Controlled Experiment Replication in Evaluation of E-Learning System's Educational Influence
ERIC Educational Resources Information Center
Grubisic, Ani; Stankov, Slavomir; Rosic, Marko; Zitko, Branko
2009-01-01
We believe that every effectiveness evaluation should be replicated at least in order to verify the original results and to indicate evaluated e-learning system's advantages or disadvantages. This paper presents the methodology for conducting controlled experiment replication, as well as, results of a controlled experiment and an internal…
Sambot II: A self-assembly modular swarm robot
NASA Astrophysics Data System (ADS)
Zhang, Yuchao; Wei, Hongxing; Yang, Bo; Jiang, Cancan
2018-04-01
The new generation of self-assembly modular swarm robot Sambot II, based on the original generation of self-assembly modular swarm robot Sambot, adopting laser and camera module for information collecting, is introduced in this manuscript. The visual control algorithm of Sambot II is detailed and feasibility of the algorithm is verified by the laser and camera experiments. At the end of this manuscript, autonomous docking experiments of two Sambot II robots are presented. The results of experiments are showed and analyzed to verify the feasibility of whole scheme of Sambot II.
Hardware demonstration of flexible beam control
NASA Technical Reports Server (NTRS)
Schaechter, D. B.
1980-01-01
An experiment employing a pinned-free flexible beam has been constructed to demonstrate and verify several facets of the control of flexible structures. The desired features of the experiment are to demonstrate active shape control, active dynamic control, adaptive control, various control law design approaches, and associated hardware requirements and mechanization difficulties. This paper contains the analytical work performed in support of the facility development, the final design specifications, control law synthesis, and some preliminary results.
A survey of experiments and experimental facilities for active control of flexible structures
NASA Technical Reports Server (NTRS)
Sparks, Dean W., Jr.; Horner, Garnett C.; Juang, Jer-Nan; Klose, Gerhard
1989-01-01
A brief survey of large space structure control related experiments and facilities was presented. This survey covered experiments performed before and up to 1982, and those of the present period (1982-...). Finally, the future planned experiments and facilities in support of the control-structure interaction (CSI) program were reported. It was stated that new, improved ground test facilities are needed to verify the new CSI design techniques that will allow future space structures to perform planned NASA missions.
Sequence verification as quality-control step for production of cDNA microarrays.
Taylor, E; Cogdell, D; Coombes, K; Hu, L; Ramdas, L; Tabor, A; Hamilton, S; Zhang, W
2001-07-01
To generate cDNA arrays in our core laboratory, we amplified about 2300 PCR products from a human, sequence-verified cDNA clone library. As a quality-control step, we sequenced the PCR products immediately before printing. The sequence information was used to search the GenBank database to confirm the identities. Although these clones were previously sequence verified by the company, we found that only 79% of the clones matched the original database after handling. Our experience strongly indicates the necessity to sequence verify the clones at the final stage before printing on microarray slides and to modify the gene list accordingly.
A control method for bilateral teleoperating systems
NASA Astrophysics Data System (ADS)
Strassberg, Yesayahu
1992-01-01
The thesis focuses on control of bilateral master-slave teleoperators. The bilateral control issue of teleoperators is studied and a new scheme that overcomes basic unsolved problems is proposed. A performance measure, based on the multiport modeling method, is introduced in order to evaluate and understand the limitations of earlier published bilateral control laws. Based on the study evaluating the different methods, the objective of the thesis is stated. The proposed control law is then introduced, its ideal performance is demonstrated, and conditions for stability and robustness are derived. It is shown that stability, desired performance, and robustness can be obtained under the assumption that the deviation of the model from the actual system satisfies certain norm inequalities and the measurement uncertainties are bounded. The proposed scheme is validated by numerical simulation. The simulated system is based on the configuration of the RAL (Robotics and Automation Laboratory) telerobot. From the simulation results it is shown that good tracking performance can be obtained. In order to verify the performance of the proposed scheme when applied to a real hardware system, an experimental setup of a three degree of freedom master-slave teleoperator (i.e. three degree of freedom master and three degree of freedom slave robot) was built. Three basic experiments were conducted to verify the performance of the proposed control scheme. The first experiment verified the master control law and its contribution to the robustness and performance of the entire system. The second experiment demonstrated the actual performance of the system while performing a free motion teleoperating task. From the experimental results, it is shown that the control law has good performance and is robust to uncertainties in the models of the master and slave.
NASA Technical Reports Server (NTRS)
Phillips, Warren F.
1989-01-01
The results obtained show that it is possible to control light-weight robots with flexible links in a manner that produces good response time and does not induce unacceptable link vibrations. However, deflections induced by gravity cause large static position errors with such a control system. For this reason, it is not possible to use this control system for controlling motion in the direction of gravity. The control system does, on the other hand, have potential for use in space. However, in-space experiments will be needed to verify its applicability to robots moving in three dimensions.
NASA Astrophysics Data System (ADS)
Zhao, Fei; Zhang, Chi; Yang, Guilin; Chen, Chinyin
2016-12-01
This paper presents an online estimation method of cutting error by analyzing of internal sensor readings. The internal sensors of numerical control (NC) machine tool are selected to avoid installation problem. The estimation mathematic model of cutting error was proposed to compute the relative position of cutting point and tool center point (TCP) from internal sensor readings based on cutting theory of gear. In order to verify the effectiveness of the proposed model, it was simulated and experimented in gear generating grinding process. The cutting error of gear was estimated and the factors which induce cutting error were analyzed. The simulation and experiments verify that the proposed approach is an efficient way to estimate the cutting error of work-piece during machining process.
NASA/MSFC ground experiment for large space structure control verification
NASA Technical Reports Server (NTRS)
Waites, H. B.; Seltzer, S. M.; Tollison, D. K.
1984-01-01
Marshall Space Flight Center has developed a facility in which closed loop control of Large Space Structures (LSS) can be demonstrated and verified. The main objective of the facility is to verify LSS control system techniques so that on orbit performance can be ensured. The facility consists of an LSS test article which is connected to a payload mounting system that provides control torque commands. It is attached to a base excitation system which will simulate disturbances most likely to occur for Orbiter and DOD payloads. A control computer will contain the calibration software, the reference system, the alignment procedures, the telemetry software, and the control algorithms. The total system will be suspended in such a fashion that LSS test article has the characteristics common to all LSS.
New kind of injection-locked oscillator and its corresponding long-term stability control.
Hong, Jun; Liu, An; Wang, Xiao-hu; Yao, Sheng-xing; Li, Zu-ling
2015-09-20
A new type of opto-electronic hybrid oscillator is proposed for the first time, to the best of our knowledge, and verified by experiments in this paper. Typical electronic oscillator-dielectric resonator oscillator as the first injection source is used to injection lock the first long-fiber loop-based opto-electronic oscillator (OEO); then its output is used to injection lock the second long-fiber opto-electronic oscillator. Using this method, low-phase noise output signal can be obtained. Experiments show that single side-band (SSB) phase noise of a 9.5 GHz oscillation signal at 10 kHz offset frequency decreases from -123 to -135 dBc/Hz after the first injection, then, through the second injection, the SSB phase noise drops down to -146 dBc/Hz. In order to solve the long-term stability problem of the above oscillator, a new stability-control circuit also is designed and verified by experiments. Experiments show that the Allan deviation decreases from 9.0×10(-11) to 2.2×10(-12) during 1 s after the long-term stability-control circuit being used.
Zaher, Ashraf A
2008-03-01
The dynamic behavior of a permanent magnet synchronous machine (PMSM) is analyzed. Nominal and special operating conditions are explored to show that the PMSM can experience chaos. A nonlinear controller is introduced to control these unwanted chaotic oscillations and to bring the PMSM to a stable steady state. The designed controller uses a pole-placement approach to force the closed-loop system to follow the performance of a simple first-order linear system with zero steady-state error to a desired set point. The similarity between the mathematical model of the PMSM and the famous chaotic Lorenz system is utilized to design a synchronization-based state observer using only the angular speed for feedback. Simulation results verify the effectiveness of the proposed controller in eliminating the chaotic oscillations while using a single feedback signal. The superiority of the proposed controller is further demonstrated by comparing it with a conventional PID controller. Finally, a laboratory-based experiment was conducted using the MCK2812 C Pro-MS(BL) motion control kit to confirm the theoretical results and to verify both the causality and versatility of the proposed controller.
Shuttle wave experiments. [space plasma investigations: design and instrumentation
NASA Technical Reports Server (NTRS)
Calvert, W.
1976-01-01
Wave experiments on shuttle are needed to verify dispersion relations, to study nonlinear and exotic phenomena, to support other plasma experiments, and to test engineering designs. Techniques based on coherent detection and bistatic geometry are described. New instrumentation required to provide modules for a variety of missions and to incorporate advanced signal processing and control techniques is discussed. An experiment for Z to 0 coupling is included.
What controls deposition rate in electron-beam chemical vapor deposition?
White, William B; Rykaczewski, Konrad; Fedorov, Andrei G
2006-08-25
The key physical processes governing electron-beam-assisted chemical vapor deposition are analyzed via a combination of theoretical modeling and supporting experiments. The scaling laws that define growth of the nanoscale deposits are developed and verified using carefully designed experiments of carbon deposition from methane onto a silicon substrate. The results suggest that the chamber-scale continuous transport of the precursor gas is the rate controlling process in electron-beam chemical vapor deposition.
1989-01-01
experience de gen dieses Experiments. Der 10 KDIE-Wert legt nahe. dab die combustion statique. La valeur de l’effet isotopique primaire laisse...anomaler combustion globale. Des 6tudes publifes par ailleurs confirment cette KDIE-Wert bei 10,4 MPa wirL angegeben. Diese KDIE-Experimente hypoth~se
Interaction Metrics for Feedback Control of Sound Radiation from Stiffened Panels
NASA Technical Reports Server (NTRS)
Cabell, Randolph H.; Cox, David E.; Gibbs, Gary P.
2003-01-01
Interaction metrics developed for the process control industry are used to evaluate decentralized control of sound radiation from bays on an aircraft fuselage. The metrics are applied to experimentally measured frequency response data from a model of an aircraft fuselage. The purpose is to understand how coupling between multiple bays of the fuselage can destabilize or limit the performance of a decentralized active noise control system. The metrics quantitatively verify observations from a previous experiment, in which decentralized controllers performed worse than centralized controllers. The metrics do not appear to be useful for explaining control spillover which was observed in a previous experiment.
NASA Technical Reports Server (NTRS)
Patterson, W. J.
1976-01-01
The development of a methyl cellulose based coating system for control of electro-osmotic flow at the walls of electrophoresis cells is described. Flight electrophoresis columns were coated with this system, resulting in a flight set of six columns. In flight photography of MA-011 electrophoretic separations verified control of electro-osmotic flow.
Precursor SSF utilization: The MODE experiments
NASA Technical Reports Server (NTRS)
Crawley, Edward F.
1992-01-01
The MIT Space Engineering Research Center is the principal investigator for a series of experiments which utilize the Shuttle Middeck as an engineering dynamics laboratory. The first, which flew on STS-48 in Sep. 1991, was the Middeck O-gravity Dynamics Experiment (MODE). This experiment focused on the dynamics of a scaled deployable truss, similar to that of SSF, and contained liquids in tanks. MODE will be reflown in the fall of 1993. In mid-1994, the Middeck Active Control Experiment (MACE) will examine the issues associated with predicting and verifying the closed loop behavior of a controlled structure in zero gravity. The paper will present experiment background, planning, operational experience, results, and lessons learned from these experiments which are pertinent to SSF utilization.
Model based control of dynamic atomic force microscope.
Lee, Chibum; Salapaka, Srinivasa M
2015-04-01
A model-based robust control approach is proposed that significantly improves imaging bandwidth for the dynamic mode atomic force microscopy. A model for cantilever oscillation amplitude and phase dynamics is derived and used for the control design. In particular, the control design is based on a linearized model and robust H(∞) control theory. This design yields a significant improvement when compared to the conventional proportional-integral designs and verified by experiments.
Research on the thickness control method of workbench oil film based on theoretical model
NASA Astrophysics Data System (ADS)
Pei, Tang; Lin, Lin; Liu, Ge; Yu, Liping; Xu, Zhen; Zhao, Di
2018-06-01
To improve the thickness adjustability of the workbench oil film, we designed a software system to control the thickness of oil film based on the Siemens 840dsl CNC system and set up an experimental platform. A regulation scheme of oil film thickness based on theoretical model is proposed, the accuracy and feasibility of which is proved by experiment results. It's verified that the method mentioned above can meet the demands of workbench oil film thickness control, the experiment is simple and efficient with high control precision. Reliable theory support is supplied for the development of workbench oil film active control system as well.
A slewing control experiment for flexible structures
NASA Technical Reports Server (NTRS)
Juang, J.-N.; Horta, L. G.; Robertshaw, H. H.
1985-01-01
A hardware set-up has been developed to study slewing control for flexible structures including a steel beam and a solar panel. The linear optimal terminal control law is used to design active controllers which are implemented in an analog computer. The objective of this experiment is to demonstrate and verify the dynamics and optimal terminal control laws as applied to flexible structures for large angle maneuver. Actuation is provided by an electric motor while sensing is given by strain gages and angle potentiometer. Experimental measurements are compared with analytical predictions in terms of modal parameters of the system stability matrix and sufficient agreement is achieved to validate the theory.
A scalable, self-analyzing digital locking system for use on quantum optics experiments.
Sparkes, B M; Chrzanowski, H M; Parrain, D P; Buchler, B C; Lam, P K; Symul, T
2011-07-01
Digital control of optics experiments has many advantages over analog control systems, specifically in terms of the scalability, cost, flexibility, and the integration of system information into one location. We present a digital control system, freely available for download online, specifically designed for quantum optics experiments that allows for automatic and sequential re-locking of optical components. We show how the inbuilt locking analysis tools, including a white-noise network analyzer, can be used to help optimize individual locks, and verify the long term stability of the digital system. Finally, we present an example of the benefits of digital locking for quantum optics by applying the code to a specific experiment used to characterize optical Schrödinger cat states.
The Design and Semi-Physical Simulation Test of Fault-Tolerant Controller for Aero Engine
NASA Astrophysics Data System (ADS)
Liu, Yuan; Zhang, Xin; Zhang, Tianhong
2017-11-01
A new fault-tolerant control method for aero engine is proposed, which can accurately diagnose the sensor fault by Kalman filter banks and reconstruct the signal by real-time on-board adaptive model combing with a simplified real-time model and an improved Kalman filter. In order to verify the feasibility of the method proposed, a semi-physical simulation experiment has been carried out. Besides the real I/O interfaces, controller hardware and the virtual plant model, semi-physical simulation system also contains real fuel system. Compared with the hardware-in-the-loop (HIL) simulation, semi-physical simulation system has a higher degree of confidence. In order to meet the needs of semi-physical simulation, a rapid prototyping controller with fault-tolerant control ability based on NI CompactRIO platform is designed and verified on the semi-physical simulation test platform. The result shows that the controller can realize the aero engine control safely and reliably with little influence on controller performance in the event of fault on sensor.
Gao, Bingwei; Shao, Junpeng; Yang, Xiaodong
2014-11-01
In order to enhance the anti-jamming ability of electro-hydraulic position servo control system at the same time improve the control precision of the system, a compound control strategy that combines velocity compensation with Active Disturbance Rejection Controller (ADRC) is proposed, and the working principle of the compound control strategy is given. ADRC controller is designed, and the extended state observer is used for observing internal parameters uncertainties and external disturbances, so that the disturbances of the system are suppressed effectively. Velocity compensation controller is designed and the compensation model is derived to further improve the positioning accuracy of the system and to achieve the velocity compensation without disturbance. The compound control strategy is verified by the simulation and experiment respectively, and the simulation and experimental results show that the electro-hydraulic position servo control system with ADRC controller can effectively inhibit the external disturbances, the precise positioning control is realized after introducing the velocity compensation controller, and verify that the compound control strategy is effective. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
AMPS data management concepts. [Atmospheric, Magnetospheric and Plasma in Space experiment
NASA Technical Reports Server (NTRS)
Metzelaar, P. N.
1975-01-01
Five typical AMPS experiments were formulated to allow simulation studies to verify data management concepts. Design studies were conducted to analyze these experiments in terms of the applicable procedures, data processing and displaying functions. Design concepts for AMPS data management system are presented which permit both automatic repetitive measurement sequences and experimenter-controlled step-by-step procedures. Extensive use is made of a cathode ray tube display, the experimenters' alphanumeric keyboard, and the computer. The types of computer software required by the system and the possible choices of control and display procedures available to the experimenter are described for several examples. An electromagnetic wave transmission experiment illustrates the methods used to analyze data processing requirements.
Development of Control Teaching Material for Mechatronics Education Based on Experience
NASA Astrophysics Data System (ADS)
Tasaki, Takao; Watanabe, Shinichi; Shikanai, Yoshihito; Ozaki, Koichi
In this paper, we have developed a teaching material for technical high school students to understand the control technique. The material makes the students understanding the control technique through the sensibility obtained from the experience of riding the robot. We have considered the correspondence of the teaching material with the ARCS Model. Therefore, the material aims to improve the interest and the willingness to learn mechatronics and control technique by experiencing the difference of the response by the change in the control parameters. As the results of the questionnaire to the technical high school students in the class, we have verified educative effect of the teaching material which can be improved willingness of learning and interesting for mechatronics and control technique.
Gao, Changwei; Liu, Xiaoming; Chen, Hai
2017-08-22
This paper focus on the power fluctuations of the virtual synchronous generator(VSG) during the transition process. An improved virtual synchronous generator(IVSG) control strategy based on feed-forward compensation is proposed. Adjustable parameter of the compensation section can be modified to achieve the goal of reducing the order of the system. It can effectively suppress the power fluctuations of the VSG in transient process. To verify the effectiveness of the proposed control strategy for distributed energy resources inverter, the simulation model is set up in MATLAB/SIMULINK platform and physical experiment platform is established. Simulation and experiment results demonstrate the effectiveness of the proposed IVSG control strategy.
Phase Distribution Phenomena for Simulated Microgravity Conditions: Experimental Work
NASA Technical Reports Server (NTRS)
Singhal, Maneesh; Bonetto, Fabian J.; Lahey, R. T., Jr.
1996-01-01
This report summarizes the work accomplished at Rensselaer to study phase distribution phenomenon under simulated microgravity conditions. Our group at Rensselaer has been able to develop sophisticated analytical models to predict phase distribution in two-phase flows under a variety of conditions. These models are based on physics and data obtained from carefully controlled experiments that are being conducted here. These experiments also serve to verify the models developed.
Phase Distribution Phenomena for Simulated Microgravity Conditions: Experimental Work
NASA Technical Reports Server (NTRS)
Singhal, Maneesh; Bonetto, Fabian J.; Lahey, R. T., Jr.
1996-01-01
This report summarizes the work accomplished at Rensselaer to study phase distribution phenomenon under simulated microgravity conditions. Our group at Rensselaer has been able to develop sophisticated analytical models to predict phase distribution in two-phase flows under variety of conditions. These models are based on physics and data obtained from carefully controlled experiments that are being conducted here. These experiments also serve to verify the models developed.
Verification of the Microgravity Active Vibration Isolation System based on Parabolic Flight
NASA Astrophysics Data System (ADS)
Zhang, Yong-kang; Dong, Wen-bo; Liu, Wei; Li, Zong-feng; Lv, Shi-meng; Sang, Xiao-ru; Yang, Yang
2017-12-01
The Microgravity active vibration isolation system (MAIS) is a device to reduce on-orbit vibration and to provide a lower gravity level for certain scientific experiments. MAIS system is made up of a stator and a floater, the stator is fixed on the spacecraft, and the floater is suspended by electromagnetic force so as to reduce the vibration from the stator. The system has 3 position sensors, 3 accelerometers, 8 Lorentz actuators, signal processing circuits and a central controller embedded in the operating software and control algorithms. For the experiments on parabolic flights, a laptop is added to MAIS for monitoring and operation, and a power module is for electric power converting. The principle of MAIS is as follows: the system samples the vibration acceleration of the floater from accelerometers, measures the displacement between stator and floater from position sensitive detectors, and computes Lorentz force current for each actuator so as to eliminate the vibration of the scientific payload, and meanwhile to avoid crashing between the stator and the floater. This is a motion control technic in 6 degrees of freedom (6-DOF) and its function could only be verified in a microgravity environment. Thanks for DLR and Novespace, we get a chance to take the DLR 27th parabolic flight campaign to make experiments to verify the 6-DOF control technic. The experiment results validate that the 6-DOF motion control technique is effective, and vibration isolation performance perfectly matches what we expected based on theoretical analysis and simulation. The MAIS has been planned on Chinese manned spacecraft for many microgravity scientific experiments, and the verification on parabolic flights is very important for its following mission. Additionally, we also test some additional function by microgravity electromagnetic suspension, such as automatic catching and locking and working in fault mode. The parabolic flight produces much useful data for these experiments.
Network congestion control algorithm based on Actor-Critic reinforcement learning model
NASA Astrophysics Data System (ADS)
Xu, Tao; Gong, Lina; Zhang, Wei; Li, Xuhong; Wang, Xia; Pan, Wenwen
2018-04-01
Aiming at the network congestion control problem, a congestion control algorithm based on Actor-Critic reinforcement learning model is designed. Through the genetic algorithm in the congestion control strategy, the network congestion problems can be better found and prevented. According to Actor-Critic reinforcement learning, the simulation experiment of network congestion control algorithm is designed. The simulation experiments verify that the AQM controller can predict the dynamic characteristics of the network system. Moreover, the learning strategy is adopted to optimize the network performance, and the dropping probability of packets is adaptively adjusted so as to improve the network performance and avoid congestion. Based on the above finding, it is concluded that the network congestion control algorithm based on Actor-Critic reinforcement learning model can effectively avoid the occurrence of TCP network congestion.
CM-2 Environmental / Modal Testing of Spacehab Racks
NASA Technical Reports Server (NTRS)
McNelis, Mark E.; Goodnight, Thomas W.; Farkas, Michael A.
2001-01-01
Combined environmental/modal vibration testing has been implemented at the NASA Glenn Research Center's Structural Dynamics Laboratory. The benefits of combined vibration testing are that it facilitates test article modal characterization and vibration qualification testing. The Combustion Module-2 (CM-2) is a space experiment that launches on Shuttle mission STS 107 in the SPACEHAB Research Double Module. The CM-2 flight hardware is integrated into a SPACEHAB single and double rack. CM-2 rack level combined vibration testing was recently completed on a shaker table to characterize the structure's modal response and verify the random vibration response. Control accelerometers and limit force gauges, located between the fixture and rack interface, were used to verify the input excitation. Results of the testing were used to verify the loads and environments for flight on the Shuttle.
Contamination control research activities for space optics in JAXA RANDD
NASA Astrophysics Data System (ADS)
Kimoto, Y.
2017-11-01
Contamination control research activities for space optics projects in JAXA R&D are described. More accurate contamination control techniques are requested because of intensified recent science mission requirements. One approach to control the contamination effects is analysis by software. JAXA has been developing a contamination analytical tool "J-SPICE" (Japanese Spacecraft Induced Contamination analysis software) as well as experiment facilities to improve the J-SPICE. A reflection model in J-SPICE has been experimentally verified and outgassing model data has been acquired by a facility. JAXA has developed a facility which could determine the influence of the contamination at a specific wavelength by combining a vacuum chamber with an I-R spectrometer and performed an experiment to inspect the effect of baking. Space material exposure experiment results reveal the actual thickness of the contamination layer in ISS orbit.
Control of Flexible Structures (COFS) Flight Experiment Background and Description
NASA Technical Reports Server (NTRS)
Hanks, B. R.
1985-01-01
A fundamental problem in designing and delivering large space structures to orbit is to provide sufficient structural stiffness and static configuration precision to meet performance requirements. These requirements are directly related to control requirements and the degree of control system sophistication available to supplement the as-built structure. Background and rationale are presented for a research study in structures, structural dynamics, and controls using a relatively large, flexible beam as a focus. This experiment would address fundamental problems applicable to large, flexible space structures in general and would involve a combination of ground tests, flight behavior prediction, and instrumented orbital tests. Intended to be multidisciplinary but basic within each discipline, the experiment should provide improved understanding and confidence in making design trades between structural conservatism and control system sophistication for meeting static shape and dynamic response/stability requirements. Quantitative results should be obtained for use in improving the validity of ground tests for verifying flight performance analyses.
On verifying magnetic dipole moment of a magnetic torquer by experiments
NASA Astrophysics Data System (ADS)
Kuyyakanont, Aekjira; Kuntanapreeda, Suwat; Fuengwarodsakul, Nisai H.
2018-01-01
Magnetic torquers are used for the attitude control of small satellites, such as CubeSats with Low Earth Orbit (LEO). During the design of magnetic torquers, it is necessary to confirm if its magnetic dipole moment is enough to control the satellite attitude. The magnetic dipole moment can affect the detumbling time and the satellite rotation time. In addition, it is also necessary to understand how to design the magnetic torquer for operation in a CubeSat under the space environment at LEO. This paper reports an investigation of the magnetic dipole moment and the magnetic field generated by a circular air-coil magnetic torquer using experimental measurements. The experiment testbed was built on an air-bearing under a magnetic field generated by a Helmholtz coil. This paper also describes the procedure to determine and verify the magnetic dipole moment value of the designed circular air-core magnetic torquer. The experimental results are compared with the design calculations. According to the comparison results, the designed magnetic torquer reaches the required magnetic dipole moment. This designed magnetic torquer will be applied to the attitude control systems of a 1U CubeSat satellite in the project “KNACKSAT.”
NASA Technical Reports Server (NTRS)
Powers, B. G.
1972-01-01
The magnitude and frequency of occurrence of aircraft responses and control inputs during 27 flights of the XB-70 airplane were measured. Exceedance curves are presented for the airplane responses and control usage. A technique is presented which makes use of these exceedance curves to establish or verify handling qualities criteria. This technique can provide a means of incorporating current operational experience in handling qualities requirements for future aircraft.
A Robust Inner and Outer Loop Control Method for Trajectory Tracking of a Quadrotor
Xia, Dunzhu; Cheng, Limei; Yao, Yanhong
2017-01-01
In order to achieve the complicated trajectory tracking of quadrotor, a geometric inner and outer loop control scheme is presented. The outer loop generates the desired rotation matrix for the inner loop. To improve the response speed and robustness, a geometric SMC controller is designed for the inner loop. The outer loop is also designed via sliding mode control (SMC). By Lyapunov theory and cascade theory, the closed-loop system stability is guaranteed. Next, the tracking performance is validated by tracking three representative trajectories. Then, the robustness of the proposed control method is illustrated by trajectory tracking in presence of model uncertainty and disturbances. Subsequently, experiments are carried out to verify the method. In the experiment, ultra wideband (UWB) is used for indoor positioning. Extended Kalman Filter (EKF) is used for fusing inertial measurement unit (IMU) and UWB measurements. The experimental results show the feasibility of the designed controller in practice. The comparative experiments with PD and PD loop demonstrate the robustness of the proposed control method. PMID:28925984
Starshades for Exoplanet Imaging and Characterization
NASA Astrophysics Data System (ADS)
Kasdin, N. J.; Vanderbei, R. J.; Shaklan, S.; Lisman, D.; Thomson, M.; Cady, E.; Macintosh, B.; Sirbu, D.; Lo, A.
2014-01-01
An external occulter is a satellite employing a large screen, or starshade, that flies in formation with a spaceborne telescope to provide the starlight suppression needed for detecting and characterizing exoplanets. Among the advantages of using an occulter are the broadband allowed for characterization and the removal of light before entering the observatory, greatly relaxing the requirements on the telescope and instrument. In this presentation I will explain how star shades achieve high contrast through precise design and control of their shape and how we develop an error budget to establish requirements on the manufacturing and control. Raising the technology readiness level of starshades requires a sequence of activities to verify approaches to manufacturing, deployment, test, and analysis. The SAT-TDEM program has been instrumental in raising the readiness level of the most critical technology. In particular, I will show the results of our first TDEM in 2010-2012 that verified a full scale petal could be built and measured to the needed accuracy for 10 orders of magnitude of contrast. Our second TDEM in 2012-2014 verified that a starshade could be deployed and the petals could be placed to the required position to better than 1 mm. Finally, laboratory experiments have verified the optical modeling used to predict starshade performance to better than 1e-10.
Modeling and controller design of a 6-DOF precision positioning system
NASA Astrophysics Data System (ADS)
Cai, Kunhai; Tian, Yanling; Liu, Xianping; Fatikow, Sergej; Wang, Fujun; Cui, Liangyu; Zhang, Dawei; Shirinzadeh, Bijan
2018-05-01
A key hurdle to meet the needs of micro/nano manipulation in some complex cases is the inadequate workspace and flexibility of the operation ends. This paper presents a 6-degree of freedom (DOF) serial-parallel precision positioning system, which consists of two compact type 3-DOF parallel mechanisms. Each parallel mechanism is driven by three piezoelectric actuators (PEAs), guided by three symmetric T-shape hinges and three elliptical flexible hinges, respectively. It can extend workspace and improve flexibility of the operation ends. The proposed system can be assembled easily, which will greatly reduce the assembly errors and improve the positioning accuracy. In addition, the kinematic and dynamic model of the 6-DOF system are established, respectively. Furthermore, in order to reduce the tracking error and improve the positioning accuracy, the Discrete-time Model Predictive Controller (DMPC) is applied as an effective control method. Meanwhile, the effectiveness of the DMCP control method is verified. Finally, the tracking experiment is performed to verify the tracking performances of the 6-DOF stage.
Cassini's Test Methodology for Flight Software Verification and Operations
NASA Technical Reports Server (NTRS)
Wang, Eric; Brown, Jay
2007-01-01
The Cassini spacecraft was launched on 15 October 1997 on a Titan IV-B launch vehicle. The spacecraft is comprised of various subsystems, including the Attitude and Articulation Control Subsystem (AACS). The AACS Flight Software (FSW) and its development has been an ongoing effort, from the design, development and finally operations. As planned, major modifications to certain FSW functions were designed, tested, verified and uploaded during the cruise phase of the mission. Each flight software upload involved extensive verification testing. A standardized FSW testing methodology was used to verify the integrity of the flight software. This paper summarizes the flight software testing methodology used for verifying FSW from pre-launch through the prime mission, with an emphasis on flight experience testing during the first 2.5 years of the prime mission (July 2004 through January 2007).
CM-2 Environmental/Modal Testing of SPACEHAB Racks
NASA Technical Reports Server (NTRS)
McNelis, Mark E.; Goodnight, Thomas W.
2001-01-01
Combined environmental/modal vibration testing has been implemented at the NASA Glenn Research Center's Structural Dynamics Laboratory. The benefits of combined vibration testing are that it facilitates test article modal characterization and vibration qualification testing. The Combustion Module-2 (CM-2) is a space experiment that will launch on shuttle mission STS-107 in the SPACEHAB Research Double Module. The CM-2 flight hardware is integrated into a SPACEHAB single and double rack. CM-2 rack-level combined vibration testing was recently completed on a shaker table to characterize the structure's modal response and verify the random vibration response. Control accelerometers and limit force gauges, located between the fixture and rack interface, were used to verify the input excitation. Results of the testing were used to verify the loads and environments for flight on the shuttles.
A binary motor imagery tasks based brain-computer interface for two-dimensional movement control
NASA Astrophysics Data System (ADS)
Xia, Bin; Cao, Lei; Maysam, Oladazimi; Li, Jie; Xie, Hong; Su, Caixia; Birbaumer, Niels
2017-12-01
Objective. Two-dimensional movement control is a popular issue in brain-computer interface (BCI) research and has many applications in the real world. In this paper, we introduce a combined control strategy to a binary class-based BCI system that allows the user to move a cursor in a two-dimensional (2D) plane. Users focus on a single moving vector to control 2D movement instead of controlling vertical and horizontal movement separately. Approach. Five participants took part in a fixed-target experiment and random-target experiment to verify the effectiveness of the combination control strategy under the fixed and random routine conditions. Both experiments were performed in a virtual 2D dimensional environment and visual feedback was provided on the screen. Main results. The five participants achieved an average hit rate of 98.9% and 99.4% for the fixed-target experiment and the random-target experiment, respectively. Significance. The results demonstrate that participants could move the cursor in the 2D plane effectively. The proposed control strategy is based only on a basic two-motor imagery BCI, which enables more people to use it in real-life applications.
Middeck Active Control Experiment (MACE), phase A
NASA Technical Reports Server (NTRS)
Crawley, Edward F.; Deluis, Javier; Miller, David W.
1989-01-01
A rationale to determine which structural experiments are sufficient to verify the design of structures employing Controlled Structures Technology was derived. A survey of proposed NASA missions was undertaken to identify candidate test articles for use in the Middeck Active Control Experiment (MACE). The survey revealed that potential test articles could be classified into one of three roles: development, demonstration, and qualification, depending on the maturity of the technology and the mission the structure must fulfill. A set of criteria was derived that allowed determination of which role a potential test article must fulfill. A review of the capabilities and limitations of the STS middeck was conducted. A reference design for the MACE test article was presented. Computing requirements for running typical closed-loop controllers was determined, and various computer configurations were studied. The various components required to manufacture the structure were identified. A management plan was established for the remainder of the program experiment development, flight and ground systems development, and integration to the carrier. Procedures for configuration control, fiscal control, and safety, reliabilty, and quality assurance were developed.
NASA Technical Reports Server (NTRS)
Jenkins, Phillip P.; Krasowski, Michael J.; Greer, Lawrence C.; Flatico, Joseph M.
2005-01-01
The Forward Technology Solar Cell Experiment (FTSCE) is a space solar cell experiment built as part of the Fifth Materials on the International Space Station Experiment (MISSE-5): Data Acquisition and Control Hardware and Software. It represents a collaborative effort between the NASA Glenn Research Center, the Naval Research Laboratory, and the U.S. Naval Academy. The purpose of this experiment is to place current and future solar cell technologies on orbit where they will be characterized and validated. This is in response to recent on-orbit and ground test results that raised concerns about the in-space survivability of new solar cell technologies and about current ground test methodology. The various components of the FTSCE are assembled into a passive experiment container--a 2- by 2- by 4-in. folding metal container that will be attached by an astronaut to the outer structure of the International Space Station. Data collected by the FTSCE will be relayed to the ground through a transmitter assembled by the U.S. Naval Academy. Data-acquisition electronics and software were designed to be tolerant of the thermal and radiation effects expected on orbit. The experiment has been verified and readied for flight on STS-114.
Development of an algorithm to model an aircraft equipped with a generic CDTI display
NASA Technical Reports Server (NTRS)
Driscoll, W. C.; Houck, J. A.
1986-01-01
A model of human pilot performance of a tracking task using a generic Cockpit Display of Traffic Information (CDTI) display is developed from experimental data. The tracking task is to use CDTI in tracking a leading aircraft at a nominal separation of three nautical miles over a prescribed trajectory in space. The analysis of the data resulting from a factorial design of experiments reveals that the tracking task performance depends on the pilot and his experience at performing the task. Performance was not strongly affected by the type of control system used (velocity vector control wheel steering versus 3D automatic flight path guidance and control). The model that is developed and verified results in state trajectories whose difference from the experimental state trajectories is small compared to the variation due to the pilot and experience factors.
NASA Astrophysics Data System (ADS)
Zhou, Ning; Yang, Jia; Cheng, Zheng; Chen, Bo; Su, Yong Chun; Shu, Zhan; Zou, Jin
2017-06-01
Solar photovoltaic power generation is the power generation using solar cell module converting sunlight into DC electric energy. In the paper an equivalent model of solar photovoltaic power generation system is built in RTDS. The main circuit structure of the two-stage PV grid-connected system consists of the DC-DC, DC-AC circuit. The MPPT (Maximum Power Point Tracking) control of the PV array is controlled by adjusting the duty ratio of the DC-DC circuit. The proposed control strategy of constant voltage/constant reactive power (V/Q) control is successfully implemented grid-connected control of the inverter when grid-connected operation. The closed-loop experiment of islanding protection device of photovoltaic power plant on RTDS, verifies the correctness of the simulation model, and the experimental verification can be applied to this type of device.
An Experiment of GMPLS-Based Dispersion Compensation Control over In-Field Fibers
NASA Astrophysics Data System (ADS)
Seno, Shoichiro; Horiuchi, Eiichi; Yoshida, Sota; Sugihara, Takashi; Onohara, Kiyoshi; Kamei, Misato; Baba, Yoshimasa; Kubo, Kazuo; Mizuochi, Takashi
As ROADMs (Reconfigurable Optical Add/Drop Multiplexers) are becoming widely used in metro/core networks, distributed control of wavelength paths by extended GMPLS (Generalized MultiProtocol Label Switching) protocols has attracted much attention. For the automatic establishment of an arbitrary wavelength path satisfying dynamic traffic demands over a ROADM or WXC (Wavelength Cross Connect)-based network, precise determination of chromatic dispersion over the path and optimized assignment of dispersion compensation capabilities at related nodes are essential. This paper reports an experiment over in-field fibers where GMPLS-based control was applied for the automatic discovery of chromatic dispersion, path computation, and wavelength path establishment with dynamic adjustment of variable dispersion compensation. The GMPLS-based control scheme, which the authors called GMPLS-Plus, extended GMPLS's distributed control architecture with attributes for automatic discovery, advertisement, and signaling of chromatic dispersion. In this experiment, wavelength paths with distances of 24km and 360km were successfully established and error-free data transmission was verified. The experiment also confirmed path restoration with dynamic compensation adjustment upon fiber failure.
Synesthesia affects verification of simple arithmetic equations.
Ghirardelli, Thomas G; Mills, Carol Bergfeld; Zilioli, Monica K C; Bailey, Leah P; Kretschmar, Paige K
2010-01-01
To investigate the effects of color-digit synesthesia on numerical representation, we presented a synesthete, called SE, in the present study, and controls with mathematical equations for verification. In Experiment 1, SE verified addition equations made up of digits that either matched or mismatched her color-digit photisms or were in black. In Experiment 2A, the addends were presented in the different color conditions and the solution was presented in black, whereas in Experiment 2B the addends were presented in black and the solutions were presented in the different color conditions. In Experiment 3, multiplication and division equations were presented in the same color conditions as in Experiment 1. SE responded significantly faster to equations that matched her photisms than to those that did not; controls did not show this effect. These results suggest that photisms influence the processing of digits in arithmetic verification, replicating and extending previous findings.
Development of a verification program for deployable truss advanced technology
NASA Technical Reports Server (NTRS)
Dyer, Jack E.
1988-01-01
Use of large deployable space structures to satisfy the growth demands of space systems is contingent upon reducing the associated risks that pervade many related technical disciplines. The overall objectives of this program was to develop a detailed plan to verify deployable truss advanced technology applicable to future large space structures and to develop a preliminary design of a deployable truss reflector/beam structure for use a a technology demonstration test article. The planning is based on a Shuttle flight experiment program using deployable 5 and 15 meter aperture tetrahedral truss reflections and a 20 m long deployable truss beam structure. The plan addresses validation of analytical methods, the degree to which ground testing adequately simulates flight and in-space testing requirements for large precision antenna designs. Based on an assessment of future NASA and DOD space system requirements, the program was developed to verify four critical technology areas: deployment, shape accuracy and control, pointing and alignment, and articulation and maneuvers. The flight experiment technology verification objectives can be met using two shuttle flights with the total experiment integrated on a single Shuttle Test Experiment Platform (STEP) and a Mission Peculiar Experiment Support Structure (MPESS). First flight of the experiment can be achieved 60 months after go-ahead with a total program duration of 90 months.
The Vehicle Control Systems Branch at the Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Barret, Chris
1990-01-01
This paper outlines the responsibility of the Vehicle Control Systems Branch at the Marshall Space Flight Center (MSFC) to analyze, evaluate, define, design, verify, and specify requirements for advanced launch vehicles and related space projects, and to conduct research in advanced flight control concepts. Attention is given to branch responsibilities which include Shuttle-C, Shuttle-C Block II, Shuttle-Z, lunar cargo launch vehicles, Mars cargo launch vehicles, orbital maneuvering vehicle, automatic docking, tethered satellite, aeroassisted flight experiment, and solid rocket booster parachute recovery system design.
Development of Anti-lock Braking System (ABS) for Vehicles Braking
NASA Astrophysics Data System (ADS)
Minh, Vu Trieu; Oamen, Godwin; Vassiljeva, Kristina; Teder, Leo
2016-11-01
This paper develops a real laboratory of anti-lock braking system (ABS) for vehicle and conducts real experiments to verify the ability of this ABS to prevent the vehicle wheel from being locked while braking. Two controllers of PID and fuzzy logic are tested for analysis and comparison. This ABS laboratory is designed for bachelor and master students to simulate and analyze performances of ABS with different control techniques on various roads and load conditions. This paper provides educational theories and practices on the design of control for system dynamics.
Using the Wiimote in Introductory Physics Experiments
NASA Astrophysics Data System (ADS)
Ochoa, Romulo; Rooney, Frank G.; Somers, William J.
2011-01-01
The Wii is a very popular gaming console. An important component of its appeal is the ease of use of its remote controller, popularly known as a Wiimote. This simple-looking but powerful device has a three-axis accelerometer and communicates with the console via Bluetooth protocol. We present two experiments that demonstrate the feasibility of using the Wiimote in introductory physics experiments. The linear dependence of centripetal acceleration on the radial distance at constant angular velocity is verified and compared with data obtained using photogate timers. A second application to simple harmonic oscillators tests the capabilities of the Wiimote to measure variable accelerations.
Xue, Qiao; Huang, Lei; Hu, Dongxia; Yan, Ping; Gong, Mali
2014-01-10
For thermal deformable mirrors (DMs), the thermal field control is important because it will decide aberration correction effects. In order to better manipulate the thermal fields, a simple water convection system is proposed. The water convection system, which can be applied in thermal field bimetal DMs, shows effective thermal fields and influence-function controlling abilities. This is verified by the simulations and the contrast experiments of two prototypes: one of which utilizes air convection, the other uses water convection. Controlling the thermal fields will greatly promote the influence-function adjustability and aberration correction ability of thermal DMs.
NASA Astrophysics Data System (ADS)
Suzuki, Toru; Fujimoto, Hiroshi
In slip ratio control systems, it is necessary to detect the vehicle velocity in order to obtain the slip ratio. However, it is very difficult to measure this velocity directly. We have proposed slip ratio estimation and control methods that do not require the vehicle velocity with acceleration. In this paper, the slip ratio estimation and control methods are proposed without detecting the vehicle velocity and acceleration when it is decelerating. We carried out simulations and experiments by using an electric vehicle to verify the effectiveness of the proposed method.
Design of BLDCM emulator for transmission control units
NASA Astrophysics Data System (ADS)
Liu, Chang; He, Yongyi; Zhang, Bodong
2018-04-01
According to the testing requirements of the transmission control unit, a brushless DC motor emulating system is designed based on motor simulation and power hardware-in-the-loop. The discrete motor model is established and a real-time numerical method is designed to solve the motor states. The motor emulator directly interacts with power stage of the transmission control unit using a power-efficient circuit topology and is compatible with sensor-less control. Experiments on a laboratory prototype help to verify that the system can emulate the real motor currents and voltages whenever the motor is starting up or suddenly loaded.
Xia, Dunzhu; Yao, Yanhong; Cheng, Limei
2017-06-15
In this paper, we aimed to achieve the indoor tracking control of a two-wheeled inverted pendulum (TWIP) vehicle. The attitude data are acquired from a low cost micro inertial measurement unit (IMU), and the ultra-wideband (UWB) technology is utilized to obtain an accurate estimation of the TWIP's position. We propose a dual-loop control method to realize the simultaneous balance and trajectory tracking control for the TWIP vehicle. A robust adaptive second-order sliding mode control (2-RASMC) method based on an improved super-twisting (STW) algorithm is investigated to obtain the control laws, followed by several simulations to verify its robustness. The outer loop controller is designed using the idea of backstepping. Moreover, three typical trajectories, including a circle, a trifolium and a hexagon, have been designed to prove the adaptability of the control combinations. Six different combinations of inner and outer loop control algorithms have been compared, and the characteristics of inner and outer loop algorithm combinations have been analyzed. Simulation results demonstrate its tracking performance and thus verify the validity of the proposed control methods. Trajectory tracking experiments in a real indoor environment have been performed using our experimental vehicle to further validate the feasibility of the proposed algorithm in practice.
Xia, Dunzhu; Yao, Yanhong; Cheng, Limei
2017-01-01
In this paper, we aimed to achieve the indoor tracking control of a two-wheeled inverted pendulum (TWIP) vehicle. The attitude data are acquired from a low cost micro inertial measurement unit (IMU), and the ultra-wideband (UWB) technology is utilized to obtain an accurate estimation of the TWIP’s position. We propose a dual-loop control method to realize the simultaneous balance and trajectory tracking control for the TWIP vehicle. A robust adaptive second-order sliding mode control (2-RASMC) method based on an improved super-twisting (STW) algorithm is investigated to obtain the control laws, followed by several simulations to verify its robustness. The outer loop controller is designed using the idea of backstepping. Moreover, three typical trajectories, including a circle, a trifolium and a hexagon, have been designed to prove the adaptability of the control combinations. Six different combinations of inner and outer loop control algorithms have been compared, and the characteristics of inner and outer loop algorithm combinations have been analyzed. Simulation results demonstrate its tracking performance and thus verify the validity of the proposed control methods. Trajectory tracking experiments in a real indoor environment have been performed using our experimental vehicle to further validate the feasibility of the proposed algorithm in practice. PMID:28617338
Fast and precise thermoregulation system in physiological brain slice experiment
NASA Astrophysics Data System (ADS)
Sheu, Y. H.; Young, M. S.
1995-12-01
We have developed a fast and precise thermoregulation system incorporated within a physiological experiment on a brain slice. The thermoregulation system is used to control the temperature of a recording chamber in which the brain slice is placed. It consists of a single-chip microcomputer, a set command module, a display module, and an FLC module. A fuzzy control algorithm was developed and a fuzzy logic controller then designed for achieving fast, smooth thermostatic performance and providing precise temperature control with accuracy to 0.1 °C, from room temperature through 42 °C (experimental temperature range). The fuzzy logic controller is implemented by microcomputer software and related peripheral hardware circuits. Six operating modes of thermoregulation are offered with the system and this can be further extended according to experimental needs. The test results of this study demonstrate that the fuzzy control method is easily implemented by a microcomputer and also verifies that this method provides a simple way to achieve fast and precise high-performance control of a nonlinear thermoregulation system in a physiological brain slice experiment.
The research on visual industrial robot which adopts fuzzy PID control algorithm
NASA Astrophysics Data System (ADS)
Feng, Yifei; Lu, Guoping; Yue, Lulin; Jiang, Weifeng; Zhang, Ye
2017-03-01
The control system of six degrees of freedom visual industrial robot based on the control mode of multi-axis motion control cards and PC was researched. For the variable, non-linear characteristics of industrial robot`s servo system, adaptive fuzzy PID controller was adopted. It achieved better control effort. In the vision system, a CCD camera was used to acquire signals and send them to video processing card. After processing, PC controls the six joints` motion by motion control cards. By experiment, manipulator can operate with machine tool and vision system to realize the function of grasp, process and verify. It has influence on the manufacturing of the industrial robot.
Nash, Robert A; Wade, Kimberley A; Garry, Maryanne; Adelman, James S
2017-08-01
People depend on various sources of information when trying to verify their autobiographical memories. Yet recent research shows that people prefer to use cheap-and-easy verification strategies, even when these strategies are not reliable. We examined the robustness of this cheap strategy bias, with scenarios designed to encourage greater emphasis on source reliability. In three experiments, subjects described real (Experiments 1 and 2) or hypothetical (Experiment 3) autobiographical events, and proposed strategies they might use to verify their memories of those events. Subjects also rated the reliability, cost, and the likelihood that they would use each strategy. In line with previous work, we found that the preference for cheap information held when people described how they would verify childhood or recent memories (Experiment 1), personally important or trivial memories (Experiment 2), and even when the consequences of relying on incorrect information could be significant (Experiment 3). Taken together, our findings fit with an account of source monitoring in which the tendency to trust one's own autobiographical memories can discourage people from systematically testing or accepting strong disconfirmatory evidence.
C code generation from Petri-net-based logic controller specification
NASA Astrophysics Data System (ADS)
Grobelny, Michał; Grobelna, Iwona; Karatkevich, Andrei
2017-08-01
The article focuses on programming of logic controllers. It is important that a programming code of a logic controller is executed flawlessly according to the primary specification. In the presented approach we generate C code for an AVR microcontroller from a rule-based logical model of a control process derived from a control interpreted Petri net. The same logical model is also used for formal verification of the specification by means of the model checking technique. The proposed rule-based logical model and formal rules of transformation ensure that the obtained implementation is consistent with the already verified specification. The approach is validated by practical experiments.
A case study for the real-time experimental evaluation of the VIPER microprocessor
NASA Astrophysics Data System (ADS)
Carreno, Victor A.; Angellatta, Rob K.
1991-09-01
An experiment to evaluate the applicability of the Verifiable Integrated Processor for Enhanced Reliability (VIPER) microprocessor to real time control is described. The VIPER microprocessor was invented by the Royal Signals and Radar Establishment (RSRE), U.K., and is an example of the use of formal mathematical methods for developing electronic digital systems with a high degree of assurance on the system design and implementation correctness. The experiment consisted of selecting a control law, writing the control law algorithm for the VIPER processor, and providing real time, dynamic inputs into the processor and monitoring the outputs. The control law selected and coded for the VIPER processor was the yaw damper function of an automatic landing program for a 737 aircraft. The mechanisms for interfacing the VIPER Single Board Computer to the VAX host are described. Results include run time experiences, performance evaluation, and comparison of VIPER and FORTRAN yaw damper algorithm output for accuracy estimation.
A case study for the real-time experimental evaluation of the VIPER microprocessor
NASA Technical Reports Server (NTRS)
Carreno, Victor A.; Angellatta, Rob K.
1991-01-01
An experiment to evaluate the applicability of the Verifiable Integrated Processor for Enhanced Reliability (VIPER) microprocessor to real time control is described. The VIPER microprocessor was invented by the Royal Signals and Radar Establishment (RSRE), U.K., and is an example of the use of formal mathematical methods for developing electronic digital systems with a high degree of assurance on the system design and implementation correctness. The experiment consisted of selecting a control law, writing the control law algorithm for the VIPER processor, and providing real time, dynamic inputs into the processor and monitoring the outputs. The control law selected and coded for the VIPER processor was the yaw damper function of an automatic landing program for a 737 aircraft. The mechanisms for interfacing the VIPER Single Board Computer to the VAX host are described. Results include run time experiences, performance evaluation, and comparison of VIPER and FORTRAN yaw damper algorithm output for accuracy estimation.
NASA Technical Reports Server (NTRS)
Kawamoto, Y.
1982-01-01
The objective of the 30/20 GHz Flight Experiment System is to develop the required technology and to experiment with the communication technique for an operational communication satellite system. The system uses polarization, spatial, and frequency isolations to maximize the spectrum utilization. The key spacecraft technologies required for the concept are the scan beam antenna, the baseband processor, the IF switch matrix, TWTA, SSPA, and LNA. The spacecraft communication payload information will be telemetered and monitored closely so that these technologies and performances can be verified. Two types of services, a trunk service and a customer premise service, are demonstrated in the system. Many experiments associated with these services, such as synchronization, demand assignment, link control, and network control will be performed to provide important information on the operational aspect of the system.
Wang, Likun; Du, Zhijiang; Dong, Wei; Shen, Yi; Zhao, Guangyu
2018-01-01
To achieve strength augmentation, endurance enhancement, and human assistance in a functional autonomous exoskeleton, control precision, back drivability, low output impedance, and mechanical compactness are desired. In our previous work, two elastic modules were designed for human–robot interaction sensing and compliant control, respectively. According to the intrinsic sensing properties of the elastic module, in this paper, only one compact elastic module is applied to realize both purposes. Thus, the corresponding control strategy is required and evolving internal model control is proposed to address this issue. Moreover, the input signal to the controller is derived from the deflection of the compact elastic module. The human–robot interaction is considered as the disturbance which is approximated by the output error between the exoskeleton control plant and evolving forward learning model. Finally, to verify our proposed control scheme, several experiments are conducted with our robotic exoskeleton system. The experiment shows a satisfying result and promising application feasibility. PMID:29562684
Wang, Likun; Du, Zhijiang; Dong, Wei; Shen, Yi; Zhao, Guangyu
2018-03-19
To achieve strength augmentation, endurance enhancement, and human assistance in a functional autonomous exoskeleton, control precision, back drivability, low output impedance, and mechanical compactness are desired. In our previous work, two elastic modules were designed for human-robot interaction sensing and compliant control, respectively. According to the intrinsic sensing properties of the elastic module, in this paper, only one compact elastic module is applied to realize both purposes. Thus, the corresponding control strategy is required and evolving internal model control is proposed to address this issue. Moreover, the input signal to the controller is derived from the deflection of the compact elastic module. The human-robot interaction is considered as the disturbance which is approximated by the output error between the exoskeleton control plant and evolving forward learning model. Finally, to verify our proposed control scheme, several experiments are conducted with our robotic exoskeleton system. The experiment shows a satisfying result and promising application feasibility.
The Deep Impact Network Experiment Operations Center Monitor and Control System
NASA Technical Reports Server (NTRS)
Wang, Shin-Ywan (Cindy); Torgerson, J. Leigh; Schoolcraft, Joshua; Brenman, Yan
2009-01-01
The Interplanetary Overlay Network (ION) software at JPL is an implementation of Delay/Disruption Tolerant Networking (DTN) which has been proposed as an interplanetary protocol to support space communication. The JPL Deep Impact Network (DINET) is a technology development experiment intended to increase the technical readiness of the JPL implemented ION suite. The DINET Experiment Operations Center (EOC) developed by JPL's Protocol Technology Lab (PTL) was critical in accomplishing the experiment. EOC, containing all end nodes of simulated spaces and one administrative node, exercised publish and subscribe functions for payload data among all end nodes to verify the effectiveness of data exchange over ION protocol stacks. A Monitor and Control System was created and installed on the administrative node as a multi-tiered internet-based Web application to support the Deep Impact Network Experiment by allowing monitoring and analysis of the data delivery and statistics from ION. This Monitor and Control System includes the capability of receiving protocol status messages, classifying and storing status messages into a database from the ION simulation network, and providing web interfaces for viewing the live results in addition to interactive database queries.
A rotor-aerodynamics-based wind estimation method using a quadrotor
NASA Astrophysics Data System (ADS)
Song, Yao; Luo, Bing; Meng, Qing-Hao
2018-02-01
Attempts to estimate horizontal wind by the quadrotor are reviewed. Wind estimations are realized by utilizing the quadrotor’s thrust change, which is caused by the wind’s effect on the rotors. The basis of the wind estimation method is the aerodynamic formula for the rotor’s thrust, which is verified and calibrated by experiments. A hardware-in-the-loop simulation (HILS) system was built as a testbed; its dynamic model and control structure are demonstrated. Verification experiments on the HILS system proved that the wind estimation method was effective.
Making Sense of Complexity with FRE, a Scientific Workflow System for Climate Modeling (Invited)
NASA Astrophysics Data System (ADS)
Langenhorst, A. R.; Balaji, V.; Yakovlev, A.
2010-12-01
A workflow is a description of a sequence of activities that is both precise and comprehensive. Capturing the workflow of climate experiments provides a record which can be queried or compared, and allows reproducibility of the experiments - sometimes even to the bit level of the model output. This reproducibility helps to verify the integrity of the output data, and enables easy perturbation experiments. GFDL's Flexible Modeling System Runtime Environment (FRE) is a production-level software project which defines and implements building blocks of the workflow as command line tools. The scientific, numerical and technical input needed to complete the workflow of an experiment is recorded in an experiment description file in XML format. Several key features add convenience and automation to the FRE workflow: ● Experiment inheritance makes it possible to define a new experiment with only a reference to the parent experiment and the parameters to override. ● Testing is a basic element of the FRE workflow: experiments define short test runs which are verified before the main experiment is run, and a set of standard experiments are verified with new code releases. ● FRE is flexible enough to support short runs with mere megabytes of data, to high-resolution experiments that run on thousands of processors for months, producing terabytes of output data. Experiments run in segments of model time; after each segment, the state is saved and the model can be checkpointed at that level. Segment length is defined by the user, but the number of segments per system job is calculated to fit optimally in the batch scheduler requirements. FRE provides job control across multiple segments, and tools to monitor and alter the state of long-running experiments. ● Experiments are entered into a Curator Database, which stores query-able metadata about the experiment and the experiment's output. ● FRE includes a set of standardized post-processing functions as well as the ability to incorporate user-level functions. FRE post-processing can take us all the way to the preparing of graphical output for a scientific audience, and publication of data on a public portal. ● Recent FRE development includes incorporating a distributed workflow to support remote computing.
Combined input shaping and feedback control for double-pendulum systems
NASA Astrophysics Data System (ADS)
Mar, Robert; Goyal, Anurag; Nguyen, Vinh; Yang, Tianle; Singhose, William
2017-02-01
A control system combining input shaping and feedback is developed for double-pendulum systems subjected to external disturbances. The proposed control method achieves fast point-to-point response similar to open-loop input-shaping control. It also minimizes transient deflections during the motion of the system, and disturbance-induced residual swing using the feedback control. Effects of parameter variations such as the mass ratio of the double pendulum, the suspension length ratio, and the move distance were studied via numerical simulation. The most important results were also verified with experiments on a small-scale crane. The controller effectively suppresses the disturbances and is robust to modelling uncertainties and task variations.
