NASA Astrophysics Data System (ADS)
Zhou, Zhenming; Li, Zandong
2011-08-01
Primordial germ cells (PGCs), precursors of germline cells, display a variety of antigens during their migration to target gonads. Here, we used silk chicken offspring ( Gallus gallus domesticus) embryos subjected to space microgravity to investigate the influence of microgravity on PGCs. The ShenZhou-3 unmanned spaceship carried nine fertilized silk chicken eggs, named the flight group, returned to Earth after 7 days space flight. And the control group has the same clan with the flight group. PGCs from flight and control group silk chicken offspring embryos were examined during migration by using two antibodies (2C9 and anti-SSEA-1), in combination with the horseradish peroxidase detection system, and using periodic acid-Schiff's solution (PAS) reaction. After incubation for about 30 h, SSEA-1 and 2C9 positive cells were detected in the germinal crescent of flight and control group silk chicken offspring embryos. After incubation of eggs for 2-2.5 days, SSEA-1 and 2C9 positive cells were detected in embryonic blood vessels of flight and control group silk chicken offspring embryos. After incubation of eggs for 5.5 days, PGCs in the dorsal mesentery and gonad could also be identified in flight and control group silk chicken offspring embryos by using SSEA-1 and 2C9 antibodies. Based on location and PAS staining, these cells were identified as PGCs. Meanwhile, at the stage of PGCs migration and then becoming established in the germinal ridges, no difference in SSEA-1 or 2C9 staining was detected between female and male PGCs in flight and control group silk chicken offspring embryos. Although there were differences in the profiles of PGC concentration between male and female embryos during the special circulating stage, changing profile of PGCs concentration was similar in same sex between flight and control group offspring embryos. We concluded that there is little effect on PGCs in offspring embryos of microgravity-treated chicken and that PGC development appears to be normal.
Controlling the cell adhesion property of silk films by graft polymerization.
Dhyani, Vartika; Singh, Neetu
2014-04-09
We report here a graft polymerization method to improve the cell adhesion property of Bombyx mori silk fibroin films. B. mori silk has evolved as a promising material for tissue engineering because of its biocompatibility and biodegradability. However, silk's hydrophobic character makes cell adhesion and proliferation difficult. Also, the lack of sufficient reactive amino acid residues makes biofunctionalization via chemical modification challenging. Our study describes a simple method that provides increased chemical handles for tuning of the surface chemistry of regenerated silk films (SFs), thus allowing manipulation of their bioactivity. By grafting pAAc and pHEMA via plasma etching, we have increased carboxylic acid and hydroxyl groups on silk, respectively. These modifications allowed us to tune the hydrophilicity of SFs and provide functional groups for bioconjugation. Our strategy also allowed us to develop silk-based surface coatings, where spatial control over cell adhesion can be achieved. This control over cell adhesion in a particular region of the SFs is difficult to obtain via existing methods of modifying the silk fibroin instead of the SF surface. Thus, our strategy will be a valuable addition to the toolkit of biofunctionalization for enhancing SFs' tissue engineering applications.
Chung, Yeun Goo; Tu, Duong; Franck, Debra; Gil, Eun Seok; Algarrahi, Khalid; Adam, Rosalyn M; Kaplan, David L; Estrada, Carlos R; Mauney, Joshua R
2014-01-01
Acellular scaffolds derived from Bombyx mori silk fibroin were investigated for their ability to support functional tissue regeneration in a rabbit model of urethra repair. A bi-layer silk fibroin matrix was fabricated by a solvent-casting/salt leaching process in combination with silk fibroin film casting to generate porous foams buttressed by homogeneous silk fibroin films. Ventral onlay urethroplasty was performed with silk fibroin grafts (Group 1, N = 4) (Width × Length, 1 × 2 cm(2)) in adult male rabbits for 3 m of implantation. Parallel control groups consisted of animals receiving small intestinal submucosa (SIS) implants (Group 2, N = 4) or urethrotomy alone (Group 3, N = 3). Animals in all groups exhibited 100% survival prior to scheduled euthanasia and achieved voluntary voiding following 7 d of initial catheterization. Retrograde urethrography of each implant group at 3 m post-op revealed wide urethral calibers and preservation of organ continuity similar to pre-operative and urethrotomy controls with no evidence of contrast extravasation, strictures, fistulas, or stone formation. Histological (hematoxylin and eosin and Masson's trichrome), immunohistochemical, and histomorphometric analyses demonstrated that both silk fibroin and SIS scaffolds promoted similar extents of smooth muscle and epithelial tissue regeneration throughout the original defect sites with prominent contractile protein (α-smooth muscle actin and SM22α) and cytokeratin expression, respectively. De novo innervation and vascularization were also evident in all regenerated tissues indicated by synaptophysin-positive neuronal cells and vessels lined with CD31 expressing endothelial cells. Following 3 m post-op, minimal acute inflammatory reactions were elicited by silk fibroin scaffolds characterized by the presence of eosinophil granulocytes while SIS matrices promoted chronic inflammatory responses indicated by mobilization of mononuclear cell infiltrates. The results of this study demonstrate that bi-layer silk fibroin scaffolds represent promising biomaterials for onlay urethroplasty, capable of promoting similar degrees of tissue regeneration in comparison to conventional SIS scaffolds, but with reduced immunogenicity.
Franck, Debra; Gil, Eun Seok; Algarrahi, Khalid; Adam, Rosalyn M.; Kaplan, David L.; Estrada Jr., Carlos R.; Mauney, Joshua R.
2014-01-01
Acellular scaffolds derived from Bombyx mori silk fibroin were investigated for their ability to support functional tissue regeneration in a rabbit model of urethra repair. A bi-layer silk fibroin matrix was fabricated by a solvent-casting/salt leaching process in combination with silk fibroin film casting to generate porous foams buttressed by homogeneous silk fibroin films. Ventral onlay urethroplasty was performed with silk fibroin grafts (Group 1, N = 4) (Width×Length, 1×2 cm2) in adult male rabbits for 3 m of implantation. Parallel control groups consisted of animals receiving small intestinal submucosa (SIS) implants (Group 2, N = 4) or urethrotomy alone (Group 3, N = 3). Animals in all groups exhibited 100% survival prior to scheduled euthanasia and achieved voluntary voiding following 7 d of initial catheterization. Retrograde urethrography of each implant group at 3 m post-op revealed wide urethral calibers and preservation of organ continuity similar to pre-operative and urethrotomy controls with no evidence of contrast extravasation, strictures, fistulas, or stone formation. Histological (hematoxylin and eosin and Masson's trichrome), immunohistochemical, and histomorphometric analyses demonstrated that both silk fibroin and SIS scaffolds promoted similar extents of smooth muscle and epithelial tissue regeneration throughout the original defect sites with prominent contractile protein (α-smooth muscle actin and SM22α) and cytokeratin expression, respectively. De novo innervation and vascularization were also evident in all regenerated tissues indicated by synaptophysin-positive neuronal cells and vessels lined with CD31 expressing endothelial cells. Following 3 m post-op, minimal acute inflammatory reactions were elicited by silk fibroin scaffolds characterized by the presence of eosinophil granulocytes while SIS matrices promoted chronic inflammatory responses indicated by mobilization of mononuclear cell infiltrates. The results of this study demonstrate that bi-layer silk fibroin scaffolds represent promising biomaterials for onlay urethroplasty, capable of promoting similar degrees of tissue regeneration in comparison to conventional SIS scaffolds, but with reduced immunogenicity. PMID:24632740
The performance of silk scaffolds in a rat model of augmentation cystoplasty.
Seth, Abhishek; Chung, Yeun Goo; Gil, Eun Seok; Tu, Duong; Franck, Debra; Di Vizio, Dolores; Adam, Rosalyn M; Kaplan, David L; Estrada, Carlos R; Mauney, Joshua R
2013-07-01
The diverse processing plasticity of silk-based biomaterials offers a versatile platform for understanding the impact of structural and mechanical matrix properties on bladder regenerative processes. Three distinct groups of 3-D matrices were fabricated from aqueous solutions of Bombyx mori silk fibroin either by a gel spinning technique (GS1 and GS2 groups) or a solvent-casting/salt-leaching method in combination with silk film casting (FF group). SEM analyses revealed that GS1 matrices consisted of smooth, compact multi-laminates of parallel-oriented silk fibers while GS2 scaffolds were composed of porous (pore size range, 5-50 μm) lamellar-like sheets buttressed by a dense outer layer. Bi-layer FF scaffolds were comprised of porous foams (pore size, ~400 μm) fused on their external face with a homogenous, nonporous silk film. Silk groups and small intestinal submucosa (SIS) matrices were evaluated in a rat model of augmentation cystoplasty for 10 weeks of implantation and compared to cystotomy controls. Gross tissue evaluations revealed the presence of intra-luminal stones in all experimental groups. The incidence and size of urinary calculi was the highest in animals implanted with gel spun silk matrices and SIS with frequencies ≥57% and stone diameters of 3-4 mm. In contrast, rats augmented with FF scaffolds displayed substantially lower rates (20%) and stone size (2 mm), similar to the levels observed in controls (13%, 2 mm). Histological (hematoxylin and eosin, Masson's trichrome) and immunohistochemical (IHC) analyses showed comparable extents of smooth muscle regeneration and contractile protein (α-smooth muscle actin and SM22α) expression within defect sites supported by all matrix groups similar to controls. Parallel evaluations demonstrated the formation of a transitional, multi-layered urothelium with prominent uroplakin and p63 protein expression in all experimental groups. De novo innervation and vascularization processes were evident in all regenerated tissues indicated by Fox3-positive neuronal cells and vessels lined with CD31 expressing endothelial cells. In comparison to other biomaterial groups, cystometric analyses at 10 weeks post-op revealed that animals implanted with the FF matrix configuration displayed superior urodynamic characteristics including compliance, functional capacity, as well as spontaneous non voiding contractions consistent with control levels. Our data demonstrate that variations in scaffold processing techniques can influence the in vivo functional performance of silk matrices in bladder reconstructive procedures. Copyright © 2013 Elsevier Ltd. All rights reserved.
Wen, Xianchun; Yue, Liling
2015-01-01
In prevention stage, comparing with normal control group, triglycerides, blood sugar (BG), 24-hour urinary protein and cholesterol (CHO) were higher in T2DM group, but weight and urea nitrogen (BUN) was less in it. 24-hour urinary protein and cholesterol (CHO) were higher in T2DM group than the intervention group. 24-hour urinary protein and BG in the intervention group were higher than normal control group, but BUN is less than normal control group; In the intervention group the weight of kidney and weight of rat were also higher than T2DM group, but CHO and 24-hour urinary protein were less than T2DM group. The expression of TGF-β1 in T2DM group were more than the other groups. In treatment stage, serum creatinine (Cr), weight, BG and CHO, TGand 24-hour urinary protein quantitative were significantly higher in the DN rats than those in the normal control rats (P>0.05). The expression level of TGF-β1 and triglyceride level in the corn silk dihydroxycorn silk3 treated group were obviously lower than those in the DN rats.
Li, Shi-Long; Liu, Yi; Hui, Ling
2015-12-01
We evaluated the use of a combination of human insulin gene-modified umbilical cord mesenchymal stromal cells (hUMSCs) with silk fibroin 3D scaffolds for adipose tissue engineering. In this study hUMSCs were isolated and cultured. HUMSCs infected with Ade-insulin-EGFP were seeded in fibroin 3D scaffolds with uniform 50-60 µm pore size. Silk fibroin scaffolds with untransfected hUMSCs were used as control. They were cultured for 4 days in adipogenic medium and transplanted under the dorsal skins of female Wistar rats after the hUMSCs had been labelled with chloromethylbenzamido-1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (CM-Dil). Macroscopical impression, fluorescence observation, histology and SEM were used for assessment after transplantation at 8 and 12 weeks. Macroscopically, newly formed adipose tissue was observed in the experimental group and control group after 8 and 12 weeks. Fluorescence observation supported that the formed adipose tissue originated from seeded hUMSCs rather than from possible infiltrating perivascular tissue. Oil red O staining of newly formed tissue showed that there was substantially more tissue regeneration in the experimental group than in the control group. SEM showed that experimental group cells had more fat-like cells, whose volume was larger than that of the control group, and degradation of the silk fibroin scaffold was greater under SEM observation. This study provides significant evidence that hUMSCs transfected by adenovirus vector have good compatibility with silk fibroin scaffold, and adenoviral transfection of the human insulin gene can be used for the construction of tissue-engineered adipose. Copyright © 2013 John Wiley & Sons, Ltd.
Protective effect of silk fibroin in burn injury in rat model.
Aykac, Asli; Karanlik, Buse; Sehirli, Ahmet Ozer
2018-01-30
Activation of pro-inflamatuar pathways play major role in formation of major complications as a result of burns. This study was planned to investigate the protective effect of Silk Fibroin in lung injury caused by burn in the experimental rat model. After rinsing the skin of rats under ether anesthesia, the exposed back region, covers 30% of the total body, was kept in the 90°C water bath for 10s. The control rats were kept in the 25°C water bath for 10s. Immediately after burning process, silk fibroin was administered orally at a dose of 600mg/kg. After 24h following burning from all groups the levels of TNF-α, IL-1β in blood samples and the MDA, GSH and the activity of MPO were determined from taken lung tissues. Moreover, the expression of Bcl-2/Bax, Caspase-3 and Caspase-9 were determined. Significant increase in TNF-α, IL-1β, Casp-3 and Casp-9 levels were observed in the Silk Fibroin-treated burn group (p<0.05) whereas for ratio of Bcl-2/Bax, a significant reduction was observed compared to control group (p<0.05). Increased levels of TNF-α, IL-1β, Caspase-3 and Caspase-9 in Silk Fibroin-treated burn groups were found to be reversed. Silk fibroin can be an effective biomaterial in diminishing burn injury in tissue and apoptosis. Copyright © 2017 Elsevier B.V. All rights reserved.
Tu, Duong D; Chung, Yeun Goo; Gil, Eun Seok; Seth, Abhishek; Franck, Debra; Cristofaro, Vivian; Sullivan, Maryrose P; Di Vizio, Dolores; Gomez, Pablo; Adam, Rosalyn M; Kaplan, David L; Estrada, Carlos R; Mauney, Joshua R
2013-11-01
Acellular scaffolds derived from Bombyx mori silk fibroin were investigated for their ability to support functional tissue regeneration in a porcine model of augmentation cystoplasty. Two bi-layer matrix configurations were fabricated by solvent-casting/salt leaching either alone (Group 1) or in combination with silk film casting (Group 2) to yield porous foams buttressed by heterogeneous surface pore occlusions or homogenous silk films, respectively. Bladder augmentation was performed with each scaffold group (6 × 6 cm(2)) in juvenile Yorkshire swine for 3 m of implantation. Augmented animals exhibited high rates of survival (Group 1: 5/6, 83%; Group 2: 4/4, 100%) and voluntary voiding over the course of the study period. Urodynamic evaluations demonstrated mean increases in bladder capacity over pre-operative levels (Group 1: 277%; Group 2: 153%) which exceeded nonsurgical control gains (144%) encountered due to animal growth.In addition, animals augmented with both matrix configurations displayed increases in bladder compliance over pre-operative levels(Group 1: 357%; Group 2: 338%) similar to growth-related elevations observed in non-surgical controls (354%) [corrected]. Gross tissue evaluations revealed that both matrix configurations supported extensive de novo tissue formation throughout the entire original implantation site which exhibited ultimate tensile strength similar to nonsurgical counterparts. Histological and immunohistochemical analyses showed that both implant groups promoted comparable extents of smooth muscle regeneration and contractile protein (α-smooth muscle actin and SM22α) expression within defect sites similar to controls. Parallel evaluations demonstrated the formation of a transitional, multi-layered urothelium with prominent cytokeratin, uroplakin, and p63 protein expression in both matrix groups. De novo innervation and vascularization processes were evident in all regenerated tissues indicated by synaptophysin-positive neuronal cells and vessels lined with CD31 expressing endothelial cells. Ex vivo organ bath studies demonstrated that regenerated tissues supported by both silk matrices displayed contractile responses to carbachol, α,β-methylene-ATP, KCl, and electrical field stimulation similar to controls. Our data detail the ability of acellular silk scaffolds to support regeneration of innervated, vascularized smooth muscle and urothelial tissues within 3 m with structural, mechanical, and functional properties comparable to native tissue in a porcine model of bladder repair. © 2013 Elsevier Ltd. All rights reserved.
Metal nanoparticles triggered persistent negative photoconductivity in silk protein hydrogels
NASA Astrophysics Data System (ADS)
Gogurla, Narendar; Sinha, Arun K.; Naskar, Deboki; Kundu, Subhas C.; Ray, Samit K.
2016-03-01
Silk protein is a natural biopolymer with intriguing properties, which are attractive for next generation bio-integrated electronic and photonic devices. Here, we demonstrate the negative photoconductive response of Bombyx mori silk protein fibroin hydrogels, triggered by Au nanoparticles. The room temperature electrical conductivity of Au-silk hydrogels is found to be enhanced with the incorporation of Au nanoparticles over the control sample, due to the increased charge transporting networks within the hydrogel. Au-silk lateral photoconductor devices show a unique negative photoconductive response under an illumination of 325 nm, with excitation energy higher than the characteristic metal plasmon resonance band. The enhanced photoconductance yield in the hydrogels over the silk protein is attributed to the photo-oxidation of amino groups in the β-pleated sheets of the silk around the Au nanoparticles followed by the breaking of charge transport networks. The Au-silk nanocomposite does not show any photoresponse under visible illumination because of the localization of excited charges in Au nanoparticles. The negative photoconductive response of hybrid Au-silk under UV illumination may pave the way towards the utilization of silk for future bio-photonic devices using metal nanoparticle platforms.
Neural Responses to Electrical Stimulation on Patterned Silk Films
Hronik-Tupaj, Marie; Raja, Waseem Khan; Tang-Schomer, Min; Omenetto, Fiorenzo G.; Kaplan, David L.
2013-01-01
Peripheral nerve injury is a critical issue for trauma patients. Following injury, incomplete axon regeneration or misguided axon innervation into tissue will result in loss of sensory and motor functions. The objective of this study was to examine axon outgrowth and axon alignment in response to surface patterning and electrical stimulation. To accomplish our objective, metal electrodes with dimensions of 1.5 mm × 4 cm, were sputter coated onto micropatterned silk protein films, with surface grooves 3.5 μm wide × 500 nm deep. P19 neurons were seeded on the patterned electronic silk films and stimulated at 120 mV, 1 kHz, for 45 minutes each day for 7 days. Responses were compared to neurons on flat electronic silk films, patterned silk films without stimulation, and flat silk films without stimulation. Significant alignment was found on the patterned film groups compared to the flat film groups. Axon outgrowth was greater (p < 0.05) on electronic films on day 5 and day 7 compared to the unstimulated groups. In conclusion, electrical stimulation, at 120 mV, 1 kHz, for 45 minutes daily, in addition to surface patterning, of 3.5 μm wide × 500 nm deep grooves, offered control of nerve axon outgrowth and alignment. PMID:23401351
Bi, Fanggang; Shi, Zhongli; Liu, An; Guo, Peng; Yan, Shigui
2015-01-01
The objective of the present study was to perform an in vivo assessment of a novel silk-collagen scaffold for anterior cruciate ligament (ACL) reconstruction. First, a silk-collagen scaffold was fabricated by combining sericin-extracted knitted silk fibroin mesh and type I collagen to mimic the components of the ligament. Scaffolds were electron-beam sterilized and rolled up to replace the ACL in 20 rabbits in the scaffold group, and autologous semitendinosus tendons were used to reconstruct the ACL in the autograft control group. At 4 and 16 weeks after surgery, grafts were retrieved and analyzed for neoligament regeneration and tendon-bone healing. To evaluate neoligament regeneration, H&E and immunohistochemical staining was performed, and to assess tendon-bone healing, micro-CT, biomechanical test, H&E and Russell-Movat pentachrome staining were performed. Cell infiltration increased over time in the scaffold group, and abundant fibroblast-like cells were found in the core of the scaffold graft at 16 weeks postoperatively. Tenascin-C was strongly positive in newly regenerated tissue at 4 and 16 weeks postoperatively in the scaffold group, similar to observations in the autograft group. Compared with the autograft group, tendon-bone healing was better in the scaffold group with trabecular bone growth into the scaffold. The results indicate that the silk-collagen scaffold has considerable potential for clinical application. PMID:25938408
Acute and Subacute Toxicity Evaluation of Corn Silk Extract
Ha, Ae Wha; Kang, Hyeon Jung; Kim, Sun Lim; Kim, Myung Hwan
2018-01-01
Many studies have reported therapeutic efficacy of corn silk extract. However, research on its toxicity and safe dose range is limited. Thus, the objective of this study was to determine the acute and subacute toxicity of corn silk extract in ICR mice. To determine acute toxicity, corn silk extract containing high levels of maysin was orally administered to mice at a dose of 0 or 2,000 mg/kg. Clinical symptoms, mortality, and body weight changes were recorded for 14 days. To determine subacute toxicity, corn silk extract was orally administered to mice over a 4-week period, and then body weight, water and food consumption, and organ weight were determined. In addition, urine and serum analyses were performed. In the acute toxicity study, no death or abnormal symptoms was observed in all treatment groups during the study period. Body weights did not show any significant change compared to those of the control group. Lethal dose of corn silk extract was estimated to be more than 2,000 mg/kg. In the 4-week subacute toxicity study, there was no corn silk extract related toxic effect on body weight, water intake, food consumption, urine parameters, clinical chemistry, or organ weight. Histopathological examination showed no abnormality related to the administration of corn silk extract at 500 mg/kg. The maximum non-toxic dose of corn silk extract containing high levels of maysin was found to be more than 500 mg/kg. PMID:29662850
Acute and Subacute Toxicity Evaluation of Corn Silk Extract.
Ha, Ae Wha; Kang, Hyeon Jung; Kim, Sun Lim; Kim, Myung Hwan; Kim, Woo Kyoung
2018-03-01
Many studies have reported therapeutic efficacy of corn silk extract. However, research on its toxicity and safe dose range is limited. Thus, the objective of this study was to determine the acute and subacute toxicity of corn silk extract in ICR mice. To determine acute toxicity, corn silk extract containing high levels of maysin was orally administered to mice at a dose of 0 or 2,000 mg/kg. Clinical symptoms, mortality, and body weight changes were recorded for 14 days. To determine subacute toxicity, corn silk extract was orally administered to mice over a 4-week period, and then body weight, water and food consumption, and organ weight were determined. In addition, urine and serum analyses were performed. In the acute toxicity study, no death or abnormal symptoms was observed in all treatment groups during the study period. Body weights did not show any significant change compared to those of the control group. Lethal dose of corn silk extract was estimated to be more than 2,000 mg/kg. In the 4-week subacute toxicity study, there was no corn silk extract related toxic effect on body weight, water intake, food consumption, urine parameters, clinical chemistry, or organ weight. Histopathological examination showed no abnormality related to the administration of corn silk extract at 500 mg/kg. The maximum non-toxic dose of corn silk extract containing high levels of maysin was found to be more than 500 mg/kg.
Spider Silk-CBD-Cellulose Nanocrystal Composites: Mechanism of Assembly
Meirovitch, Sigal; Shtein, Zvi; Ben-Shalom, Tal; Lapidot, Shaul; Tamburu, Carmen; Hu, Xiao; Kluge, Jonathan A.; Raviv, Uri; Kaplan, David L.; Shoseyov, Oded
2016-01-01
The fabrication of cellulose-spider silk bio-nanocomposites comprised of cellulose nanocrystals (CNCs) and recombinant spider silk protein fused to a cellulose binding domain (CBD) is described. Silk-CBD successfully binds cellulose, and unlike recombinant silk alone, silk-CBD self-assembles into microfibrils even in the absence of CNCs. Silk-CBD-CNC composite sponges and films show changes in internal structure and CNC alignment related to the addition of silk-CBD. The silk-CBD sponges exhibit improved thermal and structural characteristics in comparison to control recombinant spider silk sponges. The glass transition temperature (Tg) of the silk-CBD sponge was higher than the control silk sponge and similar to native dragline spider silk fibers. Gel filtration analysis, dynamic light scattering (DLS), small angle X-ray scattering (SAXS) and cryo-transmission electron microscopy (TEM) indicated that silk-CBD, but not the recombinant silk control, formed a nematic liquid crystalline phase similar to that observed in native spider silk during the silk spinning process. Silk-CBD microfibrils spontaneously formed in solution upon ultrasonication. We suggest a model for silk-CBD assembly that implicates CBD in the central role of driving the dimerization of spider silk monomers, a process essential to the molecular assembly of spider-silk nanofibers and silk-CNC composites. PMID:27649169
Spider Silk-CBD-Cellulose Nanocrystal Composites: Mechanism of Assembly.
Meirovitch, Sigal; Shtein, Zvi; Ben-Shalom, Tal; Lapidot, Shaul; Tamburu, Carmen; Hu, Xiao; Kluge, Jonathan A; Raviv, Uri; Kaplan, David L; Shoseyov, Oded
2016-09-18
The fabrication of cellulose-spider silk bio-nanocomposites comprised of cellulose nanocrystals (CNCs) and recombinant spider silk protein fused to a cellulose binding domain (CBD) is described. Silk-CBD successfully binds cellulose, and unlike recombinant silk alone, silk-CBD self-assembles into microfibrils even in the absence of CNCs. Silk-CBD-CNC composite sponges and films show changes in internal structure and CNC alignment related to the addition of silk-CBD. The silk-CBD sponges exhibit improved thermal and structural characteristics in comparison to control recombinant spider silk sponges. The glass transition temperature (Tg) of the silk-CBD sponge was higher than the control silk sponge and similar to native dragline spider silk fibers. Gel filtration analysis, dynamic light scattering (DLS), small angle X-ray scattering (SAXS) and cryo-transmission electron microscopy (TEM) indicated that silk-CBD, but not the recombinant silk control, formed a nematic liquid crystalline phase similar to that observed in native spider silk during the silk spinning process. Silk-CBD microfibrils spontaneously formed in solution upon ultrasonication. We suggest a model for silk-CBD assembly that implicates CBD in the central role of driving the dimerization of spider silk monomers, a process essential to the molecular assembly of spider-silk nanofibers and silk-CNC composites.
Zhang, Wenjie; Wang, Xiuli; Wang, Shaoyi; Zhao, Jun; Xu, Lianyi; Zhu, Chao; Zeng, Deliang; Chen, Jake; Zhang, Zhiyuan; Kaplan, David L.; Jiang, Xinquan
2011-01-01
Sonication-induced silk hydrogels were previously prepared as an injectable bone replacement biomaterial, with a need to improve osteogenic features. Vascular endothelial growth factor (VEGF165) and bone morphogenic protein-2 (BMP-2) are key regulators of angiogenesis and osteogenesis, respectively, during bone regeneration. Therefore, the present study aimed at evaluating in situ forming silk hydrogels as a vehicle to encapsulate dual factors for rabbit maxillary sinus floor augmentation. Sonication-induced silk hydrogels were prepared in vitro and the slow release of VEGF165 and BMP-2 from these silk gels was evaluated by ELISA. For in vivo studies for each time point (4 and 12 weeks), 24 sinus floors elevation surgeries were made bilaterally in 12 rabbits for the following four treatment groups: silk gel (group Silk gel), silk gel/VEGF165 (group VEGF), silk gel/BMP-2 (group BMP-2), silk gel/VEGF165/BMP-2 (group V+B) (n=6 per group). Sequential florescent labeling and radiographic observations were used to record new bone formation and mineralization, along with histological and histomorphometric analysis. At week 4, VEGF165 promoted more tissue infiltration into the gel and accelerated the degradation of the gel material. At this time point, the bone area in group V+B was significantly larger than those in the other three groups. At week 12, elevated sinus floor heights of groups BMP-2 and V+B were larger than those of the Silk gel and VEGF groups, and the V+B group had the largest new bone area among all groups. In addition, a larger blood vessel area formed in the remaining gel areas in groups VEGF and V+B. In conclusion, VEGF165 and BMP-2 released from injectable and biodegradable silk gels promoted angiogenesis and new bone formation, with the two factors demonstrating an additive effect on bone regeneration. These results indicate that silk hydrogels can be used as an injectable vehicle to deliver multiple growth factors in a minimally invasive approach to regenerate irregular bony cavities. PMID:21889205
Silk fibroin hydrogel as physical barrier for prevention of post hernia adhesion.
Konar, S; Guha, R; Kundu, B; Nandi, S; Ghosh, T K; Kundu, S C; Konar, A; Hazra, S
2017-02-01
Adhesion formation remains a major complication following hernia repair surgery. Physical barriers though effective for adhesion prevention in clinical settings are associated with major disadvantages, therefore, needs further investigation. This study evaluates silk fibroin hydrogel as a physical barrier on polypropylene mesh for the prevention of adhesion following ventral hernia repair. Peritoneal explants were cultured on silk fibroin scaffold to evaluate its support for mesothelial cell growth. Full thickness uniform sized defects were created on the ventral abdominal wall of rabbits, and the defects were covered either with silk hydrogel coated polypropylene mesh or with plain polypropylene mesh as a control. The animals were killed after 1 month, and the adhesion formation was graded; healing response of peritoneum was evaluated by immunohistochemistry with calretinin, collagen staining of peritoneal sections, and expression of PCNA, collagen-I, TNFα, IL6 by real time PCR; and its adverse effect if any was determined. Silk fibroin scaffold showed excellent support for peritoneal cell growth in vitro and the cells expressed calretinin. A remarkable prevention of adhesion formation was observed in the animals implanted with silk hydrogel coated mesh compared to the control group; in these animals peritoneal healing was complete and predominantly by mesothelial cells with minimum fibrotic changes. Expression of inflammatory cytokines decreased compared to control animals, histology of abdominal organs, haematological and blood biochemical parameters remained normal. Therefore, silk hydrogel coating of polypropylene mesh can improve peritoneal healing, minimize adhesion formation, is safe and can augment the outcome of hernia surgery.
Benamú, Marco; Lacava, Mariángeles; García, Luis F; Santana, Martín; Fang, Jian; Wang, Xungai; Blamires, Sean J
2017-08-01
Neonicotinoids are one of the world's most extensively used insecticides, but their sub-lethal influences on non-target and beneficial organisms are not well known. Here we exposed the orb web spider Parawixia audax, which is found on arable lands in Uruguay, to a sub-lethal concentration of the broad spectrum insecticide Geonex (thiamethoxam + lambda-cyhalothrin) and monitored their web building. We collected their major ampullate silk and subjected it to tensile tests, wide-angle X-ray diffraction (WAXS) analysis, and amino acid composition analysis. Around half of the exposed spiders failed to build webs. Those that built webs produced irregular webs lacking spiral threads. The mechanical properties, nanostructures, and amino acid compositions of the silk were all significantly affected when the spiders were exposed to insecticides. We found that silk proline, glutamine, alanine and glycine compositions differed between treatments, indicating that insecticide exposure induced downregulation of the silk protein MaSp2. The spiders in the control group had stronger, tougher and more extensible silks than those in the insecticide exposed group. Our WAXS analyses showed the amorphous region nanostructures became misaligned in insecticide exposed silks, explaining their greater stiffness. While the insecticide dose we subjected P. audax to was evidently sub-lethal, the changes in silk physicochemical properties and the impairment to web building will indelibly affect their ability to catch prey. Copyright © 2017 Elsevier Ltd. All rights reserved.
Plasticity in Major Ampullate Silk Production in Relation to Spider Phylogeny and Ecology
Boutry, Cecilia; Řezáč, Milan; Blackledge, Todd Alan
2011-01-01
Spider major ampullate silk is a high-performance biomaterial that has received much attention. However, most studies ignore plasticity in silk properties. A better understanding of silk plasticity could clarify the relative importance of chemical composition versus processing of silk dope for silk properties. It could also provide insight into how control of silk properties relates to spider ecology and silk uses. We compared silk plasticity (defined as variation in the properties of silk spun by a spider under different conditions) between three spider clades in relation to their anatomy and silk biochemistry. We found that silk plasticity exists in RTA clade and orbicularian spiders, two clades that differ in their silk biochemistry. Orbiculariae seem less dependent on external spinning conditions. They probably use a valve in their spinning duct to control friction forces and speed during spinning. Our results suggest that plasticity results from different processing of the silk dope in the spinning duct. Orbicularian spiders seem to display better control of silk properties, perhaps in relation to their more complex spinning duct valve. PMID:21818328
Robust composite silk fibers pulled out of silkworms directly fed with nanoparticles.
Wu, GuoHua; Song, Peng; Zhang, DongYang; Liu, ZeYu; Li, Long; Huang, HuiMing; Zhao, HongPing; Wang, NanNan; Zhu, YanQiu
2017-11-01
This paper reports the impacts of direct feeding silkworms with different nanoparticles (Cu, Fe, and TiO 2 ) on the morphology, structures, and mechanical properties of the resulting silk fiber (SF). The contents of the Cu nanoparticles were 38 times higher in the posterior silk glands and only 2-3 times higher in the SF and in the middle silk glands compared with the controlled groups. Significant changes of the surface morphology, structures, and diameter of the Cu nanoparticle fed SF have been observed, which are attributed to a slight SF protein reconstruction or conformational change in the mixture of silk fibroin and sericin in the silk glands. The resulting Cu-containing SF exhibits good tensile strength of 360MPa and reaches a strain of 38%, which are 89% and 36% higher than those of the natural SF. This study offers a new green strategy for the easy modification to achieve robust composite SF. Copyright © 2017 Elsevier B.V. All rights reserved.
Subchronic toxicity study of corn silk with rats.
Wang, Cuina; Zhang, Tiehua; Liu, Jun; Lu, Shuang; Zhang, Cheng; Wang, Erlei; Wang, Zuozhao; Zhang, Yan; Liu, Jingbo
2011-09-01
Corn silk is a traditional herbal medicine in China, which has been used in many parts of the world for the treatment of edema as well as for cystitis, gout, kidney stones, nephritis, prostatitis and similar ailments. However, there is little scientific evidence about its safety. As a part of its safety assessment, a subchronic toxicity was performed in this paper. The subchronic toxicity was investigated in male and female Wistar rats by dietary administration at concentrations of 0.5%, 2.0% and 8.0% (w/w) for 90 days. Overall health, body weight, food consumption, hematology, blood chemistry, organ weights, gross and microscopic appearance of tissues were compared between test and control groups. A number of significant differences were seen between groups, but none of them was considered to be adverse. Based on the present study, the no-observed-adverse-effect level (NOAEL) of corn silk is at least 8.0% which corresponds to a mean daily corn silk intake of approximately 9.354 and 10.308 g/day/kg body weight for males and females, respectively. The results obtained in the present study suggest that consumption of corn silk has no adverse effects and support the safety of corn silk for humans. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Silk protein-based hydrogels: Promising advanced materials for biomedical applications.
Kapoor, Sonia; Kundu, Subhas C
2016-02-01
Hydrogels are a class of advanced material forms that closely mimic properties of the soft biological tissues. Several polymers have been explored for preparing hydrogels with structural and functional features resembling that of the extracellular matrix. Favourable material properties, biocompatibility and easy processing of silk protein fibers into several forms make it a suitable material for biomedical applications. Hydrogels made from silk proteins have shown a potential in overcoming limitations of hydrogels prepared from conventional polymers. A great deal of effort has been made to control the properties and to integrate novel topographical and functional characteristics in the hydrogel composed from silk proteins. This review provides overview of the advances in silk protein-based hydrogels with a primary emphasis on hydrogels of fibroin. It describes the approaches used to fabricate fibroin hydrogels. Attempts to improve the existing properties or to incorporate new features in the hydrogels by making composites and by improving fibroin properties by genetic engineering approaches are also described. Applications of the fibroin hydrogels in the realms of tissue engineering and controlled release are reviewed and their future potentials are discussed. This review describes the potentiality of silk fibroin hydrogel. Silk Fibroin has been widely recognized as an interesting biomaterial. Due to its properties including high mechanical strength and excellent biocompatibility, it has gained wide attention. Several groups are exploring silk-based materials including films, hydrogels, nanofibers and nanoparticles for different biomedical applications. Although there is a good amount of literature available on general properties and applications of silk based biomaterials, there is an inadequacy of extensive review articles that specifically focus on silk based hydrogels. Silk-based hydrogels have a strong potential to be utilized in biomedical applications. Our work is an effort to highlight the research that has been done in the area of silk-based hydrogels. It aims to provide an overview of the advances that have been made and the future course available. It will provide an overview of the silk-based hydrogels as well as may direct the readers to the specific areas of application. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Thomas, Kim S; Bradshaw, Lucy E; Sach, Tracey H; Batchelor, Jonathan M; Lawton, Sandra; Harrison, Eleanor F; Haines, Rachel H; Ahmed, Amina; Williams, Hywel C; Dean, Taraneh; Burrows, Nigel P; Pollock, Ian; Llewellyn, Joanne; Crang, Clare; Grundy, Jane D; Guiness, Juliet; Gribbin, Andrew; Mitchell, Eleanor J; Cowdell, Fiona; Brown, Sara J; Montgomery, Alan A
2017-04-01
The role of clothing in the management of eczema (also called atopic dermatitis or atopic eczema) is poorly understood. This trial evaluated the effectiveness and cost-effectiveness of silk garments (in addition to standard care) for the management of eczema in children with moderate to severe disease. This was a parallel-group, randomised, controlled, observer-blind trial. Children aged 1 to 15 y with moderate to severe eczema were recruited from secondary care and the community at five UK medical centres. Participants were allocated using online randomisation (1:1) to standard care or to standard care plus silk garments, stratified by age and recruiting centre. Silk garments were worn for 6 mo. Primary outcome (eczema severity) was assessed at baseline, 2, 4, and 6 mo, by nurses blinded to treatment allocation, using the Eczema Area and Severity Index (EASI), which was log-transformed for analysis (intention-to-treat analysis). A safety outcome was number of skin infections. Three hundred children were randomised (26 November 2013 to 5 May 2015): 42% girls, 79% white, mean age 5 y. Primary analysis included 282/300 (94%) children (n = 141 in each group). The garments were worn more often at night than in the day (median of 81% of nights [25th to 75th centile 57% to 96%] and 34% of days [25th to 75th centile 10% to 76%]). Geometric mean EASI scores at baseline, 2, 4, and 6 mo were, respectively, 9.2, 6.4, 5.8, and 5.4 for silk clothing and 8.4, 6.6, 6.0, and 5.4 for standard care. There was no evidence of any difference between the groups in EASI score averaged over all follow-up visits adjusted for baseline EASI score, age, and centre: adjusted ratio of geometric means 0.95, 95% CI 0.85 to 1.07, (p = 0.43). This confidence interval is equivalent to a difference of -1.5 to 0.5 in the original EASI units, which is not clinically important. Skin infections occurred in 36/142 (25%) and 39/141 (28%) of children in the silk clothing and standard care groups, respectively. Even if the small observed treatment effect was genuine, the incremental cost per quality-adjusted life year was £56,811 in the base case analysis from a National Health Service perspective, suggesting that silk garments are unlikely to be cost-effective using currently accepted thresholds. The main limitation of the study is that use of an objective primary outcome, whilst minimising detection bias, may have underestimated treatment effects. Silk clothing is unlikely to provide additional benefit over standard care in children with moderate to severe eczema. Current Controlled Trials ISRCTN77261365.
Periodontal regeneration with nano-hyroxyapatite-coated silk scaffolds in dogs
Yang, Cheryl; Lee, Jung-Seok; Jung, Ui-Won; Seo, Young-Kwon; Park, Jung-Keug
2013-01-01
Purpose In this study, we investigated the effect of silk scaffolds on one-wall periodontal intrabony defects. We conjugated nano-hydroxyapatite (nHA) onto a silk scaffold and then seeded periodontal ligament cells (PDLCs) or dental pulp cells (DPCs) onto the scaffold. Methods Five dogs were used in this study. Bilateral 4 mm×2 mm (depth×mesiodistal width), one-wall intrabony periodontal defects were surgically created on the distal side of the mandibular second premolar and the mesial side of the mandibular fourth premolar. In each dog, four of the defects were separately and randomly assigned to the following groups: the PDLC-cultured scaffold transplantation group (PDLC group), the DPC-cultured scaffold transplantation group (DPC group), the normal saline-soaked scaffold transplantation group, and the control group. The animals were euthanized following an 8-week healing interval for clinical, scanning electron microscopy (SEM), and histologic evaluations. Results There was no sign of inflammation or other clinical signs of postoperative complications. The examination of cell-seeded constructs by SEM provided visual confirmation of the favorable characteristics of nHA-coated silk scaffolds for tissue engineering. The scaffolds exhibited a firm connective porous structure in cross section, and after PDLCs and DPCs were seeded onto the scaffolds and cultured for 3 weeks, the attachment of well-spread cells and the formation of extracellular matrix (ECM) were observed. The histologic analysis revealed that a well-maintained grafted volume was present at all experimental sites for 8 weeks. Small amounts of inflammatory cells were seen within the scaffolds. The PDLC and DPC groups did not have remarkably different histologic appearances. Conclusions These observations indicate that nHA-coated silk scaffolds can be considered to be potentially useful biomaterials for periodontal regeneration. PMID:24455445
Regulation of Silk Material Structure by Temperature-Controlled Water Vapor Annealing
Hu, Xiao; Shmelev, Karen; Sun, Lin; Gil, Eun-Seok; Park, Sang-Hyug; Cebe, Peggy; Kaplan, David L.
2011-01-01
We present a simple and effective method to obtain refined control of the molecular structure of silk biomaterials through physical temperature-controlled water vapor annealing (TCWVA). The silk materials can be prepared with control of crystallinity, from a low content using conditions at 4°C (alpha-helix dominated silk I structure), to highest content of ~60% crystallinity at 100°C (beta-sheet dominated silk II structure). This new physical approach covers the range of structures previously reported to govern crystallization during the fabrication of silk materials, yet offers a simpler, green chemistry, approach with tight control of reproducibility. The transition kinetics, thermal, mechanical, and biodegradation properties of the silk films prepared at different temperatures were investigated and compared by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), uniaxial tensile studies, and enzymatic degradation studies. The results revealed that this new physical processing method accurately controls structure, in turn providing control of mechanical properties, thermal stability, enzyme degradation rate, and human mesenchymal stem cell interactions. The mechanistic basis for the control is through the temperature controlled regulation of water vapor, to control crystallization. Control of silk structure via TCWVA represents a significant improvement in the fabrication of silk-based biomaterials, where control of structure-property relationships is key to regulating material properties. This new approach to control crystallization also provides an entirely new green approach, avoiding common methods which use organic solvents (methanol, ethanol) or organic acids. The method described here for silk proteins would also be universal for many other structural proteins (and likely other biopolymers), where water controls chain interactions related to material properties. PMID:21425769
Coladonato, Joseph; Smith, Annette; Watson, Nancy; Brown, Anne T; McNichol, Laurie L; Clegg, Amy; Griffin, Tracy; McPhail, Lora; Montgomery, Terry G
2012-10-01
Hospital bedding and gowns influence skin moisture, temperature, friction, and shear, which in turn may affect the development of pressure ulcers. To evaluate the effect of a new silk-like synthetic fabric on the incidence of pressure ulcers in an acute care setting, two consecutive 6-month clinical trials were conducted among 307 consecutively admitted patients in a Medical Renal Unit (August 2008 and March 2010) and in 275 patients admitted to a Surgical Intensive Care Unit (ICU) (September 2009 to March 2010). During the first 8 weeks, all patients used standard hospital bed linens, reusable underpads, and gowns. During the second 8 weeks, all admitted patients used the intervention linens (a silk-like fabric) followed by another 8 weeks of control (standard linen) use. Demographic variables and the prevalence of pressure ulcers on admission were statistically similar for control and intervention groups in both study populations with the exception of gender in the Renal Unit study (13% higher proportion of men in intervention group). Average Braden Scores were also similar and low (<18) in all study patients. Upon admission to the Medical Renal Unit, 21 of 154 patients (13.6%) in the control and 26 of 153 patients (17.0%) in the intervention group had a pressure ulcer. The incidence of new ulcers was 12.3% in the control and 4.6% in the intervention group (P = 0.01); average length of stay was 5.97 days (σ = 4.0) for control and 5.31 days (σ = 3.8) for intervention patients (P = 0.07). In the Surgical ICU group, 18 of 199 patients in the control (9.1%) and four of 76 patients in the intervention group (5.3%) were admitted with a pressure ulcer; the incidence of new pressure ulcers was 7.5 % in the control and 0% in the intervention group (P = 0.01). Average length of stay was 4.5 days and 4.33 days in the control and intervention groups, respectively (P = 0.33). The significant differences between the control and intervention group in the rate of pressure ulcer development suggests that the type of linens used affect pressure ulcer risk and that this silk-like synthetic fabric technology may help reduce the incidence of pressure ulcers in high-risk patients. Controlled clinical studies in other patient populations are warranted.
Chen, Quanmei; Liu, Xinyu; Zhao, Ping; Sun, Yanhui; Zhao, Xinjie; Xiong, Ying; Xu, Guowang; Xia, Qingyou
2015-02-01
Metabolic profiling of silkworm, especially the factors that affect silk synthesis at the metabolic level, is little known. Herein, metabolomic method based on gas chromatography-mass spectrometry was applied to identify key metabolic changes in silk synthesis deficient silkworms. Forty-six differential metabolites were identified in Nd group with the defect of silk synthesis. Significant changes in the levels of glycine and uric acid (up-regulation), carbohydrates and free fatty acids (down-regulation) were observed. The further metabolomics of silk synthesis deficient silkworms by decreasing silk proteins synthesis using knocking out fibroin heavy chain gene or extirpating silk glands operation showed that the changes of the metabolites were almost consistent with those of the Nd group. Furthermore, the increased silk yields by supplying more glycine or its related metabolite confirmed that glycine is a key metabolite to regulate silk synthesis. These findings provide important insights into the regulation between metabolic profiling and silk synthesis. Copyright © 2014 Elsevier Ltd. All rights reserved.
Effect of crude extract of Bombyx mori coccoons in hyperlipidemia and atherosclerosis
Ali, Mir Mahdi; Arumugam, Sarasa Bharati A.
2011-01-01
The silkworm is the larva or caterpillar of the domesticated silkmoth, Bombyx mori and being a primary producer of silk is an economically important insect. These days the silk is emerging as a resource for solving a broad range of biological problems. The silk (Abresham) is popularly known as Abresham muqriz (muqriz means cut) in Unani medicine. Its cocoons are extensively used as an ingredient of various Unani formulations like Khameer-E- Abresham Sada, Khameere Abresham Hakeem Arshad Wala, Khameere Abresham Ood Mastagi Wala etc. and are used to treat many cardiac and nervous disorders. The hypolipidemic activity of this drug, along with Nepata Hindostana (Badranjboya) and Terminalia Arjuna (Arjan) has been documented. But action of extract of Bombyx mori cocoons as a single drug is not documented. That's why; it was decided to study its effect on hyperlipidemia and atherosclerosis. The Male New Zealand White rabbits all of 1.5kgs were selected for the study. After stabilization period (2 weeks) the rabbits were divided into 3 groups (Group I - Control, Group II Lesion Control and Group III treated with extract of Bombyx mori silk cocoon). Hyperlipidemia and atherosclerosis were induced with 1% cholesterol diet. After induction of hyperlipidemia and atherosclerosis for twelve weeks, Group III rabbits were treated with Bombyx mori for 6 weeks (45 days). A significant decrease in hyperlipidemia was seen within 4 weeks of treatment. Histopathologically, the atherosclerotic plaques showed reduction in size. The third group showed a significant increase in the body weight and also an increase in the HDL cholesterol levels. The study concludes that extract of Bombyx mori cocoons has a significant effect on hypercholesterolemia and atherosclerosis probably because of its antioxidant and hypolipidemic effect. PMID:21760692
Effect of crude extract of Bombyx mori coccoons in hyperlipidemia and atherosclerosis.
Ali, Mir Mahdi; Arumugam, Sarasa Bharati A
2011-04-01
The silkworm is the larva or caterpillar of the domesticated silkmoth, Bombyx mori and being a primary producer of silk is an economically important insect. These days the silk is emerging as a resource for solving a broad range of biological problems. The silk (Abresham) is popularly known as Abresham muqriz (muqriz means cut) in Unani medicine. Its cocoons are extensively used as an ingredient of various Unani formulations like Khameer-E- Abresham Sada, Khameere Abresham Hakeem Arshad Wala, Khameere Abresham Ood Mastagi Wala etc. and are used to treat many cardiac and nervous disorders. The hypolipidemic activity of this drug, along with Nepata Hindostana (Badranjboya) and Terminalia Arjuna (Arjan) has been documented. But action of extract of Bombyx mori cocoons as a single drug is not documented. That's why; it was decided to study its effect on hyperlipidemia and atherosclerosis. The Male New Zealand White rabbits all of 1.5kgs were selected for the study. After stabilization period (2 weeks) the rabbits were divided into 3 groups (Group I - Control, Group II Lesion Control and Group III treated with extract of Bombyx mori silk cocoon). Hyperlipidemia and atherosclerosis were induced with 1% cholesterol diet. After induction of hyperlipidemia and atherosclerosis for twelve weeks, Group III rabbits were treated with Bombyx mori for 6 weeks (45 days). A significant decrease in hyperlipidemia was seen within 4 weeks of treatment. Histopathologically, the atherosclerotic plaques showed reduction in size. The third group showed a significant increase in the body weight and also an increase in the HDL cholesterol levels. The study concludes that extract of Bombyx mori cocoons has a significant effect on hypercholesterolemia and atherosclerosis probably because of its antioxidant and hypolipidemic effect.
Differentially expressed genes in the silk gland of silkworm (Bombyx mori) treated with TiO2 NPs.
Xue, Bin; Li, Fanchi; Hu, Jingsheng; Tian, Jianghai; Li, Jinxin; Cheng, Xiaoyu; Hu, Jiahuan; Li, Bing
2017-05-05
Silk gland is a silkworm organ where silk proteins are synthesized and secreted. Dietary supplement of TiO 2 nanoparticles (NPs) promotes silk protein synthesis in silkworms. In this study, digital gene expression (DGE) tag was used to analyze the gene expression profile of the posterior silk gland of silkworms that were fed with TiO 2 NPs. In total, 5,702,823 and 6,150,719 clean tags, 55,096 and 74,715 distinct tags were detected in TiO 2 NPs treated and control groups, respectively. Compared with the control, TiO 2 NPs treated silkworms showed 306 differentially expressed genes, including 137 upregulated genes and 169 downregulated genes. Of these differentially expressed genes, 106 genes were related to silk protein synthesis, among which 97 genes were upregulated and 9 genes were downregulated. Pathway mapping using the Kyoto Encyclopedia of Genes and Genomes (KEGG) showed that 20 pathways were significantly enriched in TiO 2 NPs treated silkworms, and the metabolic pathway-related genes were the most significantly enriched. The DGE results were verified by qRT-PCR analysis of eight differentially expressed genes. The DGE and qRT-PCR results were consistent for all three upregulated genes and three of the five downregulated genes, but the expression trends of the remaining two genes were different between qRT-PCR and DGE analysis. This study enhances our understanding of the mechanism of TiO 2 NPs promoted silk protein synthesis. Copyright © 2017 Elsevier B.V. All rights reserved.
Control of silk microsphere formation using polyethylene glycol (PEG).
Wu, Jianbing; Zheng, Zhaozhu; Li, Gang; Kaplan, David L; Wang, Xiaoqin
2016-07-15
A one step, rapid method to prepare silk microspheres was developed, with particle size controlled by the addition of polyethylene glycol (PEG). PEG molecular weight (4.0K-20.0KDa) and concentration (20-50wt%), as well as silk concentration (5-20wt%), were key factors that determined particle sizes varying in a range of 1-100μm. Addition of methanol to the PEG-silk combinations increased the content of crystalline β-sheet in the silk microspheres. To track the distribution and degradation of silk microspheres in vivo, 3-mercaptopropionic acid (MPA)-coated CdTe quantum dots (QDs) were physically entrapped in the silk microspheres. QDs tightly bound to the β-sheet domains of silk via hydrophobic interactions, with over 96% of the loaded QDs remaining in the silk microspheres after exhaustive extraction. The fluorescence of QDs-incorporated silk microspheres less stable in cell culture medium than in phosphate buffer solution (PBS) and water. After subcutaneous injection in mice, microspheres prepared from 20% silk (approx. 30μm diameter particles) still fluoresced at 24h, while those prepared from 8% silk (approx. 4μm diameter particles) and free QDs were not detectable, reflecting the QDs quenching and particle size effect on microsphere clearance in vivo. The larger microspheres were more resistant to cell internalization and degradation. Since PEG is an FDA-approved polymer, and silk is FDA approved for some medical devices, the methods developed in the present study will be useful in a variety of biomedical applications where simple, rapid and scalable preparation of silk microspheres is required. The work is of significance to the biomaterial and controlled release society because it provides a new option for fabricating silk microspheres in one simple step of mixing silk and polyethylene glycol (PEG), with the size and properties of microspheres controllable by PEG molecular weight as well as PEG and silk concentrations. Although fabrication of silk microspheres have been reported previously using spray-drying, liposome-templating, polyvinyl alcohol (PVA) emulsification, etc., applications were hindered due to harsh conditions (temperature, solvents, etc.) and complicated procedures used as well as low yield and less controllable particle size (usually <10μm). Since PEG is an FDA-approved polymer, and silk is FDA approved for some medical devices, the methods developed in the present study will be useful in a variety of biomedical applications where simple, rapid and scalable preparation of silk microspheres is required. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Effects of silk fibroin in murine dry eye
NASA Astrophysics Data System (ADS)
Kim, Chae Eun; Lee, Ji Hyun; Yeon, Yeung Kyu; Park, Chan Hum; Yang, Jaewook
2017-03-01
The study aimed to investigate the effects of silk fibroin in a mouse model of dry eye. The experimental dry eye mouse model was developed using more than twelve-weeks-old NOD.B10.H2b mice exposing them to 30-40% ambient humidity and injecting them with scopolamine hydrobromide for 10 days. Tear production and corneal irregularity score were measured by the instillation of phosphate buffered saline or silk fibroin. Corneal detachment and conjunctival goblet cell density were observed by hematoxylin and eosin or periodic acid Schiff staining in the cornea or conjunctiva. The expression of inflammatory markers was detected by immunohistochemistry in the lacrimal gland. The silk group tear production was increased, and corneal smoothness was improved. The corneal epithelial cells and conjunctival goblet cells were recovered in the silk groups. The expression of inflammatory factors was inhibited in the lacrimal gland of the silk group. These results show that silk fibroin improved the cornea, conjunctiva, and lacrimal gland in the mouse model of dry eye. These findings suggest that silk fibroin has anti-inflammatory effects in the experimental models of dry eye.
Thomas, Kim S.; Lawton, Sandra; Ahmed, Amina; Dean, Taraneh; Burrows, Nigel P.; Pollock, Ian; Grundy, Jane D.; Guiness, Juliet
2017-01-01
Background The role of clothing in the management of eczema (also called atopic dermatitis or atopic eczema) is poorly understood. This trial evaluated the effectiveness and cost-effectiveness of silk garments (in addition to standard care) for the management of eczema in children with moderate to severe disease. Methods and findings This was a parallel-group, randomised, controlled, observer-blind trial. Children aged 1 to 15 y with moderate to severe eczema were recruited from secondary care and the community at five UK medical centres. Participants were allocated using online randomisation (1:1) to standard care or to standard care plus silk garments, stratified by age and recruiting centre. Silk garments were worn for 6 mo. Primary outcome (eczema severity) was assessed at baseline, 2, 4, and 6 mo, by nurses blinded to treatment allocation, using the Eczema Area and Severity Index (EASI), which was log-transformed for analysis (intention-to-treat analysis). A safety outcome was number of skin infections. Three hundred children were randomised (26 November 2013 to 5 May 2015): 42% girls, 79% white, mean age 5 y. Primary analysis included 282/300 (94%) children (n = 141 in each group). The garments were worn more often at night than in the day (median of 81% of nights [25th to 75th centile 57% to 96%] and 34% of days [25th to 75th centile 10% to 76%]). Geometric mean EASI scores at baseline, 2, 4, and 6 mo were, respectively, 9.2, 6.4, 5.8, and 5.4 for silk clothing and 8.4, 6.6, 6.0, and 5.4 for standard care. There was no evidence of any difference between the groups in EASI score averaged over all follow-up visits adjusted for baseline EASI score, age, and centre: adjusted ratio of geometric means 0.95, 95% CI 0.85 to 1.07, (p = 0.43). This confidence interval is equivalent to a difference of −1.5 to 0.5 in the original EASI units, which is not clinically important. Skin infections occurred in 36/142 (25%) and 39/141 (28%) of children in the silk clothing and standard care groups, respectively. Even if the small observed treatment effect was genuine, the incremental cost per quality-adjusted life year was £56,811 in the base case analysis from a National Health Service perspective, suggesting that silk garments are unlikely to be cost-effective using currently accepted thresholds. The main limitation of the study is that use of an objective primary outcome, whilst minimising detection bias, may have underestimated treatment effects. Conclusions Silk clothing is unlikely to provide additional benefit over standard care in children with moderate to severe eczema. Trial registration Current Controlled Trials ISRCTN77261365 PMID:28399154
The effects of corn silk on glycaemic metabolism.
Guo, Jianyou; Liu, Tongjun; Han, Linna; Liu, Yongmei
2009-11-23
Corn silk contains proteins, vitamins, carbohydrates, Ca, K, Mg and Na salts, fixed and volatile oils, steroids such as sitosterol and stigmasterol, alkaloids, saponins, tannins, and flavonoids. Base on folk remedies, corn silk has been used as an oral antidiabetic agent in China for decades. However, the hypoglycemic activity of it has not yet been understood in terms of modern pharmacological concepts. The purpose of this study is to investigate the effects of corn silk on glycaemic metabolism. Alloxan and adrenalin induced hyperglycemic mice were used in the study. The effects of corn silk on blood glucose, glycohemoglobin (HbA1c), insulin secretion, damaged pancreatic beta-cells, hepatic glycogen and gluconeogenesis in hyperglycemic mice were studied respectively. After the mice were orally administered with corn silk extract, the blood glucose and the HbA1c were significantly decreased in alloxan-induced hyperglycemic mice (p < 0.05, p < 0.01, respectively), while the level of insulin secretionn was markedly elevated in alloxa-induced hyperglycemic mice (p < 0.05). The alloxan-damaged pancreatic beta-cells of the mice were partly recovered gradually after the mice were administered with corn silk extract 15 days later. Also, the body weight of the alloxan-induced hyperglycemic mice was increased gradually. However, ascension of blood glucose induced by adrenalin and gluconeogenesis induced by L-alanine were not inhibited by corn silk extract treatment (p > 0.05). Although corn silk extract increased the level of hepatic glycogen in the alloxan-induced hyperglycemic mice, there was no significant difference between them and that of the control group(p > 0.05). Corn silk extract markedly reduced hyperglycemia in alloxan-induced diabetic mice. The action of corn silk extract on glycaemic metabolism is not via increasing glycogen and inhibiting gluconeogenesis but through increasing insulin level as well as recovering the injured beta-cells. The results suggest that corn silk extract may be used as a hypoglycemic food or medicine for hyperglycemic people in terms of this modern pharmacological study.
Multifunctional silk-heparin biomaterials for vascular tissue engineering applications
Seib, F. Philipp; Herklotz, Manuela; Burke, Kelly A.; Maitz, Manfred F.; Werner, Carsten; Kaplan, David L.
2013-01-01
Over the past 30 years, silk has been proposed for numerous biomedical applications that go beyond its traditional use as a suture material. Silk sutures are well tolerated in humans, but the use of silk for vascular engineering applications still requires extensive biocompatibility testing. Some studies have indicated a need to modify silk to yield a hemocompatible surface. This study examined the potential of low molecular weight heparin as a material for refining silk properties by acting as a carrier for vascular endothelial growth factor (VEGF) and improving silk hemocompatibility. Heparinized silk showed a controlled VEGF release over 6 days; the released VEGF was bioactive and supported the growth of human endothelial cells. Silk samples were then assessed using a humanized hemocompatibility system that employs whole blood and endothelial cells. The overall thrombogenic response for silk was very low and similar to the clinical reference material polytetrafluoroethylene. Despite an initial inflammatory response to silk, apparent as complement and leukocyte activation, the endothelium was maintained in a resting, anticoagulant state. The low thrombogenic response and the ability to control VEGF release support the further development of silk for vascular applications. PMID:24099708
Corn silk extract improves benign prostatic hyperplasia in experimental rat model.
