substrate-mediated strain on the correlative role of thermal heating and electric field on the MIT in the VO2 nanobeams by altering the strength of the substrate attachment. Our study may provide helpful information on controlling the properties of VO2 nanobeam for the device applications by changing temperature and voltage with a properly engineered strain.
Kim, Min-Woo; Jung, Wan-Gil; Hyun-Cho; Bae, Tae-Sung; Chang, Sung-Jin; Jang, Ja-Soon; Hong, Woong-Ki; Kim, Bong-Joong
2015-01-01
Single-crystalline vanadium dioxide (VO2) nanostructures have recently attracted great attention because of their single domain metal-insulator transition (MIT) nature that differs from a bulk sample. The VO2 nanostructures can also provide new opportunities to explore, understand, and ultimately engineer MIT properties for applications of novel functional devices. Importantly, the MIT properties of the VO2 nanostructures are significantly affected by stoichiometry, doping, size effect, defects, and in particular, strain. Here, we report the effect of substrate-mediated strain on the correlative role of thermal heating and electric field on the MIT in the VO2 nanobeams by altering the strength of the substrate attachment. Our study may provide helpful information on controlling the properties of VO2 nanobeam for the device applications by changing temperature and voltage with a properly engineered strain. PMID:26040637
Protein fibrillation and nanoparticle interactions: opportunities and challenges
NASA Astrophysics Data System (ADS)
Mahmoudi, Morteza; Kalhor, Hamid R.; Laurent, Sophie; Lynch, Iseult
2013-03-01
Due to their ultra-small size, nanoparticles (NPs) have distinct properties compared with the bulk form of the same materials. These properties are rapidly revolutionizing many areas of medicine and technology. NPs are recognized as promising and powerful tools to fight against the human brain diseases such as multiple sclerosis or Alzheimer's disease. In this review, after an introductory part on the nature of protein fibrillation and the existing approaches for its investigations, the effects of NPs on the fibrillation process have been considered. More specifically, the role of biophysicochemical properties of NPs, which define their affinity for protein monomers, unfolded monomers, oligomers, critical nuclei, and other prefibrillar states, together with their influence on protein fibrillation kinetics has been described in detail. In addition, current and possible-future strategies for controlling the desired effect of NPs and their corresponding effects on the conformational changes of the proteins, which have significant roles in the fibrillation process, have been presented.
NASA Astrophysics Data System (ADS)
Jeong, W. C.
2014-11-01
Effect of carbon on the microstructure and mechanical properties of 0.011 and 0.032 pct carbon dual-phase steels was investigated. r m value was increased to 1.52 at around 400 MPa tensile strength level through the optimal design in the steel chemistry and proper control of phase transformation during continuous galvanizing cycle. The isolated martensite particles are expected to increase the strength but are expected not to be desirable for the deep drawability.
NASA Technical Reports Server (NTRS)
Fear, J. S.
1983-01-01
An assessment is made of the results of Phase 1 screening testing of current and advanced combustion system concepts using several broadened-properties fuels. The severity of each of several fuels-properties effects on combustor performance or liner life is discussed, as well as design techniques with the potential to offset these adverse effects. The selection of concepts to be pursued in Phase 2 refinement testing is described. This selection takes into account the relative costs and complexities of the concepts, the current outlook on pollutant emissions control, and practical operational problems.
NASA Technical Reports Server (NTRS)
Buzzard, R. J.; Metroka, R. R.
1973-01-01
The effect of controlled nitrogen additions was evaluated on the mechanical properties of T-111 (Ta-8W-2Hf) fuel pin cladding material proposed for use in a lithium-cooled nuclear reactor concept. Additions of 80 to 1125 ppm nitrogen resulted in increased strengthening of T-111 tubular section test specimens at temperatures of 25 to 1200 C. Homogeneous distributions of up to 500 ppm nitrogen did not seriously decrease tensile ductility. Both single and two-phase microstructures, with hafnium nitride as the second phase, were evaluated in this study.
[Therapeutic potential of Cannabis sativa].
Avello L, Marcia; Pastene N, Edgar; Fernández R, Pola; Córdova M, Pia
2017-03-01
Cannabis sativa (marihuana) is considered an illicit drug due to its psychoactive properties. Recently, the Chilean government opened to the use cannabis in the symptomatic treatment of some patients. The biological effects of cannabis render it useful for the complementary treatment of specific clinical situations such as chronic pain. We retrieved scientific information about the analgesic properties of cannabis, using it as a safe drug. The drug may block or inhibit the transmission of nervous impulses at different levels, an effect associated with pain control. Within this context and using adequate doses, forms and administration pathways, it can be used for chronic pain management, considering its effectiveness and low cost. It could also be considered as an alternative in patients receiving prolonged analgesic therapies with multiple adverse effects.
Evidence for a neural dual-process account for adverse effects of cognitive control.
Zink, Nicolas; Stock, Ann-Kathrin; Colzato, Lorenza; Beste, Christian
2018-06-09
Advantageous effects of cognitive control are well-known, but cognitive control may also have adverse effects, for example when it suppresses the implicit processing of stimulus-response (S-R) bindings that could benefit task performance. Yet, the neurophysiological and functional neuroanatomical structures associated with adverse effects of cognitive control are poorly understood. We used an extreme group approach to compare individuals who exhibit adverse effects of cognitive control to individuals who do not by combining event-related potentials (ERPs), source localization, time-frequency analysis and network analysis methods. While neurophysiological correlates of cognitive control (i.e. N2, N450, theta power and theta-mediated neuronal network efficiency) and task-set updating (P3) both reflect control demands and implicit information processing, differences in the degree of adverse cognitive control effects are associated with two independent neural mechanisms: Individuals, who show adverse behavioral effects of cognitive control, show reduced small-world properties and thus reduced efficiency in theta-modulated networks when they fail to effectively process implicit information. In contrast to this, individuals who do not display adverse control effects show enhanced task-set updating mechanism when effectively processing implicit information, which is reflected by the P3 ERP component and associated with the temporo-parietal junction (TPJ, BA 40) and medial frontal gyrus (MFG; BA 8). These findings suggest that implicit S-R contingencies, which benefit response selection without cognitive control, are always 'picked up', but may fail to be integrated with task representations to guide response selection. This provides evidence for a neurophysiological and functional neuroanatomical "dual-process" account of adverse cognitive control effects.
NASA Technical Reports Server (NTRS)
Carter, Gregory A.; Bahadur, Raj; Norby, Richard J.
1999-01-01
Elevated atmospheric CO2 pressure and numerous causes of plant stress often result in decreased leaf chlorophyll contents and thus would be expected to alter leaf optical properties. Hypotheses that elevated carbon dioxide pressure and air temperature would alter leaf optical properties were tested for sugar maple (Acer saccharum Marsh.) in the middle of its fourth growing season under treatment. The saplings had been growing since 1994 in open-top chambers at Oak Ridge, Tennessee under the following treatments: 1) Ambient CO2 pressure and air temperature (control); 2) CO2 pressure approximately 30 Pa above ambient; 3) Air temperatures 3 C above ambient; 4) Elevated CO2 and air temperature. Spectral reflectance, transmittance, and absorptance in the visible spectrum (400-720 nm) did not change significantly (rho = 0.05) in response to any treatment compared with control values. Although reflectance, transmittance, and absorptance at 700 nm correlated strongly with leaf chlorophyll content, chlorophyll content was not altered significantly by the treatments. The lack of treatment effects on pigmentation explained the non-significant change in optical properties in the visible spectrum. Optical properties in the near-infrared (721-850 nm) were similarly unresponsive to treatment with the exception of an increased absorptance in leaves that developed under elevated air temperature alone. This response could not be explained by the data, but might have resulted from effects of air temperature on leaf internal structure. Results indicated no significant potential for detecting leaf optical responses to elevated CO2 or temperature by the remote sensing of reflected radiation in the 400-850 nm spectrum.
Synthesis of wrinkled mesoporous silica and its reinforcing effect for dental resin composites.
Wang, Ruili; Habib, Eric; Zhu, X X
2017-10-01
The aim of this work is to explore the reinforcing effect of wrinkled mesoporous silica (WMS), which should allow micromechanical resin matrix/filler interlocking in dental resin composites, and to investigate the effect of silica morphology, loading, and compositions on their mechanical properties. WMS (average diameter of 496nm) was prepared through the self-assembly method and characterized by the use of the electron microscopy, dynamic light scattering, and the N 2 adsorption-desorption measurements. The mechanical properties of resin composites containing silanized WMS and nonporous smaller silica were evaluated with a universal mechanical testing machine. Field-emission scanning electron microscopy was used to study the fracture morphology of dental composites. Resin composites including silanized silica particles (average diameter of 507nm) served as the control group. Higher filler loading of silanized WMS substantially improved the mechanical properties of the neat resin matrix, over the composites loaded with regular silanized silica particles similar in size. The impregnation of smaller secondary silica particles with diameters of 90 and 190nm, denoted respectively as Si90 and Si190, increased the filler loading of the bimodal WMS filler (WMS-Si90 or WMS-Si190) to 60wt%, and the corresponding composites exhibited better mechanical properties than the control fillers made with regular silica particles. Among all composites, the optimal WMS-Si190- filled composite (mass ratio WMS:Si190=10:90, total filler loading 60wt%) exhibited the best mechanical performance including flexural strength, flexural modulus, compressive strength and Vickers microhardness. The incorporation of WMS and its mixed bimodal fillers with smaller silica particles led to the design and formulation of dental resin composites with superior mechanical properties. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Jeong, Da-Woon; Kim, Jae-Yup; Seo, Han Wook; Lim, Kyoung-Mook; Ko, Min Jae; Seong, Tae-Yeon; Kim, Bum Sung
2018-01-01
Colloidal quantum dots (QDs) are attractive materials for application in photovoltaics, LEDs, displays, and bio devices owing to their unique properties. In this study, we synthesized gradient-interface-structured ZnCdSSe QDs and modified the interface based on a thermodynamic simulation to investigate its optical and physical properties. In addition, the interface was modified by increasing the molar concentration of Se. QDs at the modified interface were applied to QD-sensitized solar cells, which showed a 25.5% increase in photoelectric conversion efficiency owing to the reduced electron confinement effect. The increase seems to be caused by the excited electrons being relatively easily transferred to the level of TiO2 owing to the reduced electron confinement effect. Consequently, the electron confinement effect was observed to be reduced by increasing the ZnSe (or Zn1-xCdxSe)-rich phase at the interface. This means that, based on the thermodynamic simulation, the interface between the core QDs and the surface of the QDs can be controlled. The improvement of optical and electronic properties by controlling interfaces and surfaces during the synthesis of QDs, as reported in this work, can be useful for many applications beyond solar cells.
Comparison of Extruded and Sonicated Vesicles for Planar Bilayer Self-Assembly
Cho, Nam-Joon; Hwang, Lisa Y.; Solandt, Johan J.R.; Frank, Curtis W.