Space Construction Experiment Definition Study (SCEDS), part 2. Volume 2: Study results
NASA Technical Reports Server (NTRS)
1982-01-01
The Space Construction Experiment (SCE) was defined for integration into the Space Shuttle. This included development of flight assignment data, revision and update of preliminary mission timelines and test plans, analysis of flight safety issues, and definition of ground operations scenarios. New requirements for the flight experiment and changes for a large space antenna feed mask test article were incorporated. The program plan and cost estimates were updated. Revised SCE structural dynamics characteristics were provided for simulation and analysis of experimental tests to define and verify control limits and interactions effects between the SCE and the Orbiter digital automatic pilot.
Juang, Chia-Feng; Lai, Min-Ge; Zeng, Wan-Ting
2015-09-01
This paper presents a method that allows two wheeled, mobile robots to navigate unknown environments while cooperatively carrying an object. In the navigation method, a leader robot and a follower robot cooperatively perform either obstacle boundary following (OBF) or target seeking (TS) to reach a destination. The two robots are controlled by fuzzy controllers (FC) whose rules are learned through an adaptive fusion of continuous ant colony optimization and particle swarm optimization (AF-CACPSO), which avoids the time-consuming task of manually designing the controllers. The AF-CACPSO-based evolutionary fuzzy control approach is first applied to the control of a single robot to perform OBF. The learning approach is then applied to achieve cooperative OBF with two robots, where an auxiliary FC designed with the AF-CACPSO is used to control the follower robot. For cooperative TS, a rule for coordination of the two robots is developed. To navigate cooperatively, a cooperative behavior supervisor is introduced to select between cooperative OBF and cooperative TS. The performance of the AF-CACPSO is verified through comparisons with various population-based optimization algorithms for the OBF learning problem. Simulations and experiments verify the effectiveness of the approach for cooperative navigation of two robots.
Design and Verification of a Digital Controller for a 2-Piece Hemispherical Resonator Gyroscope.
Lee, Jungshin; Yun, Sung Wook; Rhim, Jaewook
2016-04-20
A Hemispherical Resonator Gyro (HRG) is the Coriolis Vibratory Gyro (CVG) that measures rotation angle or angular velocity using Coriolis force acting the vibrating mass. A HRG can be used as a rate gyro or integrating gyro without structural modification by simply changing the control scheme. In this paper, differential control algorithms are designed for a 2-piece HRG. To design a precision controller, the electromechanical modelling and signal processing must be pre-performed accurately. Therefore, the equations of motion for the HRG resonator with switched harmonic excitations are derived with the Duhamel Integral method. Electromechanical modeling of the resonator, electric module and charge amplifier is performed by considering the mode shape of a thin hemispherical shell. Further, signal processing and control algorithms are designed. The multi-flexing scheme of sensing, driving cycles and x, y-axis switching cycles is appropriate for high precision and low maneuverability systems. The differential control scheme is easily capable of rejecting the common mode errors of x, y-axis signals and changing the rate integrating mode on basis of these studies. In the rate gyro mode the controller is composed of Phase-Locked Loop (PLL), amplitude, quadrature and rate control loop. All controllers are designed on basis of a digital PI controller. The signal processing and control algorithms are verified through Matlab/Simulink simulations. Finally, a FPGA and DSP board with these algorithms is verified through experiments.
Initial experiments in thrusterless locomotion control of a free-flying robot
NASA Technical Reports Server (NTRS)
Jasper, W. J.; Cannon, R. H., Jr.
1990-01-01
A two-arm free-flying robot has been constructed to study thrusterless locomotion in space. This is accomplished by pushing off or landing on a large structure in a coordinated two-arm maneuver. A new control method, called system momentum control, allows the robot to follow desired momentum trajectories and thus leap or crawl from one structure to another. The robot floats on an air-cushion, simulating in two dimensions the drag-free zero-g environment of space. The control paradigm has been verified experimentally by commanding the robot to push off a bar with both arms, rotate 180 degrees, and catch itself on another bar.
BACT Simulation User Guide (Version 7.0)
NASA Technical Reports Server (NTRS)
Waszak, Martin R.
1997-01-01
This report documents the structure and operation of a simulation model of the Benchmark Active Control Technology (BACT) Wind-Tunnel Model. The BACT system was designed, built, and tested at NASA Langley Research Center as part of the Benchmark Models Program and was developed to perform wind-tunnel experiments to obtain benchmark quality data to validate computational fluid dynamics and computational aeroelasticity codes, to verify the accuracy of current aeroservoelasticity design and analysis tools, and to provide an active controls testbed for evaluating new and innovative control algorithms for flutter suppression and gust load alleviation. The BACT system has been especially valuable as a control system testbed.
Viscosity measurements of metallic melts using the oscillating drop technique
NASA Astrophysics Data System (ADS)
Heintzmann, P.; Yang, F.; Schneider, S.; Lohöfer, G.; Meyer, A.
2016-06-01
By means of benchmarking reduced gravity experiments, we have verified the measured viscosity of binary Zr-Ni glass forming liquids utilizing the oscillating drop technique combined with ground-based electrostatic levitation (ESL). Reliable viscosity data can be obtained as long as internal viscous damping of a single oscillation mode of a levitated drop dominates external perturbations. This can be verified by the absence of a sample mass dependence of the results. Hence, ESL is an excellent tool for studying the viscosity of metallic glass forming melts in the range of about 10-250 mPa s, with sample masses below 100 mg. To this end, we show that, for binary Zr-Ni melts, the viscosity is qualitatively controlled by the packing density.
NASA Astrophysics Data System (ADS)
Ousaloo, H. S.; Nodeh, M. T.; Mehrabian, R.
2016-09-01
This paper accomplishes one goal and it was to verify and to validate a Spin Magnetic Attitude Control System (SMACS) program and to perform Hardware-In-the-Loop (HIL) air-bearing experiments. A study of a closed-loop magnetic spin controller is presented using only magnetic rods as actuators. The magnetic spin rate control approach is able to perform spin rate control and it is verified with an Attitude Control System (ACS) air-bearing MATLAB® SIMULINK® model and a hardware-embedded LABVIEW® algorithm that controls the spin rate of the test platform on a spherical air bearing table. The SIMULINK® model includes dynamic model of air-bearing, its disturbances, actuator emulation and the time delays caused by on-board calculations. The air-bearing simulator is employed to develop, improve, and carry out objective tests of magnetic torque rods and spin rate control algorithm in the experimental framework and to provide a more realistic demonstration of expected performance of attitude control as compared with software-based architectures. Six sets of two torque rods are used as actuators for the SMACS. It is implemented and simulated to fulfill mission requirement including spin the satellite up to 12 degs-1 around the z-axis. These techniques are documented for the full nonlinear equations of motion of the system and the performances of these techniques are compared in several simulations.
Development of Control Models and a Robust Multivariable Controller for Surface Shape Control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winters, Scott Eric
2003-06-18
Surface shape control techniques are applied to many diverse disciplines, such as adaptive optics, noise control, aircraft flutter control and satellites, with an objective to achieve a desirable shape for an elastic body by the application of distributed control forces. Achieving the desirable shape is influenced by many factors, such as, actuator locations, sensor locations, surface precision and controller performance. Building prototypes to complete design optimizations or controller development can be costly or impractical. This shortfall, puts significant value in developing accurate modeling and control simulation approaches. This thesis focuses on the field of adaptive optics, although these developments havemore » the potential for application in many other fields. A static finite element model is developed and validated using a large aperture interferometer system. This model is then integrated into a control model using a linear least squares algorithm and Shack-Hartmann sensor. The model is successfully exercised showing functionality for various wavefront aberrations. Utilizing a verified model shows significant value in simulating static surface shape control problems with quantifiable uncertainties. A new dynamic model for a seven actuator deformable mirror is presented and its accuracy is proven through experiment. Bond graph techniques are used to generate the state space model of the multi-actuator deformable mirror including piezo-electric actuator dynamics. Using this verified model, a robust multi-input multi-output (MIMO) H ∞ controller is designed and implemented. This controller proved superior performance as compared to a standard proportional-integral controller (PI) design.« less
Campaign for Levitation in LDX
NASA Astrophysics Data System (ADS)
Garnier, D. T.; Hansen, A. K.; Mauel, M. E.; Ortiz, E. E.; Boxer, A. C.; Ellsworth, J. L.; Karim, I.; Kesner, J.; Michael, P. C.; Zhukovsky, A.
2006-10-01
In the past year, preparations have been made for the first flight of the Levitated Dipole Experiment (LDX). LDX, which consists of a 560 kg superconducting coil floating within a 5 m diameter vacuum chamber, is designed to study fusion relevant plasmas confined in a dipole magnetic field. During the spring, a high temperature superconducting levitation coil was integrated into the LDX facility. Testing was undertaken to verify the thermal performance of the coil under expected levitation conditions. In addition, a real-time operating system digital control system was developed that will be used for the levitation control. In July, plasma experiments were conducted with all superconducting magnets in operation. While still supported, roughly 75% of the weight of the floating coil was magnetically lifted by the levitation coil above. A series of plasma experiments were conducted with the same magnetic geometry as will be the case during levitation. During August, the second generation launcher system will be installed. The launcher, which retracts beyond the plasma's last closed field lines during operation, is designed to safely catch the floating coil following an unexpected loss of control. After this installation, levitation experiments will commence.
Geotechnical Centrifuge Experiments to Evaluate Piping in Foundation Soils
2014-05-01
verifiable results. These tests were successful in design , construction, and execution of a realistic simulation of internal erosion leading to failure...possible “scale effects,” “modeling of models” testing protocol should be included in the test program. Also, the model design should minimize the scale...recommendations for improving the centrifuge tests include the following: • Design improved system for reservoir control to provide definitive and
NASA Astrophysics Data System (ADS)
Zakeri, Zeinab; Azadi, Majid; Ghader, Sarmad
2018-01-01
Satellite radiances and in-situ observations are assimilated through Weather Research and Forecasting Data Assimilation (WRFDA) system into Advanced Research WRF (ARW) model over Iran and its neighboring area. Domain specific background error based on x and y components of wind speed (UV) control variables is calculated for WRFDA system and some sensitivity experiments are carried out to compare the impact of global background error and the domain specific background errors, both on the precipitation and 2-m temperature forecasts over Iran. Three precipitation events that occurred over the country during January, September and October 2014 are simulated in three different experiments and the results for precipitation and 2-m temperature are verified against the verifying surface observations. Results show that using domain specific background error improves 2-m temperature and 24-h accumulated precipitation forecasts consistently, while global background error may even degrade the forecasts compared to the experiments without data assimilation. The improvement in 2-m temperature is more evident during the first forecast hours and decreases significantly as the forecast length increases.
Micro-Bubble Experiments at the Van de Graaff Accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Z. J.; Wardle, Kent E.; Quigley, K. J.
In order to test and verify the experimental designs at the linear accelerator (LINAC), several micro-scale bubble ("micro-bubble") experiments were conducted with the 3-MeV Van de Graaff (VDG) electron accelerator. The experimental setups included a square quartz tube, sodium bisulfate solution with different concentrations, cooling coils, gas chromatography (GC) system, raster magnets, and two high-resolution cameras that were controlled by a LabVIEW program. Different beam currents were applied in the VDG irradiation. Bubble generation (radiolysis), thermal expansion, thermal convection, and radiation damage were observed in the experiments. Photographs, videos, and gas formation (O 2 + H 2) data were collected.more » The micro-bubble experiments at VDG indicate that the design of the full-scale bubble experiments at the LINAC is reasonable.« less
Design and implementation of robust controllers for a gait trainer.
Wang, F C; Yu, C H; Chou, T Y
2009-08-01
This paper applies robust algorithms to control an active gait trainer for children with walking disabilities. Compared with traditional rehabilitation procedures, in which two or three trainers are required to assist the patient, a motor-driven mechanism was constructed to improve the efficiency of the procedures. First, a six-bar mechanism was designed and constructed to mimic the trajectory of children's ankles in walking. Second, system identification techniques were applied to obtain system transfer functions at different operating points by experiments. Third, robust control algorithms were used to design Hinfinity robust controllers for the system. Finally, the designed controllers were implemented to verify experimentally the system performance. From the results, the proposed robust control strategies are shown to be effective.
FRTL-5 experiment during ENEIDE mission
NASA Astrophysics Data System (ADS)
Meli, A.; Perrella, G.; Toller, M.; Zambito, A. M.; Spelat, R.; Moretti, M.; Ferro, F.; Curcio, F.; Ambesi-Impiombato, F. S.
2007-09-01
The FRTL-5 experiment was performed during the 10 day Italian Soyuz Mission "ENEIDE" (from April 15 to April 25, 2005) on the International Space Station. The main objectives were: 1) the validation of the FRTL5 cells as a biological system to evaluate space environment effects; 2) the investigation of the space environment-related pathophysiological mechanisms of cellular damage and/or behaviour; 3) to verify if fastgrowing cells could be differently sensitive to space environment-related effects as compared to cells in physiological standby. Because of the limited available space in the dedicated facilities and the restrictive requirements imposed by ESA, RSA and NASA, and because no pre-qualified equipment existed, all of the equipment and the procedures have been subjected to structural failure test and to severe qualification tests. Results were: 1) all the qualification procedures and tests were successful 2) Overall cell number is lower in the cultures exposed to space environment as compared to the controls reproducing the temperature conditions during the ENEIDE mission; 3) This phenomenon is most likely related to a slower growth rate in proliferative state; 4) This slow growth rate is: a) reversible, as demonstrated by the results of the growth curves, the plating and cloning efficiencies measured on the samples once they have been returned to our laboratory in Udine; b) mostly related to space effects as indicated by additional control in a clinostat. More experiments of this kind are needed to verify and validate these data and to investigate the molecular mechanisms underling the phenomenon.
Bull, S S; Vallejos, D; Levine, D; Ortiz, C
2008-09-01
The objective of the study was to present recruitment and retention findings for an Internet based HIV prevention trial evaluated using a randomized controlled design among 15-25-year-olds accessing a website on the Internet. We used a combination of automated electronic and personalized approaches to increase and diversify recruitment, verify participant eligibility and increase retention. We posted 3.5 million banner advertisements, 9354 individuals clicked on the advertisement, 8950 completed an eligibility screener and 3298 a baseline survey; we flagged 675 of these as suspicious and enrolled 2623 individuals. Of these, 2082 (79%) completed a follow-up at one-month and 1398 (53%) completed a two-month follow-up. This retention rate is the highest we have seen for an Internet-based HIV-prevention trial. Our procedures can be replicated in other trials. We stress the importance of using a combination of automated and personalized techniques to increase enrollment, verify eligibility and promote retention.
Testing of materials for passive thermal control of space suits
NASA Technical Reports Server (NTRS)
Squire, Bernadette
1988-01-01
An effort is underway to determine the coating material of choice for the AX-5 prototype hard space suit. Samples of 6061 aluminum have been coated with one of 10 selected metal coatings, and subjected to corrosion, abrasion, and thermal testing. Changes in reflectance after exposure are documented. Plated gold exhibited minimal degradation of optical properties. A computer model is used in evaluating coating thermal performance in the EVA environment. The model is verified with an experiment designed to measure the heat transfer characteristics of coated space suit parts in a thermal vacuum chamber. Details of this experiment are presented.
A Data Acquisition System for Water Heating and Cooling Experiments
ERIC Educational Resources Information Center
Perea Martins, J. E. M.
2017-01-01
This work presents a simple analogue waterproof temperature probe design and its electronic interfacing with a computer to compose a data acquisition system for water temperature measurement. It also demonstrates the system usage through an experiment to verify the water heating period with an electric heater and another to verify the Newton's law…
A passivity criterion for sampled-data bilateral teleoperation systems.
Jazayeri, Ali; Tavakoli, Mahdi
2013-01-01
A teleoperation system consists of a teleoperator, a human operator, and a remote environment. Conditions involving system and controller parameters that ensure the teleoperator passivity can serve as control design guidelines to attain maximum teleoperation transparency while maintaining system stability. In this paper, sufficient conditions for teleoperator passivity are derived for when position error-based controllers are implemented in discrete-time. This new analysis is necessary because discretization causes energy leaks and does not necessarily preserve the passivity of the system. The proposed criterion for sampled-data teleoperator passivity imposes lower bounds on the teleoperator's robots dampings, an upper bound on the sampling time, and bounds on the control gains. The criterion is verified through simulations and experiments.
Cloud-based robot remote control system for smart factory
NASA Astrophysics Data System (ADS)
Wu, Zhiming; Li, Lianzhong; Xu, Yang; Zhai, Jingmei
2015-12-01
With the development of internet technologies and the wide application of robots, there is a prospect (trend/tendency) of integration between network and robots. A cloud-based robot remote control system over networks for smart factory is proposed, which enables remote users to control robots and then realize intelligent production. To achieve it, a three-layer system architecture is designed including user layer, service layer and physical layer. Remote control applications running on the cloud server is developed on Microsoft Azure. Moreover, DIV+ CSS technologies are used to design human-machine interface to lower maintenance cost and improve development efficiency. Finally, an experiment is implemented to verify the feasibility of the program.
Albumin transcytosis from the pleural space.
Agostoni, Emilio; Bodega, Francesca; Zocchi, Luciano
2002-11-01
Occurrence of transcytosis in pleural mesothelium was verified by measuring removal of labeled macromolecules from pleural liquid in experiments without and with nocodazole. To this end, we injected 0.3 ml of Ringer-albumin with 750 microg of albumin-Texas red or with 600 microg of dextran 70-Texas red in the right pleural space of anesthetized rabbits, and after 3 h we measured pleural liquid volume, labeled macromolecule concentration, and, hence, labeled macromolecule quantity in the liquid of this space. Labeled albumin left was 318 +/- 28 microg in control and 419 +/- 17 microg in nocodazole experiments (means +/- SE); hence, whereas ventilation was similar its removal was greater (P < 0.01) in control experiments. Labeled dextran left was 283 +/- 10 microg in control and 381 +/- 21 microg in nocodazole experiments; hence, whereas ventilation was similar its removal was greater (P < 0.01) in control experiments. These findings indicate occurrence of transcytosis from the pleural space. Liquid removed by transcytosis was 0.05 ml/h. This amount times unlabeled albumin concentration under physiological conditions (10 mg/ml) times lumen-vesicle partition coefficient for albumin (0.78) provides fluid-phase albumin transcytosis: approximately 203 microg. h(-1) kg(-2/3). Transcytosis might contribute a relevant part of protein and liquid removal from the pleural space.
Nap environment control considering respiration rate and music tempo by using sensor agent robot
NASA Astrophysics Data System (ADS)
Nakaso, Sayaka; Mita, Akira
2015-03-01
We propose a system that controls a nap environment considering respiration rates and music tempo by using a sensor agent robot. The proposed system consists of two sub-systems. The first sub-system measures respiration rates using optical flow. We conducted preparatory experiments to verify the accuracy of this sub-system. The experimental results showed that this sub-system can measure the respiration rates accurately despite several positional relationships. It was also shown that the accuracy could be affected by clothes, movements and light. The second sub-system we constructed was the music play sub-system that chooses music with the certain tempo corresponding to the respiration rates measured by the first sub-system. We conducted verification experiments to verify the effectiveness of this music play sub-system. The experimental results showed the effectiveness of varying music tempo based on the respiration rates in taking a nap. We also demonstrated this system in a real environment; a subject entered into the room being followed by ebioNα. When the subject was considered sleeping, ebioNα started measuring respiration rates, controlling music based on the respiration rates. As a result, we showed that this system could be realized. As a next step, we would like to improve this system to a nap environment control system to be used in offices. To realize this, we need to update the first sub-system measuring respiration rates by removing disturbances. We also need to upgrade music play sub-system considering the numbers of tunes, the kinds of music and time to change music.
Gómez, Angel; Seyle, D Conor; Huici, Carmen; Swann, William B
2009-12-01
Recent research has demonstrated self-verification strivings in groups, such that people strive to verify collective identities, which are personal self-views (e.g., "sensitive") associated with group membership (e.g., "women"). Such demonstrations stop short of showing that the desire for self-verification can fully transcend the self-other barrier, as in people working to verify ingroup identities (e.g., "Americans are loud") even when such identities are not self-descriptive ("I am quiet and unassuming"). Five studies focus on such ingroup verification strivings. Results indicate that people prefer to interact with individuals who verify their ingroup identities over those who enhance these identities (Experiments 1-5). Strivings for ingroup identity verification were independent of the extent to which the identities were self-descriptive but were stronger among participants who were highly invested in their ingroup identities, as reflected in high certainty of these identities (Experiments 1-4) and high identification with the group (Experiments 1-5). In addition, whereas past demonstrations of self-verification strivings have been limited to efforts to verify the content of identities (Experiments 1 to 3), the findings also show that they strive to verify the valence of their identities (i.e., the extent to which the identities are valued; Experiments 4 and 5). Self-verification strivings, rather than self-enhancement strivings, appeared to motivate participants' strivings for ingroup identity verification. Links to collective self-verification strivings and social identity theory are discussed.
Design and Verification of a Digital Controller for a 2-Piece Hemispherical Resonator Gyroscope
Lee, Jungshin; Yun, Sung Wook; Rhim, Jaewook
2016-01-01
A Hemispherical Resonator Gyro (HRG) is the Coriolis Vibratory Gyro (CVG) that measures rotation angle or angular velocity using Coriolis force acting the vibrating mass. A HRG can be used as a rate gyro or integrating gyro without structural modification by simply changing the control scheme. In this paper, differential control algorithms are designed for a 2-piece HRG. To design a precision controller, the electromechanical modelling and signal processing must be pre-performed accurately. Therefore, the equations of motion for the HRG resonator with switched harmonic excitations are derived with the Duhamel Integral method. Electromechanical modeling of the resonator, electric module and charge amplifier is performed by considering the mode shape of a thin hemispherical shell. Further, signal processing and control algorithms are designed. The multi-flexing scheme of sensing, driving cycles and x, y-axis switching cycles is appropriate for high precision and low maneuverability systems. The differential control scheme is easily capable of rejecting the common mode errors of x, y-axis signals and changing the rate integrating mode on basis of these studies. In the rate gyro mode the controller is composed of Phase-Locked Loop (PLL), amplitude, quadrature and rate control loop. All controllers are designed on basis of a digital PI controller. The signal processing and control algorithms are verified through Matlab/Simulink simulations. Finally, a FPGA and DSP board with these algorithms is verified through experiments. PMID:27104539
The Intelligent Control System and Experiments for an Unmanned Wave Glider.
Liao, Yulei; Wang, Leifeng; Li, Yiming; Li, Ye; Jiang, Quanquan
2016-01-01
The control system designing of Unmanned Wave Glider (UWG) is challenging since the control system is weak maneuvering, large time-lag and large disturbance, which is difficult to establish accurate mathematical model. Meanwhile, to complete marine environment monitoring in long time scale and large spatial scale autonomously, UWG asks high requirements of intelligence and reliability. This paper focuses on the "Ocean Rambler" UWG. First, the intelligent control system architecture is designed based on the cerebrum basic function combination zone theory and hierarchic control method. The hardware and software designing of the embedded motion control system are mainly discussed. A motion control system based on rational behavior model of four layers is proposed. Then, combining with the line-of sight method(LOS), a self-adapting PID guidance law is proposed to compensate the steady state error in path following of UWG caused by marine environment disturbance especially current. Based on S-surface control method, an improved S-surface heading controller is proposed to solve the heading control problem of the weak maneuvering carrier under large disturbance. Finally, the simulation experiments were carried out and the UWG completed autonomous path following and marine environment monitoring in sea trials. The simulation experiments and sea trial results prove that the proposed intelligent control system, guidance law, controller have favorable control performance, and the feasibility and reliability of the designed intelligent control system of UWG are verified.
The Intelligent Control System and Experiments for an Unmanned Wave Glider
Liao, Yulei; Wang, Leifeng; Li, Yiming; Li, Ye; Jiang, Quanquan
2016-01-01
The control system designing of Unmanned Wave Glider (UWG) is challenging since the control system is weak maneuvering, large time-lag and large disturbance, which is difficult to establish accurate mathematical model. Meanwhile, to complete marine environment monitoring in long time scale and large spatial scale autonomously, UWG asks high requirements of intelligence and reliability. This paper focuses on the “Ocean Rambler” UWG. First, the intelligent control system architecture is designed based on the cerebrum basic function combination zone theory and hierarchic control method. The hardware and software designing of the embedded motion control system are mainly discussed. A motion control system based on rational behavior model of four layers is proposed. Then, combining with the line-of sight method(LOS), a self-adapting PID guidance law is proposed to compensate the steady state error in path following of UWG caused by marine environment disturbance especially current. Based on S-surface control method, an improved S-surface heading controller is proposed to solve the heading control problem of the weak maneuvering carrier under large disturbance. Finally, the simulation experiments were carried out and the UWG completed autonomous path following and marine environment monitoring in sea trials. The simulation experiments and sea trial results prove that the proposed intelligent control system, guidance law, controller have favorable control performance, and the feasibility and reliability of the designed intelligent control system of UWG are verified. PMID:28005956
Wang, Han; Dong, Xiao-Xi; Yang, Ji-Chun; Huang, He; Li, Ying-Xin; Zhang, Hai-Xia
2017-07-01
For predicting the temperature distribution within skin tissue in 980-nm laser-evoked potentials (LEPs) experiments, a five-layer finite element model (FEM-5) was constructed based on Pennes bio-heat conduction equation and the Lambert-Beer law. The prediction results of the FEM-5 model were verified by ex vivo pig skin and in vivo rat experiments. Thirty ex vivo pig skin samples were used to verify the temperature distribution predicted by the model. The output energy of the laser was 1.8, 3, and 4.4 J. The laser spot radius was 1 mm. The experiment time was 30 s. The laser stimulated the surface of the ex vivo pig skin beginning at 10 s and lasted for 40 ms. A thermocouple thermometer was used to measure the temperature of the surface and internal layers of the ex vivo pig skin, and the sampling frequency was set to 60 Hz. For the in vivo experiments, nine adult male Wistar rats weighing 180 ± 10 g were used to verify the prediction results of the model by tail-flick latency. The output energy of the laser was 1.4 and 2.08 J. The pulsed width was 40 ms. The laser spot radius was 1 mm. The Pearson product-moment correlation and Kruskal-Wallis test were used to analyze the correlation and the difference of data. The results of all experiments showed that the measured and predicted data had no significant difference (P > 0.05) and good correlation (r > 0.9). The safe laser output energy range (1.8-3 J) was also predicted. Using the FEM-5 model prediction, the effective pain depth could be accurately controlled, and the nociceptors could be selectively activated. The FEM-5 model can be extended to guide experimental research and clinical applications for humans.
NASA Astrophysics Data System (ADS)
Wright, Jonathan W.
Experimental satellite attitude simulators have long been used to test and analyze control algorithms in order to drive down risk before implementation on an operational satellite. Ideally, the dynamic response of a terrestrial-based experimental satellite attitude simulator would be similar to that of an on-orbit satellite. Unfortunately, gravitational disturbance torques and poorly characterized moments of inertia introduce uncertainty into the system dynamics leading to questionable attitude control algorithm experimental results. This research consists of three distinct, but related contributions to the field of developing robust satellite attitude simulators. In the first part of this research, existing approaches to estimate mass moments and products of inertia are evaluated followed by a proposition and evaluation of a new approach that increases both the accuracy and precision of these estimates using typical on-board satellite sensors. Next, in order to better simulate the micro-torque environment of space, a new approach to mass balancing satellite attitude simulator is presented, experimentally evaluated, and verified. Finally, in the third area of research, we capitalize on the platform improvements to analyze a control moment gyroscope (CMG) singularity avoidance steering law. Several successful experiments were conducted with the CMG array at near-singular configurations. An evaluation process was implemented to verify that the platform remained near the desired test momentum, showing that the first two components of this research were effective in allowing us to conduct singularity avoidance experiments in a representative space-like test environment.
Dynamic performance analysis of permanent magnet contactor with a flux-weakening control strategy
NASA Astrophysics Data System (ADS)
Wang, Xianbing; Lin, Heyun; Fang, Shuhua; Jin, Ping; Wang, Junhua; Ho, S. L.
2011-04-01
A new flux-weakening control strategy for permanent magnet contactors is proposed. By matching the dynamic attraction force and the antiforce, the terminal velocity and collision energy of the movable iron in the closing process are significantly reduced. The movable iron displacement is estimated by detecting the closing voltage and current with the proposed control. A dynamic mathematical model is also established under four kinds of excitation scenarios. The attraction force and flux linkage are predicted by finite element method and the dynamics of the closing process is simulated using the 4th-order Runge-Kutta algorithm. Experiments are carried out on a 250A prototype with an intelligent control unit to verify the proposed control strategy.
Research of digital controlled DC/DC converter based on STC12C5410AD
NASA Astrophysics Data System (ADS)
Chen, Dan-Jiang; Jin, Xin; Xiao, Zhi-Hong
2010-02-01
In order to study application of digital control technology on DC/DC converter, principle of increment mode PID control algorithm was analyzed in the paper. Then, a SCM named STC12C5410AD was introduced with its internal resources and characteristics. The PID control algorithm can be implemented easily based on it. The output of PID control was used to change the value of a variable that is 255 times than duty cycle, and this reduced the error of calculation. The valid of the presented algorithm was verified by an experiment for a BUCK DC/DC converter. The experimental results indicated that output voltage of the BUCK converter is stable with low ripple.
A walking prescription for statically-stable walkers based on walker/terrain interaction
NASA Technical Reports Server (NTRS)
Nagy, Peter V.; Whittaker, William L.; Desa, Subhas
1992-01-01
The walker/terrain interaction phenomena for the control of a statically stable walking machine are described. The algorithms, measures, and knowledge of walker/terrain interaction phenomena are then combined to form a prescription for how to walk on general terrain. This prescription consists of two parts: nominal control and reactive control. The function of nominal control is the evaluation and execution of planned motions, based on predicted foot force redistributions, to achieve reliable locomotion. The function of reactive control is the monitoring of walker/terrain interaction in real-time to detect anomalous conditions and then respond with the appropriate reflexive actions. Simulations and experiments have been used to test and verify various aspects of the walking prescription.
Lu, Liang-Xing; Wang, Ying-Min; Srinivasan, Bharathi Madurai; Asbahi, Mohamed; Yang, Joel K W; Zhang, Yong-Wei
2016-09-01
We perform systematic two-dimensional energetic analysis to study the stability of various nanostructures formed by dewetting solid films deposited on patterned substrates. Our analytical results show that by controlling system parameters such as the substrate surface pattern, film thickness and wetting angle, a variety of equilibrium nanostructures can be obtained. Phase diagrams are presented to show the complex relations between these system parameters and various nanostructure morphologies. We further carry out both phase field simulations and dewetting experiments to validate the analytically derived phase diagrams. Good agreements between the results from our energetic analyses and those from our phase field simulations and experiments verify our analysis. Hence, the phase diagrams presented here provide guidelines for using solid-state dewetting as a tool to achieve various nanostructures.
Suspension cell culture in microgravity and development of a space bioreactor
NASA Technical Reports Server (NTRS)
Morrison, Dennis R.
1987-01-01
NASA has methodically developed unique suspension type cell and recovery apparatus culture systems for bioprocess technology experiments and production of biological products in microgravity. The first space bioreactor has been designed for microprocessor control, no gaseous headspace, circulation and resupply of culture medium, and slow mixing in very low shear regimes. Various ground based bioreactors are being used to test reactor vessel design, on-line sensors, effects of shear, nutrient supply, and waste removal from continuous culture of human cells attached to microcarriers. The small (500 ml) bioreactor is being constructed for flight experiments in the Shuttle middeck to verify systems operation under microgravity conditions and to measure the efficiencies of mass transport, gas transfer, oxygen consumption, and control of low shear stress on cells.
A Drive Method for Small Inductance PM Motor Under No-Load Condition
NASA Astrophysics Data System (ADS)
Tanaka, Daisuke; Ohishi, Kiyoshi
The harmonic wave of the exciting current of the motor is generated by the pulsewidth modulated voltage of the inverter. The motors that have low inpedance genetate more harmonics and make larger iron loss. This paper describes an implementation of drive control for a small inductance permanent-magnet motor drive. A comparative experiment has been carried out with conventional methods and the utility of the proposed method has been verified.
Effect of motor dynamics on nonlinear feedback robot arm control
NASA Technical Reports Server (NTRS)
Tarn, Tzyh-Jong; Li, Zuofeng; Bejczy, Antal K.; Yun, Xiaoping
1991-01-01
A nonlinear feedback robot controller that incorporates the robot manipulator dynamics and the robot joint motor dynamics is proposed. The manipulator dynamics and the motor dynamics are coupled to obtain a third-order-dynamic model, and differential geometric control theory is applied to produce a linearized and decoupled robot controller. The derived robot controller operates in the robot task space, thus eliminating the need for decomposition of motion commands into robot joint space commands. Computer simulations are performed to verify the feasibility of the proposed robot controller. The controller is further experimentally evaluated on the PUMA 560 robot arm. The experiments show that the proposed controller produces good trajectory tracking performances and is robust in the presence of model inaccuracies. Compared with a nonlinear feedback robot controller based on the manipulator dynamics only, the proposed robot controller yields conspicuously improved performance.
Doroodgar, Barzin; Liu, Yugang; Nejat, Goldie
2014-12-01
Semi-autonomous control schemes can address the limitations of both teleoperation and fully autonomous robotic control of rescue robots in disaster environments by allowing a human operator to cooperate and share such tasks with a rescue robot as navigation, exploration, and victim identification. In this paper, we present a unique hierarchical reinforcement learning-based semi-autonomous control architecture for rescue robots operating in cluttered and unknown urban search and rescue (USAR) environments. The aim of the controller is to enable a rescue robot to continuously learn from its own experiences in an environment in order to improve its overall performance in exploration of unknown disaster scenes. A direction-based exploration technique is integrated in the controller to expand the search area of the robot via the classification of regions and the rubble piles within these regions. Both simulations and physical experiments in USAR-like environments verify the robustness of the proposed HRL-based semi-autonomous controller to unknown cluttered scenes with different sizes and varying types of configurations.
The Application Design of Solar Radio Spectrometer Based on FPGA
NASA Astrophysics Data System (ADS)
Du, Q. F.; Chen, R. J.; Zhao, Y. C.; Feng, S. W.; Chen, Y.; Song, Y.
2017-10-01
The Solar radio spectrometer is the key instrument to observe solar radio. By programing the computer software, we control the AD signal acquisition card which is based on FPGA to get a mass of data. The data are transferred by using PCI-E port. This program has realized the function of timing data collection, finding data in specific time and controlling acquisition meter in real time. It can also map the solar radio power intensity graph. By doing the experiment, we verify the reliability of solar radio spectrum instrument, in the meanwhile, the instrument simplifies the operation in observing the sun.
Tamper Indicating Device: Initial Training, Course 50112
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonner, Stephen Ray; Sandoval, Dana M.
Tamper Indicating Device (TID): Initial Training, course #50112, covers Los Alamos National Laboratory (LANL) Material Control & Accountability (MC&A) TID Program procedures for the application and removal of TIDs. LANL’s policy is to comply with Department of Energy (DOE) requirements for the use of TIDs consistent with the graded safeguards described in DOE Manual DOE O 474.2, Nuclear Material Control and Accountability. When you have completed this course, you will: recognize standard practices and procedures of the LANL TID Program; have hands-on experience in the application and removal of LANL TIDs, and; verify the application and removal of LANL TIDs.
Heat pipe thermal conditioning panel
NASA Technical Reports Server (NTRS)
Saaski, E. W.; Loose, J. D.; Mccoy, K. E.
1974-01-01
Thermal control of electronic hardware and experiments on future space vehicles is critical to proper functioning and long life. Thermal conditioning panels (cold plates) are a baseline control technique in current conceptual studies. Heat generating components mounted on the panels are typically cooled by fluid flowing through integral channels within the panel. However, replacing the pumped fluid coolant loop within the panel with heat pipes offers attractive advantages in weight, reliability, and installation. This report describes the development and fabrication of two large 0.76 x 0.76 m heat pipe thermal conditioning panels to verify performance and establish the design concept.
NASA Astrophysics Data System (ADS)
Tang, Tao; Cai, Huaxiang; Huang, Yongmei; Ren, Ge
2015-10-01
A feedforward control based on data fusion is proposed to enhance closed-loop performance. The target trajectory as the observed value of a Kalman filter is recovered by synthesizing line-of-sight error and angular position from the encoder. A Kalman filter based on a Singer acceleration model is employed to estimate the target velocity. In this control scheme, the control stability is influenced by the bandwidth of the Kalman filter and time misalignment. The transfer function of the Kalman filter in the frequency domain is built for analyzing the closed loop stability, which shows that the Kalman filter is the major factor that affects the control stability. The feedforward control proposed here is verified through simulations and experiments.
Control of autonomous robot using neural networks
NASA Astrophysics Data System (ADS)
Barton, Adam; Volna, Eva
2017-07-01
The aim of the article is to design a method of control of an autonomous robot using artificial neural networks. The introductory part describes control issues from the perspective of autonomous robot navigation and the current mobile robots controlled by neural networks. The core of the article is the design of the controlling neural network, and generation and filtration of the training set using ART1 (Adaptive Resonance Theory). The outcome of the practical part is an assembled Lego Mindstorms EV3 robot solving the problem of avoiding obstacles in space. To verify models of an autonomous robot behavior, a set of experiments was created as well as evaluation criteria. The speed of each motor was adjusted by the controlling neural network with respect to the situation in which the robot was found.
Zheng, Weijia; Pi, Youguo
2016-07-01
A tuning method of the fractional order proportional integral speed controller for a permanent magnet synchronous motor is proposed in this paper. Taking the combination of the integral of time and absolute error and the phase margin as the optimization index, the robustness specification as the constraint condition, the differential evolution algorithm is applied to search the optimal controller parameters. The dynamic response performance and robustness of the obtained optimal controller are verified by motor speed-tracking experiments on the motor speed control platform. Experimental results show that the proposed tuning method can enable the obtained control system to achieve both the optimal dynamic response performance and the robustness to gain variations. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Automated measurement and control of concrete properties in a ready mix truck with VERIFI.
DOT National Transportation Integrated Search
2014-02-01
In this research, twenty batches of concrete with six different mixture proportions were tested with VERIFI to evaluate 1) accuracy : and repeatability of VERIFI measurements, 2) ability of VERIFI to adjust slump automatically with water and admixtur...
Control of Respiratory Motion by Hypnosis Intervention during Radiotherapy of Lung Cancer I
Deng, Jie; Xie, Yaoqin
2013-01-01
The uncertain position of lung tumor during radiotherapy compromises the treatment effect. To effectively control respiratory motion during radiotherapy of lung cancer without any side effects, a novel control scheme, hypnosis, has been introduced in lung cancer treatment. In order to verify the suggested method, six volunteers were selected with a wide range of distribution of age, weight, and chest circumference. A set of experiments have been conducted for each volunteer, under the guidance of the professional hypnotist. All the experiments were repeated in the same environmental condition. The amplitude of respiration has been recorded under the normal state and hypnosis, respectively. Experimental results show that the respiration motion of volunteers in hypnosis has smaller and more stable amplitudes than in normal state. That implies that the hypnosis intervention can be an alternative way for respiratory control, which can effectively reduce the respiratory amplitude and increase the stability of respiratory cycle. The proposed method will find useful application in image-guided radiotherapy. PMID:24093100
Vortex developments over steady and accelerated airfoils incorporating a trailing edge jet
NASA Technical Reports Server (NTRS)
Finaish, F.; Okong'o, N.; Frigerio, J.
1993-01-01
Computational and experimental studies are conducted to investigate the influence of a trailing edge jet on flow separation and subsequent vortex formation over steady and accelerated airfoils at high angles of attack. A computer code, employing the stream function-vorticity approach, is developed and utilized to conduct numerical experiments on the flow problem. To verify and economize such efforts, an experimental system is developed and incorporated into a subsonic wind tunnel where streamline and vortex flow visualization experiments are conducted. The study demonstrates the role of the trailing edge jet in controlling flow separation and subsequent vortex development for steady and accelerating flow at angles past the static stall angle of attack. The results suggest that the concept of the trailing edge jet may be utilized to control the characteristics of unsteady separated flows over lifting surfaces. This control possibility seems to be quite effective and could have a significant role in controlling unsteady separated flows.
Zhang, Xingwu; Wang, Chenxi; Gao, Robert X.; Yan, Ruqiang; Chen, Xuefeng; Wang, Shibin
2016-01-01
Milling vibration is one of the most serious factors affecting machining quality and precision. In this paper a novel hybrid error criterion-based frequency-domain LMS active control method is constructed and used for vibration suppression of milling processes by piezoelectric actuators and sensors, in which only one Fast Fourier Transform (FFT) is used and no Inverse Fast Fourier Transform (IFFT) is involved. The correction formulas are derived by a steepest descent procedure and the control parameters are analyzed and optimized. Then, a novel hybrid error criterion is constructed to improve the adaptability, reliability and anti-interference ability of the constructed control algorithm. Finally, based on piezoelectric actuators and acceleration sensors, a simulation of a spindle and a milling process experiment are presented to verify the proposed method. Besides, a protection program is added in the control flow to enhance the reliability of the control method in applications. The simulation and experiment results indicate that the proposed method is an effective and reliable way for on-line vibration suppression, and the machining quality can be obviously improved. PMID:26751448
NASA Astrophysics Data System (ADS)
Chang, C. L.; Chen, C. Y.; Sung, C. C.; Liou, D. H.
This study presents a novel fuel sensor-less control scheme for a liquid feed fuel cell system that does not rely on a fuel concentration sensor. The proposed approach simplifies the design and reduces the cost and complexity of a liquid feed fuel cell system, and is especially suited to portable power sources, of which the volume and weight are important. During the reaction of a fuel cell, the cell's operating characteristics, such as potential, current and power are measured to control the supply of fuel and regulate its concentration to optimize performance. Experiments were conducted to verify that the fuel sensor-less control algorithm is effective in the liquid feed fuel cell system.
Design and implementation of a 2-DOF PID compensation for magnetic levitation systems.
Ghosh, Arun; Rakesh Krishnan, T; Tejaswy, Pailla; Mandal, Abhisek; Pradhan, Jatin K; Ranasingh, Subhakant
2014-07-01
This paper employs a 2-DOF (degree of freedom) PID controller for compensating a physical magnetic levitation system. It is shown that because of having a feedforward gain in the proposed 2-DOF PID control, the transient performance of the compensated system can be changed in a desired manner unlike the conventional 1-DOF PID control. It is also shown that for a choice of PID parameters, although the theoretical loop robustness is the same for both the compensated systems, in real-time, 2-DOF PID control may provide superior robustness if a suitable choice of the feedforward parameter is made. The results are verified through simulations and experiments. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Adaptive PID formation control of nonholonomic robots without leader's velocity information.
Shen, Dongbin; Sun, Weijie; Sun, Zhendong
2014-03-01
This paper proposes an adaptive proportional integral derivative (PID) algorithm to solve a formation control problem in the leader-follower framework where the leader robot's velocities are unknown for the follower robots. The main idea is first to design some proper ideal control law for the formation system to obtain a required performance, and then to propose the adaptive PID methodology to approach the ideal controller. As a result, the formation is achieved with much more enhanced robust formation performance. The stability of the closed-loop system is theoretically proved by Lyapunov method. Both numerical simulations and physical vehicle experiments are presented to verify the effectiveness of the proposed adaptive PID algorithm. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
OASIS Observation and Analysis of Smectic Islands in Space
NASA Technical Reports Server (NTRS)
Tin, Padetha
2014-01-01
The Observation and Analysis of Smectic Islands in Space (OASIS) project comprises a series of experiments that will probe the interfacial and hydrodynamic behavior of freely suspended liquid crystal films in space. These are the thinnest known stable condensed phase structures, making them ideal for studies of fluctuation and interface phenomena. The experiments seek to verify theories of coarsening dynamics, hydrodynamic flow, relaxation of hydrodynamic perturbations, and hydrodynamic interactions of a near two-dimensional structure. The effects of introducing islands or droplets on a very thin bubble will be studied, both as controllable inclusions that modify the flow and as markers of flow.
Note: Hybrid active/passive force feedback actuator using hydrostatic transmission.
Park, Yea-Seok; Lee, Juwon; Kim, Kyung-Soo; Kim, Soohyun
2017-12-01
A hybrid actuator for haptic devices is proposed in this paper. The actuator is composed of a DC motor and a magneto-rheological (MR) brake to realize transparency and stable force control. Two piston cylinders are connected with a flexible tube to lighten the weight of the structures on the endpoint that interacts with an operator. Also, the MR brake is designed to be suitable for hydraulic transmission. For the proposed hybrid actuator, a cooperative force control method using a pressure sensor instead of a force sensor is proposed. To verify the proposed control algorithm, a virtual wall collision experiment was conducted using a developed prototype of the hybrid actuator.
Note: Hybrid active/passive force feedback actuator using hydrostatic transmission
NASA Astrophysics Data System (ADS)
Park, Yea-Seok; Lee, Juwon; Kim, Kyung-Soo; Kim, Soohyun
2017-12-01
A hybrid actuator for haptic devices is proposed in this paper. The actuator is composed of a DC motor and a magneto-rheological (MR) brake to realize transparency and stable force control. Two piston cylinders are connected with a flexible tube to lighten the weight of the structures on the endpoint that interacts with an operator. Also, the MR brake is designed to be suitable for hydraulic transmission. For the proposed hybrid actuator, a cooperative force control method using a pressure sensor instead of a force sensor is proposed. To verify the proposed control algorithm, a virtual wall collision experiment was conducted using a developed prototype of the hybrid actuator.
Thin-Film Thermocouple Technology Demonstrated for Reliable Heat Transfer Measurements
NASA Technical Reports Server (NTRS)
1996-01-01
Exploratory work is in progress to apply thin-film thermocouples to localized heat transfer measurements on turbine engine vanes and blades. The emerging thin-film thermocouple technology shows great potential to improve the accuracy of local heat transfer measurements. To verify and master the experimental methodology of thin-film thermocouples, the NASA Lewis Research Center conducted a proof-of-concept experiment in a controlled environment before applying the thin-film sensors to turbine tests.
Method to Predict Tempering of Steels Under Non-isothermal Conditions
NASA Astrophysics Data System (ADS)
Poirier, D. R.; Kohli, A.
2017-05-01
A common way of representing the tempering responses of steels is with a "tempering parameter" that includes the effect of temperature and time on hardness after hardening. Such functions, usually in graphical form, are available for many steels and have been applied for isothermal tempering. In this article, we demonstrate that the method can be extended to non-isothermal conditions. Controlled heating experiments were done on three grades in order to verify the method.
Design and Dynamic Model of a Frog-inspired Swimming Robot Powered by Pneumatic Muscles
NASA Astrophysics Data System (ADS)
Fan, Ji-Zhuang; Zhang, Wei; Kong, Peng-Cheng; Cai, He-Gao; Liu, Gang-Feng
2017-09-01
Pneumatic muscles with similar characteristics to biological muscles have been widely used in robots, and thus are promising drivers for frog inspired robots. However, the application and nonlinearity of the pneumatic system limit the advance. On the basis of the swimming mechanism of the frog, a frog-inspired robot based on pneumatic muscles is developed. To realize the independent tasks by the robot, a pneumatic system with internal chambers, micro air pump, and valves is implemented. The micro pump is used to maintain the pressure difference between the source and exhaust chambers. The pneumatic muscles are controlled by high-speed switch valves which can reduce the robot cost, volume, and mass. A dynamic model of the pneumatic system is established for the simulation to estimate the system, including the chamber, muscle, and pneumatic circuit models. The robot design is verified by the robot swimming experiments and the dynamic model is verified through the experiments and simulations of the pneumatic system. The simulation results are compared to analyze the functions of the source pressure, internal volume of the muscle, and circuit flow rate which is proved the main factor that limits the response of muscle pressure. The proposed research provides the application of the pneumatic muscles in the frog inspired robot and the pneumatic model to study muscle controller.
NASA Technical Reports Server (NTRS)
May, Brian D.
1992-01-01
The experimental NASA satellite, Advanced Communications Technology Satellite (ACTS), introduces new technology for high throughput 30 to 20 GHz satellite services. Contained in a single communication payload is both a regenerative TDMA system and multiple 800 MHz 'bent pipe' channels routed to spot beams by a switch matrix. While only one mode of operation is typical during any experiment, both modes can operate simultaneously with reduced capability due to sharing of the transponder. NASA-Lewis instituted a ground terminal development program in anticipation of the satellite launch to verify the performance of the switch matrix mode of operations. Specific functions are built into the ground terminal to evaluate rain fade compensation with uplink power control and to monitor satellite transponder performance with bit error rate measurements. These functions were the genesis of the ground terminal's name, Link Evaluation Terminal, often referred to as LET. Connectors are included in LET that allow independent experimenters to run unique modulation or network experiments through ACTS using only the RF transmit and receive portions of LET. Test data indicate that LET will be able to verify important parts of ACTS technology and provide independent experimenters with a useful ground terminal. Lab measurements of major subsystems integrated into LET are presented. Bit error rate is measured with LET in an internal loopback mode.
Well-Loved Music Robustly Relieves Pain: A Randomized, Controlled Trial
Hsieh, Christine; Kong, Jian; Kirsch, Irving; Edwards, Robert R.; Jensen, Karin B.; Kaptchuk, Ted J.; Gollub, Randy L.
2014-01-01
Music has pain-relieving effects, but its mechanisms remain unclear. We sought to verify previously studied analgesic components and further elucidate the underpinnings of music analgesia. Using a well-characterized conditioning-enhanced placebo model, we examined whether boosting expectations would enhance or interfere with analgesia from strongly preferred music. A two-session experiment was performed with 48 healthy, pain experiment-naïve participants. In a first cohort, 36 were randomized into 3 treatment groups, including music enhanced with positive expectancy, non-musical sound enhanced with positive expectancy, and no expectancy enhancement. A separate replication cohort of 12 participants received only expectancy-enhanced music following the main experiment to verify the results of expectancy-manipulation on music. Primary outcome measures included the change in subjective pain ratings to calibrated experimental noxious heat stimuli, as well as changes in treatment expectations. Without conditioning, expectations were strongly in favor of music compared to non-musical sound. While measured expectations were enhanced by conditioning, this failed to affect either music or sound analgesia significantly. Strongly preferred music on its own was as pain relieving as conditioning-enhanced strongly preferred music, and more analgesic than enhanced sound. Our results demonstrate the pain-relieving power of personal music even over enhanced expectations. Trial Information Clinicaltrials.gov NCT01835275. PMID:25211164
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Je; Yoon, Hyun; Im, Piljae
This paper developed an algorithm that controls the supply air temperature in the variable refrigerant flow (VRF), outdoor air processing unit (OAP) system, according to indoor and outdoor temperature and humidity, and verified the effects after applying the algorithm to real buildings. The VRF-OAP system refers to a heating, ventilation, and air conditioning (HVAC) system to complement a ventilation function, which is not provided in the VRF system. It is a system that supplies air indoors by heat treatment of outdoor air through the OAP, as a number of indoor units and OAPs are connected to the outdoor unit inmore » the VRF system simultaneously. This paper conducted experiments with regard to changes in efficiency and the cooling capabilities of each unit and system according to supply air temperature in the OAP using a multicalorimeter. Based on these results, an algorithm that controlled the temperature of the supply air in the OAP was developed considering indoor and outdoor temperatures and humidity. The algorithm was applied in the test building to verify the effects of energy reduction and the effects on indoor temperature and humidity. Loads were then changed by adjusting the number of conditioned rooms to verify the effect of the algorithm according to various load conditions. In the field test results, the energy reduction effect was approximately 15–17% at a 100% load, and 4–20% at a 75% load. However, no significant effects were shown at a 50% load. The indoor temperature and humidity reached a comfortable level.« less
Lee, Je; Yoon, Hyun; Im, Piljae; ...
2017-12-27
This paper developed an algorithm that controls the supply air temperature in the variable refrigerant flow (VRF), outdoor air processing unit (OAP) system, according to indoor and outdoor temperature and humidity, and verified the effects after applying the algorithm to real buildings. The VRF-OAP system refers to a heating, ventilation, and air conditioning (HVAC) system to complement a ventilation function, which is not provided in the VRF system. It is a system that supplies air indoors by heat treatment of outdoor air through the OAP, as a number of indoor units and OAPs are connected to the outdoor unit inmore » the VRF system simultaneously. This paper conducted experiments with regard to changes in efficiency and the cooling capabilities of each unit and system according to supply air temperature in the OAP using a multicalorimeter. Based on these results, an algorithm that controlled the temperature of the supply air in the OAP was developed considering indoor and outdoor temperatures and humidity. The algorithm was applied in the test building to verify the effects of energy reduction and the effects on indoor temperature and humidity. Loads were then changed by adjusting the number of conditioned rooms to verify the effect of the algorithm according to various load conditions. In the field test results, the energy reduction effect was approximately 15–17% at a 100% load, and 4–20% at a 75% load. However, no significant effects were shown at a 50% load. The indoor temperature and humidity reached a comfortable level.« less
Research of vibration control based on current mode piezoelectric shunt damping circuit
NASA Astrophysics Data System (ADS)
Liu, Weiwei; Mao, Qibo
2017-12-01
The piezoelectric shunt damping circuit using current mode approach is imposed to control the vibration of a cantilever beam. Firstly, the simulated inductance with large values are designed for the corresponding RL series shunt circuits. Moreover, with an example of cantilever beam, the second natural frequency of the beam is targeted to control for experiment. By adjusting the values of the equivalent inductance and equivalent resistance of the shunt circuit, the optimal damping of the shunt circuit is obtained. Meanwhile, the designed piezoelectric shunt damping circuit stability is experimental verified. Experimental results show that the proposed piezoelectric shunt damping circuit based on current mode circuit has good vibration control performance. However, the control performance will be reduced if equivalent inductance and equivalent resistance values deviate from optimal values.
Methods to Control EMI Noises Produced in Power Converter Systems
NASA Astrophysics Data System (ADS)
Mutoh, Nobuyoshi; Ogata, Mitukatu
A new method to control EMI noises produced in power converters (rectifier and inverter) composed of IPMs (Intelligent Power Modules) is studied especially focusing on differential mode noises. The differential mode noises are occurred due to switching operations of the PWM control. As they are diffused into the ground through stray capacitors distributed between the ground and the power transmission lines and machine frames, differential mode noises should be confined and suppressed within the smallest area where power converters are laid out. It is impossible to control differential mode noises easily occurring diffusion by the conventional methods like filtering techniques. So, a new EMI noise control method using a multi-power circuit technique is proposed. The proposed method of the effectiveness has been verified through simulations and experiments.
Lu, Liang-Xing; Wang, Ying-Min; Srinivasan, Bharathi Madurai; Asbahi, Mohamed; Yang, Joel K. W.; Zhang, Yong-Wei
2016-01-01
We perform systematic two-dimensional energetic analysis to study the stability of various nanostructures formed by dewetting solid films deposited on patterned substrates. Our analytical results show that by controlling system parameters such as the substrate surface pattern, film thickness and wetting angle, a variety of equilibrium nanostructures can be obtained. Phase diagrams are presented to show the complex relations between these system parameters and various nanostructure morphologies. We further carry out both phase field simulations and dewetting experiments to validate the analytically derived phase diagrams. Good agreements between the results from our energetic analyses and those from our phase field simulations and experiments verify our analysis. Hence, the phase diagrams presented here provide guidelines for using solid-state dewetting as a tool to achieve various nanostructures. PMID:27580943
Research the Gait Characteristics of Human Walking Based on a Robot Model and Experiment
NASA Astrophysics Data System (ADS)
He, H. J.; Zhang, D. N.; Yin, Z. W.; Shi, J. H.
2017-02-01
In order to research the gait characteristics of human walking in different walking ways, a robot model with a single degree of freedom is put up in this paper. The system control models of the robot are established through Matlab/Simulink toolbox. The gait characteristics of straight, uphill, turning, up the stairs, down the stairs up and down areanalyzed by the system control models. To verify the correctness of the theoretical analysis, an experiment was carried out. The comparison between theoretical results and experimental results shows that theoretical results are better agreement with the experimental ones. Analyze the reasons leading to amplitude error and phase error and give the improved methods. The robot model and experimental ways can provide foundation to further research the various gait characteristics of the exoskeleton robot.
Pumped storage system model and experimental investigations on S-induced issues during transients
NASA Astrophysics Data System (ADS)
Zeng, Wei; Yang, Jiandong; Hu, Jinhong
2017-06-01
Because of the important role of pumped storage stations in the peak regulation and frequency control of a power grid, pump turbines must rapidly switch between different operating modes, such as fast startup and load rejection. However, pump turbines go through the unstable S region in these transition processes, threatening the security and stability of the pumped storage station. This issue has mainly been investigated through numerical simulations, while field experiments generally involve high risks and are difficult to perform. Therefore, in this work, the model test method was employed to study S-induced security and stability issues for a pumped storage station in transition processes. First, a pumped storage system model was set up, including the piping system, model units, electrical control systems and measurement system. In this model, two pump turbines with different S-shaped characteristics were installed to determine the influence of S-shaped characteristics on transition processes. The model platform can be applied to simulate any hydraulic transition process that occurs in real power stations, such as load rejection, startup, and grid connection. On the experimental platform, the S-shaped characteristic curves were measured to be the basis of other experiments. Runaway experiments were performed to verify the impact of the S-shaped characteristics on the pump turbine runaway stability. Full load rejection tests were performed to validate the effect of the S-shaped characteristics on the water-hammer pressure. The condition of one pump turbine rejecting its load after another defined as one-after-another (OAA) load rejection was performed to validate the possibility of S-induced extreme draft tube pressure. Load rejection experiments with different guide vane closing schemes were performed to determine a suitable scheme to adapt the S-shaped characteristics. Through these experiments, the threats existing in the station were verified, the appropriate measures were summarized, and an important experimental basis for the safe and stable operation of a pumped storage station was provided.
