14 CFR 23.777 - Cockpit controls.
Code of Federal Regulations, 2013 CFR
2013-01-01
... powerplant controls for each engine must be located to prevent confusion as to the engines they control. (1... engines(s) and the right control(s) operates the right engine(s). (2) On twin-engine airplanes with front and rear engine locations (tandem), the left powerplant controls must operate the front engine and the...
14 CFR 23.777 - Cockpit controls.
Code of Federal Regulations, 2014 CFR
2014-01-01
... powerplant controls for each engine must be located to prevent confusion as to the engines they control. (1... engines(s) and the right control(s) operates the right engine(s). (2) On twin-engine airplanes with front and rear engine locations (tandem), the left powerplant controls must operate the front engine and the...
Concurrently adjusting interrelated control parameters to achieve optimal engine performance
Jiang, Li; Lee, Donghoon; Yilmaz, Hakan; Stefanopoulou, Anna
2015-12-01
Methods and systems for real-time engine control optimization are provided. A value of an engine performance variable is determined, a value of a first operating condition and a value of a second operating condition of a vehicle engine are detected, and initial values for a first engine control parameter and a second engine control parameter are determined based on the detected first operating condition and the detected second operating condition. The initial values for the first engine control parameter and the second engine control parameter are adjusted based on the determined value of the engine performance variable to cause the engine performance variable to approach a target engine performance variable. In order to cause the engine performance variable to approach the target engine performance variable, adjusting the initial value for the first engine control parameter necessitates a corresponding adjustment of the initial value for the second engine control parameter.
14 CFR 23.777 - Cockpit controls.
Code of Federal Regulations, 2010 CFR
2010-01-01
...) Identical powerplant controls for each engine must be located to prevent confusion as to the engines they...) operates the left engines(s) and the right control(s) operates the right engine(s). (2) On twin-engine airplanes with front and rear engine locations (tandem), the left powerplant controls must operate the front...
Engine control techniques to account for fuel effects
Kumar, Shankar; Frazier, Timothy R.; Stanton, Donald W.; Xu, Yi; Bunting, Bruce G.; Wolf, Leslie R.
2014-08-26
A technique for engine control to account for fuel effects including providing an internal combustion engine and a controller to regulate operation thereof, the engine being operable to combust a fuel to produce an exhaust gas; establishing a plurality of fuel property inputs; establishing a plurality of engine performance inputs; generating engine control information as a function of the fuel property inputs and the engine performance inputs; and accessing the engine control information with the controller to regulate at least one engine operating parameter.
Perturbing engine performance measurements to determine optimal engine control settings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Li; Lee, Donghoon; Yilmaz, Hakan
Methods and systems for optimizing a performance of a vehicle engine are provided. The method includes determining an initial value for a first engine control parameter based on one or more detected operating conditions of the vehicle engine, determining a value of an engine performance variable, and artificially perturbing the determined value of the engine performance variable. The initial value for the first engine control parameter is then adjusted based on the perturbed engine performance variable causing the engine performance variable to approach a target engine performance variable. Operation of the vehicle engine is controlled based on the adjusted initialmore » value for the first engine control parameter. These acts are repeated until the engine performance variable approaches the target engine performance variable.« less
46 CFR 121.620 - Propulsion engine control systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Propulsion engine control systems. 121.620 Section 121... Propulsion engine control systems. (a) A vessel must have two independent means of controlling each propulsion engine. Control must be provided for the engine speed, direction of shaft rotation, and engine...
46 CFR 121.620 - Propulsion engine control systems.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Propulsion engine control systems. 121.620 Section 121... Propulsion engine control systems. (a) A vessel must have two independent means of controlling each propulsion engine. Control must be provided for the engine speed, direction of shaft rotation, and engine...
46 CFR 121.620 - Propulsion engine control systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Propulsion engine control systems. 121.620 Section 121... Propulsion engine control systems. (a) A vessel must have two independent means of controlling each propulsion engine. Control must be provided for the engine speed, direction of shaft rotation, and engine...
46 CFR 121.620 - Propulsion engine control systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Propulsion engine control systems. 121.620 Section 121... Propulsion engine control systems. (a) A vessel must have two independent means of controlling each propulsion engine. Control must be provided for the engine speed, direction of shaft rotation, and engine...
46 CFR 121.620 - Propulsion engine control systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Propulsion engine control systems. 121.620 Section 121... Propulsion engine control systems. (a) A vessel must have two independent means of controlling each propulsion engine. Control must be provided for the engine speed, direction of shaft rotation, and engine...
Engine control system having speed-based timing
Willi, Martin L [Dunlap, IL; Fiveland, Scott B [Metamora, IL; Montgomery, David T [Edelstein, IL; Gong, Weidong [Dunlap, IL
2012-02-14
A control system for an engine having a cylinder is disclosed having an engine valve movable to regulate a fluid flow of the cylinder and an actuator associated with the engine valve. The control system also has a controller in communication with the actuator. The controller is configured to receive a signal indicative of engine speed and compare the engine speed signal with a desired engine speed. The controller is also configured to selectively regulate the actuator to adjust a timing of the engine valve to control an amount of air/fuel mixture delivered to the cylinder based on the comparison.
40 CFR 1048.205 - What must I include in my application?
Code of Federal Regulations, 2014 CFR
2014-07-01
... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES Certifying Engine...'s specifications and other basic parameters of the engine's design and emission controls. List the... each distinguishable engine configuration in the engine family. (b) Explain how the emission control...
40 CFR 1048.205 - What must I include in my application?
Code of Federal Regulations, 2013 CFR
2013-07-01
... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES Certifying Engine...'s specifications and other basic parameters of the engine's design and emission controls. List the... each distinguishable engine configuration in the engine family. (b) Explain how the emission control...
Jiang, Li; Lee, Donghoon; Yilmaz, Hakan; Stefanopoulou, Anna
2014-10-28
Methods and systems for engine control optimization are provided. A first and a second operating condition of a vehicle engine are detected. An initial value is identified for a first and a second engine control parameter corresponding to a combination of the detected operating conditions according to a first and a second engine map look-up table. The initial values for the engine control parameters are adjusted based on a detected engine performance variable to cause the engine performance variable to approach a target value. A first and a second sensitivity of the engine performance variable are determined in response to changes in the engine control parameters. The first engine map look-up table is adjusted when the first sensitivity is greater than a threshold, and the second engine map look-up table is adjusted when the second sensitivity is greater than a threshold.
A Feasibility Study for Advanced Technology Integration for General Aviation.
1980-05-01
154 4.5.9.4 Stratified Charge Reciprocating Engine ..... .. 155 4.5.9.5 Advanced Diesel Engine . ... 158 4.5.9.6 Liquid Cooling ... ........ 159... diesel , rotary combustion engine, advanced reciprocating engine concepts. (7) Powerplant control - integrated controls, microprocessor- based controls...Research Center Topics. (1) GATE (2) Positive displacement engines (a) Advanced reciprocating engines. (b) Alternative engine systems Diesel engines
Apparatus for sensor failure detection and correction in a gas turbine engine control system
NASA Technical Reports Server (NTRS)
Spang, H. A., III; Wanger, R. P. (Inventor)
1981-01-01
A gas turbine engine control system maintains a selected level of engine performance despite the failure or abnormal operation of one or more engine parameter sensors. The control system employs a continuously updated engine model which simulates engine performance and generates signals representing real time estimates of the engine parameter sensor signals. The estimate signals are transmitted to a control computational unit which utilizes them in lieu of the actual engine parameter sensor signals to control the operation of the engine. The estimate signals are also compared with the corresponding actual engine parameter sensor signals and the resulting difference signals are utilized to update the engine model. If a particular difference signal exceeds specific tolerance limits, the difference signal is inhibited from updating the model and a sensor failure indication is provided to the engine operator.
A Roadmap for Aircraft Engine Life Extending Control
NASA Technical Reports Server (NTRS)
Guo, Ten-Huei
2001-01-01
The concept of Aircraft Engine Life Extending Control is introduced. A brief description of the tradeoffs between performance and engine life are first explained. The overall goal of the life extending controller is to reduce the engine operating cost by extending the on-wing engine life while improving operational safety. The research results for NASA's Rocket Engine life extending control program are also briefly described. Major building blocks of the Engine Life Extending Control architecture are examined. These blocks include: life prediction models, engine operation models, stress and thermal analysis tools, control schemes, and intelligent control systems. The technology areas that would likely impact the successful implementation of an aircraft engine life extending control are also briefly described. Near, intermediate, and long term goals of NASA's activities are also presented.
40 CFR 1042.230 - Engine families.
Code of Federal Regulations, 2010 CFR
2010-07-01
... degree). (19) The type of smoke control system. (d) For Category 3 engines, group engines into engine....230 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Certifying Engine...
40 CFR 1042.230 - Engine families.
Code of Federal Regulations, 2014 CFR
2014-07-01
... degree). (19) The type of smoke control system. (d) For Category 3 engines, group engines into engine....230 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Certifying Engine...
40 CFR 1042.230 - Engine families.
Code of Federal Regulations, 2011 CFR
2011-07-01
... degree). (19) The type of smoke control system. (d) For Category 3 engines, group engines into engine....230 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Certifying Engine...
40 CFR 1042.230 - Engine families.
Code of Federal Regulations, 2012 CFR
2012-07-01
... degree). (19) The type of smoke control system. (d) For Category 3 engines, group engines into engine....230 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Certifying Engine...
NASA Technical Reports Server (NTRS)
Schneider, E. T.; Enevoldson, E. K.
1984-01-01
The introduction of electronic fuel control to modern turbine engines has a number of advantages, which are related to an increase in engine performance and to a reduction or elimination of the problems associated with high angle of attack engine operation from the surface to 50,000 feet. If the appropriate engine display devices are available to the pilot, the fuel control system can provide a great amount of information. Some of the wealth of information available from modern fuel controls are discussed in this paper. The considered electronic engine control systems in their most recent forms are known as the Full Authority Digital Engine Control (FADEC) and the Digital Electronic Engine Control (DEEC). Attention is given to some details regarding the control systems, typical engine problems, the solution of problems with the aid of displays, engine displays in normal operation, an example display format, a multipage format, flight strategies, and hardware considerations.
Intelligent Life-Extending Controls for Aircraft Engines Studied
NASA Technical Reports Server (NTRS)
Guo, Ten-Huei
2005-01-01
Current aircraft engine controllers are designed and operated to provide desired performance and stability margins. Except for the hard limits for extreme conditions, engine controllers do not usually take engine component life into consideration during the controller design and operation. The end result is that aircraft pilots regularly operate engines under unnecessarily harsh conditions to strive for optimum performance. The NASA Glenn Research Center and its industrial and academic partners have been working together toward an intelligent control concept that will include engine life as part of the controller design criteria. This research includes the study of the relationship between control action and engine component life as well as the design of an intelligent control algorithm to provide proper tradeoffs between performance and engine life. This approach is expected to maintain operating safety while minimizing overall operating costs. In this study, the thermomechanical fatigue (TMF) of a critical component was selected to demonstrate how an intelligent engine control algorithm can significantly extend engine life with only a very small sacrifice in performance. An intelligent engine control scheme based on modifying the high-pressure spool speed (NH) was proposed to reduce TMF damage from ground idle to takeoff. The NH acceleration schedule was optimized to minimize the TMF damage for a given rise-time constraint, which represents the performance requirement. The intelligent engine control scheme was used to simulate a commercial short-haul aircraft engine.
NASA Technical Reports Server (NTRS)
Myers, L. P.; Burcham, F. W., Jr.
1983-01-01
Substantial benefits of a full authority digital electronic engine control on an air breathing engine were demonstrated repeatedly in simulation studies, ground engine tests, and engine altitude test facilities. A digital engine electronic control system showed improvements in efficiency, performance, and operation. An additional benefit of full authority digital controls is the capability of detecting and correcting failures and providing engine health diagnostics.
14 CFR 23.1143 - Engine controls.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine controls. 23.1143 Section 23.1143... Accessories § 23.1143 Engine controls. (a) There must be a separate power or thrust control for each engine... supercharger controls must be arranged to allow— (1) Separate control of each engine and each supercharger; and...
46 CFR 184.620 - Propulsion engine control systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 7 2014-10-01 2014-10-01 false Propulsion engine control systems. 184.620 Section 184... Communications Systems § 184.620 Propulsion engine control systems. (a) A vessel must have two independent means of controlling each propulsion engine. Control must be provided for the engine speed, direction of...
46 CFR 184.620 - Propulsion engine control systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 7 2013-10-01 2013-10-01 false Propulsion engine control systems. 184.620 Section 184... Communications Systems § 184.620 Propulsion engine control systems. (a) A vessel must have two independent means of controlling each propulsion engine. Control must be provided for the engine speed, direction of...
46 CFR 184.620 - Propulsion engine control systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 7 2011-10-01 2011-10-01 false Propulsion engine control systems. 184.620 Section 184... Communications Systems § 184.620 Propulsion engine control systems. (a) A vessel must have two independent means of controlling each propulsion engine. Control must be provided for the engine speed, direction of...
46 CFR 184.620 - Propulsion engine control systems.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 7 2012-10-01 2012-10-01 false Propulsion engine control systems. 184.620 Section 184... Communications Systems § 184.620 Propulsion engine control systems. (a) A vessel must have two independent means of controlling each propulsion engine. Control must be provided for the engine speed, direction of...
46 CFR 184.620 - Propulsion engine control systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 7 2010-10-01 2010-10-01 false Propulsion engine control systems. 184.620 Section 184... Communications Systems § 184.620 Propulsion engine control systems. (a) A vessel must have two independent means of controlling each propulsion engine. Control must be provided for the engine speed, direction of...
The Waukesha Turbocharger Control Module: A tool for improved engine efficiency and response
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zurlo, J.R.; Reinbold, E.O.; Mueller, J.
1996-12-31
The Waukesha Turbocharger Control Module allows optimum control of turbochargers on lean burn gaseous fueled engines. The Turbocharger Control Module is user programmed to provide either maximum engine efficiency or best engine response to load changes. In addition, the Turbocharger Control Module prevents undesirable turbocharger surge. The Turbocharger Control Module consists of an electronic control box, engine speed, intake manifold pressure, ambient temperature sensors, and electric actuators driving compressor bypass and wastegate valves. The Turbocharger Control Module expands the steady state operational environment of the Waukesha AT27GL natural gas engine from sea level to 1,525 m altitude with one turbochargermore » match and improves the engine speed turn down by 80 RPM. Finally, the Turbocharger Control Module improves engine response to load changes.« less
Fuel quantity modulation in pilot ignited engines
May, Andrew
2006-05-16
An engine system includes a first fuel regulator adapted to control an amount of a first fuel supplied to the engine, a second fuel regulator adapted to control an amount of a second fuel supplied to the engine concurrently with the first fuel being supplied to the engine, and a controller coupled to at least the second fuel regulator. The controller is adapted to determine the amount of the second fuel supplied to the engine in a relationship to the amount of the first fuel supplied to the engine to operate in igniting the first fuel at a specified time in steady state engine operation and adapted to determine the amount of the second fuel supplied to the engine in a manner different from the relationship at steady state engine operation in transient engine operation.
Overview of rocket engine control
NASA Technical Reports Server (NTRS)
Lorenzo, Carl F.; Musgrave, Jeffrey L.
1991-01-01
The issues of Chemical Rocket Engine Control are broadly covered. The basic feedback information and control variables used in expendable and reusable rocket engines, such as Space Shuttle Main Engine, are discussed. The deficiencies of current approaches are considered and a brief introduction to Intelligent Control Systems for rocket engines (and vehicles) is presented.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-22
... engine design certification, and the certification requirements for engine control systems are driven by... following novel or unusual design features: Electronic engine control system. Discussion As discussed above...; Electronic Engine Control (EEC) System AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final...
The Control System for the X-33 Linear Aerospike Engine
NASA Technical Reports Server (NTRS)
Jackson, Jerry E.; Espenschied, Erich; Klop, Jeffrey
1998-01-01
The linear aerospike engine is being developed for single-stage -to-orbit (SSTO) applications. The primary advantages of a linear aerospike engine over a conventional bell nozzle engine include altitude compensation, which provides enhanced performance, and lower vehicle weight resulting from the integration of the engine into the vehicle structure. A feature of this integration is the ability to provide thrust vector control (TVC) by differential throttling of the engine combustion elements, rather than the more conventional approach of gimballing the entire engine. An analysis of the X-33 flight trajectories has shown that it is necessary to provide +/- 15% roll, pitch and yaw TVC authority with an optional capability of +/- 30% pitch at select times during the mission. The TVC performance requirements for X-33 engine became a major driver in the design of the engine control system. The thrust level of the X-33 engine as well as the amount of TVC are managed by a control system which consists of electronic, instrumentation, propellant valves, electro-mechanical actuators, spark igniters, and harnesses. The engine control system is responsible for the thrust control, mixture ratio control, thrust vector control, engine health monitoring, and communication to the vehicle during all operational modes of the engine (checkout, pre-start, start, main-stage, shutdown and post shutdown). The methodology for thrust vector control, the health monitoring approach which includes failure detection, isolation, and response, and the basic control system design are the topic of this paper. As an additional point of interest a brief description of the X-33 engine system will be included in this paper.
40 CFR 1039.140 - What is my engine's maximum engine power?
Code of Federal Regulations, 2014 CFR
2014-07-01
...) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES... 1065, based on the manufacturer's design and production specifications for the engine. This information... power values for an engine are based on maximum engine power. For example, the group of engines with...
40 CFR 1039.140 - What is my engine's maximum engine power?
Code of Federal Regulations, 2011 CFR
2011-07-01
...) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES... 1065, based on the manufacturer's design and production specifications for the engine. This information... power values for an engine are based on maximum engine power. For example, the group of engines with...
40 CFR 1039.140 - What is my engine's maximum engine power?
Code of Federal Regulations, 2010 CFR
2010-07-01
...) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES... 1065, based on the manufacturer's design and production specifications for the engine. This information... power values for an engine are based on maximum engine power. For example, the group of engines with...
40 CFR 1039.140 - What is my engine's maximum engine power?
Code of Federal Regulations, 2012 CFR
2012-07-01
...) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES... 1065, based on the manufacturer's design and production specifications for the engine. This information... power values for an engine are based on maximum engine power. For example, the group of engines with...
NASA Technical Reports Server (NTRS)
Simon, Donald L.; Rinehart, Aidan W.; Jones, Scott M.
2017-01-01
Aircraft flying in regions of high ice crystal concentrations are susceptible to the buildup of ice within the compression system of their gas turbine engines. This ice buildup can restrict engine airflow and cause an uncommanded loss of thrust, also known as engine rollback, which poses a potential safety hazard. The aviation community is conducting research to understand this phenomena, and to identify avoidance and mitigation strategies to address the concern. To support this research, a dynamic turbofan engine model has been created to enable the development and evaluation of engine icing detection and control-based mitigation strategies. This model captures the dynamic engine response due to high ice water ingestion and the buildup of ice blockage in the engines low pressure compressor. It includes a fuel control system allowing engine closed-loop control effects during engine icing events to be emulated. The model also includes bleed air valve and horsepower extraction actuators that, when modulated, change overall engine operating performance. This system-level model has been developed and compared against test data acquired from an aircraft turbofan engine undergoing engine icing studies in an altitude test facility and also against outputs from the manufacturers customer deck. This paper will describe the model and show results of its dynamic response under open-loop and closed-loop control operating scenarios in the presence of ice blockage buildup compared against engine test cell data. Planned follow-on use of the model for the development and evaluation of icing detection and control-based mitigation strategies will also be discussed. The intent is to combine the model and control mitigation logic with an engine icing risk calculation tool capable of predicting the risk of engine icing based on current operating conditions. Upon detection of an operating region of risk for engine icing events, the control mitigation logic will seek to change the engines operating point to a region of lower risk through the modulation of available control actuators while maintaining the desired engine thrust output. Follow-on work will assess the feasibility and effectiveness of such control-based mitigation strategies.
NASA Technical Reports Server (NTRS)
Turso, James A.; Litt, Jonathan S.
2004-01-01
A method for accommodating engine deterioration via a scheduled Linear Parameter Varying Quadratic Lyapunov Function (LPVQLF)-Based controller is presented. The LPVQLF design methodology provides a means for developing unconditionally stable, robust control of Linear Parameter Varying (LPV) systems. The controller is scheduled on the Engine Deterioration Index, a function of estimated parameters that relate to engine health, and is computed using a multilayer feedforward neural network. Acceptable thrust response and tight control of exhaust gas temperature (EGT) is accomplished by adjusting the performance weights on these parameters for different levels of engine degradation. Nonlinear simulations demonstrate that the controller achieves specified performance objectives while being robust to engine deterioration as well as engine-to-engine variations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 32 2010-07-01 2010-07-01 false May I sell engines from an engine... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES Testing Production-line Engines § 1048.330 May I sell engines from an engine...
A demonstration of an intelligent control system for a reusable rocket engine
NASA Technical Reports Server (NTRS)
Musgrave, Jeffrey L.; Paxson, Daniel E.; Litt, Jonathan S.; Merrill, Walter C.
1992-01-01
An Intelligent Control System for reusable rocket engines is under development at NASA Lewis Research Center. The primary objective is to extend the useful life of a reusable rocket propulsion system while minimizing between flight maintenance and maximizing engine life and performance through improved control and monitoring algorithms and additional sensing and actuation. This paper describes current progress towards proof-of-concept of an Intelligent Control System for the Space Shuttle Main Engine. A subset of identifiable and accommodatable engine failure modes is selected for preliminary demonstration. Failure models are developed retaining only first order effects and included in a simplified nonlinear simulation of the rocket engine for analysis under closed loop control. The engine level coordinator acts as an interface between the diagnostic and control systems, and translates thrust and mixture ratio commands dictated by mission requirements, and engine status (health) into engine operational strategies carried out by a multivariable control. Control reconfiguration achieves fault tolerance if the nominal (healthy engine) control cannot. Each of the aforementioned functionalities is discussed in the context of an example to illustrate the operation of the system in the context of a representative failure. A graphical user interface allows the researcher to monitor the Intelligent Control System and engine performance under various failure modes selected for demonstration.
40 CFR 1036.230 - Selecting engine families.
Code of Federal Regulations, 2014 CFR
2014-07-01
... CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE HEAVY-DUTY HIGHWAY ENGINES Certifying Engine Families... sold into non-vocational tractor applications. You may assign the numbers and configurations of engines...). (d) Engine configurations within an engine family must use equivalent greenhouse gas emission...
40 CFR 1036.230 - Selecting engine families.
Code of Federal Regulations, 2012 CFR
2012-07-01
... CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE HEAVY-DUTY HIGHWAY ENGINES Certifying Engine Families... sold into non-vocational tractor applications. You may assign the numbers and configurations of engines...). (d) Engine configurations within an engine family must use equivalent greenhouse gas emission...
Advanced control for airbreathing engines, volume 2: General Electric aircraft engines
NASA Technical Reports Server (NTRS)
Bansal, Indar
1993-01-01
The application of advanced control concepts to air breathing engines may yield significant improvements in aircraft/engine performance and operability. Screening studies of advanced control concepts for air breathing engines were conducted by three major domestic aircraft engine manufacturers to determine the potential impact of concepts on turbine engine performance and operability. The purpose of the studies was to identify concepts which offered high potential yet may incur high research and development risk. A target suite of proposed advanced control concepts was formulated and evaluated in a two phase study to quantify each concept's impact on desired engine characteristics. To aid in the evaluation specific aircraft/engine combinations were considered: a Military High Performance Fighter mission, a High Speed Civil Transport mission, and a Civil Tiltrotor mission. Each of the advanced control concepts considered in the study are defined and described. The concept potential impact on engine performance was determined. Relevant figures of merit on which to evaluate the concepts are determined. Finally, the concepts are ranked with respect to the target aircraft/engine missions. A final report describing the screening studies was prepared by each engine manufacturer. Volume 2 of these reports describes the studies performed by GE Aircraft Engines.
Implementation of Enhanced Propulsion Control Modes for Emergency Flight Operation
NASA Technical Reports Server (NTRS)
Csank, Jeffrey T.; Chin, Jeffrey C.; May, Ryan D.; Litt, Jonathan S.; Guo, Ten-Huei
2011-01-01
Aircraft engines can be effective actuators to help pilots avert or recover from emergency situations. Emergency control modes are being developed to enhance the engines performance to increase the probability of recovery under these circumstances. This paper discusses a proposed implementation of an architecture that requests emergency propulsion control modes, allowing the engines to deliver additional performance in emergency situations while still ensuring a specified safety level. In order to determine the appropriate level of engine performance enhancement, information regarding the current emergency scenario (including severity) and current engine health must be known. This enables the engine to operate beyond its nominal range while minimizing overall risk to the aircraft. In this architecture, the flight controller is responsible for determining the severity of the event and the level of engine risk that is acceptable, while the engine controller is responsible for delivering the desired performance within the specified risk range. A control mode selector specifies an appropriate situation-specific enhanced mode, which the engine controller then implements. The enhanced control modes described in this paper provide additional engine thrust or response capabilities through the modification of gains, limits, and the control algorithm, but increase the risk of engine failure. The modifications made to the engine controller to enable the use of the enhanced control modes are described, as are the interaction between the various subsystems and importantly, the interaction between the flight controller/pilot and the propulsion control system. Simulation results demonstrate how the system responds to requests for enhanced operation and the corresponding increase in performance.
Design of Distributed Engine Control Systems for Stability Under Communication Packet Dropouts
2009-08-01
remarks. II. Distributed Engine Control Systems A. FADEC based on Distributed Engine Control Architecture (DEC) In Distributed Engine...Control, the functions of Full Authority Digital Engine Control ( FADEC ) are distributed at the component level. Each sensor/actuator is to be replaced...diagnostics and health management functionality. Dual channel digital serial communication network is used to connect these smart modules with FADEC . Fig
Stability of Fiber Optic Networked Decentralized Distributed Engine Control Under Time Delays
2009-08-01
Nomenclature FADEC = Full Authority Digital Engine Control D2FADEC = Decentralized Distributed Full Authority Digital Engine Control DEC...Corporation (IFOS), bm@ifos.com. I American Institute of Aeronautics and Astronautics 2 II. Distributed Engine Control Systems FADEC Based on...of Full Authority Digital Engine Control ( FADEC ) are distributed at the component level. Each sensor/actuator is to be replaced by a smart sensor
High Reliability Engine Control Demonstrated for Aircraft Engines
NASA Technical Reports Server (NTRS)
Guo, Ten-Huei
1999-01-01
For a dual redundant-control system, which is typical for short-haul aircraft, if a failure is detected in a control sensor, the engine control is transferred to a safety mode and an advisory is issued for immediate maintenance action to replace the failed sensor. The safety mode typically results in severely degraded engine performance. The goal of the High Reliability Engine Control (HREC) program was to demonstrate that the neural-network-based sensor validation technology can safely operate an engine by using the nominal closed-loop control during and after sensor failures. With this technology, engine performance could be maintained, and the sensor could be replaced as a conveniently scheduled maintenance action.
Defining a region of optimization based on engine usage data
Jiang, Li; Lee, Donghoon; Yilmaz, Hakan; Stefanopoulou, Anna
2015-08-04
Methods and systems for engine control optimization are provided. One or more operating conditions of a vehicle engine are detected. A value for each of a plurality of engine control parameters is determined based on the detected one or more operating conditions of the vehicle engine. A range of the most commonly detected operating conditions of the vehicle engine is identified and a region of optimization is defined based on the range of the most commonly detected operating conditions of the vehicle engine. The engine control optimization routine is initiated when the one or more operating conditions of the vehicle engine are within the defined region of optimization.
40 CFR 1039.230 - How do I select engine families?
Code of Federal Regulations, 2013 CFR
2013-07-01
... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Certifying... configurations). This applies for engines with aftertreatment devices only. (8) Method of control for engine... 40 Protection of Environment 34 2013-07-01 2013-07-01 false How do I select engine families? 1039...
Change control microcomputer device for vehicle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morishita, M.; Kouge, S.
1986-08-19
A charge control microcomputer device for a vehicle is described which consists of: a clutch device for transmitting the rotary output of an engine; a charging generator driven by the clutch device; a battery charged by an output of the charging generator; a voltage regulator for controlling an output voltage of the charging generator to a predetermined value; an engine controlling microcomputer for receiving engine data, to control the engine; and a charge control microcomputer for processing the engine data from the engine controlling microcomputer and charge system data including terminal voltage data from the battery and generated voltage datamore » from the charging generator, to determine a reference voltage for the voltage regulator in accordance with the engine data and the charge system data, and for processing an engine rotation signal to generate and apply an operating instruction to the clutch device in accordance with the engine data and the charge system data, such that the charging generator is driven within a predetermined range of revolutions per minute at all times.« less
Intelligent Life-Extending Controls for Aircraft Engines
NASA Technical Reports Server (NTRS)
Guo, Ten-Huei; Chen, Philip; Jaw, Link
2005-01-01
Aircraft engine controllers are designed and operated to provide desired performance and stability margins. The purpose of life-extending-control (LEC) is to study the relationship between control action and engine component life usage, and to design an intelligent control algorithm to provide proper trade-offs between performance and engine life usage. The benefit of this approach is that it is expected to maintain safety while minimizing the overall operating costs. With the advances of computer technology, engine operation models, and damage physics, it is necessary to reevaluate the control strategy fro overall operating cost consideration. This paper uses the thermo-mechanical fatigue (TMF) of a critical component to demonstrate how an intelligent engine control algorithm can drastically reduce the engine life usage with minimum sacrifice in performance. A Monte Carlo simulation is also performed to evaluate the likely engine damage accumulation under various operating conditions. The simulation results show that an optimized acceleration schedule can provide a significant life saving in selected engine components.
Space shuttle main engine controller
NASA Technical Reports Server (NTRS)
Mattox, R. M.; White, J. B.
1981-01-01
A technical description of the space shuttle main engine controller, which provides engine checkout prior to launch, engine control and monitoring during launch, and engine safety and monitoring in orbit, is presented. Each of the major controller subassemblies, the central processing unit, the computer interface electronics, the input electronics, the output electronics, and the power supplies are described and discussed in detail along with engine and orbiter interfaces and operational requirements. The controller represents a unique application of digital concepts, techniques, and technology in monitoring, managing, and controlling a high performance rocket engine propulsion system. The operational requirements placed on the controller, the extremely harsh operating environment to which it is exposed, and the reliability demanded, result in the most complex and rugged digital system ever designed, fabricated, and flown.
The Effect of Faster Engine Response on the Lateral Directional Control of a Damaged Aircraft
NASA Technical Reports Server (NTRS)
May, Ryan D.; Lemon, Kimberly A.; Csank, Jeffrey T.; Litt, Jonathan S.; Guo, Ten-Huei
2012-01-01
The integration of flight control and propulsion control has been a much discussed topic, especially for emergencies where the engines may be able to help stabilize and safely land a damaged aircraft. Previous research has shown that for the engines to be effective as flight control actuators, the response time to throttle commands must be improved. Other work has developed control modes that accept a higher risk of engine failure in exchange for improved engine response during an emergency. In this effort, a nonlinear engine model (the Commercial Modular Aero-Propulsion System Simulation 40k) has been integrated with a nonlinear airframe model (the Generic Transport Model) in order to evaluate the use of enhanced-response engines as alternative yaw rate control effectors. Tests of disturbance rejection and command tracking were used to determine the impact of the engines on the aircraft's dynamical behavior. Three engine control enhancements that improve the response time of the engine were implemented and tested in the integrated simulation. The enhancements were shown to increase the engine s effectiveness as a yaw rate control effector when used in an automatic feedback loop. The improvement is highly dependent upon flight condition; the airframe behavior is markedly improved at low altitude, low speed conditions, and relatively unchanged at high altitude, high speed.
Software Development for EECU Platform of Turbofan Engine
NASA Astrophysics Data System (ADS)
Kim, Bo Gyoung; Kwak, Dohyup; Kim, Byunghyun; Choi, Hee ju; Kong, Changduk
2017-04-01
The turbofan engine operation consists of a number of hardware and software. The engine is controlled by Electronic Engine Control Unit (EECU). In order to control the engine, EECU communicates with an aircraft system, Actuator Drive Unit (ADU), Engine Power Unit (EPU) and sensors on the engine. This paper tried to investigate the process form starting to taking-off and aims to design the EECU software mode and defined communication data format. The software is implemented according to the designed software mode.
40 CFR 1045.5 - Which engines are excluded from this part's requirements?
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND... natural gas engines. Propulsion marine engines powered by natural gas with maximum engine power at or...
40 CFR 1045.5 - Which engines are excluded from this part's requirements?
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND... natural gas engines. Propulsion marine engines powered by natural gas with maximum engine power at or...
40 CFR 1045.5 - Which engines are excluded from this part's requirements?
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND... natural gas engines. Propulsion marine engines powered by natural gas with maximum engine power at or...
40 CFR 1045.5 - Which engines are excluded from this part's requirements?
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND... natural gas engines. Propulsion marine engines powered by natural gas with maximum engine power at or...
40 CFR 1045.5 - Which engines are excluded from this part's requirements?
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND... natural gas engines. Propulsion marine engines powered by natural gas with maximum engine power at or...
14 CFR 27.1143 - Engine controls.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine controls. 27.1143 Section 27.1143... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Powerplant Controls and Accessories § 27.1143 Engine controls. (a) There must be a separate power control for each engine. (b) Power controls must be grouped...
14 CFR 29.1143 - Engine controls.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine controls. 29.1143 Section 29.1143... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Powerplant Controls and Accessories § 29.1143 Engine controls. (a) There must be a separate power control for each engine. (b) Power controls must be arranged...
14 CFR 27.1143 - Engine controls.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Engine controls. 27.1143 Section 27.1143... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Powerplant Controls and Accessories § 27.1143 Engine controls. (a) There must be a separate power control for each engine. (b) Power controls must be grouped...
14 CFR 27.1143 - Engine controls.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Engine controls. 27.1143 Section 27.1143... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Powerplant Controls and Accessories § 27.1143 Engine controls. (a) There must be a separate power control for each engine. (b) Power controls must be grouped...
14 CFR 27.1143 - Engine controls.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Engine controls. 27.1143 Section 27.1143... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Powerplant Controls and Accessories § 27.1143 Engine controls. (a) There must be a separate power control for each engine. (b) Power controls must be grouped...
14 CFR 27.1143 - Engine controls.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Engine controls. 27.1143 Section 27.1143... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Powerplant Controls and Accessories § 27.1143 Engine controls. (a) There must be a separate power control for each engine. (b) Power controls must be grouped...
Controlling And Operating Homogeneous Charge Compression Ignition (Hcci) Engines
Flowers, Daniel L.
2005-08-02
A Homogeneous Charge Compression Ignition (HCCI) engine system includes an engine that produces exhaust gas. A vaporization means vaporizes fuel for the engine an air induction means provides air for the engine. An exhaust gas recirculation means recirculates the exhaust gas. A blending means blends the vaporized fuel, the exhaust gas, and the air. An induction means inducts the blended vaporized fuel, exhaust gas, and air into the engine. A control means controls the blending of the vaporized fuel, the exhaust gas, and the air and for controls the inducting the blended vaporized fuel, exhaust gas, and air into the engine.
NASA Technical Reports Server (NTRS)
Guo, Ten-Huei; Litt, Jonathan S.
2007-01-01
Gas turbine engines are designed to provide sufficient safety margins to guarantee robust operation with an exceptionally long life. However, engine performance requirements may be drastically altered during abnormal flight conditions or emergency maneuvers. In some situations, the conservative design of the engine control system may not be in the best interest of overall aircraft safety; it may be advantageous to "sacrifice" the engine to "save" the aircraft. Motivated by this opportunity, the NASA Aviation Safety Program is conducting resilient propulsion research aimed at developing adaptive engine control methodologies to operate the engine beyond the normal domain for emergency operations to maximize the possibility of safely landing the damaged aircraft. Previous research studies and field incident reports show that the propulsion system can be an effective tool to help control and eventually land a damaged aircraft. Building upon the flight-proven Propulsion Controlled Aircraft (PCA) experience, this area of research will focus on how engine control systems can improve aircraft safe-landing probabilities under adverse conditions. This paper describes the proposed research topics in Engine System Requirements, Engine Modeling and Simulation, Engine Enhancement Research, Operational Risk Analysis and Modeling, and Integrated Flight and Propulsion Controller Designs that support the overall goal.