2013-01-01
Lipid vesicles are an important class of biomaterials that have a wide range of applications, including drug delivery, cosmetic formulations and model membrane platforms on solid supports. Depending on the application, properties of a vesicle population such as size distribution, charge and permeability need to be optimized. Preparation methods such as mechanical extrusion and sonication play a key role in controlling these properties, and yet the effects of vesicle preparation method on vesicular properties and integrity (e.g., shape, size, distribution and tension) remain incompletely understood. In this study, we prepared vesicles composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipid by either extrusion or sonication, and investigated the effects on vesicle size distribution over time as well as the concomitant effects on the self-assembly of solid-supported planar lipid bilayers. Dynamic light scattering (DLS), quartz crystal microbalance with dissipation (QCM-D) monitoring, fluorescence recovery after photobleaching (FRAP) and atomic force microscopy (AFM) experiments were performed to characterize vesicles in solution as well as their interactions with silicon oxide substrates. Collectively, the data support that sonicated vesicles offer more robust control over the self-assembly of homogenous planar lipid bilayers, whereas extruded vesicles are vulnerable to aging and must be used soon after preparation. PMID:28811437
Enhanced power factor via the control of structural phase transition in SnSe
Yu, Hulei; Dai, Shuai; Chen, Yue
2016-01-01
Tin selenide has attracted much research interest due to its unprecedentedly high thermoelectric figure of merit (ZT). For real applications, it is desirable to increase the ZT value in the lower-temperature range, as the peak ZT value currently exists near the melting point. It is shown in this paper that the structural phase transition plays an important role in boosting the ZT value of SnSe in the lower-temperature range, as the Cmcm phase is found to have a much higher power factor than the Pnma phase. Furthermore, hydrostatic pressure is predicted to be extremely effective in tuning the phase transition temperature based on ab-initio molecular dynamic simulations; a remarkable decrease in the phase transition temperature is found when a hydrostatic pressure is applied. Dynamical stabilities are investigated based on phonon calculations, providing deeper insight into the pressure effects. Accurate band structures are obtained using the modified Becke-Johnson correction, allowing reliable prediction of the electrical transport properties. The effects of hydrostatic pressure on the thermal transport properties are also discussed. Hydrostatic pressure is shown to be efficient in manipulating the transport properties via the control of phase transition temperature in SnSe, paving a new path for enhancing its thermoelectric efficiency. PMID:27193260
NASA Astrophysics Data System (ADS)
Liu, Runhan; Yuan, Ying; Long, Huabao; Peng, Sha; Wei, Dong; Zhang, Xinyu; Wang, Haiwei; Xie, Changsheng
2018-02-01
The intense surface plasmons (SPs) can be generated by patterned metal nano-structure arrays, through coupling incident light onto the functioned metal surface, so as to construct highly constrained surface electromagnetic modes. Therefore, a localized micro-nano-field array with a highly compressed surface electron distribution, can also be shaped and even nano-focused over the surface, which will lead to a lot of special physical effects such as anti-reflection effect, and thus indicate many new potential applications in the field of nano-photonics and -optoelectronics. In this paper, several typical patterned sub-wavelength metal nano-structure arrays were designed according to the process, in which common silicon wafer was employed as the substrate material and aluminum as the metal film with different structural size and arrangement circle. In addition, by adjusting the dielectric constant of metal material appropriately, the power control effect on metallic nanostructure was simulated. The key properties such as the excitation intensity of the surface plasmons were studied by simulating the reflectivity characteristic curves and the electric field distribution of the nanostructure excited by incident infrared beams. It is found that the angle of corners, the arrangement cycle and the metal material properties of the patterned nano-structures can be utilized as key factors to control the excitation intensity of surface plasmons.
NASA Astrophysics Data System (ADS)
Steinmetz, Zacharias; Kurtz, Markus; Peikert, Benjamin; Zipori, Isaac; Dag, Arnon; Schaumann, Gabriele E.
2014-05-01
During olive oil production in Mediterranean countries, large amounts of olive mill wastewater (OMW) are generated within a short period of time. OMW has a high nutrient content and could serve as fertilizer when applied on land. However, its fatty and phenolic constituents have adverse effects on hydrological and biological soil properties. It is still unknown how seasonal fluctuations in temperature and precipitation influence the fate and effect of OMW components on soil in a long-term perspective. An appropriate application season could mitigate negative consequences of OMW while preserving its beneficial effects. In order to investigate this, 14 L OMW m-2 were applied to different plots of an olive orchard in Gilat, Israel, in winter, spring, and summer, respectively. Hydrological soil properties (water drop penetration time, hydraulic conductivity, dynamic contact angle), physicochemical parameters (pH, EC, soluble ions, phenolic compounds, organic matter), and biological degradation (bait-lamina test) were measured to assess the soil state after OMW application. After one rainy season following OMW application, the soil quality of summer treatments significantly decreased compared to the control. This was particularly apparent in a ten-fold higher soil water repellency, a three-times lower biodegradation performance, and a four-fold higher content of phenolic compounds. 1.5 years after the last OMW application, the soil properties of winter treatments were comparable to the control, which suggests a certain recovery potential of the soil. Spring treatments resulted in an intermediate response compared to summer and winter treatments, but without any precipitation following OMW application. Strongest OMW effects were found in the top soil layers. Further research is needed to quantify the effect of spring treatments as well as to gain further insight into leaching effects, the composition of organic OMW constituents, and the kinetics of their degradation in relation to climatic conditions.
Testing and Optimization of Electrically Conductive Spacecraft Coatings
NASA Technical Reports Server (NTRS)
Mell, R. J.; Wertz, G. E.; Edwards, D. L. (Technical Monitor)
2001-01-01
This is the final report discussing the work done for the Space Environments and Effects (SEE) Program. It discusses test chamber design, coating research, and test results on electrically thermal control coatings. These thermal control coatings are being developed to have several orders of magnitude higher electrical conductivity than most available thermal control coatings. Most current coatings tend to have a range in surface resistivity from 1,011 to 1,013 ohms/sq. Historically, spacecraft have had thermal control surfaces composed of dielectric materials of either polymers (paints and metalized films) or glasses (ceramic paints and optical solar reflectors). Very seldom has the thermal control surface of a spacecraft been a metal where the surface would be intrinsically electrically conductive. The poor thermal optical properties of most metals have, in most cases, stopped them from being used as a thermal control surface. Metals low infrared emittance (generally considered poor for thermal control surfaces) and/or solar absorptance, have resulted in the use of various dielectric coatings or films being applied over the substrate materials in order to obtain the required optical properties.
The Effect of Project Based Learning on Seventh Grade Students' Academic Achievement
ERIC Educational Resources Information Center
Kizkapan, Oktay; Bektas, Oktay
2017-01-01
The purpose of this study is to investigate whether there is a significant effect of project based learning approach on seventh grade students' academic achievement in the structure and properties of matter. In the study, according to the characteristics of quantitative research methods, pretest-posttest control group quasi-experimental design was…
Plasma membrane surface potential: dual effects upon ion uptake and toxicity
USDA-ARS?s Scientific Manuscript database
Electrical properties of plasma membranes (PMs), partially controlled by the ionic composition of the bathing medium, play significant roles in the distribution of ions at the exterior surface of PMs and in the transport of ions across PMs. The effects of coexistent cations (commonly Al3+, Ca2+, Mg...
ERIC Educational Resources Information Center
Long, Changquan; Lu, Xiaoying; Zhang, Li; Li, Hong; Deak, Gedeon O.
2012-01-01
Inductive generalization of novel properties to same-category or similar-looking objects was studied in Chinese preschool children. The effects of category labels on generalizations were investigated by comparing basic-level labels, superordinate-level labels, and a control phrase applied to three kinds of stimulus materials: colored photographs…
DOT National Transportation Integrated Search
2009-12-01
Adding long chained polymers to diesel has been proposed as a method to prevent crash fires by arresting the breakup of diesel fuel into a fine mist in transportation related accidents. The effect of such additives on the flow properties of diesel wa...
Ginnelly, Laura; Sculpher, Mark; Bojke, Chris; Roberts, Ian; Wade, Angie; Diguiseppi, Carolyn
2005-10-01
In 2001, 486 deaths and 17,300 injuries occurred in domestic fires in the UK. Domestic fires represent a significant cost to the UK economy, with the value of property loss alone estimated at pounds 375 million in 1999. In 2001 in the US, there were 383 500 home fires, resulting in 3110 deaths, 15,200 injuries and dollar 5.5 billion in direct property damage. A cluster RCT was conducted to determine whether a smoke alarm give-away program, directed to an inner-city UK population, is effective and cost-effective in reducing the risk of fire-related deaths/injuries. Forty areas were randomized to the give-away or control group. The number of injuries/deaths and the number of fires in each ward were collected prospectively. Cost-effectiveness analysis was undertaken to relate the number of deaths/injuries to resource use (damage, fire service, healthcare and give-away costs). Analytical methods were used which reflected the characteristics of the trial data including the cluster design of the trial and a large number of zero costs and effects. The mean cost for a household in a give-away ward, including the cost of the program, was pounds 12.76, compared to pounds 10.74 for the control ward. The total mean number of deaths and injuries was greater in the intervention wards then the control wards, 6.45 and 5.17. When an injury/death avoided is valued at pounds 1000, a smoke alarm give-away has a probability of being cost effective of 0.15. A smoke alarm give-away program, as administered in the trial, is unlikely to represent a cost-effective use of resources.
Electro-responsive polyelectrolyte-coated surfaces.
Sénéchal, V; Saadaoui, H; Rodriguez-Hernandez, J; Drummond, C
2017-07-01
The anchoring of polymer chains at solid surfaces is an efficient way to modify interfacial properties like the stability and rheology of colloidal dispersions, lubrication and biocompatibility. Polyelectrolytes are good candidates for the building of smart materials, as the polyion chain conformation can often be tuned by manipulation of different physico-chemical variables. However, achieving efficient and reversible control of this process represents an important technological challenge. In this regard, the application of an external electrical stimulus on polyelectrolytes seems to be a convenient control strategy, for several reasons. First, it is relatively easy to apply an electric field to the material with adequate spatiotemporal control. In addition, in contrast to chemically induced changes, the molecular response to a changing electric field occurs relatively quickly. If the system is properly designed, this response can then be used to control the magnitude of surface properties. In this work we discuss the effect of an external electric field on the adhesion and lubrication properties of several polyelectrolyte-coated surfaces. The influence of the applied field is investigated at different pH and salt conditions, as the polyelectrolyte conformation is sensitive to these variables. We show that it is possible to fine tune friction and adhesion using relatively low applied fields.
Yu, Dandan; Gao, Shanshan; Min, Jie; Zhang, Qianqian; Gao, Shuai; Yu, Haiyang
2015-12-01
Teeth bleaching cases had increased with people's desire for oral aesthetic; however, bleached teeth would still undertake chewing actions and remineralizing process in saliva. Nanotribological and nanomechanical properties are proper displays for dental performance of bleached teeth. The purpose of the research was to reveal the effect of bleaching and remineralization on the nanotribological and nanomechanical properties of teeth in wet environment. The specimens were divided into four groups according to the bleaching products used: 12 % hydrogen peroxide (HP) (12HP group); 15 % carbamide peroxide (CP) (15CP group); 35 % CP (35CP group); and artificial saliva (control group). The nanotribological and nanomechanical property changes of tooth enamel after bleaching and remineralization were evaluated respectively by nanoscratch and nanoindentation tests in wet environment, imitating the wet oral environment. The morphology changes were evaluated by statistical parametric mapping (SPM) and scanning electron microscopy (SEM). After bleaching, 12HP group and 15CP group showed increased scratch depth with more pile ups on the scratch edges, decreased nanohardness, and corroded surface appearance. While the 35CP group showed an increase in nanoscratch depth, no change in nanohardness and surface appearance was observed. The control group showed no change in these measurements. After remineralization, the three bleaching groups showed decreased nanoscratch depth and no change of nanohardness compared with the bleached teeth. And the control group showed no changes in nanotribological and nanomechanical properties. The nanotribological and nanomechanical properties of the 12HP group and 15CP group were affected by bleaching, but the nanotribological properties recovered partly and the nanomechanical properties got no change after 1 week of remineralization. As for the 35CP group, the nanotribological properties were influenced and the nanomechanical properties were not affected. These results remind us of taking actions to protect our teeth during bleaching.