Li, Hongyu; Walker, David; Yu, Guoyu; Sayle, Andrew; Messelink, Wilhelmus; Evans, Rob; Beaucamp, Anthony
2013-01-14
Edge mis-figure is regarded as one of the most difficult technical issues for manufacturing the segments of extremely large telescopes, which can dominate key aspects of performance. A novel edge-control technique has been developed, based on 'Precessions' polishing technique and for which accurate and stable edge tool influence functions (TIFs) are crucial. In the first paper in this series [D. Walker Opt. Express 20, 19787-19798 (2012)], multiple parameters were experimentally optimized using an extended set of experiments. The first purpose of this new work is to 'short circuit' this procedure through modeling. This also gives the prospect of optimizing local (as distinct from global) polishing for edge mis-figure, now under separate development. This paper presents a model that can predict edge TIFs based on surface-speed profiles and pressure distributions over the polishing spot at the edge of the part, the latter calculated by finite element analysis and verified by direct force measurement. This paper also presents a hybrid-measurement method for edge TIFs to verify the simulation results. Experimental and simulation results show good agreement.
Rocket experiment METS Microwave Energy Transmission in Space
NASA Astrophysics Data System (ADS)
Kaya, N.; Matsumoto, H.; Akiba, R.
A METS (Microwave Energy Transmission in Space) rocket experiment is being planned by the SPS (Solar Power Satellite) Working Group at the Institute of Space and Astronautical Science (ISAS) in Japan for the forthcoming International Space Year (ISY), 1992. The METS experiment is an advanced version of our MINIX rocket experiment. This paper describes the conceptual design for the METS rocket experiment. Aims are to verify the feasibility of a newly developed microwave energy transmission system designed for use in space and to study nonlinear effects of the microwave energy beam on space plasma. A high power microwave (936 W) will be transmitted by a new phase-array antenna from a mother rocket to a separate target (daughter rocket) through the Earth's ionospheric plasma. The active phased-array system has the capability of being able to focus the microwave energy at any spatial point by individually controlling the digital phase shifters.
Rocket experiment METS - Microwave Energy Transmission in Space
NASA Astrophysics Data System (ADS)
Kaya, N.; Matsumoto, H.; Akiba, R.
A Microwave Energy Transmission in Space (METS) rocket experiment is being planned by the Solar Power Satellite Working Group at the Institute of Space and Astronautical Science in Japan for the forthcoming International Space Year, 1992. The METS experiment is an advanced version of the previous MINIX rocket experiment (Matsumoto et al., 1990). This paper describes a conceptual design of the METS rocket experiment. It aims at verifying a newly developed microwave energy transmission system for space use and to study nonlinear effects of the microwave energy beam in the space plasma environment. A high power microwave of 936 W will be transmitted by the new phased-array antenna from a mother rocket to a separated target (daughter rocket) through the ionospheric plasma. The active phased-array system has a capability of focusing the microwave energy around any spatial point by controlling the digital phase shifters individually.
The Structure, Design, and Closed-Loop Motion Control of a Differential Drive Soft Robot.
Wu, Pang; Jiangbei, Wang; Yanqiong, Fei
2018-02-01
This article presents the structure, design, and motion control of an inchworm inspired pneumatic soft robot, which can perform differential movement. This robot mainly consists of two columns of pneumatic multi-airbags (actuators), one sensor, one baseboard, front feet, and rear feet. According to the different inflation time of left and right actuators, the robot can perform both linear and turning movements. The actuators of this robot are composed of multiple airbags, and the design of the airbags is analyzed. To deal with the nonlinear performance of the soft robot, we use radial basis function neural networks to train the turning ability of this robot on three different surfaces and create a mathematical model among coefficient of friction, deflection angle, and inflation time. Then, we establish the closed-loop automatic control model using three-axis electronic compass sensor. Finally, the automatic control model is verified by linear and turning movement experiments. According to the experiment, the robot can finish the linear and turning movements under the closed-loop control system.
Static shape control for adaptive wings
NASA Astrophysics Data System (ADS)
Austin, Fred; Rossi, Michael J.; van Nostrand, William; Knowles, Gareth; Jameson, Antony
1994-09-01
A theoretical method was developed and experimentally validated, to control the static shape of flexible structures by employing internal translational actuators. A finite element model of the structure, without the actuators present, is employed to obtain the multiple-input, multiple-output control-system gain matrices for actuator-load control as well as actuator-displacement control. The method is applied to the quasistatic problem of maintaining an optimum-wing cross section during various transonic-cruise flight conditions to obtain significant reductions in the shock-induced drag. Only small, potentially achievable, adaptive modifications to the profile are required. The adaptive-wing concept employs actuators as truss elements of active ribs to reshape the wing cross section by deforming the structure. Finite element analyses of an adaptive-rib model verify the controlled-structure theory. Experiments on the model were conducted, and arbitrarily selected deformed shapes were accurately achieved.
Gu, Herong; Guan, Yajuan; Wang, Huaibao; Wei, Baoze; Guo, Xiaoqiang
2014-01-01
Microgrid is an effective way to integrate the distributed energy resources into the utility networks. One of the most important issues is the power flow control of grid-connected voltage-source inverter in microgrid. In this paper, the small-signal model of the power flow control for the grid-connected inverter is established, from which it can be observed that the conventional power flow control may suffer from the poor damping and slow transient response. While the new power flow control can mitigate these problems without affecting the steady-state power flow regulation. Results of continuous-domain simulations in MATLAB and digital control experiments based on a 32-bit fixed-point TMS320F2812 DSP are in good agreement, which verify the small signal model analysis and effectiveness of the proposed method.
Analysis and Ground Testing for Validation of the Inflatable Sunshield in Space (ISIS) Experiment
NASA Technical Reports Server (NTRS)
Lienard, Sebastien; Johnston, John; Adams, Mike; Stanley, Diane; Alfano, Jean-Pierre; Romanacci, Paolo
2000-01-01
The Next Generation Space Telescope (NGST) design requires a large sunshield to protect the large aperture mirror and instrument module from constant solar exposure at its L2 orbit. The structural dynamics of the sunshield must be modeled in order to predict disturbances to the observatory attitude control system and gauge effects on the line of site jitter. Models of large, non-linear membrane systems are not well understood and have not been successfully demonstrated. To answer questions about sunshield dynamic behavior and demonstrate controlled deployment, the NGST project is flying a Pathfinder experiment, the Inflatable Sunshield in Space (ISIS). This paper discusses in detail the modeling and ground-testing efforts performed at the Goddard Space Flight Center to: validate analytical tools for characterizing the dynamic behavior of the deployed sunshield, qualify the experiment for the Space Shuttle, and verify the functionality of the system. Included in the discussion will be test parameters, test setups, problems encountered, and test results.
Analysis and decoupling control of a permanent magnet spherical actuator.
Zhang, Liang; Chen, Weihai; Liu, Jingmeng; Wu, Xingming
2013-12-01
This paper presents the analysis and decoupling control of a spherical actuator, which is capable of performing three degree-of-freedom motion in one joint. The proposed actuator consists of a rotor with multiple PM (Permanent Magnet) poles in a circle and a stator with circumferential coils in three layers. Based on this actuator design, a decoupling control approach is developed. Unlike existing control methods that each coil is responsible for both the spinning and tilting motion, the proposed control strategy specifies the function of each coil. Specifically, the spinning motion is governed by the middle layer coils with a step control approach; while the tilting motion is regulated by upper and lower coils with a computed torque control method. Experiments have been conducted on the prototype to verify the validity of the design procedure, and the experimental results demonstrate the effectiveness of the analysis and control strategy.
On-Line Tracking Controller for Brushless DC Motor Drives Using Artificial Neural Networks
NASA Technical Reports Server (NTRS)
Rubaai, Ahmed
1996-01-01
A real-time control architecture is developed for time-varying nonlinear brushless dc motors operating in a high performance drives environment. The developed control architecture possesses the capabilities of simultaneous on-line identification and control. The dynamics of the motor are modeled on-line and controlled using an artificial neural network, as the system runs. The control architecture combines the experience and dependability of adaptive tracking systems with potential and promise of the neural computing technology. The sensitivity of real-time controller to parametric changes that occur during training is investigated. Such changes are usually manifested by rapid changes in the load of the brushless motor drives. This sudden change in the external load is simulated for the sigmoidal and sinusoidal reference tracks. The ability of the neuro-controller to maintain reasonable tracking accuracy in the presence of external noise is also verified for a number of desired reference trajectories.
Simulation and Experimental Investigation of Structural Dynamic Frequency Characteristics Control
Zhang, Xingwu; Chen, Xuefeng; You, Shangqin; He, Zhengjia; Li, Bing
2012-01-01
In general, mechanical equipment such as cars, airplanes, and machine tools all operate with constant frequency characteristics. These constant working characteristics should be controlled if the dynamic performance of the equipment demands improvement or the dynamic characteristics is intended to change with different working conditions. Active control is a stable and beneficial method for this, but current active control methods mainly focus on vibration control for reducing the vibration amplitudes in the time domain or frequency domain. In this paper, a new method of dynamic frequency characteristics active control (DFCAC) is presented for a flat plate, which can not only accomplish vibration control but also arbitrarily change the dynamic characteristics of the equipment. The proposed DFCAC algorithm is based on a neural network including two parts of the identification implement and the controller. The effectiveness of the DFCAC method is verified by several simulation and experiments, which provide desirable results. PMID:22666072
Simulation and experimental investigation of structural dynamic frequency characteristics control.
Zhang, Xingwu; Chen, Xuefeng; You, Shangqin; He, Zhengjia; Li, Bing
2012-01-01
In general, mechanical equipment such as cars, airplanes, and machine tools all operate with constant frequency characteristics. These constant working characteristics should be controlled if the dynamic performance of the equipment demands improvement or the dynamic characteristics is intended to change with different working conditions. Active control is a stable and beneficial method for this, but current active control methods mainly focus on vibration control for reducing the vibration amplitudes in the time domain or frequency domain. In this paper, a new method of dynamic frequency characteristics active control (DFCAC) is presented for a flat plate, which can not only accomplish vibration control but also arbitrarily change the dynamic characteristics of the equipment. The proposed DFCAC algorithm is based on a neural network including two parts of the identification implement and the controller. The effectiveness of the DFCAC method is verified by several simulation and experiments, which provide desirable results.
Model for the loop voltage of reversed field pinches
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jarboe, T.R.; Alper, B.
1987-04-01
A simple model is presented that uses the concept of helicity balance to predict the toroidal loop voltage of reversed field pinches (RFP's). Data from the RFP's at Culham (Plasma Phys. Controlled Fusion 27, 1307 (1985)) are used to calibrate and verify the model. The model indicates that most of the helicity dissipation occurs in edge regions that are outside the limiters or in regions where field lines contact the walls. The value of this new interpretation to future RFP and spheromak experiments is discussed.
NASA Technical Reports Server (NTRS)
Clark, T. B.
1985-01-01
The organic Rankine-cycle (ORC) power conversion assembly was tested. Qualification testing of the electrical transport subsystem was also completed. Test objectives were to verify compatibility of all system elements with emphasis on control of the power conversion assembly, to evaluate the performance and efficiency of the components, and to validate operating procedures. After 34 hours of power generation under a wide range of conditions, the net module efficiency exceeded 18% after accounting for all parasitic losses.
Microprocessor-based cardiopulmonary monitoring system
NASA Technical Reports Server (NTRS)
1978-01-01
The system uses a dedicated microprocessor for transducer control and data acquisition and analysis. No data will be stored in this system, but the data will be transmitted to the onboard data system. The data system will require approximately 12 inches of rack space and will consume only 100 watts of power. An experiment specific control panel, through a series of lighted buttons, will guide the operator through the test series providing a smaller margin of error. The experimental validity of the system was verified, and the reproducibility of data and reliability of the system checked. In addition, ease of training, ease of operator interaction, and crew acceptance were evaluated in actual flight conditions.
NASA Astrophysics Data System (ADS)
Chen, Xuedong; Sun, Yi; Huang, Qingjiu; Jia, Wenchuan; Pu, Huayan
This paper focuses on the design of a modular multi-legged walking robot MiniQuad-I, which can be reconfigured into variety configurations, including quadruped and hexapod configurations for different tasks by changing the layout of modules. Critical design considerations when taking the adaptability, maintainability and extensibility in count simultaneously are discussed and then detailed designs of each module are presented. The biomimetic control architecture of MiniQuad-I is proposed, which can improve the capability of agility and independence of the robot. Simulations and experiments on crawling, object picking and obstacle avoiding are performed to verify functions of the MiniQuad-I.
The experience of agency in sequence production with altered auditory feedback.
Couchman, Justin J; Beasley, Robertson; Pfordresher, Peter Q
2012-03-01
When speaking or producing music, people rely in part on auditory feedback - the sounds associated with the performed action. Three experiments investigated the degree to which alterations of auditory feedback (AAF) during music performances influence the experience of agency (i.e., the sense that your actions led to auditory events) and the possible link between agency and the disruptive effect of AAF on production. Participants performed short novel melodies from memory on a keyboard. Auditory feedback during performances was manipulated with respect to its pitch contents and/or its synchrony with actions. Participants rated their experience of agency after each trial. In all experiments, AAF reduced judgments of agency across conditions. Performance was most disrupted (measured by error rates and slowing) when AAF led to an ambiguous experience of agency, suggesting that there may be some causal relationship between agency and disruption. However, analyses revealed that these two effects were probably independent. A control experiment verified that performers can make veridical judgments of agency. Published by Elsevier Inc.
Optical authentication based on moiré effect of nonlinear gratings in phase space
NASA Astrophysics Data System (ADS)
Liao, Meihua; He, Wenqi; Wu, Jiachen; Lu, Dajiang; Liu, Xiaoli; Peng, Xiang
2015-12-01
An optical authentication scheme based on the moiré effect of nonlinear gratings in phase space is proposed. According to the phase function relationship of the moiré effect in phase space, an arbitrary authentication image can be encoded into two nonlinear gratings which serve as the authentication lock (AL) and the authentication key (AK). The AL is stored in the authentication system while the AK is assigned to the authorized user. The authentication procedure can be performed using an optoelectronic approach, while the design process is accomplished by a digital approach. Furthermore, this optical authentication scheme can be extended for multiple users with different security levels. The proposed scheme can not only verify the legality of a user identity, but can also discriminate and control the security levels of legal users. Theoretical analysis and simulation experiments are provided to verify the feasibility and effectiveness of the proposed scheme.
Experimental verification of nanoparticle jet minimum quantity lubrication effectiveness in grinding
NASA Astrophysics Data System (ADS)
Jia, Dongzhou; Li, Changhe; Zhang, Dongkun; Zhang, Yanbin; Zhang, Xiaowei
2014-12-01
In our experiment, K-P36 precision numerical control surface grinder was used for dry grinding, minimum quantity lubrication (MQL) grinding, nanoparticle jet MQL grinding, and traditional flood grinding of hardened 45 steel. A three-dimensional dynamometer was used to measure grinding force in the experiment. In this research, experiments were conducted to measure and calculate specific tangential grinding force, frictional coefficient, and specific grinding energy, thus verifying the lubrication performance of nanoparticles in surface grinding. Findings present that compared with dry grinding, the specific tangential grinding force of MQL grinding, nanoparticle jet MQL grinding, and flood grinding decreased by 45.88, 62.34, and 69.33 %, respectively. Their frictional coefficient was reduced by 11.22, 29.21, and 32.18 %, and the specific grinding energy declined by 45.89, 62.34, and 69.45 %, respectively. Nanoparticle jet MQL presented ideal lubrication effectiveness, which was attributed to the friction oil film with strong antifriction and anti-wear features formed by nanoparticles on the grinding wheel/workpiece interface. Moreover, lubricating properties of nanoparticles of the same size (50 nm) but different types were verified through experimentation. In our experiment, ZrO2 nanoparticles, polycrystal diamond (PCD) nanoparticles, and MoS2 nanoparticles were used in the comparison of nanoparticle jet MQL grinding. The experimental results manifest that MoS2 nanoparticles exhibited the optimal lubricating effectiveness, followed by PCD nanoparticles. Our research also integrated the properties of different nanoparticles to analyze the lubrication mechanisms of different nanoparticles. The experiment further verified the impact of nanoparticle concentration on the effectiveness of nanoparticle jet MQL in grinding. The experimental results demonstrate that when the nanoparticle mass fraction was 6 %, the minimum specific tangential grinding force, frictional coefficient, and specific grinding energy were 1.285 N/mm, 0.382, and 57.825 J/mm3, respectively. When nanoparticle mass fraction was smaller than 6 %, lubrication effects of nanoparticle jet MQL increased with the rising nanoparticle mass fraction. When nanoparticle mass fraction was larger than 6 %, lubrication effects of nanoparticle jet MQL decreased with the rising nanoparticle mass fraction.
Yu, Jia; Yu, Zhichao; Tang, Chenlong
2016-07-04
The hot work environment of electronic components in the instrument cabin of spacecraft was researched, and a new thermal protection structure, namely graphite carbon foam, which is an impregnated phase-transition material, was adopted to implement the thermal control on the electronic components. We used the optimized parameters obtained from ANSYS to conduct 2D optimization, 3-D modeling and simulation, as well as the strength check. Finally, the optimization results were verified by experiments. The results showed that after optimization, the structured carbon-based energy-storing composite material could reduce the mass and realize the thermal control over electronic components. This phase-transition composite material still possesses excellent temperature control performance after its repeated melting and solidifying.
NASA Astrophysics Data System (ADS)
Watanabe, Takashi; Yoshida, Toshiya; Ohniwa, Katsumi
This paper discusses a new control strategy for photovoltaic power generation systems with consideration of dynamic characteristics of the photovoltaic cells. The controller estimates internal currents of an equivalent circuit for the cells. This estimated, or the virtual current and the actual voltage of the cells are fed to a conventional Maximum-Power-Point-Tracking (MPPT) controller. Consequently, this MPPT controller still tracks the optimum point even though it is so designed that the seeking speed of the operating point is extremely high. This system may suit for applications, which are installed in rapidly changeable insolation and temperature-conditions e.g. automobiles, trains, and airplanes. The proposed method is verified by experiment with a combination of this estimating function and the modified Boehringer's MPPT algorithm.
Verifying Sediment Fingerprinting Results with Known Mixtures
NASA Astrophysics Data System (ADS)
Gellis, A.; Gorman-Sanisaca, L.; Cashman, M. J.
2017-12-01
Sediment fingerprinting is a widely used approach to determine the specific sources of fluvial sediment within a watershed. It relies on the principle that potential sediment sources can be identified using a set of chemical tracers (or fingerprints), and comparison of these source fingerprints with fluvial (target) sediment allows for source apportionment of the fluvial sediment. There are numerous source classifications, fingerprints, and statistical approaches used in the literature to apportion sources of sediment. However, few of these studies have sought to test the method by creating controls on the ratio of sources in the target sediment. Without a controlled environment for inputs and outputs, such verification of results is ambiguous. Here, we generated artificial mixtures of source sediment from an agricultural/forested watershed in Virginia, USA (Smith Creek, 246 km2) to verify the apportionment results. Target samples were established from known mixtures of the four major sediment sources in the watershed (forest, pasture, cropland, and streambanks). The target samples were sieved to less than 63 microns and analyzed for elemental and isotopic chemistry. The target samples and source samples were run through the Sediment Source Assessment Tool (Sed_SAT) to verify if the statistical operations provided the correct apportionment. Sed_SAT uses a multivariate parametric approach to identify the minimum suite of fingerprints that discriminate the source areas and applies these fingerprints through an unmixng model to apportion sediment. The results of this sediment fingerprinting verification experiment will be presented in this session.
NASA Astrophysics Data System (ADS)
Almeida, António; Vasconcelos, Clara Maria; Strecht-Ribeiro, Orlando; Torres, Joana
2013-01-01
This study used an individual structured interview to (1) verify the incidence of non-anthropocentric reasoning in 123 children attending the 3rd and 4th years in three primary schools in the Lisbon area (Portugal), when they are confronted with ecological dilemmas and (2) establish those places they frequented which permit animal contact. The results show a greater incidence of non-anthropocentric reasoning than that obtained in other international studies. This may be related to the focus of the questions asked, which invited children to imagine themselves as another animal or to present situations where human interaction is unfair. This incidence was found independently of gender, school origin and whether or not pets were owned, even with the more biologically complex animals. School year was the only variable proven to make a difference in conceptually more demanding questions. We also verified that the children's general past experience of nature is essentially aligned to 'controlled environments depending on ongoing human management', confirming a decline in direct contact with 'natural and semi-natural environments'. However, this type of experience does not seem to exert a negative influence on their non-anthropocentric reasoning.
NASA Astrophysics Data System (ADS)
Ui, Kyoichi; Matunaga, Saburo; Satori, Shin; Ishikawa, Tomohiro
2005-09-01
Laboratory for Space Systems (LSS), Tokyo Institute of Technology (Tokyo Tech) conducted three-dimensional microgravity environment experiments about a docking mechanism for mothership-daughtership (MS-DS) nano-satellite using the facility of Japan Micro Gravity Center (JAMIC) with Hokkaido Institute of Technology (HIT). LSS has studied and developed a docking mechanism for MS-DS nano-satellite system in final rendezvous approach and docking phase since 2000. Consideration of the docking mechanism is to mate a nano-satellite stably while remaining control error of relative velocity and attitude because it is difficult for nano-satellite to have complicated attitude control and mating systems. Objective of the experiments is to verify fundamental grasping function based on our proposed docking methodology. The proposed docking sequence is divided between approach/grasping phase and guiding phase. In the approach/grasping phase, the docking mechanism grasps the nano-satellite even though the nano-satellite has relative position and attitude control errors as well as relative velocity in a docking space. In the guiding function, the docking mechanism guides the nano-satellite to a docking port while adjusting its attitude in order to transfer electrical power and fuel to the nano-satellite. In the paper, we describe the experimental system including the docking mechanism, control system, the daughtership system and the release mechanism, and describe results of microgravity experiments in JAMIC.
NASA Astrophysics Data System (ADS)
Michnovicz, Michael R.
1997-06-01
A real-time executive has been implemented to control a high altitude pointing and tracking experiment. The track and mode controller (TMC) implements a table driven design, in which the track mode logic for a tracking mission is defined within a state transition diagram (STD). THe STD is implemented as a state transition table in the TMC software. Status Events trigger the state transitions in the STD. Each state, as it is entered, causes a number of processes to be activated within the system. As these processes propagate through the system, the status of key processes are monitored by the TMC, allowing further transitions within the STD. This architecture is implemented in real-time, using the vxWorks operating system. VxWorks message queues allow communication of status events from the Event Monitor task to the STD task. Process commands are propagated to the rest of the system processors by means of the SCRAMNet shared memory network. The system mode logic contained in the STD will autonomously sequence in acquisition, tracking and pointing system through an entire engagement sequence, starting with target detection and ending with aimpoint maintenance. Simulation results and lab test results will be presented to verify the mode controller. In addition to implementing the system mode logic with the STD, the TMC can process prerecorded time sequences of commands required during startup operations. It can also process single commands from the system operator. In this paper, the author presents (1) an overview, in which he describes the TMC architecture, the relationship of an end-to-end simulation to the flight software and the laboratory testing environment, (2) implementation details, including information on the vxWorks message queues and the SCRAMNet shared memory network, (3) simulation results and lab test results which verify the mode controller, and (4) plans for the future, specifically as to how this executive will expedite transition to a fully functional system.
Statistical analysis of target acquisition sensor modeling experiments
NASA Astrophysics Data System (ADS)
Deaver, Dawne M.; Moyer, Steve
2015-05-01
The U.S. Army RDECOM CERDEC NVESD Modeling and Simulation Division is charged with the development and advancement of military target acquisition models to estimate expected soldier performance when using all types of imaging sensors. Two elements of sensor modeling are (1) laboratory-based psychophysical experiments used to measure task performance and calibrate the various models and (2) field-based experiments used to verify the model estimates for specific sensors. In both types of experiments, it is common practice to control or measure environmental, sensor, and target physical parameters in order to minimize uncertainty of the physics based modeling. Predicting the minimum number of test subjects required to calibrate or validate the model should be, but is not always, done during test planning. The objective of this analysis is to develop guidelines for test planners which recommend the number and types of test samples required to yield a statistically significant result.
Meteorological factors in Earth-satellite propagation
NASA Technical Reports Server (NTRS)
Levis, C. A.; Taylor, R. C.; Leonard, R.; Lin, K. T.; Pigon, B.; Weller, A.
1982-01-01
Using the COMSTAR D/4 28.56 GHz beacon as a source, a differential gain experiment was performed by connecting a 5-meter paraboloidal antenna and a 0.6-meter paraboloidal antenna alternately to the same receiver. Substantial differential gain changes were observed during some, but not all, rain events. A site-diversity experiment was implemented which consists of two 28.56 GHz radiometers separated by 9 km. The look-angle corresponds to that of the D/4 beacon, and data were obtained with one radiometer during several weeks of concurrent beacon operation to verify the system calibration. A theoretical study of the effect of scattering from a nonuniform rain distribution along the path is under way to aid in interpreting the results of this experiment. An improved empirical site diversity-gain model was derived from data in the literature relating to 34 diversity experiments. Work on the experiment control and data acquisition system is continuing with a view toward future experiments.
Application of fuzzy adaptive control to a MIMO nonlinear time-delay pump-valve system.
Lai, Zhounian; Wu, Peng; Wu, Dazhuan
2015-07-01
In this paper, a control strategy to balance the reliability against efficiency is introduced to overcome the common off-design operation problem in pump-valve systems. The pump-valve system is a nonlinear multi-input-multi-output (MIMO) system with time delays which cannot be accurately measured but can be approximately modeled using Bernoulli Principle. A fuzzy adaptive controller is applied to approximate system parameters and achieve the control of delay-free model since the system model is inaccurate and the direct feedback linearization method cannot be applied. An extended Smith predictor is introduced to compensate time delays of the system using the inaccurate system model. The experiment is carried out to verify the effectiveness of the control strategy whose results show that the control performance is well achieved. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Zuohua; Chen, Chaojun; Teng, Jun; Wang, Ying
2018-04-01
Active mass damper/driver (AMD) control system has been proposed as an effective tool for high-rise buildings to resist strong dynamic loads. However, such disadvantage as time-varying delay in AMD control systems impedes their application in practices. Time-varying delay, which has an effect on the performance and stability of single-degree-of-freedom (SDOF) and multi-degree-of-freedom (MDOF) systems, is considered in the paper. In addition, a new time-delay compensation controller based on regional pole-assignment method is presented. To verify its effectiveness, the proposed method is applied to a numerical example of a ten-storey frame and an experiment of a single span four-storey steel frame. Both numerical and experimental results demonstrate that the proposed method can enhance the performances of an AMD control system with time-varying delays.
Gu, Herong; Guan, Yajuan; Wang, Huaibao; Wei, Baoze; Guo, Xiaoqiang
2014-01-01
Microgrid is an effective way to integrate the distributed energy resources into the utility networks. One of the most important issues is the power flow control of grid-connected voltage-source inverter in microgrid. In this paper, the small-signal model of the power flow control for the grid-connected inverter is established, from which it can be observed that the conventional power flow control may suffer from the poor damping and slow transient response. While the new power flow control can mitigate these problems without affecting the steady-state power flow regulation. Results of continuous-domain simulations in MATLAB and digital control experiments based on a 32-bit fixed-point TMS320F2812 DSP are in good agreement, which verify the small signal model analysis and effectiveness of the proposed method. PMID:24672304
Implemented a wireless communication system for VGA capsule endoscope.
Moon, Yeon-Kwan; Lee, Jyung Hyun; Park, Hee-Joon; Cho, Jin-Ho; Choi, Hyun-Chul
2014-01-01
Recently, several medical devices that use wireless communication are under development. In this paper, the small size frequency shift keying (FSK) transmitter and a monofilar antenna for the capsule endoscope, enabling the medical device to transmit VGA-size images of the intestine. To verify the functionality of the proposed wireless communication system, computer simulations and animal experiments were performed with the implemented capsule endoscope that includes the proposed wireless communication system. Several fundamental experiments are carried out using the implemented transmitter and antenna, and animal in-vivo experiments were performed to verify VGA image transmission.
Spectral Analysis of Forecast Error Investigated with an Observing System Simulation Experiment
NASA Technical Reports Server (NTRS)
Prive, N. C.; Errico, Ronald M.
2015-01-01
The spectra of analysis and forecast error are examined using the observing system simulation experiment (OSSE) framework developed at the National Aeronautics and Space Administration Global Modeling and Assimilation Office (NASAGMAO). A global numerical weather prediction model, the Global Earth Observing System version 5 (GEOS-5) with Gridpoint Statistical Interpolation (GSI) data assimilation, is cycled for two months with once-daily forecasts to 336 hours to generate a control case. Verification of forecast errors using the Nature Run as truth is compared with verification of forecast errors using self-analysis; significant underestimation of forecast errors is seen using self-analysis verification for up to 48 hours. Likewise, self analysis verification significantly overestimates the error growth rates of the early forecast, as well as mischaracterizing the spatial scales at which the strongest growth occurs. The Nature Run-verified error variances exhibit a complicated progression of growth, particularly for low wave number errors. In a second experiment, cycling of the model and data assimilation over the same period is repeated, but using synthetic observations with different explicitly added observation errors having the same error variances as the control experiment, thus creating a different realization of the control. The forecast errors of the two experiments become more correlated during the early forecast period, with correlations increasing for up to 72 hours before beginning to decrease.
The Yes-No Question Answering System and Statement Verification.
ERIC Educational Resources Information Center
Akiyama, M. Michael; And Others
1979-01-01
Two experiments investigated the relationship of verification to the answering of yes-no questions. Subjects verified simple statements or answered simple questions. Various proposals concerning the relative difficulty of answering questions and verifying statements were considered, and a model was proposed. (SW)
Conceptual models governing leaching behavior and their long-term predictive capability
Claassen, Hans C.
1981-01-01
Six models that may be used to describe the interaction of radioactive waste solids with aqueous solutions are as follows:Simple linear mass transfer;Simple parabolic mass transfer;Parabolic mass transfer with the formation of a diffusion-limiting surface layer at an arbitrary time;Initial parabolic mass transfer followed by linear mass transfer at an arbitrary time;Parabolic (or linear) mass transfer and concomitant surface sorption; andParabolic (or linear) mass transfer and concomitant chemical precipitation.Some of these models lead to either illogical or unrealistic predictions when published data are extrapolated to long times. These predictions result because most data result from short-term experimentation. Probably for longer times, processes will occur that have not been observed in the shorter experiments. This hypothesis has been verified by mass-transfer data from laboratory experiments using natural volcanic glass to predict the composition of groundwater. That such rate-limiting mechanisms do occur is reassuring, although now it is not possible to deduce a single mass-transfer limiting mechanism that could control the solution concentration of all components of all waste forms being investigated. Probably the most reasonable mechanisms are surface sorption and chemical precipitation of the species of interest. Another is limiting of mass transfer by chemical precipitation on the waste form surface of a substance not containing the species of interest, that is, presence of a diffusion-limiting layer. The presence of sorption and chemical precipitation as factors limiting mass transfer has been verified in natural groundwater systems, whereas the diffusion-limiting mechanism has not been verified yet.
Modelling and Experiment Based on a Navigation System for a Cranio-Maxillofacial Surgical Robot.
Duan, Xingguang; Gao, Liang; Wang, Yonggui; Li, Jianxi; Li, Haoyuan; Guo, Yanjun
2018-01-01
In view of the characteristics of high risk and high accuracy in cranio-maxillofacial surgery, we present a novel surgical robot system that can be used in a variety of surgeries. The surgical robot system can assist surgeons in completing biopsy of skull base lesions, radiofrequency thermocoagulation of the trigeminal ganglion, and radioactive particle implantation of skull base malignant tumors. This paper focuses on modelling and experimental analyses of the robot system based on navigation technology. Firstly, the transformation relationship between the subsystems is realized based on the quaternion and the iterative closest point registration algorithm. The hand-eye coordination model based on optical navigation is established to control the end effector of the robot moving to the target position along the planning path. The closed-loop control method, "kinematics + optics" hybrid motion control method, is presented to improve the positioning accuracy of the system. Secondly, the accuracy of the system model was tested by model experiments. And the feasibility of the closed-loop control method was verified by comparing the positioning accuracy before and after the application of the method. Finally, the skull model experiments were performed to evaluate the function of the surgical robot system. The results validate its feasibility and are consistent with the preoperative surgical planning.
Modelling and Experiment Based on a Navigation System for a Cranio-Maxillofacial Surgical Robot
Duan, Xingguang; Gao, Liang; Li, Jianxi; Li, Haoyuan; Guo, Yanjun
2018-01-01
In view of the characteristics of high risk and high accuracy in cranio-maxillofacial surgery, we present a novel surgical robot system that can be used in a variety of surgeries. The surgical robot system can assist surgeons in completing biopsy of skull base lesions, radiofrequency thermocoagulation of the trigeminal ganglion, and radioactive particle implantation of skull base malignant tumors. This paper focuses on modelling and experimental analyses of the robot system based on navigation technology. Firstly, the transformation relationship between the subsystems is realized based on the quaternion and the iterative closest point registration algorithm. The hand-eye coordination model based on optical navigation is established to control the end effector of the robot moving to the target position along the planning path. The closed-loop control method, “kinematics + optics” hybrid motion control method, is presented to improve the positioning accuracy of the system. Secondly, the accuracy of the system model was tested by model experiments. And the feasibility of the closed-loop control method was verified by comparing the positioning accuracy before and after the application of the method. Finally, the skull model experiments were performed to evaluate the function of the surgical robot system. The results validate its feasibility and are consistent with the preoperative surgical planning. PMID:29599948
NASA Technical Reports Server (NTRS)
Cassanto, John M.; Cassanto, Valerie A.
1988-01-01
Acceleration ground tests were conducted on the Get Away Special (GAS) payload 559 to verify the structural integrity of the structure/support avionics and two of the planned three flight experiments. The ITA (Integrated Test Area) Standardized Experiment Module (ISEM) structure was modified to accommodate the experiments for payload 559. The ISEM avionics consisted of a heavy duty sliver zinc power supply, three orthogonal-mounted low range microgravity accelerometers, a tri-axis high range accelerometer, a solid state recorder/programmer sequencer, and pressure and temperature sensors. The tests were conducted using the Gravitational Plant Physiology Laboratory Centrifuge of the University City Science Center in Philadelphia, PA. The launch-powered flight steady state acceleration profile of the shuttle was simulated from lift-off through jettison of the External Tank (3.0 g's). Additional tests were conducted at twice the nominal powered flight acceleration levels (6 g's) and an over-test condition of four times the powered flight loads to 12.6 g's. The present test program has demonstrated the value of conducting ground tests to verify GAS payload experiment integrity and operation before flying on the shuttle.
Dual-body magnetic helical robot for drilling and cargo delivery in human blood vessels
NASA Astrophysics Data System (ADS)
Lee, Wonseo; Jeon, Seungmun; Nam, Jaekwang; Jang, Gunhee
2015-05-01
We propose a novel dual-body magnetic helical robot (DMHR) manipulated by a magnetic navigation system. The proposed DMHR can generate helical motions to navigate in human blood vessels and to drill blood clots by an external rotating magnetic field. It can also generate release motions which are relative rotational motions between dual-bodies to release the carrying cargos to a target region by controlling the magnitude of an external magnetic field. Constraint equations were derived to selectively manipulate helical and release motions by controlling external magnetic fields. The DMHR was prototyped and various experiments were conducted to demonstrate its motions and verify its manipulation methods.
Study program for encapsulation materials interface for low cost silicon solar array
NASA Technical Reports Server (NTRS)
Kaelble, D. H.; Mansfeld, F. B.; Lunsden, J. B., III; Leung, C.
1980-01-01
An atmospheric corrosion model was developed and verified by five months of corrosion rate and climatology data acquired at the Mead, Nebraska LSA test site. Atmospheric corrosion rate monitors (ACM) show that moisture condensation probability and ionic conduction at the corroding surface or interface are controlling factors in corrosion rate. Protection of the corroding surface by encapsulant was shown by the ACM recordings to be maintained, independent of climatology, over the five months outdoor exposure period. The macroscopic corrosion processes which occur at Mead are shown to be reproduced in the climatology simulator. Controlled experiments with identical moisture and temperature aging cycles show that UV radiation causes corrosion while UV shielding inhibits LSA corrosion.
A reaction-diffusion-based coding rate control mechanism for camera sensor networks.
Yamamoto, Hiroshi; Hyodo, Katsuya; Wakamiya, Naoki; Murata, Masayuki
2010-01-01
A wireless camera sensor network is useful for surveillance and monitoring for its visibility and easy deployment. However, it suffers from the limited capacity of wireless communication and a network is easily overflown with a considerable amount of video traffic. In this paper, we propose an autonomous video coding rate control mechanism where each camera sensor node can autonomously determine its coding rate in accordance with the location and velocity of target objects. For this purpose, we adopted a biological model, i.e., reaction-diffusion model, inspired by the similarity of biological spatial patterns and the spatial distribution of video coding rate. Through simulation and practical experiments, we verify the effectiveness of our proposal.
Conservation of hot regions in protein-protein interaction in evolution.
Hu, Jing; Li, Jiarui; Chen, Nansheng; Zhang, Xiaolong
2016-11-01
The hot regions of protein-protein interactions refer to the active area which formed by those most important residues to protein combination process. With the research development on protein interactions, lots of predicted hot regions can be discovered efficiently by intelligent computing methods, while performing biology experiments to verify each every prediction is hardly to be done due to the time-cost and the complexity of the experiment. This study based on the research of hot spot residue conservations, the proposed method is used to verify authenticity of predicted hot regions that using machine learning algorithm combined with protein's biological features and sequence conservation, though multiple sequence alignment, module substitute matrix and sequence similarity to create conservation scoring algorithm, and then using threshold module to verify the conservation tendency of hot regions in evolution. This research work gives an effective method to verify predicted hot regions in protein-protein interactions, which also provides a useful way to deeply investigate the functional activities of protein hot regions. Copyright © 2016. Published by Elsevier Inc.
Using an experimental model for the study of therapeutic touch.
dos Santos, Daniella Soares; Marta, Ilda Estéfani Ribeiro; Cárnio, Evelin Capellari; de Quadros, Andreza Urba; Cunha, Thiago Mattar; de Carvalho, Emilia Campos
2013-02-01
to verify whether the Paw Edema Model can be used in investigations about the effects of Therapeutic Touch on inflammation by measuring the variables pain, edema and neutrophil migration. this is a pilot and experimental study, involving ten male mice of the same genetic strain and divided into experimental and control group, submitted to the chemical induction of local inflammation in the right back paw. The experimental group received a daily administration of Therapeutic Touch for 15 minutes during three days. the data showed statistically significant differences in the nociceptive threshold and in the paw circumference of the animals from the experimental group on the second day of the experiment. the experiment model involving animals can contribute to study the effects of Therapeutic Touch on inflammation, and adjustments are suggested in the treatment duration, number of sessions and experiment duration.
Online Remote Sensing Interface
NASA Technical Reports Server (NTRS)
Lawhead, Joel
2007-01-01
BasinTools Module 1 processes remotely sensed raster data, including multi- and hyper-spectral data products, via a Web site with no downloads and no plug-ins required. The interface provides standardized algorithms designed so that a user with little or no remote-sensing experience can use the site. This Web-based approach reduces the amount of software, hardware, and computing power necessary to perform the specified analyses. Access to imagery and derived products is enterprise-level and controlled. Because the user never takes possession of the imagery, the licensing of the data is greatly simplified. BasinTools takes the "just-in-time" inventory control model from commercial manufacturing and applies it to remotely-sensed data. Products are created and delivered on-the-fly with no human intervention, even for casual users. Well-defined procedures can be combined in different ways to extend verified and validated methods in order to derive new remote-sensing products, which improves efficiency in any well-defined geospatial domain. Remote-sensing products produced in BasinTools are self-documenting, allowing procedures to be independently verified or peer-reviewed. The software can be used enterprise-wide to conduct low-level remote sensing, viewing, sharing, and manipulating of image data without the need for desktop applications.
Active vibration control using a modal-domain fiber optic sensor
NASA Technical Reports Server (NTRS)
Cox, David E.
1992-01-01
A closed-loop control experiment is described in which vibrations of a cantilevered beam are suppressed using measurements from a modal-domain fiber optic sensor. Modal-domain sensors are interference between the modes of a few-mode optical waveguide to detect strain. The fiber is bonded along the length of the beam and provides a measurement related to the strain distribution on the surface of the beam. A model for the fiber optic sensor is derived, and this model is integrated with the dynamic model of the beam. A piezoelectric actuator is also bonded to the beam and used to provide control forces. Control forces are obtained through dynamic compensation of the signal from the fiber optic sensor. The compensator is implemented with a real-time digital controller. Analytical models are verified by comparing simulations to experimental results for both open-loop and closed-loop configurations.
Planar maneuvering control of underwater snake robots using virtual holonomic constraints.
Kohl, Anna M; Kelasidi, Eleni; Mohammadi, Alireza; Maggiore, Manfredi; Pettersen, Kristin Y
2016-11-24
This paper investigates the problem of planar maneuvering control for bio-inspired underwater snake robots that are exposed to unknown ocean currents. The control objective is to make a neutrally buoyant snake robot which is subject to hydrodynamic forces and ocean currents converge to a desired planar path and traverse the path with a desired velocity. The proposed feedback control strategy enforces virtual constraints which encode biologically inspired gaits on the snake robot configuration. The virtual constraints, parametrized by states of dynamic compensators, are used to regulate the orientation and forward speed of the snake robot. A two-state ocean current observer based on relative velocity sensors is proposed. It enables the robot to follow the path in the presence of unknown constant ocean currents. The efficacy of the proposed control algorithm for several biologically inspired gaits is verified both in simulations for different path geometries and in experiments.
NASA Astrophysics Data System (ADS)
Qiu, Zhi-cheng; Wang, Xian-feng; Zhang, Xian-Min; Liu, Jin-guo
2018-07-01
A novel non-contact vibration measurement method using binocular vision sensors is proposed for piezoelectric flexible hinged plate. Decoupling methods of the bending and torsional low frequency vibration on measurement and driving control are investigated, using binocular vision sensors and piezoelectric actuators. A radial basis function neural network controller (RBFNNC) is designed to suppress both the larger and the smaller amplitude vibrations. To verify the non-contact measurement method and the designed controller, an experimental setup of the flexible hinged plate with binocular vision is constructed. Experiments on vibration measurement and control are conducted by using binocular vision sensors and the designed RBFNNC controllers, compared with the classical proportional and derivative (PD) control algorithm. The experimental measurement results demonstrate that the binocular vision sensors can detect the low-frequency bending and torsional vibration effectively. Furthermore, the designed RBF can suppress the bending vibration more quickly than the designed PD controller owing to the adjustment of the RBF control, especially for the small amplitude residual vibrations.
H2/H∞ control for grid-feeding converter considering system uncertainty
NASA Astrophysics Data System (ADS)
Li, Zhongwen; Zang, Chuanzhi; Zeng, Peng; Yu, Haibin; Li, Shuhui; Fu, Xingang
2017-05-01
Three-phase grid-feeding converters are key components to integrate distributed generation and renewable power sources to the power utility. Conventionally, proportional integral and proportional resonant-based control strategies are applied to control the output power or current of a GFC. But, those control strategies have poor transient performance and are not robust against uncertainties and volatilities in the system. This paper proposes a H2/H∞-based control strategy, which can mitigate the above restrictions. The uncertainty and disturbance are included to formulate the GFC system state-space model, making it more accurate to reflect the practical system conditions. The paper uses a convex optimisation method to design the H2/H∞-based optimal controller. Instead of using a guess-and-check method, the paper uses particle swarm optimisation to search a H2/H∞ optimal controller. Several case studies implemented by both simulation and experiment can verify the superiority of the proposed control strategy than the traditional PI control methods especially under dynamic and variable system conditions.
Liquid Scintillator Production for the NOvA Experiment
Mufson, S.; Baugh, B.; Bower, C.; ...
2015-04-15
The NOvA collaboration blended and delivered 8.8 kt (2.72M gal) of liquid scintillator as the active detector medium to its near and far detectors. The composition of this scintillator was specifically developed to satisfy NOvA's performance requirements. A rigorous set of quality control procedures was put in place to verify that the incoming components and the blended scintillator met these requirements. The scintillator was blended commercially in Hammond, IN. The scintillator was shipped to the NOvA detectors using dedicated stainless steel tanker trailers cleaned to food grade.
Design of a 4-DOF MR haptic master for application to robot surgery: virtual environment work
NASA Astrophysics Data System (ADS)
Oh, Jong-Seok; Choi, Seung-Hyun; Choi, Seung-Bok
2014-09-01
This paper presents the design and control performance of a novel type of 4-degrees-of-freedom (4-DOF) haptic master in cyberspace for a robot-assisted minimally invasive surgery (RMIS) application. By using a controllable magnetorheological (MR) fluid, the proposed haptic master can have a feedback function for a surgical robot. Due to the difficulty in utilizing real human organs in the experiment, the cyberspace that features the virtual object is constructed to evaluate the performance of the haptic master. In order to realize the cyberspace, a volumetric deformable object is represented by a shape-retaining chain-linked (S-chain) model, which is a fast volumetric model and is suitable for real-time applications. In the haptic architecture for an RMIS application, the desired torque and position induced from the virtual object of the cyberspace and the haptic master of real space are transferred to each other. In order to validate the superiority of the proposed master and volumetric model, a tracking control experiment is implemented with a nonhomogenous volumetric cubic object to demonstrate that the proposed model can be utilized in real-time haptic rendering architecture. A proportional-integral-derivative (PID) controller is then designed and empirically implemented to accomplish the desired torque trajectories. It has been verified from the experiment that tracking the control performance for torque trajectories from a virtual slave can be successfully achieved.
46 CFR 61.35-3 - Required tests and checks.
Code of Federal Regulations, 2010 CFR
2010-10-01
... heaters without water level controls) must be tested by interrupting the feed water supply. Manual reset... alarm and visible indicator must be verified. The shutdown times must be verified. (3) Fuel supply... draft loss interlock switch must be tested to ensure proper operation. The draft limit control must...
Space Bioreactor Science Workshop
NASA Technical Reports Server (NTRS)
Morrison, Dennis R. (Editor)
1987-01-01
The first space bioreactor has been designed for microprocessor control, no gaseous headspace, circulation and resupply of culture medium, and a slow mixing in very low shear regimes. Various ground based bioreactors are being used to test reactor vessel design, on-line sensors, effects of shear, nutrient supply, and waste removal from continuous culture of human cells attached to microcarriers. The small (500 ml) bioreactor is being constructed for flight experiments in the Shuttle middeck to verify systems operation under microgravity conditions and to measure the efficiencies of mass transport, gas transfer, oxygen consumption, and control of low shear stress on cells. Applications of microcarrier cultures, development of the first space bioreactor flight system, shear and mixing effects on cells, process control, and methods to monitor cell metabolism and nutrient requirements are among the topics covered.
Usability Study of Two Collocated Prototype System Displays
NASA Technical Reports Server (NTRS)
Trujillo, Anna C.
2007-01-01
Currently, most of the displays in control rooms can be categorized as status screens, alerts/procedures screens (or paper), or control screens (where the state of a component is changed by the operator). The primary focus of this line of research is to determine which pieces of information (status, alerts/procedures, and control) should be collocated. Two collocated displays were tested for ease of understanding in an automated desktop survey. This usability study was conducted as a prelude to a larger human-in-the-loop experiment in order to verify that the 2 new collocated displays were easy to learn and usable. The results indicate that while the DC display was preferred and yielded better performance than the MDO display, both collocated displays can be easily learned and used.
Smoke Point in Co-flow Experiment
NASA Technical Reports Server (NTRS)
Urban, David L.; Sunderland, Peter B.; Yuan, Zeng-Guang
2009-01-01
The Smoke Point In Co-flow Experiment (SPICE) determines the point at which gas-jet flames (similar to a butane-lighter flame) begin to emit soot (dark carbonaceous particulate formed inside the flame) in microgravity. Studying a soot emitting flame is important in understanding the ability of fires to spread and in control of soot in practical combustion systems space. Previous experiments show that soot dominates the heat emitted from flames in normal gravity and microgravity fires. Control of this heat emission is critical for prevention of the spread of fires on Earth and in space for the design of efficient combustion systems (jet engines and power generation boilers). The onset of soot emission from small gas jet flames (similar to a butane-lighter flame) will be studied to provide a database that can be used to assess the interaction between fuel chemistry and flow conditions on soot formation. These results will be used to support combustion theories and to assess fire behavior in microgravity. The Smoke Point In Co-flow Experiment (SPICE) will lead to a o improved design of practical combustors through improved control of soot formation; o improved understanding of and ability to predict heat release, soot production and emission in microgravity fires; o improved flammability criteria for selection of materials for use in the next generation of spacecraft. The Smoke Point In Co-flow Experiment (SPICE) will continue the study of fundamental phenomena related to understanding the mechanisms controlling the stability and extinction of jet diffusion flames begun with the Laminar Soot Processes (LSP) on STS-94. SPICE will stabilize an enclosed laminar flame in a co-flowing oxidizer, measure the overall flame shape to validate the theoretical and numerical predictions, measure the flame stabilization heights, and measure the temperature field to verify flame structure predictions. SPICE will determine the laminar smoke point properties of non-buoyant jet diffusion flames (i.e., the properties of the largest laminar jet diffusion flames that do not emit soot) for several fuels under different nozzle diameter/co-flow velocity configurations. Luminous flame shape measurements would also be made to verify models of the flame shapes under co-flow conditions. The smoke point is a simple measurement that has been found useful to study the influence of flow and fuel properties on the sooting propensity of flames. This information would help support current understanding of soot processes in laminar flames and by analogy in turbulent flames of practical interest.
Improvement in the control aspect of laser frequency stabilization for SUNLITE project
NASA Technical Reports Server (NTRS)
Zia, Omar
1992-01-01
Flight Electronics Division of Langley Research Center is developing a spaceflight experiment called the Stanford University and NASA Laser In-Space Technology (SUNLITE). The objective of the project is to explore the fundamental limits on frequency stability using an FM laser locking technique on a Nd:YAG non-planar ring (free-running linewidth of 5 KHz) oscillator in the vibration free, microgravity environment of space. Compact and automated actively stabilized terahertz laser oscillators will operate in space with an expected linewidth of less than 3 Hz. To implement and verify this experiment, NASA engineers have designed and built a state of the art, space qualified high speed data acquisition system for measuring the linewidth and stability limits of a laser oscillator. In order to achieve greater stability and better performance, an active frequency control scheme requiring the use of a feedback control loop has been applied. In the summer of 1991, the application of control theory in active frequency control as a frequency stabilization technique was investigated. The results and findings were presented in 1992 at the American Control Conference in Chicago, and have been published in Conference Proceedings. The main focus was to seek further improvement in the overall performance of the system by replacing the analogue controller by a digital algorithm.
Feng, Haibo; Dong, Dinghui; Ma, Tengfei; Zhuang, Jinlei; Fu, Yili; Lv, Yi; Li, Liyi
2017-12-01
Surgical robot systems which can significantly improve surgical procedures have been widely used in laparoendoscopic single-site surgery (LESS). For a relative complex surgical procedure, the development of an in vivo visual robot system for LESS can effectively improve the visualization for surgical robot systems. In this work, an in vivo visual robot system with a new mechanism for LESS was investigated. A finite element method (FEM) analysis was carried out to ensure the safety of the in vivo visual robot during the movement, which was the most important concern for surgical purposes. A master-slave control strategy was adopted, in which the control model was established by off-line experiments. The in vivo visual robot system was verified by using a phantom box. The experiment results show that the robot system can successfully realize the expected functionalities and meet the demands of LESS. The experiment results indicate that the in vivo visual robot with high manipulability has great potential in clinical application. Copyright © 2017 John Wiley & Sons, Ltd.
Ideal Gas Laws: Experiments for General Chemistry
ERIC Educational Resources Information Center
Deal, Walter J.
1975-01-01
Describes a series of experiments designed to verify the various relationships implicit in the ideal gas equation and shows that the success of the Graham's law effusion experiments can be explained by elementary hydrodynamics. (GS)
Definition of Verifiable School IPM
EPA is promoting use of verifiable school IPM. This is an activity that includes several elements with documentation, including pest identification, action thresholds, monitoring, effective pest control.
Adaptive Strategies for Controls of Flexible Arms. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Yuan, Bau-San
1989-01-01
An adaptive controller for a modern manipulator has been designed based on asymptotical stability via the Lyapunov criterion with the output error between the system and a reference model used as the actuating control signal. Computer simulations were carried out to test the design. The combination of the adaptive controller and a system vibration and mode shape estimator show that the flexible arm should move along a pre-defined trajectory with high-speed motion and fast vibration setting time. An existing computer-controlled prototype two link manipulator, RALF (Robotic Arm, Large Flexible), with a parallel mechanism driven by hydraulic actuators was used to verify the mathematical analysis. The experimental results illustrate that assumed modes found from finite element techniques can be used to derive the equations of motion with acceptable accuracy. The robust adaptive (modal) control is implemented to compensate for unmodelled modes and nonlinearities and is compared with the joint feedback control in additional experiments. Preliminary results show promise for the experimental control algorithm.
Student Perceptions of Classroom Achievement Goal Structure: Is It Appropriate to Aggregate?
ERIC Educational Resources Information Center
Lam, Arena C.; Ruzek, Erik A.; Schenke, Katerina; Conley, AnneMarie M.; Karabenick, Stuart A.
2015-01-01
Student reports are a common approach to characterizing how students experience their classrooms. We used a recently developed method--multilevel confirmatory factor analysis--to determine whether commonly employed measures of achievement goal structure constructs (mastery and performance) typically verified at the student level can be verified at…
Payload vibration isolation in a microgravity environment
NASA Technical Reports Server (NTRS)
Alexander, Richard M.
1990-01-01
Many in-space research experiments require the microgravity environment attainable near the center of mass of the Space Station. Disturbances to the structure surrounding an experiment may lead to vibration levels that will degrade the microgravity environment and undermine the experiment's validity. In-flight disturbances will include vibration transmission from nearby equipment and excitation from crew activity. Isolation of these vibration-sensitive experiments is required. Analytical and experimental work accomplished to develop a payload (experiment) isolation system for use in space is described. The isolation scheme allows the payload to float freely within a prescribed boundary while being kept centered with forces generated by small jets of air. The vibration criterion was a maximum payload acceleration of 10 micro-g's (9.81x10(exp -5)m/s(exp 2), independent of frequency. An experimental setup, composed of a cart supported by air bearings on a flat granite slab, was designed and constructed to simulate the microgravity environment in the horizontal plane. Experimental results demonstrate that the air jet control system can effectively manage payload oscillatory response. An analytical model was developed and verified by comparing predicted and measured payload response. The mathematical model, which includes payload dynamics, control logic, and air jet forces, is used to investigate payload response to disturbances likely to be present in the Space Station.
Design of Remote Heat-Meter System Based on Trusted Technology
NASA Astrophysics Data System (ADS)
Yu, Changgeng; Lai, Liping
2018-03-01
This article presents a proposal of a heat meter and remote meter reading system for the disadvantages of the hackers very easily using eavesdropping, tampering, replay attack of traditional remote meter reading system. The system selects trusted technology such as, the identity authentication, integrity verifying, and data protection. By the experiments, it is proved that the remote meter reading system of the heat meter can be used to verify the feasibility of the technology, and verify the practicability and operability of data protection technology.
Study on the polarization scrambling time for ultra-high-speed optical fiber communication systems
NASA Astrophysics Data System (ADS)
Jia, Nan; Li, Tangjun; Zhong, Kangping; Gong, Taorong; Lu, Dan; Chen, Ming; Wang, Chen
2009-11-01
A 160Gbit/s optical time-division-multiplexing (OTDM) transmission system with polarization Scrambler is demonstrated experimentally. The Scrambler based on the structure of the all-fiber dynamic polarization controller (PolaRITE II by General Photonics Co.). The polarization controller is controlled accurately the peak scrambling frequencies and the corresponding half-wave voltages by home-made a singlechip circuit. Both theory and experience show that the rate of scrambler is related to the spectrum width, spectral distribution, modulation rate and so on. The rate of Scramble for broadband light would be much slower compare with narrowband light to carrying out depolarization. In the same width of spectrum, light with abundant spectrum would need a slower rate. The relationship between the Rate of Scrambler and the Character of different Lasers will be discussed by using Stokes parameters and Mueller matrix. And the experiments performed to verify the results of theoretical analysis results. The Scrambler can reduce Intersymbol Interference, Polarization Mode Dispersion (PMD) and Polarization Dependent Loss (PDL) that have are validated experimentally. Based on the Scrambler, the 160-Gb/s OTDM transmissions are successfully demonstrated.
NASA Astrophysics Data System (ADS)
Sun, Ning; Wu, Yiming; Chen, He; Fang, Yongchun
2018-03-01
Underactuated cranes play an important role in modern industry. Specifically, in most situations of practical applications, crane systems exhibit significant double pendulum characteristics, which makes the control problem quite challenging. Moreover, most existing planners/controllers obtained with standard methods/techniques for double pendulum cranes cannot minimize the energy consumption when fulfilling the transportation tasks. Therefore, from a practical perspective, this paper proposes an energy-optimal solution for transportation control of double pendulum cranes. By applying the presented approach, the transportation objective, including fast trolley positioning and swing elimination, is achieved with minimized energy consumption, and the residual oscillations are suppressed effectively with all the state constrains being satisfied during the entire transportation process. As far as we know, this is the first energy-optimal solution for transportation control of underactuated double pendulum cranes with various state and control constraints. Hardware experimental results are included to verify the effectiveness of the proposed approach, whose superior performance is reflected by being experimentally compared with some comparative controllers.