40 CFR 1048.301 - When must I test my production-line engines?
Code of Federal Regulations, 2010 CFR
2010-07-01
... engines? 1048.301 Section 1048.301 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES Testing Production-line Engines § 1048.301 When must I test my production-line engines? (a) If you produce engines...
Assessing and Controlling Blast Noise Emission: SARNAM Noise Impact Software
2007-12-29
Engineers, Engineer Research and Development Center Jeffery Mifflin U.S. Army Corps of Engineers, Engineer Research and Development Center Kristy A...PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) U.S. Army Engineer Research and Development Center (ERDC) Construction Engineering Research Laboratory...6 Figure 5. OneShot control page
On spacecraft maneuvers control subject to propellant engine modes.
Mazinan, A H
2015-09-01
The paper attempts to address a new control approach to spacecraft maneuvers based upon the modes of propellant engine. A realization of control strategy is now presented in engine on mode (high thrusts as well as further low thrusts), which is related to small angle maneuvers and engine off mode (specified low thrusts), which is also related to large angle maneuvers. There is currently a coarse-fine tuning in engine on mode. It is shown that the process of handling the angular velocities are finalized via rate feedback system in engine modes, where the angular rotations are controlled through quaternion based control (QBCL)strategy in engine off mode and these ones are also controlled through an optimum PID (OPIDH) strategy in engine on mode. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 32 2010-07-01 2010-07-01 false May I sell engines from an engine... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS Testing Production-line Engines § 1045.330 May I sell engines from an...
Digital Electronic Engine Control (DEEC) Flight Evaluation in an F-15 Airplane
NASA Technical Reports Server (NTRS)
1984-01-01
Flight evaluation in an F-15 aircraft by digital electronic engine control (DEEC) was investigated. Topics discussed include: system description, F100 engine tests, effects of inlet distortion on static pressure probe, flight tests, digital electronic engine control fault detection and accommodation flight evaluation, flight evaluation of a hydromechanical backup control, augmentor transient capability of an F100 engine, investigation of nozzle instability, real time in flight thrust calculation, and control technology for future aircraft propulsion systems. It is shown that the DEEC system is a powerful and flexible controller for the F100 engine.
Simultaneously firing two cylinders of an even firing camless engine
Brennan, Daniel G
2014-03-11
A valve control system includes an engine speed control module that determines an engine speed and a desired engine stop position. A piston position module determines a desired stopping position of a first piston based on the desired engine stop position. A valve control module receives the desired stopping position, commands a set of valves to close at the desired stopping position if the engine speed is less than a predetermined shutdown threshold, and commands the set of valves to reduce the engine speed if the engine speed is greater than the predetermined shutdown threshold.
Flight evaluation of a digital electronic engine control system in an F-15 airplane
NASA Technical Reports Server (NTRS)
Myers, L. P.; Mackall, K. G.; Burcham, F. W., Jr.; Walter, W. A.
1982-01-01
Benefits provided by a full-authority digital engine control are related to improvements in engine efficiency, performance, and operations. An additional benefit is the capability of detecting and accommodating failures in real time and providing engine-health diagnostics. The digital electronic engine control (DEEC), is a full-authority digital engine control developed for the F100-PW-100 turbofan engine. The DEEC has been flight tested on an F-15 aircraft. The flight tests had the objective to evaluate the DEEC hardware and software over the F-15 flight envelope. A description is presented of the results of the flight tests, which consisted of nonaugmented and augmented throttle transients, airstarts, and backup control operations. The aircraft, engine, DEEC system, and data acquisition and reduction system are discussed.
Use of Soft Computing Technologies For Rocket Engine Control
NASA Technical Reports Server (NTRS)
Trevino, Luis C.; Olcmen, Semih; Polites, Michael
2003-01-01
The problem to be addressed in this paper is to explore how the use of Soft Computing Technologies (SCT) could be employed to further improve overall engine system reliability and performance. Specifically, this will be presented by enhancing rocket engine control and engine health management (EHM) using SCT coupled with conventional control technologies, and sound software engineering practices used in Marshall s Flight Software Group. The principle goals are to improve software management, software development time and maintenance, processor execution, fault tolerance and mitigation, and nonlinear control in power level transitions. The intent is not to discuss any shortcomings of existing engine control and EHM methodologies, but to provide alternative design choices for control, EHM, implementation, performance, and sustaining engineering. The approaches outlined in this paper will require knowledge in the fields of rocket engine propulsion, software engineering for embedded systems, and soft computing technologies (i.e., neural networks, fuzzy logic, and Bayesian belief networks), much of which is presented in this paper. The first targeted demonstration rocket engine platform is the MC-1 (formerly FASTRAC Engine) which is simulated with hardware and software in the Marshall Avionics & Software Testbed laboratory that
Control Room at the NACA’s Rocket Engine Test Facility
1957-05-21
Test engineers monitor an engine firing from the control room of the Rocket Engine Test Facility at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. The Rocket Engine Test Facility, built in the early 1950s, had a rocket stand designed to evaluate high-energy propellants and rocket engine designs. The facility was used to study numerous different types of rocket engines including the Pratt and Whitney RL-10 engine for the Centaur rocket and Rocketdyne’s F-1 and J-2 engines for the Saturn rockets. The Rocket Engine Test Facility was built in a ravine at the far end of the laboratory because of its use of the dangerous propellants such as liquid hydrogen and liquid fluorine. The control room was located in a building 1,600 feet north of the test stand to protect the engineers running the tests. The main control and instrument consoles were centrally located in the control room and surrounded by boards controlling and monitoring the major valves, pumps, motors, and actuators. A camera system at the test stand allowed the operators to view the tests, but the researchers were reliant on data recording equipment, sensors, and other devices to provide test data. The facility’s control room was upgraded several times over the years. Programmable logic controllers replaced the electro-mechanical control devices. The new controllers were programed to operate the valves and actuators controlling the fuel, oxidant, and ignition sequence according to a predetermined time schedule.
NASA Technical Reports Server (NTRS)
Baez, A. N.
1985-01-01
Research programs have demonstrated that digital electronic controls are more suitable for advanced aircraft/rotorcraft turbine engine systems than hydromechanical controls. Commercially available microprocessors are believed to have the speed and computational capability required for implementing advanced digital control algorithms. Thus, it is desirable to demonstrate that off-the-shelf microprocessors are indeed capable of performing real time control of advanced gas turbine engines. The engine monitoring and control (EMAC) unit was designed and fabricated specifically to meet the requirements of an advanced gas turbine engine control system. The EMAC unit is fully operational in the Army/NASA small turboshaft engine digital research program.
A Study on Aircraft Engine Control Systems for Integrated Flight and Propulsion Control
NASA Astrophysics Data System (ADS)
Yamane, Hideaki; Matsunaga, Yasushi; Kusakawa, Takeshi
A flyable FADEC system engineering model incorporating Integrated Flight and Propulsion Control (IFPC) concept is developed for a highly maneuverable aircraft and a fighter-class engine. An overview of the FADEC system and functional assignments for its components such as the Engine Control Unit (ECU) and the Integrated Control Unit (ICU) are described. Overall system reliability analysis, convex analysis and multivariable controller design for the engine, fault detection/redundancy management, and response characteristics of a fuel system are addressed. The engine control performance of the FADEC is demonstrated by hardware-in-the-loop simulation for fast acceleration and thrust transient characteristics.
Aircraft dual-shaft jet engine with indirect action fuel flow controller
NASA Astrophysics Data System (ADS)
Tudosie, Alexandru-Nicolae
2017-06-01
The paper deals with an aircraft single-jet engine's control system, based on a fuel flow controller. Considering the engine as controlled object and its thrust the most important operation effect, from the multitude of engine's parameters only its rotational speed n is measurable and proportional to its thrust, so engine's speed has become the most important controlled parameter. Engine's control system is based on fuel injection Qi dosage, while the output is engine's speed n. Based on embedded system's main parts' mathematical models, the author has described the system by its block diagram with transfer functions; furthermore, some Simulink-Matlab simulations are performed, concerning embedded system quality (its output parameters time behavior) and, meanwhile, some conclusions concerning engine's parameters mutual influences are revealed. Quantitative determinations are based on author's previous research results and contributions, as well as on existing models (taken from technical literature). The method can be extended for any multi-spool engine, single- or twin-jet.
A Retro-Fit Control Architecture to Maintain Engine Performance With Usage
NASA Technical Reports Server (NTRS)
Litt, Jonathan S.; Sowers, T. Shane; Garg, Sanjay
2007-01-01
An outer loop retrofit engine control architecture is presented which modifies fan speed command to obtain a desired thrust based on throttle position. This maintains the throttle-to-thrust relationship in the presence of engine degradation, which has the effect of changing the engine s thrust output for a given fan speed. Such an approach can minimize thrust asymmetry in multi-engine aircraft, and reduce pilot workload. The outer loop control is demonstrated under various levels of engine deterioration using a standard deterioration profile as well as an atypical profile. It is evaluated across various transients covering a wide operating range. The modified fan speed command still utilizes the standard engine control logic so all original life and operability limits remain in place. In all cases it is shown that with the outer loop thrust control in place, the deteriorated engine is able to match the thrust performance of a new engine up to the limits the controller will allow.
NASA Technical Reports Server (NTRS)
Vasu, George; Pack, George J
1951-01-01
Correlation has been established between transient engine and control data obtained experimentally and data obtained by simulating the engine and control with an analog computer. This correlation was established at sea-level conditions for a turbine-propeller engine with a relay-type speed control. The behavior of the controlled engine at altitudes of 20,000 and 35,000 feet was determined with an analog computer using the altitude pressure and temperature generalization factors to calculate the new engine constants for these altitudes. Because the engine response varies considerably at altitude some type of compensation appears desirable and four methods of compensation are discussed.
14 CFR 33.87 - Endurance test.
Code of Federal Regulations, 2011 CFR
2011-01-01
... particular engine being tested. (2) Any automatic engine control that is part of the engine must control the engine during the endurance test except for operations where automatic control is normally overridden by manual control or where manual control is otherwise specified for a particular test run. (3) Except as...
14 CFR 33.87 - Endurance test.
Code of Federal Regulations, 2012 CFR
2012-01-01
... particular engine being tested. (2) Any automatic engine control that is part of the engine must control the engine during the endurance test except for operations where automatic control is normally overridden by manual control or where manual control is otherwise specified for a particular test run. (3) Except as...
14 CFR 25.1143 - Engine controls.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine controls. 25.1143 Section 25.1143... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Controls and Accessories § 25.1143 Engine controls. (a) There must be a separate power or thrust control for each engine. (b) Power and thrust...
10 CFR 20.1701 - Use of process or other engineering controls.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 1 2011-01-01 2011-01-01 false Use of process or other engineering controls. 20.1701... or other engineering controls. The licensee shall use, to the extent practical, process or other engineering controls (e.g., containment, decontamination, or ventilation) to control the concentration of...
10 CFR 20.1701 - Use of process or other engineering controls.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false Use of process or other engineering controls. 20.1701... or other engineering controls. The licensee shall use, to the extent practical, process or other engineering controls (e.g., containment, decontamination, or ventilation) to control the concentration of...
10 CFR 20.1701 - Use of process or other engineering controls.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Use of process or other engineering controls. 20.1701... or other engineering controls. The licensee shall use, to the extent practical, process or other engineering controls (e.g., containment, decontamination, or ventilation) to control the concentration of...
10 CFR 20.1701 - Use of process or other engineering controls.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 1 2014-01-01 2014-01-01 false Use of process or other engineering controls. 20.1701... or other engineering controls. The licensee shall use, to the extent practical, process or other engineering controls (e.g., containment, decontamination, or ventilation) to control the concentration of...
10 CFR 20.1701 - Use of process or other engineering controls.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 1 2013-01-01 2013-01-01 false Use of process or other engineering controls. 20.1701... or other engineering controls. The licensee shall use, to the extent practical, process or other engineering controls (e.g., containment, decontamination, or ventilation) to control the concentration of...
14 CFR 25.1143 - Engine controls.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Engine controls. 25.1143 Section 25.1143... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Controls and Accessories § 25.1143 Engine controls. (a) There must be a separate power or thrust control for each engine. (b) Power and thrust...
14 CFR 23.1143 - Engine controls.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Engine controls. 23.1143 Section 23.1143... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Powerplant Controls and Accessories § 23.1143 Engine controls. (a) There must be a separate power or thrust control for each engine...
14 CFR 25.1143 - Engine controls.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Engine controls. 25.1143 Section 25.1143... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Controls and Accessories § 25.1143 Engine controls. (a) There must be a separate power or thrust control for each engine. (b) Power and thrust...
14 CFR 23.1143 - Engine controls.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Engine controls. 23.1143 Section 23.1143... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Powerplant Controls and Accessories § 23.1143 Engine controls. (a) There must be a separate power or thrust control for each engine...
NASA Technical Reports Server (NTRS)
1978-01-01
A digital electronic control was combined with conventional hydromechanical components to operate the four controlled variables on the under-the-wing engine: fuel flow, fan blade pitch, fan exhaust area, and core compressor stator angles. The engine and control combination offers improvements in noise, pollution, thrust response, operational monitoring, and pilot workload relative to current engines.
Fuel control for gas turbine engines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stearns, C.F.; Tutherly, H.W.
1983-12-27
The basic gas turbine engine hydromechanical fuel control is adaptable to different engine configurations such as turbofan, turboprop and turboshaft engines by incorporating in the main housing those elements having a commonality to all engine configurations and providing a removable block for each configuration having the necessary control elements and flow passages required for that particular configuration. That is to say, a block with the elements peculiar to a turbofan engine could be replaced by a mating block that includes those elements peculiar to a turboshaft engine in adapting the control for a turboshaft configuration. Similarly another block with thosemore » elements peculiar to a turboprop engine could replace any of the other blocks in adapting the control to a turboprop configuration. Obviously the basic control has the necessary flow passages terminating at the interface with the block and these flow passages mate with corresponding passages in the block.« less
NASA Conducts First RS-25 Rocket Engine Test of 2018
2018-01-16
A main objective for today’s test will be testing a new flight controller or “brain” of the engine. The controller, which is currently installed on a developmental engine, has the electronics that operate the engine and communicate with the SLS vehicle. Once test data is certified, the engine controller will be removed and installed on a flight engine in preparation for flight of SLS and the Orion spacecraft.
DOT National Transportation Integrated Search
1977-02-01
This report contains the results of a study to evaluate automobile engine control parameters and their effects on vehicle fuel economy and emissions. Volume I presents detailed technical information on the engine control practices used by selected do...
Distributed Engine Control Empirical/Analytical Verification Tools
NASA Technical Reports Server (NTRS)
DeCastro, Jonathan; Hettler, Eric; Yedavalli, Rama; Mitra, Sayan
2013-01-01
NASA's vision for an intelligent engine will be realized with the development of a truly distributed control system featuring highly reliable, modular, and dependable components capable of both surviving the harsh engine operating environment and decentralized functionality. A set of control system verification tools was developed and applied to a C-MAPSS40K engine model, and metrics were established to assess the stability and performance of these control systems on the same platform. A software tool was developed that allows designers to assemble easily a distributed control system in software and immediately assess the overall impacts of the system on the target (simulated) platform, allowing control system designers to converge rapidly on acceptable architectures with consideration to all required hardware elements. The software developed in this program will be installed on a distributed hardware-in-the-loop (DHIL) simulation tool to assist NASA and the Distributed Engine Control Working Group (DECWG) in integrating DCS (distributed engine control systems) components onto existing and next-generation engines.The distributed engine control simulator blockset for MATLAB/Simulink and hardware simulator provides the capability to simulate virtual subcomponents, as well as swap actual subcomponents for hardware-in-the-loop (HIL) analysis. Subcomponents can be the communication network, smart sensor or actuator nodes, or a centralized control system. The distributed engine control blockset for MATLAB/Simulink is a software development tool. The software includes an engine simulation, a communication network simulation, control algorithms, and analysis algorithms set up in a modular environment for rapid simulation of different network architectures; the hardware consists of an embedded device running parts of the CMAPSS engine simulator and controlled through Simulink. The distributed engine control simulation, evaluation, and analysis technology provides unique capabilities to study the effects of a given change to the control system in the context of the distributed paradigm. The simulation tool can support treatment of all components within the control system, both virtual and real; these include communication data network, smart sensor and actuator nodes, centralized control system (FADEC full authority digital engine control), and the aircraft engine itself. The DECsim tool can allow simulation-based prototyping of control laws, control architectures, and decentralization strategies before hardware is integrated into the system. With the configuration specified, the simulator allows a variety of key factors to be systematically assessed. Such factors include control system performance, reliability, weight, and bandwidth utilization.
Flight testing the digital electronic engine control in the F-15 airplane
NASA Technical Reports Server (NTRS)
Myers, L. P.
1984-01-01
The digital electronic engine control (DEEC) is a full-authority digital engine control developed for the F100-PW-100 turbofan engine which was flight tested on an F-15 aircraft. The DEEC hardware and software throughout the F-15 flight envelope was evaluated. Real-time data reduction and data display systems were implemented. New test techniques and stronger coordination between the propulsion test engineer and pilot were developed which produced efficient use of test time, reduced pilot work load, and greatly improved quality data. The engine pressure ratio (EPR) control mode is demonstrated. It is found that the nonaugmented throttle transients and engine performance are satisfactory.
Engine Icing Modeling and Simulation (Part 2): Performance Simulation of Engine Rollback Phenomena
NASA Technical Reports Server (NTRS)
May, Ryan D.; Guo, Ten-Huei; Veres, Joseph P.; Jorgenson, Philip C. E.
2011-01-01
Ice buildup in the compressor section of a commercial aircraft gas turbine engine can cause a number of engine failures. One of these failure modes is known as engine rollback: an uncommanded decrease in thrust accompanied by a decrease in fan speed and an increase in turbine temperature. This paper describes the development of a model which simulates the system level impact of engine icing using the Commercial Modular Aero-Propulsion System Simulation 40k (C-MAPSS40k). When an ice blockage is added to C-MAPSS40k, the control system responds in a manner similar to that of an actual engine, and, in cases with severe blockage, an engine rollback is observed. Using this capability to simulate engine rollback, a proof-of-concept detection scheme is developed and tested using only typical engine sensors. This paper concludes that the engine control system s limit protection is the proximate cause of iced engine rollback and that the controller can detect the buildup of ice particles in the compressor section. This work serves as a feasibility study for continued research into the detection and mitigation of engine rollback using the propulsion control system.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-25
...; Electronic Engine Control System Installation AGENCY: Federal Aviation Administration (FAA), DOT. ACTION... feature(s) associated with the installation of an electronic engine control. The applicable airworthiness...) Engines, Inc. SR305-230E-C1 which is a four-stroke, air cooled, diesel cycle engine that uses turbine (jet...
Control system and method for a hybrid electric vehicle
Tamor, Michael Alan
2001-03-06
Several control methods are presented for application in a hybrid electric vehicle powertrain including in various embodiments an engine, a motor/generator, a transmission coupled at an input thereof to receive torque from the engine and the motor generator coupled to augment torque provided by the engine, an energy storage device coupled to receive energy from and provide energy to the motor/generator, an engine controller (EEC) coupled to control the engine, a transmission controller (TCM) coupled to control the transmission and a vehicle system controller (VSC) adapted to control the powertrain.
Automotive Control Systems: For Engine, Driveline, and Vehicle
NASA Astrophysics Data System (ADS)
Kiencke, Uwe; Nielsen, Lars
Advances in automotive control systems continue to enhance safety and comfort and to reduce fuel consumption and emissions. Reflecting the trend to optimization through integrative approaches for engine, driveline, and vehicle control, this valuable book enables control engineers to understand engine and vehicle models necessary for controller design, and also introduces mechanical engineers to vehicle-specific signal processing and automatic control. The emphasis on measurement, comparisons between performance and modeling, and realistic examples derive from the authors' unique industrial experience
NASA Technical Reports Server (NTRS)
Szuch, J. R.; Soeder, J. F.; Seldner, K.; Cwynar, D. S.
1977-01-01
The design, evaluation, and testing of a practical, multivariable, linear quadratic regulator control for the F100 turbofan engine were accomplished. NASA evaluation of the multivariable control logic and implementation are covered. The evaluation utilized a real time, hybrid computer simulation of the engine. Results of the evaluation are presented, and recommendations concerning future engine testing of the control are made. Results indicated that the engine testing of the control should be conducted as planned.
Propulsion Controls Modeling for a Small Turbofan Engine
NASA Technical Reports Server (NTRS)
Connolly, Joseph W.; Csank, Jeffrey T.; Chicatelli, Amy; Franco, Kevin
2017-01-01
A nonlinear dynamic model and propulsion controller are developed for a small-scale turbofan engine. The small-scale turbofan engine is based on the Price Induction company's DGEN 380, one of the few turbofan engines targeted for the personal light jet category. Comparisons of the nonlinear dynamic turbofan engine model to actual DGEN 380 engine test data and a Price Induction simulation are provided. During engine transients, the nonlinear model typically agrees within 10 percent error, even though the nonlinear model was developed from limited available engine data. A gain scheduled proportional integral low speed shaft controller with limiter safety logic is created to replicate the baseline DGEN 380 controller. The new controller provides desired gain and phase margins and is verified to meet Federal Aviation Administration transient propulsion system requirements. In understanding benefits, there is a need to move beyond simulation for the demonstration of advanced control architectures and technologies by using real-time systems and hardware. The small-scale DGEN 380 provides a cost effective means to accomplish advanced controls testing on a relevant turbofan engine platform.
Transition in Gas Turbine Control System Architecture: Modular, Distributed, and Embedded
NASA Technical Reports Server (NTRS)
Culley, Dennis
2010-01-01
Controls systems are an increasingly important component of turbine-engine system technology. However, as engines become more capable, the control system itself becomes ever more constrained by the inherent environmental conditions of the engine; a relationship forced by the continued reliance on commercial electronics technology. A revolutionary change in the architecture of turbine-engine control systems will change this paradigm and result in fully distributed engine control systems. Initially, the revolution will begin with the physical decoupling of the control law processor from the hostile engine environment using a digital communications network and engine-mounted high temperature electronics requiring little or no thermal control. The vision for the evolution of distributed control capability from this initial implementation to fully distributed and embedded control is described in a roadmap and implementation plan. The development of this plan is the result of discussions with government and industry stakeholders
NASA Technical Reports Server (NTRS)
Baer-Riedhart, Jennifer L.; Landy, Robert J.
1987-01-01
The highly integrated digital electronic control (HIDEC) program at NASA Ames Research Center, Dryden Flight Research Facility is a multiphase flight research program to quantify the benefits of promising integrated control systems. McDonnell Aircraft Company is the prime contractor, with United Technologies Pratt and Whitney Aircraft, and Lear Siegler Incorporated as major subcontractors. The NASA F-15A testbed aircraft was modified by the HIDEC program by installing a digital electronic flight control system (DEFCS) and replacing the standard F100 (Arab 3) engines with F100 engine model derivative (EMD) engines equipped with digital electronic engine controls (DEEC), and integrating the DEEC's and DEFCS. The modified aircraft provides the capability for testing many integrated control modes involving the flight controls, engine controls, and inlet controls. This paper focuses on the first two phases of the HIDEC program, which are the digital flight control system/aircraft model identification (DEFCS/AMI) phase and the adaptive engine control system (ADECS) phase.
NASA Technical Reports Server (NTRS)
Trevino, Luis; Brown, Terry; Crumbley, R. T. (Technical Monitor)
2001-01-01
The problem to be addressed in this paper is to explore how the use of Soft Computing Technologies (SCT) could be employed to improve overall vehicle system safety, reliability, and rocket engine performance by development of a qualitative and reliable engine control system (QRECS). Specifically, this will be addressed by enhancing rocket engine control using SCT, innovative data mining tools, and sound software engineering practices used in Marshall's Flight Software Group (FSG). The principle goals for addressing the issue of quality are to improve software management, software development time, software maintenance, processor execution, fault tolerance and mitigation, and nonlinear control in power level transitions. The intent is not to discuss any shortcomings of existing engine control methodologies, but to provide alternative design choices for control, implementation, performance, and sustaining engineering, all relative to addressing the issue of reliability. The approaches outlined in this paper will require knowledge in the fields of rocket engine propulsion (system level), software engineering for embedded flight software systems, and soft computing technologies (i.e., neural networks, fuzzy logic, data mining, and Bayesian belief networks); some of which are briefed in this paper. For this effort, the targeted demonstration rocket engine testbed is the MC-1 engine (formerly FASTRAC) which is simulated with hardware and software in the Marshall Avionics & Software Testbed (MAST) laboratory that currently resides at NASA's Marshall Space Flight Center, building 4476, and is managed by the Avionics Department. A brief plan of action for design, development, implementation, and testing a Phase One effort for QRECS is given, along with expected results. Phase One will focus on development of a Smart Start Engine Module and a Mainstage Engine Module for proper engine start and mainstage engine operations. The overall intent is to demonstrate that by employing soft computing technologies, the quality and reliability of the overall scheme to engine controller development is further improved and vehicle safety is further insured. The final product that this paper proposes is an approach to development of an alternative low cost engine controller that would be capable of performing in unique vision spacecraft vehicles requiring low cost advanced avionics architectures for autonomous operations from engine pre-start to engine shutdown.
Emergency flight control system using one engine and fuel transfer
NASA Technical Reports Server (NTRS)
Burcham, Jr., Frank W. (Inventor); Burken, John J. (Inventor); Le, Jeanette (Inventor)
2000-01-01
A system for emergency aircraft control uses at least one engine and lateral fuel transfer that allows a pilot to regain control over an aircraft under emergency conditions. Where aircraft propulsion is available only through engines on one side of the aircraft, lateral fuel transfer provides means by which the center of gravity of the aircraft can be moved over to the wing associated with the operating engine, thus inducing a moment that balances the moment from the remaining engine, allowing the pilot to regain control over the aircraft. By implementing the present invention in flight control programming associated with a flight control computer (FCC), control of the aircraft under emergency conditions can be linked to the yoke or autopilot knob of the aircraft. Additionally, the center of gravity of the aircraft can be shifted in order to effect maneuvers and turns by spacing such center of gravity either closer to or farther away from the propelling engine or engines. In an alternative embodiment, aircraft having a third engine associated with the tail section or otherwise are accommodated and implemented by the present invention by appropriately shifting the center of gravity of the aircraft. Alternatively, where a four-engine aircraft has suffered loss of engine control on one side of the plane, the lateral fuel transfer may deliver the center of gravity closer to the two remaining engines. Differential thrust between the two can then control the pitch and roll of the aircraft in conjunction with lateral fuel transfer.
Design and Demonstration of Emergency Control Modes for Enhanced Engine Performance
NASA Technical Reports Server (NTRS)
Liu, Yuan; Litt, Jonathan S.; Guo, Ten-Huei
2013-01-01
A design concept is presented for developing control modes that enhance aircraft engine performance during emergency flight scenarios. The benefits of increased engine performance to overall vehicle survivability during these situations may outweigh the accompanied elevated risk of engine failure. The objective involves building control logic that can consistently increase engine performance beyond designed maximum levels based on an allowable heightened probability of failure. This concept is applied to two previously developed control modes: an overthrust mode that increases maximum engine thrust output and a faster response mode that improves thrust response to dynamic throttle commands. This paper describes the redesign of these control modes and presents simulation results demonstrating both enhanced engine performance and robust maintenance of the desired elevated risk level.
Advanced controls for airbreathing engines, volume 3: Allison gas turbine
NASA Technical Reports Server (NTRS)
Bough, R. M.
1993-01-01
The application of advanced control concepts to airbreathing engines may yield significant improvements in aircraft/engine performance and operability. Screening studies of advanced control concepts for airbreathing engines were conducted by three major domestic aircraft engine manufacturers to determine the potential impact of concepts on turbine engine performance and operability. The purpose of the studies was to identify concepts which offered high potential yet may incur high research and development risk. A target suite of proposed advanced control concepts was formulated and evaluated in a two-phase study to quantify each concept's impact on desired engine characteristics. To aid in the evaluation specific aircraft/engine combinations were considered: a Military High Performance Fighter mission, a High Speed Civil Transport mission, and a Civil Tiltrotor mission. Each of the advanced control concepts considered in the study are defined and described. The concept potential impact on engine performance was determined. Relevant figures of merit on which to evaluate the concepts are determined. Finally, the concepts are ranked with respect to the target aircraft/engine missions. A final report describing the screening studies was prepared by each engine manufacturer. Volume 3 of these reports describes the studies performed by the Allison Gas Turbine Division.
Advanced control for airbreathing engines, volume 1: Pratt and Whitney
NASA Technical Reports Server (NTRS)
Ralph, J. A.
1993-01-01
The application of advanced control concepts to air breathing engines may yield significant improvements in aircraft/engine performance and operability. Screening studies of advanced control concepts for air breathing engines were conducted by three major domestic aircraft engine manufacturers to determine the potential impact of concepts on turbine engine performance and operability. The purpose of the studies was to identify concepts which offered high potential yet may incur high research and development risk. A target suite of proposed advanced control concepts was formulated and evaluated in a two phase study to quantify each concept's impact on desired engine characteristics. To aid in the evaluation specific aircraft/engine combinations were considered: a Military High Performance Fighter mission, a High Speed Civil Transport mission, and a Civil Tiltrotor mission. Each of the advanced control concepts considered in the study are defined and described. The concept potential impact on engine performance was determined. Relevant figures of merit on which to evaluate the concepts are determined. Finally, the concepts are ranked with respect to the target aircraft/engine missions. A final report describing the screening studies was prepared by each engine manufacturer. Volume 1 of these reports describes the studies performed by Pratt & Whitney.
Design and development of the Waukesha Custom Engine Control Air/Fuel Module
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moss, D.W.
1996-12-31
The Waukesha Custom Engine Control Air/Fuel Module (AFM) is designed to control the air-fuel ratio for all Waukesha carbureted, gaseous fueled, industrial engine. The AFM is programmed with a personal computer to run in one of four control modes: catalyst, best power, best economy, or lean-burn. One system can control naturally aspirated, turbocharged, in-line or vee engines. The basic system consists of an oxygen sensing system, intake manifold pressure transducer, electronic control module, actuator and exhaust thermocouple. The system permits correct operation of Waukesha engines in spite of changes in fuel pressure or temperature, engine load or speed, and fuelmore » composition. The system utilizes closed loop control and is centered about oxygen sensing technology. An innovative approach to applying oxygen sensors to industrial engines provides very good performance, greatly prolongs sensor life, and maintains sensor accuracy. Design considerations and operating results are given for application of the system to stationary, industrial engines operating on fuel gases of greatly varying composition.« less
Adaptive critic learning techniques for engine torque and air-fuel ratio control.
Liu, Derong; Javaherian, Hossein; Kovalenko, Olesia; Huang, Ting
2008-08-01
A new approach for engine calibration and control is proposed. In this paper, we present our research results on the implementation of adaptive critic designs for self-learning control of automotive engines. A class of adaptive critic designs that can be classified as (model-free) action-dependent heuristic dynamic programming is used in this research project. The goals of the present learning control design for automotive engines include improved performance, reduced emissions, and maintained optimum performance under various operating conditions. Using the data from a test vehicle with a V8 engine, we developed a neural network model of the engine and neural network controllers based on the idea of approximate dynamic programming to achieve optimal control. We have developed and simulated self-learning neural network controllers for both engine torque (TRQ) and exhaust air-fuel ratio (AFR) control. The goal of TRQ control and AFR control is to track the commanded values. For both control problems, excellent neural network controller transient performance has been achieved.
Charge control microcomputer device for vehicle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morishita, M.; Kouge, S.
1986-08-26
A charge control microcomputer device is described for a vehicle, comprising: an AC generator driven by an engine for generating an output current, the generator having armature coils and a field coil; a battery charged by a rectified output of the generator and generating a terminal voltage; a voltage regulator for controlling a current flowing in the field coil, to control an output voltage of the generator to a predetermined value; an engine controlling microcomputer for receiving engine parameter data from the engine, to control the operation of the engine; a charge control microcomputer for processing input data including datamore » on at least one engine parameter output from the engine controlling microcomputer, and charge system data including at least one of battery terminal voltage data, generator voltage data and generator output current data, to provide a reference voltage for the voltage regulator.« less
Tracking and Control of Gas Turbine Engine Component Damage/Life
NASA Technical Reports Server (NTRS)
Jaw, Link C.; Wu, Dong N.; Bryg, David J.
2003-01-01
This paper describes damage mechanisms and the methods of controlling damages to extend the on-wing life of critical gas turbine engine components. Particularly, two types of damage mechanisms are discussed: creep/rupture and thermo-mechanical fatigue. To control these damages and extend the life of engine hot-section components, we have investigated two methodologies to be implemented as additional control logic for the on-board electronic control unit. This new logic, the life-extending control (LEC), interacts with the engine control and monitoring unit and modifies the fuel flow to reduce component damages in a flight mission. The LEC methodologies were demonstrated in a real-time, hardware-in-the-loop simulation. The results show that LEC is not only a new paradigm for engine control design, but also a promising technology for extending the service life of engine components, hence reducing the life cycle cost of the engine.
Code of Federal Regulations, 2010 CFR
2010-07-01
... engine's design or emission-control system. (b) To sell engines from an engine family with a revoked... under this subpart and how may I sell these engines again? 1048.340 Section 1048.340 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW...
Code of Federal Regulations, 2010 CFR
2010-07-01
... change the engine's design or emission control system. (b) To sell engines from an engine family with a... under this subpart and how may I sell these engines again? 1045.340 Section 1045.340 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK...
Model-Based Control of an Aircraft Engine using an Optimal Tuner Approach
NASA Technical Reports Server (NTRS)
Connolly, Joseph W.; Chicatelli, Amy; Garg, Sanjay
2012-01-01
This paper covers the development of a model-based engine control (MBEC) method- ology applied to an aircraft turbofan engine. Here, a linear model extracted from the Commercial Modular Aero-Propulsion System Simulation 40,000 (CMAPSS40k) at a cruise operating point serves as the engine and the on-board model. The on-board model is up- dated using an optimal tuner Kalman Filter (OTKF) estimation routine, which enables the on-board model to self-tune to account for engine performance variations. The focus here is on developing a methodology for MBEC with direct control of estimated parameters of interest such as thrust and stall margins. MBEC provides the ability for a tighter control bound of thrust over the entire life cycle of the engine that is not achievable using traditional control feedback, which uses engine pressure ratio or fan speed. CMAPSS40k is capable of modeling realistic engine performance, allowing for a verification of the MBEC tighter thrust control. In addition, investigations of using the MBEC to provide a surge limit for the controller limit logic are presented that could provide benefits over a simple acceleration schedule that is currently used in engine control architectures.
A top-down approach in control engineering third-level teaching: The case of hydrogen-generation
NASA Astrophysics Data System (ADS)
Setiawan, Eko; Habibi, M. Afnan; Fall, Cheikh; Hodaka, Ichijo
2017-09-01
This paper presents a top-down approach in control engineering third-level teaching. The paper shows the control engineering solution for the issue of practical implementation in order to motivate students. The proposed strategy only focuses on one technique of control engineering to lead student correctly. The proposed teaching steps are 1) defining the problem, 2) listing of acquired knowledge or required skill, 3) selecting of one control engineering technique, 4) arrangement the order of teaching: problem introduction, implementation of control engineering technique, explanation of system block diagram, model derivation, controller design, and 5) enrichment knowledge by the other control techniques. The approach presented highlights hardware implementation and the use of software simulation as a self-learning tool for students.
NASA Technical Reports Server (NTRS)
Csank, Jeffrey T.; Connolly, Joseph W.