NASA Astrophysics Data System (ADS)
Yu, Dandan; Gao, Shanshan; Min, Jie; Zhang, Qianqian; Gao, Shuai; Yu, Haiyang
2015-12-01
Teeth bleaching cases had increased with people's desire for oral aesthetic; however, bleached teeth would still undertake chewing actions and remineralizing process in saliva. Nanotribological and nanomechanical properties are proper displays for dental performance of bleached teeth. The purpose of the research was to reveal the effect of bleaching and remineralization on the nanotribological and nanomechanical properties of teeth in wet environment. The specimens were divided into four groups according to the bleaching products used: 12 % hydrogen peroxide (HP) (12HP group); 15 % carbamide peroxide (CP) (15CP group); 35 % CP (35CP group); and artificial saliva (control group). The nanotribological and nanomechanical property changes of tooth enamel after bleaching and remineralization were evaluated respectively by nanoscratch and nanoindentation tests in wet environment, imitating the wet oral environment. The morphology changes were evaluated by statistical parametric mapping (SPM) and scanning electron microscopy (SEM). After bleaching, 12HP group and 15CP group showed increased scratch depth with more pile ups on the scratch edges, decreased nanohardness, and corroded surface appearance. While the 35CP group showed an increase in nanoscratch depth, no change in nanohardness and surface appearance was observed. The control group showed no change in these measurements. After remineralization, the three bleaching groups showed decreased nanoscratch depth and no change of nanohardness compared with the bleached teeth. And the control group showed no changes in nanotribological and nanomechanical properties. The nanotribological and nanomechanical properties of the 12HP group and 15CP group were affected by bleaching, but the nanotribological properties recovered partly and the nanomechanical properties got no change after 1 week of remineralization. As for the 35CP group, the nanotribological properties were influenced and the nanomechanical properties were not affected. These results remind us of taking actions to protect our teeth during bleaching.
García-Guzmán, Perla; Medina-Torres, Luis; Calderas, Fausto; Bernad-Bernad, María Josefa; Gracia-Mora, Jesús; Mena, Baltasar; Manero, Octavio
2018-07-01
In this work, we prepared a novel composite based on hybrid gelatin carriers and montmorillonite clay (MMT) to analyze its viability as controlled drug delivery system. The objective of this research involves the characterization of composites formed by structured lipid-gelatin micro-particles (MP) and MMT clay. This analysis included the evaluation of the composite according to its rheological properties, morphology (SEM), particle size, XRD, FT-IR, and in vitro drug release. The effect of pH in the properties of the composite is evaluated. A novel raspberry-like or armor MP/MMT clay composite is reported, in which the pH has an important effect on the final structure of the composite for ad-hoc drug delivery systems. For pH values below the isoelectric point, we obtained defined morphologies with entrapment efficiencies up to 67%. The pH level controls the MP/MMT composite release mechanism, restringing drug release in the stomach-like environment. Intended for oral administration, these results evidence that the MP/MMT composite represents an attractive alternative for intestinal-colonic controlled drug delivery systems. Copyright © 2018 Elsevier B.V. All rights reserved.
Aydogdu, Ayca; Sumnu, Gulum; Sahin, Serpil
2018-02-01
The aim of this study was to investigate the effects of addition of dietary fibers on rheological properties of batter and cake quality. Wheat flour was replaced by 5 and 10% (wt%) oat, pea, apple and lemon fibers. All cake batters showed shear thinning behavior. Incorporation of fibers increased consistency index (k), storage modulus (G') and loss modulus (G″). As quality parameters, specific volume, hardness, weight loss, color and microstructure of cakes were investigated. Cakes containing oat and pea fibers (5%) had similar specific volume and texture with control cakes which contained no fiber. As fiber concentration increased, specific volume decreased but hardness increased. No significant difference was found between weight loss of control cake and cakes with oat, pea and apple fibers. Lemon fiber enriched cakes had the lowest specific volume, weight loss and color difference. When microstructural images were examined, it was seen that control cake had more porous structure than fiber enriched cakes. In addition, lemon and apple fiber containing cakes had less porous crumb structure as compared to oat and pea containing ones. Oat and pea fiber (5%) enriched cakes had similar physical properties (volume, texture and color) with control cakes.
NASA Astrophysics Data System (ADS)
Heravi, Farzin; Bagheri, Hossein; Rangrazi, Abdolrasoul; Mojtaba Zebarjad, Seyed
2016-07-01
Recently, the addition of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) into glass ionomer cements (GICs) has attracted interest due to its remineralization of teeth and its antibacterial effects. However, it should be investigated to ensure that the incorporation of CPP-ACP does not have significant adverse effects on its mechanical properties. The purpose of this study was to evaluate the effects of the addition of CPP-ACP on the mechanical properties of luting and lining GIC. The first step was to synthesize the CPP-ACP. Then the CPP-ACP at concentrations of 1%, 1.56% and 2% of CPP-ACP was added into a luting and lining GIC. GIC without CPP-ACP was used as a control group. The results revealed that the incorporation of CPP-ACP up to 1.56%(w/w) increased the flexural strength (29%), diametral tensile strength (36%) and microhardness (18%), followed by a reduction in these mechanical properties at 2%(w/w) CPP-ACP. The wear rate was significantly decreased (23%) in 1.56%(w/w) concentration of CPP-ACP and it was increased in 2%(w/w). Accordingly, the addition of 1.56%(w/w) CPP-ACP into luting and lining GIC had no adverse effect on the mechanical properties of luting and lining GIC and could be used in clinical practice.
Romero-Freire, A; Peinado, F J Martín; Ortiz, M Díez; van Gestel, C A M
2015-10-01
This study aimed at assessing the influence of soil properties on the uptake and toxicity effects of arsenic in the earthworm Eisenia andrei exposed for 4 weeks to seven natural soils spiked with different arsenic concentrations. Water-soluble soil concentrations (AsW) and internal As concentrations in the earthworms (AsE) were greatly different between soils. These two variables were highly correlated and were key factors in earthworm toxicity response. AsW was explained by some soil properties, such as the pH, calcium carbonate content, ionic strength, texture or oxide forms. Toxicity showed a clear variation between soils, in some cases without achieving 50 % adverse effect at the highest As concentration added (600 mg kg(-1)). Nevertheless, soil properties did not show, in general, a high relation with studied toxicity endpoints, although the high correlation with AsW could greatly reduce indirectly As bioavailability and toxicity risk for earthworms. Obtained results suggest that soil properties should be part of the criteria to establishing thresholds for contaminated soils because they will be key in controlling As availability and thus result in different degrees of toxicity.
Crawford, Scott K.; Haas, Caroline; Wang, Qian; Zhang, Xiaoli; Zhao, Yi; Best, Thomas M.
2014-01-01
Background This study compared immediate versus delayed massage-like compressive loading on skeletal muscle viscoelastic properties following eccentric exercise. Methods Eighteen rabbits were surgically instrumented with peroneal nerve cuffs for stimulation of the tibialis anterior muscle. Rabbits were randomly assigned to a massage loading protocol applied immediately post exercise (n=6), commencing 48 hours post exercise (n=6), or exercised no-massage control (n=6). Viscoelastic properties were evaluated in vivo by performing a stress-relaxation test pre- and post-exercise and daily pre- and post-massage for four consecutive days of massage loading. A quasi-linear viscoelastic approach modeled the instantaneous elastic response (AG0), fast ( g1p) and slow ( g2p) relaxation coefficients, and the corresponding relaxation time constants τ1 and τ2. Findings Exercise increased AG0 in all groups (P<0.05). After adjusting for the three multiple comparisons, recovery of AG0 was not significant in the immediate (P=0.021) or delayed (P=0.048) groups compared to the control group following four days of massage. However, within-day (pre- to post-massage) analysis revealed a decrease in AG0 in both massage groups. Following exercise, g1p increased and g2p and τ1 decreased for all groups (P<0.05). Exercise had no effect on τ2 (P>0.05). After four days of massage, there was no significant recovery of the relaxation parameters for either massage loading group compared to the control group. Interpretation Our findings suggest that massage loading following eccentric exercise has a greater effect on reducing muscle stiffness, estimated by AG0, within-day rather than affecting recovery over multiple days. Massage loading also has little effect on the relaxation response. PMID:24861827
Ramírez-Oseguera, Ricardo Tonathiu; Jiménez-Garduño, Aura Matilde; Alvarez, Rocío; Heine, Katharina; Pinzón-Estrada, Enrique; Torres-Saldaña, Ismael; Ortega, Alicia
2013-01-01
[corrected] Skeletal muscle (SM) constitutes more than 40% of the body weight in adulthood. Transports dietary glucose mainly through the insulin-dependent glucose transporter (Glut-4) located in the Transverse tubule membrane system (TT). The TT development ends shortly after birth. The TT membrane hosts the proteins involved in excitation-contraction coupling and glucose uptake. Glycaemic regulation through movement is a key function of fully developed skeletal muscle. In this study, we aimed to characterize the effect of gestational undernourishment (GUN) in rats GLUT-4 expression and on the protein/lipid content of the TT membranes. We also examined the effect of GUN on the mechanical properties of muscles as an indication of the metabolic condition of the SM at birth. Isolated TT membrane from SM of GUN rats were used to study lipid/protein content and protein stability by differential scanning calorimetry. The effect of GUN on the SM mechanical properties was determined in isolated Extensor Digitorum Longus (EDL) muscle. We demonstrate that compared to control, GUN in the new-born produces; i) decreases body weight; ii) diminution in SM mass; iii) decreases the formation of TT membranes; iv) expresses TT membrane proteins with higher thermal stability. The TT membrane expression of GLUT-4 in GUN offspring was twice that of controls. The isolated EDL of GUN offspring was 20% stronger as measured by contractile force and more resistant to fatigue relative to controls. These results provide the first evidence of adaptive changes of the SM in new-borns exposed to severe gestational food restriction. The effects of GUN on muscle at birth are the first step toward detrimental SM metabolic function, contributing to the physiopathology of metabolic diseases in adulthood. © 2013 S. Karger AG, Basel
Engineering tolerance using biomaterials to target and control antigen presenting cells.
Tostanoski, Lisa H; Gosselin, Emily A; Jewell, Christopher M
2016-05-01
Autoimmune diseases occur when cells of the adaptive immune system incorrectly recognize and attack "self" tissues. Importantly, the proliferation and differentiation of these cells is triggered and controlled by interactions with antigen presenting cells (APCs), such as dendritic cells. Thus, modulating the signals transduced by APCs (e.g., cytokines, costimulatory surface proteins) has emerged as a promising strategy to promote tolerance for diseases such as multiple sclerosis, type 1 diabetes, and lupus. However, many approaches have been hindered by non-specific activity of immunosuppressive or immunoregulatory cues, following systemic administration of soluble factors via traditional injections routes (e.g., subcutaneous, intravenous). Biomaterials offer a unique opportunity to control the delivery of tolerogenic signals in vivo via properties such as controlled particle size, tunable release kinetics, and co-delivery of multiple classes of cargo. In this review, we highlight recent reports that exploit these properties of biomaterials to target APCs and promote tolerance via three strategies, i) passive or active targeting of particulate carriers to APCs, ii) biomaterial-mediated control over antigen localization and processing, and iii) targeted delivery of encapsulated or adsorbed immunomodulatory signals. These reports represent exciting advances toward the goal of more effective therapies for autoimmune diseases, without the broad suppressive effects associated with current clinically-approved therapies.