Kim, So Ra; Ha, Ae Wha; Choi, Hyun Ji; Kim, Sun Lim; Kang, Hyeon Jung; Kim, Myung Hwan; Kim, Woo Kyoung
2017-10-01
This study was conducted to investigate the effect of a corn silk extract on improving benign prostatic hyperplasia (BPH). The experimental animals, 6-week-old male Wistar rats, were divided into sham-operated control (Sham) and experimental groups. The experimental group, which underwent orchiectomy and received subcutaneous injection of 10 mg/kg of testosterone propionate to induce BPH, was divided into a Testo Only group that received only testosterone, a Testo+Fina group that received testosterone and 5 mg/kg finasteride, a Testo+CSE10 group that received testosterone and 10 mg/kg of corn silk extract, and a Testo+CSE100 group that received testosterone and 100 mg/kg of corn silk extract. Prostate weight and concentrations of dihydrotestosterone (DHT), 5α-reductase 2 (5α-R2), and prostate specific antigen (PSA) in serum or prostate tissue were determined. The mRNA expressions of 5α-R2 and proliferating cell nuclear antigen (PCNA) in prostate tissue were also measured. Compared to the Sham group, prostate weight was significantly higher in the Testo Only group and decreased significantly in the Testo+Fina, Testo+CSE10, and Testo+CSE100 groups ( P < 0.05), results that were consistent with those for serum DHT concentrations. The concentrations of 5α-R2 in serum and prostate as well as the mRNA expression of 5α-R2 in prostate were significantly lower in the Testo+Fina, Testo+CSE10, and Testo+CSE100 groups than that in the Testo Only group ( P < 0.05). Similarly, the concentrations of PSA in serum and prostate were significantly lower in the Testo+Fina, Testo+CSE10, and Testo+CSE100 groups ( P < 0.05) than in the Testo Only group. The mRNA expression of PCNA in prostate dose-independently decreased in the Testo+CSE-treated groups ( P < 0.05). BPH was induced through injection of testosterone, and corn silk extract treatment improved BPH symptoms by inhibiting the mRNA expression of 5α-R2 and decreasing the amount of 5α-R2, DHT, and PSA in serum and prostate tissue.
Corn silk extract improves benign prostatic hyperplasia in experimental rat model
Kim, So Ra; Ha, Ae Wha; Choi, Hyun Ji; Kim, Sun Lim; Kang, Hyeon Jung; Kim, Myung Hwan
2017-01-01
BACKGROUND/OBJECTIVES This study was conducted to investigate the effect of a corn silk extract on improving benign prostatic hyperplasia (BPH). MATERIALS/METHODS The experimental animals, 6-week-old male Wistar rats, were divided into sham-operated control (Sham) and experimental groups. The experimental group, which underwent orchiectomy and received subcutaneous injection of 10 mg/kg of testosterone propionate to induce BPH, was divided into a Testo Only group that received only testosterone, a Testo+Fina group that received testosterone and 5 mg/kg finasteride, a Testo+CSE10 group that received testosterone and 10 mg/kg of corn silk extract, and a Testo+CSE100 group that received testosterone and 100 mg/kg of corn silk extract. Prostate weight and concentrations of dihydrotestosterone (DHT), 5α-reductase 2 (5α-R2), and prostate specific antigen (PSA) in serum or prostate tissue were determined. The mRNA expressions of 5α-R2 and proliferating cell nuclear antigen (PCNA) in prostate tissue were also measured. RESULTS Compared to the Sham group, prostate weight was significantly higher in the Testo Only group and decreased significantly in the Testo+Fina, Testo+CSE10, and Testo+CSE100 groups (P < 0.05), results that were consistent with those for serum DHT concentrations. The concentrations of 5α-R2 in serum and prostate as well as the mRNA expression of 5α-R2 in prostate were significantly lower in the Testo+Fina, Testo+CSE10, and Testo+CSE100 groups than that in the Testo Only group (P < 0.05). Similarly, the concentrations of PSA in serum and prostate were significantly lower in the Testo+Fina, Testo+CSE10, and Testo+CSE100 groups (P < 0.05) than in the Testo Only group. The mRNA expression of PCNA in prostate dose-independently decreased in the Testo+CSE-treated groups (P < 0.05). CONCLUSIONS BPH was induced through injection of testosterone, and corn silk extract treatment improved BPH symptoms by inhibiting the mRNA expression of 5α-R2 and decreasing the amount of 5α-R2, DHT, and PSA in serum and prostate tissue. PMID:28989573
Controlling silk fibroin particle features for drug delivery
Lammel, Andreas; Hu, Xiao; Park, Sang-Hyug; Kaplan, David L.; Scheibel, Thomas
2010-01-01
Silk proteins are a promising material for drug delivery due to their aqueous processability, biocompatibility, and biodegradability. A simple aqueous preparation method for silk fibroin particles with controllable size, secondary structure and zeta potential is reported. The particles were produced by salting out a silk fibroin solution with potassium phosphate. The effect of ionic strength and pH of potassium phosphate solution on the yield and morphology of the particles was determined. Secondary structure and zeta potential of the silk particles could be controlled by pH. Particles produced by salting out with 1.25 M potassium phosphate pH 6 showed a dominating silk II (crystalline) structure whereas particles produced at pH 9 were mainly composed of silk I (less crystalline). The results show that silk I rich particles possess chemical and physical stability and secondary structure which remained unchanged during post treatments even upon exposure to 100% ethanol or methanol. A model is presented to explain the process of particle formation based on intra- and intermolecular interactions of the silk domains, influenced by pH and kosmotrope salts. The reported silk fibroin particles can be loaded with small molecule model drugs, such as alcian blue, rhodamine B, and crystal violet, by simple absorption based on electrostatic interactions. In vitro release of these compounds from the silk particles depends on charge – charge interactions between the compounds and the silk. With crystal violet we demonstrated that the release kinetics are dependent on the secondary structure of the particles. PMID:20219241
Amornsudthiwat, Phakdee; Nitschke, Mirko; Zimmermann, Ralf; Friedrichs, Jens; Grundke, Karina; Pöschel, Kathrin; Damrongsakkul, Siriporn; Werner, Carsten
2015-06-21
The study aims at a comprehensive surface characterization of untreated and oxygen plasma-treated silk fibroin with a particular focus on phenomena relevant to biointeraction and cell adhesion. For that purpose, a range of advanced surface diagnostic techniques is employed to thoroughly investigate well-defined and especially clean silk fibroin samples in a comparable setting. This includes surface chemistry and surface charges as factors, which control protein adsorption, but also hydration and swelling of the material as important parameters, which govern the mechanical stiffness at the interface with aqueous media. Oxygen plasma exposure of silk fibroin surfaces reveals that material ablation strongly predominates over the introduction of functional groups even for mild plasma conditions. A substantial increase in mechanical stiffness is identified as the most prominent effect upon this kind of plasma treatment. Regarding the experimental approach and the choice of techniques, the work goes beyond previous studies in this field and paves the way for well-founded investigations of other surface-selective modification procedures that enhance the applicability of silk fibroin in biomedical applications.
Spider genomes provide insight into composition and evolution of venom and silk
Sanggaard, Kristian W.; Bechsgaard, Jesper S.; Fang, Xiaodong; Duan, Jinjie; Dyrlund, Thomas F.; Gupta, Vikas; Jiang, Xuanting; Cheng, Ling; Fan, Dingding; Feng, Yue; Han, Lijuan; Huang, Zhiyong; Wu, Zongze; Liao, Li; Settepani, Virginia; Thøgersen, Ida B.; Vanthournout, Bram; Wang, Tobias; Zhu, Yabing; Funch, Peter; Enghild, Jan J.; Schauser, Leif; Andersen, Stig U.; Villesen, Palle; Schierup, Mikkel H; Bilde, Trine; Wang, Jun
2014-01-01
Spiders are ecologically important predators with complex venom and extraordinarily tough silk that enables capture of large prey. Here we present the assembled genome of the social velvet spider and a draft assembly of the tarantula genome that represent two major taxonomic groups of spiders. The spider genomes are large with short exons and long introns, reminiscent of mammalian genomes. Phylogenetic analyses place spiders and ticks as sister groups supporting polyphyly of the Acari. Complex sets of venom and silk genes/proteins are identified. We find that venom genes evolved by sequential duplication, and that the toxic effect of venom is most likely activated by proteases present in the venom. The set of silk genes reveals a highly dynamic gene evolution, new types of silk genes and proteins, and a novel use of aciniform silk. These insights create new opportunities for pharmacological applications of venom and biomaterial applications of silk. PMID:24801114
Zhou, Yuyang; Yang, Zhi-Yi; Tang, Ren-Cheng
2016-10-01
There has been a phenomenal increase in the research and development of new health and hygiene-related textile products. This work reports a novel approach to develop antibacterial, antioxidant and UV-protective silk using an adsorption technique of baicalin (a bioactive ingredient from the root of Scutellaria baicalensis Georgi). Baicalin displayed high adsorption capability at pH2.75, contributing to the sufficient functionalities on silk. The equilibrium adsorption research showed that the Langmuir isotherm was able to describe the behavior of baicalin, indicating the electrostatic interactions between the ionized carboxyl groups in baicalin and the positively charged amino groups in silk. The treated silk with 2% owf (on the weight of fiber) baicalin exhibited excellent antioxidant activity, high antibacterial activities against Escherichia coli and Staphylococcus aureus, and very good ultraviolet protection ability comparable to that of the commercial benzotriazole ultraviolet absorber. The baicalin treatment had no obvious impact on the functional groups, crystal structure and surface morphology of silk. The functionalities of the treated silk obviously declined after first laundering cycle and slowly decreased in the following washing cycles. Encouraging results demonstrate that the baicalin-functionalized silk is a promising material for protective clothing and medical textiles. Copyright © 2016 Elsevier B.V. All rights reserved.
Vu, Trang; Xue, Ye; Vuong, Trinh; Erbe, Matthew; Bennet, Christopher; Palazzo, Ben; Popielski, Lucas; Rodriguez, Nelson; Hu, Xiao
2016-01-01
This study reports the formation of biocompatible hydrogels using protein polymers from natural silk cocoon fibroins and sheep wool keratins. Silk fibroin protein contains β-sheet secondary structures, allowing for the formation of physical cross-linkers in the hydrogels. Comparative studies were performed on two groups of samples. In the first group, ultrasonication was used to induce a quick gelation of a protein aqueous solution, enhancing the ability of Bombyx mori silk fibroin chains to quickly entrap the wool keratin protein molecules homogenously. In the second group, silk/keratin mixtures were left at room temperature for days, resulting in naturally-assembled gelled solutions. It was found that silk/wool blended solutions can form hydrogels at different mixing ratios, with perfectly interconnected gel structure when the wool content was less than 30 weight percent (wt %) for the first group (ultrasonication), and 10 wt % for the second group (natural gel). Differential scanning calorimetry (DSC) and temperature modulated DSC (TMDSC) were used to confirm that the fibroin/keratin hydrogel system was well-blended without phase separation. Fourier transform infrared spectroscopy (FTIR) was used to investigate the secondary structures of blended protein gels. It was found that intermolecular β-sheet contents significantly increase as the system contains more silk for both groups of samples, resulting in stable crystalline cross-linkers in the blended hydrogel structures. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to analyze the samples’ characteristic morphology on both micro- and nanoscales, which showed that ultrasonic waves can significantly enhance the cross-linker formation and avoid phase separation between silk and keratin molecules in the blended systems. With the ability to form cross-linkages non-chemically, these silk/wool hydrogels may be economically useful for various biomedical applications, thanks to the good biocompatibility of protein molecules and the various characteristics of hydrogel systems. PMID:27618011
Forced reeling of Bombyx mori silk: separating behavior and processing conditions.
Mortimer, Beth; Holland, Chris; Vollrath, Fritz
2013-10-14
Controlled reeling is a powerful tool to investigate the details of silk processing. However, consistent forced reeling of silkworms is hindered by the significant degree of behaviorally induced variation caused by the animal. This paper proposes silkworm paralysis as a novel method to control the animal and thus in vivo spinning conditions. Using these methods, we achieve low and consistent reeling forces during the collection of over 500 m of individual silk fiber while monitoring filament variability, morphology, and properties. Novel techniques to measure the irregular silk cross-sectional areas lead to the more accurate calculation of the true engineering values and mechanical property variation of individual silk fibers. Combining controlled reeling and accurate thread measurement techniques allows us to present the relative contributions of processing and behavior in the performance envelope of Bombyx mori silk.
Thomas, Kim S; Bradshaw, Lucy E; Sach, Tracey H; Cowdell, Fiona; Batchelor, Jonathan M; Lawton, Sandra; Harrison, Eleanor F; Haines, Rachel H; Ahmed, Amina; Dean, Taraneh; Burrows, Nigel P; Pollock, Ian; Buckley, Hannah K; Williams, Hywel C; Llewellyn, Joanne; Crang, Clare; Grundy, Jane D; Guiness, Juliet; Gribbin, Andrew; Wake, Eileen V; Mitchell, Eleanor J; Brown, Sara J; Montgomery, Alan A
2017-04-01
Atopic eczema (AE) is a chronic, itchy, inflammatory skin condition that affects the quality of life of children and their families. The role of specialist clothing in the management of AE is poorly understood. To assess the effectiveness and cost-effectiveness of silk garments for the management of AE in children with moderate to severe disease. Parallel-group, observer-blind, randomised controlled trial of 6 months' duration, followed by a 2-month observational period. A nested qualitative study evaluated the beliefs of trial participants, health-care professionals and health-care commissioners about the use of silk garments for AE. Secondary care and the community in five UK centres. Children aged 1-15 years with moderate or severe AE. Participants were randomised (1 : 1 using online randomisation) to standard care or standard care plus 100% silk garments made from antimicrobially protected knitted sericin-free silk [DermaSilk TM (AlPreTec Srl, San Donà di Piave, Italy) or DreamSkin TM (DreamSkin Health Ltd, Hatfield, UK)]. Three sets of garments were supplied per participant, to be worn for up to 6 months (day and night). At 6 months the standard care group received the garments to use for the remaining 2-month observational period. Primary outcome - AE severity using the Eczema Area and Severity Index (EASI) assessed at 2, 4 and 6 months, by nurses blinded to treatment allocation. EASI scores were log-transformed for analysis. Secondary outcomes - patient-reported eczema symptoms (Patient Oriented Eczema Measure); global assessment of severity (Investigator Global Assessment); quality of life of the child (Atopic Dermatitis Quality of Life, Child Health Utility - 9 Dimensions), family (Dermatitis Family Impact Questionnaire) and main carer (EuroQoL-5 Dimensions-3 Levels); use of standard eczema treatments (e.g. emollients, topical corticosteroids); and cost-effectiveness. The acceptability and durability of the clothing, and adherence to wearing the garments, were assessed by parental/carer self-report. Safety outcomes - number of skin infections and hospitalisations for AE. A total of 300 children were randomised (26 November 2013 to 5 May 2015): 42% female, 79% white, mean age 5 years. The primary analysis included 282 out of 300 (94%) children ( n = 141 in each group). Garments were worn for at least 50% of the time by 82% of participants. Geometric mean EASI scores at baseline, 2, 4 and 6 months were 8.4, 6.6, 6.0, 5.4 for standard care and 9.2, 6.4, 5.8, 5.4 for silk clothing, respectively. There was no evidence of difference between the groups in EASI score averaged over all follow-up visits adjusted for baseline EASI score, age and centre (ratio of geometric means 0.95, 95% confidence interval 0.85 to 1.07; p = 0.43). This confidence interval is equivalent to a difference of -1.5 to 0.5 in the original EASI scale units. Skin infections occurred in 39 out of 141 (28%) and 36 out of 142 (25%) participants for standard care and silk clothing groups, respectively. The incremental cost per QALY of silk garments for children with moderate to severe eczema was £56,811 from a NHS perspective in the base case. Sensitivity analyses supported the finding that silk garments do not appear to be cost-effective within currently accepted thresholds. Knowledge of treatment allocation may have affected behaviour and outcome reporting for some of the patient-reported outcomes. The addition of silk garments to standard AE care is unlikely to improve AE severity, or to be cost-effective compared with standard care alone, for children with moderate or severe AE. This trial adds to the evidence base to guide clinical decision-making. Non-pharmacological interventions for the management of AE remain a research priority among patients. Current Controlled Trials ISRCTN77261365. This project was funded by the National Institute for Health Research (NIHR) Health Technology Assessment programme and will be published in full in Health Technology Assessment ; Vol. 21, No. 16. See the NIHR Journals Library website for further project information.
Vetter, Richard S; Rust, Michael K
2010-06-01
In a previous experimental study, recluse spiders Loxosceles reclusa Gertsch and Mulaik and Loxosceles laeta (Nicolet) (Araneae: Sicariidae) preferred small cardboard refugia covered with conspecific silk compared with never-occupied refugia. Herein, we investigated some factors that might be responsible for this preference using similar cardboard refugia. When the two Loxosceles species were given choices between refugia previously occupied by their own and by the congeneric species, neither showed a species-specific preference; however, each chose refugia coated with conspecific silk rather than those previously inhabited by a distantly related cribellate spider, Metaltella simoni (Keyserling). When L. laeta spiders were offered refugia that were freshly removed from silk donors compared with heated, aged refugia from the same silk donor, older refugia were preferred. Solvent extracts of L. laeta silk were chosen approximately as often as control refugia when a range of solvents (methylene chloride:methanol, water, and hexane) were used. However, when acetone was used on similar silk, there was a statistical preference for the control, indicating that there might be a mildly repellent aspect to acetone-washed silk. Considering the inability to show attraction to chemical aspects of fresh silk, it seems that physical attributes may be more important for selection and that there might be repellency to silk of a recently vacated spider. These findings are discussed in regard to pest management strategies to control recluse spiders.
Wongpanit, Panya; Rujiravanit, Ratana
2012-01-01
The present study was designed to examine the influence of the charge characteristics of silk fibroin on the sorption and release of charged dyes by varying the pH values of the sorption and release media as well as types of charged dyes. Negatively charged dyes (phenol red and chromotrope 2R) and positively charged dyes (crystal violet and indoine blue) were used as the model compounds. Silk fibroin films were prepared by using a solution casting technique. The prepared films were then treated with an aqueous methanol solution or annealed with water to control their conformation. The sorption behavior of the model compounds made by the methanol-treated and water-annealed silk fibroin films was investigated. Compared to the water- annealed silk fibroin films, a higher hydrophobicity of the methanol-treated silk fibroin films caused a higher sorption of the hydrophobic dyes. The dye molecules had a fairly high affinity to the silk fibroin film, even though the dye and the matrix possessed the same charge. However, in the presence of two charged groups in a single dye molecule, the electrostatic repulsion become more dominant. Stronger interaction was observed when the charges of the film and the dye were opposite. The results of dye sorption and release experiments showed that the degree of synergism or competition between electrostatic and hydrophobic interactions directly depended on the charges and chemical structure of the dye molecules and the environmental pH conditions of the existing silk fibroin film.
Mechanics and Morphology of Silk Drawn from Anesthetized Spiders
NASA Astrophysics Data System (ADS)
Madsen, B.; Vollrath, F.
CO2 and N2 anesthetized Nephila spiders produced dragline silk with mechanical properties that differed from control silk as a function of time under anesthesia. Silk from CO2 spiders had a significantly lower breaking strain and breaking energy, significantly higher initial modulus, and marginally lower breaking stress. At the onset of anesthesia the silk diameter became highly variable. During deep anesthesia silk either became thinner or retained cross-section but fibrillated.
Effect of Silk Protein Processing on Drug Delivery from Silk Films
Pritchard, Eleanor M.; Hu, Xiao; Finley, Violet; Kuo, Catherine K.; Kaplan, David L.
2013-01-01
Sericin removal from the core fibroin protein of silkworm silk is a critical first step in the use of silk for biomaterial-related applications, but degumming can affect silk biomaterial properties, including molecular weight, viscosity, diffusivity and degradation behavior. Increasing the degumming time (10, 30, 60 and 90 min) decreases the average molecular weight of silk protein in solution, silk solution viscosity, and silk film glass transition temperature, and increases the rate of degradation of silk film by protease. Model compounds spanning a range of physical-chemical properties generally showed an inverse relationship between degumming time and release rate through a varied degumming time silk coating. Degumming provides a useful control point to manipulate silk’s material properties. PMID:23349062
Zhao, Yuzhou; Han, Guangsen; Huo, Mingke; Wei, Li; Zou, Qiyun; Zhang, Yuji; Li, Jian; Gu, Yanhui; Cao, Yanghui; Zhang, Shijia
2017-04-25
To explore the application of three-stitch preventive transverse colostomy in anterior resection of low rectal cancer. From May 2015 to March 2016, 70 consecutive low rectal cancer patients undergoing anterior resection and preventive transverse colostomy in our department were recruited in this prospective study. According to the random number table method, 70 patients were divided into three-stitch transverse colostomy group(observation group, n=35) and traditional transverse colostomy group(control group, n=35). Procedure of three-stitch preventive transverse colostomy was as follows: firstly, at the upper 1/3 incision 0.5-1.0 cm distance from the skin, 7# silk was used to suture from outside to inside, then the needle belt line went through the transverse edge of the mesangial avascular zone. At the lower 1/3 incision 0.5-1.0 cm distance from the skin, 7# silk was used to suture from inside to outside, then silk went through the transverse edge of the mesangial avascular zone again and was ligatured. Finally, in the upper and lower ends of the stoma, 7# silk was used to suture and fix transverse seromuscular layer and the skin. The operation time and morbidity of postoperative complications associated with colostomy were compared between two groups. There were no significant differences in baseline data between the two groups(all P>0.05). The operative time of observation group was shorter than that of control group [(3.2±1.3) min vs. (15.5±3.4) min, P<0.05]. Incidences of colostomy skin-mucous separation, dermatitis, stoma rebound were significantly lower in observation group [5.7%(2/35) vs. 34.3%(12/35), P=0.007; 8.6%(3/35) vs. 31.4%(11/35), P=0.036; 0 vs. 17.1%(6/35), P=0.025, respectively], while incidences of parastomal hernia and stoma prolapse in two groups were similar (both P>0.05). Compared with traditional transverse colostomy method, the three-stitch preventive transverse colostomy has more operating advantages and can reduce postoperative complications associated with colostomy.
Biocompatibility of a Sonicated Silk Gel for Cervical Injection During Pregnancy
Critchfield, Agatha S.; Mccabe, Reid; Klebanov, Nikolai; Richey, Lauren; Socrate, Simona; Norwitz, Errol R.; Kaplan, David L.; House, Michael
2014-01-01
Objective: To evaluate the biocompatibility of silk gel for cervical injection. Study Design: Silk gel was injected into the cervix of pregnant rats on day 13 (n = 11) and harvested at day 17. Histology of silk gel was compared with suture controls. Also, human cervical fibroblasts were cultured on silk gel and tissue culture plastic (TCP) in vitro. Cell viability, proliferation, metabolic activity, gene expression (COL1A1, COL3A1, and COX2), and release of proinflammatory mediators (interleukin [IL] 6 and IL-8) were evaluated. Results: In vivo, a mild foreign body response was seen surrounding the silk gel and suture controls. In vitro, cervical fibroblasts were viable, metabolically active, and proliferating at 72 hours. Release of IL-6 and IL-8 was similar on silk gel and TCP. Collagen and COX2 gene expression was similar or slightly decreased compared with TCP. Conclusions: Silk gel was well tolerated in vivo and in vitro, which supports continuing efforts to develop silk gels as an alternative to cervical cerclage. PMID:24520079
Clay-Enriched Silk Biomaterials for Bone Formation
Mieszawska, Aneta J.; Llamas, Jabier Gallego; Vaiana, Christopher A.; Kadakia, Madhavi P.; Naik, Rajesh R.; Kaplan, David L.
2011-01-01
The formation of silk protein/clay composite biomaterials for bone tissue formation is described. Silk fibroin serves as an organic scaffolding material offering mechanical stability suitable for bone specific uses. Clay montmorillonite (Cloisite ® Na+) and sodium silicate are sources of osteoinductive silica-rich inorganic species, analogous to bioactive bioglass-like bone repair biomaterial systems. Different clay particle-silk composite biomaterial films were compared to silk films doped with sodium silicate as controls for support of human bone marrow derived mesenchymal stem cells (hMSCs) in osteogenic culture. The cells adhered and proliferated on the silk/clay composites over two weeks. Quantitative real-time RT-PCR analysis revealed increased transcript levels for alkaline phosphatase (ALP), bone sialoprotein (BSP), and collagen type 1 (Col I) osteogenic markers in the cells cultured on the silk/clay films in comparison to the controls. Early evidence for bone formation based on collagen deposition at the cell-biomaterial interface was also found, with more collagen observed for the silk films with higher contents of clay particles. The data suggest that the silk/clay composite systems may be useful for further study toward bone regenerative needs. PMID:21549864
Biocompatible silk-conducting polymer composite trilayer actuators
NASA Astrophysics Data System (ADS)
Fengel, Carly V.; Bradshaw, Nathan P.; Severt, Sean Y.; Murphy, Amanda R.; Leger, Janelle M.
2017-05-01
Biocompatible materials capable of controlled actuation are in high demand for use in biomedical applications such as dynamic tissue scaffolding, valves, and steerable surgical tools. Conducting polymer actuators are of interest because they operate in aqueous electrolytes at low voltages and can generate stresses similar to natural muscle. Recently, our group has demonstrated a composite material of silk and poly(pyrrole) (PPy) that is mechanically robust, made from biocompatible materials, and bends under an applied voltage when incorporated into a simple bilayer device architecture and actuated using a biologically relevant electrolyte. Here we present trilayer devices composed of two silk-PPy composite layers separated by an insulating silk layer. The trilayer architecture allows one side to expand while the other contracts, resulting in improved performance over bilayer devices. Specifically, this configuration shows a larger angle of deflection per volt applied than the analogous bilayer system, while maintaining a consistent current response throughout cycling. In addition, the overall motion of the trilayer devices is more symmetric than that of the bilayer analogs, allowing for fully reversible operation.
Silk Self-Assembly Mechanisms and Control-From Thermodynamics to Kinetics
Lu, Qiang; Zhu, Hesun; Zhang, Cencen; Zhang, Feng; Zhang, Bing; Kaplan, David L.
2012-01-01
Silkworms and spiders generate fibres that exhibit high strength and extensibility. The underlying mechanisms involved in processing silk proteins into fiber form remain incompletely understood, resulting in the failure to fully recapitulate the remarkable properties of native fibers in vitro from regenerated silk solutions. In the present study, the extensibility and high strength of regenerated silks were achieved by mimicking the natural spinning process. Conformational transitions inside micelles, followed by aggregation of micelles and their stabilization as they relate to the metastable structure of silk are described. Subsequently, the mechanisms to control the formation of nanofibrous structures were elucidated. The results clarify that the self-assembly of silk in aqueous solution is a thermodynamically driven process where kinetics also play a key role. Four key factors, molecular mobility, charge, hydrophilic interactions and concentration underlie the process. Adjusting these factors can balance nanostructure and conformational composition, and be used to achieve silk-based materials with properties comparable to native fibers. These mechanisms suggest new directions to design silk-based multifunctional materials. PMID:22320432
Brooks, Amanda E
2015-01-01
Drug delivery across mucus membranes is a particularly effective route of administration due to the large surface area. However, the unique environment present at the mucosa necessitates altered drug formulations designed to (1) deliver sensitive biologic molecules, (2) promote intimate contact between the mucosa and the drug, and (3) prolong the drug's local residence time. Thus, the pharmaceutical industry has an interest in drug delivery systems formulated around the use of mucoadhesive polymers. Mucoadhesive polymers, both synthetic and biological, have a history of use in local drug delivery. Prominently featured in the literature are chitosan, alginate, and cellulose derivatives. More recently, silk and silk-like derivatives have been explored for their potential as mucoadhesive polymers. Both silkworms and spiders produce sticky silk-like glue substances, sericin and aggregate silk respectively, that may prove an effective, natural matrix for drug delivery to the mucosa. This mini review will explore the potential of silk and silk-like derivatives as a biocompatible mucoadhesive polymer matrix for local controlled drug delivery.
Aramwit, Pornanong; Ratanavaraporn, Juthamas; Siritientong, Tippawan
2015-08-01
This study aimed to use glycerin to improve physical and wound adhesion properties of a wound dressing made of silk sericin and polyvinyl alcohol (PVA). Glycerin of a natural-derived plasticizer was used to modify the properties of silk sericin/PVA scaffolds. Various concentrations of glycerin were mixed with silk sericin and PVA and then fabricated into the scaffolds by a freeze-drying technique. The control study was performed to examine the properties of the silk sericin/PVA scaffolds with and without glycerin. Physical, mechanical, wound adhesion properties, the release profile of silk sericin, and in vivo safety of the silk sericin/PVA scaffolds with and without glycerin were investigated. The silk sericin/PVA scaffolds with glycerin exhibited more homogenous structure, less compressive modulus, higher Young modulus and elongation percentage, and a higher degree of crosslinking compared with the scaffold without glycerin. The silk sericin/PVA scaffold with 2% wt/vol glycerin showed more controlled release of silk sericin than the other scaffolds. The sustained release of silk sericin from the scaffold with glycerin would be advantageous for long-term healing of wounds. The silk sericin/PVA scaffold with 2% (wt/vol) glycerin was less adhesive to the wound compared with the scaffold without glycerin. Furthermore, the implantation of silk sericin/PVA scaffolds with 2% (wt/vol) glycerin did not cause any irritation to the tissue. The silk sericin/PVA scaffolds with glycerin were introduced as a biocompatible, more flexible, and less adhesive wound dressing than the scaffold without glycerin.
Lin, Yinan; Xia, Xiaoxia; Shang, Ke; Elia, Roberto; Huang, Wenwen; Cebe, Peggy; Leisk, Gary; Omenetto, Fiorenzo; Kaplan, David L
2013-08-12
Electrochemically controlled, reversible assembly of biopolymers into hydrogel structures is a promising technique for on-demand cell or drug encapsulation and release systems. An electrochemically sol-gel transition has been demonstrated in regenerated Bombyx mori silk fibroin, offering a controllable way to generate biocompatible and reversible adhesives and other biomedical materials. Despite the involvement of an electrochemically triggered electrophoretic migration of the silk molecules, the mechanism of the reversible electrogelation remains unclear. It is, however, known that the freshly prepared silk electrogels (e-gels) adopt a predominantly random coil conformation, indicating a lack of cross-linking as well as thermal, mechanical, and morphological stabilities. In the present work, the tuning of covalent and physical β-sheet cross-links in silk hydrogels was studied for programming the structural properties. Scanning electron microscopy (SEM) revealed delicate morphology, including locally aligned fibrillar structures, in silk e-gels, preserved by combining glutaraldehyde-cross-linking and ethanol dehydration. Fourier transform infrared (FTIR) spectroscopic analysis of either electrogelled, vortex-induced or spontaneously formed silk hydrogels showed that the secondary structure of silk e-gels was tunable between non-β-sheet-dominated and β-sheet-dominated states. Dynamic oscillatory rheology confirmed the mechanical reinforcement of silk e-gels provided by controlled chemical and physical cross-links. The selective incorporation of either chemical or physical or both cross-links into the electrochemically responsive, originally unstructured silk e-gel should help in the design for electrochemically responsive protein polymers.
Sazzini, Marco; Garagnani, Paolo; Sarno, Stefania; De Fanti, Sara; Lazzano, Teresa; Yang Yao, Daniele; Boattini, Alessio; Pazzola, Giulia; Maramotti, Sally; Boiardi, Luigi; Franceschi, Claudio; Salvarani, Carlo; Luiselli, Donata
2015-01-01
Behçet's disease is a multifactorial vasculitis that shows its highest prevalence in geographical areas historically involved in the Silk Road, suggesting that it might have originated somewhere along these ancient trade routes. This study aims to provide a first clue towards genetic evidence for this hypothesis by testing it via an anthropological evolutionary genetics approach. Behçet's disease variation at ancestry informative mitochondrial DNA control region and haplogroup diagnostic sites was characterised in 185 disease subjects of Italian descent and set into the Eurasian mitochondrial landscape by comparison with nearly 9,000 sequences representative of diversity observable in Italy and along the main Silk Road routes. Dissection of the actual genetic ancestry of disease individuals by means of population structure, spatial autocorrelation and haplogroup analyses revealed their closer relationships with some Middle Eastern and Central Asian groups settled along the Silk Road than with healthy Italians. These findings support the hypothesis that the Behçet's disease genetic risk has migrated to western Eurasia in parallel with ancestry components typical of Silk Road-related groups. This provided new insights that are useful to improve the understanding of disease origins and diffusion, as well as to inform future association studies aimed at properly accounting for the actual genetic ancestry of the examined Behçet's disease samples in order to minimise the detection of spurious associations and to improve the identification of genetic variants with actual clinical relevance.
Nonlinear control of high-frequency phonons in spider silk
NASA Astrophysics Data System (ADS)
Schneider, Dirk; Gomopoulos, Nikolaos; Koh, Cheong Y.; Papadopoulos, Periklis; Kremer, Friedrich; Thomas, Edwin L.; Fytas, George
2016-10-01
Spider dragline silk possesses superior mechanical properties compared with synthetic polymers with similar chemical structure due to its hierarchical structure comprised of partially crystalline oriented nanofibrils. To date, silk’s dynamic mechanical properties have been largely unexplored. Here we report an indirect hypersonic phononic bandgap and an anomalous dispersion of the acoustic-like branch from inelastic (Brillouin) light scattering experiments under varying applied elastic strains. We show the mechanical nonlinearity of the silk structure generates a unique region of negative group velocity, that together with the global (mechanical) anisotropy provides novel symmetry conditions for gap formation. The phononic bandgap and dispersion show strong nonlinear strain-dependent behaviour. Exploiting material nonlinearity along with tailored structural anisotropy could be a new design paradigm to access new types of dynamic behaviour.
Nguyen, Hiep Thi; Luong, Hien Thu; Nguyen, Hai Dai; Tran, Hien Anh; Huynh, Khon Chan; Vo, Toi Van
2017-01-01
Biological self-assembly is a process in which building blocks autonomously organize to form stable supermolecules of higher order and complexity through domination of weak, noncovalent interactions. For silk protein, the effect of high incubating temperature on the induction of secondary structure and self-assembly was well investigated. However, the effect of freezing and thawing on silk solution has not been studied. The present work aimed to investigate a new all-aqueous process to form 3D porous silk fibroin matrices using a freezing-assisted self-assembly method. This study proposes an experimental investigation and optimization of environmental parameters for the self-assembly process such as freezing temperature, thawing process, and concentration of silk solution. The optical images demonstrated the possibility and potential of -80ST48 treatment to initialize the self-assembly of silk fibroin as well as controllably fabricate a porous scaffold. Moreover, the micrograph images illustrate the assembly of silk protein chain in 7 days under the treatment of -80ST48 process. The surface morphology characterization proved that this method could control the pore size of porous scaffolds by control of the concentration of silk solution. The animal test showed the support of silk scaffold for cell adhesion and proliferation, as well as the cell migration process in the 3D implantable scaffold.
Tran, Hien Anh; Huynh, Khon Chan; Vo, Toi Van
2017-01-01
Biological self-assembly is a process in which building blocks autonomously organize to form stable supermolecules of higher order and complexity through domination of weak, noncovalent interactions. For silk protein, the effect of high incubating temperature on the induction of secondary structure and self-assembly was well investigated. However, the effect of freezing and thawing on silk solution has not been studied. The present work aimed to investigate a new all-aqueous process to form 3D porous silk fibroin matrices using a freezing-assisted self-assembly method. This study proposes an experimental investigation and optimization of environmental parameters for the self-assembly process such as freezing temperature, thawing process, and concentration of silk solution. The optical images demonstrated the possibility and potential of −80ST48 treatment to initialize the self-assembly of silk fibroin as well as controllably fabricate a porous scaffold. Moreover, the micrograph images illustrate the assembly of silk protein chain in 7 days under the treatment of −80ST48 process. The surface morphology characterization proved that this method could control the pore size of porous scaffolds by control of the concentration of silk solution. The animal test showed the support of silk scaffold for cell adhesion and proliferation, as well as the cell migration process in the 3D implantable scaffold. PMID:28367442
The influence of specific binding of collagen-silk chimeras to silk biomaterials on hMSC behavior
An, Bo; DesRochers, Teresa M.; Qin, Guokui; Xia, Xiaoxia; Thiagarajan, Geetha; Brodsky, Barbara; Kaplan, David
2012-01-01
Collagen-like proteins in the bacteria Streptococcus pyogenes adopt a triple-helix structure with a thermal stability similar to that of animal collagens, can be expressed in high yield in E. coli and can be easily modified through molecular biology techniques. However, potential applications for such recombinant collagens are limited by their lack of higher order structure to achieve the physical properties needed for most biomaterials. To overcome this problem, the S. pyrogenes collagen domain was fused to a repetitive Bombyx mori silk consensus sequence, as a strategy to direct specific non-covalent binding onto solid silk materials whose superior stability, mechanical and material properties have been previously established. This approach resulted in the successful binding of these new collagen-silk chimeric proteins to silk films and porous scaffolds, and the binding affinity could be controlled by varying the number of repeats in the silk sequence. To explore the potential of collagen-silk chimera for regulating biological activity, integrin (Int) and fibronectin (Fn) binding sequences from mammalian collagens were introduced into the bacterial collagen domain. The attachment of bioactive collagen-silk chimeras to solid silk biomaterials promoted hMSC spreading and proliferation substantially in comparison to the controls. The ability to combine the biomaterial features of silk with the biological activities of collagen allowed more rapid cell interactions with silk-based biomaterials, improved regulation of stem cell growth and differentiation, as well as the formation of artificial extracellular matrices useful for tissue engineering applications. PMID:23088839
NASA Astrophysics Data System (ADS)
Brooks, Amanda
2015-11-01
Drug delivery across mucus membranes is a particularly effective route of administration due to the large surface area. However, the unique environment present at the mucosa necessitates altered drug formulations designed to (1) deliver sensitive biologic molecules, (2) promote intimate contact between the mucosa and the drug, and (3) prolong the drug’s local residence time. Thus, the pharmaceutical industry has an interest in drug delivery systems formulated around the use of mucoadhesive polymers. Mucoadhesive polymers, both synthetic and biological, have a history of use in local drug delivery. Prominently featured in the literature are chitosan, alginate, and cellulose derivatives. More recently, silk and silk-like derivatives have been explored for their potential as mucoadhesive polymers. Both silkworms and spiders produce sticky silk-like glue substances, sericin and aggregate silk respectively, that may prove an effective, natural matrix for drug delivery to the mucosa. This mini review will explore the potential of silk and silk-like derivatives as a biocompatible mucoadhesive polymer matrix for local controlled drug delivery.
Silkworm silk-based materials and devices generated using bio-nanotechnology.
Huang, Wenwen; Ling, Shengjie; Li, Chunmei; Omenetto, Fiorenzo G; Kaplan, David L
2018-06-25
Silks are natural fibrous protein polymers that are spun by silkworms and spiders. Among silk variants, there has been increasing interest devoted to the silkworm silk of B. mori, due to its availability in large quantities along with its unique material properties. Silk fibroin can be extracted from the cocoons of the B. mori silkworm and combined synergistically with other biomaterials to form biopolymer composites. With the development of recombinant DNA technology, silks can also be rationally designed and synthesized via genetic control. Silk proteins can be processed in aqueous environments into various material formats including films, sponges, electrospun mats and hydrogels. The versatility and sustainability of silk-based materials provides an impressive toolbox for tailoring materials to meet specific applications via eco-friendly approaches. Historically, silkworm silk has been used by the textile industry for thousands of years due to its excellent physical properties, such as lightweight, high mechanical strength, flexibility, and luster. Recently, due to these properties, along with its biocompatibility, biodegradability and non-immunogenicity, silkworm silk has become a candidate for biomedical utility. Further, the FDA has approved silk medical devices for sutures and as a support structure during reconstructive surgery. With increasing needs for implantable and degradable devices, silkworm silk has attracted interest for electronics, photonics for implantable yet degradable medical devices, along with a broader range of utility in different device applications. This Tutorial review summarizes and highlights recent advances in the use of silk-based materials in bio-nanotechnology, with a focus on the fabrication and functionalization methods for in vitro and in vivo applications in the field of tissue engineering, degradable devices and controlled release systems.
The influence of specific binding of collagen-silk chimeras to silk biomaterials on hMSC behavior.
An, Bo; DesRochers, Teresa M; Qin, Guokui; Xia, Xiaoxia; Thiagarajan, Geetha; Brodsky, Barbara; Kaplan, David L
2013-01-01
Collagen-like proteins in the bacteria Streptococcus pyogenes adopt a triple-helix structure with a thermal stability similar to that of animal collagens, can be expressed in high yield in Escherichia coli and can be easily modified through molecular biology techniques. However, potential applications for such recombinant collagens are limited by their lack of higher order structure to achieve the physical properties needed for most biomaterials. To overcome this problem, the S. pyogenes collagen domain was fused to a repetitive Bombyx mori silk consensus sequence, as a strategy to direct specific non-covalent binding onto solid silk materials whose superior stability, mechanical and material properties have been previously established. This approach resulted in the successful binding of these new collagen-silk chimeric proteins to silk films and porous scaffolds, and the binding affinity could be controlled by varying the number of repeats in the silk sequence. To explore the potential of collagen-silk chimera for regulating biological activity, integrin (Int) and fibronectin (Fn) binding sequences from mammalian collagens were introduced into the bacterial collagen domain. The attachment of bioactive collagen-silk chimeras to solid silk biomaterials promoted hMSC spreading and proliferation substantially in comparison to the controls. The ability to combine the biomaterial features of silk with the biological activities of collagen allowed more rapid cell interactions with silk-based biomaterials, improved regulation of stem cell growth and differentiation, as well as the formation of artificial extracellular matrices useful for tissue engineering applications. Copyright © 2012 Elsevier Ltd. All rights reserved.
Silk as an innovative biomaterial for cancer therapy.
Jastrzebska, Katarzyna; Kucharczyk, Kamil; Florczak, Anna; Dondajewska, Ewelina; Mackiewicz, Andrzej; Dams-Kozlowska, Hanna
2015-01-01
Silk has been used for centuries in the textile industry and as surgical sutures. In addition to its unique mechanical properties, silk possesses other properties, such as biocompatibility, biodegradability and ability to self-assemble, which make it an interesting material for biomedical applications. Although silk forms only fibers in nature, synthetic techniques can be used to control the processing of silk into different morphologies, such as scaffolds, films, hydrogels, microcapsules, and micro- and nanospheres. Moreover, the biotechnological production of silk proteins broadens the potential applications of silk. Synthetic silk genes have been designed. Genetic engineering enables modification of silk properties or the construction of a hybrid silk. Bioengineered hybrid silks consist of a silk sequence that self-assembles into the desired morphological structure and the sequence of a polypeptide that confers a function to the silk biomaterial. The functional domains can comprise binding sites for receptors, enzymes, drugs, metals or sugars, among others. Here, we review the current status of potential applications of silk biomaterials in the field of oncology with a focus on the generation of implantable, injectable and targeted drug delivery systems and the three-dimensional cancer models based on silk scaffolds for cancer research. However, the systems described could be applied in many biomedical fields.
Murphy, Amanda R.; John, Peter St.; Kaplan, David L.
2009-01-01
A simple chemical modification method using diazonium coupling chemistry was developed to tailor the structure and hydrophilicity of silk fibroin protein. The extent of modification using several aniline derivatives was characterized using UV/vis and 1H NMR spectroscopy, and the resulting protein structure was analyzed with ATR-FTIR spectroscopy. Introduction of hydrophobic functional groups facilitated rapid conversion of the protein from a random coil to a β-sheet structure, while addition of hydrophilic groups inhibited this process. hMSCs were grown on these modified silks to assess the biocompatibility of these materials. The hydrophilicity of the silk derivatives was found to affect the growth rate and morphology, but hMSCs were able to attach, proliferate and differentiate into an osteogenic lineage on all of the silk derivatives. PMID:18417206
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Q.; Hu, X; Wang, X
Water-insoluble regenerated silk materials are normally produced by increasing the {beta}-sheet content (silk II). In the present study water-insoluble silk films were prepared by controlling the very slow drying of Bombyx mori silk solutions, resulting in the formation of stable films with a predominant silk I instead of silk II structure. Wide angle X-ray scattering indicated that the silk films stabilized by slow drying were mainly composed of silk I rather than silk II, while water- and methanol-annealed silk films had a higher silk II content. The silk films prepared by slow drying had a globule-like structure at the coremore » surrounded by nano-filaments. The core region was composed of silk I and silk II, surrounded by hydrophilic nano-filaments containing random turns and {alpha}-helix secondary structures. The insoluble silk films prepared by slow drying had unique thermal, mechanical and degradative properties. Differential scanning calorimetry results revealed that silk I crystals had stable thermal properties up to 250 C, without crystallization above the T{sub g}, but degraded at lower temperatures than silk II structure. Compared with water- and methanol-annealed films the films prepared by slow drying had better mechanical ductility and were more rapidly enzymatically degraded, reflecting the differences in secondary structure achieved via differences in post processing of the cast silk films. Importantly, the silk I structure, a key intermediate secondary structure for the formation of mechanically robust natural silk fibers, was successfully generated by the present approach of very slow drying, mimicking the natural process. The results also point to a new mode of generating new types of silk biomaterials with enhanced mechanical properties and increased degradation rates, while maintaining water insolubility, along with a low {beta}-sheet content.« less
Silk fibroin/gold nanocrystals: a new example of biopolymer-based nanocomposites
NASA Astrophysics Data System (ADS)
Noinville, S.; Garnier, A.; Courty, A.
2017-05-01
The dispersion of nanoparticles in ordered polymer nanostructures can provide control over particle location and orientation, and pave the way for tailored nanomaterials that have enhanced mechanical, electrical, or optical properties. Here we used silk fibroin, a natural biopolymer, to embed gold nanocrystals (NCs), so as to obtain well-ordered structures such as nanowires and self-assembled triangular nanocomposites. Monodisperse gold NCs synthesized in organic media are mixed to silk fibroin and the obtained nanocomposites are characterized by UV-visible spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (FE-SEM), atomic force microscopy (AFM) and Infrared spectroscopy. The optical properties study of gold NCs and silk-gold nanocomposites shows that the Surface Plasmon band is blue shifted compared to gold NCs. The size and shape of NCs gold superlattices can be well controlled by the presence of silk fibroin giving nanowires and also self-assembled triangular nanocomposites as characterized by TEM, FE-SEM and AFM. The strong interaction between gold NCs and silk fibroin is also revealed by the conformation change of silk protein in presence of gold NCs, as shown by FTIR analysis. The formation of such ordered nanocomposites (gold NCs/silk fibroin) will provide new nanoplasmonic devices.
Silk Nanospheres and Microspheres from Silk/PVA Blend Films for Drug Delivery
Wang, Xiaoqin; Yucel, Tuna; Lu, Qiang; Hu, Xiao; Kaplan, David L.
2009-01-01
Silk fibroin protein-based micro- and nanospheres provide new options for drug delivery due to their biocompatibility, biodegradability and their tunable drug loading and release properties. In the present study, we report a new aqueous-based preparation method for silk spheres with controllable sphere size and shape. The preparation was based on phase separation between silk fibroin and polyvinyl alcohol (PVA) at a weight ratio of 1/1 and 1/4. Water-insoluble silk spheres were easily obtained from the blend in a three step process: (1) air-drying the blend solution into a film, (2) film dissolution in water and (3) removal of residual PVA by subsequent centrifugation. In both cases, the spheres had approximately 30% beta-sheet content and less than 5% residual PVA. Spindle-shaped silk particles, as opposed to the spherical particles formed above, were obtained by stretching the blend films before dissolving in water. Compared to the 1/1 ratio sample, the silk spheres prepared from the 1/4 ratio sample showed a more homogeneous size distribution ranging from 300 nm up to 20 μm. Further studies showed that sphere size and polydispersity could be controlled either by changing the concentration of silk and PVA or by applying ultrasonication on the blend solution. Drug loading was achieved by mixing model drugs in the original silk solution. The distribution and loading efficiency of the drug molecules in silk spheres depended on their hydrophobicity and charge, resulting in different drug release profiles. The entire fabrication procedure could be completed within one day. The only chemical used in the preparation except water was PVA, an FDA-approved ingredient in drug formulations. Silk micro- and nanospheres reported have potential as drug delivery carriers in a variety of biomedical applications. PMID:19945157
Effect of Processing on Silk-Based Biomaterials: Reproducibility and Biocompatibility
Wray, Lindsay S.; Hu, Xiao; Gallego, Jabier; Georgakoudi, Irene; Omenetto, Fiorenzo G.; Schmidt, Daniel; Kaplan, David L.
2012-01-01
Silk fibroin has been successfully used as a biomaterial for tissue regeneration. In order to prepare silk fibroin biomaterials for human implantation a series of processing steps are required to purify the protein. Degumming to remove inflammatory sericin is a crucial step related to biocompatibility and variability in the material. Detailed characterization of silk fibroin degumming is reported. The degumming conditions significantly affected cell viability on the silk fibroin material and the ability to form three-dimensional porous scaffolds from the silk fibroin, but did not affect macrophage activation or β-sheet content in the materials formed. Methods are also provided to determine the content of residual sericin in silk fibroin solutions and to assess changes in silk fibroin molecular weight. Amino acid composition analysis was used to detect sericin residuals in silk solutions with a detection limit between 1.0% and 10% wt/wt, while fluorescence spectroscopy was used to reproducibly distinguish between silk samples with different molecular weights. Both methods are simple and require minimal sample volume, providing useful quality control tools for silk fibroin preparation processes. PMID:21695778
Concentration state dependence of the rheological and structural properties of reconstituted silk.
Mo, Chunli; Holland, Chris; Porter, David; Shao, Zhengzhong; Vollrath, Fritz
2009-10-12
The ability to control the processing of artificial silk is key to the successful application of this important and high performance biopolymer. Understanding where our current reconstitution process can be improved will not only aid us in the creation of better materials, but will also provide insight into the natural material along the way. This study aims to understand what proportion of reconstituted silk contributes to its rheological properties and what conformational state the silk proteins are in. It shows, for the first time, that a change in rheological properties can be related to a change in silk structures present in solution and reveals a low concentration gel state for silk that may have important implications for future successful artificial processing of silk.
Li, Chunmei; Hotz, Blake; Ling, Shengjie; Guo, Jin; Haas, Dylan S.; Marelli, Benedetto; Omenetto, Fiorenzo; Lin, Samuel J.; Kaplan, David L.
2016-01-01
Silk fibers spun by silkworms and spiders exhibit exceptional mechanical properties with a unique combination of strength, extensibility and toughness. In contrast, the mechanical properties of regenerated silk materials can be tuned through control of the fabrication process. Here we introduce a biomimetic, all-aqueous process, to obtain bulk regenerated silk-based materials for the fabrication of functionalized orthopedic devices. The silk materials generated in the process replicate the nano-scale structure of natural silk fibers and possess excellent mechanical properties. The biomimetic materials demonstrated excellent machinability, providing a path towards the fabrication of a new family of resorbable orthopedic devices where organic solvents are avoided, thus allowing functionalization with bioactive molecules to promote bone remodeling and integration. PMID:27697669
Silk from crickets: a new twist on spinning.
Walker, Andrew A; Weisman, Sarah; Church, Jeffrey S; Merritt, David J; Mudie, Stephen T; Sutherland, Tara D
2012-01-01
Raspy crickets (Orthoptera: Gryllacrididae) are unique among the orthopterans in producing silk, which is used to build shelters. This work studied the material composition and the fabrication of cricket silk for the first time. We examined silk-webs produced in captivity, which comprised cylindrical fibers and flat films. Spectra obtained from micro-Raman experiments indicated that the silk is composed of protein, primarily in a beta-sheet conformation, and that fibers and films are almost identical in terms of amino acid composition and secondary structure. The primary sequences of four silk proteins were identified through a mass spectrometry/cDNA library approach. The most abundant silk protein was large in size (300 and 220 kDa variants), rich in alanine, glycine and serine, and contained repetitive sequence motifs; these are features which are shared with several known beta-sheet forming silk proteins. Convergent evolution at the molecular level contrasts with development by crickets of a novel mechanism for silk fabrication. After secretion of cricket silk proteins by the labial glands they are fabricated into mature silk by the labium-hypopharynx, which is modified to allow the controlled formation of either fibers or films. Protein folding into beta-sheet structure during silk fabrication is not driven by shear forces, as is reported for other silks.
Zubrzycki, Igor Z; Ossowski, Zbigniew; Przybylski, Stanislaw; Wiacek, Magdalena; Clarke, Anna; Trabka, Bartosz
2014-01-01
Previous animal study has shown that supplementation with silk amino acid hydrolysate (SAA) increases stamina in mice. The presented study was the first formal evaluation of the influence of SAA supplementation on parameters defining physiological fitness level in humans. It was a randomized controlled trial with a parallel-group design on elite male fin-swimmers. The experimental group was supplemented with 500 mg of SAA per kg of body mass, dissolved in 250 ml of a Carborade Drink®; the control group with Carborade Drink® alone; 3 times a day, 30 minutes prior to the training session. Changes discerned in the experimental group were more pronounced than those observed in the control group. For example, the change in the serum lactic acid concentration observed in the experimental group was sevenfold less than in the control group [21.8 vs. -3.7 L% for the control and experimental groups, respectively]. An analysis of a lactate profile as a function of a maximal swimming velocity exposed a statistically significant positive shift in the swimming velocity of 0.05 m/s, at the lactate concentration of 4 mmol/L in the experimental group. There was also a positive, although statistically insignificant, increase of 2.6 L% in serum testosterone levels in the experimental group. This study showed that a 12-day SAA supplementation combined with an extensive and rigorous training schedule was sufficient to increase an aerobic stamina. However, this phenomenon was associated with an augmented level of muscular damage (an increased level of creatine phosphokinase in the experimental group).
Structure-Function-Property-Design Interplay in Biopolymers: Spider Silk
Tokareva, Olena; Jacobsen, Matthew; Buehler, Markus; Wong, Joyce; Kaplan, David L.
2013-01-01
Spider silks have been a focus of research for almost two decades due to their outstanding mechanical and biophysical properties. Recent advances in genetic engineering have led to the synthesis of recombinant spider silks, thus helping to unravel a fundamental understanding of structure-function-property relationships. The relationships between molecular composition, secondary structures, and mechanical properties found in different types of spider silks are described, along with a discussion of artificial spinning of these proteins and their bioapplications, including the role of silks in biomineralization and fabrication of biomaterials with controlled properties. PMID:23962644
Effect of polyamines on mechanical and structural properties of Bombyx mori silk.
Yerra, Aparna; Mysarla, Danti Kumari; Siripurapu, Prasanthi; Jha, Anjali; Valluri, Satyavathi V; Mamillapalli, Anitha
2017-01-01
Silkworm, Bombyx mori (B. mori) belongs to the Lepidoptera family. The silk produced from this insect, mulberry silk, gained lot of importance as a fabric. Silk is being exploited as a biomaterial due to its surprising strength and biocompatibility. Polyamines (PA) are important cell growth regulators. In the present work the effect of treatment of polyamines, putrescine (Put), spermidine (Spd), and spermine (Spm) on the quantity and quality of silk produced was assessed. Results showed that exogenous feeding of Spd at a concentration of 50 µM increased fiber length significantly. Analysis by Fourier transform infrared (FTIR) on the properties of silk obtained from Spd treated silkworms revealed an increase in percentage of absorption with no difference in peak positions of amide I and amide III groups. Scanning electron microscopy (SEM) revealed an increase in diameter of silk. Further, analysis at molecular level showed an increase in fibroin expression in Spd treated silk glands. However, the Spd treatment showed no significant difference with respect to fibroin to sericin ratio per unit weight of cocoon, silk tenacity, and percent elongation. Thus, the present results show that polyamine treatment would influence silk quality at structural, mechanical, and molecular level in the Bombyx mori, which can be exploited in silk biomaterial production. © 2016 Wiley Periodicals, Inc.
Johnson, Eric T; Berhow, Mark A; Dowd, Patrick F
2007-04-18
Hi II maize (Zea mays) plants were engineered to express maize p1 cDNA, a Myb transcription factor, controlled by a putative silk specific promoter, for secondary metabolite production and corn earworm resistance. Transgene expression did not enhance silk color, but about half of the transformed plant silks displayed browning when cut, which indicated the presence of p1-produced secondary metabolites. Levels of maysin, a secondary metabolite with insect toxicity, were highest in newly emerged browning silks. The insect resistance of transgenic silks was also highest at emergence, regardless of maysin levels, which suggests that other unidentified p1-induced molecules likely contributed to larval mortality. Mean survivor weights of corn earworm larvae fed mature browning transgenic silks were significantly lower than weights of those fed mature nonbrowning transgenic silks. Some transgenic pericarps browned with drying and contained similar molecules found in pericarps expressing a dominant p1 allele, suggesting that the promoter may not be silk-specific.
Invited review the coiled coil silk of bees, ants, and hornets.
Sutherland, Tara D; Weisman, Sarah; Walker, Andrew A; Mudie, Stephen T
2012-06-01
In this article, we review current knowledge about the silk produced by the larvae of bees, ants, and hornets [Apoidea and Vespoidea: Hymenoptera]. Different species use the silk either alone or in composites for a variety of purposes including mechanical reinforcement, thermal regulation, or humidification. The characteristic molecular structure of this silk is α-helical proteins assembled into tetrameric coiled coils. Gene sequences from seven species are available, and each species possesses a copy of each of four related silk genes that encode proteins predicted to form coiled coils. The proteins are ordered at multiple length scales within the labial gland of the final larval instar before spinning. The insects control the morphology of the silk during spinning to produce either fibers or sheets. The silk proteins are small and non repetitive and have been produced artificially at high levels by fermentation in E. coli. The artificial silk proteins can be fabricated into materials with structural and mechanical properties similar to those of native silks. Copyright © 2011 Wiley Periodicals, Inc.
Silk-fibrin/hyaluronic acid composite gels for nucleus pulposus tissue regeneration.
Park, Sang-Hyug; Cho, Hongsik; Gil, Eun Seok; Mandal, Biman B; Min, Byoung-Hyun; Kaplan, David L
2011-12-01
Scaffold designs are critical for in vitro culture of tissue-engineered cartilage in three-dimensional environments to enhance cellular differentiation for tissue engineering and regenerative medicine. In the present study we demonstrated silk and fibrin/hyaluronic acid (HA) composite gels as scaffolds for nucleus pulposus (NP) cartilage formation, providing both biochemical support for NP outcomes as well as fostering the retention of size of the scaffold during culture due to the combined features of the two proteins. Passage two (P2) human chondrocytes cultured in 10% serum were encapsulated within silk-fibrin/HA gels. Five study groups with fibrin/HA gel culture (F/H) along with varying silk concentrations (2% silk gel only, fibrin/HA gel culture with 1% silk [F/H+1S], 1.5% silk [F/H+1.5S], and 2% silk [F/H+2S]) were cultured in serum-free chondrogenic defined media (CDM) for 4 weeks. Histological examination with alcian blue showed a defined chondrogenic area at 1 week in all groups that widened homogenously until 4 weeks. In particular, chondrogenic differentiation observed in the F/H+1.5S had no reduction in size throughout the culture period. The results of biochemical and molecular biological evaluations supported observations made during histological examination. Mechanical strength measurements showed that the silk mixed gels provided stronger mechanical properties for NP tissue than fibrin/HA composite gels in CDM. This effect could potentially be useful in the study of in vitro NP tissue engineering as well as for clinical implications for NP tissue regeneration.