Lin, Jhih-Hong; Chiang, Mao-Hsiung
2016-08-25
Magnetic shape memory (MSM) alloys are a new class of smart materials with extraordinary strains up to 12% and frequencies in the range of 1 to 2 kHz. The MSM actuator is a potential device which can achieve high performance electromagnetic actuation by using the properties of MSM alloys. However, significant non-linear hysteresis behavior is a significant barrier to control the MSM actuator. In this paper, the Preisach model was used, by capturing experiments from different input signals and output responses, to model the hysteresis of MSM actuator, and the inverse Preisach model, as a feedforward control, provided compensational signals to the MSM actuator to linearize the hysteresis non-linearity. The control strategy for path tracking combined the hysteresis compensator and the modified fuzzy sliding mode control (MFSMC) which served as a path controller. Based on the experimental results, it was verified that a tracking error in the order of micrometers was achieved.
Lin, Jhih-Hong; Chiang, Mao-Hsiung
2016-01-01
Magnetic shape memory (MSM) alloys are a new class of smart materials with extraordinary strains up to 12% and frequencies in the range of 1 to 2 kHz. The MSM actuator is a potential device which can achieve high performance electromagnetic actuation by using the properties of MSM alloys. However, significant non-linear hysteresis behavior is a significant barrier to control the MSM actuator. In this paper, the Preisach model was used, by capturing experiments from different input signals and output responses, to model the hysteresis of MSM actuator, and the inverse Preisach model, as a feedforward control, provided compensational signals to the MSM actuator to linearize the hysteresis non-linearity. The control strategy for path tracking combined the hysteresis compensator and the modified fuzzy sliding mode control (MFSMC) which served as a path controller. Based on the experimental results, it was verified that a tracking error in the order of micrometers was achieved. PMID:27571081
Control mechanism of double-rotator-structure ternary optical computer
NASA Astrophysics Data System (ADS)
Kai, SONG; Liping, YAN
2017-03-01
Double-rotator-structure ternary optical processor (DRSTOP) has two characteristics, namely, giant data-bits parallel computing and reconfigurable processor, which can handle thousands of data bits in parallel, and can run much faster than computers and other optical computer systems so far. In order to put DRSTOP into practical application, this paper established a series of methods, namely, task classification method, data-bits allocation method, control information generation method, control information formatting and sending method, and decoded results obtaining method and so on. These methods form the control mechanism of DRSTOP. This control mechanism makes DRSTOP become an automated computing platform. Compared with the traditional calculation tools, DRSTOP computing platform can ease the contradiction between high energy consumption and big data computing due to greatly reducing the cost of communications and I/O. Finally, the paper designed a set of experiments for DRSTOP control mechanism to verify its feasibility and correctness. Experimental results showed that the control mechanism is correct, feasible and efficient.
Mitz, Andrew R
2005-10-15
Behavioral neurophysiology and other kinds of behavioral research often involve the delivery of liquid rewards to experimental subjects performing some kind of operant task. Available systems use gravity or pumps to deliver these fluids, but such methods are poorly suited to moment-to-moment control of the volume, timing, and type of fluid delivered. The design described here overcomes these limitations using an electronic control unit, a pressurized reservoir unit, and an electronically controlled solenoid. The control unit monitors reservoir pressure and provides precisely timed solenoid activation signals. It also stores calibration tables and does on-the-fly interpolation to support computer-controlled delivery calibrated directly in milliliters. The reservoir provides pressurized liquid to a solenoid mounted near the subject. Multiple solenoids, each supplied by a separate reservoir unit and control unit, can be stacked in close proximity to allow instantaneous selection of which liquid reward is delivered. The precision of droplet delivery was verified by weighing discharged droplets on a commercial analytical balance.
Du, Hui; Chen, Xiaobo; Xi, Juntong; Yu, Chengyi; Zhao, Bao
2017-12-12
Large-scale surfaces are prevalent in advanced manufacturing industries, and 3D profilometry of these surfaces plays a pivotal role for quality control. This paper proposes a novel and flexible large-scale 3D scanning system assembled by combining a robot, a binocular structured light scanner and a laser tracker. The measurement principle and system construction of the integrated system are introduced. A mathematical model is established for the global data fusion. Subsequently, a robust method is introduced for the establishment of the end coordinate system. As for hand-eye calibration, the calibration ball is observed by the scanner and the laser tracker simultaneously. With this data, the hand-eye relationship is solved, and then an algorithm is built to get the transformation matrix between the end coordinate system and the world coordinate system. A validation experiment is designed to verify the proposed algorithms. Firstly, a hand-eye calibration experiment is implemented and the computation of the transformation matrix is done. Then a car body rear is measured 22 times in order to verify the global data fusion algorithm. The 3D shape of the rear is reconstructed successfully. To evaluate the precision of the proposed method, a metric tool is built and the results are presented.
Design of an active helicopter control experiment at the Princeton Rotorcraft Dynamics Laboratory
NASA Technical Reports Server (NTRS)
Marraffa, Andrew M.; Mckillip, R. M., Jr.
1989-01-01
In an effort to develop an active control technique for reducing helicopter vibrations stemming from the main rotor system, a helicopter model was designed and tested at the Princeton Rotorcraft Dynamics Laboratory (PRDL). A description of this facility, including its latest data acquisition upgrade, are given. The design procedures for the test model and its Froude scaled rotor system are also discussed. The approach for performing active control is based on the idea that rotor states can be identified by instrumenting the rotor blades. Using this knowledge, Individual Blade Control (IBC) or Higher Harmonic Control (HHC) pitch input commands may be used to impact on rotor dynamics in such a way as to reduce rotor vibrations. Discussed here is an instrumentation configuration utilizing miniature accelerometers to measure and estimate first and second out-of-plane bending mode positions and velocities. To verify this technique, the model was tested, and resulting data were used to estimate rotor states as well as flap and bending coefficients, procedures for which are discussed. Overall results show that a cost- and time-effective method for building a useful test model for future active control experiments was developed. With some fine-tuning or slight adjustments in sensor configuration, prospects for obtaining good state estimates look promising.
Designing communication and remote controlling of virtual instrument network system
NASA Astrophysics Data System (ADS)
Lei, Lin; Wang, Houjun; Zhou, Xue; Zhou, Wenjian
2005-01-01
In this paper, a virtual instrument network through the LAN and finally remote control of virtual instruments is realized based on virtual instrument and LabWindows/CVI software platform. The virtual instrument network system is made up of three subsystems. There are server subsystem, telnet client subsystem and local instrument control subsystem. This paper introduced virtual instrument network structure in detail based on LabWindows. Application procedure design of virtual instrument network communication, the Client/the programming mode of the server, remote PC and server communication far realizing, the control power of the workstation is transmitted, server program and so on essential technical were introduced. And virtual instruments network may connect to entire Internet on. Above-mentioned technology, through measuring the application in the electronic measurement virtual instrument network that is already built up, has verified the actual using value of the technology. Experiment and application validate that this design is resultful.
Free-Energy-Based Design Policy for Robust Network Control against Environmental Fluctuation.
Iwai, Takuya; Kominami, Daichi; Murata, Masayuki; Yomo, Tetsuya
2015-01-01
Bioinspired network control is a promising approach for realizing robust network controls. It relies on a probabilistic mechanism composed of positive and negative feedback that allows the system to eventually stabilize on the best solution. When the best solution fails due to environmental fluctuation, the system cannot keep its function until the system finds another solution again. To prevent the temporal loss of the function, the system should prepare some solution candidates and stochastically select available one from them. However, most bioinspired network controls are not designed with this issue in mind. In this paper, we propose a thermodynamics-based design policy that allows systems to retain an appropriate degree of randomness depending on the degree of environmental fluctuation, which prepares the system for the occurrence of environmental fluctuation. Furthermore, we verify the design policy by using an attractor selection model-based multipath routing to run simulation experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kazakevich, G.; Johnson, R.; Lebedev, V.
State of the art high-current superconducting accelerators require efficient RF sources with a fast dynamic phase and power control. This allows for compensation of the phase and amplitude deviations of the accelerating voltage in the Superconducting RF (SRF) cavities caused by microphonics, etc. Efficient magnetron transmitters with fast phase and power control are attractive RF sources for this application. They are more cost effective than traditional RF sources such as klystrons, IOTs and solid-state amplifiers used with large scale accelerator projects. However, unlike traditional RF sources, controlled magnetrons operate as forced oscillators. Study of the impact of the controlling signalmore » on magnetron stability, noise and efficiency is therefore important. This paper discusses experiments with 2.45 GHz, 1 kW tubes and verifies our analytical model which is based on the charge drift approximation.« less
Shape memory alloy resistance behaviour at high altitude for feedback control
NASA Astrophysics Data System (ADS)
Ng, W. T.; Sedan, M. F.; Abdullah, E. J.; Azrad, S.; Harithuddin, A. S. M.
2017-12-01
Many recent aerospace technologies are using smart actuators to reduce the system's complexity and increase its reliability. One such actuator is shape memory alloy (SMA) actuator, which is lightweight, produces high force and large deflection. However, some disadvantages in using SMA actuators have been identified and they include nonlinear response of the strain to input current, hysteresis characteristic that results in inaccurate control and less than optimum system performance, high operating temperatures, slow response and also high requirement of electrical power to obtain the desired actuation forces. It is still unknown if the SMA actuators can perform effectively at high altitude with low surrounding temperature. The work presented here covers the preliminary process of verifying the feasibility of using resistance as feedback control at high altitude for aerospace applications. Temperature and resistance of SMA actuator at high altitude is investigated by conducting an experiment onboard a high altitude balloon. The results from the high altitude experiment indicate that the resistance or voltage drop of the SMA wire is not significantly affected by the low surrounding temperature at high altitude as compared to the temperature of SMA. Resistance feedback control for SMA actuators may be suitable for aerospace applications.
Formal Verification of the AAMP-FV Microcode
NASA Technical Reports Server (NTRS)
Miller, Steven P.; Greve, David A.; Wilding, Matthew M.; Srivas, Mandayam
1999-01-01
This report describes the experiences of Collins Avionics & Communications and SRI International in formally specifying and verifying the microcode in a Rockwell proprietary microprocessor, the AAMP-FV, using the PVS verification system. This project built extensively on earlier experiences using PVS to verify the microcode in the AAMP5, a complex, pipelined microprocessor designed for use in avionics displays and global positioning systems. While the AAMP5 experiment demonstrated the technical feasibility of formal verification of microcode, the steep learning curve encountered left unanswered the question of whether it could be performed at reasonable cost. The AAMP-FV project was conducted to determine whether the experience gained on the AAMP5 project could be used to make formal verification of microcode cost effective for safety-critical and high volume devices.
Phase Grouping of Larmor Electrons by a Synchronous Wave in Controlled Magnetrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kazakevich, G.; Johnson, R.; Lebedev, V.
A simplified analytical model based on the charge drift approximation has been developed. It considers the resonant interaction of the synchronous wave with the flow of Larmor electrons in a magnetron. The model predicts stable coherent generation of the tube above and below the threshold of self-excitation. This occurs if the magnetron is driven by a sufficient resonant injected signal (up to -10 dB). The model substantiates precise stability, high efficiency and low noise at the range of the magnetron power control over 10 dB by variation of the magnetron current. The model and the verifying experiments with 2.45 GHz,more » 1 kW magnetrons are discussed.« less
Design and verification of distributed logic controllers with application of Petri nets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiśniewski, Remigiusz; Grobelna, Iwona; Grobelny, Michał
2015-12-31
The paper deals with the designing and verification of distributed logic controllers. The control system is initially modelled with Petri nets and formally verified against structural and behavioral properties with the application of the temporal logic and model checking technique. After that it is decomposed into separate sequential automata that are working concurrently. Each of them is re-verified and if the validation is successful, the system can be finally implemented.
Design and verification of distributed logic controllers with application of Petri nets
NASA Astrophysics Data System (ADS)
Wiśniewski, Remigiusz; Grobelna, Iwona; Grobelny, Michał; Wiśniewska, Monika
2015-12-01
The paper deals with the designing and verification of distributed logic controllers. The control system is initially modelled with Petri nets and formally verified against structural and behavioral properties with the application of the temporal logic and model checking technique. After that it is decomposed into separate sequential automata that are working concurrently. Each of them is re-verified and if the validation is successful, the system can be finally implemented.
Study the Effect of SiO2 Based Flux on Dilution in Submerged Arc Welding
NASA Astrophysics Data System (ADS)
kumar, Aditya; Maheshwari, Sachin
2017-08-01
This paper highlights the method for prediction of dilution in submerged arc welding (SAW). The most important factors of weld bead geometry are governed by the weld dilution which controls the chemical and mechanical properties. Submerged arc welding process is used generally due to its very easy control of process variables, good penetration, high weld quality, and smooth finish. Machining parameters, with suitable weld quality can be achieved with the different composition of the flux in the weld. In the present study Si02-Al2O3-CaO flux system was used. In SiO2 based flux NiO, MnO, MgO were mixed in various proportions. The paper investigates the relationship between the process parameters like voltage, % of flux constituents and dilution with the help of Taguchi’s method. The experiments were designed according to Taguchi L9 orthogonal array, while varying the voltage at two different levels in addition to alloying elements. Then the optimal results conditions were verified by confirmatory experiments.
NASA Astrophysics Data System (ADS)
Sawicki, Jean-Paul; Saint-Eve, Frédéric; Petit, Pierre; Aillerie, Michel
2017-02-01
This paper presents results of experiments aimed to verify a formula able to compute duty cycle in the case of pulse width modulation control for a DC-DC converter designed and realized in laboratory. This converter, called Magnetically Coupled Boost (MCB) is sized to step up only one photovoltaic module voltage to supply directly grid inverters. Duty cycle formula will be checked in a first time by identifying internal parameter, auto-transformer ratio, and in a second time by checking stability of operating point on the side of photovoltaic module. Thinking on nature of generator source and load connected to converter leads to imagine additional experiments to decide if auto-transformer ratio parameter could be used with fixed value or on the contrary with adaptive value. Effects of load variations on converter behavior or impact of possible shading on photovoltaic module are also mentioned, with aim to design robust control laws, in the case of parallel association, designed to compensate unwanted effects due to output voltage coupling.
Human cell culture in a space bioreactor
NASA Technical Reports Server (NTRS)
Morrison, Dennis R.
1988-01-01
Microgravity offers new ways of handling fluids, gases, and growing mammalian cells in efficient suspension cultures. In 1976 bioreactor engineers designed a system using a cylindrical reactor vessel in which the cells and medium are slowly mixed. The reaction chamber is interchangeable and can be used for several types of cell cultures. NASA has methodically developed unique suspension type cell and recovery apparatus culture systems for bioprocess technology experiments and production of biological products in microgravity. The first Space Bioreactor was designed for microprocessor control, no gaseous headspace, circulation and resupply of culture medium, and slow mixing in very low shear regimes. Various ground based bioreactors are being used to test reactor vessel design, on-line sensors, effects of shear, nutrient supply, and waste removal from continuous culture of human cells attached to microcarriers. The small Bioreactor is being constructed for flight experiments in the Shuttle Middeck to verify systems operation under microgravity conditions and to measure the efficiencies of mass transport, gas transfer, oxygen consumption and control of low shear stress on cells.
NASA Astrophysics Data System (ADS)
Morita, Yoshifumi; Hirose, Akinori; Uno, Takashi; Uchid, Masaki; Ukai, Hiroyuki; Matsui, Nobuyuki
2007-12-01
In this paper we propose a new rehabilitation training support system for upper limbs. The proposed system enables therapists to quantitatively evaluate the therapeutic effect of upper limb motor function during training, to easily change the load of resistance of training and to easily develop a new training program suitable for the subjects. For this purpose we develop control algorithms of training programs in the 3D force display robot. The 3D force display robot has parallel link mechanism with three motors. The control algorithm simulating sanding training is developed for the 3D force display robot. Moreover the teaching/training function algorithm is developed. It enables the therapists to easily make training trajectory suitable for subject's condition. The effectiveness of the developed control algorithms is verified by experiments.
Momose, Naoki; Yamakoshi, Rie; Kokubo, Ryo; Yasuda, Toru; Iwamoto, Norio; Umeda, Chinori; Nakajima, Itsuro; Yanagisawa, Mitsunobu; Tomizawa, Yasuko
2010-03-01
We developed a simple device that stabilizes the blood level in the reservoir of the extracorporeal circulation open circuit system by measuring the hydrostatic pressure of the reservoir to control the flow rate of the arterial pump. When the flow rate of the venous return decreases, the rotation speed of the arterial pump is automatically slowed down. Consequently, the blood level in the reservoir is stabilized quickly between two arbitrarily set levels and never falls below the pre-set low level. We conducted a basic experiment to verify the operation of the device, using a mock circuit with water. Commercially available pumps and reservoir were used without modification. The results confirmed that the control method effectively regulates the reservoir liquid level and is highly reliable. The device possibly also functions as a safety device.
Control of DC gas flow in a single-stage double-inlet pulse tube cooler
NASA Astrophysics Data System (ADS)
Wang, C.; Thummes, G.; Heiden, C.
The use of double-inlet mode in the pulse tube cooler opens up a possibility of DC gas flow circulating around the regenerator and pulse tube. Numerical analysis shows that effects of DC flow in a single-stage pulse tube cooler are different in some aspects from that in a 4 K pulse tube cooler. For highest cooler efficiency, DC flow should be compensated to a small value, i.e. DC flow over average AC flow at regenerator inlet should be in the range -0.0013 to +0.00016. Dual valves with reversed asymmetric geometries were used for the double-inlet bypass to control the DC flow in this paper. The experiment, performed in a single-stage double-inlet pulse tube cooler, verified that the cooler performance can be significantly improved by precisely controlling the DC flow.
Sorting Rotating Micromachines by Variations in Their Magnetic Properties
NASA Astrophysics Data System (ADS)
Howell, Taylor A.; Osting, Braxton; Abbott, Jake J.
2018-05-01
We consider sorting for the broad class of micromachines (also known as microswimmers, microrobots, micropropellers, etc.) propelled by rotating magnetic fields. We present a control policy that capitalizes on the variation in magnetic properties between otherwise-homogeneous micromachines to enable the sorting of a select fraction of a group from the remainder and prescribe its net relative movement, using a uniform magnetic field that is applied equally to all micromachines. The method enables us to accomplish this sorting task using open-loop control, without relying on a structured environment or localization information of individual micromachines. With our method, the control time to perform the sort is invariant to the number of micromachines. The method is verified through simulations and scaled experiments. Finally, we include an extended discussion about the limitations of the method and address open questions related to its practical application.
Tuning-free controller to accurately regulate flow rates in a microfluidic network
NASA Astrophysics Data System (ADS)
Heo, Young Jin; Kang, Junsu; Kim, Min Jun; Chung, Wan Kyun
2016-03-01
We describe a control algorithm that can improve accuracy and stability of flow regulation in a microfluidic network that uses a conventional pressure pump system. The algorithm enables simultaneous and independent control of fluid flows in multiple micro-channels of a microfluidic network, but does not require any model parameters or tuning process. We investigate robustness and optimality of the proposed control algorithm and those are verified by simulations and experiments. In addition, the control algorithm is compared with a conventional PID controller to show that the proposed control algorithm resolves critical problems induced by the PID control. The capability of the control algorithm can be used not only in high-precision flow regulation in the presence of disturbance, but in some useful functions for lab-on-a-chip devices such as regulation of volumetric flow rate, interface position control of two laminar flows, valveless flow switching, droplet generation and particle manipulation. We demonstrate those functions and also suggest further potential biological applications which can be accomplished by the proposed control framework.
Tuning-free controller to accurately regulate flow rates in a microfluidic network
Heo, Young Jin; Kang, Junsu; Kim, Min Jun; Chung, Wan Kyun
2016-01-01
We describe a control algorithm that can improve accuracy and stability of flow regulation in a microfluidic network that uses a conventional pressure pump system. The algorithm enables simultaneous and independent control of fluid flows in multiple micro-channels of a microfluidic network, but does not require any model parameters or tuning process. We investigate robustness and optimality of the proposed control algorithm and those are verified by simulations and experiments. In addition, the control algorithm is compared with a conventional PID controller to show that the proposed control algorithm resolves critical problems induced by the PID control. The capability of the control algorithm can be used not only in high-precision flow regulation in the presence of disturbance, but in some useful functions for lab-on-a-chip devices such as regulation of volumetric flow rate, interface position control of two laminar flows, valveless flow switching, droplet generation and particle manipulation. We demonstrate those functions and also suggest further potential biological applications which can be accomplished by the proposed control framework. PMID:26987587
Microgravity Smoldering Combustion Takes Flight
NASA Technical Reports Server (NTRS)
1996-01-01
The Microgravity Smoldering Combustion (MSC) experiment lifted off aboard the Space Shuttle Endeavour in September 1995 on the STS-69 mission. This experiment is part of series of studies focused on the smolder characteristics of porous, combustible materials in a microgravity environment. Smoldering is a nonflaming form of combustion that takes place in the interior of combustible materials. Common examples of smoldering are nonflaming embers, charcoal briquettes, and cigarettes. The objective of the study is to provide a better understanding of the controlling mechanisms of smoldering, both in microgravity and Earth gravity. As with other forms of combustion, gravity affects the availability of air and the transport of heat, and therefore, the rate of combustion. Results of the microgravity experiments will be compared with identical experiments carried out in Earth's gravity. They also will be used to verify present theories of smoldering combustion and will provide new insights into the process of smoldering combustion, enhancing our fundamental understanding of this frequently encountered combustion process and guiding improvement in fire safety practices.
NASA Astrophysics Data System (ADS)
Menicucci, D. F.
1986-01-01
The performance of a photovoltaic (PV) system is affected by its mounting configuration. The optimal configuration is unclear because of lack of experience and data. Sandia National Laboratories, Albuquerque (SNLA), has conducted a controlled field experiment to compare four types of the most common module mounting. The data from the experiment were used to verify the accuracy of PVFORM, a new computer program that simulates PV performance. PVFORM was then used to simulate the performance of identical PV modules on different mounting configurations at 10 sites throughout the US. This report describes the module mounting configurations, the experimental methods used, the specialized statistical techniques used in the analysis, and the final results of the effort. The module mounting configurations are rank ordered at each site according to their annual and seasonal energy production performance, and each is briefly discussed in terms of its advantages and disadvantages in various applications.
Appraising the value of independent EIA follow-up verifiers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wessels, Jan-Albert, E-mail: janalbert.wessels@nwu.ac.za; Retief, Francois, E-mail: francois.retief@nwu.ac.za; Morrison-Saunders, Angus, E-mail: A.Morrison-Saunders@murdoch.edu.au
Independent Environmental Impact Assessment (EIA) follow-up verifiers such as monitoring agencies, checkers, supervisors and control officers are active on various construction sites across the world. There are, however, differing views on the value that these verifiers add and very limited learning in EIA has been drawn from independent verifiers. This paper aims to appraise how and to what extent independent EIA follow-up verifiers add value in major construction projects in the developing country context of South Africa. A framework for appraising the role of independent verifiers was established and four South African case studies were examined through a mixture ofmore » site visits, project document analysis, and interviews. Appraisal results were documented in the performance areas of: planning, doing, checking, acting, public participating and integration with other programs. The results indicate that independent verifiers add most value to major construction projects when involved with screening EIA requirements of new projects, allocation of financial and human resources, checking legal compliance, influencing implementation, reporting conformance results, community and stakeholder engagement, integration with self-responsibility programs such as environmental management systems (EMS), and controlling records. It was apparent that verifiers could be more creatively utilized in pre-construction preparation, providing feedback of knowledge into assessment of new projects, giving input to the planning and design phase of projects, and performance evaluation. The study confirms the benefits of proponent and regulator follow-up, specifically in having independent verifiers that disclose information, facilitate discussion among stakeholders, are adaptable and proactive, aid in the integration of EIA with other programs, and instill trust in EIA enforcement by conformance evaluation. Overall, the study provides insight on how to harness the learning opportunities arising from EIA follow-up through the appointment of independent verifiers. - Highlights: • A framework for appraising the role of independent verifiers is established. • The value added to EIA follow-up by independent verifiers in South Africa is documented. • Verifiers add most value when involved with screening, checking compliance, influencing decisions and community engagement. • Verifiers could be more creatively utilized in pre-construction preparation, giving feedback, and performance evaluation.« less
Experiments in Special Relativity Using Compton Scattering of Gamma Rays.
ERIC Educational Resources Information Center
Egelstaff, P. A.; And Others
1981-01-01
Some simple undergraduate laboratory experiments are described, which verify the energy-momentum relationship of special relativity. These experiments have been designed either to be used as classroom demonstrations or to be carried out by second-year students. (Author/JN)
Improving dynamic performances of PWM-driven servo-pneumatic systems via a novel pneumatic circuit.
Taghizadeh, Mostafa; Ghaffari, Ali; Najafi, Farid
2009-10-01
In this paper, the effect of pneumatic circuit design on the input-output behavior of PWM-driven servo-pneumatic systems is investigated and their control performances are improved using linear controllers instead of complex and costly nonlinear ones. Generally, servo-pneumatic systems are well known for their nonlinear behavior. However, PWM-driven servo-pneumatic systems have the advantage of flexibility in the design of pneumatic circuits which affects the input-output linearity of the whole system. A simple pneumatic circuit with only one fast switching valve is designed which leads to a quasi-linear input-output relation. The quasi-linear behavior of the proposed circuit is verified both experimentally and by simulations. Closed loop position control experiments are then carried out using linear P- and PD-controllers. Since the output position is noisy and cannot be directly differentiated, a Kalman filter is designed to estimate the velocity of the cylinder. Highly improved tracking performances are obtained using these linear controllers, compared to previous works with nonlinear controllers.
Design, analysis, and testing of high frequency passively damped struts
NASA Technical Reports Server (NTRS)
Yiu, Y. C.; Davis, L. Porter; Napolitano, Kevin; Ninneman, R. Rory
1993-01-01
Objectives of the research are: (1) to develop design requirements for damped struts to stabilize control system in the high frequency cross-over and spill-over range; (2) to design, fabricate and test viscously damped strut and viscoelastically damped strut; (3) to verify accuracy of design and analysis methodology of damped struts; and (4) to design and build test apparatus, and develop data reduction algorithm to measure strut complex stiffness. In order to meet the stringent performance requirements of the SPICE experiment, the active control system is used to suppress the dynamic responses of the low order structural modes. However, the control system also inadvertently drives some of the higher order modes unstable in the cross-over and spill-over frequency range. Passive damping is a reliable and effective way to provide damping to stabilize the control system. It also improves the robustness of the control system. Damping is designed into the SPICE testbed as an integral part of the control-structure technology.
NASA Astrophysics Data System (ADS)
Song, S. Y.; Liu, Q. H.; Zhao, Y. N.; Liu, S. Y.
2016-08-01
With the rapid development of wind power generation, the related research of wind power control and integration issues has attracted much attention, and the focus of the research are shifting away from the ideal power grid environment to the actual power grid environment. As the main stream wind turbine generator, a doubly-fed induction generator (DFIG) is connected to the power grid directly by its stator, so it is particularly sensitive to the power grid. This paper studies the improvement of DFIG control technology in the power grid harmonic environment. Based on the DFIG dynamic model considering the power grid harmonic environment, this paper introduces the shortcomings of the common control strategy of DFIG, and puts forward the enhanced method. The decoupling control of the system is realized by compensating the coupling between the rotor harmonic voltage and harmonic current, improving the control performance. In addition, the simulation experiments on PSCAD/EMTDC are carried out to verify the correctness and effectiveness of the improved scheme.
Kraus, Michael W; Chen, Serena
2009-07-01
Extending research on the automatic activation of goals associated with significant others, the authors hypothesized that self-verification goals typically pursued with significant others are automatically elicited when a significant-other representation is activated. Supporting this hypothesis, the activation of a significant-other representation through priming (Experiments 1 and 3) or through a transference encounter (Experiment 2) led participants to seek feedback that verifies their preexisting self-views. Specifically, significant-other primed participants desired self-verifying feedback, in general (Experiment 1), from an upcoming interaction partner (Experiment 2), and relative to acquaintance-primed participants and favorable feedback (Experiment 3). Finally, self-verification goals were activated, especially for relational self-views deemed high in importance to participants' self-concepts (Experiment 2) and held with high certainty (Experiment 3). Implications for research on self-evaluative goals, the relational self, and the automatic goal activation literature are discussed, as are consequences for close relationships. (PsycINFO Database Record (c) 2009 APA, all rights reserved).
Application and research of artificial water mist on photoelectric interference
NASA Astrophysics Data System (ADS)
He, Yuejun; Ren, Baolin
2018-04-01
Water mist is a new type of photoelectric interfering material. It can exert a strong interference and shielding effect on infrared light, laser and radar wave through scattering, reflection, refraction and absorption. Based on this, this paper illustrates the application of an artificial high pressure water mist technology in infrared interference system. First, the operating principle of the infrared interference system is introduced. Next, the design principle of self-excited rotary vortex nozzle, the key part of the system, is elaborated. Then, the calculation of the main control parameters of the system is clarified. In the end, the paper verifies interference and shielding effect of the system by experiment. Experiment shows that the interference system can significantly reduce infrared signature of the target, featuring excellent infrared interference performance and high practical value.
Mitigating IASCC of Reactor Core Internals by Post-Irradiation Annealing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Was, Gary
This final report summarizes research performed during the period between September 2012 and December 2016, with the objective of establishing the effectiveness of post-irradiation annealing (PIA) as an advanced mitigation strategy for irradiation-assisted stress corrosion cracking (IASCC). This was completed by using irradiated 304SS control blade material to conduct crack initiation and crack growth rate (CGR) experiments in simulated BWR environment. The mechanism by which PIA affects IASCC susceptibility will also be verified. The success of this project will provide a foundation for the use of PIA as a mitigation strategy for core internal components in commercial reactors.
The perception of surface layout during low level flight
NASA Technical Reports Server (NTRS)
Perrone, John A.
1991-01-01
Although it is fairly well established that information about surface layout can be gained from motion cues, it is not so clear as to what information humans can use and what specific information they should be provided. Theoretical analyses tell us that the information is in the stimulus. It will take more experiments to verify that this information can be used by humans to extract surface layout from the 2D velocity flow field. The visual motion factors that can affect the pilot's ability to control an aircraft and to infer the layout of the terrain ahead are discussed.
Multisource passive acoustic tracking: an application of random finite set data fusion
NASA Astrophysics Data System (ADS)
Ali, Andreas M.; Hudson, Ralph E.; Lorenzelli, Flavio; Yao, Kung
2010-04-01
Multisource passive acoustic tracking is useful in animal bio-behavioral study by replacing or enhancing human involvement during and after field data collection. Multiple simultaneous vocalizations are a common occurrence in a forest or a jungle, where many species are encountered. Given a set of nodes that are capable of producing multiple direction-of-arrivals (DOAs), such data needs to be combined into meaningful estimates. Random Finite Set provides the mathematical probabilistic model, which is suitable for analysis and optimal estimation algorithm synthesis. Then the proposed algorithm has been verified using a simulation and a controlled test experiment.
Chemseal 3808-A2 penetration into small leak path
NASA Technical Reports Server (NTRS)
Carruth, M. R., Jr.; Dehaye, R. F.
1988-01-01
A possible fix to a leak in the oxidizer system of the Space Shuttle Discovery's attitude control system was proposed by MSFC. This fix involved the passing of a shuttlecock past the leaking Dynaflow fitting and sealing the vent tube containing the fitting with Chemseal 3808-A2. The question of whether the Chemseal 3808-A2 can flow into the leak path and provide a better seal was addressed analytically and by experiment to verify the analytical formula used. The results show that the equations are applicable and that the Chemseal will flow into the expected leak path and seal.
Zhang, Qianfan; Dong, Shuai; Xue, Ping; Zhou, Chaowei; Cheng, ShuKang
2014-01-01
A novel modified space vector pulse width modulation (MSVPWM) strategy for Z-Source inverter is presented. By rearranging the position of shoot-through states, the frequency of inductor current ripple is kept constant. Compared with existing MSVPWM strategies, the proposed approach can reduce the maximum inductor current ripple. So the volume of Z-source network inductor can be designed smaller, which brings the beneficial effect on the miniaturization of the electric vehicle controller. Theoretical findings in the novel MSVPWM for Z-Source inverter have been verified by experiment results.
Zhang, Qianfan; Dong, Shuai; Xue, Ping; Zhou, Chaowei; Cheng, ShuKang
2014-01-01
A novel modified space vector pulse width modulation (MSVPWM) strategy for Z-Source inverter is presented. By rearranging the position of shoot-through states, the frequency of inductor current ripple is kept constant. Compared with existing MSVPWM strategies, the proposed approach can reduce the maximum inductor current ripple. So the volume of Z-source network inductor can be designed smaller, which brings the beneficial effect on the miniaturization of the electric vehicle controller. Theoretical findings in the novel MSVPWM for Z-Source inverter have been verified by experiment results. PMID:24883412
A generic approach for examining the effectiveness of traffic control devices in school zones.
Zhao, Xiaohua; Li, Jiahui; Ding, Han; Zhang, Guohui; Rong, Jian
2015-09-01
The effectiveness and performance of traffic control devices in school zones have been impacted significantly by many factors, such as driver behavioral attributes, roadway geometric features, environmental characteristics, weather and visibility conditions, region-wide traffic regulations and policies, control modes, etc. When deploying traffic control devices in school zones, efforts are needed to clarify: (1) whether traffic control device installation is warranted; and (2) whether other device effectively complements this traffic control device and strengthens its effectiveness. In this study, a generic approach is developed to examine and evaluate the effectiveness of various traffic control devices deployed in school zones through driving simulator-based experiments. A Traffic Control Device Selection Model (TCDSM) is developed and two representative school zones are selected as the testbed in Beijing for driving simulation implementation to enhance its applicability. Statistical analyses are conducted to extract the knowledge from test data recorded by a driving simulator. Multiple measures of effectiveness (MOEs) are developed and adopted including average speed, relative speed difference, and standard deviation of acceleration for traffic control device performance quantification. The experimental tests and analysis results reveal that the appropriateness of the installation of certain traffic control devices can be statistically verified by TCDSM. The proposed approach provides a generic framework to assess traffic control device performance in school zones including experiment design, statistical formulation, data analysis, simulation model implementation, data interpretation, and recommendation development. Copyright © 2015 Elsevier Ltd. All rights reserved.
Safety Verification of a Fault Tolerant Reconfigurable Autonomous Goal-Based Robotic Control System
NASA Technical Reports Server (NTRS)
Braman, Julia M. B.; Murray, Richard M; Wagner, David A.
2007-01-01
Fault tolerance and safety verification of control systems are essential for the success of autonomous robotic systems. A control architecture called Mission Data System (MDS), developed at the Jet Propulsion Laboratory, takes a goal-based control approach. In this paper, a method for converting goal network control programs into linear hybrid systems is developed. The linear hybrid system can then be verified for safety in the presence of failures using existing symbolic model checkers. An example task is simulated in MDS and successfully verified using HyTech, a symbolic model checking software for linear hybrid systems.
NASA Astrophysics Data System (ADS)
Oh, Jong-Seok; Choi, Seung-Hyun; Choi, Seung-Bok
2014-01-01
This paper presents control performances of a new type of four-degrees-of-freedom (4-DOF) haptic master that can be used for robot-assisted minimally invasive surgery (RMIS). By adopting a controllable electrorheological (ER) fluid, the function of the proposed master is realized as a haptic feedback as well as remote manipulation. In order to verify the efficacy of the proposed master and method, an experiment is conducted with deformable objects featuring human organs. Since the use of real human organs is difficult for control due to high cost and moral hazard, an excellent alternative method, the virtual reality environment, is used for control in this work. In order to embody a human organ in the virtual space, the experiment adopts a volumetric deformable object represented by a shape-retaining chain linked (S-chain) model which has salient properties such as fast and realistic deformation of elastic objects. In haptic architecture for RMIS, the desired torque/force and desired position originating from the object of the virtual slave and operator of the haptic master are transferred to each other. In order to achieve the desired torque/force trajectories, a sliding mode controller (SMC) which is known to be robust to uncertainties is designed and empirically implemented. Tracking control performances for various torque/force trajectories from the virtual slave are evaluated and presented in the time domain.
LANL OPERATING EXPERIENCE WITH THE WAND AND HERCULES PROTOTYPE SYSTEMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
K. M. GRUETZMACHER; C. L. FOXX; S. C. MYERS
2000-09-01
The Waste Assay for Nonradioactive Disposal (WAND) and the High Efficiency Radiation Counters for Ultimate Low Emission Sensitivity (HERCULES) prototype systems have been operating at Los Alamos National Laboratory's (LANL's) Solid Waste Operation's (SWO'S) non-destructive assay (NDA) building since 1997 and 1998, respectively. These systems are the cornerstone of the verification program for low-density Green is Clean (GIC) waste at the Laboratory. GIC waste includes all non-regulated waste generated in radiological controlled areas (RCAS) that has been actively segregated as clean (i.e., nonradioactive) through the use of waste generator acceptable knowledge (AK). The use of this methodology alters LANL's pastmore » practice of disposing of all room trash generated in nuclear facilities in radioactive waste landfills. Waste that is verified clean can be disposed of at the Los Alamos County Landfill. It is estimated that 50-90% of the low-density room trash from radioactive material handling areas at Los Alamos might be free of contamination. This approach avoids the high cost of disposal of clean waste at a radioactive waste landfill. It also reduces consumption of precious space in the radioactive waste landfill where disposal of this waste provides no benefit to the public or the environment. Preserving low level waste (LLW) disposal capacity for truly radioactive waste is critical in this era when expanding existing radioactive waste landfills or permitting new ones is resisted by regulators and stakeholders. This paper describes the operating experience with the WAND and HERCULES since they began operation at SWO. Waste for verification by the WAND system has been limited so far to waste from the Plutonium Facility and the Solid Waste Operations Facility. A total of461 ft3 (13.1 m3) of low-density shredded waste and paper have been verified clean by the WAND system. The HERCULES system has been used to verify waste from four Laboratory facilities. These are the Solid Waste Operations Facility, the TA-48 Chemistry Facility, the Shops Facility, and the Environmental Facility. A total of 3150 ft3 (89.3 m3) of low-density waste has been verified clean by the HERCULES system.« less
Assessing Subjectivity in Sensor Data Post Processing via a Controlled Experiment
NASA Astrophysics Data System (ADS)
Jones, A. S.; Horsburgh, J. S.; Eiriksson, D.
2017-12-01
Environmental data collected by in situ sensors must be reviewed to verify validity, and conducting quality control often requires making edits in post processing to generate approved datasets. This process involves decisions by technicians, data managers, or data users on how to handle problematic data. Options include: removing data from a series, retaining data with annotations, and altering data based on algorithms related to adjacent data points or the patterns of data at other locations or of other variables. Ideally, given the same dataset and the same quality control guidelines, multiple data quality control technicians would make the same decisions in data post processing. However, despite the development and implementation of guidelines aimed to ensure consistent quality control procedures, we have faced ambiguity when performing post processing, and we have noticed inconsistencies in the practices of individuals performing quality control post processing. Technicians with the same level of training and using the same input datasets may produce different results, affecting the overall quality and comparability of finished data products. Different results may also be produced by technicians that do not have the same level of training. In order to assess the effect of subjective decision making by the individual technician on the end data product, we designed an experiment where multiple users performed quality control post processing on the same datasets using a consistent set of guidelines, field notes, and tools. We also assessed the effect of technician experience and training by conducting the same procedures with a group of novices unfamiliar with the data and the quality control process and compared their results to those generated by a group of more experienced technicians. In this presentation, we report our observations of the degree of subjectivity in sensor data post processing, assessing and quantifying the impacts of individual technician as well as technician experience on quality controlled data products.
Robust Decentralized Nonlinear Control for a Twin Rotor MIMO System
Belmonte, Lidia María; Morales, Rafael; Fernández-Caballero, Antonio; Somolinos, José Andrés
2016-01-01
This article presents the design of a novel decentralized nonlinear multivariate control scheme for an underactuated, nonlinear and multivariate laboratory helicopter denominated the twin rotor MIMO system (TRMS). The TRMS is characterized by a coupling effect between rotor dynamics and the body of the model, which is due to the action-reaction principle originated in the acceleration and deceleration of the motor-propeller groups. The proposed controller is composed of two nested loops that are utilized to achieve stabilization and precise trajectory tracking tasks for the controlled position of the generalized coordinates of the TRMS. The nonlinear internal loop is used to control the electrical dynamics of the platform, and the nonlinear external loop allows the platform to be perfectly stabilized and positioned in space. Finally, we illustrate the theoretical control developments with a set of experiments in order to verify the effectiveness of the proposed nonlinear decentralized feedback controller, in which a comparative study with other controllers is performed, illustrating the excellent performance of the proposed robust decentralized control scheme in both stabilization and trajectory tracking tasks. PMID:27472338
Robust Decentralized Nonlinear Control for a Twin Rotor MIMO System.
Belmonte, Lidia María; Morales, Rafael; Fernández-Caballero, Antonio; Somolinos, José Andrés
2016-07-27
This article presents the design of a novel decentralized nonlinear multivariate control scheme for an underactuated, nonlinear and multivariate laboratory helicopter denominated the twin rotor MIMO system (TRMS). The TRMS is characterized by a coupling effect between rotor dynamics and the body of the model, which is due to the action-reaction principle originated in the acceleration and deceleration of the motor-propeller groups. The proposed controller is composed of two nested loops that are utilized to achieve stabilization and precise trajectory tracking tasks for the controlled position of the generalized coordinates of the TRMS. The nonlinear internal loop is used to control the electrical dynamics of the platform, and the nonlinear external loop allows the platform to be perfectly stabilized and positioned in space. Finally, we illustrate the theoretical control developments with a set of experiments in order to verify the effectiveness of the proposed nonlinear decentralized feedback controller, in which a comparative study with other controllers is performed, illustrating the excellent performance of the proposed robust decentralized control scheme in both stabilization and trajectory tracking tasks.
Double closed-loop cascade control for lower limb exoskeleton with elastic actuation.
Zhu, Yanhe; Zheng, Tianjiao; Jin, Hongzhe; Yang, Jixing; Zhao, Jie
2015-01-01
Unlike traditional rigid actuators, the significant features of Series Elastic Actuator (SEA) are stable torque control, lower output impedance, impact resistance and energy storage. Recently, SEA has been applied in many exoskeletons. In such applications, a key issue is how to realize the human-exoskeleton movement coordination. In this paper, double closed-loop cascade control for lower limb exoskeleton with SEA is proposed. This control method consists of inner SEA torque loop and outer contact force loop. Utilizing the SEA torque control with a motor velocity loop, actuation performances of SEA are analyzed. An integrated exoskeleton control system is designed, in which joint angles are calculated by internal encoders and resolvers and contact forces are gathered by external pressure sensors. The double closed-loop cascade control model is established based on the feedback signals of internal and external sensor. Movement experiments are accomplished in our prototype of lower limb exoskeleton. Preliminary results indicate the exoskeleton movements with pilot can be realized stably by utilizing this double closed-loop cascade control method. Feasibility of the SEA in our exoskeleton robot and effectiveness of the control method are verified.
NASA Astrophysics Data System (ADS)
Kunii, Masaru; Saito, Kazuo; Seko, Hiromu; Hara, Masahiro; Hara, Tabito; Yamaguchi, Munehiko; Gong, Jiandong; Charron, Martin; Du, Jun; Wang, Yong; Chen, Dehui
2011-05-01
During the period around the Beijing 2008 Olympic Games, the Beijing 2008 Olympics Research and Development Project (B08RDP) was conducted as part of the World Weather Research Program short-range weather forecasting research project. Mesoscale ensemble prediction (MEP) experiments were carried out by six organizations in near-real time, in order to share their experiences in the development of MEP systems. The purpose of this study is to objectively verify these experiments and to clarify the problems associated with the current MEP systems through the same experiences. Verification was performed using the MEP outputs interpolated into a common verification domain with a horizontal resolution of 15 km. For all systems, the ensemble spreads grew as the forecast time increased, and the ensemble mean improved the forecast errors compared with individual control forecasts in the verification against the analysis fields. However, each system exhibited individual characteristics according to the MEP method. Some participants used physical perturbation methods. The significance of these methods was confirmed by the verification. However, the mean error (ME) of the ensemble forecast in some systems was worse than that of the individual control forecast. This result suggests that it is necessary to pay careful attention to physical perturbations.
Asymmetric Fuzzy Control of a Positive and Negative Pneumatic Pressure Servo System
NASA Astrophysics Data System (ADS)
Yang, Gang; Du, Jing-Min; Fu, Xiao-Yun; Li, Bao-Ren
2017-11-01
The pneumatic pressure control systems have been used in some fields. However, the researches on pneumatic pressure control mainly focus on constant pressure regulation. Poor dynamic characteristics and strong nonlinearity of such systems limit its application in the field of pressure tracking control. In order to meet the demand of generating dynamic pressure signal in the application of the hardware-in-the-loop simulation of aerospace engineering, a positive and negative pneumatic pressure servo system is provided to implement dynamic adjustment of sealed chamber pressure. A mathematical model is established with simulation and experiment being implemented afterwards to discuss the characteristics of the system, which shows serious asymmetry in the process of charging and discharging. Based on the analysis of the system dynamics, a fuzzy proportional integral derivative (PID) controller with asymmetric fuzzy compensator is proposed. Different from conventional adjusting mechanisms employing the error and change in error of the controlled variable as input parameters, the current chamber pressure and charging or discharging state are chosen as inputs of the compensator, which improves adaptability. To verify the effectiveness and performance of the proposed controller, the comparison experiments tracking sinusoidal and square wave commands are conducted. Experimental results show that the proposed controller can obtain better dynamic performance and relatively consistent control performance across the scope of work (2-140 kPa). The research proposes a fuzzy control method to overcome asymmetry and enhance adaptability for the positive and negative pneumatic pressure servo system.
NASA Astrophysics Data System (ADS)
Jung, Hoeryong; Nguyen, Ho Anh Duc; Choi, Jaeho; Yim, Hongsik; Shin, Kee-Hyun
2018-05-01
The roll-to-roll (R2R) gravure printing method is increasingly being utilized to fabricate electronic devices such as organic thin-film transistor (OTFT), radio-frequency identification (RFID) tags, and flexible PCB owing to its characteristics of high throughput and large area. High precision registration is crucial to satisfy the demand for device miniaturization, the improvement of resolution and accuracy. This paper presents a novel register control method that uses an active motion-based roller (AMBR) to reduce register error in R2R gravure printing. Instead of shifting the phase of the downstream printing roller, which leads to undesired tension disturbance, the 1 degree-of-freedom (1-DOF) mechanical device AMBR is used to compensate for web elongation by controlling its motion according to the register error. The performance of the proposed control method is verified through simulations and experiments, and the results show that the proposed register control method using the AMBR could maintain a register error under ±15 µm.
High precision locating control system based on VCM for Talbot lithography
NASA Astrophysics Data System (ADS)
Yao, Jingwei; Zhao, Lixin; Deng, Qian; Hu, Song
2016-10-01
Aiming at the high precision and efficiency requirements of Z-direction locating in Talbot lithography, a control system based on Voice Coil Motor (VCM) was designed. In this paper, we built a math model of VCM and its moving characteristic was analyzed. A double-closed loop control strategy including position loop and current loop were accomplished. The current loop was implemented by driver, in order to achieve the rapid follow of the system current. The position loop was completed by the digital signal processor (DSP) and the position feedback was achieved by high precision linear scales. Feed forward control and position feedback Proportion Integration Differentiation (PID) control were applied in order to compensate for dynamic lag and improve the response speed of the system. And the high precision and efficiency of the system were verified by simulation and experiments. The results demonstrated that the performance of Z-direction gantry was obviously improved, having high precision, quick responses, strong real-time and easily to expend for higher precision.
UAV Flight Control Using Distributed Actuation and Sensing
NASA Technical Reports Server (NTRS)
Barnwell, William G.; Heinzen, Stearns N.; Hall, Charles E., Jr.; Chokani, Ndaona; Raney, David L. (Technical Monitor)
2003-01-01
An array of effectors and sensors has been designed, tested and implemented on a Blended Wing Body Uninhabited Aerial Vehicle (UAV). This UAV is modified to serve as a flying, controls research, testbed. This effectorhensor array provides for the dynamic vehicle testing of controller designs and the study of decentralized control techniques. Each wing of the UAV is equipped with 12 distributed effectors that comprise a segmented array of independently actuated, contoured control surfaces. A single pressure sensor is installed near the base of each effector to provide a measure of deflections of the effectors. The UAV wings were tested in the North Carolina State University Subsonic Wind Tunnel and the pressure distribution that result from the deflections of the effectors are characterized. The results of the experiments are used to develop a simple, but accurate, prediction method, such that for any arrangement of the effector array the corresponding pressure distribution can be determined. Numerical analysis using the panel code CMARC verifies this prediction method.
Parameter tuning method for dither compensation of a pneumatic proportional valve with friction
NASA Astrophysics Data System (ADS)
Wang, Tao; Song, Yang; Huang, Leisheng; Fan, Wei
2016-05-01
In the practical application of pneumatic control devices, the nonlinearity of a pneumatic control valve become the main factor affecting the control effect, which comes mainly from the dynamic friction force. The dynamic friction inside the valve may cause hysteresis and a dead zone. In this paper, a dither compensation mechanism is proposed to reduce negative effects on the basis of analyzing the mechanism of friction force. The specific dither signal (using a sinusoidal signal) was superimposed on the control signal of the valve. Based on the relationship between the parameters of the dither signal and the inherent characteristics of the proportional servo valve, a parameter tuning method was proposed, which uses a displacement sensor to measure the maximum static friction inside the valve. According to the experimental results, the proper amplitude ranges are determined for different pressures. In order to get the optimal parameters of the dither signal, some dither compensation experiments have been carried out on different signal amplitude and gas pressure conditions. Optimal parameters are determined under two kinds of pressure conditions. Using tuning parameters the valve spool displacement experiment has been taken. From the experiment results, hysteresis of the proportional servo valve is significantly reduced. And through simulation and experiments, the cut-off frequency of the proportional valve has also been widened. Therefore after adding the dither signal, the static and dynamic characteristics of the proportional valve are both improved to a certain degree. This research proposes a parameter tuning method of dither signal, and the validity of the method is verified experimentally.
An Experiment in Synchronicity
NASA Astrophysics Data System (ADS)
Thomson, S.; Dunseath, W. J. R.
Click here and insert your abstract text. Possible states theory generalizes about the process of change within a finite and discrete model of the universe. The possible states consist of all interactions between objects, including past, future and possible interactions. The theory posits a non-electromagnetic model of change in which change propagates without reference to space-time. The theory delivers verifiable predictions and is generally consistent with quantum theory. It offers the prospect of nonlocal connections between objects and change that is not constrained by conservation laws. The value of the concept as a basis for technology development depends upon the ability to manipulate the possible states, specifically to produce coherence in selected collections of states. An experiment is devised in which a coherent state path is created between the experimental components and loaded through interaction with non-coherent states. Discharge of coherence results in a burst of synchronistic events compatible with theoretical expectations. The experiment validates a specific control strategy and yields a large timewise anomaly. The results shed light on a potential sentient intelligence and upon the development of coherence in the possible states and enable a major advance in the control of change.
SAMPIE Measurements of the Space Station Plasma Current Analyzed
NASA Technical Reports Server (NTRS)
1996-01-01
In March of 1994, STS-62 carried the NASA Lewis Research Center's Solar Array Module Plasma Interactions Experiment (SAMPIE) into orbit, where it investigated the plasma current collected and the arcs from solar arrays and other space power materials immersed in the low-Earth-orbit space plasma. One of the important experiments conducted was the plasma current collected by a four-cell coupon sample of solar array cells for the international space station. The importance of this experiment dates back to the 1990 and 1991 meetings of the Space Station Electrical Grounding Tiger Team. The Tiger Team determined that unless the electrical potentials on the space station structure were actively controlled via a plasma contactor, the space station structure would arc into the plasma at a rate that would destroy the thermal properties of its surface coatings in only a few years of operation. The space station plasma contactor will control its potentials by emitting electrons into the surrounding low-Earth-orbit plasma at the same rate that they are collected by the solar arrays. Thus, the level at which the space station solar arrays can collect current is very important in verifying that the plasma contactor design can do its job.
Theoretical and experimental study on the magnetic fluid seal of reciprocating shaft
NASA Astrophysics Data System (ADS)
Li, Decai; Xu, Haiping; He, Xinzhi; Lan, Huiqing
2005-03-01
The authors obtain anti-pressure formula of reciprocating shaft magnetic fluid seal from general Navier-Stokes equation. In order to verify the correctness of the anti-pressure formula, the authors set up a magnetic fluid anti-pressure experiment rig for a reciprocating seal. Finally, the authors have verified influence of speed and stroke on the seal anti-pressure.
ERIC Educational Resources Information Center
Weber, Keith
2013-01-01
This paper presents the results of an experiment in which mathematicians were asked to rate how persuasive they found two empirical arguments. There were three key results from this study: (a) Participants judged an empirical argument as more persuasive if it verified that integers possessed an infrequent property than if it verified that integers…
Multi-tasking arbitration and behaviour design for human-interactive robots
NASA Astrophysics Data System (ADS)
Kobayashi, Yuichi; Onishi, Masaki; Hosoe, Shigeyuki; Luo, Zhiwei
2013-05-01
Robots that interact with humans in household environments are required to handle multiple real-time tasks simultaneously, such as carrying objects, collision avoidance and conversation with human. This article presents a design framework for the control and recognition processes to meet these requirements taking into account stochastic human behaviour. The proposed design method first introduces a Petri net for synchronisation of multiple tasks. The Petri net formulation is converted to Markov decision processes and processed in an optimal control framework. Three tasks (safety confirmation, object conveyance and conversation) interact and are expressed by the Petri net. Using the proposed framework, tasks that normally tend to be designed by integrating many if-then rules can be designed in a systematic manner in a state estimation and optimisation framework from the viewpoint of the shortest time optimal control. The proposed arbitration method was verified by simulations and experiments using RI-MAN, which was developed for interactive tasks with humans.
NASA Technical Reports Server (NTRS)
Kuznetz, L. H.
1976-01-01
Test data and a mathematical model of the human thermoregulatory system were used to investigate control of thermal balance by means of a liquid circulating garment (LCG). The test data were derived from five series of experiments in which environmental and metabolic conditions were varied parametrically as a function of several independent variables, including LCG flowrate, LCG inlet temperature, net environmental heat exchange, surrounding gas ventilation rate, ambient pressure, metabolic rate, and subjective/obligatory cooling control. The resultant data were used to relate skin temperature to LCG water temperature and flowrate, to assess a thermal comfort band, to demonstrate the relationship between metabolic rate and LCG heat dissipation, and so forth. The usefulness of the mathematical model as a tool for data interpretation and for generation of trends and relationships among the various physiological parameters was also investigated and verified.
Parametric instabilities and their control in multidimensional nonuniform gain media
NASA Astrophysics Data System (ADS)
Charbonneau-Lefort, Mathieu; Afeyan, Bedros; Fejer, Martin
2007-11-01
In order to control parametric instabilities in large scale long pulse laser produced plasmas, optical mixing techniques seem most promising [1]. We examine ways of controlling the growth of some modes while creating other unstable ones in nonuniform gain media, including the effects of transverse localization of the pump wave. We show that multidimensional effects are essential to understand laser-gain medium interactions [2] and that one dimensional models such as the celebrated Rosenbluth result [3] can be misleading [4]. These findings are verified in experiments carried out in a chirped quasi-phase-matched gratings in optical parametric amplifiers where thousands of shots can be taken and statistically significant and stable results obtained. [1] B. Afeyan, et al., IFSA Proceedings, 2003. [2] M. M. Sushchik and G. I. Freidman, Radiofizika 13, 1354 (1970). [3] M. N. Rosenbluth, Phys. Rev. Lett. 29, 565 (1972). [4] M. Charbonneau-Lefort, PhD thesis, Stanford University, 2007.
Measurement of vertical stability metrics in KSTAR
NASA Astrophysics Data System (ADS)
Hahn, Sang-Hee; Humphreys, D. A.; Mueller, D.; Bak, J. G.; Eidietis, N. W.; Kim, H.-S.; Ko, J. S.; Walker, M. L.; Kstar Team
2017-10-01
The paper summarizes results of multi-year ITPA experiments regarding measurement of the vertical stabilization capability of KSTAR discharges, including most recent measurements at the highest achievable elongation (κ 2.0 - 2.1). The measurements of the open-loop growth rate of VDE (γz) and the maximum controllable vertical displacement (ΔZmax) are done by the release-and-catch method. The dynamics of the vertical movement of the plasma is verified by both relevant magnetic reconstructions and non-magnetic diagnostics. The measurements of γz and ΔZmax were done for different plasma currents, βp, internal inductances, elongations and different configurations of the vessel conductors that surround the plasma as the first wall. Effects of control design choice and diagnostics noise are discussed, and comparison with the axisymmetric plasma response model is given for partial accounting for the measured control capability. This work supported by Ministry of Science, ICT, and Future Planning under KSTAR project.