Faraz, Tahsin; Knoops, Harm C M; Verheijen, Marcel A; van Helvoirt, Cristian A A; Karwal, Saurabh; Sharma, Akhil; Beladiya, Vivek; Szeghalmi, Adriana; Hausmann, Dennis M; Henri, Jon; Creatore, Mariadriana; Kessels, Wilhelmus M M
2018-04-18
Oxide and nitride thin-films of Ti, Hf, and Si serve numerous applications owing to the diverse range of their material properties. It is therefore imperative to have proper control over these properties during materials processing. Ion-surface interactions during plasma processing techniques can influence the properties of a growing film. In this work, we investigated the effects of controlling ion characteristics (energy, dose) on the properties of the aforementioned materials during plasma-enhanced atomic layer deposition (PEALD) on planar and 3D substrate topographies. We used a 200 mm remote PEALD system equipped with substrate biasing to control the energy and dose of ions by varying the magnitude and duration of the applied bias, respectively, during plasma exposure. Implementing substrate biasing in these forms enhanced PEALD process capability by providing two additional parameters for tuning a wide range of material properties. Below the regimes of ion-induced degradation, enhancing ion energies with substrate biasing during PEALD increased the refractive index and mass density of TiO x and HfO x and enabled control over their crystalline properties. PEALD of these oxides with substrate biasing at 150 °C led to the formation of crystalline material at the low temperature, which would otherwise yield amorphous films for deposition without biasing. Enhanced ion energies drastically reduced the resistivity of conductive TiN x and HfN x films. Furthermore, biasing during PEALD enabled the residual stress of these materials to be altered from tensile to compressive. The properties of SiO x were slightly improved whereas those of SiN x were degraded as a function of substrate biasing. PEALD on 3D trench nanostructures with biasing induced differing film properties at different regions of the 3D substrate. On the basis of the results presented herein, prospects afforded by the implementation of this technique during PEALD, such as enabling new routes for topographically selective deposition on 3D substrates, are discussed.
Maruo, Yukinori; Nishigawa, Goro; Irie, Masao; Yoshihara, Kumiko; Minagi, Shogo
2015-01-01
High flexural properties are needed for fixed partial denture or implant prosthesis to resist susceptibility to failures caused by occlusal overload. The aim of this investigation was to clarify the effects of four different kinds of fibers on the flexural properties of fiber-reinforced composites. Polyethylene fiber, glass fiber and two types of carbon fibers were used for reinforcement. Seven groups of specimens, 2 × 2 × 25 mm, were prepared (n = 10 per group). Four groups of resin composite specimens were reinforced with polyethylene, glass or one type of carbon fiber. The remaining three groups served as controls, with each group comprising one brand of resin composite without any fiber. After 24-h water storage in 37°C distilled water, the flexural properties of each specimen were examined with static three-point flexural test at a crosshead speed of 0.5 mm/min. Compared to the control without any fiber, glass and carbon fibers significantly increased the flexural strength (p < 0.05). On the contrary, the polyethylene fiber decreased the flexural strength (p < 0.05). Among the fibers, carbon fiber exhibited higher flexural strength than glass fiber (p < 0.05). Similar trends were observed for flexural modulus and fracture energy. However, there was no significant difference in fracture energy between carbon and glass fibers (p > 0.05). Fibers could, therefore, improve the flexural properties of resin composite and carbon fibers in longitudinal form yielded the better effects for reinforcement.
Yağcı, Sibel
2017-04-01
In this study, research on the development of a puffed wheat snack using the instant controlled pressure drop (DIC) process was carried out. Snack products were produced by expanding moistened wheat under various DIC processing conditions in order to obtain adequate puffing, followed by drying in a hot air dryer. The effects of operational variables such as wheat initial moisture content (11-23% w/w, wet basis), processing pressure (3-5 × 10 2 kPa) and processing time (3-11 min) on the physical (density, color and textural characteristics) and sensory properties of the product were investigated. The physical properties of the wheat snack were most affected by changes in processing pressure, followed by processing time and wheat moisture content. Increasing processing pressure and time often improved expansion and textural properties but led to darkening of the raw wheat color. The most acceptable snack in terms of physical properties was obtained at the lowest wheat moisture content. Sensory analysis suggested that consumer acceptability was optimal for wheat snacks produced at higher processing pressure, medium processing time and lower moisture content. The most desirable conditions for puffed wheat snack production using the DIC process were determined as 11% (w/w) of wheat moisture content, 5 × 10 2 kPa of processing pressure and 7 min of processing time. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
1999-01-01
August Witt, Massachusetts Institute of Technology, principal investigator for the research program designed to lead to the identification and control of gravitational effects which adversely impact, through their interference with the growth process, the achievement of critical application specific properties in opto-electronic materials.
Multicontrol Over Graphene–Molecule Hetereojunctions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yun-Peng; Fry, James N.; Cheng, Hai-Ping
The vertical configuration is a powerful tool recently developed experimentally to investigate field effects in quasi two-dimensional systems. Prototype graphene-based vertical tunneling transistors can achieve an extraordinary control over current density utilizing gate voltages. In this work, we study theoretically vertical tunneling junctions that consist of a monolayer of photoswitchable aryl azobenzene molecules sandwiched between two sheets of graphene. Azobenzene molecules transform between trans and cis conformations upon photoexcitation, thus adding a second knob that enhances the control over physical properties of the junction. Using first-principles methods within the density functional framework, we perform simulations with the inclusion of fieldmore » effects for both trans and cis configurations. Lastly, we find that the interference of interface states resulting from molecule–graphene interactions at the Fermi energy introduces a dual-peak pattern in the transmission functions and dominates the transport properties of gate junctions, shedding new light on interfacial processes.« less
Light-driven liquid metal nanotransformers for biomedical theranostics
NASA Astrophysics Data System (ADS)
Chechetka, Svetlana A.; Yu, Yue; Zhen, Xu; Pramanik, Manojit; Pu, Kanyi; Miyako, Eijiro
2017-05-01
Room temperature liquid metals (LMs) represent a class of emerging multifunctional materials with attractive novel properties. Here, we show that photopolymerized LMs present a unique nanoscale capsule structure characterized by high water dispersibility and low toxicity. We also demonstrate that the LM nanocapsule generates heat and reactive oxygen species under biologically neutral near-infrared (NIR) laser irradiation. Concomitantly, NIR laser exposure induces a transformation in LM shape, destruction of the nanocapsules, contactless controlled release of the loaded drugs, optical manipulations of a microfluidic blood vessel model and spatiotemporal targeted marking for X-ray-enhanced imaging in biological organs and a living mouse. By exploiting the physicochemical properties of LMs, we achieve effective cancer cell elimination and control of intercellular calcium ion flux. In addition, LMs display a photoacoustic effect in living animals during NIR laser treatment, making this system a powerful tool for bioimaging.
Statins as antiarrhythmics: a systematic review part I: effects on risk of atrial fibrillation.
Abuissa, Hussam; O'Keefe, James H; Bybee, Kevin A
2009-10-01
Recent studies have demonstrated that statins may possess antiarrhythmic properties in addition to their lipid-lowering effects. Studies which reported the association of statins with the incidence of atrial arrhythmias were identified through a systematic review of published literature. One randomized, placebo-controlled trial of 200 patients undergoing cardiac surgery showed that atorvastatin decreased the incidence of postoperative atrial fibrillation by 61%. Observational studies in patients with stable coronary disease, left ventricular dysfunction, or those undergoing cardiac or noncardiac surgery show that statin therapy is associated with an approximately 50% lower rate of atrial fibrillation. Two small randomized trials reported conflicting results: one showing that atorvastatin reduced the recurrence of AF after electrical cardioversion and the other finding that pravastatin did not. Published data suggests that statins may possess antiarrhythmic properties that reduce the propensity for atrial fibrillation. Most of this data is observational; more randomized, placebo-controlled trials are needed.
Light-driven liquid metal nanotransformers for biomedical theranostics
Chechetka, Svetlana A.; Yu, Yue; Zhen, Xu; Pramanik, Manojit; Pu, Kanyi; Miyako, Eijiro
2017-01-01
Room temperature liquid metals (LMs) represent a class of emerging multifunctional materials with attractive novel properties. Here, we show that photopolymerized LMs present a unique nanoscale capsule structure characterized by high water dispersibility and low toxicity. We also demonstrate that the LM nanocapsule generates heat and reactive oxygen species under biologically neutral near-infrared (NIR) laser irradiation. Concomitantly, NIR laser exposure induces a transformation in LM shape, destruction of the nanocapsules, contactless controlled release of the loaded drugs, optical manipulations of a microfluidic blood vessel model and spatiotemporal targeted marking for X-ray-enhanced imaging in biological organs and a living mouse. By exploiting the physicochemical properties of LMs, we achieve effective cancer cell elimination and control of intercellular calcium ion flux. In addition, LMs display a photoacoustic effect in living animals during NIR laser treatment, making this system a powerful tool for bioimaging. PMID:28561016
NASA Astrophysics Data System (ADS)
Ruan, Shipeng; Dong, Qing; Zhang, Lei; Wang, Lijun
2017-09-01
The effect of controlled rolling and cooling on microstructure and mechanical properties of alloy structure steel 30CrMnTi wire rod with diameter 6.5mm was studied. The results show that the lower finish rolling temperature resulted in a decrease in tensile strength but an increase in elongation and reduction of area. When the finish rolling temperature decreases from 950°C to 850°C, the tensile strength value decreases from 750MPa to 660MPa, and the elongation increases from 21% to 30%, the reduction of area increases from 64% to 71%. The grain size also refines from 20μm to 9.9μm when the finish rolling temperature decreases from 950°C to 850°C. The decrease of tensile strength is due to the change of microstructure which evolved from more bainite to ferrite and pearlite.
Modeling of the gate-controlled Kondo effect at carbon point defects in graphene
NASA Astrophysics Data System (ADS)
May, Daniel; Lo, Po-Wei; Deltenre, Kira; Henke, Anika; Mao, Jinhai; Jiang, Yuhang; Li, Guohong; Andrei, Eva Y.; Guo, Guang-Yu; Anders, Frithjof B.
2018-04-01
We study the magnetic properties in the vicinity of a single carbon defect in a monolayer of graphene. We include the unbound σ orbital and the vacancy-induced bound π state in an effective two-orbital single-impurity model. The local magnetic moments are stabilized by the Coulomb interaction as well as a significant ferromagnetic Hund's rule coupling between the orbitals predicted by a density functional theory calculation. A hybridization between the orbitals and the Dirac fermions is generated by the curvature of the graphene sheet in the vicinity of the vacancy. We present results for the local spectral function calculated using Wilson's numerical renormalization group approach for a realistic graphene band structure and find three different regimes depending on the filling, the controlling chemical potential, and the hybridization strength. These different regions are characterized by different magnetic properties. The calculated spectral functions qualitatively agree with recent scanning tunneling spectra on graphene vacancies.