Silk-Fibrin/Hyaluronic Acid Composite Gels for Nucleus Pulposus Tissue Regeneration
Park, Sang-Hyug; Cho, Hongsik; Gil, Eun Seok; Mandal, Biman B.; Min, Byoung-Hyun
2011-01-01
Scaffold designs are critical for in vitro culture of tissue-engineered cartilage in three-dimensional environments to enhance cellular differentiation for tissue engineering and regenerative medicine. In the present study we demonstrated silk and fibrin/hyaluronic acid (HA) composite gels as scaffolds for nucleus pulposus (NP) cartilage formation, providing both biochemical support for NP outcomes as well as fostering the retention of size of the scaffold during culture due to the combined features of the two proteins. Passage two (P2) human chondrocytes cultured in 10% serum were encapsulated within silk-fibrin/HA gels. Five study groups with fibrin/HA gel culture (F/H) along with varying silk concentrations (2% silk gel only, fibrin/HA gel culture with 1% silk [F/H+1S], 1.5% silk [F/H+1.5S], and 2% silk [F/H+2S]) were cultured in serum-free chondrogenic defined media (CDM) for 4 weeks. Histological examination with alcian blue showed a defined chondrogenic area at 1 week in all groups that widened homogenously until 4 weeks. In particular, chondrogenic differentiation observed in the F/H+1.5S had no reduction in size throughout the culture period. The results of biochemical and molecular biological evaluations supported observations made during histological examination. Mechanical strength measurements showed that the silk mixed gels provided stronger mechanical properties for NP tissue than fibrin/HA composite gels in CDM. This effect could potentially be useful in the study of in vitro NP tissue engineering as well as for clinical implications for NP tissue regeneration. PMID:21736446
Guo, Kaiyu; Dong, Zhaoming; Zhang, Yan; Wang, Dandan; Tang, Muya; Zhang, Xiaolu; Xia, Qingyou; Zhao, Ping
2018-05-01
Bombyx mori silk fibers with thin diameters have advantages of lightness and crease-resistance. Many studies have used anti-juvenile hormones to induce trimolters in order to generate thin silk; however, there has been comparatively little analysis of the morphology, structure and mechanical properties of trimolter silk. This study induced two kinds of trimolters by appling topically anti-juvenile hormones and obtained thin diameter silk. Scanning electron microscope (SEM), FTIR analysis, tensile mechanical testing, chitin staining were used to reveal that the morphology, conformation and mechanical property of the trimolter silk. Cocoon of trimolters were highly densely packed by thinner fibers and thus had small apertures. We found that the conformation of trimolter silk fibroin changed and formed more β-sheet structures. In addition, analysis of mechanical parameters yielded a higher Young's modulus and strength in trimolter silk than in the control. By chitin staining of silk gland, we postulated that the mechanical properties of trimolters' silk was enhanced greatly during to the structural changes of silk gland. We induced trimolters by anti-juvenile hormones and the resulting cocoons were more closely packed and had smaller silk fiber diameters. We found that the conformation of trimolters silk fibroin had a higher content of β-sheet structures and better mechanical properties. Our study revealed the structures and mechanical properties of trimolter silk, and provided a valuable reference to improve silk quality by influencing molting in silkworms. Copyright © 2018 Elsevier B.V. All rights reserved.
Uptake of atmospheric carbon dioxide into silk fiber by silkworms.
Magoshi, Jun; Tanaka, Toshihisa; Sasaki, Haruto; Kobayashi, Masatoshi; Magoshi, Yoshiko; Tsuda, Hidetoshi; Becker, Mary A; Inoue, Shun-ichi; Ishimaru, Ken
2003-01-01
The relation between the uptake of atmospheric CO(2) and insect's production of silk fiber has not yet been reported. Here, we provide the first quantitative demonstrations that four species of silkworms (Bombyx mori, Samia cynthia ricini, Antheraea pernyi, and Antheraea yamamai) and a silk-producing spider (Nephila clavata) incorporate atmospheric CO(2) into their silk fibers. The abundance of (13)C incorporated from the environment was determined by mass spectrometry and (13)C NMR measurements. Atmospheric CO(2) was incorporated into the silk fibers in the carbonyl groups of alanine, aspartic acid, serine, and glycine and the C(gamma) of aspartic acid. We show a simple model for the uptake of atmospheric CO(2) by silkworms. These results will demonstrate that silkworm has incorporated atmospheric CO(2) into silk fiber via the TCA cycle; however, the magnitude of uptake into the silk fibers is smaller than that consumed by the photosynthesis in trees and coral reefs.
Thromboelastometric and platelet responses to silk biomaterials.
Kundu, Banani; Schlimp, Christoph J; Nürnberger, Sylvia; Redl, Heinz; Kundu, S C
2014-05-13
Silkworm's silk is natural biopolymer with unique properties including mechanical robustness, all aqueous base processing and ease in fabrication into different multifunctional templates. Additionally, the nonmulberry silks have cell adhesion promoting tri-peptide (RGD) sequences, which make it an immensely potential platform for regenerative medicine. The compatibility of nonmulberry silk with human blood is still elusive; thereby, restricts its further application as implants. The present study, therefore, evaluate the haematocompatibility of silk biomaterials in terms of platelet interaction after exposure to nonmulberry silk of Antheraea mylitta using thromboelastometry (ROTEM). The mulberry silk of Bombyx mori and clinically used Uni-Graft W biomaterial serve as references. Shortened clotting time, clot formation times as well as enhanced clot strength indicate the platelet mediated activation of blood coagulation cascade by tested biomaterials; which is comparable to controls.
Li, Chunmei; Hotz, Blake; Ling, Shengjie; Guo, Jin; Haas, Dylan S; Marelli, Benedetto; Omenetto, Fiorenzo; Lin, Samuel J; Kaplan, David L
2016-12-01
Silk fibers spun by silkworms and spiders exhibit exceptional mechanical properties with a unique combination of strength, extensibility and toughness. In contrast, the mechanical properties of regenerated silk materials can be tuned through control of the fabrication process. Here we introduce a biomimetic, all-aqueous process, to obtain bulk regenerated silk-based materials for the fabrication of functionalized orthopedic devices. The silk materials generated in the process replicate the nano-scale structure of natural silk fibers and possess excellent mechanical properties. The biomimetic materials demonstrate excellent machinability, providing a path towards the fabrication of a new family of resorbable orthopedic devices where organic solvents are avoided, thus allowing functionalization with bioactive molecules to promote bone remodeling and integration. Copyright © 2016 Elsevier Ltd. All rights reserved.
Silk sericin ameliorates wound healing and its clinical efficacy in burn wounds.
Aramwit, Pornanong; Palapinyo, Sirinoot; Srichana, Teerapol; Chottanapund, Suthat; Muangman, Pornprom
2013-09-01
The aim of this study was to evaluate the effect of silk sericin, a protein from silkworm cocoon, on scratch wound healing in vitro. For applicable result in clinical use, we also study the efficacy of sericin added to a standard antimicrobial cream, silver zinc sulfadiazine, for open wound care in the treatment of second-degree burn wounds. In vitro scratch assays show that sericin at concentration 100 μg/mL can promote the migration of fibroblast L929 cells similar to epidermal growth factor (positive control) at 100 μg/mL. After 1 day of treatment, the length of scratch in wounds treated with sericin was significantly shorter than the length of negative control wounds (culture medium without sericin). For clinical study, a total of 29 patients with 65 burn wounds which covered no less than 15 % of total body surface area were randomly assigned to either control (wounds treated with silver zinc sulfadiazine cream) or treatment (wounds treated with silver zinc sulfadiazine with added sericin cream) group in this randomized, double-blind, standard-controlled study. The results showed that the average time to reach 70 % re-epithelialization of the burned surface and complete healing in the treatment group was significantly shorter, approximately 5-7 days, than in the control group. Regarding time for complete healing, control wounds took approximately 29.28 ± 9.27 days, while wounds treated with silver zinc sulfadiazine with added sericin cream took approximately 22.42 ± 6.33 days, (p = 0.001). No infection or severe reaction was found in any wounds. This is the first clinical study to show that silk sericin is safe and beneficial for burn wound treatment when it is added to silver sulfadiazine cream.
Harmonic curved shears system prevent of bile leakage after liver resection in a pig model.
Shimoda, Mitsugi; Iwasaki, Yoshimi; Kubota, Keiichi
2014-01-01
We evaluated the efficacy of TachoComb (TC) collagen fleece and Harmonic Focus (HF) shears in a pig liver resection model. Pigs were divided into 3 groups of 7, in which vessels were tied with silk and TC was applied to the cut surfaces (Silk+TC group), sealed and sheared with HF and TC (HF+TC group), or sealed using HF alone (HF-TC group). After 1 month, we conducted a histologic evaluation and recorded the incidence of bile leakage with infected collections at the liver cut surface. Six pigs were evaluated in each group. In the Silk+TC group, 4 of the 6 pigs had infected collections at the cut surface. Histologically, the silk had remained under the fibrotic tissue, which contained remnants of TC fragments. In the HF+TC group, 5 of the 6 pigs also had infected collections, and histologically, TC had remained in the hard fibrotic tissues. In the HF-TC group, none of the 6 pigs had infected collections, and the histologic findings were normal. Use of the HF alone may be an effective method for preventing bile leakage in infected collections after liver resection.
Hierarchical charge distribution controls self-assembly process of silk in vitro
NASA Astrophysics Data System (ADS)
Zhang, Yi; Zhang, Cencen; Liu, Lijie; Kaplan, David L.; Zhu, Hesun; Lu, Qiang
2015-12-01
Silk materials with different nanostructures have been developed without the understanding of the inherent transformation mechanism. Here we attempt to reveal the conversion road of the various nanostructures and determine the critical regulating factors. The regulating conversion processes influenced by a hierarchical charge distribution were investigated, showing different transformations between molecules, nanoparticles and nanofibers. Various repulsion and compressive forces existed among silk fibroin molecules and aggregates due to the exterior and interior distribution of charge, which further controlled their aggregating and deaggregating behaviors and finally formed nanofibers with different sizes. Synergistic action derived from molecular mobility and concentrations could also tune the assembly process and final nanostructures. It is suggested that the complicated silk fibroin assembly processes comply a same rule based on charge distribution, offering a promising way to develop silk-based materials with designed nanostructures.
Apatite-coated Silk Fibroin Scaffolds to Healing Mandibular Border Defects in Canines
Zhao, Jun; Zhang, Zhiyuan; Wang, Shaoyi; Sun, Xiaojuan; Zhang, Xiuli; Chen, Jake; Kaplan, David L.; Jiang, Xinquan
2010-01-01
Tissue engineering has become a new approach for repairing bony defects. Highly porous osteoconductive scaffolds perform the important role for the success of bone regeneration. By biomimetic strategy, apatite-coated porous biomaterial based on silk fibroin scaffolds (SS) might provide an enhanced osteogenic environment for bone-related outcomes. To assess the effects of apatite-coated silk fibroin (mSS) biomaterials for bone healing as a tissue engineered bony scaffold, we explored a tissue engineered bony graft using mSS seeded with osteogenically induced autologous bone marrow stromal cells (bMSCs) to repair inferior mandibular border defects in a canine model. The results were compared with those treated with bMSCs/SS constructs, mSS alone, SS alone, autologous mandibular grafts and untreated blank defects. According to radiographic and histological examination, new bone formation was observed from 4 weeks post-operation, and the defect site was completely repaired after 12 months for the bMSCs/mSS group. In the bMSCs/SS group, new bone formation was observed with more residual silk scaffold remaining at the center of the defect compared with the bMSCs/mSS group. The engineered bone with bMSCs/mSS achieved satisfactory bone mineral densities (BMD) at 12 months post-operation close to those of normal mandible (p>0.05). The quantities of newly formed bone area for the bMSCs/mSS group was higher than the bMSCs/SS group (p<0.01), but no significant differences were found when compared with the autograft group (p>0.05). In contrast, bony defects remained in the center with undegraded silk fibroin scaffold and fibrous connective tissue, and new bone only formed at the periphery in the groups treated with mSS or SS alone. The results suggested apatite-coated silk fibroin scaffolds combined with bMSCs could be successfully used to repair mandibular critical size border defects and the premineralization of these porous silk fibroin protein scaffolds provided an increased osteoconductive environment for bMSCs to regenerate sufficient new bone tissue. PMID:19505603
Dissolvable Films of Silk Fibroin for Ultrathin Conformal Bio-integrated Electronics
2010-01-01
spin- cast films of polyimide (PI) served as a support for arrays of electrodes designed for passive neural recording. Control devices consisted of...optically transparent, mechanically robust, biocompatible silk fibroin films. Adv. Mater. 20, 3070–3072 (2008). 20. Murphy, A. R., John, P. S. & Kaplan, D...induced colour change on periodically nanopatterned silk films. Opt. Express 17, 21271–21279 (2009). 25. Parker, S. T. et al. Biocompatible silk printed
Silk film biomaterials for ocular surface repair
NASA Astrophysics Data System (ADS)
Lawrence, Brian David
Current biomaterial approaches for repairing the cornea's ocular surface upon injury are partially effective due to inherent material limitations. As a result there is a need to expand the biomaterial options available for use in the eye, which in turn will help to expand new clinical innovations and technology development. The studies illustrated here are a collection of work to further characterize silk film biomaterials for use on the ocular surface. Silk films were produced from regenerated fibroin protein solution derived from the Bombyx mori silkworm cocoon. Methods of silk film processing and production were developed to produce consistent biomaterials for in vitro and in vivo evaluation. A wide range of experiments was undertaken that spanned from in vitro silk film material characterization to in vivo evaluation. It was found that a variety of silk film properties could be controlled through a water-annealing process. Silk films were then generated that could be use in vitro to produce stratified corneal epithelial cell sheets comparable to tissue grown on the clinical standard substrate of amniotic membrane. This understanding was translated to produce a silk film design that enhanced corneal healing in vivo on a rabbit injury model. Further work produced silk films with varying surface topographies that were used as a simplified analog to the corneal basement membrane surface in vitro. These studies demonstrated that silk film surface topography is capable of directing corneal epithelial cell attachment, growth, and migration response. Most notably epithelial tissue development was controllably directed by the presence of the silk surface topography through increasing cell sheet migration efficiency at the individual cellular level. Taken together, the presented findings represent a comprehensive characterization of silk film biomaterials for use in ocular surface reconstruction, and indicate their utility as a potential material choice in the development of innovative procedures and technologies for corneal repair.
Silks produced by insect labial glands
Sutherland, Tara
2008-01-01
Insect silks are secreted from diverse gland types; this chapter deals with the silks produced by labial glands of Holometabola (insects with pupa in their life cycle). Labial silk glands are composed of a few tens or hundreds of large polyploid cells that secrete polymerizing proteins which are stored in the gland lumen as a semi-liquid gel. Polymerization is based on weak molecular interactions between repetitive amino acid motifs present in one or more silk proteins; cross-linking by disulfide bonds may be important in the silks spun under water. The mechanism of long-term storage of the silk dope inside the glands and its conversion into the silk fiber during spinning is not fully understood. The conversion occurs within seconds at ambient temperature and pressure, under minimal drawing force and in some cases under water. The silk filament is largely built of proteins called fibroins and in Lepidoptera and Trichoptera coated by glue-type proteins known as sericins. Silks often contain small amounts of additional proteins of poorly known function. The silk components controlling dope storage and filament formation seem to be conserved at the level of orders, while the nature of polymerizing motifs in the fibroins, which determine the physical properties of silk, differ at the level of family and even genus. Most silks are based on fibroin β-sheets interrupted with other structures such as α-helices but the silk proteins of certain sawflies have predominantly a collagen-like or polyglycine II arrangement and the silks of social Hymenoptera are formed from proteins in a coiled coil arrangement. PMID:19221523
Heat Capacity of B. Mori Silk Fibroin Based on the Vibrational-Motion of Poly(amino acid)s.
NASA Astrophysics Data System (ADS)
Pyda, Marek; Hu, Xiao; Cebe, Peggy
2009-03-01
Bombyx mori silk fibroin heat capacities with and without water have been determined based on the vibrational motions of poly(amino acid)s and water, using the Advanced Thermal Analysis System (ATHAS) Data Bank. The heat capacities, Cp, of dry silk and silk-water were linked to their vibrational spectra based on the group and skeletal vibration contributions. For dry silk, the experimental and calculated Cp agree to better than ±3% between 200 K and 435 K. The heat capacity of the solid silk-water system, below the glass transition, was estimated from a sum of linear combinations of the molar fractions of the vibrational heat capacities of dry silk and glassy water. Calculations are compared to experimental data obtained from calorimetric methods, using hermetic and non-hermetic pans. The approach presented allows one to predict the low temperature vibrational heat capacity for dry silk and for the silk-water system down to zero kelvin, and, together with an extension to higher temperatures, above the glass transition. This can be used as a reference baseline for quantitative thermal analysis of this biomaterial..
Silk-based delivery systems of bioactive molecules
Numata, Keiji; Kaplan, David L
2010-01-01
Silks are biodegradable, biocompatible, self-assemblying proteins that can also be tailored via genetic engineering to contain specific chemical features, offering utility for drug and gene delivery. Silkworm silk has been used in biomedical sutures for decades and has recently achieved Food and Drug Administration approval for expanded biomaterials device utility. With the diversity and control of size, structure and chemistry, modified or recombinant silk proteins can be designed and utilized in various biomedical application, such as for the delivery of bioactive molecules. This review focuses on the biosynthesis and applications of silk-based multi-block copolymer systems and related silk protein drug delivery systems. The utility of these systems for the delivery of small molecule drugs, proteins and genes are reviewed. PMID:20298729
Aqueous multiphoton lithography with multifunctional silk-centred bio-resists.
Sun, Yun-Lu; Li, Qi; Sun, Si-Ming; Huang, Jing-Chun; Zheng, Bo-Yuan; Chen, Qi-Dai; Shao, Zheng-Zhong; Sun, Hong-Bo
2015-10-16
Silk and silk fibroin, the biomaterial from nature, nowadays are being widely utilized in many cutting-edge micro/nanodevices/systems via advanced micro/nanofabrication techniques. Herein, for the first time to our knowledge, we report aqueous multiphoton lithography of diversiform-regenerated-silk-fibroin-centric inks using noncontact and maskless femtosecond laser direct writing (FsLDW). Initially, silk fibroin was FsLDW-crosslinked into arbitrary two/three-dimensional micro/nanostructures with good elastic properties merely using proper photosensitizers. More interestingly, silk/metal composite micro/nanodevices with multidimension-controllable metal content can be FsLDW-customized through laser-induced simultaneous fibroin oxidation/crosslinking and metal photoreduction using the simplest silk/Ag(+) or silk/[AuCl4](-) aqueous resists. Noticeably, during FsLDW, fibroin functions as biological reductant and matrix, while metal ions act as the oxidant. A FsLDW-fabricated prototyping silk/Ag microelectrode exhibited 10(4)-Ω(-1 ) m(-1)-scale adjustable electric conductivity. This work not only provides a powerful development to silk micro/nanoprocessing techniques but also creates a novel way to fabricate multifunctional metal/biomacromolecule complex micro/nanodevices for applications such as micro/nanoscale mechanical and electrical bioengineering and biosystems.
Aqueous multiphoton lithography with multifunctional silk-centred bio-resists
Sun, Yun-Lu; Li, Qi; Sun, Si-Ming; Huang, Jing-Chun; Zheng, Bo-Yuan; Chen, Qi-Dai; Shao, Zheng-Zhong; Sun, Hong-Bo
2015-01-01
Silk and silk fibroin, the biomaterial from nature, nowadays are being widely utilized in many cutting-edge micro/nanodevices/systems via advanced micro/nanofabrication techniques. Herein, for the first time to our knowledge, we report aqueous multiphoton lithography of diversiform-regenerated-silk-fibroin-centric inks using noncontact and maskless femtosecond laser direct writing (FsLDW). Initially, silk fibroin was FsLDW-crosslinked into arbitrary two/three-dimensional micro/nanostructures with good elastic properties merely using proper photosensitizers. More interestingly, silk/metal composite micro/nanodevices with multidimension-controllable metal content can be FsLDW-customized through laser-induced simultaneous fibroin oxidation/crosslinking and metal photoreduction using the simplest silk/Ag+ or silk/[AuCl4]− aqueous resists. Noticeably, during FsLDW, fibroin functions as biological reductant and matrix, while metal ions act as the oxidant. A FsLDW-fabricated prototyping silk/Ag microelectrode exhibited 104-Ω−1 m−1-scale adjustable electric conductivity. This work not only provides a powerful development to silk micro/nanoprocessing techniques but also creates a novel way to fabricate multifunctional metal/biomacromolecule complex micro/nanodevices for applications such as micro/nanoscale mechanical and electrical bioengineering and biosystems. PMID:26472600
Aqueous multiphoton lithography with multifunctional silk-centred bio-resists
NASA Astrophysics Data System (ADS)
Sun, Yun-Lu; Li, Qi; Sun, Si-Ming; Huang, Jing-Chun; Zheng, Bo-Yuan; Chen, Qi-Dai; Shao, Zheng-Zhong; Sun, Hong-Bo
2015-10-01
Silk and silk fibroin, the biomaterial from nature, nowadays are being widely utilized in many cutting-edge micro/nanodevices/systems via advanced micro/nanofabrication techniques. Herein, for the first time to our knowledge, we report aqueous multiphoton lithography of diversiform-regenerated-silk-fibroin-centric inks using noncontact and maskless femtosecond laser direct writing (FsLDW). Initially, silk fibroin was FsLDW-crosslinked into arbitrary two/three-dimensional micro/nanostructures with good elastic properties merely using proper photosensitizers. More interestingly, silk/metal composite micro/nanodevices with multidimension-controllable metal content can be FsLDW-customized through laser-induced simultaneous fibroin oxidation/crosslinking and metal photoreduction using the simplest silk/Ag+ or silk/[AuCl4]- aqueous resists. Noticeably, during FsLDW, fibroin functions as biological reductant and matrix, while metal ions act as the oxidant. A FsLDW-fabricated prototyping silk/Ag microelectrode exhibited 104-Ω-1 m-1-scale adjustable electric conductivity. This work not only provides a powerful development to silk micro/nanoprocessing techniques but also creates a novel way to fabricate multifunctional metal/biomacromolecule complex micro/nanodevices for applications such as micro/nanoscale mechanical and electrical bioengineering and biosystems.
Gustafsson, Linnea; Jansson, Ronnie; Hedhammar, My; van der Wijngaart, Wouter
2018-01-01
Spider silk has recently become a material of high interest for a large number of biomedical applications. Previous work on structuring of silk has resulted in particles (0D), fibers (1D), films (2D), and foams, gels, capsules, or microspheres (3D). However, the manufacturing process of these structures is complex and involves posttreatment of chemicals unsuitable for biological applications. In this work, the self-assembly of recombinant spider silk on micropatterned superhydrophobic surfaces is studied. For the first time, structuring of recombinant spider silk is achieved using superhydrophobic surfaces under conditions that retain the bioactivity of the functionalized silk. By tuning the superhydrophobic surface geometry and the silk solution handling parameters, this approach allows controlled generation of silk coatings, nanowires, and sheets. The underlying mechanisms and governing parameters are discussed. It is believed that the results of this work pave the way for fabrication of silk formations for applications including vehicles for drug delivery, optical sensing, antimicrobial coatings, and cell culture scaffolds. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sharma, Mandeep; Chai, Chenglin; Morohashi, Kengo; Grotewold, Erich; Snook, Maurice E; Chopra, Surinder
2012-11-01
The maize (Zea mays) red aleurone1 (pr1) encodes a CYP450-dependent flavonoid 3'-hydroxylase (ZmF3'H1) required for the biosynthesis of purple and red anthocyanin pigments. We previously showed that Zmf3'h1 is regulated by C1 (Colorless1) and R1 (Red1) transcription factors. The current study demonstrates that, in addition to its role in anthocyanin biosynthesis, the Zmf3'h1 gene also participates in the biosynthesis of 3-deoxyflavonoids and phlobaphenes that accumulate in maize pericarps, cob glumes, and silks. Biosynthesis of 3-deoxyflavonoids is regulated by P1 (Pericarp color1) and is independent from the action of C1 and R1 transcription factors. In maize, apiforol and luteoforol are the precursors of condensed phlobaphenes. Maize lines with functional alleles of pr1 and p1 (Pr1;P1) accumulate luteoforol, while null pr1 lines with a functional or non-functional p1 allele (pr1;P1 or pr1;p1) accumulate apiforol. Apiforol lacks a hydroxyl group at the 3'-position of the flavylium B-ring, while luteoforol has this hydroxyl group. Our biochemical analysis of accumulated compounds in different pr1 genotypes showed that the pr1 encoded ZmF3'H1 has a role in the conversion of mono-hydroxylated to bi-hydroxylated compounds in the B-ring. Steady state RNA analyses demonstrated that Zmf3'h1 mRNA accumulation requires a functional p1 allele. Using a combination of EMSA and ChIP experiments, we established that the Zmf3'h1 gene is a direct target of P1. Highlighting the significance of the Zmf3'h1 gene for resistance against biotic stress, we also show here that the p1 controlled 3-deoxyanthocyanidin and C-glycosyl flavone (maysin) defence compounds accumulate at significantly higher levels in Pr1 silks as compared to pr1 silks. By virtue of increased maysin synthesis in Pr1 plants, corn ear worm larvae fed on Pr1; P1 silks showed slower growth as compared to pr1; P1 silks. Our results show that the Zmf3'h1 gene participates in the biosynthesis of phlobaphenes and agronomically important 3-deoxyflavonoid compounds under the regulatory control of P1.
Lee, Ji Hye; Song, Dae Woong; Park, Young Hwan; Um, In Chul
2016-08-01
Regenerated silk film has been increasingly attracting the research community's attention for biomedical applications due to its good biocompatibility and excellent cyto-compatibility. However, some limitations regarding its mechanical properties, such as brittleness, have restricted the use of silk films for industrial biomedical applications. In this study, regenerated silk films with different residual sericin content were prepared applying controlled degumming conditions to evaluate the effect of sericin content on the structure and properties of the films generated. When the residual sericin content increased to 0.6%, crystallinity index and breaking strength of silk films were increased. Above this value, these parameters then decreased. A 1.5 fold increase of silk film elongation properties was obtained when incorporating 16% sericin. Regardless of sericin content, all regenerated silk films showed excellent cyto-compatibility, comparable to the one obtained with tissue culture plates. Copyright © 2016 Elsevier B.V. All rights reserved.
Silk micrococoons for protein stabilisation and molecular encapsulation
NASA Astrophysics Data System (ADS)
Shimanovich, Ulyana; Ruggeri, Francesco S.; de Genst, Erwin; Adamcik, Jozef; Barros, Teresa P.; Porter, David; Müller, Thomas; Mezzenga, Raffaele; Dobson, Christopher M.; Vollrath, Fritz; Holland, Chris; Knowles, Tuomas P. J.
2017-07-01
Naturally spun silks generate fibres with unique properties, including strength, elasticity and biocompatibility. Here we describe a microfluidics-based strategy to spin liquid native silk, obtained directly from the silk gland of Bombyx mori silkworms, into micron-scale capsules with controllable geometry and variable levels of intermolecular β-sheet content in their protein shells. We demonstrate that such micrococoons can store internally the otherwise highly unstable liquid native silk for several months and without apparent effect on its functionality. We further demonstrate that these native silk micrococoons enable the effective encapsulation, storage and release of other aggregation-prone proteins, such as functional antibodies. These results show that native silk micrococoons are capable of preserving the full activity of sensitive cargo proteins that can aggregate and lose function under conditions of bulk storage, and thus represent an attractive class of materials for the storage and release of active biomolecules.
Shanmugavel, Suganya; Reddy, Venugopal Jayarama; Ramakrishna, Seeram; Lakshmi, B S; Dev, Vr Giri
2014-07-01
Advances in electrospun nanofibres with bioactive materials have enhanced the scope of fabricating biomimetic scaffolds for tissue engineering. The present research focuses on fabrication of polycaprolactone/aloe vera/silk fibroin nanofibrous scaffolds by electrospinning followed by hydroxyapatite deposition by calcium-phosphate dipping method for bone tissue engineering. Morphology, composition, hydrophilicity and mechanical properties of polycaprolactone/aloe vera/silk fibroin-hydroxyapatite nanofibrous scaffolds along with controls polycaprolactone and polycaprolactone/aloe vera/silk fibroin nanofibrous scaffolds were examined by field emission scanning electron microscopy, Fourier transform infrared spectroscopy, contact angle and tensile tests, respectively. Adipose-derived stem cells cultured on polycaprolactone/aloe vera/silk fibroin-hydroxyapatite nanofibrous scaffolds displayed highest cell proliferation, increased osteogenic markers expression (alkaline phosphatase and osteocalcin), osteogenic differentiation and increased mineralization in comparison with polycaprolactone control. The obtained results indicate that polycaprolactone/aloe vera/silk fibroin-hydroxyapatite nanofibrous scaffolds have appropriate physico-chemical and biological properties to be used as biomimetic scaffolds for bone tissue regeneration. © The Author(s) 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Tsubota, Takuya; Tomita, Shuichiro; Uchino, Keiro; Kimoto, Mai; Takiya, Shigeharu; Kajiwara, Hideyuki; Yamazaki, Toshimasa; Sezutsu, Hideki
2016-01-01
Hox genes play a pivotal role in the determination of anteroposterior axis specificity during bilaterian animal development. They do so by acting as a master control and regulating the expression of genes important for development. Recently, however, we showed that Hox genes can also function in terminally differentiated tissue of the lepidopteran Bombyx mori. In this species, Antennapedia (Antp) regulates expression of sericin-1, a major silk protein gene, in the silk gland. Here, we investigated whether Antp can regulate expression of multiple genes in this tissue. By means of proteomic, RT-PCR, and in situ hybridization analyses, we demonstrate that misexpression of Antp in the posterior silk gland induced ectopic expression of major silk protein genes such as sericin-3, fhxh4, and fhxh5. These genes are normally expressed specifically in the middle silk gland as is Antp. Therefore, the evidence strongly suggests that Antp activates these silk protein genes in the middle silk gland. The putative sericin-1 activator complex (middle silk gland-intermolt-specific complex) can bind to the upstream regions of these genes, suggesting that Antp directly activates their expression. We also found that the pattern of gene expression was well conserved between B. mori and the wild species Bombyx mandarina, indicating that the gene regulation mechanism identified here is an evolutionarily conserved mechanism and not an artifact of the domestication of B. mori. We suggest that Hox genes have a role as a master control in terminally differentiated tissues, possibly acting as a primary regulator for a range of physiological processes. PMID:26814126
Tsubota, Takuya; Tomita, Shuichiro; Uchino, Keiro; Kimoto, Mai; Takiya, Shigeharu; Kajiwara, Hideyuki; Yamazaki, Toshimasa; Sezutsu, Hideki
2016-03-25
Hoxgenes play a pivotal role in the determination of anteroposterior axis specificity during bilaterian animal development. They do so by acting as a master control and regulating the expression of genes important for development. Recently, however, we showed that Hoxgenes can also function in terminally differentiated tissue of the lepidopteranBombyx mori In this species,Antennapedia(Antp) regulates expression of sericin-1, a major silk protein gene, in the silk gland. Here, we investigated whether Antpcan regulate expression of multiple genes in this tissue. By means of proteomic, RT-PCR, and in situ hybridization analyses, we demonstrate that misexpression of Antpin the posterior silk gland induced ectopic expression of major silk protein genes such assericin-3,fhxh4, and fhxh5 These genes are normally expressed specifically in the middle silk gland as is Antp Therefore, the evidence strongly suggests that Antpactivates these silk protein genes in the middle silk gland. The putativesericin-1 activator complex (middle silk gland-intermolt-specific complex) can bind to the upstream regions of these genes, suggesting that Antpdirectly activates their expression. We also found that the pattern of gene expression was well conserved between B. moriand the wild species Bombyx mandarina, indicating that the gene regulation mechanism identified here is an evolutionarily conserved mechanism and not an artifact of the domestication of B. mori We suggest that Hoxgenes have a role as a master control in terminally differentiated tissues, possibly acting as a primary regulator for a range of physiological processes. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Structure-function-property-design interplay in biopolymers: spider silk.
Tokareva, Olena; Jacobsen, Matthew; Buehler, Markus; Wong, Joyce; Kaplan, David L
2014-04-01
Spider silks have been a focus of research for almost two decades due to their outstanding mechanical and biophysical properties. Recent advances in genetic engineering have led to the synthesis of recombinant spider silks, thus helping to unravel a fundamental understanding of structure-function-property relationships. The relationships between molecular composition, secondary structures and mechanical properties found in different types of spider silks are described, along with a discussion of artificial spinning of these proteins and their bioapplications, including the role of silks in biomineralization and fabrication of biomaterials with controlled properties. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Osteoinductive recombinant silk fusion proteins for bone regeneration.
Dinjaski, Nina; Plowright, Robyn; Zhou, Shun; Belton, David J; Perry, Carole C; Kaplan, David L
2017-02-01
Protein polymers provide a unique opportunity for tunable designs of material systems due to the genetic basis of sequence control. To address the challenge of biomineralization interfaces with protein based materials, we genetically engineered spider silks to design organic-inorganic hybrid systems. The spider silk inspired domain (SGRGGLGGQG AGAAAAAGGA GQGGYGGLGSQGT) 15 served as an organic scaffold to control material stability and to allow multiple modes of processing, whereas the hydroxyapatite binding domain VTKHLNQISQSY (VTK), provided control over osteogenesis. The VTK domain was fused either to the N-, C- or both terminals of the spider silk domain to understand the effect of position on material properties and mineralization. The addition of the VTK domain to silk did not affect the physical properties of the silk recombinant constructs, but it had a critical role in the induction of biomineralization. When the VTK domain was placed on both the C- and N-termini the formation of crystalline hydroxyapatite was significantly increased. In addition, all of the recombinant proteins in film format supported the growth and proliferation of human mesenchymal stem cells (hMSCs). Importantly, the presence of the VTK domain enhanced osteoinductive properties up to 3-fold compared to the control (silk alone without VTK). Therefore, silk-VTK fusion proteins have been shown suitable for mineralization and functionalization for specific biomedical applications. Organic-inorganic interfaces are integral to biomaterial functions in many areas of repair and regeneration. Several protein polymers have been investigated for this purpose. Despite their success the limited options to fine-tune their material properties, degradation patterns and functionalize them for each specific biomedical application limits their application. Various studies have shown that the biological performance of such proteins can be improved by genetic engineering. The present study provides data relating protein design parameters and functional outcome quantified by biomineralization and human mesenchymal stem cell differentiation. As such, it helps the design of osteoinductive recombinant biomaterials for bone regeneration. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Can differential nutrient extraction explain property variations in a predatory trap?
Blamires, Sean J.; Piorkowski, Dakota; Chuang, Angela; Tseng, Yi-Hsuan; Toft, Søren; Tso, I-Min
2015-01-01
Predators exhibit flexible foraging to facilitate taking prey that offer important nutrients. Because trap-building predators have limited control over the prey they encounter, differential nutrient extraction and trap architectural flexibility may be used as a means of prey selection. Here, we tested whether differential nutrient extraction induces flexibility in architecture and stickiness of a spider's web by feeding Nephila pilipes live crickets (CC), live flies (FF), dead crickets with the web stimulated by flies (CD) or dead flies with the web stimulated by crickets (FD). Spiders in the CD group consumed less protein per mass of lipid or carbohydrate, and spiders in the FF group consumed less carbohydrates per mass of protein. Spiders from the CD group built stickier webs that used less silk, whereas spiders in the FF group built webs with more radii, greater catching areas and more silk, compared with other treatments. Our results suggest that differential nutrient extraction is a likely explanation for prey-induced spider web architecture and stickiness variations. PMID:26064618
Sequential growth factor application in bone marrow stromal cell ligament engineering.
Moreau, Jodie E; Chen, Jingsong; Horan, Rebecca L; Kaplan, David L; Altman, Gregory H
2005-01-01
In vitro bone marrow stromal cell (BMSC) growth may be enhanced through culture medium supplementation, mimicking the biochemical environment in which cells optimally proliferate and differentiate. We hypothesize that the sequential administration of growth factors to first proliferate and then differentiate BMSCs cultured on silk fiber matrices will support the enhanced development of ligament tissue in vitro. Confluent second passage (P2) BMSCs obtained from purified bone marrow aspirates were seeded on RGD-modified silk matrices. Seeded matrices were divided into three groups for 5 days of static culture, with medium supplement of basic fibroblast growth factor (B) (1 ng/mL), epidermal growth factor (E; 1 ng/mL), or growth factor-free control (C). After day 5, medium supplementation was changed to transforming growth factor-beta1 (T; 5 ng/mL) or C for an additional 9 days of culture. Real-time RT-PCR, SEM, MTT, histology, and ELISA for collagen type I of all sample groups were performed. Results indicated that BT supported the greatest cell ingrowth after 14 days of culture in addition to the greatest cumulative collagen type I expression measured by ELISA. Sequential growth factor application promoted significant increases in collagen type I transcript expression from day 5 of culture to day 14, for five of six groups tested. All T-supplemented samples surpassed their respective control samples in both cell ingrowth and collagen deposition. All samples supported spindle-shaped, fibroblast cell morphology, aligning with the direction of silk fibers. These findings indicate significant in vitro ligament development after only 14 days of culture when using a sequential growth factor approach.
Web building and silk properties functionally covary among species of wolf spider.
Lacava, Mariángeles; Camargo, Arley; Garcia, Luis F; Benamú, Marco A; Santana, Martin; Fang, Jian; Wang, Xungai; Blamires, Sean J
2018-04-15
Although phylogenetic studies have shown covariation between the properties of spider major ampullate (MA) silk and web building, both spider webs and silks are highly plastic so we cannot be sure whether these traits functionally covary or just vary across environments that the spiders occupy. As MaSp2-like proteins provide MA silk with greater extensibility, their presence is considered necessary for spider webs to effectively capture prey. Wolf spiders (Lycosidae) are predominantly non-web building, but a select few species build webs. We accordingly collected MA silk from two web-building and six non-web-building species found in semirural ecosystems in Uruguay to test whether the presence of MaSp2-like proteins (indicated by amino acid composition, silk mechanical properties and silk nanostructures) was associated with web building across the group. The web-building and non-web-building species were from disparate subfamilies so we estimated a genetic phylogeny to perform appropriate comparisons. For all of the properties measured, we found differences between web-building and non-web-building species. A phylogenetic regression model confirmed that web building and not phylogenetic inertia influences silk properties. Our study definitively showed an ecological influence over spider silk properties. We expect that the presence of the MaSp2-like proteins and the subsequent nanostructures improves the mechanical performance of silks within the webs. Our study furthers our understanding of spider web and silk co-evolution and the ecological implications of spider silk properties. © 2018 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2018 European Society For Evolutionary Biology.
Silk-based delivery systems of bioactive molecules.
Numata, Keiji; Kaplan, David L
2010-12-30
Silks are biodegradable, biocompatible, self-assembling proteins that can also be tailored via genetic engineering to contain specific chemical features, offering utility for drug and gene delivery. Silkworm silk has been used in biomedical sutures for decades and has recently achieved Food and Drug Administration approval for expanded biomaterials device utility. With the diversity and control of size, structure and chemistry, modified or recombinant silk proteins can be designed and utilized in various biomedical application, such as for the delivery of bioactive molecules. This review focuses on the biosynthesis and applications of silk-based multi-block copolymer systems and related silk protein drug delivery systems. The utility of these systems for the delivery of small molecule drugs, proteins and genes is reviewed. Copyright © 2010 Elsevier B.V. All rights reserved.
Effects of Silk Sericin on Incision Wound Healing in a Dorsal Skin Flap Wound Healing Rat Model.
Ersel, Murat; Uyanikgil, Yigit; Karbek Akarca, Funda; Ozcete, Enver; Altunci, Yusuf Ali; Karabey, Fatih; Cavusoglu, Turker; Meral, Ayfer; Yigitturk, Gurkan; Oyku Cetin, Emel
2016-04-01
The wound healing process is complex and still poorly understood. Sericin is a silk protein synthesized by silk worms (Bombyx mori). The objective of this study was to evaluate in vivo wound healing effects of a sericin-containing gel formulation in an incision wound model in rats. Twenty-eight Wistar-Albino rats were divided into 4 groups (n=7). No intervention or treatment was applied to the Intact control group. For other groups, a dorsal skin flap (9×3 cm) was drawn and pulled up with sharp dissection. The Sham operated group received no treatment. The Placebo group received placebo gel without sericin applied to the incision area once a day from day 0 to day 9. The Sericin Group 3 received 1% sericin gel applied to the incision area once a day from day 0 to day 9. Hematoxylin and eosin stain was applied for histological analysis and Mallory-Azan staining was applied for histoimmunochemical analysis of antibodies and iNOS (inducible nitric oxide synthase), and desmin was applied to paraffin sections of skin wound specimens. Parameters of oxidative stress were measured in the wound area. Epidermal thickness and vascularization were increased, and hair root degeneration, edema, cellular infiltration, collagen discoloration, and necrosis were decreased in Sericin group in comparison to the Placebo group and the Sham operated group. Malonyldialdehyde (MDA) levels were decreased, but superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities were increased in the sericin group. We found that sericin had significant positive effects on wound healing and antioxidant activity. Sericin-based formulations can improve healing of incision wounds.
Effects of Silk Sericin on Incision Wound Healing in a Dorsal Skin Flap Wound Healing Rat Model
Ersel, Murat; Uyanikgil, Yigit; Akarca, Funda Karbek; Ozcete, Enver; Altunci, Yusuf Ali; Karabey, Fatih; Cavusoglu, Turker; Meral, Ayfer; Yigitturk, Gurkan; Cetin, Emel Oyku
2016-01-01
Background The wound healing process is complex and still poorly understood. Sericin is a silk protein synthesized by silk worms (Bombyx mori). The objective of this study was to evaluate in vivo wound healing effects of a sericin-containing gel formulation in an incision wound model in rats. Material/Methods Twenty-eight Wistar-Albino rats were divided into 4 groups (n=7). No intervention or treatment was applied to the Intact control group. For other groups, a dorsal skin flap (9×3 cm) was drawn and pulled up with sharp dissection. The Sham operated group received no treatment. The Placebo group received placebo gel without sericin applied to the incision area once a day from day 0 to day 9. The Sericin Group 3 received 1% sericin gel applied to the incision area once a day from day 0 to day 9. Hematoxylin and eosin stain was applied for histological analysis and Mallory-Azan staining was applied for histoimmunochemical analysis of antibodies and iNOS (inducible nitric oxide synthase), and desmin was applied to paraffin sections of skin wound specimens. Parameters of oxidative stress were measured in the wound area. Results Epidermal thickness and vascularization were increased, and hair root degeneration, edema, cellular infiltration, collagen discoloration, and necrosis were decreased in Sericin group in comparison to the Placebo group and the Sham operated group. Malonyldialdehyde (MDA) levels were decreased, but superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities were increased in the sericin group. Conclusions We found that sericin had significant positive effects on wound healing and antioxidant activity. Sericin-based formulations can improve healing of incision wounds. PMID:27032876
The effect of ozone and naringin on intestinal ischemia/reperfusion injury in an experimental model.
Isik, Arda; Peker, Kemal; Gursul, Cebrail; Sayar, Ilyas; Firat, Deniz; Yilmaz, Ismayil; Demiryilmaz, Ismail
2015-09-01
The aim of the study was to evaulate the effect of ozone and naringin on the intestine after intestinal ischemia-reperfusion(II/R) injury. Thirty five rats divided into 5 groups of 7 animals: control, II/R, ozone, naringin and naringin + ozone. Only laparotomy and exploration of the superior mesenteric artery (SMA) were done in control group. In the experimental groups, SAM was occluded for 1 h and reperfused for 1 h. 15 min after ischemia, ozone (25 μg/ml, 0.5 mg/kg), naringin (80 mg/kg) and naringin + ozone(80 mg/kg + 25 μg/ml, 0.5 mg/kg) were infused intraperitoneally to each groups. Ileum tissues were harvested to determine intestinal mucosal injury and oxidative stress markers. For SMA occlusion, different than literature, silk suture binding was used. Oxidative stress markers were significantly low in experimental groups compared with II/R group (p < 0.05). Histopathologically, the injury score was significantly low at experimental groups compared with II/R group (p < 0.05). The lowest injury score was encountered at naringine + ozone group. Ozone alone or combined with naringin has a protective effect for mesenteric ischemia. Instead of using instruments such as clamps in the II/R rat model, silk binding may be used safely. Copyright © 2015 IJS Publishing Group Limited. Published by Elsevier Ltd. All rights reserved.
Bioengineered porous composite curcumin/silk scaffolds for cartilage regeneration.
Kim, Do Kyung; In Kim, Jeong; Sim, Bo Ra; Khang, Gilson
2017-09-01
Articular cartilage repair is a challenge due to its limited self-repair capacity. Cartilage tissue engineering supports to overcome following injuries or degenerative diseases. Herein, we fabricated the scaffold composed of curcumin and silk fibroin as an appropriate clinical replacement for defected cartilage. The scaffolds were designed to have adequate pore size and mechanical strength for cartilage repair. Cell proliferation, sulfated glycosaminoglycan (sGAG) content and mRNA expression analysis indicated that chondrocytes remained viable and showed its growth ability in the curcumin/silk scaffolds. Especially, in 1mg/ml curcumin/silk scaffold showed higher cell viability rate and extracellular matrix formation than other experimental groups. Furthermore, curcumin/silk scaffold showed its biocompatibility and favorable environment for cartilage repair after transplantation in vivo, as indicated in histological examination results. Overall, the functional composite curcumin/silk scaffold can be applied in cartilage tissue engineering and promising substrate for cartilage repair. Copyright © 2017. Published by Elsevier B.V.
Anisotropic growth of hydroxyapatite on the silk fibroin films
NASA Astrophysics Data System (ADS)
Li, Yucheng; Cai, Yurong; Kong, Xiangdong; Yao, Juming
2008-12-01
Bombyx mori silk fibroin is of practical interest for its excellent intrinsic properties utilizable in the biotechnological and biomedical fields. Here, the silk fibroin films were pretreated with different methods and then used as the template for the hydroxyapatite (HA) crystal growth. To study the effect of silk films' surface structure on the protein biomineralization, the films were immersed into 1.5 times simulated body fluid (1.5 × SBF) to induce the HA deposition at 37 °C. The results showed that an anisotropic growth of HA crystals was observed on the different films as judging from XRD, TEM and HRTEM data. This was thought that the positions and density of carboxyl groups, C dbnd O and amino groups on the surface of SF films may be different, which play the key effect on HA crystal growth.
Guziewicz, Nicholas; Best, Annie; Perez-Ramirez, Bernardo; Kaplan, David L.
2011-01-01
The development of sustained delivery systems compatible with protein therapeutics continues to be a significant unmet need. A lyophilized silk fibroin hydrogel matrix (lyogel) for the sustained release of pharmaceutically relevant monoclonal antibodies is described. Sonication of silk fibroin prior to antibody incorporation avoids exposing the antibody to the sol-gel transition inducing shear stress. Fourier Transform Infrared (FTIR) analysis showed no change in silk structural composition between hydrogel and lyogel or with increasing silk fibroin concentration. Antibody release from hydrogels occurred rapidly over 10 days regardless of silk concentration. Upon lyophilization, sustained antibody release was observed over 38 days from lyogels containing 6.2% (w/w) silk fibroin and above. In 3.2% (w/w) silk lyogels, antibody release was comparable to hydrogels. Swelling properties of lyogels followed a similar threshold behavior. Lyogels at 3.2% (w/w) silk recovered approximately 90% of their fluid mass upon rehydration, while approximately 50% fluid recovery was observed at 6.2% (w/w) silk and above. Antibody release was primarily governed by hydrophobic/hydrophilic silk-antibody interactions and secondarily altered by the hydration resistance of the lyogel. Hydration resistance was controlled by altering β-sheet (crystalline) density of the matrix. The antibody released from lyogels maintained biological activity. Silk lyogels offer an advantage as a delivery matrix over other hydrogel materials for the slow release of the loaded protein, making lyogels suitable for long-term sustained release applications. PMID:21216004
Yang, Lan; Guo, Song; Chen, Qinwu; Chen, Fanjun; Yuan, Lixing; Mi, Guohua
2016-01-01
Although the remobilization of vegetative nitrogen (N) and post-silking N both contribute to grain N in maize (Zea mays L.), their regulation by grain sink strength is poorly understood. Here we use 15N labeling to analyze the dynamic behaviors of both pre- and post-silking N in relation to source and sink manipulation in maize plants. The results showed that the remobilization of pre-silking N started immediately after silking and the remobilized pre-silking N had a greater contribution to grain N during early grain filling, with post-silking N importance increasing during the later filling stage. The amount of post-silking N uptake was largely driven by post-silking dry matter accumulation in both grain as well as vegetative organs. Prevention of pollination during silking had less effect on post-silking N uptake, as a consequence of compensatory growth of stems, husk + cob and roots. Also, leaves continuously export N even though grain sink was removed. The remobilization efficiency of N in the leaf and stem increased with increasing grain yield (hence N requirement). It is suggested that the remobilization of N in the leaf is controlled by sink strength but not the leaf per se. Enhancing post-silking N uptake rather than N remobilization is more likely to increase grain N accumulation. PMID:27606628
Meng, Mei; He, Huawei; Xiao, Jing; Zhao, Ping; Xie, Jiale; Lu, Zhisong
2016-01-01
Layer-by-layer (LbL) assembly is a versatile technique for the preparation of multilayered polymeric films. However, fabrication of LbL polymetic film on silk for the in situ growth of high-density silver nanoparticles (AgNPs) has not been realized. Herein poly(acrylic acid) (PAA)/poly(dimethyldiallylammonium chloride) (PDDA) multilayers are constructed on silk via the LbL approach, subsequently serving as a 3-dimensional matrix for in situ synthesis of AgNPs. After 8 rounds of LbL assembly, the silk is fully covered with a layer of polymeric film. AgNPs with good crystalline structures could be in-situ generated in the silk-coated multilayers and their amount could be tailored by adjusting the bilayer numbers. The as-prepared silk could effectively kill the existing bacteria and inhibit the bacterial growth, demonstrating the antimicrobial activity. Moreover, the release of Ag(+) from the modified silk can last for 120 h, rendering the modified silk sustainable antimicrobial activity. This work may provide a novel method to prepare AgNPs-functionalized antimicrobial silk for potential applications in textile industry. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
An, Bo
The extraordinary mechanical properties of orb-weaving spider silks have served spiders for over 400 million years. However, only in the late 20th century did we start to understand the molecular nature of spider silk that contributes to its incredible properties as biomaterials. Among all seven types of spider silks, major ampullate silk from typical orb-weaving spiders is the toughest of all, it consists of primarily two proteins: MaSp1 and MaSp2. Variable ratios and conserved motifs of these two proteins in all the native spider silks demonstrate the significant role of MaSp1 and MaSp2 in controlling the mechanical properties of the fiber. The amino acid sequences of the orb weaving spider silk proteins have remained almost unchanged for more than 100 million years. Interestingly, MaSp1 and MaSp2 are the only two components in all studied dragline silk fibers from these spiders. The mechanical properties of native dragline silk vary slightly between species, which are believed to relate to the ratio of MaSp1 to MaSp2 in the silk. Both of these facts clearly indicate the importance of these two proteins to the mechanical properties of the fiber. Various types of synthetic spider silk fibers have been produced and studied in an effort to mass-produce man-made fibers with qualities comparable to native spider silk. To investigate the roles of MaSp1 and MaSp2 in silk fiber, synthetic MaSp1 (major abundant protein in Nephila clavipes major ampullate silks) only fibers, MaSp1/MaSp2 protein mixture fibers and chimeric protein fibers with both MaSp1 and MaSp2 sequence features have been produced and tested for mechanical properties. Solid-State Nuclear Magnetic Resonance was used to characterize the structure of silk fibers and reveal the relation between fiber spatial structure and mechanical properties.
Dong, Yang; He, Honghui; He, Chao; Zhou, Jialing; Zeng, Nan; Ma, Hui
2016-08-10
Silk fibers suffer from microstructural changes due to various external environmental conditions including daily washings. In this paper, we take the backscattering Mueller matrix images of silk samples for non-destructive and real-time quantitative characterization of the wavelength-scale microstructure and examination of the effects of washing by different detergents. The 2D images of the 16 Mueller matrix elements are reduced to the frequency distribution histograms (FDHs) whose central moments reveal the dominant structural features of the silk fibers. A group of new parameters are also proposed to characterize the wavelength-scale microstructural changes of the silk samples during the washing processes. Monte Carlo (MC) simulations are carried out to better understand how the Mueller matrix parameters are related to the wavelength-scale microstructure of silk fibers. The good agreement between experiments and simulations indicates that the Mueller matrix polarimetry and FDH based parameters can be used to quantitatively detect the wavelength-scale microstructural features of silk fibers. Mueller matrix polarimetry may be used as a powerful tool for non-destructive and in situ characterization of the wavelength-scale microstructures of silk based materials.
Dong, Yang; He, Honghui; He, Chao; Zhou, Jialing; Zeng, Nan; Ma, Hui
2016-01-01
Silk fibers suffer from microstructural changes due to various external environmental conditions including daily washings. In this paper, we take the backscattering Mueller matrix images of silk samples for non-destructive and real-time quantitative characterization of the wavelength-scale microstructure and examination of the effects of washing by different detergents. The 2D images of the 16 Mueller matrix elements are reduced to the frequency distribution histograms (FDHs) whose central moments reveal the dominant structural features of the silk fibers. A group of new parameters are also proposed to characterize the wavelength-scale microstructural changes of the silk samples during the washing processes. Monte Carlo (MC) simulations are carried out to better understand how the Mueller matrix parameters are related to the wavelength-scale microstructure of silk fibers. The good agreement between experiments and simulations indicates that the Mueller matrix polarimetry and FDH based parameters can be used to quantitatively detect the wavelength-scale microstructural features of silk fibers. Mueller matrix polarimetry may be used as a powerful tool for non-destructive and in situ characterization of the wavelength-scale microstructures of silk based materials. PMID:27517919
ERIC Educational Resources Information Center
Stanford Univ., CA. Stanford Program on International and Cross Cultural Education.
This curriculum unit introduces students to the travelers and traders from the early part of the Han-Roman times up to the 14th century who took great risks in pursuit of silk. A variety of activities explore the development of the Silk Road trade routes, including journal writing, small group reading and writing activities, role play and…
Characteristics of platelet gels combined with silk
Pallotta, Isabella; Kluge, Jonathan A.; Moreau, Jodie; Calabrese, Rossella
2014-01-01
Platelet gel, a fibrin network containing activated platelets, is widely used in regenerative medicine due the capacity of platelet-derived growth factors to accelerate and direct healing processes. However, limitations to this approach include poor mechanical properties, relatively rapid degradation, and the lack of control of release of growth factors at the site of injection. These issues compromise the ability of platelet gels for sustained function in regenerative medicine. In the present study, a combination of platelet gels with silk fibroin gel was studied to address the above limitations. Mixing sonicated silk gels with platelet gels extended the release of growth factors without inhibiting gel forming ability. The released growth factors were biologically active and their delivery was modified further by manipulation of the charge of the silk protein. Moreover, the silk gel augmented both the rheological properties and compressive stiffness of the platelet gel, tuned by the silk concentration and/or silk/platelet gel ratio. Silk-platelet gel injections in nude rats supported enhanced cell infiltration and blood vessel formation representing a step towards new platelet gel formulations with enhanced therapeutic impact. PMID:24480538
Structural and optical studies on selected web spinning spider silks
NASA Astrophysics Data System (ADS)
Karthikeyani, R.; Divya, A.; Mathavan, T.; Asath, R. Mohamed; Benial, A. Milton Franklin; Muthuchelian, K.
2017-01-01
This study investigates the structural and optical properties in the cribellate silk of the sheet web spider Stegodyphus sarasinorum Karsch (Eresidae) and the combined dragline, viscid silk of the orb-web spiders Argiope pulchella Thorell (Araneidae) and Nephila pilipes Fabricius (Nephilidae). X-ray diffraction (XRD), Fourier transform infra-red (FTIR), Ultraviolet-visible (UV-Vis) and fluorescence spectroscopic techniques were used to study these three spider silk species. X-ray diffraction data are consistent with the amorphous polymer network which is arising from the interaction of larger side chain amino acid contributions due to the poly-glycine rich sequences known to be present in the proteins of cribellate silk. The same amorphous polymer networks have been determined from the combined dragline and viscid silk of orb-web spiders. From FTIR spectra the results demonstrate that, cribellate silk of Stegodyphus sarasinorum, combined dragline viscid silk of Argiope pulchella and Nephila pilipes spider silks are showing protein peaks in the amide I, II and III regions. Further they proved that the functional groups present in the protein moieties are attributed to α-helical and side chain amino acid contributions. The optical properties of the obtained spider silks such as extinction coefficients, refractive index, real and imaginary dielectric constants and optical conductance were studied extensively from UV-Vis analysis. The important fluorescent amino acid tyrosine is present in the protein folding was investigated by using fluorescence spectroscopy. This research would explore the protein moieties present in the spider silks which were found to be associated with α-helix and side chain amino acid contributions than with β-sheet secondary structure and also the optical relationship between the three different spider silks are investigated. Successful spectroscopic knowledge of the internal protein structure and optical properties of the spider silks could permit industrial production of silk-based fibres with unique properties under benign conditions.
Vienneau-Hathaway, Jannelle M; Brassfield, Elizabeth R; Lane, Amanda Kelly; Collin, Matthew A; Correa-Garhwal, Sandra M; Clarke, Thomas H; Schwager, Evelyn E; Garb, Jessica E; Hayashi, Cheryl Y; Ayoub, Nadia A
2017-03-14
Orb-web weaving spiders and their relatives use multiple types of task-specific silks. The majority of spider silk studies have focused on the ultra-tough dragline silk synthesized in major ampullate glands, but other silk types have impressive material properties. For instance, minor ampullate silks of orb-web weaving spiders are as tough as draglines, due to their higher extensibility despite lower strength. Differences in material properties between silk types result from differences in their component proteins, particularly members of the spidroin (spider fibroin) gene family. However, the extent to which variation in material properties within a single silk type can be explained by variation in spidroin sequences is unknown. Here, we compare the minor ampullate spidroins (MiSp) of orb-weavers and cobweb weavers. Orb-web weavers use minor ampullate silk to form the auxiliary spiral of the orb-web while cobweb weavers use it to wrap prey, suggesting that selection pressures on minor ampullate spidroins (MiSp) may differ between the two groups. We report complete or nearly complete MiSp sequences from five cobweb weaving spider species and measure material properties of minor ampullate silks in a subset of these species. We also compare MiSp sequences and silk properties of our cobweb weavers to published data for orb-web weavers. We demonstrate that all our cobweb weavers possess multiple MiSp loci and that one locus is more highly expressed in at least two species. We also find that the proportion of β-spiral-forming amino acid motifs in MiSp positively correlates with minor ampullate silk extensibility across orb-web and cobweb weavers. MiSp sequences vary dramatically within and among spider species, and have likely been subject to multiple rounds of gene duplication and concerted evolution, which have contributed to the diverse material properties of minor ampullate silks. Our sequences also provide templates for recombinant silk proteins with tailored properties.
Formation of silk fibroin nanoparticles in water-miscible organic solvent and their characterization
NASA Astrophysics Data System (ADS)
Zhang, Yu-Qing; Shen, Wei-De; Xiang, Ru-Li; Zhuge, Lan-Jian; Gao, Wei-Jian; Wang, Wen-Bao
2007-10-01
When Silk fibre derived from Bombyx mori, a native biopolymer, was dissolved in highly concentrated neutral salts such as CaCl2, the regenerated liquid silk, a gradually degraded peptide mixture of silk fibroin, could be obtained. The silk fibroin nanoparticles were prepared rapidly from the liquid silk by using water-miscible protonic and polar aprotonic organic solvents. The nanoparticles are insoluble but well dispersed and stable in aqueous solution and are globular particles with a range of 35-125 nm in diameter by means of TEM, SEM, AFM and laser sizer. Over one half of the ɛ-amino groups exist around the protein nanoparticles by using a trinitrobenzenesulfonic acid (TNBS) method. Raman spectra shows the tyrosine residues on the surface of the globules are more exposed than those on native silk fibers. The crystalline polymorph and conformation transition of the silk nanoparticles from random-coil and α-helix form (Silk I) into anti-parallel β-sheet form (Silk II) are investigated in detail by using infrared, fluorescence and Raman spectroscopy, DSC, 13C CP-MAS NMR and electron diffraction. X-ray diffraction of the silk nanoparticles shows that the nanoparticles crystallinity is about four fifths of the native fiber. Our results indicate that the degraded peptide chains of the regenerated silk is gathered homogeneously or heterogeneously to form a looser globular structure in aqueous solution. When introduced into excessive organic solvent, the looser globules of the liquid silk are rapidly dispersed and simultaneously dehydrated internally and externally, resulting in the further chain-chain contact, arrangement of those hydrophobic domains inside the globules and final formation of crystalline silk nanoparticles with β-sheet configuration. The morphology and size of the nanoparticles are relative to the kinds, properties and even molecular structures of organic solvents, and more significantly to the looser globular substructure of the degraded silk fibroin in aqueous solution. It is possible that the silk protein nanoparticles are potentially useful in biomaterials such as cosmetics, anti-UV skincare products, industrial materials and surface improving materials, especially in enzyme/drug delivery system as vehicle.