2016-01-01
This paper discusses the design and application of model-based engine control (MBEC) for use during emergency operation of the aircraft. The MBEC methodology is applied to the Commercial Modular Aero-Propulsion System Simulation 40k (CMAPSS40k) and features an optimal tuner Kalman Filter (OTKF) to estimate unmeasured engine parameters, which can then be used for control. During an emergency scenario, normally-conservative engine operating limits may be relaxed to increase the performance of the engine and overall survivability of the aircraft; this comes at the cost of additional risk of an engine failure. The MBEC architecture offers the advantage of estimating key engine parameters that are not directly measureable. Estimating the unknown parameters allows for tighter control over these parameters, and on the level of risk the engine will operate at. This will allow the engine to achieve better performance than possible when operating to more conservative limits on a related, measurable parameter.
NASA Technical Reports Server (NTRS)
Csank, Jeffrey T.; Connolly, Joseph W.
2015-01-01
This paper discusses the design and application of model-based engine control (MBEC) for use during emergency operation of the aircraft. The MBEC methodology is applied to the Commercial Modular Aero-Propulsion System Simulation 40,000 (CMAPSS40,000) and features an optimal tuner Kalman Filter (OTKF) to estimate unmeasured engine parameters, which can then be used for control. During an emergency scenario, normally-conservative engine operating limits may be relaxed to increase the performance of the engine and overall survivability of the aircraft; this comes at the cost of additional risk of an engine failure. The MBEC architecture offers the advantage of estimating key engine parameters that are not directly measureable. Estimating the unknown parameters allows for tighter control over these parameters, and on the level of risk the engine will operate at. This will allow the engine to achieve better performance than possible when operating to more conservative limits on a related, measurable parameter.
Advanced Control Considerations for Turbofan Engine Design
NASA Technical Reports Server (NTRS)
Connolly, Joseph W.; Csank, Jeffrey T.; Chicatelli, Amy
2016-01-01
This paper covers the application of a model-based engine control (MBEC) methodology featuring a self tuning on-board model for an aircraft turbofan engine simulation. The nonlinear engine model is capable of modeling realistic engine performance, allowing for a verification of the advanced control methodology over a wide range of operating points and life cycle conditions. The on-board model is a piece-wise linear model derived from the nonlinear engine model and updated using an optimal tuner Kalman Filter estimation routine, which enables the on-board model to self-tune to account for engine performance variations. MBEC is used here to show how advanced control architectures can improve efficiency during the design phase of a turbofan engine by reducing conservative operability margins. The operability margins that can be reduced, such as stall margin, can expand the engine design space and offer potential for efficiency improvements. Application of MBEC architecture to a nonlinear engine simulation is shown to reduce the thrust specific fuel consumption by approximately 1% over the baseline design, while maintaining safe operation of the engine across the flight envelope.
Speed And Power Control Of An Engine By Modulation Of The Load Torque
Ziph, Benjamin; Strodtman, Scott; Rose, Thomas K
1999-01-26
A system and method of speed and power control for an engine in which speed and power of the engine is controlled by modulation of the load torque. The load torque is manipulated in order to cause engine speed, and hence power to be changed. To accomplish such control, the load torque undergoes a temporary excursion in the opposite direction of the desired speed and power change. The engine and the driven equipment will accelerate or decelerate accordingly as the load torque is decreased or increased, relative to the essentially fixed or constant engine torque. As the engine accelerates or decelerates, its power increases or decreases in proportion.
Energy Efficient Engine: Control system component performance report
NASA Technical Reports Server (NTRS)
Beitler, R. S.; Bennett, G. W.
1984-01-01
An Energy Efficient Engine (E3) program was established to develop technology for improving the energy efficiency of future commercial transport aircraft engines. As part of this program, General Electric designed and tested a new engine. The design, fabrication, bench and engine testing of the Full Authority Digital Electronic Control (FADEC) system used for controlling the E3 Demonstrator Engine is described. The system design was based on many of the proven concepts and component designs used on the General Electric family of engines. One significant difference is the use of the FADEC in place of hydromechanical computation currently used.
The Case for Distributed Engine Control in Turbo-Shaft Engine Systems
NASA Technical Reports Server (NTRS)
Culley, Dennis E.; Paluszewski, Paul J.; Storey, William; Smith, Bert J.
2009-01-01
The turbo-shaft engine is an important propulsion system used to power vehicles on land, sea, and in the air. As the power plant for many high performance helicopters, the characteristics of the engine and control are critical to proper vehicle operation as well as being the main determinant to overall vehicle performance. When applied to vertical flight, important distinctions exist in the turbo-shaft engine control system due to the high degree of dynamic coupling between the engine and airframe and the affect on vehicle handling characteristics. In this study, the impact of engine control system architecture is explored relative to engine performance, weight, reliability, safety, and overall cost. Comparison of the impact of architecture on these metrics is investigated as the control system is modified from a legacy centralized structure to a more distributed configuration. A composite strawman system which is typical of turbo-shaft engines in the 1000 to 2000 hp class is described and used for comparison. The overall benefits of these changes to control system architecture are assessed. The availability of supporting technologies to achieve this evolution is also discussed.
NASA Technical Reports Server (NTRS)
1978-01-01
A hybrid-computer simulation of the over the wing turbofan engine was constructed to develop the dynamic design of the control. This engine and control system includes a full authority digital electronic control using compressor stator reset to achieve fast thrust response and a modified Kalman filter to correct for sensor failures. Fast thrust response for powered-lift operations and accurate, fast responding, steady state control of the engine is provided. Simulation results for throttle bursts from 62 to 100 percent takeoff thrust predict that the engine will accelerate from 62 to 95 percent takeoff thrust in one second.
Application of real-time engine simulations to the development of propulsion system controls
NASA Technical Reports Server (NTRS)
Szuch, J. R.
1975-01-01
The development of digital controls for turbojet and turbofan engines is presented by the use of real-time computer simulations of the engines. The engine simulation provides a test-bed for evaluating new control laws and for checking and debugging control software and hardware prior to engine testing. The development and use of real-time, hybrid computer simulations of the Pratt and Whitney TF30-P-3 and F100-PW-100 augmented turbofans are described in support of a number of controls research programs at the Lewis Research Center. The role of engine simulations in solving the propulsion systems integration problem is also discussed.
40 CFR 1068.120 - What requirements must I follow to rebuild engines?
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) AIR POLLUTION CONTROLS GENERAL COMPLIANCE PROVISIONS FOR ENGINE PROGRAMS Prohibited Actions and... rebuilding an engine's turbocharger or aftercooler or the engine's systems for fuel metering or electronic control so that it significantly increases the service life of the engine. For these provisions...
Controls, health assessment, and conditional monitoring for large, reusable, liquid rocket engines
NASA Technical Reports Server (NTRS)
Cikanek, H. A., III
1986-01-01
Past and future progress in the performance of control systems for large, liquid rocket engines typified such as current state-of-the-art, the Shuttle Main Engine (SSME), is discussed. Details of the first decade of efforts, which culminates in the F-1 and J-2 Saturn engines control systems, are traced, noting problem modes and improvements which were implemented to realize the SSME. Future control system designs, to accommodate the requirements of operation of engines for a heavy lift launch vehicle, an orbital transfer vehicle and the aerospace plane, are summarized. Generic design upgrades needed include an expanded range of fault detection, maintenance as-needed instead of as-scheduled, reduced human involvement in engine operations, and increased control of internal engine states. Current NASA technology development programs aimed at meeting the future control system requirements are described.
Engine control system having pressure-based timing
Willi, Martin L [Dunlap, IL; Fiveland, Scott B [Metamora, IL; Montgomery, David T [Edelstein, IL; Gong, Weidong [Dunlap, IL
2011-10-04
A control system for an engine having a first cylinder and a second cylinder is disclosed having a first engine valve movable to regulate a fluid flow of the first cylinder and a first actuator associated with the first engine valve. The control system also has a second engine valve movable to regulate a fluid flow of the second cylinder and a sensor configured to generate a signal indicative of a pressure within the first cylinder. The control system also has a controller that is in communication with the first actuator and the sensor. The controller is configured to compare the pressure within the first cylinder with a desired pressure and selectively regulate the first actuator to adjust a timing of the first engine valve independently of the timing of the second engine valve based on the comparison.
Engine-start Control Strategy of P2 Parallel Hybrid Electric Vehicle
NASA Astrophysics Data System (ADS)
Xiangyang, Xu; Siqi, Zhao; Peng, Dong
2017-12-01
A smooth and fast engine-start process is important to parallel hybrid electric vehicles with an electric motor mounted in front of the transmission. However, there are some challenges during the engine-start control. Firstly, the electric motor must simultaneously provide a stable driving torque to ensure the drivability and a compensative torque to drag the engine before ignition. Secondly, engine-start time is a trade-off control objective because both fast start and smooth start have to be considered. To solve these problems, this paper first analyzed the resistance of the engine start process, and established a physic model in MATLAB/Simulink. Then a model-based coordinated control strategy among engine, motor and clutch was developed. Two basic control strategy during fast start and smooth start process were studied. Simulation results showed that the control objectives were realized by applying given control strategies, which can meet different requirement from the driver.
Flex Fuel Optimized SI and HCCI Engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Guoming; Schock, Harold; Yang, Xiaojian
The central objective of the proposed work is to demonstrate an HCCI (homogeneous charge compression ignition) capable SI (spark ignited) engine that is capable of fast and smooth mode transition between SI and HCCI combustion modes. The model-based control technique was used to develop and validate the proposed control strategy for the fast and smooth combustion mode transition based upon the developed control-oriented engine; and an HCCI capable SI engine was designed and constructed using production ready two-step valve-train with electrical variable valve timing actuating system. Finally, smooth combustion mode transition was demonstrated on a metal engine within eight enginemore » cycles. The Chrysler turbocharged 2.0L I4 direct injection engine was selected as the base engine for the project and the engine was modified to fit the two-step valve with electrical variable valve timing actuating system. To develop the model-based control strategy for stable HCCI combustion and smooth combustion mode transition between SI and HCCI combustion, a control-oriented real-time engine model was developed and implemented into the MSU HIL (hardware-in-the-loop) simulation environment. The developed model was used to study the engine actuating system requirement for the smooth and fast combustion mode transition and to develop the proposed mode transition control strategy. Finally, a single cylinder optical engine was designed and fabricated for studying the HCCI combustion characteristics. Optical engine combustion tests were conducted in both SI and HCCI combustion modes and the test results were used to calibrate the developed control-oriented engine model. Intensive GT-Power simulations were conducted to determine the optimal valve lift (high and low) and the cam phasing range. Delphi was selected to be the supplier for the two-step valve-train and Denso to be the electrical variable valve timing system supplier. A test bench was constructed to develop control strategies for the electrical variable valve timing (VVT) actuating system and satisfactory electrical VVT responses were obtained. Target engine control system was designed and fabricated at MSU for both single-cylinder optical and multi-cylinder metal engines. Finally, the developed control-oriented engine model was successfully implemented into the HIL simulation environment. The Chrysler 2.0L I4 DI engine was modified to fit the two-step vale with electrical variable valve timing actuating system. A used prototype engine was used as the base engine and the cylinder head was modified for the two-step valve with electrical VVT actuating system. Engine validation tests indicated that cylinder #3 has very high blow-by and it cannot be reduced with new pistons and rings. Due to the time constraint, it was decided to convert the four-cylinder engine into a single cylinder engine by blocking both intake and exhaust ports of the unused cylinders. The model-based combustion mode transition control algorithm was developed in the MSU HIL simulation environment and the Simulink based control strategy was implemented into the target engine controller. With both single-cylinder metal engine and control strategy ready, stable HCCI combustion was achived with COV of 2.1% Motoring tests were conducted to validate the actuator transient operations including valve lift, electrical variable valve timing, electronic throttle, multiple spark and injection controls. After the actuator operations were confirmed, 15-cycle smooth combustion mode transition from SI to HCCI combustion was achieved; and fast 8-cycle smooth combustion mode transition followed. With a fast electrical variable valve timing actuator, the number of engine cycles required for mode transition can be reduced down to five. It was also found that the combustion mode transition is sensitive to the charge air and engine coolant temperatures and regulating the corresponding temperatures to the target levels during the combustion mode transition is the key for a smooth combustion mode transition. As a summary, the proposed combustion mode transition strategy using the hybrid combustion mode that starts with the SI combustion and ends with the HCCI combustion was experimentally validated on a metal engine. The proposed model-based control approach made it possible to complete the SI-HCCI combustion mode transition within eight engine cycles utilizing the well controlled hybrid combustion mode. Without intensive control-oriented engine modeling and HIL simulation study of using the hybrid combustion mode during the mode transition, it would be impossible to validate the proposed combustion mode transition strategy in a very short period.« less
A Study on Aircraft Engine Control Systems for Integrated Flight and Propulsion Control
NASA Astrophysics Data System (ADS)
Yamane, Hideaki; Matsunaga, Yasushi; Kusakawa, Takeshi; Yasui, Hisako
The Integrated Flight and Propulsion Control (IFPC) for a highly maneuverable aircraft and a fighter-class engine with pitch/yaw thrust vectoring is described. Of the two IFPC functions the aircraft maneuver control utilizes the thrust vectoring based on aerodynamic control surfaces/thrust vectoring control allocation specified by the Integrated Control Unit (ICU) of a FADEC (Full Authority Digital Electronic Control) system. On the other hand in the Performance Seeking Control (PSC) the ICU identifies engine's various characteristic changes, optimizes manipulated variables and finally adjusts engine control parameters in cooperation with the Engine Control Unit (ECU). It is shown by hardware-in-the-loop simulation that the thrust vectoring can enhance aircraft maneuverability/agility and that the PSC can improve engine performance parameters such as SFC (specific fuel consumption), thrust and gas temperature.
14 CFR 25.865 - Fire protection of flight controls, engine mounts, and other flight structure.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Design and Construction Fire Protection § 25.865 Fire protection of flight controls, engine mounts, and other flight structure. Essential flight controls, engine mounts, and other flight structures located in... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fire protection of flight controls, engine...
14 CFR 25.865 - Fire protection of flight controls, engine mounts, and other flight structure.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Design and Construction Fire Protection § 25.865 Fire protection of flight controls, engine mounts, and other flight structure. Essential flight controls, engine mounts, and other flight structures located in... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fire protection of flight controls, engine...
14 CFR 23.865 - Fire protection of flight controls, engine mounts, and other flight structure.
Code of Federal Regulations, 2013 CFR
2013-01-01
... controls, engine mounts, and other flight structure. Flight controls, engine mounts, and other flight... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fire protection of flight controls, engine mounts, and other flight structure. 23.865 Section 23.865 Aeronautics and Space FEDERAL AVIATION...
14 CFR 25.865 - Fire protection of flight controls, engine mounts, and other flight structure.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Design and Construction Fire Protection § 25.865 Fire protection of flight controls, engine mounts, and other flight structure. Essential flight controls, engine mounts, and other flight structures located in... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fire protection of flight controls, engine...
14 CFR 23.865 - Fire protection of flight controls, engine mounts, and other flight structure.
Code of Federal Regulations, 2012 CFR
2012-01-01
... controls, engine mounts, and other flight structure. Flight controls, engine mounts, and other flight... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fire protection of flight controls, engine mounts, and other flight structure. 23.865 Section 23.865 Aeronautics and Space FEDERAL AVIATION...
14 CFR 23.865 - Fire protection of flight controls, engine mounts, and other flight structure.
Code of Federal Regulations, 2014 CFR
2014-01-01
... controls, engine mounts, and other flight structure. Flight controls, engine mounts, and other flight... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fire protection of flight controls, engine mounts, and other flight structure. 23.865 Section 23.865 Aeronautics and Space FEDERAL AVIATION...
14 CFR 23.865 - Fire protection of flight controls, engine mounts, and other flight structure.
Code of Federal Regulations, 2011 CFR
2011-01-01
... controls, engine mounts, and other flight structure. Flight controls, engine mounts, and other flight... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fire protection of flight controls, engine mounts, and other flight structure. 23.865 Section 23.865 Aeronautics and Space FEDERAL AVIATION...
14 CFR 25.865 - Fire protection of flight controls, engine mounts, and other flight structure.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Design and Construction Fire Protection § 25.865 Fire protection of flight controls, engine mounts, and other flight structure. Essential flight controls, engine mounts, and other flight structures located in... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fire protection of flight controls, engine...
14 CFR 23.865 - Fire protection of flight controls, engine mounts, and other flight structure.
Code of Federal Regulations, 2010 CFR
2010-01-01
... controls, engine mounts, and other flight structure. Flight controls, engine mounts, and other flight... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fire protection of flight controls, engine mounts, and other flight structure. 23.865 Section 23.865 Aeronautics and Space FEDERAL AVIATION...
14 CFR 25.865 - Fire protection of flight controls, engine mounts, and other flight structure.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Design and Construction Fire Protection § 25.865 Fire protection of flight controls, engine mounts, and other flight structure. Essential flight controls, engine mounts, and other flight structures located in... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fire protection of flight controls, engine...
Integrated Tools for Future Distributed Engine Control Technologies
NASA Technical Reports Server (NTRS)
Culley, Dennis; Thomas, Randy; Saus, Joseph
2013-01-01
Turbine engines are highly complex mechanical systems that are becoming increasingly dependent on control technologies to achieve system performance and safety metrics. However, the contribution of controls to these measurable system objectives is difficult to quantify due to a lack of tools capable of informing the decision makers. This shortcoming hinders technology insertion in the engine design process. NASA Glenn Research Center is developing a Hardware-inthe- Loop (HIL) platform and analysis tool set that will serve as a focal point for new control technologies, especially those related to the hardware development and integration of distributed engine control. The HIL platform is intended to enable rapid and detailed evaluation of new engine control applications, from conceptual design through hardware development, in order to quantify their impact on engine systems. This paper discusses the complex interactions of the control system, within the context of the larger engine system, and how new control technologies are changing that paradigm. The conceptual design of the new HIL platform is then described as a primary tool to address those interactions and how it will help feed the insertion of new technologies into future engine systems.
Sensor Needs for Control and Health Management of Intelligent Aircraft Engines
NASA Technical Reports Server (NTRS)
Simon, Donald L.; Gang, Sanjay; Hunter, Gary W.; Guo, Ten-Huei; Semega, Kenneth J.
2004-01-01
NASA and the U.S. Department of Defense are conducting programs which support the future vision of "intelligent" aircraft engines for enhancing the affordability, performance, operability, safety, and reliability of aircraft propulsion systems. Intelligent engines will have advanced control and health management capabilities enabling these engines to be self-diagnostic, self-prognostic, and adaptive to optimize performance based upon the current condition of the engine or the current mission of the vehicle. Sensors are a critical technology necessary to enable the intelligent engine vision as they are relied upon to accurately collect the data required for engine control and health management. This paper reviews the anticipated sensor requirements to support the future vision of intelligent engines from a control and health management perspective. Propulsion control and health management technologies are discussed in the broad areas of active component controls, propulsion health management and distributed controls. In each of these three areas individual technologies will be described, input parameters necessary for control feedback or health management will be discussed, and sensor performance specifications for measuring these parameters will be summarized.
Quiet Clean Short-haul Experimental Engine (QCSEE) under-the-wing engine simulation report
NASA Technical Reports Server (NTRS)
1977-01-01
Hybrid computer simulations of the under-the-wing engine were constructed to develop the dynamic design of the controls. The engine and control system includes a variable pitch fan and a digital electronic control. Simulation results for throttle bursts from 62 to 100 percent net thrust predict that the engine will accelerate 62 to 95 percent net thrust in one second.
NASA Astrophysics Data System (ADS)
Belapurkar, Rohit K.
Future aircraft engine control systems will be based on a distributed architecture, in which, the sensors and actuators will be connected to the Full Authority Digital Engine Control (FADEC) through an engine area network. Distributed engine control architecture will allow the implementation of advanced, active control techniques along with achieving weight reduction, improvement in performance and lower life cycle cost. The performance of a distributed engine control system is predominantly dependent on the performance of the communication network. Due to the serial data transmission policy, network-induced time delays and sampling jitter are introduced between the sensor/actuator nodes and the distributed FADEC. Communication network faults and transient node failures may result in data dropouts, which may not only degrade the control system performance but may even destabilize the engine control system. Three different architectures for a turbine engine control system based on a distributed framework are presented. A partially distributed control system for a turbo-shaft engine is designed based on ARINC 825 communication protocol. Stability conditions and control design methodology are developed for the proposed partially distributed turbo-shaft engine control system to guarantee the desired performance under the presence of network-induced time delay and random data loss due to transient sensor/actuator failures. A fault tolerant control design methodology is proposed to benefit from the availability of an additional system bandwidth and from the broadcast feature of the data network. It is shown that a reconfigurable fault tolerant control design can help to reduce the performance degradation in presence of node failures. A T-700 turbo-shaft engine model is used to validate the proposed control methodology based on both single input and multiple-input multiple-output control design techniques.
Using Engine Thrust for Emergency Flight Control: MD-11 and B-747 Results
NASA Technical Reports Server (NTRS)
Burcham, Frank W., Jr.; Maine, Trindel A.; Burken, John J.; Bull, John
1998-01-01
With modern digital control systems, using engine thrust for emergency flight control to supplement or replace failed aircraft normal flight controls has become a practical consideration. The NASA Dryden Flight Research Center has developed a propulsion-controlled aircraft (PCA) system in which computer-controlled engine thrust provides emergency flight control. An F-15 and an MD-11 airplane have been landed without using any flight control surfaces. Preliminary studies have also been conducted that show that engines on only one wing can provide some flight control capability if the lateral center of gravity can be shifted toward the side of the airplane that has the operating engine(s). Simulator tests of several airplanes with no flight control surfaces operating and all engines out on the left wing have all shown positive control capability within the available range of lateral center-of-gravity offset. Propulsion-controlled aircraft systems that can operate without modifications to engine control systems, thus allowing PCA technology to be installed on less capable airplanes or at low cost, are also desirable. Further studies have examined simplified 'PCA Lite' and 'PCA Ultralite' concepts in which thrust control is provided by existing systems such as auto-throttles or a combination of existing systems and manual pilot control.
40 CFR 1045.140 - What is my engine's maximum engine power?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 34 2013-07-01 2013-07-01 false What is my engine's maximum engine power? 1045.140 Section 1045.140 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS...
40 CFR 1045.140 - What is my engine's maximum engine power?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 34 2012-07-01 2012-07-01 false What is my engine's maximum engine power? 1045.140 Section 1045.140 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS...
40 CFR 1045.140 - What is my engine's maximum engine power?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 33 2011-07-01 2011-07-01 false What is my engine's maximum engine power? 1045.140 Section 1045.140 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS...
40 CFR 1048.101 - What exhaust emission standards must my engines meet?
Code of Federal Regulations, 2013 CFR
2013-07-01
... engineering analysis of information equivalent to such in-use data, such as data from research engines or... my engines meet? 1048.101 Section 1048.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES...
40 CFR 1048.101 - What exhaust emission standards must my engines meet?
Code of Federal Regulations, 2014 CFR
2014-07-01
... engineering analysis of information equivalent to such in-use data, such as data from research engines or... my engines meet? 1048.101 Section 1048.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES...
40 CFR 1048.101 - What exhaust emission standards must my engines meet?
Code of Federal Regulations, 2011 CFR
2011-07-01
... engineering analysis of information equivalent to such in-use data, such as data from research engines or... my engines meet? 1048.101 Section 1048.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES...
40 CFR 1048.101 - What exhaust emission standards must my engines meet?
Code of Federal Regulations, 2012 CFR
2012-07-01
... engineering analysis of information equivalent to such in-use data, such as data from research engines or... my engines meet? 1048.101 Section 1048.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES...
40 CFR 1033.235 - Emission testing required for certification.
Code of Federal Regulations, 2014 CFR
2014-07-01
... engine is used in both engine families. (2) You demonstrate to us that the differences in the two...) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM LOCOMOTIVES Certifying Engine Families § 1033.235... (or engine) from each engine family for testing. It may be a low mileage locomotive, or a development...
40 CFR 1033.235 - Emission testing required for certification.
Code of Federal Regulations, 2010 CFR
2010-07-01
... engine is used in both engine families. (2) You demonstrate to us that the differences in the two...) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM LOCOMOTIVES Certifying Engine Families § 1033.235... (or engine) from each engine family for testing. It may be a low mileage locomotive, or a development...
40 CFR 1033.235 - Emission testing required for certification.
Code of Federal Regulations, 2011 CFR
2011-07-01
... engine is used in both engine families. (2) You demonstrate to us that the differences in the two...) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM LOCOMOTIVES Certifying Engine Families § 1033.235... (or engine) from each engine family for testing. It may be a low mileage locomotive, or a development...
40 CFR 1033.235 - Emission testing required for certification.
Code of Federal Regulations, 2013 CFR
2013-07-01
... engine is used in both engine families. (2) You demonstrate to us that the differences in the two...) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM LOCOMOTIVES Certifying Engine Families § 1033.235... (or engine) from each engine family for testing. It may be a low mileage locomotive, or a development...
40 CFR 1033.235 - Emission testing required for certification.
Code of Federal Regulations, 2012 CFR
2012-07-01
... engine is used in both engine families. (2) You demonstrate to us that the differences in the two...) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM LOCOMOTIVES Certifying Engine Families § 1033.235... (or engine) from each engine family for testing. It may be a low mileage locomotive, or a development...
40 CFR 1045.140 - What is my engine's maximum engine power?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 32 2010-07-01 2010-07-01 false What is my engine's maximum engine power? 1045.140 Section 1045.140 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS...
Evaluation of an F100 multivariable control using a real-time engine simulation
NASA Technical Reports Server (NTRS)
Szuch, J. R.; Soeder, J. F.; Skira, C.
1977-01-01
The control evaluated has been designed for the F100-PW-100 turbofan engine. The F100 engine represents the current state-of-the-art in aircraft gas turbine technology. The control makes use of a multivariable, linear quadratic regulator. The evaluation procedure employed utilized a real-time hybrid computer simulation of the F100 engine and an implementation of the control logic on the NASA LeRC digital computer/controller. The results of the evaluation indicated that the control logic and its implementation will be capable of controlling the engine throughout its operating range.
Methods of Si based ceramic components volatilization control in a gas turbine engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia-Crespo, Andres Jose; Delvaux, John; Dion Ouellet, Noemie
A method of controlling volatilization of silicon based components in a gas turbine engine includes measuring, estimating and/or predicting a variable related to operation of the gas turbine engine; correlating the variable to determine an amount of silicon to control volatilization of the silicon based components in the gas turbine engine; and injecting silicon into the gas turbine engine to control volatilization of the silicon based components. A gas turbine with a compressor, combustion system, turbine section and silicon injection system may be controlled by a controller that implements the control method.
Idling speed control system of an internal combustion engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miyazaki, M.; Ishii, M.; Kako, H.
1986-09-16
This patent describes an idling speed control system of an internal combustion engine comprising: a valve device which controls the amount of intake air for the engine; an actuator which includes an electric motor for variably controlling the opening of the value device; rotation speed detector means for detecting the rotation speed of the engine; idling condition detector means for detecting the idling condition of the engine; feedback control means responsive to the detected output of the idling condition detector means for generating feedback control pulses to intermittently drive the electric motor so that the detected rotation speed of themore » engine under the idling condition may converge into a target idling rotation speed; and control means responsive to the output of detector means that detects an abnormally low rotation speed of the engine detected by the rotation speed detector means for generating control pulses that do not overlap the feedback control pulses to drive the electric motor in a predetermined direction.« less
Dynamic control of a homogeneous charge compression ignition engine
Duffy, Kevin P [Metamora, IL; Mehresh, Parag [Peoria, IL; Schuh, David [Peoria, IL; Kieser, Andrew J [Morton, IL; Hergart, Carl-Anders [Peoria, IL; Hardy, William L [Peoria, IL; Rodman, Anthony [Chillicothe, IL; Liechty, Michael P [Chillicothe, IL
2008-06-03
A homogenous charge compression ignition engine is operated by compressing a charge mixture of air, exhaust and fuel in a combustion chamber to an autoignition condition of the fuel. The engine may facilitate a transition from a first combination of speed and load to a second combination of speed and load by changing the charge mixture and compression ratio. This may be accomplished in a consecutive engine cycle by adjusting both a fuel injector control signal and a variable valve control signal away from a nominal variable valve control signal. Thereafter in one or more subsequent engine cycles, more sluggish adjustments are made to at least one of a geometric compression ratio control signal and an exhaust gas recirculation control signal to allow the variable valve control signal to be readjusted back toward its nominal variable valve control signal setting. By readjusting the variable valve control signal back toward its nominal setting, the engine will be ready for another transition to a new combination of engine speed and load.
37. ENGINE ROOM, FROM PORT SIDE OF CONTROL CONSOLE, LOOKING ...
37. ENGINE ROOM, FROM PORT SIDE OF CONTROL CONSOLE, LOOKING TOWARDS STERN, PORT ENGINE AT RIGHT, STARBOARD ENGINE AT LEFT, BOTH ARE DIESEL ENGINES, IN BACKGROUND IS STAIRS UP TO CREWS' BERTHING, BEYONE THE STAIRS IS THE DOOR TO AFT ENGINE ROOM & MACHINE SHOP. - U.S. Coast Guard Cutter WHITE HEATH, USGS Integrated Support Command Boston, 427 Commercial Street, Boston, Suffolk County, MA
NASA Astrophysics Data System (ADS)
Kim, Seonguk; Min, Kyoungdoug
2008-08-01
The CAI (controlled auto ignition) engine ignites fuel and air mixture by trapping high temperature burnt gas using a negative valve overlap. Due to auto ignition in CAI combustion, efficiency improvements and low level NOx emission can be obtained. Meanwhile, the CAI combustion regime is restricted and control parameters are limited. The start of combustion data in the compressed ignition engine are most critical for controlling the overall combustion. In this research, the engine block vibration signal is transformed by the Meyer wavelet to analyze CAI combustion more easily and accurately. Signal acquisition of the engine block vibration is a more suitable method for practical use than measurement of in-cylinder pressure. A new method for detecting combustion start in CAI engines through wavelet transformation of the engine block vibration signal was developed and results indicate that it is accurate enough to analyze the start of combustion. Experimental results show that wavelet transformation of engine block vibration can track the start of combustion in each cycle. From this newly developed method, the start of combustion data in CAI engines can be detected more easily and used as input data for controlling CAI combustion.
System identification of jet engines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sugiyama, N.
2000-01-01
System identification plays an important role in advanced control systems for jet engines, in which controls are performed adaptively using data from the actual engine and the identified engine. An identification technique for jet engine using the Constant Gain Extended Kalman Filter (CGEKF) is described. The filter is constructed for a two-spool turbofan engine. The CGEKF filter developed here can recognize parameter change in engine components and estimate unmeasurable variables over whole flight conditions. These capabilities are useful for an advanced Full Authority Digital Electric Control (FADEC). Effects of measurement noise and bias, effects of operating point and unpredicted performancemore » change are discussed. Some experimental results using the actual engine are shown to evaluate the effectiveness of CGEKF filter.« less
2006-09-01
MONITORING , AND PROGNOSTICS Alireza R. Behbahani Controls / Engine Health Management Turbine Engine Division / PRTS U.S. Air Force Research...Technical Report 2005. 8. Greitzer, Frank et al, “Gas Turbine Engine Health Monitoring and Prognostics ”, International Society of Logistics (SOLE...AFRL-PR-WP-TP-2007-217 NEED FOR ROBUST SENSORS FOR INHERENTLY FAIL-SAFE GAS TURBINE ENGINE CONTROLS, MONITORING , AND PROGNOSTICS (POSTPRINT
NASA Astrophysics Data System (ADS)
Ejiri, Arata; Sasaki, Jun; Kinoshita, Yusuke; Fujimoto, Junya; Maruyama, Tsugito; Shimotani, Keiji
For the purpose of contributing to global environment protection, several research studies have been conducted involving clean-burning diesel engines. In recent diesel engines with Exhaust Gas Recirculation (EGR) systems and a Variable Nozzle Turbocharger (VNT), mutual interference between EGR and VNT has been noted. Hence, designing and adjusting control of the conventional PID controller is particularly difficult at the transient state in which the engine speed and fuel injection rate change. In this paper, we formulate 1st principal model of air intake system of diesel engines and transform it to control oriented model including an engine steady state model and a transient model. And we propose a model-based control system with the LQR Controller, Saturation Compensator, the Dynamic Feed-forward and Disturbance Observer using a transient model. Using this method, we achieved precise reference tracking and emission reduction in transient mode test with the real engine evaluations.
Control Design for an Advanced Geared Turbofan Engine
NASA Technical Reports Server (NTRS)
Chapman, Jeffryes W.; Litt, Jonathan S.
2017-01-01
This paper describes the design process for the control system of an advanced geared turbofan engine. This process is applied to a simulation that is representative of a 30,000 pound-force thrust class concept engine with two main spools, ultra-high bypass ratio, and a variable area fan nozzle. Control system requirements constrain the non-linear engine model as it operates throughout its flight envelope of sea level to 40,000 feet and from 0 to 0.8 Mach. The purpose of this paper is to review the engine control design process for an advanced turbofan engine configuration. The control architecture selected for this project was developed from literature and reflects a configuration that utilizes a proportional integral controller with sets of limiters that enable the engine to operate safely throughout its flight envelope. Simulation results show the overall system meets performance requirements without exceeding operational limits.
Hydrogen-methane fuel control systems for turbojet engines
NASA Technical Reports Server (NTRS)
Goldsmith, J. S.; Bennett, G. W.
1973-01-01
Design, development, and test of a fuel conditioning and control system utilizing liquid methane (natural gas) and liquid hydrogen fuels for operation of a J85 jet engine were performed. The experimental program evaluated the stability and response of an engine fuel control employing liquid pumping of cryogenic fuels, gasification of the fuels at supercritical pressure, and gaseous metering and control. Acceptably stable and responsive control of the engine was demonstrated throughout the sea level power range for liquid gas fuel and up to 88 percent engine speed using liquid hydrogen fuel.
NASA Technical Reports Server (NTRS)
Delaat, J. C.; Soeder, J. F.
1983-01-01
High speed minicomputers were used in the past to implement advanced digital control algorithms for turbine engines. These minicomputers are typically large and expensive. It is desirable for a number of reasons to use microprocessor-based systems for future controls research. They are relatively compact, inexpensive, and are representative of the hardware that would be used for actual engine-mounted controls. The Control, Interface, and Monitoring Unit (CIM) contains a microprocessor-based controls computer, necessary interface hardware and a system to monitor while it is running an engine. It is presently being used to evaluate an advanced turbofan engine control algorithm.
Manufacturing engineering: Principles for optimization
NASA Astrophysics Data System (ADS)
Koenig, Daniel T.
Various subjects in the area of manufacturing engineering are addressed. The topics considered include: manufacturing engineering organization concepts and management techniques, factory capacity and loading techniques, capital equipment programs, machine tool and equipment selection and implementation, producibility engineering, methods, planning and work management, and process control engineering in job shops. Also discussed are: maintenance engineering, numerical control of machine tools, fundamentals of computer-aided design/computer-aided manufacture, computer-aided process planning and data collection, group technology basis for plant layout, environmental control and safety, and the Integrated Productivity Improvement Program.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-19
... CFR Parts 1910 and 1926 Interpretation of OSHA's Provisions for Feasible Administrative or Engineering... feasible administrative or engineering controls as used in the applicable sections of OSHA's General... administrative or engineering controls rather than personal protective equipment (PPE) to reduce noise exposures...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-14
... CFR Parts 1910 and 1926 Interpretation of OSHA's Provisions for Feasible Administrative or Engineering... Administrative or Engineering Controls of Occupational Noise, giving interested parties 60 days to comment. The... Provisions for Feasible Administrative or Engineering Controls of Occupational Noise. The notice proposed to...
14 CFR 23.149 - Minimum control speed.
Code of Federal Regulations, 2012 CFR
2012-01-01
... extended; and (5) All propeller controls in the position recommended for approach with all engines... engine is suddenly made inoperative, it is possible to maintain control of the airplane with that engine... not more than 5 degrees. The method used to simulate critical engine failure must represent the most...
14 CFR 23.149 - Minimum control speed.
Code of Federal Regulations, 2014 CFR
2014-01-01
... extended; and (5) All propeller controls in the position recommended for approach with all engines... engine is suddenly made inoperative, it is possible to maintain control of the airplane with that engine... not more than 5 degrees. The method used to simulate critical engine failure must represent the most...
