NASA Technical Reports Server (NTRS)
Schmit, Ryan
2010-01-01
To develop New Flow Control Techniques: a) Knowledge of the Flow Physics with and without control. b) How does Flow Control Effect Flow Physics (What Works to Optimize the Design?). c) Energy or Work Efficiency of the Control Technique (Cost - Risk - Benefit Analysis). d) Supportability, e.g. (size of equipment, computational power, power supply) (Allows Designer to include Flow Control in Plans).
Gu, Herong; Guan, Yajuan; Wang, Huaibao; Wei, Baoze; Guo, Xiaoqiang
2014-01-01
Microgrid is an effective way to integrate the distributed energy resources into the utility networks. One of the most important issues is the power flow control of grid-connected voltage-source inverter in microgrid. In this paper, the small-signal model of the power flow control for the grid-connected inverter is established, from which it can be observed that the conventional power flow control may suffer from the poor damping and slow transient response. While the new power flow control can mitigate these problems without affecting the steady-state power flow regulation. Results of continuous-domain simulations in MATLAB and digital control experiments based on a 32-bit fixed-point TMS320F2812 DSP are in good agreement, which verify the small signal model analysis and effectiveness of the proposed method.
Gu, Herong; Guan, Yajuan; Wang, Huaibao; Wei, Baoze; Guo, Xiaoqiang
2014-01-01
Microgrid is an effective way to integrate the distributed energy resources into the utility networks. One of the most important issues is the power flow control of grid-connected voltage-source inverter in microgrid. In this paper, the small-signal model of the power flow control for the grid-connected inverter is established, from which it can be observed that the conventional power flow control may suffer from the poor damping and slow transient response. While the new power flow control can mitigate these problems without affecting the steady-state power flow regulation. Results of continuous-domain simulations in MATLAB and digital control experiments based on a 32-bit fixed-point TMS320F2812 DSP are in good agreement, which verify the small signal model analysis and effectiveness of the proposed method. PMID:24672304
Analysis and control of asymmetric vortex flows and supersonic vortex breakdown
NASA Technical Reports Server (NTRS)
Kandil, Osama A.
1991-01-01
Topics relative to the analysis and control of asymmetric vortex flow and supersonic vortex breakdown are discussed. Specific topics include the computation of compressible, quasi-axisymmetric slender vortex flow and breakdown; supersonic quasi-axisymmetric vortex breakdown; and three-dimensional Navier-Stokes asymmetric solutions for cones and cone-cylinder configurations.
DOT National Transportation Integrated Search
1977-06-01
This report summarizes the findings of a benefit analysis study of the present and proposed Air Traffic Control Systems Command Center automation systems. The benefits analyzed were those associated with Fuel Advisory Departure and Quota Flow procedu...
Coupled parametric design of flow control and duct shape
NASA Technical Reports Server (NTRS)
Florea, Razvan (Inventor); Bertuccioli, Luca (Inventor)
2009-01-01
A method for designing gas turbine engine components using a coupled parametric analysis of part geometry and flow control is disclosed. Included are the steps of parametrically defining the geometry of the duct wall shape, parametrically defining one or more flow control actuators in the duct wall, measuring a plurality of performance parameters or metrics (e.g., flow characteristics) of the duct and comparing the results of the measurement with desired or target parameters, and selecting the optimal duct geometry and flow control for at least a portion of the duct, the selection process including evaluating the plurality of performance metrics in a pareto analysis. The use of this method in the design of inter-turbine transition ducts, serpentine ducts, inlets, diffusers, and similar components provides a design which reduces pressure losses and flow profile distortions.
Numerical analysis of exhaust jet secondary combustion in hypersonic flow field
NASA Astrophysics Data System (ADS)
Yang, Tian-Peng; Wang, Jiang-Feng; Zhao, Fa-Ming; Fan, Xiao-Feng; Wang, Yu-Han
2018-05-01
The interaction effect between jet and control surface in supersonic and hypersonic flow is one of the key problems for advanced flight control system. The flow properties of exhaust jet secondary combustion in a hypersonic compression ramp flow field were studied numerically by solving the Navier-Stokes equations with multi-species and combustion reaction effects. The analysis was focused on the flow field structure and the force amplification factor under different jet conditions. Numerical results show that a series of different secondary combustion makes the flow field structure change regularly, and the temperature increases rapidly near the jet exit.
Sensing and Active Flow Control for Advanced BWB Propulsion-Airframe Integration Concepts
NASA Technical Reports Server (NTRS)
Fleming, John; Anderson, Jason; Ng, Wing; Harrison, Neal
2005-01-01
In order to realize the substantial performance benefits of serpentine boundary layer ingesting diffusers, this study investigated the use of enabling flow control methods to reduce engine-face flow distortion. Computational methods and novel flow control modeling techniques were utilized that allowed for rapid, accurate analysis of flow control geometries. Results were validated experimentally using the Techsburg Ejector-based wind tunnel facility; this facility is capable of simulating the high-altitude, high subsonic Mach number conditions representative of BWB cruise conditions.
Stability and sensitivity of ABR flow control protocols
NASA Astrophysics Data System (ADS)
Tsai, Wie K.; Kim, Yuseok; Chiussi, Fabio; Toh, Chai-Keong
1998-10-01
This tutorial paper surveys the important issues in stability and sensitivity analysis of ABR flow control of ATM networks. THe stability and sensitivity issues are formulated in a systematic framework. Four main cause of instability in ABR flow control are identified: unstable control laws, temporal variations of available bandwidth with delayed feedback control, misbehaving components, and interactions between higher layer protocols and ABR flow control. Popular rate-based ABR flow control protocols are evaluated. Stability and sensitivity is shown to be the fundamental issues when the network has dynamically-varying bandwidth. Simulation result confirming the theoretical studies are provided. Open research problems are discussed.
Controllability of flow-conservation networks
NASA Astrophysics Data System (ADS)
Zhao, Chen; Zeng, An; Jiang, Rui; Yuan, Zhengzhong; Wang, Wen-Xu
2017-07-01
The ultimate goal of exploring complex networks is to control them. As such, controllability of complex networks has been intensively investigated. Despite recent advances in studying the impact of a network's topology on its controllability, a comprehensive understanding of the synergistic impact of network topology and dynamics on controllability is still lacking. Here, we explore the controllability of flow-conservation networks, trying to identify the minimal number of driver nodes that can guide the network to any desirable state. We develop a method to analyze the controllability on flow-conservation networks based on exact controllability theory, transforming the original analysis on adjacency matrix to Laplacian matrix. With this framework, we systematically investigate the impact of some key factors of networks, including link density, link directionality, and link polarity, on the controllability of these networks. We also obtain the analytical equations by investigating the network's structural properties approximatively and design the efficient tools. Finally, we consider some real networks with flow dynamics, finding that their controllability is significantly different from that predicted by only considering the topology. These findings deepen our understanding of network controllability with flow-conservation dynamics and provide a general framework to incorporate real dynamics in the analysis of network controllability.
F-16XL-2 Supersonic Laminar Flow Control Flight Test Experiment
NASA Technical Reports Server (NTRS)
Anders, Scott G.; Fischer, Michael C.
1999-01-01
The F-16XL-2 Supersonic Laminar Flow Control Flight Test Experiment was part of the NASA High-Speed Research Program. The goal of the experiment was to demonstrate extensive laminar flow, to validate computational fluid dynamics (CFD) codes and design methodology, and to establish laminar flow control design criteria. Topics include the flight test hardware and design, airplane modification, the pressure and suction distributions achieved, the laminar flow achieved, and the data analysis and code correlation.
CFD Analysis of Thermal Control System Using NX Thermal and Flow
NASA Technical Reports Server (NTRS)
Fortier, C. R.; Harris, M. F. (Editor); McConnell, S. (Editor)
2014-01-01
The Thermal Control Subsystem (TCS) is a key part of the Advanced Plant Habitat (APH) for the International Space Station (ISS). The purpose of this subsystem is to provide thermal control, mainly cooling, to the other APH subsystems. One of these subsystems, the Environmental Control Subsystem (ECS), controls the temperature and humidity of the growth chamber (GC) air to optimize the growth of plants in the habitat. The TCS provides thermal control to the ECS with three cold plates, which use Thermoelectric Coolers (TECs) to heat or cool water as needed to control the air temperature in the ECS system. In order to optimize the TCS design, pressure drop and heat transfer analyses were needed. The analysis for this system was performed in Siemens NX Thermal/Flow software (Version 8.5). NX Thermal/Flow has the ability to perform 1D or 3D flow solutions. The 1D flow solver can be used to represent simple geometries, such as pipes and tubes. The 1D flow method also has the ability to simulate either fluid only or fluid and wall regions. The 3D flow solver is similar to other Computational Fluid Dynamic (CFD) software. TCS performance was analyzed using both the 1D and 3D solvers. Each method produced different results, which will be evaluated and discussed.
Research on software behavior trust based on hierarchy evaluation
NASA Astrophysics Data System (ADS)
Long, Ke; Xu, Haishui
2017-08-01
In view of the correlation software behavior, we evaluate software behavior credibility from two levels of control flow and data flow. In control flow level, method of the software behavior of trace based on support vector machine (SVM) is proposed. In data flow level, behavioral evidence evaluation based on fuzzy decision analysis method is put forward.
Stability analysis of dynamic collaboration model with control signals on two lanes
NASA Astrophysics Data System (ADS)
Li, Zhipeng; Zhang, Run; Xu, Shangzhi; Qian, Yeqing; Xu, Juan
2014-12-01
In this paper, the influence of control signals on the stability of two-lane traffic flow is mainly studied by applying control theory with lane changing behaviors. We present the two-lane dynamic collaboration model with lateral friction and the expressions of feedback control signals. What is more, utilizing the delayed feedback control theory to the two-lane dynamic collaboration model with control signals, we investigate the stability of traffic flow theoretically and the stability conditions for both lanes are derived with finding that the forward and lateral feedback signals can improve the stability of traffic flow while the backward feedback signals cannot achieve it. Besides, direct simulations are conducted to verify the results of theoretical analysis, which shows that the feedback signals have a significant effect on the running state of two vehicle groups, and the results are same with the theoretical analysis.
NASA Technical Reports Server (NTRS)
Jackson, M. E.
1995-01-01
This report presents the Space Station Furnace Facility (SSFF) thermal control system (TCS) preliminary control system design and analysis. The SSFF provides the necessary core systems to operate various materials processing furnaces. The TCS is defined as one of the core systems, and its function is to collect excess heat from furnaces and to provide precise cold temperature control of components and of certain furnace zones. Physical interconnection of parallel thermal control subsystems through a common pump implies the description of the TCS by coupled nonlinear differential equations in pressure and flow. This report formulates the system equations and develops the controllers that cause the interconnected subsystems to satisfy flow rate tracking requirements. Extensive digital simulation results are presented to show the flow rate tracking performance.
NASA Astrophysics Data System (ADS)
Tan, Yan
Prediction and control of optical wave front distortions and aberrations in a high energy laser beam due to interaction with an unsteady highly non-uniform flow field is of great importance in the development of directed energy weapon systems for Unmanned Air Vehicles (UAV). The unsteady shear layer over the weapons bay cavity is the primary cause of this distortion of the optical wave front. The large scale vortical structure of the shear layer over the cavity can be significantly reduced by employing an active flow control technique combined with passive flow control. This dissertation explores various active and passive control methods to suppress the cavity oscillations and thereby improve the aero-optics of cavity flow. In active flow control technique, a steady or a pulsed jet is applied at the sharp leading edge of cavities of different aspect ratios L/D (=2, 4, 15), where L and D are the width and the depth of a cavity respectively. In the passive flow control approach, the sharp leading or trailing edge of the cavity is modified into a round edge of different radii. Both of these active and passive flow control approaches are studied independently and in combination. Numerical simulations are performed, with and without active flow control for subsonic free stream flow past two-dimensional sharp and round leading or trailing edge cavities using Unsteady Reynolds-Averaged Navier-Stokes (URANS) equations with a two-equation Shear Stress Transport (SST) turbulence model or a hybrid SST/Large Eddy Simulation (LES) model. Aero-optical analysis is developed and applied to all the simulation cases. Index of refraction and Optical Path Difference (OPD) are compared for flow fields without and with active flow control. Root-Mean-Square (RMS) value of OPD is calculated and compared with the experimental data, where available. The effect of steady and pulsed blowing on buffet loading on the downstream face of the cavity is also computed. Using the numerical simulations, the most effective approach for controlling the cavity oscillations and aero-optical signatures is determined.
Sreenan, J J; Tbakhi, A; Edinger, M G; Tubbs, R R
1997-02-01
Isotypic control reagents are defined as irrelevant antibodies of the same immunoglobulin class as the relevant reagent antibody in a flow cytometry panel. The use of the isotypic control antibody has been advocated as a necessary quality control measure in analysis of flow cytometry. The purpose of this study was to determine the necessity of an isotypic control antibody in the analysis of CD3+ and CD3+, CD4+ lymphocyte subsets. We performed a prospective study of 46 consecutive patient samples received for lymphocyte subset analysis to determine the need for the isotypic control. For each sample, a sham buffer (autocontrol) and isotypic control reagent were stained for three-color immunofluorescence, processed, and identically analyzed with Attractors software. The Attractors software allowed independent, multiparametric, simultaneous gating; was able to identically and reproducibly process each list mode file; and yielded population data in spreadsheet form. Statistical analysis (Fisher's z test) revealed no difference between the CD3+ autocontrol and CD3+ isotypic control (correlation = 1, P < .0001) or between the CD3+, CD4+ autocontrol and the CD3+, CD4+ isotypic control (correlation = 1, P < .0001). The elimination of the isotypic control reagent resulted in a total cost savings of $3.36 per test. Additionally, the subtraction of isotypic background can artifactually depress population enumeration. The use of an isotypic control antibody is not necessary to analyze flow cytometric data that result in discrete cell populations, such as CD3+ and CD3+, CD4+ lymphocyte subsets. The elimination of this unnecessary quality control measure results in substantial cost savings.
Using resolvent analysis for the design of separation control on a NACA 0012 airfoil
NASA Astrophysics Data System (ADS)
Yeh, Chi-An; Taira, Kunihiko
2017-11-01
A combined effort based on large-eddy simulation and resolvent analysis on the separated flow over a NACA 0012 airfoil is conducted to design active flow control for suppression of separation. This study considers the the airfoil at 6 deg. angle-of-attack and Reynolds number of 23000. The response mode obtained from the resolvent analysis about the baseline turbulent mean flow reveals modal structures that can be categorized into three families when sweeping through the resonant frequency: (1) von Karman wake structure for low frequency; (2) Kelvin-Helmholtz structure in the separation bubble for high frequency; (3) blended structure of (1) and (2) for the intermediate frequency. Leveraging the insights from resolvent analysis, unsteady thermal actuation is introduced to the flow near the leading-edge to examine the use of the frequencies from three families for separation control in LES. As indicated by the resolvent response modes, we find that the use of intermediate frequencies are most effective in suppressing the flow separation, since the shear layer over the separation bubble and the wake are both receptive to the perturbation at the these frequencies. The resolvent-analysis-based control strategy achieves 35% drag reduction and 9% lift increase with effective frequency. This work was supported by Office of Naval Research (N00014-15-R-FO13) and Army Research Office (W911NF-14-1-0224).
Typing Local Control and State Using Flow Analysis
NASA Astrophysics Data System (ADS)
Guha, Arjun; Saftoiu, Claudiu; Krishnamurthi, Shriram
Programs written in scripting languages employ idioms that confound conventional type systems. In this paper, we highlight one important set of related idioms: the use of local control and state to reason informally about types. To address these idioms, we formalize run-time tags and their relationship to types, and use these to present a novel strategy to integrate typing with flow analysis in a modular way. We demonstrate that in our separation of typing and flow analysis, each component remains conventional, their composition is simple, but the result can handle these idioms better than either one alone.
Active Flow Control and Global Stability Analysis of Separated Flow Over a NACA 0012 Airfoil
NASA Astrophysics Data System (ADS)
Munday, Phillip M.
The objective of this computational study is to examine and quantify the influence of fundamental flow control inputs in suppressing flow separation over a canonical airfoil. Most flow control studies to this date have relied on the development of actuator technology, and described the control input based on specific actuators. Taking advantage of a computational framework, we generalize the inputs to fundamental perturbations without restricting inputs to a particular actuator. Utilizing this viewpoint, generalized control inputs aim to aid in the quantification and support the design of separation control techniques. This study in particular independently introduces wall-normal momentum and angular momentum to the separated flow using swirling jets through model boundary conditions. The response of the flow field and the surface vorticity fluxes to various combinations of actuation inputs are examined in detail. By closely studying different variables, the influence of the wall-normal and angular momentum injections on separated flow is identified. As an example, open-loop control of fully separated, incompressible flow over a NACA 0012 airfoil at alpha = 6° and 9° with Re = 23,000 is examined with large-eddy simulations. For the shallow angle of attack alpha = 6°, the small recirculation region is primarily affected by wall-normal momentum injection. For a larger separation region at alpha = 9°, it is observed that the addition of angular momentum input to wall-normal momentum injection enhances the suppression of flow separation. Reducing the size of the separated flow region significantly impacts the forces, and in particular reduces drag and increases lift on the airfoil. It was found that the influence of flow control on the small recirculation region (alpha = 6°) can be sufficiently quantified with the traditional coefficient of momentum. At alpha = 9°, the effects of wall-normal and angular momentum inputs are captured by modifying the standard definition of the coefficient of momentum, which successfully characterizes suppression of separation and lift enhancement. The effect of angular momentum is incorporated into the modified coefficient of momentum by introducing a characteristic swirling jet velocity based on the non-dimensional swirl number. With the modified coefficient of momentum, this single value is able to categorize controlled flows into separated, transitional, and attached flows. With inadequate control input (separated flow regime), lift decreased compared to the baseline flow. Increasing the modified coefficient of momentum, flow transitions from separated to attached and accordingly results in improved aerodynamic forces. Modifying the spanwise spacing, it is shown that the minimum modified coefficient of momentum input required to begin transitioning the flow is dependent on actuator spacing. The growth (or decay) of perturbations can facilitate or inhibit the influence of flow control inputs. Biglobal stability analysis is considered to further analyze the behavior of control inputs on separated flow over a symmetric airfoil. Assuming a spanwise periodic waveform for the perturbations, the eigenvalues and eigenvectors about a base flow are solved to understand the influence of spanwise variation on the development of the flow. Two algorithms are developed and validated to solve for the eigenvalues of the flow: an algebraic eigenvalue solver (matrix based) and a time-stepping algorithm. The matrix based approach is formulated without ever storing the matrices, creating a computationally memory efficient algorithm. Increasing the Reynolds number to Re = 23,000 over a NACA 0012 airfoil, the time-stepper method is implemented due to rising computational cost of the matrix-based method. Stability analysis about the time-averaged flow is performed for spanwise wavenumbers of beta = 1/c, 10pi/ c and 20pi/c, which the latter two wavenumbers are representative of the spanwise spacing between the actuators. The largest spanwise wavelength (beta = 1/c) contained unstable modes that ranged from low to high frequency, and a particular unstable low-frequency mode corresponding to a frequency observed in the lift forces of the baseline large-eddy simulation. For the larger spanwise wavenumbers, beta = 10pi/ c (Lz/c = 0.2) and 20pi/c (Lz/c = 0.1), low-frequency modes were damped and only modes with f > 5were unstable. These results help us gain further insight into the influence of the flow control inputs. In conclusion, it was shown that the influence of wall-normal and angular momentum inputs on fully separated flow can adequately be described by the modified coefficient of momentum. Through further analysis and the development of a biglobal stability solver, spanwise spacing effects observed in the flow control study can be explained. The findings from this study should aid in the development of more intelligently designed flow control strategies and provide guidance in the selection of flow control actuators.
Ii, Satoshi; Adib, Mohd Azrul Hisham Mohd; Watanabe, Yoshiyuki; Wada, Shigeo
2018-01-01
This paper presents a novel data assimilation method for patient-specific blood flow analysis based on feedback control theory called the physically consistent feedback control-based data assimilation (PFC-DA) method. In the PFC-DA method, the signal, which is the residual error term of the velocity when comparing the numerical and reference measurement data, is cast as a source term in a Poisson equation for the scalar potential field that induces flow in a closed system. The pressure values at the inlet and outlet boundaries are recursively calculated by this scalar potential field. Hence, the flow field is physically consistent because it is driven by the calculated inlet and outlet pressures, without any artificial body forces. As compared with existing variational approaches, although this PFC-DA method does not guarantee the optimal solution, only one additional Poisson equation for the scalar potential field is required, providing a remarkable improvement for such a small additional computational cost at every iteration. Through numerical examples for 2D and 3D exact flow fields, with both noise-free and noisy reference data as well as a blood flow analysis on a cerebral aneurysm using actual patient data, the robustness and accuracy of this approach is shown. Moreover, the feasibility of a patient-specific practical blood flow analysis is demonstrated. Copyright © 2017 John Wiley & Sons, Ltd.
An approximate analysis of the diffusing flow in a self-controlled heat pipe.
NASA Technical Reports Server (NTRS)
Somogyi, D.; Yen, H. H.
1973-01-01
Constant-density two-dimensional axisymmetric equations are presented for the diffusing flow of a class of self-controlled heat pipes. The analysis is restricted to the vapor space. Condensation of the vapor is related to its mass fraction at the wall by the gas kinetic formula. The Karman-Pohlhausen integral method is applied to obtain approximate solutions. Solutions are presented for a water heat pipe with neon control gas.
A numerical study of transition control by periodic suction-blowing
NASA Technical Reports Server (NTRS)
Biringen, Sedat
1987-01-01
The applicability of active control of transition by periodic suction-blowing is investigated via direct numerical simulations of the Navier-Stokes equations. The time-evolution of finite-amplitude disturbances in plane channel flow is compared in detail with and without control. The analysis indicates that, for relatively small three dimensional amplitudes, a two dimensional control effectively reduces disturbance growth rates even for linearly unstable Reynolds numbers. After the flow goes through secondary instability, three dimensional control seems necessary to stabilize the flow. An investigation of the temperature field suggests that passive temperature contamination is operative to reflect the flow dynamics during transition.
Compressed-air flow control system.
Bong, Ki Wan; Chapin, Stephen C; Pregibon, Daniel C; Baah, David; Floyd-Smith, Tamara M; Doyle, Patrick S
2011-02-21
We present the construction and operation of a compressed-air driven flow system that can be used for a variety of microfluidic applications that require rapid dynamic response and precise control of multiple inlet streams. With the use of inexpensive and readily available parts, we describe how to assemble this versatile control system and further explore its utility in continuous- and pulsed-flow microfluidic procedures for the synthesis and analysis of microparticles.
Power flow control using quadrature boosters
NASA Astrophysics Data System (ADS)
Sadanandan, Sandeep N.
A power system that can be controlled within security constraints would be an advantage to power planners and real-time operators. Controlling flows can lessen reliability issues such as thermal limit violations, power stability problems, and/or voltage stability conditions. Control of flows can also mitigate market issues by reducing congestion on some lines and rerouting power to less loaded lines or onto preferable paths. In the traditional control of power flows, phase shifters are often used. More advanced methods include using Flexible AC Transmission System (FACTS) Controllers. Some examples include Thyristor Controlled Series Capacitors, Synchronous Series Static Compensators, and Unified Power Flow Controllers. Quadrature Boosters (QBs) have similar structures to phase-shifters, but allow for higher voltage magnitude during real power flow control. In comparison with other FACTS controllers QBs are not as complex and not as expensive. The present study proposes to use QBs to control power flows on a power system. With the inclusion of QBs, real power flows can be controlled to desired scheduled values. In this thesis, the linearized power flow equations used for power flow analysis were modified for the control problem. This included modifying the Jacobian matrix, the power error vector, and calculating the voltage injected by the quadrature booster for the scheduled real power flow. Two scenarios were examined using the proposed power flow control method. First, the power flow in a line in a 5-bus system was modified with a QB using the method developed in this thesis. Simulation was carried out using Matlab. Second, the method was applied to a 30-bus system and then to a 118-bus system using several QBs. In all the cases, the calculated values of the QB voltages led to desired power flows in the designated line.
NASA Astrophysics Data System (ADS)
Wang, Yunong; Cheng, Rongjun; Ge, Hongxia
2017-08-01
In this paper, a lattice hydrodynamic model is derived considering not only the effect of flow rate difference but also the delayed feedback control signal which including more comprehensive information. The control method is used to analyze the stability of the model. Furthermore, the critical condition for the linear steady traffic flow is deduced and the numerical simulation is carried out to investigate the advantage of the proposed model with and without the effect of flow rate difference and the control signal. The results are consistent with the theoretical analysis correspondingly.
Flow dynamics in pediatric rigid bronchoscopes using computer-aided design modeling software.
Barneck, Mitchell D; Webb, J Taylor; Robinson, Ryan E; Grimmer, J Fredrik
2016-08-01
Observed complications during rigid bronchoscopy, including hypercarbia and hypoxemia, prompted us to assess how well rigid bronchoscopes serve as an airway device. We performed computer-aided design flow analysis of pediatric rigid bronchoscopes to gain insight into flow dynamics. We made accurate three-dimensional computer models of pediatric rigid bronchoscopes and endotracheal tubes. SOLIDWORKS (Dassault Systemes, Vélizy-Villacoublay, France) flow analysis software was used to analyze fluid dynamics during pressure-controlled and volume-controlled ventilation. Flow analysis was performed on rigid bronchoscopes and similar outer diameter endotracheal tubes comparing resistance, flow, and turbulence during two ventilation modalities and in common surgical scenarios. Increased turbulent flow was observed in bronchoscopes compared to more laminar flow in endotracheal tubes of similar outer diameter. Flow analysis displayed higher resistances in all pediatric bronchoscope sizes except one (3.0 bronchoscope) compared to similar-sized endotracheal tubes. Loss of adequate ventilation was observed if the bronchoscope was not assembled correctly or if increased peak inspiratory pressures were needed. Anesthesia flow to the patient was reduced by 63% during telescope insertion. Flow analysis illustrates increased turbulent flow and increased airflow resistance in all but one size of pediatric bronchoscopes compared to endotracheal tubes. This increased turbulence and resistance, along with the unanticipated gas distal exit pattern, may contribute to the documented hypercarbia and hypoxemia during procedures. These findings may explain why hypoxemia and hypercarbia are commonly observed during rigid bronchoscopy, especially when positive pressure ventilation is needed. NA Laryngoscope, 126:1940-1945, 2016. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.
Microgrid Enabled Distributed Energy Solutions (MEDES) Fort Bliss Military Reservation
2014-02-01
Logic Controller PF Power Factor PO Performance Objectives PPA Power Purchase Agreements PV Photovoltaic R&D Research and Development RDSI...controller, algorithms perform power flow analysis, short term optimization, and long-term forecasted planning. The power flow analysis ensures...renewable photovoltaic power and energy storage in this microgrid configuration, the available mission operational time of the backup generator can be
Computational Analysis of the G-III Laminar Flow Glove
NASA Technical Reports Server (NTRS)
Malik, Mujeeb R.; Liao, Wei; Lee-Rausch, Elizabeth M.; Li, Fei; Choudhari, Meelan M.; Chang, Chau-Lyan
2011-01-01
Under NASA's Environmentally Responsible Aviation Project, flight experiments are planned with the primary objective of demonstrating the Discrete Roughness Elements (DRE) technology for passive laminar flow control at chord Reynolds numbers relevant to transport aircraft. In this paper, we present a preliminary computational assessment of the Gulfstream-III (G-III) aircraft wing-glove designed to attain natural laminar flow for the leading-edge sweep angle of 34.6deg. Analysis for a flight Mach number of 0.75 shows that it should be possible to achieve natural laminar flow for twice the transition Reynolds number ever achieved at this sweep angle. However, the wing-glove needs to be redesigned to effectively demonstrate passive laminar flow control using DREs. As a by-product of the computational assessment, effect of surface curvature on stationary crossflow disturbances is found to be strongly stabilizing for the current design, and it is suggested that convex surface curvature could be used as a control parameter for natural laminar flow design, provided transition occurs via stationary crossflow disturbances.
Research and training activities of the Joint Institute for Aeronautics and Acoustics
NASA Technical Reports Server (NTRS)
Roberts, L.
1993-01-01
During the period October 1992 to September 1993 progress was made on each of the following tasks: (1) experimental studies of free shear flows; (2) analysis of conical flow; (3) experimental and theoretical studies of vortex flows; and (4) aircraft attitude control using active flow control devices. The details of this work was discussed with the technical and management staff at Ames Research Center.
CFD Analysis of a T-38 Wing Fence
2007-06-01
or making major adjustments to the existing airframe. The answer lies in flow control. Flow control devices like vortex generators, winglets , and wing...proposed by the Air Force Test Pilot School. The driving force for considering a wing fence as opposed to vane vortex generators or winglets 3 was a row of...devices are vortex generators, fences, high lift flaps, and winglets . Active flow control injects the boundary layer with energy from small jets of
Sakai, Yusuke; Hattori, Koji; Yanagawa, Fumiki; Sugiura, Shinji; Kanamori, Toshiyuki; Nakazawa, Kohji
2014-07-01
Microfluidic devices permit perfusion culture of three-dimensional (3D) tissue, mimicking the flow of blood in vascularized 3D tissue in our body. Here, we report a microfluidic device composed of a two-part microfluidic chamber chip and multi-microwell array chip able to be disassembled at the culture endpoint. Within the microfluidic chamber, an array of 3D tissue aggregates (spheroids) can be formed and cultured under perfusion. Subsequently, detailed post-culture analysis of the spheroids collected from the disassembled device can be performed. This device facilitates uniform spheroid formation, growth analysis in a high-throughput format, controlled proliferation via perfusion flow rate, and post-culture analysis of spheroids. We used the device to culture spheroids of human hepatocellular carcinoma (HepG2) cells under two controlled perfusion flow rates. HepG2 spheroids exhibited greater cell growth at higher perfusion flow rates than at lower perfusion flow rates, and exhibited different metabolic activity and mRNA and protein expression under the different flow rate conditions. These results show the potential of perfusion culture to precisely control the culture environment in microfluidic devices. The construction of spheroid array chambers allows multiple culture conditions to be tested simultaneously, with potential applications in toxicity and drug screening. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Thompson, E.
1979-01-01
A finite element computer code for the analysis of mantle convection is described. The coupled equations for creeping viscous flow and heat transfer can be solved for either a transient analysis or steady-state analysis. For transient analyses, either a control volume or a control mass approach can be used. Non-Newtonian fluids with viscosities which have thermal and spacial dependencies can be easily incorporated. All material parameters may be written as function statements by the user or simply specified as constants. A wide range of boundary conditions, both for the thermal analysis and the viscous flow analysis can be specified. For steady-state analyses, elastic strain rates can be included. Although this manual was specifically written for users interested in mantle convection, the code is equally well suited for analysis in a number of other areas including metal forming, glacial flows, and creep of rock and soil.
2006-08-01
be developed. A common analysis model covering the aerodynamic-flow effector interaction, the compliant mechanism-SMA dynamics and the control...additional CFD analysis for the finless DRDC-B1AC2R between 15 deg. to 20 deg. to determine where the peak side force is situated. Compare pressure...Carry out CFD study on DRDC-B1AC2R with fins. Decide on analysis matrix. Coordinate with wind tunnel test matrix. Action: DRDC-nh Y0405-7. Decide
Control of DC gas flow in a single-stage double-inlet pulse tube cooler
NASA Astrophysics Data System (ADS)
Wang, C.; Thummes, G.; Heiden, C.
The use of double-inlet mode in the pulse tube cooler opens up a possibility of DC gas flow circulating around the regenerator and pulse tube. Numerical analysis shows that effects of DC flow in a single-stage pulse tube cooler are different in some aspects from that in a 4 K pulse tube cooler. For highest cooler efficiency, DC flow should be compensated to a small value, i.e. DC flow over average AC flow at regenerator inlet should be in the range -0.0013 to +0.00016. Dual valves with reversed asymmetric geometries were used for the double-inlet bypass to control the DC flow in this paper. The experiment, performed in a single-stage double-inlet pulse tube cooler, verified that the cooler performance can be significantly improved by precisely controlling the DC flow.
Operational considerations for laminar flow aircraft
NASA Technical Reports Server (NTRS)
Maddalon, Dal V.; Wagner, Richard D.
1986-01-01
Considerable progress has been made in the development of laminar flow technology for commercial transports during the NASA Aircraft Energy Efficiency (ACEE) laminar flow program. Practical, operational laminar flow control (LFC) systems have been designed, fabricated, and are undergoing flight testing. New materials, fabrication methods, analysis techniques, and design concepts were developed and show much promise. The laminar flow control systems now being flight tested on the NASA Jetstar aircraft are complemented by natural laminar flow flight tests to be accomplished with the F-14 variable-sweep transition flight experiment. An overview of some operational aspects of this exciting program is given.
DOE Office of Scientific and Technical Information (OSTI.GOV)
JENNINGS, T.L.
The Work Flow analysis Report will be used to facilitate the requirements for implementing the Work Control module of Passport. The report consists of workflow integration processes for Work Management, Preventative Maintenance, Materials and Equipment
Control and Visualization of a Shear Layer Over a Weapons Bay
NASA Astrophysics Data System (ADS)
Schmit, Ryan; Raman, Ganesh; Lourenco, Luis; Kibens, Valdis
2005-11-01
In July 2005, the AFRL program Flow Control Analysis Development (FlowCAD) tested the High Frequency Excitation Active Flow Control for Supersonic Weapons Release (HIFEX) generic weapons bay model in the Boeing's Polysonic windtunnel facility. The 10% scaled weapons bay with an L/D of 5 was tested at Mach 1.82. Several flow control devices were tested, including: the goalpost, a wedge and pin configuration, and the splash jet, to determine their effectiveness at reducing the sound pressure levels inside the weapons bay. The results show the wedge and splash jet are equally effective at reducing the peak Rossiter tone by 20 dB. The main objective of this test was to visualize the shear layer over the weapons bay cavity. By examining the cavity shear layer with a 10 kHz Focused Schlieren system the effects from the flow control devices can be understood to produce a more effective flow control device in the future.
Numerical Analysis of the Cavity Flow subjected to Passive Controls Techniques
NASA Astrophysics Data System (ADS)
Melih Guleren, Kursad; Turk, Seyfettin; Mirza Demircan, Osman; Demir, Oguzhan
2018-03-01
Open-source flow solvers are getting more and more popular for the analysis of challenging flow problems in aeronautical and mechanical engineering applications. They are offered under the GNU General Public License and can be run, examined, shared and modified according to user’s requirements. SU2 and OpenFOAM are the two most popular open-source solvers in Computational Fluid Dynamics (CFD) community. In the present study, some passive control methods on the high-speed cavity flows are numerically simulated using these open-source flow solvers along with one commercial flow solver called ANSYS/Fluent. The results are compared with the available experimental data. The solver SU2 are seen to predict satisfactory the mean streamline velocity but not turbulent kinetic energy and overall averaged sound pressure level (OASPL). Whereas OpenFOAM predicts all these parameters nearly as the same levels of ANSYS/Fluent.
NASA Astrophysics Data System (ADS)
Zepf, Joachim; Rufa, Gerhard
1994-04-01
This paper focuses on the transient performance analysis of the congestion and flow control mechanisms in CCITT Signaling System No. 7 (SS7). Special attention is directed to the impacts of the introduction of intelligent services and new applications, e.g., Freephone, credit card services, user-to-user signaling, etc. In particular, we show that signaling traffic characteristics like signaling scenarios or signaling message length as well as end-to-end signaling capabilities have a significant influence on the congestion and flow control and, therefore, on the real-time signaling performance. One important result of our performance studies is that if, e.g., intelligent services are introduced, the SS7 congestion and flow control does not work correctly. To solve this problem, some reinvestigations into these mechanisms would be necessary. Therefore, some approaches, e.g., modification of the Signaling Connection Control Part (SCCP) congestion control, usage of the SCCP relay function, or a redesign of the MTP flow control procedures are discussed in order to guarantee the efficacy of the congestion and flow control mechanisms also in the future.
Experimental analysis of the flow near the boundary of random porous media
NASA Astrophysics Data System (ADS)
Wu, Zhenxing; Mirbod, Parisa
2018-04-01
The aim of this work is to experimentally examine flow over and near random porous media. Different porous materials were chosen to achieve porosity ranging from 0.95 to 0.99. In this study, we report the detailed velocity measurements of the flow over and near random porous material inside a rectangular duct using a planar particle image velocimetry (PIV) technique. By controlling the flow rate, two different Reynolds numbers were achieved. We determined the slip velocity at the interface between the porous media and free flow. Values of the slip velocity normalized either by the maximum flow velocity or by the shear rate at the interface and the screening distance K1/2 were found to depend on porosity. It was also shown that the depth of penetration inside the porous material was larger than the screening length using Brinkman's prediction. Moreover, we examined a model for the laminar coupled flow over and inside porous media and analyzed the permeability of a random porous medium. This study provided detailed analysis of flow over and at the interface of various specific random porous media using the PIV technique. This analysis has the potential to serve as a first step toward using random porous media as a new passive technique to control the flow over smooth surfaces.
Analysis of the leading edge effects on the boundary layer transition
NASA Technical Reports Server (NTRS)
Chow, Pao-Liu
1990-01-01
A general theory of boundary layer control by surface heating is presented. Some analytical results for a simplified model, i.e., the optimal control of temperature fluctuations in a shear flow are described. The results may provide a clue to the effectiveness of the active feedback control of a boundary layer flow by wall heating. In a practical situation, the feedback control may not be feasible from the instrumentational point of view. In this case the vibrational control introduced in systems science can provide a useful alternative. This principle is briefly explained and applied to the control of an unstable wavepacket in a parallel shear flow.
Contained radiological analytical chemistry module
Barney, David M.
1989-01-01
A system which provides analytical determination of a plurality of water chemistry parameters with respect to water samples subject to radiological contamination. The system includes a water sample analyzer disposed within a containment and comprising a sampling section for providing predetermined volumes of samples for analysis; a flow control section for controlling the flow through the system; and a gas analysis section for analyzing samples provided by the sampling system. The sampling section includes a controllable multiple port valve for, in one position, metering out sample of a predetermined volume and for, in a second position, delivering the material sample for analysis. The flow control section includes a regulator valve for reducing the pressure in a portion of the system to provide a low pressure region, and measurement devices located in the low pressure region for measuring sample parameters such as pH and conductivity, at low pressure. The gas analysis section which is of independent utility provides for isolating a small water sample and extracting the dissolved gases therefrom into a small expansion volume wherein the gas pressure and thermoconductivity of the extracted gas are measured.
Contained radiological analytical chemistry module
Barney, David M.
1990-01-01
A system which provides analytical determination of a plurality of water chemistry parameters with respect to water samples subject to radiological contamination. The system includes a water sample analyzer disposed within a containment and comprising a sampling section for providing predetermined volumes of samples for analysis; a flow control section for controlling the flow through the system; and a gas analysis section for analyzing samples provided by the sampling system. The sampling section includes a controllable multiple port valve for, in one position, metering out sample of a predetermined volume and for, in a second position, delivering the material sample for analysis. The flow control section includes a regulator valve for reducing the pressure in a portion of the system to provide a low pressure region, and measurement devices located in the low pressure region for measuring sample parameters such as pH and conductivity, at low pressure. The gas analysis section which is of independent utility provides for isolating a small water sample and extracting the dissolved gases therefrom into a small expansion volume wherein the gas pressure and thermoconductivity of the extracted gas are measured.
NASA Technical Reports Server (NTRS)
Schunk, R. Gregory; Hunt, Patrick L. (Technical Monitor)
2001-01-01
Preliminary results from a thermal/flow analysis of the Purge Control Pump Assembly (PCPA) indicate that pump performance (mass flow rate) is enhanced via cooling of the housing and lowering of the inlet vapor quality. Under a nominal operational profile (25% duty cycle or less), at the maximum motor dissipation, it appears that the peristaltic tubing temperature will still remain significantly below the expected UPA condenser temperature (78 F max versus approximately 105 F in the condenser) permitting condensation in the pump head.
Development of myoelectric control type speaking valve with low flow resistance
NASA Astrophysics Data System (ADS)
Ooe, Katsutoshi; Sakurai, Kohei; Mimaki, Shinya
2015-12-01
We aimed to develop welfare devices for patients with phonation disorder. One of these devices is the electrical controltype speaking valve system. The conventional speaking valves have one-way valve architecture, they open when the user breathes in, and they close when user breathes out and produce voices. This type is very simple and tough, but some users feel closeness in case of exhalation without phonation. This problem is caused by its mechanism what can not be controlled by user's will. Therefore, we proposed an electrical control-type speaking valve system to resolve this problem. This valve is controlled by neck myoelectric signal of sternohyoid muscle. From our previous report, it was clarified that this valve had better performance about easy-to-breath. Furthermore, we proposed the compact myoelectric control-type speaking valve system. The new-type speaking valve was enough small to attach the human body, and its opening area is larger than that of conventional one. Additionally, we described the improvement of flow channel shape by using of FEM analysis. According to the result of the analysis, it was clarified that the shape-improved speaking valve gets the low flow resistance channel in case of inspiration. In this report, we tried to make the flow resistance lower by the shape of current plates, in case of both inspiration and exhalation. From the result of FEM analysis, our speaking valve could get better flow channel than older one.
NASA Astrophysics Data System (ADS)
Li, Junye; Hu, Jinglei; Wang, Binyu; Sheng, Liang; Zhang, Xinming
2018-03-01
In order to investigate the effect of abrasive flow polishing surface variable diameter pipe parts, with high precision dispensing needles as the research object, the numerical simulation of the process of polishing high precision dispensing needle was carried out. Analysis of different volume fraction conditions, the distribution of the dynamic pressure and the turbulence viscosity of the abrasive flow field in the high precision dispensing needle, through comparative analysis, the effectiveness of the abrasive grain polishing high precision dispensing needle was studied, controlling the volume fraction of silicon carbide can change the viscosity characteristics of the abrasive flow during the polishing process, so that the polishing quality of the abrasive grains can be controlled.
Analysis of the STS-126 Flow Control Valve Structural-Acoustic Coupling Failure
NASA Technical Reports Server (NTRS)
Jones, Trevor M.; Larko, Jeffrey M.; McNelis, Mark E.
2010-01-01
During the Space Transportation System mission STS-126, one of the main engine's flow control valves incurred an unexpected failure. A section of the valve broke off during liftoff. It is theorized that an acoustic mode of the flowing fuel, coupled with a structural mode of the valve, causing a high cycle fatigue failure. This report documents the analysis efforts conducted in an attempt to verify this theory. Hand calculations, computational fluid dynamics, and finite element methods are all implemented and analyses are performed using steady-state methods in addition to transient analysis methods. The conclusion of the analyses is that there is a critical acoustic mode that aligns with a structural mode of the valve
Analysis of Pulsed Flow Modification Alternatives, Lower Missouri River, 2005
Jacobson, Robert B.
2008-01-01
The graphical, tabular, and statistical data presented in this report resulted from analysis of alternative flow regime designs considered by a group of Missouri River managers, stakeholders, and scientists during the summer of 2005. This plenary group was charged with designing a flow regime with increased spring flow pulses to support reproduction and survival of the endangered pallid sturgeon. Environmental flow components extracted from the reference natural flow regime were used to design and assess performance of alternative flow regimes. The analysis is based on modeled flow releases from Gavins Point Dam (near Yankton, South Dakota) for nine design alternatives and two reference scenarios; the reference scenarios are the run-of-the-river and the water-control plan implemented in 2004. The alternative designs were developed by the plenary group with the goal of providing pulsed spring flows, while retaining traditional social and economic uses of the river.
A pattern-based analysis of clinical computer-interpretable guideline modeling languages.
Mulyar, Nataliya; van der Aalst, Wil M P; Peleg, Mor
2007-01-01
Languages used to specify computer-interpretable guidelines (CIGs) differ in their approaches to addressing particular modeling challenges. The main goals of this article are: (1) to examine the expressive power of CIG modeling languages, and (2) to define the differences, from the control-flow perspective, between process languages in workflow management systems and modeling languages used to design clinical guidelines. The pattern-based analysis was applied to guideline modeling languages Asbru, EON, GLIF, and PROforma. We focused on control-flow and left other perspectives out of consideration. We evaluated the selected CIG modeling languages and identified their degree of support of 43 control-flow patterns. We used a set of explicitly defined evaluation criteria to determine whether each pattern is supported directly, indirectly, or not at all. PROforma offers direct support for 22 of 43 patterns, Asbru 20, GLIF 17, and EON 11. All four directly support basic control-flow patterns, cancellation patterns, and some advance branching and synchronization patterns. None support multiple instances patterns. They offer varying levels of support for synchronizing merge patterns and state-based patterns. Some support a few scenarios not covered by the 43 control-flow patterns. CIG modeling languages are remarkably close to traditional workflow languages from the control-flow perspective, but cover many fewer workflow patterns. CIG languages offer some flexibility that supports modeling of complex decisions and provide ways for modeling some decisions not covered by workflow management systems. Workflow management systems may be suitable for clinical guideline applications.
Control-Volume Analysis Of Thrust-Augmenting Ejectors
NASA Technical Reports Server (NTRS)
Drummond, Colin K.
1990-01-01
New method of analysis of transient flow in thrust-augmenting ejector based on control-volume formulation of governing equations. Considered as potential elements of propulsion subsystems of short-takeoff/vertical-landing airplanes.
Reynolds-Averaged Navier-Stokes Analysis of Zero Efflux Flow Control over a Hump Model
NASA Technical Reports Server (NTRS)
Rumsey, Christopher L.
2006-01-01
The unsteady flow over a hump model with zero efflux oscillatory flow control is modeled computationally using the unsteady Reynolds-averaged Navier-Stokes equations. Three different turbulence models produce similar results, and do a reasonably good job predicting the general character of the unsteady surface pressure coefficients during the forced cycle. However, the turbulent shear stresses are underpredicted in magnitude inside the separation bubble, and the computed results predict too large a (mean) separation bubble compared with experiment. These missed predictions are consistent with earlier steady-state results using no-flow-control and steady suction, from a 2004 CFD validation workshop for synthetic jets.
Reynolds-Averaged Navier-Stokes Analysis of Zero Efflux Flow Control Over a Hump Model
NASA Technical Reports Server (NTRS)
Rumsey, Christopher L.
2006-01-01
The unsteady flow over a hump model with zero efflux oscillatory flow control is modeled computationally using the unsteady Reynolds-averaged Navier-Stokes equations. Three different turbulence models produce similar results, and do a reasonably good job predicting the general character of the unsteady surface pressure coefficients during the forced cycle. However, the turbulent shear stresses are underpredicted in magnitude inside the separation bubble, and the computed results predict too large a (mean) separation bubble compared with experiment. These missed predictions are consistent with earlier steady-state results using no-flow-control and steady suction, from a 2004 CFD validation workshop for synthetic jets.
Innovative Flow Control Concepts for Drag Reduction
NASA Technical Reports Server (NTRS)
Lin, John C.; Whalen, Edward A.; Eppink, Jenna L.; Siochi, Emilie J.; Alexander, Michael G.; Andino, Marlyn Y.
2016-01-01
This paper highlights the technology development of two flow control concepts for aircraft drag reduction. The NASA Environmentally Responsible Aviation (ERA) project worked with Boeing to demonstrate these two concepts on a specially outfitted Boeing 757 ecoDemonstrator during the spring of 2015. The first flow control concept used Active Flow Control (AFC) to delay flow separation on a highly deflected rudder and increase the side force that it generates. This may enable a smaller vertical tail to provide the control authority needed in the event of an engine failure during takeoff and landing, while still operating in a conventional manner over the rest of the flight envelope. Thirty-one sweeping jet AFC actuators were installed and successfully flight-tested on the vertical tail of the 757 ecoDemonstrator. Pilot feedback, flow cone visualization, and analysis of the flight test data confirmed that the AFC is effective, as a smoother flight and enhanced rudder control authority were reported. The second flow control concept is the Insect Accretion Mitigation (IAM) innovation where surfaces were engineered to mitigate insect residue adhesion on a wing's leading edge. This is necessary because something as small as an insect residue on the leading edge of a laminar flow wing design can cause turbulent wedges that interrupt laminar flow, resulting in an increase in drag and fuel use. Several non-stick coatings were developed by NASA and applied to panels that were mounted on the leading edge of the wing of the 757 ecoDemonstrator. The performance of the coated surfaces was measured and validated by the reduction in the number of bug adhesions relative to uncoated control panels flown simultaneously. Both flow control concepts (i.e., sweeping jet actuators and non-stick coatings) for drag reduction were the culmination of several years of development, from wind tunnel tests to flight tests, and produced valuable data for the advancement of modern aircraft designs. The ERA systems analysis studies performed by NASA indicated that AFC-enhanced vertical tail could produce approximately 0.9% drag reduction for a large twin aisle aircraft and IAM coatings could enable approximately 1.2% drag reduction recovery for a potential total drag reduction of approximately 3.3% for a single aisle aircraft with a natural laminar flow (NLF) wing design.
a New Approach for Complete Mixing by Transverse and Streamwise Flow Motions in Micro-Channels
NASA Astrophysics Data System (ADS)
Wang, Muh-Rong; Dai, Chiau-Yi; Huang, Yang-Sheng
Mixing control is an important issue in micro-fluid chip applications, such as μTAS (Micro-Total Analysis System) or LOC (Lab-on-Chip) because the flow at micro-scale is highly laminar. Several flow control schemes had been developed for complete mixing in the micro-channels in the past decades. However, most of the mixing control schemes are performed by utilizing specific excitation devices, such as electrokinetic, magnetic or pressure drivers. This paper investigates a new control scheme which is composed of a series of flow manipulation by changing the pressure at the two inlets of the micromixer as the external excitation. The fluids from two inlets are introduced to a square mixing chamber, which provides a space where the streamwise and transverse flow motions take place. The results show that the micromixer can be used to produce a large recirculation zone with series of small transverse fringes under external excitations. It is found that this new flow pattern enhances mixing processes at the micro-scale. A complete mixing can be achieved under appropriate flow control with the corresponding design.
Numerical study of MHD supersonic flow control
NASA Astrophysics Data System (ADS)
Ryakhovskiy, A. I.; Schmidt, A. A.
2017-11-01
Supersonic MHD flow around a blunted body with a constant external magnetic field has been simulated for a number of geometries as well as a range of the flow parameters. Solvers based on Balbas-Tadmor MHD schemes and HLLC-Roe Godunov-type method have been developed within the OpenFOAM framework. The stability of the solution varies depending on the intensity of magnetic interaction The obtained solutions show the potential of MHD flow control and provide insights into for the development of the flow control system. The analysis of the results proves the applicability of numerical schemes, that are being used in the solvers. A number of ways to improve both the mathematical model of the process and the developed solvers are proposed.
NASA Astrophysics Data System (ADS)
Telang, Aparna S.; Bedekar, P. P.
2017-09-01
Load flow analysis is the initial and essential step for any power system computation. It is required for choosing better options for power system expansion to meet with ever increasing load demand. Implementation of Flexible AC Transmission System (FACTS) device like STATCOM, in the load flow, which is having fast and very flexible control, is one of the important tasks for power system researchers. This paper presents a simple and systematic approach for steady state power flow calculations with FACTS controller, static synchronous compensator (STATCOM) using command line usage of MATLAB tool-power system analysis toolbox (PSAT). The complexity of MATLAB language programming increases due to incorporation of STATCOM in an existing Newton-Raphson load flow algorithm. Thus, the main contribution of this paper is to show how command line usage of user friendly MATLAB tool, PSAT, can extensively be used for quicker and wider interpretation of the results of load flow with STATCOM. The novelty of this paper lies in the method of applying the load increase pattern, where the active and reactive loads have been changed simultaneously at all the load buses under consideration for creating stressed conditions for load flow analysis with STATCOM. The performance have been evaluated on many standard IEEE test systems and the results for standard IEEE-30 bus system, IEEE-57 bus system, and IEEE-118 bus system are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zepf, J.; Rufa, G.
1994-04-01
This paper focuses on the transient performance analysis of the congestion and flow control mechanisms in CCITT Signaling System No. 7 (SS7). Special attention is directed to the impacts of the introduction of intelligent services and new applications, e.g., Freephone, credit card services, user-to-user signaling, etc. In particular, we show that signaling traffic characteristics like signaling scenarios or signaling message length as well as end-to-end signaling capabilities have a significant influence on the congestion and flow control and, therefore, on the real-time signaling performance. One important result of our performance studies is that if, e.g., intelligent services are introduced, themore » SS7 congestion and flow control does not work correctly. To solve this problem, some reinvestigations into these mechanisms would be necessary. Therefore, some approaches, e.g., modification of the Signaling Connection Control Part (SCCP) congestion control, usage of the SCCP relay function, or a redesign of the MTP flow control procedures are discussed in order to guarantee the efficacy of the congestion and flow control mechanisms also in the future. 16 refs.« less
Flow chemistry vs. flow analysis.
Trojanowicz, Marek
2016-01-01
The flow mode of conducting chemical syntheses facilitates chemical processes through the use of on-line analytical monitoring of occurring reactions, the application of solid-supported reagents to minimize downstream processing and computerized control systems to perform multi-step sequences. They are exactly the same attributes as those of flow analysis, which has solid place in modern analytical chemistry in several last decades. The following review paper, based on 131 references to original papers as well as pre-selected reviews, presents basic aspects, selected instrumental achievements and developmental directions of a rapidly growing field of continuous flow chemical synthesis. Interestingly, many of them might be potentially employed in the development of new methods in flow analysis too. In this paper, examples of application of flow analytical measurements for on-line monitoring of flow syntheses have been indicated and perspectives for a wider application of real-time analytical measurements have been discussed. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Dallal, Ahmed H.
Safety is an essential requirement for air traffic management and control systems. Aircraft are not allowed to get closer to each other than a specified safety distance, to avoid any conflicts and collisions between aircraft. Forecast analysis predicts a tremendous increase in the number of flights. Subsequently, automated tools are needed to help air traffic controllers resolve air born conflicts. In this dissertation, we consider the problem of conflict resolution of aircraft flows with the assumption that aircraft are flowing through a fixed specified control volume at a constant speed. In this regard, several centralized and decentralized resolution rules have been proposed for path planning and conflict avoidance. For the case of two intersecting flows, we introduce the concept of conflict touches, and a collaborative decentralized conflict resolution rule is then proposed and analyzed for two intersecting flows. The proposed rule is also able to resolved airborne conflicts that resulted from resolving another conflict via the domino effect. We study the safety conditions under the proposed conflict resolution and collision avoidance rule. Then, we use Lyapunov analysis to analytically prove the convergence of conflict resolution dynamics under the proposed rule. The analysis show that, under the proposed conflict resolution rule, the system of intersecting aircraft flows is guaranteed to converge to safe, conflict free, trajectories within a bounded time. Simulations are provided to verify the analytically derived conclusions and study the convergence of the conflict resolution dynamics at different encounter angles. Simulation results show that lateral deviations taken by aircraft in each flow, to resolve conflicts, are bounded, and aircraft converged to safe and conflict free trajectories, within a finite time.
NASA Astrophysics Data System (ADS)
Denn, Michael E.
Several recent studies have shown the advantages of active and/or passive flow control devices for boundary layer flow modification. Many current and future proposed air vehicles have very short or offset diffusers in order to save vehicle weight and create more optimal vehicle/engine integration. Such short coupled diffusers generally result in boundary layer separation and loss of pressure recovery which reduces engine performance and in some cases may cause engine stall. Deployment of flow control devices can alleviate this problem to a large extent; however, almost all active flow control devices have some energy penalty associated with their inclusion. One potential low penalty approach for enhancing the diffuser performance is to combine the passive flow control elements such as micro-ramps with active flow control devices such as synthetic jets to achieve higher control authority. The goal of this dissertation is twofold. The first objective is to assess the ability of CFD with URANS turbulence models to accurately capture the effects of the synthetic jets and micro-ramps on boundary layer flow. This is accomplished by performing numerical simulations replicating several experimental test cases conducted at Georgia Institute of Technology under the NASA funded Inlet Flow Control and Prediction Technologies Program, and comparing the simulation results with experimental data. The second objective is to run an expanded CFD matrix of numerical simulations by varying various geometric and other flow control parameters of micro-ramps and synthetic jets to determine how passive and active control devices interact with each other in increasing and/or decreasing the control authority and determine their influence on modification of boundary layer flow. The boundary layer shape factor is used as a figure of merit for determining the boundary layer flow quality/modification and its tendency towards separation. It is found by a large number of numerical experiments and the analysis of simulation data that a flow control device's influence on boundary layer quality is a function of three factors: (1) the strength of the longitudinal vortex emanating from the flow control device or devices, (2) the height of the vortex core above the surface and, when a synthetic jet is present, (3) the momentum added to the boundary layer flow.
Magnetic resonance imaging 4-D flow-based analysis of aortic hemodynamics in Turner syndrome.
Arnold, Raoul; Neu, Marie; Hirtler, Daniel; Gimpel, Charlotte; Markl, Michael; Geiger, Julia
2017-04-01
Cardiovascular surveillance is important in Turner syndrome because of the increased risk of aortic dilation and dissection with consecutively increased mortality. To compare 4-D flow MRI for the characterization of aortic 3-D flow patterns, dimensions and vessel wall parameters in pediatric patients with Turner syndrome and age-matched controls. We performed 4-D flow MRI measuring in vivo 3-D blood flow with coverage of the thoracic aorta in 25 patients with Turner syndrome and in 16 female healthy controls (age mean ± standard deviation were 16 ± 5 years and 17 ± 4 years, respectively). Blood flow was visualized by time-resolved 3-D path lines. Visual grading of aortic flow in terms of helices and vortices was performed by two independent observers. Quantitative analysis included measurement of aortic diameters, quantification of peak systolic wall shear stress, pulsatility index and oscillatory shear index at eight defined sites. Patients with Turner syndrome had significantly larger aortic diameters normalized to BSA, increased vortices in the ascending aorta and elevated helix flow in the ascending and descending aorta compared to controls (all P<0.03). Patients with abnormal helical or vortical flow in the ascending aorta had significantly larger diameters of the ascending aorta (P<0.03). Peak systolic wall shear stress, pulsatility index and oscillatory shear index were significantly lower in Turner patients compared to controls (p=0.02, p=0.002 and p=0.01 respectively). Four-dimensional flow MRI provides new insights into the altered aortic hemodynamics and wall shear stress that could have an impact on the development of aortic dissections.
High-Reynolds Number Circulation Control Testing in the National Transonic Facility
NASA Technical Reports Server (NTRS)
Milholen, William E., II; Jones, Gregory S.; Chan, David T.; Goodliff, Scott L.
2012-01-01
A new capability to test active flow control concepts and propulsion simulations at high Reynolds numbers in the National Transonic Facility at the NASA Langley Research Center is being developed. The first active flow control experiment was completed using the new FAST-MAC semi-span model to study Reynolds number scaling effects for several circulation control concepts. Testing was conducted over a wide range of Mach numbers, up to chord Reynolds numbers of 30 million. The model was equipped with four onboard flow control valves allowing independent control of the circulation control plenums, which were directed over a 15% chord simple-hinged flap. Preliminary analysis of the uncorrected lift data showed that the circulation control increased the low-speed maximum lift coefficient by 33%. At transonic speeds, the circulation control was capable of positively altering the shockwave pattern on the upper wing surface and reducing flow separation. Furthermore, application of the technique to only the outboard portion of the wing demonstrated the feasibility of a pneumatic based roll control capability.
Numerical Studies of a Supersonic Fluidic Diverter Actuator for Flow Control
NASA Technical Reports Server (NTRS)
Gokoglu, Suleyman A.; Kuczmarski, Maria A.; Culley, Dennis e.; Raghu, Surya
2010-01-01
The analysis of the internal flow structure and performance of a specific fluidic diverter actuator, previously studied by time-dependent numerical computations for subsonic flow, is extended to include operation with supersonic actuator exit velocities. The understanding will aid in the development of fluidic diverters with minimum pressure losses and advanced designs of flow control actuators. The self-induced oscillatory behavior of the flow is successfully predicted and the calculated oscillation frequencies with respect to flow rate have excellent agreement with our experimental measurements. The oscillation frequency increases with Mach number, but its dependence on flow rate changes from subsonic to transonic to supersonic regimes. The delay time for the initiation of oscillations depends on the flow rate and the acoustic speed in the gaseous medium for subsonic flow, but is unaffected by the flow rate for supersonic conditions
Numerical analysis of tangential slot blowing on a generic chined forebody
NASA Technical Reports Server (NTRS)
Agosta, Roxana M.
1994-01-01
A numerical study is performed to investigate the effects of tangential slot blowing on a generic chined forebody. The Reynolds-averaged, thin-layer, Navier-Stokes equations are solved to obtain the high-angle-of-attack viscous flow field about a generic chined forebody. Tangential slot blowing is investigated as a means of forebody flow control to generate side force and yawing moment on the forebody. The effects of jet mass flow ratios, angle of attack, and blowing slot location in the axial and circumferential directions are studied. The computed results are compared with available wind tunnel experimental data. The solutions with and without blowing are also analyzed using helicity density contours, surface flow patterns, and off-surface instantaneous streamlines. The results of this analysis provide details of the flow field about the generic chined forebody, as well as show that tangential slot blowing can be used as a means of forebody flow control to generate side force and yawing moment.
NASA Astrophysics Data System (ADS)
Lindsey, Martin Forrester
Sustained hypersonic flight using scramjet propulsion is the key technology bridging the gap between turbojets and the exoatmospheric environment where a rocket is required. Recent efforts have focused on electromagnetic (EM) flow control to mitigate the problems of high thermomechanical loads and low propulsion efficiencies associated with scramjet propulsion. This research effort is the first flight-scale, three-dimensional computational analysis of a realistic scramjet to determine how EM flow control can improve scramjet performance. Development of a quasi-one dimensional design tool culminated in the first open source geometry of an entire scramjet flowpath. This geometry was then tested extensively with the Air Force Research Laboratory's three-dimensional Navier-Stokes and EM coupled computational code. As part of improving the model fidelity, a loosely coupled algorithm was developed to incorporate thermochemistry. This resulted in the only open-source model of fuel injection, mixing and combustion in a magnetogasdynamic (MGD) flow controlled engine. In addition, a control volume analysis tool with an electron beam ionization model was presented for the first time in the context of the established computational method used. Local EM flow control within the internal inlet greatly impacted drag forces and wall heat transfer but was only marginally successful in raising the average pressure entering the combustor. The use of an MGD accelerator to locally increase flow momentum was an effective approach to improve flow into the scramjet's isolator. Combustor-based MGD generators proved superior to the inlet generator with respect to power density and overall engine efficiency. MGD acceleration was shown to be ineffective in improving overall performance, with all of the bypass engines having approximately 33% more drag than baseline and none of them achieving a self-powered state.
Kocer, Naci; Mondel, Prabath Kumar; Yamac, Elif; Kavak, Ayse; Kizilkilic, Osman; Islak, Civan
2017-11-01
Flow diverters are increasingly used in the treatment of complex and giant intracranial aneurysms. However, they are associated with complications like late aneurysmal rupture. Additionally, flow diverters show focal structural decrease in luminal diameter without any intimal hyperplasia. This resembles a "fish mouth" when viewed en face. In this pilot study, we tested the hypothesis of a possible association between flow diverter fish-mouthing and delayed-type hypersensitivity to its metal constituents. We retrospectively reviewed patient records from our center between May 2010 and November 2015. A total of nine patients had flow diverter fish mouthing. A control group of 25 patients was selected. All study participants underwent prospective patch test to detect hypersensitivity to flow diverter metal constituents. Analysis was performed using logistic regression analysis and Wilcoxon sign rank sum test. Univariate and multivariate analyses were performed to test variables to predict flow diverter fish mouthing. The association between flow diverter fish mouthing and positive patch test was not statistically significant. In multivariate analysis, history of allergy and maximum aneurysm size category was associated with flow diverter fish mouthing. This was further confirmed on Wilcoxon sign rank sum test. The study showed statistically significant association between flow diverter fish mouthing and history of contact allergy and a small aneurysmal size. Further large-scale studies are needed to detect a statistically significant association between flow diverter fish mouthing and patch test. We recommend early and more frequent follow-up imaging in patients with contact allergy to detect flow diverter fish mouthing and its subsequent evolution.
Schiller, Alicia M.; Pellegrino, Peter Ricci; Zucker, Irving H.
2016-01-01
Tubuloglomerular feedback and the myogenic response are widely appreciated as important regulators of renal blood flow, but the role of the sympathetic nervous system in physiological renal blood flow control remains controversial. Where classic studies using static measures of renal blood flow failed, dynamic approaches have succeeded in demonstrating sympathetic control of renal blood flow under normal physiological conditions. This review focuses on transfer function analysis of renal pressure-flow, which leverages the physical relationship between blood pressure and flow to assess the underlying vascular control mechanisms. Studies using this approach indicate that the renal nerves are important in the rapid regulation of the renal vasculature. Animals with intact renal innervation show a sympathetic signature in the frequency range associated with sympathetic vasomotion that is eliminated by renal denervation. In conscious rabbits, this sympathetic signature exerts vasoconstrictive, baroreflex control of renal vascular conductance, matching well with the rhythmic, baroreflex-influenced control of renal sympathetic nerve activity and complementing findings from other studies employing dynamic approaches to study renal sympathetic vascular control. In this light, classic studies reporting that nerve stimulation and renal denervation do not affect static measures of renal blood flow provide evidence for the strength of renal autoregulation rather than evidence against physiological renal sympathetic control of renal blood flow. Thus, alongside tubuloglomerular feedback and the myogenic response, renal sympathetic outflow should be considered an important physiological regulator of renal blood flow. Clinically, renal sympathetic vasomotion may be important for solving the problems facing the field of therapeutic renal denervation. PMID:27514571
Schiller, Alicia M; Pellegrino, Peter Ricci; Zucker, Irving H
2017-05-01
Tubuloglomerular feedback and the myogenic response are widely appreciated as important regulators of renal blood flow, but the role of the sympathetic nervous system in physiological renal blood flow control remains controversial. Where classic studies using static measures of renal blood flow failed, dynamic approaches have succeeded in demonstrating sympathetic control of renal blood flow under normal physiological conditions. This review focuses on transfer function analysis of renal pressure-flow, which leverages the physical relationship between blood pressure and flow to assess the underlying vascular control mechanisms. Studies using this approach indicate that the renal nerves are important in the rapid regulation of the renal vasculature. Animals with intact renal innervation show a sympathetic signature in the frequency range associated with sympathetic vasomotion that is eliminated by renal denervation. In conscious rabbits, this sympathetic signature exerts vasoconstrictive, baroreflex control of renal vascular conductance, matching well with the rhythmic, baroreflex-influenced control of renal sympathetic nerve activity and complementing findings from other studies employing dynamic approaches to study renal sympathetic vascular control. In this light, classic studies reporting that nerve stimulation and renal denervation do not affect static measures of renal blood flow provide evidence for the strength of renal autoregulation rather than evidence against physiological renal sympathetic control of renal blood flow. Thus, alongside tubuloglomerular feedback and the myogenic response, renal sympathetic outflow should be considered an important physiological regulator of renal blood flow. Clinically, renal sympathetic vasomotion may be important for solving the problems facing the field of therapeutic renal denervation. Copyright © 2016 Elsevier B.V. All rights reserved.
Shulman, Nick; Bellew, Matthew; Snelling, George; Carter, Donald; Huang, Yunda; Li, Hongli; Self, Steven G.; McElrath, M. Juliana; De Rosa, Stephen C.
2008-01-01
Background Intracellular cytokine staining (ICS) by multiparameter flow cytometry is one of the primary methods for determining T cell immunogenicity in HIV-1 clinical vaccine trials. Data analysis requires considerable expertise and time. The amount of data is quickly increasing as more and larger trials are performed, and thus there is a critical need for high throughput methods of data analysis. Methods A web based flow cytometric analysis system, LabKey Flow, was developed for analyses of data from standardized ICS assays. A gating template was created manually in commercially-available flow cytometric analysis software. Using this template, the system automatically compensated and analyzed all data sets. Quality control queries were designed to identify potentially incorrect sample collections. Results Comparison of the semi-automated analysis performed by LabKey Flow and the manual analysis performed using FlowJo software demonstrated excellent concordance (concordance correlation coefficient >0.990). Manual inspection of the analyses performed by LabKey Flow for 8-color ICS data files from several clinical vaccine trials indicates that template gates can appropriately be used for most data sets. Conclusions The semi-automated LabKey Flow analysis system can analyze accurately large ICS data files. Routine use of the system does not require specialized expertise. This high-throughput analysis will provide great utility for rapid evaluation of complex multiparameter flow cytometric measurements collected from large clinical trials. PMID:18615598
Dynamic Modelling of the DEP Controlled Boiling in a Microchannel
NASA Astrophysics Data System (ADS)
Lackowski, Marcin; Kwidzinski, Roman
2018-04-01
The paper presents theoretical analysis of flow dynamics in a heated microchannel in which flow rate may be controlled by dielectrophoretic (DEP) forces. Proposed model equations were derived in terms of lumped parameters characterising the system comprising of DEP controller and the microchannel. In result, an equation for liquid height of rise in the controller was obtained from momentum balances in the two elements of the considered system. In the model, the boiling process in the heated section of microchannel is taken into account through a pressure drop, which is a function of flow rate and uniform heat flux. Presented calculation results show that the DEP forces influence mainly the flow rate in the microchannel. In this way, by proper modulation of voltage applied to the DEP controller, it is possible to lower the frequency of Ledinegg instabilities.
NASA Astrophysics Data System (ADS)
Jin, Yan; Ye, Chen; Luo, Xiao; Yuan, Hui; Cheng, Changgui
2017-05-01
In order to improve the inclusion removal property of the tundish, the mathematic model for simulation of the flow field sourced from inner-swirl-type turbulence controller (ISTTC) was developed, in which there were six blades arranged with an eccentric angle (θ) counterclockwise. Based on the mathematical and water model, the effect of inclusion removal in the swirling flow field formed by ISTTC was analyzed. It was found that ISTTC had got the better effect of inhibiting turbulence in tundish than traditional turbulence inhibitor (TI). As the blades eccentric angle (θ) of ISTTC increasing, the intensity of swirling flow above it increased. The maximum rotate speed of fluid in swirling flow band driven by ISTTC (θ=45°) was equal to 25 rmp. Based on the force analysis of inclusion in swirling flow sourced from ISTTC, the removal effect of medium size inclusion by ISTTC was attributed to the centripetal force (Fct) of swirling flow, but removal effect of ISTTC to small size inclusion was more depend on its better turbulence depression behavior.