Dragišić Maksimović, Jelena; Poledica, Milena; Mutavdžić, Dragosav; Mojović, Miloš; Radivojević, Dragan; Milivojević, Jasminka
2015-03-01
Bioclimatic air ionisation system (BI) works by neutralising air pollutants and microorganisms by means of oxidation with "activated oxygen". We investigated the effects of storage on changes in weight loss, chemical and sensory fruit properties in eight cultivars of strawberries (Fragaria x ananassa Duch.). All cultivars were evaluated for their standard parameters of quality (soluble solids content, total acidity, vitamin C content, total antioxidant activity - TAC, total phenolic and anthocyanins content) at different store conditions: fresh fruits-control, cold stored (at 4 °C) fruits without controlled atmospheres and cold stored (at 4 °C) fruits in BI. The present study outlines that anthocyanins of the strawberries stored in BI were subjected to significant degradation. These strawberries have prolonged shelf-life accompanied by weight loss reduction, TAC increment, and sensory properties improvement in tested cultivars, retaining other nutritional fruit qualities.
Multicontrol Over Graphene–Molecule Hetereojunctions
Wang, Yun-Peng; Fry, James N.; Cheng, Hai-Ping
2017-09-15
The vertical configuration is a powerful tool recently developed experimentally to investigate field effects in quasi two-dimensional systems. Prototype graphene-based vertical tunneling transistors can achieve an extraordinary control over current density utilizing gate voltages. In this work, we study theoretically vertical tunneling junctions that consist of a monolayer of photoswitchable aryl azobenzene molecules sandwiched between two sheets of graphene. Azobenzene molecules transform between trans and cis conformations upon photoexcitation, thus adding a second knob that enhances the control over physical properties of the junction. Using first-principles methods within the density functional framework, we perform simulations with the inclusion of fieldmore » effects for both trans and cis configurations. Lastly, we find that the interference of interface states resulting from molecule–graphene interactions at the Fermi energy introduces a dual-peak pattern in the transmission functions and dominates the transport properties of gate junctions, shedding new light on interfacial processes.« less
Effect of selenium deficiency on the thermoelectric properties of n-type In 4Se 3-x compounds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, G H; Lan, Y C; Wang, H
2011-03-04
Thermoelectric properties of dense bulk polycrystalline In 4Se 3-x (x = 0, 0.25, 0.5, 0.65, and 0.8) compounds are investigated. A peak dimensionless thermoelectric figure of merit (ZT) of about 1 is achieved for x = 0.65 and 0.8. The peak ZT is about 50% higher than the previously reported highest value for polycrystalline In 4Se 3-x} compounds. Our In 4Se 3-x samples were prepared by ball milling and hot pressing. We show that it is possible to effectively control the electrical conductivity and thermal conductivity by controlling selenium (Se) deficiency x. The ZT enhancement is mainly attributed to themore » thermal conductivity reduction due to the increased phonon scattering by Se deficiency, defects, and nanoscale inclusions in the ball-milled and hot-pressed dense bulk In 4Se 3-x samples.« less
Interrelation between Structure Magnetic Properties in La0.5Sr0.5CoO3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biegalski, Michael D; Takamura, Y; Mehta, A
Differing anisotropic strain induced from the underlying substrates not only control the long-range structural symmetries in La0.5Sr0.5CoO3 but also impact the magnetic properties of these epitaxial thin films. The two dominant structural distortions: oxygen octahedral tilts and epitaxial strain, however, have complex and non-intuitive effects on the splitting of the t2g states and consequently on magnetization.
The effect of listing the lesser prairie chicken as a threatened species on rural property values.
Wietelman, Derek C; Melstrom, Richard T
2017-04-15
This paper estimates the effect of Endangered Species Act protections for the lesser prairie chicken (Tympanuchus pallidicinctus) on rural property values in Oklahoma. The political and legal controversy surrounding the listing of imperiled species raises questions about the development restrictions and opportunity costs the Endangered Species Act imposes on private landowners. Examining parcel-level sales data before and after the listing of the endemic lesser prairie chicken, we employ difference-in-differences (DD) regression to measure the welfare costs of these restrictions. While our basic DD regression provides evidence the listing was associated with a drop in property values, this finding does not hold up in models that control for latent county and year effects. The lack of a significant price effect is confirmed by several robustness checks. Thus, the local economic costs of listing the lesser prairie chicken under the Endangered Species Act appear to have been small. Copyright © 2017 Elsevier Ltd. All rights reserved.
The Emergence of Figural Effects in the Watercolor Illusion
NASA Astrophysics Data System (ADS)
Pinna, Baingio; Penna, Maria Pietronilla
The watercolor illusion is characterized by a large-scale assimilative color spreading (coloration effect) emanating from thin colored edges. The watercolor illusion enhances the figural properties of the colored areas and imparts to the surrounding area the perceptual status of background. This work explores interactions between cortical boundary and surface processes by presenting displays and psychophysical experiments that exhibit new properties of the watercolor illusion. The watercolor illusion is investigated as supporting a new principle of figure-ground organization when pitted against principles of surroundedness, relative orientation, and Prägnanz. The work demonstrated that the watercolor illusion probes a unique combination of visual processes that set it apart from earlier Gestalt principles, and can compete successfully against them. This illusion exemplifies how long-range perceptual effects may be triggered by spatially sparse information. All the main effects are explained by the FACADE model of biological vision, which clarifies how local properties control depthful filling-in of surface lightness and color.
Effects of ethylene oxide sterilization on 82: 18 PLLA/PGA copolymer craniofacial fixation plates.
Pietrzak, William S
2010-01-01
Bioabsorbable devices are generally susceptible to some form of degradation or alteration of material properties in response to exposure to the terminal sterilization cycle. In addition to affecting the material strength, sterilization can also increase the rate of hydrolysis, both of which can impact clinical performance. The impact of sterilization on the material/device is unpredictable and must be empirically determined. This study examined the effects of ethylene oxide treatment on the material properties of LactoSorb 82:18 poly(L-lactic acid)-poly(glycolic acid) craniofacial plates. Compared with untreated control plates, there was no effect on the initial inherent viscosity (1.3 dL/g), the glass transition temperature (58 degrees C), or on the flexural mechanical properties. Furthermore, there was no effect on the in vitro rate of hydrolysis and mechanical strength loss profile. This provides evidence that the ethylene oxide sterilization cycle is compatible with these copolymer plates and that such treatment should not affect the clinical performance.
Effects of mass loading on dayside solar wind-magnetosphere interactions
NASA Astrophysics Data System (ADS)
Zhang, B.; Brambles, O.; Wiltberger, M. J.; Lyon, J.; Lotko, W.
2016-12-01
Satellite observations have shown that terrestrial-sourced plasmas mass load the dayside magnetopause and cause reductions in local reconnection rates. Whether the integrated dayside reconnection rate is affected by these local mass-loading processes is still an open question. Several mechanisms have been proposed to describe the control of dayside reconnection, including the local-control and global-control hypotheses. We have conducted a series of controlled numerical simulations to investigate the response of dayside solar wind-magnetopshere (SW-M) coupling to mass loading processes. Our simulation results show that the coupled SW-M system may exhibit both local and global control behaviors depending on the amount of mass loading. With a small amount of mass loading, the changes in the local reconnection rate does not affect magnetosheath properties and the geoeffective length in the upstream solar wind, resulting in the same integrated dayside reconnection rate. With a large amount of mass loading, the magnetosheath properties and the geoeffective length are significantly modified by slowing down the local reconnection rate, resulting in a significant reduction in the integrated dayside reconnection rate. The response of magnetosheath properties to mass loading is expected from the Cassak-Shay asymmetric reconnection theory through conservation of energy. The physical origin of the transition regime between local and global control is qualitatively explained. The parameters that determine the transition regime depend on the location, spatial extension and density of the mass loading process.
NASA Astrophysics Data System (ADS)
Latka, Miroslaw; Glaubic-Latka, Marta; Latka, Dariusz; West, Bruce J.
2004-04-01
We study the middle cerebral artery blood flow velocity (MCAfv) in humans using transcranial Doppler ultrasonography (TCD). Scaling properties of time series of the axial flow velocity averaged over a cardiac beat interval may be characterized by two exponents. The short time scaling exponent (STSE) determines the statistical properties of fluctuations of blood flow velocities in short-time intervals while the Hurst exponent describes the long-term fractal properties. In many migraineurs the value of the STSE is significantly reduced and may approach that of the Hurst exponent. This change in dynamical properties reflects the significant loss of short-term adaptability and the overall hyperexcitability of the underlying cerebral blood flow control system. We call this effect fractal rigidity.
Campione, Salvatore; Marquier, Francois; Hugonin, Jean -Paul; ...
2016-10-05
The development of novel thermal sources that control the emission spectrum and the angular emission pattern is of fundamental importance. In this paper, we investigate the thermal emission properties of semiconductor hyperbolic metamaterials (SHMs). Our structure does not require the use of any periodic corrugation to provide monochromatic and directional emission properties. We show that these properties arise because of epsilon-near-zero conditions in SHMs. The thermal emission is dominated by the epsilon-near-zero effect in the doped quantum wells composing the SHM. In conclusion, different properties are observed for s and p polarizations, following the characteristics of the strong anisotropy ofmore » hyperbolic metamaterials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campione, Salvatore; Marquier, Francois; Hugonin, Jean -Paul
The development of novel thermal sources that control the emission spectrum and the angular emission pattern is of fundamental importance. In this paper, we investigate the thermal emission properties of semiconductor hyperbolic metamaterials (SHMs). Our structure does not require the use of any periodic corrugation to provide monochromatic and directional emission properties. We show that these properties arise because of epsilon-near-zero conditions in SHMs. The thermal emission is dominated by the epsilon-near-zero effect in the doped quantum wells composing the SHM. In conclusion, different properties are observed for s and p polarizations, following the characteristics of the strong anisotropy ofmore » hyperbolic metamaterials.« less
NASA Astrophysics Data System (ADS)
Ramadhoni, Benni; Ujianto, Onny; Nadapdap, Maxwell
2018-03-01
Rigid polyurethane (PU) nanocomposites were fabricated via solution mixing of PU, nanoclay and multiwalled carbon nanotubes (MWCNT) according to full factorial DoE. The nanoclay and MWCNT concentration as well as mixing speed were varied. The effects of controlled variables on reduced compressive strength, fire retardancy, hardness and morphological properties were analized. In general, the results showed that incorporation of nanofillers into PU matrix successfully elevated nanocomposites performance. The properties changed from -12% to 45% for reduced compressive strength, 9% to 30% for reduced fire retardancy and -32% to 101% for reduced hardness. The results suggested that the improvements were affected by nanoclay dispersion that acted as nucleating agent which resulted in smaller close cells of PU structures.
NASA Astrophysics Data System (ADS)
Kim, Sang Jun; Kim, Jinwoo; Park, Eun Soo
2018-04-01
We carefully investigated the correlation between microstructures and magnetic properties of Cu-Zr-Al-Gd phase-separating metallic glasses (PSMGs). The saturation magnetizations of the PSMGs were determined by total Gd contents of the alloys, while their coercivity exhibits a large deviation by the occurrence of phase separation due to the boundary pinning effect of hierarchically separated amorphous phases. Especially, the PSMGs containing Gd-rich amorphous nanoparticles show the highest coercivity which can be attributed to the size effect of the ferromagnetic amorphous phase. Furthermore, the selective crystallization of ferromagnetic amorphous phases can affect the magnetization behavior of the PSMGs. Our results could provide a novel strategy for tailoring unique soft magnetic properties of metallic glasses by introducing hierarchically separated amorphous phases and controlling their crystallinity.