40 CFR 1042.635 - National security exemption.
Code of Federal Regulations, 2012 CFR
2012-07-01
... CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Special... CONTROL INFORMATION”. (2) Your corporate name and trademark. (3) Engine displacement, family... prohibitions in § 1068.101(a)(1) do not apply to engines exempted under this section. (a) An engine is exempt...
40 CFR 1042.635 - National security exemption.
Code of Federal Regulations, 2011 CFR
2011-07-01
... CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Special... CONTROL INFORMATION”. (2) Your corporate name and trademark. (3) Engine displacement, family... prohibitions in § 1068.101(a)(1) do not apply to engines exempted under this section. (a) An engine is exempt...
40 CFR 1042.635 - National security exemption.
Code of Federal Regulations, 2014 CFR
2014-07-01
... CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Special... CONTROL INFORMATION”. (2) Your corporate name and trademark. (3) Engine displacement, family... prohibitions in § 1068.101(a)(1) do not apply to engines exempted under this section. (a) An engine is exempt...
40 CFR 1042.635 - National security exemption.
Code of Federal Regulations, 2010 CFR
2010-07-01
... CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Special... CONTROL INFORMATION”. (2) Your corporate name and trademark. (3) Engine displacement, family... prohibitions in § 1068.101(a)(1) do not apply to engines exempted under this section. (a) An engine is exempt...
40 CFR 1042.635 - National security exemption.
Code of Federal Regulations, 2013 CFR
2013-07-01
... CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Special... CONTROL INFORMATION”. (2) Your corporate name and trademark. (3) Engine displacement, family... prohibitions in § 1068.101(a)(1) do not apply to engines exempted under this section. (a) An engine is exempt...
The Effect of Modified Control Limits on the Performance of a Generic Commercial Aircraft Engine
NASA Technical Reports Server (NTRS)
Csank, Jeffrey T.; May, Ryan D.; Gou, Ten-Huei; Litt, Jonathan S.
2012-01-01
This paper studies the effect of modifying the control limits of an aircraft engine to obtain additional performance. In an emergency situation, the ability to operate an engine above its normal operating limits and thereby gain additional performance may aid in the recovery of a distressed aircraft. However, the modification of an engine s limits is complex due to the risk of an engine failure. This paper focuses on the tradeoff between enhanced performance and risk of either incurring a mechanical engine failure or compromising engine operability. The ultimate goal is to increase the engine performance, without a large increase in risk of an engine failure, in order to increase the probability of recovering the distressed aircraft. The control limit modifications proposed are to extend the rotor speeds, temperatures, and pressures to allow more thrust to be produced by the engine, or to increase the rotor accelerations and allow the engine to follow a fast transient. These modifications do result in increased performance; however this study indicates that these modifications also lead to an increased risk of engine failure.
Development of a helicopter rotor/propulsion system dynamics analysis
NASA Technical Reports Server (NTRS)
Warmbrodt, W.; Hull, R.
1982-01-01
A time-domain analysis of coupled engine/drive train/rotor dynamics of a twin-engine, single main rotor helicopter model has been performed. The analysis incorporates an existing helicopter model with nonlinear simulations of a helicopter turboshaft engine and its fuel controller. System dynamic behavior is studied using the resulting simulation which included representations for the two engines and their fuel controllers, drive system, main rotor, tail rotor, and aircraft rigid body motions. Time histories of engine and rotor RPM response to pilot control inputs are studied for a baseline rotor and propulsion system model. Sensitivity of rotor RPM droop to fuel controller gain changes and collective input feed-forward gain changes are studied. Torque-load-sharing between the two engines is investigated by making changes in the fuel controller feedback paths. A linear engine model is derived from the nonlinear engine simulation and used in the coupled system analysis. This four-state linear engine model is then reduced to a three-state model. The effect of this simplification on coupled system behavior is shown.
Charge control microcomputer device for vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morishita, M.; Kouge, S.
1986-10-14
This patent describes a charge control microcomputer device for a vehicle, comprising: speed changing means for transmitting the output torque of an engine. The speed changing means includes a slip clutch means having an output with a variable slippage amount with respect to its input and controlled in accordance with an operating instruction. The speed changing means further includes a speed change gear for changing the rotational speed input thereto at an output thereto, the speed change gear receiving the output of the slip clutch means; a charging generator driven by the output of the speed change gear; a batterymore » charged by an output voltage of the charging generator; a voltage regulator for controlling the output voltage of the charging generator to a predetermined value; an engine controlling microcomputer for receiving data from the engine, to control the engine, the engine data comprising at least an engine speed signal; a charge control microcomputer for processing engine data from the engine controlling microcomputer and charge system data including terminal voltage data from the battery and generated voltage data from the changing generator; and a display unit for displaying detection data, including fault detection data, form the charge control microcomputer.« less
40 CFR 1048.401 - What testing requirements apply to my engines that have gone into service?
Code of Federal Regulations, 2010 CFR
2010-07-01
... engines that have gone into service? 1048.401 Section 1048.401 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES Testing In-use Engines § 1048.401 What testing requirements apply to my engines that have...
40 CFR 1051.301 - When must I test my production-line vehicles or engines?
Code of Federal Regulations, 2010 CFR
2010-07-01
... vehicles or engines? 1051.301 Section 1051.301 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM RECREATIONAL ENGINES AND VEHICLES Testing Production-Line Vehicles and Engines § 1051.301 When must I test my production-line vehicles or engines? (a...
40 CFR 1051.230 - How do I select engine families?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 32 2010-07-01 2010-07-01 false How do I select engine families? 1051... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM RECREATIONAL ENGINES AND VEHICLES Certifying Engine Families § 1051.230 How do I select engine families? (a) For purposes of certification, divide your product line...
40 CFR 1051.230 - How do I select engine families?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 34 2013-07-01 2013-07-01 false How do I select engine families? 1051... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM RECREATIONAL ENGINES AND VEHICLES Certifying Engine Families § 1051.230 How do I select engine families? (a) For purposes of certification, divide your product line...
40 CFR 1051.230 - How do I select engine families?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 34 2012-07-01 2012-07-01 false How do I select engine families? 1051... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM RECREATIONAL ENGINES AND VEHICLES Certifying Engine Families § 1051.230 How do I select engine families? (a) For purposes of certification, divide your product line...
40 CFR 1051.230 - How do I select engine families?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 33 2011-07-01 2011-07-01 false How do I select engine families? 1051... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM RECREATIONAL ENGINES AND VEHICLES Certifying Engine Families § 1051.230 How do I select engine families? (a) For purposes of certification, divide your product line...
40 CFR 1051.230 - How do I select engine families?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 33 2014-07-01 2014-07-01 false How do I select engine families? 1051... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM RECREATIONAL ENGINES AND VEHICLES Certifying Engine Families § 1051.230 How do I select engine families? (a) For purposes of certification, divide your product line...
40 CFR 86.096-24 - Test vehicles and engines.
Code of Federal Regulations, 2010 CFR
2010-07-01
... certification must be grouped based upon similar engine design and emission control system characteristics. Each... family will be divided into groups based upon their exhaust emission control systems. One engine of each... vehicle designs of equal number to the number of engine families within the engine family group, up to a...
40 CFR 1042.845 - Remanufactured engine families.
Code of Federal Regulations, 2012 CFR
2012-07-01
... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS... group Category 1 and Category 2 engines in the same family. (b) In general, group engines in the same... fuels with which the engine is intended or designed to be operated). (2) The cooling system (for example...
40 CFR 1042.845 - Remanufactured engine families.
Code of Federal Regulations, 2011 CFR
2011-07-01
... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS... group Category 1 and Category 2 engines in the same family. (b) In general, group engines in the same... fuels with which the engine is intended or designed to be operated). (2) The cooling system (for example...
40 CFR 86.096-24 - Test vehicles and engines.
Code of Federal Regulations, 2013 CFR
2013-07-01
... certification must be grouped based upon similar engine design and emission control system characteristics. Each... family will be divided into groups based upon their exhaust emission control systems. One engine of each... vehicle designs of equal number to the number of engine families within the engine family group, up to a...
40 CFR 1042.845 - Remanufactured engine families.
Code of Federal Regulations, 2014 CFR
2014-07-01
... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS... group Category 1 and Category 2 engines in the same family. (b) In general, group engines in the same... fuels with which the engine is intended or designed to be operated). (2) The cooling system (for example...
40 CFR 1042.845 - Remanufactured engine families.
Code of Federal Regulations, 2010 CFR
2010-07-01
... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS... group Category 1 and Category 2 engines in the same family. (b) In general, group engines in the same... fuels with which the engine is intended or designed to be operated). (2) The cooling system (for example...
40 CFR 1042.845 - Remanufactured engine families.
Code of Federal Regulations, 2013 CFR
2013-07-01
... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS... group Category 1 and Category 2 engines in the same family. (b) In general, group engines in the same... fuels with which the engine is intended or designed to be operated). (2) The cooling system (for example...
40 CFR 86.096-24 - Test vehicles and engines.
Code of Federal Regulations, 2011 CFR
2011-07-01
... certification must be grouped based upon similar engine design and emission control system characteristics. Each... family will be divided into groups based upon their exhaust emission control systems. One engine of each... vehicle designs of equal number to the number of engine families within the engine family group, up to a...
40 CFR 1048.310 - How must I select engines for production-line testing?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 32 2010-07-01 2010-07-01 false How must I select engines for... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES Testing Production-line Engines § 1048.310 How must I select engines for production-line testing? (a) Use...
40 CFR 1036.230 - Selecting engine families.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Selecting engine families. 1036.230... CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE HEAVY-DUTY HIGHWAY ENGINES Certifying Engine Families § 1036.230 Selecting engine families. See 40 CFR 86.001-24 for instructions on how to divide your product...
NASA Technical Reports Server (NTRS)
Hrach, F. J.; Arpasi, D. J.; Bruton, W. M.
1975-01-01
A self-learning, sensor fail-operational, control system for the TF30-P-3 afterburning turbofan engine was designed and evaluated. The sensor fail-operational control system includes a digital computer program designed to operate in conjunction with the standard TF30-P-3 bill-of-materials control. Four engine measurements and two compressor face measurements are tested. If any engine measurements are found to have failed, they are replaced by values synthesized from computer-stored information. The control system was evaluated by using a realtime, nonlinear, hybrid computer engine simulation at sea level static condition, at a typical cruise condition, and at several extreme flight conditions. Results indicate that the addition of such a system can improve the reliability of an engine digital control system.
Sea-level evaluation of digitally implemented turbojet engine control functions
NASA Technical Reports Server (NTRS)
Arpasi, D. J.; Cwynar, D. S.; Wallhagen, R. E.
1972-01-01
The standard hydromechanical control system of a turbojet engine was replaced with a digital control system that implemented the same control laws. A detailed discussion of the digital control system in use with the engine is presented. The engine was operated in a sea-level test stand. The effects of control update interval are defined, and a method for extending this interval by using digital compensation is discussed.
Aircraft Engine-Monitoring System And Display
NASA Technical Reports Server (NTRS)
Abbott, Terence S.; Person, Lee H., Jr.
1992-01-01
Proposed Engine Health Monitoring System and Display (EHMSD) provides enhanced means for pilot to control and monitor performances of engines. Processes raw sensor data into information meaningful to pilot. Provides graphical information about performance capabilities, current performance, and operational conditions in components or subsystems of engines. Provides means to control engine thrust directly and innovative means to monitor performance of engine system rapidly and reliably. Features reduce pilot workload and increase operational safety.
Evaluation of an F100 multivariable control using a real-time engine simulation
NASA Technical Reports Server (NTRS)
Szuch, J. R.; Skira, C.; Soeder, J. F.
1977-01-01
A multivariable control design for the F100 turbofan engine was evaluated, as part of the F100 multivariable control synthesis (MVCS) program. The evaluation utilized a real-time, hybrid computer simulation of the engine and a digital computer implementation of the control. Significant results of the evaluation are presented and recommendations concerning future engine testing of the control are made.
Control technology for future aircraft propulsion systems
NASA Technical Reports Server (NTRS)
Zeller, J. R.; Szuch, J. R.; Merrill, W. C.; Lehtinen, B.; Soeder, J. F.
1984-01-01
The need for a more sophisticated engine control system is discussed. The improvements in better thrust-to-weight ratios demand the manipulation of more control inputs. New technological solutions to the engine control problem are practiced. The digital electronic engine control (DEEC) system is a step in the evolution to digital electronic engine control. Technology issues are addressed to ensure a growth in confidence in sophisticated electronic controls for aircraft turbine engines. The need of a control system architecture which permits propulsion controls to be functionally integrated with other aircraft systems is established. Areas of technology studied include: (1) control design methodology; (2) improved modeling and simulation methods; and (3) implementation technologies. Objectives, results and future thrusts are summarized.
Frank, Andrew A.
1984-01-01
A control system and method for a power delivery system, such as in an automotive vehicle, having an engine coupled to a continuously variable ratio transmission (CVT). Totally independent control of engine and transmission enable the engine to precisely follow a desired operating characteristic, such as the ideal operating line for minimum fuel consumption. CVT ratio is controlled as a function of commanded power or torque and measured load, while engine fuel requirements (e.g., throttle position) are strictly a function of measured engine speed. Fuel requirements are therefore precisely adjusted in accordance with the ideal characteristic for any load placed on the engine.
Diesel engine torsional vibration control coupling with speed control system
NASA Astrophysics Data System (ADS)
Guo, Yibin; Li, Wanyou; Yu, Shuwen; Han, Xiao; Yuan, Yunbo; Wang, Zhipeng; Ma, Xiuzhen
2017-09-01
The coupling problems between shafting torsional vibration and speed control system of diesel engine are very common. Neglecting the coupling problems sometimes lead to serious oscillation and vibration during the operation of engines. For example, during the propulsion shafting operation of a diesel engine, the oscillation of engine speed and the severe vibration of gear box occur which cause the engine is unable to operate. To find the cause of the malfunctions, a simulation model coupling the speed control system with the torsional vibration of deformable shafting is proposed and investigated. In the coupling model, the shafting is simplified to be a deformable one which consists of several inertias and shaft sections and with characteristics of torsional vibration. The results of instantaneous rotation speed from this proposed model agree with the test results very well and are successful in reflecting the real oscillation state of the engine operation. Furthermore, using the proposed model, the speed control parameters can be tuned up to predict the diesel engine a stable and safe running. The results from the tests on the diesel engine with a set of tuned control parameters are consistent with the simulation results very well.
On-Board Real-Time Optimization Control for Turbo-Fan Engine Life Extending
NASA Astrophysics Data System (ADS)
Zheng, Qiangang; Zhang, Haibo; Miao, Lizhen; Sun, Fengyong
2017-11-01
A real-time optimization control method is proposed to extend turbo-fan engine service life. This real-time optimization control is based on an on-board engine mode, which is devised by a MRR-LSSVR (multi-input multi-output recursive reduced least squares support vector regression method). To solve the optimization problem, a FSQP (feasible sequential quadratic programming) algorithm is utilized. The thermal mechanical fatigue is taken into account during the optimization process. Furthermore, to describe the engine life decaying, a thermal mechanical fatigue model of engine acceleration process is established. The optimization objective function not only contains the sub-item which can get fast response of the engine, but also concludes the sub-item of the total mechanical strain range which has positive relationship to engine fatigue life. Finally, the simulations of the conventional optimization control which just consider engine acceleration performance or the proposed optimization method have been conducted. The simulations demonstrate that the time of the two control methods from idle to 99.5 % of the maximum power are equal. However, the engine life using the proposed optimization method could be surprisingly increased by 36.17 % compared with that using conventional optimization control.
NASA Astrophysics Data System (ADS)
Lee, D. Y.; Park, Y. K.; Choi, S. B.; Lee, H. G.
2009-07-01
An engine is one of the most dominant noise and vibration sources in vehicle systems. Therefore, in order to resolve noise and vibration problems due to engine, various types of engine mounts have been proposed. This work presents a new type of active engine mount system featuring a magneto-rheological (MR) fluid and a piezostack actuator. As a first step, six degrees-of freedom dynamic model of an in-line four-cylinder engine which has three points mounting system is derived by considering the dynamic behaviors of MR mount and piezostack mount. In the configuration of engine mount system, two MR mounts are installed for vibration control of roll mode motion whose energy is very high in low frequency range, while one piezostack mount is installed for vibration control of bounce and pitch mode motion whose energy is relatively high in high frequency range. As a second step, linear quadratic regulator (LQR) controller is synthesized to actively control the imposed vibration. In order to demonstrate the effectiveness of the proposed active engine mount, vibration control performances are evaluated under various engine operating speeds (wide frequency range).
Performance Benefits for a Turboshaft Engine Using Nonlinear Engine Control Technology Investigated
NASA Technical Reports Server (NTRS)
Jones, Scott M.
2004-01-01
The potential benefits of nonlinear engine control technology applied to a General Electric T700 helicopter engine were investigated. This technology is being developed by the U.S. Navy SPAWAR Systems Center for a variety of applications. When used as a means of active stability control, nonlinear engine control technology uses sensors and small amounts of injected air to allow compressors to operate with reduced stall margin, which can improve engine pressure ratio. The focus of this study was to determine the best achievable reduction in fuel consumption for the T700 turboshaft engine. A customer deck (computer code) was provided by General Electric to calculate the T700 engine performance, and the NASA Glenn Research Center used this code to perform the analysis. The results showed a 2- to 5-percent reduction in brake specific fuel consumption (BSFC) at the three Sikorsky H-60 helicopter operating points of cruise, loiter, and hover.
Variable cycle engines for advanced supersonic transports
NASA Technical Reports Server (NTRS)
Howlett, R. A.; Kozlowski, H.
1975-01-01
Variable Cycle Engines being studied for advanced commercial supersonic transports show potential for significant environmental and economic improvements relative to 1st generation SST engines. The two most promising concepts are: a Variable Stream Control Engine and a Variable Cycle Engine with a rear flow-control valve. Each concept utilizes variable components and separate burners to provide independent temperature and velocity control for two coannular flow streams. Unique fuel control techniques are combined with cycle characteristics that provide low fuel consumption, similar to a turbojet engine, for supersonic operation. This is accomplished while retaining the good subsonic performance features of a turbofan engine. A two-stream coannular nozzle shows potential to reduce jet noise to below FAR Part 36 without suppressors. Advanced burner concepts have the potential for significant reductions in exhaust emissions. In total, these unique engine concepts have the potential for significant overall improvements to the environmental and economic characteristics of advanced supersonic transports.
Advanced online control mode selection for gas turbine aircraft engines
NASA Astrophysics Data System (ADS)
Wiseman, Matthew William
The modern gas turbine aircraft engine is a complex, highly nonlinear system the operates in a widely varying environment. Traditional engine control techniques based on the hydro mechanical control concepts of early turbojet engines are unable to deliver the performance required from today's advanced engine designs. A new type of advanced control utilizing multiple control modes and an online mode selector is investigated, and various strategies for improving the baseline mode selection architecture are introduced. The ability to five-tune actuator command outputs is added to the basic mode selection and blending process, and mode selection designs that we valid for the entire flight envelope are presented. Methods for optimizing the mode selector to improve overall engine performance are also discussed. Finally, using flight test data from a GE F110-powered F16 aircraft, the full-envelope mode selector designs are validated and shown to provide significant performance benefits. Specifically, thrust command tracking is enhanced while critical engine limits are protected, with very little impact on engine efficiency.
MD-11 PCA - Research flight team photo
NASA Technical Reports Server (NTRS)
1995-01-01
On Aug. 30, 1995, a the McDonnell Douglas MD-11 transport aircraft landed equipped with a computer-assisted engine control system that has the potential to increase flight safety. In landings at NASA Dryden Flight Research Center, Edwards, California, on August 29 and 30, the aircraft demonstrated software used in the aircraft's flight control computer that essentially landed the MD-11 without a need for the pilot to manipulate the flight controls significantly. In partnership with McDonnell Douglas Aerospace (MDA), with Pratt & Whitney and Honeywell helping to design the software, NASA developed this propulsion-controlled aircraft (PCA) system following a series of incidents in which hydraulic failures resulted in the loss of flight controls. This new system enables a pilot to operate and land the aircraft safely when its normal, hydraulically-activated control surfaces are disabled. This August 29, 1995, photo shows the MD-11 team. Back row, left to right: Tim Dingen, MDA pilot; John Miller, MD-11 Chief pilot (MDA); Wayne Anselmo, MD-11 Flight Test Engineer (MDA); Gordon Fullerton, PCA Project pilot; Bill Burcham, PCA Chief Engineer; Rudey Duran, PCA Controls Engineer (MDA); John Feather, PCA Controls Engineer (MDA); Daryl Townsend, Crew Chief; Henry Hernandez, aircraft mechanic; Bob Baron, PCA Project Manager; Don Hermann, aircraft mechanic; Jerry Cousins, aircraft mechanic; Eric Petersen, PCA Manager (Honeywell); Trindel Maine, PCA Data Engineer; Jeff Kahler, PCA Software Engineer (Honeywell); Steve Goldthorpe, PCA Controls Engineer (MDA). Front row, left to right: Teresa Hass, Senior Project Management Analyst; Hollie Allingham (Aguilera), Senior Project Management Analyst; Taher Zeglum, PCA Data Engineer (MDA); Drew Pappas, PCA Project Manager (MDA); John Burken, PCA Control Engineer.
Altitude Wind Tunnel Control Room at the Aircraft Engine Research Laboratory
1944-07-21
Operators in the control room for the Altitude Wind Tunnel at the National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory remotely operate a Wright R–3350 engine in the tunnel’s test section. Four of the engines were used to power the B–29 Superfortress, a critical weapon in the Pacific theater during World War II. The wind tunnel, which had been in operation for approximately six months, was the nation’s only wind tunnel capable of testing full-scale engines in simulated altitude conditions. The soundproof control room was used to operate the wind tunnel and control the engine being run in the test section. The operators worked with assistants in the adjacent Exhauster Building and Refrigeration Building to manage the large altitude simulation systems. The operator at the center console controlled the tunnel’s drive fan and operated the engine in the test section. Two sets of pneumatic levers near his right forearm controlled engine fuel flow, speed, and cooling. Panels on the opposite wall, out of view to the left, were used to manage the combustion air, refrigeration, and exhauster systems. The control panel also displayed the master air speed, altitude, and temperature gauges, as well as a plethora of pressure, temperature, and airflow readings from different locations on the engine. The operator to the right monitored the manometer tubes to determine the pressure levels. Despite just being a few feet away from the roaring engine, the control room remained quiet during the tests.
75 FR 7027 - Airworthiness Directives; Turbomeca Arriel 2S1 Turboshaft Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-16
... operating in manual control mode. The loss of full automatic control of engine 1 was caused by loss of steps... control of engine 1 was caused by loss of steps of the stepper motor controlling the fuel metering valve... engine induced by the loss of steps of the stepper motor during acceleration up to OEI 30-second rating...
21. VIEW TO NORTHWEST, ENGINE/PUMP HOUSE EXTENSION, HIGH PRESSURE PISTON ...
21. VIEW TO NORTHWEST, ENGINE/PUMP HOUSE EXTENSION, HIGH PRESSURE PISTON OF STEAM ENGINE NO. 4; CONTROL PANEL MOUNTED ON THE ENGINE; FLOOR VALVES CONTROL THE STEAM. - Deer Island Pumping Station, Boston, Suffolk County, MA
12. ENGINE TEST CELL BUILDING INTERIOR. DETAIL OF CONTROL CONSOLE ...
12. ENGINE TEST CELL BUILDING INTERIOR. DETAIL OF CONTROL CONSOLE FOR ENGINE TEST CELL 4. LOOKING NORTH. - Fairchild Air Force Base, Engine Test Cell Building, Near intersection of Arnold Street & George Avenue, Spokane, Spokane County, WA
Linear quadratic servo control of a reusable rocket engine
NASA Technical Reports Server (NTRS)
Musgrave, Jeffrey L.
1991-01-01
A design method for a servo compensator is developed in the frequency domain using singular values. The method is applied to a reusable rocket engine. An intelligent control system for reusable rocket engines was proposed which includes a diagnostic system, a control system, and an intelligent coordinator which determines engine control strategies based on the identified failure modes. The method provides a means of generating various linear multivariable controllers capable of meeting performance and robustness specifications and accommodating failure modes identified by the diagnostic system. Command following with set point control is necessary for engine operation. A Kalman filter reconstructs the state while loop transfer recovery recovers the required degree of robustness while maintaining satisfactory rejection of sensor noise from the command error. The approach is applied to the design of a controller for a rocket engine satisfying performance constraints in the frequency domain. Simulation results demonstrate the performance of the linear design on a nonlinear engine model over all power levels during mainstage operation.
40 CFR 1065.401 - Test engine selection.
Code of Federal Regulations, 2010 CFR
2010-07-01
... CONTROLS ENGINE-TESTING PROCEDURES Engine Selection, Preparation, and Maintenance § 1065.401 Test engine selection. While all engine configurations within a certified engine family must comply with the applicable... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Test engine selection. 1065.401...
40 CFR 1065.401 - Test engine selection.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Test engine selection. 1065.401... CONTROLS ENGINE-TESTING PROCEDURES Engine Selection, Preparation, and Maintenance § 1065.401 Test engine selection. While all engine configurations within a certified engine family must comply with the applicable...
40 CFR 1065.401 - Test engine selection.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Test engine selection. 1065.401... CONTROLS ENGINE-TESTING PROCEDURES Engine Selection, Preparation, and Maintenance § 1065.401 Test engine selection. While all engine configurations within a certified engine family must comply with the applicable...
40 CFR 1065.401 - Test engine selection.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Test engine selection. 1065.401... CONTROLS ENGINE-TESTING PROCEDURES Engine Selection, Preparation, and Maintenance § 1065.401 Test engine selection. While all engine configurations within a certified engine family must comply with the applicable...
40 CFR 1048.405 - How does this program work?
Code of Federal Regulations, 2010 CFR
2010-07-01
... CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES Testing In-use Engines § 1048.405 How does this program work? (a) You must test in-use engines, for exhaust emissions, from the families we select. We may select up to 25 percent of your engine families in any model year—or one engine...
40 CFR 1048.415 - What happens if in-use engines do not meet requirements?
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES Testing In-use Engines § 1048.415 What happens if in-use engines do not meet requirements? (a) Determine... 40 Protection of Environment 32 2010-07-01 2010-07-01 false What happens if in-use engines do not...
40 CFR 1051.310 - How must I select vehicles or engines for production-line testing?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 32 2010-07-01 2010-07-01 false How must I select vehicles or engines... PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM RECREATIONAL ENGINES AND VEHICLES Testing Production-Line Vehicles and Engines § 1051.310 How must I select vehicles or engines for...
14 CFR 125.177 - Control of engine rotation.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Control of engine rotation. 125.177 Section... Requirements § 125.177 Control of engine rotation. (a) Except as provided in paragraph (b) of this section, each airplane must have a means of individually stopping and restarting the rotation of any engine in...
14 CFR 125.177 - Control of engine rotation.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Control of engine rotation. 125.177 Section... Requirements § 125.177 Control of engine rotation. (a) Except as provided in paragraph (b) of this section... flight. (b) In the case of turbine engine installations, a means of stopping rotation need be provided...
14 CFR 125.177 - Control of engine rotation.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Control of engine rotation. 125.177 Section... Requirements § 125.177 Control of engine rotation. (a) Except as provided in paragraph (b) of this section, each airplane must have a means of individually stopping and restarting the rotation of any engine in...
14 CFR 125.177 - Control of engine rotation.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Control of engine rotation. 125.177 Section... Requirements § 125.177 Control of engine rotation. (a) Except as provided in paragraph (b) of this section, each airplane must have a means of individually stopping and restarting the rotation of any engine in...
14 CFR 125.177 - Control of engine rotation.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Control of engine rotation. 125.177 Section... Requirements § 125.177 Control of engine rotation. (a) Except as provided in paragraph (b) of this section, each airplane must have a means of individually stopping and restarting the rotation of any engine in...
Evaluation of an Outer Loop Retrofit Architecture for Intelligent Turbofan Engine Thrust Control
NASA Technical Reports Server (NTRS)
Litt, Jonathan S.; Sowers, T. Shane
2006-01-01
The thrust control capability of a retrofit architecture for intelligent turbofan engine control and diagnostics is evaluated. The focus of the study is on the portion of the hierarchical architecture that performs thrust estimation and outer loop thrust control. The inner loop controls fan speed so the outer loop automatically adjusts the engine's fan speed command to maintain thrust at the desired level, based on pilot input, even as the engine deteriorates with use. The thrust estimation accuracy is assessed under nominal and deteriorated conditions at multiple operating points, and the closed loop thrust control performance is studied, all in a complex real-time nonlinear turbofan engine simulation test bed. The estimation capability, thrust response, and robustness to uncertainty in the form of engine degradation are evaluated.
Army/NASA small turboshaft engine digital controls research program
NASA Technical Reports Server (NTRS)
Sellers, J. F.; Baez, A. N.
1981-01-01
The emphasis of a program to conduct digital controls research for small turboshaft engines is on engine test evaluation of advanced control logic using a flexible microprocessor based digital control system designed specifically for research on advanced control logic. Control software is stored in programmable memory. New control algorithms may be stored in a floppy disk and loaded directly into memory. This feature facilitates comparative evaluation of different advanced control modes. The central processor in the digital control is an Intel 8086 16 bit microprocessor. Control software is programmed in assembly language. Software checkout is accomplished prior to engine test by connecting the digital control to a real time hybrid computer simulation of the engine. The engine currently installed in the facility has a hydromechanical control modified to allow electrohydraulic fuel metering and VG actuation by the digital control. Simulation results are presented which show that the modern control reduces the transient rotor speed droop caused by unanticipated load changes such as cyclic pitch or wind gust transients.
Integrated flight/propulsion control - Adaptive engine control system mode
NASA Technical Reports Server (NTRS)
Yonke, W. A.; Terrell, L. A.; Meyers, L. P.
1985-01-01
The adaptive engine control system mode (ADECS) which is developed and tested on an F-15 aircraft with PW1128 engines, using the NASA sponsored highly integrated digital electronic control program, is examined. The operation of the ADECS mode, as well as the basic control logic, the avionic architecture, and the airframe/engine interface are described. By increasing engine pressure ratio (EPR) additional thrust is obtained at intermediate power and above. To modulate the amount of EPR uptrim and to prevent engine stall, information from the flight control system is used. The performance benefits, anticipated from control integration are shown for a range of flight conditions and power settings. It is found that at higher altitudes, the ADECS mode can increase thrust as much as 12 percent, which is used for improved acceleration, improved turn rate, or sustained turn angle.
Integrated control system and method
Wang, Paul Sai Keat; Baldwin, Darryl; Kim, Myoungjin
2013-10-29
An integrated control system for use with an engine connected to a generator providing electrical power to a switchgear is disclosed. The engine receives gas produced by a gasifier. The control system includes an electronic controller associated with the gasifier, engine, generator, and switchgear. A gas flow sensor monitors a gas flow from the gasifier to the engine through an engine gas control valve and provides a gas flow signal to the electronic controller. A gas oversupply sensor monitors a gas oversupply from the gasifier and provides an oversupply signal indicative of gas not provided to the engine. A power output sensor monitors a power output of the switchgear and provide a power output signal. The electronic controller changes gas production of the gasifier and the power output rating of the switchgear based on the gas flow signal, the oversupply signal, and the power output signal.
Engine control system having fuel-based adjustment
Willi, Martin L [Dunlap, IL; Fiveland, Scott B [Metamora, IL; Montgomery, David T [Edelstein, IL; Gong, Weidong [Dunlap, IL
2011-03-15
A control system for an engine having a cylinder is disclosed having an engine valve configured to affect a fluid flow of the cylinder, an actuator configured to move the engine valve, and an in-cylinder sensor configured to generate a signal indicative of a characteristic of fuel entering the cylinder. The control system also has a controller in communication with the actuator and the sensor. The controller is configured to determine the characteristic of the fuel based on the signal and selectively regulate the actuator to adjust a timing of the engine valve based on the characteristic of the fuel.
Vance, Jonathan Blake; Singh, Atmika; Kaul, Brian C; Jagannathan, Sarangapani; Drallmeier, James A
2007-07-01
Past research has shown substantial reductions in the oxides of nitrogen (NOx) concentrations by using 10%-25% exhaust gas recirculation (EGR) in spark ignition (SI) engines (see Dudek and Sain, 1989). However, under high EGR levels, the engine exhibits strong cyclic dispersion in heat release which may lead to instability and unsatisfactory performance preventing commercial engines to operate with high EGR levels. A neural network (NN)-based output feedback controller is developed to reduce cyclic variation in the heat release under high levels of EGR even when the engine dynamics are unknown by using fuel as the control input. A separate control loop was designed for controlling EGR levels. The stability analysis of the closed-loop system is given and the boundedness of the control input is demonstrated by relaxing separation principle, persistency of excitation condition, certainty equivalence principle, and linear in the unknown parameter assumptions. Online training is used for the adaptive NN and no offline training phase is needed. This online learning feature and model-free approach is used to demonstrate the applicability of the controller on a different engine with minimal effort. Simulation results demonstrate that the cyclic dispersion is reduced significantly using the proposed controller when implemented on an engine model that has been validated experimentally. For a single cylinder research engine fitted with a modern four-valve head (Ricardo engine), experimental results at 15% EGR indicate that cyclic dispersion was reduced 33% by the controller, an improvement of fuel efficiency by 2%, and a 90% drop in NOx from stoichiometric operation without EGR was observed. Moreover, unburned hydrocarbons (uHC) drop by 6% due to NN control as compared to the uncontrolled scenario due to the drop in cyclic dispersion. Similar performance was observed with the controller on a different engine.
Method and apparatus for selectively controlling the speed of an engine
Davis, Roy Inge
2001-02-27
A control assembly 12 for use within a vehicle 10 having an engine 14 and which selectively controls the speed of the engine 14 in order to increase fuel efficiency and to effect relatively smooth starting and stopping of the engine. Particularly, in one embodiment, control assembly 12 cooperatively operates with a starter/alternator assembly 20 and is adapted for use with hybrid vehicles employing a start/stop powertrain assembly, wherein fuel efficiency is increased by selectively stopping engine operation when the vehicle has stopped.
Method of controlling a variable geometry type turbocharger
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirabayashi, Y.
1988-08-23
This patent describes a method of controlling the supercharging pressure of a variable geometry type turbocharger having a bypass, comprising the following steps which are carried out successively: receiving signals from an engine speed sensor and from an engine knocking sensor; receiving a signal from a throttle valve sensor; judging whether or not an engine is being accelerated, and proceeding to step below if the engine is being accelerated and to step below if the engine is not being accelerated, i.e., if the engine is in a constant speed operation; determining a first correction value and proceeding to step below;more » judging whether or not the engine is knocking, and proceeding to step (d) if knocking is occurring and to step (f) below if no knocking is occurring; determining a second correction value and proceeding to step; receiving signals from the engine speed sensor and from an airflow meter which measures the quantity of airflow to be supplied to the engine; calculating an airflow rate per engine revolution; determining a duty valve according to the calculated airflow rate; transmitting the corrected duty value to control means for controlling the geometry of the variable geometry type turbocharger and the opening of bypass of the turbocharger, thereby controlling the supercharging pressure of the turbocharger.« less
Barthes, Julien; Özçelik, Hayriye; Hindié, Mathilde; Ndreu-Halili, Albana; Hasan, Anwarul
2014-01-01
In tissue engineering and regenerative medicine, the conditions in the immediate vicinity of the cells have a direct effect on cells' behaviour and subsequently on clinical outcomes. Physical, chemical, and biological control of cell microenvironment are of crucial importance for the ability to direct and control cell behaviour in 3-dimensional tissue engineering scaffolds spatially and temporally. In this review, we will focus on the different aspects of cell microenvironment such as surface micro-, nanotopography, extracellular matrix composition and distribution, controlled release of soluble factors, and mechanical stress/strain conditions and how these aspects and their interactions can be used to achieve a higher degree of control over cellular activities. The effect of these parameters on the cellular behaviour within tissue engineering context is discussed and how these parameters are used to develop engineered tissues is elaborated. Also, recent techniques developed for the monitoring of the cell microenvironment in vitro and in vivo are reviewed, together with recent tissue engineering applications where the control of cell microenvironment has been exploited. Cell microenvironment engineering and monitoring are crucial parts of tissue engineering efforts and systems which utilize different components of the cell microenvironment simultaneously can provide more functional engineered tissues in the near future. PMID:25143954
Barthes, Julien; Özçelik, Hayriye; Hindié, Mathilde; Ndreu-Halili, Albana; Hasan, Anwarul; Vrana, Nihal Engin
2014-01-01
In tissue engineering and regenerative medicine, the conditions in the immediate vicinity of the cells have a direct effect on cells' behaviour and subsequently on clinical outcomes. Physical, chemical, and biological control of cell microenvironment are of crucial importance for the ability to direct and control cell behaviour in 3-dimensional tissue engineering scaffolds spatially and temporally. In this review, we will focus on the different aspects of cell microenvironment such as surface micro-, nanotopography, extracellular matrix composition and distribution, controlled release of soluble factors, and mechanical stress/strain conditions and how these aspects and their interactions can be used to achieve a higher degree of control over cellular activities. The effect of these parameters on the cellular behaviour within tissue engineering context is discussed and how these parameters are used to develop engineered tissues is elaborated. Also, recent techniques developed for the monitoring of the cell microenvironment in vitro and in vivo are reviewed, together with recent tissue engineering applications where the control of cell microenvironment has been exploited. Cell microenvironment engineering and monitoring are crucial parts of tissue engineering efforts and systems which utilize different components of the cell microenvironment simultaneously can provide more functional engineered tissues in the near future.