Flow distribution analysis on the cooling tube network of ITER thermal shield
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nam, Kwanwoo; Chung, Wooho; Noh, Chang Hyun
2014-01-29
Thermal shield (TS) is to be installed between the vacuum vessel or the cryostat and the magnets in ITER tokamak to reduce the thermal radiation load to the magnets operating at 4.2K. The TS is cooled by pressurized helium gas at the inlet temperature of 80K. The cooling tube is welded on the TS panel surface and the composed flow network of the TS cooling tubes is complex. The flow rate in each panel should be matched to the thermal design value for effective radiation shielding. This paper presents one dimensional analysis on the flow distribution of cooling tube networkmore » for the ITER TS. The hydraulic cooling tube network is modeled by an electrical analogy. Only the cooling tube on the TS surface and its connecting pipe from the manifold are considered in the analysis model. Considering the frictional factor and the local loss in the cooling tube, the hydraulic resistance is expressed as a linear function with respect to mass flow rate. Sub-circuits in the TS are analyzed separately because each circuit is controlled by its own control valve independently. It is found that flow rates in some panels are insufficient compared with the design values. In order to improve the flow distribution, two kinds of design modifications are proposed. The first one is to connect the tubes of the adjacent panels. This will increase the resistance of the tube on the panel where the flow rate is excessive. The other design suggestion is that an orifice is installed at the exit of tube routing where the flow rate is to be reduced. The analysis for the design suggestions shows that the flow mal-distribution is improved significantly.« less
NASA Technical Reports Server (NTRS)
Ramachandran, N.; Leslie, F. W.
2004-01-01
The effect of convection during the crystallization of proteins is not very well understood. In a gravitational field, convection is caused by crystal sedimentation and by solutal buoyancy induced flow and these can lead to crystal imperfections. While crystallization in microgravity can approach diffusion limited growth conditions (no convection), terrestrially strong magnetic fields can be used to control fluid flow and sedimentation effects. In this work, we develop the analysis for magnetic flow control and test the predictions using analog experiments. Specifically, experiments on solutal convection in a paramagnetic fluid were conducted in a strong magnetic field gradient using a dilute solution of Manganese Chloride. The observed flows indicate that the magnetic field can completely counter the settling effects of gravity locally and are consistent with the theoretical predictions presented. This phenomenon suggests that magnetic fields may be useful in mimicking the microgravity environment of space for some crystal growth ana biological applications where fluid convection is undesirable.
NASA Technical Reports Server (NTRS)
1999-01-01
This document describes the design of the leading edge suction system for flight demonstration of hybrid laminar flow control on the Boeing 757 airplane. The exterior pressures on the wing surface and the required suction quantity and distribution were determined in previous work. A system consisting of porous skin, sub-surface spanwise passages ("flutes"), pressure regulating screens and valves, collection fittings, ducts and a turbocompressor was defined to provide the required suction flow. Provisions were also made for flexible control of suction distribution and quantity for HLFC research purposes. Analysis methods for determining pressure drops and flow for transpiration heating for thermal anti-icing are defined. The control scheme used to observe and modulate suction distribution in flight is described.
Building a Practical Natural Laminar Flow Design Capability
NASA Technical Reports Server (NTRS)
Campbell, Richard L.; Lynde, Michelle N.
2017-01-01
A preliminary natural laminar flow (NLF) design method that has been developed and applied to supersonic and transonic wings with moderate-to-high leading-edge sweeps at flight Reynolds numbers is further extended and evaluated in this paper. The modular design approach uses a knowledge-based design module linked with different flow solvers and boundary layer stability analysis methods to provide a multifidelity capability for NLF analysis and design. An assessment of the effects of different options for stability analysis is included using pressures and geometry from an NLF wing designed for the Common Research Model (CRM). Several extensions to the design module are described, including multiple new approaches to design for controlling attachment line contamination and transition. Finally, a modification to the NLF design algorithm that allows independent control of Tollmien-Schlichting (TS) and cross flow (CF) modes is proposed. A preliminary evaluation of the TS-only option applied to the design of an NLF nacelle for the CRM is performed that includes the use of a low-fidelity stability analysis directly in the design module.
Advanced stability analysis for laminar flow control
NASA Technical Reports Server (NTRS)
Orszag, S. A.
1981-01-01
Five classes of problems are addressed: (1) the extension of the SALLY stability analysis code to the full eighth order compressible stability equations for three dimensional boundary layer; (2) a comparison of methods for prediction of transition using SALLY for incompressible flows; (3) a study of instability and transition in rotating disk flows in which the effects of Coriolis forces and streamline curvature are included; (4) a new linear three dimensional instability mechanism that predicts Reynolds numbers for transition to turbulence in planar shear flows in good agreement with experiment; and (5) a study of the stability of finite amplitude disturbances in axisymmetric pipe flow showing the stability of this flow to all nonlinear axisymmetric disturbances.
Development of an Unmanned Air Research Vehicle for Supermaneuverability Studies
1990-03-29
VORTEX CONTROL Another emerging concept involves strake- generated vortex interactions, which improves maneuverability using non-linear lift generated by...undisturbed flow and is capable of prcJucing powerful vortex flow fields at high angles of attack. Asymmetrical vort ,;x control is feasible with actuated...control configuration, serves as an initial test vehicle for supermaneuverability analysis . Due to the relatively small scale of the UAV and the use of
NASA Astrophysics Data System (ADS)
Meliga, Philippe
2017-07-01
We provide in-depth scrutiny of two methods making use of adjoint-based gradients to compute the sensitivity of drag in the two-dimensional, periodic flow past a circular cylinder (Re≲189 ): first, the time-stepping analysis used in Meliga et al. [Phys. Fluids 26, 104101 (2014), 10.1063/1.4896941] that relies on classical Navier-Stokes modeling and determines the sensitivity to any generic control force from time-dependent adjoint equations marched backwards in time; and, second, a self-consistent approach building on the model of Mantič-Lugo et al. [Phys. Rev. Lett. 113, 084501 (2014), 10.1103/PhysRevLett.113.084501] to compute semilinear approximations of the sensitivity to the mean and fluctuating components of the force. Both approaches are applied to open-loop control by a small secondary cylinder and allow identifying the sensitive regions without knowledge of the controlled states. The theoretical predictions obtained by time-stepping analysis reproduce well the results obtained by direct numerical simulation of the two-cylinder system. So do the predictions obtained by self-consistent analysis, which corroborates the relevance of the approach as a guideline for efficient and systematic control design in the attempt to reduce drag, even though the Reynolds number is not close to the instability threshold and the oscillation amplitude is not small. This is because, unlike simpler approaches relying on linear stability analysis to predict the main features of the flow unsteadiness, the semilinear framework encompasses rigorously the effect of the control on the mean flow, as well as on the finite-amplitude fluctuation that feeds back nonlinearly onto the mean flow via the formation of Reynolds stresses. Such results are especially promising as the self-consistent approach determines the sensitivity from time-independent equations that can be solved iteratively, which makes it generally less computationally demanding. We ultimately discuss the extent to which relevant information can be gained from a hybrid modeling computing self-consistent sensitivities from the postprocessing of DNS data. Application to alternative control objectives such as increasing the lift and alleviating the fluctuating drag and lift is also discussed.
Bell, Tracy D; DiBona, Gerald F; Wang, Ying; Brands, Michael W
2006-08-01
The purpose of this study was to establish the roles of the myogenic response and the TGF mechanism in renal blood flow (RBF) control at the very earliest stages of diabetes. Mean arterial pressure (MAP) and RBF were measured continuously, 18 h/d, in uninephrectomized control and diabetic rats, and transfer function analysis was used to determine the dynamic autoregulatory efficiency of the renal vasculature. During the control period, MAP averaged 91 +/- 0.5 and 89 +/- 0.4 mmHg, and RBF averaged 8.0 +/- 0.1 and 7.8 +/- 0.1 ml/min in the control and diabetic groups, respectively. Induction of diabetes with streptozotocin caused a marked and progressive increase in RBF in the diabetic rats, averaging 10 +/- 6% above control on day 1 of diabetes and 22 +/- 3 and 34 +/- 1% above control by the end of diabetes weeks 1 and 2. MAP increased approximately 9 mmHg during the 2 wk in the diabetic rats, and renal vascular resistance decreased. Transfer function analysis revealed significant increases in gain to positive values over the frequency ranges of both the TGF and myogenic mechanisms, beginning on day 1 of diabetes and continuing through day 14. These very rapid increases in RBF and transfer function gain suggest that autoregulation is impaired at the very onset of hyperglycemia in streptozotocin-induced type 1 diabetes and may play an important role in the increase in RBF and GFR in diabetes. Together with previous reports of decreases in chronically measured cardiac output and hindquarter blood flow, this suggests that there may be differential effects of diabetes on RBF versus nonrenal BF control.
Fractal regional myocardial blood flows pattern according to metabolism, not vascular anatomy
Yipintsoi, Tada; Kroll, Keith
2015-01-01
Regional myocardial blood flows are markedly heterogeneous. Fractal analysis shows strong near-neighbor correlation. In experiments to distinguish control by vascular anatomy vs. local vasomotion, coronary flows were increased in open-chest dogs by stimulating myocardial metabolism (catecholamines + atropine) with and without adenosine. During control states mean left ventricular (LV) myocardial blood flows (microspheres) were 0.5–1 ml·g−1·min−1 and increased to 2–3 ml·g−1·min−1 with catecholamine infusion and to ∼4 ml·g−1·min−1 with adenosine (Ado). Flow heterogeneity was similar in all states: relative dispersion (RD = SD/mean) was ∼25%, using LV pieces 0.1–0.2% of total. During catecholamine infusion local flows increased in proportion to the mean flows in 45% of the LV, “tracking” closely (increased proportionately to mean flow), while ∼40% trended toward the mean. Near-neighbor regional flows remained strongly spatially correlated, with fractal dimension D near 1.2 (Hurst coefficient 0.8). The spatial patterns remain similar at varied levels of metabolic stimulation inferring metabolic dominance. In contrast, adenosine vasodilation increased flows eightfold times control while destroying correlation with the control state. The Ado-induced spatial patterns differed from control but were self-consistent, inferring that with full vasodilation the relaxed arterial anatomy dominates the distribution. We conclude that vascular anatomy governs flow distributions during adenosine vasodilation but that metabolic vasoregulation dominates in normal physiological states. PMID:26589329
Fractal regional myocardial blood flows pattern according to metabolism, not vascular anatomy.
Yipintsoi, Tada; Kroll, Keith; Bassingthwaighte, James B
2016-02-01
Regional myocardial blood flows are markedly heterogeneous. Fractal analysis shows strong near-neighbor correlation. In experiments to distinguish control by vascular anatomy vs. local vasomotion, coronary flows were increased in open-chest dogs by stimulating myocardial metabolism (catecholamines + atropine) with and without adenosine. During control states mean left ventricular (LV) myocardial blood flows (microspheres) were 0.5-1 ml·g(-1)·min(-1) and increased to 2-3 ml·g(-1)·min(-1) with catecholamine infusion and to ∼4 ml·g(-1)·min(-1) with adenosine (Ado). Flow heterogeneity was similar in all states: relative dispersion (RD = SD/mean) was ∼25%, using LV pieces 0.1-0.2% of total. During catecholamine infusion local flows increased in proportion to the mean flows in 45% of the LV, "tracking" closely (increased proportionately to mean flow), while ∼40% trended toward the mean. Near-neighbor regional flows remained strongly spatially correlated, with fractal dimension D near 1.2 (Hurst coefficient 0.8). The spatial patterns remain similar at varied levels of metabolic stimulation inferring metabolic dominance. In contrast, adenosine vasodilation increased flows eightfold times control while destroying correlation with the control state. The Ado-induced spatial patterns differed from control but were self-consistent, inferring that with full vasodilation the relaxed arterial anatomy dominates the distribution. We conclude that vascular anatomy governs flow distributions during adenosine vasodilation but that metabolic vasoregulation dominates in normal physiological states. Copyright © 2016 the American Physiological Society.
ERIC Educational Resources Information Center
Papanastasiou, Tasos C.
1989-01-01
Discusses fluid mechanics for undergraduates including the differential Navier-Stokes equations, dimensional analysis and simplified dimensionless numbers, control volume principles, the Reynolds lubrication equation for confined and free surface flows, capillary pressure, and simplified perturbation techniques. Provides a vertical dip coating…
An analysis of the crossover between local and massive separation on airfoils
NASA Technical Reports Server (NTRS)
Barnett, M.; Carter, J. E.
1987-01-01
Massive separation on airfoils operating at high Reynolds number is an important problem to the aerodynamicist, since its onset generally determines the limiting performance of an airfoil, and it can lead to serious problems related to aircraft control as well as turbomachinery operation. The phenomenon of crossover between local separation and massive separation on realistic airfoil geometries induced by airfoil thickness is investigated for low speed (incompressible) flow. The problem is studied both for the asymptotic limit of infinite Reynolds number using triple-deck theory, and for finite Reynolds number using interacting boundary-layer theory. Numerical results are presented which follow the evolution of the flow as it develops from a mildly separated state to one dominated by the massively separated flow structure as the thickness of the airfoil geometry is systematically increased. The effect of turbulence upon the evolution of the flow is considered, and the impact is significant, with the principal effect being the suppression of the onset of separation. Finally, the effect of surface suction and injection for boundary-layer control is considered. The approach which was developed provides a valuable tool for the analysis of boundary-layer separation up to and beyond stall. Another important conclusion is that interacting boundary-layer theory provides an efficient tool for the analysis of the effect of turbulence and boundary-layer control upon separated vicsous flow.
A longitudinal analysis of salivary flow in control subjects and older adults with type 2 diabetes.
Chávez, E M; Borrell, L N; Taylor, G W; Ship, J A
2001-02-01
Many diabetics complain of xerostomia, a condition that can affect oral health, nutritional status, and diet selection. This study's purposes were (1) to investigate the effect on salivary flow of type 2 diabetes and change in glycemic control in a group of older adults over time and (2) to compare flow rates with subjective complaints of xerostomia. A total of 39 older adults, 24 with type 2 diabetes and 15 who were nondiabetic (controls), aged 54-90 years, participated in a 1-year follow-up study. Diabetic status was determined by means of glycosylated hemoglobin (HbA1c) levels and 2-hour glucose tolerance tests. Poor glycemic control was defined as HbA1c > 9%. Unstimulated whole, unstimulated parotid, and stimulated parotid saliva flow rates were measured for all subjects by a single examiner at baseline and 1 year later. Each subject completed a standardized xerostomia questionnaire at every visit. Age, sex, and duration of diabetes did not adversely affect salivary flow rates. Subjects with poorly controlled diabetes had significantly lower stimulated parotid saliva flow rates at both visits. There were no significant changes in flow rates over time on the basis of diabetic status or glycemic control. Subjects with diabetes reported significantly more complaints of thirst but not of xerostomia at 1 year. These results suggest that older adults with poorly controlled diabetes may have impaired salivary flow in comparison with subjects with better controlled diabetes and nondiabetic subjects, yet they may not have concomitant xerostomic complaints. There were no significant changes in salivary flow rates or glycemic control over the 1-year period.
NASA Technical Reports Server (NTRS)
Brooks, Cuyler W., Jr.; Harris, Charles D.; Harvey, William D.
1991-01-01
A swept supercritical wing incorporating laminar flow control at transonic flow conditions was designed and tested. The definition of an experimental suction coefficient and a derivation of the compressible and incompressible formulas for the computation of the coefficient from measurable quantities is presented. The suction flow coefficient in the highest velocity nozzles is shown to be overpredicted by as much as 12 percent through the use of an incompressible formula. However, the overprediction on the computed value of suction drag when some of the suction nozzles were operating in the compressible flow regime is evaluated and found to be at most 6 percent at design conditions.
High-performance computing-based exploration of flow control with micro devices.
Fujii, Kozo
2014-08-13
The dielectric barrier discharge (DBD) plasma actuator that controls flow separation is one of the promising technologies to realize energy savings and noise reduction of fluid dynamic systems. However, the mechanism for controlling flow separation is not clearly defined, and this lack of knowledge prevents practical use of this technology. Therefore, large-scale computations for the study of the DBD plasma actuator have been conducted using the Japanese Petaflops supercomputer 'K' for three different Reynolds numbers. Numbers of new findings on the control of flow separation by the DBD plasma actuator have been obtained from the simulations, and some of them are presented in this study. Knowledge of suitable device parameters is also obtained. The DBD plasma actuator is clearly shown to be very effective for controlling flow separation at a Reynolds number of around 10(5), and several times larger lift-to-drag ratio can be achieved at higher angles of attack after stall. For higher Reynolds numbers, separated flow is partially controlled. Flow analysis shows key features towards better control. DBD plasma actuators are a promising technology, which could reduce fuel consumption and contribute to a green environment by achieving high aerodynamic performance. The knowledge described above can be obtained only with high-end computers such as the supercomputer 'K'. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
"Batch" kinetics in flow: online IR analysis and continuous control.
Moore, Jason S; Jensen, Klavs F
2014-01-07
Currently, kinetic data is either collected under steady-state conditions in flow or by generating time-series data in batch. Batch experiments are generally considered to be more suitable for the generation of kinetic data because of the ability to collect data from many time points in a single experiment. Now, a method that rapidly generates time-series reaction data from flow reactors by continuously manipulating the flow rate and reaction temperature has been developed. This approach makes use of inline IR analysis and an automated microreactor system, which allowed for rapid and tight control of the operating conditions. The conversion/residence time profiles at several temperatures were used to fit parameters to a kinetic model. This method requires significantly less time and a smaller amount of starting material compared to one-at-a-time flow experiments, and thus allows for the rapid generation of kinetic data. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Schindler, Benjamin; Waser, Jürgen; Ribičić, Hrvoje; Fuchs, Raphael; Peikert, Ronald
2013-06-01
In this paper, we present a data-flow system which supports comparative analysis of time-dependent data and interactive simulation steering. The system creates data on-the-fly to allow for the exploration of different parameters and the investigation of multiple scenarios. Existing data-flow architectures provide no generic approach to handle modules that perform complex temporal processing such as particle tracing or statistical analysis over time. Moreover, there is no solution to create and manage module data, which is associated with alternative scenarios. Our solution is based on generic data-flow algorithms to automate this process, enabling elaborate data-flow procedures, such as simulation, temporal integration or data aggregation over many time steps in many worlds. To hide the complexity from the user, we extend the World Lines interaction techniques to control the novel data-flow architecture. The concept of multiple, special-purpose cursors is introduced to let users intuitively navigate through time and alternative scenarios. Users specify only what they want to see, the decision which data are required is handled automatically. The concepts are explained by taking the example of the simulation and analysis of material transport in levee-breach scenarios. To strengthen the general applicability, we demonstrate the investigation of vortices in an offline-simulated dam-break data set.
Challenges in reducing the computational time of QSTS simulations for distribution system analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deboever, Jeremiah; Zhang, Xiaochen; Reno, Matthew J.
The rapid increase in penetration of distributed energy resources on the electric power distribution system has created a need for more comprehensive interconnection modelling and impact analysis. Unlike conventional scenario - based studies , quasi - static time - series (QSTS) simulation s can realistically model time - dependent voltage controllers and the diversity of potential impacts that can occur at different times of year . However, to accurately model a distribution system with all its controllable devices, a yearlong simulation at 1 - second resolution is often required , which could take conventional computers a computational time of 10more » to 120 hours when an actual unbalanced distribution feeder is modeled . This computational burden is a clear l imitation to the adoption of QSTS simulation s in interconnection studies and for determining optimal control solutions for utility operations . Our ongoing research to improve the speed of QSTS simulation has revealed many unique aspects of distribution system modelling and sequential power flow analysis that make fast QSTS a very difficult problem to solve. In this report , the most relevant challenges in reducing the computational time of QSTS simulations are presented: number of power flows to solve, circuit complexity, time dependence between time steps, multiple valid power flow solutions, controllable element interactions, and extensive accurate simulation analysis.« less
Factors Controlling Sediment Load in The Central Anatolia Region of Turkey: Ankara River Basin.
Duru, Umit; Wohl, Ellen; Ahmadi, Mehdi
2017-05-01
Better understanding of the factors controlling sediment load at a catchment scale can facilitate estimation of soil erosion and sediment transport rates. The research summarized here enhances understanding of correlations between potential control variables on suspended sediment loads. The Soil and Water Assessment Tool was used to simulate flow and sediment at the Ankara River basin. Multivariable regression analysis and principal component analysis were then performed between sediment load and controlling variables. The physical variables were either directly derived from a Digital Elevation Model or from field maps or computed using established equations. Mean observed sediment rate is 6697 ton/year and mean sediment yield is 21 ton/y/km² from the gage. Soil and Water Assessment Tool satisfactorily simulated observed sediment load with Nash-Sutcliffe efficiency, relative error, and coefficient of determination (R²) values of 0.81, -1.55, and 0.93, respectively in the catchment. Therefore, parameter values from the physically based model were applied to the multivariable regression analysis as well as principal component analysis. The results indicate that stream flow, drainage area, and channel width explain most of the variability in sediment load among the catchments. The implications of the results, efficient siltation management practices in the catchment should be performed to stream flow, drainage area, and channel width.
Factors Controlling Sediment Load in The Central Anatolia Region of Turkey: Ankara River Basin
NASA Astrophysics Data System (ADS)
Duru, Umit; Wohl, Ellen; Ahmadi, Mehdi
2017-05-01
Better understanding of the factors controlling sediment load at a catchment scale can facilitate estimation of soil erosion and sediment transport rates. The research summarized here enhances understanding of correlations between potential control variables on suspended sediment loads. The Soil and Water Assessment Tool was used to simulate flow and sediment at the Ankara River basin. Multivariable regression analysis and principal component analysis were then performed between sediment load and controlling variables. The physical variables were either directly derived from a Digital Elevation Model or from field maps or computed using established equations. Mean observed sediment rate is 6697 ton/year and mean sediment yield is 21 ton/y/km² from the gage. Soil and Water Assessment Tool satisfactorily simulated observed sediment load with Nash-Sutcliffe efficiency, relative error, and coefficient of determination ( R²) values of 0.81, -1.55, and 0.93, respectively in the catchment. Therefore, parameter values from the physically based model were applied to the multivariable regression analysis as well as principal component analysis. The results indicate that stream flow, drainage area, and channel width explain most of the variability in sediment load among the catchments. The implications of the results, efficient siltation management practices in the catchment should be performed to stream flow, drainage area, and channel width.
NASA Astrophysics Data System (ADS)
Anzai, Yosuke; Fukagata, Koji; Meliga, Philippe; Boujo, Edouard; Gallaire, François
2017-04-01
Flow around a square cylinder controlled using plasma actuators (PAs) is numerically investigated by direct numerical simulation in order to clarify the most effective location of actuator installation and to elucidate the mechanism of control effect. The Reynolds number based on the cylinder diameter and the free-stream velocity is set to be 100 to study the fundamental effect of PAs on two-dimensional vortex shedding, and three different locations of PAs are considered. The mean drag and the root-mean-square of lift fluctuations are found to be reduced by 51% and 99% in the case where two opposing PAs are aligned vertically on the rear surface. In that case, a jet flow similar to a base jet is generated by the collision of the streaming flows induced by the two opposing PAs, and the vortex shedding is completely suppressed. The simulation results are ultimately revisited in the frame of linear sensitivity analysis, whose computational cost is much lower than that of performing the full simulation. A good agreement is reported for low control amplitudes, which allows further discussion of the linear optimal arrangement for any number of PAs.
Arakawa, Reiko; Arakawa, Masayuki; Kaneko, Kaori; Otsuki, Noriko; Aoki, Ryoko; Saito, Kayoko
2016-08-01
Spinal muscular atrophy is a neurodegenerative disorder caused by the deficient expression of survival motor neuron protein in motor neurons. A major goal of disease-modifying therapy is to increase survival motor neuron expression. Changes in survival motor neuron protein expression can be monitored via peripheral blood cells in patients; therefore we tested the sensitivity and utility of imaging flow cytometry for this purpose. After the immortalization of peripheral blood lymphocytes from a human healthy control subject and two patients with spinal muscular atrophy type 1 with two and three copies of SMN2 gene, respectively, we used imaging flow cytometry analysis to identify significant differences in survival motor neuron expression. A bright detail intensity analysis was used to investigate differences in the cellular localization of survival motor neuron protein. Survival motor neuron expression was significantly decreased in cells derived from patients with spinal muscular atrophy relative to those derived from a healthy control subject. Moreover, survival motor neuron expression correlated with the clinical severity of spinal muscular atrophy according to SMN2 copy number. The cellular accumulation of survival motor neuron protein was also significantly decreased in cells derived from patients with spinal muscular atrophy relative to those derived from a healthy control subject. The benefits of imaging flow cytometry for peripheral blood analysis include its capacities for analyzing heterogeneous cell populations; visualizing cell morphology; and evaluating the accumulation, localization, and expression of a target protein. Imaging flow cytometry analysis should be implemented in future studies to optimize its application as a tool for spinal muscular atrophy clinical trials. Copyright © 2016 Elsevier Inc. All rights reserved.
Simulation Analysis of Computer-Controlled pressurization for Mixture Ratio Control
NASA Technical Reports Server (NTRS)
Alexander, Leslie A.; Bishop-Behel, Karen; Benfield, Michael P. J.; Kelley, Anthony; Woodcock, Gordon R.
2005-01-01
A procedural code (C++) simulation was developed to investigate potentials for mixture ratio control of pressure-fed spacecraft rocket propulsion systems by measuring propellant flows, tank liquid quantities, or both, and using feedback from these measurements to adjust propellant tank pressures to set the correct operating mixture ratio for minimum propellant residuals. The pressurization system eliminated mechanical regulators in favor of a computer-controlled, servo- driven throttling valve. We found that a quasi-steady state simulation (pressure and flow transients in the pressurization systems resulting from changes in flow control valve position are ignored) is adequate for this purpose. Monte-Carlo methods are used to obtain simulated statistics on propellant depletion. Mixture ratio control algorithms based on proportional-integral-differential (PID) controller methods were developed. These algorithms actually set target tank pressures; the tank pressures are controlled by another PID controller. Simulation indicates this approach can provide reductions in residual propellants.
Robust control of combustion instabilities
NASA Astrophysics Data System (ADS)
Hong, Boe-Shong
Several interactive dynamical subsystems, each of which has its own time-scale and physical significance, are decomposed to build a feedback-controlled combustion- fluid robust dynamics. On the fast-time scale, the phenomenon of combustion instability is corresponding to the internal feedback of two subsystems: acoustic dynamics and flame dynamics, which are parametrically dependent on the slow-time-scale mean-flow dynamics controlled for global performance by a mean-flow controller. This dissertation constructs such a control system, through modeling, analysis and synthesis, to deal with model uncertainties, environmental noises and time- varying mean-flow operation. Conservation law is decomposed as fast-time acoustic dynamics and slow-time mean-flow dynamics, served for synthesizing LPV (linear parameter varying)- L2-gain robust control law, in which a robust observer is embedded for estimating and controlling the internal status, while achieving trade- offs among robustness, performances and operation. The robust controller is formulated as two LPV-type Linear Matrix Inequalities (LMIs), whose numerical solver is developed by finite-element method. Some important issues related to physical understanding and engineering application are discussed in simulated results of the control system.
Development of a graphical method for choosing the optimal mode of traffic light
NASA Astrophysics Data System (ADS)
Novikov, A. N.; Katunin, A. A.; Novikov, I. A.; Kravchenko, A. A.; Shevtsova, A. G.
2018-05-01
Changing the transportation infrastructure for improving the main characteristics of the transportation flow is the key problem in transportation planning, therefore the main question lies in the ability to plan the change of the main indicators for the long term. In this investigation, an analysis of the city’s population has been performed and the most difficult transportation segment has been identified. During its identification, the main characteristics of the transportation flow have been established. For the evaluation of these characteristics until 2025, an analysis of the available methods of establishing changes in their values has been conducted. During the analysis of the above mentioned methods of evaluation of the change in intensity, based on the method of extrapolation, three scenarios of the development of the transportation system have been identified. It has been established that the most favorable method of controlling the transportation flow in the entrance to the city is the long term control of the traffic system. For the first time, with the help of the authors, based on the investigations of foreign scientists and the mathematical analysis of the changes in intensiveness on the main routes of the given road, the method of graphically choosing the required control plan has been put forward. The effectiveness of said organization scheme of the transportation system has been rated in the Transyt-14 program, with the analysis of changes in the main characteristics of the transportation flow.
Get the Most from Your Cash Flow.
ERIC Educational Resources Information Center
Bauer, Richard I.
1995-01-01
Provides guidelines for overseeing a school district's cash-flow management program: (1) receipts into cash; (2) types of float; (3) concentration account or controlled-disbursement account; (4) bank-account analysis; and (5) safety. One figure is included. (LMI)
NASA Technical Reports Server (NTRS)
Karimi, Amir
1991-01-01
NASA's effort for the thermal environmental control of the Space Station Freedom is directed towards the design, analysis, and development of an Active Thermal Control System (ATCS). A two phase, flow through condenser/radiator concept was baselined, as a part of the ATCS, for the radiation of space station thermal load into space. The proposed condenser rejects heat through direct condensation of ATCS working fluid (ammonia) in the small diameter radiator tubes. Analysis of the condensation process and design of condenser tubes are based on the available two phase flow models for the prediction of flow regimes, heat transfer, and pressure drops. The prediction formulas use the existing empirical relationships of friction factor at gas-liquid interface. An attempt is made to study the stability of interfacial waves in two phase annular flow. The formulation is presented of a stability problem in cylindrical coordinates. The contribution of fluid viscosity, surface tension, and transverse radius of curvature to the interfacial surface is included. A solution is obtained for Kelvin-Helmholtz instability problem which can be used to determine the critical and most dangerous wavelengths for interfacial waves.
Bayes to the Rescue: Continuous Positive Airway Pressure Has Less Mortality Than High-Flow Oxygen.
Modesto I Alapont, Vicent; Khemani, Robinder G; Medina, Alberto; Del Villar Guerra, Pablo; Molina Cambra, Alfred
2017-02-01
The merits of high-flow nasal cannula oxygen versus bubble continuous positive airway pressure are debated in children with pneumonia, with suggestions that randomized controlled trials are needed. In light of a previous randomized controlled trial showing a trend for lower mortality with bubble continuous positive airway pressure, we sought to determine the probability that a new randomized controlled trial would find high-flow nasal cannula oxygen superior to bubble continuous positive airway pressure through a "robust" Bayesian analysis. Sample data were extracted from the trial by Chisti et al, and requisite to "robust" Bayesian analysis, we specified three prior distributions to represent clinically meaningful assumptions. These priors (reference, pessimistic, and optimistic) were used to generate three scenarios to represent the range of possible hypotheses. 1) "Reference": we believe bubble continuous positive airway pressure and high-flow nasal cannula oxygen are equally effective with the same uninformative reference priors; 2) "Sceptic on high-flow nasal cannula oxygen": we believe that bubble continuous positive airway pressure is better than high-flow nasal cannula oxygen (bubble continuous positive airway pressure has an optimistic prior and high-flow nasal cannula oxygen has a pessimistic prior); and 3) "Enthusiastic on high-flow nasal cannula oxygen": we believe that high-flow nasal cannula oxygen is better than bubble continuous positive airway pressure (high-flow nasal cannula oxygen has an optimistic prior and bubble continuous positive airway pressure has a pessimistic prior). Finally, posterior empiric Bayesian distributions were obtained through 100,000 Markov Chain Monte Carlo simulations. In all three scenarios, there was a high probability for more death from high-flow nasal cannula oxygen compared with bubble continuous positive airway pressure (reference, 0.98; sceptic on high-flow nasal cannula oxygen, 0.982; enthusiastic on high-flow nasal cannula oxygen, 0.742). The posterior 95% credible interval on the difference in mortality identified a future randomized controlled trial would be extremely unlikely to find a mortality benefit for high-flow nasal cannula oxygen over bubble continuous positive airway pressure, regardless of the scenario. Interpreting these findings using the "range of practical equivalence" framework would recommend rejecting the hypothesis that high-flow nasal cannula oxygen is superior to bubble continuous positive airway pressure for these children. For children younger than 5 years with pneumonia, high-flow nasal cannula oxygen has higher mortality than bubble continuous positive airway pressure. A future randomized controlled trial in this population is unlikely to find high-flow nasal cannula oxygen superior to bubble continuous positive airway pressure.
Relaminarization of fluid flows
NASA Technical Reports Server (NTRS)
Narasimha, R.; Sreenivasan, K. R.
1979-01-01
The mechanisms of the relaminarization of turbulent flows are investigated with a view to establishing any general principles that might govern them. Three basic archetypes of reverting flows are considered: the dissipative type, the absorptive type, and the Richardson type exemplified by a turbulent boundary layer subjected to severe acceleration. A number of other different reverting flows are then considered in the light of the analysis of these archetypes, including radial Poiseuille flow, convex boundary layers, flows reverting by rotation, injection, and suction, as well as heated horizontal and vertical gas flows. Magnetohydrodynamic duct flows are also examined. Applications of flow reversion for turbulence control are discussed.
NASA Astrophysics Data System (ADS)
Okano, Kazuyuki; Suwa, Hiroshi; Kanno, Tadahiro
2012-01-01
We analyzed rainstorm control on debris-flow magnitude and flow characteristics using the 14 sets of rainstorm and debris-flow data obtained from 1980 to 2005 at the Kamikamihorizawa Creek of Mount Yakedake. With the principal component analysis on five parameters of debris flows: frontal velocity, peak velocity, peak flow depth, peak discharge and total discharge, and with video-record of boulder-dams in motion, and the preceding rainfall intensities, we conclude that the 14 debris flows could be categorized into three groups. The flows in the first group have large hydraulic magnitude and massive and turbulent boulder-dams filled with slurry matrix. The flows in the second group have small hydraulic magnitude and boulder-dams scarcely filled with slurry matrix, and the dam is observed to alternate between stopping and starting. The flows in the third group have small hydraulic magnitude and boulder dams filled with slurry matrix. Analysis of hillslope hydrology and debris-flow data asserted that the antecedent rainfall conditions control not only the hydraulic magnitude of debris flows but also the boulder-dam features. Large rainstorms of high intensity and durations as short as 10 minutes induces fast and large storm runoff to the headwaters and the source reaches of debris flow, while rainstorms with durations as long as 24 h raises water content in the bottom deposits along the debris-flow growth reaches and generates substantial runoff from the tributaries. Classification of the three groups is done based on water availability to debris flows on the source and growth reaches at the occurrence of debris flow.
Controlled vortical flow on delta wings through unsteady leading edge blowing
NASA Technical Reports Server (NTRS)
Lee, K. T.; Roberts, Leonard
1990-01-01
The vortical flow over a delta wing contributes an important part of the lift - the so called nonlinear lift. Controlling this vortical flow with its favorable influence would enhance aircraft maneuverability at high angle of attack. Several previous studies have shown that control of the vortical flow field is possible through the use of blowing jets. The present experimental research studies vortical flow control by applying a new blowing scheme to the rounded leading edge of a delta wing; this blowing scheme is called Tangential Leading Edge Blowing (TLEB). Vortical flow response both to steady blowing and to unsteady blowing is investigated. It is found that TLEB can redevelop stable, strong vortices even in the post-stall angle of attack regime. Analysis of the steady data shows that the effect of leading edge blowing can be interpreted as an effective change in angle of attack. The examination of the fundamental time scales for vortical flow re-organization after the application of blowing for different initial states of the flow field is studied. Different time scales for flow re-organization are shown to depend upon the effective angle of attack. A faster response time can be achieved at angles of attack beyond stall by a suitable choice of the initial blowing momentum strength. Consequently, TLEB shows the potential of controlling the vortical flow over a wide range of angles of attack; i.e., in both for pre-stall and post-stall conditions.
Stochastic cycle selection in active flow networks.
Woodhouse, Francis G; Forrow, Aden; Fawcett, Joanna B; Dunkel, Jörn
2016-07-19
Active biological flow networks pervade nature and span a wide range of scales, from arterial blood vessels and bronchial mucus transport in humans to bacterial flow through porous media or plasmodial shuttle streaming in slime molds. Despite their ubiquity, little is known about the self-organization principles that govern flow statistics in such nonequilibrium networks. Here we connect concepts from lattice field theory, graph theory, and transition rate theory to understand how topology controls dynamics in a generic model for actively driven flow on a network. Our combined theoretical and numerical analysis identifies symmetry-based rules that make it possible to classify and predict the selection statistics of complex flow cycles from the network topology. The conceptual framework developed here is applicable to a broad class of biological and nonbiological far-from-equilibrium networks, including actively controlled information flows, and establishes a correspondence between active flow networks and generalized ice-type models.
Stochastic cycle selection in active flow networks
NASA Astrophysics Data System (ADS)
Woodhouse, Francis; Forrow, Aden; Fawcett, Joanna; Dunkel, Jorn
2016-11-01
Active biological flow networks pervade nature and span a wide range of scales, from arterial blood vessels and bronchial mucus transport in humans to bacterial flow through porous media or plasmodial shuttle streaming in slime molds. Despite their ubiquity, little is known about the self-organization principles that govern flow statistics in such non-equilibrium networks. By connecting concepts from lattice field theory, graph theory and transition rate theory, we show how topology controls dynamics in a generic model for actively driven flow on a network. Through theoretical and numerical analysis we identify symmetry-based rules to classify and predict the selection statistics of complex flow cycles from the network topology. Our conceptual framework is applicable to a broad class of biological and non-biological far-from-equilibrium networks, including actively controlled information flows, and establishes a new correspondence between active flow networks and generalized ice-type models.
Stochastic cycle selection in active flow networks
Woodhouse, Francis G.; Forrow, Aden; Fawcett, Joanna B.; Dunkel, Jörn
2016-01-01
Active biological flow networks pervade nature and span a wide range of scales, from arterial blood vessels and bronchial mucus transport in humans to bacterial flow through porous media or plasmodial shuttle streaming in slime molds. Despite their ubiquity, little is known about the self-organization principles that govern flow statistics in such nonequilibrium networks. Here we connect concepts from lattice field theory, graph theory, and transition rate theory to understand how topology controls dynamics in a generic model for actively driven flow on a network. Our combined theoretical and numerical analysis identifies symmetry-based rules that make it possible to classify and predict the selection statistics of complex flow cycles from the network topology. The conceptual framework developed here is applicable to a broad class of biological and nonbiological far-from-equilibrium networks, including actively controlled information flows, and establishes a correspondence between active flow networks and generalized ice-type models. PMID:27382186
Uncertainty in low-flow data from three streamflow-gaging stations on the upper Verde River, Arizona
Anning, D.W.; ,
2004-01-01
The evaluation of uncertainty in low-flow data collected from three streamflow-gaging stations on the upper Verde River, Arizona, was presented. In downstream order, the stations are Verde River near Paulden, Verde River near Clarkdale, and Verde River near Camp Verde. A monitoring objective of the evaluation was to characterize discharge of the lower flow regime through a variety of procedures such as frequency analysis and base-flow analysis. For Verde River near Paulden and near Camp Verde, the uncertainty of daily low flows can be reduced by decreasing the uncertainty of discharge-measurement frequency, or building an artificial control that would have a stable stage-discharge relation over time.
Unsteady flow model for circulation-control airfoils
NASA Technical Reports Server (NTRS)
Rao, B. M.
1979-01-01
An analysis and a numerical lifting surface method are developed for predicting the unsteady airloads on two-dimensional circulation control airfoils in incompressible flow. The analysis and the computer program are validated by correlating the computed unsteady airloads with test data and also with other theoretical solutions. Additionally, a mathematical model for predicting the bending-torsion flutter of a two-dimensional airfoil (a reference section of a wing or rotor blade) and a computer program using an iterative scheme are developed. The flutter program has a provision for using the CC airfoil airloads program or the Theodorsen hard flap solution to compute the unsteady lift and moment used in the flutter equations. The adopted mathematical model and the iterative scheme are used to perform a flutter analysis of a typical CC rotor blade reference section. The program seems to work well within the basic assumption of the incompressible flow.
Fast interactive exploration of 4D MRI flow data
NASA Astrophysics Data System (ADS)
Hennemuth, A.; Friman, O.; Schumann, C.; Bock, J.; Drexl, J.; Huellebrand, M.; Markl, M.; Peitgen, H.-O.
2011-03-01
1- or 2-directional MRI blood flow mapping sequences are an integral part of standard MR protocols for diagnosis and therapy control in heart diseases. Recent progress in rapid MRI has made it possible to acquire volumetric, 3-directional cine images in reasonable scan time. In addition to flow and velocity measurements relative to arbitrarily oriented image planes, the analysis of 3-dimensional trajectories enables the visualization of flow patterns, local features of flow trajectories or possible paths into specific regions. The anatomical and functional information allows for advanced hemodynamic analysis in different application areas like stroke risk assessment, congenital and acquired heart disease, aneurysms or abdominal collaterals and cranial blood flow. The complexity of the 4D MRI flow datasets and the flow related image analysis tasks makes the development of fast comprehensive data exploration software for advanced flow analysis a challenging task. Most existing tools address only individual aspects of the analysis pipeline such as pre-processing, quantification or visualization, or are difficult to use for clinicians. The goal of the presented work is to provide a software solution that supports the whole image analysis pipeline and enables data exploration with fast intuitive interaction and visualization methods. The implemented methods facilitate the segmentation and inspection of different vascular systems. Arbitrary 2- or 3-dimensional regions for quantitative analysis and particle tracing can be defined interactively. Synchronized views of animated 3D path lines, 2D velocity or flow overlays and flow curves offer a detailed insight into local hemodynamics. The application of the analysis pipeline is shown for 6 cases from clinical practice, illustrating the usefulness for different clinical questions. Initial user tests show that the software is intuitive to learn and even inexperienced users achieve good results within reasonable processing times.
Historical Analysis of C-130E Resources
1977-07-01
DOCUMENTATION SEARCH AND COLLECTION FLOW 24 DIAGRAM 6. DATA ANALYSIS FLOW DIAGRAM TASK IV 29 7. C-130 INVENTORY BY CONFIGURATION 40 8. C-130 MISSION...RESORCE RESOURCES....EOUCE .’." * ESURE :;. 400 ................... - ., -...... ’.. ... ".......... ... ’... ’" SYSTEM DESIGN PERFORMANCE 4 , OPERATIO ...Force inventory , the control of the human and material resources crosses several functions and commands. Seldom are the initial estimates verified
Inlet Flow Control and Prediction Technologies for Embedded Propulsion Systems
NASA Technical Reports Server (NTRS)
McMillan, Michelle L.; Mackie, Scott A.; Gissen, Abe; Vukasinovic, Bojan; Lakebrink, Matthew T.; Glezer, Ari; Mani, Mori; Mace, James L.
2011-01-01
Fail-safe, hybrid, flow control (HFC) is a promising technology for meeting high-speed cruise efficiency, low-noise signature, and reduced fuel-burn goals for future, Hybrid-Wing-Body (HWB) aircraft with embedded engines. This report details the development of HFC technology that enables improved inlet performance in HWB vehicles with highly integrated inlets and embedded engines without adversely affecting vehicle performance. In addition, new test techniques for evaluating Boundary-Layer-Ingesting (BLI)-inlet flow-control technologies developed and demonstrated through this program are documented, including the ability to generate a BLI-like inlet-entrance flow in a direct-connect, wind-tunnel facility, as well as, the use of D-optimal, statistically designed experiments to optimize test efficiency and enable interpretation of results. Validated improvements in numerical analysis tools and methods accomplished through this program are also documented, including Reynolds-Averaged Navier-Stokes CFD simulations of steady-state flow physics for baseline, BLI-inlet diffuser flow, as well as, that created by flow-control devices. Finally, numerical methods were employed in a ground-breaking attempt to directly simulate dynamic distortion. The advances in inlet technologies and prediction tools will help to meet and exceed "N+2" project goals for future HWB aircraft.
Heat And Mass Transfer Analysis of a Film Evaporative MEMS Tunable Array
NASA Astrophysics Data System (ADS)
O'Neill, William J.
This thesis details the heat and mass transfer analysis of a MEMs microthruster designed to provide propulsive, attitude control and thermal control capabilities to a cubesat. This thruster is designed to function by retaining water as a propellant and applying resistive heating in order to increase the temperature of the liquid-vapor interface to either increase evaporation or induce boiling to regulate mass flow. The resulting vapor is then expanded out of a diverging nozzle to produce thrust. Because of the low operating pressure and small length scale of this thruster, unique forms of mass transfer analysis such as non-continuum gas flow were modeled using the Direct Simulation Monte Carlo method. Continuum fluid/thermal simulations using COMSOL Multiphysics have been applied to model heat and mass transfer in the solid and liquid portions of the thruster. The two methods were coupled through variables at the liquid-vapor interface and solved iteratively by the bisection method. The simulations presented in this thesis confirm the thermal valving concept. It is shown that when power is applied to the thruster there is a nearly linear increase in mass flow and thrust. Thus, mass flow can be regulated by regulating the applied power. This concept can also be used as a thermal control device for spacecraft.
NASA Astrophysics Data System (ADS)
Wang, Qiqi; Rigas, Georgios; Esclapez, Lucas; Magri, Luca; Blonigan, Patrick
2016-11-01
Bluff body flows are of fundamental importance to many engineering applications involving massive flow separation and in particular the transport industry. Coherent flow structures emanating in the wake of three-dimensional bluff bodies, such as cars, trucks and lorries, are directly linked to increased aerodynamic drag, noise and structural fatigue. For low Reynolds laminar and transitional regimes, hydrodynamic stability theory has aided the understanding and prediction of the unstable dynamics. In the same framework, sensitivity analysis provides the means for efficient and optimal control, provided the unstable modes can be accurately predicted. However, these methodologies are limited to laminar regimes where only a few unstable modes manifest. Here we extend the stability analysis to low-dimensional chaotic regimes by computing the Lyapunov covariant vectors and their associated Lyapunov exponents. We compare them to eigenvectors and eigenvalues computed in traditional hydrodynamic stability analysis. Computing Lyapunov covariant vectors and Lyapunov exponents also enables the extension of sensitivity analysis to chaotic flows via the shadowing method. We compare the computed shadowing sensitivities to traditional sensitivity analysis. These Lyapunov based methodologies do not rely on mean flow assumptions, and are mathematically rigorous for calculating sensitivities of fully unsteady flow simulations.
NASA Astrophysics Data System (ADS)
Yidana, Sandow Mark; Bawoyobie, Patrick; Sakyi, Patrick; Fynn, Obed Fiifi
2018-02-01
An evolutionary trend has been postulated through the analysis of hydrochemical data of a crystalline rock aquifer system in the Densu Basin, Southern Ghana. Hydrochemcial data from 63 groundwater samples, taken from two main groundwater outlets (Boreholes and hand dug wells) were used to postulate an evolutionary theory for the basin. Sequential factor and hierarchical cluster analysis were used to disintegrate the data into three factors and five clusters (spatial associations). These were used to characterize the controls on groundwater hydrochemistry and its evolution in the terrain. The dissolution of soluble salts and cation exchange processes are the dominant processes controlling groundwater hydrochemistry in the terrain. The trend of evolution of this set of processes follows the pattern of groundwater flow predicted by a calibrated transient groundwater model in the area. The data suggest that anthropogenic activities represent the second most important process in the hydrochemistry. Silicate mineral weathering is the third most important set of processes. Groundwater associations resulting from Q-mode hierarchical cluster analysis indicate an evolutionary pattern consistent with the general groundwater flow pattern in the basin. These key findings are at variance with results of previous investigations and indicate that when carefully done, groundwater hydrochemical data can be very useful for conceptualizing groundwater flow in basins.
Tips and tricks for flow cytometry-based analysis and counting of microparticles.
Poncelet, Philippe; Robert, Stéphane; Bailly, Nicolas; Garnache-Ottou, Francine; Bouriche, Tarik; Devalet, Bérangère; Segatchian, Jerard H; Saas, Philippe; Mullier, François
2015-10-01
Submicron-sized extra-cellular vesicles generated by budding from the external cell membranes, microparticles (MPs) are important actors in transfusion as well as in other medical specialties. After briefly positioning their role in the characterization of labile blood products, this technically oriented chapter aims to review practical points that need to be considered when trying to use flow cytometry for the analysis, characterization and absolute counting of MP subsets. Subjects of active discussions relative to instrumentation will include the choice of the trigger parameter, possible standardization approaches requiring instrument quality-control, origin and control of non-specific background and of coincidence artifacts, choice of the type of electronic signals, optimal sheath fluid and sample speed. Questions related to reagents will cover target antigens and receptors, multi-color reagents, negative controls, enumeration of MPs and limiting artifacts due to unexpected (micro-) coagulation of plasma samples. Newly detected problems are generating innovative solutions and flow cytometry will continue to remain the technology of choice for the analysis of MPs, in the domain of transfusion as well as in many diverse specialties. Copyright © 2015 Elsevier Ltd. All rights reserved.
Program Translation via Abstraction and Reimplementation.
1986-12-01
fromn particular datai flow and control flow constructs. In add non , the analysis is narrow in scope. aiming onlx to gather enoiugh intoination to...NUMSIERS 545 Technology Square U) Cambridge, MA 02139 00 CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE Advanced Research Projects Agency December... designed which generates extremely efficient PDP-II object code for Pascal programs. Currently, work is proceeding toward the implementation of a
Finite size scaling analysis on Nagel-Schreckenberg model for traffic flow
NASA Astrophysics Data System (ADS)
Balouchi, Ashkan; Browne, Dana
2015-03-01
The traffic flow problem as a many-particle non-equilibrium system has caught the interest of physicists for decades. Understanding the traffic flow properties and though obtaining the ability to control the transition from the free-flow phase to the jammed phase plays a critical role in the future world of urging self-driven cars technology. We have studied phase transitions in one-lane traffic flow through the mean velocity, distributions of car spacing, dynamic susceptibility and jam persistence -as candidates for an order parameter- using the Nagel-Schreckenberg model to simulate traffic flow. The length dependent transition has been observed for a range of maximum velocities greater than a certain value. Finite size scaling analysis indicates power-law scaling of these quantities at the onset of the jammed phase.
Boundary-Layer Stability Analysis of the Mean Flows Obtained Using Unstructured Grids
NASA Technical Reports Server (NTRS)
Liao, Wei; Malik, Mujeeb R.; Lee-Rausch, Elizabeth M.; Li, Fei; Nielsen, Eric J.; Buning, Pieter G.; Chang, Chau-Lyan; Choudhari, Meelan M.
2012-01-01
Boundary-layer stability analyses of mean flows extracted from unstructured-grid Navier- Stokes solutions have been performed. A procedure has been developed to extract mean flow profiles from the FUN3D unstructured-grid solutions. Extensive code-to-code validations have been performed by comparing the extracted mean ows as well as the corresponding stability characteristics to the predictions based on structured-grid solutions. Comparisons are made on a range of problems from a simple at plate to a full aircraft configuration-a modified Gulfstream-III with a natural laminar flow glove. The future aim of the project is to extend the adjoint-based design capability in FUN3D to include natural laminar flow and laminar flow control by integrating it with boundary-layer stability analysis codes, such as LASTRAC.
Graph theory applied to noise and vibration control in statistical energy analysis models.
Guasch, Oriol; Cortés, Lluís
2009-06-01
A fundamental aspect of noise and vibration control in statistical energy analysis (SEA) models consists in first identifying and then reducing the energy flow paths between subsystems. In this work, it is proposed to make use of some results from graph theory to address both issues. On the one hand, linear and path algebras applied to adjacency matrices of SEA graphs are used to determine the existence of any order paths between subsystems, counting and labeling them, finding extremal paths, or determining the power flow contributions from groups of paths. On the other hand, a strategy is presented that makes use of graph cut algorithms to reduce the energy flow from a source subsystem to a receiver one, modifying as few internal and coupling loss factors as possible.
Several examples where turbulence models fail in inlet flow field analysis
NASA Technical Reports Server (NTRS)
Anderson, Bernhard H.
1993-01-01
Computational uncertainties in turbulence modeling for three dimensional inlet flow fields include flows approaching separation, strength of secondary flow field, three dimensional flow predictions of vortex liftoff, and influence of vortex-boundary layer interactions; computational uncertainties in vortex generator modeling include representation of generator vorticity field and the relationship between generator and vorticity field. The objectives of the inlet flow field studies presented in this document are to advance the understanding, prediction, and control of intake distortion and to study the basic interactions that influence this design problem.
A logical model of cooperating rule-based systems
NASA Technical Reports Server (NTRS)
Bailin, Sidney C.; Moore, John M.; Hilberg, Robert H.; Murphy, Elizabeth D.; Bahder, Shari A.
1989-01-01
A model is developed to assist in the planning, specification, development, and verification of space information systems involving distributed rule-based systems. The model is based on an analysis of possible uses of rule-based systems in control centers. This analysis is summarized as a data-flow model for a hypothetical intelligent control center. From this data-flow model, the logical model of cooperating rule-based systems is extracted. This model consists of four layers of increasing capability: (1) communicating agents, (2) belief-sharing knowledge sources, (3) goal-sharing interest areas, and (4) task-sharing job roles.
Instability of cooperative adaptive cruise control traffic flow: A macroscopic approach
NASA Astrophysics Data System (ADS)
Ngoduy, D.
2013-10-01
This paper proposes a macroscopic model to describe the operations of cooperative adaptive cruise control (CACC) traffic flow, which is an extension of adaptive cruise control (ACC) traffic flow. In CACC traffic flow a vehicle can exchange information with many preceding vehicles through wireless communication. Due to such communication the CACC vehicle can follow its leader at a closer distance than the ACC vehicle. The stability diagrams are constructed from the developed model based on the linear and nonlinear stability method for a certain model parameter set. It is found analytically that CACC vehicles enhance the stabilization of traffic flow with respect to both small and large perturbations compared to ACC vehicles. Numerical simulation is carried out to support our analytical findings. Based on the nonlinear stability analysis, we will show analytically and numerically that the CACC system better improves the dynamic equilibrium capacity over the ACC system. We have argued that in parallel to microscopic models for CACC traffic flow, the newly developed macroscopic will provide a complete insight into the dynamics of intelligent traffic flow.
Evaluation of salivary glucose, IgA and flow rate in diabetic patients: a case-control study.
Bakianian Vaziri, P; Vahedi, M; Mortazavi, H; Abdollahzadeh, Sh; Hajilooi, M
2010-01-01
An association between diabetes mellitus and alterations in the oral cavity has been noted. In this study, we evaluated differences between salivary IgA, glucose and flow rate in diabetic patients compared with healthy controls. Forty patients with type 1 diabetes, 40 patients with type 2 diabetes and 40 healthy controls were selected. Whole unstimulated saliva samples were collected by the standard method and the salivary flow rate was determined. Nephelometric and Pars method were used to measure salivary IgA and salivary glucose concentrations, respectively. Statistical analysis was performed by Chi-square and t test. There were no significant differences in salivary IgA and glucose concentrations between type 1 and type 2 diabetic patients and their matched control subjects (P>0.05). Salivary flow rate was significantly lower in diabetic patients (P<0.05). In addition, DMFT was higher in diabetic patients than the controls. Determination of salivary constituents may be useful in the description and management of oral findings in diabetic patients.
Byeon, Seul Kee; Kim, Jin Yong; Lee, Ju Yong; Chung, Bong Chul; Seo, Hong Seog; Moon, Myeong Hee
2015-07-31
This study demonstrated the performances of top-down and bottom-up approaches in lipidomic analysis of lipoproteins from rabbits raised under different metabolic conditions: healthy controls, carrageenan-induced inflammation, dehydration, high cholesterol (HC) diet, and highest cholesterol diet with inflammation (HCI). In the bottom-up approach, the high density lipoproteins (HDL) and the low density lipoproteins (LDL) were size-sorted and collected on a semi-preparative scale using a multiplexed hollow fiber flow field-flow fractionation (MxHF5), followed by nanoflow liquid chromatography-ESI-MS/MS (nLC-ESI-MS/MS) analysis of the lipids extracted from each lipoprotein fraction. In the top-down method, size-fractionated lipoproteins were directly infused to MS for quantitative analysis of targeted lipids using chip-type asymmetrical flow field-flow fractionation-electrospray ionization-tandem mass spectrometry (cAF4-ESI-MS/MS) in selected reaction monitoring (SRM) mode. The comprehensive bottom-up analysis yielded 122 and 104 lipids from HDL and LDL, respectively. Rabbits within the HC and HCI groups had lipid patterns that contrasted most substantially from those of controls, suggesting that HC diet significantly alters the lipid composition of lipoproteins. Among the identified lipids, 20 lipid species that exhibited large differences (>10-fold) were selected as targets for the top-down quantitative analysis in order to compare the results with those from the bottom-up method. Statistical comparison of the results from the two methods revealed that the results were not significantly different for most of the selected species, except for those species with only small differences in concentration between groups. The current study demonstrated that top-down lipid analysis using cAF4-ESI-MS/MS is a powerful high-speed analytical platform for targeted lipidomic analysis that does not require the extraction of lipids from blood samples. Copyright © 2015 Elsevier B.V. All rights reserved.
Characteristic Analysis and Experiment of a Dynamic Flow Balance Valve
NASA Astrophysics Data System (ADS)
Bin, Li; Song, Guo; Xuyao, Mao; Chao, Wu; Deman, Zhang; Jin, Shang; Yinshui, Liu
2017-12-01
Comprehensive characteristics of a dynamic flow balance valve of water system were analysed. The flow balance valve can change the drag efficient automatically according to the condition of system, and the effective control flowrate is constant in the range of job pressure. The structure of the flow balance valve was introduced, and the theoretical calculation formula for the variable opening of the valve core was derived. A rated pressure of 20kPa to 200kPa and a rated flowrate of 10m3/h were offered in the numerical work. Static and fluent CFX analyses show good behaviours: through the valve core structure optimization and improve design of the compressive spring, the dynamic flow balance valve can stabilize the flowrate of system evidently. And experiments show that the flow control accuracy is within 5%.
An in vitro test bench reproducing coronary blood flow signals.
Chodzyński, Kamil Jerzy; Boudjeltia, Karim Zouaoui; Lalmand, Jacques; Aminian, Adel; Vanhamme, Luc; de Sousa, Daniel Ribeiro; Gremmo, Simone; Bricteux, Laurent; Renotte, Christine; Courbebaisse, Guy; Coussement, Grégory
2015-08-07
It is a known fact that blood flow pattern and more specifically the pulsatile time variation of shear stress on the vascular wall play a key role in atherogenesis. The paper presents the conception, the building and the control of a new in vitro test bench that mimics the pulsatile flows behavior based on in vivo measurements. An in vitro cardiovascular simulator is alimented with in vivo constraints upstream and provided with further post-processing analysis downstream in order to mimic the pulsatile in vivo blood flow quantities. This real-time controlled system is designed to perform real pulsatile in vivo blood flow signals to study endothelial cells' behavior under near physiological environment. The system is based on an internal model controller and a proportional-integral controller that controls a linear motor with customized piston pump, two proportional-integral controllers that control the mean flow rate and temperature of the medium. This configuration enables to mimic any resulting blood flow rate patterns between 40 and 700 ml/min. In order to feed the system with reliable periodic flow quantities in vivo measurements were performed. Data from five patients (1 female, 4 males; ages 44-63) were filtered and post-processed using the Newtonian Womersley's solution. These resulting flow signals were compared with 2D axisymmetric, numerical simulation using a Carreau non-Newtonian model to validate the approximation of a Newtonian behavior. This in vitro test bench reproduces the measured flow rate time evolution and the complexity of in vivo hemodynamic signals within the accuracy of the relative error below 5%. This post-processing method is compatible with any real complex in vivo signal and demonstrates the heterogeneity of pulsatile patterns in coronary arteries among of different patients. The comparison between analytical and numerical solution demonstrate the fair quality of the Newtonian Womersley's approximation. Therefore, Womersley's solution was used to calculate input flow rate for the in vitro test bench.
NASA Technical Reports Server (NTRS)
Anderson, Bernhard H.; Gibb, James
1992-01-01
A study is presented to demonstrate that the Reduced Navier-Stokes code RNS3D can be employed effectively to develop a vortex generator installation that minimizes engine face circumferential distortion by controlling the development of secondary flow. The necessary computing times are small enough to show that similar studies are feasible within an analysis-design environment with all its constraints of costs and time. This study establishes the nature of the performance enhancements that can be realized with vortex flow control, and indicates a set of aerodynamic properties that can be utilized to arrive at a successful vortex generator installation design.
Barbesi, Donato; Vicente Vilas, Víctor; Millet, Sylvain; Sandow, Miguel; Colle, Jean-Yves; Aldave de Las Heras, Laura
2017-01-01
A LabVIEW ® -based software for the control of the fully automated multi-sequential flow injection analysis Lab-on-Valve (MSFIA-LOV) platform AutoRAD performing radiochemical analysis is described. The analytical platform interfaces an Arduino ® -based device triggering multiple detectors providing a flexible and fit for purpose choice of detection systems. The different analytical devices are interfaced to the PC running LabVIEW ® VI software using USB and RS232 interfaces, both for sending commands and receiving confirmation or error responses. The AUTORAD platform has been successfully applied for the chemical separation and determination of Sr, an important fission product pertinent to nuclear waste.
Analysis of Complex Valve and Feed Systems
NASA Technical Reports Server (NTRS)
Ahuja, Vineet; Hosangadi, Ashvin; Shipman, Jeremy; Cavallo, Peter; Dash, Sanford
2007-01-01
A numerical framework for analysis of complex valve systems supports testing of propulsive systems by simulating key valve and control system components in the test loop. In particular, it is designed to enhance the analysis capability in terms of identifying system transients and quantifying the valve response to these transients. This system has analysis capability for simulating valve motion in complex systems operating in diverse flow regimes ranging from compressible gases to cryogenic liquids. A key feature is the hybrid, unstructured framework with sub-models for grid movement and phase change including cryogenic cavitations. The multi-element unstructured framework offers improved predictions of valve performance characteristics under steady conditions for structurally complex valves such as pressure regulator valve. Unsteady simulations of valve motion using this computational approach have been carried out for various valves in operation at Stennis Space Center such as the split-body valve and the 10-in. (approx.25.4-cm) LOX (liquid oxygen) valve and the 4-in. (approx.10 cm) Y-pattern valve (liquid nitrogen). Such simulations make use of variable grid topologies, thereby permitting solution accuracy and resolving important flow physics in the seat region of the moving valve. An advantage to this software includes possible reduction in testing costs incurred due to disruptions relating to unexpected flow transients or functioning of valve/flow control systems. Prediction of the flow anomalies leading to system vibrations, flow resonance, and valve stall can help in valve scheduling and significantly reduce the need for activation tests. This framework has been evaluated for its ability to predict performance metrics like flow coefficient for cavitating venturis and valve coefficient curves, and could be a valuable tool in predicting and understanding anomalous behavior of system components at rocket propulsion testing and design sites.
Intracycle angular velocity control of cross-flow turbines
NASA Astrophysics Data System (ADS)
Strom, Benjamin; Brunton, Steven L.; Polagye, Brian
2017-08-01
Cross-flow turbines, also known as vertical-axis turbines, are attractive for power generation from wind and water currents. Some cross-flow turbine designs optimize unsteady fluid forces and maximize power output by controlling blade kinematics within one rotation. One established method is to dynamically pitch the blades. Here we introduce a mechanically simpler alternative: optimize the turbine rotation rate as a function of angular blade position. We demonstrate experimentally that this approach results in a 59% increase in power output over standard control methods. Analysis of fluid forcing and blade kinematics suggest that power increase is achieved through modification of the local flow conditions and alignment of fluid force and rotation rate extrema. The result is a low-speed, structurally robust turbine that achieves high efficiency and could enable a new generation of environmentally benign turbines for renewable power generation.
Semaan, Edouard; Markl, Michael; Chris Malaisrie, S.; Barker, Alex; Allen, Bradley; McCarthy, Patrick; Carr, James C.; Collins, Jeremy D.
2014-01-01
OBJECTIVE To provide a more complete characterization of aortic blood flow in patients following valve-sparing aortic root replacement (VSARR) compared with presurgical cohorts matched by tricuspid and bicuspid valve morphology, age and presurgical aorta size. METHODS Four-dimensional (4D) flow magnetic resonance imaging (MRI) was performed to analyse three-dimensional (3D) blood flow in the thoracic aorta of n = 13 patients after VSARR with reimplantation of native tricuspid aortic valve (TAV, n = 6) and bicuspid aortic valve (BAV, n = 7). Results were compared with presurgical age and aortic size-matched control cohorts with TAV (n = 10) and BAV (n = 10). Pre- and post-surgical aortic flow was evaluated using time-resolved 3D pathlines using a blinded grading system (0–2, 0 = small, 1 = moderate and 2 = prominent) analysing ascending aortic (AAo) helical flow. Systolic flow profile uniformity in the aortic root, proximal and mid-AAo was evaluated using a four-quadrant model. Further analysis in nine analysis planes distributed along the thoracic aorta quantified peak systolic velocity, retrograde fraction and peak systolic flow acceleration. RESULTS Pronounced AAo helical flow in presurgical control subjects (both BAV and TAV: helix grading = 1.8 ± 0.4) was significantly reduced (0.2 ± 0.4, P < 0.001) in cohorts after VSARR independent of aortic valve morphology. Presurgical AAo flow was highly eccentric for BAV patients but more uniform for TAV. VSARR resulted in less eccentric flow profiles. Systolic peak velocities were significantly (P < 0.05) increased in post-root repair BAV patients throughout the aorta (six of nine analysis planes) and to a lesser extent in TAV patients (three of nine analysis planes). BAV reimplantation resulted in significantly increased peak velocities in the proximal AAo compared with root repair with TAV (2.3 ± 0.6 vs 1.6 ± 0.4 m/s, P = 0.017). Post-surgical patients showed a non-significant trend towards higher systolic flow acceleration as a surrogate measure of reduced aortic compliance. CONCLUSIONS VSARR restored a cohesive flow pattern independent of native valve morphology but resulted in increased peak velocities throughout the aorta. 4D flow MRI methods can assess the clinical implications of altered aortic flow dynamics in patients undergoing VSARR. PMID:24317086
Control of Flow Structure on Low Swept Delta Wing with Steady Leading Edge Blowing
NASA Astrophysics Data System (ADS)
Ozturk, Ilhan; Zharfa, Mohammadreza; Yavuz, Mehmet Metin
2014-11-01
Interest in unmanned combat air vehicles (UCAVs) and micro air vehicles (MAVs) has stimulated investigation of the flow structure, as well as its control, on delta wings having low and moderate values of sweep angle. In the present study, the flow structure is characterized on a delta wing of low sweep 35-degree angle, which is subjected to steady leading edge blowing. The techniques of laser illuminated smoke visualization, laser Doppler anemometry (LDA), and surface pressure measurements are employed to investigate the steady and unsteady nature of the flow structure on delta wing, in relation to the dimensionless magnitude of the blowing coefficient. Using statistics and spectral analysis, unsteadiness of the flow structure is studied in detail. Different injection locations are utilized to apply different blowing patterns in order to identify the most efficient control, which provides the upmost change in the flow structure with the minimum energy input. The study aims to find the optimum flow control strategy to delay or to prevent the stall and possibly to reduce the buffeting on the wing surface. Since the blowing set-up is computer controlled, the unsteady blowing patterns compared to the present steady blowing patterns will be studied next. This project was supported by the Scientific and Technological Research Council of Turkey (Project Number: 3501 111M732).
NASA Technical Reports Server (NTRS)
Taylor, Arthur C., III; Hou, Gene W.; Korivi, Vamshi M.
1991-01-01
A gradient-based design optimization strategy for practical aerodynamic design applications is presented, which uses the 2D thin-layer Navier-Stokes equations. The strategy is based on the classic idea of constructing different modules for performing the major tasks such as function evaluation, function approximation and sensitivity analysis, mesh regeneration, and grid sensitivity analysis, all driven and controlled by a general-purpose design optimization program. The accuracy of aerodynamic shape sensitivity derivatives is validated on two viscous test problems: internal flow through a double-throat nozzle and external flow over a NACA 4-digit airfoil. A significant improvement in aerodynamic performance has been achieved in both cases. Particular attention is given to a consistent treatment of the boundary conditions in the calculation of the aerodynamic sensitivity derivatives for the classic problems of external flow over an isolated lifting airfoil on 'C' or 'O' meshes.
BLSTA: A boundary layer code for stability analysis
NASA Technical Reports Server (NTRS)
Wie, Yong-Sun
1992-01-01
A computer program is developed to solve the compressible, laminar boundary-layer equations for two-dimensional flow, axisymmetric flow, and quasi-three-dimensional flows including the flow along the plane of symmetry, flow along the leading-edge attachment line, and swept-wing flows with a conical flow approximation. The finite-difference numerical procedure used to solve the governing equations is second-order accurate. The flow over a wide range of speed, from subsonic to hypersonic speed with perfect gas assumption, can be calculated. Various wall boundary conditions, such as wall suction or blowing and hot or cold walls, can be applied. The results indicate that this boundary-layer code gives velocity and temperature profiles which are accurate, smooth, and continuous through the first and second normal derivatives. The code presented herein can be coupled with a stability analysis code and used to predict the onset of the boundary-layer transition which enables the assessment of the laminar flow control techniques. A user's manual is also included.
NASA Astrophysics Data System (ADS)
Zhang, Lucy; Yu, Feimi; Krane, Michael
2017-11-01
The control volume analysis of power flow during sustained phonation is performed using results of a fully-coupled aeroelastic-aeroacoustic simulation. The control volumes consist of the laryngeal region, and the larynx and the vocal tract. Two cases are considered: an effectively infinite length vocal tract, where sound produced in the larynx radiates away and is not reflected back, and a constant-area vocal tract of normal adult human dimensions, in which phonatory sound resonates before radiating from the mouth opening. In both cases the lungs are modeled to absorb all incident sound, while providing a constant volume flow toward the larynx. Control of the acoustic boundary conditions is accomplished using perfectly matched- layers, and flow from the lungs is provided by a source distribution near the entrance to the trachea region. For both cases the power flow for the larynx and larynx plus vocal tract control volumes are computed using the integral form of the mechanical energy equation, expanded to consider power exchanges between slightly compressible flow in the larynx and the acoustic fields in the vocal tract and trachea. The funding from NIH 2R01DC005642-10A1 is greatly acknowledged.
NASA Technical Reports Server (NTRS)
Jordan, Keith J.
1998-01-01
This report documents results from the NASA-Langley sponsored Euler Technology Assessment Study conducted by Lockheed-Martin Tactical Aircraft Systems (LMTAS). The purpose of the study was to evaluate the ability of the SPLITFLOW code using viscous and inviscid flow models to predict aerodynamic stability and control of an advanced fighter model. The inviscid flow model was found to perform well at incidence angles below approximately 15 deg, but not as well at higher angles of attack. The results using a turbulent, viscous flow model matched the trends of the wind tunnel data, but did not show significant improvement over the Euler solutions. Overall, the predictions were found to be useful for stability and control design purposes.
Power System Transient Stability Improvement by the Interline Power Flow Controller (IPFC)
NASA Astrophysics Data System (ADS)
Zhang, Jun; Yokoyama, Akihiko
This paper presents a study on the power system transient stability improvement by means of interline power flow controller (IPFC). The power injection model of IPFC in transient analysis is proposed and can be easily incorporated into existing power systems. Based on the energy function analysis, the operation of IPFC should guarantee that the time derivative of the global energy of the system is not greater than zero in order to damp the electromechanical oscillations. Accordingly, control laws of IPFC are proposed for its application to the single-machine infinite-bus (SMIB) system and the multimachine systems, respectively. Numerical simulations on the corresponding model power systems are presented to demonstrate their effectiveness in improving power system transient stability.