NASA Astrophysics Data System (ADS)
Kim, Sang Jun; Kim, Jinwoo; Park, Eun Soo
2018-06-01
We carefully investigated the correlation between microstructures and magnetic properties of Cu-Zr-Al-Gd phase-separating metallic glasses (PSMGs). The saturation magnetizations of the PSMGs were determined by total Gd contents of the alloys, while their coercivity exhibits a large deviation by the occurrence of phase separation due to the boundary pinning effect of hierarchically separated amorphous phases. Especially, the PSMGs containing Gd-rich amorphous nanoparticles show the highest coercivity which can be attributed to the size effect of the ferromagnetic amorphous phase. Furthermore, the selective crystallization of ferromagnetic amorphous phases can affect the magnetization behavior of the PSMGs. Our results could provide a novel strategy for tailoring unique soft magnetic properties of metallic glasses by introducing hierarchically separated amorphous phases and controlling their crystallinity.
NASA Astrophysics Data System (ADS)
Li, Dongde; Wu, Di; Zhang, Xiaojiao; Zeng, Bowen; Li, Mingjun; Duan, Haiming; Yang, Bingchu; Long, Mengqiu
2018-05-01
The spin-dependent electronic transport properties of M(dcdmp)2 (M = Cu, Au, Co, Ni; dcdmp = 2,3-dicyano-5,6-dimercaptopyrazyne) molecular devices based on zigzag graphene nanoribbon (ZGNR) electrodes were investigated by density functional theory combined nonequilibrium Green's function method (DFT-NEGF). Our results show that the spin-dependent transport properties of the M(dcdmp)2 molecular devices can be controlled by the spin configurations of the ZGNR electrodes, and the central 3d-transition metal atom can introduce a larger magnetism than that of the nonferrous metal one. Moreover, the perfect spin filtering effect, negative differential resistance, rectifying effect and magnetic resistance phenomena can be observed in our proposed M(dcdmp)2 molecular devices.
48 CFR 2945.104 - Review and correction of contractors' property control systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 48 Federal Acquisition Regulations System 7 2011-10-01 2011-10-01 false Review and correction of contractors' property control systems. 2945.104 Section 2945.104 Federal Acquisition Regulations System... contractors' property control systems. When the Government's property administrator determines that review and...
48 CFR 2945.104 - Review and correction of contractors' property control systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 48 Federal Acquisition Regulations System 7 2013-10-01 2012-10-01 true Review and correction of contractors' property control systems. 2945.104 Section 2945.104 Federal Acquisition Regulations System... contractors' property control systems. When the Government's property administrator determines that review and...
48 CFR 2945.104 - Review and correction of contractors' property control systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 48 Federal Acquisition Regulations System 7 2014-10-01 2014-10-01 false Review and correction of contractors' property control systems. 2945.104 Section 2945.104 Federal Acquisition Regulations System... contractors' property control systems. When the Government's property administrator determines that review and...
48 CFR 2945.104 - Review and correction of contractors' property control systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 7 2010-10-01 2010-10-01 false Review and correction of contractors' property control systems. 2945.104 Section 2945.104 Federal Acquisition Regulations System... contractors' property control systems. When the Government's property administrator determines that review and...
Kanie, Kei; Kato, Ryuji; Zhao, Yingzi; Narita, Yuji; Okochi, Mina; Honda, Hiroyuki
2011-06-01
Effective surface modification with biocompatible molecules is known to be effective in reducing the life-threatening risks related to artificial cardiovascular implants. In recent strategies in regenerative medicine, the enhancement and support of natural repair systems at the site of injury by designed biocompatible molecules have succeeded in rapid and effective injury repair. Therefore, such a strategy could also be effective for rapid endothelialization of cardiovascular implants to lower the risk of thrombosis and stenosis. To achieve this enhancement of the natural repair system, a biomimetic molecule that mimics proper cellular organization at the implant location is required. In spite of the fact that many reported peptides have cell-attracting properties on material surfaces, there have been few peptides that could control cell-specific adhesion. For the advanced cardiovascular implants, peptides that can mimic the natural mechanism that controls cell-specific organization have been strongly anticipated. To obtain such peptides, we hypothesized the cellular bias toward certain varieties of amino acids and examined the cell preference (in terms of adhesion, proliferation, and protein attraction) of varieties and of repeat length on SPOT peptide arrays. To investigate the role of specific peptides in controlling the organization of various cardiovascular-related cells, we compared endothelial cells (ECs), smooth muscle cells (SMCs), and fibroblasts (FBs). A clear, cell-specific preference was found for amino acids (longer than 5-mer) using three types of cells, and the combinational effect of the physicochemical properties of the residues was analyzed to interpret the mechanism. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.
Murienne, Barbara J.; Jefferys, Joan L.; Quigley, Harry A.; Nguyen, Thao D.
2014-01-01
Pathological changes in scleral glycosaminoglycan (GAG) content and in scleral mechanical properties have been observed in eyes with glaucoma and myopia. The purpose of this study is to investigate the effect of GAG removal on the scleral mechanical properties to better understand the impact of GAG content variations in the pathophysiology of glaucoma and myopia. We measured how the removal of sulphated GAG (s-GAG) affected the hydration, thickness and mechanical properties of the posterior sclera in enucleated eyes of 6–9 month-old pigs. Measurements were made in 4 regions centered on the optic nerve head (ONH) and evaluated under 3 conditions: no treatment (control), after treatment in buffer solution alone, and after treatment in buffer containing chondroitinase ABC (ChABC) to remove s-GAGs. The specimens were mechanically tested by pressure-controlled inflation with full-field deformation mapping using digital image correlation (DIC). The mechanical outcomes described the tissue tensile and viscoelastic behavior. Treatment with buffer alone increased the hydration of the posterior sclera compared to controls, while s-GAG removal caused a further increase in hydration compared to buffer-treated scleras. Buffer-treatment significantly changed the scleral mechanical behavior compared to the control condition, in a manner consistent with an increase in hydration. Specifically, buffer-treatment led to an increase in low-pressure stiffness, hysteresis, and creep rate, and a decrease in high-pressure stiffness. ChABC-treatment on buffer-treated scleras had opposite mechanical effects than buffer-treatment on controls, leading to a decrease in low-pressure stiffness, hysteresis, and creep rate, and an increase in high-pressure stiffness and transition strain. Furthermore, s-GAG digestion dramatically reduced the differences in the mechanical behavior among the 4 quadrants surrounding the ONH as well as the differences between the circumferential and meridional responses compared to the buffer-treated condition. These findings demonstrate a significant effect of s-GAGs on both the stiffness and time-dependent behavior of the sclera. Alterations in s-GAG content may contribute to the altered creep and stiffness of the sclera of myopic and glaucoma eyes. PMID:25448352
Coral Reef Resilience, Tipping Points and the Strength of Herbivory
Holbrook, Sally J.; Schmitt, Russell J.; Adam, Thomas C.; Brooks, Andrew J.
2016-01-01
Coral reefs increasingly are undergoing transitions from coral to macroalgal dominance. Although the functional roles of reef herbivores in controlling algae are becoming better understood, identifying possible tipping points in the herbivory-macroalgae relationships has remained a challenge. Assessment of where any coral reef ecosystem lies in relation to the coral-to-macroalgae tipping point is fundamental to understanding resilience properties, forecasting state shifts, and developing effective management practices. We conducted a multi-year field experiment in Moorea, French Polynesia to estimate these properties. While we found a sharp herbivory threshold where macroalgae escape control, ambient levels of herbivory by reef fishes were well above that needed to prevent proliferation of macroalgae. These findings are consistent with previously observed high resilience of the fore reef in Moorea. Our approach can identify vulnerable coral reef systems in urgent need of management action to both forestall shifts to macroalgae and preserve properties essential for resilience. PMID:27804977
NASA Astrophysics Data System (ADS)
Hoy, Carlton F. O.
The overall objective of this thesis was to control the fabrication technique and relevant material properties for phantom devices designated for computed tomography (CT) scanning. Fabrication techniques using polymeric composites and foams were detailed together with parametric studies outlining the fundamentals behind the changes in material properties which affect the characteristic CT number. The composites fabricated used polyvinylidene fluoride (PVDF), thermoplastic polyurethane (TPU) and polyethylene (PE) with hydroxylapatite (hA) as additive with different composites made by means of different weight percentages of additive. Polymeric foams were fabricated through a batch foaming technique with the heating time controlled to create different levels of foams. Finally, the effect of fabricated phantoms under varied scanning media was assessed to determine whether self-made phantoms can be scanned accurately under non-water or rigid environments allowing for the future development of complex shaped or fragile material types.
Li, Haoxuan; Zhu, Chunlei; Xue, Jiajia; Ke, Qinfei; Xia, Younan
2017-05-01
This communication describes a simple and effective method for welding electrospun nanofibers at the cross points to enhance the mechanical properties of their nonwoven mats. The welding is achieved by placing a nonwoven mat of the nanofibers in a capped vial with the vapor of a proper solvent. For polycaprolactone (PCL) nanofibers, the solvent is dichloromethane (DCM). The welding can be managed in a controllable fashion by simply varying the partial pressure of DCM and/or the exposure time. Relative to the pristine nanofiber mat, the mechanical strength of the welded PCL nanofiber mat can be increased by as much as 200%. Meanwhile, such a treatment does not cause any major structural changes, including morphology, fiber diameter, and pore size. This study provides a generic method for improving the mechanical properties of nonwoven nanofiber mats, holding great potential in various applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rare-earth nickelates RNiO3: thin films and heterostructures
NASA Astrophysics Data System (ADS)
Catalano, S.; Gibert, M.; Fowlie, J.; Íñiguez, J.; Triscone, J.-M.; Kreisel, J.
2018-04-01
This review stands in the larger framework of functional materials by focussing on heterostructures of rare-earth nickelates, described by the chemical formula RNiO3 where R is a trivalent rare-earth R = La, Pr, Nd, Sm, …, Lu. Nickelates are characterized by a rich phase diagram of structural and physical properties and serve as a benchmark for the physics of phase transitions in correlated oxides where electron–lattice coupling plays a key role. Much of the recent interest in nickelates concerns heterostructures, that is single layers of thin film, multilayers or superlattices, with the general objective of modulating their physical properties through strain control, confinement or interface effects. We will discuss the extensive studies on nickelate heterostructures as well as outline different approaches to tuning and controlling their physical properties and, finally, review application concepts for future devices.
Rare-earth nickelates RNiO3: thin films and heterostructures.
Catalano, S; Gibert, M; Fowlie, J; Íñiguez, J; Triscone, J-M; Kreisel, J
2018-04-01
This review stands in the larger framework of functional materials by focussing on heterostructures of rare-earth nickelates, described by the chemical formula RNiO 3 where R is a trivalent rare-earth R = La, Pr, Nd, Sm, …, Lu. Nickelates are characterized by a rich phase diagram of structural and physical properties and serve as a benchmark for the physics of phase transitions in correlated oxides where electron-lattice coupling plays a key role. Much of the recent interest in nickelates concerns heterostructures, that is single layers of thin film, multilayers or superlattices, with the general objective of modulating their physical properties through strain control, confinement or interface effects. We will discuss the extensive studies on nickelate heterostructures as well as outline different approaches to tuning and controlling their physical properties and, finally, review application concepts for future devices.