NASA Astrophysics Data System (ADS)
Seki, Hirokazu; Hata, Naoki; Koyasu, Yuichi; Hori, Yoichi
Aged people and disabled people who have difficulty in walking are increasing. As one of mobility support, significance of power assisted wheelchair which assists driving force using electric motors and spreads their living areas has been enhanced. However, the increased driving force often causes a dangerous overturn of wheelchair. In this paper, control method to prevent power assisted wheelchair from overturning is proposed. It is found the front wheels rising is caused by magnitude and rapid increase of assisted torque. Therefore, feedforward control method to limit the assisted torque by tuning its magnitude or time constant is proposed. In order to emphasize safety and feeling of security, these methods make the front wheels no rise. The effectiveness of the proposed method is verified by the practical experiments and field test based performance evaluation using many trial subjects.
Power in the loop real time simulation platform for renewable energy generation
NASA Astrophysics Data System (ADS)
Li, Yang; Shi, Wenhui; Zhang, Xing; He, Guoqing
2018-02-01
Nowadays, a large scale of renewable energy sources has been connecting to power system and the real time simulation platform is widely used to carry out research on integration control algorithm, power system stability etc. Compared to traditional pure digital simulation and hardware in the loop simulation, power in the loop simulation has higher accuracy and degree of reliability. In this paper, a power in the loop analog digital hybrid simulation platform has been built and it can be used not only for the single generation unit connecting to grid, but also for multiple new energy generation units connecting to grid. A wind generator inertia control experiment was carried out on the platform. The structure of the inertia control platform was researched and the results verify that the platform is up to need for renewable power in the loop real time simulation.
Control strategy for cooperating disparate manipulators
NASA Technical Reports Server (NTRS)
Lew, Jae Young
1989-01-01
To manipulate large payloads typical of space construction, the concept of a small arm mounted on the end of a large arm is introduced. The main purposes of such a configuration are to increase the structural stiffness of the robot by bracing against or locking to a stationary frame, and to maintain a firm position constraint between the robot's base and workpieces by grasping them. Possible topologies for a combination of disparate large and small arms are discussed, and kinematics, dynamics, controls, and coordination of the two arms, especially when they brace at the tip of the small arm, are developed. The feasibility and improvement in performance are verified, not only with analytical work and simulation results but also with experiments on the existing arrangement Robotic Arm Large and Flexible and Small Articulated Manipulator.
A judging principle of crucial vibrational transmission paths in plates
NASA Astrophysics Data System (ADS)
Wang, Bin; Li, Dong-Xu; Jiang, Jian-Ping; Liao, Yi-Huan
2016-10-01
This paper developed a judging principle of crucial vibrational transmission path (VTP) in plates. Novel generalized definitions of VTPs are given referred to the meaning of streamlines. And by comparing governing equations, the similarity between energy flow and fluid motion is firstly found so that an analytic method of VTPs in plates is proposed by analogy with fluid motion. Hereafter, the crucial VTP is defined for energy flows at objective points and relative judging criteria is given. Finally, based on two numerical experiments of passive control, the judging principle is indirectly verified by comparing the reduction effects of energy flows at focused points and relative judgment results of crucial VTPs. This paper is meaningful for analyzing and applying the VTPs in plates to guide the control design in future.
Mobile robotic sensors for perimeter detection and tracking.
Clark, Justin; Fierro, Rafael
2007-02-01
Mobile robot/sensor networks have emerged as tools for environmental monitoring, search and rescue, exploration and mapping, evaluation of civil infrastructure, and military operations. These networks consist of many sensors each equipped with embedded processors, wireless communication, and motion capabilities. This paper describes a cooperative mobile robot network capable of detecting and tracking a perimeter defined by a certain substance (e.g., a chemical spill) in the environment. Specifically, the contributions of this paper are twofold: (i) a library of simple reactive motion control algorithms and (ii) a coordination mechanism for effectively carrying out perimeter-sensing missions. The decentralized nature of the methodology implemented could potentially allow the network to scale to many sensors and to reconfigure when adding/deleting sensors. Extensive simulation results and experiments verify the validity of the proposed cooperative control scheme.
Realization of a thermal cloak-concentrator using a metamaterial transformer.
Liu, Ding-Peng; Chen, Po-Jung; Huang, Hsin-Haou
2018-02-06
By combining rotating squares with auxetic properties, we developed a metamaterial transformer capable of realizing metamaterials with tunable functionalities. We investigated the use of a metamaterial transformer-based thermal cloak-concentrator that can change from a cloak to a concentrator when the device configuration is transformed. We established that the proposed dual-functional metamaterial can either thermally protect a region (cloak) or focus heat flux in a small region (concentrator). The dual functionality was verified by finite element simulations and validated by experiments with a specimen composed of copper, epoxy, and rotating squares. This work provides an effective and efficient method for controlling the gradient of heat, in addition to providing a reference for other thermal metamaterials to possess such controllable functionalities by adapting the concept of a metamaterial transformer.
[Study on an Exoskeleton Hand Function Training Device].
Hu, Xin; Zhang, Ying; Li, Jicai; Yi, Jinhua; Yu, Hongliu; He, Rongrong
2016-02-01
Based on the structure and motion bionic principle of the normal adult fingers, biological characteristics of human hands were analyzed, and a wearable exoskeleton hand function training device for the rehabilitation of stroke patients or patients with hand trauma was designed. This device includes the exoskeleton mechanical structure and the electromyography (EMG) control system. With adjustable mechanism, the device was capable to fit different finger lengths, and by capturing the EMG of the users' contralateral limb, the motion state of the exoskeleton hand was controlled. Then driven by the device, the user's fingers conducting adduction/abduction rehabilitation training was carried out. Finally, the mechanical properties and training effect of the exoskeleton hand were verified through mechanism simulation and the experiments on the experimental prototype of the wearable exoskeleton hand function training device.
Goto, Takaaki; Dobashi, Hiroki; Yoshikawa, Tsuneo; Loureiro, Rui C V; Harwin, William S; Miyamura, Yuga; Nagai, Kiyoshi
2017-07-01
This paper addresses the mechanical structure and control method of a redundant drive robot (RDR) to produce compliant motions, and show how the design parameters of the RDR can effect the produced motions and the mechanical and performance limitations of the actuators of the RDR. The structure and control method of the RDR can have been proper to produce compliant motions, but the effect of the design parameters of the RDR to the mechanical and performance limitations have not been clear. Therefore, the feasibility of producing compliant motions in the case of the prototype of the RDR is confirmed by conducting simulations and experiments, and then the design parameters of the RDR to the mechanical and performance limitations are verified by conducting simulations.
A Taguchi approach on optimal process control parameters for HDPE pipe extrusion process
NASA Astrophysics Data System (ADS)
Sharma, G. V. S. S.; Rao, R. Umamaheswara; Rao, P. Srinivasa
2017-06-01
High-density polyethylene (HDPE) pipes find versatile applicability for transportation of water, sewage and slurry from one place to another. Hence, these pipes undergo tremendous pressure by the fluid carried. The present work entails the optimization of the withstanding pressure of the HDPE pipes using Taguchi technique. The traditional heuristic methodology stresses on a trial and error approach and relies heavily upon the accumulated experience of the process engineers for determining the optimal process control parameters. This results in setting up of less-than-optimal values. Hence, there arouse a necessity to determine optimal process control parameters for the pipe extrusion process, which can ensure robust pipe quality and process reliability. In the proposed optimization strategy, the design of experiments (DoE) are conducted wherein different control parameter combinations are analyzed by considering multiple setting levels of each control parameter. The concept of signal-to-noise ratio ( S/ N ratio) is applied and ultimately optimum values of process control parameters are obtained as: pushing zone temperature of 166 °C, Dimmer speed at 08 rpm, and Die head temperature to be 192 °C. Confirmation experimental run is also conducted to verify the analysis and research result and values proved to be in synchronization with the main experimental findings and the withstanding pressure showed a significant improvement from 0.60 to 1.004 Mpa.
Chuang, Kuo-Chih; Liao, Heng-Tseng; Ma, Chien-Ching
2011-01-01
In this work, a fiber Bragg grating (FBG) sensing system which can measure the transient response of out-of-plane point-wise displacement responses is set up on a smart cantilever beam and the feasibility of its use as a feedback sensor in an active structural control system is studied experimentally. An FBG filter is employed in the proposed fiber sensing system to dynamically demodulate the responses obtained by the FBG displacement sensor with high sensitivity. For comparison, a laser Doppler vibrometer (LDV) is utilized simultaneously to verify displacement detection ability of the FBG sensing system. An optical full-field measurement technique called amplitude-fluctuation electronic speckle pattern interferometry (AF-ESPI) is used to provide full-field vibration mode shapes and resonant frequencies. To verify the dynamic demodulation performance of the FBG filter, a traditional FBG strain sensor calibrated with a strain gauge is first employed to measure the dynamic strain of impact-induced vibrations. Then, system identification of the smart cantilever beam is performed by FBG strain and displacement sensors. Finally, by employing a velocity feedback control algorithm, the feasibility of integrating the proposed FBG displacement sensing system in a collocated feedback system is investigated and excellent dynamic feedback performance is demonstrated. In conclusion, our experiments show that the FBG sensor is capable of performing dynamic displacement feedback and/or strain measurements with high sensitivity and resolution. PMID:22247683
Survivability Using Controlled Security Services
2005-06-01
California, Irvine. ear complexities of either (or both) group public key size or signature size with respect to the number of group mem - bers. These...troduced leak-freedom and immediate-revocation. Correctness: any signature produced by any group mem - ber using Sign must be accepted by Verify...can only convince one or more appointed verifiers of its mem - bership, while no other party can verify membership even if the signer cooperates fully
Investigation, Development, and Evaluation of Performance Proving for Fault-tolerant Computers
NASA Technical Reports Server (NTRS)
Levitt, K. N.; Schwartz, R.; Hare, D.; Moore, J. S.; Melliar-Smith, P. M.; Shostak, R. E.; Boyer, R. S.; Green, M. W.; Elliott, W. D.
1983-01-01
A number of methodologies for verifying systems and computer based tools that assist users in verifying their systems were developed. These tools were applied to verify in part the SIFT ultrareliable aircraft computer. Topics covered included: STP theorem prover; design verification of SIFT; high level language code verification; assembly language level verification; numerical algorithm verification; verification of flight control programs; and verification of hardware logic.
NASA Technical Reports Server (NTRS)
Anderson, T. O. (Inventor)
1976-01-01
An interface logic circuit permitting the transfer of information between two computers having asynchronous clocks is disclosed. The information transfer involves utilization of control signals (including request, return-response, ready) to generate properly timed data strobe signals. Noise problems are avoided because each control signal, upon receipt, is verified by at least two clock pulses at the receiving computer. If control signals are verified, a data strobe pulse is generated to accomplish a data transfer. Once initiated, the data strobe signal is properly completed independently of signal disturbances in the control signal initiating the data strobe signal. Completion of the data strobe signal is announced by automatic turn-off of a return-response control signal.
Nutation control during precession of a spin-stabilized spacecraft
NASA Technical Reports Server (NTRS)
1974-01-01
Precession maneuver control laws for single-spin spacecraft are investigated so that nutation is concurrently controlled. Analysis has led to the development of two types of control laws employing precession modulation for concurrent nutation control. Results were verified through digital simulation of a Synchronous Meteorological Satellite (SMS) configuration. An addition research effort was undertaken to investigate the cause and elimination of nutation anomalies in dual-spin spacecraft. A literature search was conducted and a dual-spin configuration was simulated to verify that nutational anomalies are not predicted by the existing nonlinear model. No conclusions were drawn as to the cause of the observed nutational anomalies in dual-spin spacecraft.
Sýkorová, Zuzana; Börstler, Boris; Zvolenská, Soňa; Fehrer, Judith; Gryndler, Milan; Vosátka, Miroslav; Redecker, Dirk
2012-01-01
During the last decade, the application of arbuscular mycorrhizal fungi (AMF) as bioenhancers has increased significantly. However, until now, it has been difficult to verify the inoculation success in terms of fungal symbiont establishment in roots of inoculated plants because specific fungal strains could not be detected within colonized roots. Using mitochondrial large subunit ribosomal DNA, we show that Rhizophagus irregularis (formerly known as Glomus intraradices) isolate BEG140 consists of two different haplotypes. We developed nested PCR assays to specifically trace each of the two haplotypes in the roots of Phalaris arundinacea from a field experiment in a spoil bank of a former coal mine, where BEG140 was used as inoculant. We revealed that despite the relatively high diversity of native R. irregularis strains, R. irregularis BEG140 survived and proliferated successfully in the field experiment and was found significantly more often in the inoculated than control plots. This work is the first one to show tracing of an inoculated AMF isolate in the roots of target plants and to verify its survival and propagation in the field. These results will have implications for basic research on the ecology of AMF at the intraspecific level as well as for commercial users of mycorrhizal inoculation.
Control effects of stimulus paradigms on characteristic firings of parkinsonism
NASA Astrophysics Data System (ADS)
Zhang, Honghui; Wang, Qingyun; Chen, Guanrong
2014-09-01
Experimental studies have shown that neuron population located in the basal ganglia of parkinsonian primates can exhibit characteristic firings with certain firing rates differing from normal brain activities. Motivated by recent experimental findings, we investigate the effects of various stimulation paradigms on the firing rates of parkinsonism based on the proposed dynamical models. Our results show that the closed-loop deep brain stimulation is superior in ameliorating the firing behaviors of the parkinsonism, and other control strategies have similar effects according to the observation of electrophysiological experiments. In addition, in conformity to physiological experiments, we found that there exists optimal delay of input in the closed-loop GPtrain|M1 paradigm, where more normal behaviors can be obtained. More interestingly, we observed that W-shaped curves of the firing rates always appear as stimulus delay varies. We furthermore verify the robustness of the obtained results by studying three pallidal discharge rates of the parkinsonism based on the conductance-based model, as well as the integrate-and-fire-or-burst model. Finally, we show that short-term plasticity can improve the firing rates and optimize the control effects on parkinsonism. Our conclusions may give more theoretical insight into Parkinson's disease studies.
A Single-Phase Embedded Z-Source DC-AC Inverter
Kim, Se-Jin; Lim, Young-Cheol
2014-01-01
In the conventional DC-AC inverter consisting of two DC-DC converters with unipolar output capacitors, the output capacitor voltages of the DC-DC converters must be higher than the DC input voltage. To overcome this weakness, this paper proposes a single-phase DC-AC inverter consisting of two embedded Z-source converters with bipolar output capacitors. The proposed inverter is composed of two embedded Z-source converters with a common DC source and output AC load. Though the output capacitor voltages of the converters are relatively low compared to those of a conventional inverter, an equivalent level of AC output voltages can be obtained. Moreover, by controlling the output capacitor voltages asymmetrically, the AC output voltage of the proposed inverter can be higher than the DC input voltage. To verify the validity of the proposed inverter, experiments were performed with a DC source voltage of 38 V. By controlling the output capacitor voltages of the converters symmetrically or asymmetrically, the proposed inverter can produce sinusoidal AC output voltages. The experiments show that efficiencies of up to 95% and 97% can be achieved with the proposed inverter using symmetric and asymmetric control, respectively. PMID:25133241
A single-phase embedded Z-source DC-AC inverter.
Kim, Se-Jin; Lim, Young-Cheol
2014-01-01
In the conventional DC-AC inverter consisting of two DC-DC converters with unipolar output capacitors, the output capacitor voltages of the DC-DC converters must be higher than the DC input voltage. To overcome this weakness, this paper proposes a single-phase DC-AC inverter consisting of two embedded Z-source converters with bipolar output capacitors. The proposed inverter is composed of two embedded Z-source converters with a common DC source and output AC load. Though the output capacitor voltages of the converters are relatively low compared to those of a conventional inverter, an equivalent level of AC output voltages can be obtained. Moreover, by controlling the output capacitor voltages asymmetrically, the AC output voltage of the proposed inverter can be higher than the DC input voltage. To verify the validity of the proposed inverter, experiments were performed with a DC source voltage of 38 V. By controlling the output capacitor voltages of the converters symmetrically or asymmetrically, the proposed inverter can produce sinusoidal AC output voltages. The experiments show that efficiencies of up to 95% and 97% can be achieved with the proposed inverter using symmetric and asymmetric control, respectively.
Theme-Based Project Learning: Design and Application of Convergent Science Experiments
ERIC Educational Resources Information Center
Chun, Man-Seog; Kang, Kwang Il; Kim, Young H.; Kim, Young Mee
2015-01-01
This case study aims to verify the benefits of theme-based project learning for convergent science experiments. The study explores the possibilities of enhancing creative, integrated and collaborative teaching and learning abilities in science-gifted education. A convergent project-based science experiment program of physics, chemistry and biology…
A Null Space Control of Two Wheels Driven Mobile Manipulator Using Passivity Theory
NASA Astrophysics Data System (ADS)
Shibata, Tsuyoshi; Murakami, Toshiyuki
This paper describes a control strategy of null space motion of a two wheels driven mobile manipulator. Recently, robot is utilized in various industrial fields and it is preferable for the robot manipulator to have multiple degrees of freedom motion. Several studies of kinematics for null space motion have been proposed. However stability analysis of null space motion is not enough. Furthermore, these approaches apply to stable systems, but they do not apply unstable systems. Then, in this research, base of manipulator equips with two wheels driven mobile robot. This robot is called two wheels driven mobile manipulator, which becomes unstable system. In the proposed approach, a control design of null space uses passivity based stabilizing. A proposed controller is decided so that closed-loop system of robot dynamics satisfies passivity. This is passivity based control. Then, control strategy is that stabilizing of the robot system applies to work space observer based approach and null space control while keeping end-effector position. The validity of the proposed approach is verified by simulations and experiments of two wheels driven mobile manipulator.
Composite synchronization of three eccentric rotors driven by induction motors in a vibrating system
NASA Astrophysics Data System (ADS)
Kong, Xiangxi; Chen, Changzheng; Wen, Bangchun
2018-03-01
This paper addresses the problem of composite synchronization of three eccentric rotors (ERs) driven by induction motors in a vibrating system. The composite synchronous motion of three ERs is composed of the controlled synchronous motion of two ERs and the self-synchronous motion of the third ER. Combining an adaptive sliding mode control (ASMC) algorithm with a modified master-slave control structure, the controllers are designed to implement controlled synchronous motion of two ERs with zero phase difference. Based on Lyapunov stability theorem and Barbalat's lemma, the stability of the designed controllers is verified. On basis of controlled synchronization of two ERs, self-synchronization of the third ER is introduced to implement composite synchronous motion of three ERs. The feasibility of the proposed composite synchronization method is analyzed by numerical method. The effects of motor and structure parameters on composite synchronous motion are discussed. Experiments on a vibrating test bench driven by three ERs are operated to validate the effectiveness of the proposed composite synchronization method, including a comparison with self-synchronization method.
A study on ship automatic berthing with assistance of auxiliary devices
NASA Astrophysics Data System (ADS)
Tran, Van Luong; Im, Namkyun
2012-09-01
The recent researches on the automatic berthing control problems have used various kinds of tools as a control method such as expert system, fuzzy logic controllers and artificial neural network (ANN). Among them, ANN has proved to be one of the most effective and attractive options. In a marine context, the berthing maneuver is a complicated procedure in which both human experience and intensive control operations are involved. Nowadays, in most cases of berthing operation, auxiliary devices are used to make the schedule safer and faster but none of above researches has taken into account. In this study, ANN is applied to design the controllers for automatic ship berthing using assistant devices such as bow thruster and tug. Using back-propagation algorithm, we trained ANN with set of teaching data to get a minimal error between output values and desired values of four control outputs including rudder, propeller revolution, bow thruster and tug. Then, computer simulations of automatic berthing were carried out to verify the effecttiveness of the system. The results of the simulations showed good performance for the proposed berthing control system.
Nair, Vijay; Strecher, Victor; Fagerlin, Angela; Ubel, Peter; Resnicow, Kenneth; Murphy, Susan; Little, Roderick; Chakraborty, Bibhas; Zhang, Aijun
2008-01-01
Health behavior intervention studies have focused primarily on comparing new programs and existing programs via randomized controlled trials. However, numbers of possible components (factors) are increasing dramatically as a result of developments in science and technology (e.g., Web-based surveys). These changes dictate the need for alternative methods that can screen and quickly identify a large set of potentially important treatment components. We have developed and implemented a multiphase experimentation strategy for accomplishing this goal. We describe the screening phase of this strategy and the use of fractional factorial designs (FFDs) in studying several components economically. We then use 2 ongoing behavioral intervention projects to illustrate the usefulness of FFDs. FFDs should be supplemented with follow-up experiments in the refining phase so any critical assumptions about interactions can be verified. PMID:18556602
Adventure Behavior Seeking Scale
Próchniak, Piotr
2017-01-01
This article presents a new tool—the Adventure Behavior Seeking Scale (ABSS). The Adventure Behavior Seeking Scale was developed to assess individuals’ highly stimulating behaviors in natural environments. An exploratory factor analysis was conducted with 466 participants and resulted in one factor. The internal consistency was 0.80. A confirmatory factor analysis was performed using another sample of 406 participants, and results verified the one-factor structure. The findings indicate that people with a lot of experience in outdoor adventure have a higher score on the ABSS scale than control groups without such experience. The results also suggest that the 8-item ABSS scores were highly related to sensation seeking. The author discusses findings in regard to the ABSS as an instrument to measure outdoor adventure. However, further studies need to be carried out in other sample groups to further validate the scale. PMID:28555018
A Wireless Implantable Switched-Capacitor Based Optogenetic Stimulating System
Lee, Hyung-Min; Kwon, Ki-Yong; Li, Wen
2015-01-01
This paper presents a power-efficient implantable optogenetic interface using a wireless switched-capacitor based stimulating (SCS) system. The SCS efficiently charges storage capacitors directly from an inductive link and periodically discharges them into an array of micro-LEDs, providing high instantaneous power without affecting wireless link and system supply voltage. A custom-designed computer interface in LabVIEW environment wirelessly controls stimulation parameters through the inductive link, and an optrode array enables simultaneous neural recording along with optical stimulation. The 4-channel SCS system prototype has been implemented in a 0.35-μm CMOS process and combined with the optrode array. In vivo experiments involving light-induced local field potentials verified the efficacy of the SCS system. An implantable version of the SCS system with flexible hermetic sealing is under development for chronic experiments. PMID:25570099
Experiments with Test Case Generation and Runtime Analysis
NASA Technical Reports Server (NTRS)
Artho, Cyrille; Drusinsky, Doron; Goldberg, Allen; Havelund, Klaus; Lowry, Mike; Pasareanu, Corina; Rosu, Grigore; Visser, Willem; Koga, Dennis (Technical Monitor)
2003-01-01
Software testing is typically an ad hoc process where human testers manually write many test inputs and expected test results, perhaps automating their execution in a regression suite. This process is cumbersome and costly. This paper reports preliminary results on an approach to further automate this process. The approach consists of combining automated test case generation based on systematically exploring the program's input domain, with runtime analysis, where execution traces are monitored and verified against temporal logic specifications, or analyzed using advanced algorithms for detecting concurrency errors such as data races and deadlocks. The approach suggests to generate specifications dynamically per input instance rather than statically once-and-for-all. The paper describes experiments with variants of this approach in the context of two examples, a planetary rover controller and a space craft fault protection system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qin, SB; Cady, ST; Dominguez-Garcia, AD
This paper presents the theory and implementation of a distributed algorithm for controlling differential power processing converters in photovoltaic (PV) applications. This distributed algorithm achieves true maximum power point tracking of series-connected PV submodules by relying only on local voltage measurements and neighbor-to-neighbor communication between the differential power converters. Compared to previous solutions, the proposed algorithm achieves reduced number of perturbations at each step and potentially faster tracking without adding extra hardware; all these features make this algorithm well-suited for long submodule strings. The formulation of the algorithm, discussion of its properties, as well as three case studies are presented.more » The performance of the distributed tracking algorithm has been verified via experiments, which yielded quantifiable improvements over other techniques that have been implemented in practice. Both simulations and hardware experiments have confirmed the effectiveness of the proposed distributed algorithm.« less
Ares I Flight Control System Overview
NASA Technical Reports Server (NTRS)
Hall, Charles; Lee, Chong; Jackson, Mark; Whorton, Mark; West, mark; Brandon, Jay; Hall, Rob A.; Jang, Jimmy; Bedrossian, Naz; Compton, Jimmy;
2008-01-01
This paper describes the control challenges posed by the Ares I vehicle, the flight control system design and performance analyses used to test and verify the design. The major challenges in developing the control system are structural dynamics, dynamic effects from the powerful first stage booster, aerodynamics, first stage separation and large uncertainties in the dynamic models for all these. Classical control techniques were employed using innovative methods for structural mode filter design and an anti-drift feature to compensate for translational and rotational disturbances. This design was coded into an integrated vehicle flight simulation and tested by Monte Carlo methods. The product of this effort is a linear, robust controller design that is easy to implement, verify and test.
Resin Film Infusion (RFI) Process Modeling for Large Transport Aircraft Wing Structures
NASA Technical Reports Server (NTRS)
Loos, Alfred C.; Caba, Aaron C.; Furrow, Keith W.
2000-01-01
This investigation completed the verification of a three-dimensional resin transfer molding/resin film infusion (RTM/RFI) process simulation model. The model incorporates resin flow through an anisotropic carbon fiber preform, cure kinetics of the resin, and heat transfer within the preform/tool assembly. The computer model can predict the flow front location, resin pressure distribution, and thermal profiles in the modeled part. The formulation for the flow model is given using the finite element/control volume (FE/CV) technique based on Darcy's Law of creeping flow through a porous media. The FE/CV technique is a numerically efficient method for finding the flow front location and the fluid pressure. The heat transfer model is based on the three-dimensional, transient heat conduction equation, including heat generation. Boundary conditions include specified temperature and convection. The code was designed with a modular approach so the flow and/or the thermal module may be turned on or off as desired. Both models are solved sequentially in a quasi-steady state fashion. A mesh refinement study was completed on a one-element thick model to determine the recommended size of elements that would result in a converged model for a typical RFI analysis. Guidelines are established for checking the convergence of a model, and the recommended element sizes are listed. Several experiments were conducted and computer simulations of the experiments were run to verify the simulation model. Isothermal, non-reacting flow in a T-stiffened section was simulated to verify the flow module. Predicted infiltration times were within 12-20% of measured times. The predicted pressures were approximately 50% of the measured pressures. A study was performed to attempt to explain the difference in pressures. Non-isothermal experiments with a reactive resin were modeled to verify the thermal module and the resin model. Two panels were manufactured using the RFI process. One was a stepped panel and the other was a panel with two 'T' stiffeners. The difference between the predicted infiltration times and the experimental times was 4% to 23%.
NASA Astrophysics Data System (ADS)
Ma, Xunjun; Lu, Yang; Wang, Fengjiao
2017-09-01
This paper presents the recent advances in reduction of multifrequency noise inside helicopter cabin using an active structural acoustic control system, which is based on active gearbox struts technical approach. To attenuate the multifrequency gearbox vibrations and resulting noise, a new scheme of discrete model predictive sliding mode control has been proposed based on controlled auto-regressive moving average model. Its implementation only needs input/output data, hence a broader frequency range of controlled system is modelled and the burden on the state observer design is released. Furthermore, a new iteration form of the algorithm is designed, improving the developing efficiency and run speed. To verify the algorithm's effectiveness and self-adaptability, experiments of real-time active control are performed on a newly developed helicopter model system. The helicopter model can generate gear meshing vibration/noise similar to a real helicopter with specially designed gearbox and active struts. The algorithm's control abilities are sufficiently checked by single-input single-output and multiple-input multiple-output experiments via different feedback strategies progressively: (1) control gear meshing noise through attenuating vibrations at the key points on the transmission path, (2) directly control the gear meshing noise in the cabin using the actuators. Results confirm that the active control system is practical for cancelling multifrequency helicopter interior noise, which also weakens the frequency-modulation of the tones. For many cases, the attenuations of the measured noise exceed the level of 15 dB, with maximum reduction reaching 31 dB. Also, the control process is demonstrated to be smoother and faster.
Performance of the NIRS fast scanning system for heavy-ion radiotherapy.
Furukawa, Takuji; Inaniwa, Taku; Sato, Shinji; Shirai, Toshiyuki; Takei, Yuka; Takeshita, Eri; Mizushima, Kota; Iwata, Yoshiyuki; Himukai, Takeshi; Mori, Shinichiro; Fukuda, Shigekazu; Minohara, Shinichi; Takada, Eiichi; Murakami, Takeshi; Noda, Koji
2010-11-01
A project to construct a new treatment facility, as an extension of the existing HIMAC facility, has been initiated for the further development of carbon-ion therapy at NIRS. This new treatment facility is equipped with a 3D irradiation system with pencil-beam scanning. The challenge of this project is to realize treatment of a moving target by scanning irradiation. To achieve fast rescanning within an acceptable irradiation time, the authors developed a fast scanning system. In order to verify the validity of the design and to demonstrate the performance of the fast scanning prior to use in the new treatment facility, a new scanning-irradiation system was developed and installed into the existing HIMAC physics-experiment course. The authors made strong efforts to develop (1) the fast scanning magnet and its power supply, (2) the high-speed control system, and (3) the beam monitoring. The performance of the system including 3D dose conformation was tested by using the carbon beam from the HIMAC accelerator. The performance of the fast scanning system was verified by beam tests. Precision of the scanned beam position was less than +/-0.5 mm. By cooperating with the planning software, the authors verified the homogeneity of the delivered field within +/-3% for the 3D delivery. This system took only 20 s to deliver the physical dose of 1 Gy to a spherical target having a diameter of 60 mm with eight rescans. In this test, the average of the spot-staying time was considerably reduced to 154 micros, while the minimum staying time was 30 micros. As a result of this study, the authors verified that the new scanning delivery system can produce an accurate 3D dose distribution for the target volume in combination with the planning software.
NASA Technical Reports Server (NTRS)
Vanvalkenburgh, C. N.
1984-01-01
Underwater simulations of EVA contingency operations such as manual jettison, payload disconnect, and payload clamp actuation were used to define crew aid needs and mockup pecularities and characteristics to verify the validity of simulation using the trainer. A set of mockup instrument pointing system tests was conducted and minor modifications and refinements were made. Flight configuration struts were tested and verified to be operable by the flight crew. Tasks involved in developing the following end items are described: IPS gimbal system, payload, and payload clamp assembly; the igloos (volumetric); spacelab pallets, experiments, and hardware; experiment, and hardware; experiment 7; and EVA hand tools, support hardware (handrails and foot restraints). The test plan preparation and test support are also covered.
Magnetic induction of hyperthermia by a modified self-learning fuzzy temperature controller
NASA Astrophysics Data System (ADS)
Wang, Wei-Cheng; Tai, Cheng-Chi
2017-07-01
The aim of this study involved developing a temperature controller for magnetic induction hyperthermia (MIH). A closed-loop controller was applied to track a reference model to guarantee a desired temperature response. The MIH system generated an alternating magnetic field to heat a high magnetic permeability material. This wireless induction heating had few side effects when it was extensively applied to cancer treatment. The effects of hyperthermia strongly depend on the precise control of temperature. However, during the treatment process, the control performance is degraded due to severe perturbations and parameter variations. In this study, a modified self-learning fuzzy logic controller (SLFLC) with a gain tuning mechanism was implemented to obtain high control performance in a wide range of treatment situations. This implementation was performed by appropriately altering the output scaling factor of a fuzzy inverse model to adjust the control rules. In this study, the proposed SLFLC was compared to the classical self-tuning fuzzy logic controller and fuzzy model reference learning control. Additionally, the proposed SLFLC was verified by conducting in vitro experiments with porcine liver. The experimental results indicated that the proposed controller showed greater robustness and excellent adaptability with respect to the temperature control of the MIH system.
Incentivizing Verifiable Privacy-Protection Mechanisms for Offline Crowdsensing Applications
Sun, Jiajun; Liu, Ningzhong
2017-01-01
Incentive mechanisms of crowdsensing have recently been intensively explored. Most of these mechanisms mainly focus on the standard economical goals like truthfulness and utility maximization. However, enormous privacy and security challenges need to be faced directly in real-life environments, such as cost privacies. In this paper, we investigate offline verifiable privacy-protection crowdsensing issues. We firstly present a general verifiable privacy-protection incentive mechanism for the offline homogeneous and heterogeneous sensing job model. In addition, we also propose a more complex verifiable privacy-protection incentive mechanism for the offline submodular sensing job model. The two mechanisms not only explore the private protection issues of users and platform, but also ensure the verifiable correctness of payments between platform and users. Finally, we demonstrate that the two mechanisms satisfy privacy-protection, verifiable correctness of payments and the same revenue as the generic one without privacy protection. Our experiments also validate that the two mechanisms are both scalable and efficient, and applicable for mobile devices in crowdsensing applications based on auctions, where the main incentive for the user is the remuneration. PMID:28869574
Incentivizing Verifiable Privacy-Protection Mechanisms for Offline Crowdsensing Applications.
Sun, Jiajun; Liu, Ningzhong
2017-09-04
Incentive mechanisms of crowdsensing have recently been intensively explored. Most of these mechanisms mainly focus on the standard economical goals like truthfulness and utility maximization. However, enormous privacy and security challenges need to be faced directly in real-life environments, such as cost privacies. In this paper, we investigate offline verifiable privacy-protection crowdsensing issues. We firstly present a general verifiable privacy-protection incentive mechanism for the offline homogeneous and heterogeneous sensing job model. In addition, we also propose a more complex verifiable privacy-protection incentive mechanism for the offline submodular sensing job model. The two mechanisms not only explore the private protection issues of users and platform, but also ensure the verifiable correctness of payments between platform and users. Finally, we demonstrate that the two mechanisms satisfy privacy-protection, verifiable correctness of payments and the same revenue as the generic one without privacy protection. Our experiments also validate that the two mechanisms are both scalable and efficient, and applicable for mobile devices in crowdsensing applications based on auctions, where the main incentive for the user is the remuneration.
An experimental method to verify soil conservation by check dams on the Loess Plateau, China.
Xu, X Z; Zhang, H W; Wang, G Q; Chen, S C; Dang, W Q
2009-12-01
A successful experiment with a physical model requires necessary conditions of similarity. This study presents an experimental method with a semi-scale physical model. The model is used to monitor and verify soil conservation by check dams in a small watershed on the Loess Plateau of China. During experiments, the model-prototype ratio of geomorphic variables was kept constant under each rainfall event. Consequently, experimental data are available for verification of soil erosion processes in the field and for predicting soil loss in a model watershed with check dams. Thus, it can predict the amount of soil loss in a catchment. This study also mentions four criteria: similarities of watershed geometry, grain size and bare land, Froude number (Fr) for rainfall event, and soil erosion in downscaled models. The efficacy of the proposed method was confirmed using these criteria in two different downscaled model experiments. The B-Model, a large scale model, simulates watershed prototype. The two small scale models, D(a) and D(b), have different erosion rates, but are the same size. These two models simulate hydraulic processes in the B-Model. Experiment results show that while soil loss in the small scale models was converted by multiplying the soil loss scale number, it was very close to that of the B-Model. Obviously, with a semi-scale physical model, experiments are available to verify and predict soil loss in a small watershed area with check dam system on the Loess Plateau, China.
Investigation of failure to separate an Inconel 718 frangible nut
NASA Technical Reports Server (NTRS)
Hoffman, William C., III; Hohmann, Carl
1994-01-01
The 2.5-inch frangible nut is used in two places to attach the Space Shuttle Orbiter to the External Tank. It must be capable of sustaining structural loads and must also separate into two pieces upon command. Structural load capability is verified by proof loading each flight nut, while ability to separate is verified on a sample of a production lot. Production lots of frangible nuts beginning in 1987 experienced an inability to reliably separate using one of two redundant explosive boosters. The problems were identified in lot acceptance tests, and the cause of failure has been attributed to differences in the response of the Inconel 718. Subsequent tests performed on the frangible nuts resulted in design modifications to the nuts along with redesign of the explosive booster to reliably separate the frangible nut. The problem history along with the design modifications to both the explosive booster and frangible nut are discussed in this paper. Implications of this failure experience impact any pyrotechnic separation system involving fracture of materials with respect to design margin control and lot acceptance testing.
An in-situ measuring method for planar straightness error
NASA Astrophysics Data System (ADS)
Chen, Xi; Fu, Luhua; Yang, Tongyu; Sun, Changku; Wang, Zhong; Zhao, Yan; Liu, Changjie
2018-01-01
According to some current problems in the course of measuring the plane shape error of workpiece, an in-situ measuring method based on laser triangulation is presented in this paper. The method avoids the inefficiency of traditional methods like knife straightedge as well as the time and cost requirements of coordinate measuring machine(CMM). A laser-based measuring head is designed and installed on the spindle of a numerical control(NC) machine. The measuring head moves in the path planning to measure measuring points. The spatial coordinates of the measuring points are obtained by the combination of the laser triangulation displacement sensor and the coordinate system of the NC machine, which could make the indicators of measurement come true. The method to evaluate planar straightness error adopts particle swarm optimization(PSO). To verify the feasibility and accuracy of the measuring method, simulation experiments were implemented with a CMM. Comparing the measurement results of measuring head with the corresponding measured values obtained by composite measuring machine, it is verified that the method can realize high-precise and automatic measurement of the planar straightness error of the workpiece.
NASA Technical Reports Server (NTRS)
Lahoti, G. D.; Akgerman, N.; Altan, T.
1978-01-01
Mild steel (AISI 1018) was selected as model cold-rolling material and Ti-6Al-4V and INCONEL 718 were selected as typical hot-rolling and cold-rolling alloys, respectively. The flow stress and workability of these alloys were characterized and friction factor at the roll/workpiece interface was determined at their respective working conditions by conducting ring tests. Computer-aided mathematical models for predicting metal flow and stresses, and for simulating the shape-rolling process were developed. These models utilize the upper-bound and the slab methods of analysis, and are capable of predicting the lateral spread, roll-separating force, roll torque and local stresses, strains and strain rates. This computer-aided design (CAD) system is also capable of simulating the actual rolling process and thereby designing roll-pass schedule in rolling of an airfoil or similar shape. The predictions from the CAD system were verified with respect to cold rolling of mild steel plates. The system is being applied to cold and hot isothermal rolling of an airfoil shape, and will be verified with respect to laboratory experiments under controlled conditions.
Martin, Guenter; Schmidt, Hagen; Wall, Bert
2004-07-01
The present paper describes single-phase unidirectional transducers (SPUDT) cells with all fingers wider than lambda/8 while maintaining the unidirectional effect. The first solution is related to a SPUDT consisting of lambda/4 and lambda/2 wide fingers arranged in two tracks. Each track has no significant unidirectional effect. Both tracks form a waveguide, and the waveguide coupling generates the interaction of the tracks. As a result of that interaction, a unidirectional effect arises as verified by experiment. This transducer type is called double-track (DT) SPUDT. A second solution is suggested that includes, in contrast to distributed acoustic reflection transducer (DART), electrode width control (EWC), and Hunsinger cells, SPUDT cell fingers with one and the same width only. Cell types with lambda/6, lambda/5, and lambda/3 wide fingers called uniform width electrode (UWE) cells are considered. One of these cell types, including exclusively lambda/5 wide fingers, is experimentally investigated and a unidirectional effect is found. Moreover, a filter example using the lambda/5 cell type has been designed for reducing SPUDT reflections. The echo suppression expected could be verified experimentally. No waveguide coupling is required for this cell type.
NASA Astrophysics Data System (ADS)
Aurora, Tarlok
2013-04-01
In introductory physics, students verify Archimedes' principle by immersing an object in water in a container, with a side-spout to collect the displaced water, resulting in a large uncertainty, due to surface tension. A modified procedure was introduced, in which a plastic bucket is suspended from a force sensor, and an object hangs underneath the bucket. The object is immersed in water in a glass beaker (without any side spout), and the weight loss is measured with a computer-controlled force sensor. Instead of collecting the water displaced by the object, tap water was added to the bucket to compensate for the weight loss, and the Archimedes' principle was verified within less than a percent. With this apparatus, buoyant force was easily studied as a function of volume of displaced water; as well as a function of density of saline solution. By graphing buoyant force as a function of volume (or density of liquid), value of g was obtained from slope. Apparatus and sources of error will be discussed.
Summary of EM launcher experiments performed at LLNL
NASA Astrophysics Data System (ADS)
Hawke, R. S.; Nellis, W. J.; Newman, G. H.; Rego, J.; Susoeff, A. R.
1986-11-01
Performance results for three railguns are summarized. The system used a helium gas-driven injector and railgun launcher to accelerate 1- and 4-g polycarbonate projectiles intact up to 6.6 and 3.0 km/sc, respectively. A 625 kJ capacitor bank powered the railgun, and an adjustable inductor provided pulse shaping and peak current control. Operation in hard and soft vacuum was reliably achieved. The diagnostic system measured the projectile position and launch velocity, verified that the projectile was launched intact in the desired direction, and identified system components where improvements could enhance performance. Flash X-ray radiography measured velocity and verified that projectiles were intact. Pre-launch projectile travel along the axis of the launcher without tilt was recorded with flash radiographs and impact impressions or holes in witness plates. The sysem performed as expected up to 4-5 km/sec but below expectations at higher velocities. Diagnostics suggest that the decreased performance was probably cuased by the restriking of a second arc in the breech of the railgun, which shunted the current from the propulsive arc.
Kandiel, Mohamed M.M.; El-Asely, Amel M.; Radwan, Hasnaa A.; Abbass, Amany A.
2013-01-01
The present study aimed at verifying the usefulness of dietary 2.5% bee-pollen (BP) or propolis (PROP) to overcome the genotoxic and endocrine disruptive effects of malathion polluted water in Oreochromis niloticus (O. niloticus). The acute toxicity test was conducted in O. niloticus in various concentrations (0–8 ppm); mortality rate was assessed daily for 96 h. The 96 h-LC50 was 5 ppm and therefore 1/5 of the median lethal concentration (1 ppm) was used for chronic toxicity assessment. In experiment (1), fish (n = 8/group) were kept on a diet (BP/PROP or without additive (control)) and exposed daily to malathion in water at concentration of 5 ppm for 96 h “acute toxicity experiment”. Protective efficiency against the malathion was verified through chromosomal aberrations (CA), micronucleus (MN) and DNA-fragmentation assessment. Survival rate in control, BP and PROP groups was 37.5%, 50.0% and 100.0%, respectively. Fish in BP and PROP groups showed a significant (P < 0.05) reduction in the frequency of CA (57.14% and 40.66%), MN (53.13% and 40.63%) and DNA-fragmentation (53.08% and 30.00%). In experiment (2), fish (10 males and 5 females/group) were kept on a diet with/without BP for 21 days before malathion-exposure in water at concentration of 0 ppm (control) or 1 ppm (Exposed) for further 10 days “chronic toxicity experiment”. BP significantly (P < 0.05) reduced CA (86.33%), MN (82.22%) and DNA-fragmentation (93.11%), prolonged the sperm motility when exposed to 0.01 ppm of pollutant in vitro and increased the estradiol level in females comparing to control. In conclusion, BP can be used as a feed additive for fish prone to be raised in integrated fish farms or cage culture due to its potency to chemo-protect against genotoxicity and sperm-teratogenicity persuaded by malathion-exposure. PMID:25685536
Speckle correlation method used to measure object's in-plane velocity.
Smíd, Petr; Horváth, Pavel; Hrabovský, Miroslav
2007-06-20
We present a measurement of an object's in-plane velocity in one direction by the use of the speckle correlation method. Numerical correlations of speckle patterns recorded periodically during motion of the object under investigation give information used to evaluate the object's in-plane velocity. The proposed optical setup uses a detection plane in the image field and enables one to detect the object's velocity within the interval (10-150) microm x s(-1). Simulation analysis shows a way of controlling the measuring range. The presented theory, simulation analysis, and setup are verified through an experiment of measurement of the velocity profile of an object.
Monitoring copper release in drinking water distribution systems.
d'Antonio, L; Fabbricino, M; Panico, A
2008-01-01
A new procedure, recently proposed for on-line monitoring of copper released from metal pipes in household plumbing system for drinking water distribution during the development of corrosion processes, is tested experimentally. Experiments were carried out in laboratory controlled conditions, using synthetic water and varying the water alkalinity. The possibility of using the corrosion potential as a surrogate measure of copper concentration in stagnating water is shown, verifying, in the meantime, the effect of alkalinity on the development of passivation phenomena, which tend to protect the pipe from corrosion processes. Experimental data are discussed, highlighting the potentiality of the procedure, and recognizing its limitations. Copyright IWA Publishing 2008.
Note: A novel rotary actuator driven by only one piezoelectric actuator.
Huang, Hu; Fu, Lu; Zhao, Hongwei; Shi, Chengli; Ren, Luquan; Li, Jianping; Qu, Han
2013-09-01
This paper presents a novel piezo-driven rotary actuator based on the parasitic motion principle. Output performances of the rotary actuator were tested and discussed. Experiment results indicate that using only one piezoelectric actuator and simple sawtooth wave control, the rotary actuator reaches the rotation velocity of about 20,097 μrad/s when the driving voltage is 100 V and the driving frequency is 90 Hz. The actuator can rotate stably with the minimum resolution of 0.7 μrad. This paper verifies feasibility of the parasitic motion principle for applications of rotary actuators, providing new design ideas for precision piezoelectric rotary actuators.
Thermal design of the IMP-I and H spacecraft
NASA Technical Reports Server (NTRS)
Hoffman, R. H.
1974-01-01
A description of the thermal subsystem of the IMP-I and H spacecraft is presented. These two spacecraft were of a larger and more advanced type in the Explorer series and were successfully launched in March 1971 and September 1972. The thermal requirements, analysis, and design of each spacecraft are described including several specific designs for individual experiments. Techniques for obtaining varying degrees of thermal isolation and contact are presented. The thermal control coatings including the spaceflight performance of silver-coated FEP Teflon are discussed. Predicted performance is compared to measured flight data. The good agreement between them verifies the validity of the thermal model and the selection of coatings.
Dynamic deformation measurement and analysis of active stressed lap using optical method
NASA Astrophysics Data System (ADS)
Zhang, Qican; Su, Xianyu; Liu, Yuankun; Xiang, Liqun
2007-12-01
The active stressed lap is the heart of polishing process. A novel non-contact optical method of dynamic deformation measurement and analysis of an active stressed lap is put forward. This method, based on structured illumination, is able to record full-field information of the bending and rotating stressed lap dynamically and continuously, while its profile is changed under computer control, and restore the whole process of lap deformation varied with time at different position and rotating angle. It has been verified by experiments that this proposed method will be helpful to the opticians to ensure the stressed lap as expected.
Highlight removal based on the regional-projection fringe projection method
NASA Astrophysics Data System (ADS)
Qi, Zhaoshuai; Wang, Zhao; Huang, Junhui; Xing, Chao; Gao, Jianmin
2018-04-01
In fringe projection profilometry, highlight usually causes the saturation and blooming in captured fringes and reduces the measurement accuracy. To solve the problem, a regional-projection fringe projection (RP-FP) method is proposed. Regional projection patterns (RP patterns) are projected onto the tested object surface to avoid the saturation and blooming. Then, an image inpainting technique is employed to reconstruct the missing phases in the captured RP patterns and a complete surface of the tested object is obtained. Experiments verified the effectiveness of the proposed method. The method can be widely used in industrial inspections and quality controlling in mechanical and manufacturing industries.
Robustness of a compact endfire personal audio system against scattering effects (L).
Tu, Zhen; Lu, Jing; Qiu, Xiaojun
2016-10-01
Compact loudspeaker arrays have wide potential applications as portable personal audio systems that can project sound energy to specified regions. It is meaningful to investigate the scattering effects on the array performance since the scattering of the users' heads is inevitable in practice. A five-channel compact endfire array is established and the regularized acoustic contrast control method is evaluated for the scenarios of one moving listener and one listener fixed in the bright zone while another listener moves along the evaluation region. Both simulations and experiments verify that the scattering has limited influence on the directivity of the endfire array.
Optimal control of complex atomic quantum systems
van Frank, S.; Bonneau, M.; Schmiedmayer, J.; Hild, S.; Gross, C.; Cheneau, M.; Bloch, I.; Pichler, T.; Negretti, A.; Calarco, T.; Montangero, S.
2016-01-01
Quantum technologies will ultimately require manipulating many-body quantum systems with high precision. Cold atom experiments represent a stepping stone in that direction: a high degree of control has been achieved on systems of increasing complexity. However, this control is still sub-optimal. In many scenarios, achieving a fast transformation is crucial to fight against decoherence and imperfection effects. Optimal control theory is believed to be the ideal candidate to bridge the gap between early stage proof-of-principle demonstrations and experimental protocols suitable for practical applications. Indeed, it can engineer protocols at the quantum speed limit – the fastest achievable timescale of the transformation. Here, we demonstrate such potential by computing theoretically and verifying experimentally the optimal transformations in two very different interacting systems: the coherent manipulation of motional states of an atomic Bose-Einstein condensate and the crossing of a quantum phase transition in small systems of cold atoms in optical lattices. We also show that such processes are robust with respect to perturbations, including temperature and atom number fluctuations. PMID:27725688
Optimal control of complex atomic quantum systems.
van Frank, S; Bonneau, M; Schmiedmayer, J; Hild, S; Gross, C; Cheneau, M; Bloch, I; Pichler, T; Negretti, A; Calarco, T; Montangero, S
2016-10-11
Quantum technologies will ultimately require manipulating many-body quantum systems with high precision. Cold atom experiments represent a stepping stone in that direction: a high degree of control has been achieved on systems of increasing complexity. However, this control is still sub-optimal. In many scenarios, achieving a fast transformation is crucial to fight against decoherence and imperfection effects. Optimal control theory is believed to be the ideal candidate to bridge the gap between early stage proof-of-principle demonstrations and experimental protocols suitable for practical applications. Indeed, it can engineer protocols at the quantum speed limit - the fastest achievable timescale of the transformation. Here, we demonstrate such potential by computing theoretically and verifying experimentally the optimal transformations in two very different interacting systems: the coherent manipulation of motional states of an atomic Bose-Einstein condensate and the crossing of a quantum phase transition in small systems of cold atoms in optical lattices. We also show that such processes are robust with respect to perturbations, including temperature and atom number fluctuations.
Systems Approach to Arms Control Verification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allen, K; Neimeyer, I; Listner, C
2015-05-15
Using the decades of experience of developing concepts and technologies for verifying bilateral and multilateral arms control agreements, a broad conceptual systems approach is being developed that takes into account varying levels of information and risk. The IAEA has already demonstrated the applicability of a systems approach by implementing safeguards at the State level, with acquisition path analysis as the key element. In order to test whether such an approach could also be implemented for arms control verification, an exercise was conducted in November 2014 at the JRC ITU Ispra. Based on the scenario of a hypothetical treaty between twomore » model nuclear weapons states aimed at capping their nuclear arsenals at existing levels, the goal of this exercise was to explore how to use acquisition path analysis in an arms control context. Our contribution will present the scenario, objectives and results of this exercise, and attempt to define future workshops aimed at further developing verification measures that will deter or detect treaty violations.« less
Distributed Actuation and Sensing on an Uninhabited Aerial Vehicle
NASA Technical Reports Server (NTRS)
Barnwell, William Garrard
2003-01-01
An array of effectors and sensors has been designed, tested and implemented on a Blended Wing Body Uninhabited Aerial Vehicle (UAV). The UAV is modified to serve as a flying, controls research, testbed. This effector/sensor array provides for the dynamic vehicle testing of controller designs and the study of decentralized control techniques. Each wing of the UAV is equipped with 12 distributed effectors that comprise a segmented array of independently actuated, contoured control surfaces. A single pressure sensor is installed near the base of each effector to provide a measure of deflections of the effectors. The UAV wings were tested in the North Carolina State University Subsonic Wind Tunnel and the pressure distribution that result from the deflections of the effectors are characterized. The results of the experiments are used to develop a simple, but accurate, prediction method, such that for any arrangement of the effector array the corresponding pressure distribution can be determined. Numerical analysis using the panel code CMARC verifies this prediction method.
ATLAS tile calorimeter cesium calibration control and analysis software
NASA Astrophysics Data System (ADS)
Solovyanov, O.; Solodkov, A.; Starchenko, E.; Karyukhin, A.; Isaev, A.; Shalanda, N.
2008-07-01
An online control system to calibrate and monitor ATLAS Barrel hadronic calorimeter (TileCal) with a movable radioactive source, driven by liquid flow, is described. To read out and control the system an online software has been developed, using ATLAS TDAQ components like DVS (Diagnostic and Verification System) to verify the hardware before running, IS (Information Server) for data and status exchange between networked computers, and other components like DDC (DCS to DAQ Connection), to connect to PVSS-based slow control systems of Tile Calorimeter, high voltage and low voltage. A system of scripting facilities, based on Python language, is used to handle all the calibration and monitoring processes from hardware perspective to final data storage, including various abnormal situations. A QT based graphical user interface to display the status of the calibration system during the cesium source scan is described. The software for analysis of the detector response, using online data, is discussed. Performance of the system and first experience from the ATLAS pit are presented.
Stabilizing low-frequency oscillation with two-stage filter in Hall thrusters
NASA Astrophysics Data System (ADS)
Wei, Liqiu; Han, Liang; Ding, Yongjie; Yu, Daren; Zhang, Chaohai
2017-07-01
The use of a filter is the most common method to suppress low-frequency discharge current oscillation in Hall thrusters. The only form of filter in actual use involves RLC networks, which serve the purpose of reducing the level of conducted electromagnetic interference returning to the power processing unit, which is the function of a filter. Recently, the role of the filter in the oscillation control was introduced. It has been noted that the filter regulates the voltage across itself according to the variation of discharge current so as to decrease its fluctuation in the discharge circuit, which is the function of a controller. Therefore, a kind of two-stage filter is proposed to fulfill these two purposes, filtering and controlling, and the detailed design methods are discussed and verified. A current oscillation attenuation ratio of 10 was achieved by different capacitance and inductance combinations of the filter stage, and the standard deviation of low-frequency oscillations decreased from 3 A-1 A by the control stage in our experiment.
Automation of temperature control for large-array microwave surface applicators.
Zhou, L; Fessenden, P
1993-01-01
An adaptive temperature control system has been developed for the microstrip antenna array applicators used for large area superficial hyperthermia. A recursive algorithm which allows rapid power updating even for large antenna arrays and accounts for coupling between neighbouring antennas has been developed, based on a first-order difference equation model. Surface temperatures from the centre of each antenna element are the primary feedback information. Also used are temperatures from additional surface probes placed within the treatment field to protect locations vulnerable to excessive temperatures. In addition, temperatures at depth are observed by mappers and utilized to restrain power to reduce treatment-related complications. Experiments on a tissue-equivalent phantom capable of dynamic differential cooling have successfully verified this temperature control system. The results with the 25 (5 x 5) antenna array have demonstrated that during dynamic water cooling changes and other experimentally simulated disturbances, the controlled temperatures converge to desired temperature patterns with a precision close to the resolution of the thermometry system (0.1 degree C).
Emond Pelletier, Julie; Joussemet, Mireille
2017-09-01
The benefits of autonomy support with the general population have been demonstrated numerous times. However, little research has been conducted to verify if these benefits apply to people with special needs. The goal of the study was to examine whether autonomy support (AS) can foster the sense of autonomy of people with a mild intellectual disabilities (MIDs) and improve their experience while engaging in an important but unpleasant learning activity. This experiment compares the effects of two contexts: with and without AS. All participants (N = 51) had a mild intellectual disability and were recruited from rehabilitation centres. Compared to participants in the control group, participants in the AS group tended to experience greater autonomy satisfaction and tended to perceive more value to the activity. They were also significantly more engaged in it, and they experienced a steeper decrease in anxiety over time. This study suggests that the benefits of AS extend to individuals with mild intellectual disability. © 2016 John Wiley & Sons Ltd.
A Secure and Verifiable Outsourced Access Control Scheme in Fog-Cloud Computing.
Fan, Kai; Wang, Junxiong; Wang, Xin; Li, Hui; Yang, Yintang
2017-07-24
With the rapid development of big data and Internet of things (IOT), the number of networking devices and data volume are increasing dramatically. Fog computing, which extends cloud computing to the edge of the network can effectively solve the bottleneck problems of data transmission and data storage. However, security and privacy challenges are also arising in the fog-cloud computing environment. Ciphertext-policy attribute-based encryption (CP-ABE) can be adopted to realize data access control in fog-cloud computing systems. In this paper, we propose a verifiable outsourced multi-authority access control scheme, named VO-MAACS. In our construction, most encryption and decryption computations are outsourced to fog devices and the computation results can be verified by using our verification method. Meanwhile, to address the revocation issue, we design an efficient user and attribute revocation method for it. Finally, analysis and simulation results show that our scheme is both secure and highly efficient.
Estimation of sample size and testing power (Part 3).
Hu, Liang-ping; Bao, Xiao-lei; Guan, Xue; Zhou, Shi-guo
2011-12-01
This article introduces the definition and sample size estimation of three special tests (namely, non-inferiority test, equivalence test and superiority test) for qualitative data with the design of one factor with two levels having a binary response variable. Non-inferiority test refers to the research design of which the objective is to verify that the efficacy of the experimental drug is not clinically inferior to that of the positive control drug. Equivalence test refers to the research design of which the objective is to verify that the experimental drug and the control drug have clinically equivalent efficacy. Superiority test refers to the research design of which the objective is to verify that the efficacy of the experimental drug is clinically superior to that of the control drug. By specific examples, this article introduces formulas of sample size estimation for the three special tests, and their SAS realization in detail.
The Effect of Extratropical Warming Amplification on the Future Tropical Precipitation
NASA Astrophysics Data System (ADS)
Yoshimori, M.; Hamano, Y.; Abe-Ouchi, A.