Experimental Testing and Modeling Analysis of Solute Mixing at Water Distribution Pipe Junctions
Flow dynamics at a pipe junction controls particle trajectories, solute mixing and concentrations in downstream pipes. Here we have categorized pipe junctions into five hydraulic types, for which flow distribution factors and analytical equations for describing the solute mixing ...
Investigation of Active Flow Control to Improve Aerodynamic Performance of Oscillating Wings
NASA Technical Reports Server (NTRS)
Narducci, Robert P.; Bowersox, Rodney; Bussom, Richard; McVeigh, Michael; Raghu, Surya; White, Edward
2014-01-01
The objective of this effort is to design a promising active flow control concept on an oscillating airfoil for on-blade alleviation of dynamic stall. The concept must be designed for a range of representative Mach numbers (0.2 to 0.5) and representative reduced frequency characteristics of a full-scale rotorcraft. Specifications for a sweeping-jet actuator to mitigate the detrimental effects of retreating blade stall experienced by edgewise rotors in forward flight has been performed. Wind tunnel modifications have been designed to accommodate a 5x6 test section in the Oran W. Nicks Low Speed Wind Tunnel at Texas A&M University that will allow the tunnel to achieve Mach 0.5. The flow control design is for a two-dimensional oscillating VR-7 blade section with a 15- inch chord at rotor-relevant flow conditions covering the range of reduced frequencies from 0.0 to 0.15 and Mach numbers from 0.2 to 0.5. A Computational Fluid Dynamics (CFD) analysis has been performed to influence the placement of the flow control devices for optimal effectiveness.
Oki, D.S.; Souza, W.R.; Bolke, E.L.; Bauer, G.R.
1998-01-01
The coastal aquifer system of southern Oahu, Hawaii, USA, consists of highly permeable volcanic aquifers overlain by weathered volcanic rocks and interbedded marine and terrestrial sediments of both high and low permeability. The weathered volcanic rocks and sediments are collectively known as caprock, because they impede the free discharge of groundwater from the underlying volcanic aquifers. A cross-sectional groundwater flow and transport model was used to evaluate the hydrogeologic controls on the regional flow system in southwestern Oahu. Controls considered were: (a) overall caprock hydraulic conductivity; and (b) stratigraphic variations of hydraulic conductivity in the caprock. Within the caprock, variations in hydraulic conductivity, caused by stratigraphy or discontinuities of the stratigraphic units, are a major control on the direction of groundwater flow and the distribution of water levels and salinity. Results of cross-sectional modeling confirm the general groundwater flow pattern that would be expected in a layered coastal system. Ground-water flow is: (a) predominantly upward in the low-permeability sedimentary units; and (b) predominantly horizontal in the high-permeability sedimentary units.
NASA supercritical laminar flow control airfoil experiment
NASA Technical Reports Server (NTRS)
Harvey, W. D.
1982-01-01
The design and goals of experimental investigations of supercritical LFC airfoils conducted in the NASA Langley 8-ft Transonic Pressure Tunnel beginning in March 1982 are reviewed. Topics addressed include laminarization aspects; flow-quality requirements; simulation of flight parameters; the setup of screens, honeycomb, and sonic throat; the design cycle; theoretical pressure distributions and shock-free limits; drag divergence and stability analysis; and the LFC suction system. Consideration is given to the LFC airfoil model, the air-flow control system, airfoil-surface instrumentation, liner design and hardware, and test options. Extensive diagrams, drawings, graphs, photographs, and tables of numerical data are provided.
Numerical Investigation of a Novel Microscale Swirling Jet Reactor for Medical Sensor Applications
NASA Astrophysics Data System (ADS)
Ogus, G.; Baelmans, M.; Lammertyn, J.; Vanierschot, M.
2018-03-01
A microscale swirler and corresponding reactor for a recent detection and analysis tool for healthcare applications, Fiber optic-surface plasmon resonance (FO-SPR), is presented in this study. The sensor is a 400 μm diameter needle that works as a detector for certain particles. Currently, the detection process relies on diffusion of particles towards the sensor and hence diagnostic time is rather long. The aim of this study is to decrease that diagnostic time by introducing convective mixing in the reactor by means of a swirling inlet flow. This will increase the particle deposition on the FO-SPR sensor and hence an increase in detection rate, as this rate strongly depends on the aimed particle concentration near the sensor. As the flow rates are rather low and the length scales are small, the flow in such reactors is laminar. In this study, robustly controllable mixing features of a swirling jet flow is used to increase the particle concentration near the sensor. A numerical analysis (CFD) is performed to characterize the flow and a detailed analysis of flow structures depending on the flow rate are reported.
Failure Analysis of Fractured Poppet from Space Shuttle Orbiter Flow Control Valve
NASA Technical Reports Server (NTRS)
Russell, Richard
2010-01-01
This slide presentation reviews the failure analysis of a fractured poppet from a flow control valve (FCV) used on the space shuttle. This presentation has focused on the laboratory analysis of the failed hardware. The use of Scanning electron fractography during the investigation led to the conclusion that the poppet failed due to fatigue cracking that, most likely, occurred under changing loading conditions. The initial investigation led to a more thorough test of poppets that had been retired, this testing led to the conclusion that the thumbnail cracks in the flight hardware had existed for the life of the shuttle program. This led to a program to develop an eddy current technique that was capable of detecting small very tight cracks.
NASA Technical Reports Server (NTRS)
Gea, L. M.; Vicker, D.
2006-01-01
The primary objective of this paper is to demonstrate the capability of computational fluid dynamics (CFD) to simulate a very complicated flow field encountered during the space shuttle ascent. The flow field features nozzle plumes from booster separation motor (BSM) and reaction control system (RCS) jets with a supersonic incoming cross flow at speed of Mach 4. The overset Navier-Stokes code OVERFLOW, was used to simulate the flow field surrounding the entire space shuttle launch vehicle (SSLV) with high geometric fidelity. The variable gamma option was chosen due to the high temperature nature of nozzle flows and different plume species. CFD predicted Mach contours are in good agreement with the schlieren photos from wind tunnel test. Flow fields are discussed in detail and the results are used to support the debris analysis for the space shuttle Return To Flight (RTF) task.
NASA Technical Reports Server (NTRS)
Gea, L. M.; Vicker, D.
2006-01-01
The primary objective of this paper is to demonstrate the capability of computational fluid dynamics (CFD) to simulate a very complicated flow field encountered during the space shuttle ascent. The flow field features nozzle plumes from booster separation motor (BSM) and reaction control system (RCS) jets with a supersonic incoming cross flow at speed of Mach 4. The overset Navier-Stokes code OVERFLOW, was used to simulate the flow field surrounding the entire space shuttle launch vehicle (SSLV) with high geometric fidelity. The variable gamma option was chosen due to the high temperature nature of nozzle flows and different plume species. CFD predicted Mach contours are in good agreement with the schlieren photos from wind tunnel test. Flow fields are discussed in detail and the results are used to support the debris analysis for the space shuttle Return To Flight (RTF) task.
Sarasúa, José Ignacio; Elías, Paz; Martínez-Lucas, Guillermo; Pérez-Díaz, Juan Ignacio; Wilhelmi, José Román; Sánchez, José Ángel
2014-01-01
Run-of-river hydropower plants usually lack significant storage capacity; therefore, the more adequate control strategy would consist of keeping a constant water level at the intake pond in order to harness the maximum amount of energy from the river flow or to reduce the surface flooded in the head pond. In this paper, a standard PI control system of a run-of-river diversion hydropower plant with surge tank and a spillway in the head pond that evacuates part of the river flow plant is studied. A stability analysis based on the Routh-Hurwitz criterion is carried out and a practical criterion for tuning the gains of the PI controller is proposed. Conclusions about the head pond and surge tank areas are drawn from the stability analysis. Finally, this criterion is applied to a real hydropower plant in design state; the importance of considering the spillway dimensions and turbine characteristic curves for adequate tuning of the controller gains is highlighted.
Sarasúa, José Ignacio; Elías, Paz; Wilhelmi, José Román; Sánchez, José Ángel
2014-01-01
Run-of-river hydropower plants usually lack significant storage capacity; therefore, the more adequate control strategy would consist of keeping a constant water level at the intake pond in order to harness the maximum amount of energy from the river flow or to reduce the surface flooded in the head pond. In this paper, a standard PI control system of a run-of-river diversion hydropower plant with surge tank and a spillway in the head pond that evacuates part of the river flow plant is studied. A stability analysis based on the Routh-Hurwitz criterion is carried out and a practical criterion for tuning the gains of the PI controller is proposed. Conclusions about the head pond and surge tank areas are drawn from the stability analysis. Finally, this criterion is applied to a real hydropower plant in design state; the importance of considering the spillway dimensions and turbine characteristic curves for adequate tuning of the controller gains is highlighted. PMID:25405237
Analysis of high-incidence separated flow past airfoils
NASA Technical Reports Server (NTRS)
Chia, K. N.; Osswald, G. A.; Chia, U.
1989-01-01
An unsteady Navier-Stokes (NS) analysis is developed and used to carefully examine high-incidence aerodynamic separated flows past airfoils. Clustered conformal C-grids are employed for the 12 percent thick symmetric Joukowski airfoil as well as for the NACA 0012 airfoil with a sharp trailing edge. The clustering is controlled by appropriate one-dimensional stretching transformations. An attempt is made to resolve many of the dominant scales of an unsteady flow with massive separation, while maintaining the transformation metrics to be smooth and continuous in the entire flow field. A fully implicit time-marching alternating-direction implicit-block Gaussian elimination (ADI-BGE) method is employed, in which no use is made of any explicit artificial dissipation. Detailed results are obtained for massively separated, unsteady flow past symmetric Joukowski and NACA 0012 airfoils.
Accident Analysis for the NIST Research Reactor Before and After Fuel Conversion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baek J.; Diamond D.; Cuadra, A.
Postulated accidents have been analyzed for the 20 MW D2O-moderated research reactor (NBSR) at the National Institute of Standards and Technology (NIST). The analysis has been carried out for the present core, which contains high enriched uranium (HEU) fuel and for a proposed equilibrium core with low enriched uranium (LEU) fuel. The analyses employ state-of-the-art calculational methods. Three-dimensional Monte Carlo neutron transport calculations were performed with the MCNPX code to determine homogenized fuel compositions in the lower and upper halves of each fuel element and to determine the resulting neutronic properties of the core. The accident analysis employed a modelmore » of the primary loop with the RELAP5 code. The model includes the primary pumps, shutdown pumps outlet valves, heat exchanger, fuel elements, and flow channels for both the six inner and twenty-four outer fuel elements. Evaluations were performed for the following accidents: (1) control rod withdrawal startup accident, (2) maximum reactivity insertion accident, (3) loss-of-flow accident resulting from loss of electrical power with an assumption of failure of shutdown cooling pumps, (4) loss-of-flow accident resulting from a primary pump seizure, and (5) loss-of-flow accident resulting from inadvertent throttling of a flow control valve. In addition, natural circulation cooling at low power operation was analyzed. The analysis shows that the conversion will not lead to significant changes in the safety analysis and the calculated minimum critical heat flux ratio and maximum clad temperature assure that there is adequate margin to fuel failure.« less
Controls on groundwater flow in the Bengal Basin of India and Bangladesh: Regional modeling analysis
Michael, H.A.; Voss, C.I.
2009-01-01
Groundwater for domestic and irrigation purposes is produced primarily from shallow parts of the Bengal Basin aquifer system (India and Bangladesh), which contains high concentrations of dissolved arsenic (exceeding worldwide drinking water standards), though deeper groundwater is generally low in arsenic. An essential first step for determining sustainable management of the deep groundwater resource is identification of hydrogeologic controls on flow and quantification of basin-scale groundwater flow patterns. Results from groundwater modeling, in which the Bengal Basin aquifer system is represented as a single aquifer with higher horizontal than vertical hydraulic conductivity, indicate that this anisotropy is the primary hydrogeologic control on the natural flowpath lengths. Despite extremely low hydraulic gradients due to minimal topographic relief, anisotropy implies large-scale (tens to hundreds of kilometers) flow at depth. Other hydrogeologic factors, including lateral and vertical changes in hydraulic conductivity, have minor effects on overall flow patterns. However, because natural hydraulic gradients are low, the impact of pumping on groundwater flow is overwhelming; modeling indicates that pumping has substantially changed the shallow groundwater budget and flowpaths from predevelopment conditions. ?? Springer-Verlag 2009.
Controls on groundwater flow in the Bengal Basin of India and Bangladesh: regional modeling analysis
NASA Astrophysics Data System (ADS)
Michael, Holly A.; Voss, Clifford I.
2009-11-01
Groundwater for domestic and irrigation purposes is produced primarily from shallow parts of the Bengal Basin aquifer system (India and Bangladesh), which contains high concentrations of dissolved arsenic (exceeding worldwide drinking water standards), though deeper groundwater is generally low in arsenic. An essential first step for determining sustainable management of the deep groundwater resource is identification of hydrogeologic controls on flow and quantification of basin-scale groundwater flow patterns. Results from groundwater modeling, in which the Bengal Basin aquifer system is represented as a single aquifer with higher horizontal than vertical hydraulic conductivity, indicate that this anisotropy is the primary hydrogeologic control on the natural flowpath lengths. Despite extremely low hydraulic gradients due to minimal topographic relief, anisotropy implies large-scale (tens to hundreds of kilometers) flow at depth. Other hydrogeologic factors, including lateral and vertical changes in hydraulic conductivity, have minor effects on overall flow patterns. However, because natural hydraulic gradients are low, the impact of pumping on groundwater flow is overwhelming; modeling indicates that pumping has substantially changed the shallow groundwater budget and flowpaths from predevelopment conditions.
Dispersion of a Nanoliter Bolus in Microfluidic Co-Flow.
Conway, A J; Saadi, W M; Sinatra, F L; Kowalski, G; Larson, D; Fiering, J
2014-03-01
Microfluidic systems enable reactions and assays on the scale of nanoliters. However, at this scale nonuniformities in sample delivery become significant. To determine the fundamental minimum sample volume required for a particular device, a detailed understanding of mass transport is required. Co-flowing laminar streams are widely used in many devices, but typically only in the steady-state. Because establishing the co-flow steady-state consumes excess sample volume and time, there is a benefit to operating devices in the transient state, which predominates as the volume of the co-flow reactor decreases. Analysis of the co-flow transient has been neglected thus far. In this work we describe the fabrication of a pneumatically controlled microfluidic injector constructed to inject a discrete 50nL bolus into one side of a two-stream co-flow reactor. Using dye for image analysis, injections were performed at a range of flow rates from 0.5-10μL/min, and for comparison we collected the co-flow steady-state data for this range. The results of the image analysis were also compared against theory and simulations for device validation. For evaluation, we established a metric that indicates how well the mass distribution in the bolus injection approximates steady-state co-flow. Using such analysis, transient-state injections can approximate steady-state conditions within predefined errors, allowing straight forward measurements to be performed with reduced reagent consumption.
Blended Wing Body Systems Studies: Boundary Layer Ingestion Inlets With Active Flow Control
NASA Technical Reports Server (NTRS)
Geiselhart, Karl A. (Technical Monitor); Daggett, David L.; Kawai, Ron; Friedman, Doug
2003-01-01
A CFD analysis was performed on a Blended Wing Body (BWB) aircraft with advanced, turbofan engines analyzing various inlet configurations atop the aft end of the aircraft. The results are presented showing that the optimal design for best aircraft fuel efficiency would be a configuration with a partially buried engine, short offset diffuser using active flow control, and a D-shaped inlet duct that partially ingests the boundary layer air in flight. The CFD models showed that if active flow control technology can be satisfactorily developed, it might be able to control the inlet flow distortion to the engine fan face and reduce the powerplant performance losses to an acceptable level. The weight and surface area drag benefits of a partially submerged engine shows that it might offset the penalties of ingesting the low energy boundary layer air. The combined airplane performance of such a design might deliver approximately 5.5% better aircraft fuel efficiency over a conventionally designed, pod-mounted engine.
NASA Astrophysics Data System (ADS)
Abolhasani, Milad
Flowing trains of uniformly sized bubbles/droplets (i.e., segmented flows) and the associated mass transfer enhancement over their single-phase counterparts have been studied extensively during the past fifty years. Although the scaling behaviour of segmented flow formation is increasingly well understood, the predictive adjustment of the desired flow characteristics that influence the mixing and residence times, remains a challenge. Currently, a time consuming, slow and often inconsistent manual manipulation of experimental conditions is required to address this task. In my thesis, I have overcome the above-mentioned challenges and developed an experimental strategy that for the first time provided predictive control over segmented flows in a hands-off manner. A computer-controlled platform that consisted of a real-time image processing module within an integral controller, a silicon-based microreactor and automated fluid delivery technique was designed, implemented and validated. In a first part of my thesis I utilized this approach for the automated screening of physical mass transfer and solubility characteristics of carbon dioxide (CO2) in a physical solvent at a well-defined temperature and pressure and a throughput of 12 conditions per hour. Second, by applying the segmented flow approach to a recently discovered CO2 chemical absorbent, frustrated Lewis pairs (FLPs), I determined the thermodynamic characteristics of the CO2-FLP reaction. Finally, the segmented flow approach was employed for characterization and investigation of CO2-governed liquid-liquid phase separation process. The second part of my thesis utilized the segmented flow platform for the preparation and shape control of high quality colloidal nanomaterials (e.g., CdSe/CdS) via the automated control of residence times up to approximately 5 minutes. By introducing a novel oscillatory segmented flow concept, I was able to further extend the residence time limitation to 24 hours. A case study of a slow candidate reaction, the etching of gold nanorods during up to five hours, served to illustrate the utility of oscillatory segmented flows in assessing the shape evolution of colloidal nanomaterials on-chip via continuous optical interrogation at only one sensing location. The developed cruise control strategy will enable plug'n play operation of segmented flows in applications that include flow chemistry, material synthesis and in-flow analysis and screening.
Limits of localized control in extended nonlinear systems
NASA Astrophysics Data System (ADS)
Handel, Andreas
We investigate the limits of localized linear control in spatially extended, nonlinear systems. Spatially extended, nonlinear systems can be found in virtually every field of engineering and science. An important category of such systems are fluid flows. Fluid flows play an important role in many commercial applications, for instance in the chemical, pharmaceutical and food-processing industries. Other important fluid flows include air- or water flows around cars, planes or ships. In all these systems, it is highly desirable to control the flow of the respective fluid. For instance control of the air flow around an airplane or car leads to better fuel-economy and reduced noise production. Usually, it is impossible to apply control everywhere. Consider an airplane: It would not be feasibly to cover the whole body of the plane with control units. Instead, one can place the control units at localized regions, such as points along the edge of the wings, spaced as far apart from each other as possible. These considerations lead to an important question: For a given system, what is the minimum number of localized controllers that still ensures successful control? Too few controllers will not achieve control, while using too many leads to unnecessary expenses and wastes resources. To answer this question, we study localized control in a class of model equations. These model equations are good representations of many real fluid flows. Using these equations, we show how one can design localized control that renders the system stable. We study the properties of the control and derive several expressions that allow us to determine the limits of successful control. We show how the number of controllers that are needed for successful control depends on the size and type of the system, as well as the way control is implemented. We find that especially the nonlinearities and the amount of noise present in the system play a crucial role. This analysis allows us to determine under which circumstances a given number of controllers can successfully stabilize a given system.
Proper Orthogonal Decomposition in Optimal Control of Fluids
NASA Technical Reports Server (NTRS)
Ravindran, S. S.
1999-01-01
In this article, we present a reduced order modeling approach suitable for active control of fluid dynamical systems based on proper orthogonal decomposition (POD). The rationale behind the reduced order modeling is that numerical simulation of Navier-Stokes equations is still too costly for the purpose of optimization and control of unsteady flows. We examine the possibility of obtaining reduced order models that reduce computational complexity associated with the Navier-Stokes equations while capturing the essential dynamics by using the POD. The POD allows extraction of certain optimal set of basis functions, perhaps few, from a computational or experimental data-base through an eigenvalue analysis. The solution is then obtained as a linear combination of these optimal set of basis functions by means of Galerkin projection. This makes it attractive for optimal control and estimation of systems governed by partial differential equations. We here use it in active control of fluid flows governed by the Navier-Stokes equations. We show that the resulting reduced order model can be very efficient for the computations of optimization and control problems in unsteady flows. Finally, implementational issues and numerical experiments are presented for simulations and optimal control of fluid flow through channels.
NASA Technical Reports Server (NTRS)
Cull, R. C.; Eltimsahy, A. H.
1983-01-01
The present investigation is concerned with the formulation of energy management strategies for stand-alone photovoltaic (PV) systems, taking into account a basic control algorithm for a possible predictive, (and adaptive) controller. The control system controls the flow of energy in the system according to the amount of energy available, and predicts the appropriate control set-points based on the energy (insolation) available by using an appropriate system model. Aspects of adaptation to the conditions of the system are also considered. Attention is given to a statistical analysis technique, the analysis inputs, the analysis procedure, and details regarding the basic control algorithm.
Liu, Weiyu; Ren, Yukun; Tao, Ye; Yao, Bobin; Li, You
2018-03-01
We report herein field-effect control on in-phase electrothermal streaming from a theoretical point of view, a phenomenon termed "alternating-current electrothermal-flow field effect transistor" (ACET-FFET), in the context of a new technology for handing analytes in microfluidics. Field-effect control through a gate terminal endows ACET-FFET the ability to generate arbitrary symmetry breaking in the transverse vortex flow pattern, which makes it attractive for mixing microfluidic samples. A computational model is developed to study the feasibility of this new microfluidic device design for micromixing. The influence of various parameters on developing an efficient mixer is investigated, and an integrated layout of discrete electrode array is suggested for achieving high-throughput mixing. Our physical demonstration with field-effect electrothermal flow control using a simple electrode structure proves invaluable for designing active micromixers for modern micro total analytical system. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Identifying Hydrogeological Controls of Catchment Low-Flow Dynamics Using Physically Based Modelling
NASA Astrophysics Data System (ADS)
Cochand, F.; Carlier, C.; Staudinger, M.; Seibert, J.; Hunkeler, D.; Brunner, P.
2017-12-01
Identifying key catchment characteristics and processes which control the hydrological response under low-flow conditions is important to assess the catchments' vulnerability to dry periods. In the context of a Swiss Federal Office for the Environment (FOEN) project, the low-flow behaviours of two mountainous catchments were investigated. These neighboring catchments are characterized by the same meteorological conditions, but feature completely different river flow dynamics. The Roethenbach is characterized by high peak flows and low mean flows. Conversely, the Langete is characterized by relatively low peak flows and high mean flow rates. To understand the fundamentally different behaviour of the two catchments, a physically-based surface-subsurface flow HydroGeoSphere (HGS) model for each catchment was developed. The main advantage of a physically-based model is its ability to realistically reproduce processes which play a key role during low-flow periods such as surface-subsurface interactions or evapotranspiration. Both models were calibrated to reproduce measured groundwater heads and the surface flow dynamics. Subsequently, the calibrated models were used to explore the fundamental physics that control hydrological processes during low-flow periods. To achieve this, a comparative sensitivity analysis of model parameters of both catchments was carried out. Results show that the hydraulic conductivity of the bedrock (and weathered bedrock) controls the catchment water dynamics in both models. Conversely, the properties of other geological formations such as alluvial aquifer or soil layer hydraulic conductivity or porosity play a less important role. These results change significantly our perception of the streamflow catchment dynamics and more specifically the way to assess catchment vulnerability to dry period. This study suggests that by analysing catchment scale bedrock properties, the catchment dynamics and the vulnerability to dry period may be assessed.
Recent Development in Optical Chemical Sensors Coupling with Flow Injection Analysis
Ojeda, Catalina Bosch; Rojas, Fuensanta Sánchez
2006-01-01
Optical techniques for chemical analysis are well established and sensors based on these techniques are now attracting considerable attention because of their importance in applications such as environmental monitoring, biomedical sensing, and industrial process control. On the other hand, flow injection analysis (FIA) is advisable for the rapid analysis of microliter volume samples and can be interfaced directly to the chemical process. The FIA has become a widespread automatic analytical method for more reasons; mainly due to the simplicity and low cost of the setups, their versatility, and ease of assembling. In this paper, an overview of flow injection determinations by using optical chemical sensors is provided, and instrumentation, sensor design, and applications are discussed. This work summarizes the most relevant manuscripts from 1980 to date referred to analysis using optical chemical sensors in FIA.
Experimental investigation of high-incidence delta-wing flow control
NASA Astrophysics Data System (ADS)
Buzica, Andrei; Bartasevicius, Julius; Breitsamter, Christian
2017-09-01
The possibility of extending the flight envelope for configurations with slender delta-shaped wings is investigated in this study by means of active flow control through pulsating jets from slot pairs distributed along the leading edge. The experiments comprise stereoscopic particle image velocimetry as well as force and moment measurements on a half-delta wing model. The analysis focuses on three high-incidence regimes: pre-stall, stall, and post-stall. This study also compares different perturbation methods: blowing with spatially constant and variable parameters, frequency and phase. At an incidence of 45°, the unison pulsed blowing facilitates the most significant flow transformation. Here, the separated shear layer reattaches on the wing's suction side, thus increasing the lift. Phase-averaged flow field measurements describe, in this particular case, the underlying physics of the flow-disturbance interaction.
Abbate, G M; Borghi, D; Passi, A; Levrini, L
2014-03-01
Evaluate the correlations between unstimulated salivary flow, pH and level of S. mutans, analysed through real time PCR, in caries-free and caries-active children. Thirty healthy children were divided into 2 groups: test group (DMFT/dmft ≥ 3 and at least 1 active caries lesion) and control group (DMFT/dmft=0). Un-stimulated saliva was collected, pH was measured and S. mutans and total bacterial amount were evaluated with real-time PCR analysis. Unstimulated salivary flow in the test group was significantly lower (p = 0.0269) compared to group control. The level of S. mutans was higher in the test group (p = 0.176), and an inverse correlation was recorded between total bacterial amount and un-stimulated salivary flow (p = 0.063). In the control group a positive relationship was found between total bacterial amount and S. mutans (p = 0.045) and an inverse correlation between pH and S. mutans (p = 0.088). A t-test and a linear regression analysis were performed. A higher salivary flow and an increased salivary pH seem to represent protective factors against caries in children, while high levels of S. mutans are correlated with caries active lesions. Caries risk assessment should be performed considering all parameters involved in the development of the disease.
Computer program for aerodynamic and blading design of multistage axial-flow compressors
NASA Technical Reports Server (NTRS)
Crouse, J. E.; Gorrell, W. T.
1981-01-01
A code for computing the aerodynamic design of a multistage axial-flow compressor and, if desired, the associated blading geometry input for internal flow analysis codes is presented. Compressible flow, which is assumed to be steady and axisymmetric, is the basis for a two-dimensional solution in the meridional plane with viscous effects modeled by pressure loss coefficients and boundary layer blockage. The radial equation of motion and the continuity equation are solved with the streamline curvature method on calculation stations outside the blade rows. The annulus profile, mass flow, pressure ratio, and rotative speed are input. A number of other input parameters specify and control the blade row aerodynamics and geometry. In particular, blade element centerlines and thicknesses can be specified with fourth degree polynomials for two segments. The output includes a detailed aerodynamic solution and, if desired, blading coordinates that can be used for internal flow analysis codes.
Intermittent gravity-driven flow of grains through narrow pipes
NASA Astrophysics Data System (ADS)
Alvarez, Carlos A.; de Moraes Franklin, Erick
2017-01-01
Grain flows through pipes are frequently found in various settings, such as in pharmaceutical, chemical, petroleum, mining and food industries. In the case of size-constrained gravitational flows, density waves consisting of alternating high- and low-compactness regions may appear. This study investigates experimentally the dynamics of density waves that appear in gravitational flows of fine grains through vertical and slightly inclined pipes. The experimental device consisted of a transparent glass pipe through which different populations of glass spheres flowed driven by gravity. Our experiments were performed under controlled ambient temperature and relative humidity, and the granular flow was filmed with a high-speed camera. Experimental results concerning the length scales and celerities of density waves are presented, together with a one-dimensional model and a linear stability analysis. The analysis exhibits the presence of a long-wavelength instability, with the most unstable mode and a cut-off wavenumber whose values are in agreement with the experimental results.
Dynamics and Control of Newtonian and Viscoelastic Fluids
NASA Astrophysics Data System (ADS)
Lieu, Binh K.
Transition to turbulence represents one of the most intriguing natural phenomena. Flows that are smooth and ordered may become complex and disordered as the flow strength increases. This process is known as transition to turbulence. In this dissertation, we develop theoretical and computational tools for analysis and control of transition and turbulence in shear flows of Newtonian, such as air and water, and complex viscoelastic fluids, such as polymers and molten plastics. Part I of the dissertation is devoted to the design and verification of sensor-free and feedback-based strategies for controlling the onset of turbulence in channel flows of Newtonian fluids. We use high fidelity simulations of the nonlinear flow dynamics to demonstrate the effectiveness of our model-based approach to flow control design. In Part II, we utilize systems theoretic tools to study transition and turbulence in channel flows of viscoelastic fluids. For flows with strong elastic forces, we demonstrate that flow fluctuations can experience significant amplification even in the absence of inertia. We use our theoretical developments to uncover the underlying physical mechanism that leads to this high amplification. For turbulent flows with polymer additives, we develop a model-based method for analyzing the influence of polymers on drag reduction. We demonstrate that our approach predicts drag reducing trends observed in full-scale numerical simulations. In Part III, we develop mathematical framework and computational tools for calculating frequency responses of spatially distributed systems. Using state-of-the-art automatic spectral collocation techniques and new integral formulation, we show that our approach yields more reliable and accurate solutions than currently available methods.
Analysis and improvement measures of flight delay in China
NASA Astrophysics Data System (ADS)
Zang, Yuhang
2017-03-01
Firstly, this paper establishes the principal component regression model to analyze the data quantitatively, based on principal component analysis to get the three principal component factors of flight delays. Then the least square method is used to analyze the factors and obtained the regression equation expression by substitution, and then found that the main reason for flight delays is airlines, followed by weather and traffic. Aiming at the above problems, this paper improves the controllable aspects of traffic flow control. For reasons of traffic flow control, an adaptive genetic queuing model is established for the runway terminal area. This paper, establish optimization method that fifteen planes landed simultaneously on the three runway based on Beijing capital international airport, comparing the results with the existing FCFS algorithm, the superiority of the model is proved.
Portable Dew Point Mass Spectrometry System for Real-Time Gas and Moisture Analysis
NASA Technical Reports Server (NTRS)
Arkin, C.; Gillespie, Stacey; Ratzel, Christopher
2010-01-01
A portable instrument incorporates both mass spectrometry and dew point measurement to provide real-time, quantitative gas measurements of helium, nitrogen, oxygen, argon, and carbon dioxide, along with real-time, quantitative moisture analysis. The Portable Dew Point Mass Spectrometry (PDP-MS) system comprises a single quadrupole mass spectrometer and a high vacuum system consisting of a turbopump and a diaphragm-backing pump. A capacitive membrane dew point sensor was placed upstream of the MS, but still within the pressure-flow control pneumatic region. Pressure-flow control was achieved with an upstream precision metering valve, a capacitance diaphragm gauge, and a downstream mass flow controller. User configurable LabVIEW software was developed to provide real-time concentration data for the MS, dew point monitor, and sample delivery system pressure control, pressure and flow monitoring, and recording. The system has been designed to include in situ, NIST-traceable calibration. Certain sample tubing retains sufficient water that even if the sample is dry, the sample tube will desorb water to an amount resulting in moisture concentration errors up to 500 ppm for as long as 10 minutes. It was determined that Bev-A-Line IV was the best sample line to use. As a result of this issue, it is prudent to add a high-level humidity sensor to PDP-MS so such events can be prevented in the future.
NASA Astrophysics Data System (ADS)
Nakamachi, Kazuo; Fujiwara, Taku; Kawaguchi, Yukio; Tsuno, Hiroshi
The high loading rate oxidation ditch (OD) system with dual dissolved oxygen (DO) control has been developed for the purpose of advanced wastewater treatment and cost saving. For the purpose of scale-up to the real scale, the clean water experiments were conducted, with the full scale oxidation ditch with diffused aeration and vertical flow boosters, to examine the effect to the dual DO control by the design and operational factors, which include a flow characteristics and a oxygen supply capability. In this study, the flow characteristics of the OD channel were analyzed using a tank number and circulation ratio as the parameters. The analysis showed the complicated flow characteristics of the OD channel, which changed from the plug flow to the completely mixing transiently. Based on the tank number N =65~100 which were obtained from the tracer tests, a model of DO mass balance was constructed, then the accurate method for estimate the overall oxygen transfer coefficients was proposed. The potential error of the conventional method in the specific conditions was indicated. In addition, the effect of the flow characteristics on the design and operational parameters of the dual DO control, which include the circulation time or the DO profile, was clarified.
Jan, Yih-Kuen; Lee, Bernard; Liao, Fuyuan; Foreman, Robert D
2012-10-01
The objectives of this study were to investigate the effects of local cooling on skin blood flow response to prolonged surface pressure and to identify associated physiological controls mediating these responses using the wavelet analysis of blood flow oscillations in rats. Twelve Sprague-Dawley rats were randomly assigned to three protocols, including pressure with local cooling (Δt = -10 °C), pressure with local heating (Δt = 10 °C) and pressure without temperature changes. Pressure of 700 mmHg was applied to the right trochanter area of rats for 3 h. Skin blood flow was measured using laser Doppler flowmetry. The 3 h loading period was divided into non-overlapping 30 min epochs for the analysis of the changes of skin blood flow oscillations using wavelet spectral analysis. The wavelet amplitudes and powers of three frequencies (metabolic, neurogenic and myogenic) of skin blood flow oscillations were calculated. The results showed that after an initial loading period of 30 min, skin blood flow continually decreased under the conditions of pressure with heating and of pressure without temperature changes, but maintained stable under the condition of pressure with cooling. Wavelet analysis revealed that stable skin blood flow under pressure with cooling was attributed to changes in the metabolic and myogenic frequencies. This study demonstrates that local cooling may be useful for reducing ischemia of weight-bearing soft tissues that prevents pressure ulcers.
Jan, Yih-Kuen; Lee, Bernard; Liao, Fuyuan; Foreman, Robert D.
2012-01-01
The objectives of this study were to investigate the effects of local cooling on skin blood flow response to prolonged surface pressure and to identify associated physiological controls mediating these responses using wavelet analysis of blood flow oscillations in rats. Twelve Sprague Dawley rats were randomly assigned into three protocols, including pressure with local cooling (Δt= −10°C), pressure with local heating (Δt= 10°C), and pressure without temperature changes. Pressure of 700 mmHg was applied to the right trochanter area of rats for 3 hours. Skin blood flow was measured using laser Doppler flowmetry. The 3-hour loading period was divided into non-overlapping 30 min epochs for analysis of the changes of skin blood flow oscillations using wavelet spectral analysis. The wavelet amplitudes and powers of three frequencies (metabolic, neurogenic and myogenic) of skin blood flow oscillations were calculated. The results showed that after an initial loading period of 30 min, skin blood flow continually decreased in the conditions of pressure with heating and of pressure without temperature changes, but maintained stable in the condition of pressure with cooling. Wavelet analysis revealed that stable skin blood flow under pressure with cooling was attributed to changes in the metabolic and myogenic frequencies. This study demonstrates that local cooling may be useful for reducing ischemia of weight-bearing soft tissues that prevents pressure ulcers. PMID:23010955
Fatigue response of perforated titanium for application in laminar flow control
NASA Technical Reports Server (NTRS)
Johnson, W. Steven; Miller, Jennifer L.; Newman, Jr., James
1996-01-01
The room temperature tensile and fatigue response of non-perforated and perforated titanium for laminar flow control application was investigated both experimentally and analytically. Results showed that multiple perforations did not affect the tensile response, but did reduce the fatigue life. A two dimensional finite element stress analysis was used to determine that the stress fields from adjacent perforations did not influence one another. The stress fields around the holes did not overlap one another, allowing the materials to be modeled as a plate with a center hole. Fatigue life was predicted using an equivalent MW flow size approach to relate the experimental results to microstructural features of the titanium. Predictions using flaw sizes ranging from 1 to 15 microns correlated within a factor of 2 with the experimental results by using a flow stress of 260 MPa. By using two different flow stresses in the crack closure model and correcting for plasticity, the experimental results were bounded by the predictions for high applied stresses. Further analysis of the complex geometry of the perforations and the local material chemistry is needed to further understand the fatigue behavior of the perforated titanium.
A dynamical framework for integrated corridor management.
DOT National Transportation Integrated Search
2016-01-11
We develop analysis and control synthesis tools for dynamic traffic flow over networks. Our analysis : relies on exploiting monotonicity properties of the dynamics, and on adapting relevant tools from : stochastic queuing networks. We develop proport...
Packaged peristaltic micropump for controlled drug delivery application
NASA Astrophysics Data System (ADS)
Vinayakumar, K. B.; Nadiger, Girish; R. Shetty, Vikas; Dinesh, N. S.; Nayak, M. M.; Rajanna, K.
2017-01-01
Micropump technology has evolved significantly in the last two decades and is finding a variety of applications ranging from μTAS (micro Total Analysis System) to drug delivery. However, the application area of the micropump is limited owing to: simple pumping mechanism, ease of handling, controlled (microliter to milliliter) delivery, continuous delivery, and accuracy in flow rate. Here, the author presents the design, development, characterization, and precision flow controlling of a DC-motor driven peristaltic pump for controlled drug delivery application. All the micropump components were fabricated using the conventional fabrication technique. The volume flow variation of the pump has been characterized for different viscous fluids. The change in volume flow due to change in back pressure has been presented in detail. The fail-safe mode operation of the pump has been tested and leak rate was measured (˜0.14% leak for an inlet pressure of 140 kPa) for different inlet pressures. The precision volume flow of the pump has been achieved by measuring the pinch cam position and load current. The accuracy in the volume flow has been measured after 300 rotations. Finally, the complete system has been integrated with the necessary electronics and an android application has been developed for the self-administration of bolus and basal delivery of insulin.
Aerodynamic shape optimization using control theory
NASA Technical Reports Server (NTRS)
Reuther, James
1996-01-01
Aerodynamic shape design has long persisted as a difficult scientific challenge due its highly nonlinear flow physics and daunting geometric complexity. However, with the emergence of Computational Fluid Dynamics (CFD) it has become possible to make accurate predictions of flows which are not dominated by viscous effects. It is thus worthwhile to explore the extension of CFD methods for flow analysis to the treatment of aerodynamic shape design. Two new aerodynamic shape design methods are developed which combine existing CFD technology, optimal control theory, and numerical optimization techniques. Flow analysis methods for the potential flow equation and the Euler equations form the basis of the two respective design methods. In each case, optimal control theory is used to derive the adjoint differential equations, the solution of which provides the necessary gradient information to a numerical optimization method much more efficiently then by conventional finite differencing. Each technique uses a quasi-Newton numerical optimization algorithm to drive an aerodynamic objective function toward a minimum. An analytic grid perturbation method is developed to modify body fitted meshes to accommodate shape changes during the design process. Both Hicks-Henne perturbation functions and B-spline control points are explored as suitable design variables. The new methods prove to be computationally efficient and robust, and can be used for practical airfoil design including geometric and aerodynamic constraints. Objective functions are chosen to allow both inverse design to a target pressure distribution and wave drag minimization. Several design cases are presented for each method illustrating its practicality and efficiency. These include non-lifting and lifting airfoils operating at both subsonic and transonic conditions.
The effect of hydrodynamic conditions on the phenotype of Pseudomonas fluorescens biofilms.
Simões, Manuel; Pereira, Maria O; Sillankorva, Sanna; Azeredo, Joana; Vieira, Maria J
2007-01-01
This study investigated the phenotypic characteristics of monoculture P. fluorescens biofilms grown under turbulent and laminar flow, using flow cells reactors with stainless steel substrata. The cellular physiology and the overall biofilm activity, structure and composition were characterized, and compared, within hydrodynamically distinct conditions. The results indicate that turbulent flow-generated biofilm cells were significantly less extensive, with decreased metabolic activity and a lower protein and polysaccharides composition per cell than those from laminar flow-generated biofilms. The effect of flow regime did not cause significantly different outer membrane protein expression. From the analysis of biofilm activity, structure and composition, turbulent flow-generated biofilms were metabolically more active, had twice more mass per cm(2), and higher cellular density and protein content (mainly cellular) than laminar flow-generated biofilms. Conversely, laminar flow-generated biofilms presented higher total and matrix polysaccharide contents. Direct visualisation and scanning electron microscopy analysis showed that these different flows generate structurally different biofilms, corroborating the quantitative results. The combination of applied methods provided useful information regarding a broad spectrum of biofilm parameters, which can contribute to control and model biofilm processes.
Feedback Control of Unsteady Flow and Vortex-Induced Vibration
NASA Astrophysics Data System (ADS)
Jaiman, Rajeev; Yao, Weigang
2017-11-01
We present an active feedback blowing and suction (AFBS) procedure via model reduction for unsteady wake flow and the vortex-induced vibration (VIV) of circular cylinders. The reduced-order model (ROM) for the AFBS procedure is developed by the eigensystem realization (ERA) algorithm, which provides a low-order representation of the unsteady flow dynamics in the neighbourhood of the equilibrium steady state. The actuation is considered via vertical suction and blowing jet at the porous surface of a circular cylinder with a body mounted force sensor. The resulting controller designed by linear low-order approximation is able to suppress the nonlinear saturated state. A systematic linear ROM-based stability analysis is performed to understand the eigenvalue distributions of elastically mounted circular cylinders. The results from the ROM analysis are consistent with those obtained from full nonlinear fluid-structure interaction simulations. A sensitivity study on the number of suction/blowing actuators, the angular arrangement of actuators, and the combined versus independent control architectures has been performed. Overall, the proposed control is found to be effective in suppressing the vortex street and the VIV for a range of reduced velocities and mass ratios.
A simple, mass balance model of carbon flow in a controlled ecological life support system
NASA Technical Reports Server (NTRS)
Garland, Jay L.
1989-01-01
Internal cycling of chemical elements is a fundamental aspect of a Controlled Ecological Life Support System (CELSS). Mathematical models are useful tools for evaluating fluxes and reservoirs of elements associated with potential CELSS configurations. A simple mass balance model of carbon flow in CELSS was developed based on data from the CELSS Breadboard project at Kennedy Space Center. All carbon reservoirs and fluxes were calculated based on steady state conditions and modelled using linear, donor-controlled transfer coefficients. The linear expression of photosynthetic flux was replaced with Michaelis-Menten kinetics based on dynamical analysis of the model which found that the latter produced more adequate model output. Sensitivity analysis of the model indicated that accurate determination of the maximum rate of gross primary production is critical to the development of an accurate model of carbon flow. Atmospheric carbon dioxide was particularly sensitive to changes in photosynthetic rate. The small reservoir of CO2 relative to large CO2 fluxes increases the potential for volatility in CO2 concentration. Feedback control mechanisms regulating CO2 concentration will probably be necessary in a CELSS to reduce this system instability.
Stankovich, Joseph J; Gritti, Fabrice; Stevenson, Paul G; Beaver, Lois Ann; Guiochon, Georges
2014-01-10
Using a column packed with fully porous particles, four methods for controlling the flow rates at which gradient elution runs are conducted in very high pressure liquid chromatography (VHPLC) were tested to determine whether reproducible thermal conditions could be achieved, such that subsequent analyses would proceed at nearly the same initial temperature. In VHPLC high flow rates are achieved, producing fast analyses but requiring high inlet pressures. The combination of high flow rates and high inlet pressures generates local heat, leading to temperature changes in the column. Usually in this case a post-run time is input into the analytical method to allow the return of the column temperature to its initial state. An alternative strategy involves operating the column without a post-run equilibration period and maintaining constant temperature variations for subsequent analysis after conducting one or a few separations to bring the column to a reproducible starting temperature. A liquid chromatography instrument equipped with a pressure controller was used to perform constant pressure and constant flow rate VHPLC separations. Six replicate gradient separations of a nine component mixture consisting of acetophenone, propiophenone, butyrophenone, valerophenone, hexanophenone, heptanophenone, octanophenone, benzophenone, and acetanilide dissolved in water/acetonitrile (65:35, v/v) were performed under various experimental conditions: constant flow rate, two sets of constant pressure, and constant pressure operation with a programmed flow rate. The relative standard deviations of the response factors for all the analytes are lower than 5% across the methods. Programming the flow rate to maintain a fairly constant pressure instead of using instrument controlled constant pressure improves the reproducibility of the retention times by a factor of 5, when plotting the chromatograms in time. Copyright © 2013 Elsevier B.V. All rights reserved.
Methods of computing steady-state voltage stability margins of power systems
Chow, Joe Hong; Ghiocel, Scott Gordon
2018-03-20
In steady-state voltage stability analysis, as load increases toward a maximum, conventional Newton-Raphson power flow Jacobian matrix becomes increasingly ill-conditioned so power flow fails to converge before reaching maximum loading. A method to directly eliminate this singularity reformulates the power flow problem by introducing an AQ bus with specified bus angle and reactive power consumption of a load bus. For steady-state voltage stability analysis, the angle separation between the swing bus and AQ bus can be varied to control power transfer to the load, rather than specifying the load power itself. For an AQ bus, the power flow formulation is only made up of a reactive power equation, thus reducing the size of the Jacobian matrix by one. This reduced Jacobian matrix is nonsingular at the critical voltage point, eliminating a major difficulty in voltage stability analysis for power system operations.
Quantifying vegetation and nekton response to tidal restoration of a New England salt marsh
Roman, C.T.; Raposa, K.B.; Adamowicz, S.C.; James-Pirri, M.J.; Catena, J.G.
2002-01-01
Tidal flow to salt marshes throughout the northeastern United States is often restricted by roads, dikes, impoundments, and inadequately sized culverts or bridge openings, resulting in altered ecological structure and function. In this study we evaluated the response of vegetation and nekton (fishes and decapod crustaceans) to restoration of full tidal flow to a portion of the Sachuest Point salt marsh, Middletown, Rhode Island. A before, after, control, impact study design was used, including evaluations of the tide-restricted marsh, the same marsh after reintroduction of tidal flow (i.e., tide-restored marsh), and an unrestricted control marsh. Before tidal restoration vegetation of the 3.7-ha tide-restricted marsh was dominated by Phragmites australis and was significantly different from the adjacent 6.3-ha Spartina -dominated unrestricted control marsh (analysis of similarities randomization test, p < 0.001). After one growing season vegetation of the tide-restored marsh had changed from its pre-restoration condition (analysis of similarities randomization test, p < 0.005). Although not similar to the unrestricted control marsh, Spartina patens and S. alterniflora abundance increased and abundance and height of Phragmites significantly declined, suggesting a convergence toward typical New England salt marsh vegetation. Before restoration shallow water habitat (creeks and pools) of the unrestricted control marsh supported a greater density of nekton compared with the tide-restricted marsh (analysis of variance, p < 0.001), but after one season of restored tidal flow nekton density was equivalent. A similar trend was documented for nekton species richness. Nekton density and species richness from marsh surface samples were similar between the tide-restored marsh and unrestricted control marsh. Fundulus heteroclitus and Palaemonetes pugio were the numerically dominant fish and decapod species in all sampled habitats. This study provides an example of a quantitative approach for assessing the response of vegetation and nekton to tidal restoration.
Microfluidic "Pouch" Chips for Immunoassays and Nucleic Acid Amplification Tests.
Mauk, Michael G; Liu, Changchun; Qiu, Xianbo; Chen, Dafeng; Song, Jinzhao; Bau, Haim H
2017-01-01
Microfluidic cassettes ("chips") for processing and analysis of clinical specimens and other sample types facilitate point-of-care (POC) immunoassays and nucleic acid based amplification tests. These single-use test chips can be self-contained and made amenable to autonomous operation-reducing or eliminating supporting instrumentation-by incorporating laminated, pliable "pouch" and membrane structures for fluid storage, pumping, mixing, and flow control. Materials and methods for integrating flexible pouch compartments and diaphragm valves into hard plastic (e.g., acrylic and polycarbonate) microfluidic "chips" for reagent storage, fluid actuation, and flow control are described. We review several versions of these pouch chips for immunoassay and nucleic acid amplification tests, and describe related fabrication techniques. These protocols thus offer a "toolbox" of methods for storage, pumping, and flow control functions in microfluidic devices.
NASA Technical Reports Server (NTRS)
Schneider, Steven J.
2015-01-01
Heat transfer correlations of data on flat plates are used to explore the parameters in the Coolit program used for calculating the quantity of cooling air for controlling turbine blade temperature. Correlations for both convection and film cooling are explored for their relevance to predicting blade temperature as a function of a total cooling flow which is split between external film and internal convection flows. Similar trends to those in Coolit are predicted as a function of the percent of the total cooling flow that is in the film. The exceptions are that no film or 100 percent convection is predicted to not be able to control blade temperature, while leaving less than 25 percent of the cooling flow in the convection path results in nearing a limit on convection cooling as predicted by a thermal effectiveness parameter not presently used in Coolit.
NASA Technical Reports Server (NTRS)
Sankaran, Subramanian (Technical Monitor); Rice, Jeremy; Faghri, Amir; Cetegen, Baki M.
2005-01-01
A detailed analysis of the liquid film characteristics and the accompanying heat transfer of a free surface controlled liquid impinging jet onto a rotating disk are presented. The computations were run on a two-dimensional axi-symmetric Eulerian mesh while the free surface was calculated with the volume of fluid method. Flow rates between 3 and 15 1pm with rotational speeds between 50 and 200 rpm are analyzed. The effects of inlet temperature on the film thickness and heat transfer are characterized as well as evaporative effects. The conjugate heating effect is modeled, and was found to effect the heat transfer results the most at both the inner and outer edges of the heated surface. The heat transfer was enhanced with both increasing flow rate and increasing rotational speeds. When evaporative effects were modeled, the evaporation was found to increase the heat transfer at the lower flow rates the most because of a fully developed thermal field that was achieved. The evaporative effects did not significantly enhance the heat transfer at the higher flow rates.
OASIS Observation and Analysis of Smectic Islands in Space
NASA Technical Reports Server (NTRS)
Tin, Padetha
2014-01-01
The Observation and Analysis of Smectic Islands in Space (OASIS) project comprises a series of experiments that will probe the interfacial and hydrodynamic behavior of freely suspended liquid crystal films in space. These are the thinnest known stable condensed phase structures, making them ideal for studies of fluctuation and interface phenomena. The experiments seek to verify theories of coarsening dynamics, hydrodynamic flow, relaxation of hydrodynamic perturbations, and hydrodynamic interactions of a near two-dimensional structure. The effects of introducing islands or droplets on a very thin bubble will be studied, both as controllable inclusions that modify the flow and as markers of flow.
Analysis and control of supersonic vortex breakdown flows
NASA Technical Reports Server (NTRS)
Kandil, Osama A.
1990-01-01
Analysis and computation of steady, compressible, quasi-axisymmetric flow of an isolated, slender vortex are considered. The compressible, Navier-Stokes equations are reduced to a simpler set by using the slenderness and quasi-axisymmetry assumptions. The resulting set along with a compatibility equation are transformed from the diverging physical domain to a rectangular computational domain. Solving for a compatible set of initial profiles and specifying a compatible set of boundary conditions, the equations are solved using a type-differencing scheme. Vortex breakdown locations are detected by the failure of the scheme to converge. Computational examples include isolated vortex flows at different Mach numbers, external axial-pressure gradients and swirl ratios.
Boundary-Layer Control: In Memory of Bill Reynolds
NASA Astrophysics Data System (ADS)
Kim, John
2004-11-01
Professor Bill Reynolds (1933-2004) inspired many students and colleagues with his never-ending curiosity and thought-provoking ideas. Bill's relentless energy, together with his hallmark can-do character and do-it-yourself attitude, led to many seminal contributions to mechanical engineering in general, and fluid mechanics in particular. He has left a lasting impact on many of us, especially for those who had the privilege of working closely with him. Some of my current work on boundary-layer control, the use of neural networks in particular, were inspired by many discussions with Bill. He was among the first to see the potential of control-theoretic approaches for flow control, which has become the main thrust of my current research. Without his continued encouragement, I would not have been deeply involved in this line of research; and perhaps, we would not have seen the current flurry of research activities in applying modern control theories to flow control. In memory of Bill Reynolds, who himself has contributed much to flow control, an analysis of boundary-layer control from a linear system perspective will be presented.
A Second Law Based Unstructured Finite Volume Procedure for Generalized Flow Simulation
NASA Technical Reports Server (NTRS)
Majumdar, Alok
1998-01-01
An unstructured finite volume procedure has been developed for steady and transient thermo-fluid dynamic analysis of fluid systems and components. The procedure is applicable for a flow network consisting of pipes and various fittings where flow is assumed to be one dimensional. It can also be used to simulate flow in a component by modeling a multi-dimensional flow using the same numerical scheme. The flow domain is discretized into a number of interconnected control volumes located arbitrarily in space. The conservation equations for each control volume account for the transport of mass, momentum and entropy from the neighboring control volumes. In addition, they also include the sources of each conserved variable and time dependent terms. The source term of entropy equation contains entropy generation due to heat transfer and fluid friction. Thermodynamic properties are computed from the equation of state of a real fluid. The system of equations is solved by a hybrid numerical method which is a combination of simultaneous Newton-Raphson and successive substitution schemes. The paper also describes the application and verification of the procedure by comparing its predictions with the analytical and numerical solution of several benchmark problems.
Data Analysis for the NASA/Boeing Hybrid Laminar Flow Control Crossflow Experiment
NASA Technical Reports Server (NTRS)
Eppink, Jenna L.; Wlezien, Richard
2011-01-01
The Hybrid-Laminar Flow Control (HLFC) Crossflow Experiment, completed in 1995. generated a large database of boundary layer stability and transition data that was only partially analyzed before data analysis was abruptly ended in the late 1990's. Renewed interest in laminar flow technologies prompted additional data analysis, to integrate all data, including some post-test roughness and porosity measurements. The objective is to gain new insights into the effects of suction on boundary layer stability. A number of challenges were encountered during the data analysis, and their solutions are discussed in detail. They include the effect of the probe vibration, the effect of the time-varying surface temperature on traveling crossflow instabilities, and the effect of the stationary crossflow modes on the approximation of wall location. Despite the low turbulence intensity of the wind tunnel (0.01 to 0.02%), traveling crosflow disturbances were present in the data, in some cases at amplitudes up to 1% of the freestream velocity. However, the data suggests that transition was dominated by stationary crossflow. Traveling crossflow results and stationary data in the presence of suction are compared with linear parabolized stability equations results as a way of testing the quality of the results.
Son, Jang-Won; Hong, Geu-Ru; Hong, Woosol; Kim, Minji; Houle, Helene; Vannan, Mani A; Pedrizzetti, Gianni; Chung, Namsik
2016-06-01
The flow in the aorta forms a vortex, which is a critical determinant of the flow dynamics in the aorta. Arteriosclerosis can alter the blood flow pattern of the aorta and cause characteristic alterations of the vortex. However, this change in aortic vortex has not yet been studied. This study aimed to characterize aortic vortex flow pattern using transesophageal contrast echocardiography in normal and stroke patients. A total of 85 patients who diagnosed with ischemic stroke and 16 normal controls were recruited for this study. The 16 normal control subjects were designated as the control group, and the 85 ischemic stroke patients were designated as the stroke group. All subjects underwent contrast transesophageal echocardiography (TEE), and particle image velocimetry was used to assess aortic vortex flow. Qualitative and quantitative analyses of vortex flow morphology, location, phasic variation, and pulsatility were undertaken and compared between the groups. In the control group, multiple irregularly-shaped vortices were observed in a peripheral location in the descending thoracic aorta. In contrast, the stroke group had a single, round, merged, and more centrally located aortic vortex flow. In the quantitative analysis of vortex, vortex depth, which represents the location of the major vortex in the aorta, was significantly higher in the control group than in the stroke group (0.599 ± 0.159 vs. 0.522 ± 0.101, respectively, P = 0.013). Vortex relative strength, which is the pulsatility parameter of the vortex itself, was significantly higher in the stroke group than in the control group (0.367 ± 0.148 vs. 0.304 ± 0.087, respectively, P = 0.025). It was feasible to visualize and quantify the characteristic morphology and pulsatility of the aortic vortex flow using contrast TEE, and aortic vortex pattern significantly differed between normal and stroke patients.
Investigation of Injector Slot Geometry on Curved-Diffuser Aerodynamic Performance
NASA Technical Reports Server (NTRS)
Silva, Odlanier
2004-01-01
The Compressor Branch vision is to be recognized as world-class leaders in research for fluid mechanics of compressors. Its mission is to conduct research and develop technology to advance the state of the art of compressors and transfer new technology to U.S. industries. Maintain partnerships with U.S. industries, universities, and other government organizations. Maintain a balance between customers focused and long range research. Flow control comprises enabling technologies to meet compression system performance requirements driven by emissions and fuel reduction goals (e.g., in UEET), missions (e.g., access-to-space), aerodynamically aggressive vehicle configurations (e.g., UAV and future blended wing body configurations with highly distorted inlets), and cost goals (e.g., in VAATE). The compression system requirements include increased efficiency, power-to-weight, and adaptability (i.e., robustness in terms of wide operability, distortion tolerance, and engine system health and reliability). The compressor flow control task comprises efforts to develop, demonstrate, and transfer adaptive flow control technology to industry to increase aerodynamic loading at current blade row loss levels, to enable adaptive1 y wide operability, and to develop plant models for adaptive compression systems. In this context, flow control is the controlled modification of a flow field by a deliberate means beyond the natural (uncontrolled) shaping of the solid surfaces that define the principal flow path. The objective of the compressor flow control task is to develop and apply techniques that control circulation, aerodynamic blockage, and entropy production in order to enhance the performance and operability of compression systems for advanced aero-propulsion applications. This summer I would be working with a curved-diffuser because it simulates what happens with flow in the stator blades in the compressor. With this experiment I will be doing some data analysis and parametric study of the injector slot geometries to get the best aerodynamic performance of it. This includes some data reduction, redesign and fast prototyping of the injector nozzle.
Oberholster, A; Carstens, L M; du Toit, W J
2013-06-01
The effect of fining and cross-flow microfiltration on the phenolic composition of red wine was investigated. Both gelatine (G) and egg albumin (EA) fining decreased the mean degree of polymerisation (mDP) of tannin significantly by 26.4% and 25.2%, respectively, compared to the control (C). Cross-flow microfiltration (CF) also decreased the mDP significantly by 25%. Thus, the fining agents and cross-flow microfiltration selectively removed the highly polymerised phenols. After 3.5 months of bottle ageing, differences between the different treatments and the control decreased. CF had the most significant effect on the flavan-3-ol and polymeric phenol (tannin) content of the wines compared to the control followed by G fining. CF and EA treatments significantly decreased the total pigment content compared to C. CF was also the only treatment that could be distinguished from the other treatments by sensory analysis. All treatments improved clarity of the wines with cross-flow microfiltration having the largest effect. Copyright © 2012 Elsevier Ltd. All rights reserved.
Optimal Sparse Upstream Sensor Placement for Hydrokinetic Turbines
NASA Astrophysics Data System (ADS)
Cavagnaro, Robert; Strom, Benjamin; Ross, Hannah; Hill, Craig; Polagye, Brian
2016-11-01
Accurate measurement of the flow field incident upon a hydrokinetic turbine is critical for performance evaluation during testing and setting boundary conditions in simulation. Additionally, turbine controllers may leverage real-time flow measurements. Particle image velocimetry (PIV) is capable of rendering a flow field over a wide spatial domain in a controlled, laboratory environment. However, PIV's lack of suitability for natural marine environments, high cost, and intensive post-processing diminish its potential for control applications. Conversely, sensors such as acoustic Doppler velocimeters (ADVs), are designed for field deployment and real-time measurement, but over a small spatial domain. Sparsity-promoting regression analysis such as LASSO is utilized to improve the efficacy of point measurements for real-time applications by determining optimal spatial placement for a small number of ADVs using a training set of PIV velocity fields and turbine data. The study is conducted in a flume (0.8 m2 cross-sectional area, 1 m/s flow) with laboratory-scale axial and cross-flow turbines. Predicted turbine performance utilizing the optimal sparse sensor network and associated regression model is compared to actual performance with corresponding PIV measurements.
Subsonic Flows through S-Ducts with Flow Control
NASA Astrophysics Data System (ADS)
Chen, Yi
An inlet duct of an aircraft connects the air intake mounted on the fuselage to the engine within the aircraft body. The ideal outflow quality of the duct is steady, uniform and of high total pressure. Recently compact S-shaped inlet ducts are drawing more attention in the design of UAVs with short propulsion system. Compact ducts usually involve strong streamwise adverse pressure gradient and transverse secondary flow, leading to large-scale harmful vortical structures in the outflow. To improve the outflow quality modern flow control techniques have to be applied. Before designing successful flow control methods a solid understanding of the baseline flow field with the duct is crucial. In this work the fundamental mechanism of how the three dimensional flow topology evolves when the relevant parameters such as the duct geometry and boundary layer thickness are varied, is studied carefully. Two distinct secondary-flow patterns are identified. For the first time the sensitivity of the flow topology to the inflow boundary layer thickness in long ducts is clearly addressed. The interaction between the transverse motion induced by the transverse pressure gradient and the streamwise separation is revealed as the crucial reason for the various flow patterns existing in short ducts. A non-symmetric flow pattern is identified for the first time in both experiments and simulations in short ducts in which the intensity of the streamwise separation and the transverse invasion are in the same order of magnitude. A theory of energy accumulation and solution bifurcation is used to give a reasonable explanation for this non-symmetry. After gaining the knowledge of where and how the harmful vortical structures are generated several flow control techniques are tested to achieve a better outflow quality. The analysis of the flow control cases also provides a deeper insight into the behavior of the three-dimensional flow within the ducts. The conventional separation control method of Coanda injection is proved to be less effective in short ducts dominated by strong three-dimensional effects. Besides, the injection enhances the energy accumulation in duct with the asymmetric pattern and leads to the amplification of the asymmetry. Vortex generator jets are applied to generate spanwise near-wall motions opposing the transverse invasion and to break the strong interaction between the invasion and the separation. Symmetry is regained successfully.
Huo, Yunlong; Kassab, Ghassan S
2018-01-01
A pulsatile hemodynamic analysis was carried out in the right coronary arterial (RCA) tree of control and RV hypertrophy (RVH) hearts. The shape of flow and wall shear stress (WSS) waves was hypothesized to be maintained throughout the RCA tree in RVH (i.e., similar patterns of normalized flow and WSS waves in vessels of various sizes). Consequently, we reconstructed the entire RCA tree down to the first capillary bifurcation of control and RVH hearts based on measured morphometric data. A Womersley-type model was used to compute the flow and WSS waves in the tree. The hemodynamic parameters obtained from experimental measurements were incorporated into the numerical model. Given an increased number of arterioles, the mean and amplitude of flow waves at the inlet of RCA tree in RVH was found to be two times larger than that in control, but no significant differences ( p > 0.05) were found in precapillary arterioles. The increase of stiffness in RCA of RVH preserved the shape of normalized flow and WSS waves, but increased the PWV in coronary arteries and reduced the phase angle difference for the waves between the most proximal RCA and the most distal precapillary arteriole. The study is important for understanding pulsatile coronary blood flow in ventricular hypertrophy.
Compliant flow designs for optimum lift control of wind turbine rotors
NASA Astrophysics Data System (ADS)
Williams, Theodore J. H.
An optimization approach was formulated to determine geometric designs that are most compliant to flow control devices. Single dielectric barrier discharge (SDBD) plasma actuators are used in the flow control design optimization as they are able to be incorporated into CFD simulations. An adjoint formulation was derived in order to have a numerically efficient way of calculating the shape derivatives on the surface of the geometric design. The design of a wind turbine blade retrofit for the JIMP 25kW wind turbine at Notre Dame is used to motivate analyses that utilize the optimization approach. The CFD simulations of the existing wind turbine blade were validated against wind tunnel testing. A one-parameter optimization was performed in order to design a trailing edge addition for the current wind turbine blade. The trailing edge addition was designed to meet a desired lift target while maximizing the lift-to-drag ratio. This analysis was performed at seven radial locations on the wind turbine blade. The new trailing edge retrofits were able to achieve the lift target for the outboard radial locations. The designed geometry has been fabricated and is currently being validated on a full-scale turbine and it is predicted to have an increase in annual energy production of 4.30%. The design of a trailing edge retrofit that includes the use of a SDBD plasma actuator was performed using a two-parameter optimization. The objective of this analysis was to meet the lift target and maximize the controllability of the design. The controllability is defined as the difference in lift between plasma on and plasma off cases. A trailing edge retrofit with the plasma actuator located on the pressure side was able to achieve the target passive lift increase while using plasma flow control to reduce the lift to below the original design. This design resulted in a highly compliant flow.
Adding the 'heart' to hanging drop networks for microphysiological multi-tissue experiments.
Rismani Yazdi, Saeed; Shadmani, Amir; Bürgel, Sebastian C; Misun, Patrick M; Hierlemann, Andreas; Frey, Olivier
2015-11-07
Microfluidic hanging-drop networks enable culturing and analysis of 3D microtissue spheroids derived from different cell types under controlled perfusion and investigating inter-tissue communication in multi-tissue formats. In this paper we introduce a compact on-chip pumping approach for flow control in hanging-drop networks. The pump includes one pneumatic chamber located directly above one of the hanging drops and uses the surface tension at the liquid-air-interface for flow actuation. Control of the pneumatic protocol provides a wide range of unidirectional pulsatile and continuous flow profiles. With the proposed concept several independent hanging-drop networks can be operated in parallel with only one single pneumatic actuation line at high fidelity. Closed-loop medium circulation between different organ models for multi-tissue formats and multiple simultaneous assays in parallel are possible. Finally, we implemented a real-time feedback control-loop of the pump actuation based on the beating of a human iPS-derived cardiac microtissue cultured in the same system. This configuration allows for simulating physiological effects on the heart and their impact on flow circulation between the organ models on chip.
Controlling Heat Transport and Flow Structures in Thermal Turbulence Using Ratchet Surfaces
NASA Astrophysics Data System (ADS)
Jiang, Hechuan; Zhu, Xiaojue; Mathai, Varghese; Verzicco, Roberto; Lohse, Detlef; Sun, Chao
2018-01-01
In this combined experimental and numerical study on thermally driven turbulence in a rectangular cell, the global heat transport and the coherent flow structures are controlled with an asymmetric ratchetlike roughness on the top and bottom plates. We show that, by means of symmetry breaking due to the presence of the ratchet structures on the conducting plates, the orientation of the large scale circulation roll (LSCR) can be locked to a preferred direction even when the cell is perfectly leveled out. By introducing a small tilt to the system, we show that the LSCR orientation can be tuned and controlled. The two different orientations of LSCR give two quite different heat transport efficiencies, indicating that heat transport is sensitive to the LSCR direction over the asymmetric roughness structure. Through a quantitative analysis of the dynamics of thermal plume emissions and the orientation of the LSCR over the asymmetric structure, we provide a physical explanation for these findings. The current work has important implications for passive and active flow control in engineering, biofluid dynamics, and geophysical flows.
A sprinkling experiment to quantify celerity-velocity differences at the hillslope scale.
van Verseveld, Willem J; Barnard, Holly R; Graham, Chris B; McDonnell, Jeffrey J; Brooks, J Renée; Weiler, Markus
2017-01-01
Few studies have quantified the differences between celerity and velocity of hillslope water flow and explained the processes that control these differences. Here, we asses these differences by combining a 24-day hillslope sprinkling experiment with a spatially explicit hydrologic model analysis. We focused our work on Watershed 10 at the H. J. Andrews Experimental Forest in western Oregon. Celerities estimated from wetting front arrival times were generally much faster than average vertical velocities of δ 2 H. In the model analysis, this was consistent with an identifiable effective porosity (fraction of total porosity available for mass transfer) parameter, indicating that subsurface mixing was controlled by an immobile soil fraction, resulting in the attenuation of the δ 2 H input signal in lateral subsurface flow. In addition to the immobile soil fraction, exfiltrating deep groundwater that mixed with lateral subsurface flow captured at the experimental hillslope trench caused further reduction in the δ 2 H input signal. Finally, our results suggest that soil depth variability played a significant role in the celerity-velocity responses. Deeper upslope soils damped the δ 2 H input signal, while a shallow soil near the trench controlled the δ 2 H peak in lateral subsurface flow response. Simulated exit time and residence time distributions with our hillslope hydrologic model showed that water captured at the trench did not represent the entire modeled hillslope domain; the exit time distribution for lateral subsurface flow captured at the trench showed more early time weighting.
A sprinkling experiment to quantify celerity-velocity differences at the hillslope scale
NASA Astrophysics Data System (ADS)
van Verseveld, Willem J.; Barnard, Holly R.; Graham, Chris B.; McDonnell, Jeffrey J.; Renée Brooks, J.; Weiler, Markus
2017-11-01
Few studies have quantified the differences between celerity and velocity of hillslope water flow and explained the processes that control these differences. Here, we asses these differences by combining a 24-day hillslope sprinkling experiment with a spatially explicit hydrologic model analysis. We focused our work on Watershed 10 at the H. J. Andrews Experimental Forest in western Oregon. Celerities estimated from wetting front arrival times were generally much faster than average vertical velocities of δ2H. In the model analysis, this was consistent with an identifiable effective porosity (fraction of total porosity available for mass transfer) parameter, indicating that subsurface mixing was controlled by an immobile soil fraction, resulting in the attenuation of the δ2H input signal in lateral subsurface flow. In addition to the immobile soil fraction, exfiltrating deep groundwater that mixed with lateral subsurface flow captured at the experimental hillslope trench caused further reduction in the δ2H input signal. Finally, our results suggest that soil depth variability played a significant role in the celerity-velocity responses. Deeper upslope soils damped the δ2H input signal, while a shallow soil near the trench controlled the δ2H peak in lateral subsurface flow response. Simulated exit time and residence time distributions with our hillslope hydrologic model showed that water captured at the trench did not represent the entire modeled hillslope domain; the exit time distribution for lateral subsurface flow captured at the trench showed more early time weighting.