NASA Astrophysics Data System (ADS)
Yoon, Seungju; Hu, Shaohua; Kado, Norman Y.; Thiruvengadam, Arvind; Collins, John F.; Gautam, Mridul; Herner, Jorn D.; Ayala, Alberto
2014-02-01
Chemical and toxicological properties of emissions from compressed natural gas (CNG) fueled transit buses with stoichiometric combustion engines and three-way catalyst (TWC) exhaust control systems were measured using a chassis dynamometer testing facility and compared to the data from earlier CNG engine and exhaust control technologies. Gaseous and particulate matter emissions from buses with stoichiometric engines and TWC were significantly lower than the emissions from buses with lean-burn engines. Carbonyls and volatile organic compounds (VOCs) from buses with stoichiometric engines and TWC were lower by more than 99% compared to buses with lean-burn engines. Elemental and organic carbons (EC and OC), polycyclic aromatic hydrocarbons (PAHs), and trace elements from buses with stoichiometric engines and TWC were effectively controlled and significantly lower than the emissions from buses with lean-burn engines. Potential mutagenicity measured using a microsuspension modification of the Salmonella/microsome assay was lower by more than 99% for buses with stoichiometric engines and TWC, compared to buses with lean-burn engines and OxC.
Frank, A.A.
1984-07-10
A control system and method for a power delivery system, such as in an automotive vehicle, having an engine coupled to a continuously variable ratio transmission (CVT). Totally independent control of engine and transmission enable the engine to precisely follow a desired operating characteristic, such as the ideal operating line for minimum fuel consumption. CVT ratio is controlled as a function of commanded power or torque and measured load, while engine fuel requirements (e.g., throttle position) are strictly a function of measured engine speed. Fuel requirements are therefore precisely adjusted in accordance with the ideal characteristic for any load placed on the engine. 4 figs.
The Need and Challenges for Distributed Engine Control
NASA Technical Reports Server (NTRS)
Culley, Dennis E.
2013-01-01
The presentation describes the challenges facing the turbine engine control system. These challenges are primarily driven by a dependence on commercial electronics and an increasingly severe environment on board the turbine engine. The need for distributed control is driven by the need to overcome these system constraints and develop a new growth path for control technology and, as a result, improved turbine engine performance.
On the estimation algorithm used in adaptive performance optimization of turbofan engines
NASA Technical Reports Server (NTRS)
Espana, Martin D.; Gilyard, Glenn B.
1993-01-01
The performance seeking control algorithm is designed to continuously optimize the performance of propulsion systems. The performance seeking control algorithm uses a nominal model of the propulsion system and estimates, in flight, the engine deviation parameters characterizing the engine deviations with respect to nominal conditions. In practice, because of measurement biases and/or model uncertainties, the estimated engine deviation parameters may not reflect the engine's actual off-nominal condition. This factor has a necessary impact on the overall performance seeking control scheme exacerbated by the open-loop character of the algorithm. The effects produced by unknown measurement biases over the estimation algorithm are evaluated. This evaluation allows for identification of the most critical measurements for application of the performance seeking control algorithm to an F100 engine. An equivalence relation between the biases and engine deviation parameters stems from an observability study; therefore, it is undecided whether the estimated engine deviation parameters represent the actual engine deviation or whether they simply reflect the measurement biases. A new algorithm, based on the engine's (steady-state) optimization model, is proposed and tested with flight data. When compared with previous Kalman filter schemes, based on local engine dynamic models, the new algorithm is easier to design and tune and it reduces the computational burden of the onboard computer.
Reaction Control Engine for Space Launch Initiative
NASA Technical Reports Server (NTRS)
2002-01-01
Engineers at the Marshall Space Flight Center (MSFC) have begun a series of engine tests on a new breed of space propulsion: a Reaction Control Engine developed for the Space Launch Initiative (SLI). The engine, developed by TRW Space and Electronics of Redondo Beach, California, is an auxiliary propulsion engine designed to maneuver vehicles in orbit. It is used for docking, reentry, attitude control, and fine-pointing while the vehicle is in orbit. The engine uses nontoxic chemicals as propellants, a feature that creates a safer environment for ground operators, lowers cost, and increases efficiency with less maintenance and quicker turnaround time between missions. Testing includes 30 hot-firings. This photograph shows the first engine test performed at MSFC that includes SLI technology. Another unique feature of the Reaction Control Engine is that it operates at dual thrust modes, combining two engine functions into one engine. The engine operates at both 25 and 1,000 pounds of force, reducing overall propulsion weight and allowing vehicles to easily maneuver in space. The low-level thrust of 25 pounds of force allows the vehicle to fine-point maneuver and dock while the high-level thrust of 1,000 pounds of force is used for reentry, orbit transfer, and coarse positioning. SLI is a NASA-wide research and development program, managed by the MSFC, designed to improve safety, reliability, and cost effectiveness of space travel for second generation reusable launch vehicles.
Engineering and public health at CDC.
Earnest, G Scott; Reed, Laurence D; Conover, D; Estill, C; Gjessing, C; Gressel, M; Hall, R; Hudock, S; Hudson, H; Kardous, C; Sheehy, J; Topmiller, J; Trout, D; Woebkenberg, M; Amendola, A; Hsiao, H; Keane, P; Weissman, D; Finfinger, G; Tadolini, S; Thimons, E; Cullen, E; Jenkins, M; McKibbin, R; Conway, G; Husberg, B; Lincoln, J; Rodenbeck, S; Lantagne, D; Cardarelli, J
2006-12-22
Engineering is the application of scientific and technical knowledge to solve human problems. Using imagination, judgment, and reasoning to apply science, technology, mathematics, and practical experience, engineers develop the design, production, and operation of useful objects or processes. During the 1940s, engineers dominated the ranks of CDC scientists. In fact, the first CDC director, Assistant Surgeon General Mark Hollis, was an engineer. CDC engineers were involved in malaria control through the elimination of standing water. Eventually the CDC mission expanded to include prevention and control of dengue, typhus, and other communicable diseases. The development of chlorination, water filtration, and sewage treatment were crucial to preventing waterborne illness. Beginning in the 1950s, CDC engineers began their work to improve public health while developing the fields of environmental health, industrial hygiene, and control of air pollution. Engineering disciplines represented at CDC today include biomedical, civil, chemical, electrical, industrial, mechanical, mining, and safety engineering. Most CDC engineers are located in the National Institute for Occupational Safety and Health (NIOSH) and the Agency for Toxic Substances and Disease Registry (ATSDR). Engineering research at CDC has a broad stakeholder base. With the cooperation of industry, labor, trade associations, and other stakeholders and partners, current work includes studies of air contaminants, mining, safety, physical agents, ergonomics, and environmental hazards. Engineering solutions remain a cornerstone of the traditional "hierarchy of controls" approach to reducing public health hazards.
Remembering the Giants: Apollo Rocket Propulsion Development
NASA Technical Reports Server (NTRS)
Fisher, Steven C. (Editor); Rahman, Shamim A. (Editor)
2009-01-01
Topics discussed include: Rocketdyne - F-1 Saturn V First Stage Engine; Rocketdyne - J-2 Saturn V 2nd & 3rd Stage Engine; Rocketdyne - SE-7 & SE-8 Engines; Aerojet - AJ10-137 Apollo Service Module Engine; Aerojet - Attitude Control Engines; TRW - Lunar Descent Engine; and Rocketdyne - Lunar Ascent Engine.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 32 2010-07-01 2010-07-01 false How do I know when my engine family... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM RECREATIONAL ENGINES AND VEHICLES Testing Production-Line Vehicles and Engines § 1051.315 How do I know when my engine...
A Sensitivity Study of Commercial Aircraft Engine Response for Emergency Situations
NASA Technical Reports Server (NTRS)
Csank, Jeffrey T.; May, Ryan D.; Litt, Jonathan S.; Guo, Ten-Huei
2011-01-01
This paper contains the details of a sensitivity study in which the variation in a commercial aircraft engine's outputs is observed for perturbations in its operating condition inputs or control parameters. This study seeks to determine the extent to which various controller limits can be modified to improve engine performance, while capturing the increased risk that results from the changes. In an emergency, the engine may be required to produce additional thrust, respond faster, or both, to improve the survivability of the aircraft. The objective of this paper is to propose changes to the engine controller and determine the costs and benefits of the additional capabilities produced by the engine. This study indicates that the aircraft engine is capable of producing additional thrust, but at the cost of an increased risk of an engine failure due to higher turbine temperatures and rotor speeds. The engine can also respond more quickly to transient commands, but this action reduces the remaining stall margin to possibly dangerous levels. To improve transient response in landing scenarios, a control mode known as High Speed Idle is proposed that increases the responsiveness of the engine and conserves stall margin
ERIC Educational Resources Information Center
Dixon, Raymond A.; Johnson, Scott D.
2012-01-01
A cognitive construct that is important when solving engineering design problems is executive control process, or metacognition. It is a central feature of human consciousness that enables one "to be aware of, monitor, and control mental processes." The framework for this study was conceptualized by integrating the model for creative design, which…
Potential of Diesel Engine, Diesel Engine Design Concepts, Control Strategy and Implementation
DOT National Transportation Integrated Search
1980-03-01
Diesel engine design concepts and control system strategies are surveyed with application to passenger cars and light trucks. The objective of the study is to indicate the fuel economy potential of the technologies investigated. The engine design par...
Internal combustion engine and method for control
Brennan, Daniel G
2013-05-21
In one exemplary embodiment of the invention an internal combustion engine includes a piston disposed in a cylinder, a valve configured to control flow of air into the cylinder and an actuator coupled to the valve to control a position of the valve. The internal combustion engine also includes a controller coupled to the actuator, wherein the controller is configured to close the valve when an uncontrolled condition for the internal engine is determined.
A High-Fidelity Simulation of a Generic Commercial Aircraft Engine and Controller
NASA Technical Reports Server (NTRS)
May, Ryan D.; Csank, Jeffrey; Lavelle, Thomas M.; Litt, Jonathan S.; Guo, Ten-Huei
2010-01-01
A new high-fidelity simulation of a generic 40,000 lb thrust class commercial turbofan engine with a representative controller, known as CMAPSS40k, has been developed. Based on dynamic flight test data of a highly instrumented engine and previous engine simulations developed at NASA Glenn Research Center, this non-proprietary simulation was created especially for use in the development of new engine control strategies. C-MAPSS40k is a highly detailed, component-level engine model written in MATLAB/Simulink (The MathWorks, Inc.). Because the model is built in Simulink, users have the ability to use any of the MATLAB tools for analysis and control system design. The engine components are modeled in C-code, which is then compiled to allow faster-than-real-time execution. The engine controller is based on common industry architecture and techniques to produce realistic closed-loop transient responses while ensuring that no safety or operability limits are violated. A significant feature not found in other non-proprietary models is the inclusion of transient stall margin debits. These debits provide an accurate accounting of the compressor surge margin, which is critical in the design of an engine controller. This paper discusses the development, characteristics, and capabilities of the C-MAPSS40k simulation
Screening studies of advanced control concepts for airbreathing engines
NASA Technical Reports Server (NTRS)
Ouzts, Peter J.; Lorenzo, Carl F.; Merrill, Walter C.
1993-01-01
The application of advanced control concepts to airbreathing engines may yield significant improvements in aircraft/engine performance and operability. Accordingly, the NASA Lewis Research Center has conducted screening studies of advanced control concepts for airbreathing engines to determine their potential impact on turbine engine performance and operability. The purpose of the studies was to identify concepts which offered high potential yet may incur high research and development risk. A target suite of proposed concepts was formulated by NASA and industry. These concepts were evaluated in a two phase study to quantify each concept's impact on desired engine characteristics. To aid in the evaluation, three target aircraft/engine combinations were considered: a military high performance fighter mission, a high speed civil transport mission, and a civil tiltrotor mission. Each of the advanced control concepts considered in the study were defined and described. The concept's potential impact on engine performance was determined. Relevant figures of merit on which to evaluate the concepts were also determined. Finally, the concepts were ranked with respect to the target aircraft/engine missions.
Idle speed and fuel vapor recovery control system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orzel, D.V.
1993-06-01
A method for controlling idling speed of an engine via bypass throttle connected in parallel to a primary engine throttle and for controlling purge flow through a vapor recovery system into an air/fuel intake of the engine is described, comprising the steps of: positioning the bypass throttle to decrease any difference between a desired engine idle speed and actual engine idle speed; and decreasing the purge flow when said bypass throttle position is less than a preselected fraction of a maximum bypass throttle position.
A fault tolerant 80960 engine controller
NASA Technical Reports Server (NTRS)
Reichmuth, D. M.; Gage, M. L.; Paterson, E. S.; Kramer, D. D.
1993-01-01
The paper describes the design of the 80960 Fault Tolerant Engine Controller for the supervision of engine operations, which was designed for the NASA Marshall Space Center. Consideration is given to the major electronic components of the controller, including the engine controller, effectors, and the sensors, as well as to the controller hardware, the controller module and the communications module, and the controller software. The architecture of the controller hardware allows modifications to be made to fit the requirements of any new propulsion systems. Multiple flow diagrams are presented illustrating the controller's operations.
Adaptive Gas Turbine Engine Control for Deterioration Compensation Due to Aging
NASA Technical Reports Server (NTRS)
Litt, Jonathan S.; Parker, Khary I.; Chatterjee, Santanu
2003-01-01
This paper presents an ad hoc adaptive, multivariable controller tuning rule that compensates for a thrust response variation in an engine whose performance has been degraded though use and wear. The upset appears when a large throttle transient is performed such that the engine controller switches from low-speed to high-speed mode. A relationship was observed between the level of engine degradation and the overshoot in engine temperature ratio, which was determined to cause the thrust response variation. This relationship was used to adapt the controller. The method is shown to work very well up to the operability limits of the engine. Additionally, since the level of degradation can be estimated from sensor data, it would be feasible to implement the adaptive control algorithm on-line.
NASA Technical Reports Server (NTRS)
Seldner, K.
1976-01-01
The development of control systems for jet engines requires a real-time computer simulation. The simulation provides an effective tool for evaluating control concepts and problem areas prior to actual engine testing. The development and use of a real-time simulation of the Pratt and Whitney F100-PW100 turbofan engine is described. The simulation was used in a multi-variable optimal controls research program using linear quadratic regulator theory. The simulation is used to generate linear engine models at selected operating points and evaluate the control algorithm. To reduce the complexity of the design, it is desirable to reduce the order of the linear model. A technique to reduce the order of the model; is discussed. Selected results between high and low order models are compared. The LQR control algorithms can be programmed on digital computer. This computer will control the engine simulation over the desired flight envelope.
Multivariable control altitude demonstration on the F100 turbofan engine
NASA Technical Reports Server (NTRS)
Lehtinen, B.; Dehoff, R. L.; Hackney, R. D.
1979-01-01
The F100 Multivariable control synthesis (MVCS) program, was aimed at demonstrating the benefits of LGR synthesis theory in the design of a multivariable engine control system for operation throughout the flight envelope. The advantages of such procedures include: (1) enhanced performance from cross-coupled controls, (2) maximum use of engine variable geometry, and (3) a systematic design procedure that can be applied efficiently to new engine systems. The control system designed, under the MVCS program, for the Pratt & Whitney F100 turbofan engine is described. Basic components of the control include: (1) a reference value generator for deriving a desired equilibrium state and an approximate control vector, (2) a transition model to produce compatible reference point trajectories during gross transients, (3) gain schedules for producing feedback terms appropriate to the flight condition, and (4) integral switching logic to produce acceptable steady-state performance without engine operating limit exceedance.
41. #1 ARRESTING GEAR ENGINE AFT LOOKING FORWARD PORT ...
41. #1 ARRESTING GEAR ENGINE - AFT LOOKING FORWARD PORT TO STARBOARD SHOWING ARRESTING GEAR ENGINE ACCUMULATOR, AIR FLASK, CONTROL VALVE, WITH CONTROL RAM, SHEAVES AND WIRES UNDERNEATH ENGINE STAND. - U.S.S. HORNET, Puget Sound Naval Shipyard, Sinclair Inlet, Bremerton, Kitsap County, WA
40 CFR 92.907 - Non-locomotive-specific engine exemption.
Code of Federal Regulations, 2012 CFR
2012-07-01
... the non-locomotive-specific engines will result in a significantly greater degree of emission control... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Non-locomotive-specific engine... PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Exclusion and...
40 CFR 92.907 - Non-locomotive-specific engine exemption.
Code of Federal Regulations, 2013 CFR
2013-07-01
... the non-locomotive-specific engines will result in a significantly greater degree of emission control... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Non-locomotive-specific engine... PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Exclusion and...
40 CFR 92.907 - Non-locomotive-specific engine exemption.
Code of Federal Regulations, 2011 CFR
2011-07-01
... the non-locomotive-specific engines will result in a significantly greater degree of emission control... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Non-locomotive-specific engine... PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Exclusion and...
40 CFR 92.907 - Non-locomotive-specific engine exemption.
Code of Federal Regulations, 2014 CFR
2014-07-01
... the non-locomotive-specific engines will result in a significantly greater degree of emission control... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Non-locomotive-specific engine... PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Exclusion and...
40 CFR 92.907 - Non-locomotive-specific engine exemption.
Code of Federal Regulations, 2010 CFR
2010-07-01
... the non-locomotive-specific engines will result in a significantly greater degree of emission control... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Non-locomotive-specific engine... PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Exclusion and...
Jet Engine Control Using Ethernet with a BRAIN (Postprint)
2008-07-01
current communications may be mitigated. 15. SUBJECT TERMS BRAIN, Braided Ring Availability Integrity Network, Gas turbine, FADEC , disturbed...urrent state of the art engine controls have converged on the notion of the Full Authority Digital Engine Control ( FADEC ), which consists of a centralized...is completely dependent on the proper operation of the controller. In current systems, the FADEC is often located on the relatively cool engine fan
NASA Technical Reports Server (NTRS)
Litt, Jonathan S.
2004-01-01
The goal of the Autonomous Propulsion System Technology (APST) project is to reduce pilot workload under both normal and anomalous conditions. Ongoing work under APST develops and leverages technologies that provide autonomous engine monitoring, diagnosing, and controller adaptation functions, resulting in an integrated suite of algorithms that maintain the propulsion system's performance and safety throughout its life. Engine-to-engine performance variation occurs among new engines because of manufacturing tolerances and assembly practices. As an engine wears, the performance changes as operability limits are reached. In addition to these normal phenomena, other unanticipated events such as sensor failures, bird ingestion, or component faults may occur, affecting pilot workload as well as compromising safety. APST will adapt the controller as necessary to achieve optimal performance for a normal aging engine, and the safety net of APST algorithms will examine and interpret data from a variety of onboard sources to detect, isolate, and if possible, accommodate faults. Situations that cannot be accommodated within the faulted engine itself will be referred to a higher level vehicle management system. This system will have the authority to redistribute the faulted engine's functionality among other engines, or to replan the mission based on this new engine health information. Work is currently underway in the areas of adaptive control to compensate for engine degradation due to aging, data fusion for diagnostics and prognostics of specific sensor and component faults, and foreign object ingestion detection. In addition, a framework is being defined for integrating all the components of APST into a unified system. A multivariable, adaptive, multimode control algorithm has been developed that accommodates degradation-induced thrust disturbances during throttle transients. The baseline controller of the engine model currently being investigated has multiple control modes that are selected according to some performance or operational criteria. As the engine degrades, parameters shift from their nominal values. Thus, when a new control mode is swapped in, a variable that is being brought under control might have an excessive initial error. The new adaptive algorithm adjusts the controller gains on the basis of the level of degradation to minimize the disruptive influence of the large error on other variables and to recover the desired thrust response.
Recent Technology Advances in Distributed Engine Control
NASA Technical Reports Server (NTRS)
Culley, Dennis
2017-01-01
This presentation provides an overview of the work performed at NASA Glenn Research Center in distributed engine control technology. This is control system hardware technology that overcomes engine system constraints by modularizing control hardware and integrating the components over communication networks.
Initial testing of a variable-stroke Stirling engine
NASA Technical Reports Server (NTRS)
Thieme, L. G.
1985-01-01
In support of the U.S. Department of Energy's Stirling Engine Highway Vehicle Systems Program, NASA Lewis Research Center is evaluating variable-stroke control for Stirling engines. The engine being tested is the Advenco Stirling engine; this engine was manufactured by Philips Research Laboratories of the Netherlands and uses a variable-angle swash-plate drive to achieve variable stroke operation. The engine is described, initial steady-state test data taken at Lewis are presented, a major drive system failure and subsequent modifications are described. Computer simulation results are presented to show potential part-load efficiency gains with variable-stroke control.
Engine control system having fuel-based timing
Willi, Martin L [Dunlap, IL; Fiveland, Scott B [Metamora, IL; Montgomery, David T [Edelstein, IL; Gong, Weidong [Dunlap, IL
2012-04-03
A control system for an engine having a cylinder is disclosed having an engine valve movable to regulate a fluid flow of the cylinder and an actuator associated with the engine valve. The control system also has a sensor configured to generate a signal indicative of an amount of an air/fuel mixture remaining within the cylinder after completion of a first combustion event and a controller in communication with the actuator and the sensor. The controller may be configured to compare the amount with a desired amount, and to selectively regulate the actuator to adjust a timing of the engine valve associated with a subsequent combustion event based on the comparison.
Status, Vision, and Challenges of an Intelligent Distributed Engine Control Architecture
NASA Technical Reports Server (NTRS)
Behbahani, Alireza; Culley, Dennis; Garg, Sanjay; Millar, Richard; Smith, Bert; Wood, Jim; Mahoney, Tim; Quinn, Ronald; Carpenter, Sheldon; Mailander, Bill;
2007-01-01
A Distributed Engine Control Working Group (DECWG) consisting of the Department of Defense (DoD), the National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) and industry has been formed to examine the current and future requirements of propulsion engine systems. The scope of this study will include an assessment of the paradigm shift from centralized engine control architecture to an architecture based on distributed control utilizing open system standards. Included will be a description of the work begun in the 1990's, which continues today, followed by the identification of the remaining technical challenges which present barriers to on-engine distributed control.
Life-Extending Control for Aircraft Engines Studied
NASA Technical Reports Server (NTRS)
Guo, Te-Huei
2002-01-01
Current aircraft engine controllers are designed and operated to provide both performance and stability margins. However, the standard method of operation results in significant wear and tear on the engine and negatively affects the on-wing life--the time between cycles when the engine must be physically removed from the aircraft for maintenance. The NASA Glenn Research Center and its industrial and academic partners have been working together toward a new control concept that will include engine life usage as part of the control function. The resulting controller will be able to significantly extend the engine's on-wing life with little or no impact on engine performance and operability. The new controller design will utilize damage models to estimate and mitigate the rate and overall accumulation of damage to critical engine parts. The control methods will also provide a means to assess tradeoffs between performance and structural durability on the basis of mission requirements and remaining engine life. Two life-extending control methodologies were studied to reduce the overall life-cycle cost of aircraft engines. The first methodology is to modify the baseline control logic to reduce the thermomechanical fatigue (TMF) damage of cooled stators during acceleration. To accomplish this, an innovative algorithm limits the low-speed rotor acceleration command when the engine has reached a threshold close to the requested thrust. This algorithm allows a significant reduction in TMF damage with only a very small increase in the rise time to reach the commanded rotor speed. The second methodology is to reduce stress rupture/creep damage to turbine blades and uncooled stators by incorporating an engine damage model into the flight mission. Overall operation cost is reduced by an optimization among the flight time, fuel consumption, and component damages. Recent efforts have focused on applying life-extending control technology to an existing commercial turbine engine, and doing so without modifying the hardware or adding sensors. This approach makes it possible to retrofit existing engines with life-extending control technology by changing only the control software in the full-authority digital engine controller (FADEC). The significant results include demonstrating a 20- to 30-percent reduction in TMF damage to the hot section by developing and implementing smart acceleration logic during takeoff. The tradeoff is an increase, from 5.0 to 5.2 sec, in the time required to reach maximum power from ground idle. On a typical flight profile of a cruise at Mach 0.8 at an altitude of 41,000 ft, and cruise time of 104 min, the optimized system showed that a reduction in cruise speed from Mach 0.8 to 0.79 can achieve an estimated 25-to 35-percent creep/rupture damage reduction in the engine's hot section and a fuel savings of 2.1 percent. The tradeoff is an increase in flight time of 1.3 percent (1.4 min).
Engineering Therapies that Evolve to Autonomously Control Epidemics
2017-06-01
FINAL TECHNICAL REPORT Grant No. D15AP00024 “ Engineering Therapies that Evolve to Autonomously Control Epidemics” PI: Leor Weinberger...viruses could be engineered into therapeutics, known as Therapeutic Interfering Particles (’TIPs’), using the virus HIV as a model system. By engineering ... engineered TIPs could have indefinite, population-scale impact. To achieve this aim, we developed novel multi-scale models that connected the measured
Potential of spark ignition engine, electronic engine and transmission control : final report
DOT National Transportation Integrated Search
1980-03-01
This report identifies, evaluates, and documents the characteristics and functions of significant electronic engine and powertrain control systems. Important considerations in the assessment are the powertrain variables controlled, the technology uti...
An application of modern control theory to jet propulsion systems. [considering onboard computer
NASA Technical Reports Server (NTRS)
Merrill, W. C.
1975-01-01
The control of an airbreathing turbojet engine by an onboard digital computer is studied. The approach taken is to model the turbojet engine as a linear, multivariable system whose parameters vary with engine operating environment. From this model adaptive closed-loop or feedback control laws are designed and applied to the acceleration of the turbojet engine.
NASA Technical Reports Server (NTRS)
Myers, L. P.; Baer-Riedhart, J. L.; Maxwell, M. D.
1985-01-01
The fault detection and accommodation (FDA) methods that can be used for digital engine control systems are presently subjected to a flight test program in the case of the F-15 fighter's F100 engine electronic controls, inducing selected faults and then evaluating the resulting digital engine control responses. In general, flight test results were found to compare well with both ground tests and predictions. It is noted that the inducement of dual-pressure failures was not feasible, since FDA logic was not designed to accommodate them.
40 CFR 86.1605 - Information to be submitted.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Regulations for Altitude Performance Adjustments for New and In-Use Motor Vehicles and Engines § 86.1605 Information to be..., car line, model year, engine displacement, engine family, and exhaust emission control systems...
40 CFR 94.205 - Prohibited controls, adjustable parameters.
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Certification Provisions... new engine to enable the engine to conform to the standards contained in this part: (1) Shall not..., except as otherwise allowed by this part. (b)(1) Category 1 marine engines equipped with adjustable...
40 CFR 94.205 - Prohibited controls, adjustable parameters.
Code of Federal Regulations, 2011 CFR
2011-07-01
... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Certification Provisions... new engine to enable the engine to conform to the standards contained in this part: (1) Shall not..., except as otherwise allowed by this part. (b)(1) Category 1 marine engines equipped with adjustable...
40 CFR 94.205 - Prohibited controls, adjustable parameters.
Code of Federal Regulations, 2014 CFR
2014-07-01
... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Certification Provisions... new engine to enable the engine to conform to the standards contained in this part: (1) Shall not..., except as otherwise allowed by this part. (b)(1) Category 1 marine engines equipped with adjustable...
40 CFR 86.1605 - Information to be submitted.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Regulations for Altitude Performance Adjustments for New and In-Use Motor Vehicles and Engines § 86.1605 Information to be..., car line, model year, engine displacement, engine family, and exhaust emission control systems...
40 CFR 94.205 - Prohibited controls, adjustable parameters.
Code of Federal Regulations, 2013 CFR
2013-07-01
... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Certification Provisions... new engine to enable the engine to conform to the standards contained in this part: (1) Shall not..., except as otherwise allowed by this part. (b)(1) Category 1 marine engines equipped with adjustable...
40 CFR 86.1605 - Information to be submitted.
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Regulations for Altitude Performance Adjustments for New and In-Use Motor Vehicles and Engines § 86.1605 Information to be..., car line, model year, engine displacement, engine family, and exhaust emission control systems...
40 CFR 86.1605 - Information to be submitted.
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Regulations for Altitude Performance Adjustments for New and In-Use Motor Vehicles and Engines § 86.1605 Information to be submitted... line, model year, engine displacement, engine family, and exhaust emission control systems...
40 CFR 94.205 - Prohibited controls, adjustable parameters.
Code of Federal Regulations, 2012 CFR
2012-07-01
... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Certification Provisions... new engine to enable the engine to conform to the standards contained in this part: (1) Shall not..., except as otherwise allowed by this part. (b)(1) Category 1 marine engines equipped with adjustable...
40 CFR 86.1605 - Information to be submitted.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Regulations for Altitude Performance Adjustments for New and In-Use Motor Vehicles and Engines § 86.1605 Information to be..., car line, model year, engine displacement, engine family, and exhaust emission control systems...
40 CFR 1042.615 - Replacement engine exemption.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Replacement engine exemption. 1042.615... CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Special Compliance Provisions § 1042.615 Replacement engine exemption. For Category 1 and Category 2 replacement...
40 CFR 1042.615 - Replacement engine exemption.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Replacement engine exemption. 1042.615... CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Special Compliance Provisions § 1042.615 Replacement engine exemption. For Category 1 and Category 2 replacement...
Automotive Stirling Engine Development Program Mod I Stirling engine development
NASA Technical Reports Server (NTRS)
Simetkosky, M. A.
1983-01-01
The development of the Mod I 4-cylinder automotive Stirling engine is discussed and illustrated with drawings, block diagrams, photographs, and graphs and tables of preliminary test data. The engine and its drive, cold-engine, hot-engine, external-heat, air/fuel, power-control, electronic-control, and auxiliary systems are characterized. Performance results from a total of 1900 h of tests on 4 prototype engines include average maximum efficiency (at 2000 rpm) 34.5 percent and maximum output power 54.4 kW. The modifications introduced in an upgraded version of the Mod I are explained; this engine has maximum efficiency 40.4 percent and maximum power output 69.2 kW.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Pingen; Lin, Qinghua; Prikhodko, Vitaly Y.
Lean-burn gasoline engines have demonstrated 10–20% engine efficiency gain over stoichiometric engines and are widely considered as a promising technology for meeting the 54.5 miles-per-gallon (mpg) Corporate Average Fuel Economy standard by 2025. Nevertheless, NOx emissions control for lean-burn gasoline for meeting the stringent EPA Tier 3 emission standards has been one of the main challenges towards the commercialization of highly-efficient lean-burn gasoline engines in the United States. Passive selective catalytic reduction (SCR) systems, which consist of a three-way catalyst and SCR, have demonstrated great potentials of effectively reducing NOx emissions for lean gasoline engines but may cause significant fuelmore » penalty due to ammonia generation via rich engine combustion. The purpose of this study is to develop a model-predictive control (MPC) scheme for a lean-burn gasoline engine coupled with a passive SCR system to minimize the fuel penalty associated with passive SCR operation while satisfying stringent NOx and NH3 emissions requirements. Simulation results demonstrate that the MPC-based control can reduce the fuel penalty by 47.7% in a simulated US06 cycle and 32.0% in a simulated UDDS cycle, compared to the baseline control, while achieving over 96% deNOx efficiency and less than 15 ppm tailpipe ammonia slip. The proposed MPC control can potentially enable high engine efficiency gain for highly-efficient lean-burn gasoline engine while meeting the stringent EPA Tier 3 emission standards.« less
Aircraft Turbine Engine Control Research at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Garg, Sanjay
2014-01-01
This lecture will provide an overview of the aircraft turbine engine control research at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC). A brief introduction to the engine control problem is first provided with a description of the current state-of-the-art control law structure. A historical aspect of engine control development since the 1940s is then provided with a special emphasis on the contributions of GRC. The traditional engine control problem has been to provide a means to safely transition the engine from one steady-state operating point to another based on the pilot throttle inputs. With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Branch (CDB) at GRC is leading and participating in various projects in partnership with other organizations within GRC and across NASA, other government agencies, the U.S. aerospace industry, and academia to develop advanced propulsion controls and diagnostics technologies that will help meet the challenging goals of NASA programs under the Aeronautics Research Mission. The second part of the lecture provides an overview of the various CDB technology development activities in aircraft engine control and diagnostics, both current and some accomplished in the recent past. The motivation for each of the research efforts, the research approach, technical challenges and the key progress to date are summarized. The technologies to be discussed include system level engine control concepts, gas path diagnostics, active component control, and distributed engine control architecture. The lecture will end with a futuristic perspective of how the various current technology developments will lead to an Intelligent and Autonomous Propulsion System requiring none to very minimum pilot interface, interfacing directly with the flight management system to determine its mode of operation, and providing personalized engine control to optimize its performance given the current condition and mission objectives.
Discrete Event Supervisory Control Applied to Propulsion Systems
NASA Technical Reports Server (NTRS)
Litt, Jonathan S.; Shah, Neerav
2005-01-01
The theory of discrete event supervisory (DES) control was applied to the optimal control of a twin-engine aircraft propulsion system and demonstrated in a simulation. The supervisory control, which is implemented as a finite-state automaton, oversees the behavior of a system and manages it in such a way that it maximizes a performance criterion, similar to a traditional optimal control problem. DES controllers can be nested such that a high-level controller supervises multiple lower level controllers. This structure can be expanded to control huge, complex systems, providing optimal performance and increasing autonomy with each additional level. The DES control strategy for propulsion systems was validated using a distributed testbed consisting of multiple computers--each representing a module of the overall propulsion system--to simulate real-time hardware-in-the-loop testing. In the first experiment, DES control was applied to the operation of a nonlinear simulation of a turbofan engine (running in closed loop using its own feedback controller) to minimize engine structural damage caused by a combination of thermal and structural loads. This enables increased on-wing time for the engine through better management of the engine-component life usage. Thus, the engine-level DES acts as a life-extending controller through its interaction with and manipulation of the engine s operation.
A New Method to Measure Temperature and Burner Pattern Factor Sensing for Active Engine Control
NASA Technical Reports Server (NTRS)
Ng, Daniel
1999-01-01
The determination of the temperatures of extended surfaces which exhibit non-uniform temperature variation is very important for a number of applications including the "Burner Pattern Factor" (BPF) of turbine engines. Exploratory work has shown that use of BPF to control engine functions can result in many benefits, among them reduction in engine weight, reduction in operating cost, increase in engine life, while attaining maximum engine efficiency. Advanced engines are expected to operate at very high temperature to achieve high efficiency. Brief exposure of engine components to higher than design temperatures due to non-uniformity in engine burner pattern can reduce engine life. The engine BPF is a measure of engine temperature uniformity. Attainment of maximum temperature uniformity and high temperatures is key to maximum efficiency and long life. A new approach to determine through the measurement of just one radiation spectrum by a multiwavelength pyrometer is possible. This paper discusses a new temperature sensing approach and its application to determine the BPF.