Zhu, Haiou; Qin, Xinming; Sun, Xu; Yan, Wensheng; Yang, Jinlong; Xie, Yi
2013-01-01
The ability to control electronic property of a material by externally applied voltage is greatly anticipated in modern electronics, and graphene provide potential application foreground for this issue on account of its exotic ambipolar transport property. In this study, we proposed that inorganic-graphene intercalated nanosheet is an effective solution to optimize the transport property of graphene. As an example, lithium vanadate-graphene (LiVO-graphene) alternately intercalated nanosheets were designed and successfully synthesized. Theoretical calculation implied that its rocking chair configuration may provide a new pathway to switch the carrier in graphene layer between p-type and n-type while the position of embedded Li ions is controlled by an external field. Thus, a demo transistor was fabricated with layer-by-layer overlapping of LiVO-graphene nanosheets which proved that this inorganic-graphene structure could be used for electrical modulation in electronic devices. PMID:23409237
NASA Technical Reports Server (NTRS)
Gabb, T. P.; Gayda, J.; Lerch, B. A.; Halford, G. R.
1991-01-01
The relationship between constituent and MMC properties in fatigue loading is investigated with low-cycle fatigue-resistance testing of an alloy Ti-15-3 matrix reinforced with SiC SCS-6 fibers. The fabrication of the composite is described, and specimens are generated that are weak and ductile (WD), strong and moderately ductile (SM), or strong and brittle (SB). Strain is measured during MMC fatigue tests at a constant load amplitude with a load-controlled waveform and during matrix-alloy fatigue tests at a constant strain amplitude using a strain-controlled waveform. The fatigue resistance of the (0)8 SiC/Ti-15-3 composite is found to be slightly influenced by matrix mechanical properties, and the composite- and matrix-alloy fatigue lives are not correlated. This finding is suggested to relate to the different crack-initiation and -growth processes in MMCs and matrix alloys.
Experimental econophysics: Complexity, self-organization, and emergent properties
NASA Astrophysics Data System (ADS)
Huang, J. P.
2015-03-01
Experimental econophysics is concerned with statistical physics of humans in the laboratory, and it is based on controlled human experiments developed by physicists to study some problems related to economics or finance. It relies on controlled human experiments in the laboratory together with agent-based modeling (for computer simulations and/or analytical theory), with an attempt to reveal the general cause-effect relationship between specific conditions and emergent properties of real economic/financial markets (a kind of complex adaptive systems). Here I review the latest progress in the field, namely, stylized facts, herd behavior, contrarian behavior, spontaneous cooperation, partial information, and risk management. Also, I highlight the connections between such progress and other topics of traditional statistical physics. The main theme of the review is to show diverse emergent properties of the laboratory markets, originating from self-organization due to the nonlinear interactions among heterogeneous humans or agents (complexity).
Coral Reef Resilience, Tipping Points and the Strength of Herbivory.
Holbrook, Sally J; Schmitt, Russell J; Adam, Thomas C; Brooks, Andrew J
2016-11-02
Coral reefs increasingly are undergoing transitions from coral to macroalgal dominance. Although the functional roles of reef herbivores in controlling algae are becoming better understood, identifying possible tipping points in the herbivory-macroalgae relationships has remained a challenge. Assessment of where any coral reef ecosystem lies in relation to the coral-to-macroalgae tipping point is fundamental to understanding resilience properties, forecasting state shifts, and developing effective management practices. We conducted a multi-year field experiment in Moorea, French Polynesia to estimate these properties. While we found a sharp herbivory threshold where macroalgae escape control, ambient levels of herbivory by reef fishes were well above that needed to prevent proliferation of macroalgae. These findings are consistent with previously observed high resilience of the fore reef in Moorea. Our approach can identify vulnerable coral reef systems in urgent need of management action to both forestall shifts to macroalgae and preserve properties essential for resilience.
Davaatseren, Munkhtugs
2016-01-01
This study investigated the effect of soy protein hydrolysates (SPH) prepared by varying subcritical media on the physicochemical properties of pork patties. For resource of SPH, two different soybean species (Glycine max Merr.) of Daewonkong (DWK) and Saedanbaek (SDB) were selected. SPH was prepared by subcritical processing at 190℃ and 25 MPa under three different of media (water, 20% ethanol and 50% ethanol). Solubility and free amino group content revealed that water was better to yield larger amount of SPH than ethanol/water mixtures, regardless of species. Molecular weight (Mw) distribution of SPH was also similar between two species, while slightly different Mw distribution was obtained by subcritical media. For pork patty application, 50% ethanol treatment showed clear red color comparing to control after 14 d of storage. In addition, ethanol treatment had better oxidative stability than control and water treatment based on thiobarbituric acid-reactive substances (TBARS) analysis. For eating quality, although 20% ethanol treatment in SDB showed slightly higher cooking loss than control, generally addition of SPH did not affect the water-binding properties and hardness of pork patties. Consequently, the present study indicated that 50% ethanol was the best subcritical media to produce SPH possessing antioxidant activity, and the SPH produced from DWK exhibited better antioxidant activity than that produced SDB. PMID:27499657
Chun, Ji-Yeon; Cho, Hyung-Yong; Min, Sang-Gi
2014-01-01
This study investigated the effects of γ-aminobutylic acid (GABA) on the quality and sensorial properties of both the GABA/NaCl complex and model meat products. GABA/NaCl complex was prepared by spray-drying, and the surface dimensions, morphology, rheology, and saltiness were characterized. For model meat products, pork patties were prepared by replacing NaCl with GABA. For characteristics of the complex, increasing GABA concentration increased the surface dimensions of the complex. However, GABA did not affect the rheological properties of solutions containing the complex. The addition of 2% GABA exhibited significantly higher saltiness than the control (no GABA treatment). In the case of pork patties, sensory testing indicated that the addition of GABA decreased the saltiness intensity. Both the intensity of juiciness and tenderness of patties containing GABA also scored lower than the control, based on the NaCl reduction. These results were consistent with the quality characteristics (cooking loss and texture profile analysis). Nevertheless, overall acceptability of the pork patties showed that up to 1.5%, patties containing GABA did not significantly differ from the control. Consequently, the results indicated that GABA has a potential application in meat products, but also manifested a deterioration of quality by the NaCl reduction, which warrants further exploration. PMID:26761294
Lee, Yun-Kyung; Ko, Bo-Bae; Davaatseren, Munkhtugs; Hong, Geun-Pyo
2016-01-01
This study investigated the effect of soy protein hydrolysates (SPH) prepared by varying subcritical media on the physicochemical properties of pork patties. For resource of SPH, two different soybean species (Glycine max Merr.) of Daewonkong (DWK) and Saedanbaek (SDB) were selected. SPH was prepared by subcritical processing at 190℃ and 25 MPa under three different of media (water, 20% ethanol and 50% ethanol). Solubility and free amino group content revealed that water was better to yield larger amount of SPH than ethanol/water mixtures, regardless of species. Molecular weight (Mw) distribution of SPH was also similar between two species, while slightly different Mw distribution was obtained by subcritical media. For pork patty application, 50% ethanol treatment showed clear red color comparing to control after 14 d of storage. In addition, ethanol treatment had better oxidative stability than control and water treatment based on thiobarbituric acid-reactive substances (TBARS) analysis. For eating quality, although 20% ethanol treatment in SDB showed slightly higher cooking loss than control, generally addition of SPH did not affect the water-binding properties and hardness of pork patties. Consequently, the present study indicated that 50% ethanol was the best subcritical media to produce SPH possessing antioxidant activity, and the SPH produced from DWK exhibited better antioxidant activity than that produced SDB.
Jan, Ulfat; Gani, Adil; Ahmad, Mudasir; Shah, Umar; Baba, Waqas N; Masoodi, F A; Maqsood, Sajid; Gani, Asir; Wani, Idress Ahmed; Wani, S M
2015-10-01
Buckwheat flour was incorporated into wheat flour at different levels (0, 20, 40, 60, 80, and 100 %) and the physicochemical, functional and antioxidant properties of the blended flour were studied. This study also investigated the effect of buckwheat on the retention of antioxidant properties of cookies during baking. The results showed significant variation in physicochemical and functional properties of the blended flour. The addition of buckwheat flour into wheat flour also increased the antioxidant properties of blended flour proportionally, but metal chelating properties decreased. The incorporation of buckwheat in wheat flour helped in better retention of antioxidant potential of cookies during baking process as buckwheat cookies (100 % buckwheat) showed greater percentage increase in antioxidant properties than control (100 % wheat). Quality characteristics of cookies such as hardness and spread ratio decreased, while as non-enzymatic browning (NEB) increased significantly with increase in the proportion of buckwheat flour in wheat flour. The Overall acceptability of cookies by sensory analysis was highest at 40 % level of blending. This study concluded that addition of buckwheat in wheat flour, may not only improve the physico-chemical and functional properties of the blended flour but may also enhance the nutraceutical potential of the product prepared from it.
48 CFR 3045.511 - Audit of property control system.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 7 2010-10-01 2010-10-01 false Audit of property control system. 3045.511 Section 3045.511 Federal Acquisition Regulations System DEPARTMENT OF HOMELAND SECURITY... Government Property in the Possession of Contractors 3045.511 Audit of property control system. (a) The...
32 CFR 228.2 - Control of activities on protected property.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 32 National Defense 2 2010-07-01 2010-07-01 false Control of activities on protected property. 228... DEFENSE (CONTINUED) MISCELLANEOUS SECURITY PROTECTIVE FORCE § 228.2 Control of activities on protected property. Persons in and on protected property shall at all times comply with official signs of a...
32 CFR 228.2 - Control of activities on protected property.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 32 National Defense 2 2013-07-01 2013-07-01 false Control of activities on protected property. 228... DEFENSE (CONTINUED) MISCELLANEOUS SECURITY PROTECTIVE FORCE § 228.2 Control of activities on protected property. Persons in and on protected property shall at all times comply with official signs of a...
32 CFR 228.2 - Control of activities on protected property.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 32 National Defense 2 2011-07-01 2011-07-01 false Control of activities on protected property. 228... DEFENSE (CONTINUED) MISCELLANEOUS SECURITY PROTECTIVE FORCE § 228.2 Control of activities on protected property. Persons in and on protected property shall at all times comply with official signs of a...
32 CFR 228.4 - Control of vehicles on protected property.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 32 National Defense 2 2013-07-01 2013-07-01 false Control of vehicles on protected property. 228.4... (CONTINUED) MISCELLANEOUS SECURITY PROTECTIVE FORCE § 228.4 Control of vehicles on protected property. Drivers of all vehicles entering or while on protected property shall comply with the signals and...
32 CFR 228.4 - Control of vehicles on protected property.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 32 National Defense 2 2010-07-01 2010-07-01 false Control of vehicles on protected property. 228.4... (CONTINUED) MISCELLANEOUS SECURITY PROTECTIVE FORCE § 228.4 Control of vehicles on protected property. Drivers of all vehicles entering or while on protected property shall comply with the signals and...
32 CFR 228.4 - Control of vehicles on protected property.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 32 National Defense 2 2011-07-01 2011-07-01 false Control of vehicles on protected property. 228.4... (CONTINUED) MISCELLANEOUS SECURITY PROTECTIVE FORCE § 228.4 Control of vehicles on protected property. Drivers of all vehicles entering or while on protected property shall comply with the signals and...