Yang, Wei-fa; Liao, Gui-qing; Hakim, Samer G; Ouyang, Dai-qiao; Ringash, Jolie; Su, Yu-xiong
2016-03-01
To evaluate the efficacy of concomitant administration of pilocarpine on radiation-induced xerostomia in patients with head and neck cancers. The PubMed, Web of Science, Cochrane Library, and ClinicalTrials were searched to identify randomized, controlled trials studying the effect of concomitant administration of pilocarpine for radiation-induced xerostomia. Included trials were systematically reviewed, and quantifiable outcomes were pooled for meta-analysis. Outcomes of interest included salivary flow, clinician-rated xerostomia grade, patient-reported xerostomia scoring, quality of life, and adverse effects. Six prospective, randomized, controlled trials in 8 articles were included in this systematic review. The total number of patients was 369 in the pilocarpine group and 367 in the control group. Concomitant administration of pilocarpine during radiation could increase the unstimulated salivary flow rate in a period of 3 to 6 months after treatment, and also reduce the clinician-rated xerostomia grade. Patient-reported xerostomia was not significantly impacted by pilocarpine in the initial 3 months but was superior at 6 months. No significant difference of stimulated salivary flow rate could be confirmed between the 2 arms. Adverse effects of pilocarpine were mild and tolerable. The concomitant administration of pilocarpine during radiation increases unstimulated salivary flow rate and reduces clinician-rated xerostomia grade after radiation. It also relieves patients' xerostomia at 6 months and possibly at 12 months. However, pilocarpine has no effect on stimulated salivary flow rate. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Wei-fa; Liao, Gui-qing; Hakim, Samer G.
Purpose: To evaluate the efficacy of concomitant administration of pilocarpine on radiation-induced xerostomia in patients with head and neck cancers. Methods and Materials: The PubMed, Web of Science, Cochrane Library, and ClinicalTrials were searched to identify randomized, controlled trials studying the effect of concomitant administration of pilocarpine for radiation-induced xerostomia. Included trials were systematically reviewed, and quantifiable outcomes were pooled for meta-analysis. Outcomes of interest included salivary flow, clinician-rated xerostomia grade, patient-reported xerostomia scoring, quality of life, and adverse effects. Results: Six prospective, randomized, controlled trials in 8 articles were included in this systematic review. The total number of patientsmore » was 369 in the pilocarpine group and 367 in the control group. Concomitant administration of pilocarpine during radiation could increase the unstimulated salivary flow rate in a period of 3 to 6 months after treatment, and also reduce the clinician-rated xerostomia grade. Patient-reported xerostomia was not significantly impacted by pilocarpine in the initial 3 months but was superior at 6 months. No significant difference of stimulated salivary flow rate could be confirmed between the 2 arms. Adverse effects of pilocarpine were mild and tolerable. Conclusions: The concomitant administration of pilocarpine during radiation increases unstimulated salivary flow rate and reduces clinician-rated xerostomia grade after radiation. It also relieves patients' xerostomia at 6 months and possibly at 12 months. However, pilocarpine has no effect on stimulated salivary flow rate.« less
Distribution of intrarenal blood flow consequent to left atrial balloon inflation.
Passmore, J C; Stremel, R W; Hock, C E; Allen, R L; Bradford, W B
1985-01-01
The effects of inflation of a balloon within, and consequent distension of, the left atrium (LABI, left atrial balloon inflation) on total renal blood flow (RBF) and intrarenal blood flow distribution were measured and compared to values obtained from another group of dogs that were hemorrhaged (HEM) to the same level of hypotension as that produced by LABI, a mean systemic arterial pressure of 88 mm Hg. Kidney wt/kg, RBF/kg body wt, and urine flow were markedly reduced during the hemorrhage period in the HEM group when compared to values obtained during the experimental period for the LABI group. Data from the freeze-dissection (133Xe) analysis revealed that the percentage distribution of blood flow as renal outer cortical (OC) blood flow was less (26%) in the HEM group than in the LABI group (50%), this latter value being very similar to that of control dogs that experienced no hypotension (49%). LABI better maintains OC blood flow and urine flow when compared to HEM at the same systemic blood pressure, suggesting a role for cardiopulmonary receptors in reflex sympathetic control of renal blood flow distribution during hypotension.
Magnetic Control in Crystal Growth from a Melt
NASA Astrophysics Data System (ADS)
Huang, Yue
Control of bulk melt crystal growth techniques is desirable for producing semiconductors with the highest purity and ternary alloys with tunable electrical properties. Because these molten materials are electrically conducting, external magnetic fields are often employed to regulate the flow in the melt. However, complicated by the coupled flow, thermal, electromagnetic and chemical physics, such magnetic control is typically empirical or even an educated guess. Two magnetic flow control mechanisms: flow damping by steady magnetic fields, and flow stirring by alternating magnetic fields, are investigated numerically. Magnetic damping during optically-heated float-zone crystal growth is modeled using a spectral collocation method. The Marangoni convection at the free melt-gas interface is suppressed when exposed to a steady axial magnetic field, measured by the Hartmann number Ha. As a result, detrimental flow instabilities are suppressed, and an almost quiescent region forms in the interior, ideal for single crystal growth. Using normal mode linear stability analyses, dominant flow instabilities are determined in a range applicable to experiments (up to Ha = 300 for Pr = 0.02, and up to Ha = 500 for Pr = 0.001). The hydrodynamic nature of the instability for small Prandtl number Pr liquid bridges is confirmed by energy analyses. Magnetic stirring is modeled for melt crystal growth in an ampule exposed to a transverse rotating magnetic field. Decoupled from the flow field at small magnetic Reynolds number, the electromagnetic field is first solved via finite element analysis. The flow field is then solved using the spectral element method. At low to moderate AC frequencies (up to a few kHz), the electromagnetic body force is dominant in the azimuthal direction, which stirs a steady axisymmetric flow primarily in the azimuthal direction. A weaker secondary flow develops in the meridional plane. However, at high AC frequencies (on the order of 10 kHz and higher), only the flow within a skin depth is directly stirred due to the magnetic shielding effect. By regulating the flow in the melt, magnetic control can improve grown-crystal properties in new materials, and achieve economically viable growth rates for production of novel crystalline semiconductors.
An engineering analysis of a closed cycle plant growth module
NASA Technical Reports Server (NTRS)
Stickford, G. H., Jr.; Jakob, F. E.; Landstrom, D. K.
1986-01-01
The SOLGEM model is a numerical engineering model which solves the flow and energy balance equations for the air flowing through a growing environment, assuming quasi-steady state conditions within the system. SOLGEM provides a dynamic simulation of the controlled environment system in that the temperature and flow conditions of the growing environment are estimated on an hourly basis in response to the weather data and the plant growth parameters. The flow energy balance considers the incident solar flux; incoming air temperature, humidity, and flow rate; heat exchange with the roof and floor; and heat and moisture exchange with the plants. A plant transpiration subroutine was developed based plant growth research facility, intended for the study of bioregenerative life support theories. The results of a performance analysis of the plant growth module are given. The estimated energy requirements of the module components and the total energy are given.
Hydrogen recombiner catalyst test supporting data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Britton, M.D.
1995-01-19
This is a data package supporting the Hydrogen Recombiner Catalyst Performance and Carbon Monoxide Sorption Capacity Test Report, WHC-SD-WM-TRP-211, Rev 0. This report contains 10 appendices which consist of the following: Mass spectrometer analysis reports: HRC samples 93-001 through 93-157; Gas spectrometry analysis reports: HRC samples 93-141 through 93-658; Mass spectrometer procedure PNL-MA-299 ALO-284; Alternate analytical method for ammonia and water vapor; Sample log sheets; Job Safety analysis; Certificate of mixture analysis for feed gases; Flow controller calibration check; Westinghouse Standards Laboratory report on Bois flow calibrator; and Sorption capacity test data, tables, and graphs.
NASA Technical Reports Server (NTRS)
Kraft, R. E.
1996-01-01
The objective of this effort is to develop an analytical model for the coupling of active noise control (ANC) piston-type actuators that are mounted flush to the inner and outer walls of an annular duct to the modes in the duct generated by the actuator motion. The analysis will be used to couple the ANC actuators to the modal analysis propagation computer program for the annular duct, to predict the effects of active suppression of fan-generated engine noise sources. This combined program will then be available to assist in the design or evaluation of ANC systems in fan engine annular exhaust ducts. An analysis has been developed to predict the modes generated in an annular duct due to the coupling of flush-mounted ring actuators on the inner and outer walls of the duct. The analysis has been combined with a previous analysis for the coupling of modes to a cylindrical duct in a FORTRAN computer program to perform the computations. The method includes the effects of uniform mean flow in the duct. The program can be used for design or evaluation purposes for active noise control hardware for turbofan engines. Predictions for some sample cases modeled after the geometry of the NASA Lewis ANC Fan indicate very efficient coupling in both the inlet and exhaust ducts for the m = 6 spinning mode at frequencies where only a single radial mode is cut-on. Radial mode content in higher order cut-off modes at the source plane and the required actuator displacement amplitude to achieve 110 dB SPL levels in the desired mode were predicted. Equivalent cases with and without flow were examined for the cylindrical and annular geometry, and little difference was found for a duct flow Mach number of 0.1. The actuator ring coupling program will be adapted as a subroutine to the cylindrical duct modal analysis and the exhaust duct modal analysis. This will allow the fan source to be defined in terms of characteristic modes at the fan source plane and predict the propagation to the arbitrarily-located ANC source plane. The actuator velocities can then be determined to generate the anti-phase mode. The resulting combined fan source/ANC pressure can then be calculated at any desired wall sensor position. The actuator velocities can be determined manually or using a simulation of a control system feedback loop. This will provide a very useful ANC system design and evaluation tool.
Pseudo-shock waves and their interactions in high-speed intakes
NASA Astrophysics Data System (ADS)
Gnani, F.; Zare-Behtash, H.; Kontis, K.
2016-04-01
In an air-breathing engine the flow deceleration from supersonic to subsonic conditions takes places inside the isolator through a gradual compression consisting of a series of shock waves. The wave system, referred to as a pseudo-shock wave or shock train, establishes the combustion chamber entrance conditions, and therefore influences the performance of the entire propulsion system. The characteristics of the pseudo-shock depend on a number of variables which make this flow phenomenon particularly challenging to be analysed. Difficulties in experimentally obtaining accurate flow quantities at high speeds and discrepancies of numerical approaches with measured data have been readily reported. Understanding the flow physics in the presence of the interaction of numerous shock waves with the boundary layer in internal flows is essential to developing methods and control strategies. To counteract the negative effects of shock wave/boundary layer interactions, which are responsible for the engine unstart process, multiple flow control methodologies have been proposed. Improved analytical models, advanced experimental methodologies and numerical simulations have allowed a more in-depth analysis of the flow physics. The present paper aims to bring together the main results, on the shock train structure and its associated phenomena inside isolators, studied using the aforementioned tools. Several promising flow control techniques that have more recently been applied to manipulate the shock wave/boundary layer interaction are also examined in this review.
Flow-rate independent gas-mixing system for drift chambers, using solenoid valves
NASA Astrophysics Data System (ADS)
Sugano, K.
1991-03-01
We describe an inexpensive system for mixing argon and ethane gas for drift chambers which was used for an experiment at Fermilab. This system is based on the idea of intermittent mixing of gases with fixed mixing flow rates. A dual-action pressure switch senses the pressure in a mixed gas reservoir tank and operates solenoid valves to control mixing action and regulate reservoir pressure. This system has the advantages that simple controls accurately regulate the mixing ratio and that the mixing ratio is nearly flow-rate independent without readjustments. We also report the results of the gas analysis of various samplings, and the reliability of the system in long-term running.
Flow-controlled magnetic particle manipulation
Grate, Jay W [West Richland, WA; Bruckner-Lea, Cynthia J [Richland, WA; Holman, David A [Las Vegas, NV
2011-02-22
Inventive methods and apparatus are useful for collecting magnetic materials in one or more magnetic fields and resuspending the particles into a dispersion medium, and optionally repeating collection/resuspension one or more times in the same or a different medium, by controlling the direction and rate of fluid flow through a fluid flow path. The methods provide for contacting derivatized particles with test samples and reagents, removal of excess reagent, washing of magnetic material, and resuspension for analysis, among other uses. The methods are applicable to a wide variety of chemical and biological materials that are susceptible to magnetic labeling, including, for example, cells, viruses, oligonucleotides, proteins, hormones, receptor-ligand complexes, environmental contaminants and the like.
FABRICA: A Bioreactor Platform for Printing, Perfusing, Observing, & Stimulating 3D Tissues.
Smith, Lester J; Li, Ping; Holland, Mark R; Ekser, Burcin
2018-05-15
We are introducing the FABRICA, a bioprinter-agnostic 3D-printed bioreactor platform designed for 3D-bioprinted tissue construct culture, perfusion, observation, and analysis. The computer-designed FABRICA was 3D-printed with biocompatible material and used for two studies: (1) Flow Profile Study: perfused 5 different media through a synthetic 3D-bioprinted construct and ultrasonically analyzed the flow profile at increasing volumetric flow rates (VFR); (2) Construct Perfusion Study: perfused a 3D-bioprinted tissue construct for a week and compared histologically with a non-perfused control. For the flow profile study, construct VFR increased with increasing pump VFR. Water and other media increased VFR significantly while human and pig blood showed shallow increases. For the construct perfusion study, we confirmed more viable cells in perfused 3D-bioprinted tissue compared to control. The FABRICA can be used to visualize constructs during 3D-bioprinting, incubation, and to control and ultrasonically analyze perfusion, aseptically in real-time, making the FABRICA tunable for different tissues.
Thermally-actuated, phase change flow control for microfluidic systems.
Chen, Zongyuan; Wang, Jing; Qian, Shizhi; Bau, Haim H
2005-11-01
An easy to implement, thermally-actuated, noninvasive method for flow control in microfluidic devices is described. This technique takes advantage of the phase change of the working liquid itself-the freezing and melting of a portion of a liquid slug-to noninvasively close and open flow passages (referred to as a phase change valve). The valve was designed for use in a miniature diagnostic system for detecting pathogens in oral fluids at the point of care. The paper describes the modeling, construction, and characteristics of the valve. The experimental results favorably agree with theoretical predictions. In addition, the paper demonstrates the use of the phase change valves for flow control, sample metering and distribution into multiple analysis paths, sealing of a polymerase chain reaction (PCR) chamber, and sample introduction into and withdrawal from a closed loop. The phase change valve is electronically addressable, does not require any moving parts, introduces only minimal dead volume, is leakage and contamination free, and is biocompatible.
2013-04-08
fined as p( xs , t), to the flow state which is modeled by the time coefficients of a POD truncation (a fj (t) in equation 17) (Note: the f superscript...spatially to desired flow features (e.g. vortex shedding, vortex pairing, boundary layer growth, separation points, etc.) are chosen and defined as ( xs ...within the numeric simulation. A surface POD analysis, p( xs , t)≃ k ∑ p=1 asp(t)ϕsp( xs ), (30) yields surface POD modes φ sp( xs ). The resulting
Lagrangian chaos in three- dimensional steady buoyancy-driven flows
NASA Astrophysics Data System (ADS)
Contreras, Sebastian; Speetjens, Michel; Clercx, Herman
2016-11-01
Natural convection plays a key role in fluid dynamics owing to its ubiquitous presence in nature and industry. Buoyancy-driven flows are prototypical systems in the study of thermal instabilities and pattern formation. The differentially heated cavity problem has been widely studied for the investigation of buoyancy-induced oscillatory flow. However, far less attention has been devoted to the three-dimensional Lagrangian transport properties in such flows. This study seeks to address this by investigating Lagrangian transport in the steady flow inside a cubic cavity differentially-heated from the side. The theoretical and numerical analysis expands on previously reported similarities between the current flow and lid-driven flows. The Lagrangian dynamics are controlled by the Péclet number (Pe) and the Prandtl number (Pr). Pe controls the behaviour qualitatively in that growing Pe progressively perturbs the integable state (Pe =0), thus paving the way to chaotic dynamics. Pr plays an entirely quantitative role in that Pr<1 and Pr>1 amplifies and diminishes, respectively, the perturbative effect of non-zero Pe. S.C. acknowledges financial support from Consejo Nacional de Ciencia y Tecnología (CONACYT).
Navier-Stokes Entropy Controlled Combustion Instability Analysis for Liquid Propellants
NASA Technical Reports Server (NTRS)
Chung, T. J.; Yoon, W. S.
1990-01-01
Navier-Stokes solutions are used to calculate oscillatory components of pressure, velocity, and density, which in turn provide necessary data to compute energy growth factors to determine combustion instability. It is shown that wave instabilities are associated with changes in entropy and the space and time averages of oscillatory components of pressure, velocity and density, together with the mean flow field in the energy equation. Compressible laminar and turbulent flows and reacting flows with hydrogen/oxygen combustion are considered. The SSME combustion/thrust chamber is used for illustration of the theory. The analysis shows that the increase of mean pressure and disturbances consistently results in the increase of instability. It is shown that adequate combustion instability analysis requires at least third order nonlinearity in energy growth or decay.
Unsteady characteristics of low-Re flow past two tandem cylinders
NASA Astrophysics Data System (ADS)
Zhang, Wei; Dou, Hua-Shu; Zhu, Zuchao; Li, Yi
2018-06-01
This study investigated the two-dimensional flow past two tandem circular or square cylinders at Re = 100 and D / d = 4-10, where D is the center-to-center distance and d is the cylinder diameter. Numerical simulation was performed to comparably study the effect of cylinder geometry and spacing on the aerodynamic characteristics, unsteady flow patterns, time-averaged flow characteristics and flow unsteadiness. We also provided the first global linear stability analysis and sensitivity analysis on the physical problem for the potential application of flow control. The objective of this work is to quantitatively identify the effect of the cylinder geometry and spacing on the characteristic quantities. Numerical results reveal that there is wake flow transition for both geometries depending on the spacing. The characteristic quantities, including the time-averaged and fluctuating streamwise velocity and pressure coefficient, are quite similar to that of the single cylinder case for the upstream cylinder, while an entirely different variation pattern is observed for the downstream cylinder. The global linear stability analysis shows that the spatial structure of perturbation is mainly observed in the wake of the downstream cylinder for small spacing, while moves upstream with reduced size and is also observed after the upstream cylinder for large spacing. The sensitivity analysis reflects that the temporal growth rate of perturbation is the most sensitive to the near-wake flow of downstream cylinder for small spacing and upstream cylinder for large spacing.
A classification scheme for the morphology of lava flow fields
NASA Technical Reports Server (NTRS)
Wilson, L.; Pinkerton, H.; Head, James W.; Roberts, K. Magee
1993-01-01
Analysis of the processes controlling the advance of lava flows shows that, if no other factors intervene, thermal constraints will act to limit the maximum length of a flow being fed at a given volume or mass effusion rate from a vent. These constraints can be characterized through the Gratz number, which takes on a large value at the vent and decreases down flow. Early application of this principle showed that, despite the many subtleties of modes of heat loss from flows, motion apparently ceases when the Gratz number has decreased to a value close to 300. Recent analyses of flow units from the 1983-86 Pu'u 'O'o eruption of Kilauea and of other, more silicic lava flow units confirm this finding.
Puchades, R.; Maquieira, A.; Atienza, J.; Herrero, M. A.
1990-01-01
Flow injection analysis (FIA) has emerged as an increasingly used laboratory tool in chemical analysis. Employment of the technique for on-line sample treatment and on-line measurement in chemical process control is a growing trend. This article reviews the recent applications of FlA. Most papers refer to on-line sample treatment. Although FIA is very well suited to continuous on-line process monitoring, few examples have been found in this areamost of them have been applied to water treatment or fermentation processes. PMID:18925271
NASA Technical Reports Server (NTRS)
Lang, A. L., Jr.
1971-01-01
Data presented in the appendices covers: (1) summary description of baseline power system; (2) revised thermal profile analysis; (3) design analysis of television monitor; (4) bioresearch module ground station support evaluation; (5) variable spin control analysis; and (6) bioresearch modules and work flow.
Regional Cerebral Blood Flow In Dementia: Receiver-Operating-Characteristic Analysis
NASA Astrophysics Data System (ADS)
Zemcov, Alexander; Barclay, Laurie; Sansone, Joseph; Blass, John P.; Metz, Charles E.
1985-06-01
The coupling of mentation to regional cerebral blood flow (rCBF) has prompted the application of the Xe-133 inhalation method of measuring rCBF in the differential diagnosis of the two most common dementing diseases, Alzheimer's disease and multi-infarct dementia (MID). In this study receiver-operating-characteristic (ROC) curve analysis was used to assess the effectiveness of a 32 detector Xe-133 inhalation system in discriminating between patients with Alzheimer's disease and normal controls, MID patients and normal controls and between patients with Alzheimer's disease and MID. The populations were clinically evaluated as 1) normal (age 63.1 + 13.1, n=23), 2) Alzheimer's disease (age 72.7 + 7.0, n=82), 3) MID (age 76.4 + 7.6, n=27): The mean flow values for all detectors were lowest for the Alzheimer's disease group, larger for the MID group and largest for the normal controls. The dynamic relationship between the correct identifications (true posi-tives) versus incorrect identifications (false positives) per detector for any 2 pairs of clinical groups varies as the cutoff value of flow is changed over the range of experimental blood flow values. Therefore a quantitative characterization of the "decision" or ROC curve (TP vs FP) for each detector and for each pair of clinical groups provides a measure of the overall diagnostic efficacy of the detector. Detectors directed approximately toward the speech, auditory and association cortices were most effective in disciminatinq between each of the dementia groups and the controls. Frontal detectors were diagnostically inefficient. The Xe-133 inhalation system provided virtually no diagnostic power in discriminating between the two forms of dementia, however. Therefore this imaging technology is most useful when assessing the general diagnostic state of dementia (Alz-heimer's disease and MID) from normal cognitive function.
Zattoni, Andrea; Melucci, Dora; Reschiglian, Pierluigi; Sanz, Ramsés; Puignou, Lluís; Galceran, Maria Teresa
2004-10-29
Yeasts are widely used in several areas of food industry, e.g. baking, beer brewing, and wine production. Interest in new analytical methods for quality control and characterization of yeast cells is thus increasing. The biophysical properties of yeast cells, among which cell size, are related to yeast cell capabilities to produce primary and secondary metabolites during the fermentation process. Biophysical properties of winemaking yeast strains can be screened by field-flow fractionation (FFF). In this work we present the use of flow FFF (FlFFF) with turbidimetric multi-wavelength detection for the number-size distribution analysis of different commercial winemaking yeast varieties. The use of a diode-array detector allows to apply to dispersed samples like yeast cells the recently developed method for number-size (or mass-size) analysis in flow-assisted separation techniques. Results for six commercial winemaking yeast strains are compared with data obtained by a standard method for cell sizing (Coulter counter). The method here proposed gives, at short analysis time, accurate information on the number of cells of a given size, and information on the total number of cells.
Analysis of Cisco Open Network Environment (ONE) OpenFlow Controller Implementation
2014-08-01
Software - Defined Networking ( SDN ), when fully realized, offer many improvements over the current rigid and...functionalities like handshake, connection setup, switch management, and security. 15. SUBJECT TERMS OpenFlow, software - defined networking , Cisco ONE, SDN ...innovating packet-forwarding technologies. Network device roles are strictly defined with little or no flexibility. In Software - Defined Networks ( SDNs ),
Changes in storm peak flows after clearcut logging
Jack Lewis
1997-01-01
Streamflow in a rain-dominated, 473-ha watershed bearing second-growth redwood forest was monitored at 13 locations before and after 50% of the watershed was logged, primarily by clearcutting. Three gauged subwatersheds were maintained as unlogged controls through-out the 11-year study period. The analysis included 526 observations of peak flow from 59 storm events....
Verification of the karst flow model under laboratory controlled conditions
NASA Astrophysics Data System (ADS)
Gotovac, Hrvoje; Andric, Ivo; Malenica, Luka; Srzic, Veljko
2016-04-01
Karst aquifers are very important groundwater resources around the world as well as in coastal part of Croatia. They consist of extremely complex structure defining by slow and laminar porous medium and small fissures and usually fast turbulent conduits/karst channels. Except simple lumped hydrological models that ignore high karst heterogeneity, full hydraulic (distributive) models have been developed exclusively by conventional finite element and finite volume elements considering complete karst heterogeneity structure that improves our understanding of complex processes in karst. Groundwater flow modeling in complex karst aquifers are faced by many difficulties such as a lack of heterogeneity knowledge (especially conduits), resolution of different spatial/temporal scales, connectivity between matrix and conduits, setting of appropriate boundary conditions and many others. Particular problem of karst flow modeling is verification of distributive models under real aquifer conditions due to lack of above-mentioned information. Therefore, we will show here possibility to verify karst flow models under the laboratory controlled conditions. Special 3-D karst flow model (5.6*2.6*2 m) consists of concrete construction, rainfall platform, 74 piezometers, 2 reservoirs and other supply equipment. Model is filled by fine sand (3-D porous matrix) and drainage plastic pipes (1-D conduits). This model enables knowledge of full heterogeneity structure including position of different sand layers as well as conduits location and geometry. Moreover, we know geometry of conduits perforation that enable analysis of interaction between matrix and conduits. In addition, pressure and precipitation distribution and discharge flow rates from both phases can be measured very accurately. These possibilities are not present in real sites what this model makes much more useful for karst flow modeling. Many experiments were performed under different controlled conditions such as different levels in left and right end of reservoirs (boundary conditions), different flow regimes in conduits, flow with and without precipitation, free and pressurized discharge from conduits or influence of epikarst (top layer) on recession period. Experimental results are verified by conventional karst flow model (such as MODFLOW-CFP) showing that hydraulic (distributive) models can describe complex behavior of karst flow processes if substantial amount of input data are known from site investigations and monitoring. These results enable us to develop more advanced karst flow models that will improve understanding and analysis of complex flow processes in the real karst aquifers.
A geomorphic explanation for a meander cutoff following channel relocation of a coarse-bedded river.
Thompson, Douglas M
2003-03-01
The Veteran's Fishing section of the Blackledge River in central Connecticut was relocated in the late 1950s. The relocation resulted in an unstable channel despite extensive efforts to prevent erosion. Overbank erosion and meander cutoffs were investigated using detailed survey data, characterizations of sediment deposits, flow modeling, and a moment-stability analysis. Limited reworking of revetment boulders indicate that riprap bank material was immobile during a 1979 flood event responsible for the formation of the cutoff channel. A moment-stability analysis factor-of-safety value of 1.1 supports the conclusion that riprap was not directly eroded from the banks. Alluvial particles with d(95) values ranging up to 120 mm were deposited along a bar downstream from the cutoff channel at flows estimated to be below a 1.5-year recurrence interval flow. Development of the bar deposit resulted in locally elevated water surfaces at high flow. The resulting overbank flow across the meander neck to the adjacent downstream bend led to the creation of an upstream migrating knickpoint, the erosion of approximately 16,000-year-old sediments, and the subsequent meander cutoff. The results of the study indicate that traditional erosion-control measures cannot prevent extreme channel adjustments if the geomorphic processes that control sediment continuity also are not considered.
Chamberlin, Kent; Smith, Wayne; Chirgwin, Christopher; Appasani, Seshank; Rioux, Paul
2014-12-01
The purpose of this study was to investigate "earthing" from an electrical perspective through measurement and analysis of the naturally occurring electron flow between the human body or a control and ground as this relates to the magnitude of the charge exchange, the relationship between the charge exchange and body functions (respiration and heart rate), and the detection of other information that might be contained in the charge exchange. Sensitive, low-noise instrumentation was designed and fabricated to measure low-level current flow at low frequencies. This instrumentation was used to record current flow between human subjects or a control and ground, and these measurements were performed approximately 40 times under varied circumstances. The results of these measurements were analyzed to determine if information was contained in the current exchange. The currents flowing between the human body and ground were small (nanoamperes), and they correlated with subject motion. There did not appear to be any information contained in this exchange except for information about subject motion. This study showed that currents flow between the environment (earth) and a grounded human body; however, these currents are small (nanoamperes) and do not appear to contain information other than information about subject motion.
Chamberlin, Kent; Smith, Wayne; Chirgwin, Christopher; Appasani, Seshank; Rioux, Paul
2014-01-01
Objective The purpose of this study was to investigate “earthing” from an electrical perspective through measurement and analysis of the naturally occurring electron flow between the human body or a control and ground as this relates to the magnitude of the charge exchange, the relationship between the charge exchange and body functions (respiration and heart rate), and the detection of other information that might be contained in the charge exchange. Methods Sensitive, low-noise instrumentation was designed and fabricated to measure low-level current flow at low frequencies. This instrumentation was used to record current flow between human subjects or a control and ground, and these measurements were performed approximately 40 times under varied circumstances. The results of these measurements were analyzed to determine if information was contained in the current exchange. Results The currents flowing between the human body and ground were small (nanoamperes), and they correlated with subject motion. There did not appear to be any information contained in this exchange except for information about subject motion. Conclusions This study showed that currents flow between the environment (earth) and a grounded human body; however, these currents are small (nanoamperes) and do not appear to contain information other than information about subject motion. PMID:25435837
Wake flow control using a dynamically controlled wind turbine
NASA Astrophysics Data System (ADS)
Castillo, Ricardo; Wang, Yeqin; Pol, Suhas; Swift, Andy; Hussain, Fazle; Westergaard, Carsten; Texas Tech University Team
2016-11-01
A wind tunnel based "Hyper Accelerated Wind Farm Kinematic-Control Simulator" (HAWKS) is being built at Texas Tech University to emulate controlled wind turbine flow physics. The HAWKS model turbine has pitch, yaw and speed control which is operated in real model time, similar to that of an equivalent full scale turbine. Also, similar to that of a full scale wind turbine, the controls are developed in a Matlab Simulink environment. The current diagnostic system consists of power, rotor position, rotor speed measurements and PIV wake characterization with four cameras. The setup allows up to 7D downstream of the rotor to be mapped. The purpose of HAWKS is to simulate control strategies at turnaround times much faster than CFD and full scale testing. The fundamental building blocks of the simulator have been tested, and demonstrate wake steering for both static and dynamic turbine actuation. Parameters which have been studied are yaw, rotor speed and combinations hereof. The measured wake deflections for static yaw cases are in agreement with previously reported research implying general applicability of the HAWKS platform for the purpose of manipulating the wake. In this presentation the general results will be introduced followed by an analysis of the wake turbulence and coherent structures when comparing static and dynamic flow cases. The outcome of such studies could ultimately support effective wind farm wake flow control strategies. Texas Emerging Technology Fund (ETF).
Serrano, Katherine; Levin, Elena; Culibrk, Brankica; Weiss, Sandra; Scammell, Ken; Boecker, Wolfgang F; Devine, Dana V
2010-01-01
BACKGROUND In high-volume processing environments, manual breakage of in-line closures can result in repetitive strain injury (RSI). Furthermore, these closures may be incorrectly opened causing shear-induced hemolysis. To overcome the variability of in-line closure use and minimize RSI, Fresenius Kabi developed a new in-line closure, the CompoFlow, with mechanical openers. STUDY DESIGN AND METHODS The consistency of the performance of the CompoFlow closure device was assessed, as was its effect on component quality. A total of 188 RBC units using CompoFlow blood bag systems and 43 using the standard bag systems were produced using the buffy coat manufacturing method. Twenty-six CompoFlow platelet (PLT) concentrates and 10 control concentrates were prepared from pools of four buffy coats. RBCs were assessed on Days 1, 21, and 42 for cellular variables and hemolysis. PLTs were assessed on Days 1, 3, and 7 for morphology, CD62P expression, glucose, lactate, and pH. A total of 308 closures were excised after processing and the apertures were measured using digital image analysis. RESULTS The use of the CompoFlow device significantly improved the mean extraction time with 0.46 ± 0.11 sec/mL for the CompoFlow units and 0.52 ± 0.13 sec/mL for the control units. The CompoFlow closures showed a highly reproducible aperture after opening (coefficient of variation, 15%) and the device always remained opened. PLT and RBC products showed acceptable storage variables with no differences between CompoFlow and control. CONCLUSIONS The CompoFlow closure devices improved the level of process control and processing time of blood component production with no negative effects on product quality. PMID:20529007
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saha, Sourav, E-mail: ssaha09@me.buet.ac.bd; Mojumder, Satyajit, E-mail: satyajit@me.buet.ac.bd; Saha, Sumon, E-mail: sumonsaha@me.buet.ac.bd
P (proportional), PI (proportional-integral), and PID (proportional-integral-derivative) controllers are popular means of controlling industrial processes. Due to superior response, accuracy, and stable performance, PID controllers are mostly used in control systems. This paper presents a mathematical model and subsequent response analysis regarding regulation of flow in mixed convection through a T-shaped open cavity by temperature dependent controllers. The T-shaped cavity has cold top and hot bottom walls, while air is flowing through the inlet at surrounding temperature. The inflow is regulated by a controlled gate which operates according to the signal received from the controller. Values of proportional gain (k{submore » p}), integral gain (k{sub i}), and derivative gain (k{sub d}) are varied to obtain the desired system response and to ensure a stable system with fastest response. At first, only P controller is used and eventually PI and finally PID control scheme is applied for controller tuning. Tuning of different controllers (P, PI, and PID) are carried out systematically based on the reference temperature which is continuously monitored at a certain location inside the cavity. It is found that PID controller performs better than P or PI controller.« less
Flow Cytometric Analysis of Presynaptic Nerve Terminals Isolated from Rats Subjected to Hypergravity
NASA Astrophysics Data System (ADS)
Borisova, Tatiana
2008-06-01
Flow cytometric studies revealed an insignificant decrease in cell size heterogeneity and cytoplasmic granularity of rat brain nerve terminals (synaptosomes) isolated from animals subjected to centrifuge-induced hypergravity as compared to control ones. The analysis of plasma membrane potential using the potentiometric optical dye rhodamine 6G showed a decrease in fluorescence intensity by 10 % at steady state level in hypergravity synaptosomes. To monitor synaptic vesicle acidification we used pH-sensitive fluorescent dye acridine orange and demonstrated a lower fluorescence intensity level at steady state (10%) after hypergravity as compared to controls. Thus, exposure to hypergravity resulted in depolarization of the synaptosomal plasma membrane and diminution in synaptic vesicle acidification that may be a cause leading to altered synaptic neurotransmission.
Aerothermodynamic heating and performance analysis of a high-lift aeromaneuvering AOTV concept
NASA Technical Reports Server (NTRS)
Menees, G. P.; Brown, K. G.; Wilson, J. F.; Davies, C. B.
1985-01-01
The thermal-control requirements for design-optimized aeromaneuvering performance are determined for space-based applications and low-earth orbit sorties involving large, multiple plane-inclination changes. The leading-edge heating analysis is the most advanced developed for hypersonic-rarefied flow over lifting surfaces at incidence. The effects of leading-edge bluntness, low-density viscous phenomena, and finite-rate flow-field chemistry and surface catalysis are accounted for. The predicted aerothermodynamic heating characteristics are correlated with thermal-control and flight-performance capabilities. The mission payload capability for delivery, retrieval, and combined operations is determined for round-trip sorties extending to polar orbits. Recommendations are given for future design refinements. The results help to identify technology issues required to develop prototype operational systems.
Transonic Flutter Suppression Control Law Design, Analysis and Wind-Tunnel Results
NASA Technical Reports Server (NTRS)
Mukhopadhyay, Vivek
1999-01-01
The benchmark active controls technology and wind tunnel test program at NASA Langley Research Center was started with the objective to investigate the nonlinear, unsteady aerodynamics and active flutter suppression of wings in transonic flow. The paper will present the flutter suppression control law design process, numerical nonlinear simulation and wind tunnel test results for the NACA 0012 benchmark active control wing model. The flutter suppression control law design processes using classical, and minimax techniques are described. A unified general formulation and solution for the minimax approach, based on the steady state differential game theory is presented. Design considerations for improving the control law robustness and digital implementation are outlined. It was shown that simple control laws when properly designed based on physical principles, can suppress flutter with limited control power even in the presence of transonic shocks and flow separation. In wind tunnel tests in air and heavy gas medium, the closed-loop flutter dynamic pressure was increased to the tunnel upper limit of 200 psf. The control law robustness and performance predictions were verified in highly nonlinear flow conditions, gain and phase perturbations, and spoiler deployment. A non-design plunge instability condition was also successfully suppressed.
Karacan, C. Özgen
2017-01-01
Coalbed methane (CBM) wells tend to produce large volumes of water, especially when there is hydraulic connectivity between coalbed and nearby formations. Cross-formational flow between producing coal and adjacent formations can have significant production and environmental implications, affecting economic viability of production from these shallow reservoirs. Such flows can also affect how much gas can be removed from a coalbed prior to mining and thus can have implications for methane control in mining as well. The aim of this paper is to investigate the impact of water flow from an external source into coalbed on production performance and also on reservoir variables including cleat porosity and relative permeability curves derived from production data analysis. A reservoir model is constructed to investigate the production performance of a CBM well when cross-formational flow is present between the coalbed and the overlying formation. Results show that cleat porosity calculated by analysis of production data can be more than one order of magnitude higher than actual cleat porosity. Due to hydraulic connectivity, water saturation within coalbed does not considerably change for a period of time, and hence, the peak of gas production is delayed. Upon depletion of the overlying formation, water saturation in coalbed quickly decreases. Rapid decline of water saturation in the coalbed corresponds to a sharp increase in gas production. As an important consequence, when cross-flow is present, gas and water relative permeability curves, derived from simulated production data, have distinctive features compared to the initial relative permeability curves. In the case of cross-flow, signatures of relative permeability curves are concave downward and low gas permeability for a range of water saturation, followed by rapid increase afterward for water and gas, respectively. The results and analyses presented in this work can help to assess the impact of cross-formational flow on reservoir variables derived from production data analysis and can also contribute to identifying hydraulic connectivity between coalbed and adjacent formations. PMID:28626492
Reduced order modeling and active flow control of an inlet duct
NASA Astrophysics Data System (ADS)
Ge, Xiaoqing
Many aerodynamic applications require the modeling of compressible flows in or around a body, e.g., the design of aircraft, inlet or exhaust duct, wind turbines, or tall buildings. Traditional methods use wind tunnel experiments and computational fluid dynamics (CFD) to investigate the spatial and temporal distribution of the flows. Although they provide a great deal of insight into the essential characteristics of the flow field, they are not suitable for control analysis and design due to the high physical/computational cost. Many model reduction methods have been studied to reduce the complexity of the flow model. There are two main approaches: linearization based input/output modeling and proper orthogonal decomposition (POD) based model reduction. The former captures mostly the local behavior near a steady state, which is suitable to model laminar flow dynamics. The latter obtains a reduced order model by projecting the governing equation onto an "optimal" subspace and is able to model complex nonlinear flow phenomena. In this research we investigate various model reduction approaches and compare them in flow modeling and control design. We propose an integrated model-based control methodology and apply it to the reduced order modeling and active flow control of compressible flows within a very aggressive (length to exit diameter ratio, L/D, of 1.5) inlet duct and its upstream contraction section. The approach systematically applies reduced order modeling, estimator design, sensor placement and control design to improve the aerodynamic performance. The main contribution of this work is the development of a hybrid model reduction approach that attempts to combine the best features of input/output model identification and POD method. We first identify a linear input/output model by using a subspace algorithm. We next project the difference between CFD response and the identified model response onto a set of POD basis. This trajectory is fit to a nonlinear dynamical model to augment the linear input/output model. Thus, the full system is decomposed into a dominant linear subsystem and a low order nonlinear subsystem. The hybrid model is then used for control design and compared with other modeling methods in CFD simulations. Numerical results indicate that the hybrid model accurately predicts the nonlinear behavior of the flow for a 2D diffuser contraction section model. It also performs best in terms of feedback control design and learning control. Since some outputs of interest (e.g., the AIP pressure recovery) are not observable during normal operations, static and dynamic estimators are designed to recreate the information from available sensor measurements. The latter also provides a state estimation for feedback controller. Based on the reduced order models and estimators, different controllers are designed to improve the aerodynamic performance of the contraction section and inlet duct. The integrated control methodology is evaluated with CFD simulations. Numerical results demonstrate the feasibility and efficacy of the active flow control based on reduced order models. Our reduced order models not only generate a good approximation of the nonlinear flow dynamics over a wide input range, but also help to design controllers that significantly improve the flow response. The tools developed for model reduction, estimator and control design can also be applied to wind tunnel experiment.
NASA Technical Reports Server (NTRS)
Ramachandran, N.
2005-01-01
Static and dynamic magnetic fields have been used to control convection in many materials processing applications. In most of the applications, convection control (damping or enhancement) is achieved through the Lorentz force that can be tailored to counteract/assist dominant system flows. This technique has been successfully applied to liquids that are electrically conducting, such as high temperature melts of semiconductors, metals and alloys, etc. In liquids with low electrical conductivity such as ionic solutions of salts in water, the Lorentz force is weak and hence not very effective and alternate ways of flow control are necessary. If the salt in solution is paramagnetic then the variation of magnetic susceptibility with temperature and/or concentration can be used for flow control. For thermal buoyancy driven flows this can be accomplished in a temperature range below the Curie point of the salt. The magnetic force is proportional to the magnetic susceptibility and the product of the magnetic field and its gradient. By suitably positioning the experiment cell in the magnet, system flows can be assisted or countered, as desired. A similar approach can be extended to diamagnetic substances and fluids but the required magnetic force is considerably larger than that required for paramagnetic substances. The presentation will provide an overview of work to date on a NASA fluid physics sponsored project that aims to test the hypothesis of convective flow control using strong magnetic fields in protein crystal growth. The objective is to understand the nature of the various forces that come into play, delineate causative factors for fluid flow and to quantify them through experiments, analysis, and numerical modeling. The seminar will report specifically on the experimental results using paramagnetic salts and solutions in magnetic fields and compare them to analytical predictions. Applications of the concept to protein crystallization studies will be discussed. The use of strong magnetic fields for terrestrially simulating variable gravity environments and applications supporting the NASA Exploration Initiative will also be briefly discussed.
Flow and Jamming of Granular Materials in a Two-dimensional Hopper
NASA Astrophysics Data System (ADS)
Tang, Junyao
Flow in a hopper is both a fertile testing ground for understanding fundamental granular flow rheology and industrially highly relevant. Despite increasing research efforts in this area, a comprehensive physical theory is still lacking for both jamming and flow of granular materials in a hopper. In this work, I have designed a two dimensional (2D) hopper experiment using photoelastic particles (particles' shape: disk or ellipse), with the goal to build a bridge between macroscopic phenomenon of hopper flow and microscopic particle-scale dynamics. Through synchronized data of particle tracking and stress distributions in particles, I have shown differences between my data of the time-averaged velocity/stress profile of 2D hopper flow with previous theoretical predictions. I have also demonstrated the importance of a mechanical stable arch near the opening on controlling hopper flow rheology and suggested a heuristic phase diagram for the hopper flow/jamming transition. Another part of this thesis work is focused on studying the impact of particle shape of particles on hopper flow. By comparing particle-tracking and photoelastic data for ellipses and disks at the appropriate length scale, I have demonstrated an important role for the rotational freedom of elliptical particles in controlling flow rheology through particle tracking and stress analysis. This work has been supported by International Fine Particle Research Institute (IFPRI) .
Control volume based hydrocephalus research; a phantom study
NASA Astrophysics Data System (ADS)
Cohen, Benjamin; Voorhees, Abram; Madsen, Joseph; Wei, Timothy
2009-11-01
Hydrocephalus is a complex spectrum of neurophysiological disorders involving perturbation of the intracranial contents; primarily increased intraventricular cerebrospinal fluid (CSF) volume and intracranial pressure are observed. CSF dynamics are highly coupled to the cerebral blood flows and pressures as well as the mechanical properties of the brain. Hydrocephalus, as such, is a very complex biological problem. We propose integral control volume analysis as a method of tracking these important interactions using mass and momentum conservation principles. As a first step in applying this methodology in humans, an in vitro phantom is used as a simplified model of the intracranial space. The phantom's design consists of a rigid container filled with a compressible gel. Within the gel a hollow spherical cavity represents the ventricular system and a cylindrical passage represents the spinal canal. A computer controlled piston pump supplies sinusoidal volume fluctuations into and out of the flow phantom. MRI is used to measure fluid velocity and volume change as functions of time. Independent pressure measurements and momentum flow rate measurements are used to calibrate the MRI data. These data are used as a framework for future work with live patients and normal individuals. Flow and pressure measurements on the flow phantom will be presented through the control volume framework.
Seminar on Understanding Digital Control and Analysis in Vibration Test Systems
NASA Technical Reports Server (NTRS)
1975-01-01
The advantages of the digital methods over the analog vibration methods are demonstrated. The following topics are covered: (1) methods of computer-controlled random vibration and reverberation acoustic testing, (2) methods of computer-controlled sinewave vibration testing, and (3) methods of computer-controlled shock testing. General algorithms are described in the form of block diagrams and flow diagrams.
NASA Technical Reports Server (NTRS)
Sellers, J. F.
1973-01-01
The transient performance of two concepts for control of vertical takeoff aircraft remote lift fans is analyzed and discussed. Both concepts employ flow transfer between pairs of lift fans located in separate parts of the aircraft in order to obtain attitude control moments for hover and low-speed flight. The results presented are from a digital computer, dynamic analysis of the YJ97/LF460 remote drive turbofan. The transient responses of the two systems are presented for step demands in lift and moment.
Loke, P'ng; Favre, David; Hunt, Peter W; Leung, Jacqueline M; Kanwar, Bittoo; Martin, Jeffrey N; Deeks, Steven G; McCune, Joseph M
2010-04-15
HIV "controllers" are persons infected with human immunodeficiency virus, type I (HIV) who maintain long-term control of viremia without antiviral therapy and who usually do not develop the acquired immune deficiency syndrome (AIDS). In this study, we have correlated results from polychromatic flow cytometry and oligonucleotide expression arrays to characterize the mucosal immune responses of these subjects in relation to untreated HIV(+) persons with high viral loads and progressive disease ("noncontrollers"). Paired peripheral blood and rectosigmoid biopsies were analyzed from 9 controllers and 11 noncontrollers. Several cellular immune parameters were found to be concordant between the 2 compartments. Compared with noncontrollers, the mucosal tissues of controllers had similar levels of effector T cells and fewer regulatory T cells (Tregs). Using principal component analysis to correlate immunologic parameters with gene expression profiles, transcripts were identified that accurately distinguished between controllers and noncontrollers. Direct 2-way comparison also revealed genes that are significantly different in their expression between controllers and noncontrollers, all of which had reduced expression in controllers. In addition to providing an approach that integrates flow cytometry datasets with transcriptional profiling analysis, these results underscore the importance of the sustained inflammatory response that attends progressive HIV disease.
Primary-Side Power Flow Control of Wireless Power Transfer for Electric Vehicle Charging
Miller, John M.; Onar, Omer C.; Chinthavali, Madhu
2014-12-22
Various noncontacting methods of plug-in electric vehicle charging are either under development or now deployed as aftermarket options in the light-duty automotive market. Wireless power transfer (WPT) is now the accepted term for wireless charging and is used synonymously for inductive power transfer and magnetic resonance coupling. WPT technology is in its infancy; standardization is lacking, especially on interoperability, center frequency selection, magnetic fringe field suppression, and the methods employed for power flow regulation. This paper proposes a new analysis concept for power flow in WPT in which the primary provides frequency selection and the tuned secondary, with its resemblancemore » to a power transmission network having a reactive power voltage control, is analyzed as a transmission network. Analysis is supported with experimental data taken from Oak Ridge National Laboratory s WPT apparatus. Lastly, this paper also provides an experimental evidence for frequency selection, fringe field assessment, and the need for low-latency communications in the feedback path.« less
Kamagata, Koji; Motoi, Yumiko; Hori, Masaaki; Suzuki, Michimasa; Nakanishi, Atsushi; Shimoji, Keigo; Kyougoku, Shinsuke; Kuwatsuru, Ryohei; Sasai, Keisuke; Abe, Osamu; Mizuno, Yoshikuni; Aoki, Shigeki; Hattori, Nobutaka
2011-04-01
To determine whether quantitative arterial spin labeling (ASL) can be used to evaluate regional cerebral blood flow in Parkinson's disease with dementia (PDD) and without dementia (PD). Thirty-five PD patients, 11 PDD patients, and 35 normal controls were scanned by using a quantitative ASL method with a 3 Tesla MRI unit. Regional cerebral blood flow was compared in the posterior cortex using region-of-interest analysis. PD and PDD patients showed lower regional cerebral blood flow in the posterior cortex than normal controls (P = 0.002 and P = 0.001, respectively, analysis of variance with a Bonferroni post hoc test). This is the first study to detect hypoperfusion in the posterior cortex in PD and PDD patients using ASL perfusion MRI. Because ASL perfusion MRI is completely noninvasive and can, therefore, safely be used for repeated assessments, this method can be used to monitor treatment effects or disease progression in PD. Copyright © 2011 Wiley-Liss, Inc.
2011-01-01
normalized to parallel controls. Flow Cytometry and Confocal Microscopy Upon exposure to 10-ns EP, aliquots of the cellular suspension were added to a tube...Survival data was processed and plotted using GrapherH software (Golden Software, Golden, Colorado). Flow cytometry results were processed in C6 software...Accuri Cytometers, Inc., Ann Arbor, MI) and FCSExpress software (DeNovo Software, Los Angeles, CA). Final analysis and presentation of flow cytometry
Progress in fuel systems to meet new fuel economy and emissions standards
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-12-31
This publication includes information describing the latest developments within the automotive industry on fuel system hardware and control strategies. Contents include: Slow heating process of a heated pintle-type gasoline fuel injector; Mixture preparation measurements; Study of fuel flow rate change in injector for methanol fueled S.I. engine; Flow and structural analysis for fuel pressure regulator performance; A new method to analyze fuel behavior in a spark ignition engine; Throttle body at engine idle -- tolerance effect on flow rate; and more.
1994-10-10
G . Pawlal4 L. Arm, 11:30 Measuremtents of a turbulent patch in a rotating, 11:30 Constricted flows from the Pacific to the Indian ilnearly stratified...flow through a channel with an low-Reynolds-number convective boundary layer - underwater sill - 157 198 Z. Zhu, 6. A Lawrence G . N. Colemnan, J. H...vortex 12:15 Hydraulic control analysis of an integrated gravity interactions in stably stratified homogeneous current model - 134 turbulence - 246 ( G
Robust Fixed-Structure Control
1994-10-30
Deterministic Foundation for Statistical Energy Analysis ," J. Sound Vibr., to appear. 1.96 D. S. Bernstein and S. P. Bhat, "Lyapunov Stability, Semistability...S. Bernstein, "Power Flow, Energy Balance, and Statistical Energy Analysis for Large Scale, Interconnected Systems," Proc. Amer. Contr. Conf., pp
NASA Astrophysics Data System (ADS)
Sahu, Prakash Kumar; Pal, Sukhomay; Pal, Surjya K.
2017-07-01
This research investigates the effects of Ni, Ti, and Zn foil as interlayer, inserted between the faying edges of Al and Cu plates, for controlled intermetallic compound (IMC) formation. The weld tensile strength with Ti and Zn as interlayer is superior to Al base metal strength. This is due to controlled flow of IMCs by diffused Ti interlayer and thin, continuous, and uniform IMC formation in the case of Zn interlayer. Improved flexural stress was observed with interlayer. Weld microhardness varied with different interlayers and purely depends on IMCs present at the indentation point, flow of IMCs, and interlayer hardness. Specimens with interlayer failed at the interface of the nugget and thermomechanical-affected zone (TMAZ) with complete and broken three-dimensional (3-D) grains, indicating transgranular fracture. Phase analysis revealed that Al/Cu IMCs are impeded by Ni and Ti interlayer. The minor binary and ternary IMC phases form adjacent to the interlayer due to diffusion of the material with Al/Cu. Line scan and elemental mapping indicate thin, continuous, and uniform IMCs with enhanced weld metallurgical and mechanical properties for the joints with Zn interlayer. Macrostructural analysis revealed IMC flow variations with and without interlayer. Variation in grain size at different zones is also observed for different interlayers.
STOL landing thrust: Reverser jet flowfields
NASA Technical Reports Server (NTRS)
Kotansky, D. R.; Glaze, L. W.
1987-01-01
Analysis tools and modeling concepts for jet flow fields encountered upon use of thrust reversers for high performance military aircraft are described. A semi-empirical model of the reverser ground wall jet interaction with the uniform cross flow due to aircraft forward velocity is described. This ground interaction model is used to demonstrate exhaust gas ingestion conditions. The effects of control of exhaust jet vector angle, lateral splay, and moving versus fixed ground simulation are discussed. The Adler/Baron jet-in-cross flow model is used in conjunction with three dimensional panel methods to investigate the upper surface jet induced flow field.
A Continuous-Flow Polymerase Chain Reaction Microchip With Regional Velocity Control
Li, Shifeng; Fozdar, David Y.; Ali, Mehnaaz F.; Li, Hao; Shao, Dongbing; Vykoukal, Daynene M.; Vykoukal, Jody; Floriano, Pierre N.; Olsen, Michael; McDevitt, John T.; Gascoyne, Peter R.C.; Chen, Shaochen
2009-01-01
This paper presents a continuous-flow polymerase chain reaction (PCR) microchip with a serpentine microchannel of varying width for “regional velocity control.” Varying the channel width by incorporating expanding and contracting conduits made it possible to control DNA sample velocities for the optimization of the exposure times of the sample to each temperature phase while minimizing the transitional periods during temperature transitions. A finite element analysis (FEA) and semi-analytical heat transfer model was used to determine the distances between the three heating assemblies that are responsible for creating the denaturation (96 °C), hybridization (60 °C), and extension (72 °C) temperature zones within the microchip. Predictions from the thermal FEA and semi-analytical model were compared with temperature measurements obtained from an infrared (IR) camera. Flow-field FEAs were also performed to predict the velocity distributions in the regions of the expanding and contracting conduits to study the effects of the microchannel geometry on flow recirculation and bubble nucleation. The flow fields were empirically studied using micro particle image velocimetry (μ-PIV) to validate the flow-field FEA’s and to determine experimental velocities in each of the regions of different width. Successful amplification of a 90 base pair (bp) bacillus anthracis DNA fragment was achieved. PMID:19829760
NASA Astrophysics Data System (ADS)
Mettot, Clément; Sipp, Denis; Bézard, Hervé
2014-04-01
This article presents a quasi-laminar stability approach to identify in high-Reynolds number flows the dominant low-frequencies and to design passive control means to shift these frequencies. The approach is based on a global linear stability analysis of mean-flows, which correspond to the time-average of the unsteady flows. Contrary to the previous work by Meliga et al. ["Sensitivity of 2-D turbulent flow past a D-shaped cylinder using global stability," Phys. Fluids 24, 061701 (2012)], we use the linearized Navier-Stokes equations based solely on the molecular viscosity (leaving aside any turbulence model and any eddy viscosity) to extract the least stable direct and adjoint global modes of the flow. Then, we compute the frequency sensitivity maps of these modes, so as to predict before hand where a small control cylinder optimally shifts the frequency of the flow. In the case of the D-shaped cylinder studied by Parezanović and Cadot [J. Fluid Mech. 693, 115 (2012)], we show that the present approach well captures the frequency of the flow and recovers accurately the frequency control maps obtained experimentally. The results are close to those already obtained by Meliga et al., who used a more complex approach in which turbulence models played a central role. The present approach is simpler and may be applied to a broader range of flows since it is tractable as soon as mean-flows — which can be obtained either numerically from simulations (Direct Numerical Simulation (DNS), Large Eddy Simulation (LES), unsteady Reynolds-Averaged-Navier-Stokes (RANS), steady RANS) or from experimental measurements (Particle Image Velocimetry - PIV) — are available. We also discuss how the influence of the control cylinder on the mean-flow may be more accurately predicted by determining an eddy-viscosity from numerical simulations or experimental measurements. From a technical point of view, we finally show how an existing compressible numerical simulation code may be used in a black-box manner to extract the global modes and sensitivity maps.
Sensitivity analysis for the control of supersonic impinging jet noise
NASA Astrophysics Data System (ADS)
Nichols, Joseph W.; Hildebrand, Nathaniel
2016-11-01
The dynamics of a supersonic jet that impinges perpendicularly on a flat plate depend on complex interactions between fluid turbulence, shock waves, and acoustics. Strongly organized oscillations emerge, however, and they induce loud, often damaging, tones. We investigate this phenomenon using unstructured, high-fidelity Large Eddy Simulation (LES) and global stability analysis. Our flow configurations precisely match laboratory experiments with nozzle-to-wall distances of 4 and 4.5 jet diameters. We use multi-block shift-and-invert Arnoldi iteration to extract both direct and adjoint global modes that extend upstream into the nozzle. The frequency of the most unstable global mode agrees well with that of the emergent oscillations in the LES. We compute the "wavemaker" associated with this mode by multiplying it by its corresponding adjoint mode. The wavemaker shows that this instability is most sensitive to changes in the base flow slightly downstream of the nozzle exit. By modifying the base flow in this region, we then demonstrate that the flow can indeed be stabilized. This explains the success of microjets as an effective noise control measure when they are positioned around the nozzle lip. Computational resources were provided by the Argonne Leadership Computing Facility.
NASA Technical Reports Server (NTRS)
Ferrera, J. D.
1972-01-01
The purpose of this report is to define and program the transient pneumatic flow equations necessary to determine, for a given set of conditions (geometry, pressures, temperatures, valve on time, etc.), the total nitrogen impulse and mass flow per pulse for the single pulsing of a Mariner type reaction control assembly valve. The rates of opening and closing of the valves are modeled, and electrical pulse durations from 20 to 100 ms are investigated. In developing the transient flow analysis, maximum use was made of the steady-state analysis. The impulse results are also compared to an equivalent square-wave impulse for both the Mariner Mars 1971 (MM'71) and Mariner Mars 1964 (MM'64) systems. It is demonstrated that, whereas in the MM'64 system, the actual impulse was as much as 56 percent higher than an assumed impulse (which is the product of the steady-state thrust and value on time i.e., the square wave), in the MM'71 system, these two values were in error in the same direction by only approximately 4 percent because of the larger nozzle areas and shorter valve stroke used.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, E.R.
1983-09-01
The appendixes for the Saguaro Power Plant includes the following: receiver configuration selection report; cooperating modes and transitions; failure modes analysis; control system analysis; computer codes and simulation models; procurement package scope descriptions; responsibility matrix; solar system flow diagram component purpose list; thermal storage component and system test plans; solar steam generator tube-to-tubesheet weld analysis; pipeline listing; management control schedule; and system list and definitions.
Numerical simulations and linear stability analysis of a boundary layer developed on wavy surfaces
NASA Astrophysics Data System (ADS)
Siconolfi, Lorenzo; Camarri, Simone; Fransson, Jens H. M.
2015-11-01
The development of passive methods leading to a laminar to turbulent transition delay in a boundary layer (BL) is a topic of great interest both for applications and academic research. In literature it has been shown that a proper and stable spanwise velocity modulation can reduce the growth rate of Tollmien-Schlichting (TS) waves and delay transition. In this study, we investigate numerically the possibility of obtaining a stabilizing effect of the TS waves through the use of a spanwise sinusoidal modulation of a flat plate. This type of control has been already successfully investigated experimentally. An extensive set of direct numerical simulations is carried out to study the evolution of a BL flow developed on wavy surfaces with different geometric characteristics, and the results will be presented here. Moreover, since this configuration is characterized by a slowly-varying flow field in streamwise direction, a local stability analysis is applied to define the neutral stability curves for the BL flow controlled by this type of wall modifications. These results give the possibility of investigating this control strategy and understanding the effect of the free parameters on the stabilization mechanism.
NASA Technical Reports Server (NTRS)
1976-01-01
The following areas related to the final definition and preliminary design study of the initial atmospheric cloud physics laboratory (ACPL) were covered: (1) proposal organization, personnel, schedule, and project management, (2) proposed configurations, (3) study objectives, (4) ACPL experiment program listing and description, (5) mission/flight flexibility and modularity/commonality, (6) study plan, and (7) description of following tasks: requirement analysis and definition task flow, systems analysis and trade studies, subsystem analysis and trade studies, specifications and interface control documents, preliminary design task flow, work breakdown structure, programmatic analysis and planning, and project costs. Finally, an overview of the scientific requirements was presented.
NASA Technical Reports Server (NTRS)
Chung, T. J. (Editor); Karr, Gerald R. (Editor)
1989-01-01
Recent advances in computational fluid dynamics are examined in reviews and reports, with an emphasis on finite-element methods. Sections are devoted to adaptive meshes, atmospheric dynamics, combustion, compressible flows, control-volume finite elements, crystal growth, domain decomposition, EM-field problems, FDM/FEM, and fluid-structure interactions. Consideration is given to free-boundary problems with heat transfer, free surface flow, geophysical flow problems, heat and mass transfer, high-speed flow, incompressible flow, inverse design methods, MHD problems, the mathematics of finite elements, and mesh generation. Also discussed are mixed finite elements, multigrid methods, non-Newtonian fluids, numerical dissipation, parallel vector processing, reservoir simulation, seepage, shallow-water problems, spectral methods, supercomputer architectures, three-dimensional problems, and turbulent flows.
Analysis of internal flow of J85-13 multistage compressor
NASA Technical Reports Server (NTRS)
Hager, R. D.
1977-01-01
Interstage data recorded on a J85-13 engine were used to analyze the internal flow of the compressor. Measured pressures and temperatures were used as input to a streamline analysis program to calculate the velocity diagrams at the inlet and outlet of each blade row. From the velocity diagrams and blade geometry, selected blade-element performance parameters were calculated. From the detailed analysis it is concluded that the compressor is probably hub critical (stall initiates at the hub) in the latter stages for the design speed conditions. As a result, the casing treatment over the blade tips has little or no effect on stall margin at design speed. Radial inlet distortion did not appear to change the flow in the stages that control stall because of the rapid attenuation of the distortion within the compressor.
Study of flow control by localized volume heating in hypersonic boundary layers
NASA Astrophysics Data System (ADS)
Keller, M. A.; Kloker, M. J.; Kirilovskiy, S. V.; Polivanov, P. A.; Sidorenko, A. A.; Maslov, A. A.
2014-12-01
Boundary-layer flow control is a prerequisite for a safe and efficient operation of future hypersonic transport systems. Here, the influence of an electric discharge—modeled by a heat-source term in the energy equation—on laminar boundary-layer flows over a flat plate with zero pressure gradient at Mach 3, 5, and 7 is investigated numerically. The aim was to appraise the potential of electro-gasdynamic devices for an application as turbulence generators in the super- and hypersonic flow regime. The results with localized heat-source elements in boundary layers are compared to cases with roughness elements serving as classical passive trips. The numerical simulations are performed using the commercial code ANSYS FLUENT (by ITAM) and the high-order finite-difference DNS code NS3D (by IAG), the latter allowing for the detailed analysis of laminar flow instability. For the investigated setups with steady heating, transition to turbulence is not observed, due to the Reynolds-number lowering effect of heating.
A revised model of fluid transport optimization in Physarum polycephalum.
Bonifaci, Vincenzo
2017-02-01
Optimization of fluid transport in the slime mold Physarum polycephalum has been the subject of several modeling efforts in recent literature. Existing models assume that the tube adaptation mechanism in P. polycephalum's tubular network is controlled by the sheer amount of fluid flow through the tubes. We put forward the hypothesis that the controlling variable may instead be the flow's pressure gradient along the tube. We carry out the stability analysis of such a revised mathematical model for a parallel-edge network, proving that the revised model supports the global flow-optimizing behavior of the slime mold for a substantially wider class of response functions compared to previous models. Simulations also suggest that the same conclusion may be valid for arbitrary network topologies.
Flowfield analysis for successive oblique shock wave-turbulent boundary layer interactions
NASA Technical Reports Server (NTRS)
Sun, C. C.; Childs, M. E.
1976-01-01
A computation procedure is described for predicting the flowfields which develop when successive interactions between oblique shock waves and a turbulent boundary layer occur. Such interactions may occur, for example, in engine inlets for supersonic aircraft. Computations are carried out for axisymmetric internal flows at M 3.82 and 2.82. The effect of boundary layer bleed is considered for the M 2.82 flow. A control volume analysis is used to predict changes in the flow field across the interactions. Two bleed flow models have been considered. A turbulent boundary layer program is used to compute changes in the boundary layer between the interactions. The results given are for flows with two shock wave interactions and for bleed at the second interaction site. In principle the method described may be extended to account for additional interactions. The predicted results are compared with measured results and are shown to be in good agreement when the bleed flow rate is low (on the order of 3% of the boundary layer mass flow), or when there is no bleed. As the bleed flow rate is increased, differences between the predicted and measured results become larger. Shortcomings of the bleed flow models at higher bleed flow rates are discussed.
Lee, Jing-Nang; Lin, Tsung-Min; Chen, Chien-Chih
2014-01-01
This study constructs an energy based model of thermal system for controlled temperature and humidity air conditioning system, and introduces the influence of the mass flow rate, heater and humidifier for proposed control criteria to achieve the controlled temperature and humidity of air conditioning system. Then, the reliability of proposed thermal system model is established by both MATLAB dynamic simulation and the literature validation. Finally, the PID control strategy is applied for controlling the air mass flow rate, humidifying capacity, and heating, capacity. The simulation results show that the temperature and humidity are stable at 541 sec, the disturbance of temperature is only 0.14 °C, 0006 kg(w)/kg(da) in steady-state error of humidity ratio, and the error rate is only 7.5%. The results prove that the proposed system is an effective controlled temperature and humidity of an air conditioning system.
Lee, Jing-Nang; Lin, Tsung-Min
2014-01-01
This study constructs an energy based model of thermal system for controlled temperature and humidity air conditioning system, and introduces the influence of the mass flow rate, heater and humidifier for proposed control criteria to achieve the controlled temperature and humidity of air conditioning system. Then, the reliability of proposed thermal system model is established by both MATLAB dynamic simulation and the literature validation. Finally, the PID control strategy is applied for controlling the air mass flow rate, humidifying capacity, and heating, capacity. The simulation results show that the temperature and humidity are stable at 541 sec, the disturbance of temperature is only 0.14°C, 0006 kgw/kgda in steady-state error of humidity ratio, and the error rate is only 7.5%. The results prove that the proposed system is an effective controlled temperature and humidity of an air conditioning system. PMID:25250390
Geometric flow control of shear bands by suppression of viscous sliding
NASA Astrophysics Data System (ADS)
Sagapuram, Dinakar; Viswanathan, Koushik; Mahato, Anirban; Sundaram, Narayan K.; M'Saoubi, Rachid; Trumble, Kevin P.; Chandrasekar, Srinivasan
2016-08-01
Shear banding is a plastic flow instability with highly undesirable consequences for metals processing. While band characteristics have been well studied, general methods to control shear bands are presently lacking. Here, we use high-speed imaging and micro-marker analysis of flow in cutting to reveal the common fundamental mechanism underlying shear banding in metals. The flow unfolds in two distinct phases: an initiation phase followed by a viscous sliding phase in which most of the straining occurs. We show that the second sliding phase is well described by a simple model of two identical fluids being sheared across their interface. The equivalent shear band viscosity computed by fitting the model to experimental displacement profiles is very close in value to typical liquid metal viscosities. The observation of similar displacement profiles across different metals shows that specific microstructure details do not affect the second phase. This also suggests that the principal role of the initiation phase is to generate a weak interface that is susceptible to localized deformation. Importantly, by constraining the sliding phase, we demonstrate a material-agnostic method-passive geometric flow control-that effects complete band suppression in systems which otherwise fail via shear banding.
NASA Astrophysics Data System (ADS)
Huang, Yadong; Zhou, Benmou; Tang, Zhaolie; Zhang, Fei
2017-07-01
In recent investigations of the flow over a square leading-edge flat plate, elliptic instability and transient growth of perturbations are proposed to explain the turbulent transition mechanism of the separating and reattaching flow reported in early experimental visualizations. An original transition scenario as well as a transition control method is presented by a detailed numerical study in this paper. The transient growth of perturbations in the separation bubble induces the primary instability that causes the 2D unsteady flow consisting of Kelvin-Helmholtz (KH) vortices. The pairing instability of the KH vortices induces the subharmonic secondary instability, and then resonance transition occurs. The streamwise Lorentz force as the control input is applied in the recirculation region where the separation bubble generates. The maximum energy amplification magnitude of perturbations takes a linear attenuation with the interaction number; thus, the primary instability is reduced under control. The interaction number represents the strength of the streamwise Lorentz force relative to the inertial force of the fluid. The reduced primary instability is not strong enough to induce the secondary instability, so the flow is globally stable under control. Three-dimensional direct numerical simulation confirms the results of the linear stability analysis. Although the growth rate of the convectively unstable secondary instability is limited by the flow field scale, the feedback loop of the energy transfer promotes the resonance transition. However, as the separation bubble scale is reduced and the feedback loop is broken by the streamwise Lorentz force, the three-dimensional transition is suppressed and a skin-friction drag reduction is achieved.
Control-structure ratings on the Chicago Sanitary and Ship Canal near Lockport, Illinois
Straub, Timothy D.; Johnson, Kevin K.; Hortness, Jon E.; Duncker, James J.
2012-01-01
The U.S. Army Corps of Engineers and the Metropolitan Water Reclamation District of Greater Chicago regulate flows through control structures along the Lake Michigan lakefront and the Chicago Sanitary and Ship Canal (CSSC) for Lake Michigan diversion accounting, flood control, sanitary, and navigation purposes. This report documents the measurement and computation of flow through the Lockport Controlling Works (LCW) and the Lockport Powerhouse. This analysis aided in evaluation of the ratings at both structures, and the development of new ratings at the controlling works. The LCW structure consists of seven 30-feet (ft) wide sluice gates and is used to divert water from the CSSC and into the Des Plaines River. The flow regimes for the sluice gate included both free and submerged weir. Forty and 491 flow values from U.S. Geological Survey streamflow-gaging stations were used to develop equations describing free- and submerged-weir flow, respectively, through the sluice gates. The equations were developed for canal headwater elevations ranging from -7.0 to -10.5 ft Chicago City Datum (CCD), and tailwater (Des Plaines River at Lockport) to headwater (CSSC-LCW-Base) ratios ranging from 0.31 to 0.66. The Lockport Powerhouse structure consists of nine 9-ft wide by 14-ft high sluice gates and two 10-ft diameter turbines. Both tailwater and no-tailwater effect flow regimes occurred during nine measurements. Also, the canal headwater elevations ranged from -2.74 to -8.45 ft CCD, and the gates were configured six different ways during the measurements.
Sedimentary gravity flows from subaerial fan-deltas in Loreto Bay, Baja California Sur, Mexico
NASA Astrophysics Data System (ADS)
Navarro-Lozano, José O.; Nava-Sánchez, Enrique H.; Godínez-Orta, Lucio
2010-05-01
Fan-deltas from Loreto Bay show recent evidences of sedimentary gravity flows as a result from catastrophic events during hurricane rainfalls. The knowledge of hydrological characteristics of these flows is important for understanding the effects of storms on fan-deltas geomorphology in this region, as well as for the urban developing planning of the city of Loreto in order to avoid hazardous zones. The analysis of precipitation and hurricane tracks data for the period 1945 to 2009 indicates that hurricanes have caused catastrophic floods every 20 years. Stratigraphy from the channel incision shows a sequence of stream flow and debris flow controlled by changes in the competence and capacity of the stream, which are associated to the gentle slope (<2 °) of the fan-deltas. However fans from the north of the bay (Arce and Gúa) show deposits of debris flows associated to catastrophic floods, which have caused the incision channel to drift towards the southern part of the fans, while flows from Las Parras fan-delta, from the middle of the bay, are dominated by stream flows. These differences in the type of the flows are controlled by lithology, shape and size of the drainage basin, and slope of the transit zone in the feeder channel.