2016-12-01
The Arctic warms much more than the rest of the world under relatively uniform radiative forcing. Recent observations verify this characteristics of global warming. On the other hand, previous studies based on paleo-proxy data and paleo- and idealized numerical experiments have indicated that asymmetric warming between the two hemispheres can impact on the distribution of tropical precipitation. It was suggested diagnostically that the Arctic warming amplification may become responsible for a part of the future precipitation change in the tropics. In the current study, we have conducted several sensitivity experiments that isolate the effect of remote warming on the tropical precipitation using an atmospheric general circulation model with a mixture of prescribed and predicted mixed-layer sea surface conditions, depending of the region. Additional experiments including ocean dynamics will also be presented. In a standard equilibrium experiment of doubling of atmospheric CO2 concentration (2xCO2), the Northern Hemisphere mid-high latitude (40-90ºN) warms by about 7ºC and precipitation change occurs mostly in the tropical Pacific (20ºS-20ºN). In the zonal average, the increase in precipitation is larger in the North than the South by about 0.5 mm/day and the peak latitude of precipitation shifted northward by about 1º. Sensitivity experiments were designed to amplify or suppress the Northern Hemisphere mid-high latitude warming to different levels and to allow for the tropics to respond freely to those perturbations. The perturbations of the mid-high latitude warming range from -5ºC to +7ºC from the standard 2xCO2 experiment, and precipitation change range from -160% to +160% relative to the difference between 2xCO2 and control experiments. The peak latitude of precipitation shifted northward from -1.5º to +2.5º, and it was verified that most of the change is contributed by the change in the Hadley circulation, rather than the change in the moisture amount in the atmosphere. The response is understood through the energy budget analysis.
NASA Astrophysics Data System (ADS)
Chang, C. L.; Chen, C. Y.; Sung, C. C.; Liou, D. H.; Chang, C. Y.; Cha, H. C.
This work presents a new fuel sensor-less control scheme for liquid feed fuel cells that is able to control the supply to a fuel cell system for operation under dynamic loading conditions. The control scheme uses cell-operating characteristics, such as potential, current, and power, to regulate the fuel concentration of a liquid feed fuel cell without the need for a fuel concentration sensor. A current integral technique has been developed to calculate the quantity of fuel required at each monitoring cycle, which can be combined with the concentration regulating process to control the fuel supply for stable operation. As verified by systematic experiments, this scheme can effectively control the fuel supply of a liquid feed fuel cell with reduced response time, even under conditions where the membrane electrolyte assembly (MEA) deteriorates gradually. This advance will aid the commercialization of liquid feed fuel cells and make them more adaptable for use in portable and automotive power units such as laptops, e-bikes, and handicap cars.
Taheri, Asghar; Zhalebaghi, Mohammad Hadi
2017-11-01
This paper presents a new control strategy based on finite-control-set model-predictive control (FCS-MPC) for Neutral-point-clamped (NPC) three-level converters. Containing some advantages like fast dynamic response, easy inclusion of constraints and simple control loop, makes the FCS-MPC method attractive to use as a switching strategy for converters. However, the large amount of required calculations is a problem in the widespread of this method. In this way, to resolve this problem this paper presents a modified method that effectively reduces the computation load compare with conventional FCS-MPC method and at the same time does not affect on control performance. The proposed method can be used for exchanging power between electrical grid and DC resources by providing active and reactive power compensations. Experiments on three-level converter for three Power Factor Correction (PFC), inductive and capacitive compensation modes verify the good and comparable performance. The results have been simulated using MATLAB/SIMULINK software. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Minimum-variance Brownian motion control of an optically trapped probe.
Huang, Yanan; Zhang, Zhipeng; Menq, Chia-Hsiang
2009-10-20
This paper presents a theoretical and experimental investigation of the Brownian motion control of an optically trapped probe. The Langevin equation is employed to describe the motion of the probe experiencing random thermal force and optical trapping force. Since active feedback control is applied to suppress the probe's Brownian motion, actuator dynamics and measurement delay are included in the equation. The equation of motion is simplified to a first-order linear differential equation and transformed to a discrete model for the purpose of controller design and data analysis. The derived model is experimentally verified by comparing the model prediction to the measured response of a 1.87 microm trapped probe subject to proportional control. It is then employed to design the optimal controller that minimizes the variance of the probe's Brownian motion. Theoretical analysis is derived to evaluate the control performance of a specific optical trap. Both experiment and simulation are used to validate the design as well as theoretical analysis, and to illustrate the performance envelope of the active control. Moreover, adaptive minimum variance control is implemented to maintain the optimal performance in the case in which the system is time varying when operating the actively controlled optical trap in a complex environment.
The cost of model reference adaptive control - Analysis, experiments, and optimization
NASA Technical Reports Server (NTRS)
Messer, R. S.; Haftka, R. T.; Cudney, H. H.
1993-01-01
In this paper the performance of Model Reference Adaptive Control (MRAC) is studied in numerical simulations and verified experimentally with the objective of understanding how differences between the plant and the reference model affect the control effort. MRAC is applied analytically and experimentally to a single degree of freedom system and analytically to a MIMO system with controlled differences between the model and the plant. It is shown that the control effort is sensitive to differences between the plant and the reference model. The effects of increased damping in the reference model are considered, and it is shown that requiring the controller to provide increased damping actually decreases the required control effort when differences between the plant and reference model exist. This result is useful because one of the first attempts to counteract the increased control effort due to differences between the plant and reference model might be to require less damping, however, this would actually increase the control effort. Optimization of weighting matrices is shown to help reduce the increase in required control effort. However, it was found that eventually the optimization resulted in a design that required an extremely high sampling rate for successful realization.
Active vibration control of thin-plate structures with partial SCLD treatment
NASA Astrophysics Data System (ADS)
Lu, Jun; Wang, Pan; Zhan, Zhenfei
2017-02-01
To effectively suppress the low-frequency vibration of a thin-plate, the strategy adopted is to develop a model-based approach to the investigation on the active vibration control of a clamped-clamped plate with partial SCLD treatment. Firstly, a finite element model is developed based on the constitutive equations of elastic, piezoelectric and viscoelastic materials. The characteristics of viscoelastic materials varying with temperature and frequency are described by GHM damping model. A low-dimensional real modal control model which can be used as the basis for active vibration control is then obtained from the combined reduction. The emphasis is placed on the feedback control system to attenuate the vibration of plates with SCLD treatments. A modal controller in conjunction with modal state estimator is designed to solve the problem of full state feedback, making it much more feasible to real-time control. Finally, the theoretical model is verified by modal test, and an active vibration control is validated by hardware-in-the-loop experiment under different external excitations. The numerical and experimental study demonstrate how the piezoelectric actuators actively control the lower modes (first bending and torsional modes) using modal controller, while the higher frequency vibration attenuated by viscoelastic passive damping layer.
NASA Technical Reports Server (NTRS)
Yoshida, Kazuya; Hirose, Shigeo; Ogawa, Tadashi
1994-01-01
The establishment of those in-orbit operations like 'Rendez-Vous/Docking' and 'Manipulator Berthing' with the assistance of robotics or autonomous control technology, is essential for the near future space programs. In order to study the control methods, develop the flight models, and verify how the system works, we need a tool or a testbed which enables us to simulate mechanically the micro-gravity environment. There have been many attempts to develop the micro-gravity testbeds, but once the simulation goes into the docking and berthing operation that involves mechanical contacts among multi bodies, the requirement becomes critical. A group at the Tokyo Institute of Technology has proposed a method that can simulate the 3D micro-gravity producing a smooth response to the impact phenomena with relatively simple apparatus. Recently the group carried out basic experiments successfully using a prototype hardware model of the testbed. This paper will present our idea of the 3D micro-gravity simulator and report the results of our initial experiments.
Song, Boqi; Peng, Limin; Fu, Feng; Liu, Meihong; Zhang, Houjiang
2016-11-22
Perforated wooden panels are typically utilized as a resonant sound absorbing material in indoor noise control. In this paper, the absorption properties of wooden panels perforated with tiny holes of 1-3 mm diameter were studied both experimentally and theoretically. The Maa-MPP (micro perforated panels) model and the Maa-Flex model were applied to predict the absorption regularities of finely perforated wooden panels. A relative impedance comparison and full-factorial experiments were carried out to verify the feasibility of the theoretical models. The results showed that the Maa-Flex model obtained good agreement with measured results. Control experiments and measurements of dynamic mechanical properties were carried out to investigate the influence of the wood characteristics. In this study, absorption properties were enhanced by sound-induced vibration. The relationship between the dynamic mechanical properties and the panel mass-spring vibration absorption was revealed. While the absorption effects of wood porous structure were not found, they were demonstrated theoretically by using acoustic wave propagation in a simplified circular pipe with a suddenly changed cross-section model. This work provides experimental and theoretical guidance for perforation parameter design.
Crew interface with a telerobotic control station
NASA Technical Reports Server (NTRS)
Mok, Eva
1987-01-01
A method for apportioning crew-telerobot tasks has been derived to facilitate the design of a crew-friendly telerobot control station. To identify the most appropriate state-of-the-art hardware for the control station, task apportionment must first be conducted to identify if an astronaut or a telerobot is best to execute the task and which displays and controls are required for monitoring and performance. Basic steps that comprise the task analysis process are: (1) identify space station tasks; (2) define tasks; (3) define task performance criteria and perform task apportionment; (4) verify task apportionment; (5) generate control station requirements; (6) develop design concepts to meet requirements; and (7) test and verify design concepts.
Verifying different-modality properties for concepts produces switching costs.
Pecher, Diane; Zeelenberg, René; Barsalou, Lawrence W
2003-03-01
According to perceptual symbol systems, sensorimotor simulations underlie the representation of concepts. It follows that sensorimotor phenomena should arise in conceptual processing. Previous studies have shown that switching from one modality to another during perceptual processing incurs a processing cost. If perceptual simulation underlies conceptual processing, then verifying the properties of concepts should exhibit a switching cost as well. For example, verifying a property in the auditory modality (e.g., BLENDER-loud) should be slower after verifying a property in a different modality (e.g., CRANBERRIES-tart) than after verifying a property in the same modality (e.g., LEAVES-rustling). Only words were presented to subjects, and there were no instructions to use imagery. Nevertheless, switching modalities incurred a cost, analogous to the cost of switching modalities in perception. A second experiment showed that this effect was not due to associative priming between properties in the same modality. These results support the hypothesis that perceptual simulation underlies conceptual processing.
Realization of a Quantum Integer-Spin Chain with Controllable Interactions
2015-06-17
site participate in the dynamics. We observe the time evolution of the system and verify its coherence by entangling a pair of effective three-level...states generated by the XY Hamiltonian, we can verify entangle - ment between a pair of three-level systems with fidelities of up to 86%. Adding a time...3(b) shows an example of the measured parity curve used to extract the amplitude A and verify entanglement between the qutrit pair . Such measurements
Verification of hypergraph states
NASA Astrophysics Data System (ADS)
Morimae, Tomoyuki; Takeuchi, Yuki; Hayashi, Masahito
2017-12-01
Hypergraph states are generalizations of graph states where controlled-Z gates on edges are replaced with generalized controlled-Z gates on hyperedges. Hypergraph states have several advantages over graph states. For example, certain hypergraph states, such as the Union Jack states, are universal resource states for measurement-based quantum computing with only Pauli measurements, while graph state measurement-based quantum computing needs non-Clifford basis measurements. Furthermore, it is impossible to classically efficiently sample measurement results on hypergraph states unless the polynomial hierarchy collapses to the third level. Although several protocols have been proposed to verify graph states with only sequential single-qubit Pauli measurements, there was no verification method for hypergraph states. In this paper, we propose a method for verifying a certain class of hypergraph states with only sequential single-qubit Pauli measurements. Importantly, no i.i.d. property of samples is assumed in our protocol: any artificial entanglement among samples cannot fool the verifier. As applications of our protocol, we consider verified blind quantum computing with hypergraph states, and quantum computational supremacy demonstrations with hypergraph states.
Tracking wakefulness as it fades: Micro-measures of alertness.
Jagannathan, Sridhar R; Ezquerro-Nassar, Alejandro; Jachs, Barbara; Pustovaya, Olga V; Bareham, Corinne A; Bekinschtein, Tristan A
2018-08-01
A major problem in psychology and physiology experiments is drowsiness: around a third of participants show decreased wakefulness despite being instructed to stay alert. In some non-visual experiments participants keep their eyes closed throughout the task, thus promoting the occurrence of such periods of varying alertness. These wakefulness changes contribute to systematic noise in data and measures of interest. To account for this omnipresent problem in data acquisition we defined criteria and code to allow researchers to detect and control for varying alertness in electroencephalography (EEG) experiments under eyes-closed settings. We first revise a visual-scoring method developed for detection and characterization of the sleep-onset process, and adapt the same for detection of alertness levels. Furthermore, we show the major issues preventing the practical use of this method, and overcome these issues by developing an automated method (micro-measures algorithm) based on frequency and sleep graphoelements, which are capable of detecting micro variations in alertness. The validity of the micro-measures algorithm was verified by training and testing using a dataset where participants are known to fall asleep. In addition, we tested generalisability by independent validation on another dataset. The methods developed constitute a unique tool to assess micro variations in levels of alertness and control trial-by-trial retrospectively or prospectively in every experiment performed with EEG in cognitive neuroscience under eyes-closed settings. Copyright © 2018. Published by Elsevier Inc.
Zhou, Xiangyang; Zhao, Beilei; Gong, Guohao
2015-08-14
This paper presents a method based on co-simulation of a mechatronic system to optimize the control parameters of a two-axis inertially stabilized platform system (ISP) applied in an unmanned airship (UA), by which high control performance and reliability of the ISP system are achieved. First, a three-dimensional structural model of the ISP is built by using the three-dimensional parametric CAD software SOLIDWORKS(®); then, to analyze the system's kinematic and dynamic characteristics under operating conditions, dynamics modeling is conducted by using the multi-body dynamics software ADAMS™, thus the main dynamic parameters such as displacement, velocity, acceleration and reaction curve are obtained, respectively, through simulation analysis. Then, those dynamic parameters were input into the established MATLAB(®) SIMULINK(®) controller to simulate and test the performance of the control system. By these means, the ISP control parameters are optimized. To verify the methods, experiments were carried out by applying the optimized parameters to the control system of a two-axis ISP. The results show that the co-simulation by using virtual prototyping (VP) is effective to obtain optimized ISP control parameters, eventually leading to high ISP control performance.
Zhou, Xiangyang; Zhao, Beilei; Gong, Guohao
2015-01-01
This paper presents a method based on co-simulation of a mechatronic system to optimize the control parameters of a two-axis inertially stabilized platform system (ISP) applied in an unmanned airship (UA), by which high control performance and reliability of the ISP system are achieved. First, a three-dimensional structural model of the ISP is built by using the three-dimensional parametric CAD software SOLIDWORKS®; then, to analyze the system’s kinematic and dynamic characteristics under operating conditions, dynamics modeling is conducted by using the multi-body dynamics software ADAMS™, thus the main dynamic parameters such as displacement, velocity, acceleration and reaction curve are obtained, respectively, through simulation analysis. Then, those dynamic parameters were input into the established MATLAB® SIMULINK® controller to simulate and test the performance of the control system. By these means, the ISP control parameters are optimized. To verify the methods, experiments were carried out by applying the optimized parameters to the control system of a two-axis ISP. The results show that the co-simulation by using virtual prototyping (VP) is effective to obtain optimized ISP control parameters, eventually leading to high ISP control performance. PMID:26287210
NASA Technical Reports Server (NTRS)
Reinhart, Richard C.
1993-01-01
The Power Control and Rain Fade Software was developed at the NASA Lewis Research Center to support the Advanced Communications Technology Satellite High Burst Rate Link Evaluation Terminal (ACTS HBR-LET). The HBR-LET is an experimenters terminal to communicate with the ACTS for various experiments by government, university, and industry agencies. The Power Control and Rain Fade Software is one segment of the Control and Performance Monitor (C&PM) Software system of the HBR-LET. The Power Control and Rain Fade Software automatically controls the LET uplink power to compensate for signal fades. Besides power augmentation, the C&PM Software system is also responsible for instrument control during HBR-LET experiments, control of the Intermediate Frequency Switch Matrix on board the ACTS to yield a desired path through the spacecraft payload, and data display. The Power Control and Rain Fade Software User's Guide, Version 1.0 outlines the commands and procedures to install and operate the Power Control and Rain Fade Software. The Power Control and Rain Fade Software Maintenance Manual, Version 1.0 is a programmer's guide to the Power Control and Rain Fade Software. This manual details the current implementation of the software from a technical perspective. Included is an overview of the Power Control and Rain Fade Software, computer algorithms, format representations, and computer hardware configuration. The Power Control and Rain Fade Test Plan provides a step-by-step procedure to verify the operation of the software using a predetermined signal fade event. The Test Plan also provides a means to demonstrate the capability of the software.
Analog VLSI system for active drag reduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, B.; Goodman, R.; Jiang, F.
1996-10-01
In today`s cost-conscious air transportation industry, fuel costs are a substantial economic concern. Drag reduction is an important way to reduce costs. Even a 5% reduction in drag translates into estimated savings of millions of dollars in fuel costs. Drawing inspiration from the structure of shark skin, the authors are building a system to reduce drag along a surface. Our analog VLSI system interfaces with microfabricated, constant-temperature shear stress sensors. It detects regions of high shear stress and outputs a control signal to activate a microactuator. We are in the process of verifying the actual drag reduction by controlling microactuatorsmore » in wind tunnel experiments. We are encouraged that an approach similar to one that biology employs provides a very useful contribution to the problem of drag reduction. 9 refs., 21 figs.« less
Development of a Self-contained Heat Rejection Module (SHRM), phase 1
NASA Technical Reports Server (NTRS)
Fleming, M. L.
1976-01-01
The laboratory prototype test hardware and testing of the Self-Contained Heat Rejection Module are discussed. The purpose of the test was to provide operational and design experience for application to a flight prototype design. It also provided test evaluation of several of the actual components which were to be used in the flight prototype hardware. Several changes were made in the flight prototype design due to these tests including simpler line routing, relocation of remote operated valves to a position upstream of the expansion valves, and shock mounting of the compressor. The concept of heat rejection control by compressor speed reduction was verified and the liquid receiver, accumulator, remote control valves, oil separator and power source were demonstrated as acceptable. A procedure for mode changes between pumped fluid and vapor compression was developed.
Protecting Files Hosted on Virtual Machines With Out-of-Guest Access Control
2017-12-01
analyzes the design and methodology of the implemented mechanism, while Chapter 4 explains the test methodology, test cases, and performance testing ...SACL, we verify that the user or group accessing the file has sufficient permissions. If that is correct, the callback function returns control to...ferify. In the first section, we validate our design of ferify. Next, we explain the tests we performed to verify that ferify has the results we expected
NASA Technical Reports Server (NTRS)
Aguilar, Michael L.; Bonanne, Kevin H.; Favretto, Jeffrey A.; Jackson, Maddalena M.; Jones, Stephanie L.; Mackey, Ryan M.; Sarrel, Marc A.; Simpson, Kimberly A.
2014-01-01
The Exploration Systems Development (ESD) Standing Review Board (SRB) requested the NASA Engineering and Safety Center (NESC) conduct an independent review of the plan developed by Ground Systems Development and Operations (GSDO) for identifying models and emulators to create a tool(s) to verify their command and control software. The NESC was requested to identify any issues or weaknesses in the GSDO plan. This document contains the outcome of the NESC review.
Position-based quantum cryptography over untrusted networks
NASA Astrophysics Data System (ADS)
Nadeem, Muhammad
2014-08-01
In this article, we propose quantum position verification (QPV) schemes where all the channels are untrusted except the position of the prover and distant reference stations of verifiers. We review and analyze the existing QPV schemes containing some pre-shared data between the prover and verifiers. Most of these schemes are based on non-cryptographic assumptions, i.e. quantum/classical channels between the verifiers are secure. It seems impractical in an environment fully controlled by adversaries and would lead to security compromise in practical implementations. However, our proposed formula for QPV is more robust, secure and according to the standard assumptions of cryptography. Furthermore, once the position of the prover is verified, our schemes establish secret keys in parallel and can be used for authentication and secret communication between the prover and verifiers.
Majewsky, Vera; Scherr, Claudia; Arlt, Sebastian Patrick; Kiener, Jonas; Frrokaj, Kristina; Schindler, Tobias; Klocke, Peter; Baumgartner, Stephan
2014-04-01
Reproducibility of basic research investigations in homeopathy is challenging. This study investigated if formerly observed effects of homeopathically potentised gibberellic acid (GA3) on growth of duckweed (Lemna gibba L.) were reproducible. Duckweed was grown in potencies (14x-30x) of GA3 and one time succussed and unsuccussed water controls. Outcome parameter area-related growth rate was determined by a computerised image analysis system. Three series including five independent blinded and randomised potency experiments (PE) each were carried out. System stability was controlled by three series of five systematic negative control (SNC) experiments. Gibbosity (a specific growth state of L. gibba) was investigated as possibly essential factor for reactivity of L. gibba towards potentised GA3 in one series of potency and SNC experiments, respectively. Only in the third series with gibbous L. gibba L. we observed a significant effect (p = 0.009, F-test) of the homeopathic treatment. However, growth rate increased in contrast to the former study, and most biologically active potency levels differed. Variability in PE was lower than in SNC experiments. The stability of the experimental system was verified by the SNC experiments. Gibbosity seems to be a necessary condition for reactivity of L. gibba to potentised GA3. Further still unknown conditions seem to govern effect direction and the pattern of active and inactive potency levels. When designing new reproducibility studies, the physiological state of the test organism must be considered. Variability might be an interesting parameter to investigate effects of homeopathic remedies in basic research. Copyright © 2014 The Faculty of Homeopathy. Published by Elsevier Ltd. All rights reserved.
Experimenting with Guitar Strings
NASA Astrophysics Data System (ADS)
LoPresto, Michael C.
2006-11-01
What follows is a description of a simple experiment developed in a nonmathematical general education science course on sound and light for fine arts students in which a guitar is used with data collection hardware and software to verify the properties of standing waves on a string.
Verifying genuine high-order entanglement.
Li, Che-Ming; Chen, Kai; Reingruber, Andreas; Chen, Yueh-Nan; Pan, Jian-Wei
2010-11-19
High-order entanglement embedded in multipartite multilevel quantum systems (qudits) with many degrees of freedom (DOFs) plays an important role in quantum foundation and quantum engineering. Verifying high-order entanglement without the restriction of system complexity is a critical need in any experiments on general entanglement. Here, we introduce a scheme to efficiently detect genuine high-order entanglement, such as states close to genuine qudit Bell, Greenberger-Horne-Zeilinger, and cluster states as well as multilevel multi-DOF hyperentanglement. All of them can be identified with two local measurement settings per DOF regardless of the qudit or DOF number. The proposed verifications together with further utilities such as fidelity estimation could pave the way for experiments by reducing dramatically the measurement overhead.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taillefert, Martial; Van Cappellen, Philippe
Recent developments in the theoretical treatment of geomicrobial reaction processes have resulted in the formulation of kinetic models that directly link the rates of microbial respiration and growth to the corresponding thermodynamic driving forces. The overall objective of this project was to verify and calibrate these kinetic models for the microbial reduction of uranium(VI) in geochemical conditions that mimic as much as possible field conditions. The approach combined modeling of bacterial processes using new bioenergetic rate laws, laboratory experiments to determine the bioavailability of uranium during uranium bioreduction, evaluation of microbial growth yield under energy-limited conditions using bioreactor experiments, competitionmore » experiments between metabolic processes in environmentally relevant conditions, and model applications at the field scale. The new kinetic descriptions of microbial U(VI) and Fe(III) reduction should replace those currently used in reactive transport models that couple catabolic energy generation and growth of microbial populations to the rates of biogeochemical redox processes. The above work was carried out in collaboration between the groups of Taillefert (batch reactor experiments and reaction modeling) at Georgia Tech and Van Cappellen (retentostat experiments and reactive transport modeling) at University of Waterloo (Canada).« less
Investigation of contact pressure and influence function model for soft wheel polishing.
Rao, Zhimin; Guo, Bing; Zhao, Qingliang
2015-09-20
The tool influence function (TIF) is critical for calculating the dwell-time map to improve form accuracy. We present the TIF for the process of computer-controlled polishing with a soft polishing wheel. In this paper, the static TIF was developed based on the Preston equation. The pressure distribution was verified by the real removal spot section profiles. According to the experiment measurements, the pressure distribution simulated by Hertz contact theory was much larger than the real contact pressure. The simulated pressure distribution, which was modeled by the Winkler elastic foundation for a soft polishing wheel, matched the real contact pressure. A series of experiments was conducted to obtain the removal spot statistical properties for validating the relationship between material removal and processing time and contact pressure and relative velocity, along with calculating the fitted parameters to establish the TIF. The developed TIF predicted the removal character for the studied soft wheel polishing.
A Large Motion Suspension System for Simulation of Orbital Deployment
NASA Technical Reports Server (NTRS)
Straube, T. M.; Peterson, L. D.
1994-01-01
This paper describes the design and implementation of a vertical degree of freedom suspension system which provides a constant force off-load condition to counter gravity over large displacements. By accommodating motions up to one meter for structures weighing up to 100 pounds, the system is useful for experiments which simulate the on-orbit deployment of spacecraft components. A unique aspect of this system is the combination of a large stroke passive off-load device augmented by electromotive torque actuated force feedback. The active force feedback has the effect of reducing breakaway friction by an order of magnitude over the passive system alone. The paper describes the development of the suspension hardware and the feedback control algorithm. Experiments were performed to verify the suspensions system's ability to provide a gravity off-load as well as its effect on the modal characteristics of a test article.
Charged particle concepts for fog dispersion
NASA Technical Reports Server (NTRS)
Frost, W.; Collins, F. G.; Koepf, D.
1981-01-01
Charged particle techniques hold promise for dispersing warm fog in the terminal area of commercial airports. This report focuses on features of the charged particle technique which require further study. The basic physical principles of the technique and the major verification experiments carried out in the past are described. The fundamentals of the nozzle operation are given. The nozzle characteristics and the theory of particle charging in the nozzle are discussed, including information from extensive literature on electrostatic precipitation relative to environmental pollution control and a description of some preliminary reported analyses on the jet characteristics and interaction with neighboring jets. The equation governing the transfer of water substances and of electrical charge is given together with a brief description of several semi-empirical, mathematical expressions necessary for the governing equations. The necessary ingredients of a field experiment to verify the system once a prototype is built are described.
Basic Electronic Design for Proposed NMSU Hitchhiker Payload
NASA Technical Reports Server (NTRS)
Horan, Stephen
2000-01-01
This document presents the bas'c hardware design developed by the EE 499 class during the spring semester of the 1999-2000 academic year. This design covers the electrical components to supply power to the experiments, the computer software and interfaces to control the experiments, and the ground data processing to provide an operator interface. This document is a follow-on to the Payload Mission description document and the System Requirements document developed during the EE 498 class during the fall semester. The design activities are broken down by functional area within the structure. For each area, we give the requirements that need to be met and the design to meet the requirements. For each of these areas, a prototype selection of hardware and/or software was done by the class and the components assembled as part of the class to verify that they worked as intended.
Guaranteeing Isochronous Control of Networked Motion Control Systems Using Phase Offset Adjustment
Kim, Ikhwan; Kim, Taehyoun
2015-01-01
Guaranteeing isochronous transfer of control commands is an essential function for networked motion control systems. The adoption of real-time Ethernet (RTE) technologies may be profitable in guaranteeing deterministic transfer of control messages. However, unpredictable behavior of software in the motion controller often results in unexpectedly large deviation in control message transmission intervals, and thus leads to imprecise motion. This paper presents a simple and efficient heuristic to guarantee the end-to-end isochronous control with very small jitter. The key idea of our approach is to adjust the phase offset of control message transmission time in the motion controller by investigating the behavior of motion control task. In realizing the idea, we performed a pre-runtime analysis to determine a safe and reliable phase offset and applied the phase offset to the runtime code of motion controller by customizing an open-source based integrated development environment (IDE). We also constructed an EtherCAT-based motion control system testbed and performed extensive experiments on the testbed to verify the effectiveness of our approach. The experimental results show that our heuristic is highly effective even for low-end embedded controller implemented in open-source software components under various configurations of control period and the number of motor drives. PMID:26076407
SU-E-T-594: Preliminary Active Scanning Results of KHIMA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, C; Yang, T; Chang, S
Purpose: To verify the design criteria on heavy ion beam irradiation, developing a proto type active scanning system was purposed. The active scanning system consists of scanning magnet, power supplies, beam monitors, energy modulation system, and irradiation control system. Methods: Each components of the active scanning system was designed for carbon beam first. For the fast ramping a laminated yoke was purposed. To measure incoming dose and profile, a plate and strip type of ion chambers were designed. Also, ridge filter and range shifter was manufactured. And, the scanning system was modified to adopt 45 MeV of proton beam becausemore » of the absence of carbon ion beam in Korea. The system was installed in a beam line at MC-50, KIRAMS. Also, the irradiation control system and planning software was provided. Results: The scanning experiment was performed by drawing KHIMA logo on GaF film. The logo was scanned by 237 scanning points through time normalized intensity modulation. Also, a grid points scanning was performed to measure the scanning resolution and intensity resolution. Conclusion: A prototype active scanning system was successfully designed and manufactured. Also, an initial experiment to print out a drawing on GaF film through the scanning system was completed. More experiments would be required to specify the system performance.« less
Bae, Sungwoo; Kim, Myungchin
2016-01-01
In order to realize a true WoT environment, a reliable power circuit is required to ensure interconnections among a range of WoT devices. This paper presents research on sensors and their effects on the reliability and response characteristics of power circuits in WoT devices. The presented research can be used in various power circuit applications, such as energy harvesting interfaces, photovoltaic systems, and battery management systems for the WoT devices. As power circuits rely on the feedback from voltage/current sensors, the system performance is likely to be affected by the sensor failure rates, sensor dynamic characteristics, and their interface circuits. This study investigated how the operational availability of the power circuits is affected by the sensor failure rates by performing a quantitative reliability analysis. In the analysis process, this paper also includes the effects of various reconstruction and estimation techniques used in power processing circuits (e.g., energy harvesting circuits and photovoltaic systems). This paper also reports how the transient control performance of power circuits is affected by sensor interface circuits. With the frequency domain stability analysis and circuit simulation, it was verified that the interface circuit dynamics may affect the transient response characteristics of power circuits. The verification results in this paper showed that the reliability and control performance of the power circuits can be affected by the sensor types, fault tolerant approaches against sensor failures, and the response characteristics of the sensor interfaces. The analysis results were also verified by experiments using a power circuit prototype. PMID:27608020
Design of barrier bucket kicker control system
NASA Astrophysics Data System (ADS)
Ni, Fa-Fu; Wang, Yan-Yu; Yin, Jun; Zhou, De-Tai; Shen, Guo-Dong; Zheng, Yang-De.; Zhang, Jian-Chuan; Yin, Jia; Bai, Xiao; Ma, Xiao-Li
2018-05-01
The Heavy-Ion Research Facility in Lanzhou (HIRFL) contains two synchrotrons: the main cooler storage ring (CSRm) and the experimental cooler storage ring (CSRe). Beams are extracted from CSRm, and injected into CSRe. To apply the Barrier Bucket (BB) method on the CSRe beam accumulation, a new BB technology based kicker control system was designed and implemented. The controller of the system is implemented using an Advanced Reduced Instruction Set Computer (RISC) Machine (ARM) chip and a field-programmable gate array (FPGA) chip. Within the architecture, ARM is responsible for data presetting and floating number arithmetic processing. The FPGA computes the RF phase point of the two rings and offers more accurate control of the time delay. An online preliminary experiment on HIRFL was also designed to verify the functionalities of the control system. The result shows that the reference trigger point of two different sinusoidal RF signals for an arbitrary phase point was acquired with a matched phase error below 1° (approximately 2.1 ns), and the step delay time better than 2 ns were realized.
Research on width control of Metal Fused-coating Additive Manufacturing based on active control
NASA Astrophysics Data System (ADS)
Ren, Chuan qi; Wei, Zheng ying; Wang, Xin; Du, Jun; Zhang, Shan; Zhang, Zhitong; Bai, Hao
2017-12-01
Given the stability of the shape of the forming layer is one of the key problems that affect the final quality of the sample morphology, taking a study on the forming process and the control method of morphology make a significant difference to metal fused-coating additive manufacturing (MFCAM) in achieving the efficient and stable forming. To improve the quality and precision of the samples of single-layer single pass, a control method of morphology based on active control was established by this paper. The real-time acquisition of image was realized by CCD and the characteristics of morphology of the forming process were simultaneously extracted. Making analysis of the characteristics of the width during the process, the relationship between the relative difference of different frames and moving speed was given. A large number of experiments are used to verify the response speed and accuracy of the system. The results show that the active system can improve the morphology of the sample and the smoothness of the width of the single channel, and increase the uniformity of width by 55.16%.
Aeropropulsion facilities configuration control: Procedures manual
NASA Technical Reports Server (NTRS)
Lavelle, James J.
1990-01-01
Lewis Research Center senior management directed that the aeropropulsion facilities be put under configuration control. A Configuration Management (CM) program was established by the Facilities Management Branch of the Aeropropulsion Facilities and Experiments Division. Under the CM program, a support service contractor was engaged to staff and implement the program. The Aeronautics Directorate has over 30 facilities at Lewis of various sizes and complexities. Under the program, a Facility Baseline List (FBL) was established for each facility, listing which systems and their documents were to be placed under configuration control. A Change Control System (CCS) was established requiring that any proposed changes to FBL systems or their documents were to be processed as per the CCS. Limited access control of the FBL master drawings was implemented and an audit system established to ensure all facility changes are properly processed. This procedures manual sets forth the policy and responsibilities to ensure all key documents constituting a facilities configuration are kept current, modified as needed, and verified to reflect any proposed change. This is the essence of the CM program.
Power Control and Optimization of Photovoltaic and Wind Energy Conversion Systems
NASA Astrophysics Data System (ADS)
Ghaffari, Azad
Power map and Maximum Power Point (MPP) of Photovoltaic (PV) and Wind Energy Conversion Systems (WECS) highly depend on system dynamics and environmental parameters, e.g., solar irradiance, temperature, and wind speed. Power optimization algorithms for PV systems and WECS are collectively known as Maximum Power Point Tracking (MPPT) algorithm. Gradient-based Extremum Seeking (ES), as a non-model-based MPPT algorithm, governs the system to its peak point on the steepest descent curve regardless of changes of the system dynamics and variations of the environmental parameters. Since the power map shape defines the gradient vector, then a close estimate of the power map shape is needed to create user assignable transients in the MPPT algorithm. The Hessian gives a precise estimate of the power map in a neighborhood around the MPP. The estimate of the inverse of the Hessian in combination with the estimate of the gradient vector are the key parts to implement the Newton-based ES algorithm. Hence, we generate an estimate of the Hessian using our proposed perturbation matrix. Also, we introduce a dynamic estimator to calculate the inverse of the Hessian which is an essential part of our algorithm. We present various simulations and experiments on the micro-converter PV systems to verify the validity of our proposed algorithm. The ES scheme can also be used in combination with other control algorithms to achieve desired closed-loop performance. The WECS dynamics is slow which causes even slower response time for the MPPT based on the ES. Hence, we present a control scheme, extended from Field-Oriented Control (FOC), in combination with feedback linearization to reduce the convergence time of the closed-loop system. Furthermore, the nonlinear control prevents magnetic saturation of the stator of the Induction Generator (IG). The proposed control algorithm in combination with the ES guarantees the closed-loop system robustness with respect to high level parameter uncertainty in the IG dynamics. The simulation results verify the effectiveness of the proposed algorithm.
Simulation of Coast Guard Vessel Traffic Service Operations by Model and Experiment
DOT National Transportation Integrated Search
1980-09-01
A technique for computer simulation of operations of U.S. Coast Guard Vessel Traffic Services is described and verified with data obtained in four field studies. Uses of the Technique are discussed and illustrated. A field experiment is described in ...
42 CFR 435.912 - Notice of agency's decision concerning eligibility.
Code of Federal Regulations, 2012 CFR
2012-10-01
... accountability and consistency of high quality consumer experience among States and between insurance... information to determine and verify eligibility; (iii) The demonstrated performance and timeliness experience... preferences for mode of application (such as through an internet Web site, telephone, mail, in-person, or...
Experimenting with Guitar Strings
ERIC Educational Resources Information Center
LoPresto, Michael C.
2006-01-01
What follows is a description of a simple experiment developed in a non-mathematical general education science course on sound and light for fine arts students in which a guitar is used with data collection hardware and software to verify the properties of standing waves on a string.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-26
... DEPARTMENT OF HOMELAND SECURITY U.S. Citizenship and Immigration Services [OMB Control Number 1615-NEW] Agency Information Collection Activities: E-Verify Program Data Collections. New Information Collection; Comment Request. ACTION: 60-Day notice. * * * * * The Department of Homeland Security (DHS), U.S. Citizenship and Immigration Services ...
Xu, Haiyang; Wang, Ping
2016-01-01
In order to verify the real-time reliability of unmanned aerial vehicle (UAV) flight control system and comply with the airworthiness certification standard, we proposed a model-based integration framework for modeling and verification of time property. Combining with the advantages of MARTE, this framework uses class diagram to create the static model of software system, and utilizes state chart to create the dynamic model. In term of the defined transformation rules, the MARTE model could be transformed to formal integrated model, and the different part of the model could also be verified by using existing formal tools. For the real-time specifications of software system, we also proposed a generating algorithm for temporal logic formula, which could automatically extract real-time property from time-sensitive live sequence chart (TLSC). Finally, we modeled the simplified flight control system of UAV to check its real-time property. The results showed that the framework could be used to create the system model, as well as precisely analyze and verify the real-time reliability of UAV flight control system.
Xu, Haiyang; Wang, Ping
2016-01-01
In order to verify the real-time reliability of unmanned aerial vehicle (UAV) flight control system and comply with the airworthiness certification standard, we proposed a model-based integration framework for modeling and verification of time property. Combining with the advantages of MARTE, this framework uses class diagram to create the static model of software system, and utilizes state chart to create the dynamic model. In term of the defined transformation rules, the MARTE model could be transformed to formal integrated model, and the different part of the model could also be verified by using existing formal tools. For the real-time specifications of software system, we also proposed a generating algorithm for temporal logic formula, which could automatically extract real-time property from time-sensitive live sequence chart (TLSC). Finally, we modeled the simplified flight control system of UAV to check its real-time property. The results showed that the framework could be used to create the system model, as well as precisely analyze and verify the real-time reliability of UAV flight control system. PMID:27918594
Kalveram, Karl Theodor; Seyfarth, André
2009-01-01
Simulation test, hardware test and behavioral comparison test are proposed to experimentally verify whether a technical control concept for limb movements is logically precise, physically sound, and biologically relevant. Thereby, robot test-beds may play an integral part by mimicking functional limb movements. The procedure is exemplarily demonstrated for human aiming movements with the forearm: when comparing competitive control concepts, these movements are described best by a spring-like operating muscular-skeletal device which is assisted by feedforward control through an inverse internal model of the limb--without regress to a forward model of the limb. In a perspective on hopping, the concept of exploitive control is addressed, and its comparison to concepts derived from classical control theory advised.
Monje, O; Stutte, G; Chapman, D
2005-10-01
Plant stand gas exchange was measured nondestructively in microgravity during the Photosynthesis Experiment Subsystem Testing and Operations experiment conducted onboard the International Space Station. Rates of evapotranspiration and photosynthesis measured in space were compared with ground controls to determine if microgravity directly affects whole-stand gas exchange of Triticum aestivum. During six 21-day experiment cycles, evapotranspiration was determined continuously from water addition rates to the nutrient delivery system, and photosynthesis was determined from the amount of CO2 added to maintain the chamber CO2 concentration setpoint. Plant stand evapotranspiration, net photosynthesis, and water use efficiency were not altered by microgravity. Although leaf area was significantly reduced in microgravity-grown plants compared to ground control plants, leaf area distribution was not affected enough to cause significant differences in the amounts of light absorbed by the flight and ground control plant stands. Microgravity also did not affect the response of evapotranspiration to changes in chamber vapor pressure difference of 12-day-old wheat plant stands. These results suggest that gravity naïve plants grown at moderate light levels (300 micromol m(-2) s(-1)) behave the same as ground control plants. This implies that future plant-based regenerative life support systems can be sized using 1 g data because water purification and food production rates operate at nearly the same rates as in 1 g at moderate light levels. However, it remains to be verified whether the present results are reproducible in plants grown under stronger light levels.
Automatic reactor control system for transient operation
NASA Astrophysics Data System (ADS)
Lipinski, Walter C.; Bhattacharyya, Samit K.; Hanan, Nelson A.
Various programmatic considerations have delayed the upgrading of the TREAT reactor and the performance of the control system is not yet experimentally verified. The current schedule calls for the upgrading activities to occur last in the calendar year 1987. Detailed simulation results, coupled with earlier validation of individual components of the control strategy in TREAT, verify the performance of the algorithms. The control system operates within the safety envelope provided by a protection system designed to ensure reactor safety under conditions of spurious reactivity additions. The approach should be directly applicable to MMW systems, with appropriate accounting of temperature rate limitations of key components and of the inertia of the secondary system components.
Pilot study on effectiveness of simulation for surgical robot design using manipulability.
Kawamura, Kazuya; Seno, Hiroto; Kobayashi, Yo; Fujie, Masakatsu G
2011-01-01
Medical technology has advanced with the introduction of robot technology, which facilitates some traditional medical treatments that previously were very difficult. However, at present, surgical robots are used in limited medical domains because these robots are designed using only data obtained from adult patients and are not suitable for targets having different properties, such as children. Therefore, surgical robots are required to perform specific functions for each clinical case. In addition, the robots must exhibit sufficiently high movability and operability for each case. In the present study, we focused on evaluation of the mechanism and configuration of a surgical robot by a simulation based on movability and operability during an operation. We previously proposed the development of a simulator system that reproduces the conditions of a robot and a target in a virtual patient body to evaluate the operability of the surgeon during an operation. In the present paper, we describe a simple experiment to verify the condition of the surgical assisting robot during an operation. In this experiment, the operation imitating suturing motion was carried out in a virtual workspace, and the surgical robot was evaluated based on manipulability as an indicator of movability. As the result, it was confirmed that the robot was controlled with low manipulability of the left side manipulator during the suturing. This simulation system can verify the less movable condition of a robot before developing an actual robot. Our results show the effectiveness of this proposed simulation system.
A Blueprint for Demonstrating Quantum Supremacy with Superconducting Qubits
NASA Technical Reports Server (NTRS)
Kechedzhi, Kostyantyn
2018-01-01
Long coherence times and high fidelity control recently achieved in scalable superconducting circuits paved the way for the growing number of experimental studies of many-qubit quantum coherent phenomena in these devices. Albeit full implementation of quantum error correction and fault tolerant quantum computation remains a challenge the near term pre-error correction devices could allow new fundamental experiments despite inevitable accumulation of errors. One such open question foundational for quantum computing is achieving the so called quantum supremacy, an experimental demonstration of a computational task that takes polynomial time on the quantum computer whereas the best classical algorithm would require exponential time and/or resources. It is possible to formulate such a task for a quantum computer consisting of less than a 100 qubits. The computational task we consider is to provide approximate samples from a non-trivial quantum distribution. This is a generalization for the case of superconducting circuits of ideas behind boson sampling protocol for quantum optics introduced by Arkhipov and Aaronson. In this presentation we discuss a proof-of-principle demonstration of such a sampling task on a 9-qubit chain of superconducting gmon qubits developed by Google. We discuss theoretical analysis of the driven evolution of the device resulting in output approximating samples from a uniform distribution in the Hilbert space, a quantum chaotic state. We analyze quantum chaotic characteristics of the output of the circuit and the time required to generate a sufficiently complex quantum distribution. We demonstrate that the classical simulation of the sampling output requires exponential resources by connecting the task of calculating the output amplitudes to the sign problem of the Quantum Monte Carlo method. We also discuss the detailed theoretical modeling required to achieve high fidelity control and calibration of the multi-qubit unitary evolution in the device. We use a novel cross-entropy statistical metric as a figure of merit to verify the output and calibrate the device controls. Finally, we demonstrate the statistics of the wave function amplitudes generated on the 9-gmon chain and verify the quantum chaotic nature of the generated quantum distribution. This verifies the implementation of the quantum supremacy protocol.
Verification of out-of-control situations detected by "average of normal" approach.
Liu, Jiakai; Tan, Chin Hon; Loh, Tze Ping; Badrick, Tony
2016-11-01
"Average of normal" (AoN) or "moving average" is increasingly used as an adjunct quality control tool in laboratory practice. Little guidance exists on how to verify if an out-of-control situation in the AoN chart is due to a shift in analytical performance, or underlying patient characteristics. Through simulation based on clinical data, we examined 1) the location of the last apparently stable period in the AoN control chart after an analytical shift, and 2) an approach to verify if the observed shift is related to an analytical shift by repeat testing of archived patient samples from the stable period for 21 common analytes. The number of blocks of results to look back for the stable period increased with the duration of the analytical shift, and was larger when smaller AoN block sizes were used. To verify an analytical shift, 3 archived samples from the analytically stable period should be retested. In particular, the process is deemed to have shifted if a difference of >2 analytical standard deviations (i.e. 1:2s rejection rule) between the original and retested results are observed in any of the 3 samples produced. The probability of Type-1 error (i.e., false rejection) and power (i.e., detecting true analytical shift) of this rule are <0.1 and >0.9, respectively. The use of appropriately archived patient samples to verify an apparent analytical shift is preferred to quality control materials. Nonetheless, the above findings may also apply to quality control materials, barring matrix effects. Copyright © 2016 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Y. S.; Dick, J. W.; Tetirick, C. W.
2006-07-01
The construction permit for Taipower's Lungmen Nuclear Units 1 and 2, two ABWR plants, was issued on March 17, 1999[1], The construction of these units is progressing actively at site. The digital I and C system supplied by GE, which is designated as the Distributed Control and Information System (DCIS) in this project, is being implemented primarily at one vendor facility. In order to ensure the reliability, safety and availability of the DCIS, it is required to comprehensively test the whole DCIS in factory. This article describes the test requirements and acceptance criteria for functional testing of the Non-Safety Distributedmore » Control and Information system (DCIS) for Taiwan Power's Lungmen Units 1 and 2 GE selected Invensys as the equipment supplier for this Non-Safety portion of DCIS. The DCIS system of the Lungmen Units is a physically distributed control system. Field transmitters are connected to hard I/O terminal inputs on the Invensys I/A system. Once the signal is digitized on FBMs (Field Bus Modules) in Remote Multiplexing Units (RMUs), the signal is passed into an integrated control software environment. Control is based on the concept of compounds and blocks where each compound is a logical collection of blocks that performs a control function. Each point identified by control compound and block can be individually used throughout the DCIS system by referencing its unique name. In the Lungmen Project control logic and HSI (Human System Interface) requirements are divided into individual process systems called MPLs (Master Parts List). Higher-level Plant Computer System (PCS) algorithms access control compounds and blocks in these MPLs to develop functions. The test requirements and acceptance criteria for the DCIS system of the Lungmen Project are divided into three general categories (see 1,2,3 below) of verification, which in turn are divided into several specific tests: 1. DCIS System Physical Checks a) RMU Test - To confirm that the hard I/O database is installed on the DCIS and is physically addressed correctly. Test process is injecting a signal at each DCIS hard I/O terminal boundary and verifying correct receipt on the DCIS. b) DCIS Network Stress Test - Confirms system viability under extreme high load conditions beyond the plant could ever experience. Load conditions include alarm showers on the DCIS system to emulate plant upsets. c) System Hardware Configuration Test - These are typical checks of the DCIS system hardware including fault reporting, redundancy, and normal computer functions. d) Performance Test - Test confirms high level hardware and system capability attributes such as control system time response, 'cold start' reboots, and processor loading e) Electromagnetic compatibility tests - To verify the electromagnetic viability of the system and individual components 2. Implementation of Plant Systems and Systems Integration a) MPL Logic Tests -To confirm control functions implemented to system logic performs as expected, and that parameters are passed correctly between system control schemes. b) Data Link (Gateway) Tests- To verify third party interfaces to the DCIS. c) Plant Computer System (PCS) Logic Tests- Tests to verify that higher-level PCS logic is correctly implemented, performs as expected, and parameters are passed correctly between PCS sub-systems and MPL systems. Included the PCS sub-systems, Safety Parameter Display System, Historian, Alarms, Maintenance monitoring etc. 3. Unique Third Party Interfacing and Integration into the DCIS The set of controls for Automatic Power Regulation, Feedwater, and Recirculation Flow are specific in that these systems are implemented on third party Triple Modular Redundant (TMR) hardware, which was connected to the DCIS and are tested via full simulation. The TMR system is supplied by GE Control Solutions on the Mark Vie platform. (authors)« less
Alonso-Valerdi, Luz M.; Gutiérrez-Begovich, David A.; Argüello-García, Janet; Sepulveda, Francisco; Ramírez-Mendoza, Ricardo A.
2016-01-01
Brain-computer interface (BCI) is technology that is developing fast, but it remains inaccurate, unreliable and slow due to the difficulty to obtain precise information from the brain. Consequently, the involvement of other biosignals to decode the user control tasks has risen in importance. A traditional way to operate a BCI system is via motor imagery (MI) tasks. As imaginary movements activate similar cortical structures and vegetative mechanisms as a voluntary movement does, heart rate variability (HRV) has been proposed as a parameter to improve the detection of MI related control tasks. However, HR is very susceptible to body needs and environmental demands, and as BCI systems require high levels of attention, perceptual processing and mental workload, it is important to assess the practical effectiveness of HRV. The present study aimed to determine if brain and heart electrical signals (HRV) are modulated by MI activity used to control a BCI system, or if HRV is modulated by the user perceptions and responses that result from the operation of a BCI system (i.e., user experience). For this purpose, a database of 11 participants who were exposed to eight different situations was used. The sensory-cognitive load (intake and rejection tasks) was controlled in those situations. Two electrophysiological signals were utilized: electroencephalography and electrocardiography. From those biosignals, event-related (de-)synchronization maps and event-related HR changes were respectively estimated. The maps and the HR changes were cross-correlated in order to verify if both biosignals were modulated due to MI activity. The results suggest that HR varies according to the experience undergone by the user in a BCI working environment, and not because of the MI activity used to operate the system. PMID:27458384
Huang, Xue-Ying; Fan, Kai; Ye, Yan-Fang; Wang, Bin; Wu, Wei-Ren; Lan, Tao
2017-09-20
We explored the practical effect of the genetic analysis of simple sequence length polymorphism (SSLP) molecular markers in rice in the genetics lab course. Two parents and their F 2 population were analyzed and detected with three SSLP molecular markers that located on two chromosomes of the rice genome. The markers' genotype data were used to verify the three laws of genetics, including segregation, independent assortment and linkage and crossing-over. Our practice has proved not only beneficial to deepen students' understandings about the three laws of genetics, but also conducive to cultivate students' interests in research and innovation and improve their skills and comprehensive analysis abilities. At the same time, the application scope of the experiment was discussed. This comprehensive experiment is also useful for the transformation of scientific research achievements into undergraduate experimental teaching.
Research and development of the laser tracker measurement system
NASA Astrophysics Data System (ADS)
Zhang, Z. L.; Zhou, W. H.; Lao, D. B.; Yuan, J.; Dong, D. F. F.; Ji, R. Y. Y.
2013-01-01
The working principle and system design of the laser tracker measurement system are introduced, as well as the key technologies and solutions in the implementation of the system. The design and implementation of the hardware and configuration of the software are mainly researched. The components of the hardware include distance measuring unit, angle measuring unit, tracking and servo control unit and electronic control unit. The distance measuring devices include the relative distance measuring device (IFM) and the absolute distance measuring device (ADM). The main component of the angle measuring device, the precision rotating stage, is mainly comprised of the precision axis and the encoders which are both set in the tracking head. The data processing unit, tracking and control unit and power supply unit are all set in the control box. The software module is comprised of the communication module, calibration and error compensation module, data analysis module, database management module, 3D display module and the man-machine interface module. The prototype of the laser tracker system has been accomplished and experiments have been carried out to verify the proposed strategies of the hardware and software modules. The experiments showed that the IFM distance measuring error is within 0.15mm, the ADM distance measuring error is within 3.5mm and the angle measuring error is within 3" which demonstrates that the preliminary prototype can realize fundamental measurement tasks.
Ma, Jiaxin; Zhang, Yu; Cichocki, Andrzej; Matsuno, Fumitoshi
2015-03-01
This study presents a novel human-machine interface (HMI) based on both electrooculography (EOG) and electroencephalography (EEG). This hybrid interface works in two modes: an EOG mode recognizes eye movements such as blinks, and an EEG mode detects event related potentials (ERPs) like P300. While both eye movements and ERPs have been separately used for implementing assistive interfaces, which help patients with motor disabilities in performing daily tasks, the proposed hybrid interface integrates them together. In this way, both the eye movements and ERPs complement each other. Therefore, it can provide a better efficiency and a wider scope of application. In this study, we design a threshold algorithm that can recognize four kinds of eye movements including blink, wink, gaze, and frown. In addition, an oddball paradigm with stimuli of inverted faces is used to evoke multiple ERP components including P300, N170, and VPP. To verify the effectiveness of the proposed system, two different online experiments are carried out. One is to control a multifunctional humanoid robot, and the other is to control four mobile robots. In both experiments, the subjects can complete tasks effectively by using the proposed interface, whereas the best completion time is relatively short and very close to the one operated by hand.
Major role of nutrient supply in the control of picophytoplankton community structure
NASA Astrophysics Data System (ADS)
Mouriño, B.; Agusti, S.; Bode, A.; Cermeno, P.; Chouciño, P.; da Silva, J. C. B.; Fernández-Castro, B.; Gasol, J.; Gil Coto, M.; Graña, R.; Latasa, M.; Lubián, L.; Marañón, E.; Moran, X. A.; Moreno, E.; Moreira-Coello, V.; Otero-Ferrer, J. L.; Ruiz Villarreal, M.; Scharek, R.; Vallina, S. M.; Varela, M.; Villamaña, M.
2016-02-01
The Margalef's mandala (1978) is a simplified bottom-up control model that explains how mixing and nutrient concentration determine the composition of marine phytoplankton communities. Due to the difficulties of measuring turbulence in the field, previous attempts to verify this model have applied different proxies for nutrient supply, and very often used interchangeably the terms mixing and stratification. Moreover, because the mandala was conceived before the discovery of smaller phytoplankton groups (picoplankton <2 μm), it describes only the succession of vegetative phases of microplankton. In order to test the applicability of the classical mandala to picoplankton groups, we used a multidisciplinary approach including specifically designed field observations supported by remote sensing, database analyses, and modeling and laboratory chemostat experiments. Simultaneous estimates of nitrate diffusive fluxes, derived from microturbulence observations, and picoplankton abundance collected in more than 200 stations, spanning widely different hydrographic regimes, showed that the contribution of eukaryotes to picoautotrophic biomass increases with nutrient supply, whereas that of picocyanobacteria shows the opposite trend. These findings were supported by laboratory and modeling chemostat experiments that reproduced the competitive dynamics between picoeukaryote sand picocyanobacteria as a function of changing nutrient supply. Our results indicate that nutrient supply controls the distribution of picoplankton functional groups in the ocean, further supporting the model proposed by Margalef.
NASA Astrophysics Data System (ADS)
Zhang, Zengmeng; Hou, Jiaoyi; Ning, Dayong; Gong, Xiaofeng; Gong, Yongjun
2017-05-01
Fluidic artificial muscles are popular in robotics and function as biomimetic actuators. Their pneumatic version has been widely investigated. A novel water hydraulic artificial muscle (WHAM) with high strength is developed in this study. WHAMs can be applied to underwater manipulators widely used in ocean development because of their environment-friendly characteristics, high force-to-weight ratio, and good bio-imitability. Therefore, the strength of WHAMs has been improved to fit the requirements of underwater environments and the work pressure of water hydraulic components. However, understanding the mechanical behaviors of WHAMs is necessary because WHAMs use work media and pressure control that are different from those used by pneumatic artificial muscles. This paper presents the static and dynamic characteristics of the WHAM system, including the water hydraulic pressure control circuit. A test system is designed and built to analyze the drive characteristics of the developed WHAM. The theoretical relationships among the amount of contraction, pressure, and output drawing force of the WHAM are tested and verified. A linearized transfer function is proposed, and the dynamic characteristics of the WHAM are investigated through simulation and inertia load experiments. Simulation results agree with the experimental results and show that the proposed model can be applied to the control of WHAM actuators.
NASA Technical Reports Server (NTRS)
Maghami, Peiman; O'Donnell, James, Jr.; Hsu, Oscar; Ziemer, John; Dunn, Charles
2017-01-01
The Space Technology-7 Disturbance Reduction System (DRS) is an experiment package aboard the European Space Agency (ESA) LISA Pathfinder spacecraft. LISA Pathfinder launched from Kourou, French Guiana on December 3, 2015. The DRS is tasked to validate two specific technologies: colloidal micro-Newton thrusters (CMNT) to provide low-noise control capability of the spacecraft, and drag-free control flight. This validation is performed using highly sensitive drag-free sensors, which are provided by the LISA Technology Package of the European Space Agency. The Disturbance Reduction System is required to maintain the spacecrafts position with respect to a free-floating test mass to better than 10nmHz, along its sensitive axis (axis in optical metrology). It also has a goal of limiting the residual accelerations of any of the two test masses to below 30 (1 + [f3 mHz]) fmsHz, over the frequency range of 1 to 30 mHz.This paper briefly describes the design and the expected on-orbit performance of the control system for the two modes wherein the drag-free performance requirements are verified. The on-orbit performance of these modes are then compared to the requirements, as well as to the expected performance, and discussed.