NASA Astrophysics Data System (ADS)
Han, Dongju
2018-05-01
Safe and efficient flight powered by an aircraft turbojet engine relies on the performance of the engine controller preventing compressor surge with robustness from noises or disturbances. This paper proposes the effective nonlinear controller associated with the nonlinear filter for the real turbojet engine with highly nonlinear dynamics. For the feasible controller study the nonlinearity of the engine dynamics was investigated by comparing the step responses from the linearized model with the original nonlinear dynamics. The fuzzy-based PID control logic is introduced to control the engine efficiently and FAUKF is applied for robustness from noises. The simulation results prove the effectiveness of FAUKF applied to the proposed controller such that the control performances are superior over the conventional controller and the filer performance using FAUKF indicates the satisfactory results such as clearing the defects by reducing the distortions without compressor surge, whereas the conventional UKF is not fully effective as occurring some distortions with compressor surge due to a process noise.
Distributed Control Architecture for Gas Turbine Engine. Chapter 4
NASA Technical Reports Server (NTRS)
Culley, Dennis; Garg, Sanjay
2009-01-01
The transformation of engine control systems from centralized to distributed architecture is both necessary and enabling for future aeropropulsion applications. The continued growth of adaptive control applications and the trend to smaller, light weight cores is a counter influence on the weight and volume of control system hardware. A distributed engine control system using high temperature electronics and open systems communications will reverse the growing trend of control system weight ratio to total engine weight and also be a major factor in decreasing overall cost of ownership for aeropropulsion systems. The implementation of distributed engine control is not without significant challenges. There are the needs for high temperature electronics, development of simple, robust communications, and power supply for the on-board electronics.
NASA on a Strong Roll in Preparing Space Launch System Flight Engines
2017-08-09
NASA is on a roll when it comes to testing engines for its new Space Launch System (SLS) rocket that will send astronauts to deep-space destinations, including Mars. Just two weeks after the third test of a new RS-25 engine flight controller, the space agency recorded its fourth full-duration controller test Aug. 9 at Stennis Space Center near Bay St. Louis, Mississippi. Engineers conducted a 500-second test of the RS-25 engine controller on the A-1 Test Stand at Stennis. The test involved installing the controller on an RS-25 development engine and firing it in the same manner, and for the same length of time, as needed during an actual SLS launch. The test marked another milestone toward launch of the first integrated flight of the SLS rocket and Orion crew vehicle. Exploration Mission-1 will be an uncrewed mission into lunar orbit, designed to provide a final check-out test of rocket and Orion capabilities before astronauts are returned to deep space. The SLS rocket will be powered at launch by four RS-25 engines, providing a combined 2 million pounds of thrust, and with a pair of solid rocket boosters, providing more than 8 million pounds of total thrust. The RS-25 engines for the initial SLS flights are former space shuttle main engines that are now being used to launch the larger and heavier SLS rocket and with the new controller. The controller is a critical component that operates as the engine “brain” that communicates with SLS flight computers to receive operation performance commands and to provide diagnostic data on engine health and status. Engineers conducted early prototype tests at Stennis to collect data for development of the new controller by NASA, RS-25 prime contractor Aerojet Rocketdyne and subcontractor Honeywell. Testing of actual flight controllers began at Stennis in March. NASA is testing all controllers and engines designated for the EM-1 flight at Stennis. It also will test the SLS core stage for the flight at Stennis, which will involve installing the stage on the B-2 Test Stand and firing its four RS-25 engines simultaneously, as during an actual launch. RS-25 tests at Stennis are conducted by a team of NASA, Aerojet Rocketdyne and Syncom Space Services engineers and operators. Aerojet Rocketdyne is the RS-25 prime contractor. Syncom Space Services is the prime contractor for Stennis facilities and operations.
Engines-only flight control system
NASA Technical Reports Server (NTRS)
Burcham, Frank W. (Inventor); Gilyard, Glenn B (Inventor); Conley, Joseph L. (Inventor); Stewart, James F. (Inventor); Fullerton, Charles G. (Inventor)
1994-01-01
A backup flight control system for controlling the flightpath of a multi-engine airplane using the main drive engines is introduced. The backup flight control system comprises an input device for generating a control command indicative of a desired flightpath, a feedback sensor for generating a feedback signal indicative of at least one of pitch rate, pitch attitude, roll rate and roll attitude, and a control device for changing the output power of at least one of the main drive engines on each side of the airplane in response to the control command and the feedback signal.
F-15 digital electronic engine control system description
NASA Technical Reports Server (NTRS)
Myers, L. P.
1984-01-01
A digital electronic engine control (DEEC) was developed for use on the F100-PW-100 turbofan engine. This control system has full authority control, capable of moving all the controlled variables over their full ranges. The digital computational electronics and fault detection and accomodation logic maintains safe engine operation. A hydromechanical backup control (BUC) is an integral part of the fuel metering unit and provides gas generator control at a reduced performance level in the event of an electronics failure. The DEEC's features, hardware, and major logic diagrams are described.
Flight Research Using F100 Engine P680063 in the NASA F-15 Airplane
NASA Technical Reports Server (NTRS)
Burcham, Frank W., Jr.; Conners, Timothy R.; Maxwell, Michael D.
1994-01-01
The value of flight research in developing and evaluating gas turbine engines is high. NASA Dryden Flight Research Center has been conducting flight research on propulsion systems for many years. The F100 engine has been tested in the NASA F-15 research airplane in the last three decades. One engine in particular, S/N P680063, has been used for the entire program and has been flown in many pioneering propulsion flight research activities. Included are detailed flight-to-ground facility tests; tests of the first production digital engine control system, the first active stall margin control system, the first performance-seeking control system; and the first use of computer-controlled engine thrust for emergency flight control. The flight research has been supplemented with altitude facility tests at key times. This paper presents a review of the tests of engine P680063, the F-15 airplanes in which it flew, and the role of the flight test in maturing propulsion technology.
Closed loop engine control for regulating NOx emissions, using a two-dimensional fuel-air curve
Bourn, Gary D.; Smith, Jack A.; Gingrich, Jess W.
2007-01-30
An engine control strategy that ensures that NOx emissions from the engine will be maintained at an acceptable level. The control strategy is based on a two-dimensional fuel-air curve, in which air manifold pressure (AMP) is a function of fuel header pressure and engine speed. The control strategy provides for closed loop NOx adjustment to a base AMP value derived from the fuel-air curve.
Man-machine interface and control of the shuttle digital flight system
NASA Technical Reports Server (NTRS)
Burghduff, R. D.; Lewis, J. L., Jr.
1985-01-01
The space shuttle main engine (SSME) presented new requirements in the design of controls for large pump fed liquid rocket engine systems. These requirements were the need for built in full mission support capability, and complexity and flexibility of function not previously needed in this type of application. An engine mounted programmable digital control system was developed to meet these requirements. The engine system and controller and their function are described. Design challenges encountered during the course of development included accommodation for a very severe engine environment, the implementation of redundancy and redundancy management to provide fail operational/fail safe capability, removal of heat from the package, and significant constraints on computer memory size and processing time. The flexibility offered by programmable control reshaped the approach to engine design and development and set the pattern for future controls development in these types of applications.
Nonlinear engine model for idle speed control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Livshiz, M.; Sanvido, D.J.; Stiles, S.D.
1994-12-31
This paper describes a nonlinear model of an engine used for the design of idle speed control and prediction in a broad range of idle speeds and operational conditions. Idle speed control systems make use of both spark advance and the idle air actuator to control engine speed for improved response relative to variations in the target idle speed due to load disturbances. The control system at idle can be presented by a multiple input multiple output (MIMO) nonlinear model. Information of nonlinearities helps to improve performance of the system over the whole range of engine speeds. A proposed simplemore » nonlinear model of the engine at idle was applied for design of optimal controllers and predictors for improved steady state, load rejection and transition from and to idle. This paper describes vehicle results of engine speed prediction based on the described model.« less
NASA Technical Reports Server (NTRS)
Batterton, P. G.; Arpasi, D. J.; Baumbick, R. J.
1974-01-01
A digitally implemented integrated inlet-engine control system was designed and tested on a mixed-compression, axisymmetric, Mach 2.5, supersonic inlet with 45 percent internal supersonic area contraction and a TF30-P-3 augmented turbofan engine. The control matched engine airflow to available inlet airflow. By monitoring inlet terminal shock position and over-board bypass door command, the control adjusted engine speed so that in steady state, the shock would be at the desired location and the overboard bypass doors would be closed. During engine-induced transients, such as augmentor light-off and cutoff, the inlet operating point was momentarily changed to a more supercritical point to minimize unstarts. The digital control also provided automatic inlet restart. A variable inlet throat bleed control, based on throat Mach number, provided additional inlet stability margin.
NASA Technical Reports Server (NTRS)
Myers, L. P.; Burcham, F. W., Jr.
1984-01-01
The highly integrated digital electronic control (HIDEC) program will integrate the propulsion and flight control systems on an F-15 airplane at NASA Ames Research Center's Dryden Flight Research Facility. Ames-Dryden has conducted several propulsion control programs that have contributed to the HIDEC program. The digital electronic engine control (DEEC) flight evaluation investigated the performance and operability of the F100 engine equipped with a full-authority digital electronic control system. Investigations of nozzle instability, fault detection and accommodation, and augmentor transient capability provided important information for the HIDEC program. The F100 engine model derivative (EMD) was also flown in the F-15 airplane, and airplane performance was significantly improved. A throttle response problem was found and solved with a software fix to the control logic. For the HIDEC program, the F100 EMD engines equipped with DEEC controls will be integrated with the digital flight control system. The control modes to be implemented are an integrated flightpath management mode and an integrated adaptive engine control system mode. The engine control experience that will be used in the HIDEC program is discussed.
Performance analysis and dynamic modeling of a single-spool turbojet engine
NASA Astrophysics Data System (ADS)
Andrei, Irina-Carmen; Toader, Adrian; Stroe, Gabriela; Frunzulica, Florin
2017-01-01
The purposes of modeling and simulation of a turbojet engine are the steady state analysis and transient analysis. From the steady state analysis, which consists in the investigation of the operating, equilibrium regimes and it is based on appropriate modeling describing the operation of a turbojet engine at design and off-design regimes, results the performance analysis, concluded by the engine's operational maps (i.e. the altitude map, velocity map and speed map) and the engine's universal map. The mathematical model that allows the calculation of the design and off-design performances, in case of a single spool turbojet is detailed. An in house code was developed, its calibration was done for the J85 turbojet engine as the test case. The dynamic modeling of the turbojet engine is obtained from the energy balance equations for compressor, combustor and turbine, as the engine's main parts. The transient analysis, which is based on appropriate modeling of engine and its main parts, expresses the dynamic behavior of the turbojet engine, and further, provides details regarding the engine's control. The aim of the dynamic analysis is to determine a control program for the turbojet, based on the results provided by performance analysis. In case of the single-spool turbojet engine, with fixed nozzle geometry, the thrust is controlled by one parameter, which is the fuel flow rate. The design and management of the aircraft engine controls are based on the results of the transient analysis. The construction of the design model is complex, since it is based on both steady-state and transient analysis, further allowing the flight path cycle analysis and optimizations. This paper presents numerical simulations for a single-spool turbojet engine (J85 as test case), with appropriate modeling for steady-state and dynamic analysis.
Evolution of engine cycles for STOVL propulsion concepts
NASA Technical Reports Server (NTRS)
Bucknell, R. L.; Frazier, R. H.; Giulianetti, D. J.
1990-01-01
Short Take-off, Vertical Landing (STOVL) demonstrator concepts using a common ATF engine core are discussed. These concepts include a separate fan and core flow engine cycle, mixed flow STOVL cycles, separate flow cycles convertible to mixed flow, and reaction control system engine air bleed. STOVL propulsion controls are discussed.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-09
... Standards; Authorization of State Standards for 1996 and later New Diesel Cycle Engines 175 Horsepower and... ENVIRONMENTAL PROTECTION AGENCY [FRL-9264-3] California State Nonroad Engine Pollution Control... program that allows for the registration of nonroad engines and equipment units that operate at multiple...
40 CFR 1051.125 - What maintenance instructions must I give to buyers?
Code of Federal Regulations, 2013 CFR
2013-07-01
... necessary. This might include adding engine oil, changing air, fuel, or oil filters, servicing engine... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM RECREATIONAL ENGINES AND VEHICLES Emission... the maintenance will be done at the recommended interval on in-use engines. In considering your...
40 CFR 1051.125 - What maintenance instructions must I give to buyers?
Code of Federal Regulations, 2012 CFR
2012-07-01
... necessary. This might include adding engine oil, changing air, fuel, or oil filters, servicing engine... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM RECREATIONAL ENGINES AND VEHICLES Emission... the maintenance will be done at the recommended interval on in-use engines. In considering your...
40 CFR 1051.125 - What maintenance instructions must I give to buyers?
Code of Federal Regulations, 2011 CFR
2011-07-01
... necessary. This might include adding engine oil, changing air, fuel, or oil filters, servicing engine... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM RECREATIONAL ENGINES AND VEHICLES Emission... the maintenance will be done at the recommended interval on in-use engines. In considering your...
40 CFR 1051.125 - What maintenance instructions must I give to buyers?
Code of Federal Regulations, 2014 CFR
2014-07-01
... necessary. This might include adding engine oil, changing air, fuel, or oil filters, servicing engine... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM RECREATIONAL ENGINES AND VEHICLES Emission... the maintenance will be done at the recommended interval on in-use engines. In considering your...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-19
... Engine Pollution Control Standards; Amendments to Spark Ignition Marine Engine and Boat Regulations... Marine Engine and Boat Regulations (2008 Marine SI Amendments or 2008 Amendments). CARB requested EPA... the 2008 Marine SI Amendments. DATES: EPA has tentatively scheduled a public hearing concerning CARB's...
40 CFR 86.096-24 - Test vehicles and engines.
Code of Federal Regulations, 2012 CFR
2012-07-01
... design, engine family, emission control system, or with any other durability-related design difference... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Test vehicles and engines. 86.096-24... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES General Provisions for...
40 CFR 1042.505 - Testing engines using discrete-mode or ramped-modal duty cycles.
Code of Federal Regulations, 2013 CFR
2013-07-01
... used with) controllable-pitch propellers or with electrically coupled propellers, unless these engines... engines that are used with (or intended to be used with) controllable-pitch propellers or with electrically coupled propellers. Use this duty cycle also for variable-speed propulsion marine engines that are...
40 CFR 1042.505 - Testing engines using discrete-mode or ramped-modal duty cycles.
Code of Federal Regulations, 2014 CFR
2014-07-01
... used with (or intended to be used with) fixed-pitch propellers, propeller-law auxiliary engines, and... with) controllable-pitch propellers or with electrically coupled propellers, unless these engines are... engines that are used with (or intended to be used with) controllable-pitch propellers or with...
40 CFR 1042.505 - Testing engines using discrete-mode or ramped-modal duty cycles.
Code of Federal Regulations, 2011 CFR
2011-07-01
... used with) controllable-pitch propellers or with electrically coupled propellers, unless these engines... engines that are used with (or intended to be used with) controllable-pitch propellers or with electrically coupled propellers. Use this duty cycle also for variable-speed propulsion marine engines that are...
40 CFR 1042.505 - Testing engines using discrete-mode or ramped-modal duty cycles.
Code of Federal Regulations, 2012 CFR
2012-07-01
... used with) controllable-pitch propellers or with electrically coupled propellers, unless these engines... engines that are used with (or intended to be used with) controllable-pitch propellers or with electrically coupled propellers. Use this duty cycle also for variable-speed propulsion marine engines that are...
40 CFR 1048.101 - What exhaust emission standards must my engines meet?
Code of Federal Regulations, 2010 CFR
2010-07-01
... my engines meet? 1048.101 Section 1048.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES Emission Standards and Related Requirements § 1048.101 What exhaust emission standards must my engines meet...
Concept Designed and Developed for Distortion- Tolerant, High-Stability Engine Control
NASA Technical Reports Server (NTRS)
1995-01-01
Engine Control Future aircraft turbine engines, both commercial and military, must be able to successfully accommodate expected increased levels of steady-state and dynamic engine-face distortion. Advanced tactical aircraft are likely to use thrust vectoring to enhance their maneuverability. As a result, the engines will see more extreme aircraft angles-of-attack and sideslip levels than are currently encountered with present-day aircraft. Also, the mixed-compression inlets needed for the High Speed Civil Transport will likely encounter disturbances similar to those seen by tactical aircraft, in addition to planar pulse, inlet buzz, and high distortion levels at low flight speed and off-design operation. The current approach of incorporating a sufficient component design stall margin to tolerate these increased levels of distortion would significantly reduce performance. The objective of the High Stability Engine Control (HISTEC) program is to design, develop, and flight demonstrate an advanced, high-stability, integrated engine-control system that uses measurement-based, real-time estimates of distortion to enhance engine stability. The resulting distortion-tolerant control reduces the required design stall margin, with a corresponding increase in performance and decrease in fuel burn. The HISTEC concept has been designed and developed, and the software implementing the concept has successfully accommodated time-varying distortion. The NASA Lewis Research Center is currently overseeing the development and validation of the hardware and software necessary to flight test the HISTEC concept. HISTEC is a contracted effort with Pratt & Whitney of West Palm Beach, Florida. The HISTEC approach includes two major systems: A Distortion Estimation System (DES) and Stability Management Control (SMC). DES is an aircraft-mounted, high-speed processor that estimates the amount and type of distortion present and its effect on the engine. It uses high-response pressure measurements at the engine face to calculate indicators of the type and extent of distortion in real time. From these indicators, DES determines the effects of distortion on the propulsion systems and the corresponding engine match point necessary to accommodate it. DES output consists of fan and compressor pressure ratio trim commands that are passed to the SMC. In addition, DES uses maneuver information, consisting of angle-of-attack and sideslip from the flight control, to anticipate high inlet distortion conditions. The SMC, which is contained in the engine-mounted, Improved Digital Electronic Engine Control (IDEEC), includes advanced control laws to directly control the fan and compressor transient operating line (pressure ratio). These advanced control laws, with a multivariable design, have the potential for higher bandwidth and the resulting more precise control of engine match. The ability to measure and assess the distortion effects in real time coupled with a high-response controller improves engine stability at high levels of distortion. The software algorithms implementing DES have been designed, developed, and demonstrated, and integration testing of the DES and SMC software has been completed. The results show that the HISTEC system will be able to sense inlet distortion, determine the effect on engine stability, and accommodate distortion by maintaining an adequate margin for engine surge. The Pratt &Whitney Comprehensive Engine Diagnostic Unit was chosen as the DES processor. An instrumented inlet case for sensing distortion was designed and fabricated. HISTEC is scheduled for flight test on the ACTIVE F-15 aircraft at the NASA Dryden Flight Research Center in Edwards, California, in late 1996.
NASA Technical Reports Server (NTRS)
Ray, R. J.; Myers, L. P.
1986-01-01
The highly integrated digital electronic control (HIDEC) program will demonstrate and evaluate the improvements in performance and mission effectiveness that result from integrated engine-airframe control systems. Performance improvements will result from an adaptive engine stall margin mode, a highly integrated mode that uses the airplane flight conditions and the resulting inlet distortion to continuously compute engine stall margin. When there is excessive stall margin, the engine is uptrimmed for more thrust by increasing engine pressure ratio (EPR). The EPR uptrim logic has been evaluated and implemente into computer simulations. Thrust improvements over 10 percent are predicted for subsonic flight conditions. The EPR uptrim was successfully demonstrated during engine ground tests. Test results verify model predictions at the conditions tested.
14 CFR 23.49 - Stalling period.
Code of Federal Regulations, 2011 CFR
2011-01-01
... on the stalling speed, with engine(s) idling and throttle(s) closed; (3) The propeller(s) in the... which the airplane is controllable with— (1) For reciprocating engine-powered airplanes, the engine(s... more than 110 percent of the stalling speed; (2) For turbine engine-powered airplanes, the propulsive...
40 CFR 1065.405 - Test engine preparation and maintenance.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Test engine preparation and...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Engine Selection, Preparation, and Maintenance § 1065.405 Test engine preparation and maintenance. This part 1065 describes how to test engines for a...
40 CFR 1065.405 - Test engine preparation and maintenance.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Test engine preparation and...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Engine Selection, Preparation, and Maintenance § 1065.405 Test engine preparation and maintenance. This part 1065 describes how to test engines for a...
NASA Technical Reports Server (NTRS)
Adams, A.
1973-01-01
The Interface Control Document contains engine information necessary for installation of the baseline RL10 Derivative engines in the Space Tug vehicle. The ICD presents a description of the baseline engines and their operating characteristics, mass and load characteristics, and environmental criteria. The document defines the engine/vehicle mechanical, electrical, fluid and pneumatic interface requirements.
Mathematical modeling and characteristic analysis for over-under turbine based combined cycle engine
NASA Astrophysics Data System (ADS)
Ma, Jingxue; Chang, Juntao; Ma, Jicheng; Bao, Wen; Yu, Daren
2018-07-01
The turbine based combined cycle engine has become the most promising hypersonic airbreathing propulsion system for its superiority of ground self-starting, wide flight envelop and reusability. The simulation model of the turbine based combined cycle engine plays an important role in the research of performance analysis and control system design. In this paper, a turbine based combined cycle engine mathematical model is built on the Simulink platform, including a dual-channel air intake system, a turbojet engine and a ramjet. It should be noted that the model of the air intake system is built based on computational fluid dynamics calculation, which provides valuable raw data for modeling of the turbine based combined cycle engine. The aerodynamic characteristics of turbine based combined cycle engine in turbojet mode, ramjet mode and mode transition process are studied by the mathematical model, and the influence of dominant variables on performance and safety of the turbine based combined cycle engine is analyzed. According to the stability requirement of thrust output and the safety in the working process of turbine based combined cycle engine, a control law is proposed that could guarantee the steady output of thrust by controlling the control variables of the turbine based combined cycle engine in the whole working process.
Li, Bin; Zheng, Yunxin; He, Dehua; Jiang, Ruiyao; Chen, Ying; Jing, Wei
2012-03-01
The quantity of medical equipment in hospital rise quickly recent year. It provides the comprehensive support to the clinical service. The maintenance of medical equipment becomes more important than before. It is necessary to study on the orientation and function of clinical engineer in medical equipment maintenance system. Refer to three grade health care system, the community doctors which is called General practitioner, play an important role as the gatekeeper of health care system to triage and cost control. The paper suggests that hospital clinical engineer should play similar role as the gatekeeper of medical equipment maintenance system which composed by hospital clinical engineer, manufacture engineer and third party engineer. The hospital clinical engineer should be responsible of guard a pass of medical equipment maintenance quality and cost control. As the gatekeeper, hospital clinical engineer should take the responsibility of "General engineer" and pay more attention to safety and health of medical equipment. The responsibility description and future transition? development of clinical engineer as "General Engineer" is discussed. More attention should be recommended to the team building of hospital clinical engineer as "General Engineer".
40 CFR 1045.801 - What definitions apply to this part?
Code of Federal Regulations, 2011 CFR
2011-07-01
... emission control device means any element of design that senses temperature, motive speed, engine RPM... of design that controls or reduces the emissions of regulated pollutants from an engine. Emission... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS...
40 CFR 1045.801 - What definitions apply to this part?
Code of Federal Regulations, 2014 CFR
2014-07-01
... emission control device means any element of design that senses temperature, motive speed, engine RPM... of design that controls or reduces the emissions of regulated pollutants from an engine. Emission... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS...
40 CFR 1045.801 - What definitions apply to this part?
Code of Federal Regulations, 2012 CFR
2012-07-01
... emission control device means any element of design that senses temperature, motive speed, engine RPM... of design that controls or reduces the emissions of regulated pollutants from an engine. Emission... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS...
40 CFR 1045.801 - What definitions apply to this part?
Code of Federal Regulations, 2010 CFR
2010-07-01
... emission control device means any element of design that senses temperature, motive speed, engine RPM... of design that controls or reduces the emissions of regulated pollutants from an engine. Emission... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS...
Robust Nonlinear Feedback Control of Aircraft Propulsion Systems
NASA Technical Reports Server (NTRS)
Garrard, William L.; Balas, Gary J.; Litt, Jonathan (Technical Monitor)
2001-01-01
This is the final report on the research performed under NASA Glen grant NASA/NAG-3-1975 concerning feedback control of the Pratt & Whitney (PW) STF 952, a twin spool, mixed flow, after burning turbofan engine. The research focussed on the design of linear and gain-scheduled, multivariable inner-loop controllers for the PW turbofan engine using H-infinity and linear, parameter-varying (LPV) control techniques. The nonlinear turbofan engine simulation was provided by PW within the NASA Rocket Engine Transient Simulator (ROCETS) simulation software environment. ROCETS was used to generate linearized models of the turbofan engine for control design and analysis as well as the simulation environment to evaluate the performance and robustness of the controllers. Comparison between the H-infinity, and LPV controllers are made with the baseline multivariable controller and developed by Pratt & Whitney engineers included in the ROCETS simulation. Simulation results indicate that H-infinity and LPV techniques effectively achieve desired response characteristics with minimal cross coupling between commanded values and are very robust to unmodeled dynamics and sensor noise.
A Mathematical Model of Marine Diesel Engine Speed Control System
NASA Astrophysics Data System (ADS)
Sinha, Rajendra Prasad; Balaji, Rajoo
2018-02-01
Diesel engine is inherently an unstable machine and requires a reliable control system to regulate its speed for safe and efficient operation. Also, the diesel engine may operate at fixed or variable speeds depending upon user's needs and accordingly the speed control system should have essential features to fulfil these requirements. This paper proposes a mathematical model of a marine diesel engine speed control system with droop governing function. The mathematical model includes static and dynamic characteristics of the control loop components. Model of static characteristic of the rotating fly weights speed sensing element provides an insight into the speed droop features of the speed controller. Because of big size and large time delay, the turbo charged diesel engine is represented as a first order system or sometimes even simplified to a pure integrator with constant gain which is considered acceptable in control literature. The proposed model is mathematically less complex and quick to use for preliminary analysis of the diesel engine speed controller performance.
NASA Technical Reports Server (NTRS)
Stewart, E. C.; Brown, P. W.; Yenni, K. R.
1986-01-01
A simulation study was conducted to investigate the piloting problems associated with failure of an engine on a generic light twin-engine airplane. A primary piloting problem for a light twin-engine airplane after an engine failure is maintaining precise control of the airplane in the presence of large steady control forces. To address this problem, a simulated automatic trim system which drives the trim tabs as an open-loop function of propeller slipstream measurements was developed. The simulated automatic trim system was found to greatly increase the controllability in asymmetric powered flight without having to resort to complex control laws or an irreversible control system. However, the trim-tab control rates needed to produce the dramatic increase in controllability may require special design consideration for automatic trim system failures. Limited measurements obtained in full-scale flight tests confirmed the fundamental validity of the proposed control law.
Tool for Turbine Engine Closed-Loop Transient Analysis (TTECTrA) Users' Guide
NASA Technical Reports Server (NTRS)
Csank, Jeffrey T.; Zinnecker, Alicia M.
2014-01-01
The tool for turbine engine closed-loop transient analysis (TTECTrA) is a semi-automated control design tool for subsonic aircraft engine simulations. At a specific flight condition, TTECTrA produces a basic controller designed to meet user-defined goals and containing only the fundamental limiters that affect the transient performance of the engine. The purpose of this tool is to provide the user a preliminary estimate of the transient performance of an engine model without the need to design a full nonlinear controller.
Dedicated EGR engine with dynamic load control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayman, Alan W.; McAlpine, Robert S.; Keating, Edward J.
An internal combustion engine comprises a first engine bank and a second engine bank. A first intake valve is disposed in an intake port of a cylinder of the first engine bank, and is configured for metering the first flow of combustion air by periodically opening and closing according to a first intake valve lift and duration characteristic. A variable valve train control mechanism is configured for affecting the first intake valve lift and duration characteristic. Either a lift or duration of the first intake valve is modulated so as to satisfy an EGR control criterion.
Code of Federal Regulations, 2011 CFR
2011-10-01
... approach to the design of rail passenger equipment which controls the dissipation of energy during a... engineer attentiveness by monitoring select locomotive engineer-induced control activities. If fluctuation of a monitored locomotive engineer-induced control activity is not detected within a predetermined...
Code of Federal Regulations, 2012 CFR
2012-10-01
... approach to the design of rail passenger equipment which controls the dissipation of energy during a... engineer attentiveness by monitoring select locomotive engineer-induced control activities. If fluctuation of a monitored locomotive engineer-induced control activity is not detected within a predetermined...
40 CFR 86.1332-90 - Engine mapping procedures.
Code of Federal Regulations, 2011 CFR
2011-07-01
... § 86.1332-90 Engine mapping procedures. (a) Mount test engine on the engine dynamometer. (b) Determine... 40 Protection of Environment 19 2011-07-01 2011-07-01 false Engine mapping procedures. 86.1332-90... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission...
40 CFR 86.1332-90 - Engine mapping procedures.
Code of Federal Regulations, 2012 CFR
2012-07-01
... § 86.1332-90 Engine mapping procedures. (a) Mount test engine on the engine dynamometer. (b) Determine... 40 Protection of Environment 20 2012-07-01 2012-07-01 false Engine mapping procedures. 86.1332-90... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission...
40 CFR 86.1332-90 - Engine mapping procedures.
Code of Federal Regulations, 2013 CFR
2013-07-01
... § 86.1332-90 Engine mapping procedures. (a) Mount test engine on the engine dynamometer. (b) Determine... 40 Protection of Environment 20 2013-07-01 2013-07-01 false Engine mapping procedures. 86.1332-90... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission...
78 FR 1733 - Airworthiness Directives; Thielert Aircraft Engines GmbH Reciprocating Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-09
... Airworthiness Directives; Thielert Aircraft Engines GmbH Reciprocating Engines AGENCY: Federal Aviation... (AD) for all Thielert Aircraft Engines GmbH models TAE 125-01, TAE 125-02- 99, and TAE 125-02-114 reciprocating engines. That AD currently requires installation of full-authority digital electronic control...
40 CFR 1036.525 - Hybrid engines.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Hybrid engines. 1036.525 Section 1036... CONTROL OF EMISSIONS FROM NEW AND IN-USE HEAVY-DUTY HIGHWAY ENGINES Test Procedures § 1036.525 Hybrid engines. (a) If your engine system includes features that recover and store energy during engine motoring...
40 CFR 1036.525 - Hybrid engines.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Hybrid engines. 1036.525 Section 1036... CONTROL OF EMISSIONS FROM NEW AND IN-USE HEAVY-DUTY HIGHWAY ENGINES Test Procedures § 1036.525 Hybrid engines. (a) If your engine system includes features that recover and store energy during engine motoring...
40 CFR 91.307 - Engine cooling system.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine cooling system. 91.307 Section...) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Emission Test Equipment Provisions § 91.307 Engine cooling system. An engine cooling system is required with sufficient capacity to maintain the engine at...
40 CFR 91.307 - Engine cooling system.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine cooling system. 91.307 Section...) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Emission Test Equipment Provisions § 91.307 Engine cooling system. An engine cooling system is required with sufficient capacity to maintain the engine at...
40 CFR 1065.410 - Maintenance limits for stabilized test engines.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Engine Selection, Preparation, and Maintenance § 1065... scheduled maintenance on emission data engines must be representative of what is planned to be available to... no longer use it as an emission-data engine. Also, if your test engine has a major mechanical failure...
40 CFR 1065.410 - Maintenance limits for stabilized test engines.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Engine Selection, Preparation, and Maintenance § 1065... scheduled maintenance on emission data engines must be representative of what is planned to be available to... no longer use it as an emission-data engine. Also, if your test engine has a major mechanical failure...
Heat engine and electric motor torque distribution strategy for a hybrid electric vehicle
Boberg, Evan S.; Gebby, Brian P.
1999-09-28
A method is provided for controlling a power train system for a hybrid electric vehicle. The method includes a torque distribution strategy for controlling the engine and the electric motor. The engine and motor commands are determined based upon the accelerator position, the battery state of charge and the amount of engine and motor torque available. The amount of torque requested for the engine is restricted by a limited rate of rise in order to reduce the emissions from the engine. The limited engine torque is supplemented by motor torque in order to meet a torque request determined based upon the accelerator position.
The Modular Aero-Propulsion System Simulation (MAPSS) Users' Guide
NASA Technical Reports Server (NTRS)
Parker, Khary I.; Melcher, Kevin J.
2004-01-01
The Modular Aero-Propulsion System Simulation is a flexible turbofan engine simulation environment that provides the user a platform to develop advanced control algorithms. It is capable of testing the performance of control designs on a validated and verified generic engine model. In addition, it is able to generate state-space linear models of the engine model to aid in controller design. The engine model used in MAPSS is a generic high-pressure ratio, dual-spool, lowbypass, military-type, variable cycle turbofan engine with a digital controller. MAPSS is controlled by a graphical user interface (GUI) and this guide explains how to use it to take advantage of the capabilities of MAPSS.
Energy Efficient Engine (E3) controls and accessories detail design report
NASA Technical Reports Server (NTRS)
Beitler, R. S.; Lavash, J. P.
1982-01-01
An Energy Efficient Engine program has been established by NASA to develop technology for improving the energy efficiency of future commercial transport aircraft engines. As part of this program, a new turbofan engine was designed. This report describes the fuel and control system for this engine. The system design is based on many of the proven concepts and component designs used on the General Electric CF6 family of engines. One significant difference is the incorporation of digital electronic computation in place of the hydromechanical computation currently used.
NASA Technical Reports Server (NTRS)
Wallhagen, R. E.; Arpasi, D. J.
1974-01-01
The design and evaluation are described of a digital turbojet engine control which is capable of sensing catastrophic failures in either the engine rotor speed or the compressor discharge static-pressure signal and is capable of switching control modes to maintain near normal operation. The control program was developed for and tested on a turbojet engine located in a sea-level test stand. The control program is also capable of acquiring all the data that are necessary for the fail-operational control to function.
A Modular Aero-Propulsion System Simulation of a Large Commercial Aircraft Engine
NASA Technical Reports Server (NTRS)
DeCastro, Jonathan A.; Litt, Jonathan S.; Frederick, Dean K.
2008-01-01
A simulation of a commercial engine has been developed in a graphical environment to meet the increasing need across the controls and health management community for a common research and development platform. This paper describes the Commercial Modular Aero Propulsion System Simulation (C-MAPSS), which is representative of a 90,000-lb thrust class two spool, high bypass ratio commercial turbofan engine. A control law resembling the state-of-the-art on board modern aircraft engines is included, consisting of a fan-speed control loop supplemented by relevant engine limit protection regulator loops. The objective of this paper is to provide a top-down overview of the complete engine simulation package.
NASA Technical Reports Server (NTRS)
Orme, John S.
1995-01-01
The performance seeking control algorithm optimizes total propulsion system performance. This adaptive, model-based optimization algorithm has been successfully flight demonstrated on two engines with differing levels of degradation. Models of the engine, nozzle, and inlet produce reliable, accurate estimates of engine performance. But, because of an observability problem, component levels of degradation cannot be accurately determined. Depending on engine-specific operating characteristics PSC achieves various levels performance improvement. For example, engines with more deterioration typically operate at higher turbine temperatures than less deteriorated engines. Thus when the PSC maximum thrust mode is applied, for example, there will be less temperature margin available to be traded for increasing thrust.
The Environmental Technology Verification report discusses the technology and performance of the Lubrizol Engine Control Systems Purifilter SC17L manufactured by Lubrizol Engine Control Systems. The technology is a precious and base metal, passively regenerated particulate filter...
40 CFR 1048.125 - What maintenance instructions must I give to buyers?
Code of Federal Regulations, 2012 CFR
2012-07-01
... injectors, electronic control units, superchargers, and turbochargers: The useful life of the engine family... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES... and using the engine, including the emission-control system. The maintenance instructions also apply...
40 CFR 1048.125 - What maintenance instructions must I give to buyers?
Code of Federal Regulations, 2011 CFR
2011-07-01
... injectors, electronic control units, superchargers, and turbochargers: The useful life of the engine family... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES... and using the engine, including the emission-control system. The maintenance instructions also apply...