Ribeiro, David S M; Prior, João A V; Taveira, Christian J M; Mendes, José M A F S; Santos, João L M
2011-06-15
In this work, and for the first time, it was developed an automatic and fast screening miniaturized flow system for the toxicological control of glibenclamide in beverages, with application in forensic laboratory investigations, and also, for the chemical control of commercially available pharmaceutical formulations. The automatic system exploited the multipumping flow (MPFS) concept and allowed the implementation of a new glibenclamide determination method based on the fluorometric monitoring of the drug in acidic medium (λ(ex)=301 nm; λ(em)=404 nm), in the presence of an anionic surfactant (SDS), promoting an organized micellar medium to enhance the fluorometric measurements. The developed approach assured good recoveries in the analysis of five spiked alcoholic beverages. Additionally, a good agreement was verified when comparing the results obtained in the determination of glibenclamide in five commercial pharmaceutical formulations by the proposed method and by the pharmacopoeia reference procedure. Copyright © 2011 Elsevier B.V. All rights reserved.
Analysis of DC control in double-inlet GM type pulse tube refrigerators for detectors
NASA Astrophysics Data System (ADS)
Du, B. Y.
2016-10-01
Pulse tube refrigerators have demonstrated many advantages with respect to temperature stability, vibration, reliability and lifetime among cryo-coolers for detectors. Double-inlet type pulse tube refrigerators are popular in GM type pulse tube refrigerators. The single double-inlet valve may introduce DC flow in refrigerator, which deteriorates the performance of pulse tube refrigerator. One new type of DC control mode is introduced in this paper. Two parallel-placed needle valves with opposite direction named double-valve configuration, instead of single double-inlet valve, are used in our experiment to reduce the DC flow. With two double-inlet operating, the lowest cold end temperature of 18.1K and a coolant of 1.2W@20K have been obtained. It has proved that this method is useful for controlling DC flow of the pulse tube refrigerators, which is very important to understand the characters of pulse tube refrigerators for detectors.
NASA Astrophysics Data System (ADS)
Li, Shu-Bin; Cao, Dan-Ni; Dang, Wen-Xiu; Zhang, Lin
As a new cross-discipline, the complexity science has penetrated into every field of economy and society. With the arrival of big data, the research of the complexity science has reached its summit again. In recent years, it offers a new perspective for traffic control by using complex networks theory. The interaction course of various kinds of information in traffic system forms a huge complex system. A new mesoscopic traffic flow model is improved with variable speed limit (VSL), and the simulation process is designed, which is based on the complex networks theory combined with the proposed model. This paper studies effect of VSL on the dynamic traffic flow, and then analyzes the optimal control strategy of VSL in different network topologies. The conclusion of this research is meaningful to put forward some reasonable transportation plan and develop effective traffic management and control measures to help the department of traffic management.
Theoretical prediction of airplane stability derivatives at subcritical speeds
NASA Technical Reports Server (NTRS)
Tulinius, J.; Clever, W.; Nieman, A.; Dunn, K.; Gaither, B.
1973-01-01
The theoretical development and application is described of an analysis for predicting the major static and rotary stability derivatives for a complete airplane. The analysis utilizes potential flow theory to compute the surface flow fields and pressures on any configuration that can be synthesized from arbitrary lifting bodies and nonplanar thick lifting panels. The pressures are integrated to obtain section and total configuration loads and moments due side slip, angle of attack, pitching motion, rolling motion, yawing motion, and control surface deflection. Subcritical compressibility is accounted for by means of the Gothert similarity rule.
Flow induced vibrations in the SSME injector heads
NASA Technical Reports Server (NTRS)
Lepore, Frank A.
1991-01-01
A description is given of the flowfield in the Space Shuttle Main Engine (SSME) powerhead, the mechanisms which control flow-induced vibrations, and previous experimental work. An in-depth description is given of the development phase of the program , which includes the analysis, design, and fabrication of liquid oxygen (LOX) posts models used in the experimental phase, as well as test facilities, equipment, and procedures used. Also covered is the experimental data analysis, which includes overall steady state powerhead flowfield as well as the high frequency response of the LOX posts.
Backbone of complex networks of corporations: the flow of control.
Glattfelder, J B; Battiston, S
2009-09-01
We present a methodology to extract the backbone of complex networks based on the weight and direction of links, as well as on nontopological properties of nodes. We show how the methodology can be applied in general to networks in which mass or energy is flowing along the links. In particular, the procedure enables us to address important questions in economics, namely, how control and wealth are structured and concentrated across national markets. We report on the first cross-country investigation of ownership networks, focusing on the stock markets of 48 countries around the world. On the one hand, our analysis confirms results expected on the basis of the literature on corporate control, namely, that in Anglo-Saxon countries control tends to be dispersed among numerous shareholders. On the other hand, it also reveals that in the same countries, control is found to be highly concentrated at the global level, namely, lying in the hands of very few important shareholders. Interestingly, the exact opposite is observed for European countries. These results have previously not been reported as they are not observable without the kind of network analysis developed here.
Backbone of complex networks of corporations: The flow of control
NASA Astrophysics Data System (ADS)
Glattfelder, J. B.; Battiston, S.
2009-09-01
We present a methodology to extract the backbone of complex networks based on the weight and direction of links, as well as on nontopological properties of nodes. We show how the methodology can be applied in general to networks in which mass or energy is flowing along the links. In particular, the procedure enables us to address important questions in economics, namely, how control and wealth are structured and concentrated across national markets. We report on the first cross-country investigation of ownership networks, focusing on the stock markets of 48 countries around the world. On the one hand, our analysis confirms results expected on the basis of the literature on corporate control, namely, that in Anglo-Saxon countries control tends to be dispersed among numerous shareholders. On the other hand, it also reveals that in the same countries, control is found to be highly concentrated at the global level, namely, lying in the hands of very few important shareholders. Interestingly, the exact opposite is observed for European countries. These results have previously not been reported as they are not observable without the kind of network analysis developed here.
Numerical Studies of a Fluidic Diverter for Flow Control
NASA Technical Reports Server (NTRS)
Gokoglu, Suleyman A.; Kuczmarski, Maria A.; Culley, Dennis E.; Raghu, Surya
2009-01-01
The internal flow structure in a specific fluidic diverter is studied over a range from low subsonic to sonic inlet conditions by a time-dependent numerical analysis. The understanding will aid in the development of fluidic diverters with minimum pressure losses and advanced designs of flow control actuators. The velocity, temperature and pressure fields are calculated for subsonic conditions and the self-induced oscillatory behavior of the flow is successfully predicted. The results of our numerical studies have excellent agreement with our experimental measurements of oscillation frequencies. The acoustic speed in the gaseous medium is determined to be a key factor for up to sonic conditions in governing the mechanism of initiating the oscillations as well as determining its frequency. The feasibility of employing plasma actuation with a minimal perturbation level is demonstrated in steady-state calculations to also produce oscillation frequencies of our own choosing instead of being dependent on the fixed-geometry fluidic device.
LFSTAT - Low-Flow Analysis in R
NASA Astrophysics Data System (ADS)
Koffler, Daniel; Laaha, Gregor
2013-04-01
The calculation of characteristic stream flow during dry conditions is a basic requirement for many problems in hydrology, ecohydrology and water resources management. As opposed to floods, a number of different indices are used to characterise low flows and streamflow droughts. Although these indices and methods of calculation have been well documented in the WMO Manual on Low-flow Estimation and Prediction [1], a comprehensive software was missing which enables a fast and standardized calculation of low flow statistics. We present the new software package lfstat to fill in this obvious gap. Our software package is based on the statistical open source software R, and expands it to analyse daily stream flow data records focusing on low-flows. As command-line based programs are not everyone's preference, we also offer a plug-in for the R-Commander, an easy to use graphical user interface (GUI) provided for R which is based on tcl/tk. The functionality of lfstat includes estimation methods for low-flow indices, extreme value statistics, deficit characteristics, and additional graphical methods to control the computation of complex indices and to illustrate the data. Beside the basic low flow indices, the baseflow index and recession constants can be computed. For extreme value statistics, state-of-the-art methods for L-moment based local and regional frequency analysis (RFA) are available. The tools for deficit characteristics include various pooling and threshold selection methods to support the calculation of drought duration and deficit indices. The most common graphics for low flow analysis are available, and the plots can be modified according to the user preferences. Graphics include hydrographs for different periods, flexible streamflow deficit plots, baseflow visualisation, recession diagnostic, flow duration curves as well as double mass curves, and many more. From a technical point of view, the package uses a S3-class called lfobj (low-flow objects). This objects are usual R-data-frames including date, flow, hydrological year and possibly baseflow information. Once these objects are created, analysis can be performed by mouse-click and a script can be saved to make the analysis easily reproducible. At the moment we are offering implementation of all major methods proposed in the WMO manual on Low-flow Estimation and Predictions [1]. Future plans include a dynamic low flow report in odt-file format using odf-weave which allows automatic updates if data or analysis change. We hope to offer a tool to ease and structure the analysis of stream flow data focusing on low-flows and to make analysis transparent and communicable. The package can also be used in teaching students the first steps in low-flow hydrology. The software packages can be installed from CRAN (latest stable) and R-Forge: http://r-forge.r-project.org (development version). References: [1] Gustard, Alan; Demuth, Siegfried, (eds.) Manual on Low-flow Estimation and Prediction. Geneva, Switzerland, World Meteorological Organization, (Operational Hydrology Report No. 50, WMO-No. 1029).
Flow processes in electric discharge drivers
NASA Technical Reports Server (NTRS)
Baganoff, D.
1975-01-01
The performance of an electric discharge shock tube is discussed from the point of view that the conditions at the sonic station are the primary controlling variables (likewise in comparing designs), and that the analysis of the flow on either side of the sonic station should be done separately. The importance of considering mass-flow rate in matching a given driver design to the downstream flow required for a particular shock-wave speed is stressed. It is shown that a driver based on the principle of liquid injection (of H2) is superior to one based on the Ludwieg tube, because of the greater mass-flow rate and the absence of a massive diaphragm.
Nonlinear Slewing Spacecraft Control Based on Exergy, Power Flow, and Static and Dynamic Stability
NASA Astrophysics Data System (ADS)
Robinett, Rush D.; Wilson, David G.
2009-10-01
This paper presents a new nonlinear control methodology for slewing spacecraft, which provides both necessary and sufficient conditions for stability by identifying the stability boundaries, rigid body modes, and limit cycles. Conservative Hamiltonian system concepts, which are equivalent to static stability of airplanes, are used to find and deal with the static stability boundaries: rigid body modes. The application of exergy and entropy thermodynamic concepts to the work-rate principle provides a natural partitioning through the second law of thermodynamics of power flows into exergy generator, dissipator, and storage for Hamiltonian systems that is employed to find the dynamic stability boundaries: limit cycles. This partitioning process enables the control system designer to directly evaluate and enhance the stability and performance of the system by balancing the power flowing into versus the power dissipated within the system subject to the Hamiltonian surface (power storage). Relationships are developed between exergy, power flow, static and dynamic stability, and Lyapunov analysis. The methodology is demonstrated with two illustrative examples: (1) a nonlinear oscillator with sinusoidal damping and (2) a multi-input-multi-output three-axis slewing spacecraft that employs proportional-integral-derivative tracking control with numerical simulation results.
Adding the ‘heart’ to hanging drop networks for microphysiological multi-tissue experiments†
Yazdi, Saeed Rismani; Shadmani, Amir; Bürgel, Sebastian C.; Misun, Patrick M.; Hierlemann, Andreas; Frey, Olivier
2017-01-01
Microfluidic hanging-drop networks enable culturing and analysis of 3D microtissue spheroids derived from different cell types under controlled perfusion and investigating inter-tissue communication in multi-tissue formats. In this paper we introduce a compact on-chip pumping approach for flow control in hanging-drop networks. The pump includes one pneumatic chamber located directly above one of the hanging drops and uses the surface tension at the liquid–air-interface for flow actuation. Control of the pneumatic protocol provides a wide range of unidirectional pulsatile and continuous flow profiles. With the proposed concept several independent hanging-drop networks can be operated in parallel with only one single pneumatic actuation line at high fidelity. Closed-loop medium circulation between different organ models for multi-tissue formats and multiple simultaneous assays in parallel are possible. Finally, we implemented a real-time feedback control-loop of the pump actuation based on the beating of a human iPS-derived cardiac microtissue cultured in the same system. This configuration allows for simulating physiological effects on the heart and their impact on flow circulation between the organ models on chip. PMID:26401602
A modeling technique for STOVL ejector and volume dynamics
NASA Technical Reports Server (NTRS)
Drummond, C. K.; Barankiewicz, W. S.
1990-01-01
New models for thrust augmenting ejector performance prediction and feeder duct dynamic analysis are presented and applied to a proposed Short Take Off and Vertical Landing (STOVL) aircraft configuration. Central to the analysis is the nontraditional treatment of the time-dependent volume integrals in the otherwise conventional control-volume approach. In the case of the thrust augmenting ejector, the analysis required a new relationship for transfer of kinetic energy from the primary flow to the secondary flow. Extraction of the required empirical corrections from current steady-state experimental data is discussed; a possible approach for modeling insight through Computational Fluid Dynamics (CFD) is presented.
Modal analysis of passive flow control for the turbulent wake of a generic planar space launcher
NASA Astrophysics Data System (ADS)
Loosen, S.; Statnikov, V.; Meinke, M.; Schröder, W.
2018-06-01
The turbulent wake of a generic planar space launcher equipped with two passive flow control devices is simulated using a zonal RANS-LES method and analyzed by dynamic mode decomposition (DMD). In the first approach, the effect of a classical boat tail on the wake is examined. In the second concept, a flow control device consisting of semi-circular lobes integrated at the base shoulder of the main body is used. The objective of the two concepts is to reduce the reattachment length and thus the lever arm of the forces as well as to stabilize the separated shear layer. Using a boat tail, the reattachment length can be reduced by 50%. Furthermore, it is shown that the semi-circular lobes enhance the turbulent mixing and the shear layer growth rate. Hence, they significantly reduce the reattachment length by about 75%. The semi-circular lobes partially reduce undesired low-frequency pressure fluctuations on the nozzle surface. However, this reduction is achieved at the expense of an increase of high-frequency pressure fluctuations due to intensified small turbulent scales. The DMD analysis of the velocity field reveals that the large-scale coherent structures featuring a wave length of two step heights observed in the reference configuration without flow control can be suppressed by the lobes. The spanwise wave length of the coherent structures seems to depend on the geometry of the lobes, since all detected spatial DMD modes show a spanwise periodicity being equal to the distance between two lobes.
Modal analysis of passive flow control for the turbulent wake of a generic planar space launcher
NASA Astrophysics Data System (ADS)
Loosen, S.; Statnikov, V.; Meinke, M.; Schröder, W.
2017-12-01
The turbulent wake of a generic planar space launcher equipped with two passive flow control devices is simulated using a zonal RANS-LES method and analyzed by dynamic mode decomposition (DMD). In the first approach, the effect of a classical boat tail on the wake is examined. In the second concept, a flow control device consisting of semi-circular lobes integrated at the base shoulder of the main body is used. The objective of the two concepts is to reduce the reattachment length and thus the lever arm of the forces as well as to stabilize the separated shear layer. Using a boat tail, the reattachment length can be reduced by 50%. Furthermore, it is shown that the semi-circular lobes enhance the turbulent mixing and the shear layer growth rate. Hence, they significantly reduce the reattachment length by about 75%. The semi-circular lobes partially reduce undesired low-frequency pressure fluctuations on the nozzle surface. However, this reduction is achieved at the expense of an increase of high-frequency pressure fluctuations due to intensified small turbulent scales. The DMD analysis of the velocity field reveals that the large-scale coherent structures featuring a wave length of two step heights observed in the reference configuration without flow control can be suppressed by the lobes. The spanwise wave length of the coherent structures seems to depend on the geometry of the lobes, since all detected spatial DMD modes show a spanwise periodicity being equal to the distance between two lobes.
Evaluation of Intersection Traffic Control Measures through Simulation
NASA Astrophysics Data System (ADS)
Asaithambi, Gowri; Sivanandan, R.
2015-12-01
Modeling traffic flow is stochastic in nature due to randomness in variables such as vehicle arrivals and speeds. Due to this and due to complex vehicular interactions and their manoeuvres, it is extremely difficult to model the traffic flow through analytical methods. To study this type of complex traffic system and vehicle interactions, simulation is considered as an effective tool. Application of homogeneous traffic models to heterogeneous traffic may not be able to capture the complex manoeuvres and interactions in such flows. Hence, a microscopic simulation model for heterogeneous traffic is developed using object oriented concepts. This simulation model acts as a tool for evaluating various control measures at signalized intersections. The present study focuses on the evaluation of Right Turn Lane (RTL) and Channelised Left Turn Lane (CLTL). A sensitivity analysis was performed to evaluate RTL and CLTL by varying the approach volumes, turn proportions and turn lane lengths. RTL is found to be advantageous only up to certain approach volumes and right-turn proportions, beyond which it is counter-productive. CLTL is found to be advantageous for lower approach volumes for all turn proportions, signifying the benefits of CLTL. It is counter-productive for higher approach volume and lower turn proportions. This study pinpoints the break-even points for various scenarios. The developed simulation model can be used as an appropriate intersection lane control tool for enhancing the efficiency of flow at intersections. This model can also be employed for scenario analysis and can be valuable to field traffic engineers in implementing vehicle-type based and lane-based traffic control measures.
Using population genetic tools to develop a control strategy for feral cats (Felis catus) in Hawai'i
Hansen, H.; Hess, S.C.; Cole, D.; Banko, P.C.
2007-01-01
Population genetics can provide information about the demographics and dynamics of invasive species that is beneficial for developing effective control strategies. We studied the population genetics of feral cats on Hawai'i Island by microsatellite analysis to evaluate genetic diversity and population structure, assess gene flow and connectivity among three populations, identify potential source populations, characterise population dynamics, and evaluate sex-biased dispersal. High genetic diversity, low structure, and high number of migrants per generation supported high gene flow that was not limited spatially. Migration rates revealed that most migration occurred out of West Mauna Kea. Effective population size estimates indicated increasing cat populations despite control efforts. Despite high gene flow, relatedness estimates declined significantly with increased geographic distance and Bayesian assignment tests revealed the presence of three population clusters. Genetic structure and relatedness estimates indicated male-biased dispersal, primarily from Mauna Kea, suggesting that this population should be targeted for control. However, recolonisation seems likely, given the great dispersal ability that may not be inhibited by barriers such as lava flows. Genetic monitoring will be necessary to assess the effectiveness of future control efforts. Management of other invasive species may benefit by employing these population genetic tools. ?? CSIRO 2007.
NASA Astrophysics Data System (ADS)
Cucchiaro, Sara; Beinat, Alberto; Calsamiglia, Aleix; Cavalli, Marco; Cazorzi, Federico; Crema, Stefano; Marchi, Lorenzo
2017-04-01
The Moscardo Torrent (eastern Italian Alps) is a small rugged catchment (drainage area 4.1 km2, range in elevation between 890 and 2043 m) frequently affected by debris flows that deliver large amounts of sediment to the receiving stream, and cause concerns for infrastructures located on the alluvial fan and near the confluence. Over the last decades, hydraulic control works were implemented in the main channel to limit bed erosion and to stabilize channel banks. Although the objectives of training works have been only partly achieved, check dams and hillslope stabilization works have affected the sediment transfer from hillslopes to the channels and along the main channel. The effects of hydraulic control works were investigated by means of multi-temporal Structure from Motion (SfM) surveys based on images taken from the ground and UAV. The ground and air based surveys were carried out over a channel reach in which two check dams have recently been built. SfM surveys were taken before and after three debris-flow events (occurred between June and July 2016), allowing the generation of four high-resolution Digital Elevation Models (DEMs). Geomorphic changes caused by the debris-flow events have been assessed in order to produce the DEM of Differences (DoDs with a 0.2 m spatial resolution) that allowed estimating erosion and deposition volumes in the study area. Furthermore a debris-flow monitoring system has been in operation in the Moscardo Torrent; the analysis of the videos and of the hydrographs recorded by ultrasonic sensors permitted to assess the debris-flow volumes. These estimates were used to characterize the magnitude of events in support of the topographic analysis. By examining the changing pattern of erosion and deposition over time it was possible to understand the check dams' effects on sediment dynamics. The results show that the new check dams effectively stored sediment transported by the three debris flows. However, once the check dams have been completely filled, they lost their functionality, letting sediment flow downstream along paths drawn accidentally by the torrent control works and by the morphology of debris-flow deposits. Moreover, debris-flow lobes deposited upstream of the check dams could act as sediment sources further increasing downstream debris-flow magnitude.
NASA Astrophysics Data System (ADS)
Francioso, L.; De Pascali, C.; Pescini, E.; De Giorgi, M. G.; Siciliano, P.
2016-06-01
Preventing the flow separation could enhance the performance of propulsion systems and future civil aircraft. To this end, a fast detection of boundary layer separation is mandatory for a sustainable and successful application of active flow control devices, such as plasma actuators. The present work reports on the design, fabrication and functional tests of low-cost capacitive pressure sensors coupled with dielectric barrier discharge (DBD) plasma actuators to detect and then control flow separation. Finite element method (FEM) simulations were used to obtain information on the deflection and the stress distribution in different-shaped floating membranes. The sensor sensitivity as a function of the pressure load was also calculated by experimental tests. The results of the calibration of different capacitive pressure sensors are reported in this work, together with functional tests in a wind tunnel equipped with a curved wall plate on which a DBD plasma actuator was mounted to control the flow separation. The flow behavior was experimentally investigated by particle image velocimetry (PIV) measurements. Statistical and spectral analysis, applied to the output signals of the pressure sensor placed downstream of the profile leading edge, demonstrated that the sensor is able to discriminate different ionic wind velocity and turbulence conditions. The sensor sensitivity in the 0-100 Pa range was experimentally measured and it ranged between 0.0030 and 0.0046 pF Pa-1 for the best devices.
Integrated Analysis of Flow, Form, and Function for River Management and Design Testing
NASA Astrophysics Data System (ADS)
Lane, B. A. A.; Pasternack, G. B.; Sandoval Solis, S.
2017-12-01
Rivers are highly complex, dynamic systems that support numerous ecosystem functions including transporting sediment, modulating biogeochemical processes, and regulating habitat availability for native species. The extent and timing of these functions is largely controlled by the interplay of hydrologic dynamics (i.e. flow) and the shape and composition of the river corridor (i.e. form). This study applies synthetic channel design to the evaluation of river flow-form-function linkages, with the aim of evaluating these interactions across a range of flows and forms to inform process-driven management efforts with limited data and financial requirements. In an application to California's Mediterranean-montane streams, the interacting roles of channel form, water year type, and hydrologic impairment were evaluated across a suite of ecosystem functions related to hydrogeomorphic processes, aquatic habitat, and riparian habitat. Channel form acted as the dominant control on hydrogeomorphic processes considered, while water year type controlled salmonid habitat functions. Streamflow alteration for hydropower increased redd dewatering risk and altered aquatic habitat availability and riparian recruitment dynamics. Study results highlight critical tradeoffs in ecosystem function performance and emphasize the significance of spatiotemporal diversity of flow and form at multiple scales for maintaining river ecosystem integrity. The approach is broadly applicable and extensible to other systems and ecosystem functions, where findings can be used to characterize complex controls on river ecosystems, assess impacts of proposed flow and form alterations, and inform river restoration strategies.
Scheduling for Emergency Tasks in Industrial Wireless Sensor Networks
Xia, Changqing; Kong, Linghe; Zeng, Peng
2017-01-01
Wireless sensor networks (WSNs) are widely applied in industrial manufacturing systems. By means of centralized control, the real-time requirement and reliability can be provided by WSNs in industrial production. Furthermore, many approaches reserve resources for situations in which the controller cannot perform centralized resource allocation. The controller assigns these resources as it becomes aware of when and where accidents have occurred. However, the reserved resources are limited, and such incidents are low-probability events. In addition, resource reservation may not be effective since the controller does not know when and where accidents will actually occur. To address this issue, we improve the reliability of scheduling for emergency tasks by proposing a method based on a stealing mechanism. In our method, an emergency task is transmitted by stealing resources allocated to regular flows. The challenges addressed in our work are as follows: (1) emergencies occur only occasionally, but the industrial system must deliver the corresponding flows within their deadlines when they occur; (2) we wish to minimize the impact of emergency flows by reducing the number of stolen flows. The contributions of this work are two-fold: (1) we first define intersections and blocking as new characteristics of flows; and (2) we propose a series of distributed routing algorithms to improve the schedulability and to reduce the impact of emergency flows. We demonstrate that our scheduling algorithm and analysis approach are better than the existing ones by extensive simulations. PMID:28726738
NASA Astrophysics Data System (ADS)
Folgosi-Correa, M. S.; Nogueira, G. E. C.
2012-06-01
The laser Doppler flowmetry allows the non-invasive assessment of the skin perfusion in real-time, being an attractive technique to study the human microcirculation in clinical settings. Low-frequency oscillations in the laser Doppler blood flow signal from the skin have been related to the endothelial, endothelial-metabolic, neurogenic and myogenic mechanisms of microvascular flow control, in the range 0.005-0.0095 Hz, 0.0095-0.021 Hz, 0.021-0.052 Hz and 0.052- 0.145 Hz respectively. The mean Amplitude (A) of the periodic fluctuations in the laser Doppler blood flow signal, in each frequency range, derived from the respective wavelet-transformed coefficients, has been used to assess the function and dysfunctions of each mechanism of flow control. Known sources of flow signal variances include spatial and temporal variability, diminishing the discriminatory capability of the technique. Here a new time domain method of analysis is proposed, based on the Time of Correlation (TC) of flow fluctuations between two adjacent sites. Registers of blood flow from two adjacent regions, for skin temperature at 32 0C (basal) and thermally stimulated (42 0C) of volar forearms from 20 healthy volunteers were collected and analyzed. The results obtained revealed high time of correlation between two adjacent regions when thermally stimulated, for signals in the endothelial, endothelial-metabolic, neurogenic and myogenic frequency ranges. Experimental data also indicate lower variability for TC when compared to A, when thermally stimulated, suggesting a new promising parameter for assessment of the microvascular flow control.
NASA Technical Reports Server (NTRS)
Holt, James M.; Clanton, Stephen E.
2001-01-01
Results of the International Space Station (ISS) Node 2 Internal Active Thermal Control System (IATCS) gross leakage analysis are presented for evaluating total leakage flow rates and volume discharge caused by a gross leakage event (i.e. open boundary condition). A Systems Improved Numerical Differencing Analyzer and Fluid Integrator (SINDA85/FLUINT) thermal hydraulic mathematical model (THMM) representing the Node 2 IATCS was developed to simulate system performance under steady-state nominal conditions as well as the transient flow effect resulting from an open line exposed to ambient. The objective of the analysis was to determine the adequacy of the leak detection software in limiting the quantity of fluid lost during a gross leakage event to within an acceptable level.
Delay-feedback control strategy for reducing CO2 emission of traffic flow system
NASA Astrophysics Data System (ADS)
Zhang, Li-Dong; Zhu, Wen-Xing
2015-06-01
To study the signal control strategy for reducing traffic emission theoretically, we first presented a kind of discrete traffic flow model with relative speed term based on traditional coupled map car-following model. In the model, the relative speed difference between two successive running cars is incorporated into following vehicle's acceleration running equation. Then we analyzed its stability condition with discrete control system stability theory. Third, we designed a delay-feedback controller to suppress traffic jam and decrease traffic emission based on modern controller theory. Last, numerical simulations are made to support our theoretical results, including the comparison of models' stability analysis, the influence of model type and signal control on CO2 emissions. The results show that the temporal behavior of our model is superior to other models, and the traffic signal controller has good effect on traffic jam suppression and traffic CO2 emission, which fully supports the theoretical conclusions.
Characteristics of the April 2007 Flood at 10 Streamflow-Gaging Stations in Massachusetts
Zarriello, Phillip J.; Carlson, Carl S.
2009-01-01
A large 'nor'easter' storm on April 15-18, 2007, brought heavy rains to the southern New England region that, coupled with normal seasonal high flows and associated wet soil-moisture conditions, caused extensive flooding in many parts of Massachusetts and neighboring states. To characterize the magnitude of the April 2007 flood, a peak-flow frequency analysis was undertaken at 10 selected streamflow-gaging stations in Massachusetts to determine the magnitude of flood flows at 5-, 10-, 25-, 50-, 100-, 200-, and 500-year return intervals. The magnitude of flood flows at various return intervals were determined from the logarithms of the annual peaks fit to a Pearson Type III probability distribution. Analysis included augmenting the station record with longer-term records from one or more nearby stations to provide a common period of comparison that includes notable floods in 1936, 1938, and 1955. The April 2007 peak flow was among the highest recorded or estimated since 1936, often ranking between the 3d and 5th highest peak for that period. In general, the peak-flow frequency analysis indicates the April 2007 peak flow has an estimated return interval between 25 and 50 years; at stations in the northeastern and central areas of the state, the storm was less severe resulting in flows with return intervals of about 5 and 10 years, respectively. At Merrimack River at Lowell, the April 2007 peak flow approached a 100-year return interval that was computed from post-flood control records and the 1936 and 1938 peak flows adjusted for flood control. In general, the magnitude of flood flow for a given return interval computed from the streamflow-gaging station period-of-record was greater than those used to calculate flood profiles in various community flood-insurance studies. In addition, the magnitude of the updated flood flow and current (2008) stage-discharge relation at a given streamflow-gaging station often produced a flood stage that was considerably different than the flood stage indicated in the flood-insurance study flood profile at that station. Equations for estimating the flow magnitudes for 5-, 10-, 25-, 50-, 100-, 200-, and 500-year floods were developed from the relation of the magnitude of flood flows to drainage area calculated from the six streamflow-gaging stations with the longest unaltered record. These equations produced a more conservative estimate of flood flows (higher discharges) than the existing regional equations for estimating flood flows at ungaged rivers in Massachusetts. Large differences in the magnitude of flood flows for various return intervals determined in this study compared to results from existing regional equations and flood insurance studies indicate a need for updating regional analyses and equations for estimating the expected magnitude of flood flows in Massachusetts.
Lassen, Mikael; Balslev-Harder, David; Brusch, Anders; Pelevic, Nikola; Persijn, Stefan; Petersen, Jan C
2018-02-01
A photoacoustic (PA) sensor for fast and real-time gas sensing is demonstrated. The PA sensor is a stand-alone system controlled by a field-programmable gate array. The PA cell has been designed for flow noise immunity using computational fluid dynamics (CFD) analysis. The aim of the CFD analysis was to investigate and minimize the influence of the gas distribution and flow noise on the PA signal. PA measurements were conducted at different flow rates by exciting molecular C-H stretch vibrational bands of hexane (C 6 H 14 ) and decane (C 10 H 22 ) molecules in clean air at 2950 cm -1 (3.38 μm) with a custom-made mid-infrared interband cascade laser. We observe a (1σ, standard deviation) sensitivity of 0.4±0.1 ppb (nmol/mol) for hexane in clean air at flow rates up to 1.7 L/min, corresponding to a normalized noise equivalent absorption coefficient of 2.5×10 -9 W cm -1 Hz -1/2 , demonstrating high sensitivity and fast real-time gas analysis. An Allan deviation analysis for decane shows that the detection limit at optimum integration time is 0.25 ppbV (nmol/mol).
Transport induced by mean-eddy interaction: II. Analysis of transport processes
NASA Astrophysics Data System (ADS)
Ide, Kayo; Wiggins, Stephen
2015-03-01
We present a framework for the analysis of transport processes resulting from the mean-eddy interaction in a flow. The framework is based on the Transport Induced by the Mean-Eddy Interaction (TIME) method presented in a companion paper (Ide and Wiggins, 2014) [1]. The TIME method estimates the (Lagrangian) transport across stationary (Eulerian) boundaries defined by chosen streamlines of the mean flow. Our framework proceeds after first carrying out a sequence of preparatory steps that link the flow dynamics to the transport processes. This includes the construction of the so-called "instantaneous flux" as the Hovmöller diagram. Transport processes are studied by linking the signals of the instantaneous flux field to the dynamical variability of the flow. This linkage also reveals how the variability of the flow contributes to the transport. The spatio-temporal analysis of the flux diagram can be used to assess the efficiency of the variability in transport processes. We apply the method to the double-gyre ocean circulation model in the situation where the Rossby-wave mode dominates the dynamic variability. The spatio-temporal analysis shows that the inter-gyre transport is controlled by the circulating eddy vortices in the fast eastward jet region, whereas the basin-scale Rossby waves have very little impact.
Flow-injection analysis of catecholamine secretion from bovine adrenal medulla cells on microbeads.
Herrera, M; Kao, L S; Curran, D J; Westhead, E W
1985-01-01
Bovine adrenal medullary cells have been cultured on microbeads which are placed in a low-volume flow system for measurements of stimulation-response parameters. Electronically controlled stream switching allows stimulation of cells with pulse lengths from 1 s to many minutes; pulses may be repeated indefinitely. Catecholamines secreted are detected by an electrochemical detector downstream from the cells. This flow-injection analysis technique provides a new level of sensitivity and precision for measurement of kinetic parameters of secretion. A manual injection valve allows stimulation by higher levels of stimulant in the presence of constant low levels of stimulant. Such experiments show interesting differences between the effects of K+ and acetylcholine on cells partially desensitized to acetylcholine.
A novel method for automated grid generation of ice shapes for local-flow analysis
NASA Astrophysics Data System (ADS)
Ogretim, Egemen; Huebsch, Wade W.
2004-02-01
Modelling a complex geometry, such as ice roughness, plays a key role for the computational flow analysis over rough surfaces. This paper presents two enhancement ideas in modelling roughness geometry for local flow analysis over an aerodynamic surface. The first enhancement is use of the leading-edge region of an airfoil as a perturbation to the parabola surface. The reasons for using a parabola as the base geometry are: it resembles the airfoil leading edge in the vicinity of its apex and it allows the use of a lower apparent Reynolds number. The second enhancement makes use of the Fourier analysis for modelling complex ice roughness on the leading edge of airfoils. This method of modelling provides an analytical expression, which describes the roughness geometry and the corresponding derivatives. The factors affecting the performance of the Fourier analysis were also investigated. It was shown that the number of sine-cosine terms and the number of control points are of importance. Finally, these enhancements are incorporated into an automated grid generation method over the airfoil ice accretion surface. The validations for both enhancements demonstrate that they can improve the current capability of grid generation and computational flow field analysis around airfoils with ice roughness.
NASA Technical Reports Server (NTRS)
Schaeffler, Norman W.; Allan, Brian G.; Lienard, Caroline; LePape, Arnaud
2010-01-01
A combined computational and experimental effort has been undertaken to study fuselage drag reduction on a generic, non-proprietary rotorcraft fuselage by the application of active ow control. Fuselage drag reduction is an area of research interest to both the United States and France and this area is being worked collaboratively as a task under the United States/France Memorandum of Agreement on Helicopter Aeromechanics. In the first half of this task, emphasis is placed on the US generic fuselage, the ROBIN-mod7, with the experimental work being conducted on the US side and complementary US and French CFD analysis of the baseline and controlled cases. Fuselage simulations were made using Reynolds-averaged Navier-Stokes ow solvers and with multiple turbulence models. Comparisons were made to experimental data for numerical simulations of the isolated fuselage and for the fuselage as installed in the tunnel, which includes modeling of the tunnel contraction, walls, and support fairing. The numerical simulations show that comparisons to the experimental data are in good agreement when the tunnel and model support are included. The isolated fuselage simulations compare well to each other, however, there is a positive shift in the centerline pressure when compared to the experiment. The computed flow separation locations on the rear ramp region had only slight differences with and without the tunnel walls and model support. For the simulations, the flow control slots were placed at several locations around the flow separation lines as a series of eight slots that formed a nearly continuous U-shape. Results from the numerical simulations resulted in an estimated 35% fuselage drag reduction from a steady blowing flow control configuration and a 26% drag reduction for unsteady zero-net-mass flow control configuration. Simulations with steady blowing show a delayed flow separation at the rear ramp of the fuselage that increases the surface pressure acting on the ramp, thus decreasing the overall fuselage pressure drag.
Ultrasound analysis of mental artery flow in elderly patients: a case-control study.
Baladi, Marina G; Tucunduva Neto, Raul R C M; Cortes, Arthur R G; Aoki, Eduardo M; Arita, Emiko S; Freitas, Claudio F
2015-01-01
Mental artery flow decreases with age and may have an aetiological role in alveolar ridge atrophy. The aim of this study was to identify factors associated with alterations of mental artery flow, assessed by ultrasonography. This case-control study was conducted on elderly patients (aged above 60 years) at the beginning of dental treatment. Intraoral B-mode Doppler ultrasonography was used to assess mental artery flow. The cases were defined as patients with a weak/absent ultrasound signal, whereas the controls presented a strong ultrasound signal. Demographics and radiographic findings (low bone mineral density on dual-energy X-ray absorptiometry and mandibular cortical index on panoramic radiographs) were analysed as risk factors for weak/absent ultrasound signal and were calculated as adjusted odds ratios (AORs) with 95% confidence intervals (CIs) using conditional logistic regression. In addition, the Student's t-test was used to compare the mean alveolar bone height of the analysed groups. A p-value <0.05 was considered statistically significant. A total of 30 ultrasound examinations (12 cases and 18 controls) were analysed. A weak/absent mental artery pulse strength was significantly associated with edentulism (AOR = 3.67; 95% CI = 0.86-15.63; p = 0.046). In addition, there was a significant difference in alveolar bone height between edentulous cases and controls (p = 0.036). Within the limitations of this study, the present results indicate that edentulism is associated with diminished mental artery flow, which, in turn, affects alveolar bone height.
Control of the transition between regular and mach reflection of shock waves
NASA Astrophysics Data System (ADS)
Alekseev, A. K.
2012-06-01
A control problem was considered that makes it possible to switch the flow between stationary Mach and regular reflection of shock waves within the dual solution domain. The sensitivity of the flow was computed by solving adjoint equations. A control disturbance was sought by applying gradient optimization methods. According to the computational results, the transition from regular to Mach reflection can be executed by raising the temperature. The transition from Mach to regular reflection can be achieved by lowering the temperature at moderate Mach numbers and is impossible at large numbers. The reliability of the numerical results was confirmed by verifying them with the help of a posteriori analysis.
NASA Astrophysics Data System (ADS)
Sartipi, Sina; Jansma, Harrie; Bosma, Duco; Boshuizen, Bart; Makkee, Michiel; Gascon, Jorge; Kapteijn, Freek
2013-12-01
Design and operation of a "six-flow fixed-bed microreactor" setup for Fischer-Tropsch synthesis (FTS) is described. The unit consists of feed and mixing, flow division, reaction, separation, and analysis sections. The reactor system is made of five heating blocks with individual temperature controllers, assuring an identical isothermal zone of at least 10 cm along six fixed-bed microreactor inserts (4 mm inner diameter). Such a lab-scale setup allows running six experiments in parallel, under equal feed composition, reaction temperature, and conditions of separation and analysis equipment. It permits separate collection of wax and liquid samples (from each flow line), allowing operation with high productivities of C5+ hydrocarbons. The latter is crucial for a complete understanding of FTS product compositions and will represent an advantage over high-throughput setups with more than ten flows where such instrumental considerations lead to elevated equipment volume, cost, and operation complexity. The identical performance (of the six flows) under similar reaction conditions was assured by testing a same catalyst batch, loaded in all microreactors.
W. E. Dietrich; J. McKean; D. Bellugi; T. Perron
2007-01-01
Shallow landslides on steep slopes often mobilize as debris flows. The size of the landslide controls the initial size of the debris flows, defines the sediment discharge to the channel network, affects rates and scales of landform development, and influences the relative hazard potential. Currently the common practice in digital terrain-based models is to set the...
A new algorithm for grid-based hydrologic analysis by incorporating stormwater infrastructure
NASA Astrophysics Data System (ADS)
Choi, Yosoon; Yi, Huiuk; Park, Hyeong-Dong
2011-08-01
We developed a new algorithm, the Adaptive Stormwater Infrastructure (ASI) algorithm, to incorporate ancillary data sets related to stormwater infrastructure into the grid-based hydrologic analysis. The algorithm simultaneously considers the effects of the surface stormwater collector network (e.g., diversions, roadside ditches, and canals) and underground stormwater conveyance systems (e.g., waterway tunnels, collector pipes, and culverts). The surface drainage flows controlled by the surface runoff collector network are superimposed onto the flow directions derived from a DEM. After examining the connections between inlets and outfalls in the underground stormwater conveyance system, the flow accumulation and delineation of watersheds are calculated based on recursive computations. Application of the algorithm to the Sangdong tailings dam in Korea revealed superior performance to that of a conventional D8 single-flow algorithm in terms of providing reasonable hydrologic information on watersheds with stormwater infrastructure.
NASA Astrophysics Data System (ADS)
Rothe, P. H.
The conference includes such topics as the reduction of fluid transient pressures by minimax optimization, modeling blockage in unsteady slurry flow in conduits, roles of vacuum breaker and air release devices in reducing waterhammer forces, and an analysis of laminar fluid transients in conduits of unconventional shape. Papers are presented on modulation systems for high speed water jets, water hammer analysis needs in nuclear power plant design, tail profile effects on unsteady large scale flow structure in the wing and plate junction, and a numerical study of pressure transients in a borehole due to pipe movement. Consideration is also given to boundary layer growth near a stagnation point, calculation of unsteady mixing in two-dimensional flows, the trailing edge of a pitching airfoil at high reduced frequencies, and a numerical study of instability-wave control through periodic wall suction/blowing.
Oscillatory electroosmotic flow in a parallel-plate microchannel under asymmetric zeta potentials
NASA Astrophysics Data System (ADS)
Peralta, M.; Arcos, J.; Méndez, F.; Bautista, O.
2017-06-01
In this work, we conduct a theoretical analysis of the start-up of an oscillatory electroosmotic flow (EOF) in a parallel-plate microchannel under asymmetric zeta potentials. It is found that the transient evolution of the flow field is controlled by the parameters {R}ω , {R}\\zeta , and \\bar{κ }, which represent the dimensionless frequency, the ratio of the zeta potentials of the microchannel walls, and the electrokinetic parameter, which is defined as the ratio of the microchannel height to the Debye length. The analysis is performed for both low and high zeta potentials; in the former case, an analytical solution is derived, whereas in the latter, a numerical solution is obtained. These solutions provide the fundamental characteristics of the oscillatory EOFs for which, with suitable adjustment of the zeta potential and the dimensionless frequency, the velocity profiles of the fluid flow exhibit symmetric or asymmetric shapes.
Sample flow switching techniques on microfluidic chips.
Pan, Yu-Jen; Lin, Jin-Jie; Luo, Win-Jet; Yang, Ruey-Jen
2006-02-15
This paper presents an experimental investigation into electrokinetically focused flow injection for bio-analytical applications. A novel microfluidic device for microfluidic sample handling is presented. The microfluidic chip is fabricated on glass substrates using conventional photolithographic and chemical etching processes and is bonded using a high-temperature fusion method. The proposed valve-less device is capable not only of directing a single sample flow to a specified output port, but also of driving multiple samples to separate outlet channels or even to a single outlet to facilitate sample mixing. The experimental results confirm that the sample flow can be electrokinetically pre-focused into a narrow stream and guided to the desired outlet port by means of a simple control voltage model. The microchip presented within this paper has considerable potential for use in a variety of applications, including high-throughput chemical analysis, cell fusion, fraction collection, sample mixing, and many other applications within the micro-total-analysis systems field.
Selected Physical Properties of 2-Chloroethyl-3-Chloropropyl Sulfide (CECPRS)
2010-10-01
Analysis * For this work, a TA Instruments 910 Differential Scanning Calorimeter and 2200 Controller were used. Prior to sample measurements, the DSC...controlled mass flow rate over a known time, concentrated, and the mass quantified by GC-FID analysis . This step enables vapor pressure measurements for low...Bellefonte, PA), with a 1.0 (im RTx-1 ( polydimethylsiloxane ) stationary phase, was maintained at 40 °C for 2 min following sample introduction, then heated
Ploner, Stefan B; Moult, Eric M; Choi, WooJhon; Waheed, Nadia K; Lee, ByungKun; Novais, Eduardo A; Cole, Emily D; Potsaid, Benjamin; Husvogt, Lennart; Schottenhamml, Julia; Maier, Andreas; Rosenfeld, Philip J; Duker, Jay S; Hornegger, Joachim; Fujimoto, James G
2016-12-01
Currently available optical coherence tomography angiography systems provide information about blood flux but only limited information about blood flow speed. The authors develop a method for mapping the previously proposed variable interscan time analysis (VISTA) algorithm into a color display that encodes relative blood flow speed. Optical coherence tomography angiography was performed with a 1,050 nm, 400 kHz A-scan rate, swept source optical coherence tomography system using a 5 repeated B-scan protocol. Variable interscan time analysis was used to compute the optical coherence tomography angiography signal from B-scan pairs having 1.5 millisecond and 3.0 milliseconds interscan times. The resulting VISTA data were then mapped to a color space for display. The authors evaluated the VISTA visualization algorithm in normal eyes (n = 2), nonproliferative diabetic retinopathy eyes (n = 6), proliferative diabetic retinopathy eyes (n = 3), geographic atrophy eyes (n = 4), and exudative age-related macular degeneration eyes (n = 2). All eyes showed blood flow speed variations, and all eyes with pathology showed abnormal blood flow speeds compared with controls. The authors developed a novel method for mapping VISTA into a color display, allowing visualization of relative blood flow speeds. The method was found useful, in a small case series, for visualizing blood flow speeds in a variety of ocular diseases and serves as a step toward quantitative optical coherence tomography angiography.
Transonic Flutter Suppression Control Law Design, Analysis and Wind Tunnel Results
NASA Technical Reports Server (NTRS)
Mukhopadhyay, Vivek
1999-01-01
The benchmark active controls technology and wind tunnel test program at NASA Langley Research Center was started with the objective to investigate the nonlinear, unsteady aerodynamics and active flutter suppression of wings in transonic flow. The paper will present the flutter suppression control law design process, numerical nonlinear simulation and wind tunnel test results for the NACA 0012 benchmark active control wing model. The flutter suppression control law design processes using (1) classical, (2) linear quadratic Gaussian (LQG), and (3) minimax techniques are described. A unified general formulation and solution for the LQG and minimax approaches, based on the steady state differential game theory is presented. Design considerations for improving the control law robustness and digital implementation are outlined. It was shown that simple control laws when properly designed based on physical principles, can suppress flutter with limited control power even in the presence of transonic shocks and flow separation. In wind tunnel tests in air and heavy gas medium, the closed-loop flutter dynamic pressure was increased to the tunnel upper limit of 200 psf The control law robustness and performance predictions were verified in highly nonlinear flow conditions, gain and phase perturbations, and spoiler deployment. A non-design plunge instability condition was also successfully suppressed.
Transonic Flutter Suppression Control Law Design, Analysis and Wind-Tunnel Results
NASA Technical Reports Server (NTRS)
Mukhopadhyay, Vivek
1999-01-01
The benchmark active controls technology and wind tunnel test program at NASA Langley Research Center was started with the objective to investigate the nonlinear, unsteady aerodynamics and active flutter suppression of wings in transonic flow. The paper will present the flutter suppression control law design process, numerical nonlinear simulation and wind tunnel test results for the NACA 0012 benchmark active control wing model. The flutter suppression control law design processes using (1) classical, (2) linear quadratic Gaussian (LQG), and (3) minimax techniques are described. A unified general formulation and solution for the LQG and minimax approaches, based on the steady state differential game theory is presented. Design considerations for improving the control law robustness and digital implementation are outlined. It was shown that simple control laws when properly designed based on physical principles, can suppress flutter with limited control power even in the presence of transonic shocks and flow separation. In wind tunnel tests in air and heavy gas medium, the closed-loop flutter dynamic pressure was increased to the tunnel upper limit of 200 psf. The control law robustness and performance predictions were verified in highly nonlinear flow conditions, gain and phase perturbations, and spoiler deployment. A non-design plunge instability condition was also successfully suppressed.
van der Wouden, E J; Hermes, D C; Gardeniers, J G E; van den Berg, A
2006-10-01
Electroosmotic flow (EOF) in a microchannel can be controlled by electronic control of the surface charge using an electrode embedded in the wall of the channel. By setting a voltage to the electrode, the zeta-potential at the wall can be changed locally. Thus, the electrode acts as a "gate" for liquid flow, in analogy with a gate in a field-effect transistor. In this paper we will show three aspects of a Field Effect Flow Control (FEFC) structure. We demonstrate the induction of directional flow by the synchronized switching of the gate potential with the channel axial potential. The advantage of this procedure is that potential gas formation by electrolysis at the electrodes that provide the axial electric field is suppressed at sufficiently large switching frequencies, while the direction and magnitude of the EOF can be maintained. Furthermore we will give an analysis of the time constants involved in the charging of the insulator, and thus the switching of the zeta potential, in order to predict the maximum operating frequency. For this purpose an equivalent electrical circuit is presented and analyzed. It is shown that in order to accurately describe the charging dynamics and pH dependency the traditionally used three capacitor model should be expanded with an element describing the buffer capacitance of the silica wall surface.
Flow field-flow fractionation for the analysis of nanoparticles used in drug delivery.
Zattoni, Andrea; Roda, Barbara; Borghi, Francesco; Marassi, Valentina; Reschiglian, Pierluigi
2014-01-01
Structured nanoparticles (NPs) with controlled size distribution and novel physicochemical features present fundamental advantages as drug delivery systems with respect to bulk drugs. NPs can transport and release drugs to target sites with high efficiency and limited side effects. Regulatory institutions such as the US Food and Drug Administration (FDA) and the European Commission have pointed out that major limitations to the real application of current nanotechnology lie in the lack of homogeneous, pure and well-characterized NPs, also because of the lack of well-assessed, robust routine methods for their quality control and characterization. Many properties of NPs are size-dependent, thus the particle size distribution (PSD) plays a fundamental role in determining the NP properties. At present, scanning and transmission electron microscopy (SEM, TEM) are among the most used techniques to size characterize NPs. Size-exclusion chromatography (SEC) is also applied to the size separation of complex NP samples. SEC selectivity is, however, quite limited for very large molar mass analytes such as NPs, and interactions with the stationary phase can alter NP morphology. Flow field-flow fractionation (F4) is increasingly used as a mature separation method to size sort and characterize NPs in native conditions. Moreover, the hyphenation with light scattering (LS) methods can enhance the accuracy of size analysis of complex samples. In this paper, the applications of F4-LS to NP analysis used as drug delivery systems for their size analysis, and the study of stability and drug release effects are reviewed. Copyright © 2013 Elsevier B.V. All rights reserved.
Kamali, Fahimeh; Mirkhani, Hossein; Nematollahi, Ahmadreza; Heidari, Saeed; Moosavi, Elahesadat; Mohamadi, Marzieh
2017-04-01
Transcutaneous electrical nerve stimulation (TENS) is a widely-practiced method to increase blood flow in clinical practice. The best location for stimulation to achieve optimal blood flow has not yet been determined. We compared the effect of TENS application at sympathetic ganglions and acupuncture points on blood flow in the foot of healthy individuals. Seventy-five healthy individuals were randomly assigned to three groups. The first group received cutaneous electrical stimulation at the thoracolumbar sympathetic ganglions. The second group received stimulation at acupuncture points. The third group received stimulation in the mid-calf area as a control group. Blood flow was recorded at time zero as baseline and every 3 minutes after baseline during stimulation, with a laser Doppler flow-meter. Individuals who received sympathetic ganglion stimulation showed significantly greater blood flow than those receiving acupuncture point stimulation or those in the control group (p<0.001). Data analysis revealed that blood flow at different times during stimulation increased significantly from time zero in each group. Therefore, the application of low-frequency TENS at the thoracolumbar sympathetic ganglions was more effective in increasing peripheral blood circulation than stimulation at acupuncture points. Copyright © 2017 Medical Association of Pharmacopuncture Institute. Published by Elsevier B.V. All rights reserved.
Aeroacoustic directivity via wave-packet analysis of mean or base flows
NASA Astrophysics Data System (ADS)
Edstrand, Adam; Schmid, Peter; Cattafesta, Louis
2017-11-01
Noise pollution is an ever-increasing problem in society, and knowledge of the directivity patterns of the sound radiation is required for prediction and control. Directivity is frequently determined through costly numerical simulations of the flow field combined with an acoustic analogy. We introduce a new computationally efficient method of finding directivity for a given mean or base flow field using wave-packet analysis (Trefethen, PRSA 2005). Wave-packet analysis approximates the eigenvalue spectrum with spectral accuracy by modeling the eigenfunctions as wave packets. With the wave packets determined, we then follow the method of Obrist (JFM, 2009), which uses Lighthill's acoustic analogy to determine the far-field sound radiation and directivity of wave-packet modes. We apply this method to a canonical jet flow (Gudmundsson and Colonius, JFM 2011) and determine the directivity of potentially unstable wave packets. Furthermore, we generalize the method to consider a three-dimensional flow field of a trailing vortex wake. In summary, we approximate the disturbances as wave packets and extract the directivity from the wave-packet approximation in a fraction of the time of standard aeroacoustic solvers. ONR Grant N00014-15-1-2403.
Groundwater flow and hydrogeochemical evolution in the Jianghan Plain, central China
NASA Astrophysics Data System (ADS)
Gan, Yiqun; Zhao, Ke; Deng, Yamin; Liang, Xing; Ma, Teng; Wang, Yanxin
2018-05-01
Hydrogeochemical analysis and multivariate statistics were applied to identify flow patterns and major processes controlling the hydrogeochemistry of groundwater in the Jianghan Plain, which is located in central Yangtze River Basin (central China) and characterized by intensive surface-water/groundwater interaction. Although HCO3-Ca-(Mg) type water predominated in the study area, the 457 (21 surface water and 436 groundwater) samples were effectively classified into five clusters by hierarchical cluster analysis. The hydrochemical variations among these clusters were governed by three factors from factor analysis. Major components (e.g., Ca, Mg and HCO3) in surface water and groundwater originated from carbonate and silicate weathering (factor 1). Redox conditions (factor 2) influenced the geogenic Fe and As contamination in shallow confined groundwater. Anthropogenic activities (factor 3) primarily caused high levels of Cl and SO4 in surface water and phreatic groundwater. Furthermore, the factor score 1 of samples in the shallow confined aquifer gradually increased along the flow paths. This study demonstrates that enhanced information on hydrochemistry in complex groundwater flow systems, by multivariate statistical methods, improves the understanding of groundwater flow and hydrogeochemical evolution due to natural and anthropogenic impacts.
Minnowbrook VI: 2009 Workshop on Flow Physics and Control for Internal and External Aerodynamics
NASA Technical Reports Server (NTRS)
LaGraff, John E.; Povinelli, Louis A.; Gostelow, J. Paul; Glauser, Mark
2010-01-01
Topics covered include: Flow Physics and control for Internal and External Aerodynamics (not in TOC...starts on pg13); Breaking CFD Bottlenecks in Gas-Turbine Flow-Path Design; Streamwise Vortices on the Convex Surfaces of Circular Cylinders and Turbomachinery Blading; DNS and Embedded DNS as Tools for Investigating Unsteady Heat Transfer Phenomena in Turbines; Cavitation, Flow Structure and Turbulence in the Tip Region of a Rotor Blade; Development and Application of Plasma Actuators for Active Control of High-Speed and High Reynolds Number Flows; Active Flow Control of Lifting Surface With Flap-Current Activities and Future Directions; Closed-Loop Control of Vortex Formation in Separated Flows; Global Instability on Laminar Separation Bubbles-Revisited; Very Large-Scale Motions in Smooth and Rough Wall Boundary Layers; Instability of a Supersonic Boundary-Layer With Localized Roughness; Active Control of Open Cavities; Amplitude Scaling of Active Separation Control; U.S. Air Force Research Laboratory's Need for Flow Physics and Control With Applications Involving Aero-Optics and Weapon Bay Cavities; Some Issues Related to Integrating Active Flow Control With Flight Control; Active Flow Control Strategies Using Surface Pressure Measurements; Reduction of Unsteady Forcing in a Vaned, Contra-Rotating Transonic Turbine Configuration; Active Flow Control Stator With Coanda Surface; Controlling Separation in Turbomachines; Flow Control on Low-Pressure Turbine Airfoils Using Vortex Generator Jets; Reduced Order Modeling Incompressible Flows; Study and Control of Flow Past Disk, and Circular and Rectangular Cylinders Aligned in the Flow; Periodic Forcing of a Turbulent Axisymmetric Wake; Control of Vortex Breakdown in Critical Swirl Regime Using Azimuthal Forcing; External and Turbomachinery Flow Control Working Group; Boundary Layers, Transitions and Separation; Efficiency Considerations in Low Pressure Turbines; Summary of Conference; and Final Plenary Session Transcript.
Three-Loop Automatic of Control System the Landfill of Household Solid Waste
NASA Astrophysics Data System (ADS)
Sereda, T. G.; Kostarev, S. N.
2017-05-01
The analysis of models of governance ground municipal solid waste (MSW). Considered a distributed circuit (spatio-temporal) ground control model. Developed a dynamic model of multicontour control landfill. Adjustable parameters are defined (the ratio of CH4 CO2 emission/fluxes, concentrations of heavy metals ions) and control (purging array, irrigation, adding reagents). Based on laboratory studies carried out with the analysis of equity flows and procedures developed by the transferring matrix that takes into account the relationship control loops. A system of differential equations in the frequency and time domains. Given the numerical approaches solving systems of differential equations in finite differential form.
Fluidic Oscillator Having Decoupled Frequency and Amplitude Control
NASA Technical Reports Server (NTRS)
Koklu, Mehti (Inventor)
2017-01-01
A fluidic oscillator having independent frequency and amplitude control includes a fluidic-oscillator main flow channel having a main flow inlet, a main flow outlet, and first and second control ports disposed at opposing sides thereof. A fluidic-oscillator controller has an inlet and outlet. A volume defined by the main flow channel is greater than the volume defined by the controller. A flow diverter coupled to the outlet of the controller defines a first fluid flow path from the controller's outlet to the first control port and defines a second fluid flow path from the controller's outlet to the second control port.
Fluidic Oscillator Having Decoupled Frequency and Amplitude Control
NASA Technical Reports Server (NTRS)
Koklu, Mehti (Inventor)
2016-01-01
A fluidic oscillator having independent frequency and amplitude control includes a fluidic-oscillator main flow channel having a main flow inlet, a main flow outlet, and first and second control ports disposed at opposing sides thereof. A fluidic-oscillator controller has an inlet and outlet. A volume defined by the main flow channel is greater than the volume defined by the controller. A flow diverter coupled to the outlet of the controller defines a first fluid flow path from the controller's outlet to the first control port and defines a second fluid flow path from the controller's outlet to the second control port.
Transient flow thrust prediction for an ejector propulsion concept
NASA Technical Reports Server (NTRS)
Drummond, Colin K.
1989-01-01
A method for predicting transient thrust augmenting ejector characteristics is introduced. The analysis blends classic self-similar turbulent jet descriptions with a mixing region control volume analysis to predict transient effects in a new way. Details of the theoretical foundation, the solution algorithm, and sample calculations are given.
Control of Technology Transfer at JPL
NASA Technical Reports Server (NTRS)
Oliver, Ronald
2006-01-01
Controlled Technology: 1) Design: preliminary or critical design data, schematics, technical flow charts, SNV code/diagnostics, logic flow diagrams, wirelist, ICDs, detailed specifications or requirements. 2) Development: constraints, computations, configurations, technical analyses, acceptance criteria, anomaly resolution, detailed test plans, detailed technical proposals. 3) Production: process or how-to: assemble, operated, repair, maintain, modify. 4) Manufacturing: technical instructions, specific parts, specific materials, specific qualities, specific processes, specific flow. 5) Operations: how-to operate, contingency or standard operating plans, Ops handbooks. 6) Repair: repair instructions, troubleshooting schemes, detailed schematics. 7) Test: specific procedures, data, analysis, detailed test plan and retest plans, detailed anomaly resolutions, detailed failure causes and corrective actions, troubleshooting, trended test data, flight readiness data. 8) Maintenance: maintenance schedules and plans, methods for regular upkeep, overhaul instructions. 9) Modification: modification instructions, upgrades kit parts, including software
Numerical and experimental study of blowing jet on a high lift airfoil
NASA Astrophysics Data System (ADS)
Bobonea, A.; Pricop, M. V.
2013-10-01
Active manipulation of separated flows over airfoils at moderate and high angles of attack in order to improve efficiency or performance has been the focus of a number of numerical and experimental investigations for many years. One of the main methods used in active flow control is the usage of blowing devices with constant and pulsed blowing. Through CFD simulation over a 2D high-lift airfoil, this study is trying to highlight the impact of pulsed blowing over its aerodynamic characteristics. The available wind tunnel data from INCAS low speed facility are also beneficial for the validation of the numerical analysis. This study intends to analyze the impact of the blowing jet velocity and slot geometry on the efficiency of an active flow control.
Making Ice Creep in the Classroom
NASA Astrophysics Data System (ADS)
Prior, David; Vaughan, Matthew; Banjan, Mathilde; Hamish Bowman, M.; Craw, Lisa; Tooley, Lauren; Wongpan, Pat
2017-04-01
Understanding the creep of ice has direct application to the role of ice sheet flow in sea level and climate change and to modelling of icy planets and satellites of the outer solar system. Additionally ice creep can be used as an analogue for the high temperature creep of rocks, most particularly quartzites. We adapted technologies developed for ice creep experiments in the research lab, to build some inexpensive ( EU200) rigs to conduct ice creep experiments in an undergraduate (200 and 300 level) class in rock deformation. The objective was to give the students an experience of laboratory rock deformation experiments so that they would understand better what controls the creep rate of ice and rocks. Students worked in eight groups of 5/6 students. Each group had one deformation rig and temperature control system. Each group conducted two experiments over a 2 week period. The results of all 16 experiments were then shared so that all students could analyse the mechanical data and generate a "flow law" for ice. Additionally thin sections were made of each deformed sample so that some microstructural analysis could be incorporated in the data analysis. Students were able to derive a flow law that showed the relationship of creep rate to both stress and temperature. The flow law matches with those from published research. The class did provide a realistic introduction to laboratory rock deformation experiments and helped students' understanding of what controls the creep of rocks.
Silva, A F; Sarraguça, M C; Fonteyne, M; Vercruysse, J; De Leersnyder, F; Vanhoorne, V; Bostijn, N; Verstraeten, M; Vervaet, C; Remon, J P; De Beer, T; Lopes, J A
2017-08-07
A multivariate statistical process control (MSPC) strategy was developed for the monitoring of the ConsiGma™-25 continuous tablet manufacturing line. Thirty-five logged variables encompassing three major units, being a twin screw high shear granulator, a fluid bed dryer and a product control unit, were used to monitor the process. The MSPC strategy was based on principal component analysis of data acquired under normal operating conditions using a series of four process runs. Runs with imposed disturbances in the dryer air flow and temperature, in the granulator barrel temperature, speed and liquid mass flow and in the powder dosing unit mass flow were utilized to evaluate the model's monitoring performance. The impact of the imposed deviations to the process continuity was also evaluated using Hotelling's T 2 and Q residuals statistics control charts. The influence of the individual process variables was assessed by analyzing contribution plots at specific time points. Results show that the imposed disturbances were all detected in both control charts. Overall, the MSPC strategy was successfully developed and applied. Additionally, deviations not associated with the imposed changes were detected, mainly in the granulator barrel temperature control. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Hwang, D. P.; Boldman, D. R.; Hughes, C. E.
1994-01-01
An axisymmetric panel code and a three dimensional Navier-Stokes code (used as an inviscid Euler code) were verified for low speed, high angle of attack flow conditions. A three dimensional Navier-Stokes code (used as an inviscid code), and an axisymmetric Navier-Stokes code (used as both viscous and inviscid code) were also assessed for high Mach number cruise conditions. The boundary layer calculations were made by using the results from the panel code or Euler calculation. The panel method can predict the internal surface pressure distributions very well if no shock exists. However, only Euler and Navier-Stokes calculations can provide a good prediction of the surface static pressure distribution including the pressure rise across the shock. Because of the high CPU time required for a three dimensional Navier-Stokes calculation, only the axisymmetric Navier-Stokes calculation was considered at cruise conditions. The use of suction and tangential blowing boundary layer control to eliminate the flow separation on the internal surface was demonstrated for low free stream Mach number and high angle of attack cases. The calculation also shows that transition from laminar flow to turbulent flow on the external cowl surface can be delayed by using suction boundary layer control at cruise flow conditions. The results were compared with experimental data where possible.
Chen, Chien-Lin; Yi, Chih-Hsun; Liu, Tso-Tsai; Hsu, Ching-Sheng; Omari, Taher I
2013-06-01
Patients with non-obstructive dysphagia (NOD) report symptoms of impaired esophageal bolus transit without evidence of bolus stasis. In such patients, manometric investigation may diagnose esophageal motility disorders; however, many have normal motor patterns. We hypothesized that patients with NOD would demonstrate evidence of high flow-resistance during bolus passage which in turn would relate to the reporting of bolus hold up perception. Esophageal pressure-impedance recordings of 5 mL liquid and viscous swallows from 18 NOD patients (11 male; 19-71 years) and 17 control subjects (9 male; 25-60 years) were analyzed. The relationship between intrabolus pressure and bolus flow timing in the esophagus was assessed using the pressure flow index (PFI). Bolus perception was assessed swallow by swallow using standardized descriptors. NOD patients were characterized by a higher PFI than controls. The PFI defined a pressure-flow abnormality in all patients who appeared normal based on the assessment esophageal motor patterns and bolus clearance. The PFI was higher for individual swallows during which subjects reported perception of bolus passage. Bolus flow-resistance is higher in NOD patients compared with controls as well as higher in relation to perception of bolus transit, suggesting the presence of an esophageal motility disorder despite normal findings on conventional analysis. © 2013 Journal of Gastroenterology and Hepatology Foundation and Wiley Publishing Asia Pty Ltd.
Evaluation of Renal Blood Flow and Oxygenation in CKD Using Magnetic Resonance Imaging.
Khatir, Dinah S; Pedersen, Michael; Jespersen, Bente; Buus, Niels H
2015-09-01
Animal studies suggest that progression of chronic kidney disease (CKD) is related to renal hypoxia. With renal blood supply determining oxygen delivery and sodium absorption being the main contributor to oxygen consumption, we describe the relationship between renal oxygenation, renal artery blood flow, and sodium absorption in patients with CKD and healthy controls. Cross-sectional study. 62 stable patients with CKD stages 3 to 4 (mean age, 61±13 [SD] years) and 24 age- and sex-matched controls. CKD versus control status. Renal artery blood flow, tissue oxygenation (relative changes in deoxyhemoglobin concentration of the renal medulla [MR2*] and cortex [CR2*]), and sodium absorption. Renal artery blood flow was determined by phase-contrast magnetic resonance imaging (MRI); MR2* and CR2* were determined by blood oxygen level-dependent MRI. Ultrafiltered and reabsorbed sodium were determined from measured glomerular filtration rate (mGFR) and 24-hour urine collections. mGFR in patients was 37% that of controls (36±15 vs 97±23 mL/min/1.73 m(2); P < 0.001), and reabsorbed sodium was 37% that of controls (6.9 vs 19.1 mol/24 h; P < 0.001). Single-kidney patient renal artery blood flow was 72% that of controls (319 vs 443 mL/min; P < 0.001). Glomerular filtration fraction was 9% in patients and 18% in controls (P < 0.001). Patients and controls had similar CR2* (13.4 vs 13.3 s(-1)) and medullary MR2* (26.4 vs 26.5 s(-1)) values. Linear regression analysis demonstrated no associations between R2* and renal artery blood flow or sodium absorption. Increasing arterial blood oxygen tension by breathing 100% oxygen had very small effects on CR2*, but reduced MR2* in both groups. Only renal artery blood flow was determined and thus regional perfusion could not be related to CR2* or MR2*. In CKD, reductions of mGFR and reabsorbed sodium are more than double that of renal artery blood flow, whereas cortical and medullary oxygenation are within the range of healthy persons. Reduction in glomerular filtration fraction may prevent renal hypoxia in CKD. Copyright © 2015 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Lindler, Jason; Wereley, Norman M.
2003-06-01
We present an improved experimental validation of our nonlinear quasi-steady electrorheological (ER) and magnetorheological damper analysis, using an idealized Bingham plastic shear flow mechanism, for the flow mode of damper operation with leakage effect. To validate the model, a double-acting ER valve or bypass damper was designed and fabricated. Both the hydraulic cylinder and the bypass duct have cylindrical geometry, and damping forces are developed in the annular bypass via Poiseuille flow. The ER fluid damper contains a controlled amount of leakage around the piston head. The leakage allows ER fluid to flow from one side of the piston head to the opposite side without passing through the ER bypass. For this flow mode damper, the damping coefficient, defined as the ratio of equivalent viscous damping of the Bingham plastic material, Ceq, to the Newtonian viscous damping, C, is a function of the non-dimensional plug thickness only. The damper was tested for varying conditions of applied electric field and frequency using a mechanical damper dynamometer. In this analysis, the leakage damping coefficient with incorporated leakage effects, predict the amount of energy dissipated for a complete cycle of the piston rod. Measured force verses displacement cycles for multiple frequencies and electric fields validate the ability of the non-dimensional groups and the leakage damping coefficient to predict the damping levels for an ER bypass damper with leakage. Based on the experimental validation of the model using these data, the Bingham plastic analysis is shown to be an effective tool for the analysis-based design of double-acting ER bypass dampers.
Dynamic power flow controllers
Divan, Deepakraj M.; Prasai, Anish
2017-03-07
Dynamic power flow controllers are provided. A dynamic power flow controller may comprise a transformer and a power converter. The power converter is subject to low voltage stresses and not floated at line voltage. In addition, the power converter is rated at a fraction of the total power controlled. A dynamic power flow controller controls both the real and the reactive power flow between two AC sources having the same frequency. A dynamic power flow controller inserts a voltage with controllable magnitude and phase between two AC sources; thereby effecting control of active and reactive power flows between two AC sources.
Doppler-shifted fluorescence imaging of velocity fields in supersonic reacting flows
NASA Technical Reports Server (NTRS)
Allen, M. G.; Davis, S. J.; Kessler, W. J.; Sonnenfroh, D. M.
1992-01-01
The application of Doppler-shifted fluorescence imaging of velocity fields in supersonic reacting flows is analyzed. Focussing on fluorescence of the OH molecule in typical H2-air Scramjet flows, the effects of uncharacterized variations in temperature, pressure, and collisional partner composition across the measurement plane are examined. Detailed measurements of the (1,0) band OH lineshape variations in H2-air combustions are used, along with single-pulse and time-averaged measurements of an excimer-pumped dye laser, to predict the performance of a model velocimeter with typical Scramjet flow properties. The analysis demonstrates the need for modification and control of the laser bandshape in order to permit accurate velocity measurements in the presence of multivariant flow properties.