Dijkstra, A
2009-09-01
Disengagement beliefs function to reduce cognitive dissonance and a number of predictions with regard to disengagement beliefs have been tested and verified. However, the influence of disengagement beliefs on persuasion has not been studied yet. In a field-experiment, 254 smokers were randomly assigned to a persuasive message condition or a no-information control condition. First, it was assessed to what extent disengagement beliefs influenced persuasion. In smokers with low adherence to disengagement beliefs, quitting activity (attempting to quit) in the control condition was high, but this was not further increased by persuasive information on the negative outcomes of smoking. In contrast, smokers who strongly adhered to disengagement beliefs showed low quitting activity in the control condition, but significantly more quitting activity when they received the persuasive message. Second, it was studied what smokers do when they experience negative affect caused by the persuasive message. The results show that in smokers who strongly adhered to disengagement beliefs, negative affect was associated with less quitting activity. Although these results show that quitting activity as assessed at 2 and 8 months follow-ups was influenced by disengagement beliefs, point prevalence seven-day quitting was not. This study shows that adherence to disengagement beliefs is a relevant individual difference in understanding effects of smoking cessation interventions.
Development of feedback-speed-control system of fixed-abrasive tool for mat-surface fabrication
NASA Astrophysics Data System (ADS)
Yanagihara, K.; Kita, R.
2018-01-01
This study deals with the new method to fabricate a mat-surface by using fixed-abrasive tool. Mat-surface is a surface with microscopic irregularities whose dimensions are close to the wavelengths of visible light (400-700 nanometers). In order to develop the new method to fabricate mat-surface without pre-masking and large scale back up facility, utilization of fixed-abrasive tool is discussed. The discussion clarifies that abrasives in shot blasting are given kinetic energy along to only plunge-direction while excluding traverse-direction. If the relative motion between tool and work in fixed-abrasive process can be realized as that in blasting, mat-surface will be accomplished with fixed-abrasive process. To realize the proposed idea, new surface-fabrication system to which is adopted feedback-speed-control of abrasive wheel has been designed. The system consists of micro-computer unit (MPU), work-speed sensor, fixed-abrasive wheel, and wheel driving unit. The system can control relative speed between work and wheel in optimum range to produce mat-surface. Finally experiment to verify the developed system is carried out. The results of experiments show that the developed system is effective and it can produce the surface from grinding to mat-surface seamlessly.
A Secure and Verifiable Outsourced Access Control Scheme in Fog-Cloud Computing
Fan, Kai; Wang, Junxiong; Wang, Xin; Li, Hui; Yang, Yintang
2017-01-01
With the rapid development of big data and Internet of things (IOT), the number of networking devices and data volume are increasing dramatically. Fog computing, which extends cloud computing to the edge of the network can effectively solve the bottleneck problems of data transmission and data storage. However, security and privacy challenges are also arising in the fog-cloud computing environment. Ciphertext-policy attribute-based encryption (CP-ABE) can be adopted to realize data access control in fog-cloud computing systems. In this paper, we propose a verifiable outsourced multi-authority access control scheme, named VO-MAACS. In our construction, most encryption and decryption computations are outsourced to fog devices and the computation results can be verified by using our verification method. Meanwhile, to address the revocation issue, we design an efficient user and attribute revocation method for it. Finally, analysis and simulation results show that our scheme is both secure and highly efficient. PMID:28737733
NASA Technical Reports Server (NTRS)
Johnston, J. F.
1979-01-01
Active wing load alleviation to extend the wing span by 5.8 percent, giving a 3 percent reduction in cruise drag is covered. The active wing load alleviation used symmetric motions of the outboard ailerons for maneuver load control (MLC) and elastic mode suppression (EMS), and stabilizer motions for gust load alleviation (GLA). Slow maneuvers verified the MLC, and open and closed-loop flight frequency response tests verified the aircraft dynamic response to symmetric aileron and stabilizer drives as well as the active system performance. Flight tests in turbulence verified the effectiveness of the active controls in reducing gust-induced wing loads. It is concluded that active wing load alleviation/extended span is proven in the L-1011 and is ready for application to airline service; it is a very practical way to obtain the increased efficiency of a higher aspect ratio wing with minimum structural impact.
String-Coupled Pendulum Oscillators: Theory and Experiment.
ERIC Educational Resources Information Center
Moloney, Michael J.
1978-01-01
A coupled-oscillator system is given which is readily set up, using only household materials. The normal-mode analysis of this system is worked out, and an experiment or demonstration is recommended in which one verifies the theory by measuring two times and four lengths. (Author/GA)
Yuan, Jiajin; Liu, Yingying; Ding, Nanxiang; Yang, Jiemin
2014-01-01
Studies from European-American cultures consistently reported that expressive suppression was associated with worse emotional consequence (e.g. depression) in comparison with acceptance. However, this conclusion may not apply to Chinese, as suppressing emotional displays to maintain relational harmony is culturally valued in East Asian countries. Thus, the present study examined the effects of suppression and acceptance on the depressive mood induced by a frustrating task in a Chinese sample. Sixty-four subjects were randomly assigned to one of three instructions: suppression, acceptance or no-regulation during a frustrating arithmetic task. The experience of depressive emotion and skin conductance response (SCR) were recorded during pre-frustration baseline, frustration induction and post-frustration recovery phases, respectively. Compared with the control and acceptance instructions, suppression instruction was associated with decreased depressive experiences and smaller SCR activity during frustration. There were no significant differences between acceptance and control groups in both subjective depression and SCR activity during frustration. Moreover, the suppression group showed a better emotional recovery after the frustrating task, in comparison with the acceptance and control groups. Correlation analyses verified that SCR reactivity was a reliable index of experienced depression during the frustration. Expressive suppression is effective in reducing depressive experiences and depression-related physiological activity (SCR) when Chinese people are involved. By contrast, the acceptance of depressive emotion in Chinese people does not produce a similar regulation effect. These findings suggest that cultural context should be considered in understanding the emotional consequences of suppression and acceptance strategies.
Demonstration of the James Webb Space Telescope commissioning on the JWST testbed telescope
NASA Astrophysics Data System (ADS)
Acton, D. Scott; Towell, Timothy; Schwenker, John; Swensen, John; Shields, Duncan; Sabatke, Erin; Klingemann, Lana; Contos, Adam R.; Bauer, Brian; Hansen, Karl; Atcheson, Paul D.; Redding, David; Shi, Fang; Basinger, Scott; Dean, Bruce; Burns, Laura
2006-06-01
The one-meter Testbed Telescope (TBT) has been developed at Ball Aerospace to facilitate the design and implementation of the wavefront sensing and control (WFS&C) capabilities of the James Webb Space Telescope (JWST). The TBT is used to develop and verify the WFS&C algorithms, check the communication interfaces, validate the WFS&C optical components and actuators, and provide risk reduction opportunities for test approaches for later full-scale cryogenic vacuum testing of the observatory. In addition, the TBT provides a vital opportunity to demonstrate the entire WFS&C commissioning process. This paper describes recent WFS&C commissioning experiments that have been performed on the TBT.
Effect of focusing flow on stationary spot machining properties in elastic emission machining
2013-01-01
Ultraprecise optical elements are applied in advanced optical apparatus. Elastic emission machining (EEM) is one of the ultraprecision machining methods used to fabricate shapes with 0.1-nm accuracy. In this study, we proposed and experimentally tested the control of the shape of a stationary spot profile by introducing a focusing-flow state between the nozzle outlet and the workpiece surface in EEM. The simulation results indicate that the focusing-flow nozzle sharpens the distribution of the velocity on the workpiece surface. The results of machining experiments verified those of the simulation. The obtained stationary spot conditions will be useful for surface processing with a high spatial resolution. PMID:23680043
NASA Technical Reports Server (NTRS)
Morris, J. F.
1981-01-01
Thermionic energy converters and metallic-fluid heat pipes are well suited to serve together synergistically. The two operating cycles appear as simple and isolated as their material problems seem forebodingly deceptive and complicated. Simplified equations verify material properties and interactions as primary influences on the operational effectiveness of both. Each experiences flow limitations in thermal emission and vaporization because of temperature restrictions redounding from thermophysicochemical stability considerations. Topics discussed include: (1) successful limitation of alkali-metal corrosion; (2) protection against external hot corrosive gases; (3) coping with external and internal vaporization; (4) controlling interfacial reactions and diffusion; and (5) meeting other thermophysical challenges; expansion matches and creep.
The effect of waist twisting on walking speed of an amphibious salamander like robot
NASA Astrophysics Data System (ADS)
Yin, Xin-Yan; Jia, Li-Chao; Wang, Chen; Xie, Guang-Ming
2016-06-01
Amphibious salamanders often swing their waist to coordinate quadruped walking in order to improve their crawling speed. A robot with a swing waist joint, like an amphibious salamander, is used to mimic this locomotion. A control method is designed to allow the robot to maintain the rotational speed of its legs continuous and avoid impact between its legs and the ground. An analytical expression is established between the amplitude of the waist joint and the step length. Further, an optimization amplitude is obtained corresponding to the maximum stride. The simulation results based on automatic dynamic analysis of mechanical systems (ADAMS) and physical experiments verify the rationality and validity of this expression.
Altering wettability to recover more oil from tight formations
Brady, Patrick V.; Bryan, Charles R.; Thyne, Geoffrey; ...
2016-06-03
We describe here a method for chemically modifying fracturing fluids and overflushes to chemically increase oil recovery from tight formations. Oil wetting of tight formations is usually controlled by adhesion to illite, kerogen, or both; adhesion to carbonate minerals may also play a role. Oil-illite adhesion is sensitive to salinity, dissolved divalent cation content, and pH. We measure oil-rock adhesion with middle Bakken formation oil and core to verify a surface complexation model of reservoir wettability. The agreement between the model and experiments suggests that wettability trends in tight formations can be quantitatively predicted and that fracturing fluid and overflushmore » compositions can be individually tailored to increase oil recovery.« less
Altering wettability to recover more oil from tight formations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brady, Patrick V.; Bryan, Charles R.; Thyne, Geoffrey
We describe here a method for chemically modifying fracturing fluids and overflushes to chemically increase oil recovery from tight formations. Oil wetting of tight formations is usually controlled by adhesion to illite, kerogen, or both; adhesion to carbonate minerals may also play a role. Oil-illite adhesion is sensitive to salinity, dissolved divalent cation content, and pH. We measure oil-rock adhesion with middle Bakken formation oil and core to verify a surface complexation model of reservoir wettability. The agreement between the model and experiments suggests that wettability trends in tight formations can be quantitatively predicted and that fracturing fluid and overflushmore » compositions can be individually tailored to increase oil recovery.« less
Photocatalytic Iron Oxide Micro-Swimmers for Environmental Remediation
NASA Astrophysics Data System (ADS)
Richard, Cynthia; Simmchen, Juliane; Eychmüller, Alexander
2018-05-01
Harvesting energy from photochemical reactions has long been studied as an efficient means of renewable energy, a topic that is increasingly gaining importance also for motion at the microscale. Iron oxide has been a material of interest in recent studies. Thus, in this work different synthesis methods and encapsulation techniques were used to try and optimize the photo-catalytic properties of iron oxide colloids. Photodegradation experiments were carried out following the encapsulation of the nanoparticles and the Fenton effect was also verified. The end goal would be to use the photochemical degradation of peroxide to propel an array of swimmers in a controlled manner while utilizing the Fenton effect for the degradation of dyes or waste in wastewater remediation.
Charge transfer in iridate-manganite superlattices
Okamoto, Satoshi; Nichols, John; Sohn, Changhee; ...
2017-03-03
Charge transfer in superlattices consisting of SrIrOmore » $$_3$$ and SrMnO$$_3$$ is investigated using density functional theory. Despite the nearly identical work function and non-polar interfaces between SrIrO$$_3$$ and SrMnO$$_3$$, rather large charge transfer was experimentally reported between them. Our results provide a qualitative understanding to such experimental reports. We further develop a microscopic model that captures the mechanism behind this phenomenon. This leads to unique strain dependence of such charge transfer in iridate-manganite superlattices. The predicted behavior is consistently verified by experiment. Lastly, our work thus demonstrates a new route to control electronic states in non-polar oxide heterostructures.« less
Growth of aragonite calcium carbonate nanorods in the biomimetic anodic aluminum oxide template
NASA Astrophysics Data System (ADS)
Lee, Inho; Han, Haksoo; Lee, Sang-Yup
2010-04-01
In this study, a biomimetic template was prepared and applied for growing calcium carbonate (CaCO 3) nanorods whose shape and polymorphism were controlled. A biomimetic template was prepared by adsorbing catalytic dipeptides into the pores of an anodic aluminum oxide (AAO) membrane. Using this peptide-adsorbed template, mineralization and aggregation of CaCO 3 was carried out to form large nanorods in the pores. The nanorods were aragonite and had a structure similar to nanoneedle assembly. This aragonite nanorod formation was driven by both the AAO template and catalytic function of dipeptides. The AAO membrane pores promoted generation of aragonite polymorph and guided nanorod formation by guiding the nanorod growth. The catalytic dipeptides promoted the aggregation and further dehydration of calcium species to form large nanorods. Functions of the AAO template and catalytic dipeptides were verified through several control experiments. This biomimetic approach makes possible the production of functional inorganic materials with controlled shapes and crystalline structures.
Stochastic resonant damping in a noisy monostable system: theory and experiment.
Volpe, Giovanni; Perrone, Sandro; Rubi, J Miguel; Petrov, Dmitri
2008-05-01
Usually in the presence of a background noise an increased effort put in controlling a system stabilizes its behavior. Rarely it is thought that an increased control of the system can lead to a looser response and, therefore, to a poorer performance. Strikingly there are many systems that show this weird behavior; examples can be drawn form physical, biological, and social systems. Until now no simple and general mechanism underlying such behaviors has been identified. Here we show that such a mechanism, named stochastic resonant damping, can be provided by the interplay between the background noise and the control exerted on the system. We experimentally verify our prediction on a physical model system based on a colloidal particle held in an oscillating optical potential. Our result adds a tool for the study of intrinsically noisy phenomena, joining the many constructive facets of noise identified in the past decades-for example, stochastic resonance, noise-induced activation, and Brownian ratchets.
Pereira, Marta; Beggiato, Matthias; Petzoldt, Tibor
2015-09-01
The study aimed at investigating how drivers use Adaptive Cruise Control and its functions in distinct road environments and to verify if changes occur over time. Fifteen participants were invited to drive a vehicle equipped with a Stop & Go Adaptive Cruise Control system on nine occasions. The course remained the same for each test run and included roads on urban and motorway environments. Results showed significant effect of experience for ACC usage percentage, and selection of the shortest time headway value in the urban road environment. This indicates that getting to know a system is not a homogenous process, as mastering the use of all the system's functions can take differing lengths of time in distinct road environments. Results can be used not only for the development of the new generation of systems that integrate ACC functionalities but also for determining the length of training required to operate an ACC system. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.
CMOS image sensor-based implantable glucose sensor using glucose-responsive fluorescent hydrogel.
Tokuda, Takashi; Takahashi, Masayuki; Uejima, Kazuhiro; Masuda, Keita; Kawamura, Toshikazu; Ohta, Yasumi; Motoyama, Mayumi; Noda, Toshihiko; Sasagawa, Kiyotaka; Okitsu, Teru; Takeuchi, Shoji; Ohta, Jun
2014-11-01
A CMOS image sensor-based implantable glucose sensor based on an optical-sensing scheme is proposed and experimentally verified. A glucose-responsive fluorescent hydrogel is used as the mediator in the measurement scheme. The wired implantable glucose sensor was realized by integrating a CMOS image sensor, hydrogel, UV light emitting diodes, and an optical filter on a flexible polyimide substrate. Feasibility of the glucose sensor was verified by both in vitro and in vivo experiments.
40 CFR 91.328 - Measurement equipment accuracy/calibration frequency table.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Emission Test... appendix A to this subpart are met. (f) Verify that all NDIR analyzers meet the water rejection ratio and the CO2 rejection ratio as specified in § 91.325. (g) Verify that the dynamometer test stand and power...
20 CFR 210.7 - Verification of service claimed.
Code of Federal Regulations, 2010 CFR
2010-04-01
... verified from the payroll or other detailed records of the employer. (b) If the payroll or other detailed... verified from the personnel records of the employer. (c) If the payroll, personnel and detailed records are... the Office of Management and Budget under control numbers 3220-0003 and 3220-0008) [49 FR 46731, Nov...
NASA Technical Reports Server (NTRS)
Schulte, Peter Z.; Moore, James W.
2011-01-01
The Crew Exploration Vehicle Parachute Assembly System (CPAS) project conducts computer simulations to verify that flight performance requirements on parachute loads and terminal rate of descent are met. Design of Experiments (DoE) provides a systematic method for variation of simulation input parameters. When implemented and interpreted correctly, a DoE study of parachute simulation tools indicates values and combinations of parameters that may cause requirement limits to be violated. This paper describes one implementation of DoE that is currently being developed by CPAS, explains how DoE results can be interpreted, and presents the results of several preliminary studies. The potential uses of DoE to validate parachute simulation models and verify requirements are also explored.
Video measurement of the muzzle velocity of a potato gun
NASA Astrophysics Data System (ADS)
Jasperson, Christopher; Pollman, Anthony
2011-09-01
Using first principles, a theoretical equation for the maximum and actual muzzle velocities for a pneumatic cannon was recently derived. For a fixed barrel length, this equation suggests that the muzzle velocity can be enhanced by maximizing the product of the initial pressure and the volume of the propellant gas and decreasing the projectile mass. The present paper describes the results of experiments conducted to verify the validity of this theoretical equation. A high-speed video camera was used to quantify muzzle velocity for potatoes of varying mass exiting a pneumatic cannon for gauge pressures ranging from 310 to 830 kPa. The experiments verified that a friction modified version of the theoretical equation is qualitatively and quantitatively accurate for potato masses above 100 g.
Kim, Yeoun Jae; Seo, Jong Hyun; Kim, Hong Rae; Kim, Kwang Gi
2017-06-01
Clinicians who frequently perform ultrasound scanning procedures often suffer from musculoskeletal disorders, arthritis, and myalgias. To minimize their occurrence and to assist clinicians, ultrasound scanning robots have been developed worldwide. Although, to date, there is still no commercially available ultrasound scanning robot, many control methods have been suggested and researched. These control algorithms are either image based or force based. If the ultrasound scanning robot control algorithm was a combination of the two algorithms, it could benefit from the advantage of each one. However, there are no existing control methods for ultrasound scanning robots that combine force control and image analysis. Therefore, in this work, a control algorithm is developed for an ultrasound scanning robot using force feedback and ultrasound image analysis. A manipulator-type ultrasound scanning robot named 'NCCUSR' is developed and a control algorithm for this robot is suggested and verified. First, conventional hybrid position-force control is implemented for the robot and the hybrid position-force control algorithm is combined with ultrasound image analysis to fully control the robot. The control method is verified using a thyroid phantom. It was found that the proposed algorithm can be applied to control the ultrasound scanning robot and experimental outcomes suggest that the images acquired using the proposed control method can yield a rating score that is equivalent to images acquired directly by the clinicians. The proposed control method can be applied to control the ultrasound scanning robot. However, more work must be completed to verify the proposed control method in order to become clinically feasible. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Verifiable Adaptive Control with Analytical Stability Margins by Optimal Control Modification
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.
2010-01-01
This paper presents a verifiable model-reference adaptive control method based on an optimal control formulation for linear uncertain systems. A predictor model is formulated to enable a parameter estimation of the system parametric uncertainty. The adaptation is based on both the tracking error and predictor error. Using a singular perturbation argument, it can be shown that the closed-loop system tends to a linear time invariant model asymptotically under an assumption of fast adaptation. A stability margin analysis is given to estimate a lower bound of the time delay margin using a matrix measure method. Using this analytical method, the free design parameter n of the optimal control modification adaptive law can be determined to meet a specification of stability margin for verification purposes.
Encouraging Example Generation: A Teaching Experiment in First-Semester Calculus
ERIC Educational Resources Information Center
Wagner, Elaine Rumsey; Orme, Susan Marla; Turner, Heidi Jean; Yopp, David
2017-01-01
Mathematicians use example generation to test and verify mathematical ideas; however, the processes through which undergraduates learn to productively generate examples are not well understood. We engaged calculus students in a teaching experiment designed to develop skills in productively generating examples to learn novel concepts. This article…
Off-Line Quality Control In Integrated Circuit Fabrication Using Experimental Design
NASA Astrophysics Data System (ADS)
Phadke, M. S.; Kackar, R. N.; Speeney, D. V.; Grieco, M. J.
1987-04-01
Off-line quality control is a systematic method of optimizing production processes and product designs. It is widely used in Japan to produce high quality products at low cost. The method was introduced to us by Professor Genichi Taguchi who is a Deming-award winner and a former Director of the Japanese Academy of Quality. In this paper we will i) describe the off-line quality control method, and ii) document our efforts to optimize the process for forming contact windows in 3.5 Aim CMOS circuits fabricated in the Murray Hill Integrated Circuit Design Capability Laboratory. In the fabrication of integrated circuits it is critically important to produce contact windows of size very near the target dimension. Windows which are too small or too large lead to loss of yield. The off-line quality control method has improved both the process quality and productivity. The variance of the window size has been reduced by a factor of four. Also, processing time for window photolithography has been substantially reduced. The key steps of off-line quality control are: i) Identify important manipulatable process factors and their potential working levels. ii) Perform fractional factorial experiments on the process using orthogonal array designs. iii) Analyze the resulting data to determine the optimum operating levels of the factors. Both the process mean and the process variance are considered in this analysis. iv) Conduct an additional experiment to verify that the new factor levels indeed give an improvement.
Simulation of Nitrogen and Phosphorus Removal in Ecological Ditch Based on EFDC Model
NASA Astrophysics Data System (ADS)
Li, S. M.; Wang, X. L.; Zhou, Q. Y.; Han, N. N.
2018-03-01
Agricultural non-point source pollution threatens water quality and ecological system recently. To control it, the first and most important task is to control the migration and transformation of nitrogen and phosphorus in the agricultural ditches. An ecological ditch was designed, and according to the design a pilot device was built, the mechanism of N and P removal in ditches under the collaboration of aquatic organisms-hydraulic power was studied through the dynamic and static experiments, in order to find out the specific influences of different environmental factors such as influent concentration, influent flow and water level. The transport and diffusion of N and P in the ditch was simulated by a three dimensional water quality model EFDC, the simulation results and the experimental data were compared. The average relative errors of EFDC model simulated results were all less than 15%, which verified the reliability of the model.
NASA Astrophysics Data System (ADS)
Huang, Lei; Zhou, Chenlu; Zhao, Wenchuan; Choi, Heejoo; Graves, Logan; Kim, Daewook
2017-06-01
We present a high precision deflectometry system (DS) controlled deformable mirror (DM) solution for optical system. Different from wavefront and non-wavefront system, the DS and the DM are set to be an individual integrated DCDM unit and can be installed in one base plate. In the DCDM unit, the DS can directly provide the influence functions and surface shape of the DM to the industrial computer in any adaptive optics system. As an integrated adaptive unit, the DCDM unit could be put into various optical systems to realize aberration compensation. In this paper, the configuration and principle of the DCDM unit is introduced first. Theoretical simulation on the close-loop performance of the DCDM unit is carried out. Finally, a verification experiment is proposed to verify the compensation capability of the DCDM unit.
Interface Management for a NASA Flight Project Using Model-Based Systems Engineering (MBSE)
NASA Technical Reports Server (NTRS)
Vipavetz, Kevin; Shull, Thomas A.; Infeld, Samatha; Price, Jim
2016-01-01
The goal of interface management is to identify, define, control, and verify interfaces; ensure compatibility; provide an efficient system development; be on time and within budget; while meeting stakeholder requirements. This paper will present a successful seven-step approach to interface management used in several NASA flight projects. The seven-step approach using Model Based Systems Engineering will be illustrated by interface examples from the Materials International Space Station Experiment-X (MISSE-X) project. The MISSE-X was being developed as an International Space Station (ISS) external platform for space environmental studies, designed to advance the technology readiness of materials and devices critical for future space exploration. Emphasis will be given to best practices covering key areas such as interface definition, writing good interface requirements, utilizing interface working groups, developing and controlling interface documents, handling interface agreements, the use of shadow documents, the importance of interface requirement ownership, interface verification, and product transition.
NASA Astrophysics Data System (ADS)
Tan, Kuan Yen; Partanen, Matti; Lake, Russell E.; Govenius, Joonas; Masuda, Shumpei; Möttönen, Mikko
2017-05-01
Quantum technology promises revolutionizing applications in information processing, communications, sensing and modelling. However, efficient on-demand cooling of the functional quantum degrees of freedom remains challenging in many solid-state implementations, such as superconducting circuits. Here we demonstrate direct cooling of a superconducting resonator mode using voltage-controllable electron tunnelling in a nanoscale refrigerator. This result is revealed by a decreased electron temperature at a resonator-coupled probe resistor, even for an elevated electron temperature at the refrigerator. Our conclusions are verified by control experiments and by a good quantitative agreement between theory and experimental observations at various operation voltages and bath temperatures. In the future, we aim to remove spurious dissipation introduced by our refrigerator and to decrease the operational temperature. Such an ideal quantum-circuit refrigerator has potential applications in the initialization of quantum electric devices. In the superconducting quantum computer, for example, fast and accurate reset of the quantum memory is needed.
NASA Astrophysics Data System (ADS)
Guo, Siyang; Lin, Jiarui; Yang, Linghui; Ren, Yongjie; Guo, Yin
2017-07-01
The workshop Measurement Position System (wMPS) is a distributed measurement system which is suitable for the large-scale metrology. However, there are some inevitable measurement problems in the shipbuilding industry, such as the restriction by obstacles and limited measurement range. To deal with these factors, this paper presents a method of reconstructing the spatial measurement network by mobile transmitter. A high-precision coordinate control network with more than six target points is established. The mobile measuring transmitter can be added into the measurement network using this coordinate control network with the spatial resection method. This method reconstructs the measurement network and broadens the measurement scope efficiently. To verify this method, two comparison experiments are designed with the laser tracker as the reference. The results demonstrate that the accuracy of point-to-point length is better than 0.4mm and the accuracy of coordinate measurement is better than 0.6mm.
Multiple delivery cesium oven system for negative ion sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bansal, G.; Bhartiya, S.; Pandya, K.
2012-02-15
Distribution of cesium in large negative ion beam sources to be operational in ITER, is presently based on the use of three or more cesium ovens, which operate simultaneously and are controlled remotely. However, use of multiple Cs ovens simultaneously is likely to pose difficulties in operation and maintenance of the ovens. An alternate method of Cs delivery, based on a single oven distribution system is proposed as one which could reduce the need of simultaneous operation of many ovens. A proof of principle experiment verifying the concept of a multinozzle distributor based Cs oven has been carried out atmore » Institute for Plasma Research. It is also observed that the Cs flux is not controlled by Cs reservoir temperature after few hours of operation but by the temperature of the distributor which starts behaving as a Cs reservoir.« less
Radiative Transfer Theory Verified by Controlled Laboratory Experiments
NASA Technical Reports Server (NTRS)
Mishchenko, Michael I.; Goldstein, Dennis H.; Chowdhary, Jacek; Lompado, Arthur
2013-01-01
We report the results of high-accuracy controlled laboratory measurements of the Stokes reflection matrix for suspensions of submicrometer-sized latex particles in water and compare them with the results of a numerically exact computer solution of the vector radiative transfer equation (VRTE). The quantitative performance of the VRTE is monitored by increasing the volume packing density of the latex particles from 2 to 10. Our results indicate that the VRTE can be applied safely to random particulate media with packing densities up to 2. VRTE results for packing densities of the order of 5 should be taken with caution, whereas the polarized bidirectional reflectivity of suspensions with larger packing densities cannot be accurately predicted. We demonstrate that a simple modification of the phase matrix entering the VRTE based on the so-called static structure factor can be a promising remedy that deserves further examination.
Student design projects in applied acoustics.
Bös, Joachim; Moritz, Karsten; Skowronek, Adam; Thyes, Christian; Tschesche, Johannes; Hanselka, Holger
2012-03-01
This paper describes a series of student projects which are intended to complement theoretical education in acoustics and engineering noise control with practical experience. The projects are also intended to enhance the students' ability to work in a team, to manage a project, and to present their results. The projects are carried out in close cooperation with industrial partners so that the students can get a taste of the professional life of noise control engineers. The organization of such a project, its execution, and some of the results from the most recent student project are presented as a demonstrative example. This latest project involved the creation of noise maps of a production hall, the acoustic analysis of a packaging machine, and the acoustic analysis of a spiral vibratory conveyor. Upon completion of the analysis, students then designed, applied, and verified some simple preliminary noise reduction measures to demonstrate the potential of these techniques. © 2012 Acoustical Society of America
Development of adaptive observation strategy using retrospective optimal interpolation
NASA Astrophysics Data System (ADS)
Noh, N.; Kim, S.; Song, H.; Lim, G.
2011-12-01
Retrospective optimal interpolation (ROI) is a method that is used to minimize cost functions with multiple minima without using adjoint models. Song and Lim (2011) perform the experiments to reduce the computational costs for implementing ROI by transforming the control variables into eigenvectors of background error covariance. We adapt the ROI algorithm to compute sensitivity estimates of severe weather events over the Korean peninsula. The eigenvectors of the ROI algorithm is modified every time the observations are assimilated. This implies that the modified eigenvectors shows the error distribution of control variables which are updated by assimilating observations. So, We can estimate the effects of the specific observations. In order to verify the adaptive observation strategy, High-impact weather over the Korean peninsula is simulated and interpreted using WRF modeling system and sensitive regions for each high-impact weather is calculated. The effects of assimilation for each observation type is discussed.
NASA Astrophysics Data System (ADS)
Sun, Zhencui; Man, Baoyuan; Yang, Cheng; Liu, Mei; Jiang, Shouzhen; Zhang, Chao; Zhang, Jiaxin; Liu, Fuyan; Xu, Yuanyuan
2016-03-01
Se seed layers were used to synthesize the high-quality graphene-Bi2Se3 nanoplates hybrid Dirac materials via chemical vapor deposition (CVD) method. The morphology, crystallization and structural properties of the hybrid Dirac materials were characterized by SEM, EDS, Raman, XRD, AFM and HRTEM. The measurement results verify that the Se seed layer on the graphene surface can effectively saturate the surface dangling bonds of the graphene, which not only impel the uniform Bi2Se3 nanoplates growing along the horizontal direction but also can supply enough Se atoms to fill the Se vacancies. We also demonstrate the Se seed layer can effectively avoid the interaction of Bi2Se3 and the graphene. Further experiments testify the different Se seed layer on the graphene surface can be used to control the density of the Bi2Se3 nanoplates.
Shi, Yan; Zhang, Bolun; Cai, Maolin; Zhang, Xiaohua Douglas
2017-09-01
Mechanical ventilation is a key therapy for patients who cannot breathe adequately by themselves, and dynamics of mechanical ventilation system is of great significance for life support of patients. Recently, models of mechanical ventilated respiratory system with 1 lung are used to simulate the respiratory system of patients. However, humans have 2 lungs. When the respiratory characteristics of 2 lungs are different, a single-lung model cannot reflect real respiratory system. In this paper, to illustrate dynamic characteristics of mechanical ventilated respiratory system with 2 different lungs, we propose a mathematical model of mechanical ventilated respiratory system with 2 different lungs and conduct experiments to verify the model. Furthermore, we study the dynamics of mechanical ventilated respiratory system with 2 different lungs. This research study can be used for improving the efficiency and safety of volume-controlled mechanical ventilation system. Copyright © 2016 John Wiley & Sons, Ltd.
Isochronic carrier-envelope phase-shift compensator.
Görbe, Mihaly; Osvay, Karoly; Grebing, Christian; Steinmeyer, Günter
2008-11-15
A concept for orthogonal control of phase and group delay inside a laser cavity by a specially designed compensator assembly is discussed. Similar to the construction of variable polarization retarder, this assembly consists of two thin wedge prisms made from appropriately chosen optical materials. Being shifted as a whole, the assembly allows changing the phase delay with no influence on the cavity round-trip time, whereas relative shifting of the prisms enables adjustment of the latter. This scheme is discussed theoretically and verified experimentally, indicating a factor 30 reduction of the influence on the repetition rate compared to the commonly used silica wedge pair. For a 2pi adjustment of the carrier-envelope phase shift, single-pass timing differences are reduced to the single-femtosecond regime. With negligible distortions of timing and dispersion, the described compensator device greatly simplifies carrier-envelope phase control and experiments in extreme nonlinear optics. Copyright (c) 2008 Optical Society of America.
NASA Astrophysics Data System (ADS)
Henry, Christine; Kramb, Victoria; Welter, John T.; Wertz, John N.; Lindgren, Eric A.; Aldrin, John C.; Zainey, David
2018-04-01
Advances in NDE method development are greatly improved through model-guided experimentation. In the case of ultrasonic inspections, models which provide insight into complex mode conversion processes and sound propagation paths are essential for understanding the experimental data and inverting the experimental data into relevant information. However, models must also be verified using experimental data obtained under well-documented and understood conditions. Ideally, researchers would utilize the model simulations and experimental approach to efficiently converge on the optimal solution. However, variability in experimental parameters introduce extraneous signals that are difficult to differentiate from the anticipated response. This paper discusses the results of an ultrasonic experiment designed to evaluate the effect of controllable variables on the anticipated signal, and the effect of unaccounted for experimental variables on the uncertainty in those results. Controlled experimental parameters include the transducer frequency, incidence beam angle and focal depth.
NASA Astrophysics Data System (ADS)
Franchetti, Franz; Sandryhaila, Aliaksei; Johnson, Jeremy R.
2014-06-01
In this paper we introduce High Assurance SPIRAL to solve the last mile problem for the synthesis of high assurance implementations of controllers for vehicular systems that are executed in today's and future embedded and high performance embedded system processors. High Assurance SPIRAL is a scalable methodology to translate a high level specification of a high assurance controller into a highly resource-efficient, platform-adapted, verified control software implementation for a given platform in a language like C or C++. High Assurance SPIRAL proves that the implementation is equivalent to the specification written in the control engineer's domain language. Our approach scales to problems involving floating-point calculations and provides highly optimized synthesized code. It is possible to estimate the available headroom to enable assurance/performance trade-offs under real-time constraints, and enables the synthesis of multiple implementation variants to make attacks harder. At the core of High Assurance SPIRAL is the Hybrid Control Operator Language (HCOL) that leverages advanced mathematical constructs expressing the controller specification to provide high quality translation capabilities. Combined with a verified/certified compiler, High Assurance SPIRAL provides a comprehensive complete solution to the efficient synthesis of verifiable high assurance controllers. We demonstrate High Assurance SPIRALs capability by co-synthesizing proofs and implementations for attack detection and sensor spoofing algorithms and deploy the code as ROS nodes on the Landshark unmanned ground vehicle and on a Synthetic Car in a real-time simulator.
NASA Astrophysics Data System (ADS)
Chen, Qian; Liu, Guohai; Xu, Dezhi; Xu, Liang; Xu, Gaohong; Aamir, Nazir
2018-05-01
This paper proposes a new decoupled control for a five-phase in-wheel fault-tolerant permanent magnet (IW-FTPM) motor drive, in which radial basis function neural network inverse (RBF-NNI) and internal model control (IMC) are combined. The RBF-NNI system is introduced into original system to construct a pseudo-linear system, and IMC is used as a robust controller. Hence, the newly proposed control system incorporates the merits of the IMC and RBF-NNI methods. In order to verify the proposed strategy, an IW-FTPM motor drive is designed based on dSPACE real-time control platform. Then, the experimental results are offered to verify that the d-axis current and the rotor speed are successfully decoupled. Besides, the proposed motor drive exhibits strong robustness even under load torque disturbance.
Terminal Sliding Mode Tracking Controller Design for Automatic Guided Vehicle
NASA Astrophysics Data System (ADS)
Chen, Hongbin
2018-03-01
Based on sliding mode variable structure control theory, the path tracking problem of automatic guided vehicle is studied, proposed a controller design method based on the terminal sliding mode. First of all, through analyzing the characteristics of the automatic guided vehicle movement, the kinematics model is presented. Then to improve the traditional expression of terminal sliding mode, design a nonlinear sliding mode which the convergence speed is faster than the former, verified by theoretical analysis, the design of sliding mode is steady and fast convergence in the limited time. Finally combining Lyapunov method to design the tracking control law of automatic guided vehicle, the controller can make the automatic guided vehicle track the desired trajectory in the global sense as well as in finite time. The simulation results verify the correctness and effectiveness of the control law.
European Train Control System: A Case Study in Formal Verification
NASA Astrophysics Data System (ADS)
Platzer, André; Quesel, Jan-David
Complex physical systems have several degrees of freedom. They only work correctly when their control parameters obey corresponding constraints. Based on the informal specification of the European Train Control System (ETCS), we design a controller for its cooperation protocol. For its free parameters, we successively identify constraints that are required to ensure collision freedom. We formally prove the parameter constraints to be sharp by characterizing them equivalently in terms of reachability properties of the hybrid system dynamics. Using our deductive verification tool KeYmaera, we formally verify controllability, safety, liveness, and reactivity properties of the ETCS protocol that entail collision freedom. We prove that the ETCS protocol remains correct even in the presence of perturbation by disturbances in the dynamics. We verify that safety is preserved when a PI controlled speed supervision is used.
Zero tolerance for incorrect data: Best practices in SQL transaction programming
NASA Astrophysics Data System (ADS)
Laiho, M.; Skourlas, C.; Dervos, D. A.
2015-02-01
DBMS products differ in the way they support even the basic SQL transaction services. In this paper, a framework of best practices in SQL transaction programming is given and discussed. The SQL developers are advised to experiment with and verify the services supported by the DBMS product used. The framework has been developed by DBTechNet, a European network of teachers, trainers and ICT professionals. A course module on SQL transactions, offered by the LLP "DBTech VET Teachers" programme, is also presented and discussed. Aims and objectives of the programme include the introduction of the topics and content of SQL transactions and concurrency control to HE/VET curricula and addressing the need for initial and continuous training on these topics to in-company trainers, VET teachers, and Higher Education students. An overview of the course module, its learning outcomes, the education and training (E&T) content, virtual database labs with hands-on self-practicing exercises, plus instructions for the teacher/trainer on the pedagogy and the usage of the course modules' content are briefly described. The main principle adopted is to "Learn by verifying in practice" and the transactions course motto is: "Zero Tolerance for Incorrect Data".
Adaptive Modulation for DFIG and STATCOM With High-Voltage Direct Current Transmission.
Tang, Yufei; He, Haibo; Ni, Zhen; Wen, Jinyu; Huang, Tingwen
2016-08-01
This paper develops an adaptive modulation approach for power system control based on the approximate/adaptive dynamic programming method, namely, the goal representation heuristic dynamic programming (GrHDP). In particular, we focus on the fault recovery problem of a doubly fed induction generator (DFIG)-based wind farm and a static synchronous compensator (STATCOM) with high-voltage direct current (HVDC) transmission. In this design, the online GrHDP-based controller provides three adaptive supplementary control signals to the DFIG controller, STATCOM controller, and HVDC rectifier controller, respectively. The mechanism is to observe the system states and their derivatives and then provides supplementary control to the plant according to the utility function. With the GrHDP design, the controller can adaptively develop an internal goal representation signal according to the observed power system states, therefore, to achieve more effective learning and modulating. Our control approach is validated on a wind power integrated benchmark system with two areas connected by HVDC transmission lines. Compared with the classical direct HDP and proportional integral control, our GrHDP approach demonstrates the improved transient stability under system faults. Moreover, experiments under different system operating conditions with signal transmission delays are also carried out to further verify the effectiveness and robustness of the proposed approach.
Substructure based modeling of nickel single crystals cycled at low plastic strain amplitudes
NASA Astrophysics Data System (ADS)
Zhou, Dong
In this dissertation a meso-scale, substructure-based, composite single crystal model is fully developed from the simple uniaxial model to the 3-D finite element method (FEM) model with explicit substructures and further with substructure evolution parameters, to simulate the completely reversed, strain controlled, low plastic strain amplitude cyclic deformation of nickel single crystals. Rate-dependent viscoplasticity and Armstrong-Frederick type kinematic hardening rules are applied to substructures on slip systems in the model to describe the kinematic hardening behavior of crystals. Three explicit substructure components are assumed in the composite single crystal model, namely "loop patches" and "channels" which are aligned in parallel in a "vein matrix," and persistent slip bands (PSBs) connected in series with the vein matrix. A magnetic domain rotation model is presented to describe the reverse magnetostriction of single crystal nickel. Kinematic hardening parameters are obtained by fitting responses to experimental data in the uniaxial model, and the validity of uniaxial assumption is verified in the 3-D FEM model with explicit substructures. With information gathered from experiments, all control parameters in the model including hardening parameters, volume fraction of loop patches and PSBs, and variation of Young's modulus etc. are correlated to cumulative plastic strain and/or plastic strain amplitude; and the whole cyclic deformation history of single crystal nickel at low plastic strain amplitudes is simulated in the uniaxial model. Then these parameters are implanted in the 3-D FEM model to simulate the formation of PSB bands. A resolved shear stress criterion is set to trigger the formation of PSBs, and stress perturbation in the specimen is obtained by several elements assigned with PSB material properties a priori. Displacement increment, plastic strain amplitude control and overall stress-strain monitor and output are carried out in the user subroutine DISP and URDFIL of ABAQUS, respectively, while constitutive formulations of the FEM model are coded and implemented in UMAT. The results of the simulations are compared to experiments. This model verified the validity of Winter's two-phase model and Taylor's uniform stress assumption, explored substructure evolution and "intrinsic" behavior in substructures and successfully simulated the process of PSB band formation and propagation.
Zhang, Huaguang; Qu, Qiuxia; Xiao, Geyang; Cui, Yang
2018-06-01
Based on integral sliding mode and approximate dynamic programming (ADP) theory, a novel optimal guaranteed cost sliding mode control is designed for constrained-input nonlinear systems with matched and unmatched disturbances. When the system moves on the sliding surface, the optimal guaranteed cost control problem of sliding mode dynamics is transformed into the optimal control problem of a reformulated auxiliary system with a modified cost function. The ADP algorithm based on single critic neural network (NN) is applied to obtain the approximate optimal control law for the auxiliary system. Lyapunov techniques are used to demonstrate the convergence of the NN weight errors. In addition, the derived approximate optimal control is verified to guarantee the sliding mode dynamics system to be stable in the sense of uniform ultimate boundedness. Some simulation results are presented to verify the feasibility of the proposed control scheme.
NASA Astrophysics Data System (ADS)
Ye, Bo; Zhang, Wei; Sun, Zhen-jun; Guo, Lin; Deng, Chao; Chen, Ya-qi; Zhang, Hong-hai; Liu, Sheng
2015-12-01
In this paper, the authors propose rotating an external permanent magnet (EPM) to manipulate the synchronous rotation of a magnetic spiral-type wireless capsule endoscope (WCE), and the synchronous rotation of the WCE is converted to its translational motion in intestinal tract. In order to preliminarily verify the feasibility of this method, a handheld actuator (HA) controlled by micro controller unit, a magnetic spiral-type WCE and a bracket were fabricated, theoretical analysis and simulations about the control distance of this method were performed, and in ex-vivo tests were examined in porcine small intestine to verify the control distance and control performances of this method. It was demonstrated that this method showed good performances in controlling the translational motion of the magnetic spiral-type WCE, and this method has great potential to be used in clinical application.
Structural design of a large deformable primary mirror for a space telescope
NASA Astrophysics Data System (ADS)
Hansen, J. G. R.
A 4 meter aperture deformable primary mirror is designed with the mirror and its supports integrated into a single structure. The integrated active mirror's minimal weight makes it desirable for a space telescope as well as a terrestrial application. Utilizing displacement actuators, the active controls at the mirror's surface include position control and slope control in both the radial and tangential directions at each of the 40 control points. Influence functions for each of the controls are nearly independent, reducing the complexity of the control system. Experiments with breadboard models verify the structural concept and the techniques used in the finite element method of computer structural analysis. The majority of this paper is a description of finite element analysis results. Localization of influence functions is exhaustively treated. For gravity loads, a thermal gradient through the mirror thickness, and a uniform thermal soak, diffraction limited performance of the 4m design is evaluated. Loads are applied to defocus the mirror and to cause fourth-order astigmatism. Mirror scallop, instigated by a focus shift, has been virtually eliminated with the 40-actuator design. The structural concept is so effective that it should be considered for uncontrolled primary mirrors as well as active mirrors.
NASA Astrophysics Data System (ADS)
Duan, Jiandong; Fan, Shaogui; Wu, Fengjiang; Sun, Li; Wang, Guanglin
2018-06-01
This paper proposes an instantaneous power control method for high speed permanent magnet synchronous generators (PMSG), to realize the decoupled control of active power and reactive power, through vector control based on a sliding mode observer (SMO), and a phase locked loop (PLL). Consequently, the high speed PMSG has a high internal power factor, to ensure efficient operation. Vector control and accurate estimation of the instantaneous power require an accurate estimate of the rotor position. The SMO is able to estimate the back electromotive force (EMF). The rotor position and speed can be obtained using a combination of the PLL technique and the phase compensation method. This method has the advantages of robust operation, and being resistant to noise when estimating the position of the rotor. Using instantaneous power theory, the relationship between the output active power, reactive power, and stator current of the PMSG is deduced, and the power constraint condition is analysed for operation at the unit internal power factor. Finally, the accuracy of the rotor position detection, the instantaneous power detection, and the control methods are verified using simulations and experiments.
Vibration Control by a Shear Type Semi-active Damper Using Magnetorheological Grease
NASA Astrophysics Data System (ADS)
Shiraishi, Toshihiko; Misaki, Hirotaka
2016-09-01
This paper describes semi-active vibration control by a controllable damper with high reliability and wide dynamic range using magnetorheological (MR) grease. Some types of cylindrical controllable dampers based on pressure difference between chambers in the dampers using “MR fluid”, whose rheological properties can be varied by applying a magnetic field, have been reported as a semi-active device. However, there are some challenging issues of them. One is to improve dispersion stability. The particles dispersed in MR fluid would make sedimentation after a period. Another is to expand dynamic range. Since cylindrical dampers require sealing elements because of pressure difference in the dampers, the dynamic range between the maximum and minimum damping force according to a magnetic field is reduced. In this study, a controllable damper using the MR effect was proposed and its performance was experimentally verified to improve the dispersion stability by using “MR grease”, which includes grease as the carrier of magnetic particles, and to expand the dynamic range by adopting a shear type structure not requiring sealing elements. Furthermore, semiactive vibration control experiments by the MR grease damper using a simple algorithm based on the skyhook damper scheme were conducted and its performance was investigated.
Experiments in thrusterless robot locomotion control for space applications. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Jasper, Warren Joseph
1990-01-01
While performing complex assembly tasks or moving about in space, a space robot should minimize the amount of propellant consumed. A study is presented of space robot locomotion and orientation without the use of thrusters. The goal was to design a robot control paradigm that will perform thrusterless locomotion between two points on a structure, and to implement this paradigm on an experimental robot. A two arm free flying robot was constructed which floats on a cushion of air to simulate in 2-D the drag free, zero-g environment of space. The robot can impart momentum to itself by pushing off from an external structure in a coordinated two arm maneuver, and can then reorient itself by activating a momentum wheel. The controller design consists of two parts: a high level strategic controller and a low level dynamic controller. The control paradigm was verified experimentally by commanding the robot to push off from a structure with both arms, rotate 180 degs while translating freely, and then to catch itself on another structure. This method, based on the computed torque, provides a linear feedback law in momentum and its derivatives for a system of rigid bodies.
NASA Technical Reports Server (NTRS)
Mckenna, K. J.
1967-01-01
An oscillation in the OGO-3 roll control channel, resulting from the EP-5 and EP-6 boom motion coupling into the control channel and causing loss of attitude control, is investigated. The study includes (1) an analysis of the OGO-3 and OGO-2 flight data to determine the nature and extent of the roll oscillation phenomena, (2) design analysis of the complete attitude control subsystem (ACS) to evolve changes which would prevent recurrences of the coupled ACS boom oscillation observed on OGO-3, and (3) analog simulations to verify the performance of the design changes selected. Portions of OGO-3 and OGO-2 flight data are illustrated and the major flexible body oscillation are identified. A model of the major flexible appendage dynamics is developed and is shown analytically and through analog simulations to reproduce the OGO-3 oscillation phenomena. The design changes which were found necessary are: a reversal delay logic for the roll reaction wheels, widening of the solar array dead zone from 0.5 to 1.0 deg, and modification of the OPEP control loop to include a filter and stabilizing feedback loops.
Design and evaluation of a trilateral shared-control architecture for teleoperated training robots.
Shamaei, Kamran; Kim, Lawrence H; Okamura, Allison M
2015-08-01
Multilateral teleoperated robots can be used to train humans to perform complex tasks that require collaborative interaction and expert supervision, such as laparoscopic surgical procedures. In this paper, we explain the design and performance evaluation of a shared-control architecture that can be used in trilateral teleoperated training robots. The architecture includes dominance and observation factors inspired by the determinants of motor learning in humans, including observational practice, focus of attention, feedback and augmented feedback, and self-controlled practice. Toward the validation of such an architecture, we (1) verify the stability of a trilateral system by applying Llewellyn's criterion on a two-port equivalent architecture, and (2) demonstrate that system transparency remains generally invariant across relevant observation factors and movement frequencies. In a preliminary experimental study, a dyad of two human users (one novice, one expert) collaborated on the control of a robot to follow a trajectory. The experiment showed that the framework can be used to modulate the efforts of the users and adjust the source and level of haptic feedback to the novice user.
Huang, Hu; Zhao, Hongwei; Yang, Zhaojun; Fan, Zunqiang; Wan, Shunguang; Shi, Chengli; Ma, Zhichao
2012-01-01
Miniaturization precision positioning platforms are needed for in situ nanomechanical test applications. This paper proposes a compact precision positioning platform integrating strain gauges and the piezoactuator. Effects of geometric parameters of two parallel plates on Von Mises stress distribution as well as static and dynamic characteristics of the platform were studied by the finite element method. Results of the calibration experiment indicate that the strain gauge sensor has good linearity and its sensitivity is about 0.0468 mV/μm. A closed-loop control system was established to solve the problem of nonlinearity of the platform. Experimental results demonstrate that for the displacement control process, both the displacement increasing portion and the decreasing portion have good linearity, verifying that the control system is available. The developed platform has a compact structure but can realize displacement measurement with the embedded strain gauges, which is useful for the closed-loop control and structure miniaturization of piezo devices. It has potential applications in nanoindentation and nanoscratch tests, especially in the field of in situ nanomechanical testing which requires compact structures. PMID:23012566
[Epigenetic research of cognitive deficit in schizophrenia: some methodological considerations].
Lezheiko, T V; Alfimova, M V
To highlights the problems of assessing cognitive deficits in schizophrenia, relevant to the epigenetic, as well as a wide range of other approaches to the search for biological bases of cognition. The literature on the weaknesses in the evaluation of cognitive functions in patients with schizophrenia are summarized and discussed. The analysis is illustrated by our experience in developing a cognitive battery and a sample to examine relationships between DNA methylation in blood cells and cognitive deficits in schizophrenia. It has been shown that to assess cognitive deficits in patients and to reduce the influence of confounders in epigenetic analysis it is necessary (1) to use a battery with the existing co-normative data in the target population, which allows to evaluate representativeness of control and patients included in the study sample, (2) to verify the theoretically driven battery structure using normative population and a cohort of patients, (3) to balance groups of cases and controls on the number, age and sex, for which an individual matching of cases and controls is best suited, (4) to conduct an additional statistical analysis controlling for education and smoking.
NASA Astrophysics Data System (ADS)
He, Qiuwei; Lv, Xingming; Wang, Xin; Qu, Xingtian; Zhao, Ji
2017-01-01
Blade is the key component in the energy power equipment of turbine, aircraft engines and so on. Researches on the process and equipment for blade finishing become one of important and difficult point. To control precisely tool system of developed hybrid grinding and polishing machine tool for blade finishing, the tool system with changeable wheel for belt polishing is analyzed in this paper. Firstly, the belt length and wrap angle of each wheel in different position of tension wheel swing angle in the process of changing wheel is analyzed. The reasonable belt length is calculated by using MATLAB, and relationships between wrap angle of each wheel and cylinder expansion amount of contact wheel are obtained. Then, the control system for changeable wheel tool structure is developed. Lastly, the surface roughness of blade finishing is verified by experiments. Theoretical analysis and experimental results show that reasonable belt length and wheel wrap angle can be obtained by proposed analysis method, the changeable wheel tool system can be controlled precisely, and the surface roughness of blade after grinding meets the design requirements.
NASA Technical Reports Server (NTRS)
Thomas, N. L.; Chisel, D. M.
1976-01-01
The success of a rocket-borne experiment depends not only on the pointing of the attitude control system, but on the alignment of the attitude control system to the payload. To ensure proper alignment, special optical tools and alignment techniques are required. Those that were used in the SPARCS program are described and discussed herein. These tools include theodolites, autocollimators, a 38-cm diameter solar simulator, a high-performance 1-m heliostat to provide a stable solar source during the integration of the rocket payload, a portable 75-cm sun tracker for use at the launch site, and an innovation called the Solar Alignment Prism. Using the real sun as the primary reference under field conditions, the Solar Alignment Prism facilitates the coalignment of the attitude sun sensor with the payload. The alignment techniques were developed to ensure the precise alignment of the solar payloads to the SPARCS attitude sensors during payload integration and to verify the required alignment under field conditions just prior to launch.
Kurio, Wasako; Konishi, Motomi; Okuno, Tomofumi; Nakao, Teruyuki; Kimura, Tomoki; Tsuji, Takumi; Yamamuro, Akiko; Yamamoto, Yumi; Nishikawa, Tomoe; Yanada, Kazuo; Yasuhara, Tomohisa; Kohno, Takeyuki; Ogita, Kiyokazu; Sone, Tomomichi
2014-01-01
The Faculty of Pharmaceutical Sciences, Setsunan University, offers the Self-improvement and Participatory Career Development Education Program: Internship and Volunteer Training Experience for Pharmacy Students to third-year students. We previously reported that the training experience was effective in cultivating important attributes among students, such as a willingness to learn the aims of pharmacists, an awareness of their own role as healthcare workers, and a desire to reflect on their future careers and lives. A follow-up survey of the participants was carried out three years after the training experience. The questionnaire verified that the training experience affected attendance at subsequent lectures and course determination after graduation. We confirmed the relationship between the participants' degree of satisfaction with the training experience and increased motivation for attending subsequent lectures. Through the training experience, participants discovered future targets and subjects of study. In addition, they became more interested in subsequent classroom lessons and their future. The greater the participants' degree of satisfaction with their training experience, the more interest they took in practical training and future courses. The present study clarified that the training experience was effective in cultivating important attributes such as a willingness to learn and an interest in future courses. Moreover, the training positively affected the course determination after graduation.
Analysis of the ORNL/TSF GCFR Grid-Plate Shield Design Confirmation Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slater, C.O.; Cramer, S.N.; Ingersoll, D.T.
1979-08-01
The results of the analysis of the GCFR Grid-Plate Shield Design Confirmation Experiment are presented. The experiment, performed at the ORNL Tower Shielding Facility, was designed to test the adequacy of methods and data used in the analysis of the GCFR design. In particular, the experiment tested the adequacy of methods to calculate: (1) axial neutron streaming in the GCFR core and axial blanket, (2) the amount and location of the maximum fast-neutron exposure to the grid plate, and (3) the neutron source leaving the top of the grid plate and entering the upper plenum. Other objectives of the experimentmore » were to verify the grid-plate shielding effectiveness and to assess the effects of fuel-pin and subassembly spacing on radiation levels in the GCFR. The experimental mockups contained regions representing the GCFR core/blanket region, the grid-plate shield section, and the grid plate. Most core design options were covered by allowing: (1) three different spacings between fuel subassemblies, (2) two different void fractions within a subassembly by variation of the number of fuel pins, and (3) a mockup of a control-rod channel.« less
Infrequent identity mismatches are frequently undetected
Goldinger, Stephen D.
2014-01-01
The ability to quickly and accurately match faces to photographs bears critically on many domains, from controlling purchase of age-restricted goods to law enforcement and airport security. Despite its pervasiveness and importance, research has shown that face matching is surprisingly error prone. The majority of face-matching research is conducted under idealized conditions (e.g., using photographs of individuals taken on the same day) and with equal proportions of match and mismatch trials, a rate that is likely not observed in everyday face matching. In four experiments, we presented observers with photographs of faces taken an average of 1.5 years apart and tested whether face-matching performance is affected by the prevalence of identity mismatches, comparing conditions of low (10 %) and high (50 %) mismatch prevalence. Like the low-prevalence effect in visual search, we observed inflated miss rates under low-prevalence conditions. This effect persisted when participants were allowed to correct their initial responses (Experiment 2), when they had to verify every decision with a certainty judgment (Experiment 3) and when they were permitted “second looks” at face pairs (Experiment 4). These results suggest that, under realistic viewing conditions, the low-prevalence effect in face matching is a large, persistent source of errors. PMID:24500751
Reasoning about knowledge: Children's evaluations of generality and verifiability.