40 CFR 1048.125 - What maintenance instructions must I give to buyers?
Code of Federal Regulations, 2014 CFR
2014-07-01
... injectors, electronic control units, superchargers, and turbochargers: The useful life of the engine family... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES... and using the engine, including the emission-control system. The maintenance instructions also apply...
40 CFR 1048.125 - What maintenance instructions must I give to buyers?
Code of Federal Regulations, 2013 CFR
2013-07-01
... injectors, electronic control units, superchargers, and turbochargers: The useful life of the engine family... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES... and using the engine, including the emission-control system. The maintenance instructions also apply...
2007-05-24
KENNEDY SPACE CENTER, FLA. -- In Space Shuttle Maine Engine Shop, workers get ready to install an engine controller in one of the three main engines (behind them) of the orbiter Discovery. The controller is an electronics package mounted on each space shuttle main engine. It contains two digital computers and the associated electronics to control all main engine components and operations. The controller is attached to the main combustion chamber by shock-mounted fittings. Discovery is the designated orbiter for mission STS-120 to the International Space Station. It will carry a payload that includes the Node 2 module, named Harmony. Launch is targeted for no earlier than Oct. 20. Photo credit: NASA/Cory Huston
2007-05-24
KENNEDY SPACE CENTER, FLA. -- In the Space Shuttle Maine Engine Shop, workers are installing an engine controller in one of the three main engines of the orbiter Discovery. The controller is an electronics package mounted on each space shuttle main engine. It contains two digital computers and the associated electronics to control all main engine components and operations. The controller is attached to the main combustion chamber by shock-mounted fittings. Discovery is the designated orbiter for mission STS-120 to the International Space Station. It will carry a payload that includes the Node 2 module, named Harmony. Launch is targeted for no earlier than Oct. 20. Photo credit: NASA/Cory Huston
2007-05-24
KENNEDY SPACE CENTER, FLA. -- In the Space Shuttle Maine Engine Shop, workers check the installation of an engine controller in one of the three main engines of the orbiter Discovery. The controller is an electronics package mounted on each space shuttle main engine. It contains two digital computers and the associated electronics to control all main engine components and operations. The controller is attached to the main combustion chamber by shock-mounted fittings. Discovery is the designated orbiter for mission STS-120 to the International Space Station. It will carry a payload that includes the Node 2 module, named Harmony. Launch is targeted for no earlier than Oct. 20. Photo credit: NASA/Cory Huston
2007-05-24
KENNEDY SPACE CENTER, FLA. -- In the Space Shuttle Maine Engine Shop, workers are installing an engine controller in one of the three main engines of the orbiter Discovery. The controller is an electronics package mounted on each space shuttle main engine. It contains two digital computers and the associated electronics to control all main engine components and operations. The controller is attached to the main combustion chamber by shock-mounted fittings. Discovery is the designated orbiter for mission STS-120 to the International Space Station. It will carry a payload that includes the Node 2 module, named Harmony. Launch is targeted for no earlier than Oct. 20. Photo credit: NASA/Cory Huston
2007-05-24
KENNEDY SPACE CENTER, FLA. -- In the Space Shuttle Maine Engine Shop, workers get ready to install an engine controller in one of the three main engines of the orbiter Discovery. The controller is an electronics package mounted on each space shuttle main engine. It contains two digital computers and the associated electronics to control all main engine components and operations. The controller is attached to the main combustion chamber by shock-mounted fittings. Discovery is the designated orbiter for mission STS-120 to the International Space Station. It will carry a payload that includes the Node 2 module, named Harmony. Launch is targeted for no earlier than Oct. 20. Photo credit: NASA/Cory Huston
Introducing a new semi-active engine mount using force controlled variable stiffness
NASA Astrophysics Data System (ADS)
Azadi, Mojtaba; Behzadipour, Saeed; Faulkner, Gary
2013-05-01
This work introduces a new concept in designing semi-active engine mounts. Engine mounts are under continuous development to provide better and more cost-effective engine vibration control. Passive engine mounts do not provide satisfactory solution. Available semi-active and active mounts provide better solutions but they are more complex and expensive. The variable stiffness engine mount (VSEM) is a semi-active engine mount with a simple ON-OFF control strategy. However, unlike available semi-active engine mounts that work based on damping change, the VSEM works based on the static stiffness change by using a new fast response force controlled variable spring. The VSEM is an improved version of the vibration mount introduced by the authors in their previous work. The results showed significant performance improvements over a passive rubber mount. The VSEM also provides better vibration control than a hydromount at idle speed. Low hysteresis and the ability to be modelled by a linear model in low-frequency are the advantages of the VSEM over the vibration isolator introduced earlier and available hydromounts. These specifications facilitate the use of VSEM in the automotive industry, however, further evaluation and developments are needed for this purpose.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-29
... propulsion and auxiliary engines on new and in-use commercial harbor crafts, with some exceptions.\\6...- 0002. For new harbor crafts, each propulsion and auxiliary diesel engine on the vessel is required to... federal Tier 4 certified propulsion engine. \\8\\ BACT is the diesel emission control strategy (DECS...
40 CFR 1051.305 - How must I prepare and test my production-line vehicles or engines?
Code of Federal Regulations, 2010 CFR
2010-07-01
... production-line vehicles or engines? 1051.305 Section 1051.305 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM RECREATIONAL ENGINES AND VEHICLES Testing Production-Line Vehicles and Engines § 1051.305 How must I prepare and test my production...
14 CFR 121.279 - Control of engine rotation.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Control of engine rotation. 121.279 Section... of engine rotation. (a) Except as provided in paragraph (b) of this section, each airplane must have a means of individually stopping and restarting the rotation of any engine in flight. (b) In the...
40 CFR 1051.505 - What special provisions apply for testing snowmobiles?
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM RECREATIONAL ENGINES AND VEHICLES Test... for all testing you perform for that engine family. If we test your engines to confirm that they meet... cycle using the weighting factors specified for each mode. In each mode, operate the engine for at least...
40 CFR 1051.505 - What special provisions apply for testing snowmobiles?
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM RECREATIONAL ENGINES AND VEHICLES Test... for all testing you perform for that engine family. If we test your engines to confirm that they meet... cycle using the weighting factors specified for each mode. In each mode, operate the engine for at least...
40 CFR 1051.505 - What special provisions apply for testing snowmobiles?
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM RECREATIONAL ENGINES AND VEHICLES Test... for all testing you perform for that engine family. If we test your engines to confirm that they meet... cycle using the weighting factors specified for each mode. In each mode, operate the engine for at least...
40 CFR 1051.505 - What special provisions apply for testing snowmobiles?
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM RECREATIONAL ENGINES AND VEHICLES Test... for all testing you perform for that engine family. If we test your engines to confirm that they meet... cycle using the weighting factors specified for each mode. In each mode, operate the engine for at least...
75 FR 22693 - Airworthiness Directives; Turbomeca Makila 2A Turboshaft Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-30
... Airworthiness Directives; Turbomeca Makila 2A Turboshaft Engines AGENCY: Federal Aviation Administration (FAA... condition on an aviation product. The MCAI describes the unsafe condition as: Some digital engine control units (DECUs) used to control MAKILA 2A and MAKILA 2A1 engines have an ambient pressure (P0) sensor with...
40 CFR 1039.230 - How do I select engine families?
Code of Federal Regulations, 2012 CFR
2012-07-01
... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Certifying.... (b) Group engines in the same engine family if they are the same in all the following aspects: (1...) Combustion chamber design. (6) Bore and stroke. (7) Cylinder arrangement (such as in-line vs. vee...
40 CFR 1039.230 - How do I select engine families?
Code of Federal Regulations, 2011 CFR
2011-07-01
... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Certifying.... (b) Group engines in the same engine family if they are the same in all the following aspects: (1...) Combustion chamber design. (6) Bore and stroke. (7) Cylinder arrangement (such as in-line vs. vee...
40 CFR 1039.230 - How do I select engine families?
Code of Federal Regulations, 2010 CFR
2010-07-01
... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Certifying.... (b) Group engines in the same engine family if they are the same in all the following aspects: (1...) Combustion chamber design. (6) Bore and stroke. (7) Cylinder arrangement (such as in-line vs. vee...
40 CFR 1039.230 - How do I select engine families?
Code of Federal Regulations, 2014 CFR
2014-07-01
... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Certifying.... (b) Group engines in the same engine family if they are the same in all the following aspects: (1...) Combustion chamber design. (6) Bore and stroke. (7) Cylinder arrangement (such as in-line vs. vee...
40 CFR 1051.5 - Which engines are excluded from this part's requirements?
Code of Federal Regulations, 2010 CFR
2010-07-01
... engines. (2) Vehicles with a combined total vehicle dry weight under 20.0 kilograms are excluded from this... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM RECREATIONAL ENGINES AND VEHICLES Overview and Applicability § 1051.5 Which engines are excluded from this part's requirements? (a)(1) You may exclude vehicles...
14 CFR 121.279 - Control of engine rotation.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Control of engine rotation. 121.279 Section... of engine rotation. (a) Except as provided in paragraph (b) of this section, each airplane must have a means of individually stopping and restarting the rotation of any engine in flight. (b) In the...
14 CFR 121.279 - Control of engine rotation.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Control of engine rotation. 121.279 Section... of engine rotation. (a) Except as provided in paragraph (b) of this section, each airplane must have a means of individually stopping and restarting the rotation of any engine in flight. (b) In the...
14 CFR 121.279 - Control of engine rotation.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Control of engine rotation. 121.279 Section... of engine rotation. (a) Except as provided in paragraph (b) of this section, each airplane must have a means of individually stopping and restarting the rotation of any engine in flight. (b) In the...
40 CFR Appendix I to Part 92 - Emission Related Locomotive and Engine Parameters and Specifications
Code of Federal Regulations, 2011 CFR
2011-07-01
... injection—non-compression ignition engines. a. Control parameters and calibrations. b. Idle mixture. c. Fuel...(s). i. Injector timing calibration. 4. Fuel injection—compression ignition engines. a. Control... restriction. III. Fuel System. 1. General. a. Engine idle speed. 2. Carburetion. a. Air-fuel flow calibration...
40 CFR Appendix I to Part 92 - Emission Related Locomotive and Engine Parameters and Specifications
Code of Federal Regulations, 2014 CFR
2014-07-01
... injection—non-compression ignition engines. a. Control parameters and calibrations. b. Idle mixture. c. Fuel...(s). i. Injector timing calibration. 4. Fuel injection—compression ignition engines. a. Control... restriction. III. Fuel System. 1. General. a. Engine idle speed. 2. Carburetion. a. Air-fuel flow calibration...
40 CFR Appendix I to Part 92 - Emission Related Locomotive and Engine Parameters and Specifications
Code of Federal Regulations, 2013 CFR
2013-07-01
... injection—non-compression ignition engines. a. Control parameters and calibrations. b. Idle mixture. c. Fuel...(s). i. Injector timing calibration. 4. Fuel injection—compression ignition engines. a. Control... restriction. III. Fuel System. 1. General. a. Engine idle speed. 2. Carburetion. a. Air-fuel flow calibration...
40 CFR Appendix I to Part 92 - Emission Related Locomotive and Engine Parameters and Specifications
Code of Federal Regulations, 2012 CFR
2012-07-01
... injection—non-compression ignition engines. a. Control parameters and calibrations. b. Idle mixture. c. Fuel...(s). i. Injector timing calibration. 4. Fuel injection—compression ignition engines. a. Control... restriction. III. Fuel System. 1. General. a. Engine idle speed. 2. Carburetion. a. Air-fuel flow calibration...
Code of Federal Regulations, 2014 CFR
2014-10-01
... locomotive engineer attentiveness by monitoring select locomotive engineer-induced control activities. If fluctuation of a monitored locomotive engineer-induced control activity is not detected within a predetermined... monitored control, or acknowledge the alerter alarm activity through a manual reset provision, results in a...
Code of Federal Regulations, 2013 CFR
2013-10-01
... locomotive engineer attentiveness by monitoring select locomotive engineer-induced control activities. If fluctuation of a monitored locomotive engineer-induced control activity is not detected within a predetermined... monitored control, or acknowledge the alerter alarm activity through a manual reset provision, results in a...
Code of Federal Regulations, 2012 CFR
2012-10-01
... locomotive engineer attentiveness by monitoring select locomotive engineer-induced control activities. If fluctuation of a monitored locomotive engineer-induced control activity is not detected within a predetermined... monitored control, or acknowledge the alerter alarm activity through a manual reset provision, results in a...
Method and apparatus for controlling hybrid powertrain system in response to engine temperature
Martini, Ryan D; Spohn, Brian L; Lehmen, Allen J; Cerbolles, Teresa L
2014-10-07
A method for controlling a hybrid powertrain system including an internal combustion engine includes controlling operation of the hybrid powertrain system in response to a preferred minimum coolant temperature trajectory for the internal combustion engine.
40 CFR 1042.835 - Certification of remanufactured engines.
Code of Federal Regulations, 2012 CFR
2012-07-01
... engines. 1042.835 Section 1042.835 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES... you provide must include appropriate manifolds, aftertreatment devices, electronic control units, and...
40 CFR 1042.835 - Certification of remanufactured engines.
Code of Federal Regulations, 2013 CFR
2013-07-01
... engines. 1042.835 Section 1042.835 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES... you provide must include appropriate manifolds, aftertreatment devices, electronic control units, and...
40 CFR 1042.835 - Certification of remanufactured engines.
Code of Federal Regulations, 2011 CFR
2011-07-01
... engines. 1042.835 Section 1042.835 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES... you provide must include appropriate manifolds, aftertreatment devices, electronic control units, and...
40 CFR 1042.835 - Certification of remanufactured engines.
Code of Federal Regulations, 2014 CFR
2014-07-01
... engines. 1042.835 Section 1042.835 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES... you provide must include appropriate manifolds, aftertreatment devices, electronic control units, and...
Propulsion Control Technology Development in the United States A Historical Perspective
NASA Technical Reports Server (NTRS)
Jaw, Link C.a; Garg, Sanjay
2005-01-01
This paper presents a historical perspective of the advancement of control technologies for aircraft gas turbine engines. The paper primarily covers technology advances in the United States in the last 60 years (1940 to approximately 2002). The paper emphasizes the pioneering technologies that have been tested or implemented during this period, assimilating knowledge and experience from industry experts, including personal interviews with both current and retired experts. Since the first United States-built aircraft gas turbine engine was flown in 1942, engine control technology has evolved from a simple hydro-mechanical fuel metering valve to a full-authority digital electronic control system (FADEC) that is common to all modern aircraft propulsion systems. At the same time, control systems have provided engine diagnostic functions. Engine diagnostic capabilities have also evolved from pilot observation of engine gauges to the automated on-board diagnostic system that uses mathematical models to assess engine health and assist in post-flight troubleshooting and maintenance. Using system complexity and capability as a measure, we can break the historical development of control systems down to four phases: (1) the start-up phase (1942 to 1949), (2) the growth phase (1950 to 1969), (3) the electronic phase (1970 to 1989), and (4) the integration phase (1990 to 2002). In each phase, the state-of-the-art control technology is described and the engines that have become historical landmarks, from the control and diagnostic standpoint, are identified. Finally, a historical perspective of engine controls in the last 60 years is presented in terms of control system complexity, number of sensors, number of lines of software (or embedded code), and other factors.
Adaptive model-based control systems and methods for controlling a gas turbine
NASA Technical Reports Server (NTRS)
Brunell, Brent Jerome (Inventor); Mathews, Jr., Harry Kirk (Inventor); Kumar, Aditya (Inventor)
2004-01-01
Adaptive model-based control systems and methods are described so that performance and/or operability of a gas turbine in an aircraft engine, power plant, marine propulsion, or industrial application can be optimized under normal, deteriorated, faulted, failed and/or damaged operation. First, a model of each relevant system or component is created, and the model is adapted to the engine. Then, if/when deterioration, a fault, a failure or some kind of damage to an engine component or system is detected, that information is input to the model-based control as changes to the model, constraints, objective function, or other control parameters. With all the information about the engine condition, and state and directives on the control goals in terms of an objective function and constraints, the control then solves an optimization so the optimal control action can be determined and taken. This model and control may be updated in real-time to account for engine-to-engine variation, deterioration, damage, faults and/or failures using optimal corrective control action command(s).
2008-07-01
SUBJECT TERMS Gas turbine, sensors, Hostile Operating Conditions, FADEC , High Temperature Regimes for Sensors, Sensor Needs, Turbine Engine...Authority Digital Engine Control ( FADEC ). The frequency and bandwidth capability of sensors for engine control are drastically different for each sensor...metering valve assembly is responsive to electrical signals generated by the FADEC in response to sensors that measure turbine speed, pressure
Preliminary flight results of an adaptive engine control system of an F-15 airplane
NASA Technical Reports Server (NTRS)
Myers, Lawrence P.; Walsh, Kevin R.
1987-01-01
Results of the flight demonstration of the adaptive engine control system (ADECS), an integrated flight and propulsion control system, are reported. The ADECS system provides additional engine thrust by increasing engine pressure ratio (EPR) at intermediate and afterburning power, with the amount of EPR uptrim modulated in accordance with the maneuver requirements, flight conditions, and engine information. As a result of EPR uptrimming, engine thrust has increased by as much as 10.5 percent, rate of climb has increased by 10 percent, and the time to climb from 10,000 to 40,000 ft has been reduced by 12.5 percent. Increases in acceleration of 9.3 and 13 percent have been obtained at intermediate and maximum power, respectively. No engine anomalies have been detected for EPR increases up to 12 percent.
Flight evaluation of modifications to a digital electronic engine control system in an F-15 airplane
NASA Technical Reports Server (NTRS)
Burcham, F. W., Jr.; Myers, L. P.; Zeller, J. R.
1983-01-01
The third phase of a flight evaluation of a digital electronic engine control system in an F-15 has recently been completed. It was found that digital electronic engine control software logic changes and augmentor hardware improvements resulted in significant improvements in engine operation. For intermediate to maximum power throttle transients, an increase in altitude capability of up to 8000 ft was found, and for idle to maximum transients, an increase of up to 4000 ft was found. A nozzle instability noted in earlier flight testing was investigated on a test engine at NASA Lewis Research Center, a digital electronic engine control software logic change was developed and evaluated, and no instability occurred in the Phase 3 flight evaluation. The backup control airstart modification was evaluated, and gave an improvement of airstart capability by reducing the minimum airspeed for successful airstarts by 50 to 75 knots.
14 CFR 25.904 - Automatic takeoff thrust control system (ATTCS).
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Automatic takeoff thrust control system... Automatic takeoff thrust control system (ATTCS). Each applicant seeking approval for installation of an engine power control system that automatically resets the power or thrust on the operating engine(s) when...
14 CFR 25.904 - Automatic takeoff thrust control system (ATTCS).
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Automatic takeoff thrust control system... Automatic takeoff thrust control system (ATTCS). Each applicant seeking approval for installation of an engine power control system that automatically resets the power or thrust on the operating engine(s) when...
78 FR 23688 - Airworthiness Directives; Bell Helicopter Textron Canada Inc. Helicopters
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-22
... would require replacing certain part-numbered engine auto-relight kit control boxes. This proposed AD is... range requirements, which could cause the control box to malfunction, disabling the engine auto-relight... helicopters with an engine auto-relight kit control box assembly (control box assembly) part number 206-375...
Design of Intelligent Hydraulic Excavator Control System Based on PID Method
NASA Astrophysics Data System (ADS)
Zhang, Jun; Jiao, Shengjie; Liao, Xiaoming; Yin, Penglong; Wang, Yulin; Si, Kuimao; Zhang, Yi; Gu, Hairong
Most of the domestic designed hydraulic excavators adopt the constant power design method and set 85%~90% of engine power as the hydraulic system adoption power, it causes high energy loss due to mismatching of power between the engine and the pump. While the variation of the rotational speed of engine could sense the power shift of the load, it provides a new method to adjust the power matching between engine and pump through engine speed. Based on negative flux hydraulic system, an intelligent hydraulic excavator control system was designed based on rotational speed sensing method to improve energy efficiency. The control system was consisted of engine control module, pump power adjusted module, engine idle module and system fault diagnosis module. Special PLC with CAN bus was used to acquired the sensors and adjusts the pump absorption power according to load variation. Four energy saving control strategies with constant power method were employed to improve the fuel utilization. Three power modes (H, S and L mode) were designed to meet different working status; Auto idle function was employed to save energy through two work status detected pressure switches, 1300rpm was setting as the idle speed according to the engine consumption fuel curve. Transient overload function was designed for deep digging within short time without spending extra fuel. An increasing PID method was employed to realize power matching between engine and pump, the rotational speed's variation was taken as the PID algorithm's input; the current of proportional valve of variable displacement pump was the PID's output. The result indicated that the auto idle could decrease fuel consumption by 33.33% compared to work in maximum speed of H mode, the PID control method could take full use of maximum engine power at each power mode and keep the engine speed at stable range. Application of rotational speed sensing method provides a reliable method to improve the excavator's energy efficiency and realize power match between pump and engine.
Standard Reference Specimens in Quality Control of Engineering Surfaces
Song, J. F.; Vorburger, T. V.
1991-01-01
In the quality control of engineering surfaces, we aim to understand and maintain a good relationship between the manufacturing process and surface function. This is achieved by controlling the surface texture. The control process involves: 1) learning the functional parameters and their control values through controlled experiments or through a long history of production and use; 2) maintaining high accuracy and reproducibility with measurements not only of roughness calibration specimens but also of real engineering parts. In this paper, the characteristics, utilizations, and limitations of different classes of precision roughness calibration specimens are described. A measuring procedure of engineering surfaces, based on the calibration procedure of roughness specimens at NIST, is proposed. This procedure involves utilization of check specimens with waveform, wavelength, and other roughness parameters similar to functioning engineering surfaces. These check specimens would be certified under standardized reference measuring conditions, or by a reference instrument, and could be used for overall checking of the measuring procedure and for maintaining accuracy and agreement in engineering surface measurement. The concept of “surface texture design” is also suggested, which involves designing the engineering surface texture, the manufacturing process, and the quality control procedure to meet the optimal functional needs. PMID:28184115
Summary of semi-initiative and initiative control automobile engine vibration
NASA Astrophysics Data System (ADS)
Qu, Wei; Qu, Zhou
2009-07-01
Engine vibration accounts for around 55% of automobile vibration, separating the engine vibration from transmitting to automobile to the utmost extent is significant for improving NVH performance. Semi-initiative and initiative control of engine vibration is one of the hot spots of technical research in domestic and foreign automobile industry, especially luxury automobiles which adopt this technology to improve amenity and competitiveness. This article refers to a large amount of domestic and foreign related materials, fully introduces the research status of semi-initiative and initiative control suspension of engine vibration suspension and many kinds of structural style, and provides control policy and method of semi-initiative and initiative control suspension system. Compare and analyze the structural style of semi-initiative and initiative control and merits and demerits of current structures of semi-initiative and initiative control of mechanic electrorheological, magnetorheological, electromagnetic actuator, piezoelectric ceramics, electrostriction material, pneumatic actuator etc. Models of power assembly mounting system was classified.Calculation example indicated that reasonable selection of engine mounting system parameters is useful to reduce engine vibration transmission and to increase ride comfort. Finally we brought forward semi-initiative and initiative suspension which might be applied for automobiles, and which has a promising future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kiuchi, T.; Yasuoka, A.
1988-05-24
A method of controlling the solenoid current of a solenoid valve which controls suction air in an internal combustion engine, is described comprising the steps of: calculating a solenoid current control value as a function of engine operating conditions; detecting an engine coolant temperature corresponding to the solenoid temperature; determining a temperature correction value in accordance with the solenoid temperature; and calculating a driving signal for controlling the operation of the solenoid as a function of the solenoid current control value and the temperature correction value.
40 CFR 91.803 - Manufacturer in-use testing program.
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES In-Use Testing and Recall... failing engine, two more engines shall be tested until the total number of engines equals ten (10). (2... the total number of engines equals ten (10). (3) If an engine family was certified using carry over...
40 CFR 1048.140 - What are the provisions for certifying Blue Sky Series engines?
Code of Federal Regulations, 2012 CFR
2012-07-01
... Blue Sky Series engines? 1048.140 Section 1048.140 Protection of Environment ENVIRONMENTAL PROTECTION... ENGINES Emission Standards and Related Requirements § 1048.140 What are the provisions for certifying Blue... emission control for engines designated as “Blue Sky Series” engines. If you certify an engine family under...
40 CFR 1048.140 - What are the provisions for certifying Blue Sky Series engines?
Code of Federal Regulations, 2010 CFR
2010-07-01
... Blue Sky Series engines? 1048.140 Section 1048.140 Protection of Environment ENVIRONMENTAL PROTECTION... ENGINES Emission Standards and Related Requirements § 1048.140 What are the provisions for certifying Blue... emission control for engines designated as “Blue Sky Series” engines. If you certify an engine family under...
40 CFR 1048.140 - What are the provisions for certifying Blue Sky Series engines?
Code of Federal Regulations, 2011 CFR
2011-07-01
... Blue Sky Series engines? 1048.140 Section 1048.140 Protection of Environment ENVIRONMENTAL PROTECTION... ENGINES Emission Standards and Related Requirements § 1048.140 What are the provisions for certifying Blue... emission control for engines designated as “Blue Sky Series” engines. If you certify an engine family under...
40 CFR 1048.140 - What are the provisions for certifying Blue Sky Series engines?
Code of Federal Regulations, 2013 CFR
2013-07-01
... Blue Sky Series engines? 1048.140 Section 1048.140 Protection of Environment ENVIRONMENTAL PROTECTION... ENGINES Emission Standards and Related Requirements § 1048.140 What are the provisions for certifying Blue... emission control for engines designated as “Blue Sky Series” engines. If you certify an engine family under...
40 CFR 1048.140 - What are the provisions for certifying Blue Sky Series engines?
Code of Federal Regulations, 2014 CFR
2014-07-01
... Blue Sky Series engines? 1048.140 Section 1048.140 Protection of Environment ENVIRONMENTAL PROTECTION... ENGINES Emission Standards and Related Requirements § 1048.140 What are the provisions for certifying Blue... emission control for engines designated as “Blue Sky Series” engines. If you certify an engine family under...
Re-Educating Jet-Engine-Researchers to Stay Relevant
NASA Astrophysics Data System (ADS)
Gal-Or, Benjamin
2016-06-01
To stay relevantly supported, jet-engine researchers, designers and operators should follow changing uses of small and large jet engines, especially those anticipated to be used by/in the next generation, JET-ENGINE-STEERED ("JES") fleets of jet drones but fewer, JES-Stealth-Fighter/Strike Aircraft. In addition, some diminishing returns from isolated, non-integrating, jet-engine component studies, vs. relevant, supersonic, shock waves control in fluidic-JES-side-effects on compressor stall dynamics within Integrated Propulsion Flight Control ("IPFC"), and/or mechanical JES, constitute key relevant methods that currently move to China, India, South Korea and Japan. The central roles of the jet engine as primary or backup flight controller also constitute key relevant issues, especially under post stall conditions involving induced engine-stress while participating in crash prevention or minimal path-time maneuvers to target. And when proper instructors are absent, self-study of the JES-STVS REVOLUTION is an updating must, where STVS stands for wing-engine-airframe-integrated, embedded stealthy-jet-engine-inlets, restructured engines inside Stealth, Tailless, canard-less, Thrust Vectoring IFPC Systems. Anti-terror and Airliners Super-Flight-Safety are anticipated to overcome US legislation red-tape that obstructs JES-add-on-emergency-kits-use.
Filter-based control of particulate matter from a lean gasoline direct injection engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parks, II, James E; Lewis Sr, Samuel Arthur; DeBusk, Melanie Moses
New regulations requiring increases in vehicle fuel economy are challenging automotive manufacturers to identify fuel-efficient engines for future vehicles. Lean gasoline direct injection (GDI) engines offer significant increases in fuel efficiency over the more common stoichiometric GDI engines already in the marketplace. However, particulate matter (PM) emissions from lean GDI engines, particularly during stratified combustion modes, are problematic for lean GDI technology to meet U.S. Environmental Protection Agency Tier 3 and other future emission regulations. As such, the control of lean GDI PM with wall-flow filters, referred to as gasoline particulate filter (GPF) technology, is of interest. Since lean GDImore » PM chemistry and morphology differ from diesel PM (where more filtration experience exists), the functionality of GPFs needs to be studied to determine the operating conditions suitable for efficient PM removal. In addition, lean GDI engine exhaust temperatures are generally higher than diesel engines which results in more continuous regeneration of the GPF and less presence of the soot cake layer common to diesel particulate filters. Since the soot layer improves filtration efficiency, this distinction is important to consider. Research on the emission control of PM from a lean GDI engine with a GPF was conducted on an engine dynamometer. PM, after dilution, was characterized with membrane filters, organic vs. elemental carbon characterization, and size distribution techniques at various steady state engine speed and load points. The engine was operated in three primary combustion modes: stoichiometric, lean homogeneous, and lean stratified. In addition, rich combustion was utilized to simulate PM from engine operation during active regeneration of lean NOx control technologies. High (>95%) PM filtration efficiencies were observed over a wide range of conditions; however, some PM was observed to slip through the GPF at high speed and load conditions. The PM characterization at various engine speeds and loads will help enable optimized GPF design and control to achieve more fuel efficient lean GDI vehicles with low PM emissions.« less
An Anaylsis of Control Requirements and Control Parameters for Direct-Coupled Turbojet Engines
NASA Technical Reports Server (NTRS)
Novik, David; Otto, Edward W.
1947-01-01
Requirements of an automatic engine control, as affected by engine characteristics, have been analyzed for a direct-coupled turbojet engine. Control parameters for various conditions of engine operation are discussed. A hypothetical engine control is presented to illustrate the use of these parameters. An adjustable speed governor was found to offer a desirable method of over-all engine control. The selection of a minimum value of fuel flow was found to offer a means of preventing unstable burner operation during steady-state operation. Until satisfactory high-temperature-measuring devices are developed, air-fuel ratio is considered to be a satisfactory acceleration-control parameter for the attainment of the maximum acceleration rates consistent with safe turbine temperatures. No danger of unstable burner operation exists during acceleration if a temperature-limiting acceleration control is assumed to be effective. Deceleration was found to be accompanied by the possibility of burner blow-out even if a minimum fuel-flow control that prevents burner blow-out during steady-state operation is assumed to be effective. Burner blow-out during deceleration may be eliminated by varying the value of minimum fuel flow as a function of compressor-discharge pressure, but in no case should the fuel flow be allowed to fall below the value required for steady-state burner operation.
29 CFR 1910.1017 - Vinyl chloride.
Code of Federal Regulations, 2011 CFR
2011-07-01
... this section by engineering, work practice, and personal protective controls as follows: (1) Feasible engineering and work practice controls shall immediately be used to reduce exposures to at or below the permissible exposure limit. (2) Wherever feasible engineering and work practice controls which can be...
29 CFR 1910.1017 - Vinyl chloride.
Code of Federal Regulations, 2010 CFR
2010-07-01
... this section by engineering, work practice, and personal protective controls as follows: (1) Feasible engineering and work practice controls shall immediately be used to reduce exposures to at or below the permissible exposure limit. (2) Wherever feasible engineering and work practice controls which can be...
Automobile Engine Control Parameters Study : Volume 2. Status of Foreign Engine Control Practices.
DOT National Transportation Integrated Search
1977-02-01
The report contains the results of a study to evaluate automobile engine control parameters and their effects on vehicle fuel economy and emissions. Volume II treats selected foreign manufacturers. The principal topics reviewed for the twenty-eight e...
40 CFR 1042.235 - Emission testing related to certification.
Code of Federal Regulations, 2014 CFR
2014-07-01
.... The engine you provide must include appropriate manifolds, aftertreatment devices, electronic control...) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Certifying Engine Families § 1042.235 Emission testing related to certification. This...
40 CFR 1042.235 - Emission testing related to certification.
Code of Federal Regulations, 2013 CFR
2013-07-01
.... The engine you provide must include appropriate manifolds, aftertreatment devices, electronic control...) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Certifying Engine Families § 1042.235 Emission testing related to certification. This...
40 CFR 1042.235 - Emission testing related to certification.
Code of Federal Regulations, 2012 CFR
2012-07-01
.... The engine you provide must include appropriate manifolds, aftertreatment devices, electronic control...) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Certifying Engine Families § 1042.235 Emission testing related to certification. This...
40 CFR 1042.235 - Emission testing related to certification.
Code of Federal Regulations, 2010 CFR
2010-07-01
.... The engine you provide must include appropriate manifolds, aftertreatment devices, electronic control...) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Certifying Engine Families § 1042.235 Emission testing related to certification. This...
40 CFR 1042.235 - Emission testing related to certification.
Code of Federal Regulations, 2011 CFR
2011-07-01
.... The engine you provide must include appropriate manifolds, aftertreatment devices, electronic control...) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Certifying Engine Families § 1042.235 Emission testing related to certification. This...
Development of HIDEC adaptive engine control systems
NASA Technical Reports Server (NTRS)
Landy, R. J.; Yonke, W. A.; Stewart, J. F.
1986-01-01
The purpose of NASA's Highly Integrated Digital Electronic Control (HIDEC) flight research program is the development of integrated flight propulsion control modes, and the evaluation of their benefits aboard an F-15 test aircraft. HIDEC program phases are discussed, with attention to the Adaptive Engine Control System (ADECS I); this involves the upgrading of PW1128 engines for operation at higher engine pressure ratios and the production of greater thrust. ADECS II will involve the development of a constant thrust mode which will significantly reduce turbine operating temperatures.
Real-time Simulation of Turboprop Engine Control System
NASA Astrophysics Data System (ADS)
Sheng, Hanlin; Zhang, Tianhong; Zhang, Yi
2017-05-01
On account of the complexity of turboprop engine control system, real-time simulation is the technology, under the prerequisite of maintaining real-time, to effectively reduce development cost, shorten development cycle and avert testing risks. The paper takes RT-LAB as a platform and studies the real-time digital simulation of turboprop engine control system. The architecture, work principles and external interfaces of RT-LAB real-time simulation platform are introduced firstly. Then based on a turboprop engine model, the control laws of propeller control loop and fuel control loop are studied. From that and on the basis of Matlab/Simulink, an integrated controller is designed which can realize the entire process control of the engine from start-up to maximum power till stop. At the end, on the basis of RT-LAB platform, the real-time digital simulation of the designed control system is studied, different regulating plans are tried and more ideal control effects have been obtained.
Experimental test results of a generalized parameter fuel control
NASA Technical Reports Server (NTRS)
Batterton, P. G.; Gold, H.
1973-01-01
Considerable interest has been generated recently in low cost jet propulsion systems. One of the more complicated components of jet engines is the fuel control. Results of an effort to develop a simpler hydromechanical fuel control are presented. This prototype fuel control was installed on a J85-GE-13 jet engine. Results show that the fuel control provided satisfactory engine performance at sea level static conditions over its normal nonafterburning operating range, including startup. Results of both bench and engine tests are presented; the difficulties encountered are described.
Space shuttle main engine definition (phase B). Volume 2: Avionics. [for space shuttle
NASA Technical Reports Server (NTRS)
1971-01-01
The advent of the space shuttle engine with its requirements for high specific impulse, long life, and low cost have dictated a combustion cycle and a closed loop control system to allow the engine components to run close to operating limits. These performance requirements, combined with the necessity for low operational costs, have placed new demands on rocket engine control, system checkout, and diagnosis technology. Based on considerations of precision environment, and compatibility with vehicle interface commands, an electronic control, makes available many functions that logically provide the information required for engine system checkout and diagnosis.
NASA Technical Reports Server (NTRS)
Ray, R. J.; Myers, L. P.
1984-01-01
Computer algorithms which calculate in-flight engine and aircraft performance real-time are discussed. The first step was completed with the implementation of a real-time thrust calculation program on a digital electronic engine control (DEEC) equiped F100 engine in an F-15 aircraft. The in-flight thrust modifications that allow calculations to be performed in real-time, to compare results to predictions, are presented.