32 CFR 228.2 - Control of activities on protected property.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 32 National Defense 2 2012-07-01 2012-07-01 false Control of activities on protected property. 228... DEFENSE (CONTINUED) MISCELLANEOUS SECURITY PROTECTIVE FORCE § 228.2 Control of activities on protected property. Persons in and on protected property shall at all times comply with official signs of a...
32 CFR 228.4 - Control of vehicles on protected property.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 32 National Defense 2 2012-07-01 2012-07-01 false Control of vehicles on protected property. 228.4... (CONTINUED) MISCELLANEOUS SECURITY PROTECTIVE FORCE § 228.4 Control of vehicles on protected property. Drivers of all vehicles entering or while on protected property shall comply with the signals and...
The anxiolytic activity of n-3 PUFAs enriched egg yolk phospholipids in rat behavioral studies.
Rutkowska, M; Słupski, W; Trocha, M; Szandruk, M; Rymaszewska, J
2016-11-02
Phospholipids play an important role in the biochemical and physiological processes of cells. An association between disturbed phospholipids metabolism in neuronal tissue and anxiety it was shown. The aim of this study was to examine the anxiolytic properties of phospholipids obtained from a new generation of eggs enriched in n-3 PUFA and its effect on locomotor activity in rat behavioral studies N-3 PUFA-enriched egg yolk phospholipids ("super lecithin") were added to the standard feed. Rats were fed by chow without (control group) or with (experimental group) addition of phospholipids. After six weeks of supplementation, the effect of phospholipids on locomotor activity in the open field test and anxiolytic properties in elevated plus maze and Vogel conflict test were examined. In the open field test the total distance traveled in the experimental group was similar to the control group. In the elevated plus maze test a six weeks phospholipids' administration significantly prolonged the time spent on the open arms by rats from experimental group compared to control group. The number of entries into the open arms was also increased but the difference was not statistically significant. The number of punished drinking water in the Vogel conflict test increased significantly in experimental versus control group. The obtained results suggest that the phospholipids isolated from n-3 PUFA enriched egg yolk have a specific anxiolytic effect, without general sedative influence.
Control of the hierarchical assembly of π-conjugated optoelectronic peptides by pH and flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mansbach, Rachael A.; Ferguson, Andrew L.
Self-assembled nanoaggregates of p-conjugated peptides possess optoelectronic properties due to electron delocalization over the conjugated peptide groups that make them attractive candidates for the fabrication of bioelectronic materials. We present a computational and theoretical study to resolve the microscopic effects of pH and flow on the non-equilibrium morphology and kinetics of early-stage assembly of an experimentally-realizable optoelectronic peptide that displays pH triggerable assembly. Employing coarse-grained molecular dynamics simulations, we probe the effects of pH on growth kinetics and aggregate morphology to show that control of the peptide protonation state by pH can be used to modulate the assembly rates, degreemore » of molecular alignment, and resulting morphologies within the self-assembling nanoaggregates. We also quantify the time and length scales at which convective flows employed in directed assembly compete with microscopic diffusion to show that flow influences cluster alignment and assembly rate during early-stage assembly only at extremely high shear rates. This suggests that observed improvements in optoelectronic properties at experimentally-accessible shear rates are due to the alignment of large aggregates of hundreds of monomers on time scales in excess of hundreds of nanoseconds. Lastly, our work provides new fundamental understanding of the effects of pH and flow to control the morphology and kinetics of early-stage assembly of p-conjugated peptides and lays the groundwork for the rational manipulation of environmental conditions to direct assembly and the attendant emergent optoelectronic properties.« less
Control of the hierarchical assembly of π-conjugated optoelectronic peptides by pH and flow
Mansbach, Rachael A.; Ferguson, Andrew L.
2017-01-01
Self-assembled nanoaggregates of p-conjugated peptides possess optoelectronic properties due to electron delocalization over the conjugated peptide groups that make them attractive candidates for the fabrication of bioelectronic materials. We present a computational and theoretical study to resolve the microscopic effects of pH and flow on the non-equilibrium morphology and kinetics of early-stage assembly of an experimentally-realizable optoelectronic peptide that displays pH triggerable assembly. Employing coarse-grained molecular dynamics simulations, we probe the effects of pH on growth kinetics and aggregate morphology to show that control of the peptide protonation state by pH can be used to modulate the assembly rates, degreemore » of molecular alignment, and resulting morphologies within the self-assembling nanoaggregates. We also quantify the time and length scales at which convective flows employed in directed assembly compete with microscopic diffusion to show that flow influences cluster alignment and assembly rate during early-stage assembly only at extremely high shear rates. This suggests that observed improvements in optoelectronic properties at experimentally-accessible shear rates are due to the alignment of large aggregates of hundreds of monomers on time scales in excess of hundreds of nanoseconds. Lastly, our work provides new fundamental understanding of the effects of pH and flow to control the morphology and kinetics of early-stage assembly of p-conjugated peptides and lays the groundwork for the rational manipulation of environmental conditions to direct assembly and the attendant emergent optoelectronic properties.« less
Pardeike, Jana; Schwabe, Kay; Müller, Rainer H
2010-08-30
Cutanvoa Nanorepair Q10 cream, the first NLC containing cosmetical product introduced to the market in October 2005, was compared to an identical o/w cream without NLC with regards to particle size, melting behaviour, rheological properties and the in vivo effect on skin hydration. The consistency, the spreadability on the skin and the subjective feeling of increase in skin hydration were evaluated using a standardized questionnaire, and compared to hydration data measured. Furthermore, it was shown by epicutaneous patch test that Cutanova Nanorepair Q10 cream has no irritating effects on the skin. By laser diffraction (LD) and differential scanning calorimetry (DSC) measurements it could be shown that NLC are physically stable in Cutanova Nanorepair Q10 cream. After 7 days application of Cutanova Nanorepair Q10 cream and NLC negative control cream an increase in skin hydration could be objectively confirmed by measurements in vivo. From day 28 on the skin hydration measured in the test areas of Cutanova Nanorepair Q10 cream was significantly higher than the skin hydration in the test areas of the NLC negative control cream (p=0.05). The subjective feeling of increase in skin hydration was also rated from the volunteers as superior for Cutanova Nanorepair Q10 cream. The rheological properties of Cutanova Nanorepair Q10 cream contributed to a better subjective impression of consistency and spreadability on the skin than found for NLC negative control cream. Copyright 2010 Elsevier B.V. All rights reserved.
Jin, Sang-Keun; Yang, Han-Sul; Choi, Jung-Seok
2017-01-01
This study was performed to investigate the effect of Gleditsia sinensis Lam. extract on the physicochemical properties of emulsion-type pork sausages during storage at 10°C for 4 wk. Treatments were as follows: (C, control; T1, sodium ascorbate 0.05%; T2, Gleditsia sinensis Lam. 0.05%; T3, Gleditsia sinensis Lam. 0.1%; T4, Gleditsia sinensis Lam. 0.2%; T5, Gleditsia sinensis Lam. 0.1% + sodium ascorbate 0.05%). The values of pH, moisture content, lightness, redness, and sensory attributes were all significantly decreased, while the yellowness, chroma, hue angle, and texture properties were increased during storage with increase of the Gleditsia sinensis Lam. extract added. In addition, the antioxidant activity and antimicrobial activity in the sausages displayed significant increases (p<0.05). Therefore, although it was concluded that the addition of Gleditsia sinensis Lam. extract is not effective for improvement of the physical properties compared to chemical additives in sausages, it could be applied to meat products as a natural preservatives. PMID:28515651
Antinociceptive properties of physalins from Physalis angulata.
Lima, Milena da Silva; Evangelista, Afrânio Ferreira; Santos, Gisele Graça Leite Dos; Ribeiro, Ivone Maria; Tomassini, Therezinha Coelho Barbosa; Pereira Soares, Milena Botelho; Villarreal, Cristiane Flora
2014-11-26
Pain is the most common reason a patient sees a physician. Nevertheless, the use of typical painkillers is not completely effective in controlling all pain syndromes; therefore further attempts have been made to develop improved analgesic drugs. The present study was undertaken to evaluate the antinociceptive properties of physalins B (1), D (2), F (3), and G (4) isolated from Physalis angulata in inflammatory and centrally mediated pain tests in mice. Systemic pretreatment with 1-4 produced dose-related antinociceptive effects on the writhing and formalin tests, traditional screening tools for the assessment of analgesic drugs. On the other hand, only 3 inhibited inflammatory parameters such as hyperalgesia, edema, and local production of TNF-α following induction with complete Freund's adjuvant. Treatment with 1, 3, and 4 produced an antinociceptive effect on the tail flick test, suggesting a centrally mediated antinociception. Reinforcing this idea, 2-4 enhanced the mice latency reaction time during the hot plate test. Mice treated with physalins did not demonstrate motor performance alterations. These results suggest that 1-4 present antinociceptive properties associated with central, but not anti-inflammatory, events and indicate a new pharmacological property of physalins.
Jin, Sang-Keun; Yang, Han-Sul; Choi, Jung-Seok
2017-01-01
This study was performed to investigate the effect of Gleditsia sinensis Lam. extract on the physicochemical properties of emulsion-type pork sausages during storage at 10°C for 4 wk. Treatments were as follows: (C, control; T1, sodium ascorbate 0.05%; T2, Gleditsia sinensis Lam. 0.05%; T3, Gleditsia sinensis Lam. 0.1%; T4, Gleditsia sinensis Lam. 0.2%; T5, Gleditsia sinensis Lam. 0.1% + sodium ascorbate 0.05%). The values of pH, moisture content, lightness, redness, and sensory attributes were all significantly decreased, while the yellowness, chroma, hue angle, and texture properties were increased during storage with increase of the Gleditsia sinensis Lam. extract added. In addition, the antioxidant activity and antimicrobial activity in the sausages displayed significant increases ( p <0.05). Therefore, although it was concluded that the addition of Gleditsia sinensis Lam. extract is not effective for improvement of the physical properties compared to chemical additives in sausages, it could be applied to meat products as a natural preservatives.
Stimulatory Effects of Arsenic-Tolerant Soil Fungi on Plant Growth Promotion and Soil Properties
Srivastava, Pankaj Kumar; Shenoy, Belle Damodara; Gupta, Manjul; Vaish, Aradhana; Mannan, Shivee; Singh, Nandita; Tewari, Shri Krishna; Tripathi, Rudra Deo
2012-01-01
Fifteen fungi were obtained from arsenic-contaminated agricultural fields in West Bengal, India and examined for their arsenic tolerance and removal ability in our previous study. Of these, the four best arsenic-remediating isolates were tested for plant growth promotion effects on rice and pea in the present study. A greenhouse-based pot experiment was conducted using soil inocula of individual fungi. The results indicated a significant (P<0.05) increase in plant growth and improvement of soil properties in inoculated soils compared to the control. A significant increase in plant growth was recorded in treated soils and varied from 16–293%. Soil chemical and enzymatic properties varied from 20–222% and 34–760%, respectively, in inoculated soil. Plants inoculated with inocula of Westerdykella and Trichoderma showed better stimulatory effects on plant growth and soil nutrient availability than Rhizopus and Lasiodiplodia. These fungi improved soil nutrient content and enhanced plant growth. These fungi may be used as bioinoculants for plant growth promotion and improved soil properties in arsenic-contaminated agricultural soils. PMID:23047145