Koenig, Melissa A; Cole, Caitlin A; Meyer, Meredith; Ridge, Katherine E; Kushnir, Tamar; Gelman, Susan A
2015-12-01
In a series of experiments, we examined 3- to 8-year-old children's (N=223) and adults' (N=32) use of two properties of testimony to estimate a speaker's knowledge: generality and verifiability. Participants were presented with a "Generic speaker" who made a series of 4 general claims about "pangolins" (a novel animal kind), and a "Specific speaker" who made a series of 4 specific claims about "this pangolin" as an individual. To investigate the role of verifiability, we systematically varied whether the claim referred to a perceptually-obvious feature visible in a picture (e.g., "has a pointy nose") or a non-evident feature that was not visible (e.g., "sleeps in a hollow tree"). Three main findings emerged: (1) young children showed a pronounced reliance on verifiability that decreased with age. Three-year-old children were especially prone to credit knowledge to speakers who made verifiable claims, whereas 7- to 8-year-olds and adults credited knowledge to generic speakers regardless of whether the claims were verifiable; (2) children's attributions of knowledge to generic speakers was not detectable until age 5, and only when those claims were also verifiable; (3) children often generalized speakers' knowledge outside of the pangolin domain, indicating a belief that a person's knowledge about pangolins likely extends to new facts. Findings indicate that young children may be inclined to doubt speakers who make claims they cannot verify themselves, as well as a developmentally increasing appreciation for speakers who make general claims. Copyright © 2015 Elsevier Inc. All rights reserved.
Reasoning about knowledge: Children’s evaluations of generality and verifiability
Koenig, Melissa A.; Cole, Caitlin A.; Meyer, Meredith; Ridge, Katherine E.; Kushnir, Tamar; Gelman, Susan A.
2015-01-01
In a series of experiments, we examined 3- to 8-year-old children’s (N = 223) and adults’ (N = 32) use of two properties of testimony to estimate a speaker’s knowledge: generality and verifiability. Participants were presented with a “Generic speaker” who made a series of 4 general claims about “pangolins” (a novel animal kind), and a “Specific speaker” who made a series of 4 specific claims about “this pangolin” as an individual. To investigate the role of verifiability, we systematically varied whether the claim referred to a perceptually-obvious feature visible in a picture (e.g., “has a pointy nose”) or a non-evident feature that was not visible (e.g., “sleeps in a hollow tree”). Three main findings emerged: (1) Young children showed a pronounced reliance on verifiability that decreased with age. Three-year-old children were especially prone to credit knowledge to speakers who made verifiable claims, whereas 7- to 8-year-olds and adults credited knowledge to generic speakers regardless of whether the claims were verifiable; (2) Children’s attributions of knowledge to generic speakers was not detectable until age 5, and only when those claims were also verifiable; (3) Children often generalized speakers’ knowledge outside of the pangolin domain, indicating a belief that a person’s knowledge about pangolins likely extends to new facts. Findings indicate that young children may be inclined to doubt speakers who make claims they cannot verify themselves, as well as a developmentally increasing appreciation for speakers who make general claims. PMID:26451884
Jonsdottir, Johanna; Bertoni, Rita; Lawo, Michael; Montesano, Angelo; Bowman, Thomas; Gabrielli, Silvia
2018-01-01
The feasibility and preliminary evidence for efficacy of a serious games platform compared to exergame using the Wii for arm rehabilitation in persons with multiple sclerosis (MS) was investigated. A pilot single-blind randomized (2:1) controlled in clinic trial was carried out. Sixteen persons with MS participated (age years 56.8 (SD 12.3), MS-onset years 19.4 (SD 12.3), EDSS 6.5). Ten participants used a serious games platform (Rehab@Home) while 6 participants played with the commercial Wii platform, for four weeks (40min, 12 sessions/4 weeks). Feasibility and user experience measures were collected. Primary outcomes were the 9 Hole Peg Test (9HPT) and the Box and Block test (BBT). Secondary outcomes were the EQ-5D visual analogue scale (EQ-VAS) and the SF-12. Nonparametric analysis was used to verify changes from pre to post rehabilitation within group and treatment effect was verified with Mann-Whitney U test. P value was set at 0.10 and clinical improvement was set at 20% improvement from baseline. Serious games were perceived positively in terms of user experience and motivation. There were clinically significant improvements in arm function in the serious games group as measured by 9HPT (38-29.5s, P = 0.046, > 20%) and BBT 32-42 cubes, P = 0.19, > 20%) following the 12 gaming sessions while the exergame group did not improve on either test (9HPT 34.5-41.5s, P = 0.34; BBT 38,5 to 42 cubes, P = 0.34). Only the exergame group perceived themselves as having improved their health. There was a significant between groups treatment effect only in perception of health (EQ-VAS) (Z = 1.93, P = 0.06) favouring the exergame group. Virtual reality in a serious gaming approach was feasible and beneficial to arm function of persons with MS but motivational aspects of the approach may need further attention. Copyright © 2017 Elsevier B.V. All rights reserved.
Sukumar, Prabakar; Padmanaban, Sriram; Jeevanandam, Prakash; Syam Kumar, S.A.; Nagarajan, Vivekanandan
2011-01-01
Aim In this study, the dosimetric properties of the electronic portal imaging device were examined and the quality assurance testing of Volumetric Modulated Arc Therapy was performed. Background RapidArc involves the variable dose rate, leaf speed and the gantry rotation. The imager was studied for the effects like dose, dose rate, field size, leaf speed and sag during gantry rotation. Materials and methods A Varian RapidArc machine equipped with 120 multileaf collimator and amorphous silicon detector was used for the study. The characteristics that are variable in RapidArc treatment were studied for the portal imager. The accuracy of a dynamic multileaf collimator position at different gantry angles and during gantry rotation was examined using the picket fence test. The control of the dose rate and gantry speed was verified using a test field irradiating seven strips of the same dose with different dose rate and gantry speeds. The control over leaf speed during arc was verified by irradiating four strips of different leaf speeds with the same dose in each strip. To verify the results, the RapidArc test procedure was compared with the X-Omat film and verified for a period of 6 weeks using EPID. Results The effect of gantry rotation on leaf accuracy was minimal. The dose in segments showed good agreement with mean deviation of 0.8% for dose rate control and 1.09% for leaf speed control over different gantry speeds. Conclusion The results provided a precise control of gantry speed, dose rate and leaf speeds during RapidArc delivery and were consistent over 6 weeks. PMID:24376989
10 CFR 835.1102 - Control of areas.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false Control of areas. 835.1102 Section 835.1102 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Radioactive Contamination Control § 835.1102 Control of areas. (a) Appropriate controls shall be maintained and verified which prevent the inadvertent...
10 CFR 835.1102 - Control of areas.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Control of areas. 835.1102 Section 835.1102 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Radioactive Contamination Control § 835.1102 Control of areas. (a) Appropriate controls shall be maintained and verified which prevent the inadvertent...
10 CFR 835.1102 - Control of areas.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 4 2013-01-01 2013-01-01 false Control of areas. 835.1102 Section 835.1102 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Radioactive Contamination Control § 835.1102 Control of areas. (a) Appropriate controls shall be maintained and verified which prevent the inadvertent...
10 CFR 835.1102 - Control of areas.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 4 2014-01-01 2014-01-01 false Control of areas. 835.1102 Section 835.1102 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Radioactive Contamination Control § 835.1102 Control of areas. (a) Appropriate controls shall be maintained and verified which prevent the inadvertent...
A Model Based Security Testing Method for Protocol Implementation
Fu, Yu Long; Xin, Xiao Long
2014-01-01
The security of protocol implementation is important and hard to be verified. Since the penetration testing is usually based on the experience of the security tester and the specific protocol specifications, a formal and automatic verification method is always required. In this paper, we propose an extended model of IOLTS to describe the legal roles and intruders of security protocol implementations, and then combine them together to generate the suitable test cases to verify the security of protocol implementation. PMID:25105163
CMOS image sensor-based implantable glucose sensor using glucose-responsive fluorescent hydrogel
Tokuda, Takashi; Takahashi, Masayuki; Uejima, Kazuhiro; Masuda, Keita; Kawamura, Toshikazu; Ohta, Yasumi; Motoyama, Mayumi; Noda, Toshihiko; Sasagawa, Kiyotaka; Okitsu, Teru; Takeuchi, Shoji; Ohta, Jun
2014-01-01
A CMOS image sensor-based implantable glucose sensor based on an optical-sensing scheme is proposed and experimentally verified. A glucose-responsive fluorescent hydrogel is used as the mediator in the measurement scheme. The wired implantable glucose sensor was realized by integrating a CMOS image sensor, hydrogel, UV light emitting diodes, and an optical filter on a flexible polyimide substrate. Feasibility of the glucose sensor was verified by both in vitro and in vivo experiments. PMID:25426316
Free-Swinging Failure Tolerance for Robotic Manipulators
NASA Technical Reports Server (NTRS)
English, James
1997-01-01
Under this GSRP fellowship, software-based failure-tolerance techniques were developed for robotic manipulators. The focus was on failures characterized by the loss of actuator torque at a joint, called free-swinging failures. The research results spanned many aspects of the free-swinging failure-tolerance problem, from preparing for an expected failure to discovery of postfailure capabilities to establishing efficient methods to realize those capabilities. Developed algorithms were verified using computer-based dynamic simulations, and these were further verified using hardware experiments at Johnson Space Center.
A model based security testing method for protocol implementation.
Fu, Yu Long; Xin, Xiao Long
2014-01-01
The security of protocol implementation is important and hard to be verified. Since the penetration testing is usually based on the experience of the security tester and the specific protocol specifications, a formal and automatic verification method is always required. In this paper, we propose an extended model of IOLTS to describe the legal roles and intruders of security protocol implementations, and then combine them together to generate the suitable test cases to verify the security of protocol implementation.
NASA Astrophysics Data System (ADS)
Luo, Yugong; Chen, Tao; Li, Keqiang
2015-12-01
The paper presents a novel active distance control strategy for intelligent hybrid electric vehicles (IHEV) with the purpose of guaranteeing an optimal performance in view of the driving functions, optimum safety, fuel economy and ride comfort. Considering the complexity of driving situations, the objects of safety and ride comfort are decoupled from that of fuel economy, and a hierarchical control architecture is adopted to improve the real-time performance and the adaptability. The hierarchical control structure consists of four layers: active distance control object determination, comprehensive driving and braking torque calculation, comprehensive torque distribution and torque coordination. The safety distance control and the emergency stop algorithms are designed to achieve the safety and ride comfort goals. The optimal rule-based energy management algorithm of the hybrid electric system is developed to improve the fuel economy. The torque coordination control strategy is proposed to regulate engine torque, motor torque and hydraulic braking torque to improve the ride comfort. This strategy is verified by simulation and experiment using a forward simulation platform and a prototype vehicle. The results show that the novel control strategy can achieve the integrated and coordinated control of its multiple subsystems, which guarantees top performance of the driving functions and optimum safety, fuel economy and ride comfort.
SVR versus neural-fuzzy network controllers for the sagittal balance of a biped robot.
Ferreira, João P; Crisóstomo, Manuel M; Coimbra, A Paulo
2009-12-01
The real-time balance control of an eight-link biped robot using a zero moment point (ZMP) dynamic model is difficult due to the processing time of the corresponding equations. To overcome this limitation, two alternative intelligent computing control techniques were compared: one based on support vector regression (SVR) and another based on a first-order Takagi-Sugeno-Kang (TSK)-type neural-fuzzy (NF) network. Both methods use the ZMP error and its variation as inputs and the output is the correction of the robot's torso necessary for its sagittal balance. The SVR and the NF were trained based on simulation data and their performance was verified with a real biped robot. Two performance indexes are proposed to evaluate and compare the online performance of the two control methods. The ZMP is calculated by reading four force sensors placed under each robot's foot. The gait implemented in this biped is similar to a human gait that was acquired and adapted to the robot's size. Some experiments are presented and the results show that the implemented gait combined either with the SVR controller or with the TSK NF network controller can be used to control this biped robot. The SVR and the NF controllers exhibit similar stability, but the SVR controller runs about 50 times faster.
NASA Astrophysics Data System (ADS)
Sun, Zhiyong; Hao, Lina; Song, Bo; Yang, Ruiguo; Cao, Ruimin; Cheng, Yu
2016-10-01
Micro/nano positioning technologies have been attractive for decades for their various applications in both industrial and scientific fields. The actuators employed in these technologies are typically smart material actuators, which possess inherent hysteresis that may cause systems behave unexpectedly. Periodic reference tracking capability is fundamental for apparatuses such as scanning probe microscope, which employs smart material actuators to generate periodic scanning motion. However, traditional controller such as PID method cannot guarantee accurate fast periodic scanning motion. To tackle this problem and to conduct practical implementation in digital devices, this paper proposes a novel control method named discrete extended unparallel Prandtl-Ishlinskii model based internal model (d-EUPI-IM) control approach. To tackle modeling uncertainties, the robust d-EUPI-IM control approach is investigated, and the associated sufficient stabilizing conditions are derived. The advantages of the proposed controller are: it is designed and represented in discrete form, thus practical for digital devices implementation; the extended unparallel Prandtl-Ishlinskii model can precisely represent forward/inverse complex hysteretic characteristics, thus can reduce modeling uncertainties and benefits controllers design; in addition, the internal model principle based control module can be utilized as a natural oscillator for tackling periodic references tracking problem. The proposed controller was verified through comparative experiments on a piezoelectric actuator platform, and convincing results have been achieved.
Hierarchical Compliance Control of a Soft Ankle Rehabilitation Robot Actuated by Pneumatic Muscles.
Liu, Quan; Liu, Aiming; Meng, Wei; Ai, Qingsong; Xie, Sheng Q
2017-01-01
Traditional compliance control of a rehabilitation robot is implemented in task space by using impedance or admittance control algorithms. The soft robot actuated by pneumatic muscle actuators (PMAs) is becoming prominent for patients as it enables the compliance being adjusted in each active link, which, however, has not been reported in the literature. This paper proposes a new compliance control method of a soft ankle rehabilitation robot that is driven by four PMAs configured in parallel to enable three degrees of freedom movement of the ankle joint. A new hierarchical compliance control structure, including a low-level compliance adjustment controller in joint space and a high-level admittance controller in task space, is designed. An adaptive compliance control paradigm is further developed by taking into account patient's active contribution and movement ability during a previous period of time, in order to provide robot assistance only when it is necessarily required. Experiments on healthy and impaired human subjects were conducted to verify the adaptive hierarchical compliance control scheme. The results show that the robot hierarchical compliance can be online adjusted according to the participant's assessment. The robot reduces its assistance output when participants contribute more and vice versa , thus providing a potentially feasible solution to the patient-in-loop cooperative training strategy.
Hierarchical Compliance Control of a Soft Ankle Rehabilitation Robot Actuated by Pneumatic Muscles
Liu, Quan; Liu, Aiming; Meng, Wei; Ai, Qingsong; Xie, Sheng Q.
2017-01-01
Traditional compliance control of a rehabilitation robot is implemented in task space by using impedance or admittance control algorithms. The soft robot actuated by pneumatic muscle actuators (PMAs) is becoming prominent for patients as it enables the compliance being adjusted in each active link, which, however, has not been reported in the literature. This paper proposes a new compliance control method of a soft ankle rehabilitation robot that is driven by four PMAs configured in parallel to enable three degrees of freedom movement of the ankle joint. A new hierarchical compliance control structure, including a low-level compliance adjustment controller in joint space and a high-level admittance controller in task space, is designed. An adaptive compliance control paradigm is further developed by taking into account patient’s active contribution and movement ability during a previous period of time, in order to provide robot assistance only when it is necessarily required. Experiments on healthy and impaired human subjects were conducted to verify the adaptive hierarchical compliance control scheme. The results show that the robot hierarchical compliance can be online adjusted according to the participant’s assessment. The robot reduces its assistance output when participants contribute more and vice versa, thus providing a potentially feasible solution to the patient-in-loop cooperative training strategy. PMID:29255412
2003-02-09
Dwarf wheat were photographed aboard the International Space Station in April 2002. Lessons from on-orbit research on plants will have applications to terrestrial agriculture as well as for long-term space missions. Alternative agricultural systems that can efficiently produce greater quantities of high-quality crops in a small area are important for future space expeditions. Also regenerative life-support systems that include plants will be an important component of long-term space missions. Data from the Biomass Production System (BPS) and the Photosynthesis Experiment and System Testing and Operations (PESTO) will advance controlled-environment agricultural systems and will help farmers produce better, healthier crops in a small area. This same knowledge is critical to closed-loop life support systems for spacecraft. The BPS comprises a miniature environmental control system for four plant growth chambers, all in the volume of two space shuttle lockers. The experience with the BPS on orbit is providing valuable design and operational lessons that will be incorporated into the Plant Growth Units. The objective of PESTO was to flight verify the BPS hardware and to determine how the microgravity environment affects the photosynthesis and metabolic function of Super Dwarf wheat and Brassica rapa (a member of the mustard family).
Dwarf Wheat grown aboard the International Space Station
NASA Technical Reports Server (NTRS)
2003-01-01
Dwarf wheat were photographed aboard the International Space Station in April 2002. Lessons from on-orbit research on plants will have applications to terrestrial agriculture as well as for long-term space missions. Alternative agricultural systems that can efficiently produce greater quantities of high-quality crops in a small area are important for future space expeditions. Also regenerative life-support systems that include plants will be an important component of long-term space missions. Data from the Biomass Production System (BPS) and the Photosynthesis Experiment and System Testing and Operations (PESTO) will advance controlled-environment agricultural systems and will help farmers produce better, healthier crops in a small area. This same knowledge is critical to closed-loop life support systems for spacecraft. The BPS comprises a miniature environmental control system for four plant growth chambers, all in the volume of two space shuttle lockers. The experience with the BPS on orbit is providing valuable design and operational lessons that will be incorporated into the Plant Growth Units. The objective of PESTO was to flight verify the BPS hardware and to determine how the microgravity environment affects the photosynthesis and metabolic function of Super Dwarf wheat and Brassica rapa (a member of the mustard family).
The sexually dimorphic impact of maltreatment on cortical thickness, surface area and gyrification.
Kelly, Philip A; Viding, Essi; Puetz, Vanessa B; Palmer, Amy L; Samuel, Sophie; McCrory, Eamon J
2016-09-01
An extensive literature has detailed how maltreatment experience impacts brain structure in children and adolescents. However, there is a dearth of studies on the influence of maltreatment on surface based indices, and to date no study has investigated how sex influences the impact of maltreatment on cortical thickness, surface area and local gyrification. We investigated sex differences in these measures of cortical structure in a large community sample of children aged 10-14 years (n = 122) comprising 62 children with verified maltreatment experience and 60 matched non-maltreated controls. The maltreated group relative to the controls presented with a pattern of decreased cortical thickness within a region of right anterior cingulate, orbitofrontal cortex and superior frontal gyrus; decreased surface area within the right inferior parietal cortex; and increased local gyrification within left superior parietal cortex. This atypical pattern of cortical structure was similar across males and females. An interaction between maltreatment exposure and sex was found only in local gyrification, within two clusters: the right tempo-parietal junction and the left precentral gyrus. These findings suggest that maltreatment impacts cortical structure in brain areas associated with emotional regulation and theory of mind, with few differences between the sexes.
Song, Boqi; Peng, Limin; Fu, Feng; Liu, Meihong; Zhang, Houjiang
2016-01-01
Perforated wooden panels are typically utilized as a resonant sound absorbing material in indoor noise control. In this paper, the absorption properties of wooden panels perforated with tiny holes of 1–3 mm diameter were studied both experimentally and theoretically. The Maa-MPP (micro perforated panels) model and the Maa-Flex model were applied to predict the absorption regularities of finely perforated wooden panels. A relative impedance comparison and full-factorial experiments were carried out to verify the feasibility of the theoretical models. The results showed that the Maa-Flex model obtained good agreement with measured results. Control experiments and measurements of dynamic mechanical properties were carried out to investigate the influence of the wood characteristics. In this study, absorption properties were enhanced by sound-induced vibration. The relationship between the dynamic mechanical properties and the panel mass-spring vibration absorption was revealed. While the absorption effects of wood porous structure were not found, they were demonstrated theoretically by using acoustic wave propagation in a simplified circular pipe with a suddenly changed cross-section model. This work provides experimental and theoretical guidance for perforation parameter design. PMID:28774063
A study of an assisting robot for mandible plastic surgery based on augmented reality.
Shi, Yunyong; Lin, Li; Zhou, Chaozheng; Zhu, Ming; Xie, Le; Chai, Gang
2017-02-01
Mandible plastic surgery plays an important role in conventional plastic surgery. However, its success depends on the experience of the surgeons. In order to improve the effectiveness of the surgery and release the burden of surgeons, a mandible plastic surgery assisting robot, based on an augmented reality technique, was developed. Augmented reality assists surgeons to realize positioning. Fuzzy control theory was used for the control of the motor. During the process of bone drilling, both the drill bit position and the force were measured by a force sensor which was used to estimate the position of the drilling procedure. An animal experiment was performed to verify the effectiveness of the robotic system. The position error was 1.07 ± 0.27 mm and the angle error was 5.59 ± 3.15°. The results show that the system provides a sufficient accuracy with which a precise drilling procedure can be performed. In addition, under the supervision's feedback of the sensor, an adequate safety level can be achieved for the robotic system. The system realizes accurate positioning and automatic drilling to solve the problems encountered in the drilling procedure, providing a method for future plastic surgery.
Avoiding Human Error in Mission Operations: Cassini Flight Experience
NASA Technical Reports Server (NTRS)
Burk, Thomas A.
2012-01-01
Operating spacecraft is a never-ending challenge and the risk of human error is ever- present. Many missions have been significantly affected by human error on the part of ground controllers. The Cassini mission at Saturn has not been immune to human error, but Cassini operations engineers use tools and follow processes that find and correct most human errors before they reach the spacecraft. What is needed are skilled engineers with good technical knowledge, good interpersonal communications, quality ground software, regular peer reviews, up-to-date procedures, as well as careful attention to detail and the discipline to test and verify all commands that will be sent to the spacecraft. Two areas of special concern are changes to flight software and response to in-flight anomalies. The Cassini team has a lot of practical experience in all these areas and they have found that well-trained engineers with good tools who follow clear procedures can catch most errors before they get into command sequences to be sent to the spacecraft. Finally, having a robust and fault-tolerant spacecraft that allows ground controllers excellent visibility of its condition is the most important way to ensure human error does not compromise the mission.
NASA Astrophysics Data System (ADS)
Zhang, Chupeng; Zhao, Huiying; Zhu, Xueliang; Zhao, Shijie; Jiang, Chunye
2018-01-01
The chemical mechanical polishing (CMP) is a key process during the machining route of plane optics. To improve the polishing efficiency and accuracy, a CMP model and machine tool were developed. Based on the Preston equation and the axial run-out error measurement results of the m circles on the tin plate, a CMP model that could simulate the material removal at any point on the workpiece was presented. An analysis of the model indicated that lower axial run-out error led to lower material removal but better polishing efficiency and accuracy. Based on this conclusion, the CMP machine was designed, and the ultraprecision gas hydrostatic guideway and rotary table as well as the Siemens 840Dsl numerical control system were incorporated in the CMP machine. To verify the design principles of machine, a series of detection and machining experiments were conducted. The LK-G5000 laser sensor was employed for detecting the straightness error of the gas hydrostatic guideway and the axial run-out error of the gas hydrostatic rotary table. A 300-mm-diameter optic was chosen for the surface profile machining experiments performed to determine the CMP efficiency and accuracy.
25 CFR 542.7 - What are the minimum internal control standards for bingo?
Code of Federal Regulations, 2014 CFR
2014-04-01
... by the Tribal gaming regulatory authority, will be acceptable. (b) Game play standards. (1) The... procedures that ensure the correct calling of numbers selected in the bingo game. (5) Each ball shall be.... For speed bingo games not verified by camera equipment, each ball drawn shall be verified by a person...
25 CFR 542.7 - What are the minimum internal control standards for bingo?
Code of Federal Regulations, 2010 CFR
2010-04-01
... acceptable. (b) Game play standards. (1) The functions of seller and payout verifier shall be segregated... selected in the bingo game. (5) Each ball shall be shown to a camera immediately before it is called so that it is individually displayed to all customers. For speed bingo games not verified by camera...
25 CFR 542.7 - What are the minimum internal control standards for bingo?
Code of Federal Regulations, 2013 CFR
2013-04-01
... by the Tribal gaming regulatory authority, will be acceptable. (b) Game play standards. (1) The... procedures that ensure the correct calling of numbers selected in the bingo game. (5) Each ball shall be.... For speed bingo games not verified by camera equipment, each ball drawn shall be verified by a person...
25 CFR 542.7 - What are the minimum internal control standards for bingo?
Code of Federal Regulations, 2011 CFR
2011-04-01
...) Game play standards. (1) The functions of seller and payout verifier shall be segregated. Employees who... selected in the bingo game. (5) Each ball shall be shown to a camera immediately before it is called so that it is individually displayed to all customers. For speed bingo games not verified by camera...
An application of high authority/low authority control and positivity
NASA Technical Reports Server (NTRS)
Seltzer, S. M.; Irwin, D.; Tollison, D.; Waites, H. B.
1988-01-01
Control Dynamics Company (CDy), in conjunction with NASA Marshall Space Flight Center (MSFC), has supported the U.S. Air Force Wright Aeronautical Laboratory (AFWAL) in conducting an investigation of the implementation of several DOD controls techniques. These techniques are to provide vibration suppression and precise attitude control for flexible space structures. AFWAL issued a contract to Control Dynamics to perform this work under the Active Control Technique Evaluation for Spacecraft (ACES) Program. The High Authority Control/Low Authority Control (HAC/LAC) and Positivity controls techniques, which were cultivated under the DARPA Active Control of Space Structures (ACOSS) Program, were applied to a structural model of the NASA/MSFC Ground Test Facility ACES configuration. The control systems design were accomplished and linear post-analyses of the closed-loop systems are provided. The control system designs take into account effects of sampling and delay in the control computer. Nonlinear simulation runs were used to verify the control system designs and implementations in the facility control computers. Finally, test results are given to verify operations of the control systems in the test facility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kazakevich, G.; Johnson, R.; Lebedev, V.
A simplified analytical model of the resonant interaction of the beam of Larmor electrons drifting in the crossed constant fields of a magnetron with a synchronous wave providing a phase grouping of the drifting charge was developed to optimize the parameters of an rf resonant injected signal driving the magnetrons for management of phase and power of rf sources with a rate required for superconducting high-current accelerators. The model, which considers the impact of the rf resonant signal injected into the magnetron on the operation of the injection-locked tube, substantiates the recently developed method of fast power control of magnetronsmore » in the range up to 10 dB at the highest generation efficiency, with low noise, precise stability of the carrier frequency, and the possibility of wideband phase control. Experiments with continuous wave 2.45 GHz, 1 kW microwave oven magnetrons have verified the correspondence of the behavior of these tubes to the analytical model. A proof of the principle of the novel method of power control in magnetrons, based on the developed model, was demonstrated in the experiments. The method is attractive for high-current superconducting rf accelerators. This study also discusses vector methods of power control with the rates required for superconducting accelerators, the impact of the rf resonant signal injected into the magnetron on the rate of phase control of the injection-locked tubes, and a conceptual scheme of the magnetron transmitter with highest efficiency for high-current accelerators.« less
Kazakevich, G.; Johnson, R.; Lebedev, V.; ...
2018-06-14
A simplified analytical model of the resonant interaction of the beam of Larmor electrons drifting in the crossed constant fields of a magnetron with a synchronous wave providing a phase grouping of the drifting charge was developed to optimize the parameters of an rf resonant injected signal driving the magnetrons for management of phase and power of rf sources with a rate required for superconducting high-current accelerators. The model, which considers the impact of the rf resonant signal injected into the magnetron on the operation of the injection-locked tube, substantiates the recently developed method of fast power control of magnetronsmore » in the range up to 10 dB at the highest generation efficiency, with low noise, precise stability of the carrier frequency, and the possibility of wideband phase control. Experiments with continuous wave 2.45 GHz, 1 kW microwave oven magnetrons have verified the correspondence of the behavior of these tubes to the analytical model. A proof of the principle of the novel method of power control in magnetrons, based on the developed model, was demonstrated in the experiments. The method is attractive for high-current superconducting rf accelerators. This study also discusses vector methods of power control with the rates required for superconducting accelerators, the impact of the rf resonant signal injected into the magnetron on the rate of phase control of the injection-locked tubes, and a conceptual scheme of the magnetron transmitter with highest efficiency for high-current accelerators.« less
46 CFR 61.35-3 - Required tests and checks.
Code of Federal Regulations, 2013 CFR
2013-10-01
... controls must control and cycle the unit in the proper manner and sequence. Proper prepurge, ignition...) Limit controls. Shutdown caused by the limit controls must be verified. (9) Water level controls. Water level controls must be tested by slowly lowering the water level in the boiler. Each operating water...
46 CFR 61.35-3 - Required tests and checks.
Code of Federal Regulations, 2012 CFR
2012-10-01
... controls must control and cycle the unit in the proper manner and sequence. Proper prepurge, ignition...) Limit controls. Shutdown caused by the limit controls must be verified. (9) Water level controls. Water level controls must be tested by slowly lowering the water level in the boiler. Each operating water...
46 CFR 61.35-3 - Required tests and checks.
Code of Federal Regulations, 2014 CFR
2014-10-01
... controls must control and cycle the unit in the proper manner and sequence. Proper prepurge, ignition...) Limit controls. Shutdown caused by the limit controls must be verified. (9) Water level controls. Water level controls must be tested by slowly lowering the water level in the boiler. Each operating water...
46 CFR 61.35-3 - Required tests and checks.
Code of Federal Regulations, 2011 CFR
2011-10-01
... controls must control and cycle the unit in the proper manner and sequence. Proper prepurge, ignition...) Limit controls. Shutdown caused by the limit controls must be verified. (9) Water level controls. Water level controls must be tested by slowly lowering the water level in the boiler. Each operating water...
Designating Reader Perspective to Increase Comprehension and Interest
ERIC Educational Resources Information Center
Ramsay, Crystal M.; Sperling, Rayne A.
2010-01-01
In three experiments we examined whether reader perspective on a long expository text could be manipulated such that increased text interest and enhancement of two comprehension outcomes would result. In Experiment 1 we verified the viability of a new text for experimental purposes. We then assigned readers a perspective before reading in…
ASTP fluid transfer measurement experiment. [using breadboard model
NASA Technical Reports Server (NTRS)
Fogal, G. L.
1974-01-01
The ASTP fluid transfer measurement experiment flight system design concept was verified by the demonstration and test of a breadboard model. In addition to the breadboard effort, a conceptual design of the corresponding flight system was generated and a full scale mockup fabricated. A preliminary CEI specification for the flight system was also prepared.
NASA Technical Reports Server (NTRS)
Hampel, W.; Heusser, G.; Huebner, M.; Kiko, J.; Kirsten, T.; Schneider, K.; Schlotz, R.
1985-01-01
It has been experimentally verified that the Ultra-Low-Level Counting System for the Gallex solar neutrino experiment is capable of measuring the expected solar up silon-flux to plus or minus 12% during two years of operation.
The Doppler Pendulum Experiment
ERIC Educational Resources Information Center
Lee, C. K.; Wong, H. K.
2011-01-01
An experiment to verify the Doppler effect of sound waves is described. An ultrasonic source is mounted at the end of a simple pendulum. As the pendulum swings, the rapid change of frequency can be recorded by a stationary receiver using a simple frequency-to-voltage converter. The experimental results are in close agreement with the Doppler…
Categorization and Sensorimotor Interaction with Objects
ERIC Educational Resources Information Center
Iachini, Tina; Borghi, Anna M.; Senese, Vincenzo Paolo
2008-01-01
Three experiments were aimed at verifying whether the modality of interaction with objects and the goals defined by the task influences the weight of the properties used for categorization. In Experiment 1 we used everyday objects (cups and glasses). In order to exclude that the results depended on pre-stored categorical knowledge and to assess…
The Researching on Evaluation of Automatic Voltage Control Based on Improved Zoning Methodology
NASA Astrophysics Data System (ADS)
Xiao-jun, ZHU; Ang, FU; Guang-de, DONG; Rui-miao, WANG; De-fen, ZHU
2018-03-01
According to the present serious phenomenon of increasing size and structure of power system, hierarchically structured automatic voltage control(AVC) has been the researching spot. In the paper, the reduced control model is built and the adaptive reduced control model is researched to improve the voltage control effect. The theories of HCSD, HCVS, SKC and FCM are introduced and the effect on coordinated voltage regulation caused by different zoning methodologies is also researched. The generic framework for evaluating performance of coordinated voltage regulation is built. Finally, the IEEE-96 stsyem is used to divide the network. The 2383-bus Polish system is built to verify that the selection of a zoning methodology affects not only the coordinated voltage regulation operation, but also its robustness to erroneous data and proposes a comprehensive generic framework for evaluating its performance. The New England 39-bus network is used to verify the adaptive reduced control models’ performance.
The development of methods for predicting and measuring distribution patterns of aerial sprays
NASA Technical Reports Server (NTRS)
Ormsbee, A. I.; Bragg, M. B.; Maughmer, M. D.
1979-01-01
The capability of conducting scale model experiments which involve the ejection of small particles into the wake of an aircraft close to the ground is developed. A set of relationships used to scale small-sized dispersion studies to full-size results are experimentally verified and, with some qualifications, basic deposition patterns are presented. In the process of validating these scaling laws, the basic experimental techniques used in conducting such studies, both with and without an operational propeller, were developed. The procedures that evolved are outlined. The envelope of test conditions that can be accommodated in the Langley Vortex Research Facility, which were developed theoretically, are verified using a series of vortex trajectory experiments that help to define the limitations due to wall interference effects for models of different sizes.
Fuzzy based finger vein recognition with rotation invariant feature matching
NASA Astrophysics Data System (ADS)
Ezhilmaran, D.; Joseph, Rose Bindu
2017-11-01
Finger vein recognition is a promising biometric with commercial applications which is explored widely in the recent years. In this paper, a finger vein recognition system is proposed using rotation invariant feature descriptors for matching after enhancing the finger vein images with an interval type-2 fuzzy method. SIFT features are extracted and matched using a matching score based on Euclidian distance. Rotation invariance of the proposed method is verified in the experiment and the results are compared with SURF matching and minutiae matching. It is seen that rotation invariance is verified and the poor quality issues are solved efficiently with the designed system of finger vein recognition during the analysis. The experiments underlines the robustness and reliability of the interval type-2 fuzzy enhancement and SIFT feature matching.
DC electrostatic gyro suspension system for the Gravity Probe B experiment
NASA Astrophysics Data System (ADS)
Wu, Chang-Huei
1994-12-01
The Gravity Probe B experiment is a satellite-based experiment primarily designed to test two aspects of Einstein's General Theory of Relativity by observing the spin axis drift of near-perfect gyroscopes in a 650-km circular polar orbit. The goal of this experiment is to measure the drift angles to an accuracy of 0.3 milli-arcsec after one year in orbit. As a result, electrostatically suspended free-spinning gyroscopes operating at a very low temperature became the final choice for their ultra-low Newtonian torque-induced drift rate. The Conventional AC current-driven suspension system faces two fundamental difficulties for ground gyro testing. Field emission causes rotor charging and arcing with an imperfect electrode or rotor surfaces because the electric field intensity needed to support a solid rotor in the 1-g field is more than 107 V/m. The system not only becomes unstable at a high rotor charge, which can be more than 500 volts, but may also lose control in case of arcing. Both the high voltage AC suspension signal and the high frequency (1 MHz) signal for rotor position sensing interfere with the superconducting SQUID magnetometer for spin axis readout through inductive coupling. These problems were resolved by using DC voltage to generate a suspension force and a low frequency position sensor. In addition to the Input/Output linearization algorithm developed to remove the system nonlinearity for global stability and dynamic performance, we also minimized the electric field intensity to reduce rotor charging. Experimental results verified the desired global stability and satisfactory dynamic performance. The problem of rotor charging is virtually eliminated. More importantly, the DC system is compatible with the SQUID readout system in the Science Mission configuration. Consequently, experiments in low magnetic field at a sub-micro-gauss level for SQUID design verification and trapped flux distribution study were finally realizable in ground environment. The second part of the research focused on design issues for the Science Mission in a micro-g environment. The unique requirement of the GP-B experiment is to minimize suspension-induced torque and subsequent spin axis drift. A nonlinear control law which employs stiffened spring and stiffened damping coefficients was developed to achieve both low RMS noise in steady-state operation and quick response for situations like a micrometeoroid impact. Rotor voltage measurement and in-flight sensor bias correction schemes were developed to ensure system stability and absolute centering accuracy. Simulation results verified the system performances and confirmed that a suspension system induced rotor spin axis drift lower than 0.1 milli arcsec/year can be reached.
Introduction to the Navigation Team: Johnson Space Center EG6 Internship
NASA Technical Reports Server (NTRS)
Gualdoni, Matthew
2017-01-01
The EG6 navigation team at NASA Johnson Space Center, like any team of engineers, interacts with the engineering process from beginning to end; from exploring solutions to a problem, to prototyping and studying the implementations, all the way to polishing and verifying a final flight-ready design. This summer, I was privileged enough to gain exposure to each of these processes, while also getting to truly experience working within a team of engineers. My summer can be broken up into three projects: i) Initial study and prototyping: investigating a manual navigation method that can be utilized onboard Orion in the event of catastrophic failure of navigation systems; ii) Finalizing and verifying code: altering a software routine to improve its robustness and reliability, as well as designing unit tests to verify its performance; and iii) Development of testing equipment: assisting in developing and integrating of a high-fidelity testbed to verify the performance of software and hardware.
NASA Technical Reports Server (NTRS)
1977-01-01
Captive-active tests consisted of three mated carrier aircraft/Orbiter flights with an active manned Orbiter. The objectives of this series of flights were to (1) verify the separation profile, (2) verify the integrated structure, aerodynamics, and flight control system, (3) verify Orbiter integrated system operations, and (4) refine and finalize carrier aircraft, Orbiter crew, and ground procedures in preparation for free flight tests. A summary description of the flights is presented with assessments of flight test requirements, and of the performance operations, and of significant flight anomalies is included.
NASA Technical Reports Server (NTRS)
Hanely, Julia C.; Reinsch, Sigrid; Myers, Zachary A.; Freeman, John; Steele, Marianne K.; Sun, Gwo-Shing; Heathcote, David G.
2014-01-01
The European Modular Cultivation System, EMCS, was developed by ESA for plant experiments. To expand the use of flight verified hardware for various model organisms, we performed ground experiments to determine whether ARC EMCS Seed Cassettes could be adapted for use with cellular slime mold for future space flight experiments. Dictyostelium is a cellular slime mold that can exist both as a single-celled independent organism and as a part of a multicellular colony which functions as a unit (pseudoplasmodium). Under certain stress conditions, individual amoebae will aggregate to form multicellular structures. Developmental pathways are very similar to those found in Eukaryotic organisms, making this a uniquely interesting organism for use in genetic studies. Dictyostelium has been used as a genetic model organism for prior space flight experiments. Due to the formation of spores that are resistant to unfavorable conditions such as desiccation, Dictyostelium is also a good candidate for use in the EMCS Seed Cassettes. The growth substratum in the cassettes is a gridded polyether sulfone (PES) membrane. A blotter beneath the PES membranes contains dried growth medium. The goals of this study were to (1) verify that Dictyostelium are capable of normal growth and development on PES membranes, (2) develop a method for dehydration of Dictyostelium spores with successful recovery and development after rehydration, and (3) successful mock rehydration experiments in cassettes. Our results show normal developmental progression in two strains of Dictyostelium discoideum on PES membranes with a bacterial food source. We have successfully performed a mock rehydration of spores with developmental progression from aggregation to slug formation, and production of morphologically normal spores within 9 days of rehydration. Our results indicate that experiments on the ISS using the slime mold, Dictyostelium discoideum could potentially be performed in the flight verified hardware of the EMCS ARC Seed Cassettes.
Archimedes' Principle in Action
ERIC Educational Resources Information Center
Kires, Marian
2007-01-01
The conceptual understanding of Archimedes' principle can be verified in experimental procedures which determine mass and density using a floating object. This is demonstrated by simple experiments using graduated beakers. (Contains 5 figures.)
EPA ENVIRONMENTAL TECHNOLOGY EXPERIENCE
THE USEPA's Environmental Technology Verification for Metal Finishing Pollution Prevention Technologies (ETV-MF) Program verifies the performance of innovative, commercial-ready technologies designed to improve industry performance and achieve cost-effective pollution prevention ...
Microprocessor Based Temperature Control of Liquid Delivery with Flow Disturbances.
ERIC Educational Resources Information Center
Kaya, Azmi
1982-01-01
Discusses analytical design and experimental verification of a PID control value for a temperature controlled liquid delivery system, demonstrating that the analytical design techniques can be experimentally verified by using digital controls as a tool. Digital control instrumentation and implementation are also demonstrated and documented for…
Yi, B; Rao, B; Ding, Y H; Li, M; Xu, H Y; Zhang, M; Zhuang, G; Pan, Y
2014-11-01
The dynamic resonant magnetic perturbation (DRMP) system has been developed for the J-TEXT tokamak to study the interaction between the rotating perturbation magnetic field and the plasma. When the DRMP coils are energized by two phase sinusoidal currents with the same frequency, a 2/1 rotating resonant magnetic perturbation component will be generated. But at the same time, a small perturbation component rotating in the opposite direction is also produced because of the control error of the currents. This small component has bad influence on the experiment investigations. Actually, the mode spectrum of the generated DRMP can be optimized with an accurate control of phase difference between the two currents. In this paper, a new phase control method based on a novel all-digital phase-locked loop (ADPLL) is proposed. The proposed method features accurate phase control and flexible phase adjustment. Modeling and analysis of the proposed ADPLL is presented to guide the design of the parameters of the phase controller in order to obtain a better performance. Testing results verify the effectiveness of the ADPLL and validity of the method applying to the DRMP system.
NASA Astrophysics Data System (ADS)
Yi, B.; Rao, B.; Ding, Y. H.; Li, M.; Xu, H. Y.; Zhang, M.; Zhuang, G.; Pan, Y.
2014-11-01
The dynamic resonant magnetic perturbation (DRMP) system has been developed for the J-TEXT tokamak to study the interaction between the rotating perturbation magnetic field and the plasma. When the DRMP coils are energized by two phase sinusoidal currents with the same frequency, a 2/1 rotating resonant magnetic perturbation component will be generated. But at the same time, a small perturbation component rotating in the opposite direction is also produced because of the control error of the currents. This small component has bad influence on the experiment investigations. Actually, the mode spectrum of the generated DRMP can be optimized with an accurate control of phase difference between the two currents. In this paper, a new phase control method based on a novel all-digital phase-locked loop (ADPLL) is proposed. The proposed method features accurate phase control and flexible phase adjustment. Modeling and analysis of the proposed ADPLL is presented to guide the design of the parameters of the phase controller in order to obtain a better performance. Testing results verify the effectiveness of the ADPLL and validity of the method applying to the DRMP system.
Mathematically trivial control of sound using a parametric beam focusing source.
Tanaka, Nobuo; Tanaka, Motoki
2011-01-01
By exploiting a case regarded as trivial, this paper presents global active noise control using a parametric beam focusing source (PBFS). As with a dipole model, one is used for a primary sound source and the other for a control sound source, the control effect for minimizing a total acoustic power depends on the distance between the two. When the distance becomes zero, the total acoustic power becomes null, hence nothing less than a trivial case. Because of the constraints in practice, there exist difficulties in placing a control source close enough to a primary source. However, by projecting a sound beam of a parametric array loudspeaker onto the target sound source (primary source), a virtual sound source may be created on the target sound source, thereby enabling the collocation of the sources. In order to further ensure feasibility of the trivial case, a PBFS is then introduced in an effort to meet the size of the two sources. Reflected sound wave of the PBFS, which is tantamount to the virtual sound source output, aims to suppress the primary sound. Finally, a numerical analysis as well as an experiment is conducted, verifying the validity of the proposed methodology.
Competition between SFG and two SHGs in broadband type-I QPM
NASA Astrophysics Data System (ADS)
Dang, Weirui; Chen, Yuping; Gong, Mingjun; Chen, Xianfeng
2013-03-01
In this paper, we have studied the characteristics of second-order nonlinear interactions with band-overlapped type-I quasi-phase-matching (QPM) second harmonic generation (SHG) and sum-frequency generation (SFG), and predicted a blue-shift with a band-narrowing of their bands and a sunken response in the SFG curve, which are due to the phase-matching-dependent competition between band-overlapped SHG and SFG processes. This prediction is then verified by the experiment in an 18-mm-long bulk MgO-doped periodically poled lithium niobate crystal (MgO:PPLN) and may provide the candidate solution to output controlling for flexible broadcast wavelength conversion, channel-selective wavelength conversion and all-optical logic gates by cascaded QPM second-order nonlinear processes.
NASA Astrophysics Data System (ADS)
Wang, Gang; Wang, Jianwei; Chen, Shengbing; Wen, Jihong
2011-12-01
Periodic arrays of piezoelectric patches connected by enhanced resonant shunting circuits are attached to a slender beam to control the propagation of vibration. Numerical models based on the transfer matrix methodology are constructed to predict the band structure, attenuation factors and the transmission of vibration in the proposed smart structure. The vibration attenuations of the proposed smart structure and that with the passive resonant shunting circuits are compared in order to verify the efficiency of the enhanced resonant shunting circuits. Vibration experiments are conducted in order to validate the theoretical predictions. The specimen with a combination of different types of resonant shunting circuits is also studied in order to gain wider attenuation frequency ranges.
NASA Astrophysics Data System (ADS)
Kim, N.; Lee, S.; Lee, W.; Jang, G.
2018-05-01
We developed a novel magnetic catheter structure that can selectively generate steering and unclogging motions. The proposed magnetic catheter is composed of a flexible tube and two modules with ring magnets that can axially rotate in a way that enables the catheter to independently steer and unclog blood clots by controlling external magnetic fields. We mathematically modeled the deflection of the catheter using the large deflection Euler-Bernoulli beam model and developed a design method to determine the optimal distance between magnets in order to maximize steering performance. Finally, we prototyped the proposed magnetic catheter and conducted several experiments to verify the theoretical model and assess its steering and unclogging capabilities.
FPGA-based real-time phase measuring profilometry algorithm design and implementation
NASA Astrophysics Data System (ADS)
Zhan, Guomin; Tang, Hongwei; Zhong, Kai; Li, Zhongwei; Shi, Yusheng
2016-11-01
Phase measuring profilometry (PMP) has been widely used in many fields, like Computer Aided Verification (CAV), Flexible Manufacturing System (FMS) et al. High frame-rate (HFR) real-time vision-based feedback control will be a common demands in near future. However, the instruction time delay in the computer caused by numerous repetitive operations greatly limit the efficiency of data processing. FPGA has the advantages of pipeline architecture and parallel execution, and it fit for handling PMP algorithm. In this paper, we design a fully pipelined hardware architecture for PMP. The functions of hardware architecture includes rectification, phase calculation, phase shifting, and stereo matching. The experiment verified the performance of this method, and the factors that may influence the computation accuracy was analyzed.
Control Activity in Support of NASA Turbine Based Combined Cycle (TBCC) Research
NASA Technical Reports Server (NTRS)
Stueber, Thomas J.; Vrnak, Daniel R.; Le, Dzu K.; Ouzts, Peter J.
2010-01-01
Control research for a Turbine Based Combined Cycle (TBCC) propulsion system is the current focus of the Hypersonic Guidance, Navigation, and Control (GN&C) discipline team. The ongoing work at the NASA Glenn Research Center (GRC) supports the Hypersonic GN&C effort in developing tools to aid the design of control algorithms to manage a TBCC airbreathing propulsion system during a critical operating period. The critical operating period being addressed in this paper is the span when the propulsion system transitions from one cycle to another, referred to as mode transition. One such tool, that is a basic need for control system design activities, is computational models (hereto forth referred to as models) of the propulsion system. The models of interest for designing and testing controllers are Control Development Models (CDMs) and Control Validation Models (CVMs). CDMs and CVMs are needed for each of the following propulsion system elements: inlet, turbine engine, ram/scram dual-mode combustor, and nozzle. This paper presents an overall architecture for a TBCC propulsion system model that includes all of the propulsion system elements. Efforts are under way, focusing on one of the propulsion system elements, to develop CDMs and CVMs for a TBCC propulsion system inlet. The TBCC inlet aerodynamic design being modeled is that of the Combined-Cycle Engine (CCE) Testbed. The CCE Testbed is a large-scale model of an aerodynamic design that was verified in a small-scale screening experiment. The modeling approach includes employing existing state-of-the-art simulation codes, developing new dynamic simulations, and performing system identification experiments on the hardware in the NASA GRC 10 by10-Foot Supersonic Wind Tunnel. The developed CDMs and CVMs will be available for control studies prior to hardware buildup. The system identification experiments on the CCE Testbed will characterize the necessary dynamics to be represented in CDMs for control design. These system identification models will also be the reference models to validate the CDM and CVM models. Validated models will give value to the tools used to develop the models.
14 CFR 133.33 - Operating rules.
Code of Federal Regulations, 2011 CFR
2011-01-01
... that directional control is adequate. (4) Accelerate into forward flight to verify that no attitude... traffic control, if necessary, and a detailed chart depicting the flight routes and altitudes. (2) Each...
14 CFR 133.33 - Operating rules.
Code of Federal Regulations, 2012 CFR
2012-01-01
... that directional control is adequate. (4) Accelerate into forward flight to verify that no attitude... traffic control, if necessary, and a detailed chart depicting the flight routes and altitudes. (2) Each...
14 CFR 133.33 - Operating rules.
Code of Federal Regulations, 2014 CFR
2014-01-01
... that directional control is adequate. (4) Accelerate into forward flight to verify that no attitude... traffic control, if necessary, and a detailed chart depicting the flight routes and altitudes. (2) Each...
14 CFR 133.33 - Operating rules.
Code of Federal Regulations, 2013 CFR
2013-01-01
... that directional control is adequate. (4) Accelerate into forward flight to verify that no attitude... traffic control, if necessary, and a detailed chart depicting the flight routes and altitudes. (2) Each...
Doppler radar detection of vortex hazard indicators
NASA Technical Reports Server (NTRS)
Nespor, Jerald D.; Hudson, B.; Stegall, R. L.; Freedman, Jerome E.
1994-01-01
Wake vortex experiments were conducted at White Sands Missile Range, NM using the AN/MPS-39 Multiple Object Tracking Radar (MOTR). The purpose of these experiments was twofold. The first objective was to verify that radar returns from wake vortex are observed for some time after the passage of an aircraft. The second objective was to verify that other vortex hazard indicators such as ambient wind speed and direction could also be detected. The present study addresses the Doppler characteristics of wake vortex and clear air returns based upon measurements employing MOTR, a very sensitive C-Band phased array radar. In this regard, the experiment was conducted so that the spectral characteristics could be determined on a dwell to-dwell basis. Results are presented from measurements of the backscattered power (equivalent structure constant), radial velocity and spectral width when the aircraft flies transverse and axial to the radar beam. The statistics of the backscattered power and spectral width for each case are given. In addition, the scan strategy, experimental test procedure and radar parameters are presented.
Ding, Nanxiang; Yang, Jiemin
2014-01-01
Background Studies from European-American cultures consistently reported that expressive suppression was associated with worse emotional consequence (e.g. depression) in comparison with acceptance. However, this conclusion may not apply to Chinese, as suppressing emotional displays to maintain relational harmony is culturally valued in East Asian countries. Thus, the present study examined the effects of suppression and acceptance on the depressive mood induced by a frustrating task in a Chinese sample. Method Sixty-four subjects were randomly assigned to one of three instructions: suppression, acceptance or no-regulation during a frustrating arithmetic task. The experience of depressive emotion and skin conductance response (SCR) were recorded during pre-frustration baseline, frustration induction and post-frustration recovery phases, respectively. Results Compared with the control and acceptance instructions, suppression instruction was associated with decreased depressive experiences and smaller SCR activity during frustration. There were no significant differences between acceptance and control groups in both subjective depression and SCR activity during frustration. Moreover, the suppression group showed a better emotional recovery after the frustrating task, in comparison with the acceptance and control groups. Correlation analyses verified that SCR reactivity was a reliable index of experienced depression during the frustration. Conclusions Expressive suppression is effective in reducing depressive experiences and depression-related physiological activity (SCR) when Chinese people are involved. By contrast, the acceptance of depressive emotion in Chinese people does not produce a similar regulation effect. These findings suggest that cultural context should be considered in understanding the emotional consequences of suppression and acceptance strategies. PMID:24827934
Secnidazole for control of giardiasis in dairy calves.
Volpato, Andreia; Fortuoso, Bruno F; Campigotto, Gabriela; Glombowsky, Patrícia; Bottari, Nathieli B; Lopes, Leandro S; Da Silva, Aleksandro Schafer
2018-06-01
The aim of this study was to verify whether secnidazole, given in a single oral dose (10 mg/kg), decreases or eliminates the excretion of Giardia duodenalis cysts. Holstein calves were raised from birth to 15 ± 2 days of age in individual stalls. Subsequently, 12 calves were grouped and housed in collective stalls. After seven days (day of life 21), we collected stool samples directly from the rectal ampulla in order to determine the degree of parasitic infection. Fecal examination was performed by a centrifugal-flotation technique, which allows for visualization and quantification of G. duodenalis cysts. After division into control and treatment groups, six animals were treated with one 400 mg secnidazole capsule. The first stool collection following treatment was performed on day 5 and the second on day 30. This experiment was repeated at 15 days, with a total of 24 calves studied. Animals on the farm where the experiment was conducted often suffer from giardiasis, despite hygiene care (disinfection) and adequate facilities. All 24 calves were excreting G. duodenalis cysts prior to starting treatment. Five days after receiving the treatment, animals in the experiment group were Giardia-negative, i.e., they did not excrete parasite cysts, whereas calves in the control group continued to excrete cysts. After 30 days of treatment, the stool of most treated animals (83.3%) remained free of G. duodenalis cysts. Therefore, we believe that secnidazole was 100% effective in eliminating the excretion of Giardia duodenalis cysts. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Straube, Timothy Milton
1993-01-01
The design and implementation of a vertical degree of freedom suspension system is described which provides a constant force off-load condition to counter gravity over large displacements. By accommodating motions up to one meter for structures weighing up to 100 pounds, the system is useful for experiments which simulate orbital construction events such as docking, multiple component assembly, or structural deployment. A unique aspect of this device is the combination of a large stroke passive off-load device augmented by electromotive torque actuated force feedback. The active force feedback has the effect of reducing break-away friction by a factor of twenty over the passive system alone. The thesis describes the development of the suspension hardware and the control algorithm. Experiments were performed to verify the suspensions system's effectiveness in providing a gravity off-load and simulating the motion of a structure in orbit. Additionally, a three dimensional system concept is presented as an extension of the one dimensional suspension system which was implemented.
Simulation and testing of a multichannel system for 3D sound localization
NASA Astrophysics Data System (ADS)
Matthews, Edward Albert
Three-dimensional (3D) audio involves the ability to localize sound anywhere in a three-dimensional space. 3D audio can be used to provide the listener with the perception of moving sounds and can provide a realistic listening experience for applications such as gaming, video conferencing, movies, and concerts. The purpose of this research is to simulate and test 3D audio by incorporating auditory localization techniques in a multi-channel speaker system. The objective is to develop an algorithm that can place an audio event in a desired location by calculating and controlling the gain factors of each speaker. A MATLAB simulation displays the location of the speakers and perceived sound, which is verified through experimentation. The scenario in which the listener is not equidistant from each of the speakers is also investigated and simulated. This research is envisioned to lead to a better understanding of human localization of sound, and will contribute to a more realistic listening experience.
2009-03-28
CAPE CANAVERAL, Fla. – A U.S. Navy NP-3D Orion aircraft takes off from the Skid Strip at Cape Canaveral Air Force Station. The plane will fly below space shuttle Discovery as it approaches Kennedy Space Center for landing following the STS-119 mission. Onboard instruments will check the orbiter’s exterior temperatures and a long-range infrared camera will remotely monitor heating to the shuttle’s lower surface, part of the boundary layer transition flight experiment. For the experiment, a heat shield tile with a “speed bump” on it was installed under Discovery’s left wing to intentionally disturb the airflow in a controlled manner and make the airflow turbulent. The tile, a BRI-18, was originally developed as a potential heat shield upgrade on the orbiters and is being considered for use on the Constellation Program’s Orion crew exploration vehicles. The data will determine if a protuberance on a BRI-18 tile is safe to fly and will be used to verify and improve design efforts for future spacecraft. Photo credit: NASA/Jim Grossmann
2009-03-28
CAPE CANAVERAL, Fla. -- A U.S. Navy NP-3D Orion aircraft prepares for takeoff from the Skid Strip at Cape Canaveral Air Force Station. The plane will fly below space shuttle Discovery as it approaches Kennedy Space Center for landing following the STS-119 mission. Onboard instruments will check the orbiter’s exterior temperatures and a long-range infrared camera will remotely monitor heating to the shuttle’s lower surface, part of the boundary layer transition flight experiment. For the experiment, a heat shield tile with a “speed bump” on it was installed under Discovery’s left wing to intentionally disturb the airflow in a controlled manner and make the airflow turbulent. The tile, a BRI-18, was originally developed as a potential heat shield upgrade on the orbiters and is being considered for use on the Constellation Program’s Orion crew exploration vehicles. The data will determine if a protuberance on a BRI-18 tile is safe to fly and will be used to verify and improve design efforts for future spacecraft. Photo credit: NASA/Jim Grossmann