Controlling the Porosity and Microarchitecture of Hydrogels for Tissue Engineering
Annabi, Nasim; Nichol, Jason W.; Zhong, Xia; Ji, Chengdong; Koshy, Sandeep; Khademhosseini, Ali
2010-01-01
Tissue engineering holds great promise for regeneration and repair of diseased tissues, making the development of tissue engineering scaffolds a topic of great interest in biomedical research. Because of their biocompatibility and similarities to native extracellular matrix, hydrogels have emerged as leading candidates for engineered tissue scaffolds. However, precise control of hydrogel properties, such as porosity, remains a challenge. Traditional techniques for creating bulk porosity in polymers have demonstrated success in hydrogels for tissue engineering; however, often the conditions are incompatible with direct cell encapsulation. Emerging technologies have demonstrated the ability to control porosity and the microarchitectural features in hydrogels, creating engineered tissues with structure and function similar to native tissues. In this review, we explore the various technologies for controlling the porosity and microarchitecture within hydrogels, and demonstrate successful applications of combining these techniques. PMID:20121414
ODECS -- A computer code for the optimal design of S.I. engine control strategies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arsie, I.; Pianese, C.; Rizzo, G.
1996-09-01
The computer code ODECS (Optimal Design of Engine Control Strategies) for the design of Spark Ignition engine control strategies is presented. This code has been developed starting from the author`s activity in this field, availing of some original contributions about engine stochastic optimization and dynamical models. This code has a modular structure and is composed of a user interface for the definition, the execution and the analysis of different computations performed with 4 independent modules. These modules allow the following calculations: (1) definition of the engine mathematical model from steady-state experimental data; (2) engine cycle test trajectory corresponding to amore » vehicle transient simulation test such as ECE15 or FTP drive test schedule; (3) evaluation of the optimal engine control maps with a steady-state approach; (4) engine dynamic cycle simulation and optimization of static control maps and/or dynamic compensation strategies, taking into account dynamical effects due to the unsteady fluxes of air and fuel and the influences of combustion chamber wall thermal inertia on fuel consumption and emissions. Moreover, in the last two modules it is possible to account for errors generated by a non-deterministic behavior of sensors and actuators and the related influences on global engine performances, and compute robust strategies, less sensitive to stochastic effects. In the paper the four models are described together with significant results corresponding to the simulation and the calculation of optimal control strategies for dynamic transient tests.« less
High Stability Engine Control (HISTEC) Flight Test Results
NASA Technical Reports Server (NTRS)
Southwick, Robert D.; Gallops, George W.; Kerr, Laura J.; Kielb, Robert P.; Welsh, Mark G.; DeLaat, John C.; Orme, John S.
1998-01-01
The High Stability Engine Control (HISTEC) Program, managed and funded by the NASA Lewis Research Center, is a cooperative effort between NASA and Pratt & Whitney (P&W). The program objective is to develop and flight demonstrate an advanced high stability integrated engine control system that uses real-time, measurement-based estimation of inlet pressure distortion to enhance engine stability. Flight testing was performed using the NASA Advanced Controls Technologies for Integrated Vehicles (ACTIVE) F-15 aircraft at the NASA Dryden Flight Research Center. The flight test configuration, details of the research objectives, and the flight test matrix to achieve those objectives are presented. Flight test results are discussed that show the design approach can accurately estimate distortion and perform real-time control actions for engine accommodation.
Radiological controls integrated into design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kindred, G.W.
1995-03-01
Radiological controls are required by law in the design of commercial nuclear power reactor facilities. These controls can be relatively minor or significant, relative to cost. To ensure that radiological controls are designed into a project, the health physicist (radiological engineer) must be involved from the beginning. This is especially true regarding keeping costs down. For every radiological engineer at a nuclear power plant there must be fifty engineers of other disciplines. The radiological engineer cannot be an expert on every discipline of engineering. However, he must be knowledgeable to the degree of how a design will impact the facilitymore » from a radiological perspective. This paper will address how to effectively perform radiological analyses with the goal of radiological controls integrated into the design package.« less
Predicted performance benefits of an adaptive digital engine control system of an F-15 airplane
NASA Technical Reports Server (NTRS)
Burcham, F. W., Jr.; Myers, L. P.; Ray, R. J.
1985-01-01
The highly integrated digital electronic control (HIDEC) program will demonstrate and evaluate the improvements in performance and mission effectiveness that result from integrating engine-airframe control systems. Currently this is accomplished on the NASA Ames Research Center's F-15 airplane. The two control modes used to implement the systems are an integrated flightpath management mode and in integrated adaptive engine control system (ADECS) mode. The ADECS mode is a highly integrated mode in which the airplane flight conditions, the resulting inlet distortion, and the available engine stall margin are continually computed. The excess stall margin is traded for thrust. The predicted increase in engine performance due to the ADECS mode is presented in this report.
Performance and control study of a low-pressure-ratio turbojet engine for a drone aircraft
NASA Technical Reports Server (NTRS)
Seldner, K.; Geyser, L. C.; Gold, H.; Walker, D.; Burgner, G.
1972-01-01
The results of analog and digital computer studies of a low-pressure-ratio turbojet engine system for use in a drone vehicle are presented. The turbojet engine consists of a four-stage axial compressor, single-stage turbine, and a fixed area exhaust nozzle. Three simplified fuel schedules and a generalized parameter fuel control for the engine system are presented and evaluated. The evaluation is based on the performance of each schedule or control during engine acceleration from a windmill start at Mach 0.8 and 6100 meters to 100 percent corrected speed. It was found that, because of the higher acceleration margin permitted by the control, the generalized parameter control exhibited the best dynamic performance.
40 CFR 1065.122 - Engine cooling and lubrication.
Code of Federal Regulations, 2011 CFR
2011-07-01
....122 Section 1065.122 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Equipment Specifications § 1065.122 Engine cooling and lubrication. (a) Engine cooling. Cool the engine during testing so its intake-air, oil, coolant, block, and...
40 CFR 1065.122 - Engine cooling and lubrication.
Code of Federal Regulations, 2010 CFR
2010-07-01
....122 Section 1065.122 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Equipment Specifications § 1065.122 Engine cooling and lubrication. (a) Engine cooling. Cool the engine during testing so its intake-air, oil, coolant, block, and...
40 CFR 1065.122 - Engine cooling and lubrication.
Code of Federal Regulations, 2013 CFR
2013-07-01
....122 Section 1065.122 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Equipment Specifications § 1065.122 Engine cooling and lubrication. (a) Engine cooling. Cool the engine during testing so its intake-air, oil, coolant, block, and...
40 CFR 1065.122 - Engine cooling and lubrication.
Code of Federal Regulations, 2012 CFR
2012-07-01
....122 Section 1065.122 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Equipment Specifications § 1065.122 Engine cooling and lubrication. (a) Engine cooling. Cool the engine during testing so its intake-air, oil, coolant, block, and...
40 CFR 1065.122 - Engine cooling and lubrication.
Code of Federal Regulations, 2014 CFR
2014-07-01
....122 Section 1065.122 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Equipment Specifications § 1065.122 Engine cooling and lubrication. (a) Engine cooling. Cool the engine during testing so its intake-air, oil, coolant, block, and...
Simulating the Use of Alternative Fuels in a Turbofan Engine
NASA Technical Reports Server (NTRS)
Litt, Jonathan S.; Chin, Jeffrey Chevoor; Liu, Yuan
2013-01-01
The interest in alternative fuels for aviation has created a need to evaluate their effect on engine performance. The use of dynamic turbofan engine simulations enables the comparative modeling of the performance of these fuels on a realistic test bed in terms of dynamic response and control compared to traditional fuels. The analysis of overall engine performance and response characteristics can lead to a determination of the practicality of using specific alternative fuels in commercial aircraft. This paper describes a procedure to model the use of alternative fuels in a large commercial turbofan engine, and quantifies their effects on engine and vehicle performance. In addition, the modeling effort notionally demonstrates that engine performance may be maintained by modifying engine control system software parameters to account for the alternative fuel.
Orbit Transfer Rocket Engine Technology Program: Advanced engine study, task D.1/D.3
NASA Technical Reports Server (NTRS)
Martinez, A.; Erickson, C.; Hines, B.
1986-01-01
Concepts for space maintainability of OTV engines were examined. An engine design was developed which was driven by space maintenance requirements and by a failure mode and effects (FME) analysis. Modularity within the engine was shown to offer cost benefits and improved space maintenance capabilities. Space operable disconnects were conceptualized for both engine change-out and for module replacement. Through FME mitigation the modules were conceptualized to contain the least reliable and most often replaced engine components. A preliminary space maintenance plan was developed around a controls and condition monitoring system using advanced sensors, controls, and condition monitoring concepts. A complete engine layout was prepared satisfying current vehicle requirements and utilizing projected component advanced technologies. A technology plan for developing the required technology was assembled.
Computer program for a four-cylinder-Stirling-engine controls simulation
NASA Technical Reports Server (NTRS)
Daniels, C. J.; Lorenzo, C. F.
1982-01-01
A four cylinder Stirling engine, transient engine simulation computer program is presented. The program is intended for controls analysis. The associated engine model was simplified to shorten computer calculation time. The model includes engine mechanical drive dynamics and vehicle load effects. The computer program also includes subroutines that allow: (1) acceleration of the engine by addition of hydrogen to the system, and (2) braking of the engine by short circuiting of the working spaces. Subroutines to calculate degraded engine performance (e.g., due to piston ring and piston rod leakage) are provided. Input data required to run the program are described and flow charts are provided. The program is modular to allow easy modification of individual routines. Examples of steady state and transient results are presented.
Stochastic stability assessment of a semi-free piston engine generator concept
NASA Astrophysics Data System (ADS)
Kigezi, T. N.; Gonzalez Anaya, J. A.; Dunne, J. F.
2016-09-01
Small engines, as power generators with low-noise and vibration characteristics, are needed in two niche application areas: as electric vehicle range extenders and as domestic micro Combined Heat and Power systems. A recent semi-free piston design known as the AMOCATIC generator fully meets this requirement. The engine potentially allows for high energy conversion efficiencies at resonance derived from having a mass and spring assembly. As with free-piston engines in general, stability and control of piston motion has been cited as the prime challenge limiting the technology's widespread application. Using physical principles, we derive in this paper two important results: an energy balance criterion and a related general stability criterion for a semi-free piston engine. Control is achieved by systematically designing a Proportional Integral (PI) controller using a control-oriented engine model for which a specific stability condition is stated. All results are presented in closed form throughout the paper. Simulation results under stochastic pressure conditions show that the proposed energy balance, stability criterion, and PI controller, operate as predicted to yield stable engine operation at fixed compression ratio.
NASA Technical Reports Server (NTRS)
Connolly, Joseph W.; Csank, Jeffrey Thomas; Chicatelli, Amy; Kilver, Jacob
2013-01-01
This paper covers the development of a model-based engine control (MBEC) methodology featuring a self tuning on-board model applied to an aircraft turbofan engine simulation. Here, the Commercial Modular Aero-Propulsion System Simulation 40,000 (CMAPSS40k) serves as the MBEC application engine. CMAPSS40k is capable of modeling realistic engine performance, allowing for a verification of the MBEC over a wide range of operating points. The on-board model is a piece-wise linear model derived from CMAPSS40k and updated using an optimal tuner Kalman Filter (OTKF) estimation routine, which enables the on-board model to self-tune to account for engine performance variations. The focus here is on developing a methodology for MBEC with direct control of estimated parameters of interest such as thrust and stall margins. Investigations using the MBEC to provide a stall margin limit for the controller protection logic are presented that could provide benefits over a simple acceleration schedule that is currently used in traditional engine control architectures.
[Comparison Analysis of Economic and Engineering Control of Industrial VOCs].
Wang, Yu-fei; Liu, Chang-xin; Cheng, Jie; Hao, Zheng-ping; Wang, Zheng
2015-04-01
Volatile organic compounds (VOCs) pollutant has become China's major air pollutant in key urban areas like sulfur dioxide, nitrogen oxides and particulate matter. It is mainly produced from industry sectors, and engineering control is one of the most important reduction measures. During the 12th Five-Year Plan, China decides to invest 40 billion RMB to build pollution control projects in key industry sectors with annual emission reduction of 605 000 t x a(-1). It shows that China attaches a great importance to emission reduction by engineering projects and highlights the awareness of engineering reduction technologies. In this paper, a macroeconomic model, namely computable general equilibrium model, (CGE model) was employed to simulate engineering control and economic control (imposing environmental tax). We aim to compare the pros and cons of the two reduction policies. Considering the economic loss of the whole country, the environmental tax has more impacts on the economy system than engineering reduction measures. We suggest that the central government provides 7 500 RMB x t(-1) as subsidy for enterprises in industry sectors to encourage engineering reduction.
Code of Federal Regulations, 2010 CFR
2010-07-01
...-line vehicles or engines fails to meet emission standards? 1051.320 Section 1051.320 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM RECREATIONAL ENGINES AND VEHICLES Testing Production-Line Vehicles and Engines § 1051.320 What happens if one...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 32 2010-07-01 2010-07-01 false May I sell vehicles from an engine... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM RECREATIONAL ENGINES AND VEHICLES Testing Production-Line Vehicles and Engines § 1051.330 May I sell vehicles from an...
Control Engineering as a Part of Undergraduate Curriculum for Mechanical Engineering in India
ERIC Educational Resources Information Center
Akhtar, Shagil; Iqbal, Syed Muneeb; Bajpai, Shrish
2016-01-01
In this present study we have traced the genesis of control engineering in the scope of mechanical engineering and then some analysis on its recent developments, their increasing need and how this particular subject has evolved machines functioning nowadays specifically its standard of education in India. We have probed this field right from its…
40 CFR 1054.310 - How must I select engines for production-line testing?
Code of Federal Regulations, 2010 CFR
2010-07-01
... remedial steps required under § 1054.320. (i) You may elect to test more randomly chosen engines than we... 40 Protection of Environment 32 2010-07-01 2010-07-01 false How must I select engines for... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, SMALL NONROAD SPARK-IGNITION ENGINES AND...
EPA is proposing to adopt emission standards and related provisions for aircraft gas turbine engines with rated thrusts greater than 26.7 kilonewtons. These engines are used primarily on commercial passenger and freight aircraft.
Role of measurement in feedback-controlled quantum engines
NASA Astrophysics Data System (ADS)
Yi, Juyeon; Kim, Yong Woon
2018-01-01
In feedback controls, measurement is an essential step in designing protocols according to outcomes. For quantum mechanical systems, measurement has another effect; to supply energy to the measured system. We verify that in feedback-controlled quantum engines, measurement plays a dual role; not only as an auxiliary to perform feedback control but also as an energy supply to drive the engines. We consider a specific engine cycle exploiting feedback control followed by projective measurement and show that the maximum bound of the extractable work is set by both the efficacy of the feedback control and the energy change caused by projective measurement. We take a concrete example of an engine using an immobile spin-1/2 particle as a working substance and suggest two possible scenarios for work extraction.
Providing security for automated process control systems at hydropower engineering facilities
NASA Astrophysics Data System (ADS)
Vasiliev, Y. S.; Zegzhda, P. D.; Zegzhda, D. P.
2016-12-01
This article suggests the concept of a cyberphysical system to manage computer security of automated process control systems at hydropower engineering facilities. According to the authors, this system consists of a set of information processing tools and computer-controlled physical devices. Examples of cyber attacks on power engineering facilities are provided, and a strategy of improving cybersecurity of hydropower engineering systems is suggested. The architecture of the multilevel protection of the automated process control system (APCS) of power engineering facilities is given, including security systems, control systems, access control, encryption, secure virtual private network of subsystems for monitoring and analysis of security events. The distinctive aspect of the approach is consideration of interrelations and cyber threats, arising when SCADA is integrated with the unified enterprise information system.
Real-time simulation of the TF30-P-3 turbofan engine using a hybrid computer
NASA Technical Reports Server (NTRS)
Szuch, J. R.; Bruton, W. M.
1974-01-01
A real-time, hybrid-computer simulation of the TF30-P-3 turbofan engine was developed. The simulation was primarily analog in nature but used the digital portion of the hybrid computer to perform bivariate function generation associated with the performance of the engine's rotating components. FORTRAN listings and analog patching diagrams are provided. The hybrid simulation was controlled by a digital computer programmed to simulate the engine's standard hydromechanical control. Both steady-state and dynamic data obtained from the digitally controlled engine simulation are presented. Hybrid simulation data are compared with data obtained from a digital simulation provided by the engine manufacturer. The comparisons indicate that the real-time hybrid simulation adequately matches the baseline digital simulation.
A simplified dynamic model of the T700 turboshaft engine
NASA Technical Reports Server (NTRS)
Duyar, Ahmet; Gu, Zhen; Litt, Jonathan S.
1992-01-01
A simplified open-loop dynamic model of the T700 turboshaft engine, valid within the normal operating range of the engine, is developed. This model is obtained by linking linear state space models obtained at different engine operating points. Each linear model is developed from a detailed nonlinear engine simulation using a multivariable system identification and realization method. The simplified model may be used with a model-based real time diagnostic scheme for fault detection and diagnostics, as well as for open loop engine dynamics studies and closed loop control analysis utilizing a user generated control law.
7. This photographic copy of an engineering drawing displays the ...
7. This photographic copy of an engineering drawing displays the building's floor plan in its 1995 arrangement, with rooms designated. California Institute of Technology, Jet Propulsion Laboratory, Facilities Engineering and Construction Office, "Addition to Weigh & Control Bldg. E-35, Demolition, Floor and Roof Plans," drawing no. E35/3-0, October 5, 1983. California Institute of Technology, Jet Propulsion Laboratory, Plant Engineering: engineering drawings of structures at JPL Edwards Facility. Drawings on file at JPL Plant Engineering, Pasadena, California. - Jet Propulsion Laboratory Edwards Facility, Weigh & Control Building, Edwards Air Force Base, Boron, Kern County, CA
A Reactive Blended Learning Proposal for an Introductory Control Engineering Course
ERIC Educational Resources Information Center
Mendez, Juan A.; Gonzalez, Evelio J.
2010-01-01
As it happens in other fields of engineering, blended learning is widely used to teach process control topics. In this paper, the inclusion of a reactive element--a Fuzzy Logic based controller--is proposed for a blended learning approach in an introductory control engineering course. This controller has been designed in order to regulate the…
40 CFR 1043.41 - EIAPP certification process.
Code of Federal Regulations, 2014 CFR
2014-07-01
... test engine you provide must include appropriate manifolds, aftertreatment devices, electronic control... CONTROLS CONTROL OF NOX, SOX, AND PM EMISSIONS FROM MARINE ENGINES AND VESSELS SUBJECT TO THE MARPOL... application for an EIAPP certificate for each engine family. An EIAPP certificate is valid starting with the...
40 CFR 1043.41 - EIAPP certification process.
Code of Federal Regulations, 2010 CFR
2010-07-01
... test engine you provide must include appropriate manifolds, aftertreatment devices, electronic control... CONTROLS CONTROL OF NOX, SOX, AND PM EMISSIONS FROM MARINE ENGINES AND VESSELS SUBJECT TO THE MARPOL... application for an EIAPP certificate for each engine family. An EIAPP certificate is valid starting with the...
40 CFR 1043.41 - EIAPP certification process.
Code of Federal Regulations, 2012 CFR
2012-07-01
... test engine you provide must include appropriate manifolds, aftertreatment devices, electronic control... CONTROLS CONTROL OF NOX, SOX, AND PM EMISSIONS FROM MARINE ENGINES AND VESSELS SUBJECT TO THE MARPOL... application for an EIAPP certificate for each engine family. An EIAPP certificate is valid starting with the...
40 CFR 1043.41 - EIAPP certification process.
Code of Federal Regulations, 2013 CFR
2013-07-01
... test engine you provide must include appropriate manifolds, aftertreatment devices, electronic control... CONTROLS CONTROL OF NOX, SOX, AND PM EMISSIONS FROM MARINE ENGINES AND VESSELS SUBJECT TO THE MARPOL... application for an EIAPP certificate for each engine family. An EIAPP certificate is valid starting with the...
40 CFR 1043.41 - EIAPP certification process.
Code of Federal Regulations, 2011 CFR
2011-07-01
... test engine you provide must include appropriate manifolds, aftertreatment devices, electronic control... CONTROLS CONTROL OF NOX, SOX, AND PM EMISSIONS FROM MARINE ENGINES AND VESSELS SUBJECT TO THE MARPOL... application for an EIAPP certificate for each engine family. An EIAPP certificate is valid starting with the...
Flight evaluation of an extended engine life mode on an F-15 airplane
NASA Technical Reports Server (NTRS)
Myers, Lawrence P.; Conners, Timothy R.
1992-01-01
An integrated flight and propulsion control system designed to reduce the rate of engine deterioration was developed and evaluated in flight on the NASA Dryden F-15 research aircraft. The extended engine life mode increases engine pressure ratio while reducing engine airflow to lower the turbine temperature at constant thrust. The engine pressure ratio uptrim is modulated in real time based on airplane maneuver requirements, flight conditions, and engine information. The extended engine life mode logic performed well, significantly reducing turbine operating temperature. Reductions in fan turbine inlet temperature of up to 80 F were obtained at intermediate power and up to 170 F at maximum augmented power with no appreciable loss in thrust. A secondary benefit was the considerable reduction in thrust-specific fuel consumption. The success of the extended engine life mode is one example of the advantages gained from integrating aircraft flight and propulsion control systems.
System and method for controlling hydraulic pressure in electro-hydraulic valve actuation systems
Brennan, Daniel G; Marriott, Craig D; Cowgill, Joel; Wiles, Matthew A; Patton, Kenneth James
2014-09-23
A control system for an engine includes a first lift control module and a second lift control module. The first lift control module increases lift of M valves of the engine to a predetermined valve lift during a period before disabling or re-enabling N valves of the engine. The second lift control module decreases the lift of the M valves to a desired valve lift during a period after enabling or re-enabling the N valves of the engine, wherein N and M are integers greater than or equal to one.
Mixed mode control method and engine using same
Kesse, Mary L [Peoria, IL; Duffy, Kevin P [Metamora, IL
2007-04-10
A method of mixed mode operation of an internal combustion engine includes the steps of controlling a homogeneous charge combustion event timing in a given engine cycle, and controlling a conventional charge injection event to be at least a predetermined time after the homogeneous charge combustion event. An internal combustion engine is provided, including an electronic controller having a computer readable medium with a combustion timing control algorithm recorded thereon, the control algorithm including means for controlling a homogeneous charge combustion event timing and means for controlling a conventional injection event timing to be at least a predetermined time from the homogeneous charge combustion event.
HIDEC adaptive engine control system flight evaluation results
NASA Technical Reports Server (NTRS)
Yonke, W. A.; Landy, R. J.; Stewart, J. F.
1987-01-01
An integrated flight propulsion control mode, the Adaptive Engine Control System (ADECS), has been developed and flight tested on an F-15 aircraft as part of the NASA Highly Integrated Digital Electronic Control program. The ADECS system realizes additional engine thrust by increasing the engine pressure ratio (EPR) at intermediate and afterburning power, with the amount of EPR uptrim modulated using a predictor scheme for angle-of-attack and sideslip angle. Substantial improvement in aircraft and engine performance was demonstrated, with a 16 percent rate of climb increase, a 14 percent reduction in time to climb, and a 15 percent reduction in time to accelerate. Significant EPR uptrim capability was found with angles-of-attack up to 20 degrees.
Research on fuzzy PID control to electronic speed regulator
NASA Astrophysics Data System (ADS)
Xu, Xiao-gang; Chen, Xue-hui; Zheng, Sheng-guo
2007-12-01
As an important part of diesel engine, the speed regulator plays an important role in stabilizing speed and improving engine's performance. Because there are so many model parameters of diesel-engine considered in traditional PID control and these parameters present non-linear characteristic.The method to adjust engine speed using traditional PID is not considered as a best way. Especially for the diesel-engine generator set. In this paper, the Fuzzy PID control strategy is proposed. Some problems about its utilization in electronic speed regulator are discussed. A mathematical model of electric control system for diesel-engine generator set is established and the way of the PID parameters in the model to affect the function of system is analyzed. And then it is proposed the differential coefficient must be applied in control design for reducing dynamic deviation of system and adjusting time. Based on the control theory, a study combined control with PID calculation together for turning fuzzy PID parameter is implemented. And also a simulation experiment about electronic speed regulator system was conducted using Matlab/Simulink and the Fuzzy-Toolbox. Compared with the traditional PID Algorithm, the simulated results presented obvious improvements in the instantaneous speed governing rate and steady state speed governing rate of diesel-engine generator set when the fuzzy logic control strategy used.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-21
... Airworthiness Directives; Various Aircraft Equipped With Rotax Aircraft Engines 912 A Series Engines AGENCY... reports of cracks in the engine crankcase. Austro Control GmbH (ACG) addressed the problem by issuing AD... applicability of the new AD, when based on engines' serial numbers (s/n). On the other hand, applicability is...
40 CFR 90.113 - In-use testing program for Phase 1 engines.
Code of Federal Regulations, 2012 CFR
2012-07-01
... emission control technology which most likely will be used on Phase 2 engines; (2) Engine families using...) This section applies only to Phase 1 engines. In-use testing provisions for Phase 2 engines are found... certified in that model year. (2) An engine manufacturer with total projected annual production of 75,000...
40 CFR 90.113 - In-use testing program for Phase 1 engines.
Code of Federal Regulations, 2013 CFR
2013-07-01
... emission control technology which most likely will be used on Phase 2 engines; (2) Engine families using...) This section applies only to Phase 1 engines. In-use testing provisions for Phase 2 engines are found... certified in that model year. (2) An engine manufacturer with total projected annual production of 75,000...
40 CFR 90.113 - In-use testing program for Phase 1 engines.
Code of Federal Regulations, 2011 CFR
2011-07-01
... emission control technology which most likely will be used on Phase 2 engines; (2) Engine families using...) This section applies only to Phase 1 engines. In-use testing provisions for Phase 2 engines are found... certified in that model year. (2) An engine manufacturer with total projected annual production of 75,000...
40 CFR 90.113 - In-use testing program for Phase 1 engines.
Code of Federal Regulations, 2014 CFR
2014-07-01
... emission control technology which most likely will be used on Phase 2 engines; (2) Engine families using...) This section applies only to Phase 1 engines. In-use testing provisions for Phase 2 engines are found... certified in that model year. (2) An engine manufacturer with total projected annual production of 75,000...
NASA Technical Reports Server (NTRS)
Mellish, J. A.
1980-01-01
Engine control techniques were established and new technology requirements were identified. The designs of the components and engine were prepared in sufficient depth to calculate engine and component weights and envelopes, turbopump efficiencies and recirculation leakage rates, and engine performance. Engine design assumptions are presented along with the structural design criteria.
NASA Conducts First RS-25 Rocket Engine Test of 2015
2015-01-09
From the Press Release: The new year is off to a hot start for NASA's Space Launch System (SLS). The engine that will drive America's next great rocket to deep space blazed through its first successful test Jan. 9 at the agency's Stennis Space Center near Bay St. Louis, Mississippi. The RS-25, formerly the space shuttle main engine, fired up for 500 seconds on the A-1 test stand at Stennis, providing NASA engineers critical data on the engine controller unit and inlet pressure conditions. This is the first hot fire of an RS-25 engine since the end of space shuttle main engine testing in 2009. Four RS-25 engines will power SLS on future missions, including to an asteroid and Mars. "We’ve made modifications to the RS-25 to meet SLS specifications and will analyze and test a variety of conditions during the hot fire series,” said Steve Wofford, manager of the SLS Liquid Engines Office at NASA's Marshall Space Flight Center in Huntsville, Alabama, where the SLS Program is managed. "The engines for SLS will encounter colder liquid oxygen temperatures than shuttle; greater inlet pressure due to the taller core stage liquid oxygen tank and higher vehicle acceleration; and more nozzle heating due to the four-engine configuration and their position in-plane with the SLS booster exhaust nozzles.” The engine controller unit, the "brain" of the engine, allows communication between the vehicle and the engine, relaying commands to the engine and transmitting data back to the vehicle. The controller also provides closed-loop management of the engine by regulating the thrust and fuel mixture ratio while monitoring the engine's health and status. The new controller will use updated hardware and software configured to operate with the new SLS avionics architecture. "This first hot-fire test of the RS-25 engine represents a significant effort on behalf of Stennis Space Center’s A-1 test team," said Ronald Rigney, RS-25 project manager at Stennis. "Our technicians and engineers have been working diligently to design, modify and activate an extremely complex and capable facility in support of RS-25 engine testing." Testing will resume in April after upgrades are completed on the high pressure industrial water system, which provides cool water for the test facility during a hot fire test. Eight tests, totaling 3,500 seconds, are planned for the current development engine. Another development engine later will undergo 10 tests, totaling 4,500 seconds. The second test series includes the first test of new flight controllers, known as green running. The first flight test of the SLS will feature a configuration for a 70-metric-ton (77-ton) lift capacity and carry an uncrewed Orion spacecraft beyond low-Earth orbit to test the performance of the integrated system. As the SLS is upgraded, it will provide an unprecedented lift capability of 130 metric tons (143 tons) to enable missions even farther into our solar system.
40 CFR 1054.125 - What maintenance instructions must I give to buyers?
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, SMALL NONROAD SPARK-IGNITION ENGINES AND... maintaining and using the engine, including the emission control system as described in this section. The... degradation in emission control for engines that do not have their fuel injectors replaced. (iii) You provide...
40 CFR 1054.125 - What maintenance instructions must I give to buyers?
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, SMALL NONROAD SPARK-IGNITION ENGINES AND... maintaining and using the engine, including the emission control system as described in this section. The... degradation in emission control for engines that do not have their fuel injectors replaced. (iii) You provide...
40 CFR 1054.125 - What maintenance instructions must I give to buyers?
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, SMALL NONROAD SPARK-IGNITION ENGINES AND... maintaining and using the engine, including the emission control system as described in this section. The... degradation in emission control for engines that do not have their fuel injectors replaced. (iii) You provide...
Performance and operational improvements made to the Waukesha AT27-GL engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reinbold, E.O.
1996-12-31
This paper presents the results of combustion and engine performance studies performed on the AT27GL lean burn engine. One study was to evaluate the effect of the pre-combustion chamber cup geometry on engine performance under several operating conditions including: Air-Fuel Ratio (AFR), ignition timing, and engine load. The study examined several combustion parameters; including IMEP, coefficient of variation of IMEP, heat release rates, and maximum combustion pressures. The study also examined engine thermal efficiency, and brake specific emissions of Oxides of Nitrogen, Carbon Monoxide, and Total Hydrocarbons (gaseous). Studies were also performed on different spark plug designs, comparing firing voltages,more » and electrode temperatures while operating under conditions of varying AFR, and ignition timing. In addition an Air-Fuel-Ratio controller was recently tested and released on the engine. The controller was tested under conditions of varying fuel quality, along with a detonation control system.« less
Code of Federal Regulations, 2013 CFR
2013-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF..., emission control system, governed speed, fuel system, engine calibration, and other parameters as... engines selected from the population of an engine family for emission testing. ...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF..., emission control system, governed speed, fuel system, engine calibration, and other parameters as... engines selected from the population of an engine family for emission testing. ...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF..., emission control system, governed speed, fuel system, engine calibration, and other parameters as... engines selected from the population of an engine family for emission testing. ...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF..., emission control system, governed speed, fuel system, engine calibration, and other parameters as... engines selected from the population of an engine family for emission testing. ...
40 CFR 94.805 - Prohibited acts; penalties.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Importation of Nonconforming Engines § 94.805 Prohibited acts; penalties. (a) The importation of an engine (including an engine... otherwise permitted by this subpart, during a period of conditional admission, the importer of an engine may...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Engines. 229.101 Section 229.101 Transportation... Engines. (a) The temperature and pressure alarms, controls and related switches of internal combustion engines shall function properly. (b) Whenever an engine has been shut down due to mechanical or other...
40 CFR 205.153 - Engine displacement.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Engine displacement. 205.153 Section... TRANSPORTATION EQUIPMENT NOISE EMISSION CONTROLS Motorcycles § 205.153 Engine displacement. (a) Engine displacement must be calculated using nominal engine values and rounded to the nearest whole cubic centimeter...
40 CFR 205.153 - Engine displacement.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Engine displacement. 205.153 Section... TRANSPORTATION EQUIPMENT NOISE EMISSION CONTROLS Motorcycles § 205.153 Engine displacement. (a) Engine displacement must be calculated using nominal engine values and rounded to the nearest whole cubic centimeter...
40 CFR 205.153 - Engine displacement.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Engine displacement. 205.153 Section... TRANSPORTATION EQUIPMENT NOISE EMISSION CONTROLS Motorcycles § 205.153 Engine displacement. (a) Engine displacement must be calculated using nominal engine values and rounded to the nearest whole cubic centimeter...
40 CFR 205.153 - Engine displacement.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Engine displacement. 205.153 Section... TRANSPORTATION EQUIPMENT NOISE EMISSION CONTROLS Motorcycles § 205.153 Engine displacement. (a) Engine displacement must be calculated using nominal engine values and rounded to the nearest whole cubic centimeter...
40 CFR 205.153 - Engine displacement.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Engine displacement. 205.153 Section... TRANSPORTATION EQUIPMENT NOISE EMISSION CONTROLS Motorcycles § 205.153 Engine displacement. (a) Engine displacement must be calculated using nominal engine values and rounded to the nearest whole cubic centimeter...
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 4 2013-10-01 2013-10-01 false Engines. 229.101 Section 229.101 Transportation... Engines. (a) The temperature and pressure alarms, controls and related switches of internal combustion engines shall function properly. (b) Whenever an engine has been shut down due to mechanical or other...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 4 2011-10-01 2011-10-01 false Engines. 229.101 Section 229.101 Transportation... Engines. (a) The temperature and pressure alarms, controls and related switches of internal combustion engines shall function properly. (b) Whenever an engine has been shut down due to mechanical or other...
40 CFR 1065.518 - Engine preconditioning.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Engine preconditioning. 1065.518... CONTROLS ENGINE-TESTING PROCEDURES Performing an Emission Test Over Specified Duty Cycles § 1065.518 Engine preconditioning. (a) This section applies for engines where measured emissions are affected by prior operation...
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 4 2012-10-01 2012-10-01 false Engines. 229.101 Section 229.101 Transportation... Engines. (a) The temperature and pressure alarms, controls and related switches of internal combustion engines shall function properly. (b) Whenever an engine has been shut down due to mechanical or other...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 4 2014-10-01 2014-10-01 false Engines. 229.101 Section 229.101 Transportation... Engines. (a) The temperature and pressure alarms, controls and related switches of internal combustion engines shall function properly. (b) Whenever an engine has been shut down due to mechanical or other...
Schubauer-Berigan, Mary K; Dahm, Matthew M; Schulte, Paul A; Hodson, Laura; Geraci, Charles L
2015-01-01
Exposure to engineered nanomaterials (substances with at least one dimension of 1-100 nm) has been of increased interest, with the recent growth in production and use of nanomaterials worldwide. Various organizations have recommended methods to minimize exposure to engineered nanomaterials. The purpose of this study was to evaluate available data to examine the extent to which studied U.S. companies (which represent a small fraction of all companies using certain forms of engineered nanomaterials) follow the guidelines for reducing occupational exposures to engineered nanomaterials that have been issued by the National Institute for Occupational Safety and Health (NIOSH) and other organizations. Survey data, field reports, and field notes for all NIOSH nanomaterial exposure assessments conducted between 2006 and 2011 were collected and reviewed to: (1) determine the level of adoption of precautionary guidance on engineering controls and personal protective equipment (PPE), and (2) evaluate the reliability of companies' self-reported use of engineering controls and PPE. Use of PPE was observed among 89% [95% confidence interval (CI): 76%-96%] of 46 visited companies, and use of containment-based engineering controls for at least some processes was observed among 83% (95% CI: 76%-96%). In on-site evaluations, more than 90% of the 16 engineered carbonaceous nanomaterial companies that responded to an industrywide survey were observed to be using engineering controls and PPE as reported or more stringently than reported. Since PPE use was slightly more prevalent than engineering controls, better communication may be necessary to reinforce the importance of the hierarchy of controls. These findings may also be useful in conducting exposure assessment and epidemiologic research among U.S. workers handling nanomaterials.