Anthropogenic Water Uses and River Flow Regime Alterations by Dams
NASA Astrophysics Data System (ADS)
Ferrazzi, M.; Botter, G.
2017-12-01
Dams and impoundments have been designed to reconcile the systematic conflict between patterns of anthropogenic water uses and the temporal variability of river flows. Over the past seven decades, population growth and economic development led to a marked increase in the number of these water infrastructures, so that unregulated free-flowing rivers are now rare in developed countries and alterations of the hydrologic cycle at global scale have to be properly considered and characterized. Therefore, improving our understanding of the influence of dams and reservoirs on hydrologic regimes is going to play a key role in water planning and management. In this study, a physically based analytic approach is combined to extensive hydrologic data to investigate natural flow regime alterations downstream of dams in the Central-Eastern United States. These representative case studies span a wide range of different uses, including flood control, water supply and hydropower production. Our analysis reveals that the most evident effects of flood control through dams is a decrease in the intra-seasonal variability of flows, whose extent is controlled by the ratio between the storage capacity for flood control and the average incoming streamflow. Conversely, reservoirs used for water supply lead to an increase of daily streamflow variability and an enhanced inter-catchment heterogeneity. Over the last decades, the supply of fresh water required to sustain human populations has become a major concern at global scale. Accordingly, the number of reservoirs devoted to water supply increased by 50% in the US. This pattern foreshadows a possible shift in the cumulative effect of dams on river flow regimes in terms of inter-catchment homogenization and intra-annual flow variability.
Predicting System Accidents with Model Analysis During Hybrid Simulation
NASA Technical Reports Server (NTRS)
Malin, Jane T.; Fleming, Land D.; Throop, David R.
2002-01-01
Standard discrete event simulation is commonly used to identify system bottlenecks and starving and blocking conditions in resources and services. The CONFIG hybrid discrete/continuous simulation tool can simulate such conditions in combination with inputs external to the simulation. This provides a means for evaluating the vulnerability to system accidents of a system's design, operating procedures, and control software. System accidents are brought about by complex unexpected interactions among multiple system failures , faulty or misleading sensor data, and inappropriate responses of human operators or software. The flows of resource and product materials play a central role in the hazardous situations that may arise in fluid transport and processing systems. We describe the capabilities of CONFIG for simulation-time linear circuit analysis of fluid flows in the context of model-based hazard analysis. We focus on how CONFIG simulates the static stresses in systems of flow. Unlike other flow-related properties, static stresses (or static potentials) cannot be represented by a set of state equations. The distribution of static stresses is dependent on the specific history of operations performed on a system. We discuss the use of this type of information in hazard analysis of system designs.
Three-dimensional turbulent near-wall flows in streamwise corners: Current state and questions
NASA Astrophysics Data System (ADS)
Kornilov, V. I.
2017-10-01
Current advances in experimental and computational studies of three-dimensional (3-D) near-wall turbulent flows in streamwise corners (SC) including the boundary-layer transition are reviewed. The focus is the structure, properties and main regularities of such flows in a wide range of variable conditions and basic parameters. A variety of different kinds of near-wall streamwise corner flows is displayed. Analysis of approaches for modeling of the near-wall corner flow in laboratory experiment is given. The problem of simulation of such flows where some ambiguities remain is discussed. The main factors on the structure of the flow in streamwise corners are analyzed. Also, the effectiveness of flow control by streamwise vortices in the junction regions of aerodynamic surfaces is shown. Finally, some important properties of the modified near-wall turbulent corner flows which have been revealed experimentally, in particular, for the flow near the wing/body junction (WBJ), can be used as an attractive alternative for real applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Upadhyaya, Belle; Hines, J. Wesley; Damiano, Brian
The research and development under this project was focused on the following three major objectives: Objective 1: Identification of critical in-vessel SMR components for remote monitoring and development of their low-order dynamic models, along with a simulation model of an integral pressurized water reactor (iPWR). Objective 2: Development of an experimental flow control loop with motor-driven valves and pumps, incorporating data acquisition and on-line monitoring interface. Objective 3: Development of stationary and transient signal processing methods for electrical signatures, machinery vibration, and for characterizing process variables for equipment monitoring. This objective includes the development of a data analysis toolbox. Themore » following is a summary of the technical accomplishments under this project: - A detailed literature review of various SMR types and electrical signature analysis of motor-driven systems was completed. A bibliography of literature is provided at the end of this report. Assistance was provided by ORNL in identifying some key references. - A review of literature on pump-motor modeling and digital signal processing methods was performed. - An existing flow control loop was upgraded with new instrumentation, data acquisition hardware and software. The upgrading of the experimental loop included the installation of a new submersible pump driven by a three-phase induction motor. All the sensors were calibrated before full-scale experimental runs were performed. - MATLAB-Simulink model of a three-phase induction motor and pump system was completed. The model was used to simulate normal operation and fault conditions in the motor-pump system, and to identify changes in the electrical signatures. - A simulation model of an integral PWR (iPWR) was updated and the MATLAB-Simulink model was validated for known transients. The pump-motor model was interfaced with the iPWR model for testing the impact of primary flow perturbations (upsets) on plant parameters and the pump electrical signatures. Additionally, the reactor simulation is being used to generate normal operation data and data with instrumentation faults and process anomalies. A frequency controller was interfaced with the motor power supply in order to vary the electrical supply frequency. The experimental flow control loop was used to generate operational data under varying motor performance characteristics. Coolant leakage events were simulated by varying the bypass loop flow rate. The accuracy of motor power calculation was improved by incorporating the power factor, computed from motor current and voltage in each phase of the induction motor.- A variety of experimental runs were made for steady-state and transient pump operating conditions. Process, vibration, and electrical signatures were measured using a submersible pump with variable supply frequency. High correlation was seen between motor current and pump discharge pressure signal; similar high correlation was exhibited between pump motor power and flow rate. Wide-band analysis indicated high coherence (in the frequency domain) between motor current and vibration signals. - Wide-band operational data from a PWR were acquired from AMS Corporation and used to develop time-series models, and to estimate signal spectrum and sensor time constant. All the data were from different pressure transmitters in the system, including primary and secondary loops. These signals were pre-processed using the wavelet transform for filtering both low-frequency and high-frequency bands. This technique of signal pre-processing provides minimum distortion of the data, and results in a more optimal estimation of time constants of plant sensors using time-series modeling techniques.« less
NASA Astrophysics Data System (ADS)
Yan, Fei; Tian, Fuli; Shi, Zhongke
2016-10-01
Urban traffic flows are inherently repeated on a daily or weekly basis. This repeatability can help improve the traffic conditions if it is used properly by the control system. In this paper, we propose a novel iterative learning control (ILC) strategy for traffic signals of urban road networks using the repeatability feature of traffic flow. To improve the control robustness, the ILC strategy is further integrated with an error feedback control law in a complementary manner. Theoretical analysis indicates that the ILC-based traffic signal control methods can guarantee the asymptotic learning convergence, despite the presence of modeling uncertainties and exogenous disturbances. Finally, the impacts of the ILC-based signal control strategies on the network macroscopic fundamental diagram (MFD) are examined. The results show that the proposed ILC-based control strategies can homogenously distribute the network accumulation by controlling the vehicle numbers in each link to the desired levels under different traffic demands, which can result in the network with high capacity and mobility.
A miniaturized, optically accessible bioreactor for systematic 3D tissue engineering research.
Laganà, Matteo; Raimondi, Manuela T
2012-02-01
Perfusion bioreactors are widely used in tissue engineering and pharmaceutical research to provide reliable models of tissue growth under controlled conditions. Destructive assays are not able to follow the evolution of the growing tissue on the same construct, so it is necessary to adopt non-destructive analysis. We have developed a miniaturized, optically accessible bioreactor for interstitial perfusion of 3D cell-seeded scaffolds. The scaffold adopted was optically transparent, with highly defined architecture. Computational fluid dynamics (CFD) analysis was useful to predict the flow behavior in the bioreactor scaffold chamber (that was laminar flow, Re = 0.179, with mean velocity equal to 100 microns/s). Moreover, experimental characterization of the bioreactor performance gave that the maximum allowable pressure was 0.06 MPa and allowable flow rate up to 25 ml/min. A method, to estimate quantitatively and non destructively the cell proliferation (from 15 to 43 thousand cells) and tissue growth (from 2% to 43%) during culture time, was introduced and validated. An end point viability test was performed to check the experimental set-up overall suitability for cell culture with successful results. Morphological analysis was performed at the end time point to show the complex tridimensional pattern of the biological tissue growth. Our system, characterized by controlled conditions in a wide range of allowable flow rate and pressure, permits to systematically study the influence of several parameters on engineered tissue growth, using viable staining and a standard fluorescence microscope.
Liu, Liping; Yin, Yan; Li, Fei; Malhotra, Charvi; Cheng, Jianguo
2017-06-01
Cellular responses to nerve injury play a central role in the pathogenesis of neuropathic pain. However, the analysis of site specific cellular responses to nerve injury and neuropathic pain is limited to immunohistochemistry staining with numerous limitations. We proposed to apply flow cytometry to overcome some of the limitations and developed two protocols for isolation of cells from small specimens of the sciatic nerve and dorsal root ganglion (DRG) in mice. RESULTS AND COMPARASION WITH EXISTING: methods We found that both the non-enzymatic and enzymatic approaches were highly effective in harvesting a sufficient number of cells for flow cytometry analysis in normal and pathological conditions. The total number of cells in the injury site of the sciatic and its DRGs increased significantly 14days after chronic constriction injury (CCI) of the sciatic nerve, compared to sham surgery control or the contralateral control. The enzymatic approach yielded a significantly higher total number of cells and CD45 negative cells, suggesting that this approach allows for harvest of more resident cells, compared to the non-enzymatic method. The percentage of CD45 + /CD11b + cells was significantly increased in the sciatic nerve but not in the DRG. These results were consistent with both protocols. We thus offer two simple and effective protocols that allow for application of flow cytometry to the investigation of cellular and molecular mechanisms of neuropathic pain. Copyright © 2017 Elsevier B.V. All rights reserved.
Development, Demonstration, and Analysis of an Integrated Iodine Hall Thruster Feed System
NASA Technical Reports Server (NTRS)
Polzin, Kurt A.; Peeples, Steven R.; Burt, Adam O.; Martin, Adam K.; Martinez, Armando; Seixal, Joao F.; Mauro, Stephanie
2016-01-01
The design of an in-space iodine-vapor-fed Hall effect thruster propellant management system is described. The solid-iodine propellant tank has unique issues associated with the microgravity environment, requiring a solution where the iodine is maintained in intimate thermal contact with the heated tank walls. The flow control valves required alterations from earlier iterations to survive for extended periods of time in the corrosive iodine-vapor environment. Materials have been selected for the entire feed system that can chemically resist the iodine vapor, with the design now featuring Hastelloy or Inconel for almost all the wetted components. An integrated iodine feed system/Hall thruster demonstration unit was fabricated and tested, with all control being handled by an onboard electronics card specifically designed to operate the feed system. Structural analysis shows that the feed system can survive launch loads after the implementation of some minor reinforcement. Flow modeling, while still requiring significant additional validation, is presented to show its potential in capturing the behavior of components in this low-flow, low-pressure system.
A Computational Fluid Dynamics Study of Swirling Flow Reduction by Using Anti-Vortex Baffle
NASA Technical Reports Server (NTRS)
Yang, H. Q.; West, Jeff; Peugeot, John W.
2017-01-01
OBJECTIVES: To evaluate proposed anti-vortex design in suppressing swirling flow during US burn. APPROACH: Include two major body forces in the analysis a)Vehicle acceleration (all three components); b)Vehicle maneuvers (roll, pitch, and yaw). Perform two drainage analyses of Ares I LOX tank using 6 DOF body forces predicted by GN&C analysis (Guidance Navigation and Control) during vehicle ascent: one with baffle, one without baffle. MODEL: Use Ares I defined geometry. O-Grid for easy fitting of baffle. In this preliminary analysis the holes are sealed. Use whole 360 deg. model with no assumption of symmetry or cyclic boundary conditions. Read in 6DOF data vs time from a file.
POD analysis of flow over a backward-facing step forced by right-angle-shaped plasma actuator.
Wang, Bin; Li, Huaxing
2016-01-01
This study aims to present flow control over the backward-facing step with specially designed right-angle-shaped plasma actuator and analyzed the influence of various scales of flow structures on the Reynolds stress through snapshot proper orthogonal decomposition (POD). 2D particle image velocimetry measurements were conducted on region (x/h = 0-2.25) and reattachment zone in the x-y plane over the backward-facing step at a Reynolds number of Re h = 27,766 (based on step height [Formula: see text] and free stream velocity [Formula: see text]. The separated shear layer was excited by specially designed right-angle-shaped plasma actuator under the normalized excitation frequency St h ≈ 0.345 along the 45° direction. The spatial distribution of each Reynolds stress component was reconstructed using an increasing number of POD modes. The POD analysis indicated that the flow dynamic downstream of the step was dominated by large-scale flow structures, which contributed to streamwise Reynolds stress and Reynolds shear stress. The intense Reynolds stress localized to a narrow strip within the shear layer was mainly affected by small-scale flow structures, which were responsible for the recovery of the Reynolds stress peak. With plasma excitation, a significant increase was obtained in the vertical Reynolds stress peak. Under the dimensionless frequencies St h ≈ 0.345 and [Formula: see text] which are based on the step height and momentum thickness, the effectiveness of the flow control forced by the plasma actuator along the 45° direction was ordinary. Only the vertical Reynolds stress was significantly affected.
NASA Astrophysics Data System (ADS)
Gao, D.; Morley, N. B.
2002-12-01
A 2D model for MHD free surface flow in a spanwise field is developed. The model, designed to simulate film flows of liquid metals in future thermonuclear fusion reactors, considers an applied spanwise magnetic field with spatial and temporal variation and an applied streamwise external current. A special case - a thin falling film flow in spanwise magnetic field with constant gradient and constant applied external streamwise current, is here investigated in depth to gain insight into the behavior of the MHD film flow. The fully developed flow solution is derived and initial linear stability analysis is performed for this special case. It is seen that the velocity profile is significantly changed due to the presence of the MHD effect, resulting in the free surface analog of the classic M-shape velocity profile seen in developing pipe flows in a field gradient. The field gradient is also seen to destabilize the film flow under most conditions. The effect of external current depends on the relative direction of the field gradient to the current direction. By controlling the magnitude of an external current, it is possible to obtain a linearly stable falling film under these magnetic field conditions. Tables 1, Figs 12, Refs 20.
USSAERO computer program development, versions B and C
NASA Technical Reports Server (NTRS)
Woodward, F. A.
1980-01-01
Versions B and C of the unified subsonic and supersonic aerodynamic analysis program, USSAERO, are described. Version B incorporates a new symmetrical singularity method to provide improved surface pressure distributions on wings in subsonic flow. Version C extends the range of application of the program to include the analysis of multiple engine nacelles or finned external stores. In addition, nonlinear compressibility effects in high subsonic and supersonic flows are approximated using a correction based on the local Mach number at panel control points. Several examples are presented comparing the results of these programs with other panel methods and experimental data.
A multi-channel photometric detector for multi-component analysis in flow injection analysis
Tan, Aimin; Huang, Jialin; Geng, Liudi; Xu, Jinhua; Zhao, Xinna
1994-01-01
The detector, a multi-channel photometric detector, described in this paper was developed using multi-wavelength LEDs (light emitting diode) and phototransistors for absorbance measurement controlled by an Intel 8031 8-bit single chip microcomputer. Up to four flow cells can be attached to the detector. The LEDs and phototransistors are both inexpensive, and reliable. The results given by the detector for simultaneous determination of trace amounts of cobalt and cadmium in zinc sulphate electrolyte are reported. Because of the newly developed detector, this approach employs much less hardware apparatus than by employing conventional photometric detectors. PMID:18924688
A multi-channel photometric detector for multi-component analysis in flow injection analysis.
Tan, A; Huang, J; Geng, L; Xu, J; Zhao, X
1994-01-01
The detector, a multi-channel photometric detector, described in this paper was developed using multi-wavelength LEDs (light emitting diode) and phototransistors for absorbance measurement controlled by an Intel 8031 8-bit single chip microcomputer. Up to four flow cells can be attached to the detector. The LEDs and phototransistors are both inexpensive, and reliable. The results given by the detector for simultaneous determination of trace amounts of cobalt and cadmium in zinc sulphate electrolyte are reported. Because of the newly developed detector, this approach employs much less hardware apparatus than by employing conventional photometric detectors.
NPAC-Nozzle Performance Analysis Code
NASA Technical Reports Server (NTRS)
Barnhart, Paul J.
1997-01-01
A simple and accurate nozzle performance analysis methodology has been developed. The geometry modeling requirements are minimal and very flexible, thus allowing rapid design evaluations. The solution techniques accurately couple: continuity, momentum, energy, state, and other relations which permit fast and accurate calculations of nozzle gross thrust. The control volume and internal flow analyses are capable of accounting for the effects of: over/under expansion, flow divergence, wall friction, heat transfer, and mass addition/loss across surfaces. The results from the nozzle performance methodology are shown to be in excellent agreement with experimental data for a variety of nozzle designs over a range of operating conditions.
Edmunds, Kelly L; Elrahman, Samira Abd; Bell, Diana J; Brainard, Julii; Dervisevic, Samir; Fedha, Tsimbiri P; Few, Roger; Howard, Guy; Lake, Iain; Maes, Peter; Matofari, Joseph; Minnigh, Harvey; Mohamedani, Ahmed A; Montgomery, Maggie; Morter, Sarah; Muchiri, Edward; Mudau, Lutendo S; Mutua, Benedict M; Ndambuki, Julius M; Pond, Katherine; Sobsey, Mark D; van der Es, Mike; Zeitoun, Mark; Hunter, Paul R
2016-06-01
To assess, within communities experiencing Ebola virus outbreaks, the risks associated with the disposal of human waste and to generate recommendations for mitigating such risks. A team with expertise in the Hazard Analysis of Critical Control Points framework identified waste products from the care of individuals with Ebola virus disease and constructed, tested and confirmed flow diagrams showing the creation of such products. After listing potential hazards associated with each step in each flow diagram, the team conducted a hazard analysis, determined critical control points and made recommendations to mitigate the transmission risks at each control point. The collection, transportation, cleaning and shared use of blood-soiled fomites and the shared use of latrines contaminated with blood or bloodied faeces appeared to be associated with particularly high levels of risk of Ebola virus transmission. More moderate levels of risk were associated with the collection and transportation of material contaminated with bodily fluids other than blood, shared use of latrines soiled with such fluids, the cleaning and shared use of fomites soiled with such fluids, and the contamination of the environment during the collection and transportation of blood-contaminated waste. The risk of the waste-related transmission of Ebola virus could be reduced by the use of full personal protective equipment, appropriate hand hygiene and an appropriate disinfectant after careful cleaning. Use of the Hazard Analysis of Critical Control Points framework could facilitate rapid responses to outbreaks of emerging infectious disease.
A design methodology of magentorheological fluid damper using Herschel-Bulkley model
NASA Astrophysics Data System (ADS)
Liao, Linqing; Liao, Changrong; Cao, Jianguo; Fu, L. J.
2003-09-01
Magnetorheological fluid (MR fluid) is highly concentrated suspension of very small magnetic particle in inorganic oil. The essential behavior of MR fluid is its ability to reversibly change from free-flowing, linear viscous liquids to semi-solids having controllable yield strength in milliseconds when exposed to magnetic field. This feature provides simple, quiet, rapid-response interfaces between electronic controls and mechanical systems. In this paper, a mini-bus MR fluid damper based on plate Poiseuille flow mode is typically analyzed using Herschel-Bulkley model, which can be used to account for post-yield shear thinning or thickening under the quasi-steady flow condition. In the light of various value of flow behavior index, the influences of post-yield shear thinning or thickening on flow velocity profiles of MR fluid in annular damping orifice are examined numerically. Analytical damping coefficient predictions also are compared via the nonlinear Bingham plastic model and Herschel-Bulkley constitutive model. A MR fluid damper, which is designed and fabricated according to design method presented in this paper, has tested by electro-hydraulic servo vibrator and its control system in National Center for Test and Supervision of Coach Quality. The experimental results reveal that the analysis methodology and design theory are reasonable and MR fluid damper can be designed according to the design methodology.
Controllable Solid Propulsion Combustion and Acoustic Knowledge Base Improvements
NASA Technical Reports Server (NTRS)
McCauley, Rachel; Fischbach, Sean; Fredrick, Robert
2012-01-01
Controllable solid propulsion systems have distinctive combustion and acoustic environments that require enhanced testing and analysis techniques to progress this new technology from development to production. In a hot gas valve actuating system, the movement of the pintle through the hot gas exhibits complex acoustic disturbances and flow characteristics that can amplify induced pressure loads that can damage or detonate the rocket motor. The geometry of a controllable solid propulsion gas chamber can set up unique unsteady flow which can feed acoustic oscillations patterns that require characterization. Research in this area aids in the understanding of how best to design, test, and analyze future controllable solid rocket motors using the lessons learned from past government programs as well as university research and testing. This survey paper will give the reader a better understanding of the potentially amplifying affects propagated by a controllable solid rocket motor system and the knowledge of the tools current available to address these acoustic disturbances in a preliminary design. Finally the paper will supply lessons learned from past experiences which will allow the reader to come away with understanding of what steps need to be taken when developing a controllable solid rocket propulsion system. The focus of this survey will be on testing and analysis work published by solid rocket programs and from combustion and acoustic books, conference papers, journal articles, and additionally from subject matter experts dealing currently with controllable solid rocket acoustic analysis.
NASA Technical Reports Server (NTRS)
Michal, Todd R.
1998-01-01
This study supports the NASA Langley sponsored project aimed at determining the viability of using Euler technology for preliminary design use. The primary objective of this study was to assess the accuracy and efficiency of the Boeing, St. Louis unstructured grid flow field analysis system, consisting of the MACGS grid generation and NASTD flow solver codes. Euler solutions about the Aero Configuration/Weapons Fighter Technology (ACWFT) 1204 aircraft configuration were generated. Several variations of the geometry were investigated including a standard wing, cambered wing, deflected elevon, and deflected body flap. A wide range of flow conditions, most of which were in the non-linear regimes of the flight envelope, including variations in speed (subsonic, transonic, supersonic), angles of attack, and sideslip were investigated. Several flowfield non-linearities were present in these solutions including shock waves, vortical flows and the resulting interactions. The accuracy of this method was evaluated by comparing solutions with test data and Navier-Stokes solutions. The ability to accurately predict lateral-directional characteristics and control effectiveness was investigated by computing solutions with sideslip, and with deflected control surfaces. Problem set up times and computational resource requirements were documented and used to evaluate the efficiency of this approach for use in the fast paced preliminary design environment.
Calibrating the Helium Pressurization System for the Space Shuttle Liquid-Hydrogen Tank
NASA Technical Reports Server (NTRS)
2008-01-01
Analysis of the results from the STS-114 tanking tests and subsequent launch called into question existing thermal and mass models of helium pressurization of the liquid hydrogen tank. This hydrogen tank, which makes up the bottom two-thirds of the External Tank, is pressurized prior to launch to avoid cavitation in the Shuttle Main Engine pumps. At about 2 minutes prior to launch, the main vent valve is closed, and pressurized helium flows into the tank ullage space to achieve set point pressure. As the helium gas cools, its pressure drops, calling for additional helium. Subsequent helium flows are provided in short, timed pulses. The number of pulses is taken as a rough leak indicator. An analysis of thermal models by Marshall Space Flight Center showed considerable uncertainty in the pressure-versus-time behavior of the helium ullage space and the ability to predict the number of pulses normally expected. Kennedy Space Center proposed to calibrate the dime-sized orifice, which together with valves, controls the helium flow quantity (Figure 1). Pressure and temperature sensors were installed to provide upstream and downstream measurements necessary to compute flow rate based on the orifice discharge coefficient. An assessment of flow testing with helium indicated an extremely costly use of this critical resource. In order to reduce costs, we proposed removing the orifices from each Mobile Launcher Platform (MLP) and asking Colorado Engineering Experiment Station Inc. (CEESI) to calibrate the flow. CEESI has a high-pressure air flow system with traceable flow meters capable of handling the large flow rates. However, literature research indicated that square-edged orifices of small diameters often exhibit significant hysteresis and nonrepeatability in the vicinity of choked or sonic flow. Fortunately, the MLP orifices behaved relatively well in testing (Figure 2). Using curve fitting of the air-flow data, in conjunction with ASME orifice modeling equations, a method of relating the helium mass flow to measured air flow data was obtained. This analysis showed that the highest uncertainty in flow occurred in the vicinity of the choking pressure ratio, as would be expected. In addition, analysis of typical flow pulses showed that most of the helium flow occurred either well below or well above this uncertain area. The final result is the ability to provide postlaunch estimates of helium mass flows that are within 1.5 percent of the actual value.
System for Urban Stormwater Treatment and Analysis IntegratioN (SUSTAIN)
SUSTAIN is a decision support system that assists stormwater management professionals with developing and implementing plans for flow and pollution control measures to protect source waters and meet water quality goals.
Enabling Technologies for Microfluidic Flow Control and Detection
NASA Astrophysics Data System (ADS)
Leslie, Daniel Christopher
Advances in microfluidic technologies have expanded conventional chemical and biological techniques to the point where we can envision rapid, inexpensive and portable analysis. Among the numerous challenges in the development of portable, chip-based technologies are simple flow control and detection strategies, which will be essential to widespread acceptance and implementation at both the point-of-care and in locales with limited facilities/resources. The research presented in this dissertation is focused on the development of precise flow control techniques and new, simplified detection technologies aimed at addressing these challenges. An introduction to the concepts important to microfluidics and a brief history to the field are presented in Chapter 1. Chapter 2 will present the development of a technique for the precise control of small volumes of liquids, where well-studied electrical circuit concepts are employed to create frequency-dependent microfluidic circuits. In this system, elastomeric thin films act as fluidic capacitors and diodes, which, when combined with resistors (channels), make fluidic circuits that are described by analytical models. Metering of two separate chemical inputs with a single oscillatory pneumatic control line is demonstrated by combining simple fluidic circuits (i.e., band-pass filters) to significantly reduce the external hardware required for microfluidic flow control. In order to quantify multiple flow profiles in microfluidic circuits, a novel multiplexed flow measurement method using visible dyes is introduced in Chapter 3 and rapidly determines individual flow in connected channels, post-fabrication device quality and solution viscosity. Another thrust of this dissertation research has been to develop miniaturized bioanalytical systems. Chapter 4 describes the adaption of a nucleic-acid-tagged antibody protein detection reaction to a microfluidic platform for detection of down to 5 E. coli O157:H7 cells. Furthermore, a completely non-contact temperature control platform is developed in Chapter 5 for forensic human identification reactions, based on interferometric temperature sensing and infrared-mediated heating, which simplifies the microfluidic device and its operation. Finally, possible future directions are outlined in Chapter 6 including further simplification of microfluidic instrumentation.
Roulier, Stéphanie; Baran, Nicole; Mouvet, Christophe; Stenemo, Fredrik; Morvan, Xavier; Albrechtsen, Hans-Jørgen; Clausen, Liselotte; Jarvis, Nicholas
2006-03-01
The objective of this study was to identify the main controls on atrazine leaching through luvisols and calcisols overlying fissured limestone using the dual-permeability model MACRO. The model parameterisation was based on a combination of direct measurements (e.g. hydraulic properties, adsorption and degradation), literature data and calibration against bromide leaching experiments in field plots. A Monte Carlo sensitivity analysis was carried out for a typical application pattern, considering two different depths of unsaturated limestone (15 and 30 m). MACRO calibrations to the field experiments demonstrated the occurrence of strong macropore flow in the luvisol, while transport in the calcisol could be described by the advection-dispersion equation. MACRO simulations of tritium and atrazine leaching qualitatively matched tritium concentration profiles measured in the limestone and atrazine concentrations measured in piezometers and in aquifer discharge via a spring. The sensitivity analysis suggested that the thickness of the limestone, as well as the transport properties and processes occurring in the unsaturated rock (e.g. matrix vs. fissure flow) will have little significant long-term effect on atrazine leaching, mainly because degradation is very slow in the limestone. No mineralization of atrazine was detected in one-year incubations and a mean half-life of 10 years was assumed in the simulations. Instead, processes occurring in the soil exerted the main control on predicted atrazine leaching, especially variations in the degradation rate and the strength of sorption and macropore flow. However, fissure flow in unsaturated rock is expected to exert a much more significant control on groundwater contamination for compounds that degrade more readily in the deep vadose zone.
Information flow dynamics in the brain
NASA Astrophysics Data System (ADS)
Rabinovich, Mikhail I.; Afraimovich, Valentin S.; Bick, Christian; Varona, Pablo
2012-03-01
Timing and dynamics of information in the brain is a hot field in modern neuroscience. The analysis of the temporal evolution of brain information is crucially important for the understanding of higher cognitive mechanisms in normal and pathological states. From the perspective of information dynamics, in this review we discuss working memory capacity, language dynamics, goal-dependent behavior programming and other functions of brain activity. In contrast with the classical description of information theory, which is mostly algebraic, brain flow information dynamics deals with problems such as the stability/instability of information flows, their quality, the timing of sequential processing, the top-down cognitive control of perceptual information, and information creation. In this framework, different types of information flow instabilities correspond to different cognitive disorders. On the other hand, the robustness of cognitive activity is related to the control of the information flow stability. We discuss these problems using both experimental and theoretical approaches, and we argue that brain activity is better understood considering information flows in the phase space of the corresponding dynamical model. In particular, we show how theory helps to understand intriguing experimental results in this matter, and how recent knowledge inspires new theoretical formalisms that can be tested with modern experimental techniques.
MOBI: Microgravity Observations of Bubble Interactions
NASA Technical Reports Server (NTRS)
Koch, Donald L.; Sangani, Ashok
2004-01-01
One of the greatest uncertainties affecting the design of multiphase flow technologies for space exploration is the spatial distribution of phases that will arise in microgravity or reduced gravity. On Earth, buoyancy-driven motion predominates whereas the shearing of the bubble suspension controls its behavior in microgravity. We are conducting a series of ground-based experiments and a flight experiment spanning the full range of ratios of buoyancy to shear. These include: (1) bubbles rising in a quiescent liquid in a vertical channel; (2) weak shear flow induced by slightly inclining the channel; (3) moderate shear flow in a terrestrial vertical pipe flow; and (4) shearing of a bubble suspension in a cylindrical Couette cell in microgravity. We consider nearly monodisperse suspensions of 1 to 1.8 mm diameter bubbles in aqueous electrolyte solutions. The liquid velocity disturbance produced by bubbles in this size range can often be described using an inviscid analysis. Electrolytic solutions lead to hydrophilic repulsion forces that stabilize the bubble suspension without causing Marangoni stresses. We will discuss the mechanisms that control the flow behavior and phase distribution in the ground-based experiments and speculate on the factors that may influence the suspension flow and bubble volume fraction distribution in the flight experiment.
A control-oriented dynamic wind farm flow model: “WFSim”
NASA Astrophysics Data System (ADS)
Boersma, S.; Gebraad, P. M. O.; Vali, M.; Doekemeijer, B. M.; van Wingerden, J. W.
2016-09-01
In this paper, we present and extend the dynamic medium fidelity control-oriented Wind Farm Simulator (WFSim) model. WFSim resolves flow fields in wind farms in a horizontal, two dimensional plane. It is based on the spatially and temporally discretised two dimensional Navier-Stokes equations and the continuity equation and solves for a predefined grid and wind farm topology. The force on the flow field generated by turbines is modelled using actuator disk theory. Sparsity in system matrices is exploited in WFSim, which enables a relatively fast flow field computation. The extensions to WFSim we present in this paper are the inclusion of a wake redirection model, a turbulence model and a linearisation of the nonlinear WFSim model equations. The first is important because it allows us to carry out wake redirection control and simulate situations with an inflow that is misaligned with the rotor plane. The wake redirection model is validated against a theoretical wake centreline known from literature. The second extension makes WFSim more realistic because it accounts for wake recovery. The amount of recovery is validated using a high fidelity simulation model Simulator fOr Wind Farm Applications (SOWFA) for a two turbine test case. Finally, a linearisation is important since it allows the application of more standard analysis, observer and control techniques.
NASA Astrophysics Data System (ADS)
Lora-Millán, Julio S.; Taguas, Encarnacion V.; Gomez, Jose A.; Perez, Rafael
2014-05-01
Long term soil erosion studies imply substantial efforts, particularly when there is the need to maintain continuous measurements. There are high costs associated to maintenance of field equipment keeping and quality control of data collection. Energy supply and/or electronic failures, vandalism and burglary are common causes of gaps in datasets, reducing their reach in many cases. In this work, a system of three video-cameras, a recorder and a transmission modem (3G technology) has been set up in a gauging station where rainfall, runoff flow and sediment concentration are monitored. The gauging station is located in the outlet of an olive orchard catchment of 6.4 ha. Rainfall is measured with one automatic raingauge that records intensity at one minute intervals. The discharge is measured by a flume of critical flow depth, where the water is recorded by an ultrasonic sensor. When the water level rises to a predetermined level, the automatic sampler turns on and fills a bottle at different intervals according to a program depending on the antecedent precipitation. A data logger controls the instruments' functions and records the data. The purpose of the video-camera system is to improve the quality of the dataset by i) the visual analysis of the measurement conditions of flow into the flume; ii) the optimisation of the sampling programs. The cameras are positioned to record the flow at the approximation and the gorge of the flume. In order to contrast the values of ultrasonic sensor, there is a third camera recording the flow level close to a measure tape. This system is activated when the ultrasonic sensor detects a height threshold, equivalent to an electric intensity level. Thus, only when there is enough flow, video-cameras record the event. This simplifies post-processing and reduces the cost of download of recordings. The preliminary contrast analysis will be presented as well as the main improvements in the sample program.
Recent Advancements towards Full-System Microfluidics
Miled, Amine
2017-01-01
Microfluidics is quickly becoming a key technology in an expanding range of fields, such as medical sciences, biosensing, bioactuation, chemical synthesis, and more. This is helping its transformation from a promising R&D tool to commercially viable technology. Fuelling this expansion is the intensified focus on automation and enhanced functionality through integration of complex electrical control, mechanical properties, in situ sensing and flow control. Here we highlight recent contributions to the Sensors Special Issue series called “Microfluidics-Based Microsystem Integration Research” under the following categories: (i) Device fabrication to support complex functionality; (ii) New methods for flow control and mixing; (iii) Towards routine analysis and point of care applications; (iv) In situ characterization; and (v) Plug and play microfluidics. PMID:28757587
Active control of panel vibrations induced by boundary-layer flow
NASA Technical Reports Server (NTRS)
Chow, Pao-Liu
1991-01-01
Some problems in active control of panel vibration excited by a boundary layer flow over a flat plate are studied. In the first phase of the study, the optimal control problem of vibrating elastic panel induced by a fluid dynamical loading was studied. For a simply supported rectangular plate, the vibration control problem can be analyzed by a modal analysis. The control objective is to minimize the total cost functional, which is the sum of a vibrational energy and the control cost. By means of the modal expansion, the dynamical equation for the plate and the cost functional are reduced to a system of ordinary differential equations and the cost functions for the modes. For the linear elastic plate, the modes become uncoupled. The control of each modal amplitude reduces to the so-called linear regulator problem in control theory. Such problems can then be solved by the method of adjoint state. The optimality system of equations was solved numerically by a shooting method. The results are summarized.
Bandwidth turbulence control based on flow community structure in the Internet
NASA Astrophysics Data System (ADS)
Wu, Xiaoyu; Gu, Rentao; Ji, Yuefeng
2016-10-01
Bursty flows vary rapidly in short period of time, and cause fierce bandwidth turbulence in the Internet. In this letter, we model the flow bandwidth turbulence process by constructing a flow interaction network (FIN network), with nodes representing flows and edges denoting bandwidth interactions among them. To restrain the bandwidth turbulence in FIN networks, an immune control strategy based on flow community structure is proposed. Flows in community boundary positions are immunized to cut off the inter-community turbulence spreading. By applying this control strategy in the first- and the second-level flow communities separately, 97.2% flows can effectively avoid bandwidth variations by immunizing 21% flows, and the average bandwidth variation degree reaches near zero. To achieve a similar result, about 70%-90% immune flows are needed with targeted control strategy based on flow degrees and random control strategy. Moreover, simulation results showed that the control effect of the proposed strategy improves significantly if the immune flow number is relatively smaller in each control step.
Korman, Josh; Kaplinski, Matthew; Melis, Theodore S.
2011-01-01
Hourly fluctuations in flow from Glen Canyon Dam were increased in an attempt to limit the population of nonnative rainbow trout Oncorhynchus mykiss in the Colorado River, Arizona, due to concerns about negative effects of nonnative trout on endangered native fishes. Controlled floods have also been conducted to enhance native fish habitat. We estimated that rainbow trout incubation mortality rates resulting from greater fluctuations in flow were 23-49% (2003 and 2004) compared with 5-11% under normal flow fluctuations (2006-2010). Effects of this mortality were apparent in redd excavations but were not seen in hatch date distributions or in the abundance of the age-0 population. Multiple lines of evidence indicated that a controlled flood in March 2008, which was intended to enhance native fish habitat, resulted in a large increase in early survival rates of age-0 rainbow trout. Age-0 abundance in July 2008 was over fourfold higher than expected given the number of viable eggs that produced these fish. A hatch date analysis indicated that early survival rates were much higher for cohorts that hatched about 1 month after the controlled flood (~April 15) relative to those that hatched before this date. The cohorts that were fertilized after the flood were not exposed to high flows and emerged into better-quality habitat with elevated food availability. Interannual differences in age-0 rainbow trout growth based on otolith microstructure supported this hypothesis. It is likely that strong compensation in survival rates shortly after emergence mitigated the impact of incubation losses caused by increases in flow fluctuations. Control of nonnative fish populations will be most effective when additional mortality is applied to older life stages after the majority of density-dependent mortality has occurred. Our study highlights the need to rigorously assess instream flow decisions through the evaluation of population-level responses.
Statistical analysis of cascading failures in power grids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chertkov, Michael; Pfitzner, Rene; Turitsyn, Konstantin
2010-12-01
We introduce a new microscopic model of cascading failures in transmission power grids. This model accounts for automatic response of the grid to load fluctuations that take place on the scale of minutes, when optimum power flow adjustments and load shedding controls are unavailable. We describe extreme events, caused by load fluctuations, which cause cascading failures of loads, generators and lines. Our model is quasi-static in the causal, discrete time and sequential resolution of individual failures. The model, in its simplest realization based on the Directed Current description of the power flow problem, is tested on three standard IEEE systemsmore » consisting of 30, 39 and 118 buses. Our statistical analysis suggests a straightforward classification of cascading and islanding phases in terms of the ratios between average number of removed loads, generators and links. The analysis also demonstrates sensitivity to variations in line capacities. Future research challenges in modeling and control of cascading outages over real-world power networks are discussed.« less
Control volume based hydrocephalus research
NASA Astrophysics Data System (ADS)
Cohen, Benjamin; Voorhees, Abram; Wei, Timothy
2008-11-01
Hydrocephalus is a disease involving excess amounts of cerebral spinal fluid (CSF) in the brain. Recent research has shown correlations to pulsatility of blood flow through the brain. However, the problem to date has presented as too complex for much more than statistical analysis and understanding. This talk will highlight progress on developing a fundamental control volume approach to studying hydrocephalus. The specific goals are to select physiologically control volume(s), develop conservation equations along with the experimental capabilities to accurately quantify terms in those equations. To this end, an in vitro phantom is used as a simplified model of the human brain. The phantom's design consists of a rigid container filled with a compressible gel. The gel has a hollow spherical cavity representing a ventricle and a cylindrical passage representing the aquaducts. A computer controlled piston pump supplies pulsatile volume fluctuations into and out of the flow phantom. MRI is used to measure fluid velocity, and volume change as functions of time. Independent pressure measurements and flow rate measurements are used to calibrate the MRI data. These data are used as a framework for future work with live patients.
Ultrasound analysis of mental artery flow in elderly patients: a case–control study
Baladi, Marina G; Tucunduva Neto, Raul R C M; Aoki, Eduardo M; Arita, Emiko S; Freitas, Claudio F
2015-01-01
Objectives: Mental artery flow decreases with age and may have an aetiological role in alveolar ridge atrophy. The aim of this study was to identify factors associated with alterations of mental artery flow, assessed by ultrasonography. Methods: This case–control study was conducted on elderly patients (aged above 60 years) at the beginning of dental treatment. Intraoral B-mode Doppler ultrasonography was used to assess mental artery flow. The cases were defined as patients with a weak/absent ultrasound signal, whereas the controls presented a strong ultrasound signal. Demographics and radiographic findings (low bone mineral density on dual-energy X-ray absorptiometry and mandibular cortical index on panoramic radiographs) were analysed as risk factors for weak/absent ultrasound signal and were calculated as adjusted odds ratios (AORs) with 95% confidence intervals (CIs) using conditional logistic regression. In addition, the Student's t-test was used to compare the mean alveolar bone height of the analysed groups. A p-value <0.05 was considered statistically significant. Results: A total of 30 ultrasound examinations (12 cases and 18 controls) were analysed. A weak/absent mental artery pulse strength was significantly associated with edentulism (AOR = 3.67; 95% CI = 0.86–15.63; p = 0.046). In addition, there was a significant difference in alveolar bone height between edentulous cases and controls (p = 0.036). Conclusions: Within the limitations of this study, the present results indicate that edentulism is associated with diminished mental artery flow, which, in turn, affects alveolar bone height. PMID:26205777
NASA Astrophysics Data System (ADS)
Rasa, Ehsan; Foglia, Laura; Mackay, Douglas M.; Scow, Kate M.
2013-11-01
Conservative tracer experiments can provide information useful for characterizing various subsurface transport properties. This study examines the effectiveness of three different types of transport observations for sensitivity analysis and parameter estimation of a three-dimensional site-specific groundwater flow and transport model: conservative tracer breakthrough curves (BTCs), first temporal moments of BTCs ( m 1), and tracer cumulative mass discharge ( M d) through control planes combined with hydraulic head observations ( h). High-resolution data obtained from a 410-day controlled field experiment at Vandenberg Air Force Base, California (USA), have been used. In this experiment, bromide was injected to create two adjacent plumes monitored at six different transects (perpendicular to groundwater flow) with a total of 162 monitoring wells. A total of 133 different observations of transient hydraulic head, 1,158 of BTC concentration, 23 of first moment, and 36 of mass discharge were used for sensitivity analysis and parameter estimation of nine flow and transport parameters. The importance of each group of transport observations in estimating these parameters was evaluated using sensitivity analysis, and five out of nine parameters were calibrated against these data. Results showed the advantages of using temporal moment of conservative tracer BTCs and mass discharge as observations for inverse modeling.
Secondary flow structure in a model curved artery: 3D morphology and circulation budget analysis
NASA Astrophysics Data System (ADS)
Bulusu, Kartik V.; Plesniak, Michael W.
2015-11-01
In this study, we examined the rate of change of circulation within control regions encompassing the large-scale vortical structures associated with secondary flows, i.e. deformed Dean-, Lyne- and Wall-type (D-L-W) vortices at planar cross-sections in a 180° curved artery model (curvature ratio, 1/7). Magnetic resonance velocimetry (MRV) and particle image velocimetry (PIV) experiments were performed independently, under the same physiological inflow conditions (Womersley number, 4.2) and using Newtonian blood-analog fluids. The MRV-technique performed at Stanford University produced phase-averaged, three-dimensional velocity fields. Secondary flow field comparisons of MRV-data to PIV-data at various cross-sectional planes and inflow phases were made. A wavelet-decomposition-based approach was implemented to characterize various secondary flow morphologies. We hypothesize that the persistence and decay of arterial secondary flow vortices is intrinsically related to the influence of the out-of-plane flow, tilting, in-plane convection and diffusion-related factors within the control regions. Evaluation of these factors will elucidate secondary flow structures in arterial hemodynamics. Supported by the National Science Foundation under Grant Number CBET-0828903, and GW Center for Biomimetics and Bioinspired Engineering (COBRE). The MRV data were acquired at Stanford University in collaboration with Christopher Elkins and John Eaton.
NASA Technical Reports Server (NTRS)
Erickson, G. E.; Gilbert, W. P.
1983-01-01
An experimental investigation was conducted to assess the vortex flow-field interactions on an advanced, twin-jet fighter aircraft configuration at high angles of attack. Flow-field surveys were conducted on a small-scale model in the Northrop 0.41 - by 0.60-meter water tunnel and, where appropriate, the qualitative observations were correlated with low-speed wind tunnel data trends obtained on a large-scale model of the advanced fighter in the NASA Langley Research Center 30- by 60-foot (9.1- by 18.3-meter) facility. Emphasis was placed on understanding the interactions of the forebody and LEX-wing vortical flows, defining the effects on rolling moment variation with sideslip, and identifying modifications to control or regulate the vortex interactions at high angles of attack. The water tunnel flow visualization results and wind tunnel data trend analysis revealed the potential for strong interactions between the forebody and LEX vortices at high angles of attack. In particular, the forebody flow development near the nose could be controlled by means of carefully-positioned radome strakes. The resultant strake-induced flow-field changes were amplified downstream by the more powerful LEX vortical motions with subsequent large effects on wing flow separation characteristics.
Generalized Stability Analysis of Capillary Flow in Slender V-Grooves
NASA Astrophysics Data System (ADS)
White, Nicholas; Troian, Sandra
2017-11-01
Spontaneous capillary flow, an especially rapid process in slender open microchannels resembling V-grooves, is of significant importance to many applications requiring passive robust flow control. Many types of biomedical devices for point-of-care use in developing countries are being designed around this principle. Important fundamental work by Romero and Yost (1996) and Weislogel (1996) elucidated the behavior of Newtonian films in slender V-grooves driven to flow by the streamwise change in capillary pressure due to the change in radius of curvature of the circular arc describing the interface of wetting or non-wetting fluids. Self-similar solutions describing Washburn type dynamics were found but other solutions are possible. Here we extend the Romero and Yost model to include a variety of inlet and outlet boundary conditions and examine the transient growth and generalized stability of perturbations to steady state and self-similar flows. Although most cases examined for wetting fluids exhibit robust stability against small perturbations, some exceptions reveal unstable flow. In total, these results support decades of experimental work which has found this method of flow control to be especially reliable, robust and self-healing. The authors gratefully acknowledge financial support from the 2016 NASA/Jet Propulsion Laboratory President's and Director's Fund as well as a 2017 NASA Space Technology Research Fellowship.
The Origin of Inlet Buzz in a Mach 1.7 Low Boom Inlet Design
NASA Technical Reports Server (NTRS)
Anderson, Bernhard H.; Weir, Lois
2014-01-01
Supersonic inlets with external compression, having a good level performance at the critical operating point, exhibit a marked instability of the flow in some subcritical operation below a critical value of the capture mass flow ratio. This takes the form of severe oscillations of the shock system, commonly known as "buzz". The underlying purpose of this study is to indicate how Detached Eddy Simulation (DES) analysis of supersonic inlets will alter how we envision unsteady inlet aerodynamics, particularly inlet buzz. Presented in this paper is a discussion regarding the physical explanation underlying inlet buzz as indicated by DES analysis. It is the normal shock wave boundary layer separation along the spike surface which reduces the capture mass flow that is the controlling mechanism which determines the onset of inlet buzz, and it is the aerodynamic characteristics of a choked nozzle that provide the feedback mechanism that sustains the buzz cycle by imposing a fixed mean corrected inlet weight flow. Comparisons between the DES analysis of the Lockheed Martin Corporation (LMCO) N+2 inlet and schlieren photographs taken during the test of the Gulfstream Large Scale Low Boom (LSLB) inlet in the NASA 8x6 ft. Supersonic Wind Tunnel (SWT) show a strong similarity both in turbulent flow field structure and shock wave formation during the buzz cycle. This demonstrates the value of DES analysis for the design and understanding of supersonic inlets.
Intelligent Flow Control Valve
NASA Technical Reports Server (NTRS)
Kelley, Anthony R (Inventor)
2015-01-01
The present invention is an intelligent flow control valve which may be inserted into the flow coming out of a pipe and activated to provide a method to stop, measure, and meter flow coming from the open or possibly broken pipe. The intelligent flow control valve may be used to stop the flow while repairs are made. Once repairs have been made, the valve may be removed or used as a control valve to meter the amount of flow from inside the pipe. With the addition of instrumentation, the valve may also be used as a variable area flow meter and flow controller programmed based upon flowing conditions. With robotic additions, the valve may be configured to crawl into a desired pipe location, anchor itself, and activate flow control or metering remotely.
Pamme, Nicole; Manz, Andreas
2004-12-15
The separation of magnetic microparticles was achieved by on-chip free-flow magnetophoresis. In continuous flow, magnetic particles were deflected from the direction of laminar flow by a perpendicular magnetic field depending on their magnetic susceptibility and size and on the flow rate. Magnetic particles could thus be separated from each other and from nonmagnetic materials. Magnetic and nonmagnetic particles were introduced into a microfluidic separation chamber, and their deflection was studied under the microscope. The magnetic particles were 2.0 and 4.5 microm in diameter with magnetic susceptibilities of 1.12 x 10(-4) and 1.6 x 10(-4) m(3) kg(-1), respectively. The 4.5-microm particles with the larger susceptibility were deflected further from the direction of laminar flow than the 2.0-microm magnetic particles. Nonmagnetic 6-microm polystyrene beads, however, were not deflected at all. Furthermore, agglomerates of magnetic particles were found to be deflected to a larger extent than single magnetic particles. The applied flow rate and the strength and gradient of the applied magnetic field were the key parameters in controlling the deflection. This separation method has a wide applicability since magnetic particles are commonly used in bioanalysis as a solid support material for antigens, antibodies, DNA, and even cells. Free-flow magnetophoretic separations could be hyphenated with other microfluidic devices for reaction and analysis steps to form a micro total analysis system.
Behnoush, Behnam; Sheikhazadi, Ardeshir; Bazmi, Elham; Fattahi, Akbar; Sheikhazadi, Elham; Saberi Anary, Seyed Hossein
2015-04-01
The aim of this study was to compare system efficiency and analysis duration regarding the solvent consumption and system maintenance in high-pressure liquid chromatography (HPLC) and ultra high-pressure liquid chromatography (UHPLC). In a case-control study, standard solutions of 7 benzodiazepines (BZs) and 73 biological samples such as urine, tissue, stomach content, and bile that screened positive for BZs were analyzed by HPLC and UHPLC in laboratory of forensic toxicology during 2012 to 2013. HPLC analysis was performed using a Knauer by 100-5 C-18 column (250 mm × 4.6 mm) and Knauer photodiode array detector (PAD). UHPLC analysis was performed using Knauer PAD detector with cooling autosampler and Eurospher II 100-3 C-18 column (100 mm × 3 mm) and also 2 pumps. The mean retention time, standard deviation, flow rate, and repeatability of analytical results were compared by using 2 methods. Routine runtimes in HPLC and UHPLC took 40 and 15 minutes, respectively. Changes in mobile phase composition of the 2 methods were not required. Flow rate and solvent consumption in UHPLC decreased. Diazepam and flurazepam were detected more frequently in biological samples. In UHPLC, small particle size and short length of column cause effective separation of BZs in a very short time. Reduced flow rate, solvent consumption, and injection volume cause more efficiency and less analysis costs. Thus, in the detection of BZs, UHPLC is an accurate, sensitive, and fast method with less cost of analysis.
A Method for Generating Reduced Order Linear Models of Supersonic Inlets
NASA Technical Reports Server (NTRS)
Chicatelli, Amy; Hartley, Tom T.
1997-01-01
For the modeling of high speed propulsion systems, there are at least two major categories of models. One is based on computational fluid dynamics (CFD), and the other is based on design and analysis of control systems. CFD is accurate and gives a complete view of the internal flow field, but it typically has many states and runs much slower dm real-time. Models based on control design typically run near real-time but do not always capture the fundamental dynamics. To provide improved control models, methods are needed that are based on CFD techniques but yield models that are small enough for control analysis and design.
The feedback control research on straight and curved road with car-following model
NASA Astrophysics Data System (ADS)
Zheng, Yi-Ming; Cheng, Rong-Jun; Ge, Hong-Xia
2017-07-01
Taking account of the road consisting of curved part and straight part, an extended car-following model is proposed in this paper. A control signal including the velocity difference between the considered vehicle and the vehicle in front is taken into account. The control theory method is applied into analysis of the stability condition for the model. Numerical simulations are implemented to prove that the stability of the traffic flow strengthens effectively with an increase of the radius of curved road, and the control signal can suppress the traffic congestion. The results are in good agree with the theoretical analysis.
Active and passive controls of Jeffrey nanofluid flow over a nonlinear stretching surface
NASA Astrophysics Data System (ADS)
Hayat, Tasawar; Aziz, Arsalan; Muhammad, Taseer; Alsaedi, Ahmed
This communication explores magnetohydrodynamic (MHD) boundary-layer flow of Jeffrey nanofluid over a nonlinear stretching surface with active and passive controls of nanoparticles. A nonlinear stretching surface generates the flow. Effects of thermophoresis and Brownian diffusion are considered. Jeffrey fluid is electrically conducted subject to non-uniform magnetic field. Low magnetic Reynolds number and boundary-layer approximations have been considered in mathematical modelling. The phenomena of impulsing the particles away from the surface in combination with non-zero mass flux condition is known as the condition of zero mass flux. Convergent series solutions for the nonlinear governing system are established through optimal homotopy analysis method (OHAM). Graphs have been sketched in order to analyze that how the temperature and concentration distributions are affected by distinct physical flow parameters. Skin friction coefficient and local Nusselt and Sherwood numbers are also computed and analyzed. Our findings show that the temperature and concentration distributions are increasing functions of Hartman number and thermophoresis parameter.
NASA Astrophysics Data System (ADS)
Liu, Xiaodong; Fu, Bao; Zhuang, Ming
2014-03-01
To make the large-scale helium cryogenic system of fusion device EAST (experimental advanced super-conducting tokamak) run stably, as the core part, the helium turbine expander must meet the requirement of refrigeration capacity. However, previous designs were based on one dimension flow to determine the average fluid parameters and geometric parameters of impeller cross-sections, so that it could not describe real physical processes in the internal flow of the turbine expander. Therefore, based on the inverse proposition of streamline curvature method in the context of quasi-three-dimensional flows, the all-over-controlled vortex concept was adopted to design the impeller under specified condition. The wrap angle of the impeller blade and the whole flow distribution on the meridian plane were obtained; meanwhile the performance of the designed impeller was analyzed. Thus a new design method is proposed here for the inverse proposition of the helium turbine expander impeller.
NASA Technical Reports Server (NTRS)
Piascik, Robert S.; Prosser, William H.
2011-01-01
The Director of the NASA Engineering and Safety Center (NESC), requested an independent assessment of the anomalous gaseous hydrogen (GH2) flow incident on the Space Shuttle Program (SSP) Orbiter Vehicle (OV)-105 during the Space Transportation System (STS)-126 mission. The main propulsion system (MPS) engine #2 GH2 flow control valve (FCV) LV-57 transition from low towards high flow position without being commanded. Post-flight examination revealed that the FCV LV-57 poppet had experienced a fatigue failure that liberated a section of the poppet flange. The NESC assessment provided a peer review of the computational fluid dynamics (CFD), stress analysis, and impact testing. A probability of detection (POD) study was requested by the SSP Orbiter Project for the eddy current (EC) nondestructive evaluation (NDE) techniques that were developed to inspect the flight FCV poppets. This report contains the findings and recommendations from the NESC assessment.
NASA Technical Reports Server (NTRS)
Piascik, Robert S.; Prosser, William H.
2011-01-01
The Director of the NASA Engineering and Safety Center (NESC), requested an independent assessment of the anomalous gaseous hydrogen (GH2) flow incident on the Space Shuttle Program (SSP) Orbiter Vehicle (OV)-105 during the Space Transportation System (STS)-126 mission. The main propulsion system (MPS) engine #2 GH2 flow control valve (FCV) LV-57 transition from low towards high flow position without being commanded. Post-flight examination revealed that the FCV LV-57 poppet had experienced a fatigue failure that liberated a section of the poppet flange. The NESC assessment provided a peer review of the computational fluid dynamics (CFD), stress analysis, and impact testing. A probability of detection (POD) study was requested by the SSP Orbiter Project for the eddy current (EC) nondestructive evaluation (NDE) techniques that were developed to inspect the flight FCV poppets. This report contains the Appendices to the main report.
Granular flow in a rotating drum: Experiments and theory
NASA Astrophysics Data System (ADS)
Hung, C. Y.; Stark, C. P.; Capart, H.; Li, L.; Smith, B.; Grinspun, E.
2015-12-01
Erosion at the base of a debris flow fundamentally controls how large the flow will become and how far it will travel. Experimental observations of this important phenomenon are rather limited, and this lack has led theoretical treatments to making ad hoc assumptions about the basal process. In light of this, we carried out a combination of laboratory experiments and theoretical analysis of granular flow in a rotating drum, a canonical example of steady grain motion in which entrainment rates can be precisely controlled. Our main result is that basal sediment is entrained as the velocity profile adjusts to imbalance in the flow of kinetic energy.Our experimental apparatus consisted of a 40cm-diameter drum, 4cm-deep, half-filled with 2.3mm grains. Rotation rates varied from 1-70 rpm. We varied the effective scale by varying effective gravity from 1g to 70g on a geotechnical centrifuge. The field of grain motion was recorded using high-speed video and mapped using particle tracking velocimetry. In tandem we developed a depth-averaged theory using balance equations for mass, momentum and kinetic energy. We assumed a linearized GDR Midi granular rheology [da Cruz, 2005] and a Coulomb friction law along the sidewalls [Jop et al., 2005]. A scaling analysis of our equations yields a dimensionless "entrainment number" En, which neatly parametrizes the flow geometry in the drum for a wide range of variables, e.g., rotation rate and effective gravity. At low En, the flow profile is planar and kinetic energy is balanced locally in the flow layer. At high En, the flow profile is sigmoidal (yin-yang shaped) and the kinetic energy is dominated by longitudinal, streamwise transfer. We observe different scaling behavior under each of these flow regimes, e.g., between En and kinetic energy, surface slope and flow depth. Our theory correctly predicts their scaling exponents and the value of En at which the regime transition takes place. We are also able to make corrections for Coriolis and dilation effects that improve the match between theory and experiment.
MotionFlow: Visual Abstraction and Aggregation of Sequential Patterns in Human Motion Tracking Data.
Jang, Sujin; Elmqvist, Niklas; Ramani, Karthik
2016-01-01
Pattern analysis of human motions, which is useful in many research areas, requires understanding and comparison of different styles of motion patterns. However, working with human motion tracking data to support such analysis poses great challenges. In this paper, we propose MotionFlow, a visual analytics system that provides an effective overview of various motion patterns based on an interactive flow visualization. This visualization formulates a motion sequence as transitions between static poses, and aggregates these sequences into a tree diagram to construct a set of motion patterns. The system also allows the users to directly reflect the context of data and their perception of pose similarities in generating representative pose states. We provide local and global controls over the partition-based clustering process. To support the users in organizing unstructured motion data into pattern groups, we designed a set of interactions that enables searching for similar motion sequences from the data, detailed exploration of data subsets, and creating and modifying the group of motion patterns. To evaluate the usability of MotionFlow, we conducted a user study with six researchers with expertise in gesture-based interaction design. They used MotionFlow to explore and organize unstructured motion tracking data. Results show that the researchers were able to easily learn how to use MotionFlow, and the system effectively supported their pattern analysis activities, including leveraging their perception and domain knowledge.
Trefz, Phillip; Rösner, Lisa; Hein, Dietmar; Schubert, Jochen K; Miekisch, Wolfram
2013-04-01
Needle trap devices (NTDs) have shown many advantages such as improved detection limits, reduced sampling time and volume, improved stability, and reproducibility if compared with other techniques used in breath analysis such as solid-phase extraction and solid-phase micro-extraction. Effects of sampling flow (2-30 ml/min) and volume (10-100 ml) were investigated in dry gas standards containing hydrocarbons, aldehydes, and aromatic compounds and in humid breath samples. NTDs contained (single-bed) polymer packing and (triple-bed) combinations of divinylbenzene/Carbopack X/Carboxen 1000. Substances were desorbed from the NTDs by means of thermal expansion and analyzed by gas chromatography-mass spectrometry. An automated CO2-controlled sampling device for direct alveolar sampling at the point-of-care was developed and tested in pilot experiments. Adsorption efficiency for small volatile organic compounds decreased and breakthrough increased when sampling was done with polymer needles from a water-saturated matrix (breath) instead from dry gas. Humidity did not affect analysis with triple-bed NTDs. These NTDs showed only small dependencies on sampling flow and low breakthrough from 1-5 %. The new sampling device was able to control crucial parameters such as sampling flow and volume. With triple-bed NTDs, substance amounts increased linearly with increasing sample volume when alveolar breath was pre-concentrated automatically. When compared with manual sampling, automatic sampling showed comparable or better results. Thorough control of sampling and adequate choice of adsorption material is mandatory for application of needle trap micro-extraction in vivo. The new CO2-controlled sampling device allows direct alveolar sampling at the point-of-care without the need of any additional sampling, storage, or pre-concentration steps.
NASA Technical Reports Server (NTRS)
Braslow, A. L.
1999-01-01
The paper contains the following sections: Foreword; Preface; Laminar-Flow Control Concepts and Scope of Monograph; Early Research on Suction-Type Laminar-Flow Control (Research from the 1930s through the War Years; Research from after World War II to the Mid-1960s); Post X-21 Research on Suction-Type Laminar-Flow Control; Status of Laminar-Flow Control Technology in the Mid-1990s; Glossary; Document 1-Aeronautics Panel, AACB, R&D Review, Report of the Subpanel on Aeronautic Energy Conservation/Fuels; Document 2-Report of Review Group on X-21A Laminar Flow Control Program; Document 3-Langley Research Center Announcement, Establishment of Laminar Flow Control Working Group; Document 4-Intercenter Agreement for Laminar Flow Control Leading Edge Glove Flights, LaRC and DFRC; Document 5-Flight Report NLF-144, of AFTIF-111 Aircraft with the TACT Wing Modified by a Natural Laminar Flow Glove; Document 6-Flight Record, F-16XL Supersonic Laminar Flow Control Aircraft; Index; and About the Author.
NASA Astrophysics Data System (ADS)
Takamatsu, Kuniyoshi; Nakagawa, Shigeaki; Takeda, Tetsuaki
Safety demonstration tests using the High Temperature Engineering Test Reactor (HTTR) are in progress to verify its inherent safety features and improve the safety technology and design methodology for High-temperature Gas-cooled Reactors (HTGRs). The reactivity insertion test is one of the safety demonstration tests for the HTTR. This test simulates the rapid increase in the reactor power by withdrawing the control rod without operating the reactor power control system. In addition, the loss of coolant flow tests has been conducted to simulate the rapid decrease in the reactor power by tripping one, two or all out of three gas circulators. The experimental results have revealed the inherent safety features of HTGRs, such as the negative reactivity feedback effect. The numerical analysis code, which was named-ACCORD-, was developed to analyze the reactor dynamics including the flow behavior in the HTTR core. We have modified this code to use a model with four parallel channels and twenty temperature coefficients. Furthermore, we added another analytical model of the core for calculating the heat conduction between the fuel channels and the core in the case of the loss of coolant flow tests. This paper describes the validation results for the newly developed code using the experimental results. Moreover, the effect of the model is formulated quantitatively with our proposed equation. Finally, the pre-analytical result of the loss of coolant flow test by tripping all gas circulators is also discussed.
Biochemical analysis with microfluidic systems.
Bilitewski, Ursula; Genrich, Meike; Kadow, Sabine; Mersal, Gaber
2003-10-01
Microfluidic systems are capillary networks of varying complexity fabricated originally in silicon, but nowadays in glass and polymeric substrates. Flow of liquid is mainly controlled by use of electroosmotic effects, i.e. application of electric fields, in addition to pressurized flow, i.e. application of pressure or vacuum. Because electroosmotic flow rates depend on the charge densities on the walls of capillaries, they are influenced by substrate material, fabrication processes, surface pretreatment procedures, and buffer additives. Microfluidic systems combine the properties of capillary electrophoretic systems and flow-through analytical systems, and thus biochemical analytical assays have been developed utilizing and integrating both aspects. Proteins, peptides, and nucleic acids can be separated because of their different electrophoretic mobility; detection is achieved with fluorescence detectors. For protein analysis, in particular, interfaces between microfluidic chips and mass spectrometers were developed. Further levels of integration of required sample-treatment steps were achieved by integration of protein digestion by immobilized trypsin and amplification of nucleic acids by the polymerase chain reaction. Kinetic constants of enzyme reactions were determined by adjusting different degrees of dilution of enzyme substrates or inhibitors within a single chip utilizing mainly the properties of controlled dosing and mixing liquids within a chip. For analysis of kinase reactions, however, a combination of a reaction step (enzyme with substrate and inhibitor) and a separation step (enzyme substrate and reaction product) was required. Microfluidic chips also enable separation of analytes from sample matrix constituents, which can interfere with quantitative determination, if they have different electrophoretic mobilities. In addition to analysis of nucleic acids and enzymes, immunoassays are the third group of analytical assays performed in microfluidic chips. They utilize either affinity capillary electrophoresis as a homogeneous assay format, or immobilized antigens or antibodies in heterogeneous assays with serial supply of reagents and washing solutions.
NASA Astrophysics Data System (ADS)
Vu, Trung-Thanh; Guibert, Philippe
2012-06-01
This paper aims to investigate cycle-to-cycle variations of non-reacting flow inside a motored single-cylinder transparent engine in order to judge the insertion amplitude of a control device able to displace linearly inside the inlet pipe. Three positions corresponding to three insertion amplitudes are implemented to modify the main aerodynamic properties from one cycle to the next. Numerous particle image velocimetry (PIV) two-dimensional velocity fields following cycle database are post-treated to discriminate specific contributions of the fluctuating flow. We performed a multiple snapshot proper orthogonal decomposition (POD) in the tumble plane of a pent roof SI engine. The analytical process consists of a triple decomposition for each instantaneous velocity field into three distinctive parts named mean part, coherent part and turbulent part. The 3rd- and 4th-centered statistical moments of the proper orthogonal decomposition (POD)-filtered velocity field as well as the probability density function of the PIV realizations proved that the POD extracts different behaviors of the flow. Especially, the cyclic variability is assumed to be contained essentially in the coherent part. Thus, the cycle-to-cycle variations of the engine flows might be provided from the corresponding POD temporal coefficients. It has been shown that the in-cylinder aerodynamic dispersions can be adapted and monitored by controlling the insertion depth of the control instrument inside the inlet pipe.
NASA Technical Reports Server (NTRS)
Anderson, Bernhard H.; Gibb, James
1992-01-01
The present study demonstrates that the Reduced Navier-Stokes code RNS3D can be used very effectively to develop a vortex generator installation for the purpose of minimizing the engine face circumferential distortion by controlling the development of secondary flow. The computing times required are small enough that studies such as this are feasible within an analysis-design environment with all its constraints of time and costs. This research study also established the nature of the performance improvements that can be realized with vortex flow control, and suggests a set of aerodynamic properties (called observations) that can be used to arrive at a successful vortex generator installation design. The ultimate aim of this research is to manage inlet distortion by controlling secondary flow through an arrangements of vortex generators configurations tailored to the specific aerodynamic characteristics of the inlet duct. This study also indicated that scaling between flight and typical wind tunnel test conditions is possible only within a very narrow range of generator configurations close to an optimum installation. This paper also suggests a possible law that can be used to scale generator blade height for experimental testing, but further research in this area is needed before it can be effectively applied to practical problems. Lastly, this study indicated that vortex generator installation design for inlet ducts is more complex than simply satisfying the requirement of attached flow, it must satisfy the requirement of minimum engine face distortion.
Analysis of pressure losses in the diffuser of a control valve
NASA Astrophysics Data System (ADS)
Turecký, Petr; Mrózek, Lukáš; Tajč, Ladislav; Kolovratník, Michal
The pressure loss in the diffuser of a control valve is evaluated by using CFD computations. Pressure ratios and lifts of a cone for the recommended flow characteristics of an experimental turbine are considered. The pressure loss in a valve is compared with the pressure loss in a nozzle, i.e. the embodiment of the valve without a cone. Computations are carried out for the same mass flow. Velocity profiles are evaluated in both versions of computations. Comparison of computed pressure losses, with the loss evaluated by using relations for diffusers with the ideal velocity conditions in the input cross-section, is carried out.
Extensional channel flow revisited: a dynamical systems perspective
Meseguer, Alvaro; Mellibovsky, Fernando; Weidman, Patrick D.
2017-01-01
Extensional self-similar flows in a channel are explored numerically for arbitrary stretching–shrinking rates of the confining parallel walls. The present analysis embraces time integrations, and continuations of steady and periodic solutions unfolded in the parameter space. Previous studies focused on the analysis of branches of steady solutions for particular stretching–shrinking rates, although recent studies focused also on the dynamical aspects of the problems. We have adopted a dynamical systems perspective, analysing the instabilities and bifurcations the base state undergoes when increasing the Reynolds number. It has been found that the base state becomes unstable for small Reynolds numbers, and a transitional region including complex dynamics takes place at intermediate Reynolds numbers, depending on the wall acceleration values. The base flow instabilities are constitutive parts of different codimension-two bifurcations that control the dynamics in parameter space. For large Reynolds numbers, the restriction to self-similarity results in simple flows with no realistic behaviour, but the flows obtained in the transition region can be a valuable tool for the understanding of the dynamics of realistic Navier–Stokes solutions. PMID:28690413
Computational analysis of fluid dynamics in pharmaceutical freeze-drying.
Alexeenko, Alina A; Ganguly, Arnab; Nail, Steven L
2009-09-01
Analysis of water vapor flows encountered in pharmaceutical freeze-drying systems, laboratory-scale and industrial, is presented based on the computational fluid dynamics (CFD) techniques. The flows under continuum gas conditions are analyzed using the solution of the Navier-Stokes equations whereas the rarefied flow solutions are obtained by the direct simulation Monte Carlo (DSMC) method for the Boltzmann equation. Examples of application of CFD techniques to laboratory-scale and industrial scale freeze-drying processes are discussed with an emphasis on the utility of CFD for improvement of design and experimental characterization of pharmaceutical freeze-drying hardware and processes. The current article presents a two-dimensional simulation of a laboratory scale dryer with an emphasis on the importance of drying conditions and hardware design on process control and a three-dimensional simulation of an industrial dryer containing a comparison of the obtained results with analytical viscous flow solutions. It was found that the presence of clean in place (CIP)/sterilize in place (SIP) piping in the duct lead to significant changes in the flow field characteristics. The simulation results for vapor flow rates in an industrial freeze-dryer have been compared to tunable diode laser absorption spectroscopy (TDLAS) and gravimetric measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sartipi, Sina, E-mail: S.Sartipi@tudelft.nl, E-mail: J.Gascon@tudelft.nl; Jansma, Harrie; Bosma, Duco
2013-12-15
Design and operation of a “six-flow fixed-bed microreactor” setup for Fischer-Tropsch synthesis (FTS) is described. The unit consists of feed and mixing, flow division, reaction, separation, and analysis sections. The reactor system is made of five heating blocks with individual temperature controllers, assuring an identical isothermal zone of at least 10 cm along six fixed-bed microreactor inserts (4 mm inner diameter). Such a lab-scale setup allows running six experiments in parallel, under equal feed composition, reaction temperature, and conditions of separation and analysis equipment. It permits separate collection of wax and liquid samples (from each flow line), allowing operation with highmore » productivities of C5+ hydrocarbons. The latter is crucial for a complete understanding of FTS product compositions and will represent an advantage over high-throughput setups with more than ten flows where such instrumental considerations lead to elevated equipment volume, cost, and operation complexity. The identical performance (of the six flows) under similar reaction conditions was assured by testing a same catalyst batch, loaded in all microreactors.« less
NASA Technical Reports Server (NTRS)
Neely, Robert H.; Griner, Roland F.