George, Gladys O; Idu, Faustina K
2015-03-01
Hypotensive properties have been attributed to the stigma/style of Zea mays L (corn silk). Although the effect of corn silk extract on blood pressure has been documented in animal studies, we are not aware of any study on its effect on human blood pressure and intraocular pressure. A randomised study was carried out on the effect of water only, masked doses of corn silk aqueous extract (60, 130, 192.5 and 260 mg/kg body weight) on intraocular pressure and blood pressure of 20 systemic and 20 non-systemic hypertensive subjects. Intraocular pressure and blood pressure were measured at baseline and every hour for eight hours after administering water or a masked dose of corn silk aqueous extract. Each dose was administered at two-week intervals to each subject in the two study groups. The results showed that the last three doses of corn silk aqueous extract gave a statistically significant reduction (p < 0.001) in mean intraocular pressure and blood pressure within eight hours of administration. The peak effect on intraocular pressure was observed after four hours and this was preceded by the peak effect on blood pressure, which occurred after three hours of administration. The hypotensive effect was dose-dependent in the two groups. Corn silk aqueous extract has a lowering effect on intraocular pressure in systemic and non-systemic hypertensive subjects. This may have resulted from the fall in blood pressure that is due to potassium-induced natriuresis and diuresis caused by the high potassium content in the high doses of the corn silk extract. © 2015 The Authors. Clinical and Experimental Optometry © 2015 Optometry Australia.
Reed, Emily J; Bianchini, Lindsay L; Viney, Christopher
2012-06-01
Reported literature values of the tensile properties of natural silk cover a wide range. While much of this inconsistency is the result of variability that is intrinsic to silk, some is also a consequence of differences in the way that silk is prepared for tensile tests. Here we explore how measured mechanical properties of Bombyx mori cocoon silk are affected by two intrinsic factors (the location from which the silk is collected within the cocoon, and the color of the silk), and two extrinsic factors (the storage conditions prior to testing, and different styles of reeling the fiber). We find that extrinsic and therefore controllable factors can affect the properties more than the intrinsic ones studied. Our results suggest that enhanced inter-laboratory collaborations, that lead to standardized sample collection, handling, and storage protocols prior to mechanical testing, would help to decrease unnecessary (and complicating) variation in reported tensile properties. Copyright © 2011 Wiley Periodicals, Inc.
Natural Non-Mulberry Silk Nanoparticles for Potential-Controlled Drug Release
Wang, Juan; Yin, Zhuping; Xue, Xiang; Kundu, Subhas C.; Mo, Xiumei; Lu, Shenzhou
2016-01-01
Natural silk protein nanoparticles are a promising biomaterial for drug delivery due to their pleiotropic properties, including biocompatibility, high bioavailability, and biodegradability. Chinese oak tasar Antheraea pernyi silk fibroin (ApF) nanoparticles are easily obtained using cations as reagents under mild conditions. The mild conditions are potentially advantageous for the encapsulation of sensitive drugs and therapeutic molecules. In the present study, silk fibroin protein nanoparticles are loaded with differently-charged small-molecule drugs, such as doxorubicin hydrochloride, ibuprofen, and ibuprofen-Na, by simple absorption based on electrostatic interactions. The structure, morphology and biocompatibility of the silk nanoparticles in vitro are investigated. In vitro release of the drugs from the nanoparticles depends on charge-charge interactions between the drugs and the nanoparticles. The release behavior of the compounds from the nanoparticles demonstrates that positively-charged molecules are released in a more prolonged or sustained manner. Cell viability studies with L929 demonstrated that the ApF nanoparticles significantly promoted cell growth. The results suggest that Chinese oak tasar Antheraea pernyi silk fibroin nanoparticles can be used as an alternative matrix for drug carrying and controlled release in diverse biomedical applications. PMID:27916946
Bio-functionalized silk hydrogel microfluidic systems.
Zhao, Siwei; Chen, Ying; Partlow, Benjamin P; Golding, Anne S; Tseng, Peter; Coburn, Jeannine; Applegate, Matthew B; Moreau, Jodie E; Omenetto, Fiorenzo G; Kaplan, David L
2016-07-01
Bio-functionalized microfluidic systems were developed based on a silk protein hydrogel elastomeric materials. A facile multilayer fabrication method using gelatin sacrificial molding and layer-by-layer assembly was implemented to construct interconnected, three dimensional (3D) microchannel networks in silk hydrogels at 100 μm minimum feature resolution. Mechanically activated valves were implemented to demonstrate pneumatic control of microflow. The silk hydrogel microfluidics exhibit controllable mechanical properties, long-term stability in various environmental conditions, tunable in vitro and in vivo degradability in addition to optical transparency, providing unique features for cell/tissue-related applications than conventional polydimethylsiloxane (PDMS) and existing hydrogel-based microfluidic options. As demonstrated in the work here, the all aqueous-based fabrication process at ambient conditions enabled the incorporation of active biological substances in the bulk phase of these new silk microfluidic systems during device fabrication, including enzymes and living cells, which are able to interact with the fluid flow in the microchannels. These silk hydrogel-based microfluidic systems offer new opportunities in engineering active diagnostic devices, tissues and organs that could be integrated in vivo, and for on-chip cell sensing systems. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zhang, Wei; Chen, Longkun; Chen, Jialin; Wang, Lingshuang; Gui, Xuexian; Ran, Jisheng; Xu, Guowei; Zhao, Hongshi; Zeng, Mengfeng; Ji, Junfeng; Qian, Li; Zhou, Jianda; Ouyang, Hongwei; Zou, Xiaohui
2017-05-01
Due to its excellent biological and mechanical properties, silk fibroin has been intensively explored for tissue engineering and regenerative medicine applications. However, lack of translational evidence has hampered its clinical application for tissue repair. Here a silk fibroin film is developed and its translational potential is investigated for skin repair by performing comprehensive preclinical and clinical studies to fully evaluate its safety and effectiveness. The silk fibroin film fabricated using all green chemistry approaches demonstrates remarkable characteristics, including transmittance, fluid handling capacity, moisture vapor permeability, waterproofness, bacterial barrier properties, and biocompatibility. In vivo rabbit full-thickness skin defect study shows that the silk fibroin film effectively reduces the average wound healing time with better skin regeneration compared with the commercial wound dressings. Subsequent assessment in porcine model confirms its long-term safety and effectiveness for full-thickness skin defects. Finally, a randomized single-blind parallel controlled clinical trial with 71 patients shows that the silk fibroin film significantly reduces the time to wound healing and incidence of adverse events compared to commercial dressing. Therefore, the study provides systematic preclinical and clinical evidence that the silk fibroin film promotes wound healing thereby establishing a foundation towards its application for skin repair and regeneration in the clinic. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Silk-Based Biomaterials for Sustained Drug Delivery
Yucel, Tuna; Lovett, Michael L.; Kaplan, David L.
2014-01-01
Silk presents a rare combination of desirable properties for sustained drug delivery, including aqueous-based purification and processing options without chemical cross-linkers, compatibility with common sterilization methods, controllable and surface-mediated biodegradation into non-inflammatory by-products, biocompatibility, utility in drug stabilization, and robust mechanical properties. A versatile silk-based toolkit is currently available for sustained drug delivery formulations of small molecule through macromolecular drugs, with a promise to mitigate several drawbacks associated with other degradable sustained delivery technologies in the market. Silk-based formulations utilize silk’s well-defined nano- through microscale structural hierarchy, stimuli-responsive self-assembly pathways and crystal polymorphism, as well as sequence and genetic modification options towards targeted pharmaceutical outcomes. Furthermore, by manipulating the interactions between silk and drug molecules, near-zero order sustained release may be achieved through diffusion- and degradation-based release mechanisms. Because of these desirable properties, there has been increasing industrial interest in silk-based drug delivery systems currently at various stages of the developmental pipeline from pre-clinical to FDA-approved products. Here, we discuss the unique aspects of silk technology as a sustained drug delivery platform and highlight the current state of the art in silk-based drug delivery. We also offer a potential early development pathway for silk-based sustained delivery products. PMID:24910193
Kim, Sally Yunsun; Naskar, Deboki; Kundu, Subhas C.; Bishop, David P.; Doble, Philip A.; Boddy, Alan V.; Chan, Hak-Kim; Wall, Ivan B.; Chrzanowski, Wojciech
2015-01-01
The benefits of using silk fibroin, a major protein in silk, are widely established in many biomedical applications including tissue regeneration, bioactive coating and in vitro tissue models. The properties of silk such as biocompatibility and controlled degradation are utilized in this study to formulate for the first time as carriers for pulmonary drug delivery. Silk fibroin particles are spray dried or spray-freeze-dried to enable the delivery to the airways via dry powder inhalers. The addition of excipients such as mannitol is optimized for both the stabilization of protein during the spray-freezing process as well as for efficient dispersion using an in vitro aerosolisation impactor. Cisplatin is incorporated into the silk-based formulations with or without cross-linking, which show different release profiles. The particles show high aerosolisation performance through the measurement of in vitro lung deposition, which is at the level of commercially available dry powder inhalers. The silk-based particles are shown to be cytocompatible with A549 human lung epithelial cell line. The cytotoxicity of cisplatin is demonstrated to be enhanced when delivered using the cross-linked silk-based particles. These novel inhalable silk-based drug carriers have the potential to be used as anti-cancer drug delivery systems targeted for the lungs. PMID:26234773
More than a safety line: jump-stabilizing silk of salticids.
Chen, Yung-Kang; Liao, Chen-Pan; Tsai, Feng-Yueh; Chi, Kai-Jung
2013-10-06
Salticids are diurnal hunters known for acute vision, remarkable predatory strategies and jumping ability. Like other jumpers, they strive for stability and smooth landings. Instead of using inertia from swinging appendages or aerodynamic forces by flapping wings as in other organisms, we show that salticids use a different mechanism for in-air stability by using dragline silk, which was previously believed to function solely as a safety line. Analyses from high-speed images of jumps by the salticid Hasarius adansoni demonstrate that despite being subject to rearward pitch at take-off, spiders with dragline silk can change body orientation in the air. Instantaneous drag and silk forces calculated from kinematic data further suggest a comparable contribution to deceleration and energy dissipation, and reveal that adjustments by the spider to the silk force can reverse its body pitch for a predictable and optimal landing. Without silk, upright-landing spiders would slip or even tumble, deferring completion of landing. Thus, for salticids, dragline silk is critical for dynamic stability and prey-capture efficiency. The dynamic functioning of dragline silk revealed in this study can advance the understanding of silk's physiological control over material properties and its significance to spider ecology and evolution, and also provide inspiration for future manoeuvrable robot designs.
More than a safety line: jump-stabilizing silk of salticids
Chen, Yung-Kang; Liao, Chen-Pan; Tsai, Feng-Yueh; Chi, Kai-Jung
2013-01-01
Salticids are diurnal hunters known for acute vision, remarkable predatory strategies and jumping ability. Like other jumpers, they strive for stability and smooth landings. Instead of using inertia from swinging appendages or aerodynamic forces by flapping wings as in other organisms, we show that salticids use a different mechanism for in-air stability by using dragline silk, which was previously believed to function solely as a safety line. Analyses from high-speed images of jumps by the salticid Hasarius adansoni demonstrate that despite being subject to rearward pitch at take-off, spiders with dragline silk can change body orientation in the air. Instantaneous drag and silk forces calculated from kinematic data further suggest a comparable contribution to deceleration and energy dissipation, and reveal that adjustments by the spider to the silk force can reverse its body pitch for a predictable and optimal landing. Without silk, upright-landing spiders would slip or even tumble, deferring completion of landing. Thus, for salticids, dragline silk is critical for dynamic stability and prey-capture efficiency. The dynamic functioning of dragline silk revealed in this study can advance the understanding of silk's physiological control over material properties and its significance to spider ecology and evolution, and also provide inspiration for future manoeuvrable robot designs. PMID:23925983
Investigation of Natural Bombyx mori Silk Fibroin Proteins Using INS
NASA Astrophysics Data System (ADS)
Crain, Christopher; Strange, Nicholas; Larese, J. Z.
The mechanical properties of many protein comprised biomaterials are a direct reflection of non-covalent (i.e. weak) interacting ions such as F-actin in muscles, tubulin in the cytoskeleton of cells, viral capsids, and silk. Porter and Vollrath underscored the two main factors that are critical for understanding the high mechanical strength of silks: the nanoscale semi-crystalline folding structure, which gives it exceptional toughness and strength, and the degree of hydration of the disordered fraction, which acts to modify these properties. Understanding and controlling these two principal factors are the key to the functionality of protein elastomers, and render silk an ideal model protein for (bio)material design. We will describe our investigation of electrospun silk of the Bombyx mori (silk worm), using Inelastic Neutron Scattering (INS). These techniques were used to investigate the microscopic dynamics of the dry and hydrated protein.
Electrodeposited gels prepared from protein alloys
Lin, Yinan; Wang, Siran; Chen, Ying; Wang, Qianrui; Burke, Kelly A; Spedden, Elise M; Staii, Cristian; Weiss, Anthony S; Kaplan, David L
2015-01-01
Aim Silk-tropoelastin alloys, composed of recombinant human tropoelastin and regenerated Bombyx mori silk fibroin, are an emerging, versatile class of biomaterials endowed with tunable combinations of physical and biological properties. Electrodeposition of these alloys provides a programmable means to assemble functional gels with both spatial and temporal controllability. Materials & methods Tropoelastin-modified silk was prepared by enzymatic coupling between tyrosine residues. Hydrogel coatings were electrodeposited using two wire electrodes. Results & discussion Mechanical characterization and in vitro cell culture revealed enhanced adhesive capability and cellular response of these alloy gels as compared with electrogelled silk alone. Conclusion These electro-depositable silk-tropoelastin alloys constitute a suitable coating material for nanoparticle-based drug carriers and offer a novel opportunity for on-demand encapsulation/release of nanomedicine. PMID:25816881
Materials Fabrication from Bombyx mori Silk Fibroin
Rockwood, Danielle N.; Preda, Rucsanda C.; Yücel, Tuna; Wang, Xiaoqin; Lovett, Michael L.; Kaplan, David L.
2013-01-01
Silk fibroin, derived from Bombyx mori cocoons, is a widely used and studied protein polymer for biomaterial applications. Silk fibroin has remarkable mechanical properties when formed into different materials, demonstrates biocompatibility, has controllable degradation rates from hours to years, and it can be chemically modified to alter surface properties or to immobilize growth factors. A variety of aqueous or organic solvent processing methods can be used to generate silk biomaterials for a range of applications. In this protocol we include methods to extract silk from B. mori cocoons in order to fabricate hydrogels, tubes, sponges, composites, fibers, microspheres and thin films. These materials can be used directly as biomaterials for implants, as scaffolding in tissue engineering and in vitro disease models, and for drug delivery. PMID:21959241
Production of Bombyx mori silk fibroin incorporated with unnatural amino acids.
Teramoto, Hidetoshi; Kojima, Katsura
2014-07-14
Silk fibroin incorporated with unnatural amino acids was produced by in vivo feeding of p-chloro-, p-bromo-, and p-azido-substituted analogues of L-phenylalanine (Phe) to transgenic silkworms (Bombyx mori) that expressed a mutant of phenylalanyl-tRNA synthetase with expanded substrate recognition capabilities in silk glands. Cutting down the content of Phe in the diet was effective for increasing the incorporation of Phe analogues but simultaneously caused a decrease of fibroin production. The azide groups incorporated in fibroin were active as chemical handles for click chemistry in both the solubilized and the solid (fibrous) states. The azides survived degumming in the boiling alkaline solution that is required for complete removal of the sericin layer, demonstrating that AzPhe-incorporated silk fibroin could be a versatile platform to produce "clickable" silk materials in various forms. This study indicates the huge potential of UAA mutagenesis as a novel methodology to alter the characteristics of B. mori silk.
Phenol red-silk tyrosine cross-linked hydrogels.
Sundarakrishnan, Aswin; Herrero Acero, Enrique; Coburn, Jeannine; Chwalek, Karolina; Partlow, Benjamin; Kaplan, David L
2016-09-15
Phenol red is a cytocompatible pH sensing dye that is commonly added to cell culture media, but removed from some media formulations due to its structural mimicry of estrogen. Phenol red free media is also used during live cell imaging, to avoid absorbance and fluorescence quenching of fluorophores. To overcome these complications, we developed cytocompatible and degradable phenol red-silk tyrosine cross-linked hydrogels using horseradish peroxidase (HRP) enzyme and hydrogen peroxide (H2O2). Phenol red added to silk during tyrosine crosslinking accelerated di-tyrosine formation in a concentration-dependent reaction. Phenol red diffusion studies and UV-Vis spectra of phenol red-silk tyrosine hydrogels at different pHs showed altered absorption bands, confirming entrapment of dye within the hydrogel network. LC-MS of HRP-reacted phenol red and N-acetyl-l-tyrosine reaction products confirmed covalent bonds between the phenolic hydroxyl group of phenol red and tyrosine on the silk. At lower phenol red concentrations, leak-proof hydrogels which did not release phenol red were fabricated and found to be cytocompatible based on live-dead staining and alamar blue assessments of encapsulated fibroblasts. Due to the spectral overlap between phenol red absorbance at 415nm and di-tyrosine fluorescence at 417nm, phenol red-silk hydrogels provide both absorbance and fluorescence-based pH sensing. With an average pKa of 6.8 and good cytocompatibiltiy, phenol red-silk hydrogels are useful for pH sensing in phenol red free systems, cellular microenvironments and bioreactors. Phenol red entrapped within hydrogels facilitates pH sensing in phenol red free environments. Leak-proof phenol red based pH sensors require covalent binding techniques, but are complicated due to the lack of amino or carboxyl groups on phenol red. Currently, there is no simple, reliable technique to covalently link phenol red to hydrogel matrices, for real-time pH sensing in cell culture environments. Herein, we take advantage of phenolic groups for covalent linkage of phenol red to silk tyrosine in the presence of HRP and H2O2. The novelty of the current system stems from its simplicity and the use of silk protein to create a cytocompatible, degradable sensor capable of real-time pH sensing in cell culture microenvironments. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Control of silicification by genetically engineered fusion proteins: silk-silica binding peptides.
Zhou, Shun; Huang, Wenwen; Belton, David J; Simmons, Leo O; Perry, Carole C; Wang, Xiaoqin; Kaplan, David L
2015-03-01
In the present study, an artificial spider silk gene, 6mer, derived from the consensus sequence of Nephila clavipes dragline silk gene, was fused with different silica-binding peptides (SiBPs), A1, A3 and R5, to study the impact of the fusion protein sequence chemistry on silica formation and the ability to generate a silk-silica composite in two different bioinspired silicification systems: solution-solution and solution-solid. Condensed silica nanoscale particles (600-800 nm) were formed in the presence of the recombinant silk and chimeras, which were smaller than those formed by 15mer-SiBP chimeras, revealing that the molecular weight of the silk domain correlated to the sizes of the condensed silica particles in the solution system. In addition, the chimeras (6mer-A1/A3/R5) produced smaller condensed silica particles than the control (6mer), revealing that the silica particle size formed in the solution system is controlled by the size of protein assemblies in solution. In the solution-solid interface system, silicification reactions were performed on the surface of films fabricated from the recombinant silk proteins and chimeras and then treated to induce β-sheet formation. A higher density of condensed silica formed on the films containing the lowest β-sheet content while the films with the highest β-sheet content precipitated the lowest density of silica, revealing an inverse correlation between the β-sheet secondary structure and the silica content formed on the films. Intriguingly, the 6mer-A3 showed the highest rate of silica condensation but the lowest density of silica deposition on the films, compared with 6mer-A1 and -R5, revealing antagonistic crosstalk between the silk and the SiBP domains in terms of protein assembly. These findings offer a path forward in the tailoring of biopolymer-silica composites for biomaterial related needs. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Tang, Xiaoxiao; Qiao, Xiuying; Miller, Reinhard; Sun, Kang
2016-12-01
The amphiphilic character and surface activity endows silk fibroin with the ability to reside at fluid interfaces and effectively stabilize emulsions. However, the influence of relevant factors and their actual effect on the interfacial viscoelasticity and stability of silk fibroin at the oil/water interface has received less attention. In the present study, the effect of ionic strength on the interfacial viscoelasticity, emulsification effectiveness and stability of silk fibroin at the oil/water interface was investigated in detail. A higher ion concentration facilitates greater adsorption, stronger molecular interaction and faster structure reorganization of silk fibroin at the oil/water interface, thus causing quicker interfacial saturation adsorption, greater interfacial strength and lower interfacial structural fracture on large deformation. However, the presence of concentrated ions screens the charges in silk fibroin molecules and the zeta potential decreases as a result of electrostatic screening and ion-binding effects, which may result in emulsion droplet coalescence and a decrease in emulsion stability. The positively-charged ions significantly affect the interfacial elasticity and stability of silk fibroin layers at the oil/water interface as a result of the strong electrostatic interactions between counter-ions and the negatively-charged groups of silk fibroin. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Smith, Annette; McNichol, Laurie L; Amos, Mary Anne; Mueller, Gayle; Griffin, Tracy; Davis, Joe; McPhail, Lora; Montgomery, Terry G
2013-04-01
A new, synthetic, silk-like fabric was developed for the purpose of providing bedding and patient gowns that manage moisture, friction, and shear when used between the patient and the healthcare support surface that may affect the development of pressure ulcers (PUs). A retrospective study was conducted to compare the incidence of hospital-acquired PUs in patients admitted to Telemetry, Urology, and Intensive Care Units before and after hospital linens were changed from standard to the synthetic (intervention) linens. Patient medical record data were abstracted for a period 12 weeks before (control) and 12 weeks following the linen change (intervention). Patient demographic information, Braden Risk Scale score, and PU status and stage were abstracted for a total of 659 patients in the control and 768 patients in the intervention groups. No significant differences in patient weight, age, gender distribution, PU risk (Braden scale scores), or proportion of PUs on admission between groups were found. The most common comorbidity was hypertension (n = 981, 68.7%). On admission, the percentage of patients with PUs in the control and intervention groups was 9.9% (σ = 0.3) and 8.7% (σ = 0.3), respectively (P = 0.23). Average length of stay was 5.6 days in the control and 5.2 days in the intervention groups (P = 0.08). Sixty-eight (68) of 659 patients (10.3%) in the control and 19 out of 768 patients in the intervention group (2.5%) developed one or more PUs (P <0.001) for an incidence of 11.5% in the control and 3.1% in the intervention group. At discharge, 136 PUs were present in the control and 64 were present in the intervention group (P <0.001). The significant differences in the incidence of hospital-acquired PUs between the two groups suggest that linen type affects PU risk. Additional controlled clinical studies in high-risk patient populations are warranted.
Tungtasana, Hathairat; Shuangshoti, Somruetai; Shuangshoti, Shanop; Kanokpanont, Sorada; Kaplan, David L; Bunaprasert, Tanom; Damrongsakkul, Siriporn
2010-12-01
This work aimed to investigate tissue responses and biodegradation, both in vitro and in vivo, of four types of Bombyx mori Thai silk fibroin based-scaffolds. Thai silk fibroin (SF), conjugated gelatin/Thai silk fibroin (CGSF), hydroxyapatite/Thai silk fibroin (SF4), and hydroxyapatite/conjugated gelatin/Thai silk fibroin (CGSF4) scaffolds were fabricated using salt-porogen leaching, dehydrothermal/chemical crosslinking and an alternate soaking technique for mineralization. In vitro biodegradation in collagenase showed that CGSF scaffolds had the slowest biodegradability, due to the double crosslinking by dehydrothermal and chemical treatments. The hydroxyapatite deposited from alternate soaking separated from the surface of the protein scaffolds when immersed in collagenase. From in vivo biodegradation studies, all scaffolds could still be observed after 12 weeks of implantation in subcutaneous tissue of Wistar rats and also following ISO10993-6: Biological evaluation of medical devices. At 2 and 4 weeks of implantation the four types of Thai silk fibroin based-scaffolds were classified as "non-irritant" to "slight-irritant", compared to Gelfoam(®) (control samples). These natural Thai silk fibroin-based scaffolds may provide suitable biomaterials for clinical applications.
Morus planting and silk production in Oxus civilization (2000 BC), Transoxiana
NASA Astrophysics Data System (ADS)
Zhou, X.; Li, X.; Wang, J.
2017-12-01
Silk is the most important luxury in ancient trade, which promoted communications between east and west civilizations that facilitated the development of them. Currently, probably more than 99% of the silk in commerce in the world today comes from a single species called the silkworm or mulberry silk moth, Bombyx mori (L.), of the family Bombycidae. At present, a list of occurrences of unearthed early silk thread, textile and terracotta figures of China suggests that wild silk has been widely used for weave in Yangtze river and Yellow River basin at least 5000 cal yr BP. On the other hand, the earliest silk fabric out China is from the earliest civilization Harappa site (4500-4000 cal a BP) that confirmed the early use of wild silkworms in South Asia.. In addition, in the Egyptian Deir al Medina relics site, the unearthed silk also as old as nearly 3000 cal a BP, and a serials of pre-han silk also unearthed 3000-2500 cal a BP in Europe. But, the appearance of these out-China silk is usually considered to be the result of the early trade or wild silkmoth products. Here we present a synthesis study of chronology, entomology, protein group, the paleoethnobotany form three Bronze Age site (Sapalli, Jarzgudan, Molleli) concerning on the paleo environment, agriculture gardening, and the possible mulberry silkworm utilization in Bronze Age Tensoxiana 4000 cal a BP. Together with archaeobotany and chronology data from Xinjiang, Hexi corridor and the Loess Plateau in China, we analysis the status of the mulberry silk factory in Bronze Age in Transoxiana and it possible connection to ancient China.
Gelation of Regenerated Fibroin Solution
NASA Astrophysics Data System (ADS)
Nagarkar, Shailesh; Lele, Ashish; Chassenieux, Christophe; Nicolai, Taco; Durand, Dominique
2008-07-01
Silk fibroin is a high molecular weight multiblock ampiphillic protein known for its ability to form high strength fibers. It is also biocompatible; silk sutures have been traditionally used for many centuries. Recently, there has been much interest in making silk hydrogels for applications ranging from tissue engineering to controlled delivery. Fibroin gels can be formed from aqueous solutions by changing one or more state variables such as pH, temperature and ionic strength. In this work we present our investigations on the gelation of aqueous fibroin solutions derived from Bombyx Mori silk using light scattering, confocal microscopy and rheological techniques.
Tyrosine Templating in the Self-Assembly and Crystallization of Silk Fibroin.
Partlow, Benjamin P; Bagheri, Mehran; Harden, James L; Kaplan, David L
2016-11-14
Native silk fibers exhibit strength and toughness that rival those of the best synthetic fibers. Despite significant research, further insight is still needed to understand the mechanisms by which silkworms are capable of spinning such tough fibers. Here we propose that π-π and π-OH group interactions of tyrosine side chains provide templating effects, such that the crystal-forming domains are in registration, thereby fostering the self-assembly of the spinning dope. Intrinsic fluorescence measurements, in conjunction with circular dichroism, showed that during self-assembly of regenerated silk solutions, the tyrosine residues were localized in a more hydrophobic local environment, suggesting preferential assembly. In situ Fourier transform infrared spectroscopy indicated that cross-linking of the tyrosine residues resulted in the development of extended β-sheet structure. Additionally, control of cross-link density directly influenced the degree of crystallinity upon drying. Molecular dynamics simulations were performed on silk mimetic peptides in order to more thoroughly understand the role of tyrosines. The results indicated that tyrosine residues tended to transiently colocate in solution due to π-π interactions and hydrogen bonds with adjacent residues and with the peptide backbone. These more stable tyrosine interactions resulted in reduced lateral chain fluctuations and increased incidence of coordinated intrachain association, while introduction of a dityrosine bond directly promoted the formation of β-sheet structures. In total, the experimental and modeling data support a critical role for tyrosine-tyrosine interactions as a key early feature in the self-assembly of regenerated silk protein chains and therefore are important in the robust and unusual mechanical properties ultimately achieved in the process.
NGOs and gender policy: some issues from the south Indian silk-reeling industry.
Mayoux, L
1993-10-01
In India, silk reeling, the middle stage in silk production, is potentially very profitable, and the silk industry has been required to adopt gender-aware policies such as appointing female staff and introducing gender sensitization training. To date, policies designed to encourage women's entrepreneurship in the reeling industry have been unsuccessful. Men have appropriated credit issued in women's names, and no women's cooperatives are currently in operation. The policies designed to encourage female entrepreneurship in reeling woefully overlooked the complexity of this work which involves a substantial investment of capital and significant risk. Women and girls continue to work as unpaid family workers and wage laborers without the benefits of governmental policies to protect their interests. In fact, attempts to introduce labor legislation to protect women have been blocked on the national level by the powerful Reelers' Association. Policies which address gender issues in the family and in the wider context of the silk industry are also lacking, and there is a wide variation in how women are able or unable to manipulate their positions to their advantage. Women's inabilities are the root cause of their inability to become entrepreneurs and improve their labor status. Nongovernmental organizations can enhance entrepreneurship and cooperative development by improving training in all aspects of running a business and in group formation. Women laborers must organize to improve wages and working conditions, and women must be able to increase their control over income and resources and their access to the outside world even as they decrease the time spent on unpaid reproductive labor.
Sculpting with light: Light/matter interactions in biocompatible polymers
NASA Astrophysics Data System (ADS)
Applegate, Matthew B.
When light interacts with matter either the light or the material can be changed. This dissertation focuses on light/matter interaction in silk fibroin and its utility for biomedical applications. Silk, a natural biocompatible, biodegradable polymer, has a large 3-photon absorption cross-section which allows modest peak intensity light to cause significant multiphoton absorption. This absorption allows voids to be formed with three dimensional control within soft, transparent silk hydrogels. A theoretical model of the void formation process is developed to allow the size of the voids to be predicted for a range of laser and sample parameters. Arbitrary 3D patterns are created in silk gels that allow cells to penetrate into the bulk of the gel both in vitro and in vivo. To explore how silk can be used to alter light, the creation of step-index optical waveguides, formed by encapsulating a silk film within a silk hydrogel, is described. These waveguides allow light to be delivered to targets through several centimeters of highly scattering biological tissue. Finally, the interaction of light with riboflavin is used to photocrosslink silk to form solid structures, rather than voids. The mechanism of crosslinking to be driven by radicalized tyrosine residues resulting in the formation of dityrosine bonds which lead to the gelation of a liquid silk solution. Riboflavin is a versatile photoinitiator and can be used to crosslink collagen as well as silk, which allows silk to be crosslinked directly to corneal collagen. When applied to the eye, an artificial corneal layer is formed which has the potential to treat various corneal diseases and allow for risk-free laser vision correction. These studies show the versatility of light-based processing of silk for a wide variety of medical applications.
Amirkazem, Vejdan Seyyed; Malihe, Khosravi
2017-02-01
Spleen is the most common organ damaged in cases of blunt abdominal trauma and splenectomy and splenorrhaphy are the main surgical procedures that are used in surgical treatment of such cases. In routine open splenectomy cases, after laparotomy, application of sutures in splenic vasculature is the most widely used procedure to cease the bleeding. This clinical trial evaluates the role and benefits of the Ligasure™ system in traumatic splenectomy without using any suture materials and compares the result with conventional method of splenectomy. After making decision for splenectomy secondary to a blunt abdominal trauma, patients in control group (39) underwent splenectomy using conventional method with silk suture ligation of splenic vasculature. In the interventional group (41) a Ligasure™ vascular sealing system was used for ligating of the splenic vein and artery. The results of operation time, volume of intra-operation bleeding and post-operative complications were compared in both groups. The mean operation times in control and interventional group were 21 and 12 min respectively (p < 0.05). The average volume of bleeding in control group during open splenectomy was 280 cc, but in the interventional group decreased significantly to 80 ml (p < 0.05) using the Ligasure system. Post-operative complications such as bleeding were non-existent in both groups. The application of Ligasure™ in blunt abdominal trauma for splenectomy not only can decrease the operation time but also can decrease the volume of bleeding during operation without any additional increase in post-operative complications. This method is recommendable in traumatic splenic injuries that require splenectomy in order to control the bleeding as opposed to use of traditional silk sutures. Copyright © 2016 IJS Publishing Group Ltd. Published by Elsevier Ltd. All rights reserved.
2012-01-01
Background The maize (Zea mays) red aleurone1 (pr1) encodes a CYP450-dependent flavonoid 3’-hydroxylase (ZmF3’H1) required for the biosynthesis of purple and red anthocyanin pigments. We previously showed that Zmf3’h1 is regulated by C1 (Colorless1) and R1 (Red1) transcription factors. The current study demonstrates that, in addition to its role in anthocyanin biosynthesis, the Zmf3’h1 gene also participates in the biosynthesis of 3-deoxyflavonoids and phlobaphenes that accumulate in maize pericarps, cob glumes, and silks. Biosynthesis of 3-deoxyflavonoids is regulated by P1 (Pericarp color1) and is independent from the action of C1 and R1 transcription factors. Results In maize, apiforol and luteoforol are the precursors of condensed phlobaphenes. Maize lines with functional alleles of pr1 and p1 (Pr1;P1) accumulate luteoforol, while null pr1 lines with a functional or non-functional p1 allele (pr1;P1 or pr1;p1) accumulate apiforol. Apiforol lacks a hydroxyl group at the 3’-position of the flavylium B-ring, while luteoforol has this hydroxyl group. Our biochemical analysis of accumulated compounds in different pr1 genotypes showed that the pr1 encoded ZmF3’H1 has a role in the conversion of mono-hydroxylated to bi-hydroxylated compounds in the B-ring. Steady state RNA analyses demonstrated that Zmf3’h1 mRNA accumulation requires a functional p1 allele. Using a combination of EMSA and ChIP experiments, we established that the Zmf3’h1 gene is a direct target of P1. Highlighting the significance of the Zmf3’h1 gene for resistance against biotic stress, we also show here that the p1 controlled 3-deoxyanthocyanidin and C-glycosyl flavone (maysin) defence compounds accumulate at significantly higher levels in Pr1 silks as compared to pr1 silks. By virtue of increased maysin synthesis in Pr1 plants, corn ear worm larvae fed on Pr1; P1 silks showed slower growth as compared to pr1; P1 silks. Conclusions Our results show that the Zmf3’h1 gene participates in the biosynthesis of phlobaphenes and agronomically important 3-deoxyflavonoid compounds under the regulatory control of P1. PMID:23113982
Huang, Wenwen; Ebrahimi, Davoud; Dinjaski, Nina; Tarakanova, Anna; Buehler, Markus J; Wong, Joyce Y; Kaplan, David L
2017-04-18
Tailored biomaterials with tunable functional properties are crucial for a variety of task-specific applications ranging from healthcare to sustainable, novel bio-nanodevices. To generate polymeric materials with predictive functional outcomes, exploiting designs from nature while morphing them toward non-natural systems offers an important strategy. Silks are Nature's building blocks and are produced by arthropods for a variety of uses that are essential for their survival. Due to the genetic control of encoded protein sequence, mechanical properties, biocompatibility, and biodegradability, silk proteins have been selected as prototype models to emulate for the tunable designs of biomaterial systems. The bottom up strategy of material design opens important opportunities to create predictive functional outcomes, following the exquisite polymeric templates inspired by silks. Recombinant DNA technology provides a systematic approach to recapitulate, vary, and evaluate the core structure peptide motifs in silks and then biosynthesize silk-based polymers by design. Post-biosynthesis processing allows for another dimension of material design by controlled or assisted assembly. Multiscale modeling, from the theoretical prospective, provides strategies to explore interactions at different length scales, leading to selective material properties. Synergy among experimental and modeling approaches can provide new and more rapid insights into the most appropriate structure-function relationships to pursue while also furthering our understanding in terms of the range of silk-based systems that can be generated. This approach utilizes nature as a blueprint for initial polymer designs with useful functions (e.g., silk fibers) but also employs modeling-guided experiments to expand the initial polymer designs into new domains of functional materials that do not exist in nature. The overall path to these new functional outcomes is greatly accelerated via the integration of modeling with experiment. In this Account, we summarize recent advances in understanding and functionalization of silk-based protein systems, with a focus on the integration of simulation and experiment for biopolymer design. Spider silk was selected as an exemplary protein to address the fundamental challenges in polymer designs, including specific insights into the role of molecular weight, hydrophobic/hydrophilic partitioning, and shear stress for silk fiber formation. To expand current silk designs toward biointerfaces and stimuli responsive materials, peptide modules from other natural proteins were added to silk designs to introduce new functions, exploiting the modular nature of silk proteins and fibrous proteins in general. The integrated approaches explored suggest that protein folding, silk volume fraction, and protein amino acid sequence changes (e.g., mutations) are critical factors for functional biomaterial designs. In summary, the integrated modeling-experimental approach described in this Account suggests a more rationally directed and more rapid method for the design of polymeric materials. It is expected that this combined use of experimental and computational approaches has a broad applicability not only for silk-based systems, but also for other polymer and composite materials.
3D Printing of Hierarchical Silk Fibroin Structures.
Sommer, Marianne R; Schaffner, Manuel; Carnelli, Davide; Studart, André R
2016-12-21
Like many other natural materials, silk is hierarchically structured from the amino acid level up to the cocoon or spider web macroscopic structures. Despite being used industrially in a number of applications, hierarchically structured silk fibroin objects with a similar degree of architectural control as in natural structures have not been produced yet due to limitations in fabrication processes. In a combined top-down and bottom-up approach, we exploit the freedom in macroscopic design offered by 3D printing and the template-guided assembly of ink building blocks at the meso- and nanolevel to fabricate hierarchical silk porous materials with unprecedented structural control. Pores with tunable sizes in the range 40-350 μm are generated by adding sacrificial organic microparticles as templates to a silk fibroin-based ink. Commercially available wax particles or monodisperse polycaprolactone made by microfluidics can be used as microparticle templates. Since closed pores are generated after template removal, an ultrasonication treatment can optionally be used to achieve open porosity. Such pore templating particles can be further modified with nanoparticles to create a hierarchical template that results in porous structures with a defined nanotopography on the pore walls. The hierarchically porous silk structures obtained with this processing technique can potentially be utilized in various application fields from structural materials to thermal insulation to tissue engineering scaffolds.
Sericin Promotes Fibroin Silk I Stabilization Across a Phase-Separation.
Kwak, Hyo Won; Ju, Ji Eun; Shin, Munju; Holland, Chris; Lee, Ki Hoon
2017-08-14
Natural silk spinning offers several advantages over the synthetic fiber spinning, although the underlying mechanisms of this process are yet to be fully elucidated. Silkworm silks, specifically B. mori, comprise two main proteins: fibroin, which forms the fiber, and sericin, a coextruded coating that acts as a matrix in the resulting nonwoven composite cocoon. To date, most studies have focused on fibroin's self-assembly and gelation, with the influence of sericin during spinning receiving little to no attention. This study investigates sericin's effects on the self-assembly of fibroin via their natural phase-separation. Through changes in sample opacity, FTIR, and XRD, we report that increasing sericin concentration retards the time to gelation and β-sheet formation of fibroin, causing it to adopt a Silk I conformation. Such findings have important implications for both the natural silk spinning process and any future industrial applications, suggesting that sericin may be able to induce long-range conformational and stability control in silk fibroin, while being in a separate phase, a factor that would facilitate long-term storage or silk feedstocks.
Human Corneal Limbal-Epithelial Cell Response to Varying Silk Film Geometric Topography In Vitro
Lawrence, Brian D.; Pan, Zhi; Liu, Aihong; Kaplan, David L.; Rosenblatt, Mark I.
2012-01-01
Silk fibroin films are a promising class of biomaterials that have a number of advantages for use in ophthalmic applications due to their transparent nature, mechanical properties and minimal inflammatory response upon implantation. Freestanding silk films with parallel line and concentric ring topographies were generated for in vitro characterization of human corneal limbal-epithelial (HCLE) cell response upon differing geometric patterned surfaces. Results indicated that silk film topography significantly affected initial HCLE culture substrate attachment, cellular alignment, cell-to-cell contact formation, actin cytoskeleton alignment, and focal adhesion (FA) localization. Most notably, parallel line patterned surfaces displayed a 36%–54% increase on average in initial cell attachment, which corresponded to an over 2-fold increase in FA localization when compared to other silk film surfaces and controls. In addition, distinct localization of FA formation was observed along the edges for all patterned silk film topographies. In conclusion, silk film feature topography appears to help direct corneal epithelial cell response and cytoskeleton development, especially in regards to FA distribution, in vitro. PMID:22705042
Role of chondroitin sulphate tethered silk scaffold in cartilaginous disc tissue regeneration.
Bhattacharjee, Maumita; Chawla, Shikha; Chameettachal, Shibu; Murab, Sumit; Bhavesh, Neel Sarovar; Ghosh, Sourabh
2016-04-12
Strategies for tissue engineering focus on scaffolds with tunable structure and morphology as well as optimum surface chemistry to simulate the anatomy and functionality of the target tissue. Silk fibroin has demonstrated its potential in supporting cartilaginous tissue formation both in vitro and in vivo. In this study, we investigate the role of controlled lamellar organization and chemical composition of biofunctionalized silk scaffolds in replicating the structural properties of the annulus region of an intervertebral disc using articular chondrocytes. Covalent attachment of chondroitin sulfate (CS) to silk is characterized. CS-conjugated silk constructs demonstrate enhanced cellular metabolic activity and chondrogenic redifferentiation potential with significantly improved mechanical properties over silk-only constructs. A matrix-assisted laser desorption ionization-time of flight analysis and protein-protein interaction studies help to generate insights into how CS conjugation can facilitate the production of disc associated matrix proteins, compared to a silk-only based construct. An in-depth understanding of the interplay between such extra cellular matrix associated proteins should help in designing more rational scaffolds for cartilaginous disc regeneration needs.
Gel spinning of silk tubes for tissue engineering
Lovett, Michael; Cannizzaro, Christopher; Vunjak-Novakovic, Gordana; Kaplan, David L.
2011-01-01
Tubular vessels for tissue engineering are typically fabricated using a molding, dipping, or electrospinning technique. While these techniques provide some control over inner and outer diameters of the tube, they lack the ability to align the polymers or fibers of interest throughout the tube. This is an important aspect of biomaterial composite structure and function for mechanical and biological impact of tissue outcomes. We present a novel aqueous process system to spin tubes from biopolymers and proteins such as silk fibroin. Using silk as an example, this method of winding an aqueous solution around a reciprocating rotating mandrel offers substantial improvement in the control of the tube properties, specifically with regard to winding pattern, tube porosity, and composite features. Silk tube properties are further controlled via different post-spinning processing mechanisms such as methanol-treatment, air-drying, and lyophilization. This approach to tubular scaffold manufacture offers numerous tissue engineering applications such as complex composite biomaterial matrices, blood vessel grafts and nerve guides, among others. PMID:18801570
Silk Fibroin Aqueous-Based Adhesives Inspired by Mussel Adhesive Proteins.
Burke, Kelly A; Roberts, Dane C; Kaplan, David L
2016-01-11
Silk fibroin from the domesticated silkworm Bombyx mori is a naturally occurring biopolymer with charged hydrophilic terminal regions that end-cap a hydrophobic core consisting of repeating sequences of glycine, alanine, and serine residues. Taking inspiration from mussels that produce proteins rich in L-3,4-dihydroxyphenylalanine (DOPA) to adhere to a variety of organic and inorganic surfaces, the silk fibroin was functionalized with catechol groups. Silk fibroin was selected for its high molecular weight, tunable mechanical and degradation properties, aqueous processability, and wide availability. The synthesis of catechol-functionalized silk fibroin polymers containing varying amounts of hydrophilic polyethylene glycol (PEG, 5000 g/mol) side chains was carried out to balance silk hydrophobicity with PEG hydrophilicity. The efficiency of the catechol functionalization reaction did not vary with PEG conjugation over the range studied, although tuning the amount of PEG conjugated was essential for aqueous solubility. Adhesive bonding and cell compatibility of the resulting materials were investigated, where it was found that incorporating as little as 6 wt % PEG prior to catechol functionalization resulted in complete aqueous solubility of the catechol conjugates and increased adhesive strength compared with silk lacking catechol functionalization. Furthermore, PEG-silk fibroin conjugates maintained their ability to form β-sheet secondary structures, which can be exploited to reduce swelling. Human mesenchymal stem cells (hMSCs) proliferated on the silks, regardless of PEG and catechol conjugation. These materials represent a protein-based approach to catechol-based adhesives, which we envision may find applicability as biodegradable adhesives and sealants.
Harrison, Eleanor F; Haines, Rachel H; Cowdell, Fiona; Sach, Tracey H; Dean, Taraneh; Pollock, Ian; Burrows, Nigel P; Buckley, Hannah; Batchelor, Jonathan; Williams, Hywel C; Lawton, Sandra; Brown, Sara J; Bradshaw, Lucy E; Ahmed, Amina; Montgomery, Alan A; Mitchell, Eleanor J; Thomas, Kim S
2015-09-02
Eczema is a chronic, itchy skin condition that can have a large impact on the quality of life of patients and their families. People with eczema are often keen to try out non-pharmacological therapies like silk therapeutic garments that could reduce itching or the damage caused by scratching. However, the effectiveness and cost-effectiveness of these garments in the management of eczema has yet to be proven. The CLOTHES Trial will test the hypothesis that 'silk therapeutic garments plus standard eczema care' is superior to 'standard care alone' for children with moderate to severe eczema. Parallel group, observer-blind, pragmatic, multi-centre randomised controlled trial of 6 months' duration. Three hundred children aged 1 to 15 years with moderate to severe eczema will be randomised (1:1) to receive silk therapeutic garments plus standard eczema care, or standard eczema care alone. Primary outcome is eczema severity, as assessed by trained and blinded investigators at 2, 4 and 6 months (using the Eczema Area and Severity Index (EASI)). Secondary outcomes include: patient-reported eczema symptoms (collected weekly for 6 months to capture long-term control); global assessment of severity; quality of life of the child, family and main carer; use of standard eczema treatments (emollients, corticosteroids applied topically, calcineurin inhibitors applied topically and wet wraps); frequency of infections; and cost-effectiveness. The acceptability and durability of the clothing will also be assessed, as will adherence to wearing the garments. A nested qualitative study will assess the views of a subset of children wearing the garments and their parents, and those of healthcare providers and commissioners. Randomisation uses a computer-generated sequence of permuted blocks of randomly varying size, stratified by recruiting hospital and child's age (< 2 years; 2 to 5 years; > 5 years), and concealed using a secure web-based system. The sequence of treatment allocations will remain concealed until randomisation and data collection are complete. Recruitment is taking place from November 2013 to May 2015, and the trial will be completed in 2016. Full details of results will be published in the National Institute for Health Research Journal series. Current Controlled Trials ISRCTN77261365 (registered 11 November 2013).
Somvipart, Siraporn; Kanokpanont, Sorada; Rangkupan, Rattapol; Ratanavaraporn, Juthamas; Damrongsakkul, Siriporn
2013-04-01
Thai silk fibroin and gelatin are attractive biomaterials for tissue engineering and controlled release applications due to their biocompatibility, biodegradability, and bioactive properties. The development of electrospun fiber mats from silk fibroin and gelatin were reported previously. However, burst drug release from such fiber mats remained the problem. In this study, the formation of beads on the fibers aiming to be used for the sustained release of drug was of our interest. The beaded fiber mats were fabricated using electrospinning technique by controlling the solution concentration, weight blending ratio of Thai silk fibroin/gelatin blend, and applied voltage. It was found that the optimal conditions including the solution concentration and the weight blending ratio of Thai silk fibroin/gelatin at 8-10% (w/v) and 70/30, respectively, with the applied voltage at 18 kV provided the fibers with homogeneous formation of beads. Then, the beaded fiber mats obtained were crosslinked by the reaction of carbodiimide hydrochloride (EDC)/N-hydroxysuccinimide (NHS). Methylene blue as a model active compound was loaded on the fiber mats. The release test of methylene blue from the beaded fiber mats was carried out in comparison to that of the smooth fiber mats without beads. It was found that the beaded fiber mats could prolong the release of methylene blue, comparing to the smooth fiber mats without beads. This was possibly due to the beaded fiber mats that would absorb and retain higher amount of methylene blue than the fiber mats without beads. Thai silk fibroin/gelatin beaded fiber mats were established as an effective carrier for the controlled release applications. Copyright © 2013 Elsevier B.V. All rights reserved.
Lyu, Xiaoshuai; Li, Zhengmao; Wang, Haiyan; Yang, Xuechao
2015-12-01
To investigate the effect of bioactivity glass 45S5- silk fibroin(BG45S5- SF) membrane on growth, proliferation and differentiation of human dental pulp stem cells(hDPSC), and to provide new ideas and method for the regeneration of pulp-dentine complex. hDPSC seed on pure silk fibroin membrane (protein membrane group) and BG45S5-SF membrane with different concentrations(1 000, 5 000 mg/L, composite membrane group A and B, respectively) were prepared, and the materials were incubated in cell culture fluid for 24 h. No material membrane orifice plate was used as blank control group. Contact angle meter was used to measure surface contact angle of protein membrane and composite membrane group(each group had three repeated holes). Cell proliferation was assessed by cell counting kit- 8 on the 4, 7, 14, and 21 days. The state of adhesion and growth of hDPSC on the materials surface was evaluated by scanning electron microscopy and cytoskeleton staining; and alkaline phosphatase (ALP) activity was measured to evaluate the cell differentiation potential. The expression of odontoblastic differentiation-related genes was measured by real-time PCR. Surface contact angle of the protein membrane group and composite membrane group A and group B were 89.51° ± 0.12°, 70.32° ± 0.07° and 71.31° ± 0.09° respectively. hDPSC adhered well on each materials surface on the 7, 14, 21 days, ALP activity and differentiation genes of composite membrane group A and B rised more significantly than the blank control group and protein membrane group did (P<0.05). Dentin matrix protein1(DMP- 1), dentin sialoprotein(DSP), ALP, osteocalcin(OC) mRNA expression reached peak on the 14 days in group A, and in group B on the 21 days. Bone sialoprotein(BSP) mRNA expression in both group A and B reached peak on the 21 days. BG45S5- SF membrane is able to support the proliferation and showed the potential of odontoblastic differentiation for hDPSC. This finding suggests that BG45S5-SF membrane was a kind of tissue engineering film material with the regeneration potential for pulp-dentine complex.
Bioengineered Chimeric Spider Silk-Uranium Binding Proteins
Krishnaji, Sreevidhya Tarakkad; Kaplan, David L.
2014-01-01
Heavy metals constitute a source of environmental pollution. Here, novel functional hybrid biomaterials for specific interactions with heavy metals are designed by bioengineering consensus sequence repeats from spider silk of Nephila clavipes with repeats of a uranium peptide recognition motif from a mutated 33-residue of calmodulin protein from Paramecium tetraurelia. The self-assembly features of the silk to control nanoscale organic/inorganic material interfaces provides new biomaterials for uranium recovery. With subsequent enzymatic digestion of the silk to concentrate the sequestered metals, options can be envisaged to use these new chimeric protein systems in environmental engineering, including to remediate environments contaminated by uranium. PMID:23212989
Differential scanning fluorimetry illuminates silk feedstock stability and processability.
Dicko, C; Kasoju, N; Hawkins, N; Vollrath, F
2016-01-07
The ability to design and implement silk feedstock formulations for tailored spinning has so far eluded the bioengineers. Recently, the high throughput screening technique of differential scanning fluorimetry (DSF) demonstrated the link between the instability transition temperature (Ti) and the processability of the silk feedstock. Using DSF we screened a large set of chemicals known to affect solvent quality. A multivariate analysis of the results shows that, regardless of the diversity of chemicals, three groupings are significantly distinguishable: G1 = similar to native silk; G2 = largely dominated by electrostatic interactions; and G3 = dominated by chelating interactions. We propose a thermodynamic analysis based on a pre- and post-transition fit to estimate the van't Hoff enthalpies (ΔHv) and the instability temperature (Ti). Our analysis shows that the ΔTi and ΔHv values were distinct: G1 (ΔTi = 0.23 ± 0.2; ΔHv = -159.1 ± 5.6 kcal mol(-1)), G2 (ΔTi = -7.3 ± 0.7; ΔHv = -191.4 ± 5.5 kcal mol(-1)), and G3 (ΔTi = -19.9 ± 3.3; ΔHv = -68.8 ± 6.0 kcal mol(-1)). Our analysis further combined the ΔTi value and the ΔHv value using stability ΔΔG to find that G1 only marginally stabilizes native silks (ΔΔG = -0.15 ± 0.04 kcal mol(-1)), whereas G2 and G3 destabilize native silk (ΔΔG = 3.8 ± 0.11 and ΔΔG = 3.8 ± 0.3 kcal mol(-1), respectively). Here our analysis shows that native silk has a complex multistep transition that is possibly non-cooperative. However, all three groupings also show a direct and cooperative transition with varied stabilization effects. This analysis suggests that native silks are able to sample multiple substates prior to undergoing (or to delay) the final transition. We conclude by hypothesizing that the observed energetic plasticity may be mediated by a fragile packaging of the silk tertiary structure that is readily lost when the solvent quality changes.
Bone Tissue Engineering with Premineralized Silk Scaffolds
Kim, Hyeon Joo; Kim, Ung-Jin; Kim, Hyun Suk; Li, Chunmei; Wada, Masahisa; Leisk, Gary G.; Kaplan, David L.
2009-01-01
Silks fibroin biomaterials are being explored as novel protein-based systems for cell and tissue culture. In the present study, biomimetic growth of calcium phosphate on porous silk fibroin polymeric scaffolds was explored to generate organic/inorganic composites as scaffolds for bone tissue engineering. Aqueous-derived silk fibroin scaffolds were prepared with the addition of polyaspartic acid during processing, followed by the controlled deposition of calcium phosphate by exposure to CaCl2 and Na2HPO4. These mineralized protein-composite scaffolds were subsequently seeded with human bone marrow stem cells (hMSC) and cultured in vitro for 6 weeks under osteogenic conditions with or without BMP-2. The extent of osteoconductivity was assessed by cell numbers, alkaline phosphatase and calcium deposition, along with immunohistochemistry for bone related outcomes. The results suggest increased osteoconductive outcomes with an increase in initial content of apatite and BMP-2 in the silk fibroin porous scaffolds. The premineralization of these highly porous silk fibroin protein scaffolds provided enhanced outcomes for the bone tissue engineering. PMID:18387349
Recombinant spider silk from aqueous solutions via a bio-inspired microfluidic chip
NASA Astrophysics Data System (ADS)
Peng, Qingfa; Zhang, Yaopeng; Lu, Li; Shao, Huili; Qin, Kankan; Hu, Xuechao; Xia, Xiaoxia
2016-11-01
Spiders achieve superior silk fibres by controlling the molecular assembly of silk proteins and the hierarchical structure of fibres. However, current wet-spinning process for recombinant spidroins oversimplifies the natural spinning process. Here, water-soluble recombinant spider dragline silk protein (with a low molecular weight of 47 kDa) was adopted to prepare aqueous spinning dope. Artificial spider silks were spun via microfluidic wet-spinning, using a continuous post-spin drawing process (WS-PSD). By mimicking the natural spinning apparatus, shearing and elongational sections were integrated in the microfluidic spinning chip to induce assembly, orientation of spidroins, and fibril structure formation. The additional post-spin drawing process following the wet-spinning section partially mimics the spinning process of natural spider silk and substantially contributes to the compact aggregation of microfibrils. Subsequent post-stretching further improves the hierarchical structure of the fibres, including the crystalline structure, orientation, and fibril melting. The tensile strength and elongation of post-treated fibres reached up to 510 MPa and 15%, respectively.
Liquid crystalline spinning of spider silk
NASA Astrophysics Data System (ADS)
Vollrath, Fritz; Knight, David P.
2001-03-01
Spider silk has outstanding mechanical properties despite being spun at close to ambient temperatures and pressures using water as the solvent. The spider achieves this feat of benign fibre processing by judiciously controlling the folding and crystallization of the main protein constituents, and by adding auxiliary compounds, to create a composite material of defined hierarchical structure. Because the `spinning dope' (the material from which silk is spun) is liquid crystalline, spiders can draw it during extrusion into a hardened fibre using minimal forces. This process involves an unusual internal drawdown within the spider's spinneret that is not seen in industrial fibre processing, followed by a conventional external drawdown after the dope has left the spinneret. Successful copying of the spider's internal processing and precise control over protein folding, combined with knowledge of the gene sequences of its spinning dopes, could permit industrial production of silk-based fibres with unique properties under benign conditions.
Oury, Vincent; Tardieu, François; Turc, Olivier
2016-06-01
Grain abortion allows the production of at least a few viable seeds under water deficit but causes major yield loss. It is maximum for water deficits occurring during flowering in maize (Zea mays). We have tested the hypothesis that abortion is linked to the differential development of ovary cohorts along the ear and to the timing of silk emergence. Ovary volume and silk growth were followed over 25 to 30 d under four levels of water deficit and in four hybrids in two experiments. A position-time model allowed characterizing the development of ovary cohorts and their silk emergence. Silk growth rate decreased in water deficit and stopped 2 to 3 d after first silk emergence, simultaneously for all ovary cohorts, versus 7 to 8 d in well-watered plants. Abortion rate in different treatments and positions on the ear was not associated with ovary growth rate. It was accounted for by the superposition of (1) the sequential emergence of silks originating from ovaries of different cohorts along the ear with (2) one event occurring on a single day, the simultaneous silk growth arrest. Abortion occurred in the youngest ovaries whose silks did not emerge 2 d before silk arrest. This mechanism accounted for more than 90% of drought-related abortion in our experiments. It resembles the control of abortion in a large range of species and inflorescence architectures. This finding has large consequences for breeding drought-tolerant maize and for modeling grain yields in water deficit. © 2016 American Society of Plant Biologists. All Rights Reserved.
Tardieu, François
2016-01-01
Grain abortion allows the production of at least a few viable seeds under water deficit but causes major yield loss. It is maximum for water deficits occurring during flowering in maize (Zea mays). We have tested the hypothesis that abortion is linked to the differential development of ovary cohorts along the ear and to the timing of silk emergence. Ovary volume and silk growth were followed over 25 to 30 d under four levels of water deficit and in four hybrids in two experiments. A position-time model allowed characterizing the development of ovary cohorts and their silk emergence. Silk growth rate decreased in water deficit and stopped 2 to 3 d after first silk emergence, simultaneously for all ovary cohorts, versus 7 to 8 d in well-watered plants. Abortion rate in different treatments and positions on the ear was not associated with ovary growth rate. It was accounted for by the superposition of (1) the sequential emergence of silks originating from ovaries of different cohorts along the ear with (2) one event occurring on a single day, the simultaneous silk growth arrest. Abortion occurred in the youngest ovaries whose silks did not emerge 2 d before silk arrest. This mechanism accounted for more than 90% of drought-related abortion in our experiments. It resembles the control of abortion in a large range of species and inflorescence architectures. This finding has large consequences for breeding drought-tolerant maize and for modeling grain yields in water deficit. PMID:26598464
Wake, E V; Batchelor, J; Lawton, S; Thomas, K S; Harrison, E F; Cowdell, F C
2018-01-01
Many children suffer with skin diseases but to date most dermatological research has been done 'on' rather than 'with' children; in this study we actively sought the experiences of children and young people. Atopic eczema (AE) is a chronic, itchy, inflammatory skin condition that affects around 20% of children and can impact on the health and wellbeing of children and their families. The role of specialist clothing in the management of AE is poorly understood. The aim of this study, which was nested in a randomized controlled trial, was to qualitatively examine child participants' experiences of using silk garments for the treatment of AE. Eighteen children aged 5-15 years, who took part in the CLOTHing for the relief of Eczema Symptoms (CLOTHES) trial, participated in age-appropriate individual interviews or focus groups. Thematic analysis generated four themes directly related to the silk garments: (i) expectations of the garments; (ii) wearing the garments; (iii) asking if the garments helped; and (iv) thoughts about the garments. The conclusions from this nested qualitative study are that there was some limited improvement in eczema for some children but that the hoped-for 'miracle cure' did not transpire. A mixed picture of knowledge, beliefs and experiences of using the silk garments emerged. Engaging children in the evaluation of the garments provided first-hand nuanced insights that enhanced understanding of the CLOTHES study as a whole. This nested study demonstrates that children can and indeed want to be engaged in dermatological research in meaningful ways that add to our understanding of treatment options. © 2017 British Association of Dermatologists.
Porous CaP/silk composite scaffolds to repair femur defects in an osteoporotic model
Cheng, Ning; Dai, Jing; Cheng, Xiangrong; Li, Shu’e; Miron, Richard J.; Wu, Tao; Chen, Wenli; Zhang, Yufeng
2018-01-01
The most common complication for patients with postmenopausal osteoporosis is bone-related defects and fractures. While routine medication has a high probability of undesirable side effects, new approaches have aimed to develop regeneration procedures that stimulate new bone formation while reversing bone loss. Recently, we have synthesized a new hybrid CaP/silk scaffold with a CaP-phase distribution and pore architecture better suited to facilitate cell differentiation and bone formation. The aim of the present study was to compare the involved remodeling process and therapeutic effect of porous CaP/silk composite scaffolds upon local implantation into osteoporotic defects. Wistar rats were used to induce postmenopausal osteoporotic model by bilateral ovariectomy. The pure silk and hybrid CaP/silk scaffolds were implanted into critical sized defects created in distal femoral epiphysis. After 14 and 28 days, the in vivo osteogenetic efficiency was evaluated by μCT analysis, hematoxylin and eosin staining, Safranin O staining, tartrate-resistant acid phosphatase staining, and immunohistochemical assessment. Animals with or without critical-sized defects were used as drill or blank controls, respectively. The osteoporotic defect model was well established with significantly decreased μCT parameters of BV/TV, Tb.N and increased Tb.Sp, porosity, combined with changes in histological observations. During the healing process, the critical-sized drill control defects failed to regenerate appreciable bone tissue, while more significantly increased bone formation and mineralization with dynamic scaffold degradation and decreased osteoclastic bone resorption could be detected within defects with hybrid CaP/silk scaffolds compared to pure silk scaffolds. PMID:23674058
Porous CaP/silk composite scaffolds to repair femur defects in an osteoporotic model.
Cheng, Ning; Dai, Jing; Cheng, Xiangrong; Li, Shu'e; Miron, Richard J; Wu, Tao; Chen, Wenli; Zhang, Yufeng; Shi, Bin
2013-08-01
The most common complication for patients with postmenopausal osteoporosis is bone-related defects and fractures. While routine medication has a high probability of undesirable side effects, new approaches have aimed to develop regeneration procedures that stimulate new bone formation while reversing bone loss. Recently, we have synthesized a new hybrid CaP/silk scaffold with a CaP-phase distribution and pore architecture better suited to facilitate cell differentiation and bone formation. The aim of the present study was to compare the involved remodeling process and therapeutic effect of porous CaP/silk composite scaffolds upon local implantation into osteoporotic defects. Wistar rats were used to induce postmenopausal osteoporotic model by bilateral ovariectomy. The pure silk and hybrid CaP/silk scaffolds were implanted into critical sized defects created in distal femoral epiphysis. After 14 and 28 days, the in vivo osteogenetic efficiency was evaluated by μCT analysis, hematoxylin and eosin staining, Safranin O staining, tartrate-resistant acid phosphatase staining, and immunohistochemical assessment. Animals with or without critical-sized defects were used as drill or blank controls, respectively. The osteoporotic defect model was well established with significantly decreased μCT parameters of BV/TV, Tb.N and increased Tb.Sp, porosity, combined with changes in histological observations. During the healing process, the critical-sized drill control defects failed to regenerate appreciable bone tissue, while more significantly increased bone formation and mineralization with dynamic scaffold degradation and decreased osteoclastic bone resorption could be detected within defects with hybrid CaP/silk scaffolds compared to pure silk scaffolds.
Highly-transparent multi-layered spin-coated silk fibroin film
NASA Astrophysics Data System (ADS)
Wasapinyokul, Kamol; Kaewpirom, Supranee; Chuwongin, Santhad; Boonsang, Siridech
2017-10-01
In this study, the silk fibroin films with different numbers of layers were fabricated by the spin-coating method and their optical transmittances were observed. The process to synthesise the silk fibroin solution was explained - starting from the silk cocoon until the silk-fibroin solution, approximately 7.5% concentration wt/vol, was obtained. The solution was spin-coated onto clean glass substrates to fabricate samples. Totally 10 samples with different numbers of layers, from 1 to 5 layers, were obtained. All samples can be separated into two groups: those left dried at room temperature after spin-coating and those heated at 60°C. They were then measured for their transmittance over the visible-to-near-infrared region. All samples exhibited the high transmittance where the values were at 95% and 98%, for the samples at room temperature and those at 60°C, respectively. This was believed to be due to the heating effect that caused the silk fibroin to arrange itself after being heated, hence the higher transmittance. These high transmittances were maintained regardless of the number of layers and length of heating time. Results from this study could be used to fabricate a silk fibroin film with high optical transmittance and adjustable other properties.
Mirmusavi, Mohammad Hossein; Karbasi, Saeed; Semnani, Dariush; Kharazi, Anousheh Zargar
2018-01-01
Long-term healing tissue engineering scaffolds must hold its full mechanical strength at least for 12 weeks. Nano-micro scaffolds consist of electrospinning nanofibers and textile microfibers to support cell behavior and mechanical strength, respectively. The new nano-micro hybrid scaffold was fabricated by electrospinning poly 3-hydroxybutyrate-chitosan-multi-walled carbon nanotube (MWNT functionalized by COOH) solution on knitted silk in a random manner with different amounts of MWNT. The physical, mechanical, and biodegradation properties were assessed through scanning electron microscopy, Fourier-transform infrared (FTIR) spectroscopy, water contact angle test, tensile strength test, and weight loss test. The scaffold without MWNT was chosen as control sample. An increase in the amount of MWNT up to 1 wt% leads to better fiber diameter distribution, more hydrophilicity, biodegradation rate, and higher tensile strength in comparison with other samples. The porosity percentage of all scaffolds is more than 80%. According to FTIR spectra, the nanofibrous coat on knitted silk did not have any effect on silk fibroin crystallinity structures, and according to tensile strength test, the coat had a significant effect on tensile strength in comparison with pure knitted silk ( P ≤ 0.05). The average fiber diameter decreased due to an increase in electrical conductivity of the solution and fiber stretch in electrical field due to MWNTs. The scaffold containing 1 wt% MWNT was more hydrophilic due to the presence of many COOH groups of functionalized MWNT, thus an increase in the hydrolysis and degradation rate of this sample. High intrinsic tensile strength of MWNTs and improvement of nano-micro interface connection lead to an increase in tensile strength in scaffolds containing MWNT.
Mirmusavi, Mohammad Hossein; Karbasi, Saeed; Semnani, Dariush; Kharazi, Anousheh Zargar
2018-01-01
Background: Long-term healing tissue engineering scaffolds must hold its full mechanical strength at least for 12 weeks. Nano-micro scaffolds consist of electrospinning nanofibers and textile microfibers to support cell behavior and mechanical strength, respectively. Methods: The new nano-micro hybrid scaffold was fabricated by electrospinning poly 3-hydroxybutyrate-chitosan-multi-walled carbon nanotube (MWNT functionalized by COOH) solution on knitted silk in a random manner with different amounts of MWNT. The physical, mechanical, and biodegradation properties were assessed through scanning electron microscopy, Fourier-transform infrared (FTIR) spectroscopy, water contact angle test, tensile strength test, and weight loss test. The scaffold without MWNT was chosen as control sample. Results: An increase in the amount of MWNT up to 1 wt% leads to better fiber diameter distribution, more hydrophilicity, biodegradation rate, and higher tensile strength in comparison with other samples. The porosity percentage of all scaffolds is more than 80%. According to FTIR spectra, the nanofibrous coat on knitted silk did not have any effect on silk fibroin crystallinity structures, and according to tensile strength test, the coat had a significant effect on tensile strength in comparison with pure knitted silk (P ≤ 0.05). The average fiber diameter decreased due to an increase in electrical conductivity of the solution and fiber stretch in electrical field due to MWNTs. The scaffold containing 1 wt% MWNT was more hydrophilic due to the presence of many COOH groups of functionalized MWNT, thus an increase in the hydrolysis and degradation rate of this sample. Conclusions: High intrinsic tensile strength of MWNTs and improvement of nano-micro interface connection lead to an increase in tensile strength in scaffolds containing MWNT. PMID:29535924
Lee, Eun Young; Kim, Sun Lim; Kang, Hyeon Jung; Kim, Myung Hwan; Ha, Ae Wha; Kim, Woo Kyoung
2016-12-01
The study was performed to investigate the effects and mechanisms of action of high maysin corn silk extract on body weight and fat deposition in experimental animals. A total of 30 male C57BL/6J mice, 4-weeks-old, were purchased and divided into three groups by weight using a randomized block design. The normal-fat (NF) group received 7% fat (diet weight basis), the high-fat (HF) group received 25% fat and 0.5% cholesterol, and the high-fat corn silk (HFCS) group received high-fat diet and high maysin corn silk extract at 100 mg/kg body weight through daily oral administration. Body weight and body fat were measured, and mRNA expression levels of proteins involved in adipocyte differentiation, fat accumulation, fat synthesis, lipolysis, and fat oxidation in adipose tissue and the liver were measured. After experimental diet intake for 8 weeks, body weight was significantly lower in the HFCS group compared to the HF group ( P < 0.05), and kidney fat and epididymal fat pad weights were significantly lower in the HFCS group compared to the HF group ( P < 0.05). In the HFCS group, CCAAT/enhancer binding protein-β, peroxisome proliferator-activated receptor-γ1 (PPAR-γ1), and PPAR-γ2 mRNA expression levels were significantly reduced ( P < 0.05) in the epididymal fat pad, whereas cluster of differentiation 36, lipoprotein lipase, acetyl-CoA carboxylase-1, sterol regulatory element binding protein-1c, pyruvate dehydrogenase kinase, isozyme-4, glucose-6-phosphate dehydrogenase, and stearoyl-CoA desaturase-1 mRNA expression levels were significantly decreased in liver and adipose tissues ( P < 0.05). In the HFCS group, mRNA expression levels of AMP-activated protein kinase, hormone-sensitive lipase, and carnitine palmitoyltransferase-1 were elevated ( P < 0.05). It can be concluded that high maysin corn silk extract inhibits expression of genes involved in adipocyte differentiation, fat accumulation, and fat synthesis as well as promotes expression of genes involved in lipolysis and fat oxidation, further inhibiting body fat accumulation and body weight elevation in experimental animals.
Self-assembly of silk fibroin under osmotic stress
NASA Astrophysics Data System (ADS)
Sohn, Sungkyun
The supramolecular self-assembly behavior of silk fibroin was investigated using osmotic stress technique. In Chapter 2, a ternary phase diagram of water-silk-LiBr was constructed based on X-ray results on the osmotically stressed regenerated silk fibroin of Bombyx mori silkworm. Microscopic data indicated that silk I is a hydrated structure and a rough estimate of the number of water molecules lost by the structure upon converting from silk I to silk II has been made, and found to be about 2.2 per [GAGAGS] hexapeptide. In Chapter 3, wet-spinning of osmotically stressed, regenerated silk fibroin was performed, based on the prediction that the enhanced control over structure and phase behavior using osmotic stress method helps improve the physical properties of wet-spun regenerated silk fibroin fibers. The osmotic stress was applied in order to pre-structure the regenerated silk fibroin molecule from its original random coil state to more oriented state, manipulating the phase of the silk solution in the phase diagram before the start of spinning. Monofilament fiber with a diameter of 20 microm was produced. In Chapter 4, we investigated if there is a noticeable synergistic osmotic pressure increase between co-existing polymeric osmolyte and salt when extremely highly concentrated salt molecules are present both at sample subphase and stressing subphase, as is the case of silk fibroin self-assembly. The equilibration method that measures osmotic pressure relative to a reference with known osmotic pressure was introduced. Osmotic pressure of aqueous LiBr solution up to 2.75M was measured and it was found that the synergistic effect was insignificant up to this salt concentration. Solution parameters of stressing solutions and Arrhenius kinetics based on time-temperature relationship for the equilibration process were derived as well. In Chapter 5, self-assembly behavior of natural silk fibroin within the gland of Bombyx mori silkworm was investigated using osmotic stress technique. Microscopic and thermodynamic details of this self-assembly process along the spinline have been assessed. Formation of a needle-shaped molecular lath under appropriate osmotic stress was found. Silk I degree of hydration of silk gland was quantitatively estimated by image analysis of optical micrographs and the numbers varied from 2.2 to 2.7 depending on the region in the gland. Osmotic pressure in the gland was also estimated by equilibration method.
Invited review nonmulberry silk biopolymers.
Kundu, S C; Kundu, Banani; Talukdar, Sarmistha; Bano, Subia; Nayak, Sunita; Kundu, Joydip; Mandal, Biman B; Bhardwaj, Nandana; Botlagunta, Mahendran; Dash, Biraja C; Acharya, Chitrangada; Ghosh, Ananta K
2012-06-01
The silk produced by silkworms are biopolymers and can be classified into two types--mulberry and nonmulberry. Mulberry silk of silkworm Bombyx mori has been extensively explored and used for century old textiles and sutures. But for the last few decades it is being extensively exploited for biomedical applications. However, the transformation of nonmulberry silk from being a textile commodity to biomaterials is relatively new. Within a very short period of time, the combination of load bearing capability and tensile strength of nonmulberry silk has been equally envisioned for bone, cartilage, adipose, and other tissue regeneration. Adding to its advantage is its diverse morphology, including macro to nano architectures with controllable degradation and biocompatibility yields novel natural material systems in vitro. Its follow on applications involve sustained release of model compounds and anticancer drugs. Its 3D cancer models provide compatible microenvironment systems for better understanding of the cancer progression mechanism and screening of anticancer compounds. Diversely designed nonmulberry matrices thus provide an array of new cutting age technologies, which is unattainable with the current synthetic materials that lack biodegradability and biocompatibility. Scientific exploration of nonmulberry silk in tissue engineering, regenerative medicine, and biotechnological applications promises advancement of sericulture industries in India and China, largest nonmulberry silk producers of the world. This review discusses the prospective biomedical applications of nonmulberry silk proteins as natural biomaterials. Copyright © 2012 Wiley Periodicals, Inc.
Lee, Ji Hye; Bae, Yeon Su; Kim, Su Jin; Song, Dae Woong; Park, Young Hwan; Bae, Do Gyu; Choi, Jin Hyun; Um, In Chul
2018-01-01
Electro-spun regenerated silk webs have been extensively studied for biomedical applications because of the simplicity of their fabrication methods However, the productivity of the electro-spinning process is low for web fabrication and the mechanical properties of the electro-spun silk web are not satisfactory, which restricts its commercialization. In this study, a new silk non-woven fabric was successfully fabricated by wetting and hot press treatments using the excellent binding characteristic of sericin. The effects of the press temperature and residual sericin content on the preparation, structure, and properties of the silk non-woven fabric were examined. A press temperature of 200°C was optimum for obtaining non-woven fabrics with best mechanical properties, without yellowing. The silk non-woven fabric could not be fabricated without sericin, and a minimum of 8% sericin was required to fabricate it. As the sericin content was increased, the strength and Young's modulus of the silk non-woven fabric increased, while the tensile elongation remained constant. Regardless of the press temperature and sericin content, all the silk non-woven fabrics showed good cell viability, comparable to that of the tissue culture plate (TCP) used as a control until 4days, which however decreased compared to that of TCP after 7days. Copyright © 2017 Elsevier B.V. All rights reserved.
Effect of silk sericin on morphology and structure of calcium carbonate crystal
NASA Astrophysics Data System (ADS)
Zhao, Rui-Bo; Han, Hua-Feng; Ding, Shao; Li, Ze-Hao; Kong, Xiang-Dong
2013-06-01
In this paper, silk sericin was employed to regulate the mineralization of calcium carbonate (CaCO3). CaCO3 composite particles were prepared by the precipitation reaction of sodium carbonate with calcium chloride solution in the presence of silk sericin. The as-prepared samples were collected at different reaction time to study the crystallization process of CaCO3 by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and X-ray diffraction (XRD). The results showed that silk sericin significantly affected the morphology and crystallographic polymorph of CaCO3. With increasing the reaction time, the crystal phase of CaCO3 transferred from calcite dominated to vaterite dominated mixtures, while the morphology of CaCO3 changed from disk-like calcite crystal to spherical vaterite crystal. These studies showed the potential of silk sericin used as a template molecule to control the growth of inorganic crystal.
Silk-polypyrrole biocompatible actuator performance under biologically relevant conditions
NASA Astrophysics Data System (ADS)
Hagler, Jo'elen; Peterson, Ben; Murphy, Amanda; Leger, Janelle
Biocompatible actuators that are capable of controlled movement and can function under biologically relevant conditions are of significant interest in biomedical fields. Previously, we have demonstrated that a composite material of silk biopolymer and the conducting polymer polypyrrole (PPy) can be formed into a bilayer device that can bend under applied voltage. Further, these silk-PPy composites can generate forces comparable to human muscle (>0.1 MPa) making them ideal candidates for interfacing with biological tissues. Here silk-PPy composite films are tested for performance under biologically relevant conditions including exposure to a complex protein serum and biologically relevant temperatures. Free-end bending actuation performance, current response, force generation and, mass degradation were investigated . Preliminary results show that when exposed to proteins and biologically relevant temperatures, these silk-PPy composites show minimal degradation and are able to generate forces and conduct currents comparable to devices tested under standard conditions. NSF.
Biopatterning of Silk Proteins for Soft Micro-optics.
Pal, Ramendra K; Kurland, Nicholas E; Wang, Congzhou; Kundu, Subhas C; Yadavalli, Vamsi K
2015-04-29
Silk proteins from spiders and silkworms have been proposed as outstanding candidates for soft micro-optic and photonic applications because of their optical transparency, unique biological properties, and mechanical robustness. Here, we present a method to form microstructures of the two constituent silk proteins, fibroin and sericin for use as an optical biomaterial. Using photolithography, chemically modified silk protein photoresists are patterned in 2D arrays of periodic patterns and Fresnel zone plates. Angle-dependent iridescent colors are produced in these periodic micropatterns because of the Bragg diffraction. Silk protein photolithography can used to form patterns on different substrates including flexible sheets with features of any shape with high fidelity and resolution over large areas. Finally, we show that these mechanically stable and transparent iridescent architectures are also completely biodegradable. This versatile and scalable technique can therefore be used to develop biocompatible, soft micro-optic devices that can be degraded in a controlled manner.
Qin, Nan; Zhang, Shaoqing; Jiang, Jianjuan; Corder, Stephanie Gilbert; Qian, Zhigang; Zhou, Zhitao; Lee, Woonsoo; Liu, Keyin; Wang, Xiaohan; Li, Xinxin; Shi, Zhifeng; Mao, Ying; Bechtel, Hans A.; Martin, Michael C.; Xia, Xiaoxia; Marelli, Benedetto; Kaplan, David L.; Omenetto, Fiorenzo G.; Liu, Mengkun; Tao, Tiger H.
2016-01-01
Silk protein fibres produced by silkworms and spiders are renowned for their unparalleled mechanical strength and extensibility arising from their high-β-sheet crystal contents as natural materials. Investigation of β-sheet-oriented conformational transitions in silk proteins at the nanoscale remains a challenge using conventional imaging techniques given their limitations in chemical sensitivity or limited spatial resolution. Here, we report on electron-regulated nanoscale polymorphic transitions in silk proteins revealed by near-field infrared imaging and nano-spectroscopy at resolutions approaching the molecular level. The ability to locally probe nanoscale protein structural transitions combined with nanometre-precision electron-beam lithography offers us the capability to finely control the structure of silk proteins in two and three dimensions. Our work paves the way for unlocking essential nanoscopic protein structures and critical conditions for electron-induced conformational transitions, offering new rules to design protein-based nanoarchitectures. PMID:27713412
Impact of Protein-Metal Ion Interactions on the Crystallization of Silk Fibroin Protein
NASA Astrophysics Data System (ADS)
Hu, Xiao; Lu, Qiang; Kaplan, David; Cebe, Peggy
2009-03-01
Proteins can easily form bonds with a variety of metal ions, which provides many unique biological functions for the protein structures, and therefore controls the overall structural transformation of proteins. We use advanced thermal analysis methods such as temperature modulated differential scanning calorimetry and quasi-isothermal TMDSC, combined with Fourier transform infrared spectroscopy, and scanning electron microscopy, to investigate the protein-metallic ion interactions in Bombyx mori silk fibroin proteins. Silk samples were mixed with different metal ions (Ca^2+, K^+, Ma^2+, Na^+, Cu^2+, Mn^2+) with different mass ratios, and compared with the physical conditions in the silkworm gland. Results show that all metallic ions can directly affect the crystallization behavior and glass transition of silk fibroin. However, different ions tend to have different structural impact, including their role as plasticizer or anti-plasticizer. Detailed studies reveal important information allowing us better to understand the natural silk spinning and crystallization process.
Identification and classification of silks using infrared spectroscopy
Boulet-Audet, Maxime; Vollrath, Fritz; Holland, Chris
2015-01-01
ABSTRACT Lepidopteran silks number in the thousands and display a vast diversity of structures, properties and industrial potential. To map this remarkable biochemical diversity, we present an identification and screening method based on the infrared spectra of native silk feedstock and cocoons. Multivariate analysis of over 1214 infrared spectra obtained from 35 species allowed us to group silks into distinct hierarchies and a classification that agrees well with current phylogenetic data and taxonomies. This approach also provides information on the relative content of sericin, calcium oxalate, phenolic compounds, poly-alanine and poly(alanine-glycine) β-sheets. It emerged that the domesticated mulberry silkmoth Bombyx mori represents an outlier compared with other silkmoth taxa in terms of spectral properties. Interestingly, Epiphora bauhiniae was found to contain the highest amount of β-sheets reported to date for any wild silkmoth. We conclude that our approach provides a new route to determine cocoon chemical composition and in turn a novel, biological as well as material, classification of silks. PMID:26347557
Silk: a potential medium for tissue engineering.
Sobajo, Cassandra; Behzad, Farhad; Yuan, Xue-Feng; Bayat, Ardeshir
2008-01-01
Human skin is a complex bilayered organ that serves as a protective barrier against the environment. The loss of integrity of skin by traumatic experiences such as burns and ulcers may result in considerable disability or ultimately death. Therefore, in skin injuries, adequate dermal substitutes are among primary care targets, aimed at replacing the structural and functional properties of native skin. To date, there are very few single application tissue-engineered dermal constructs fulfilling this criterion. Silk produced by the domestic silkworm, Bombyx mori, has a long history of use in medicine. It has recently been increasingly investigated as a promising biomaterial for dermal constructs. Silk contains 2 fibrous proteins, sericin and fibroin. Each one exhibits unique mechanical and biological properties. Comprehensive review of randomized-controlled trials investigating current dermal constructs and the structures and properties of silk-based constructs on wound healing. This review revealed that silk-fibroin is regarded as the most promising biomaterial, providing options for the construction of tissue-engineered skin. The research available indicates that silk fibroin is a suitable biomaterial scaffold for the provision of adequate dermal constructs.
Controlled release of cytokines using silk-biomaterials for macrophage polarization.
Reeves, Andrew R D; Spiller, Kara L; Freytes, Donald O; Vunjak-Novakovic, Gordana; Kaplan, David L
2015-12-01
Polarization of macrophages into an inflammatory (M1) or anti-inflammatory (M2) phenotype is important for clearing pathogens and wound repair, however chronic activation of either type of macrophage has been implicated in several diseases. Methods to locally control the polarization of macrophages is of great interest for biomedical implants and tissue engineering. To that end, silk protein was used to form biopolymer films that release either IFN-γ or IL-4 to control the polarization of macrophages. Modulation of the solubility of the silk films through regulation of β-sheet (crystalline) content enabled a short-term release (4-8 h) of either cytokine, with smaller amounts released out to 24 h. Altering the solubility of the films was accomplished by varying the time that the films were exposed to water vapor. The released IFN-γ or IL-4 induced polarization of THP-1 derived macrophages into the M1 or M2 phenotypes, respectively. The silk biomaterials were able to release enough IFN-γ or IL-4 to repolarize the macrophage from M1 to M2 and vice versa, demonstrating the well-established plasticity of macrophages. High β-sheet content films that are not soluble and do not release the trapped cytokines were also able to polarize macrophages that adhered to the surface through degradation of the silk protein. Chemically conjugating IFN-γ to silk films through disulfide bonds allowed for longer-term release to 10 days. The release of covalently attached IFN-γ from the films was also able to polarize M1 macrophages in vitro. Thus, the strategy described here offers new approaches to utilizing biomaterials for directing the polarization of macrophages. Copyright © 2015 Elsevier Ltd. All rights reserved.
Controlled Release of Cytokines Using Silk-biomaterials for Macrophage Polarization
Reeves, Andrew R.D.; Spiller, Kara L.; Freytes, Donald O.; Vunjak-Novakovic, Gordana
2015-01-01
Polarization of macrophages into an inflammatory (M1) or anti-inflammatory (M2) phenotype is important for clearing pathogens and wound repair, however chronic activation of either type of macrophages has been implicated in several diseases. Methods to locally control the polarization of macrophages is of great interest for biomedical implants and tissue engineering. To that end, silk protein was used to form biopolymer films that release either IFN-γ or IL-4 to control the polarization of macrophages. Modulation of the solubility of the silk films through regulation of β-sheet (crystalline) content enabled a short-term release (4–8 hours) of either cytokine, with smaller amounts released out to 24 hours. Altering the solubility of the films was accomplished by varying the time that the films were exposed to water vapor. The released IFN-γ or IL-4 induced polarization of THP-1 derived macrophages into the M1 or M2 phenotypes, respectively. The silk biomaterials were able to release enough IFN-γ or IL-4 to repolarize the macrophage from M1 to M2 and vice versa, demonstrating the well-established plasticity of macrophages. High β-sheet content films that are not soluble and do not release the trapped cytokines were also able to polarize macrophages that adhered to the surface through degradation of the silk protein. Chemically conjugating IFN-γ to silk films through disulfide bonds allowed for longer-term release to 10 days. The release of covalently attached IFN-γ from the films was also able to polarize M1 macrophages in vitro. Thus, the strategy described here offers new approaches to utilizing biomaterials for directing the polarization of macrophages. PMID:26421484
Vetter, Richard S; Tarango, Jacob; Campbell, Kathleen A; Tham, Christine; Hayashi, Cheryl Y; Choe, Dong-Hwan
2016-02-01
Information on pesticide effects on spiders is less common than for insects; similar information for spider egg sacs is scarcer in the open literature. Spider egg sacs are typically covered with a protective silk layer. When pesticides are directly applied to egg sacs, the silk might prevent active ingredients from reaching the eggs, blocking their insecticidal effect. We investigated the impact of six water-based pesticide sprays and four oil-based aerosol products against egg sacs of brown widow spiders, Latrodectus geometricus C. L. Koch. All water-based spray products except one failed to provide significant mortality to egg sacs, resulting in successful spiderling emergence from treated egg sacs at a similar rate to untreated egg sacs. In contrast to water-based sprays, oil-based aerosols provided almost complete control, with 94-100% prevention of spiderling emergence. Penetration studies using colored pesticide products indicated that oil-based aerosols were significantly more effective in penetrating egg sac silk than were the water-based sprays, delivering the active ingredients on most (>99%) of the eggs inside the sac. The ability of pesticides to penetrate spider egg sac silk and deliver lethal doses of active ingredients to the eggs is discussed in relation to the chemical nature of egg sac silk proteins. Our study suggests that pest management procedures primarily relying on perimeter application of water-based sprays might not provide satisfactory control of brown widow spider eggs. Determination of the most effective active ingredients and carrier characteristics warrant further research to provide more effective control options for spider egg sacs. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Unraveling the Molecular Requirements for Macroscopic Silk Supercontraction.
Giesa, Tristan; Schuetz, Roman; Fratzl, Peter; Buehler, Markus J; Masic, Admir
2017-10-24
Spider dragline silk is a protein material that has evolved over millions of years to achieve finely tuned mechanical properties. A less known feature of some dragline silk fibers is that they shrink along the main axis by up to 50% when exposed to high humidity, a phenomenon called supercontraction. This contrasts the typical behavior of many other materials that swell when exposed to humidity. Molecular level details and mechanisms of the supercontraction effect are heavily debated. Here we report a molecular dynamics analysis of supercontraction in Nephila clavipes silk combined with in situ mechanical testing and Raman spectroscopy linking the reorganization of the nanostructure to the polar and charged amino acids in the sequence. We further show in our in silico approach that point mutations of these groups not only suppress the supercontraction effect, but even reverse it, while maintaining the exceptional mechanical properties of the silk material. This work has imminent impact on the design of biomimetic equivalents and recombinant silks for which supercontraction may or may not be a desirable feature. The approach applied is appropriate to explore the effect of point mutations on the overall physical properties of protein based materials.
Constructing Knowledge with Silk Road Visuals
ERIC Educational Resources Information Center
Bisland, Beverly Milner
2008-01-01
In this study a group of elementary teachers use illustrations, rather than written text, to introduce their students to the peoples and places of the ancient silk routes. The illustrations are from two picture books; "Marco Polo," written by Gian Paolo Cesaerani and illustrated by Piero Ventura (1977), and "We're Riding on a…
Effect of degumming time on silkworm silk fibre for biodegradable polymer composites
NASA Astrophysics Data System (ADS)
Ho, Mei-po; Wang, Hao; Lau, Kin-tak
2012-02-01
Recently, many studies have been conducted on exploitation of natural materials for modern product development and bioengineering applications. Apart from plant-based materials (such as sisal, hemp, jute, bamboo and palm fibre), animal-based fibre is a kind of sustainable natural materials for making novel composites. Silkworm silk fibre extracted from cocoon has been well recognized as a promising material for bio-medical engineering applications because of its superior mechanical and bioresorbable properties. However, when producing silk fibre reinforced biodegradable/bioresorbable polymer composites, hydrophilic sericin has been found to cause poor interfacial bonding with most polymers and thus, it results in affecting the resultant properties of the composites. Besides, sericin layers on fibroin surface may also cause an adverse effect towards biocompatibility and hypersensitivity to silk for implant applications. Therefore, a proper pre-treatment should be done for sericin removal. Degumming is a surface modification process which allows a wide control of the silk fibre's properties, making the silk fibre possible to be used for the development and production of novel bio-composites with unique/specific mechanical and biodegradable properties. In this paper, a cleaner and environmentally friendly surface modification technique for tussah silk in polymer based composites is proposed. The effectiveness of different degumming parameters including degumming time and temperature on tussah silk is discussed through the analyses of their mechanical and morphological properties. Based on results obtained, it was found that the mechanical properties of tussah silk are affected by the degumming time due to the change of the fibre structure and fibroin alignment.
Nanostructure and molecular mechanics of spider dragline silk protein assemblies
Keten, Sinan; Buehler, Markus J.
2010-01-01
Spider silk is a self-assembling biopolymer that outperforms most known materials in terms of its mechanical performance, despite its underlying weak chemical bonding based on H-bonds. While experimental studies have shown that the molecular structure of silk proteins has a direct influence on the stiffness, toughness and failure strength of silk, no molecular-level analysis of the nanostructure and associated mechanical properties of silk assemblies have been reported. Here, we report atomic-level structures of MaSp1 and MaSp2 proteins from the Nephila clavipes spider dragline silk sequence, obtained using replica exchange molecular dynamics, and subject these structures to mechanical loading for a detailed nanomechanical analysis. The structural analysis reveals that poly-alanine regions in silk predominantly form distinct and orderly beta-sheet crystal domains, while disorderly regions are formed by glycine-rich repeats that consist of 31-helix type structures and beta-turns. Our structural predictions are validated against experimental data based on dihedral angle pair calculations presented in Ramachandran plots, alpha-carbon atomic distances, as well as secondary structure content. Mechanical shearing simulations on selected structures illustrate that the nanoscale behaviour of silk protein assemblies is controlled by the distinctly different secondary structure content and hydrogen bonding in the crystalline and semi-amorphous regions. Both structural and mechanical characterization results show excellent agreement with available experimental evidence. Our findings set the stage for extensive atomistic investigations of silk, which may contribute towards an improved understanding of the source of the strength and toughness of this biological superfibre. PMID:20519206
Nanostructure and molecular mechanics of spider dragline silk protein assemblies.
Keten, Sinan; Buehler, Markus J
2010-12-06
Spider silk is a self-assembling biopolymer that outperforms most known materials in terms of its mechanical performance, despite its underlying weak chemical bonding based on H-bonds. While experimental studies have shown that the molecular structure of silk proteins has a direct influence on the stiffness, toughness and failure strength of silk, no molecular-level analysis of the nanostructure and associated mechanical properties of silk assemblies have been reported. Here, we report atomic-level structures of MaSp1 and MaSp2 proteins from the Nephila clavipes spider dragline silk sequence, obtained using replica exchange molecular dynamics, and subject these structures to mechanical loading for a detailed nanomechanical analysis. The structural analysis reveals that poly-alanine regions in silk predominantly form distinct and orderly beta-sheet crystal domains, while disorderly regions are formed by glycine-rich repeats that consist of 3₁-helix type structures and beta-turns. Our structural predictions are validated against experimental data based on dihedral angle pair calculations presented in Ramachandran plots, alpha-carbon atomic distances, as well as secondary structure content. Mechanical shearing simulations on selected structures illustrate that the nanoscale behaviour of silk protein assemblies is controlled by the distinctly different secondary structure content and hydrogen bonding in the crystalline and semi-amorphous regions. Both structural and mechanical characterization results show excellent agreement with available experimental evidence. Our findings set the stage for extensive atomistic investigations of silk, which may contribute towards an improved understanding of the source of the strength and toughness of this biological superfibre.
Visual responses of corn silk flies (Diptera: Ulidiidae)
USDA-ARS?s Scientific Manuscript database
Corn silk flies are major pests impacting fresh market sweet corn production in Florida and Georgia. Control depends solely on well-times applications of insecticides to protect corn ear development. Surveillance depends on visual inspection of ears with no effective trapping methods currently ava...
Bhardwaj, Nandana; Nguyen, Quynhhoa T; Chen, Albert C; Kaplan, David L.; Sah, Robert L; Kundu, Subhas C
2011-01-01
The use of cell-scaffold constructs is a promising tissue engineering approach to repair cartilage defects and to study cartilaginous tissue formation. In this study, silk fibroin/chitosan blended scaffolds were fabricated and studied for cartilage tissue engineering. Silk fibroin served as a substrate for cell adhesion and proliferation while chitosan has a structure similar to that of glycosaminoglycans, and shows promise for cartilage repair. We compared the formation of cartilaginous tissue in silk fibroin/chitosan blended scaffolds seeded with bovine chondrocytes and cultured in vitro for 2 weeks. The constructs were analyzed for cell viability, histology, extracellular matrix components glycosaminoglycan and collagen types I and II, and biomechanical properties. Silk fibroin/chitosan scaffolds supported cell attachment and growth, and chondrogenic phenotype as indicated by Alcian Blue histochemistry and relative expression of type II versus type I collagen. Glycosaminoglycan and collagen accumulated in all the scaffolds and was highest in the silk fibroin/chitosan (1:1) blended scaffolds. Static and dynamic stiffness at high frequencies was higher in cell-seeded constructs than non-seeded controls. The results suggest that silk/chitosan scaffolds may be a useful alternative to synthetic cell scaffolds for cartilage tissue engineering. PMID:21601277
Silk Fibroin as Edible Coating for Perishable Food Preservation
NASA Astrophysics Data System (ADS)
Marelli, B.; Brenckle, M. A.; Kaplan, D. L.; Omenetto, F. G.
2016-05-01
The regeneration of structural biopolymers into micelles or nanoparticles suspended in water has enabled the design of new materials with unique and compelling properties that can serve at the interface between the biotic and the abiotic worlds. In this study, we leveraged silk fibroin quintessential properties (i.e. polymorphism, conformability and hydrophobicity) to design a water-based protein suspension that self-assembles on the surface of food upon dip coating. The water-based post-processing control of the protein polymorphism enables the modulation of the diffusion of gases through the silk fibroin thin membranes (e.g. O2 and CO2 diffusion, water vapour permeability), which is a key parameter to manage food freshness. In particular, an increased beta-sheet content corresponds to a reduction in oxygen diffusion through silk fibroin thin films. By using the dip coating of strawberries and bananas as proof of principle, we have shown that the formation of micrometre-thin silk fibroin membranes around the fruits helps the management of postharvest physiology of the fruits. Thus, silk fibroin coatings enhance fruits’ shelf life at room conditions by reducing cell respiration rate and water evaporation. The water-based processing and edible nature of silk fibroin makes this approach a promising alternative for food preservation with a naturally derived material.
Silk Fibroin as Edible Coating for Perishable Food Preservation
Marelli, B.; Brenckle, M. A.; Kaplan, D. L.; Omenetto, F. G.
2016-01-01
The regeneration of structural biopolymers into micelles or nanoparticles suspended in water has enabled the design of new materials with unique and compelling properties that can serve at the interface between the biotic and the abiotic worlds. In this study, we leveraged silk fibroin quintessential properties (i.e. polymorphism, conformability and hydrophobicity) to design a water-based protein suspension that self-assembles on the surface of food upon dip coating. The water-based post-processing control of the protein polymorphism enables the modulation of the diffusion of gases through the silk fibroin thin membranes (e.g. O2 and CO2 diffusion, water vapour permeability), which is a key parameter to manage food freshness. In particular, an increased beta-sheet content corresponds to a reduction in oxygen diffusion through silk fibroin thin films. By using the dip coating of strawberries and bananas as proof of principle, we have shown that the formation of micrometre-thin silk fibroin membranes around the fruits helps the management of postharvest physiology of the fruits. Thus, silk fibroin coatings enhance fruits’ shelf life at room conditions by reducing cell respiration rate and water evaporation. The water-based processing and edible nature of silk fibroin makes this approach a promising alternative for food preservation with a naturally derived material. PMID:27151492
Meissle, Michael; Hellmich, Richard L; Romeis, Jörg
2011-07-01
Genetically engineered maize producing insecticidal Cry3Bb1 protein from Bacillus thuringiensis (Bt) is protected from root damage by corn rootworm larvae. An examination was made to establish whether western corn rootworm (Diabrotica virgifera virgifera) adults are affected by Cry3Bb1-expressing maize (MON88017) when feeding on above-ground tissue. In laboratory bioassays, adult D. v. virgifera were fed for 7 weeks with silk, leaves or pollen from Bt maize or the corresponding near-isoline. Male, but not female, survival was reduced in the Bt-leaf treatment compared with the control. Female weight was lower when fed Bt maize, and egg production was reduced in the Bt-silk treatment. ELISA measurements demonstrated that beetles feeding on silk were exposed to higher Cry3Bb1 concentrations than beetles collected from Bt-maize fields in the United States. In contrast to silk and pollen, feeding on leaves resulted in high mortality and low fecundity. Females feeding on pollen produced more eggs than on silk. C:N ratios indicated that silk does not provide enough nitrogen for optimal egg production. Direct effects of Cry3Bb1 on adult beetles could explain the observed effects, but varietal differences between Bt and control maize are also possible. The impact of Bt maize on adult populations, however, is likely to be limited. Copyright © 2011 Society of Chemical Industry.
Vibrational spectroscopic study of sulphated silk proteins
NASA Astrophysics Data System (ADS)
Monti, P.; Freddi, G.; Arosio, C.; Tsukada, M.; Arai, T.; Taddei, P.
2007-05-01
Degummed Bombyx mori ( B. m.) silk fibroin fabric and mutant naked pupa cocoons (Nd-s) consisting of almost pure silk sericin were treated with chlorosulphonic acid in pyridine and investigated by FT-IR and FT-Raman spectroscopies. Untreated silk fibroin and sericin displayed typical spectral features due to characteristic amino acid composition and molecular conformation (prevailing β-sheet with a less ordered structure in sericin). Upon sulphation, the degree of molecular disorder increased in both proteins and new bands appeared. The IR bands at 1049 and 1014 cm -1 were attributed to vibrations of sulphate salts and that at 1385 cm -1 to the νasSO 2 mode of organic covalent sulphates. In the 1300-1180 cm -1 range various contributions of alkyl and aryl sulphate salts, sulphonamides, sulphoamines and organic covalent sulphates, fell. Fibroin covalently bound sulphate groups through the hydroxyl groups of tyrosine and serine, while sericin through the hydroxyl groups of serine, since the δOH vibrations at 1399 cm -1 in IR and at 1408 cm -1 in Raman disappeared almost completely. Finally, the increase of the I850/ I830 intensity ratio of Raman tyrosine doublet in fibroin suggested a change towards a more exposed state of tyrosine residues, in good agreement with the more disordered conformation taken upon sulphation.
Spermidine enhances the silk production by mulberry silkworm.
Lattala, Gayatri Manogna; Kandukuru, Kasturaiah; Gangupantula, Shamitha; Mamillapalli, Anitha
2014-01-01
Polyamines are ubiquitous low molecular weight polycationic aliphatic amines involved in diverse cellular processes. Spermidine (Spd), a polyamine, has been proved to be crucial for cell survival in various organisms. Our study reports the effect of Spd on the growth of Bombyx mori. Silkworms showed improved silk gland weight and economic parameters in the fifth instar larval stage when treated with different concentrations of Spd, in the range of 25-75 µM. The worms treated with Spd produced 31% more silk when compared with the control worms. Altogether, this study establishes that Spd-treated leaves can be fed into the larvae for better silk production. © The Author 2014. Published by Oxford University Press on behalf of the Entomological Society of America.
Nonlinear material behaviour of spider silk yields robust webs.
Cranford, Steven W; Tarakanova, Anna; Pugno, Nicola M; Buehler, Markus J
2012-02-01
Natural materials are renowned for exquisite designs that optimize function, as illustrated by the elasticity of blood vessels, the toughness of bone and the protection offered by nacre. Particularly intriguing are spider silks, with studies having explored properties ranging from their protein sequence to the geometry of a web. This material system, highly adapted to meet a spider's many needs, has superior mechanical properties. In spite of much research into the molecular design underpinning the outstanding performance of silk fibres, and into the mechanical characteristics of web-like structures, it remains unknown how the mechanical characteristics of spider silk contribute to the integrity and performance of a spider web. Here we report web deformation experiments and simulations that identify the nonlinear response of silk threads to stress--involving softening at a yield point and substantial stiffening at large strain until failure--as being crucial to localize load-induced deformation and resulting in mechanically robust spider webs. Control simulations confirmed that a nonlinear stress response results in superior resistance to structural defects in the web compared to linear elastic or elastic-plastic (softening) material behaviour. We also show that under distributed loads, such as those exerted by wind, the stiff behaviour of silk under small deformation, before the yield point, is essential in maintaining the web's structural integrity. The superior performance of silk in webs is therefore not due merely to its exceptional ultimate strength and strain, but arises from the nonlinear response of silk threads to strain and their geometrical arrangement in a web.
Gold nanoparticle-embedded silk protein-ZnO nanorod hybrids for flexible bio-photonic devices
NASA Astrophysics Data System (ADS)
Gogurla, Narendar; Kundu, Subhas C.; Ray, Samit K.
2017-04-01
Silk protein has been used as a biopolymer substrate for flexible photonic devices. Here, we demonstrate ZnO nanorod array hybrid photodetectors on Au nanoparticle-embedded silk protein for flexible optoelectronics. Hybrid samples exhibit optical absorption at the band edge of ZnO as well as plasmonic energy due to Au nanoparticles, making them attractive for selective UV and visible wavelength detection. The device prepared on Au-silk protein shows a much lower dark current and a higher photo to dark-current ratio of ∼105 as compared to the control sample without Au nanoparticles. The hybrid device also exhibits a higher specific detectivity due to higher responsivity arising from the photo-generated hole trapping by Au nanoparticles. Sharp pulses in the transient photocurrent have been observed in devices prepared on glass and Au-silk protein substrates due to the light induced pyroelectric effect of ZnO, enabling the demonstration of self-powered photodetectors at zero bias. Flexible hybrid detectors have been demonstrated on Au-silk/polyethylene terephthalate substrates, exhibiting characteristics similar to those fabricated on rigid glass substrates. A study of the performance of photodetectors with different bending angles indicates very good mechanical stability of silk protein based flexible devices. This novel concept of ZnO nanorod array photodetectors on a natural silk protein platform provides an opportunity to realize integrated flexible and self-powered bio-photonic devices for medical applications in near future.
NASA Astrophysics Data System (ADS)
Sangprasert, W.; Lee, V. S.; Boonyawan, D.; Tashiro, K.; Nimmanpipug, P.
2010-01-01
Low-pressure plasma has been used to improve the hydrophobicity of Thai silk. In this study, Glycine-Alanine (GA) and Alanine-Glycine (AG) were chosen to represent model compounds of Bombyx mori silk. Single crystals of the simplified model compounds were characterized by polarizing microscopy and X-ray diffraction. The space groups of P2 12 12 1 and P2 1 were found for AG and GA, respectively. The initial structures for calculation were obtained from the experimental crystal structures. Density functional theory at the BHandHLYP levels was used to investigate possible mechanisms of fluorine radicals reacting with AG and GA in the SF 6 plasma treatment. The results indicate that hydrogen atoms of silk model compounds were most likely to be abstracted from the alanine residue.
Salmon silk genes contribute to the elucidation of the flavone pathway in maize (Zea mays L.).
McMullen, M D; Kross, H; Snook, M E; Cortés-Cruz, M; Houchins, K E; Musket, T A; Coe, E H
2004-01-01
We utilized maize (Zea mays L.) lines expressing the salmon silk (sm) phenotype, quantitative trait locus analysis, and analytical chemistry of flavone compounds to establish the order of undefined steps in the synthesis of the flavone maysin in maize silks. In addition to the previously described sm1 gene, we identified a second sm locus, which we designate sm2, located on the long arm of maize chromosome 2. Our data indicate that the sm1 gene encodes or controls a glucose modification enzyme and sm2 encodes or controls a rhamnosyl transferase. The order of intermediates in the late steps of maysin synthesis was established as luteolin --> isoorientin --> rhamnosylisoorientin --> maysin. Copyright 2004 The American Genetic Association
USDA-ARS?s Scientific Manuscript database
The primary Lepidopteran pests of sweet corn in Georgia are the corn earworm, Helicoverpa zea (Boddie), and the fall armyworm, Spodoptera frugiperda (J.E. Smith). Control of these pests typically requires multiple insecticide applications from first silking until harvest, with commercial growers fre...
Pei, Yazhen; Liu, Xi; Liu, Shanshan; Lu, Qiang; Liu, Jing; Kaplan, David L; Zhu, Hesun
2014-01-01
Three-dimensional (3D) porous silk scaffolds with good biocompatibility and minimal immunogenicity, have promising applications in different tissue regenerations. However, a challenge remains to effectively fabricate their microstructures and mechanical properties to satisfy specific requirements of different tissues. In this study, silk scaffolds were fabricated to form extracellular matrix (ECM) mimetic nanofibrous architecture in a mild process. A slowly increasing concentration process was applied to regulate silk self-assembly into nanofibers in aqueous solution. Then glycerol was blended with the nanofiber solution and induced silk crystallization in lyophilization process, endowing freeze-dried scaffolds water-stability. The glycerol was leached from the scaffolds, leaving similar porous structure at a micrometer scale but different topographies at nanoscale. Compared to previous salt-leached and methanol annealed scaffolds, the present scaffolds showed lower β-sheet content, softer mechanical property, and improved cell growth and differentiation behaviors, implying their promising future as platforms for controlling stem cell fate and soft tissue regeneration. PMID:25463497
2015-01-01
Spider silk has exceptional mechanical and biocompatibility properties. The goal of this study was optimization of the mechanical properties of synthetic spider silk thin films made from synthetic forms of MaSp1 and MaSp2, which compose the dragline silk of Nephila clavipes. We increased the mechanical stress of MaSp1 and 2 films solubilized in both HFIP and water by adding glutaraldehyde and then stretching them in an alcohol based stretch bath. This resulted in stresses as high as 206 MPa and elongations up to 35%, which is 4× higher than the as-poured controls. Films were analyzed using NMR, XRD, and Raman, which showed that the secondary structure after solubilization and film formation in as-poured films is mainly a helical conformation. After the post-pour stretch in a methanol/water bath, the MaSp proteins in both the HFIP and water-based films formed aligned β-sheets similar to those in spider silk fibers. PMID:25030809
Microphase Separation Controlled Beta Sheet Crystallization Kinetics in Silk Fibroin Protein.
NASA Astrophysics Data System (ADS)
Hu, Xiao; Lu, Qiang; Kaplan, David; Cebe, Peggy
2009-03-01
We investigate the mechanism of isothermal crystallization kinetics of beta-sheet crystals in silk multiblock fibrous proteins. The Avrami analysis kinetic theory, for studies of synthetic polymer crystal growth, is for the first time extended to investigate protein self-assembly in beta-sheet rich Bombyx mori silk fibroin samples, using time-resolved Fourier transform infrared spectroscopy, differential scanning calorimetry and synchrotron real-time wide-angle X-ray scattering. Results indicate formation of beta sheet crystals in silk proteins is different from the 3-D spherulitic crystal growth found in synthetic homopolymers. Observations by scanning electron microscopy support the view that the protein structures vary during the different stages of crystal growth, and show a microphase separation pattern after chymotrypsin enzyme biodegradation. We present a model to explain the crystallization of the multiblock silk fibroin protein, by analogy to synthetic block copolymers. This model could be widely applicable in other proteins with multiblock (i.e., crystallizable and non-crystallizable) domains.
NASA Astrophysics Data System (ADS)
Xie, Lan; Xu, Huan; Li, Liang-Bin; Hsiao, Benjamin S.; Zhong, Gan-Ji; Li, Zhong-Ming
2016-10-01
Despite the enormous potential in bioinspired fabrication of high-strength structure by mimicking the spinning process of spider silk, currently accessible routes (e.g., microfluidic and electrospinning approaches) still have substantial function gaps in providing precision control over the nanofibrillar superstructure, crystalline morphology or molecular orientation. Here the concept of biomimetic nanofibrillation, by copying the spiders’ spinning principles, was conceived to build silk-mimicking hierarchies in two-phase biodegradable blends, strategically involving the stepwise integration of elongational shear and high-pressure shear. Phase separation confined on nanoscale, together with deformation of discrete phases and pre-alignment of polymer chains, was triggered in the elongational shear, conferring the readiness for direct nanofibrillation in the latter shearing stage. The orderly aligned nanofibrils, featuring an ultralow diameter of around 100 nm and the “rigid-soft” system crosslinked by nanocrystal domains like silk protein dopes, were secreted by fine nanochannels. The incorporation of multiscale silk-mimicking structures afforded exceptional combination of strength, ductility and toughness for the nanofibrillar polymer composites. The proposed spider spinning-mimicking strategy, offering the biomimetic function integration unattainable with current approaches, may prompt materials scientists to pursue biopolymer mimics of silk with high performance yet light weight.
Xie, Lan; Xu, Huan; Li, Liang-Bin; Hsiao, Benjamin S; Zhong, Gan-Ji; Li, Zhong-Ming
2016-10-03
Despite the enormous potential in bioinspired fabrication of high-strength structure by mimicking the spinning process of spider silk, currently accessible routes (e.g., microfluidic and electrospinning approaches) still have substantial function gaps in providing precision control over the nanofibrillar superstructure, crystalline morphology or molecular orientation. Here the concept of biomimetic nanofibrillation, by copying the spiders' spinning principles, was conceived to build silk-mimicking hierarchies in two-phase biodegradable blends, strategically involving the stepwise integration of elongational shear and high-pressure shear. Phase separation confined on nanoscale, together with deformation of discrete phases and pre-alignment of polymer chains, was triggered in the elongational shear, conferring the readiness for direct nanofibrillation in the latter shearing stage. The orderly aligned nanofibrils, featuring an ultralow diameter of around 100 nm and the "rigid-soft" system crosslinked by nanocrystal domains like silk protein dopes, were secreted by fine nanochannels. The incorporation of multiscale silk-mimicking structures afforded exceptional combination of strength, ductility and toughness for the nanofibrillar polymer composites. The proposed spider spinning-mimicking strategy, offering the biomimetic function integration unattainable with current approaches, may prompt materials scientists to pursue biopolymer mimics of silk with high performance yet light weight.
Xie, Lan; Xu, Huan; Li, Liang-Bin; Hsiao, Benjamin S.; Zhong, Gan-Ji; Li, Zhong-Ming
2016-01-01
Despite the enormous potential in bioinspired fabrication of high-strength structure by mimicking the spinning process of spider silk, currently accessible routes (e.g., microfluidic and electrospinning approaches) still have substantial function gaps in providing precision control over the nanofibrillar superstructure, crystalline morphology or molecular orientation. Here the concept of biomimetic nanofibrillation, by copying the spiders’ spinning principles, was conceived to build silk-mimicking hierarchies in two-phase biodegradable blends, strategically involving the stepwise integration of elongational shear and high-pressure shear. Phase separation confined on nanoscale, together with deformation of discrete phases and pre-alignment of polymer chains, was triggered in the elongational shear, conferring the readiness for direct nanofibrillation in the latter shearing stage. The orderly aligned nanofibrils, featuring an ultralow diameter of around 100 nm and the “rigid−soft” system crosslinked by nanocrystal domains like silk protein dopes, were secreted by fine nanochannels. The incorporation of multiscale silk-mimicking structures afforded exceptional combination of strength, ductility and toughness for the nanofibrillar polymer composites. The proposed spider spinning-mimicking strategy, offering the biomimetic function integration unattainable with current approaches, may prompt materials scientists to pursue biopolymer mimics of silk with high performance yet light weight. PMID:27694989
Lee, Jihye; Kang, Min Hwa; Lee, Kang-Bong; Lee, Yeonhee
2013-05-15
Time-of-flight secondary ion mass spectrometry (TOF-SIMS) and X-ray photoelectron spectroscopy (XPS) are well established surface techniques that provide both elemental and organic information from several monolayers of a sample surface, while also allowing depth profiling or image mapping to be carried out. The static TOF-SIMS with improved performances has expanded the application of TOF-SIMS to the study of a variety of organic, polymeric and biological materials. In this work, TOF-SIMS, XPS and Fourier Transform Infrared (FTIR) measurements were used to characterize commercial natural dyes and traditional silk fabric dyed with plant extracts dyes avoiding the time-consuming and destructive extraction procedures necessary for the spectrophotometric and chromatographic methods previously used. Silk textiles dyed with plant extracts were then analyzed for chemical and functional group identification of their dye components and mordants. TOF-SIMS spectra for the dyed silk fabric showed element ions from metallic mordants, specific fragment ions and molecular ions from plant-extracted dyes. The results of TOF-SIMS, XPS and FTIR are very useful as a reference database for comparison with data about traditional Korean silk fabric and to provide an understanding of traditional dyeing materials. Therefore, this study shows that surface techniques are useful for micro-destructive analysis of plant-extracted dyes and Korean dyed silk fabric.
Collin, Matthew A; Clarke, Thomas H; Ayoub, Nadia A; Hayashi, Cheryl Y
2018-07-01
A powerful system for studying protein aggregation, particularly rapid self-assembly, is spider silk. Spider silks are proteinaceous and silk proteins are synthesized and stored within silk glands as liquid dope. As needed, liquid dope is near-instantaneously transformed into solid fibers or viscous adhesives. The dominant constituents of silks are spidroins (spider fibroins) and their terminal domains are vital for the tight control of silk self-assembly. To better understand spidroin termini, we used target capture and deep sequencing to identify spidroin gene sequences from six species representing the araneoid families of Araneidae, Nephilidae, and Theridiidae. We obtained 145 terminal regions, of which 103 are newly annotated here, as well as novel variants within nine diverse spidroin types. Our comparative analyses demonstrated the conservation of acidic, basic, and cysteine amino acid residues across spidroin types that had been proposed to be important for monomer stability, dimer formation, and self-assembly from a limited sampling of spidroins. Computational, protein homology modeling revealed areas of spidroin terminal regions that are highly conserved in three-dimensions despite sequence divergence across spidroin types. Analyses of our dense sampling of terminal regions suggest that most spidroins share stabilization mechanisms, dimer formation, and tertiary structure, despite producing functionally distinct materials. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Tuning the instrument: sonic properties in the spider's web
Soler, A.; Siviour, C. R.; Zaera, R.; Vollrath, F.
2016-01-01
Spider orb webs are multifunctional, acting to absorb prey impact energy and transmit vibratory information to the spider. This paper explores the links between silk material properties, propagation of vibrations within webs and the ability of the spider to control and balance web function. Combining experimental and modelling approaches, we contrast transverse and longitudinal wave propagation in the web. It emerged that both transverse and longitudinal wave amplitude in the web can be adjusted through changes in web tension and dragline silk stiffness, i.e. properties that can be controlled by the spider. In particular, we propose that dragline silk supercontraction may have evolved as a control mechanism for these multifunctional fibres. The various degrees of active influence on web engineering reveals the extraordinary ability of spiders to shape the physical properties of their self-made materials and architectures to affect biological functionality, balancing trade-offs between structural and sensory functions. PMID:27605164
Lee, Hyun-Sun; Lee, Hyun Jung; Suh, Hyung Joo
2011-12-01
The purpose of our research was to test the hypothesis that silk protein hydrolysate increases glucose uptake in cultured murine embryonic fibroblasts. Insulin sensitizing activity was observed in a cell-based glucose uptake assay using 3T3-L1 embryonic fibroblasts. The treatment of 1 mg/mL of silk peptide E5K6 plus 0.2 nM insulin was associated with a significant increase in glucose uptake (124.0% ± 2.5%) compared to treatment with 0.2 nM insulin alone. When the 3T3-L1 cells were induced to differentiate into fibroblasts, fat droplets formed inside the cells. Silk peptide E5K6 reduced the formation of fat droplets at the 1-mg/mL dosage (86.1% ± 2.5%) when compared to the control (100.0% ± 5.8%). A 1 mg/mL dose of silk peptide E5K6 significantly increased GLUT 4 expression (131.5% ± 4.0%). The treatment of 1 mg/mL of silk peptide E5K6 did not present any changes for adipogenic expressed genes, but leptin expression was significantly increased by silk peptide E5K6 supplementation (175.9% ± 11.1%). From these results, silk peptide E5K6 increased glucose uptake via up-regulation of GLUT 4 and decreased fat accumulation via the up-regulation of leptin. Copyright © 2011 Elsevier Inc. All rights reserved.
Gomes, Sílvia; Numata, Keiji; Leonor, Isabel B.; Mano, João F.; Reis, Rui L.; Kaplan, David L.
2011-01-01
Atomic force microscopy (AFM) was used to assess a new chimeric protein consisting of a fusion protein of the consensus repeat for Nephila clavipes spider dragline protein and bone sialoprotein (6mer+BSP). The elastic modulus of this protein in film form was assessed through force curves, and film surface roughness was also determined. The results showed a significant difference between the elastic modulus of the chimeric silk protein, 6mer+BSP, and control films consisting of only the silk component (6mer). The behaviour of the 6mer+BSP and 6mer proteins in aqueous solution in the presence of calcium (Ca) ions was also assessed to determine interactions between the inorganic and organic components related to bone interactions, anchoring and biomaterial network formation. The results demonstrated the formation of protein networks in the presence of Ca2+ ions, characteristics that may be important in the context of controlling materials assembly and properties related to bone-formation with this new chimeric silk-BSP protein. PMID:21370930
Gomes, Sílvia; Numata, Keiji; Leonor, Isabel B; Mano, João F; Reis, Rui L; Kaplan, David L
2011-05-09
Atomic force microscopy (AFM) was used to assess a new chimeric protein consisting of a fusion protein of the consensus repeat for Nephila clavipes spider dragline protein and bone sialoprotein (6mer+BSP). The elastic modulus of this protein in film form was assessed through force curves, and film surface roughness was also determined. The results showed a significant difference among the elastic modulus of the chimeric silk protein, 6mer+BSP, and control films consisting of only the silk component (6mer). The behavior of the 6mer+BSP and 6mer proteins in aqueous solution in the presence of calcium (Ca) ions was also assessed to determine interactions between the inorganic and organic components related to bone interactions, anchoring, and biomaterial network formation. The results demonstrated the formation of protein networks in the presence of Ca(2+) ions, characteristics that may be important in the context of controlling materials assembly and properties related to bone formation with this new chimeric silk-BSP protein.
Vidal, Sarah E Lightfoot; Tamamoto, Kasey A; Nguyen, Hanh; Abbott, Rosalyn D; Cairns, Dana M; Kaplan, David L
2018-04-24
Current commercially available human skin equivalents (HSEs) are used for relatively short term studies (∼1 week) due in part to the time-dependent contraction of the collagen gel-based matrix and the limited cell types and skin tissue components utilized. In contrast, here we describe a new matrix consisting of a silk-collagen composite system that provides long term, stable cultivation with reduced contraction and degradation over time. This matrix supports full thickness skin equivalents which include nerves. The unique silk-collagen composite system preserves cell-binding domains of collagen while maintaining the stability and mechanics of the skin system for long-term culture with silk. The utility of this new composite protein-based biomaterial was demonstrated by bioengineering full thickness human skin systems using primary cells, including nerves and immune cells to establish an HSE with a neuro-immuno-cutaneous system. The HSEs with neurons and hypodermis, compared to in vitro skin-only HSEs controls, demonstrated higher secretion of pro-inflammatory cytokines. Proteomics analysis confirmed the presence of several proteins associated with inflammation across all sample groups, but HSEs with neurons had the highest amount of detected protein due to the complexity of the model. This improved, in vitro full thickness HSE model system utilizes cross-linked silk-collagen as the biomaterial and allows reduced reliance on animal models and provides a new in vitro tissue system for the assessment of chronic responses related to skin diseases and drug discovery. Copyright © 2018 Elsevier Ltd. All rights reserved.