1959-01-01
Air-flow characteristics behind wings and wing-body combinations are described and are related to the downwash at specific tall locations for unseparated and separated flow conditions. The effects of various parameters and control devices on the air-flow characteristics and tail contribution are analyzed and demonstrated. An attempt has been made to summarize certain data by empirical correlation or theoretical means in a form useful for design. The experimental data herein were obtained mostly at Reynolds numbers greater than 4 x 10(exp 6) and at Mach numbers less than 0.25.
NASA Astrophysics Data System (ADS)
Gursoy, Kadir Ali; Yavuz, Mehmet Metin
2014-11-01
In continuous casting operation of steel, the flow through tundish to the mold can be controlled by different flow rate control systems including stopper rod and slide-gate. Ladle changes in continuous casting machines result in liquid steel level changes in tundishes. During this transient event of production, the flow rate controller opening is increased to reduce the pressure drop across the opening which helps to keep the mass flow rate at the desired level for the reduced liquid steel level in tundish. In the present study, computational fluid dynamic (CFD) models are developed to investigate the effect of flow rate controller on mold flow structure, and particularly to understand the effect of flow controller opening on meniscus flow. First, a detailed validation of the CFD models is conducted using available experimental data and the performances of different turbulence models are compared. Then, the constant throughput casting operations for different flow rate controller openings are simulated to quantify the opening effect on meniscus region. The results indicate that the meniscus velocities are significantly affected by the flow rate controller and its opening level. The steady state operations, specified as constant throughput casting, do not provide the same mold flow if the controller opening is altered. Thus, for quality and castability purposes, adjusting the flow controller opening to obtain the fixed mold flow structure is proposed. Supported by Middle East Technical University (METU) BAP (Scientific Research Projects) Coordination.
1983-03-01
Decision Tree -------------------- 62 4-E. PACKAGE unitrep Action/Area Selection flow Chart 82 4-7. PACKAGE unitrep Control Flow Chart...the originetor wculd manually draft simple, readable, formatted iressages using "-i predef.ined forms and decision logic trees . This alternative was...Study Analysis DATA CCNTENT ERRORS PERCENT OF ERRORS Character Type 2.1 Calcvlations/Associations 14.3 Message Identification 4.? Value Pisiratch 22.E
NASA Technical Reports Server (NTRS)
Tseng, K.; Morino, L.
1975-01-01
A general formulation for the analysis of steady and unsteady, subsonic and supersonic potential aerodynamics for arbitrary complex geometries is presented. The theoretical formulation, the numerical procedure, and numerical results are included. In particular, generalized forces for fully unsteady (complex frequency) aerodynamics for an AGARD coplanar wing-tail interfering configuration in both subsonic and supersonic flows are considered.
NASA Astrophysics Data System (ADS)
Haghnegahdar, Amin; Elshamy, Mohamed; Yassin, Fuad; Razavi, Saman; Wheater, Howard; Pietroniro, Al
2017-04-01
Complex physically-based environmental models are being increasingly used as the primary tool for watershed planning and management due to advances in computation power and data acquisition. Model sensitivity analysis plays a crucial role in understanding the behavior of these complex models and improving their performance. Due to the non-linearity and interactions within these complex models, Global sensitivity analysis (GSA) techniques should be adopted to provide a comprehensive understanding of model behavior and identify its dominant controls. In this study we adopt a multi-basin multi-criteria GSA approach to systematically assess the behavior of the Modélisation Environmentale-Surface et Hydrologie (MESH) across various hydroclimatic conditions in Canada including areas in the Great Lakes Basin, Mackenzie River Basin, and South Saskatchewan River Basin. MESH is a semi-distributed physically-based coupled land surface-hydrology modelling system developed by Environment and Climate Change Canada (ECCC) for various water resources management purposes in Canada. We use a novel method, called Variogram Analysis of Response Surfaces (VARS), to perform sensitivity analysis. VARS is a variogram-based GSA technique that can efficiently provide a spectrum of sensitivity information across a range of scales within the parameter space. We use multiple metrics to identify dominant controls of model response (e.g. streamflow) to model parameters under various conditions such as high flows, low flows, and flow volume. We also investigate the influence of initial conditions on model behavior as part of this study. Our preliminary results suggest that this type of GSA can significantly help with estimating model parameters, decreasing calibration computational burden, and reducing prediction uncertainty.
The impact of iterated games on traffic flow at noncontrolled intersections
NASA Astrophysics Data System (ADS)
Zhao, Chao; Jia, Ning
2015-05-01
Intersections without signal control widely exist in urban road networks. This paper studied the traffic flow in a noncontrolled intersection within an iterated game framework. We assume drivers have learning ability and can repetitively adjust their strategies (to give way or to rush through) in the intersection according to memories. A cellular automata model is applied to investigate the characteristics of the traffic flow. Numerical experiments indicate two main findings. First, the traffic flow experiences a "volcano-shaped" fundamental diagram with three different phases. Second, most drivers choose to give way in the intersection, but the aggressive drivers cannot be completely eliminated, which is coincident with field observations. Analysis are also given out to explain the observed phenomena. These findings allow deeper insight of the real-world bottleneck traffic flow.
AERODYNAMIC AND BLADING DESIGN OF MULTISTAGE AXIAL FLOW COMPRESSORS
NASA Technical Reports Server (NTRS)
Crouse, J. E.
1994-01-01
The axial-flow compressor is used for aircraft engines because it has distinct configuration and performance advantages over other compressor types. However, good potential performance is not easily obtained. The designer must be able to model the actual flows well enough to adequately predict aerodynamic performance. This computer program has been developed for computing the aerodynamic design of a multistage axial-flow compressor and, if desired, the associated blading geometry input for internal flow analysis. The aerodynamic solution gives velocity diagrams on selected streamlines of revolution at the blade row edges. The program yields aerodynamic and blading design results that can be directly used by flow and mechanical analysis codes. Two such codes are TSONIC, a blade-to-blade channel flow analysis code (COSMIC program LEW-10977), and MERIDL, a more detailed hub-to-shroud flow analysis code (COSMIC program LEW-12966). The aerodynamic and blading design program can reduce the time and effort required to obtain acceptable multistage axial-flow compressor configurations by generating good initial solutions and by being compatible with available analysis codes. The aerodynamic solution assumes steady, axisymmetric flow so that the problem is reduced to solving the two-dimensional flow field in the meridional plane. The streamline curvature method is used for the iterative aerodynamic solution at stations outside of the blade rows. If a blade design is desired, the blade elements are defined and stacked within the aerodynamic solution iteration. The blade element inlet and outlet angles are established by empirical incidence and deviation angles to the relative flow angles of the velocity diagrams. The blade element centerline is composed of two segments tangentially joined at a transition point. The local blade angle variation of each element can be specified as a fourth-degree polynomial function of path distance. Blade element thickness can also be specified with fourth-degree polynomial functions of path distance from the maximum thickness point. Input to the aerodynamic and blading design program includes the annulus profile, the overall compressor mass flow, the pressure ratio, and the rotative speed. A number of input parameters are also used to specify and control the blade row aerodynamics and geometry. The output from the aerodynamic solution has an overall blade row and compressor performance summary followed by blade element parameters for the individual blade rows. If desired, the blade coordinates in the streamwise direction for internal flow analysis codes and the coordinates on plane sections through blades for fabrication drawings may be stored and printed. The aerodynamic and blading design program for multistage axial-flow compressors is written in FORTRAN IV for batch execution and has been implemented on an IBM 360 series computer with a central memory requirement of approximately 470K of 8 bit bytes. This program was developed in 1981.
NASA Technical Reports Server (NTRS)
Egolf, T. A.; Landgrebe, A. J.
1982-01-01
A user's manual is provided which includes the technical approach for the Prescribed Wake Rotor Inflow and Flow Field Prediction Analysis. The analysis is used to provide the rotor wake induced velocities at the rotor blades for use in blade airloads and response analyses and to provide induced velocities at arbitrary field points such as at a tail surface. This analysis calculates the distribution of rotor wake induced velocities based on a prescribed wake model. Section operating conditions are prescribed from blade motion and controls determined by a separate blade response analysis. The analysis represents each blade by a segmented lifting line, and the rotor wake by discrete segmented trailing vortex filaments. Blade loading and circulation distributions are calculated based on blade element strip theory including the local induced velocity predicted by the numerical integration of the Biot-Savart Law applied to the vortex wake model.
Passino, Claudio; Cencetti, Simone; Spadacini, Giammario; Quintana, Robert; Parker, Daryl; Robergs, Robert; Appenzeller, Otto; Bernardi, Luciano
2007-09-01
To assess the effects of acute exposure to simulated high altitude on baroreflex control of mean cerebral blood flow velocity (MCFV). We compared beat-to-beat changes in RR interval, arterial blood pressure, mean MCFV (by transcranial Doppler velocimetry in the middle cerebral artery), end-tidal CO2, oxygen saturation and respiration in 19 healthy subjects at baseline (Albuquerque, 1779 m), after acute exposure to simulated high altitude in a hypobaric chamber (barometric pressure as at 5000 m) and during oxygen administration (to achieve 100% oxygen saturation) at the same barometric pressure (HOX). Baroreflex control on each signal was assessed by univariate and bivariate power spectral analysis performed on time series obtained during controlled (15 breaths/min) breathing, before and during baroreflex modulation induced by 0.1-Hz sinusoidal neck suction. At baseline, neck suction was able to induce a clear increase in low-frequency power in MCFV (P<0.001) as well as in RR and blood pressure. At high altitude, MCFV, as well as RR and blood pressure, was still able to respond to neck suction (all P<0.001), compared to controlled breathing alone, despite marked decreases in end-tidal CO2 and oxygen saturation at high altitude. A similar response was obtained at HOX. Phase delay analysis excluded a passive transmission of low-frequency oscillations from arterial pressure to cerebral circulation. During acute exposure to high altitude, cerebral blood flow is still modulated by the autonomic nervous system through the baroreflex, whose sensitivity is not affected by changes in CO2 and oxygen saturation levels.
Environmental controls on drainage behavior of an ephemeral stream
Blasch, K.W.; Ferré, T.P.A.; Vrugt, J.A.
2010-01-01
Streambed drainage was measured at the cessation of 26 ephemeral streamflow events in Rillito Creek, Tucson, Arizona from August 2000 to June 2002 using buried time domain reflectometry (TDR) probes. An unusual drainage response was identified, which was characterized by sharp drainage from saturation to near field capacity at each depth with an increased delay between depths. We simulated the drainage response using a variably saturated numerical flow model representing a two-layer system with a high permeability layer overlying a lower permeability layer. Both the observed data and the numerical simulation show a strong correlation between the drainage velocity and the temperature of the stream water. A linear combination of temperature and the no-flow period preceding flow explained about 90% of the measured variations in drainage velocity. Evaluation of this correlative relationship with the one-dimensional numerical flow model showed that the observed temperature fluctuations could not reproduce the magnitude of variation in the observed drainage velocity. Instead, the model results indicated that flow duration exerts the most control on drainage velocity, with the drainage velocity decreasing nonlinearly with increasing flow duration. These findings suggest flow duration is a primary control of water availability for plant uptake in near surface sediments of an ephemeral stream, an important finding for estimating the ecological risk of natural or engineered changes to streamflow patterns. Correlative analyses of soil moisture data, although easy and widely used, can result in erroneous conclusions of hydrologic cause—effect relationships, and demonstrating the need for joint physically-based numerical modeling and data synthesis for hypothesis testing to support quantitative risk analysis.
Non-normality and classification of amplification mechanisms in stability and resolvent analysis
NASA Astrophysics Data System (ADS)
Symon, Sean; Rosenberg, Kevin; Dawson, Scott T. M.; McKeon, Beverley J.
2018-05-01
Eigenspectra and pseudospectra of the mean-linearized Navier-Stokes operator are used to characterize amplification mechanisms in laminar and turbulent flows in which linear mechanisms are important. Success of mean flow (linear) stability analysis for a particular frequency is shown to depend on whether two scalar measures of non-normality agree: (1) the product between the resolvent norm and the distance from the imaginary axis to the closest eigenvalue and (2) the inverse of the inner product between the most amplified resolvent forcing and response modes. If they agree, the resolvent operator can be rewritten in its dyadic representation to reveal that the adjoint and forward stability modes are proportional to the forcing and response resolvent modes at that frequency. Hence the real parts of the eigenvalues are important since they are responsible for resonant amplification and the resolvent operator is low rank when the eigenvalues are sufficiently separated in the spectrum. If the amplification is pseudoresonant, then resolvent analysis is more suitable to understand the origin of observed flow structures. Two test cases are studied: low Reynolds number cylinder flow and turbulent channel flow. The first deals mainly with resonant mechanisms, hence the success of both classical and mean stability analysis with respect to predicting the critical Reynolds number and global frequency of the saturated flow. Both scalar measures of non-normality agree for the base and mean flows, and the region where the forcing and response modes overlap scales with the length of the recirculation bubble. In the case of turbulent channel flow, structures result from both resonant and pseudoresonant mechanisms, suggesting that both are necessary elements to sustain turbulence. Mean shear is exploited most efficiently by stationary disturbances while bounds on the pseudospectra illustrate how pseudoresonance is responsible for the most amplified disturbances at spatial wavenumbers and temporal frequencies corresponding to well-known turbulent structures. Some implications for flow control are discussed.
Nonsteroidal anti-inflammatory drug-induced fracture nonunion: an inhibition of angiogenesis?
Murnaghan, Mark; Li, Gang; Marsh, David R
2006-11-01
Approximately 5% to 10% of fractures may result in delayed union or nonunion. The results of research done over the past three decades have shown that the use of nonsteroidal anti-inflammatory drugs (NSAIDs) has an inhibitory effect on fracture repair, but the exact mechanism of action remains to be elucidated. Cancer research has identified that NSAIDs impede cell proliferation by inhibiting angiogenesis. It is proposed that a similar mechanism occurs in the induction of NSAID-induced nonunions. This hypothesis was investigated in a randomized placebo-controlled trial of the NSAID rofecoxib with use of a murine femoral fracture model. Two hundred and forty mice were randomized to receive either the nonsteroidal anti-inflammatory drug rofecoxib (5 mg/kg orally) in a 0.5% methylcellulose solution (the NSAID group) or the 0.5% methylcellulose solution only (the control group). Two hundred and thirty-five of the 240 mice underwent surgery to induce an open transverse middiaphyseal femoral fracture, which was then treated with use of a custom-made external fixator. Five additional animals underwent sham surgery with no fracture induced. Outcomes measures included radiographic assessment, histologic analysis, biomechanical testing, and use of laser Doppler flowmetry to assess blood flow across the fracture gap. Radiography revealed similar healing patterns in both groups; however, at the later stages (day 32), the NSAID group had poorer healing. Histological analysis demonstrated that the control animals healed quicker (at days 24 and 32) and had more callus and less fibrous tissue (at days 8 and 32) than the NSAID animals did. Biomechanical testing found that the control animals were stronger at day 32. Both groups exhibited a similar pattern of blood flow; however, the NSAID group exhibited a lower median flow from day 4 onward (significant at days 4, 16, and 24). Positive correlations were demonstrated between both histological and radiographic assessments of healing and increasing blood flow. NSAID-treated animals exhibited lower blood flow and poorer healing by all parameters. Regression analysis, however, demonstrated that the negative effect of NSAIDs on fracture repair is independent of its inhibitory action on blood flow. Following the development of a novel method of analyzing functional vascularity across a fracture gap, we have demonstrated that the cyclooxygenase-2 (COX-2) inhibitor rofecoxib has a significant negative effect on blood flow across the fracture gap as well as an inhibiting effect on fracture repair. COX-2 inhibitors are marketed as having low side-effect profiles. We propose that these drugs should be used with caution in all patients following osseous trauma and, in particular, after injuries that may already predispose a fracture to a delayed union due to osseous, vascular, or patient-related factors.
Flow topologies and turbulence scales in a jet-in-cross-flow
Oefelein, Joseph C.; Ruiz, Anthony M.; Lacaze, Guilhem
2015-04-03
This study presents a detailed analysis of the flow topologies and turbulence scales in the jet-in-cross-flow experiment of [Su and Mungal JFM 2004]. The analysis is performed using the Large Eddy Simulation (LES) technique with a highly resolved grid and time-step and well controlled boundary conditions. This enables quantitative agreement with the first and second moments of turbulence statistics measured in the experiment. LES is used to perform the analysis since experimental measurements of time-resolved 3D fields are still in their infancy and because sampling periods are generally limited with direct numerical simulation. A major focal point is the comprehensivemore » characterization of the turbulence scales and their evolution. Time-resolved probes are used with long sampling periods to obtain maps of the integral scales, Taylor microscales, and turbulent kinetic energy spectra. Scalar-fluctuation scales are also quantified. In the near-field, coherent structures are clearly identified, both in physical and spectral space. Along the jet centerline, turbulence scales grow according to a classical one-third power law. However, the derived maps of turbulence scales reveal strong inhomogeneities in the flow. From the modeling perspective, these insights are useful to design optimized grids and improve numerical predictions in similar configurations.« less
Stability of Fluvial and Gravity-flow Antidunes
NASA Astrophysics Data System (ADS)
Fedele, J. J.; Hoyal, D. C. J. D.; Demko, T. M.
2017-12-01
Antidunes develop as a consequence of interface (free surface) deformation and sediment transport feedback in supercritical flows. Fluvial (open-channel flow) antidunes have been studied extensively in the laboratory and the field, and recognized in ancient sedimentary deposits. Experiments on gravity flow (turbidity and density currents) antidunes indicate that they are more stable and long-lived than their fluvial counterpart but the mechanism controlling this stability is poorly understood. Sea floor bathymetric and subsurface data suggest that large-scale, antidune-like sediment waves are extremely common in deep-water, found in a wide range of settings and sediment characteristics. While most of these large features have been interpreted as cyclic steps, the term has been most likely overused due to the lack of recognition criteria and basic understanding on the differences between antidunes and cyclic steps formed under gravity flows. In principle, cyclic steps should be more common in confined or channel-lobe transition settings where flows tend to be more energetic or focused, while antidunes should prevail in regions of less confinement, under sheet-like or expanding flows. Using published, fluvial stable-antidune data, we show that the simplified 1D, mechanical-energy based analysis of flow over a localized fixed obstacle (Long, 1954; Baines, 1995; Kubo and Yokokawa, 2001) is inaccurate for representing flow over antidunes and their stability. Instead, a more detailed analysis of a flow along a long-wavelength (in relation to flow thickness) wavy bed that also considers the interactions between flow and sediment transport is used to infer conditions of antidune stability and the breaking of surface waves. In particular, the position of the surface wave crest in relation to the bedform crest, along with the role of average flow velocity, surface velocity, and surface wave celerity appear relevant in determining antidune instability. The analysis is extended to the case of gravity flow antidunes to explain differences with subaerial antidunes on the basis of the particularities of both velocity and density profiles in these flows. Laboratory experimental data on gravity flow antidunes are used to compare with the theory presented.
Simulation of a Canard in Fluid Flow Driven by a Piezoelectric Beam with a Software Control Loop
2014-04-01
The canard is actuated by a piezoelectric beam that bends as voltage is applied. The voltage is controlled by a software subroutine that measures...Dynamic system Modeling Co-simulation Simulation Abaqus Finite element analysis (FEA) Finite element method (FEM) Computational...is unlimited. i CONTENTS Page Introduction 1 Model Description 1 Fluid Model 2 Structural Model 3 Control Subroutine 4 Results 4
Stankovich, Joseph J; Gritti, Fabrice; Stevenson, Paul G; Beaver, Lois A; Guiochon, Georges
2014-01-17
Five methods for controlling the mobile phase flow rate for gradient elution analyses using very high pressure liquid chromatography (VHPLC) were tested to determine thermal stability of the column during rapid gradient separations. To obtain rapid separations, instruments are operated at high flow rates and high inlet pressure leading to uneven thermal effects across columns and additional time needed to restore thermal equilibrium between successive analyses. The purpose of this study is to investigate means to minimize thermal instability and obtain reliable results by measuring the reproducibility of the results of six replicate gradient separations of a nine component RPLC standard mixture under various experimental conditions with no post-run times. Gradient separations under different conditions were performed: constant flow rates, two sets of constant pressure operation, programmed flow constant pressure operation, and conditions which theoretically should yield a constant net heat loss at the column's wall. The results show that using constant flow rates, programmed flow constant pressures, and constant heat loss at the column's wall all provide reproducible separations. However, performing separations using a high constant pressure with programmed flow reduces the analysis time by 16% compared to constant flow rate methods. For the constant flow rate, programmed flow constant pressure, and constant wall heat experiments no equilibration time (post-run time) was required to obtain highly reproducible data. Copyright © 2013 Elsevier B.V. All rights reserved.
Computational analysis of stall and separation control in centrifugal compressors
NASA Astrophysics Data System (ADS)
Stein, Alexander
2000-10-01
A numerical technique for simulating unsteady viscous fluid flow in turbomachinery components has been developed. In this technique, the three-dimensional form of the Reynolds averaged Navier-Stokes equations is solved in a time-accurate manner. The flow solver is used to study fluid dynamic phenomena that lead to instabilities in centrifugal compressors. The results indicate that large flow incidence angles, at reduced flow rates, can cause boundary layer separation near the blade leading edge. This mechanism is identified as the primary factor in the stall inception process. High-pressure jets upstream of the compressor face are studied as a means of controlling compressor instabilities. Steady jets are found to alter the leading edge flow pattern and effectively suppress compressor instabilities. Yawed jets are more effective than parallel jets and an optimum yaw angle exists for each compression system. Numerical simulations utilizing pulsed jets have also been done. Pulsed jets are found to yield additional performance enhancements and lead to a reduction in external air requirements for operating the jets. Jets pulsed at higher frequencies perform better than low-frequency jets. These findings suggest that air injection is a viable means of alleviating compressor instabilities and could impact gas turbine technology. Results concerning the optimization of practical air injection systems and implications for future research are discussed. The flow solver developed in this work, along with the postprocessing tools developed to interpret the results, provide a rational framework for analyzing and controlling current and next generation compression systems.
Moya, Claudio E; Raiber, Matthias; Taulis, Mauricio; Cox, Malcolm E
2015-03-01
The Galilee and Eromanga basins are sub-basins of the Great Artesian Basin (GAB). In this study, a multivariate statistical approach (hierarchical cluster analysis, principal component analysis and factor analysis) is carried out to identify hydrochemical patterns and assess the processes that control hydrochemical evolution within key aquifers of the GAB in these basins. The results of the hydrochemical assessment are integrated into a 3D geological model (previously developed) to support the analysis of spatial patterns of hydrochemistry, and to identify the hydrochemical and hydrological processes that control hydrochemical variability. In this area of the GAB, the hydrochemical evolution of groundwater is dominated by evapotranspiration near the recharge area resulting in a dominance of the Na-Cl water types. This is shown conceptually using two selected cross-sections which represent discrete groundwater flow paths from the recharge areas to the deeper parts of the basins. With increasing distance from the recharge area, a shift towards a dominance of carbonate (e.g. Na-HCO3 water type) has been observed. The assessment of hydrochemical changes along groundwater flow paths highlights how aquifers are separated in some areas, and how mixing between groundwater from different aquifers occurs elsewhere controlled by geological structures, including between GAB aquifers and coal bearing strata of the Galilee Basin. The results of this study suggest that distinct hydrochemical differences can be observed within the previously defined Early Cretaceous-Jurassic aquifer sequence of the GAB. A revision of the two previously recognised hydrochemical sequences is being proposed, resulting in three hydrochemical sequences based on systematic differences in hydrochemistry, salinity and dominant hydrochemical processes. The integrated approach presented in this study which combines different complementary multivariate statistical techniques with a detailed assessment of the geological framework of these sedimentary basins, can be adopted in other complex multi-aquifer systems to assess hydrochemical evolution and its geological controls. Copyright © 2014 Elsevier B.V. All rights reserved.
Sensitivity analysis of urban flood flows to hydraulic controls
NASA Astrophysics Data System (ADS)
Chen, Shangzhi; Garambois, Pierre-André; Finaud-Guyot, Pascal; Dellinger, Guilhem; Terfous, Abdelali; Ghenaim, Abdallah
2017-04-01
Flooding represents one of the most significant natural hazards on each continent and particularly in highly populated areas. Improving the accuracy and robustness of prediction systems has become a priority. However, in situ measurements of floods remain difficult while a better understanding of flood flow spatiotemporal dynamics along with dataset for model validations appear essential. The present contribution is based on a unique experimental device at the scale 1/200, able to produce urban flooding with flood flows corresponding to frequent to rare return periods. The influence of 1D Saint Venant and 2D Shallow water model input parameters on simulated flows is assessed using global sensitivity analysis (GSA). The tested parameters are: global and local boundary conditions (water heights and discharge), spatially uniform or distributed friction coefficient and or porosity respectively tested in various ranges centered around their nominal values - calibrated thanks to accurate experimental data and related uncertainties. For various experimental configurations a variance decomposition method (ANOVA) is used to calculate spatially distributed Sobol' sensitivity indices (Si's). The sensitivity of water depth to input parameters on two main streets of the experimental device is presented here. Results show that the closer from the downstream boundary condition on water height, the higher the Sobol' index as predicted by hydraulic theory for subcritical flow, while interestingly the sensitivity to friction decreases. The sensitivity indices of all lateral inflows, representing crossroads in 1D, are also quantified in this study along with their asymptotic trends along flow distance. The relationship between lateral discharge magnitude and resulting sensitivity index of water depth is investigated. Concerning simulations with distributed friction coefficients, crossroad friction is shown to have much higher influence on upstream water depth profile than street friction coefficients. This methodology could be applied to any urban flood configuration in order to better understand flow dynamics and repartition but also guide model calibration in the light of flow controls.
A control-volume method for analysis of unsteady thrust augmenting ejector flows
NASA Technical Reports Server (NTRS)
Drummond, Colin K.
1988-01-01
A method for predicting transient thrust augmenting ejector characteristics is presented. The analysis blends classic self-similar turbulent jet descriptions with a control volume mixing region discretization to solicit transient effects in a new way. Division of the ejector into an inlet, diffuser, and mixing region corresponds with the assumption of viscous-dominated phenomenon in the latter. Inlet and diffuser analyses are simplified by a quasi-steady analysis, justified by the assumptions that pressure is the forcing function in those regions. Details of the theoretical foundation, the solution algorithm, and sample calculations are given.
Cyanotic congenital heart disease the coronary arterial circulation.
Perloff, Joseph K
2012-02-01
The coronary circulation in cyanotic congenital heart disease (CCHD) includes the extramural coronary arteries, basal coronary blood flow, flow reserve, the coronary microcirculation, and coronary atherogenesis. Coronary arteriograms were analyzed in 59 adults with CCHD. Dilated extramural coronaries were examined histologically in six patients. Basal coronary blood flow was determined with N-13 positron emission tomography in 14 patients and in 10 controls. Hyperemic flow was induced by intravenous dipyridamole pharmacologic stress. Immunostaining against SM alpha-actin permitted microcirculatory morphometric analysis. Non-fasting total cholesterols were retrieved in 279 patients divided into four groups: Group A---143 cyanotic unoperated, Group B---47 rendered acyanotic by reparative surgery, Group C---41 acyanotic unoperated, Group D---48 acyanotic before and after operation. Extramural coronary arteries were mildly or moderately dilated to ectatic in 49/59 angiograms. Histologic examination disclosed loss of medial smooth muscle, increased medial collagen, and duplication of internal elastic lamina. Basal coronary flow was appreciably increased. Hyperemic flow was comparable to controls. Remodeling of the microcirculation was based upon coronary arteriolar length, volume and surface densities. Coronary atherosclerosis was absent in both the arteriograms and the necropsy specimens. Extramural coronary arteries in CCHD dilate in response to endothelial vasodilator substances supplemented by mural attenuation caused by medial abnormalities. Basal coronary flow was appreciably increased, but hyperemic flow was normal. Remodeling of the microcirculation was responsible for preservation of flow reserve. The coronaries were atheroma-free because of the salutory effects of hypocholesterolemia, hypoxemia, upregulated nitric oxide, low platelet counts, and hyperbilirubinrmia.
NASA Astrophysics Data System (ADS)
Janu, Stefan; Mehlhorn, Susanne; Moser, Markus
2013-04-01
Analysis and reconstructed modelling of the debris flow event of the 21st of July 2012 of St. Lorenzen (Styria, Austria) Authors: Stefan Janu, Susanne Mehlhorn, Markus Moser The village of St. Lorenzen, in the Styrian Palten valley is situated on the banks of the Lorenz torrent, in which a debris flow event occurred in the early morning hours of the 21st of July 2012, causing catastrophic damage to residential buildings and other infrastructural facilities. In the ministry-approved hazard zone map of 2009, the flood water discharge and bedload volume associated with a 150-year event was estimated at 34 m³/s and 25,000 m³ respectively for the 5.84 km² catchment area. The bedload transport capacity of the torrent was classified as ranging from 'heavy' to 'capable of producing debris flows'. The dominant process type of the mass movement event may be described as a fine-grained debris flow. The damage in the residential area of St.Lorenzen was caused by a debris flow pulse in the lower reach of the Lorenz torrent. This debris flow pulse was in turn caused by numerous landslides along the middle reaches of the torrent, some of which caused blockages, ultimately leading to an outburst event in the main torrent. Discharge cross-sections ranging from 65 - 90 m², and over 100 m² in a few instances, were measured upstream of the St. Lorenzen residential area. Back-calculations of velocities yielded an average debris flow velocity along the middle reaches of the torrent between 11 and 16 m/s. An average velocity of 9 m/s was calculated for the debris flow at the neck of the alluvial fan directly behind the center of the village. Due to both the high discharge values as well as to the height of the mass movement deposits, the natural hazard event of 21 July 2012 in St. Lorenzen is clearly to be described as having had an extreme intensity. A total of 67 buildings were damaged along the Lorenz torrent, 7 of were completely destroyed. According to the Austrian Service for Torrent and Avalanche Control, a great number of protection measures have in the past been realized in the Lorenz torrent, which with certainty contributed significantly to an even greater amount of damage in the St. Lorenz residential area having been prevented. Attempts at reconstructing the event processes as well simulating the debris flow in 2D were undertaken in the course of the event documentation and analysis. The thus obtained discharge heights, flow velocities and impact pressure values corresponded with the well documented event. The two dimensional simulations were carried out with the program FLO-2D, which is capable of simulating debris flows. The rheological parameters of the debris flow material were determined with the aid of a viscometer and a debris rotation drum. The debris flow hydrograph, bedload and bedload ratio were reconstructed using data from the event documentation, such as difference models, geological mapping, wetted perimeters, witness's statements, etc. The aim of the very detailed event documentation and analysis was to reconstruct the extreme process sequence along with the damaging effects that they had in the build-up area of St. Lorenzen. There was a large media interest in this event. The results should therefore serve to answer the multitude of questions about this event that lie in the public as well political interests. Additional and substantial protection measures were also planned for the village of St. Lorenzen on the basis of these event analysis results. These are comprised of two debris flow barriers in the lower gorge streches with a capacity of 15,000 m³ each as well as a bedload retention basin directly above, with a capacity of 30,000 m³. Construction of these technical protection measures has already begun. Authoŕs adresses: DI Stefan Janu Fachbereich Wildbachprozesse Austrian Service for Torrent and Avalanche Control, GBL Ennstal und Salzatal Schönaustraße 50 8940 Liezen Dipl.Geogr. Susanne Mehlhorn Fachbereich Wildbachprozesse Austrian Service for Torrent and Avalanche Control, BMLFUW Abt. IV/5 Marxergasse 2 1030 Wien DI Markus Moser Fachbereich Wildbachprozesse Austrian Service for Torrent and Avalanche Control, GBL Lungau Johann Löcker Str. 3 5580 Tamsweg
Analysis and evaluation of an integrated laminar flow control propulsion system
NASA Technical Reports Server (NTRS)
Keith, Theo G., Jr.; Dewitt, Kenneth J.
1993-01-01
Reduction of drag has been a major goal of the aircraft industry as no other single quantity influences the operating costs of transport aircraft more than aerodynamic drag. It has been estimated that even modest reduction of frictional drag could reduce fuel costs by anywhere from 2 to 5 percent. Current research on boundary layer drag reduction deals with various approaches to reduce turbulent skin friction drag as a means of improving aircraft performance. One of the techniques belonging to this category is laminar flow control in which extensive regions of laminar flow are maintained over aircraft surfaces by delaying transition to turbulence through the ingestion of boundary layer air. While problems of laminar flow control have been studied in some detail, the prospect of improving the propulsion system of an aircraft by the use of ingested boundary layer air has received very little attention. An initial study for the purpose of reducing propulsion system requirements by utilizing the kinetic energy of boundary layer air was performed in the mid-1970's at LeRC. This study which was based on ingesting the boundary layer air at a single location, did not yield any significant overall propulsion benefits; therefore, the concept was not pursued further. However, since then it has been proposed that if the boundary layer air were ingested at various locations on the aircraft surface instead of just at one site, an improvement in the propulsion system might be realized. The present report provides a review of laminar flow control by suction and focuses on the problems of reducing skin friction drag by maintaining extensive regions of laminar flow over the aircraft surfaces. In addition, it includes an evaluation of an aircraft propulsion system that is augmented by ingested boundary layer air.
Renal cortical and medullary blood flow responses to altered NO availability in humans.
Damkjær, Mads; Vafaee, Manoucher; Møller, Michael L; Braad, Poul Erik; Petersen, Henrik; Høilund-Carlsen, Poul Flemming; Bie, Peter
2010-12-01
The objective of this study was to quantify regional renal blood flow in humans. In nine young volunteers on a controlled diet, the lower abdomen was CT-scanned, and regional renal blood flow was determined by positron emission tomography (PET) scanning using H(2)(15)O as tracer. Measurements were performed at baseline, during constant intravenous infusion of nitric oxide (NO) donor glyceryl nitrate and after intravenous injection of NO synthase inhibitor N(ω)-monomethyl-L-arginine (L-NMMA). Using the CT image, the kidney pole areas were delineated as volumes of interest (VOI). In the data analysis, tissue layers with a thickness of one voxel were eliminated stepwise from the external surface of the VOI (voxel peeling), and the blood flow subsequently was determined in each new, reduced VOI. Blood flow in the shrinking VOIs decreased as the number of cycles of voxel peeling increased. After 4-5 cycles, blood flow was not reduced further by additional voxel peeling. This volume-insensitive flow was measured to be 2.30 ± 0.17 ml·g tissue(-1)·min(-1) during the control period; it increased during infusion of glyceryl nitrate to 2.97 ± 0.18 ml·g tissue(-1)·min(-1) (P < 0.05) and decreased after L-NMMA injection to 1.57 ± 0.17 ml·g tissue(-1)·min(-1) (P < 0.05). Cortical blood flow was 4.67 ± 0.31 ml·g tissue(-1)·min(-1) during control, unchanged by glyceryl nitrate, and decreased after L-NMMA [3.48 ± 0.23 ml·(g·min)(-1), P < 0.05]. PET/CT scanning allows identification of a renal medullary region in which the measured blood flow is 1) low, 2) independent of reduction in the VOI, and 3) reactive to changes in systemic NO supply. The technique seems to provide indices of renal medullary blood flow in humans.
Guide to Flow Measurement for Electric Propulsion Systems
NASA Technical Reports Server (NTRS)
Frieman, Jason D.; Walker, Mitchell L. R.; Snyder, Steve
2013-01-01
In electric propulsion (EP) systems, accurate measurement of the propellant mass flow rate of gas or liquid to the thruster and external cathode is a key input in the calculation of thruster efficiency and specific impulse. Although such measurements are often achieved with commercial mass flow controllers and meters integrated into propellant feed systems, the variability in potential propellant options and flow requirements amongst the spectrum of EP power regimes and devices complicates meter selection, integration, and operation. At the direction of the Committee on Standards for Electric Propulsion Testing, a guide was jointly developed by members of the electric propulsion community to establish a unified document that contains the working principles, methods of implementation and analysis, and calibration techniques and recommendations on the use of mass flow meters in laboratory and spacecraft electric propulsion systems. The guide is applicable to EP devices of all types and power levels ranging from microthrusters to high-power ion engines and Hall effect thrusters. The establishment of a community standard on mass flow metering will help ensure the selection of the proper meter for each application. It will also improve the quality of system performance estimates by providing comprehensive information on the physical phenomena and systematic errors that must be accounted for during the analysis of flow measurement data. This paper will outline the standard methods and recommended practices described in the guide titled "Flow Measurement for Electric Propulsion Systems."
Electric analog of three-dimensional flow to wells and its application to unconfined aquifers
Stallman, Robert W.
1963-01-01
Electric-analog design criteria are established from the differential equations of ground-water flow for analyzing pumping-test data. A convenient analog design was obtained by transforming the cylindrical equation of flow to a rectilinear form. The design criteria were applied in the construction of an electric analog, which was used for studying pumping-test data collected near Grand Island, Nebr. Data analysis indicated (1) vertical flow components near pumping wells in unconfined aquifers may be much more significant in the control of water-table decline than radial flow components for as much as a day of pumping; (2) the specific yield during the first few minutes of pumping appears to be a very small fraction of that observed after pumping for more than 1 day; and (3) estimates of specific yield made from model studies seem much more sensitive to variations in assumed flow conditions than are estimates of permeability. Analysis of pumping-test data where vertical flow components are important requires that the degree of anisotropy be known. A procedure for computing anisotropy directly from drawdowns observed at five points was developed. Results obtained in the analog study emphasize the futility of calculating unconfined aquifer properties from pumping tests of short duration by means of equations based on the assumptions that vertical flow components are negligible and specific yield is constant.
NASA Technical Reports Server (NTRS)
Marsell, Brandon; Griffin, David; Schallhorn, Dr. Paul; Roth, Jacob
2012-01-01
Coupling computational fluid dynamics (CFD) with a controls analysis tool elegantly allows for high accuracy predictions of the interaction between sloshing liquid propellants and th e control system of a launch vehicle. Instead of relying on mechanical analogs which are not valid during aU stages of flight, this method allows for a direct link between the vehicle dynamic environments calculated by the solver in the controls analysis tool to the fluid flow equations solved by the CFD code. This paper describes such a coupling methodology, presents the results of a series of test cases, and compares said results against equivalent results from extensively validated tools. The coupling methodology, described herein, has proven to be highly accurate in a variety of different cases.
NASA Astrophysics Data System (ADS)
Lan, C. W.; Lee, I. F.; Yeh, B. C.
2003-07-01
Three-dimensional simulation, both pseudo-steady and time-dependent states, is carried out to illustrate the effects of magnetic fields on the flow and segregation in a vertical Bridgman crystal growth. With an axial magnetic field in a perfectly vertical growth, the calculated results are in good agreement with those obtained by a two-dimensional axisymmetric model. The asymptotic scaling of flow damping is also consistent with the boundary layer approximation regardless to the magnetic orientation. Radial and axial segregations are further discussed concluding that radial segregation could be severe if the flow damping is not adequate. Moreover, there is a regime of enhanced global dopant mixing due to the flow stretching by the axial field. Accordingly, the transversal field is more effective in pushing the growth to the diffusion-controlled limit and suppressing the asymmetric global flow due to ampule tilting.
Study of the flow mixing in a novel ARID raceway for algae production
Xu, Ben; Li, Peiwen; Waller, P.
2014-07-31
A novel flow field for algae raceways has been proposed, which is fundamentally different from traditional paddlewheel-driven raceways. To reduce freezing and heat loss in the raceway during cold time, the water is drained to a deep storage canal. The ground bed of the new raceway has a low slope so that water, lifted by propeller pump, can flow down in laterally-laid serpentine channels, relying on gravitational force. The flow rate of water is controlled so that it can overflow the lateral channel walls and mix with the main flow in the next lower channel, which thus creates a bettermore » mixing. In order to optimize the design parameters of the new flow field, methods including flow visualization, local point velocity measurement, and CFD analysis were employed to investigate the flow mixing features. Different combinations of channel geometries and water velocities were evaluated. An optimized flow field design and details of flow mixing are presented. The study offers an innovative design for large scale algae growth raceways which is of significance to the algae and biofuel industry.« less
Study of the flow mixing in a novel ARID raceway for algae production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Ben; Li, Peiwen; Waller, P.
A novel flow field for algae raceways has been proposed, which is fundamentally different from traditional paddlewheel-driven raceways. To reduce freezing and heat loss in the raceway during cold time, the water is drained to a deep storage canal. The ground bed of the new raceway has a low slope so that water, lifted by propeller pump, can flow down in laterally-laid serpentine channels, relying on gravitational force. The flow rate of water is controlled so that it can overflow the lateral channel walls and mix with the main flow in the next lower channel, which thus creates a bettermore » mixing. In order to optimize the design parameters of the new flow field, methods including flow visualization, local point velocity measurement, and CFD analysis were employed to investigate the flow mixing features. Different combinations of channel geometries and water velocities were evaluated. An optimized flow field design and details of flow mixing are presented. The study offers an innovative design for large scale algae growth raceways which is of significance to the algae and biofuel industry.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nandi, Taraj; Brasseur, James; Vijayakumar, Ganesh
2016-01-04
This study is aimed at gaining insight into the nonsteady transitional boundary layer dynamics of wind turbine blades and the predictive capabilities of URANS based transition and turbulence models for similar physics through the analysis of a controlled flow with similar nonsteady parameters.
Edmunds, Kelly L; Elrahman, Samira Abd; Bell, Diana J; Brainard, Julii; Dervisevic, Samir; Fedha, Tsimbiri P; Few, Roger; Howard, Guy; Lake, Iain; Maes, Peter; Matofari, Joseph; Minnigh, Harvey; Mohamedani, Ahmed A; Montgomery, Maggie; Morter, Sarah; Muchiri, Edward; Mudau, Lutendo S; Mutua, Benedict M; Ndambuki, Julius M; Pond, Katherine; Sobsey, Mark D; van der Es, Mike; Zeitoun, Mark
2016-01-01
Abstract Objective To assess, within communities experiencing Ebola virus outbreaks, the risks associated with the disposal of human waste and to generate recommendations for mitigating such risks. Methods A team with expertise in the Hazard Analysis of Critical Control Points framework identified waste products from the care of individuals with Ebola virus disease and constructed, tested and confirmed flow diagrams showing the creation of such products. After listing potential hazards associated with each step in each flow diagram, the team conducted a hazard analysis, determined critical control points and made recommendations to mitigate the transmission risks at each control point. Findings The collection, transportation, cleaning and shared use of blood-soiled fomites and the shared use of latrines contaminated with blood or bloodied faeces appeared to be associated with particularly high levels of risk of Ebola virus transmission. More moderate levels of risk were associated with the collection and transportation of material contaminated with bodily fluids other than blood, shared use of latrines soiled with such fluids, the cleaning and shared use of fomites soiled with such fluids, and the contamination of the environment during the collection and transportation of blood-contaminated waste. Conclusion The risk of the waste-related transmission of Ebola virus could be reduced by the use of full personal protective equipment, appropriate hand hygiene and an appropriate disinfectant after careful cleaning. Use of the Hazard Analysis of Critical Control Points framework could facilitate rapid responses to outbreaks of emerging infectious disease. PMID:27274594
NASA Astrophysics Data System (ADS)
Shahid, Abdullah Bin; Mashud, Mohammad
2017-06-01
This paper summarizes the experimental campaign and numerical analysis performed aimed to analyze the potential benefit available employing a trapping vortex cell system on a high thickness symmetric aero-foil without steady suction or injection mass flow. In this work, the behavior of a two dimensional model equipped with a span wise adjusted circular cavity has been researched. Pressure distribution on the model surface and inside and the complete flow field round the model have been measured. Experimental tests have been performed varying the wind tunnel speed and also the angle of attack. For numerical analysis the two dimensional model of the airfoil and the mesh is formed through ANSYS Meshing that is run in Fluent for numerical iterate solution. In the paper the performed test campaign, the airfoil design, the adopted experimental set-up, the numerical analysis, the data post process and the results description are reported, compared a discussed.
Smirl, Jonathan D; Haykowsky, Mark J; Nelson, Michael D; Tzeng, Yu-Chieh; Marsden, Katelyn R; Jones, Helen; Ainslie, Philip N
2014-12-01
Heart transplant recipients are at an increased risk for cerebral hemorrhage and ischemic stroke; yet, the exact mechanism for this derangement remains unclear. We hypothesized that alterations in cerebrovascular regulation is principally involved. To test this hypothesis, we studied cerebral pressure-flow dynamics in 8 clinically stable male heart transplant recipients (62±8 years of age and 9±7 years post transplant, mean±SD), 9 male age-matched controls (63±8 years), and 10 male donor controls (27±5 years). To increase blood pressure variability and improve assessment of the pressure-flow dynamics, subjects performed squat-stand maneuvers at 0.05 and 0.10 Hz. Beat-to-beat blood pressure, middle cerebral artery velocity, and end-tidal carbon dioxide were continuously measured during 5 minutes of seated rest and throughout the squat-stand maneuvers. Cardiac baroreceptor sensitivity gain and cerebral pressure-flow responses were assessed with linear transfer function analysis. Heart transplant recipients had reductions in R-R interval power and baroreceptor sensitivity low frequency gain (P<0.01) compared with both control groups; however, these changes were unrelated to transfer function metrics. Thus, in contrast to our hypothesis, the increased risk of cerebrovascular complication after heart transplantation does not seem to be related to alterations in cerebral pressure-flow dynamics. Future research is, therefore, warranted. © 2014 American Heart Association, Inc.
Chau, Destiny F; Vasilopoulos, Terrie; Schoepf, Miriam; Zhang, Christina; Fahy, Brenda G
2016-09-01
Complex surgical and critically ill pediatric patients rely on syringe infusion pumps for precise delivery of IV medications. Low flow rates and in-line IV filter use may affect drug delivery. To determine the effects of an in-line filter to remove air and/or contaminants on syringe pump performance at low flow rates, we compared the measured rates with the programmed flow rates with and without in-line IV filters. Standardized IV infusion assemblies with and without IV filters (filter and control groups) attached to a 10-mL syringe were primed and then loaded onto a syringe pump and connected to a 16-gauge, 16-cm single-lumen catheter. The catheter was suspended in a normal saline fluid column to simulate the back pressure from central venous circulation. The delivered infusate was measured by gravimetric methods at predetermined time intervals, and flow rate was calculated. Experimental trials for initial programmed rates of 1.0, 0.8, 0.6, and 0.4 mL/h were performed in control and filter groups. For each trial, the flow rate was changed to double the initial flow rate and was then returned to the initial flow rate to analyze pump performance for titration of rates often required during medication administration. These conditions (initial rate, doubling of initial rate, and return to initial rate) were analyzed separately for steady-state flow rate and time to steady state, whereas their average was used for percent deviation analysis. Differences between control and filter groups were assessed using Student t tests with adjustment for multiplicity (using n = 3 replications per group). Mean time from 0 to initial flow (startup delay) was <1 minute in both groups with no statistical difference between groups (P = 1.0). The average time to reach steady-state flow after infusion startup or rate changes was not statistically different between the groups (range, 0.8-5.5 minutes), for any flow rate or part of the trial (initial rate, doubling of initial rate, and return to initial rate), although the study was underpowered to detect small time differences. Overall, the mean steady-state flow rate for each trial was below the programmed flow rate with negative mean percent deviations for each trial. In the 1.0-mL/h initial rate trial, the steady-state flow rate attained was lower in the filter than the control group for the initial rate (P = 0.04) and doubling of initial rate (P = 0.04) with a trend during the return to initial rate (P = 0.06), although this same effect was not observed when doubling the initial rate trials of 0.8 or 0.6 mL/h or any other rate trials compared with the control group. With low flow rates used in complex surgical and pediatric critically ill patients, the addition of IV filters did not confer statistically significant changes in startup delay, flow variability, or time to reach steady-state flow of medications administered by syringe infusion pumps. The overall flow rate was lower than programmed flow rate with or without a filter.
Determining the effects of dams on subdaily variation in river flows at a whole-basin scale
Zimmerman, J.K.H.; Letcher, B.H.; Nislow, K.H.; Lutz, K.A.; Magilligan, F.J.
2010-01-01
River regulation can alter the frequency and magnitude of subdaily flow variations causing major impacts on ecological structure and function. We developed an approach to quantify subdaily flow variation for multiple sites across a large watershed to assess the potential impacts of different dam operations (flood control, run-of-river hydropower and peaking hydropower) on natural communities. We used hourly flow data over a 9-year period from 30 stream gages throughout the Connecticut River basin to calculate four metrics of subdaily flow variation and to compare sites downstream of dams with unregulated sites. Our objectives were to (1) determine the temporal scale of data needed to characterize subdaily variability; (2) compare the frequency of days with high subdaily flow variation downstream of dams and unregulated sites; (3) analyse the magnitude of subdaily variation at all sites and (4) identify individual sites that had subdaily variation significantly higher than unregulated locations. We found that estimates of flow variability based on daily mean flow data were not sufficient to characterize subdaily flow patterns. Alteration of subdaily flows was evident in the number of days natural ranges of variability were exceeded, rather than in the magnitude of subdaily variation, suggesting that all rivers may exhibit highly variable subdaily flows, but altered rivers exhibit this variability more frequently. Peaking hydropower facilities had the most highly altered subdaily flows; however, we observed significantly altered ranges of subdaily variability downstream of some flood-control and run-of-river hydropower dams. Our analysis can be used to identify situations where dam operating procedures could be modified to reduce the level of hydrologic alteration. ?? 2009 John Wiley & Sons, Ltd.
Ryo, Masahiro; Iwasaki, Yuichi; Yoshimura, Chihiro; Saavedra V., Oliver C.
2015-01-01
Alteration of the spatial variability of natural flow regimes has been less studied than that of the temporal variability, despite its ecological importance for river ecosystems. Here, we aimed to quantify the spatial patterns of flow regime alterations along a river network in the Sagami River, Japan, by estimating river discharge under natural and altered flow conditions. We used a distributed hydrological model, which simulates hydrological processes spatiotemporally, to estimate 20-year daily river discharge along the river network. Then, 33 hydrologic indices (i.e., Indicators of Hydrologic Alteration) were calculated from the simulated discharge to estimate the spatial patterns of their alterations. Some hydrologic indices were relatively well estimated such as the magnitude and timing of maximum flows, monthly median flows, and the frequency of low and high flow pulses. The accuracy was evaluated with correlation analysis (r > 0.4) and the Kolmogorov–Smirnov test (α = 0.05) by comparing these indices calculated from both observed and simulated discharge. The spatial patterns of the flow regime alterations varied depending on the hydrologic indices. For example, both the median flow in August and the frequency of high flow pulses were reduced by the maximum of approximately 70%, but these strongest alterations were detected at different locations (i.e., on the mainstream and the tributary, respectively). These results are likely caused by different operational purposes of multiple water control facilities. The results imply that the evaluation only at discharge gauges is insufficient to capture the alteration of the flow regime. Our findings clearly emphasize the importance of evaluating the spatial pattern of flow regime alteration on a river network where its discharge is affected by multiple water control facilities. PMID:26207997
External and Turbomachinery Flow Control Working Group
NASA Technical Reports Server (NTRS)
Ahmadi, G.; Alstrom, B.; Colonius, T.; Dannenhoffer, J.; Glauser, M.; Helenbrook, B.; Higuchi, H.; Hodson, H.; Jha, R.; Kabiri, P.;
2010-01-01
Broad Flow Control Issues: a) Understanding flow physics. b) Specific control objective(s). c) Actuation. d) Sensors. e) Integrated active flow control system. f) Development of design tools (CFD, reduced order models, controller design, understanding and utilizing instabilities and other mechanisms, e.g., streamwise vorticity).
Variable cycle control model for intersection based on multi-source information
NASA Astrophysics Data System (ADS)
Sun, Zhi-Yuan; Li, Yue; Qu, Wen-Cong; Chen, Yan-Yan
2018-05-01
In order to improve the efficiency of traffic control system in the era of big data, a new variable cycle control model based on multi-source information is presented for intersection in this paper. Firstly, with consideration of multi-source information, a unified framework based on cyber-physical system is proposed. Secondly, taking into account the variable length of cell, hysteresis phenomenon of traffic flow and the characteristics of lane group, a Lane group-based Cell Transmission Model is established to describe the physical properties of traffic flow under different traffic signal control schemes. Thirdly, the variable cycle control problem is abstracted into a bi-level programming model. The upper level model is put forward for cycle length optimization considering traffic capacity and delay. The lower level model is a dynamic signal control decision model based on fairness analysis. Then, a Hybrid Intelligent Optimization Algorithm is raised to solve the proposed model. Finally, a case study shows the efficiency and applicability of the proposed model and algorithm.
Relationship among visual field, blood flow, and neural structure measurements in glaucoma.
Hwang, John C; Konduru, Ranjith; Zhang, Xinbo; Tan, Ou; Francis, Brian A; Varma, Rohit; Sehi, Mitra; Greenfield, David S; Sadda, Srinivas R; Huang, David
2012-05-17
To determine the relationship among visual field, neural structural, and blood flow measurements in glaucoma. Case-control study. Forty-seven eyes of 42 patients with perimetric glaucoma were age-matched with 27 normal eyes of 27 patients. All patients underwent Doppler Fourier-domain optical coherence tomography to measure retinal blood flow and standard glaucoma evaluation with visual field testing and quantitative structural imaging. Linear regression analysis was performed to analyze the relationship among visual field, blood flow, and structure, after all variables were converted to logarithmic decibel scale. Retinal blood flow was reduced in glaucoma eyes compared to normal eyes (P < 0.001). Visual field loss was correlated with both reduced retinal blood flow and structural loss of rim area and retinal nerve fiber layer (RNFL). There was no correlation or paradoxical correlation between blood flow and structure. Multivariate regression analysis revealed that reduced blood flow and structural loss are independent predictors of visual field loss. Each dB decrease in blood flow was associated with at least 1.62 dB loss in mean deviation (P ≤ 0.001), whereas each dB decrease in rim area and RNFL was associated with 1.15 dB and 2.56 dB loss in mean deviation, respectively (P ≤ 0.03). There is a close link between reduced retinal blood flow and visual field loss in glaucoma that is largely independent of structural loss. Further studies are needed to elucidate the causes of the vascular dysfunction and potential avenues for therapeutic intervention. Blood flow measurement may be useful as an independent assessment of glaucoma severity.
NASA Technical Reports Server (NTRS)
Whitcomb, R. T. (Inventor)
1976-01-01
An airfoil is examined that has an upper surface shaped to control flow accelerations and pressure distribution over the upper surface and to prevent separation of the boundary layer due to shock wave formulation at high subsonic speeds well above the critical Mach number. A highly cambered trailing edge section improves overall airfoil lifting efficiency. Diagrams illustrating supersonic flow and shock waves over the airfoil are shown.
Study on Controls of Fluids in Nanochannel via Hybrid Surface
NASA Astrophysics Data System (ADS)
Ye, Ziran
This thesis contributes to the investigation of controls of nanofluidic fluids by utilizing hybrid surface patterns in nanochannel. Nanofluidics is a core and interdisciplinary research field which manipulates, controls and analyzes fluids in nanoscale and develop potential bio/chemical applications. This thesis studies the surface-induced phenomena in nanofluidics, we use surface decoration on nanochannel walls to investigate the influences on fluid motion and further explore the fundamental physical principle of this behavior. To begin with, we designed and fabricated the nanofluidic mixer for the first time, which comprised hybrid surface patterns with different wettabilities on both top and bottom walls of nanochannel. Although microfluidic mixers have been intensively investigated, nanofluidic mixer has never been reported. Without any inside geometric structure of nanochannel, the mixing phenomenon can be achieved by the surface patterns and the mixing length can be significantly shortened comparing with micromixer. We attribute this achievement to the chaotic flows of two fluids induced by the patterned surface. The surface-related phenomena may not be so prominent on large scale, however, it is pronounced when the scale shrinks down to nanometer due to the large surface-to-volume ratio in nanochannel. In the second part of this work, based on the technology of nanofabrication and similar principle, we built up another novel method to control the speed of capillary flow in nanochannel in a quantitative manner. Surface patterns were fabricated on the nanochannel walls to slow down the capillary flow. The flow speed can be precisely controlled by modifying hydrophobicity ratio. Under the extreme surface-to-volume ratio in nanochannel, the significant surface effect on the fluid effectively reduced the speed of capillary flow without any external energy source and equipment. Such approach may be adopted for a wide variety of nanofluidicsbased biochemical analysis systems.
Walliczek-Dworschak, Ute; Schöps, Franz; Feron, Gilles; Brignot, Helene; Hähner, Antje; Hummel, Thomas
2017-10-01
This study investigated the relation of the fungiform taste papillae density and saliva composition with the taste perception of patients suffering from diagnosed taste disorders. For this purpose, 81 patients and 40 healthy subjects were included. Taste was measured by means of regional and whole mouth chemosensory tests, and electrogustometry. Olfaction was assessed using the Sniffin Sticks. Fungiform papillae were quantified using the "Denver Papillae Protocol for Objective Analysis of Fungiform Papillae". In addition, salivary parameters [flow rate, total proteins, catalase, total anti-oxidative capacity (TAC), carbonic anhydrase VI (caVI), and pH] were determined and the Beck Depression Inventory was administered. Patients showed less taste papillae compared to healthy subjects. The number of papillae correlated with total taste strip score and salivary flow rate. Regarding salivary parameters, the flow rate, protein concentration, and TAC of patients were higher compared to controls. In addition, salivary flow rate, protease, caVI, and catalase values correlated with the summed taste strip score. Regarding various taste disorders, salty-dysgeusia patients showed the lowest taste test scores compared to those with bitter or metal-dysgeusia. Olfactory function of patients was significantly worse compared to healthy controls. This difference was most pronounced for ageusia patients. Compared to controls, patients also exhibited higher depressive symptoms. The density of fungiform papillae seemed to be positively associated with taste perception. Furthermore, patients exhibited changes in saliva composition (higher salivary flow rate, increased protein concentration, proteolysis, and TAC) compared to controls indicating that assessment of saliva may be critical for the diagnostic procedure in taste disorders. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Yoshida, Kazumichi; Kurosaki, Yoshitaka; Funaki, Takeshi; Kikuchi, Takayuki; Ishii, Akira; Takahashi, Jun C; Takagi, Yasushi; Yamagata, Sen; Miyamoto, Susumu
2014-01-01
To evaluate the efficacy of flow control of the internal carotid artery (ICA) by the clamping of the common carotid artery, external carotid artery, and superior thyroid artery during surgical ICA dissection to reduce ischemic complications after carotid endarterectomy (CEA). Sixty-seven patients (59 men; age, 70.5 ± 6.2 years) who underwent CEA by the same surgeon were retrospectively studied. Both conventional CEA (n = 29) and flow-control CEA (n = 38) were performed with the patient under general anesthesia and with the use of somatosensory-evoked potential and near-infrared spectroscopy monitoring as a guide for selective shunting. The number of new postoperative infarcts was assessed with preoperative and postoperative diffusion-weighted images (DWIs) obtained within 3 days of surgery. In addition to surgical technique, the effects of the following factors on new infarcts also were examined: age, side of ICA stenosis, high-grade stenosis, symptoms, and application of shunting. New postoperative DWI lesions were observed in 7 of 67 patients (10.4%), and none of them was symptomatic. With respect to operative technique, the incidence rate of DWI spots was significantly lower in the flow-control group (2.6%) than in the conventional group (20.7%), odds ratio: 0.069; 95% confidence interval: 0.006-0.779; P = 0.031). On multiple logistic regression analysis, age, side of ICA stenosis, high-grade stenosis, symptoms, and the use of internal shunting did not have significant effects on new postoperative DWI lesions, whereas technique did have an effect. The proximal flow-control technique for CEA helps avoid embolic complications during surgical ICA dissection. Copyright © 2014 Elsevier Inc. All rights reserved.
Yoganand, Aradhana; Wood, Rachel P; Jimenez, Carlos; Siddiqui, Adnan; Snyder, Kenneth; Nagesh, S V Setlur; Bednarek, D R; Rudin, S; Baier, Robert; Ionita, Ciprian N
2015-02-21
Digital Subtraction Angiography (DSA) is the main diagnostic tool for intracranial aneurysms (IA) flow-diverter (FD) assisted treatment. Based on qualitative contrast flow evaluation, interventionists decide on subsequent steps. We developed a novel fully Retrievable Asymmetric Flow-Diverter (RAFD) which allows controlled deployment, repositioning and detachment achieve optimal flow diversion. The device has a small low porosity or solid region which is placed such that it would achieve maximum aneurysmal in-jet flow deflection with minimum impairment to adjacent vessels. We tested the new RAFD using a flow-loop with an idealized and a patient specific IA phantom in carotid-relevant physiological conditions. We positioned the deflection region at three locations: distally, center and proximally to the aneurysm orifice and analyzed aneurysm dome flow using DSA derived maps for mean transit time (MTT) and bolus arrival times (BAT). Comparison between treated and untreated (control) maps quantified the RAFD positioning effect. Average MTT, related to contrast presence in the aneurysm dome increased, indicating flow decoupling between the aneurysm and parent artery. Maximum effect was observed in the center and proximal position (~75%) of aneurysm models depending on their geometry. BAT maps, correlated well with inflow jet direction and magnitude. Reduction and jet dispersion as high as about 50% was observed for various treatments. We demonstrated the use of DSA data to guide the placement of the RAFD and showed that optimum flow diversion within the aneurysm dome is feasible. This could lead to more effective and a safer IA treatment using FDs.
NASA Astrophysics Data System (ADS)
Kim, T.; Blois, G.; Best, J.; Christensen, K. T.
2017-12-01
Coarse-gravel river beds possess a high degree of permeability. Flow interactions between surface and subsurface flow across the bed interface is key to a number of natural processes occurring in the hyporheic zone. In fact, it is increasingly recognized that these interactions drive mass, momentum and energy transport across the interface, and consequently control biochemical processes as well as stability of sediments. The current study explores the role of the wall permeability in surface and subsurface flow interaction under controlled experimental conditions on a physical model of a gravel bed. The present wall model was constructed by five layers of cubically arranged spheres (d=25.4mm, where d is a diameter) providing 48% of porosity. Surface topography was removed by cutting half of a diameter on the top layer of spheres to render the flow surface smooth and highlight the impact of the permeability on the overlying flow. An impermeable smooth wall was also considered as a baseline of comparison for the permeable wall flow. To obtain basic flow statistics, low-frame-rate high-resolution PIV measurements were performed first in the streamwise-wall-normal (x-y) plane and refractive-index matching was employed to optically access the flow within the permeable wall. Time-resolved PIV experiments in the same facility were followed to investigate the flow interaction across the wall interface in sptaio-temporal domain. In this paper, a detailed analysis of the first and second order velocity statistics as well as the amplitude modulation for the flow overlying the permeable smooth wall will be presented.
NASA Astrophysics Data System (ADS)
Yoganand, Aradhana; Wood, Rachel P.; Jimenez, Carlos; Siddiqui, Adnan; Snyder, Kenneth; Setlur Nagesh, S. V.; Bednarek, D. R.; Rudin, S.; Baier, Robert; Ionita, Ciprian N.
2015-03-01
Digital Subtraction Angiography (DSA) is the main diagnostic tool for intracranial aneurysms (IA) flow-diverter (FD) assisted treatment. Based on qualitative contrast flow evaluation, interventionists decide on subsequent steps. We developed a novel fully Retrievable Asymmetric Flow-Diverter (RAFD) which allows controlled deployment, repositioning and detachment achieve optimal flow diversion. The device has a small low porosity or solid region which is placed such that it would achieve maximum aneurysmal in-jet flow deflection with minimum impairment to adjacent vessels. We tested the new RAFD using a flow-loop with an idealized and a patient specific IA phantom in carotid-relevant physiological conditions. We positioned the deflection region at three locations: distally, center and proximally to the aneurysm orifice and analyzed aneurysm dome flow using DSA derived maps for mean transit time (MTT) and bolus arrival times (BAT). Comparison between treated and untreated (control) maps quantified the RAFD positioning effect. Average MTT, related to contrast presence in the aneurysm dome increased, indicating flow decoupling between the aneurysm and parent artery. Maximum effect was observed in the center and proximal position (~75%) of aneurysm models depending on their geometry. BAT maps, correlated well with inflow jet direction and magnitude. Reduction and jet dispersion as high as about 50% was observed for various treatments. We demonstrated the use of DSA data to guide the placement of the RAFD and showed that optimum flow diversion within the aneurysm dome is feasible. This could lead to more effective and a safer IA treatment using FDs.
Analysis of blood flow in the long posterior ciliary artery of the cat.
Koss, M C
1999-03-01
Experiments were undertaken to use a new technique for direct on-line measurement of blood flow in the long posterior ciliary artery (LPCA) in cats and to evaluate possible physiological mechanisms controlling blood flow in the vascular beds perfused by this artery. Blood flow in the temporal LPCA was measured on a continuous basis using ultrasonic flowmetry in anesthetized cats. Effects of acute sectioning of the sympathetic nerve and changes in LPCA and cerebral blood flows in response to altered levels of inspired CO2 and O2 were tested in some animals. In others, the presence of vascular autoregulatory mechanisms in response to stepwise elevations of intraocular pressure was studied. Blood flow in the temporal LPCA averaged 0.58+/-0.03 ml/min in 45 cats anesthetized with pentobarbital. Basal LPCA blood flow was not altered by acute sectioning of the sympathetic nerve or by changes in low levels of inspired CO2 and O2, although 10% CO2 caused a modest increase. Stepwise elevations of intraocular pressure resulted in comparable stepwise decreases of LPCA blood flow, with perfusion pressure declining in a linear manner throughout the perfusion-pressure range. Ultrasonic flowmetry seems to be a useful tool for continuous on-line measurement of LPCA blood flow in the cat eye. Blood flow to vascular beds perfused by this artery does not seem to be under sympathetic neural control and is refractory to modest alterations of blood gas levels of CO2 and O2. Blood vessels perfused by the LPCA show no clear autoregulatory mechanisms.
Karadağ, Sevinç; Görüşük, Emine M; Çetinkaya, Ebru; Deveci, Seda; Dönmez, Koray B; Uncuoğlu, Emre; Doğu, Mustafa
2018-01-25
A fully automated flow injection analysis (FIA) system was developed for determination of phosphate ion in nutrient solutions. This newly developed FIA system is a portable, rapid and sensitive measuring instrument that allows on-line analysis and monitoring of phosphate ion concentration in nutrient solutions. The molybdenum blue method, which is widely used in FIA phosphate analysis, was adapted to the developed FIA system. The method is based on the formation of ammonium Mo(VI) ion by reaction of ammonium molybdate with the phosphate ion present in the medium. The Mo(VI) ion then reacts with ascorbic acid and is reduced to the spectrometrically measurable Mo(V) ion. New software specific for flow analysis was developed in the LabVIEW development environment to control all the components of the FIA system. The important factors affecting the analytical signal were identified as reagent flow rate, injection volume and post-injection flow path length, and they were optimized using Box-Behnken experimental design and response surface methodology. The optimum point for the maximum analytical signal was calculated as 0.50 mL min -1 reagent flow rate, 100 µL sample injection volume and 60 cm post-injection flow path length. The proposed FIA system had a sampling frequency of 100 samples per hour over a linear working range of 3-100 mg L -1 (R 2 = 0.9995). The relative standard deviation (RSD) was 1.09% and the limit of detection (LOD) was 0.34 mg L -1 . Various nutrient solutions from a tomato-growing hydroponic greenhouse were analyzed with the developed FIA system and the results were found to be in good agreement with vanadomolybdate chemical method findings. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.
NASA Technical Reports Server (NTRS)
Vatner, S. F.
1978-01-01
Radiotelemetry was used to measure arterial pressure and mesenteric and renal blood flows from nine unrestrained, conscious baboons during periods of rest, moderate exercise, and extreme excitement. A description of the experiments hardware is presented, including artificial depressants phenylcyclidine hydrochloride, 0.5-1.0 mg/kg, and pentobarbital sodium, 15 mg/kg, and an ultrasonic telemetry flow meter. Results showed rising heart rate and arterial pressure coupled with a reduction of mesenteric and renal flows as the level of exercise was increased. These findings are compared with mesenteric and renal flows somewhat above control level, but relatively stable heart rate and arterial pressure, postprandially. Attention is given to a quantitative analysis of the experimental results.
μ-PIV measurements of the ensemble flow fields surrounding a migrating semi-infinite bubble.
Yamaguchi, Eiichiro; Smith, Bradford J; Gaver, Donald P
2009-08-01
Microscale particle image velocimetry (μ-PIV) measurements of ensemble flow fields surrounding a steadily-migrating semi-infinite bubble through the novel adaptation of a computer controlled linear motor flow control system. The system was programmed to generate a square wave velocity input in order to produce accurate constant bubble propagation repeatedly and effectively through a fused glass capillary tube. We present a novel technique for re-positioning of the coordinate axis to the bubble tip frame of reference in each instantaneous field through the analysis of the sudden change of standard deviation of centerline velocity profiles across the bubble interface. Ensemble averages were then computed in this bubble tip frame of reference. Combined fluid systems of water/air, glycerol/air, and glycerol/Si-oil were used to investigate flows comparable to computational simulations described in Smith and Gaver (2008) and to past experimental observations of interfacial shape. Fluorescent particle images were also analyzed to measure the residual film thickness trailing behind the bubble. The flow fields and film thickness agree very well with the computational simulations as well as existing experimental and analytical results. Particle accumulation and migration associated with the flow patterns near the bubble tip after long experimental durations are discussed as potential sources of error in the experimental method.
Possibilities for drag reduction by boundary layer control
NASA Technical Reports Server (NTRS)
Naiman, I.
1946-01-01
The mechanics of laminar boundary layer transition are reviewed. Drag possibilities for boundary layer control are analyzed using assumed conditions of transition Reynolds number, inlet loss, number of slots, blower efficiency, and duct losses. Although the results of such analysis are highly favorable, those obtained by experimental investigations yield conflicting results, showing only small gains, and sometimes losses. Reduction of this data indicates that there is a lower limit to the quantity of air which must be removed at the slot in order to stabilize the laminar flow. The removal of insufficient air permits transition to occur while the removal of excessive amounts of air results in high power costs, with a net drag increases. With the estimated value of flow coefficient and duct losses equal to half the dynamic pressure, drag reductions of 50% may be obtained; with twice this flow coefficient, the drag saving is reduced to 25%.