Control of silicification by genetically engineered fusion proteins: Silk–silica binding peptides
Zhou, Shun; Huang, Wenwen; Belton, David J.; Simmons, Leo O.; Perry, Carole C.; Wang, Xiaoqin; Kaplan, David L.
2014-01-01
In the present study, an artificial spider silk gene, 6mer, derived from the consensus sequence of Nephila clavipes dragline silk gene, was fused with different silica-binding peptides (SiBPs), A1, A3 and R5, to study the impact of the fusion protein sequence chemistry on silica formation and the ability to generate a silk–silica composite in two different bioinspired silicification systems: solution–solution and solution– solid. Condensed silica nanoscale particles (600–800 nm) were formed in the presence of the recombinant silk and chimeras, which were smaller than those formed by 15mer-SiBP chimeras [1], revealing that the molecular weight of the silk domain correlated to the sizes of the condensed silica particles in the solution system. In addition, the chimeras (6mer-A1/A3/R5) produced smaller condensed silica particles than the control (6mer), revealing that the silica particle size formed in the solution system is controlled by the size of protein assemblies in solution. In the solution–solid interface system, silicification reactions were performed on the surface of films fabricated from the recombinant silk proteins and chimeras and then treated to induce β-sheet formation. A higher density of condensed silica formed on the films containing the lowest β-sheet content while the films with the highest β-sheet content precipitated the lowest density of silica, revealing an inverse correlation between the β-sheet secondary structure and the silica content formed on the films. Intriguingly, the 6mer-A3 showed the highest rate of silica condensation but the lowest density of silica deposition on the films, compared with 6mer-A1 and -R5, revealing antagonistic crosstalk between the silk and the SiBP domains in terms of protein assembly. These findings offer a path forward in the tailoring of biopolymer–silica composites for biomaterial related needs. PMID:25462851
Monodispersed silk fibroin microdroplets for protein stabilization
NASA Astrophysics Data System (ADS)
Liu, Qiang; Jiang, Nan; Liu, Dewen; Ying, Guoliang; Shi, Qiusheng; Yetisen, Ali K.; Liu, Haifeng; Fan, Yubo
2018-04-01
Low stability of globular protein droplets in emulsion significantly limits their applications in drug encapsulation, long-term storage, and controlled drug release. Here, a microfluidic flow-focusing device was utilized to synthesize horseradish peroxidase (HRP)-loaded silk fibroin microdroplets. The two immiscible streams of microfluidic flow-focusing were regenerated by silk fibroin solution and a mixture of 95 wt. % sunflower oil and 5 wt. % span 80 as the dispersed and continuous phases, respectively. In this study, the water-in-oil silk fibroin microdroplets were homogeneously produced by leveraging the discrete and periodic breakup of microdroplets and regulating the flow rates. Moreover, the result showed that the stability of encapsulated HRP in microdroplets was 25% higher than that of HRP after 6 weeks incubation. Thus, the microfluidic flow-focusing is a promising technique to form monodisperse microdroplets and maximize the stability of protein droplets.
Fabrication of elastomeric silk fibers.
Bradner, Sarah A; Partlow, Benjamin P; Cebe, Peggy; Omenetto, Fiorenzo G; Kaplan, David L
2017-09-01
Methods to generate fibers from hydrogels, with control over mechanical properties, fiber diameter, and crystallinity, while retaining cytocompatibility and degradability, would expand options for biomaterials. Here, we exploited features of silk fibroin protein for the formation of tunable silk hydrogel fibers. The biological, chemical, and morphological features inherent to silk were combined with elastomeric properties gained through enzymatic crosslinking of the protein. Postprocessing via methanol and autoclaving provided tunable control of fiber features. Mechanical, optical, and chemical analyses demonstrated control of fiber properties by exploiting the physical cross-links, and generating double network hydrogels consisting of chemical and physical cross-links. Structure and chemical analyses revealed crystallinity from 30 to 50%, modulus from 0.5 to 4 MPa, and ultimate strength 1-5 MPa depending on the processing method. Fabrication and postprocessing combined provided fibers with extensibility from 100 to 400% ultimate strain. Fibers strained to 100% exhibited fourth order birefringence, revealing macroscopic orientation driven by chain mobility. The physical cross-links were influenced in part by the drying rate of fabricated materials, where bound water, packing density, and microstructural homogeneity influenced cross-linking efficiency. The ability to generate robust and versatile hydrogel microfibers is desirable for bottom-up assembly of biological tissues and for broader biomaterial applications. © 2017 Wiley Periodicals, Inc.
Orientation-Induced Effects of Water Harvesting on Humps-on-Strings of Bioinspired Fibers
Chen, Yuan; Li, Dan; Wang, Ting; Zheng, Yongmei
2016-01-01
Smart water-collecting functions are naturally endowed on biological surfaces with unique wettable microstructures, e.g., beetle back with “alternate hydrophobic, hydrophilic micro-regions”, and spider silk with wet-rebuilt “spindle-knot, joint” structures. Enlightened by the creature features, design of bio-inspired surfaces becomes the active issue in need of human beings for fresh water resource. Recently, as observed from spider web in nature, the net of spider silk is usually set in different situations and slopes in air, thus spider silks can be placed in all kinds of orientations as capturing water. Here, we show the styles and orientations of hump-on-string to control the ability of water collection as bioinspired silks are fabricated successfully. As different strings, sizes (height, length, pitch) of humps can become the controlling on volumes of extreme water drops. It is related to the different solid/liquid contact regions resulting in the as-modulated wet adhesion due to orientations of humps-on-strings. The conversion of high-low adhesion can be achieved to rely on orientations for the effect of capturing water drops. These studies offer an insight into enhancement of water collection efficiency and are helpful to design smart materials for controlled water drop capture and release via conversions of high-low adhesion. PMID:26812942
Calabrese, Rossella; Raia, Nicole; Huang, Wenwen; Ghezzi, Chiara E; Simon, Marc; Staii, Cristian; Weiss, Anthony S; Kaplan, David L
2017-09-01
The response of human bone marrow-derived mesenchymal stem cells (hMSCs) encapsulated in three-dimensional (3D) charged protein hydrogels was studied. Combining silk fibroin (S) with recombinant human tropoelastin (E) or silk ionomers (I) provided protein composite alloys with tunable physicochemical and biological features for regulating the bioactivity of encapsulated hMSCs. The effects of the biomaterial charges on hMSC viability, proliferation and chondrogenic or osteogenic differentiation were assessed. The silk-tropoelastin or silk-ionomers hydrogels supported hMSC viability, proliferation and differentiation. Gene expression of markers for chondrogenesis and osteogenesis, as well as biochemical and histological analysis, showed that hydrogels with different S/E and S/I ratios had different effects on cell fate. The negatively charged hydrogels upregulated hMSC chondrogenesis or osteogenesis, with or without specific differentiation media, and hydrogels with higher tropoelastin content inhibited the differentiation potential even in the presence of the differentiation media. The results provide insight on charge-tunable features of protein-based biomaterials to control hMSC differentiation in 3D hydrogels, as well as providing a new set of hydrogels for the compatible encapsulation and utility for cell functions. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Quantifying Osteogenic Cell Degradation of Silk Biomaterials
Sengupta, Sejuti; Park, Sang-Hyug; Seok, Gil Eun; Patel, Atur; Numata, Keiji; Lu, Chia-Li; Kaplan, David L.
2010-01-01
The degradation of silk protein films by human mesenchymal stem cells (hMSCs), osteoblasts and osteoclasts, cells involved in osteogenic functions in normal and diseased bone, was assessed in vitro. The involvement of specific matrix metalloproteinases (MMPs) and integrin signaling in the degradation process was determined. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to quantitatively compare degradation by the different cell types using surface patterned silk films. Osteoblasts and osteoclasts demonstrated significant degradation of the silk films in vitro in comparison to the hMSCs and the film controls without cells. The osteoclasts degraded the silk films the most and also generated the highest level of MMPs 1 and 2. The osteoblasts upregulated integrins α5 and β1 while the osteoclasts upregulated integrins α2 and β1. There was significant contrast in responses on the silk matrices between osteogenic cells vs undifferentiated hMSCs to illustrate in vitro the role of cell type on matrix remodeling. These are important issues in matching biomaterial matrix features and studies in vitro to remodeling in vivo, in both normal and disease tissue systems. Cell populations and niche factors impact tissue regeneration, wound healing and physiological state and the ability to better understand the role of different cell types is critical to overall regenerative outcomes. PMID:21105641
Characterization of Natural Dyes and Traditional Korean Silk Fabric by Surface Analytical Techniques
Lee, Jihye; Kang, Min Hwa; Lee, Kang-Bong; Lee, Yeonhee
2013-01-01
Time-of-flight secondary ion mass spectrometry (TOF-SIMS) and X-ray photoelectron spectroscopy (XPS) are well established surface techniques that provide both elemental and organic information from several monolayers of a sample surface, while also allowing depth profiling or image mapping to be carried out. The static TOF-SIMS with improved performances has expanded the application of TOF-SIMS to the study of a variety of organic, polymeric and biological materials. In this work, TOF-SIMS, XPS and Fourier Transform Infrared (FTIR) measurements were used to characterize commercial natural dyes and traditional silk fabric dyed with plant extracts dyes avoiding the time-consuming and destructive extraction procedures necessary for the spectrophotometric and chromatographic methods previously used. Silk textiles dyed with plant extracts were then analyzed for chemical and functional group identification of their dye components and mordants. TOF-SIMS spectra for the dyed silk fabric showed element ions from metallic mordants, specific fragment ions and molecular ions from plant-extracted dyes. The results of TOF-SIMS, XPS and FTIR are very useful as a reference database for comparison with data about traditional Korean silk fabric and to provide an understanding of traditional dyeing materials. Therefore, this study shows that surface techniques are useful for micro-destructive analysis of plant-extracted dyes and Korean dyed silk fabric. PMID:28809257
Pei, Yazhen; Liu, Xi; Liu, Shanshan; Lu, Qiang; Liu, Jing; Kaplan, David L; Zhu, Hesun
2015-02-01
Three-dimensional (3-D) porous silk scaffolds with good biocompatibility and minimal immunogenicity show promise in a range of tissue regeneration applications. However, the challenge remains to effectively fabricate their microstructures and mechanical properties to satisfy the specific requirements of different tissues. In this study, silk scaffolds were fabricated to form an extracellular matrix (ECM) mimetic nanofibrous architecture using a mild process. A slowly increasing concentration process was applied to regulate silk self-assembly into nanofibers in aqueous solution. Then glycerol was blended with the nanofiber solution and induced silk crystallization in the lyophilization process, endowing freeze-dried scaffolds with water stability. The glycerol was leached from the scaffolds, leaving a similar porous structure at the micrometer scale but different topographies at the nanoscale. Compared to previous salt-leached and methanol-annealed scaffolds, the present scaffolds showed lower β-sheet content, softer mechanical property and improved cell growth and differentiation behaviors, suggesting their promising future as platforms for controlling stem cell fate and soft tissue regeneration. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
The characteristics of bacterial nanocellulose gel releasing silk sericin for facial treatment.
Aramwit, Pornanong; Bang, Nipaporn
2014-12-09
Recently, naturally derived facial masks with beneficial biological properties have received increasing interest. In this study, silk sericin-releasing bacterial nanocellulose gel was developed to be applied as a bioactive mask for facial treatment. The silk sericin-releasing bacterial nanocellulose gel produced at a pH of 4.5 had an ultrafine and extremely pure fiber network structure. The mechanical properties and moisture absorption ability of the gel were improved, compared to those of the commercially available paper mask. Silk sericin could be control-released from the gel. A peel test with porcine skin showed that the gel was less adhesive than the commercially available paper mask, which would be removed from the face more easily without pain. The in vitro cytotoxicity test showed that the gel was not toxic to L929 mouse fibroblast and HaCaT human keratinocyte cells. Furthermore, when implanted subcutaneously and evaluated according to ISO10993-6 standard, the gel was not irritant to tissue. The silk sericin-releasing bacterial nanocellulose gel had appropriate physical and biological properties and safety for the facial treatment application.
Effect of Prothioconazole Application Timing on Fusarium Mycotoxin Content in Maize Grain.
Limay-Rios, Victor; Schaafsma, Arthur W
2018-05-16
In 2010 and 2011, studies to determine the optimal timing of prothioconazole application (200 g a.i./ha) for reducing Fusarium mycotoxin accumulation in grain were conducted in controlled replicated experiments under small-plot mist-irrigated experiments and in field-scale experiments using two hybrids susceptible to F. gramineaerum infection. A significant decrease in total deoxynivalenol (DON) [DON + 15-acetyl-DON + DON 3-glucoside + 3-acetyl-DON] and zearalenone concentrations was observed when fungicide was sprayed at VT (tasseling) and R1 (silking; P < 0.01) followed by applications at V18 (18th leaf) and R2 (blister; P < 0.05) stages, corresponding to silk completely emerged and fully elongated and to silk emergence and browning, respectively. No reduction in Fusarium graminearum toxins was found after silk senescence (R3 or milk) stage. Moniliformin, fumonisins, beauvericin, enniatins, HT-2 and T-2 toxins were also found in small quantities, and no reduction was observed after treatment ( P > 0.05). Mean reduction (±s.d.) of 59 ± 20% and 57 ± 38% of total DON and zearalenone was observed at full silk elongation, respectively.
Silk protein nanowires patterned using electron beam lithography.
Pal, Ramendra K; Yadavalli, Vamsi K
2018-08-17
Nanofabrication approaches to pattern proteins at the nanoscale are useful in applications ranging from organic bioelectronics to cellular engineering. Specifically, functional materials based on natural polymers offer sustainable and environment-friendly substitutes to synthetic polymers. Silk proteins (fibroin and sericin) have emerged as an important class of biomaterials for next generation applications owing to excellent optical and mechanical properties, inherent biocompatibility, and biodegradability. However, the ability to precisely control their spatial positioning at the nanoscale via high throughput tools continues to remain a challenge. In this study electron beam lithography (EBL) is used to provide nanoscale patterning using methacrylate conjugated silk proteins that are photoreactive 'photoresists' materials. Very low energy electron beam radiation can be used to pattern silk proteins at the nanoscale and over large areas, whereby such nanostructure fabrication can be performed without specialized EBL tools. Significantly, using conducting polymers in conjunction with these silk proteins, the formation of protein nanowires down to 100 nm is shown. These wires can be easily degraded using enzymatic degradation. Thus, proteins can be precisely and scalably patterned and doped with conducting polymers and enzymes to form degradable, organic bioelectronic devices.
Siritientong, Tippawan; Angspatt, Apichai; Ratanavaraporn, Juthamas; Aramwit, Pornanong
2014-01-01
An ethyl alcohol-precipitated silk sericin/PVA scaffold that controlled the release of silk sericin was previously developed and applied for the treatment of full-thickness wounds in rats and demonstrated efficient healing. In this study, we aimed to further evaluate the clinical potential of this scaffold, hereafter called "silk sericin-releasing wound dressing", for the treatment of split-thickness skin graft donor sites by comparison with the clinically available wound dressing known as "Bactigras®". In vitro characterization and in vivo evaluation for safety of the wound dressings were performed. A clinical trial of the wound dressings was conducted according to standard protocols. The sericin released from the wound dressing was not toxic to HaCat human keratinocytes. A peel test indicated that the silk sericin-releasing wound dressing was less adhesive than Bactigras®, potentially reducing trauma and the risk of repeated injury upon removal. There was no evidence of skin irritation upon treatment with either wound dressing. When tested in patients with split-thickness skin graft donor sites, the wounds treated with the silk sericin-releasing wound dressing exhibited complete healing at 12 ± 5.0 days, whereas those treated with Bactigras® were completely healed at 14 ± 5.2 days (p = 1.99 × 10(-4)). In addition, treatment with the silk sericin-releasing wound dressing significantly reduced pain compared with Bactigras® particularly during the first 4 postoperative days (p = 2.70 × 10(-5) on day 1). We introduce this novel silk sericin-releasing wound dressing as an alternative treatment for split-thickness skin graft donor sites.
Molecular mechanics of silk nanostructures under varied mechanical loading.
Bratzel, Graham; Buehler, Markus J
2012-06-01
Spider dragline silk is a self-assembling tunable protein composite fiber that rivals many engineering fibers in tensile strength, extensibility, and toughness, making it one of the most versatile biocompatible materials and most inviting for synthetic mimicry. While experimental studies have shown that the peptide sequence and molecular structure of silk have a direct influence on the stiffness, toughness, and failure strength of silk, few molecular-level analyses of the nanostructure of silk assemblies, in particular, under variations of genetic sequences have been reported. In this study, atomistic-level structures of wildtype as well as modified MaSp1 protein from the Nephila clavipes spider dragline silk sequences, obtained using an in silico approach based on replica exchange molecular dynamics and explicit water molecular dynamics, are subjected to simulated nanomechanical testing using different force-control loading conditions including stretch, pull-out, and peel. The authors have explored the effects of the poly-alanine length of the N. clavipes MaSp1 peptide sequence and identify differences in nanomechanical loading conditions on the behavior of a unit cell of 15 strands with 840-990 total residues used to represent a cross-linking β-sheet crystal node in the network within a fibril of the dragline silk thread. The specific loading condition used, representing concepts derived from the protein network connectivity at larger scales, have a significant effect on the mechanical behavior. Our analysis incorporates stretching, pull-out, and peel testing to connect biochemical features to mechanical behavior. The method used in this study could find broad applications in de novo design of silk-like tunable materials for an array of applications. Copyright © 2011 Wiley Periodicals, Inc.
ToF-SIMS Characterization of Biocompatible Silk/Polypyrrole Electromechanical Actuators
NASA Astrophysics Data System (ADS)
Bradshaw, Nathan; Severt, Sean; Wang, Zhaoying; Klemke, Carly; Larson, Jesse; Zhu, Zihua; Murphy, Amanda; Leger, Janelle
2015-03-01
Materials capable of controlled movements that can also interface with biological environments are highly sought after for biomedical devices such as valves, blood vessel sutures, cochlear implants and controlled drug release devices. Recently we have reported the synthesis of films composed of a conductive interpenetrating network of the biopolymer silk fibroin and poly(pyrrole). These silk-PPy composites function as bilayer electromechanical actuators in a biologically-relevant environment, can be actuated repeatedly, and are able to generate forces comparable with natural muscle (>0.1 MPa), making them an ideal candidate for interfacing with biological tissues. Here, time of flight secondary ion mass spectrometry was used to investigate the migration of ions in the devices during actuation. These findings will be discussed in the context of the actuation mechanism and opportunities for further improvements in device stability and performance.
NASA Astrophysics Data System (ADS)
Paquette, Mark S.
New tools are often required to facilitate new discoveries and test new methods. Commercial offerings can be prohibitively expensive and difficult to customize. The development of ad-hoc tools provides the most flexibility and provides an opportunity to modify and refine a technology. An embossing system was developed for silk film imprinting and stamping in order to facilitate and add versatility to the efforts involving micro- and nanoscale device manufacturing in biopolymers. This system features temperature controlled embossing surfaces, adjustable embossing pressures, and variable embossing times. The device can also be fitted with interchangeable temperature controlled embossing and stamping tools. The design, development, fabrication, applications, and future improvements are explored for the system. This device may facilitate new discoveries in the realm of biopolymer micro- and nanomanufacturing and may provide a path towards high volume production of silk film based technologies.
Physical characterization of functionalized spider silk: electronic and sensing properties
Steven, Eden; Park, Jin Gyu; Paravastu, Anant; Lopes, Elsa Branco; Brooks, James S; Englander, Ongi; Siegrist, Theo; Kaner, Papatya; Alamo, Rufina G
2011-01-01
This work explores functional, fundamental and applied aspects of naturally harvested spider silk fibers. Natural silk is a protein polymer where different amino acids control the physical properties of fibroin bundles, producing, for example, combinations of β-sheet (crystalline) and amorphous (helical) structural regions. This complexity presents opportunities for functional modification to obtain new types of material properties. Electrical conductivity is the starting point of this investigation, where the insulating nature of neat silk under ambient conditions is described first. Modification of the conductivity by humidity, exposure to polar solvents, iodine doping, pyrolization and deposition of a thin metallic film are explored next. The conductivity increases exponentially with relative humidity and/or solvent, whereas only an incremental increase occurs after iodine doping. In contrast, iodine doping, optimal at 70 °C, has a strong effect on the morphology of silk bundles (increasing their size), on the process of pyrolization (suppressing mass loss rates) and on the resulting carbonized fiber structure (that becomes more robust against bending and strain). The effects of iodine doping and other functional parameters (vacuum and thin film coating) motivated an investigation with magic angle spinning nuclear magnetic resonance (MAS-NMR) to monitor doping-induced changes in the amino acid-protein backbone signature. MAS-NMR revealed a moderate effect of iodine on the helical and β-sheet structures, and a lesser effect of gold sputtering. The effects of iodine doping were further probed by Fourier transform infrared (FTIR) spectroscopy, revealing a partial transformation of β-sheet-to-amorphous constituency. A model is proposed, based on the findings from the MAS-NMR and FTIR, which involves iodine-induced changes in the silk fibroin bundle environment that can account for the altered physical properties. Finally, proof-of-concept applications of functionalized spider silk are presented for thermoelectric (Seebeck) effects and incandescence in iodine-doped pyrolized silk fibers, and metallic conductivity and flexibility of micron-sized gold-sputtered silk fibers. In the latter case, we demonstrate the application of gold-sputtered neat spider silk to make four-terminal, flexible, ohmic contacts to organic superconductor samples. PMID:27877440
[Investigation of fibrous cultural materials by infrared spectroscopy].
Luo, Xi-yun; Du, Yi-ping; Shen, Mei-hua; Zhang, Wen-qing; Zhou, Xin-guang; Fang, Shu-ying; Zhang, Xuan
2015-01-01
Cultural fibrous material includes both important categories, i. e. textile and paper, consisting of precious cultural materials in museum, such as costume, painting, and manuscript. In recent years more and more connoisseur and conservator's concerns are, through nondestructive method, the authenticity and the ageing identification of these cultural relics especially made from fragile materials. In this research, we used attenuated total reflection infrared spectroscopy to identify five traditional textile fibers, alongside cotton, linen, wool, mulberry silk and tussah silk, and another five paper fibers alongside straw, wheat straw, long qisong, Chinese alpine rush and mulberry bar, which are commonly used for making Chinese traditional xuan paper. The research result showed that the animal fiber (wool, mulberry silk and tussah silk) and plant fiber (cotton and linen) were easier to be distinguished by comparing the peaks at 3 280 cm-1 belonging to NH stretching vibration and a serious peaks related to amide I to amide III. In the spectrum of wool, the peak at 1 076 cm-1 was assigned to the S-O stretching vibration absorption of cystine in wool structure and can be used to tell wool from silk. The spectrum of mulberry silk and tussah silk seems somewhat difficult to be identified, as well as the spectrum of cotton and linen. Five rural paper fibers all have obvious characteristic peaks at 3 330, 2 900 cm-1 which are related to OH and CH stretching vibration. In the fingerprint wavenumber range of 1 600 - 800 cm, the similar peaks also appeared at 1 370, 1 320 cm-1 and 1 162, 1 050 cm-1, both group peaks respectively are related to CH and CO vibration in the structure of cellulose and hemicellulose in paper fibers. Although there is more similarity of the infrared spectroscopy of these 5 paper fibers, some tiny difference in absorbance also can be found at 3 300 cm-1 and in the fingerprint range at 1 332, 1 203, and 1 050 cm-1 which are related to C-O-C vibration in cellulose. Moreover, in order to explore direct and simple method to identify different materials with similar spectrum,. the principal component analysis (PCA) was applied to separate cotton and linen, mulberry silk and tussah silk, as well as five paper fibers. To eliminate and reduce the spectral scattering caused by sample uneven surface roughness, the multiplicative scatter correction (MSC) has been applied based on total spectral data. The result showed that the score plot using the first two principal components can effectively categorize both group textiles of cotton and linen, as well as mulberry silk and tussah silk, and they have similar chemical structure. For five paper fibers, the PCA was applied in different spectral range (918-550, 1 280-918, 1 700-1 280 and 3 800-2 800 cm-1), and the best result appeared in the range from 3 800 to 2 800 cm-1, in which the five paper fibers can be well categorized. This research showed that infrared spectroscopy combined with principal component analysis has great potential advantage on identifying fibrous materials with similar structure.
Kozlowska, Anna Karolina; Florczak, Anna; Smialek, Maciej; Dondajewska, Ewelina; Mackiewicz, Andrzej; Kortylewski, Marcin; Dams-Kozlowska, Hanna
2017-09-01
Cell-selective delivery and sensitivity to serum nucleases remain major hurdles to the clinical application of RNA-based oligonucleotide therapeutics, such as siRNA. Spider silk shows great potential as a biomaterial due to its biocompatibility and biodegradability. Self-assembling properties of silk proteins allow for processing into several different morphologies such as fibers, scaffolds, films, hydrogels, capsules and spheres. Moreover, bioengineering of spider silk protein sequences can functionalize silk by adding peptide moieties with specific features including binding or cell recognition domains. We demonstrated that modification of silk protein by adding the nucleic acid binding domain enabled the development of a novel oligonucleotide delivery system that can be utilized to improve pharmacokinetics of RNA-based therapeutics, such as CpG-siRNA. The MS2 bioengineered silk was functionalized with poly-lysine domain (KN) to generate hybrid silk MS2KN. CpG-siRNA efficiently bound to MS2KN in contrary to control MS2. Both MS2KN complexes and spheres protected CpG-siRNA from degradation by serum nucleases. CpG-siRNA molecules encapsulated into MS2KN spheres were efficiently internalized and processed by TLR9-positive macrophages. Importantly, CpG-STAT3siRNA loaded in silk spheres showed delayed and extended target gene silencing compared to naked oligonucleotides. The prolonged Stat3 silencing resulted in the more pronounced downregulation of interleukin 6 (IL-6), a proinflammatory cytokine and upstream activator of STAT3, which limits the efficacy of TLR9 immunostimulation. Our results demonstrate the feasibility of using spider silk spheres as a carrier of therapeutic nucleic acids. Moreover, the modified kinetic and activity of the CpG-STAT3siRNA embedded into silk spheres is likely to improve immunotherapeutic effects in vivo. We demonstrated that modification of silk protein by adding the nucleic acid binding domain enabled the development of a novel oligonucleotide delivery system that can be utilized to improve pharmacokinetics of RNA-based therapeutics. Although, the siRNA constructs have already given very promising results in the cancer therapy, the in vivo application of RNA-based oligonucleotide therapeutics still is limited due to their sensitivity to serum nucleases and some toxicity. We propose a carrier for RNA-based therapeutics that is made of bioengineered spider silk. We showed that functionalized bioengineered spider silk spheres not only protected RNA-based therapeutics from degradation by serum nucleases, but what is more important the embedding of siRNA into silk spheres delayed and extended target gene silencing compared with naked oligonucleotides. Moreover, we showed that plain silk spheres did not have unspecific effect on target gene levels proving not only to be non-cytotoxic but also very neutral vehicles in terms of TLR9/STAT3 activation in macrophages. We demonstrated advantages of novel delivery technology in safety and efficacy comparing with delivery of naked CpG-STAT3siRNA therapeutics. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Piorkowski, Dakota; Blackledge, Todd A.
2017-08-01
The origin of viscid capture silk in orb webs, from cribellate silk-spinning ancestors, is a key innovation correlated with significant diversification of web-building spiders. Ancestral cribellate silk consists of dry nanofibrils surrounding a stiff, axial fiber that adheres to prey through van der Waals interactions, capillary forces, and physical entanglement. In contrast, viscid silk uses chemically adhesive aqueous glue coated onto a highly compliant and extensible flagelliform core silk. The extensibility of the flagelliform fiber accounts for half of the total work of adhesion for viscid silk and is enabled by water in the aqueous coating. Recent cDNA libraries revealed the expression of flagelliform silk proteins in cribellate orb-weaving spiders. We hypothesized that the presence of flagelliform proteins in cribellate silk could have allowed for a gradual shift in mechanical performance of cribellate axial silk, whose effect was masked by the dry nature of its adhesive. We measured supercontraction and mechanical performance of cribellate axial silk, in wet and dry states, for two species of cribellate orb web-weaving spiders to see if water enabled flagelliform silk-like performance. We found that compliance and extensibility of wet cribellate silk increased compared to dry state as expected. However, when compared to other silk types, the response to water was more similar to other web silks, like major and minor ampullate silk, than to viscid silk. These findings support the punctuated evolution of viscid silk mechanical performance.
Applicability of biotechnologically produced insect silks.
Herold, Heike M; Scheibel, Thomas
2017-09-26
Silks are structural proteins produced by arthropods. Besides the well-known cocoon silk, which is produced by larvae of the silk moth Bombyx mori to undergo metamorphosis inside their silken shelter (and which is also used for textile production by men since millennia), numerous further less known silk-producing animals exist. The ability to produce silk evolved multiple independent times during evolution, and the fact that silk was subject to convergent evolution gave rise to an abundant natural diversity of silk proteins. Silks are used in air, under water, or like honey bee silk in the hydrophobic, waxen environment of the bee hive. The good mechanical properties of insect silk fibres together with their non-toxic, biocompatible, and biodegradable nature renders these materials appealing for both technical and biomedical applications. Although nature provides a great diversity of material properties, the variation in quality inherent in materials from natural sources together with low availability (except from silkworm silk) impeded the development of applications of silks. To overcome these two drawbacks, in recent years, recombinant silks gained more and more interest, as the biotechnological production of silk proteins allows for a scalable production at constant quality. This review summarises recent developments in recombinant silk production as well as technical procedures to process recombinant silk proteins into fibres, films, and hydrogels.
Stabilization of Neem Oil Biodiesel with Corn Silk Extract during Long-term Storage.
Ali, Rehab Farouk M; El-Anany, Ayman M
2017-02-01
The current study aimed to evaluate the antioxidant efficiency of different extracts of corn silk. In addition, the impact of corn silk extract on oxidative stability of neem biodiesel during storage was studied. The highest phenolics, DPPH radical scavenging and reducing power activities were recorded for methanol-water extract. The longest oxidation stability (10 h) was observed for biodiesel samples blended with 1000 ppm of corn silk extract (CSE). At the end of storage period the induction time of biodiesel samples mixed with 1000 ppm of CSE or butylated hydroxytoluene (BHT) were about 6.72 and 5.63 times as high as in biodiesel samples without antioxidants. Biodiesel samples blended with 1000 ppm of CSE had the lowest acidity at the end of storage period. Peroxide value of biodiesel samples containing 1000 ppm of CSE was about 4.28 times as low as in control sample without antioxidants.
Dashora, Kavya; Roy, Somnath; Nagpal, Akanksha; Roy, Sudipta Mukhopadhyay; Flood, Julie; Prasad, Anjali Km; Khetarpal, Ravinder; Neave, Suzanne; Muraleedharan, N
2017-03-01
Bacillus thuringiensis (Bt) is a soil bacterium that forms spores containing crystals comprising one or more Cry or Cyt proteins having potential and specific insecticidal activity. Different strains of Bt produce different types of toxins, affecting a narrow taxonomic group of insects. Therefore, it is used in non-chemical pest management, including inherent pest resistance through GM crops. The specificity of action of Bt toxins reduces the concern of adverse effects on non-target species, a concern which remains with chemical insecticides as well. To make use of Bt more sustainable, new strains expressing novel toxins are actively being sought globally. Since Bt is successfully used against many pests including the lepidopteran pests in different crop groups, the insecticidal activity against Samia cynthia (Drury) (Eri silkworm) and Antheraea assamensis Helfer (Muga silkworm) becomes a concern in the state of Assam in India which is a predominantly tea- and silk-producing zone. Though Bt can be used as an effective non-chemical approach for pest management for tea pests in the same geographical region, yet, it may potentially affect the silk industry which depends on silkworm. There is a need to identify the potentially lethal impact (through evaluating their mortality potential) of local Bt strains on key silkworm species in North Eastern India. This will allow the use of existing Bt for which the silkworms have natural resistance. Through this review, the authors aim to highlight recent progress in the use of Bt and its insecticidal toxins in tea pest control and the potential sensitivity for tea- and silk-producing zone of Assam in India.
NASA Astrophysics Data System (ADS)
Zeng, Like
Production of brand new protein-based materials with precise control over the amino acid sequences at single residue level has been made possible by genetic engineering, through which artificial genes can be developed that encode protein-based materials with desired features. As an example, silk-elastinlike protein polymers (SELPs), composed of tandem repeats of amino acid sequence motifs from Bombyx mori (silkworm) silk and mammalian elastin, have been produced in this approach. SELPs have been studied extensively in the past two decades, however, the fundamental mechanism governing the self-assembly process to date still remains largely unresolved. Further, regardless of the unprecedented success when exploited in areas including drug delivery, gene therapy, and tissue augmentation, SELPs scaffolds as a three-dimensional cell culture model system are complicated by the inability of SELPs to provide the embedded tissue cells with appropriate biochemical stimuli essential for cell survival and function. In this dissertation, it is reported that the self-assembly of silk-elastinlike protein polymers (SELPs) into nanofibers in aqueous solutions can be modulated by tuning the curing temperature, the size of the silk blocks, and the charge of the elastin blocks. A core-sheath model was proposed for nanofiber formation, with the silk blocks in the cores and the hydrated elastin blocks in the sheaths. The folding of the silk blocks into stable cores -- affected by the size of the silk blocks and the charge of the elastin blocks -- plays a critical role in the assembly of silk-elastin nanofibers. The assembled nanofibers further form nanofiber clusters on the microscale, and the nanofiber clusters then coalesce into nanofiber micro-assemblies, interconnection of which eventually leads to the formation of three-dimensional scaffolds with distinct nanoscale and microscale features. SELP-Collagen hybrid scaffolds were also fabricated to enable independent control over the scaffolds' biochemical input and matrix stiffness. It is reported herein that in the hybrid scaffolds, collagen provides essential biochemical cues needed to promote cell attachment and function while SELP imparts matrix stiffness tunability. To obtain tissue-specificity in matrix stiffness that spans over several orders of magnitude covering from soft brain to stiff cartilage, the hybrid SELP-Collagen scaffolds were crosslinked by transglutaminase at physiological conditions compatible for simultaneous cell encapsulation. The effect of the increase in matrix stiffness induced by such enzymatic crosslinking on cellular viability and proliferation was also evaluated using in vitro cell assays.
Moini, Mehdi; Rollman, Christopher M
2017-10-03
Buyid silk forgery is one of the most famous silk forgeries in the world. In 1924-1925, excavation of the Bibi Shahrbanu site in Iran unearthed several silk textiles. The silks were thought to be of the Buyid period (934-1062 BCE) of the Persian Empire and have since been known as the "Buyid silks". In the 1930s, more silk appeared and was reported as being from the Buyid period as well. Controversy over the authenticity of these silks escalated after the purchase of the silks by museums throughout the world. Extensive investigations of several of these silks have been conducted over the years with respect to iconography, weaving patterns, dyes/mordant, style, and even radiocarbon dating. It was found that most of the silks are not from Buyid period. To test the authenticity of these silk fabrics, the recently developed silk dating technique using amino acid racemization (AAR) in conjunction with capillary electrophoresis mass spectrometry was applied to 13 Buyid silk specimens from the Textile Museum collections. Among these silk specimens, the AAR ratios of only one specimen were consistent with authentic silk fabrics collected from various museums. In addition, the aspartic acid racemization ratio of this specimen was also consistent with its 14 C dating. The other "Buyid silks" showed excessive levels of amino acid racemization not only for aspartic acid, but also for phenylalanine and tyrosine, inconsistent with racemization rates of these amino acids in authentic historical silk fabrics. Treatment of modern silk with a base at different pH and temperature reproduced the AAR pattern of the Buyid silks, implying that chemical treatment with a base at relatively high temperatures was perhaps the method used to artificially age these fabrics. The results imply that the racemization ratios of aspartic acid, phenylalanine, and tyrosine can be used as biomarkers for identification of naturally versus artificially aged silk.
Song, Jiankang; Klymov, Alexey; Shao, Jinlong; Zhang, Yang; Ji, Wei; Kolwijck, Eva; Jansen, John A; Leeuwenburgh, Sander C G; Yang, Fang
2017-07-01
Development of novel and effective drug delivery systems for controlled release of bioactive molecules is of critical importance in the field of regenerative medicine. Here, oppositely charged gelatin nanospheres are incorporated into silk fibroin nanofibers through a colloidal electrospinning technique. A novel fibrous nano-in-nano drug delivery system is fabricated without the use of any organic solvent. The distribution of fluorescently labeled gelatin A and B nanospheres inside the nanofibers can be fine-tuned by simple adjustment of the weight ratio between the nanospheres and the relative feeding rate of core and shell solutions containing nanospheres by using single and coaxial nozzle electrospinning, respectively. Incorporation of vancomycin-loaded gelatin B nanospheres into the silk fibroin nanofibrous membranes results in a more sustained release of vancomycin, compared to the gelatin nanospheres free membranes. In addition, these membranes exhibit excellent and prolonged antibacterial effects against Staphylococcus aureus. Moreover, these membranes support the attachment, spreading, and proliferation of periodontal ligament cells. These results suggest that the beneficial properties of gelatin nanospheres can be exploited to improve the biological functionality of electrospun nanofibrous silk fibroin membranes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Growth factor-functionalized silk membranes support wound healing in vitro.
Bienert, M; Hoss, M; Bartneck, M; Weinandy, S; Böbel, M; Jockenhövel, S; Knüchel, R; Pottbacker, K; Wöltje, M; Jahnen-Dechent, W; Neuss, S
2017-08-16
Chronic wounds represent a serious problem in daily medical routine requiring improved wound care. Silk of the domesticated silkworm (Bombyx mori) has been used to form a variety of biomaterials for medical applications. We genetically engineered B. mori to produce silk functionalized with growth factors to promote wound healing in vitro. In this study FGF-, EGF-, KGF-, PDGF- or VEGF-functionalized silk membranes were compared to native B. mori silk membranes without growth factors for their ability to support wound healing in vitro. All silk membranes were cytocompatible and supported macrophage secretion of neutrophil recruiting factor CXCL1 and monocyte chemoattractant protein 1 (MCP-1). VEGF-functionalized silk significantly outperformed other growth factor-functionalized silk membranes, but not native silk in angiogenesis assays. In addition, EGF- and VEGF-functionalized silk membranes slightly enhanced macrophage adhesion compared to silk without growth factors. In wound healing assays in vitro (reduction of wound lesion), dermal equivalents showed a higher wound healing capacity when covered with EGF-, FGF- or VEGF-functionalized silk membranes compared to native, KGF- or PDGF-functionalized silk membranes. Keratinocyte migration and growth is overstimulated by KGF- and VEGF-functionalized silk membranes. In conclusion, growth factor-functionalized silk membranes prepared from genetically engineered silk worm glands are promising wound dressings for future wound healing therapies.
Jones, Justin A.; Harris, Thomas I.; Oliveira, Paula F.; Bell, Brianne E.; Alhabib, Abdulrahman; Lewis, Randolph V.
2016-01-01
The production of recombinant spider silk proteins continues to be a key area of interest for a number of research groups. Several key obstacles exist in their production as well as in their formulation into useable products. The original reported method to solubilize recombinant spider silk proteins (rSSp) in an aqueous solution involved using microwaves to quickly generate heat and pressure inside of a sealed vial containing rSSp and water. Fibers produced from this system are remarkable in their mechanical ability and demonstrate the ability to be stretched and recover 100 times. The microwave method dissolves the rSSPs with dissolution time increasing with higher molecular weight constructs, increasing concentration of rSSPs, protein type, and salt concentration. It has proven successful in solvating a number of different rSSPs including native-like sequences (MaSp1, MaSp2, piriform, and aggregate) as well as chimeric sequences (FlAS) in varied concentrations that have been spun into fibers and formed into films, foams, sponges, gels, coatings, macro and micro spheres and adhesives. The system is effective but inherently unpredictable and difficult to control. Provided that the materials that can be generated from this method of dissolution are impressive, an alternative means of applying heat and pressure that is controllable and predictable has been developed. Results indicate that there are combinations of heat and pressure (135 °C and 140 psi) that result in maximal dissolution without degrading the recombinant MaSp2 protein tested, and that heat and pressure are the key elements to the method of dissolution. PMID:27886066
Jones, Justin A; Harris, Thomas I; Oliveira, Paula F; Bell, Brianne E; Alhabib, Abdulrahman; Lewis, Randolph V
2016-11-23
The production of recombinant spider silk proteins continues to be a key area of interest for a number of research groups. Several key obstacles exist in their production as well as in their formulation into useable products. The original reported method to solubilize recombinant spider silk proteins (rSSp) in an aqueous solution involved using microwaves to quickly generate heat and pressure inside of a sealed vial containing rSSp and water. Fibers produced from this system are remarkable in their mechanical ability and demonstrate the ability to be stretched and recover 100 times. The microwave method dissolves the rSSPs with dissolution time increasing with higher molecular weight constructs, increasing concentration of rSSPs, protein type, and salt concentration. It has proven successful in solvating a number of different rSSPs including native-like sequences (MaSp1, MaSp2, piriform, and aggregate) as well as chimeric sequences (FlAS) in varied concentrations that have been spun into fibers and formed into films, foams, sponges, gels, coatings, macro and micro spheres and adhesives. The system is effective but inherently unpredictable and difficult to control. Provided that the materials that can be generated from this method of dissolution are impressive, an alternative means of applying heat and pressure that is controllable and predictable has been developed. Results indicate that there are combinations of heat and pressure (135 °C and 140 psi) that result in maximal dissolution without degrading the recombinant MaSp2 protein tested, and that heat and pressure are the key elements to the method of dissolution.
Effect of pH on polyethylene glycol (PEG)-induced silk microsphere formation for drug delivery.
Wu, Jianbing; Xie, Xusheng; Zheng, Zhaozhu; Li, Gang; Wang, Xiaoqin; Wang, Yansong
2017-11-01
The effects of changing solution pH in the range of 3.6-10.0 during a one-step silk microsphere preparation process, by mixing silk and polyethylene glycol (PEG), was assessed. The microspheres prepared at low pH (3.6) showed a more homogeneous size (1-3μm) and less porous texture than those prepared at neutral pH. High pH (10.0) inhibited microsphere formation, yielding small and inhomogeneous microspheres. Compared to neutral pH, low pH also increased the content of silk crystalline β-sheet structure from approx. 30% to above 40%. As a result, the microspheres produced at low pH were more thermally stable as well as resistant to chemical (8M urea) and enzymatic (protease XIV) degradation when compared to microspheres prepared at neutral pH. Doxorubicin hydrochloride (DOX) and curcumin (CUR) were successfully loaded in silk microspheres via control of solution pH. The loading efficiency of DOX was approx. 95% at pH7.0 and approx. 60% for CUR at pH3.6, attributed to charge-charge interactions and hydrophobic interactions between the silk and drug molecules, respectively. When PBS, pH7.4, was used as a medium for release studies, the pH3.6 microspheres released both drugs more slowly than the pH7.0 microspheres, likely due to the high content of crystalline β-sheet structure that enhanced drug-silk interactions as well as restricted drug molecule diffusion. Copyright © 2017. Published by Elsevier B.V.
Silk wrapping of nuptial gifts as visual signal for female attraction in a crepuscular spider
NASA Astrophysics Data System (ADS)
Trillo, Mariana C.; Melo-González, Valentina; Albo, Maria J.
2014-02-01
An extensive diversity of nuptial gifts is known in invertebrates, but prey wrapped in silk is a unique type of gift present in few insects and spiders. Females from spider species prefer males offering a gift accepting more and longer matings than when males offered no gift. Silk wrapping of the gift is not essential to obtain a mating, but appears to increase the chance of a mating evidencing a particularly intriguing function of this trait. Consequently, as other secondary sexual traits, silk wrapping may be an important trait under sexual selection, if it is used by females as a signal providing information on male quality. We aimed to understand whether the white color of wrapped gifts is used as visual signal during courtship in the spider Paratrechalea ornata. We studied if a patch of white paint on the males' chelicerae is attractive to females by exposing females to males: with their chelicerae painted white; without paint; and with the sternum painted white (paint control). Females contacted males with white chelicerae more often and those males obtained higher mating success than other males. Thereafter, we explored whether silk wrapping is a condition-dependent trait and drives female visual attraction. We exposed good and poor condition males, carrying a prey, to the female silk. Males in poor condition added less silk to the prey than males in good condition, indicating that gift wrapping is an indicator of male quality and may be used by females to acquire information of the potential mate.
Numata, Keiji; Yamazaki, Shoya; Naga, Naofumi
2012-05-14
We developed a facile and quick ethanol-based method for preparing silk nanoparticles and then fabricated a biodegradable and biocompatible dual-drug release system based on silk nanoparticles and the molecular networks of silk hydrogels. Model drugs incorporated in the silk nanoparticles and silk hydrogels showed fast and constant release, respectively, indicating successful dual-drug release from silk hydrogel containing silk nanoparticles. The release behaviors achieved by this dual-drug release system suggest to be regulated by physical properties (e.g., β-sheet contents and size of the silk nanoparticles and network size of the silk hydrogels), which is an important advantage for biomedical applications. The present silk-based system for dual-drug release also demonstrated no significant cytotoxicity against human mesenchymal stem cells (hMSCs), and thus, this silk-based dual-drug release system has potential as a versatile and useful new platform of polymeric materials for various types of dual delivery of bioactive molecules.
Transgenic Silk Moths to Produce Spider Silk
2008-01-24
concentrated protein solutions, have failed or are inefficient. Currently, silk is produced from the cocoon of the silk moth Bombyx mori ; however, this silk...repetitive domains of spider dragline silk with the N- and C- terminal domains of the Bombyx mori silk gene, Fibroin-H (Fib-H). Various SpF genes have been...transgenic insects and the biosynthetic capacity of the domesticated silkmoth, Bombyx mori . The elasticity and strength of spider silk make it ideal for
Turc, Olivier; Bouteillé, Marie; Fuad-Hassan, Avan; Welcker, Claude; Tardieu, François
2016-10-01
The elongation of styles and stigma (silks) of maize (Zea mays) flowers is rapid (1-3 mm h(-1) ), occurs over a short period and plays a pivotal role in reproductive success in adverse environments. Silk elongation rate was measured using displacement transducers in 350 plants of eight genotypes during eight experiments with varying evaporative demand and soil water status. Measured time courses revealed that silk elongation rate closely followed changes in soil water status and evaporative demand, with day-night alternations similar to those in leaves. Day-night alternations were steeper with high than with low plant transpiration rate, manipulated via evaporative demand or by covering part of the leaf area. Half times of changes in silk elongation rate upon changes in evaporative demand or soil water status were 10-30 min, similar to those in leaves. The sensitivity of silk elongation rate to xylem water potential was genetically linked to that of leaf elongation rate. Lines greatly differed for these sensitivities. These results are consistent with a common hydraulic control of expansive growth in vegetative and reproductive structures upon changes in environmental conditions via a close connection with the xylem water potential. They have important implications for breeding, modelling and phenotyping. © 2016 INRA. New Phytologist © 2016 New Phytologist Trust.
Stoppel, Whitney L.; Gao, Albert E.; Greaney, Allison M.; Partlow, Benjamin P.; Bretherton, Ross C.; Kaplan, David L.; Black, Lauren D.
2018-01-01
Heart failure is the leading cause of death in the United States and rapidly becoming the leading cause of death worldwide. While pharmacological treatments can reduce progression to heart failure following myocardial infarction, there still exists a need for new therapies that promote better healing post injury for a more functional cardiac repair and methods to understand how the changes to tissue mechanical properties influence cell phenotype and function following injury. To address this need, we have optimized a silk-based hydrogel platform containing cardiac tissue-derived extracellular matrix (cECM). These silk-cECM hydrogels have tunable mechanical properties, as well as rate-controllable hydrogel stiffening over time. In vitro, silk-cECM scaffolds led to enhanced cardiac fibroblast (CF) cell growth and viability with culture time. cECM incorporation improved expression of integrin an focal adhesion proteins, suggesting that CFs were able to interact with the cECM in the hydrogel. Subcutaneous injection of silk hydrogels in rats demonstrated that addition of the cECM led to endogenous cell infiltration and promoted endothelial cell ingrowth after 4 weeks in vivo. This naturally derived silk fibroin platform is applicable to the development of more physiologically relevant constructs that replicate healthy and diseased tissue in vitro and has the potential to be used as an injectable therapeutic for cardiac repair. PMID:27480328
Cheng, Yuan; Koh, Leng-Duei; Wang, Fan; Li, Dechang; Ji, Baohua; Yeo, Jingjie; Guan, Guijian; Han, Ming-Yong; Zhang, Yong-Wei
2017-07-06
Hybrid structures of nanomaterials (e.g. tubes, scrolls, threads, cages) and biomaterials (e.g. proteins) hold tremendous potential for applications as drug carriers, biosensors, tissue scaffolds, cancer therapeutic agents, etc. However, in many cases, the interacting forces at the nano-bio interfaces and their roles in controlling the structures and dynamics of nano-bio-hybrid systems are very complicated but poorly understood. In this study, we investigate the structure and mechanical behavior of a protein-based hybrid structure, i.e., a carbon nanoscroll (CNS)-silk crystallite with a hydration level controllable by an interlayer interaction in CNS. Our findings demonstrate that CNS with a reduced core size not only shields the crystallite from a weakening effect of water, but also markedly strengthens the crystallite. Besides water shielding, the enhanced strength arises from an enhanced interaction between the crystallite and CNS due to the enhanced interlayer interaction in CNS. In addition, the interfacial strength for pulling the crystallite out of the CNS-silk structure is found to be dependent on both the interlayer interaction energy in CNS as well as the sequence of protein at the CNS-silk interface. The present study is of significant value in designing drugs or protein delivery vehicles for biomedical applications, and serves as a general guide in designing novel devices based on rolled-up configurations of two-dimensional (2D) materials.
A new class of animal collagen masquerading as an insect silk
Sutherland, Tara D.; Peng, Yong Y.; Trueman, Holly E.; Weisman, Sarah; Okada, Shoko; Walker, Andrew A.; Sriskantha, Alagacone; White, Jacinta F.; Huson, Mickey G.; Werkmeister, Jerome A.; Glattauer, Veronica; Stoichevska, Violet; Mudie, Stephen T.; Haritos, Victoria S.; Ramshaw, John A. M.
2013-01-01
Collagen is ubiquitous throughout the animal kingdom, where it comprises some 28 diverse molecules that form the extracellular matrix within organisms. In the 1960s, an extracorporeal animal collagen that forms the cocoon of a small group of hymenopteran insects was postulated. Here we categorically demonstrate that the larvae of a sawfly species produce silk from three small collagen proteins. The native proteins do not contain hydroxyproline, a post translational modification normally considered characteristic of animal collagens. The function of the proteins as silks explains their unusual collagen features. Recombinant proteins could be produced in standard bacterial expression systems and assembled into stable collagen molecules, opening the door to manufacture a new class of artificial collagen materials. PMID:24091725
Processing and characterization of powdered silk micro- and nanofibers by ultrasonication.
Wang, Hai-Yan; Chen, Yun-Yun; Zhang, Yu-Qing
2015-03-01
Silk derived from Bombyx mori silkworm cocoons was degummed in an aqueous sodium carbonate solution, and the resulting silk fibroin fibers were placed in an acidic aqueous solution and were treated with ultrasonication to obtain powdered micro- and nanofibers. The morphologies and spectral characteristics of these powdered silk fibers were investigated in detail. The shape, surface and structural features of the powdered fibers were affected by the ultrasonic power and media. Increasing the acidity of the ultrasonic solution and increasing the ultrasonic power increased the fiber breakage speed, resulting in shorter fiber lengths. Powdered microfibers could not be obtained in a formic acid solution, while powdered nanofibers whose diameter below 1μm were obtained in a combined formic acid and hydrochloric acid ultrasonication solution. Observation via SEM and optical microscopy revealed that the microfiber diameters were approximately 5-10μm, and those of the nanofibers were approximately 30-120nm. The analysis of laser sizer showed that the microfiber sizes ranged mainly from 20 to 100μm. FT-IR and XRD spectra demonstrated that the relative amount of β-sheets increased after the ultrasonic treatment. The ε-amino group content on the surface of the micro- and nanofibers increased significantly. These studies provide reliable methods for the preparation of nano-scale silk fibroin fibers by ultrasonication and open new avenues for the development of powdered silk fibers as advanced functional biomaterials. Copyright © 2014 Elsevier B.V. All rights reserved.
Repair of urethral defects by an adipose mesenchymal stem cell‑porous silk fibroin material.
Tian, Binqiang; Song, Lujie; Liang, Tao; Li, Zuowei; Ye, Xuxiao; Fu, Qiang; Li, Yonghui
2018-05-09
The aim of the present study was to determine whether it was possible to repair urethral defects with a material of adipose mesenchymal stem cells (ADMSCs)‑porous silk fibroin (SF). A total of 39 male New Zealand white rabbits were randomly divided into a control group, an SF group and a bromodeoxyuridine (BrdU)‑labeled ADMSCs‑SF group (SSF group; n=13/group). Defects were made by resecting the posterior urethral wall. The defects in the SF and SSF groups were repaired using SF and BrdU‑labeled ADMSCs‑SF materials respectively. Then the anterior wall was sutured, and the urethral catheter was retained for 3 weeks following surgery. The catheter was rinsed with nitrofurazone once a day. The cells with positive expressions of factor VIII related antigen (FVIII‑RAg), α‑smooth muscle actin (α‑SMA) and pan‑cytokeratin (AE1/AE3) were detected by immunohistochemical assay, and the distributions of BrdU positive cells and macrophages were observed. Urethrography was performed prior to and following surgery. All rabbits had normal urethral morphologies prior to surgery. The incidence rates of postoperative complications in the control, SF and SSF groups were 76.92 (7/13), 23.07 (3/13) and 15.38% (2/13), respectively (P<0.05). The number of positive macrophages in the SSF group was significantly lower than that of the SF group 4 weeks following surgery (P<0.05). In the SSF group, BrdU positive cells were scattered within the SF material following surgery, primarily at the intersection between the SF material and the urethra. The number of FVIII‑RAg positive cells in the SSF and SF groups were significantly different (P<0.05), which were also significantly higher than that of control group (P<0.01). The number of α‑SMA positive cells in the SSF and SF groups were significantly different (P<0.05), and these values also significantly exceeded those exhibited by the control group (P<0.01). In addition, the SSF and SF groups had positive staining of AE1/AE3. Similar to normal urethral mucosa, the cytoplasm was stained brownish yellow (P<0.05). It is thus feasible to repair urethral defects using ADMSCs‑SF material.
Structure to function: Spider silk and human collagen
NASA Astrophysics Data System (ADS)
Rabotyagova, Olena S.
Nature has the ability to assemble a variety of simple molecules into complex functional structures with diverse properties. Collagens, silks and muscles fibers are some examples of fibrous proteins with self-assembling properties. One of the great challenges facing Science is to mimic these designs in Nature to find a way to construct molecules that are capable of organizing into functional supra-structures by self-assembly. In order to do so, a construction kit consisting of molecular building blocks along with a complete understanding on how to form functional materials is required. In this current research, the focus is on spider silk and collagen as fibrous protein-based biopolymers that can shed light on how to generate nanostructures through the complex process of self-assembly. Spider silk in fiber form offers a unique combination of high elasticity, toughness, and mechanical strength, along with biological compatibility and biodegrability. Spider silk is an example of a natural block copolymer, in which hydrophobic and hydrophilic blocks are linked together generating polymers that organize into functional materials with extraordinary properties. Since silks resemble synthetic block copolymer systems, we adopted the principles of block copolymer design from the synthetic polymer literature to build block copolymers based on spider silk sequences. Moreover, we consider spider silk to be an important model with which to study the relationships between structure and properties in our system. Thus, the first part of this work was dedicated to a novel family of spider silk block copolymers, where we generated a new family of functional spider silk-like block copolymers through recombinant DNA technology. To provide fundamental insight into relationships between peptide primary sequence, block composition, and block length and observed morphological and structural features, we used these bioengineered spider silk block copolymers to study secondary structure, morphological features and assembly. Aside from fundamental perspectives, we anticipate that these results will provide a blueprint for the design of precise materials for a range of potential applications such as controlled release devices, functional coatings, components of tissue regeneration materials and environmentally friendly polymers in future studies. In the second part of this work, human collagen type I was studied as another representative of the family of fibrous proteins. Collagen type I is the most abundant extracellular matrix protein in the human body, providing the basis for tissue structure and directing cellular functions. Collagen has a complex structural hierarchy, organized at different length scales, including the characteristic triple helical feature. In the present study we assessed the relationship between collagen structure (native vs. denatured) and sensitivity to UV radiation with a focus on changes in the primary structure, conformation, microstructure and material properties. Free radical reactions are involved in collagen degradation and a mechanism for UV-induced collagen degradation related to structure was proposed. The results from this study demonstrated the role of collagen supramolecular organization (triple helix) in the context of the effects of electromagnetic radiation on extracellular matrices. Owing to the fact that both silks and collagens are proteins that have found widespread interest for biomaterial related needs, we anticipate that the current studies will serve as a foundation for future biomaterial designs with controlled properties. Furthermore, fundamental insight into self-assembly and environmentally-2mediated degradation, will build a foundation for fundamental understanding of the remodeling and functions of these types of fibrous proteins in vivo and in vitro. This type of insight is essential for many areas of scientific inquiry, from drug delivery, to scaffolds for tissue engineering, and to the stability of materials in space.
Manufacture and Drug Delivery Applications of Silk Nanoparticles.
Wongpinyochit, Thidarat; Johnston, Blair F; Seib, F Philipp
2016-10-08
Silk is a promising biopolymer for biomedical and pharmaceutical applications due to its outstanding mechanical properties, biocompatibility and biodegradability, as well its ability to protect and subsequently release its payload in response to a trigger. While silk can be formulated into various material formats, silk nanoparticles are emerging as promising drug delivery systems. Therefore, this article covers the procedures for reverse engineering silk cocoons to yield a regenerated silk solution that can be used to generate stable silk nanoparticles. These nanoparticles are subsequently characterized, drug loaded and explored as a potential anticancer drug delivery system. Briefly, silk cocoons are reverse engineered first by degumming the cocoons, followed by silk dissolution and clean up, to yield an aqueous silk solution. Next, the regenerated silk solution is subjected to nanoprecipitation to yield silk nanoparticles - a simple but powerful method that generates uniform nanoparticles. The silk nanoparticles are characterized according to their size, zeta potential, morphology and stability in aqueous media, as well as their ability to entrap a chemotherapeutic payload and kill human breast cancer cells. Overall, the described methodology yields uniform silk nanoparticles that can be readily explored for a myriad of applications, including their use as a potential nanomedicine.
Wang, Yaxian; Ma, Ruilong; Hu, Kesong; Kim, Sunghan; Fang, Guangqiang; Shao, Zhengzhong; Tsukruk, Vladimir V
2016-09-21
We demonstrate that stronger and more robust nacre-like laminated GO (graphene oxide)/SF (silk fibroin) nanocomposite membranes can be obtained by selectively tailoring the interfacial interactions between "bricks"-GO sheets and "mortar"-silk interlayers via controlled water vapor annealing. This facial annealing process relaxes the secondary structure of silk backbones confined between flexible GO sheets. The increased mobility leads to a significant increase in ultimate strength (by up to 41%), Young's modulus (up to 75%) and toughness (up to 45%). We suggest that local silk recrystallization is initiated in the proximity to GO surface by the hydrophobic surface regions serving as nucleation sites for β-sheet domains formation and followed by SF assembly into nanofibrils. Strong hydrophobic-hydrophobic interactions between GO layers with SF nanofibrils result in enhanced shear strength of layered packing. This work presented here not only gives a better understanding of SF and GO interfacial interactions, but also provides insight on how to enhance the mechanical properties for the nacre-mimic nanocomposites by focusing on adjusting the delicate interactions between heterogeneous "brick" and adaptive "mortar" components with water/temperature annealing routines.
Enzymatically crosslinked silk-hyaluronic acid hydrogels.
Raia, Nicole R; Partlow, Benjamin P; McGill, Meghan; Kimmerling, Erica Palma; Ghezzi, Chiara E; Kaplan, David L
2017-07-01
In this study, silk fibroin and hyaluronic acid (HA) were enzymatically crosslinked to form biocompatible composite hydrogels with tunable mechanical properties similar to that of native tissues. The formation of di-tyrosine crosslinks between silk fibroin proteins via horseradish peroxidase has resulted in a highly elastic hydrogel but exhibits time-dependent stiffening related to silk self-assembly and crystallization. Utilizing the same method of crosslinking, tyramine-substituted HA forms hydrophilic and bioactive hydrogels that tend to have limited mechanics and degrade rapidly. To address the limitations of these singular component scaffolds, HA was covalently crosslinked with silk, forming a composite hydrogel that exhibited both mechanical integrity and hydrophilicity. The composite hydrogels were assessed using unconfined compression and infrared spectroscopy to reveal of the physical properties over time in relation to polymer concentration. In addition, the hydrogels were characterized by enzymatic degradation and for cytotoxicity. Results showed that increasing HA concentration, decreased gelation time, increased degradation rate, and reduced changes that were observed over time in mechanics, water retention, and crystallization. These hydrogel composites provide a biologically relevant system with controllable temporal stiffening and elasticity, thus offering enhanced tunable scaffolds for short or long term applications in tissue engineering. Copyright © 2017 Elsevier Ltd. All rights reserved.
Microfabrication of a spider-silk analogue through the liquid rope coiling instability
NASA Astrophysics Data System (ADS)
Gosselin, Frederick P.; Therriault, Daniel; Levesque, Martin
2012-02-01
Spider capture silk outperforms most synthetic materials in terms of specific toughness. We developed a technique to fabricate tough microstructured fibers inspired by the molecular structure of the spider silk protein. To fabricate microfibers (with diameter ˜30μm) with various mechanical properties, we yield the control of their exact geometry to the liquid rope coiling instability. This instability causes a thread of honey to wiggle as it buckles when hitting a surface. Similarly, we flow a filament of viscous polymer solution towards a substrate moving perpendicularly at a slower velocity than the filament flows. The filament buckles repetitively giving rise to periodic meanders and stitch patterns. As the solvent evaporates, the filament solidifies into a fiber with a geometry bestowed by the instability. Microtraction tests performed on fibers show interesting links between the mechanical properties and the instability patterns. Some coiling patterns give rise to high toughness due to the sacrificial bonds created when the viscous filament loops over itself and fuse. The sacrificial bonds in the microstructured fiber play an analogous role to that of the hydrogen bonds present in the molecular structure of the silk protein which give its toughness to spider silk.
Silk fibroin nanoparticles prepared by electrospray as controlled release carriers of cisplatin.
Qu, Jing; Liu, Yu; Yu, Yanni; Li, Jing; Luo, Jingwan; Li, Mingzhong
2014-11-01
To maintain the anti-tumor activity of cis-dichlorodiamminoplatinum (CDDP) while avoiding its cytotoxicity and negative influence on normal tissue, CDDP-loaded silk fibroin nanoparticles approximately 59 nm in diameter were successfully prepared by electrospray without using organic solvent. CDDP was incorporated into nanoparticles through metal-polymer coordination bond exchange. In vitro release tests showed that the cisplatin in the nanoparticles could be slowly and sustainably released for more than 15 days. In vitro anti-cancer experiments and intracellular Pt content testing indicated that CDDP-loaded silk fibroin nanoparticles were easily internalized by A549 lung cancer cells, transferring CDDP into cancer cells and then triggering their apoptosis. In contrast, the particles were not easily internalized by L929 mouse fibroblast cells and hence showed weaker cell growth inhibition. The CDDP-loaded silk fibroin nanoparticles showed sustained and efficient killing of tumor cells but weaker inhibition of normal cells. In general, this study provides not only a novel method for preparing CDDP-loaded silk fibroin nanoparticles but also a new carrier system for clinical therapeutic drugs against lung cancers and other tumors. Copyright © 2014 Elsevier B.V. All rights reserved.
Jin, Jun; Wang, Jun; Huang, Jian; Huang, Fang; Fu, Jianhong; Yang, Xinjing; Miao, Zongning
2014-11-01
The main requirements for successful tissue engineering of the bone are non-immunogenic cells with osteogenic potential and a porous biodegradable scaffold. The purpose of this study is to evaluate the potential of a silk fibroin/hydroxyapatite (SF/HA) porous material as a delivery vehicle for human placenta-derived mesenchymal stem cells (PMSCs) in a rabbit radius defect model. In this study, we randomly assigned 16 healthy adult New Zealand rabbits into two groups, subjected to transplantation with either SF/HA and PMSCs (experimental group) or SF/HA alone (control group). To evaluate fracture healing, we assessed the extent of graft absorption, the quantity of newly formed bone, and re-canalization of the cavitas medullaris using radiographic and histological tools. We performed flow cytometric analysis to characterize PMSCs, and found that while they express CD90, CD105 and CD73, they stain negative for HLA-DR and the hematopoietic cell surface markers CD34 and CD45. When PMSCs were exposed to osteogenic induction medium, they secreted calcium crystals that were identified by von Kossa staining. Furthermore, when seeded on the surface of SF/HA scaffold, they actively secreted extracellular matrix components. Here, we show, through radiographic and histological analyses, that fracture healing in the experimental group is significantly improved over the control group. This strongly suggests that transplantation of human PMSCs grown in an SF/HA scaffold into injured radius segmental bone in rabbits, can markedly enhance tissue repair. Our finding provides evidence supporting the utility of human placenta as a potential source of stem cells for bone tissue engineering. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Microdissection of black widow spider silk-producing glands.
Jeffery, Felicia; La Mattina, Coby; Tuton-Blasingame, Tiffany; Hsia, Yang; Gnesa, Eric; Zhao, Liang; Franz, Andreas; Vierra, Craig
2011-01-11
Modern spiders spin high-performance silk fibers with a broad range of biological functions, including locomotion, prey capture and protection of developing offspring. Spiders accomplish these tasks by spinning several distinct fiber types that have diverse mechanical properties. Such specialization of fiber types has occurred through the evolution of different silk-producing glands, which function as small biofactories. These biofactories manufacture and store large quantities of silk proteins for fiber production. Through a complex series of biochemical events, these silk proteins are converted from a liquid into a solid material upon extrusion. Mechanical studies have demonstrated that spider silks are stronger than high-tensile steel. Analyses to understand the relationship between the structure and function of spider silk threads have revealed that spider silk consists largely of proteins, or fibroins, that have block repeats within their protein sequences. Common molecular signatures that contribute to the incredible tensile strength and extensibility of spider silks are being unraveled through the analyses of translated silk cDNAs. Given the extraordinary material properties of spider silks, research labs across the globe are racing to understand and mimic the spinning process to produce synthetic silk fibers for commercial, military and industrial applications. One of the main challenges to spinning artificial spider silk in the research lab involves a complete understanding of the biochemical processes that occur during extrusion of the fibers from the silk-producing glands. Here we present a method for the isolation of the seven different silk-producing glands from the cobweaving black widow spider, which includes the major and minor ampullate glands [manufactures dragline and scaffolding silk], tubuliform [synthesizes egg case silk], flagelliform [unknown function in cob-weavers], aggregate [makes glue silk], aciniform [synthesizes prey wrapping and egg case threads] and pyriform [produces attachment disc silk]. This approach is based upon anesthetizing the spider with carbon dioxide gas, subsequent separation of the cephalothorax from the abdomen, and microdissection of the abdomen to obtain the silk-producing glands. Following the separation of the different silk-producing glands, these tissues can be used to retrieve different macromolecules for distinct biochemical analyses, including quantitative real-time PCR, northern- and western blotting, mass spectrometry (MS or MS/MS) analyses to identify new silk protein sequences, search for proteins that participate in the silk assembly pathway, or use the intact tissue for cell culture or histological experiments.
Tissue Response to Subcutaneously Implanted Recombinant Spider Silk: An in Vivo Study
Fredriksson, Camilla; Hedhammar, My; Feinstein, Ricardo; Nordling, Kerstin; Kratz, Gunnar; Johansson, Jan; Huss, Fredrik; Rising, Anna
2009-01-01
Spider silk is an interesting biomaterial for medical applications. Recently, a method for production of recombinant spider silk protein (4RepCT) that forms macroscopic fibres in physiological solution was developed. Herein, 4RepCT and MersilkTM (control) fibres were implanted subcutaneously in rats for seven days, without any negative systemic or local reactions. The tissue response, characterised by infiltration of macrophages and multinucleated cells, was similar with both fibres, while only the 4RepCT-fibres supported ingrowth of fibroblasts and newly formed capillaries. This in vivo study indicates that 4RepCT-fibres are well tolerated and could be used for medical applications, e.g., tissue engineering.
Wang, Xin; Zhao, Ping; Li, Yi; Yi, Qiying; Ma, Sanyuan; Xie, Kang; Chen, Huifang; Xia, Qingyou
2015-10-12
Silks are widely used biomaterials, but there are still weaknesses in their mechanical properties. Here we report a method for improving the silk fiber mechanical properties by genetic disruption of the ionic environment for silk fiber formation. An anterior silk gland (ASG) specific promoter was identified and used for overexpressing ion-transporting protein in the ASG of silkworm. After isolation of the transgenic silkworms, we found that the metal ion content, conformation and mechanical properties of transgenic silk fibers changed accordingly. Notably, overexpressing endoplasmic reticulum Ca2+-ATPase in ASG decreased the calcium content of silks. As a consequence, silk fibers had more α-helix and β-sheet conformations, and their tenacity and extension increased significantly. These findings represent the in vivo demonstration of a correlation between metal ion content in the spinning duct and the mechanical properties of silk fibers, thus providing a novel method for modifying silk fiber properties.
In vivo effects of metal ions on conformation and mechanical performance of silkworm silks.
Wang, Xin; Li, Yi; Liu, Qingsong; Chen, Quanmei; Xia, Qingyou; Zhao, Ping
2017-03-01
The mechanism of silk fiber formation is of particular interest. Although in vitro evidence has shown that metal ions affect conformational transitions of silks, the in vivo effects of metal ions on silk conformations and mechanical performance are still unclear. This study explored the effects of metal ions on silk conformations and mechanical properties of silk fibers by adding K + and Cu 2+ into the silk fibroin solutions or injecting them into the silkworms. Aimed by CD analysis, FTIR analysis, and mechanical testing, the conformational and mechanical changes of the silks were estimated. By using BION Web Server, the interactions of K + and N-terminal of silk fibroin were also simulated. We presented that K + and Cu 2+ induced the conformational transitions of silk fibroin by forming β-sheet structures. Moreover, the mechanical parameters of silk fibers, such as strength, toughness and Young's modulus, were also improved after K + or Cu 2+ injection. Using BION Web Server, we found that potassium ions may have strong electrostatic interactions with the negatively charged residues. We suggest that K + and Cu 2+ play crucial roles in the conformation and mechanical performances of silks and they are involved in the silk fiber formation in vivo. Our results are helpful for clarifying the mechanism of silk fiber formation, and provide insights for modifying the mechanical properties of silk fibers. Copyright © 2016 Elsevier B.V. All rights reserved.
Osteoinductive-nanoscaled silk/HA composite scaffolds for bone tissue engineering application.
Huang, Xiaowei; Bai, Shumeng; Lu, Qiang; Liu, Xi; Liu, Shanshan; Zhu, Hesun
2015-10-01
Osteoinductive silk/hydroxyapatite (HA) composite scaffolds for bone regeneration were prepared by combining silk with HA/silk core-shell nanoparticles. The HA/silk nanoparticles were directly dispersed in silk solution to form uniform silk/HA blend and then composite scaffolds after a freeze-drying process. The HA/silk nanoparticles uniformly distributed in silk scaffolds at nanometer scale at varying HA content up to 40%, and substantially improved the compressive strength of the scaffolds produced. Rat bone mesenchymal stem cells (rBMSCs) were cultured in these scaffolds and cell proliferation was analyzed by confocal microscopy and DNA assay. Gene expression and biochemical assays were employed to study the influence of increasing HA/silk nanoparticles on in vitro osteogenic differentiation of rBMSCs. Increasing HA/silk nanoparticles inside silk scaffolds improved the growth and osteogenic capability of rBMSCs in the absence of osteogenic growth factors, and also significantly increased the calcium and collagen I deposition. In addition, compared to silk/HA composite scaffolds containing HA aggregates, the scaffolds loaded with HA/silk nanoparticles showed remarkably higher stiffness and better osteogenic property at same HA content, implying a preferable microenvironment for rBMSCs. These results suggest that the osteogenic property as well as mechanical property of silk/HA scaffolds could be further improved through fabricating their structure and topography at nanometer scale, providing more suitable systems for bone regeneration. © 2014 Wiley Periodicals, Inc.
Strickland, Michelle; Tudorica, Victor; Řezáč, Milan; Thomas, Neil R; Goodacre, Sara L
2018-06-01
Spiders produce multiple silks with different physical properties that allow them to occupy a diverse range of ecological niches, including the underwater environment. Despite this functional diversity, past molecular analyses show a high degree of amino acid sequence similarity between C-terminal regions of silk genes that appear to be independent of the physical properties of the resulting silks; instead, this domain is crucial to the formation of silk fibers. Here, we present an analysis of the C-terminal domain of all known types of spider silk and include silk sequences from the spider Argyroneta aquatica, which spins the majority of its silk underwater. Our work indicates that spiders have retained a highly conserved mechanism of silk assembly, despite the extraordinary diversification of species, silk types and applications of silk over 350 million years. Sequence analysis of the silk C-terminal domain across the entire gene family shows the conservation of two uncommon amino acids that are implicated in the formation of a salt bridge, a functional bond essential to protein assembly. This conservation extends to the novel sequences isolated from A. aquatica. This finding is relevant to research regarding the artificial synthesis of spider silk, suggesting that synthesis of all silk types will be possible using a single process.
Development of structure in natural silk spinning and poly(vinyl alcohol) hydrogel formation
NASA Astrophysics Data System (ADS)
Willcox, Patricia Jeanene
This research involves the characterization of structure and structure formation in aqueous systems. Particularly, these studies investigate the effect of various processing variables on the structure formation that occurs upon conversion from aqueous solution to fiber or hydrogel. The two processes studied include natural silk fiber spinning and physical gelation of poly(vinyl alcohol), PVOH, in water. The techniques employed combine cryogenic technology for sample preparation and direct observation by transmission electron microscopy with electron diffraction, atomic force microscopy, optical rheometry, X-ray scattering and optical microscopy. In order to explore the full range of structure formation in natural silk spinning, studies are conducted in vivo and in vitro. In vivo structural investigations are accomplished through the cryogenic quenching and subsequent microtoming of live silk-spinning animals, Nephila clavipes (spider) and Bombyx mori (silkworm). Observations made using transmission electron microscopy, electron diffraction and atomic force microscopy indicate a cholesteric liquid crystalline mesophase of aqueous silk fibroin in both species. The mechanism of structure formation in solution is studied in vitro using optical rheometry on aqueous solutions made from regenerated Bombyx mori cocoon silk. Concentrated solutions exhibit birefringence under flow, with a wormlike conformation of the silk molecules in concentrated salt solution. Changes in salt concentration and pH of the aqueous silk solutions result in differing degrees of alignment and aggregation. These results suggest that structural control in the natural silk spinning process is accomplished by chemical manipulation of the electrostatic interactions and hydrogen bonding between chains. Application of cryogenic methods in transmission electron microscopy also provides a unique look at hydration-dependent structures in gels of poly(vinyl alcohol) produced by freeze-thaw processing. Morphologies ranging from circular pores to fibrillar networks are observed in gels formed from aqueous PVOH solutions subjected to cycles of freezing and thawing. These morphologies can be directly associated with the progressive nature of the mechanism of gelation as it proceeds from liquid-liquid phase separation to crystallization with increased cycling. A comparison of the structures produced by cycling and by aging suggests that there is a similarity in structural changes, but a superposition of the effects of cycling and aging is not possible.
NASA Astrophysics Data System (ADS)
Kane, D. M.; Naidoo, N.; Staib, G. R.
2010-10-01
Atomic force microscopy (AFM) study is used to measure the surface topology and roughness of radial and capture spider silks on the micro- and nanoscale. This is done for silks of the orb weaver spider Argiope keyserlingi. Capture silk has a surface roughness that is five times less than that for radial silk. The capture silk has an equivalent flatness of λ /100 (5-6 nm deep surface features) as an optical surface. This is equivalent to a very highly polished optical surface. AFM does show the number of silk fibers that make up a silk thread but geometric distortion occurs during sample preparation. This prevented AFM from accurately measuring the silk topology on the microscale in this study.
pH-Dependent anticancer drug release from silk nanoparticles
Seib, F. Philipp; Jones, Gregory T.; Rnjak-Kovacina, Jelena; Lin, Yinan; Kaplan, David L.
2013-01-01
Silk has traditionally been used as a suture material because of its excellent mechanical properties and biocompatibility. These properties have led to the development of different silk-based material formats for tissue engineering and regenerative medicine. Although there have been a small number of studies about the use of silk particles for drug delivery, none of these studies have assessed the potential of silk to act as a stimulus-responsive anticancer nanomedicine. This report demonstrates that an acetone precipitation of silk allowed the formation of uniform silk nanoparticles (98 nm diameter, polydispersity index 0.109), with an overall negative surface charge (-33.6 ±5.8 mV), in a single step. Silk nanoparticles were readily loaded with doxorubicin (40 ng doxorubicin/μg silk) and showed pH-dependent release (pH 4.5>> 6.0 > 7.4). In vitro studies with human breast cancer cell lines demonstrated that the silk nanoparticles were not cytotoxic (IC50 >120/μ/ml) and that doxorubicin-loaded silk nanoparticles were able to overcome drug resistance mechanisms. Live cell fluorescence microscopy studies showed endocytic uptake and lysosomal accumulation of silk nanoparticles. In summary, the pH-dependent drug release and lysosomal accumulation of silk nanoparticles demonstrated the ability of drug-loaded silk nanoparticles to serve as a lysosomotropic anticancer nanomedicine. PMID:23625825
Bratzel, Graham; Buehler, Markus J
2012-03-01
Spider silk is a self-assembling biopolymer that outperforms many known materials in terms of its mechanical performance despite being constructed from simple and inferior building blocks. While experimental studies have shown that the molecular structure of silk has a direct influence on the stiffness, toughness, and failure strength of silk, few molecular-level analyses of the nanostructure of silk assemblies in particular under variations of genetic sequences have been reported. Here we report atomistic-level structures of the MaSp1 protein from the Nephila Clavipes spider dragline silk sequence, obtained using an in silico approach based on replica exchange molecular dynamics (REMD) and explicit water molecular dynamics. We apply this method to study the effects of a systematic variation of the poly-alanine repeat lengths, a parameter controlled by the genetic makeup of silk, on the resulting molecular structure of silk at the nanoscale. Confirming earlier experimental and computational work, a structural analysis reveals that poly-alanine regions in silk predominantly form distinct and orderly β-sheet crystal domains while disorderly regions are formed by glycine-rich repeats that consist of 3(10)-helix type structures and β-turns. Our predictions are directly validated against experimental data based on dihedral angle pair calculations presented in Ramachandran plots combined with an analysis of the secondary structure content. The key result of our study is our finding of a strong dependence of the resulting silk nanostructure depending on the poly-alanine length. We observe that the wildtype poly-alanine repeat length of six residues defines a critical minimum length that consistently results in clearly defined β-sheet nanocrystals. For poly-alanine lengths below six, the β-sheet nanocrystals are not well-defined or not visible at all, while for poly-alanine lengths at and above six, the characteristic nanocomposite structure of silk emerges with no significant improvement of the quality of the β-sheet nanocrystal geometry. We present a simple biophysical model that explains these computational observations based on the mechanistic insight gained from the molecular simulations. Our findings set the stage for understanding how variations in the spidroin sequence can be used to engineer the structure and thereby functional properties of this biological superfiber, and present a design strategy for the genetic optimization of spidroins for enhanced mechanical properties. The approach used here may also find application in the design of other self-assembled molecular structures and fibers and in particular biologically inspired or completely synthetic systems. Copyright © 2011 Elsevier Ltd. All rights reserved.
Silk scaffolds in bone tissue engineering: An overview.
Bhattacharjee, Promita; Kundu, Banani; Naskar, Deboki; Kim, Hae-Won; Maiti, Tapas K; Bhattacharya, Debasis; Kundu, Subhas C
2017-11-01
Bone tissue plays multiple roles in our day-to-day functionality. The frequency of accidental bone damage and disorder is increasing worldwide. Moreover, as the world population continues to grow, the percentage of the elderly population continues to grow, which results in an increased number of bone degenerative diseases. This increased elderly population pushes the need for artificial bone implants that specifically employ biocompatible materials. A vast body of literature is available on the use of silk in bone tissue engineering. The current work presents an overview of this literature from materials and fabrication perspective. As silk is an easy-to-process biopolymer; this allows silk-based biomaterials to be molded into diverse forms and architectures, which further affects the degradability. This makes silk-based scaffolds suitable for treating a variety of bone reconstruction and regeneration objectives. Silk surfaces offer active sites that aid the mineralization and/or bonding of bioactive molecules that facilitate bone regeneration. Silk has also been blended with a variety of polymers and minerals to enhance its advantageous properties or introduce new ones. Several successful works, both in vitro and in vivo, have been reported using silk-based scaffolds to regenerate bone tissues or other parts of the skeletal system such as cartilage and ligament. A growing trend is observed toward the use of mineralized and nanofibrous scaffolds along with the development of technology that allows to control scaffold architecture, its biodegradability and the sustained releasing property of scaffolds. Further development of silk-based scaffolds for bone tissue engineering, taking them up to and beyond the stage of human trials, is hoped to be achieved in the near future through a cross-disciplinary coalition of tissue engineers, material scientists and manufacturing engineers. The state-of-art of silk biomaterials in bone tissue engineering, covering their wide applications as cell scaffolding matrices to micro-nano carriers for delivering bone growth factors and therapeutic molecules to diseased or damaged sites to facilitate bone regeneration, is emphasized here. The review rationalizes that the choice of silk protein as a biomaterial is not only because of its natural polymeric nature, mechanical robustness, flexibility and wide range of cell compatibility but also because of its ability to template the growth of hydroxyapatite, the chief inorganic component of bone mineral matrix, resulting in improved osteointegration. The discussion extends to the role of inorganic ions such as Si and Ca as matrix components in combination with silk to influence bone regrowth. The effect of ions or growth factor-loaded vehicle incorporation into regenerative matrix, nanotopography is also considered. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Cao, Jiliang; Wang, Chaoxia
2017-05-01
Multifunctional silk fabrics with electrical conductive, anti-ultraviolet and water repellent were successfully prepared by surface modification with graphene oxide (GO). The yellow-brown GO deposited on the surface of silk fabric was converted into graphitic black reduced graphene (RGO) by sodium hydrosulfite. The surface properties of silk fabrics were changed by repeatedly RGO coating process, which have been proved by SEM and XPS. The SEM results showed that the RGO sheets were successive form a continuously thin film on the surface of silk fabrics, and the deposition of GO or RGO also can be proved by XPS. The electrical conductivity was tested by electrical surface resistance value of the silk fabric, the surface resistance decreased with increasing of RGO surface modification times, and a low surface resistance value reached to 3.24 KΩ cm-1 after 9 times of modification, indicating the silk obtained excellent conductivity. The UPF value of one time GO modification silk fabric (silk-1RGO) was enhanced significantly to 24.45 in comparison to 10.40 of original silk. The contact angle of RGO coating silk samples was all above of 120°. The durability of RGO coated silk fabrics was tested by laundering. The electrical surface resistance of silk-4RGO (65.74 KΩ cm-1), silk-6RGO (15.54 KΩ cm-1) and silk-8RGO (3.86 KΩ cm-1) fabrics was up to 86.82, 22.30 and 6.57 KΩ cm-1 after 10 times of standard washing, respectively. The UPF value, contact angle and color differences of RGO modified silk fabric slightly changed before and after 10 times of standard washing. Therefore, the washing fastness of electric conduction, anti-ultraviolet and water repellent multifunctional silk fabrics was excellent.
Wu, Yan-Yun; Jiao, Yan-Peng; Xiao, Li-Ling; Li, Min-Min; Liu, Hong-Wei; Li, Sheng-Hong; Liao, Xuan; Chen, Yong-Tian; Li, Jiang-Xuan; Zhang, Yang
2018-01-01
Background Wound healing is a complex process that relies on growth factors and stimulation of angiogenesis. Tissue engineering materials composed of adipose-derived stem cells (ADSCs) and silk fibroin (SF)/chitosan (CS) may be able to solve this problem. The aim of this study was to investigate the wound-healing potential of ADSC-seeded SF/CS in streptozotocin-induced diabetic rats. Materials and Methods Thirty-six male Sprague-Dawley rats were purchased and randomly assigned into 3 groups: a control group (no graft), a group treated with SF/CS film graft, and a group treated with ADSC-seeded SF/CS graft. The number of animals in each group was 12. Diabetes was induced by an intraperitoneal injection of streptozotocin. A cutaneous wound was incised at the dorsal region of all the experimental animals. The ADSCs were labeled with CM-Dil fluorescent staining. Wound healing was assessed for all animal groups by observing the rate of wound closure and hematoxylin and eosin staining. The expression of epidermal growth factor, transforming growth factor-β, and vascular endothelial growth factor at the wound sites was studied by enzyme-linked immunosorbent assay to evaluate the effect of growth factors secreted by ADSCs. The differentiation of ADSCs was analyzed by immunofluorescence staining. Results The ADSC-seeded SF/CS film treatment significantly increased the rates of wound closure in treated animals, and hence wound healing was drastically enhanced for ADSC-SF/CS treatment groups compared with control groups and SF/CS film treatment group. Histological observations showed the condition of wound healing. Enzyme-linked immunosorbent assay and immunofluorescence staining observations showed the secretion and differentiation of ADSCs, respectively. Conclusions Our analyses clearly suggested that it is feasible and effective to enhance wound healing in a diabetic rat model with ADSC-seeded SF/CS film. PMID:29443833
The development of a novel wound healing material, silk-elastin sponge.
Kawabata, Shingo; Kawai, Katsuya; Somamoto, Satoshi; Noda, Kazuo; Matsuura, Yoshitaka; Nakamura, Yoko; Suzuki, Shigehiko
2017-12-01
Silk-elastin is a recombinant protein polymer with repeating units of silk and elastin blocks. This novel wound healing promoting material has the ability to self-assemble from a liquid to a gel. We have already reported that an aqueous solution of silk-elastin has the potential to accelerate wound healing; however, there are several problems in applying silk-elastin in the clinical setting. To solve these problems, we developed a silk-elastin sponge that is easy to use in the clinical setting. In the present study, we examined whether the wound healing effect of the silk-elastin sponge is equal to the aqueous solution of silk-elastin in vivo. The granulation tissue formation promoting effect of the silk-elastin sponge was equal to that of the aqueous solution the silk-elastin, as after application to the wound surface, the sponge was absorbed and dissolved by the exudate. At body temperature the silk-elastin then formed temperature gel. The silk-elastin gel that was obtained contained abundant cytokines from the exudate. We believe that silk-elastin sponge can be applied to various wounds that are difficult to treat with the aqueous solution.
Takiya, Shigeharu; Tsubota, Takuya; Kimoto, Mai
2016-01-01
The silk gland of the silkworm Bombyx mori is a long tubular organ that is divided into several subparts along its anteroposterior (AP) axis. As a trait of terminal differentiation of the silk gland, several silk protein genes are expressed with unique regional specificities. Most of the Hox and some of the homeobox genes are also expressed in the differentiated silk gland with regional specificities. The expression patterns of Hox genes in the silk gland roughly correspond to those in embryogenesis showing “colinearity”. The central Hox class protein Antennapedia (Antp) directly regulates the expression of several middle silk gland–specific silk genes, whereas the Lin-1/Isl-1/Mec3 (LIM)-homeodomain transcriptional factor Arrowhead (Awh) regulates the expression of posterior silk gland–specific genes for silk fiber proteins. We summarize our results and discuss the usefulness of the silk gland of Bombyx mori for analyzing the function of Hox genes. Further analyses of the regulatory mechanisms underlying the region-specific expression of silk genes will provide novel insights into the molecular bases for target-gene selection and regulation by Hox and homeodomain proteins. PMID:29615585
NASA Astrophysics Data System (ADS)
Junghans, F.; Morawietz, M.; Conrad, U.; Scheibel, T.; Heilmann, A.; Spohn, U.
2006-02-01
Layers of recombinant spider silks and native silks from silk worms were prepared by spin-coating and casting of various solutions. FT-IR spectra were recorded to investigate the influence of the different mechanical stress occurring during the preparation of the silk layers. The solubility of the recombinant spider silk proteins SO1-ELP, C16, AQ24NR3, and of the silk fibroin from Bombyx mori were investigated in hexafluorisopropanol, ionic liquids and concentrated salt solutions. The morphology and thickness of the layers were determined by Atomic Force Microscopy (AFM) or with a profilometer. The mechanical behaviour was investigated by acoustic impedance analysis by using a quartz crystal microbalance (QCMB) as well as by microindentation. The density of silk layers (d<300 nm) was determined based on AFM and QCMB measurements. At silk layers thicker than 300 nm significant changes of the half-band-half width can be correlated with increasing energy dissipation. Microhardness measurements demonstrate that recombinant spider silk and sericine-free Bombyx mori silk layers achieve higher elastic penetration modules EEP and Martens hardness values HM than those of polyethylenterephthalate (PET) and polyetherimide (PEI) foils.
Sparks, A N; Gadal, L; Ni, X
2015-08-01
The primary Lepidoptera pests of sweet corn (Zea mays L. convar. saccharata) in Georgia are the corn earworm, Helicoverpa zea (Boddie), and the fall armyworm, Spodoptera frugiperda (J. E. Smith). Management of these pests typically requires multiple insecticide applications from first silking until harvest, with commercial growers frequently spraying daily. This level of insecticide use presents problems for small growers, particularly for "pick-your-own" operations. Injection of oil into the corn ear silk channel 5-8 days after silking initiation has been used to suppress damage by these insects. Initial work with this technique in Georgia provided poor results. Subsequently, a series of experiments was conducted to evaluate the efficacy of silk channel injections as an application methodology for insecticides. A single application of synthetic insecticide, at greatly reduced per acre rates compared with common foliar applications, provided excellent control of Lepidoptera insects attacking the ear tip and suppressed damage by sap beetles (Nitidulidae). While this methodology is labor-intensive, it requires a single application of insecticide at reduced rates applied ∼2 wk prior to harvest, compared with potential daily applications at full rates up to the day of harvest with foliar insecticide applications. This methodology is not likely to eliminate the need for foliar applications because of other insect pests which do not enter through the silk channel or are not affected by the specific selective insecticide used in the silk channel injection, but would greatly reduce the number of applications required. This methodology may prove particularly useful for small acreage growers. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Song, Jia; Che, Jiaqian; You, Zhengying; Ye, Lupeng; Li, Jisheng; Zhang, Yuyu; Qian, Qiujie; Zhong, Boxiong
2016-10-04
To understand phosphorylation event regulating silk synthesis in the posterior silk gland of Bombyx mori, phosphoproteome was profiled in a pair of near-isogenic lines, a normally cocooning strain (IC) and a nakedly pupated strain (IN) that the silk production is much lower than IC. In the posterior silk gland of the IC and IN, 714 and 658 phosphosites resided on 554 and 507 phosphopeptides from 431 and 383 phosphoproteins, were identified, respectively. Of all the phosphosites, the single phosphosite was the dominate phosphorylation form, comprising>60% of all the phosphosites in two phenotypic of silk production. All these phosphosites were classified as acidophilic and proline-directed kinase classes, and three motifs were uniquely identified in the IC. The motif S-P-P might be important for regulating phosphorylation network of silk protein synthesis. The dynamically phosphorylated proteins participated in ribosome, protein transport and energy metabolism suggest that phosphorylation may play key roles in regulating silk protein synthesis and secretion. Furthermore, fibroin heavy chain, an important component of silk protein, was specifically phosphorylated in the IC strain, suggesting its role to ensure the normal formation of silk structure and silk secretion. The data gain new understanding of the regulatory processes of silk protein synthesis and offer as starting point for further research on the silk production at phosphoproteome level. Despite the knowledge on regulation of silk protein synthesis in the posterior silk gland has gained at the gene or protein levels, how phosphorylation event influences the silk yield is largely unknown. To this end, we constructed a pair of silkworm near-isogenic lines that showed different cocooning phenotypes, and the phosphoproteome of the posterior silk gland of two isolines was compared. Here, we reported the first phosphoproteome data on the silkworm and found several key pathways related protein synthesis are regulated by phosphorylation, thereby influencing the silk production. The data provide valuable resources for further functional assay of targeted protein phosphorylation that regulates the silk synthesis in silkworm. Copyright © 2016 Elsevier B.V. All rights reserved.
Optically probing torsional superelasticity in spider silks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Bhupesh; Thakur, Ashish; Panda, Biswajit
2013-11-11
We investigate torsion mechanics of various spider silks using a sensitive optical technique. We find that spider silks are torsionally superelastic in that they can reversibly withstand great torsion strains of over 10{sup 2−3} rotations per cm before failure. Among various silks from a spider, we find the failure twist-strain is greatest in the sticky capture silk followed by dragline and egg-case silk. Our in situ laser-diffraction measurements reveal that torsional strains on the silks induce a nano-scale transverse compression in its diameter that is linear and reversible. These unique torsional properties of the silks could find applications in silk-basedmore » materials and devices.« less
Barratt, Monica J; Lenton, Simon; Maddox, Alexia; Allen, Matthew
2016-09-01
Cryptomarkets are digital platforms that use anonymising software (e.g. Tor) and cryptocurrencies (e.g. Bitcoin) to facilitate peer-to-peer (P2P) trade of goods and services. Their emergence has facilitated access to a wide range of high-quality psychoactive substances, according to surveys of users. In this paper, we ask the question 'How does changing access to drugs through cryptomarkets affect the drug use and harm trajectories of their users?' We conducted a digital ethnography spanning 2012-2014, a period that included the seizure of the original Silk Road marketplace and forum by law enforcement. Using encrypted online chat, we interviewed 17 people who reported using Silk Road to purchase illicit drugs. The interviews were in-depth and unstructured, and also involved the use of life history timelines to trace trajectories. Transcripts were analysed thematically using NVivo. For some, Silk Road facilitated initiation into drug use or a return to drug use after cessation. Typically, participants reported experiencing a glut of drug consumption in their first months using Silk Road, described by one participant as akin to 'kids in a candy store'. There was evidence that very high availability reduced the need for drug hoarding which helped some respondents to moderate use and feel more in control of purchases made online. Cryptomarket access also appeared to affect solitary and social drug users differently. Most participants described using other cryptomarkets after the closure of Silk Road, albeit with less confidence. In the context of high levels of drug access, supply and diversity occurring within a community regulated environment online, the impacts of cryptomarkets upon drug use trajectories are complex, often posing new challenges for self-control, yet not always leading to harmful outcomes. A major policy challenge is how to provide support for harm reduction in these highly volatile settings. Copyright © 2016 Elsevier B.V. All rights reserved.
Microdissection of Black Widow Spider Silk-producing Glands
Hsia, Yang; Gnesa, Eric; Zhao, Liang; Franz, Andreas; Vierra, Craig
2011-01-01
Modern spiders spin high-performance silk fibers with a broad range of biological functions, including locomotion, prey capture and protection of developing offspring 1,2. Spiders accomplish these tasks by spinning several distinct fiber types that have diverse mechanical properties. Such specialization of fiber types has occurred through the evolution of different silk-producing glands, which function as small biofactories. These biofactories manufacture and store large quantities of silk proteins for fiber production. Through a complex series of biochemical events, these silk proteins are converted from a liquid into a solid material upon extrusion. Mechanical studies have demonstrated that spider silks are stronger than high-tensile steel 3. Analyses to understand the relationship between the structure and function of spider silk threads have revealed that spider silk consists largely of proteins, or fibroins, that have block repeats within their protein sequences 4. Common molecular signatures that contribute to the incredible tensile strength and extensibility of spider silks are being unraveled through the analyses of translated silk cDNAs. Given the extraordinary material properties of spider silks, research labs across the globe are racing to understand and mimic the spinning process to produce synthetic silk fibers for commercial, military and industrial applications. One of the main challenges to spinning artificial spider silk in the research lab involves a complete understanding of the biochemical processes that occur during extrusion of the fibers from the silk-producing glands. Here we present a method for the isolation of the seven different silk-producing glands from the cobweaving black widow spider, which includes the major and minor ampullate glands [manufactures dragline and scaffolding silk] 5,6, tubuliform [synthesizes egg case silk] 7,8, flagelliform [unknown function in cob-weavers], aggregate [makes glue silk], aciniform [synthesizes prey wrapping and egg case threads] 9 and pyriform [produces attachment disc silk] 10. This approach is based upon anesthetizing the spider with carbon dioxide gas, subsequent separation of the cephalothorax from the abdomen, and microdissection of the abdomen to obtain the silk-producing glands. Following the separation of the different silk-producing glands, these tissues can be used to retrieve different macromolecules for distinct biochemical analyses, including quantitative real-time PCR, northern- and western blotting, mass spectrometry (MS or MS/MS) analyses to identify new silk protein sequences, search for proteins that participate in the silk assembly pathway, or use the intact tissue for cell culture or histological experiments. PMID:21248709
Self-Assembly of Spider Silk-Fusion Proteins Comprising Enzymatic and Fluorescence Activity.
Humenik, Martin; Mohrand, Madeleine; Scheibel, Thomas
2018-04-18
The recombinant spider silk protein eADF4(C16) was genetically fused either with esterase 2 (EST2) or green fluorescent protein (GFP). The fusions EST-eADF4(C16) and GFP-eADF4(C16) were spectroscopically investigated and showed native structures of EST and GFP. The structural integrity was confirmed by the enzymatic activity of EST and the fluorescence of GFP. The spider silk moiety retained its intrinsically unstructured conformation in solution and the self-assembly into either nanofibrils or nanoparticles could be controlled by the concentration of phosphate. Particles, however, showed significantly lower activity of the EST and GFP domains likely caused by a steric hindrance. However, upon self-assembly of EST-eADF4(C16) and GFP-eADF4(C16) into fibrils the protein activities were retained. In general, the fusion of globular enzymes with the spider silk domain allows the generation of fibrous biomaterials with catalytic or light emitting properties.
USDA-ARS?s Scientific Manuscript database
The development of a spider silk manufacturing process is of great interest. piggyBac vectors were used to create transgenic silkworms encoding chimeric silkworm/spider silk proteins. The silk fibers produced by these animals were composite materials that included chimeric silkworm/spider silk prote...
Meyer, J D F; Snook, M E; Houchins, K E; Rector, B G; Widstrom, N W; McMullen, M D
2007-06-01
Maysin is a naturally occurring C-glycosyl flavone found in maize (Zea mays L.) silk tissue that confers resistance to corn earworm (Helicoverpa zea, Boddie). Recently, two new maize populations were derived for high silk maysin. The two populations were named the exotic populations of maize (EPM) and the southern inbreds of maize (SIM). Quantitative trait locus (QTL) analysis was employed to determine which loci were responsible for elevated maysin levels in inbred lines derived from the EPM and SIM populations. The candidate genes consistent with QTL position included the p (pericarp color), c2 (colorless2), whp1 (white pollen1) and in1 (intensifier1) loci. The role of these loci in controlling high maysin levels in silks was tested by expression analysis and use of the loci as genetic markers onto the QTL populations. These studies support p, c2 and whp1, but not in1, as loci controlling maysin. Through this study, we determined that the p locus regulates whp1 transcription and that increased maysin in these inbred lines was primarily due to alleles at both structural and regulatory loci promoting increased flux through the flavone pathway by increasing chalcone synthase activity.
Qiao, Xin; Qian, Zhigang; Li, Junjie; Sun, Hongji; Han, Yao; Xia, Xiaoxia; Zhou, Jin; Wang, Chunlan; Wang, Yan; Wang, Changyong
2017-05-03
A variety of devices used for biomedical engineering have been fabricated using protein polymer because of their excellent properties, such as strength, toughness, biocompatibility, and biodegradability. In this study, we fabricated an optical waveguide using genetically engineered spider silk protein. This method has two significant advantages: (1) recombinant spider silk optical waveguide exhibits excellent optical and biological properties and (2) biosynthesis of spider silk protein can overcome the limitation to the research on spider silk optical waveguide due to the low yield of natural spider silk. In detail, two kinds of protein-based optical waveguides made from recombinant spider silk protein and regenerative silkworm silk protein were successfully prepared. Results suggested that the recombinant spider silk optical waveguide showed a smoother surface and a higher refractive index when compared with regenerative silkworm silk protein. The optical loss of recombinant spider silk optical waveguide was 0.8 ± 0.1 dB/cm in air and 1.9 ± 0.3 dB/cm in mouse muscles, which were significantly lower than those of regenerative silkworm silk optical waveguide. Moreover, recombinant spider silk optical waveguide can meet the demand to guide and efficiently deliver light through biological tissue. In addition, recombinant spider silk optical waveguide showed low toxicity to cells in vitro and low-level inflammatory reaction with surrounding tissue in vivo. Therefore, recombinant spider silk optical waveguide is a promising implantable device to guide and deliver light with low loss.
Silk sericin: A versatile material for tissue engineering and drug delivery.
Lamboni, Lallepak; Gauthier, Mario; Yang, Guang; Wang, Qun
2015-12-01
Sericin is an inexpensive glycoprotein obtained as a by-product in the silk industry. Its variable amino acid composition and diverse functional groups confer upon it attractive bioactive properties, which are particularly interesting for biomedical applications. Because of its antioxidant character, moisturizing ability, and mitogenic effect on mammalian cells, sericin is useful in cell culture and tissue engineering. Its positive effects on keratinocytes and fibroblasts have led to the development of sericin-based biomaterials for skin tissue repair, mainly as wound dressings. Additionally, sericin can be used for bone tissue engineering owing to its ability to induce nucleation of bone-like hydroxyapatite. Stable silk sericin biomaterials, such as films, sponges, and hydrogels, are prepared by cross-linking, ethanol precipitation, or blending with other polymers. Sericin may also be employed for drug delivery because its chemical reactivity and pH-responsiveness facilitate the fabrication of nano- and microparticles, hydrogels, and conjugated molecules, improving the bioactivity of drugs. Here, we summarized the recent advancements in the study of silk sericin for application in tissue engineering and drug delivery. Copyright © 2015 Elsevier Inc. All rights reserved.
Tyrosinase-Mediated Construction of a Silk Fibroin/Elastin Nanofiber Bioscaffold.
Hong, Yanqing; Zhu, Xueke; Wang, Ping; Fu, Haitian; Deng, Chao; Cui, Li; Wang, Qiang; Fan, Xuerong
2016-04-01
Elastin has characteristics of elasticity, biological activity, and mechanical stability. In the present work, tyrosinase-mediated construction of a bioscaffold with silk fibroin and elastin was carried out, aiming at developing a novel medical biomaterial. The efficiency of enzymatic oxidation of silk fibroin and the covalent reaction between fibroin and elastin were examined by spectrophotometry, sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), and size exclusion chromatography (SEC). The properties of composite air-dried and nanofiber scaffolds were investigated. The results reveal that elastin was successfully bonded to silk fibroins, resulting in an increase in molecular weight of fibroin proteins. ATR-FTIR spectra indicated that tyrosinase treatment impacted the conformational structure of fibroin-based membrane. The thermal behaviors and mechanical properties of the tyrosinase-treated scaffolds were also improved compared with the untreated group. NIH/3T3 cells exhibited optimum densities when grown on the nanofiber scaffold, implying that the nanofiber scaffold has enhanced biocompatibility compared to the air-dried scaffold. A biological nanofiber scaffold constructed from tyrosinase-treated fibroin and elastin could potentially be utilized in biomedical applications.
International Comparison of Water Resources Utilization Efficiency in the Silk Road Economic Belt
NASA Astrophysics Data System (ADS)
Yan, Long; Ma, Jing; Deng, Wei; Wang, Yong
2018-03-01
In order to get knowledge of the standard of water utilization of the Silk Road Economic Belt from international point of view, the paper analyzes the annual variation of water resources utilization in the Silk Road Economic Belt, and compares with other typical countries. The study shows that Water resources utilization efficiency has been greatly improved in recent 20 years and the water consumption per USD 10000 of GDP has been declined 87.97%. the improvement of industrial water consumption efficiency is the key driving factors for substantial decrease in water consumption.The comparison of water utilization and human development shows that the higher HDI the country is, the more efficient water utilization the country has. water consumption per USD 10000 of GDP in country with HDI>0.9 is 194m³, being 8.5% of that in country with HDI from 0.5 to 0.6. On the premise of maintaining the stable economic and social development of the Silk Road Economic Belt, the realization of the control target of total water consumption must depend on the strict control over the disorderly expansion of irrigated area, the change in the mode of economic growth, the implementation of the development strategy for new industrialization and urbanization, vigorous development of the processing industry with low water consumption as well as the high-tech and high value-added industry. Only in this way, the control target of total water consumption can be realized in the process of completing the industrialization task.
Post-secretion processing influences spider silk performance
Blamires, Sean J.; Wu, Chung-Lin; Blackledge, Todd A.; Tso, I-Min
2012-01-01
Phenotypic variation facilitates adaptations to novel environments. Silk is an example of a highly variable biomaterial. The two-spidroin (MaSp) model suggests that spider major ampullate (MA) silk is composed of two proteins—MaSp1 predominately contains alanine and glycine and forms strength enhancing β-sheet crystals, while MaSp2 contains proline and forms elastic spirals. Nonetheless, mechanical properties can vary in spider silks without congruent amino acid compositional changes. We predicted that post-secretion processing causes variation in the mechanical performance of wild MA silk independent of protein composition or spinning speed across 10 species of spider. We used supercontraction to remove post-secretion effects and compared the mechanics of silk in this ‘ground state’ with wild native silks. Native silk mechanics varied less among species compared with ‘ground state’ silks. Variability in the mechanics of ‘ground state’ silks was associated with proline composition. However, variability in native silks did not. We attribute interspecific similarities in the mechanical properties of native silks, regardless of amino acid compositions, to glandular processes altering molecular alignment of the proteins prior to extrusion. Such post-secretion processing may enable MA silk to maintain functionality across environments, facilitating its function as a component of an insect-catching web. PMID:22628213
[Engineered spider silk: the intelligent biomaterial of the future. Part I].
Florczak, Anna; Piekoś, Konrad; Kaźmierska, Katarzyna; Mackiewicz, Andrzej; Dams-Kozłowska, Hanna
2011-06-17
The unique properties of spider silk such as strength, extensibility, toughness, biocompatibility and biodegradability are the reasons for the recent development in silk biomaterial technology. For a long time scientific progress was impeded by limited access to spider silk. However, the development of the molecular biology strategy was a breaking point in synthetic spider silk protein design. The sequences of engineered spider silk are based on the consensus motives of the corresponding natural equivalents. Moreover, the engineered silk proteins may be modified in order to gain a new function. The strategy of the hybrid proteins constructed on the DNA level combines the sequence of engineered silk, which is responsible for the biomaterial structure, with the sequence of polypeptide which allows functionalization of the silk biomaterial. The functional domains may comprise receptor binding sites, enzymes, metal or sugar binding sites and others. Currently, advanced research is being conducted, which on the one hand focuses on establishing the particular silk structure and understanding the process of silk thread formation in nature. On the other hand, there are attempts to improve methods of engineered spider silk protein production. Due to acquired knowledge and recent progress in synthetic protein technology, the engineered silk will turn into intelligent biomaterial of the future, while its industrial production scale will trigger a biotechnological revolution.
Bombyx mori silk: From mechanical properties to functionalities
NASA Astrophysics Data System (ADS)
Koh, Leng Duei
Bombyx mori silkworms are the main producer of silk worldwide. It has been used as high-end textile fibers and as surgical sutures, and is being further developed for various emerging biomedical applications including drug delivery, tissue engineering, sensing, and imaging. The silk fibroin features a hierarchical architecture consisting of beta-sheet crystallites embedded in a less ordered amorphous matrix, which accounts for its unique combination of lustre appearance, soft-to-touch texture, and impressive mechanical properties. Notably, many applications of silk take advantage of its impressive mechanical properties, which by nature surpass many natural and synthetic materials. Interestingly, both the silkworm silk and spider dragline silk share similar hierarchical architecture but possess great disparity in mechanical properties. Inspired by spider dragline silk with much superior strength and toughness, there is an ever growing interest to enhance the mechanical properties of Bombyx mori silk. Here, we design a green and facile feeding method to modulate the structures of silk fibroin at the nanoscale using citric acid (CA), and achieved greatly enhanced mechanical properties. The silk obtained (i.e., CA silk) emerges to be the intrinsically toughest silkworm silk, with mechanical properties that exceed those of the previously reported natural and enhanced silkworm silk, and compare well with those of naturally produced spider silk (including those from spiders Araneus diadematus, Nephila clavipes, etc.).The underlying interactions of CA with fibroin structures are revealed by both advanced characterizations and simulations. It is found that CA interacts with fibroin, resulted in remarkably shorter crystallites, and thus giving the outstanding strength and toughness of the CA silk. The greatly enhanced mechanical properties are expected to lead to better functionalities and wider applications of the Bombyx mori silkworm silk. Silkworms usually produce white silk with normal feed containing no xenobiotics. Here, through introducing fluorescent xenobiotics into silkworm's diet and monitoring the resulting color and fluorescence in the silkworm's body, we established an understanding on the in vivo uptake of xenobiotics in silkworms that leads to direct production of intrinsically colored and/or luminescent silk by the silkworms. The molecular properties-directed absorption, distribution and excretion of xenobiotics were investigated using a series of fluorescent molecules as model compounds in a silkworm model. The efficient uptake of xenobiotics into silk is further studied through quantitative analysis of the intrinsically colored and highly luminescent silk secreted by silkworm. Criteria for effective uptake have been established based on the relationship between the structure-dependent hydrophobicity of various dyes vs. the amount selectively absorbed into the silk. The biological incorporation of dyes into silk, in particular its fibroin is a greener method of producing the functional silk because it eliminates the need of an external dyeing process, along with the resources (water, energy and additional chemicals) associated with conventional dyeing of silk. Beyond the absorption of dyes to produce color and luminescence in the silk, this feeding concept can also be expanded to incorporate other functional molecules (e.g., drugs, antibacterial agents, perfumes and nutrients) into silk with therapeutic or nutritional value.
Fabrication and characterization of biomaterial film from gland silk of muga and eri silkworms.
Dutta, Saranga; Talukdar, Bijit; Bharali, Rupjyoti; Rajkhowa, Rangam; Devi, Dipali
2013-05-01
This study discusses the possibilities of liquid silk (Silk gland silk) of Muga and Eri silk, the indigenous non mulberry silkworms of North Eastern region of India, as potential biomaterials. Silk protein fibroin of Bombyx mori, commonly known as mulberry silkworm, has been extensively studied as a versatile biomaterial. As properties of different silk-based biomaterials vary significantly, it is important to characterize the non mulberry silkworms also in this aspect. Fibroin was extracted from the posterior silk gland of full grown fifth instars larvae, and 2D film was fabricated using standard methods. The films were characterized using SEM, Dynamic contact angle test, FTIR, XRD, DSC, and TGA and compared with respective silk fibers. SEM images of films reveal presence of some globules and filamentous structure. Films of both the silkworms were found to be amorphous with random coil conformation, hydrophobic in nature, and resistant to organic solvents. Non mulberry silk films had higher thermal resistance than mulberry silk. Fibers were thermally more stable than the films. This study provides insight into the new arena of research in application of liquid silk of non mulberry silkworms as biomaterials. Copyright © 2012 Wiley Periodicals, Inc.
Single Honeybee Silk Protein Mimics Properties of Multi-Protein Silk
Sutherland, Tara D.; Church, Jeffrey S.; Hu, Xiao; Huson, Mickey G.; Kaplan, David L.; Weisman, Sarah
2011-01-01
Honeybee silk is composed of four fibrous proteins that, unlike other silks, are readily synthesized at full-length and high yield. The four silk genes have been conserved for over 150 million years in all investigated bee, ant and hornet species, implying a distinct functional role for each protein. However, the amino acid composition and molecular architecture of the proteins are similar, suggesting functional redundancy. In this study we compare materials generated from a single honeybee silk protein to materials containing all four recombinant proteins or to natural honeybee silk. We analyse solution conformation by dynamic light scattering and circular dichroism, solid state structure by Fourier Transform Infrared spectroscopy and Raman spectroscopy, and fiber tensile properties by stress-strain analysis. The results demonstrate that fibers artificially generated from a single recombinant silk protein can reproduce the structural and mechanical properties of the natural silk. The importance of the four protein complex found in natural silk may lie in biological silk storage or hierarchical self-assembly. The finding that the functional properties of the mature material can be achieved with a single protein greatly simplifies the route to production for artificial honeybee silk. PMID:21311767
Jo, You-Young; Kim, Seong-Gon; Kwon, Kwang-Jun; Kweon, HaeYong; Chae, Weon-Sik; Yang, Won-Geun; Lee, Eun-Young; Seok, Hyun
2017-01-01
The aim of this study was to evaluate the in vivo bone regeneration capability of alginate (AL), AL/hydroxyapatite (HA), and AL/HA/silk fibroin (SF) composites. Forty Sprague Dawley rats were used for the animal experiments. Central calvarial bone (diameter: 8.0 mm) defects were grafted with AL, AL/HA, or AL/HA/SF. New bone formation was evaluated by histomorphometric analysis. To demonstrate the immunocompatibility of each group, the level of tumor necrosis factor (TNF)-α expression was studied by immunohistochemistry (IHC) and quantitative reverse transcription polymerase chain reaction (qRT-PCR) at eight weeks post implantation. Additionally, osteogenic markers, such as fibroblast growth factor (FGF)-23, osteoprotegerin (OPG), and Runt-related transcription factor (Runx2) were evaluated by qPCR or IHC at eight weeks post implantation. The AL/HA/SF group showed significantly higher new bone formation than did the control group (p = 0.044) and the AL group (p = 0.035) at four weeks post implantation. Additionally, the AL/HA/SF group showed lower relative TNF-α mRNA levels and higher FGF-23 mRNA levels than the other groups did at eight weeks post implantation. IHC results demonstrated that the AL/HA/SF group had lower TNF-α expression and higher OPG and Runx2 expression at eight weeks post implantation. Additionally, no evidence of the inflammatory reaction or giant cell formation was observed around the residual graft material. We concluded that the AL/HA/SF composite could be effective as a scaffold for bone tissue engineering. PMID:28420224
Jo, You-Young; Kim, Seong-Gon; Kwon, Kwang-Jun; Kweon, HaeYong; Chae, Weon-Sik; Yang, Won-Geun; Lee, Eun-Young; Seok, Hyun
2017-04-18
The aim of this study was to evaluate the in vivo bone regeneration capability of alginate (AL), AL/hydroxyapatite (HA), and AL/HA/silk fibroin (SF) composites. Forty Sprague Dawley rats were used for the animal experiments. Central calvarial bone (diameter: 8.0 mm) defects were grafted with AL, AL/HA, or AL/HA/SF. New bone formation was evaluated by histomorphometric analysis. To demonstrate the immunocompatibility of each group, the level of tumor necrosis factor (TNF)-α expression was studied by immunohistochemistry (IHC) and quantitative reverse transcription polymerase chain reaction (qRT-PCR) at eight weeks post implantation. Additionally, osteogenic markers, such as fibroblast growth factor (FGF)-23, osteoprotegerin (OPG), and Runt-related transcription factor (Runx2) were evaluated by qPCR or IHC at eight weeks post implantation. The AL/HA/SF group showed significantly higher new bone formation than did the control group ( p = 0.044) and the AL group ( p = 0.035) at four weeks post implantation. Additionally, the AL/HA/SF group showed lower relative TNF-α mRNA levels and higher FGF-23 mRNA levels than the other groups did at eight weeks post implantation. IHC results demonstrated that the AL/HA/SF group had lower TNF-α expression and higher OPG and Runx2 expression at eight weeks post implantation. Additionally, no evidence of the inflammatory reaction or giant cell formation was observed around the residual graft material. We concluded that the AL/HA/SF composite could be effective as a scaffold for bone tissue engineering.
Silk Materials Functionalized via Genetic Engineering for Biomedical Applications.
Deptuch, Tomasz; Dams-Kozlowska, Hanna
2017-12-12
The great mechanical properties, biocompatibility and biodegradability of silk-based materials make them applicable to the biomedical field. Genetic engineering enables the construction of synthetic equivalents of natural silks. Knowledge about the relationship between the structure and function of silk proteins enables the design of bioengineered silks that can serve as the foundation of new biomaterials. Furthermore, in order to better address the needs of modern biomedicine, genetic engineering can be used to obtain silk-based materials with new functionalities. Sequences encoding new peptides or domains can be added to the sequences encoding the silk proteins. The expression of one cDNA fragment indicates that each silk molecule is related to a functional fragment. This review summarizes the proposed genetic functionalization of silk-based materials that can be potentially useful for biomedical applications.
DeFrates, Kelsey; Markiewicz, Theodore; Callaway, Kayla; Xue, Ye; Stanton, John; Salas-de la Cruz, David; Hu, Xiao
2017-11-01
Biomaterials made from natural proteins and polysaccharides have become increasingly popular in the biomedical field due to their good biocompatibility and tunable biodegradability. However, the low miscibility of polysaccharides with proteins presents challenges in the creation of protein-polysaccharide composite materials. In this study, neat 1-allyl-3-methylimidazolium chloride (AMIMCl) ionic liquid was used to regenerate Thailand gold Bombyx mori silk and microcrystalline cellulose blended films. This solvent was found to not only effectively dissolve both natural polymers, but also preserve the structure and integrity of the polymers. A single glass transition temperature for each blend was found in DSC curves, indicating good miscibility between the Thai silk and cellulose molecules. The structural composition as well as the morphology and thermal stability of blend films were then determined using FTIR, SEM and TGA. It was found that by varying the ratio of Thai silk to cellulose, the thermal and physical properties of the material could be tuned. Blended films tended to be more thermally stable which could be due to the presence of hydrophobic-hydrophobic or electrostatic interactions between the silk and cellulose. These studies offered a new pathway to understand the tunable properties of protein-polysaccharide composite biomaterials with controllable physical and biological properties. Copyright © 2017 Elsevier B.V. All rights reserved.
Dissolution and regeneration of non-mulberry Eriogyna Pyretorum silk fibroin
NASA Astrophysics Data System (ADS)
Guo, Yuhang; Li, Xiufang; Zhang, Qiang; Yan, Shuqin; You, Renchuan
2017-10-01
Protein-based materials have been actively pursued as biomaterials because of their nontoxicity, biocompatibility and biodegradability. In this work, we demonstrated the potential of Eriogyna pyretorum silk fibroin (ESF), a non-mulberry silk protein, as biomaterials. The degummed ESF fibers could be dissolved completely by Ca(NO3)2/H2O/C2H5OH solution to produce regenerated ESF. The solubility was strongly dependent on the addition of C2H5OH, heating temperature and dissolving time. α-helix and random coil are main molecular conformation in aqueous ESF solution. The sol-gel transition behavior of regenerated ESF was also studied, indicating that the conformational transition of regenerated ESF from random coil/α-helix to β-sheet during gelation. Especially, ESF showed more rapid gelation than mulberry silk fibroin (BSF). Consequently, the gelation rate of BSF could be controlled ranging from tens of minutes to days by changing the ESF ratio, providing useful options for the fabrication of silk hydrogels. Water-stable regenerated ESF film could be achieved by using aqueous ethanol to induce structural transition. Tensile tests showed that the ESF films have a dry strength of approximate 31.0 MPa and a wet strength of approximate 3.3 MPa. This study provides new opportunities as an alternative natural protein material for biomedical applications.
Analysis of proteome dynamics inside the silk gland lumen of Bombyx mori.
Dong, Zhaoming; Zhao, Ping; Zhang, Yan; Song, Qianru; Zhang, Xiaolu; Guo, Pengchao; Wang, Dandan; Xia, Qingyou
2016-04-22
The silk gland is the only organ where silk proteins are synthesized and secreted in the silkworm, Bombyx mori. Silk proteins are stored in the lumen of the silk gland for around eight days during the fifth instar. Determining their dynamic changes is helpful for clarifying the secretion mechanism of silk proteins. Here, we identified the proteome in the silk gland lumen using liquid chromatography-tandem mass spectrometry, and demonstrated its changes during two key stages. From day 5 of the fifth instar to day 1 of wandering, the abundances of fibroins, sericins, seroins, and proteins of unknown functions increased significantly in different compartments of the silk gland lumen. As a result, these accumulated proteins constituted the major cocoon components. In contrast, the abundances of enzymes and extracellular matrix proteins decreased in the silk gland lumen, suggesting that they were not the structural constituents of silk. Twenty-five enzymes may be involved in the regulation of hormone metabolism for proper silk gland function. In addition, the metabolism of other non-proteinous components such as chitin and pigment were also discussed in this study.