NASA Technical Reports Server (NTRS)
Dean, P. D.
1978-01-01
A systems concept procedure is described for the optimization of acoustic duct liner design for both uniform and multisegment types. The concept was implemented by the use of a double reverberant chamber flow duct facility coupled with sophisticated computer control and acoustic analysis systems. The optimization procedure for liner insertion loss was based on the concept of variable liner impedance produced by bias air flow through a multilayer, resonant cavity liner. A multiple microphone technique for in situ wall impedance measurements was used and successfully adapted to produce automated measurements for all liner configurations tested. The complete validation of the systems concept was prevented by the inability to optimize the insertion loss using bias flow induced wall impedance changes. This inability appeared to be a direct function of the presence of a higher order energy carrying modes which were not influenced significantly by the wall impedance changes.
Quality Control Method for a Micro-Nano-Channel Microfabricated Device
NASA Technical Reports Server (NTRS)
Grattoni, Alessandro; Ferrari, Mauro; Li, Xuewu
2012-01-01
A variety of silicon-fabricated devices is used in medical applications such as drug and cell delivery, and DNA and protein separation and analysis. When a fluidic device inlet is connected to a compressed gas reservoir, and the outlet is at a lower pressure, a gas flow occurs through the membrane toward the outside. The method relies on the measurement of the gas pressure over the elapsed time inside the upstream and downstream environments. By knowing the volume of the upstream reservoir, the gas flow rate through the membrane over the pressure drop can be calculated. This quality control method consists of measuring the gas flow through a device and comparing the results with a standard curve, which can be obtained by testing standard devices. Standard devices can be selected through a variety of techniques, both destructive and nondestructive, such as SEM, AFM, and standard particle filtration.
Sokolenko, Stanislav; Nicastro, Jessica; Slavcev, Roderick; Aucoin, Marc G
2012-12-01
As native virus particles typically cannot be resolved using a flow cytometer, the general practice is to use fluorescent dyes to label the particles. In this work, an attempt was made to use a common commercial flow cytometer to characterize a phage display strategy that allows for controlled levels of protein display, in this case, eGFP. To achieve this characterization, a number of data processing steps were needed to ensure that the observed phenomena were indeed capturing differences in the phages produced. Phage display of eGFP resulted in altered side scatter and fluorescence profile, and sub-populations could be identified within what would otherwise be considered uniform populations. Surprisingly, this study has found that side scatter may be used in the future to characterize the display of nonfluorescent proteins. Copyright © 2012 International Society for Advancement of Cytometry.
Control of Cavity Resonance Using Oscillatory Blowing
NASA Technical Reports Server (NTRS)
Scarfe, Alison Lamp; Chokani, Ndaona
2000-01-01
The near-zero net mass oscillatory blowing control of a subsonic cavity flow has been experimentally investigated. An actuator was designed and fabricated to provide both steady and oscillatory blowing over a range of blowing amplitudes and forcing frequencies. The blowing was applied just upstream of the cavity front Wall through interchangeable plate configurations These configurations enabled the effects of hole size, hole shape, and blowing angle to be examined. A significant finding is that in terms of the blowing amplitude, the near zero net mass oscillatory blowing is much more effective than steady blowing; momentum coefficients Lip two orders of magnitude smaller than those required for steady blowing are sufficient to accomplish the same control of cavity resonance. The detailed measurements obtained in the experiment include fluctuating pressure data within the cavity wall, and hot-wire measurements of the cavity shear layer. Spectral and wavelet analysis techniques are applied to understand the dynamics and mechanisms of the cavity flow with control. The oscillatory blowing, is effective in enhancing the mixing in the cavity shear layer and thus modifying the feedback loop associated with the cavity resonance. The nonlinear interactions in the cavity flow are no longer driven by the resonant cavity modes but by the forcing associated with the oscillatory blowing. The oscillatory blowing does not suppress the mode switching behavior of the cavity flow, but the amplitude modulation is reduced.
LaCount, Robert B.
1993-01-01
A furnace with two hot zones holds multiple analysis tubes. Each tube has a separable sample-packing section positioned in the first hot zone and a catalyst-packing section positioned in the second hot zone. A mass flow controller is connected to an inlet of each sample tube, and gas is supplied to the mass flow controller. Oxygen is supplied through a mass flow controller to each tube to either or both of an inlet of the first tube and an intermediate portion between the tube sections to intermingle with and oxidize the entrained gases evolved from the sample. Oxidation of those gases is completed in the catalyst in each second tube section. A thermocouple within a sample reduces furnace temperature when an exothermic condition is sensed within the sample. Oxidized gases flow from outlets of the tubes to individual gas cells. The cells are sequentially aligned with an infrared detector, which senses the composition and quantities of the gas components. Each elongated cell is tapered inward toward the center from cell windows at the ends. Volume is reduced from a conventional cell, while permitting maximum interaction of gas with the light beam. Reduced volume and angulation of the cell inlets provide rapid purgings of the cell, providing shorter cycles between detections. For coal and other high molecular weight samples, from 50% to 100% oxygen is introduced to the tubes.
Advanced Flow Control as a Management Tool in the National Airspace System
NASA Technical Reports Server (NTRS)
Wugalter, S.
1974-01-01
Advanced Flow Control is closely related to Air Traffic Control. Air Traffic Control is the business of the Federal Aviation Administration. To formulate an understanding of advanced flow control and its use as a management tool in the National Airspace System, it becomes necessary to speak somewhat of air traffic control, the role of FAA, and their relationship to advanced flow control. Also, this should dispell forever, any notion that advanced flow control is the inspirational master valve scheme to be used on the Alaskan Oil Pipeline.
Vibrational Power Flow Analysis of Rods and Beams
NASA Technical Reports Server (NTRS)
Wohlever, James Christopher; Bernhard, R. J.
1988-01-01
A new method to model vibrational power flow and predict the resulting energy density levels in uniform rods and beams is investigated. This method models the flow of vibrational power in a manner analogous to the flow of thermal power in a heat conduction problem. The classical displacement solutions for harmonically excited, hysteretically damped rods and beams are used to derive expressions for the vibrational power flow and energy density in the rod and beam. Under certain conditions, the power flow in these two structural elements will be shown to be proportional to the energy density gradient. Using the relationship between power flow and energy density, an energy balance on differential control volumes in the rod and beam leads to a Poisson's equation which models the energy density distribution in the rod and beam. Coupling the energy density and power flow solutions for rods and beams is also discussed. It is shown that the resonant behavior of finite structures complicates the coupling of solutions, especially when the excitations are single frequency inputs. Two coupling formulations are discussed, the first based on the receptance method, and the second on the travelling wave approach used in Statistical Energy Analysis. The receptance method is the more computationally intensive but is capable of analyzing single frequency excitation cases. The traveling wave approach gives a good approximation of the frequency average of energy density and power flow in coupled systems, and thus, is an efficient technique for use with broadband frequency excitation.
A continuous flow microfluidic calorimeter: 3-D numerical modeling with aqueous reactants.
Sen, Mehmet A; Kowalski, Gregory J; Fiering, Jason; Larson, Dale
2015-03-10
A computational analysis of the reacting flow field, species diffusion and heat transfer processes with thermal boundary layer effects in a microchannel reactor with a coflow configuration was performed. Two parallel adjacent streams of aqueous reactants flow along a wide, shallow, enclosed channel in contact with a substrate, which is affixed to a temperature controlled plate. The Fluent computational fluid dynamics package solved the Navier-Stokes, mass transport and energy equations. The energy model, including the enthalpy of reaction as a nonuniform heat source, was validated by calculating the energy balance at several control volumes in the microchannel. Analysis reveals that the temperature is nearly uniform across the channel thickness, in the direction normal to the substrate surface; hence, measurements made by sensors at or near the surface are representative of the average temperature. Additionally, modeling the channel with a glass substrate and a silicone cover shows that heat transfer is predominantly due to the glass substrate. Finally, using the numerical results, we suggest that a microcalorimeter could be based on this configuration, and that temperature sensors such as optical nanohole array sensors could have sufficient spatial resolution to determine enthalpy of reaction.
A continuous flow microfluidic calorimeter: 3-D numerical modeling with aqueous reactants
Sen, Mehmet A.; Kowalski, Gregory J.; Fiering, Jason; Larson, Dale
2015-01-01
A computational analysis of the reacting flow field, species diffusion and heat transfer processes with thermal boundary layer effects in a microchannel reactor with a coflow configuration was performed. Two parallel adjacent streams of aqueous reactants flow along a wide, shallow, enclosed channel in contact with a substrate, which is affixed to a temperature controlled plate. The Fluent computational fluid dynamics package solved the Navier–Stokes, mass transport and energy equations. The energy model, including the enthalpy of reaction as a nonuniform heat source, was validated by calculating the energy balance at several control volumes in the microchannel. Analysis reveals that the temperature is nearly uniform across the channel thickness, in the direction normal to the substrate surface; hence, measurements made by sensors at or near the surface are representative of the average temperature. Additionally, modeling the channel with a glass substrate and a silicone cover shows that heat transfer is predominantly due to the glass substrate. Finally, using the numerical results, we suggest that a microcalorimeter could be based on this configuration, and that temperature sensors such as optical nanohole array sensors could have sufficient spatial resolution to determine enthalpy of reaction. PMID:25937678
Protein Crystal Movements and Fluid Flows During Microgravity Growth
NASA Technical Reports Server (NTRS)
Boggon, Titus J.; Chayen, Naomi E.; Snell, Edward H.; Dong, Jun; Lautenschlager, Peter; Potthast, Lothar; Siddons, D. Peter; Stojanoff, Vivian; Gordon, Elspeth; Thompson, Andrew W.;
1998-01-01
The growth of protein crystals suitable for x-ray crystal structure analysis is an important topic. The quality (perfection) of protein crystals is now being evaluated by mosaicity analysis (rocking curves) and x-ray topographic images as well as the diffraction resolution limit and overall data quality. In yet another study, use of hanging drop vapour diffusion geometry on the IML-2 shuttle mission showed, again via CCD video monitoring, growing apocrustacyanin C(sub 1) protein crystal executing near cyclic movement, reminiscent of Marangoni convection flow of fluid, the crystals serving as "markers" of the fluid flow. A review is given here of existing results and experience over several microgravity missions. Some comment is given on gel protein crystal growth in attempts to 'mimic' the benefits of microgravity on Earth. Finally, the recent new results from our experiments on the shuttle mission LMS are described. These results include CCD video as well as interferometry during the mission, followed, on return to Earth, by reciprocal space mapping at the NSLS, Brookhaven, and full X-ray data collection on LMS and Earth control lysozyme crystals. Diffraction data recorded from LMS and ground control apocrustacyanin C(sub 1) crystals are also described.
Hattori, Koji; Munehira, Yoichi; Kobayashi, Hideki; Satoh, Taku; Sugiura, Shinji; Kanamori, Toshiyuki
2014-09-01
We developed a microfluidic perfusion cell culture chip that provides three different shear stress strengths and a large cell culture area for the analysis of vascular endothelial functions. The microfluidic network was composed of shallow flow-control channels of three different depths and deep cell culture channels. The flow-control channels with high fluidic resistances created shear stress strengths ranging from 1.0 to 10.0 dyn/cm(2) in the cell culture channels. The large surface area of the culture channels enabled cultivation of a large number (approximately 6.0 × 10(5)) of cells. We cultured human umbilical vein endothelial cells (HUVECs) and evaluated the changes in cellular morphology and gene expression in response to applied shear stress. The HUVECs were aligned in the direction of flow when exposed to a shear stress of 10.0 dyn/cm(2). Compared with conditions of no shear stress, endothelial nitric oxide synthase mRNA expression increased by 50% and thrombomodulin mRNA expression increased by 8-fold under a shear stress of 9.5 dyn/cm(2). Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Active flow control for a blunt trailing edge profiled body
NASA Astrophysics Data System (ADS)
Naghib Lahouti, Arash
Flow in the wake of nominally two-dimensional bluff bodies is dominated by vortex shedding, beyond a very small threshold Reynolds number. Vortex shedding poses challenges in the design of structures, due to its adverse effects such as cyclic aerodynamic loads and fatigue. The wake vortices are often accompanied by large- and small-scale secondary instabilities, which manifest as dislocations in the primary wake vortices, and/or pairs of counter-rotating streamwise vortices, depending on the dominant instability mode(s), which in turn depends on the profile geometry and Reynolds number. The secondary instabilities interact with the wake vortices through several mechanisms. Therefore, manipulation of the secondary instabilities can be used as a means to alter the wake vortices, in order to reduce their adverse effects. In the present study, flow in the wake of a blunt trailing edge profiled body, composed of an elliptical leading edge and a rectangular trailing edge, has been studied at Reynolds numbers ranging from Re(d) = 500 to 2150 where d is thickness of the body, to identify the secondary instabilities. Various tools, including numerical simulations, Laser Induced Fluorescence (LIF), and Particle Image Velocimetry (PIV) have been used for this study. Proper Orthogonal Decomposition (POD) has been applied to analyze the velocity field data. The results indicate the existence of small-scale instabilities with a spanwise wavelength of 2.0d to 2.5d in the near wake. The mechanism of the instability is similar to the Mode-A instability of a circular cylinder; however, it displays features that are specific to the blunt trailing edge profiled body. An active three-dimensional flow control mechanism based on the small-scale instabilities has been designed and evaluated. The mechanism comprises a series of trailing edge injection ports, with a spanwise spacing equal to the wavelength of the small-scale instabilities. Following preliminary evaluation of the control mechanism through numerical simulations, and experimental study of the effect of injection flow rate, extensive PIV experiments have been conducted to investigate the effectiveness of the flow control mechanism, and its effects on the wake flow structure, at Reynolds numbers ranging from Re(d ) = 700 to 1980. Measurements have been carried out at multiple spanwise locations, to establish a comprehensive image of the effect of the flow control mechanism on parameters such as drag force, wake width, and formation length. POD analysis and frequency spectrums are used to describe the process by which the mechanism affects the wake parameters and drag force. The results indicate that the flow control mechanism is able to reduce drag force by 10%. It is also shown that the best effectiveness in terms of suppression of the drag component resulting from velocity fluctuations is achieved when the flow control actuation wavelength closely matches the wavelength of the small-scale instabilities. KEYWORDS: Blunt Trailing Edge Profiled Body, Vortex Shedding, Wake Instability, Streamwise Vortex, Flow Control, Drag Reduction, Particle Image Velocimetry (PIV), Laser Induced Fluorescence (LIF), Flow Visualization, Numerical Simulation
NASA Technical Reports Server (NTRS)
Groves, Curtis; Ilie, Marcel; Schallhorn, Paul
2014-01-01
Spacecraft components may be damaged due to airflow produced by Environmental Control Systems (ECS). There are uncertainties and errors associated with using Computational Fluid Dynamics (CFD) to predict the flow field around a spacecraft from the ECS System. This paper describes an approach to estimate the uncertainty in using CFD to predict the airflow speeds around an encapsulated spacecraft.
Unsteady flow simulations around complex geometries using stationary or rotating unstructured grids
NASA Astrophysics Data System (ADS)
Sezer-Uzol, Nilay
In this research, the computational analysis of three-dimensional, unsteady, separated, vortical flows around complex geometries is studied by using stationary or moving unstructured grids. Two main engineering problems are investigated. The first problem is the unsteady simulation of a ship airwake, where helicopter operations become even more challenging, by using stationary unstructured grids. The second problem is the unsteady simulation of wind turbine rotor flow fields by using moving unstructured grids which are rotating with the whole three-dimensional rigid rotor geometry. The three dimensional, unsteady, parallel, unstructured, finite volume flow solver, PUMA2, is used for the computational fluid dynamics (CFD) simulations considered in this research. The code is modified to have a moving grid capability to perform three-dimensional, time-dependent rotor simulations. An instantaneous log-law wall model for Large Eddy Simulations is also implemented in PUMA2 to investigate the very large Reynolds number flow fields of rotating blades. To verify the code modifications, several sample test cases are also considered. In addition, interdisciplinary studies, which are aiming to provide new tools and insights to the aerospace and wind energy scientific communities, are done during this research by focusing on the coupling of ship airwake CFD simulations with the helicopter flight dynamics and control analysis, the coupling of wind turbine rotor CFD simulations with the aeroacoustic analysis, and the analysis of these time-dependent and large-scale CFD simulations with the help of a computational monitoring, steering and visualization tool, POSSE.
NASA Technical Reports Server (NTRS)
Hickey, David H.; Aoyagi, Kiyoshi
1960-01-01
A wind-tunnel investigation was conducted to determine the effect of trailing-edge flaps with blowing-type boundary-layer control and leading-edge slats on the low-speed performance of a large-scale jet transport model with four engines and a 35 deg. sweptback wing of aspect ratio 7. Two spanwise extents and several deflections of the trailing-edge flap were tested. Results were obtained with a normal leading-edge and with full-span leading-edge slats. Three-component longitudinal force and moment data and boundary-layer-control flow requirements are presented. The test results are analyzed in terms of possible improvements in low-speed performance. The effect on performance of the source of boundary-layer-control air flow is considered in the analysis.
Punjabi, Mansi; Dewan, Ruchika Gupta; Kochhar, Rohit
2017-01-01
Aim and Objectives: The aim of this study is to evaluate and compare the fracture resistance of root canals obturated with four different obturating systems in endodontically treated teeth. Materials and Methods: One hundred and twenty single-rooted teeth were selected and decoronated at cementoenamel junction. Instrumentation of teeth (except control group) was done with Mtwo rotary files up to size 25/0.06 using a step-back technique. All teeth were divided into four experimental groups (n = 25) and two control groups (n = 10). In Group I (negative control), teeth were neither instrumented nor obturated, in Group II (positive control), instrumentation was done, but no obturation was performed, in Group III, obturation was done with cold lateral compaction technique, in Group IV, obturation was done with cold free-flow compaction technique, in Group V, obturation was done with warm vertical compaction technique, and in Group VI, obturation was done with injection-molded thermoplasticized technique. All prepared teeth were embedded in an acrylic resin block, and their fracture strength was measured using Universal Testing Machine. Statistical data were analyzed using one-way analysis of variance and Tukey's honestly significant difference test. Results: Negative control Group I showed highest fracture resistance and positive control Group II had lowest fracture resistance. Among experimental groups, cold free-flow compaction technique with GuttaFlow2 (Group IV) showed higher fracture resistance as compared to the Group III, Group V, and Group VI. Conclusion: GuttaFlow2 has the potential to strengthen the endodontically treated roots to a level that is similar to that of intact teeth. PMID:29430099
Punjabi, Mansi; Dewan, Ruchika Gupta; Kochhar, Rohit
2017-01-01
The aim of this study is to evaluate and compare the fracture resistance of root canals obturated with four different obturating systems in endodontically treated teeth. One hundred and twenty single-rooted teeth were selected and decoronated at cementoenamel junction. Instrumentation of teeth (except control group) was done with Mtwo rotary files up to size 25/0.06 using a step-back technique. All teeth were divided into four experimental groups ( n = 25) and two control groups ( n = 10). In Group I (negative control), teeth were neither instrumented nor obturated, in Group II (positive control), instrumentation was done, but no obturation was performed, in Group III, obturation was done with cold lateral compaction technique, in Group IV, obturation was done with cold free-flow compaction technique, in Group V, obturation was done with warm vertical compaction technique, and in Group VI, obturation was done with injection-molded thermoplasticized technique. All prepared teeth were embedded in an acrylic resin block, and their fracture strength was measured using Universal Testing Machine. Statistical data were analyzed using one-way analysis of variance and Tukey's honestly significant difference test. Negative control Group I showed highest fracture resistance and positive control Group II had lowest fracture resistance. Among experimental groups, cold free-flow compaction technique with GuttaFlow2 (Group IV) showed higher fracture resistance as compared to the Group III, Group V, and Group VI. GuttaFlow2 has the potential to strengthen the endodontically treated roots to a level that is similar to that of intact teeth.
Numerical modelling and data assimilation of the Larsen B ice shelf, Antarctic Peninsula.
Vieli, Andreas; Payne, Antony J; Du, Zhijun; Shepherd, Andrew
2006-07-15
In this study, the flow and rheology of pre-collapse Larsen B ice shelf are investigated by using a combination of flow modelling and data assimilation. Observed shelf velocities from satellite interferometry are used to constrain an ice shelf model by using a data assimilation technique based on the control method. In particular, the ice rheology field and the velocities at the inland shelf boundary are simultaneously optimized to get a modelled flow and stress field that is consistent with the observed flow. The application to the Larsen B ice shelf shows that a strong weakening of the ice in the shear zones, mostly along the margins, is necessary to fit the observed shelf flow. This pattern of bands with weak ice is a very robust feature of the inversion, whereas the ice rheology within the main shelf body is found to be not well constrained. This suggests that these weak zones play a major role in the control of the flow of the Larsen B ice shelf and may be the key to understanding the observed pre-collapse thinning and acceleration of Larsen B. Regarding the sensitivity of the stress field to rheology, the consistency of the model with the observed flow seems crucial for any further analysis such as the application of fracture mechanics or perturbation model experiments.
Sweeping Jet Actuator in a Quiescent Environment
NASA Technical Reports Server (NTRS)
Koklu, Mehti; Melton, Latunia P.
2013-01-01
This study presents a detailed analysis of a sweeping jet (fluidic oscillator) actuator. The sweeping jet actuator promises to be a viable flow control actuator candidate due to its simple, no moving part structure and its high momentum, spatially oscillating flow output. Hot-wire anemometer and particle image velocimetry measurements were carried out with an emphasis on understanding the actuator flow field in a quiescent environment. The time averaged, fluctuating, and instantaneous velocity measurements are provided. A modified actuator concept that incorporates high-speed solenoid valves to control the frequency of oscillation enabled phase averaged measurements of the oscillating jet. These measurements reveal that in a given oscillation cycle, the oscillating jet spends more time on each of the Coanda surfaces. In addition, the modified actuator generates four different types of flow fields, namely: a non oscillating downward jet, a non oscillating upward jet, a non oscillating straight jet, and an oscillating jet. The switching from an upward jet to a downward jet is accomplished by providing a single pulse from the solenoid valve. Once the flow is switched, the flow stays there until another pulse is received. The oscillating jet is compared with a non oscillating straight jet, which is a typical planar turbulent jet. The results indicate that the oscillating jet has a higher (5 times) spreading rate, more flow entrainment, and higher velocity fluctuations (equal to the mean velocity).
2015-09-01
Gateway 2 4. Voice Packet Flow: SIP , Session Description Protocol (SDP), and RTP 3 5. Voice Data Analysis 5 6. Call Analysis 6 7. Call Metrics 6...analysis processing is designed for a general VoIP system architecture based on Session Initiation Protocol ( SIP ) for negotiating call sessions and...employs Skinny Client Control Protocol for network communication between the phone and the local CallManager (e.g., for each dialed digit), SIP
Geometric flow control of shear bands by suppression of viscous sliding
Viswanathan, Koushik; Mahato, Anirban; Sundaram, Narayan K.; M'Saoubi, Rachid; Trumble, Kevin P.; Chandrasekar, Srinivasan
2016-01-01
Shear banding is a plastic flow instability with highly undesirable consequences for metals processing. While band characteristics have been well studied, general methods to control shear bands are presently lacking. Here, we use high-speed imaging and micro-marker analysis of flow in cutting to reveal the common fundamental mechanism underlying shear banding in metals. The flow unfolds in two distinct phases: an initiation phase followed by a viscous sliding phase in which most of the straining occurs. We show that the second sliding phase is well described by a simple model of two identical fluids being sheared across their interface. The equivalent shear band viscosity computed by fitting the model to experimental displacement profiles is very close in value to typical liquid metal viscosities. The observation of similar displacement profiles across different metals shows that specific microstructure details do not affect the second phase. This also suggests that the principal role of the initiation phase is to generate a weak interface that is susceptible to localized deformation. Importantly, by constraining the sliding phase, we demonstrate a material-agnostic method—passive geometric flow control—that effects complete band suppression in systems which otherwise fail via shear banding. PMID:27616920
Fluid Flow Technology that Measures Up
NASA Technical Reports Server (NTRS)
2004-01-01
From 1994 to 1996, NASA s Marshall Space Flight Center conducted a Center Director's Discretionary Fund research effort to apply artificial intelligence technologies to the health management of plant equipment and space propulsion systems. Through this effort, NASA established a business relationship with Quality Monitoring and Control (QMC), of Kingwood, Texas, to provide hardware modeling and artificial intelligence tools. Very detailed and accurate Space Shuttle Main Engine (SSME) analysis and algorithms were jointly created, which identified several missing, critical instrumentation needs for adequately evaluating the engine health status. One of the missing instruments was a liquid oxygen (LOX) flow measurement. This instrument was missing since the original SSME included a LOX turbine flow meter that failed during a ground test, resulting in considerable damage for NASA. New balanced flow meter technology addresses this need with robust, safe, and accurate flow metering hardware.
Particle image and acoustic Doppler velocimetry analysis of a cross-flow turbine wake
NASA Astrophysics Data System (ADS)
Strom, Benjamin; Brunton, Steven; Polagye, Brian
2017-11-01
Cross-flow turbines have advantageous properties for converting kinetic energy in wind and water currents to rotational mechanical energy and subsequently electrical power. A thorough understanding of cross-flow turbine wakes aids understanding of rotor flow physics, assists geometric array design, and informs control strategies for individual turbines in arrays. In this work, the wake physics of a scale model cross-flow turbine are investigated experimentally. Three-component velocity measurements are taken downstream of a two-bladed turbine in a recirculating water channel. Time-resolved stereoscopic particle image and acoustic Doppler velocimetry are compared for planes normal to and distributed along the turbine rotational axis. Wake features are described using proper orthogonal decomposition, dynamic mode decomposition, and the finite-time Lyapunov exponent. Consequences for downstream turbine placement are discussed in conjunction with two-turbine array experiments.
Microfluidic proportional flow controller
Prentice-Mott, Harrison; Toner, Mehmet; Irimia, Daniel
2011-01-01
Precise flow control in microfluidic chips is important for many biochemical assays and experiments at microscale. While several technologies for controlling fluid flow have been implemented either on- or off-chip, these can provide either high-speed or high-precision control, but seldom could accomplish both at the same time. Here we describe a new on-chip, pneumatically activated flow controller that allows for fast and precise control of the flow rate through a microfluidic channel. Experimental results show that the new proportional flow controllers exhibited a response time of approximately 250 ms, while our numerical simulations suggest that faster actuation down to approximately 50 ms could be achieved with alternative actuation schemes. PMID:21874096
Libregts, S F W M; Arkesteijn, G J A; Németh, A; Nolte-'t Hoen, E N M; Wauben, M H M
2018-05-20
Essentials Extracellular vesicles (EVs) in biological fluids are promising biomarkers for disease. Fluorescence-based flow cytometric analysis is suitable to detect low abundant EV subsets. Particles of non-interest can induce false-positive light scatter and fluorescent signals. Interference of particles of non-interest can be monitored by analyzing serial dilutions. Background Extracellular vesicles (EVs) in plasma are increasingly being recognized as potential biomarkers. EV analysis for diagnostic purposes should be robust and should allow analysis of EV subsets with a wide range of abundance and in a large number of patient samples. Flow cytometry offers possibilities to meet these criteria, as it allows multiparameter analysis of individual EVs. However, analysis of plasma EVs is challenging, because of their size and heterogeneity, and the presence of other submicrometer-sized particles in plasma that could interfere with EV analysis. Objectives To explore whether fluorescence-based flow cytometric analysis of EV subsets is suitable when the EVs of interest are present in low abundance in a background of non-labeled or differently labeled EVs and particles. Methods Fluorescently labeled EVs of interest were spiked at different ratios in full plasma, purified plasma components, or (non-)fluorescent polystyrene beads, and subsequently analyzed by flow cytometry with fluorescence threshold triggering. Results We found that light scatter detection of low-abundance or rare EV subsets during fluorescence threshold triggering was severely affected by particles of non-interest, owing to coincidence and swarming. Importantly, we show that interfering particles labeled with different fluorophores induced false-positive fluorescent signals on the particles of interest. These unwanted effects could only be discerned and controlled by performing serial dilutions and analyzing light scatter and fluorescence parameters. Conclusions We demonstrate how particles of non-interest in plasma can impact on the light scatter and fluorescence detection of low-abundance EVs of interest during fluorescence-based flow cytometric analysis, and provide a means to prevent erroneous data interpretation. © 2018 The Authors. Journal of Thrombosis and Haemostasis published by Wiley Periodicals, Inc. on behalf of International Society on Thrombosis and Haemostasis.
Single-Stage, 3.4:1-Pressure-Ratio Aspirated Fan Developed and Demonstrated
NASA Technical Reports Server (NTRS)
Braunscheidel, Edward P.
2004-01-01
Researchers are constantly pursuing technologies that will increase the performance of gas turbine engines. The aspirated compressor concept discussed here would allow the compression system to perform its task with about one-half of the compressor blades. To accomplish this, the researchers applied boundary layer control to the blades, casing, and hub. This method of boundary layer control consisted of removing small amounts of air from the main flow path at critical areas of the compressor. This bleed air could be used by other systems such as engine cooling or could be re-injected into lower pressure areas that require air for enhanced performance. This effort was initiated by the Massachusetts Institute of Technology (MIT) in response to a solicitation from the Defense Advanced Research Projects Agency (DARPA) who sought to advance research in flow control technology. The NASA Glenn Research Center partnered with MIT (principal investigator), Honeywell Aircraft Engines (cycle analysis, structural analysis, and mechanical design), and Pratt & Whitney (cycle analysis and aero-analysis) to conceptualize, design, analyze, build, and test the aspirated fan stage. The aero-design and aero-analysis of this fan stage were jointly executed by MIT and Glenn to minimize the amount of bleed flow needed and to maintain the highest efficiency possible (ref. 1). Mechanical design issues were complicated by the need to have a shrouded rotor with hollow blades, with rotor stress levels beyond the capabilities of titanium. The high stress issues were addressed by designing a shroud that was filament wound with a carbon fiber/epoxy matrix, resulting in an assembly that was strong enough to handle the high stresses. Both the rotor (preceding photographs) and stator (following photograph) were fabricated in two halves and then bolted together at the hub and tip, permitting the bleed passages to be machined into each half before assembly.
Teaching computer interfacing with virtual instruments in an object-oriented language.
Gulotta, M
1995-01-01
LabVIEW is a graphic object-oriented computer language developed to facilitate hardware/software communication. LabVIEW is a complete computer language that can be used like Basic, FORTRAN, or C. In LabVIEW one creates virtual instruments that aesthetically look like real instruments but are controlled by sophisticated computer programs. There are several levels of data acquisition VIs that make it easy to control data flow, and many signal processing and analysis algorithms come with the software as premade VIs. In the classroom, the similarity between virtual and real instruments helps students understand how information is passed between the computer and attached instruments. The software may be used in the absence of hardware so that students can work at home as well as in the classroom. This article demonstrates how LabVIEW can be used to control data flow between computers and instruments, points out important features for signal processing and analysis, and shows how virtual instruments may be used in place of physical instrumentation. Applications of LabVIEW to the teaching laboratory are also discussed, and a plausible course outline is given. PMID:8580361
Teaching computer interfacing with virtual instruments in an object-oriented language.
Gulotta, M
1995-11-01
LabVIEW is a graphic object-oriented computer language developed to facilitate hardware/software communication. LabVIEW is a complete computer language that can be used like Basic, FORTRAN, or C. In LabVIEW one creates virtual instruments that aesthetically look like real instruments but are controlled by sophisticated computer programs. There are several levels of data acquisition VIs that make it easy to control data flow, and many signal processing and analysis algorithms come with the software as premade VIs. In the classroom, the similarity between virtual and real instruments helps students understand how information is passed between the computer and attached instruments. The software may be used in the absence of hardware so that students can work at home as well as in the classroom. This article demonstrates how LabVIEW can be used to control data flow between computers and instruments, points out important features for signal processing and analysis, and shows how virtual instruments may be used in place of physical instrumentation. Applications of LabVIEW to the teaching laboratory are also discussed, and a plausible course outline is given.
Chin, Jefferson; Wood, Elizabeth; Peters, Grace S; Drexler, Dieter M
2016-02-01
In the early stages of drug discovery, high-throughput screening (HTS) of compound libraries against pharmaceutical targets is a common method to identify potential lead molecules. For these HTS campaigns to be efficient and successful, continuous quality control of the compound collection is necessary and crucial. However, the large number of compound samples and the limited sample amount pose unique challenges. Presented here is a proof-of-concept study for a novel process flow for the quality control screening of small-molecule compound libraries that consumes only minimal amounts of samples and affords compound-specific molecular data. This process employs an acoustic sample deposition (ASD) technique for the offline sample preparation by depositing nanoliter volumes in an array format onto microscope glass slides followed by matrix-assisted laser desorption/ionization mass spectrometric (MALDI-MS) analysis. An initial study of a 384-compound array employing the ASD-MALDI-MS workflow resulted in a 75% first-pass positive identification rate with an analysis time of <1 s per sample. © 2015 Society for Laboratory Automation and Screening.
Dispersion controlled by permeable surfaces: surface properties and scaling
Ling, Bowen; Tartakovsky, Alexandre M.; Battiato, Ilenia
2016-08-25
Permeable and porous surfaces are common in natural and engineered systems. Flow and transport above such surfaces are significantly affected by the surface properties, e.g. matrix porosity and permeability. However, the relationship between such properties and macroscopic solute transport is largely unknown. In this work, we focus on mass transport in a two-dimensional channel with permeable porous walls under fully developed laminar flow conditions. By means of perturbation theory and asymptotic analysis, we derive the set of upscaled equations describing mass transport in the coupled channel–porous-matrix system and an analytical expression relating the dispersion coefficient with the properties of themore » surface, namely porosity and permeability. Our analysis shows that their impact on the dispersion coefficient strongly depends on the magnitude of the Péclet number, i.e. on the interplay between diffusive and advective mass transport. Additionally, we demonstrate different scaling behaviours of the dispersion coefficient for thin or thick porous matrices. Our analysis shows the possibility of controlling the dispersion coefficient, i.e. transverse mixing, by either active (i.e. changing the operating conditions) or passive mechanisms (i.e. controlling matrix effective properties) for a given Péclet number. By elucidating the impact of matrix porosity and permeability on solute transport, our upscaled model lays the foundation for the improved understanding, control and design of microporous coatings with targeted macroscopic transport features.« less
NASA Astrophysics Data System (ADS)
Astashev, M. G.; Panfilov, D. I.; Seregin, D. A.; Chernyshev, A. A.
2017-12-01
The features of using the bridge voltage inverter in small-size stand-alone series controllers of power flows (PFSC) for overhead power transmission lines (OPTL) are examined. The basic processes in the converter during transient and steady state modes were analyzed. The basic relations for calculating the electromagnetic processes taking into account the energy loss in the circuit and without it were received. A simulation model is proposed of a converter that makes it possible to study its operating modes during the formation of reactance introduced into the overhead power transmission line. The results of simulation of operating modes of the PFSC are presented.
Chiaramello, M; Amiranoff, F; Riconda, C; Weber, S
2016-12-02
A detailed analysis is presented of the various stages of strong coupling Brillouin plasma amplification, emphasizing the importance of the chirp which can be of threefold origin: the intrinsic one driven by the amplification process, the one originating from the chirped-pulse-generated laser pulses, and the one associated with the plasma profile. Control of the overall chirp can optimize or quench the energy transfer. The time-dependent phase relation explains the energy flow direction during amplification and is characteristic for this strong coupling process. The study is also of potential importance to understand and maybe control cross-beam-energy transfer in inertial confinement fusion.
NASA Astrophysics Data System (ADS)
Ninanya, Hugo; Guiguer, Nilson; Vargas, Eurípedes A.; Nascimento, Gustavo; Araujo, Edmar; Cazarin, Caroline L.
2018-05-01
This work presents analysis of groundwater flow conditions and groundwater control measures for Vazante underground mine located in the state of Minas Gerais, Brazil. According to field observations, groundwater flow processes in this mine are highly influenced by the presence of karst features located in the near-surface terrain next to Santa Catarina River. The karstic features, such as caves, sinkholes, dolines and conduits, have direct contact with the aquifer and tend to increase water flow into the mine. These effects are more acute in areas under the influence of groundwater-level drawdown by pumping. Numerical analyses of this condition were carried out using the computer program FEFLOW. This program represents karstic features as one-dimensional discrete flow conduits inside a three-dimensional finite element structure representing the geologic medium following a combined discrete-continuum approach for representing the karst system. These features create preferential flow paths between the river and mine; their incorporation into the model is able to more realistically represent the hydrogeological environment of the mine surroundings. In order to mitigate the water-inflow problems, impermeabilization of the river through construction of a reinforced concrete channel was incorporated in the developed hydrogeological model. Different scenarios for channelization lengths for the most critical zones along the river were studied. Obtained results were able to compare effectiveness of different river channelization scenarios. It was also possible to determine whether the use of these impermeabilization measures would be able to reduce, in large part, the elevated costs of pumping inside the mine.
Control of unsteady separated flow associated with the dynamic stall of airfoils
NASA Technical Reports Server (NTRS)
Wilder, M. C.
1995-01-01
An effort to understand and control the unsteady separated flow associated with the dynamic stall of airfoils was funded for three years through the NASA cooperative agreement program. As part of this effort a substantial data base was compiled detailing the effects various parameters have on the development of the dynamic stall flow field. Parameters studied include Mach number, pitch rate, and pitch history, as well as Reynolds number (through two different model chord lengths) and the condition of the boundary layer at the leading edge of the airfoil (through application of surface roughness). It was found for free stream Mach numbers as low as 0.4 that a region of supersonic flow forms on the leading edge of the suction surface of the airfoil at moderate angles of attack. The shocks which form in this supersonic region induce boundary-layer separation and advance the dynamic stall process. Under such conditions a supercritical airfoil profile is called for to produce a flow field having a weaker leading-edge pressure gradient and no leading-edge shocks. An airfoil having an adaptive-geometry, or dynamically deformable leading edge (DDLE), is under development as a unique active flow-control device. The DDLE, formed of carbon-fiber composite and fiberglass, can be flexed between a NACA 0012 profile and a supercritical profile in a controllable fashion while the airfoil is executing an angle-of-attack pitch-up maneuver. The dynamic stall data were recorded using point diffraction interferometry (PDI), a noninvasive measurement technique. A new high-speed cinematography system was developed for recording interferometric images. The system is capable of phase-locking with the pitching airfoil motion for real-time documentation of the development of the dynamic stall flow field. Computer-aided image analysis algorithms were developed for fast and accurate reduction of the images, improving interpretation of the results.
NASA Astrophysics Data System (ADS)
Fosas de Pando, Miguel; Schmid, Peter J.; Sipp, Denis
2016-11-01
Nonlinear model reduction for large-scale flows is an essential component in many fluid applications such as flow control, optimization, parameter space exploration and statistical analysis. In this article, we generalize the POD-DEIM method, introduced by Chaturantabut & Sorensen [1], to address nonlocal nonlinearities in the equations without loss of performance or efficiency. The nonlinear terms are represented by nested DEIM-approximations using multiple expansion bases based on the Proper Orthogonal Decomposition. These extensions are imperative, for example, for applications of the POD-DEIM method to large-scale compressible flows. The efficient implementation of the presented model-reduction technique follows our earlier work [2] on linearized and adjoint analyses and takes advantage of the modular structure of our compressible flow solver. The efficacy of the nonlinear model-reduction technique is demonstrated to the flow around an airfoil and its acoustic footprint. We could obtain an accurate and robust low-dimensional model that captures the main features of the full flow.
Analytical studies on the instabilities of heterogeneous intelligent traffic flow
NASA Astrophysics Data System (ADS)
Ngoduy, D.
2013-10-01
It has been widely reported in literature that a small perturbation in traffic flow such as a sudden deceleration of a vehicle could lead to the formation of traffic jams without a clear bottleneck. These traffic jams are usually related to instabilities in traffic flow. The applications of intelligent traffic systems are a potential solution to reduce the amplitude or to eliminate the formation of such traffic instabilities. A lot of research has been conducted to theoretically study the effect of intelligent vehicles, for example adaptive cruise control vehicles, using either computer simulation or analytical method. However, most current analytical research has only applied to single class traffic flow. To this end, the main topic of this paper is to perform a linear stability analysis to find the stability threshold of heterogeneous traffic flow using microscopic models, particularly the effect of intelligent vehicles on heterogeneous (or multi-class) traffic flow instabilities. The analytical results will show how intelligent vehicle percentages affect the stability of multi-class traffic flow.
Design concept of a cryogenic distillation column cascade for a ITER scale fusion reactor
NASA Astrophysics Data System (ADS)
Yamanishi, Toshihiko; Enoeda, Mikio; Okuno, Kenji
1994-07-01
A column cascade has been proposed for the fuel cycle of a ITER scale fusion reactor. The proposed cascade consists of three columns and has significant features: either top or bottom product is prior to the other for each column; it is avoided to withdraw side streams as products or feeds of down stream columns; and there is no recycle steam between the columns. In addition, the product purity of the cascade can be maintained against the changes of flow rates and compositions of feed streams just by adjusting the top and bottom flow rates. The control system has been designed for each column in the cascade. A key component in the prior product stream was selected, and the analysis method of this key component was proposed. The designed control system never brings instability as long as the concentration of the key component is measured with negligible time lag. The time lag for the measurement considerably affects the stability of the control system. A significant conclusion by the simulation in this work is that permissible time for the measurement is about 0.5 hour to obtain stable control. Hence, the analysis system using the gas chromatography is valid for control of the columns.
Bioconvection in Second Grade Nanofluid Flow Containing Nanoparticles and Gyrotactic Microorganisms
NASA Astrophysics Data System (ADS)
Khan, Noor Saeed
2018-04-01
The bioconvection in steady second grade nanofluid thin film flow containing nanoparticles and gyrotactic microorganisms is considered using passively controlled nanofluid model boundary conditions. A real-life system evolves under the flow and various taxis. The study is initially proposed in the context of gyrotactic system, which is used as a key element for the description of complex bioconvection patterns and dynamics in such systems. The governing partial differential equations are transformed into a system of ordinary ones through the similarity variables and solved analytically via homotopy analysis method (HAM). The solution is expressed through graphs and illustrated which show the influences of all the parameters.
Viscous flow drag reduction; Symposium, Dallas, Tex., November 7, 8, 1979, Technical Papers
NASA Technical Reports Server (NTRS)
Hough, G. R.
1980-01-01
The symposium focused on laminar boundary layers, boundary layer stability analysis of a natural laminar flow glove on the F-111 TACT aircraft, drag reduction of an oscillating flat plate with an interface film, electromagnetic precipitation and ducting of particles in turbulent boundary layers, large eddy breakup scheme for turbulent viscous drag reduction, blowing and suction, polymer additives, and compliant surfaces. Topics included influence of environment in laminar boundary layer control, generation rate of turbulent patches in the laminar boundary layer of a submersible, drag reduction of small amplitude rigid surface waves, and hydrodynamic drag and surface deformations generated by liquid flows over flexible surfaces.
Bioconvection in Second Grade Nanofluid Flow Containing Nanoparticles and Gyrotactic Microorganisms
NASA Astrophysics Data System (ADS)
Khan, Noor Saeed
2018-06-01
The bioconvection in steady second grade nanofluid thin film flow containing nanoparticles and gyrotactic microorganisms is considered using passively controlled nanofluid model boundary conditions. A real-life system evolves under the flow and various taxis. The study is initially proposed in the context of gyrotactic system, which is used as a key element for the description of complex bioconvection patterns and dynamics in such systems. The governing partial differential equations are transformed into a system of ordinary ones through the similarity variables and solved analytically via homotopy analysis method (HAM). The solution is expressed through graphs and illustrated which show the influences of all the parameters.
Acoustically and Electrokinetically Driven Transport in Microfluidic Devices
NASA Astrophysics Data System (ADS)
Sayar, Ersin
Electrokinetically driven flows are widely employed as a primary method for liquid pumping in micro-electromechanical systems. Mixing of analytes and reagents is limited in microfluidic devices due to the low Reynolds number of the flows. Acoustic excitations have recently been suggested to promote mixing in the microscale flow systems. Electrokinetic flows through straight microchannels were investigated using the Poisson-Boltzmann and Nernst-Planck models. The acoustic wave/fluid flow interactions in a microchannel were investigated via the development of two and three-dimensional dynamic predictive models for flows with field couplings of the electrical, mechanical and fluid flow quantities. The effectiveness and applicability of electrokinetic augmentation in flexural plate wave micropumps for enhanced capabilities were explored. The proposed concept can be exploited to integrate micropumps into complex microfluidic chips improving the portability of micro-total-analysis systems along with the capabilities of actively controlling acoustics and electrokinetics for micro-mixer applications. Acoustically excited flows in microchannels consisting of flexural plate wave devices and thin film resonators were considered. Compressible flow fields were considered to accommodate the acoustic excitations produced by a vibrating wall. The velocity and pressure profiles for different parameters including frequency, channel height, wave amplitude and length were investigated. Coupled electrokinetics and acoustics cases were investigated while the electric field intensity of the electrokinetic body forces and actuation frequency of acoustic excitations were varied. Multifield analysis of a piezoelectrically actuated valveless micropump was also presented. The effect of voltage and frequency on membrane deflection and flow rate were investigated. Detailed fluid/solid deformation coupled simulations of piezoelectric valveless micropump have been conducted to predict the generated time averaged flow rates. Developed coupled solid and fluid mechanics models can be utilized to integrate flow-through sensors with microfluidic chips.
FLOW TESTING AND ANALYSIS OF THE FSP-1 EXPERIMENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hawkes, Grant L.; Jones, Warren F.; Marcum, Wade
The U.S. High Performance Research Reactor Conversions fuel development team is focused on developing and qualifying the uranium-molybdenum (U-Mo) alloy monolithic fuel to support conversion of domestic research reactors to low enriched uranium. Several previous irradiations have demonstrated the favorable behavior of the monolithic fuel. The Full Scale Plate 1 (FSP-1) fuel plate experiment will be irradiated in the northeast (NE) flux trap of the Advanced Test Reactor (ATR). This fueled experiment contains six aluminum-clad fuel plates consisting of monolithic U-Mo fuel meat. Flow testing experimentation and hydraulic analysis have been performed on the FSP-1 experiment to be irradiated inmore » the ATR at the Idaho National Laboratory (INL). A flow test experiment mockup of the FSP-1 experiment was completed at Oregon State University. Results of several flow test experiments are compared with analyses. This paper reports and shows hydraulic analyses are nearly identical to the flow test results. A water velocity of 14.0 meters per second is targeted between the fuel plates. Comparisons between FSP-1 measurements and this target will be discussed. This flow rate dominates the flow characteristics of the experiment and model. Separate branch flows have minimal effect on the overall experiment. A square flow orifice was placed to control the flowrate through the experiment. Four different orifices were tested. A flow versus delta P curve for each orifice is reported herein. Fuel plates with depleted uranium in the fuel meat zone were used in one of the flow tests. This test was performed to evaluate flow test vibration with actual fuel meat densities and reported herein. Fuel plate deformation tests were also performed and reported.« less
Novel Integrated Radial and Axial Magnetic Bearing
NASA Technical Reports Server (NTRS)
Blumenstock, Kenneth A.; Brown, Gary L.; Powers, Edward I. (Technical Monitor)
2000-01-01
Typically, fully active magnetically suspended systems require one axial and two radial magnetic bearings. Combining radial and axial functions into a single device allows for more compact and elegant packaging. Furthermore, in the case of high-speed devices such as energy storage flywheels, it is beneficial to minimize shaft length to keep rotor mode frequencies as high as possible. Attempts have been made to combine radial and axial functionality, but with certain drawbacks. One approach requires magnetic control flux to flow through a bias magnet reducing control effectiveness, thus resulting in increased resistive losses. This approach also requires axial force producing magnetic flux to flow in a direction into the rotor laminate that is undesirable for minimizing eddy-current losses resulting in rotational losses. Another approach applies a conical rotor shape to what otherwise would be a radial heteropolar magnetic bearing configuration. However, positional non-linear effects are introduced with this scheme and the same windings are used for bias, radial, and axial control adding complexity to the controller and electronics. For this approach, the amount of axial capability must be limited. It would be desirable for an integrated radial and axial magnetic bearing to have the following characteristics, separate inputs for radial and axial control for electronics and control simplicity, all magnetic control fluxes should only flow through their respective air gaps and should not flow through any bias magnets for minimal resistive losses, be of a homopolar design to minimize rotational losses, position related non-linear effects should be minimized, and dependent upon the design parameters, be able to achieve any radial/axial force or power ratio as desired. The integrated radial and axial magnetic bearing described in this paper exhibits all these characteristics. Magnetic circuit design, design equations, and analysis results will be presented.
A Unified Framework for Analyzing and Designing for Stationary Arterial Networks
DOT National Transportation Integrated Search
2017-05-17
This research aims to develop a unified theoretical and simulation framework for analyzing and designing signals for stationary arterial networks. Existing traffic flow models used in design and analysis of signal control strategies are either too si...
Flow Control Device Evaluation for an Internal Flow with an Adverse Pressure Gradient
NASA Technical Reports Server (NTRS)
Jenkins, Luther N.; Gorton, Susan Althoff; Anders, Scott G.
2002-01-01
The effectiveness of several active and passive devices to control flow in an adverse pressure gradient with secondary flows present was evaluated in the 15 Inch Low Speed Tunnel at NASA Langley Research Center. In this study, passive micro vortex generators, micro bumps, and piezoelectric synthetic jets were evaluated for their flow control characteristics using surface static pressures, flow visualization, and 3D Stereo Digital Particle Image Velocimetry. Data also were acquired for synthetic jet actuators in a zero flow environment. It was found that the micro vortex generator is very effective in controlling the flow environment for an adverse pressure gradient, even in the presence of secondary vortical flow. The mechanism by which the control is effected is a re-energization of the boundary layer through flow mixing. The piezoelectric synthetic jet actuators must have sufficient velocity output to produce strong longitudinal vortices if they are to be effective for flow control. The output of these devices in a laboratory or zero flow environment will be different than the output in a flow environment. In this investigation, the output was higher in the flow environment, but the stroke cycle in the flow did not indicate a positive inflow into the synthetic jet.
Non-invasive pulmonary blood flow analysis and blood pressure mapping derived from 4D flow MRI
NASA Astrophysics Data System (ADS)
Delles, Michael; Rengier, Fabian; Azad, Yoo-Jin; Bodenstedt, Sebastian; von Tengg-Kobligk, Hendrik; Ley, Sebastian; Unterhinninghofen, Roland; Kauczor, Hans-Ulrich; Dillmann, Rüdiger
2015-03-01
In diagnostics and therapy control of cardiovascular diseases, detailed knowledge about the patient-specific behavior of blood flow and pressure can be essential. The only method capable of measuring complete time-resolved three-dimensional vector fields of the blood flow velocities is velocity-encoded magnetic resonance imaging (MRI), often denoted as 4D flow MRI. Furthermore, relative pressure maps can be computed from this data source, as presented by different groups in recent years. Hence, analysis of blood flow and pressure using 4D flow MRI can be a valuable technique in management of cardiovascular diseases. In order to perform these tasks, all necessary steps in the corresponding process chain can be carried out in our in-house developed software framework MEDIFRAME. In this article, we apply MEDIFRAME for a study of hemodynamics in the pulmonary arteries of five healthy volunteers. The study included measuring vector fields of blood flow velocities by phase-contrast MRI and subsequently computing relative blood pressure maps. We visualized blood flow by streamline depictions and computed characteristic values for the left and the right pulmonary artery (LPA and RPA). In all volunteers, we observed a lower amount of blood flow in the LPA compared to the RPA. Furthermore, we visualized blood pressure maps using volume rendering and generated graphs of pressure differences between the LPA, the RPA and the main pulmonary artery. In most volunteers, blood pressure was increased near to the bifurcation and in the proximal LPA, leading to higher average pressure values in the LPA compared to the RPA.
The role of storm scale, position and movement in controlling urban flood response
NASA Astrophysics Data System (ADS)
ten Veldhuis, Marie-claire; Zhou, Zhengzheng; Yang, Long; Liu, Shuguang; Smith, James
2018-01-01
The impact of spatial and temporal variability of rainfall on hydrological response remains poorly understood, in particular in urban catchments due to their strong variability in land use, a high degree of imperviousness and the presence of stormwater infrastructure. In this study, we analyze the effect of storm scale, position and movement in relation to basin scale and flow-path network structure on urban hydrological response. A catalog of 279 peak events was extracted from a high-quality observational dataset covering 15 years of flow observations and radar rainfall data for five (semi)urbanized basins ranging from 7.0 to 111.1 km2 in size. Results showed that the largest peak flows in the event catalog were associated with storm core scales exceeding basin scale, for all except the largest basin. Spatial scale of flood-producing storm events in the smaller basins fell into two groups: storms of large spatial scales exceeding basin size or small, concentrated events, with storm core much smaller than basin size. For the majority of events, spatial rainfall variability was strongly smoothed by the flow-path network, increasingly so for larger basin size. Correlation analysis showed that position of the storm in relation to the flow-path network was significantly correlated with peak flow in the smallest and in the two more urbanized basins. Analysis of storm movement relative to the flow-path network showed that direction of storm movement, upstream or downstream relative to the flow-path network, had little influence on hydrological response. Slow-moving storms tend to be associated with higher peak flows and longer lag times. Unexpectedly, position of the storm relative to impervious cover within the basins had little effect on flow peaks. These findings show the importance of observation-based analysis in validating and improving our understanding of interactions between the spatial distribution of rainfall and catchment variability.
Geophysical Investigations at Hidden Dam, Raymond, California Flow Simulations
Minsley, Burke J.; Ikard, Scott
2010-01-01
Numerical flow modeling and analysis of observation-well data at Hidden Dam are carried out to supplement recent geophysical field investigations at the site (Minsley and others, 2010). This work also is complementary to earlier seepage-related studies at Hidden Dam documented by Cedergren (1980a, b). Known seepage areas on the northwest right abutment area of the downstream side of the dam was documented by Cedergren (1980a, b). Subsequent to the 1980 seepage study, a drainage blanket with a sub-drain system was installed to mitigate downstream seepage. Flow net analysis provided by Cedergren (1980a, b) suggests that the primary seepage mechanism involves flow through the dam foundation due to normal reservoir pool elevations, which results in upflow that intersects the ground surface in several areas on the downstream side of the dam. In addition to the reservoir pool elevations and downstream surface topography, flow is also controlled by the existing foundation geology as well as the presence or absence of a horizontal drain in the downstream portion of the dam. The current modeling study is aimed at quantifying how variability in dam and foundation hydrologic properties influences seepage as a function of reservoir stage. Flow modeling is implemented using the COMSOL Multiphysics software package, which solves the partially saturated flow equations in a two-dimensional (2D) cross-section of Hidden Dam that also incorporates true downstream topography. Use of the COMSOL software package provides a more quantitative approach than the flow net analysis by Cedergren (1980a, b), and allows for rapid evaluation of the influence of various parameters such as reservoir level, dam structure and geometry, and hydrogeologic properties of the dam and foundation materials. Historical observation-well data are used to help validate the flow simulations by comparing observed and predicted water levels for a range of reservoir elevations. The flow models are guided by, and discussed in the context of, the geophysical work (Minsley and others, 2010) where appropriate.
NASA Astrophysics Data System (ADS)
Rengers, F. K.; McGuire, L.; Coe, J. A.; Kean, J. W.; Baum, R. L.; Staley, D. M.; Godt, J.
2016-12-01
Within the critical zone there is a feedback between the state of soil and vegetation development, boundary conditions (e.g. topography, climate, hillslope aspect), and biogeochemical and geophysical process fluxes. Here we explore how one process—debris flows initiated by shallow landslides—is influenced by the critical zone development state and the imposed boundary conditions. In this study, we examine a rainstorm in September 2013 in the Colorado Front Range wherein 78% of 1138 debris flows were triggered on south-facing slopes. One hypothesis is that debris-flow initiation sites are controlled by long-term soil formation and bedrock weathering, which are aspect-dependent in the Front Range. A competing hypothesis is that debris flow initiation locations are controlled by present-day vegetation patterns within the critical zone. We tested these hypotheses with a regional investigation of the Green-Red Vegetation Index (GRVI), a metric used to identify the degree of vegetation cover. Although the majority of debris flows were observed on south-facing hillslopes, the GRVI analysis revealed that most debris-flow initiation locations had low tree density and high rainfall, regardless of hillslope aspect. We next numerically simulated soil pore pressure and slope stability using the September 2013 rainfall data at one site. Results suggest that spatial variations in soil depth and the relative extent of bedrock weathering on north- versus south-facing slopes are insufficient to explain the observed spatial variations in debris flow initiation. However, decreased debris flow initiation on north-facing slopes likely resulted from increased root reinforcement provided by trees on north-facing slopes. While the current vegetation regimes in the Colorado Front Range, and throughout much of the semi-arid southwestern U.S., are superimposed on a landscape where soil development and bedrock weathering (both of which affect slope stability) are responding to longer timescale processes, our analysis suggests landslide susceptibility was primarily governed by the local, geo-mechanical effects of vegetation during this extreme rainfall event.
NASA Astrophysics Data System (ADS)
Kohlhepp, Bernd; Lehmann, Robert; Seeber, Paul; Küsel, Kirsten; Trumbore, Susan E.; Totsche, Kai U.
2017-12-01
The quality of near-surface groundwater reservoirs is controlled, but also threatened, by manifold surface-subsurface interactions. Vulnerability studies typically evaluate the variable interplay of surface factors (land management, infiltration patterns) and subsurface factors (hydrostratigraphy, flow properties) in a thorough way, but disregard the resulting groundwater quality. Conversely, hydrogeochemical case studies that address the chemical evolution of groundwater often lack a comprehensive analysis of the structural buildup. In this study, we aim to reconstruct the actual spatial groundwater quality pattern from a synoptic analysis of the hydrostratigraphy, lithostratigraphy, pedology and land use in the Hainich Critical Zone Exploratory (Hainich CZE). This CZE represents a widely distributed yet scarcely described setting of thin-bedded mixed carbonate-siliciclastic strata in hillslope terrains. At the eastern Hainich low-mountain hillslope, bedrock is mainly formed by alternated marine sedimentary rocks of the Upper Muschelkalk (Middle Triassic) that partly host productive groundwater resources. Spatial patterns of the groundwater quality of a 5.4 km long well transect are derived by principal component analysis and hierarchical cluster analysis. Aquifer stratigraphy and geostructural links were deduced from lithological drill core analysis, mineralogical analysis, geophysical borehole logs and mapping data. Maps of preferential recharge zones and recharge potential were deduced from digital (soil) mapping, soil survey data and field measurements of soil hydraulic conductivities (Ks). By attributing spatially variable surface and subsurface conditions, we were able to reconstruct groundwater quality clusters that reflect the type of land management in their preferential recharge areas, aquifer hydraulic conditions and cross-formational exchange via caprock sinkholes or ascending flow. Generally, the aquifer configuration (spatial arrangement of strata, valley incision/outcrops) and related geostructural links (enhanced recharge areas, karst phenomena) control the role of surface factors (input quality and locations) vs. subsurface factors (water-rock interaction, cross-formational flow) for groundwater quality in the multi-layered aquifer system. Our investigation reveals general properties of alternating sequences in hillslope terrains that are prone to forming multi-layered aquifer systems. This synoptic analysis is fundamental and indispensable for a mechanistic understanding of ecological functioning, sustainable resource management and protection.
NASA Technical Reports Server (NTRS)
Li, Z. K.
1985-01-01
A specialized program was developed for flow cytometric list-mode data using an heirarchical tree method for identifying and enumerating individual subpopulations, the method of principal components for a two-dimensional display of 6-parameter data array, and a standard sorting algorithm for characterizing subpopulations. The program was tested against a published data set subjected to cluster analysis and experimental data sets from controlled flow cytometry experiments using a Coulter Electronics EPICS V Cell Sorter. A version of the program in compiled BASIC is usable on a 16-bit microcomputer with the MS-DOS operating system. It is specialized for 6 parameters and up to 20,000 cells. Its two-dimensional display of Euclidean distances reveals clusters clearly, as does its 1-dimensional display. The identified subpopulations can, in suitable experiments, be related to functional subpopulations of cells.
Computational analysis of the SSME fuel preburner flow
NASA Technical Reports Server (NTRS)
Wang, T. S.; Farmer, R. C.
1986-01-01
A computational fluid dynamics model which simulates the steady state operation of the SSME fuel preburner is developed. Specifically, the model will be used to quantify the flow factors which cause local hot spots in the fuel preburner in order to recommend experiments whereby the control of undesirable flow features can be demonstrated. The results of a two year effort to model the preburner are presented. In this effort, investigating the fuel preburner flowfield, the appropriate transport equations were numerically solved for both an axisymmetric and a three-dimensional configuration. Continuum's VAST (Variational Solution of the Transport equations) code, in conjunction with the CM-1000 Engineering Analysis Workstation and the NASA/Ames CYBER 205, was used to perform the required calculations. It is concluded that the preburner operational anomalies are not due to steady state phenomena and must, therefore, be related to transient operational procedures.
Le Heron, Campbell J; Wright, Sarah L; Melzer, Tracy R; Myall, Daniel J; MacAskill, Michael R; Livingston, Leslie; Keenan, Ross J; Watts, Richard; Dalrymple-Alford, John C; Anderson, Tim J
2014-06-01
Emerging evidence suggests that Alzheimer's disease (AD) and Parkinson's disease dementia (PDD) share neurodegenerative mechanisms. We sought to directly compare cerebral perfusion in these two conditions using arterial spin labeling magnetic resonance imaging (ASL-MRI). In total, 17 AD, 20 PDD, and 37 matched healthy controls completed ASL and structural MRI, and comprehensive neuropsychological testing. Alzheimer's disease and PDD perfusion was analyzed by whole-brain voxel-based analysis (to assess absolute blood flow), a priori specified region of interest analysis, and principal component analysis (to generate a network differentiating the two groups). Corrections were made for cerebral atrophy, age, sex, education, and MRI scanner software version. Analysis of absolute blood flow showed no significant differences between AD and PDD. Comparing each group with controls revealed an overlapping, posterior pattern of hypoperfusion, including posterior cingulate gyrus, precuneus, and occipital regions. The perfusion network that differentiated AD and PDD groups identified relative differences in medial temporal lobes (AD
Flow-mediated dilation in athletes: influence of aging.
Montero, David; Padilla, Jaume; Diaz-Cañestro, Candela; Muris, Dennis M J; Pyke, Kyra E; Obert, Philippe; Walther, Guillaume
2014-11-01
Controversy exists on whether endothelial function is enhanced in athletes. We sought to systematically review the literature and determine whether endothelial function, as assessed by flow-mediated dilation (FMD), is greater in athletes across all ages relative to that in their age-matched counterparts. We conducted a systematic search on MEDLINE, Cochrane, Scopus, and Web of Science since their inceptions until July 2013 for articles evaluating FMD in athletes. A meta-analysis was performed to compare the standardized mean difference (SMD) in FMD of the brachial artery between athletes and age-matched control subjects. Subgroup analyses and meta-regression were used to identify sources of heterogeneity. Twenty-one articles were included in this analysis, comprising 530 athletes (452 endurance trained, 49 strength trained, and 29 endurance and strength trained) and 376 control subjects. After data pooling, FMD was higher in athletes than that in control groups (SMD, 0.48; P = 0.008). In subgroup analyses, young athletes (<40 yr) presented increased baseline brachial artery diameter (mean difference, 0.40 mm; P < 0.00001) and similar FMD (SMD, 0.27; P = 0.22) compared with those in controls. In contrast, master athletes (>;50 yr) showed similar baseline brachial artery diameter (mean difference, 0.04 mm; P = 0.69) and increased FMD (SMD, 0.99; P = 0.0005) compared with those in controls. The current meta-analysis provides evidence that master athletes but not young athletes exhibit greater FMD compared with that in age-matched healthy controls, thus suggesting that the association between high levels of exercise training and increased FMD is age dependent.
Zheng, Xinqian; Zhang, Yangjun; Yang, Mingyang; Bamba, Takahiro; Tamaki, Hideaki
2013-03-01
This is part II of a two-part paper involving the development of an asymmetrical flow control method to widen the operating range of a turbocharger centrifugal compressor with high-pressure ratio. A nonaxisymmetrical self-recirculation casing treatment (SRCT) as an instance of asymmetrical flow control method is presented. Experimental and numerical methods were used to investigate the impact of nonaxisymmetrical SRCT on the surge point of the centrifugal compressor. First, the influence of the geometry of a symmetric SRCT on the compressor performance was studied by means of numerical simulation. The key parameter of the SRCT was found to be the distance from the main blade leading edge to the rear groove (S r ). Next, several arrangements of a nonaxisymmetrical SRCT were designed, based on flow analysis presented in part I. Then, a series of experiments were carried out to analyze the influence of nonaxisymmetrical SRCT on the compressor performance. Results show that the nonaxisymmetrical SRCT has a certain influence on the performance and has a larger potential for stability improvement than the traditional symmetric SRCT. For the investigated SRCT, the surge flow rate of the compressor with the nonaxisymmetrical SRCTs is about 10% lower than that of the compressor with symmetric SRCT. The largest surge margin (smallest surge flow rate) can be obtained when the phase of the largest S r is coincident with the phase of the minimum static pressure in the vicinity of the leading edge of the splitter blades.
Optimization of life support systems and their systems reliability
NASA Technical Reports Server (NTRS)
Fan, L. T.; Hwang, C. L.; Erickson, L. E.
1971-01-01
The identification, analysis, and optimization of life support systems and subsystems have been investigated. For each system or subsystem that has been considered, the procedure involves the establishment of a set of system equations (or mathematical model) based on theory and experimental evidences; the analysis and simulation of the model; the optimization of the operation, control, and reliability; analysis of sensitivity of the system based on the model; and, if possible, experimental verification of the theoretical and computational results. Research activities include: (1) modeling of air flow in a confined space; (2) review of several different gas-liquid contactors utilizing centrifugal force: (3) review of carbon dioxide reduction contactors in space vehicles and other enclosed structures: (4) application of modern optimal control theory to environmental control of confined spaces; (5) optimal control of class of nonlinear diffusional distributed parameter systems: (6) optimization of system reliability of life support systems and sub-systems: (7) modeling, simulation and optimal control of the human thermal system: and (8) analysis and optimization of the water-vapor eletrolysis cell.
NASA Astrophysics Data System (ADS)
Liu, Jianping; Xian, Benzhong; Wang, Junhui; Ji, Youliang; Lu, Zhiyong; Liu, Saijun
2017-12-01
The sedimentary architectures of submarine/sublacustrine fans are controlled by sedimentary processes, geomorphology and sediment composition in sediment gravity flows. To advance understanding of sedimentary architecture of debris fans formed predominantly by debris flows in deep-water environments, a sub-lacustrine fan (Y11 fan) within a lacustrine succession has been identified and studied through the integration of core data, well logging data and 3D seismic data in the Eocene Dongying Depression, Bohai Bay Basin, east China. Six types of resedimented lithofacies can be recognized, which are further grouped into five broad lithofacies associations. Quantification of gravity flow processes on the Y11 fan is suggested by quantitative lithofacies analysis, which demonstrates that the fan is dominated by debris flows, while turbidity currents and sandy slumps are less important. The distribution, geometry and sedimentary architecture are documented using well data and 3D seismic data. A well-developed depositional lobe with a high aspect ratio is identified based on a sandstone isopach map. Canyons and/or channels are absent, which is probably due to the unsteady sediment supply from delta-front collapse. Distributary tongue-shaped debris flow deposits can be observed at different stages of fan growth, suggesting a lobe constructed by debrite tongue complexes. Within each stage of the tongue complexes, architectural elements are interpreted by wireline log motifs showing amalgamated debrite tongues, which constitute the primary fan elements. Based on lateral lithofacies distribution and vertical sequence analysis, it is proposed that lakefloor erosion, entrainment and dilution in the flow direction lead to an organized distribution of sandy debrites, muddy debrites and turbidites on individual debrite tongues. Plastic rheology of debris flows combined with fault-related topography are considered the major factors that control sediment distribution and fan architecture. An important implication of this study is that a deep-water depositional model for debrite-dominated systems was proposed, which may be applicable to other similar deep-water environments.
NASA Astrophysics Data System (ADS)
Bushman, Michelle; Nelson, Stephen T.; Tingey, David; Eggett, Dennis
2010-05-01
SummaryAsh Meadows, Nevada, USA is a site of major groundwater discharge (˜38,000 L/min) in the arid Mojave Desert, and hosts a number of endemic and threatened wetland species. In addition to these resources, Ash Meadows may also represent the future discharge location of radionuclide-laden waters from nuclear weapons testing at the Nevada Test Site. More importantly, however, Ash Meadows provides the opportunity to understand the controls on water transfer between basins through fractured bedrock. 4000+ solute analyses were assembled from the literature into a single database. The data were screened for spatial distribution, completeness, charge balance, and elevated temperatures (⩾20 °C and within regional flow systems), with 246 candidate up-gradient water remaining distributed among six potential source areas in addition to and Ash Meadows itself. These potential sources include both carbonate, volcanic and perhaps valley-fill aquifer systems. These waters were characterized by cluster analysis in order to sort similar waters in an objective fashion into potential flow paths and to establish representative endmember waters for inverse geochemical models and other modes of analysis. Isotopic tracers, both conservative and those reflecting water-rock interaction, all suggest that waters at Ash Meadows are derived by southward flow from volcanic terranes, parallel to the preferred permeability structure induced by active regional east-west extension. Solute balances support this conclusion. However, this runs counter to the prevailing model that waters at Ash Meadows are derived from easterly and northeasterly flows from the Spring Mountains and Pahranagat Valley areas by interbasin flow through a continuous fractured carbonate aquifer. This work suggests that carbonate aquifer systems in extended terranes are more compartmentalized than previously appreciated and that anisotropy in fracture permeability is key to compartmentalization and the control of flow directions.
1951-02-01
the pressure switch (16) is activated. This causes the-electrical circuit to open valve (11) and start the igniter (17). The nitrogen pressure...activates the pressure switch (11) at approximately 7 psi before it flows through the Injector (9) into the chamber. ATI-85«’ - -A 11...precluded. Accordingly, pressure switch (11) is inserted in the system in parallel (electrically) with the flow indicator (17), and the circuit may
2013-04-08
estimator will relate an array of surface mounted sensor signals, de- fined as p( xs , t), to the flow state which is modeled by the time coefficients of a POD...layer growth, separation points, etc.) are chosen and defined as ( xs ) within the numeric simulation. A surface POD analysis, p( xs , t)≃ k ∑ p=1 asp(t)ϕsp... xs ), (30) yields surface POD modes φ sp( xs ). The resulting locations of the maxima and minima of the sur- face modes show where the largest