Analysis of proteome dynamics inside the silk gland lumen of Bombyx mori
Dong, Zhaoming; Zhao, Ping; Zhang, Yan; Song, Qianru; Zhang, Xiaolu; Guo, Pengchao; Wang, Dandan; Xia, Qingyou
2016-01-01
The silk gland is the only organ where silk proteins are synthesized and secreted in the silkworm, Bombyx mori. Silk proteins are stored in the lumen of the silk gland for around eight days during the fifth instar. Determining their dynamic changes is helpful for clarifying the secretion mechanism of silk proteins. Here, we identified the proteome in the silk gland lumen using liquid chromatography–tandem mass spectrometry, and demonstrated its changes during two key stages. From day 5 of the fifth instar to day 1 of wandering, the abundances of fibroins, sericins, seroins, and proteins of unknown functions increased significantly in different compartments of the silk gland lumen. As a result, these accumulated proteins constituted the major cocoon components. In contrast, the abundances of enzymes and extracellular matrix proteins decreased in the silk gland lumen, suggesting that they were not the structural constituents of silk. Twenty-five enzymes may be involved in the regulation of hormone metabolism for proper silk gland function. In addition, the metabolism of other non-proteinous components such as chitin and pigment were also discussed in this study. PMID:27102218
Spider Silk Fibers Spun from Soluble Recombinant Silk Produced in Mammalian Cells
NASA Astrophysics Data System (ADS)
Lazaris, Anthoula; Arcidiacono, Steven; Huang, Yue; Zhou, Jiang-Feng; Duguay, François; Chretien, Nathalie; Welsh, Elizabeth A.; Soares, Jason W.; Karatzas, Costas N.
2002-01-01
Spider silks are protein-based ``biopolymer'' filaments or threads secreted by specialized epithelial cells as concentrated soluble precursors of highly repetitive primary sequences. Spider dragline silk is a flexible, lightweight fiber of extraordinary strength and toughness comparable to that of synthetic high-performance fibers. We sought to ``biomimic'' the process of spider silk production by expressing in mammalian cells the dragline silk genes (ADF-3/MaSpII and MaSpI) of two spider species. We produced soluble recombinant (rc)-dragline silk proteins with molecular masses of 60 to 140 kilodaltons. We demonstrated the wet spinning of silk monofilaments spun from a concentrated aqueous solution of soluble rc-spider silk protein (ADF-3; 60 kilodaltons) under modest shear and coagulation conditions. The spun fibers were water insoluble with a fine diameter (10 to 40 micrometers) and exhibited toughness and modulus values comparable to those of native dragline silks but with lower tenacity. Dope solutions with rc-silk protein concentrations >20% and postspinning draw were necessary to achieve improved mechanical properties of the spun fibers. Fiber properties correlated with finer fiber diameter and increased birefringence.
Silk ionomers for encapsulation and differentiation of human MSCs
Calabrese, Rossella; Kaplan, David L.
2012-01-01
The response of human bone marrow derived human mesenchymal stem cells (hMSCs) encapsulated in silk ionomer hydrogels was studied. Silk aqueous solutions with silk-poly-L-lysine or silk-poly-L-glutamate were formed into hydrogels via ultrasonication in situ with different net charges. hMSCs were encapsulated within the hydrogels and the impact of matrix charge was assessed over weeks in osteogenic, adipogenic and maintenance growth media. These modified silk charged polymers supported cell viability and proliferative potential, and the hMSCs were able to differentiate toward osteogenic or adipogenic lineages in the corresponding differentiation media. The silk/silk-poly-L-lysine hydrogels exhibited a positive effect on selective osteogenesis of hMSCs, inducing differentiation toward an osteogenic lineage even in the absence of osteogenic supplements, while also inhibiting adipogenesis. In contrast, silk/silk fibroin-poly-L-glutamate hydrogels supported both osteogenic and adipogenic differentiation of hMSCs when cultured under induction conditions. The results demonstrate the potential utility of silk-based ionomers in gel formats for hMSCs encapsulation and for directing hMSCs long term functional differentiation toward specific lineages. PMID:22824008
Kuwana, Yoshihiko; Sezutsu, Hideki; Nakajima, Ken-ichi; Tamada, Yasushi; Kojima, Katsura
2014-01-01
Spider dragline silk is a natural fiber that has excellent tensile properties; however, it is difficult to produce artificially as a long, strong fiber. Here, the spider (Araneus ventricosus) dragline protein gene was cloned and a transgenic silkworm was generated, that expressed the fusion protein of the fibroin heavy chain and spider dragline protein in cocoon silk. The spider silk protein content ranged from 0.37 to 0.61% w/w (1.4–2.4 mol%) native silkworm fibroin. Using a good silk-producing strain, C515, as the transgenic silkworm can make the raw silk from its cocoons for the first time. The tensile characteristics (toughness) of the raw silk improved by 53% after the introduction of spider dragline silk protein; the improvement depended on the quantity of the expressed spider dragline protein. To demonstrate the commercial feasibility for machine reeling, weaving, and sewing, we used the transgenic spider silk to weave a vest and scarf; this was the first application of spider silk fibers from transgenic silkworms. PMID:25162624
Kuwana, Yoshihiko; Sezutsu, Hideki; Nakajima, Ken-ichi; Tamada, Yasushi; Kojima, Katsura
2014-01-01
Spider dragline silk is a natural fiber that has excellent tensile properties; however, it is difficult to produce artificially as a long, strong fiber. Here, the spider (Araneus ventricosus) dragline protein gene was cloned and a transgenic silkworm was generated, that expressed the fusion protein of the fibroin heavy chain and spider dragline protein in cocoon silk. The spider silk protein content ranged from 0.37 to 0.61% w/w (1.4-2.4 mol%) native silkworm fibroin. Using a good silk-producing strain, C515, as the transgenic silkworm can make the raw silk from its cocoons for the first time. The tensile characteristics (toughness) of the raw silk improved by 53% after the introduction of spider dragline silk protein; the improvement depended on the quantity of the expressed spider dragline protein. To demonstrate the commercial feasibility for machine reeling, weaving, and sewing, we used the transgenic spider silk to weave a vest and scarf; this was the first application of spider silk fibers from transgenic silkworms.
The role of capture spiral silk properties in the diversification of orb webs.
Tarakanova, Anna; Buehler, Markus J
2012-12-07
Among a myriad of spider web geometries, the orb web presents a fascinating, exquisite example in architecture and evolution. Orb webs can be divided into two categories according to the capture silk used in construction: cribellate orb webs (composed of pseudoflagelliform silk) coated with dry cribellate threads and ecribellate orb webs (composed of flagelliform silk fibres) coated by adhesive glue droplets. Cribellate capture silk is generally stronger but less-extensible than viscid capture silk, and a body of phylogenic evidence suggests that cribellate capture silk is more closely related to the ancestral form of capture spiral silk. Here, we use a coarse-grained web model to investigate how the mechanical properties of spiral capture silk affect the behaviour of the whole web, illustrating that more elastic capture spiral silk yields a decrease in web system energy absorption, suggesting that the function of the capture spiral shifted from prey capture to other structural roles. Additionally, we observe that in webs with more extensible capture silk, the effect of thread strength on web performance is reduced, indicating that thread elasticity is a dominant driving factor in web diversification.
Gaining Control of Iraq’s Shadow Economy
2007-09-01
branches of the Silk Road. For about two thousand years, silk, cotton, wool , glass, jade, lapis lazuli, metals, salt, spices, tea, herbal medicines...facilitated the process of smuggling, while the tribes provided access to their kin in Syria and Jordan. Once sanctions were in full swing, the...pipelines and water mains as well any individuals who participated in the reconstruction process .76 As 74James A Baker III and Lee H Hamilton, The Iraq
2005-06-01
does not display a currently valid OMB control number. 1 . REPORT DATE JUN 2005 2. REPORT TYPE 3 . DATES COVERED 00-00-2005 to 00-00-2005 4...Technology Symposium 10th ICCRTS, June 13-16 2005 Page 2 of 24 © SilkRoad , All Rights Reserved 1 ...Research and Technology Symposium 10th ICCRTS, June 13-16 2005 Page 3 of 24 © SilkRoad , All Rights Reserved
Dynamic Camouflage Materials Based on Silk-Reflectin Chimeras
2012-08-01
Dynamic Camouflage Materials Based on Silk -Reflectin Chimeras Final Performance Report for FA9550-09-1-0513 (Program Manager: Hugh DeLong...efforts to bioengineer silk -reflectin chimeric proteins, with the silk component serving as one of the organizing elements for material functions and...Further contributions may also come from the silk due to its novel light guiding properties and diffractive optics. Variants in silk block sizes
Functionalized hybrid nanofibers to mimic native ECM for tissue engineering applications
NASA Astrophysics Data System (ADS)
Karuppuswamy, Priyadharsini; Venugopal, Jayarama Reddy; Navaneethan, Balchandar; Laiva, Ashang Luwang; Sridhar, Sreepathy; Ramakrishna, Seeram
2014-12-01
Nanotechnology being one of the most promising technologies today shows an extremely huge potential in the field of tissue engineering to mimic the porous topography of natural extracellular matrix (ECM). Natural polymers are incorporated into the synthetic polymers to fabricate functionalized hybrid nanofibrous scaffolds, which improve cell and tissue compatibility. The present study identified the biopolymers - aloe vera, silk fibroin and curcumin incorporated into polycaprolactone (PCL) as suitable substrates for tissue engineering. Different combinations of PCL with natural polymers - PCL/aloe vera, PCL/silk fibroin, PCL/aloe vera/silk fibroin, PCL/aloe vera/silk fibroin/curcumin were electrospun into nanofibrous scaffolds. The fabricated two dimensional nanofibrous scaffolds showed high surface area, appropriate mechanical properties, hydrophilicity and porosity, required for the regeneration of diseased tissues. The nanofibrous scaffolds were characterized by Scanning electron microscope (SEM), porometry, Instron tensile tester, VCA optima contact angle measurement and FTIR to analyze the fiber diameter and morphology, porosity and pore size distribution, mechanical strength, wettability, chemical bonds and functional groups, respectively. The average fiber diameter of obtained fibers ranged from 250 nm to 350 nm and the tensile strength of PCL scaffolds at 4.49 MPa increased upto 8.3 MPa for PCL/silk fibroin scaffolds. Hydrophobicity of PCL decreased with the incorporation of natural polymers, especially for PCL/aloe vera scaffolds. The properties of as-spun nanofiber scaffolds showed their potential as promising scaffold materials in tissue engineering applications.
Silk Materials Functionalized via Genetic Engineering for Biomedical Applications
Deptuch, Tomasz
2017-01-01
The great mechanical properties, biocompatibility and biodegradability of silk-based materials make them applicable to the biomedical field. Genetic engineering enables the construction of synthetic equivalents of natural silks. Knowledge about the relationship between the structure and function of silk proteins enables the design of bioengineered silks that can serve as the foundation of new biomaterials. Furthermore, in order to better address the needs of modern biomedicine, genetic engineering can be used to obtain silk-based materials with new functionalities. Sequences encoding new peptides or domains can be added to the sequences encoding the silk proteins. The expression of one cDNA fragment indicates that each silk molecule is related to a functional fragment. This review summarizes the proposed genetic functionalization of silk-based materials that can be potentially useful for biomedical applications. PMID:29231863
Agnarsson, Ingi; Kuntner, Matjaž; Blackledge, Todd A.
2010-01-01
Background Combining high strength and elasticity, spider silks are exceptionally tough, i.e., able to absorb massive kinetic energy before breaking. Spider silk is therefore a model polymer for development of high performance biomimetic fibers. There are over 41.000 described species of spiders, most spinning multiple types of silk. Thus we have available some 200.000+ unique silks that may cover an amazing breadth of material properties. To date, however, silks from only a few tens of species have been characterized, most chosen haphazardly as model organisms (Nephila) or simply from researchers' backyards. Are we limited to ‘blindly fishing’ in efforts to discover extraordinary silks? Or, could scientists use ecology to predict which species are likely to spin silks exhibiting exceptional performance properties? Methodology We examined the biomechanical properties of silk produced by the remarkable Malagasy ‘Darwin's bark spider’ (Caerostris darwini), which we predicted would produce exceptional silk based upon its amazing web. The spider constructs its giant orb web (up to 2.8 m2) suspended above streams, rivers, and lakes. It attaches the web to substrates on each riverbank by anchor threads as long as 25 meters. Dragline silk from both Caerostris webs and forcibly pulled silk, exhibits an extraordinary combination of high tensile strength and elasticity previously unknown for spider silk. The toughness of forcibly silked fibers averages 350 MJ/m3, with some samples reaching 520 MJ/m3. Thus, C. darwini silk is more than twice tougher than any previously described silk, and over 10 times better than Kevlar®. Caerostris capture spiral silk is similarly exceptionally tough. Conclusions Caerostris darwini produces the toughest known biomaterial. We hypothesize that this extraordinary toughness coevolved with the unusual ecology and web architecture of these spiders, decreasing the likelihood of bridgelines breaking and collapsing the web into the river. This hypothesis predicts that rapid change in material properties of silk co-occurred with ecological shifts within the genus, and can thus be tested by combining material science, behavioral observations, and phylogenetics. Our findings highlight the potential benefits of natural history–informed bioprospecting to discover silks, as well as other materials, with novel and exceptional properties to serve as models in biomimicry. PMID:20856804
Uncovering the structure-function relationship in spider silk
NASA Astrophysics Data System (ADS)
Yarger, Jeffery L.; Cherry, Brian R.; van der Vaart, Arjan
2018-03-01
All spiders produce protein-based biopolymer fibres that we call silk. The most studied of these silks is spider dragline silk, which is very tough and relatively abundant compared with other types of spider silks. Considerable research has been devoted to understanding the relationship between the molecular structure and mechanical properties of spider dragline silks. In this Review, we overview experimental and computational studies that have provided a wealth of detail at the molecular level on the highly conserved repetitive core and terminal regions of spider dragline silk. We also discuss the role of the nanocrystalline β-sheets and amorphous regions in determining the properties of spider silk fibres, endowing them with strength and elasticity. Additionally, we outline imaging techniques and modelling studies that elucidate the importance of the hierarchical structure of silk fibres at the molecular level. These insights into structure-function relationships can guide the reverse engineering of spider silk to enable the production of superior synthetic fibres.
Characterization and assembly of a GFP-tagged cylindriform silk into hexameric complexes.
Öster, Carl; Svensson Bonde, Johan; Bülow, Leif; Dicko, Cedric
2014-04-01
Spider silk has been studied extensively for its attractive mechanical properties and potential applications in medicine and industry. The production of spider silk, however, has been lagging behind for lack of suitable systems. Our approach focuses on solving the production of spider silk by designing, expressing, purifying and characterizing the silk from cylindriform glands. We show that the cylindriform silk protein, in contrast to the commonly used dragline silk protein, is fully folded and stable in solution. With the help of GFP as a fusion tag we enhanced the expression of the silk protein in Escherichia coli and could optimize the downstream processing. Secondary structures analysis by circular dichroism and FTIR shows that the GFP-silk fusion protein is predominantly α-helical, and that pH can trigger a α- to β-transition resulting in aggregation. Structural analysis by small angle X-ray scattering suggests that the GFP-Silk exists in the form of a hexamer in solution. Copyright © 2013 Wiley Periodicals, Inc.
The elaborate structure of spider silk
Römer, Lin
2008-01-01
Biomaterials, having evolved over millions of years, often exceed man-made materials in their properties. Spider silk is one outstanding fibrous biomaterial which consists almost entirely of large proteins. Silk fibers have tensile strengths comparable to steel and some silks are nearly as elastic as rubber on a weight to weight basis. In combining these two properties, silks reveal a toughness that is two to three times that of synthetic fibers like Nylon or Kevlar. Spider silk is also antimicrobial, hypoallergenic and completely biodegradable. This article focuses on the structure-function relationship of the characterized highly repetitive spider silk spidroins and their conformational conversion from solution into fibers. Such knowedge is of crucial importance to understanding the intrinsic properties of spider silk and to get insight into the sophisticated assembly processes of silk proteins. This review further outlines recent progress in recombinant production of spider silk proteins and their assembly into distinct polymer materials as a basis for novel products. PMID:19221522
Koh, Leng-Duei; Yeo, Jingjie; Lee, Yeong Yuh; Ong, Qunya; Han, Mingyong; Tee, Benjamin C-K
2018-05-01
The present review will introduce the basic concepts of silk-based electronics/optoelectronics including the latest technological advances on the use of silk fibroin in combination with other functional components, with an emphasis on improving the performance of next-generation silk-based materials. It also highlights the patterning of silk fibroin to produce micro/nano-scale features, as well as the functionalization of silk fibroin to impart antimicrobial (i.e. antibacterial) properties. Silk-based bioelectronics have great potential for advanced or futuristic bio-applications including e-skins, e-bandages, biosensors, wearable displays, implantable devices, artificial muscles, etc. Notably, silk-based organic field-effect transistors have highly promising applications in e-skins and biosensors; silk-based electrodes/antennas are used for in vivo bioanalysis or sensing purpose (e.g., measurement of neurotransmitter such as dopamine) in addition to their use as food sensors; silk-based diodes can be applied as light sources for wound healing or tissue engineering, e.g., in cutaneous wound closure or induction of photothrombosis of corneal neovascularization; silk-based actuators have promising applications as artificial muscles; whereas silk-based memristors have exciting applications as logic or synaptic network for realizing e-skins or bionic brains. Copyright © 2018 Elsevier B.V. All rights reserved.
Zhu, Lin; Hu, Ren-Ping; Wang, Hai-Yan; Wang, Yuan-Jing; Zhang, Yu-Qing
2011-09-28
Bombyx mori silk fibroin is a protein-based macromolecular biopolymer with remarkable biocompatibility. Silk fiber was degummed and subjected to a series of treatments, including dissolution and dialysis, to yield an aqueous solution of silk fibroin, which was introduced rapidly into excess acetone to produce crystalline silk fibroin nanoparticles (SFNs). The SFNs were conjugated covalently with a neutral protease (NP) using glutaraldehyde as the cross-linking reagent. The objective of this study was to determine the optimal conditions for biosynthesis of the SFN-NP bioconjugates. First, SFN-NP was obtained by covalent cross-linking of SFN and NP at an SFN/NP ratio of 5-8 mg:1 IU with 0.75% glutaraldehyde for 6 h at 25 °C. When adding 50 IU of the enzyme, the residual activity of biological conjugates was increased to 31.45%. Studies on the enzyme activity of SFN-NP and its kinetics showed that the stability of SFN-NP bioconjugates was greater than that of the free enzyme, the optimum reactive temperature range was increased by 5-10 °C, and the optimum pH value range was increased to 6.5-8.0. Furthermore, the thermal stability was improved to some extent. A controlled hydrolysis test using the poorly water-soluble protein sericin as a substrate and SFN-NP as the enzyme showed that the longer the reaction time (within 1 h), the smaller the molecular mass (<30 kDa) is of the sericin peptide produced. The SFN-NP bioconjugate is easily recovered by centrifugation and can be used repeatedly. The highly efficient processing technology and the use of SFN as a novel vector for a protease has great potential for research and the development of food processing.
Guo, B Z; Zhang, Z J; Butrón, A; Widstrom, N W; Snook, M E; Lynch, R E; Plaisted, D
2004-12-01
In the United States, insecticide is used extensively in the production of sweet corn due to consumer demand for zero damage to ears and to a sweet corn genetic base with little or no resistance to ear-feeding insects. Growers in the southern United States depend on scheduled pesticide applications to control ear-feeding insects. In a study of quantitative genetic control over silk maysin, AM-maysin (apimaysin and methoxymaysin), and chlorogenic acid contents in an F2 population derived from GE37 (dent corn, P1A1) and 565 (sh2 sweet corn, p1a1), we demonstrate that the P1 allele from field corn, which was selected against in the development of sweet corn, has a strong epistatic interaction with the a1 allele in sh2 sweet corn. We detected that the p1 gene has significant effects (P < 0.0001) not only on silk maysin concentrations but also on AM-maysin, and chlorogenic acid concentrations. The a1 gene also has significant (P < 0.0005) effects on these silk antibiotic chemicals. Successful selection from the fourth and fifth selfed backcrosses for high-maysin individuals of sweet corn homozygous for the recessive a1 allele (tightly linked to sh2) and the dominant P1 allele has been demonstrated. These selected lines have much higher (2 to 3 times) concentrations of silk maysin and other chemicals (AM-maysin and chlorogenic acid) than the donor parent GE37 and could enhance sweet corn resistance to corn earworm and reduce the number of applications of insecticide required to produce sweet corn.
Silk gene expression of theridiid spiders: implications for male-specific silk use.
Correa-Garhwal, Sandra M; Chaw, R Crystal; Clarke, Thomas H; Ayoub, Nadia A; Hayashi, Cheryl Y
2017-06-01
Spiders (order Araneae) rely on their silks for essential tasks, such as dispersal, prey capture, and reproduction. Spider silks are largely composed of spidroins, members of a protein family that are synthesized in silk glands. As needed, silk stored in silk glands is extruded through spigots on the spinnerets. Nearly all studies of spider silks have been conducted on females; thus, little is known about male silk biology. To shed light on silk use by males, we compared silk gene expression profiles of mature males to those of females from three cob-web weaving species (Theridiidae). We de novo assembled species-specific male transcriptomes from Latrodectus hesperus, Latrodectus geometricus, and Steatoda grossa followed by differential gene expression analyses. Consistent with their complement of silk spigots, male theridiid spiders express appreciable amounts of aciniform, major ampullate, minor ampullate, and pyriform spidroin genes but not tubuliform spidroin genes. The relative expression levels of particular spidroin genes varied between sexes and species. Because mature males desert their prey-capture webs and become cursorial in their search for mates, we anticipated that major ampullate (dragline) spidroin genes would be the silk genes most highly expressed by males. Indeed, major ampullate spidroin genes had the highest expression in S. grossa males. However, minor ampullate spidroin genes were the most highly expressed spidroin genes in L. geometricus and L. hesperus males. Our expression profiling results suggest species-specific adaptive divergence of silk use by male theridiids. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.
Lithium-free processing of silk fibroin.
Zheng, Zhaozhu; Guo, Shaozhe; Liu, Yawen; Wu, Jianbing; Li, Gang; Liu, Meng; Wang, Xiaoqin; Kaplan, David
2016-09-01
Silk fibroin protein was purified from Bombyx mori silkworm cocoons using a novel dialysis strategy to avoid fibroin aggregation and pre-mature formation of β-sheets. The degummed silk fibers were dissolved in Ajisawa's reagent, a mixture of CaCl2-EtOH-H2O, that is less expensive than lithium bromide. The dissolved solutions were dialyzed against either water or urea solution with a stepwise decrease in concentration. When the steps of 4 M-2 M-1 M-0 M urea (referred to as silk-TS-4210) were adopted, the purified silk fibroin had smaller aggregates (<10 nm), similar average molecular weight (225 kDa) and a lower content of β-sheet (∼15%) compared to the sample processing methods (silk-TS-210, 10, 0) studied here. This outcome was close to the fibroin purified by the lithium bromide (silk-Li-0) method. Polyvinyl alcohol-emulsified silk microspheres generated using the purified solution had a similar size distribution and morphology when compared to lithium bromide dissolved solutions, while glycerol-blended silk films showed different mechanical properties. The silk-Li-0 generated films with the highest breaking strength (5.7 MPa ± 0.3) while the silk-TS-4210 had the highest extension at break (215.1% ± 12.5). The films prepared from silk-TS-4210 were cytocompatible to support the adhesion and proliferation of human mesenchymal stem cells, with improvements compared to the other samples likely due to the porous morphology of these films. © The Author(s) 2016.
Biotechnology and Composite Materials
1993-04-01
protein fibroin which are glued together by the protein sericin . Many other insects produce silk, most notably spiders. Spider silks Zre proteins with...silk is boiled to remove the soluble sticky sericin protein, and the remaining fibroin portion of the silk is then unwound and used as silk fiber. Orb
ERIC Educational Resources Information Center
Vollrath, Fritz
1992-01-01
Compares the attributes of the silk from spiders with those of the commercially harvested silk from silkworms. Discusses the evolution, design, and effectiveness of spider webs; the functional mechanics of the varieties of silk that can be produced by the same spider; and the composite, as well as molecular, structure of spider silk thread. (JJK)
Hybrid scaffolds based on PLGA and silk for bone tissue engineering.
Sheikh, Faheem A; Ju, Hyung Woo; Moon, Bo Mi; Lee, Ok Joo; Kim, Jung-Ho; Park, Hyun Jung; Kim, Dong Wook; Kim, Dong-Kyu; Jang, Ji Eun; Khang, Gilson; Park, Chan Hum
2016-03-01
Porous silk scaffolds, which are considered to be natural polymers, cannot be used alone because they have a long degradation rate, which makes it difficult for them to be replaced by the surrounding tissue. Scaffolds composed of synthetic polymers, such as PLGA, have a short degradation rate, lack hydrophilicity and their release of toxic by-products makes them difficult to use. The present investigations aimed to study hybrid scaffolds fabricated from PLGA, silk and hydroxyapatite nanoparticles (Hap NPs) for optimized bone tissue engineering. The results from variable-pressure field emission scanning electron microscopy (VP-FE-SEM), equipped with EDS, confirmed that the fabricated scaffolds had a porous architecture, and the location of each component present in the scaffolds was examined. Contact angle measurements confirmed that the introduction of silk and HAp NPs helped to change the hydrophobic nature of PLGA to hydrophilic, which is the main constraint for PLGA used as a biomaterial. Thermo-gravimetric analysis (TGA) and FT-IR spectroscopy confirmed thermal decomposition and different vibrations caused in functional groups of compounds used to fabricate the scaffolds, which reflected improvement in their mechanical properties. After culturing osteoblasts for 1, 7 and 14 days in the presence of scaffolds, their viability was checked by MTT assay. The fluorescent microscopy results revealed that the introduction of silk and HAp NPs had a favourable impact on the infiltration of osteoblasts. In vivo experiments were conducted by implanting scaffolds in rat calvariae for 4 weeks. Histological examinations and micro-CT scans from these experiments revealed beneficial attributes offered by silk fibroin and HAp NPs to PLGA-based scaffolds for bone induction. Copyright © 2015 John Wiley & Sons, Ltd.
Recombinant DNA production of spider silk proteins
Tokareva, Olena; Michalczechen-Lacerda, Valquíria A; Rech, Elíbio L; Kaplan, David L
2013-01-01
Spider dragline silk is considered to be the toughest biopolymer on Earth due to an extraordinary combination of strength and elasticity. Moreover, silks are biocompatible and biodegradable protein-based materials. Recent advances in genetic engineering make it possible to produce recombinant silks in heterologous hosts, opening up opportunities for large-scale production of recombinant silks for various biomedical and material science applications. We review the current strategies to produce recombinant spider silks. PMID:24119078
Facts and myths of antibacterial properties of silk.
Kaur, Jasjeet; Rajkhowa, Rangam; Afrin, Tarannum; Tsuzuki, Takuya; Wang, Xungai
2014-03-01
Silk cocoons provide protection to silkworm from biotic and abiotic hazards during the immobile pupal phase of the lifecycle of silkworms. Protection is particularly important for the wild silk cocoons reared in an open and harsh environment. To understand whether some of the cocoon components resist growth of microorganisms, in vitro studies were performed using gram negative bacteria Escherichia coli (E. coli) to investigate antibacterial properties of silk fiber, silk gum, and calcium oxalate crystals embedded inside some cocoons. The results show that the previously reported antibacterial properties of silk cocoons are actually due to residues of chemicals used to isolate/purify cocoon elements, and properly isolated silk fiber, gum, and embedded crystals free from such residues do not have inherent resistance to E. coli. This study removes the uncertainty created by previous studies over the presence of antibacterial properties of silk cocoons, particularly the silk gum and sericin. Copyright © 2013 Wiley Periodicals, Inc.
PEGylated Silk Nanoparticles for Anticancer Drug Delivery.
Wongpinyochit, Thidarat; Uhlmann, Petra; Urquhart, Andrew J; Seib, F Philipp
2015-11-09
Silk has a robust clinical track record and is emerging as a promising biopolymer for drug delivery, including its use as nanomedicine. However, silk-based nanomedicines still require further refinements for full exploitation of their potential; the application of "stealth" design principals is especially necessary to support their evolution. The aim of this study was to develop and examine the potential of PEGylated silk nanoparticles as an anticancer drug delivery system. We first generated B. mori derived silk nanoparticles by driving β-sheet assembly (size 104 ± 1.7 nm, zeta potential -56 ± 5.6 mV) using nanoprecipitation. We then surface grafted polyethylene glycol (PEG) to the fabricated silk nanoparticles and verified the aqueous stability and morphology of the resulting PEGylated silk nanoparticles. We assessed the drug loading and release behavior of these nanoparticles using clinically established and emerging anticancer drugs. Overall, PEGylated silk nanoparticles showed high encapsulation efficiency (>93%) and a pH-dependent release over 14 days. Finally, we demonstrated significant cytotoxicity of drug loaded silk nanoparticles applied as single and combination nanomedicines to human breast cancer cells. In conclusion, these results, taken together with prior silk nanoparticle data, support a viable future for silk-based nanomedicines.
The role of capture spiral silk properties in the diversification of orb webs
Tarakanova, Anna; Buehler, Markus J.
2012-01-01
Among a myriad of spider web geometries, the orb web presents a fascinating, exquisite example in architecture and evolution. Orb webs can be divided into two categories according to the capture silk used in construction: cribellate orb webs (composed of pseudoflagelliform silk) coated with dry cribellate threads and ecribellate orb webs (composed of flagelliform silk fibres) coated by adhesive glue droplets. Cribellate capture silk is generally stronger but less-extensible than viscid capture silk, and a body of phylogenic evidence suggests that cribellate capture silk is more closely related to the ancestral form of capture spiral silk. Here, we use a coarse-grained web model to investigate how the mechanical properties of spiral capture silk affect the behaviour of the whole web, illustrating that more elastic capture spiral silk yields a decrease in web system energy absorption, suggesting that the function of the capture spiral shifted from prey capture to other structural roles. Additionally, we observe that in webs with more extensible capture silk, the effect of thread strength on web performance is reduced, indicating that thread elasticity is a dominant driving factor in web diversification. PMID:22896566
High-performance spider webs: integrating biomechanics, ecology and behaviour
Harmer, Aaron M. T.; Blackledge, Todd A.; Madin, Joshua S.; Herberstein, Marie E.
2011-01-01
Spider silks exhibit remarkable properties, surpassing most natural and synthetic materials in both strength and toughness. Orb-web spider dragline silk is the focus of intense research by material scientists attempting to mimic these naturally produced fibres. However, biomechanical research on spider silks is often removed from the context of web ecology and spider foraging behaviour. Similarly, evolutionary and ecological research on spiders rarely considers the significance of silk properties. Here, we highlight the critical need to integrate biomechanical and ecological perspectives on spider silks to generate a better understanding of (i) how silk biomechanics and web architectures interacted to influence spider web evolution along different structural pathways, and (ii) how silks function in an ecological context, which may identify novel silk applications. An integrative, mechanistic approach to understanding silk and web function, as well as the selective pressures driving their evolution, will help uncover the potential impacts of environmental change and species invasions (of both spiders and prey) on spider success. Integrating these fields will also allow us to take advantage of the remarkable properties of spider silks, expanding the range of possible silk applications from single threads to two- and three-dimensional thread networks. PMID:21036911
Effects of Japanese beetle (Coleoptera: Scarabaeidae) and silk clipping in field corn.
Steckel, Sandy; Stewart, S D; Tindall, K V
2013-10-01
Japanese beetle (Popillia japonica Newman) is an emerging silk-feeding insect found in fields in the lower Corn Belt and Midsouthern United States. Studies were conducted in 2010 and 2011 to evaluate how silk clipping in corn affects pollination and yield parameters. Manually clipping silks once daily had modest effects on yield parameters. Sustained clipping by either manually clipping silks three times per day or by caging Japanese beetles onto ears affected total kernel weight if it occurred during early silking (R1 growth stage). Manually clipping silks three times per day for the first 5 d of silking affected the number of kernels per ear, total kernel weight, and the weight of individual kernels. Caged beetles fed on silks and, depending on the number of beetles caged per ear, reduced the number of kernels per ear. Caging eight beetles per ear significantly reduced total kernel weight compared with noninfested ears. Drought stress before anthesis appeared to magnify the impact of silk clipping by Japanese beetles. There was evidence of some compensation for reduced pollination by increasing the size of pollinated kernels within the ear. Our results showed that it requires sustained silk clipping during the first week of silking to have substantial impacts on pollination and yield parameters, at least under good growing conditions. Some states recommend treating for Japanese beetle when three Japanese beetles per ear are found, silks are clipped to < 13 mm, and pollination is < 50% complete, and that recommendation appears to be adequate.
Controlled Release from Recombinant Polymers
Price, Robert; Poursaid, Azadeh; Ghandehari, Hamidreza
2014-01-01
Recombinant polymers provide a high degree of molecular definition for correlating structure with function in controlled release. The wide array of amino acids available as building blocks for these materials lend many advantages including biorecognition, biodegradability, potential biocompatibility, and control over mechanical properties among other attributes. Genetic engineering and DNA manipulation techniques enable the optimization of structure for precise control over spatial and temporal release. Unlike the majority of chemical synthetic strategies used, recombinant DNA technology has allowed for the production of monodisperse polymers with specifically defined sequences. Several classes of recombinant polymers have been used for controlled drug delivery. These include, but are not limited to, elastin-like, silk-like, and silk-elastinlike proteins, as well as emerging cationic polymers for gene delivery. In this article, progress and prospects of recombinant polymers used in controlled release will be reviewed. PMID:24956486
2005-06-01
control number. 1 . REPORT DATE JUN 2005 2. REPORT TYPE 3 . DATES COVERED 00-00-2005 to 00-00-2005 4. TITLE AND SUBTITLE The New Global Information...The New Global Information Economy Tim Bass SilkRoad , Inc. Implications and Recommendations for Service-Oriented Architectures (SOAs) ICCRTS 16...June 2005 © 2005, SilkRoad , Inc. Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection of information is
Silk constructs for delivery of muskuloskeletal therapeutics
Meinel, Lorenz; Kaplan, David L.
2012-01-01
Silk fibroin (SF) is a biopolymer with distinguishing features from many other bio- as well as synthetic polymers. From a biomechanical and drug delivery perspective, SF combines remarkable versatility for scaffolding (solid implants, hydrogels, threads, solutions), with advanced mechanical properties and good stabilization and controlled delivery of entrapped protein and small molecule drugs, respectively. It is this combination of mechanical and pharmaceutical features which render SF so exciting for biomedical applications. his pattern along with the versatility of this biopolymer have been translated into progress for musculoskeletal applications. We review the use and potential of silk fibroin for systemic and localized delivery of therapeutics in diseases affecting the musculoskeletal system. We also present future directions for this biopolymer as well as the necessary research and development steps for their achievement. PMID:22522139
Genetic engineered color silk: fabrication of a photonics material through a bioassisted technology.
Shimizu, Katsuhiko
2018-05-15
Silk produced by the silkworm Bombyx mori is an attractive material because of its luster, smooth and soft texture, conspicuous mechanical strength, good biocompatibility, slow biodegradation, and carbon neutral synthesis. Silkworms have been domesticated and bred for production of better quality and quantity of silk, resulting in the development of sericulture and the textile industry. Silk is generally white, so dyeing is required to obtain colored fiber. However, the dyeing process involves harsh conditions and generates a large volume of waste water, which have environmentally and economically negative impacts. Although some strains produce cocoons that contain pigments derived from the mulberry leaves that they eat, the pigments are distributed in the sericin layer and are lost during gumming. In trials for production of colored silk by feeding silkworms on diets containing dyes, only limited species of dye molecules were incorporated into the silk threads. A method for the generation of transgenic silkworm was established in conjunction with the discovery of green fluorescent protein (GFP), and silkworms carrying the GFP gene spun silk threads that formed cocoons that glowed bright green and still retained the original properties of silk. A wide range of color variation of silk threads has been obtained by replacing the GFP gene with the genes of other fluorescent proteins chosen from the fluorescent protein palette. The genetically modified silk with photonic properties can be processed to form various products including linear threads, 2D fabrics, and 3D materials. The transgenic colored silk could be economically advantageous due to addition of a new value to silk and reduction of cost for water waste, and environmentally preferable for saving water. Here, I review the literature regarding the production methods of fluorescent silk from transgenic silkworms and present examples of genetically modified color silk.
Curcumin-functionalized silk biomaterials for anti-aging utility.
Yang, Lei; Zheng, Zhaozhu; Qian, Cheng; Wu, Jianbing; Liu, Yawen; Guo, Shaozhe; Li, Gang; Liu, Meng; Wang, Xiaoqin; Kaplan, David L
2017-06-15
Curcumin is a natural antioxidant that is isolated from turmeric (Curcuma longa) and exhibits strong free radical scavenging activity, thus functional for anti-aging. However, poor stability and low solubility of curcumin in aqueous conditions limit its biomedical applications. Previous studies have shown that the anti-oxidation activity of curcumin embedded in silk fibroin films could be well preserved, resulting in the promoted adipogenesis from human mesenchymal stem cells (hMSCs) cultured on the surface of the films. In the present study, curcumin was encapsulated in both silk fibroin films (silk/cur films) and nanoparticles (silk/cur NPs), and their anti-aging effects were compared with free curcumin in solution, with an aim to elucidate the mechanism of anti-aging of silk-associated curcumin and to better serve biomedical applications in the future. The morphology and structure of silk/cur film and silk/cur NP were characterized using SEM, FTIR and DSC, indicating characteristic stable beta-sheet structure formation in the materials. Strong binding of curcumin molecules to the beta-sheet domains of silk fibroin resulted in the slow release of curcumin with well-preserved activity from the materials. For cell aging studies, rat bone marrow mesenchymal stem cells (rBMSCs) were cultured in the presence of free curcumin (FC), silk/cur film and silk/cur NP, and cell proliferation and markers of aging (P53, P16, HSP70 gene expression and β-Galactosidase activity) were examined. The results indicated that cell aging was retarded in all FC, silk/cur NP and silk/cur film samples, with the silk-associated curcumin superior to the FC. Copyright © 2017 Elsevier Inc. All rights reserved.
Environmentally friendly surface modification of silk fiber: Chitosan grafting and dyeing
NASA Astrophysics Data System (ADS)
Davarpanah, Saideh; Mahmoodi, Niyaz Mohammad; Arami, Mokhtar; Bahrami, Hajir; Mazaheri, Firoozmehr
2009-01-01
In this paper, the surface modification of silk fiber using anhydrides to graft the polysaccharide chitosan and dyeing ability of the grafted silk were studied. Silk fiber was degummed and acylated with two anhydrides, succinic anhydride (SA) and phthalic anhydride (PA), in different solvents (dimethyl sulfoxide (DMSO) and N, N-dimethyl formamide (DMF)). The effects of anhydrides, solvents, anhydride concentration, liquor ratio (L:R) and reaction time on acylation of silk were studied. The polysaccharide chitosan was grafted to the acylated silk fiber and dyed by acid dye (Acid Black NB.B). The effects of pH, chitosan concentration, and reaction time on chitosan grafting of acylated silk were investigated. The physical properties show sensible changes regardless of weight gain. Scanning electron microscopy (SEM) analysis showed the presence of foreign materials firmly attached to the surface of silk. FTIR spectroscopy provided evidence that chitosan was grafted onto the acylated silk through the formation of new covalent bonds. The dyeing of the chitosan grafted-acylated silk fiber indicated the higher dye ability in comparison to the acylated and degummed silk samples. The mechanism of chitosan grafting over degummed silk through anhydride linkage was proposed. The findings of this research support the potential production of new environmentally friendly textile fibers. It is worthwhile to mention that the grafted samples have antibacterial potential due to the antibacterial property of chitosan molecules.
Cell proliferation by silk gut incorporating FGF-2 protein microcrystals.
Kotani, Eiji; Yamamoto, Naoto; Kobayashi, Isao; Uchino, Keiro; Muto, Sayaka; Ijiri, Hiroshi; Shimabukuro, Junji; Tamura, Toshiki; Sezutsu, Hideki; Mori, Hajime
2015-06-08
Silk gut processed from the silk glands of the silkworm could be an ideal biodegradable carrier for cell growth factors. We previously demonstrated that polyhedra, microcrystals of Cypovirus 1 polyhedrin, can serve as versatile carrier proteins. Here, we report the generation of a transgenic silkworm that expresses polyhedrin together with human basic fibroblast growth factor (FGF-2) in its posterior silk glands to utilize silk gut as a proteinaceous carrier to protect and slowly release active cell growth factors. In the posterior silk glands, polyhedrin formed polyhedral microcrystals, and FGF-2 became encapsulated within the polyhedra due to a polyhedron-immobilization signal. Silk gut powder prepared from posterior silk glands containing polyhedron-encapsulated FGF-2 stimulated the phosphorylation of p44/p42 MAP kinase and induced the proliferation of serum-starved NIH3T3 cells by releasing bioactive FGF-2. Even after a one-week incubation at 25 °C, significantly higher biological activity of FGF-2 was observed for silk gut powder incorporating polyhedron-encapsulated FGF-2 relative to silk gut powder with non-encapsulated FGF-2. Our results demonstrate that posterior silk glands incorporating polyhedron-encapsulated FGF-2 are applicable to the preparation of biodegradable silk gut, which can protect and release FGF-2 that is produced in a virus- and serum-free expression system with significant application potential.
Bosetti, M; Boccafoschi, F; Calarco, A; Leigheb, M; Gatti, S; Piffanelli, V; Peluso, G; Cannas, M
2008-01-01
The aim of this study was to design a functional bio-engineered material to be used as scaffold for autologous mesenchymal stem cells in ligament tissue engineering. Polyelectrolyte modified HEMA hydrogel (HEMA-co-METAC), applied as coating on silk fibroin fibres, has been formulated in order to take advantage of the biocompatibility of the polyelectrolyte by increasing its mechanical properties with silk fibres. Human bone marrow mesenchymal stem cells behaviour on such reinforced polyelectrolyte has been studied by evaluating cell morphology, cell number, attachment, spreading and proliferation together with collagen matrix production and its mRNA expression. Silk fibroin fibres matrices with HEMA-co-METAC coating exhibited acceptable mechanical behaviour compared to the natural ligament, good human mesenchymal stem cell adhesion and with mRNA expression studies higher levels of collagen types I and III expression when compared to control cells on polystyrene. These data indicate high expression of mRNA for proteins responsible for the functional characteristics of the ligaments and suggest a potential for use of this biomaterial in ligament tissue-engineering applications.
Principal Components of Thermography analyses of the Silk Tomb, Petra (Jordan)
NASA Astrophysics Data System (ADS)
Gomez-Heras, Miguel; Alvarez de Buergo, Monica; Fort, Rafael
2015-04-01
This communication presents the results of an active thermography survey of the Silk Tomb, which belongs to the Royal Tombs compound in the archaeological city of Petra in Jordan. The Silk Tomb is carved in the variegated Palaeozoic Umm Ishrin sandstone and it is heavily backweathered due to surface runoff from the top of the cliff where it is carved. Moreover, the name "Silk Tomb" was given because of the colourful display of the variegated sandstone due to backweathering. A series of infrared images were taken as the façade was heated by sunlight to perform a Principal Component of Thermography analyses with IR view 1.7.5 software. This was related to indirect moisture measurements (percentage of Wood Moisture Equivalent) taken across the façade, by means of a Protimeter portable moisture meter. Results show how moisture retention is deeply controlled by lithological differences across the façade. Research funded by Geomateriales 2 S2013/MIT-2914 and CEI Moncloa (UPM, UCM, CSIC) through a PICATA contract and the equipment from RedLAbPAt Network
Kronenberger, Katrin; Dicko, Cedric; Vollrath, Fritz
2012-01-01
The discovery of a novel silk production system in a marine amphipod provides insights into the wider potential of natural silks. The tube-building corophioid amphipod Crassicorophium bonellii produces from its legs fibrous, adhesive underwater threads that combine barnacle cement biology with aspects of spider silk thread extrusion spinning. We characterised the filamentous silk as a mixture of mucopolysaccharides and protein deriving from glands representing two distinct types. The carbohydrate and protein silk secretion is dominated by complex β-sheet structures and a high content of charged amino acid residues. The filamentous secretion product exits the gland through a pore near the tip of the secretory leg after having moved through a duct, which subdivides into several small ductules all terminating in a spindle-shaped chamber. This chamber communicates with the exterior and may be considered the silk reservoir and processing/mixing space, in which the silk is mechanically and potentially chemically altered and becomes fibrous. We assert that further study of this probably independently evolved, marine arthropod silk processing and secretion system can provide not only important insights into the more complex arachnid and insect silks but also into crustacean adhesion cements.
You, Qiushi; Li, Qingqing; Zheng, Hailing; Hu, Zhiwen; Zhou, Yang; Wang, Bing
2017-09-06
Recently, much interest has been paid to the separation of silk produced by Bombyx mori from silk produced by other species and tracing the beginnings of silk cultivation from wild silk exploitation. In this paper, significant differences between silks from Bombyx mori and other species were found by microscopy and spectroscopy, such as morphology, secondary structure, and amino acid composition. For further accurate identification, a diagnostic antibody was designed by comparing the peptide sequences of silks produced by Bombyx mori and other species. The results of the noncompetitive indirect enzyme-linked immunosorbent assay (ELISA) indicated that the antibody that showed good sensitivity and high specificity can definitely discern silk produced by Bombyx mori from silk produced by wild species. Thus, the antibody-based immunoassay has the potential to be a powerful tool for tracing the beginnings of silk cultivation. In addition, combining the sensitive, specific, and convenient ELISA technology with other conventional methods can provide more in-depth and accurate information for species identification.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okada, Shoko; Weisman, Sarah; Trueman, Holly E.
Aposthonia gurneyi, an Australian webspinner species, is a primitive insect that constructs and lives in a silken tunnel which screens it from the attentions of predators. The insect spins silk threads from many tiny spines on its forelegs to weave a filmy sheet. We found that the webspinner silk fibers have a mean diameter of only 65 nm, an order of magnitude smaller than any previously reported insect silk. The purpose of such fine silk may be to reduce the metabolic cost of building the extensive tunnels. At the molecular level, the A. gurneyi silk has a predominantly beta-sheet proteinmore » structure. The most abundant clone in a cDNA library produced from the webspinner silk glands encoded a protein with extensive glycine-serine repeat regions. The GSGSGS repeat motif of the A. gurneyi silk protein is similar to the well-known GAGAGS repeat motif found in the heavy fibroin of silkworm silk, which also has beta-sheet structure. As the webspinner silk gene is unrelated to the silk gene of the phylogenetically distant silkworm, this is a striking example of convergent evolution.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cebe, Peggy; Partlow, Benjamin P.; Kaplan, David L.
Using fast scanning calorimetry (FSC), we investigated the glass transition and crystal melting of samples of B. mori silk fibroin containing Silk I and/or Silk II crystals. Due to the very short residence times at high temperatures during such measurements, thermal decomposition of silk protein can be significantly suppressed. FSC was performed at 2000 K/s using the Mettler Flash DSC1 on fibroin films with masses around 130–270 ng. Films were prepared with different crystalline fractions (ranging from 0.26 to 0.50) and with different crystal structures (Silk I, Silk II, or mixed) by varying the processing conditions. These included water annealingmore » at different temperatures, exposure to 50% MeOH in water, or autoclaving. The resulting crystal structure was examined using wide angle X-ray scattering. Degree of crystallinity was evaluated from Fourier transform infrared (FTIR) spectroscopy and from analysis of the heat capacity increment at the glass transition temperature. Silk fibroin films prepared by water annealing at 25 °C were the least crystalline and had Silk I structure. FTIR and FSC studies showed that films prepared by autoclaving or 50% MeOH exposure were the most crystalline and had Silk II structure. Intermediate crystalline fraction and mixed Silk I/Silk II structures were found in films prepared by water annealing at 37 °C. FSC results indicate that Silk II crystals exhibit endotherms of narrower width and have higher mean melting temperature Tm(II) = 351 ± 2.6 °C, compared to Silk I crystals which melt at Tm(I) = 292 ± 3.8 °C. Films containing mixed Silk I/Silk II structure showed two clearly separated endothermic peaks. Evidence suggests that the two types of crystals melt separately and do not thermally interconvert on the extremely short time scale (0.065 s between onset and end of melting) of the FSC experiment.« less
Variation in Protein Intake Induces Variation in Spider Silk Expression
Blamires, Sean J.; Wu, Chun-Lin; Tso, I-Min
2012-01-01
Background It is energetically expensive to synthesize certain amino acids. The proteins (spidroins) of spider major ampullate (MA) silk, MaSp1 and MaSp2, differ in amino acid composition. Glutamine and proline are prevalent in MaSp2 and are expensive to synthesize. Since most orb web spiders express high proline silk they might preferentially attain the amino acids needed for silk from food and shift toward expressing more MaSp1 in their MA silk when starved. Methodology/Principal Findings We fed three spiders; Argiope aetherea, Cyrtophora moluccensis and Leucauge blanda, high protein, low protein or no protein solutions. A. aetherea and L. blanda MA silks are high in proline, while C. moluccesnsis MA silks are low in proline. After 10 days of feeding we determined the amino acid compositions and mechanical properties of each species' MA silk and compared them between species and treatments with pre-treatment samples, accounting for ancestry. We found that the proline and glutamine of A. aetherea and L. blanda silks were affected by protein intake; significantly decreasing under the low and no protein intake treatments. Glutmaine composition in C. moluccensis silk was likewise affected by protein intake. However, the composition of proline in their MA silk was not significantly affected by protein intake. Conclusions Our results suggest that protein limitation induces a shift toward different silk proteins with lower glutamine and/or proline content. Contradictions to the MaSp model lie in the findings that C. moluccensis MA silks did not experience a significant reduction in proline and A. aetherea did not experience a significant reduction in serine on low/no protein. The mechanical properties of the silks could not be explained by a MaSp1 expressional shift. Factors other than MaSp expression, such as the expression of spidroin-like orthologues, may impact on silk amino acid composition and spinning and glandular processes may impact mechanics. PMID:22363691
Multiscale mechanisms of nutritionally induced property variation in spider silks.
Blamires, Sean J; Nobbs, Madeleine; Martens, Penny J; Tso, I-Min; Chuang, Wei-Tsung; Chang, Chung-Kai; Sheu, Hwo-Shuenn
2018-01-01
Variability in spider major ampullate (MA) silk properties at different scales has proven difficult to determine and remains an obstacle to the development of synthetic fibers mimicking MA silk performance. A multitude of techniques may be used to measure multiscale aspects of silk properties. Here we fed five species of Araneoid spider solutions that either contained protein or were protein deprived and performed silk tensile tests, small and wide-angle X-ray scattering (SAXS/WAXS), amino acid composition analyses, and silk gene expression analyses, to resolve persistent questions about how nutrient deprivation induces variations in MA silk mechanical properties across scales. Our analyses found that the properties of each spider's silk varied differently in response to variations in their protein intake. We found changes in the crystalline and non-crystalline nanostructures to play specific roles in inducing the property variations we found. Across treatment MaSp expression patterns differed in each of the five species. We found that in most species MaSp expression and amino acid composition variations did not conform with our predictions based on a traditional MaSp expression model. In general, changes to the silk's alanine and proline compositions influenced the alignment of the proteins within the silk's amorphous region, which influenced silk extensibility and toughness. Variations in structural alignment in the crystalline and non-crystalline regions influenced ultimate strength independent of genetic expression. Our study provides the deepest insights thus far into the mechanisms of how MA silk properties vary from gene expression to nanostructure formations to fiber mechanics. Such knowledge is imperative for promoting the production of synthetic silk fibers.
Rodriguez-Nogales, Alba; Algieri, Francesca; De Matteis, Laura; Lozano-Perez, A. Abel; Garrido-Mesa, Jose; Vezza, Teresa; de la Fuente, J M.; Cenis, Jose Luis; Gálvez, Julio; Rodriguez-Cabezas, Maria Elena
2016-01-01
Background Current treatment of inflammatory bowel disease is based on the use of immunosuppressants or anti-inflammatory drugs, which are characterized by important side effects that can limit their use. Previous research has been performed by administering these drugs as nanoparticles that target the ulcerated intestinal regions and increase their bioavailability. It has been reported that silk fibroin can act as a drug carrier and shows anti-inflammatory properties. Purpose This study was designed to enhance the interaction of the silk fibroin nanoparticles (SFNs) with the injured intestinal tissue by functionalizing them with the peptide motif RGD (arginine–glycine–aspartic acid) and to evaluate the intestinal anti-inflammatory properties of these RGD-functionalized silk fibroin nanoparticles (RGD-SFNs) in the trinitrobenzenesulfonic acid (TNBS) model of rat colitis. Materials and methods SFNs were prepared by nanoprecipitation in methanol, and the linear RGD peptide was linked to SFNs using glutaraldehyde as the crosslinker. The SFNs (1 mg/rat) and RGD-SFNs (1 mg/rat) were administered intrarectally to TNBS-induced colitic rats for 7 days. Results The SFN treatments ameliorated the colonic damage, reduced neutrophil infiltration, and improved the compromised oxidative status of the colon. However, only the rats treated with RGD-SFNs showed a significant reduction in the expression of different pro-inflammatory cytokines (interleukin [IL]-1β, IL-6, and IL-12) and inducible nitric oxide synthase in comparison with the TNBS control group. Moreover, the expression of both cytokine-induced neutrophil chemoattractant-1 and monocyte chemotactic protein-1 was significantly diminished by the RGD-SFN treatment. However, both treatments improved the intestinal wall integrity by increasing the gene expression of some of its markers (trefoil factor-3 and mucins). Conclusion SFNs displayed intestinal anti-inflammatory properties in the TNBS model of colitis in rats, which were improved by functionalization with the RGD peptide. PMID:27877040
Structural Analysis of Hand Drawn Bumblebee Bombus terrestris Silk.
Woodhead, Andrea L; Sutherland, Tara D; Church, Jeffrey S
2016-07-20
Bombus terrestris, commonly known as the buff-tailed bumblebee, is native to Europe, parts of Africa and Asia. It is commercially bred for use as a pollinator of greenhouse crops. Larvae pupate within a silken cocoon that they construct from proteins produced in modified salivary glands. The amino acid composition and protein structure of hand drawn B. terrestris, silk fibres was investigated through the use of micro-Raman spectroscopy. Spectra were obtained from single fibres drawn from the larvae salivary gland at a rate of 0.14 cm/s. Raman spectroscopy enabled the identification of poly(alanine), poly(alanine-glycine), phenylalanine, tryptophan, and methionine, which is consistent with the results of amino acid analysis. The dominant protein conformation was found to be coiled coil (73%) while the β-sheet content of 10% is, as expected, lower than those reported for hornets and ants. Polarized Raman spectra revealed that the coiled coils were highly aligned along the fibre axis while the β-sheet and random coil components had their peptide carbonyl groups roughly perpendicular to the fibre axis. The protein orientation distribution is compared to those of other natural and recombinant silks. A structural model for the B. terrestris silk fibre is proposed based on these results.
Ma, Sanyuan; Xia, Xiaojuan; Li, Yufeng; Sun, Le; Liu, Yue; Liu, Yuanyuan; Wang, Xiaogang; Shi, Run; Chang, Jiasong; Zhao, Ping; Xia, Qingyou
2017-08-01
Various genetically modified bioreactor systems have been developed to meet the increasing demands of recombinant proteins. Silk gland of Bombyx mori holds great potential to be a cost-effective bioreactor for commercial-scale production of recombinant proteins. However, the actual yields of proteins obtained from the current silk gland expression systems are too low for the proteins to be dissolved and purified in a large scale. Here, we proposed a strategy that reducing endogenous sericin proteins would increase the expression yield of foreign proteins. Using transgenic RNA interference, we successfully reduced the expression of BmSer1 to 50%. A total 26 transgenic lines expressing Discosoma sp. red fluorescent protein (DsRed) in the middle silk gland (MSG) under the control of BmSer1 promoter were established to analyze the expression of recombinant. qRT-PCR and western blotting showed that in BmSer1 knock-down lines, the expression of DsRed had significantly increased both at mRNA and protein levels. We did an additional analysis of DsRed/BmSer1 distribution in cocoon and effect of DsRed protein accumulation on the silk fiber formation process. This study describes not only a novel method to enhance recombinant protein expression in MSG bioreactor, but also a strategy to optimize other bioreactor systems.
Biodegradable silk catheters for the delivery of therapeutics across anatomical repair sites.
Brown, Joseph E; Tozzi, Lorenzo; Schilling, Benjamin; Kelmendi-Doko, Arta; Truong, April B; Rodriguez, Maria J; Gil, Eun Seok; Sucsy, Robert; Valentin, Jolene E; Philips, Brian J; Marra, Kacey G; Rubin, J Peter; Kaplan, David L
2018-04-26
Biodegradable silk catheters for the delivery of therapeutics are designed with a focus on creating porous gradients that can direct the release of molecules away from the implantation site. Though suitable for a range of applications, these catheters are designed for drug delivery to transplanted adipose tissue in patients having undergone a fat grafting procedure. A common complication for fat grafts is the rapid reabsorption of large volume adipose transplants. In order to prolong volume retention, biodegradable catheters can be embedded into transplanted tissue to deliver nutrients, growth factors or therapeutics to improve adipocyte viability, proliferation, and ultimately extend volume retention. Two fabrication methods are developed: a silk gel-spinning technique, which uses a novel flash-freezing step to induce high porosity throughout the bulk of the tube, and a dip-coating process using silk protein solutions doped with a water soluble porogen. Increased porosity aids in the diffusion of drug through the silk tube in a controllable way. Additionally, we interface the porous tubes with ALZET osmotic pumps for implantation into a subcutaneous nude mouse model. The work described herein will discuss the processing parameters as well as the interfacing between pump and cargo therapeutic and the resulting release profiles. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2018. © 2018 Wiley Periodicals, Inc.
Effect of silk protein surfactant on silk degumming and its properties.
Wang, Fei; Cao, Ting-Ting; Zhang, Yu-Qing
2015-10-01
The silk protein surfactant (SPS) first used as a silk degumming agent in this study is an amino acid-type anionic surfactant that was synthesized using silk fibroin amino acids and lauroyl chloride. We studied it systematically in comparison with the traditional degumming methods such as sodium carbonate (Na2CO3) and neutral soap (NS). The experimental results showed that the sericin can be completely removed from the silk fibroin fiber after boiling the fibers three times for 30 min and using a bath ratio of 1:80 (g/mL) and a concentration of 0.2% SPS in an aqueous solution. The results of the tensile properties, thermal analysis, and SEM all show that SPS is similar to the NS, far superior to Na2CO3. In short, SPS may be used as an environmentally friendly silk degumming/refining agent in the silk textile industry and in the manufacture of silk floss quilts. Copyright © 2015 Elsevier B.V. All rights reserved.
Silk protein aggregation kinetics revealed by Rheo-IR.
Boulet-Audet, Maxime; Terry, Ann E; Vollrath, Fritz; Holland, Chris
2014-02-01
The remarkable mechanical properties of silk fibres stem from a multi-scale hierarchical structure created when an aqueous protein "melt" is converted to an insoluble solid via flow. To directly relate a silk protein's structure and function in response to flow, we present the first application of a Rheo-IR platform, which couples cone and plate rheology with attenuated total reflectance infrared spectroscopy. This technique provides a new window into silk processing by linking shear thinning to an increase in molecular alignment, with shear thickening affecting changes in the silk protein's secondary structure. Additionally, compared to other static characterization methods for silk, Rheo-IR proved particularly useful at revealing the intrinsic difference between natural (native) and reconstituted silk feedstocks. Hence Rheo-IR offers important novel insights into natural silk processing. This has intrinsic academic merit, but it might also be useful when designing reconstituted silk analogues alongside other polymeric systems, whether natural or synthetic. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Zheng, Qin; Wu, Xiaofeng; Zheng, Hailing; Zhou, Yang
2015-05-01
We report the preparation of a specific fibroin antibody and its use for the identification of unearthed ancient silk relics. Based on the 12-amino-acid repeat sequence "GAGAGSGAGAGS", which is found in fibroin of the silkworm Bombyx mori, a specific antibody against fibroin was prepared in rabbits through peptide synthesis and carrier-protein coupling. This antibody was highly specific for fibroin found in silk. Using this antibody we have successfully identified four silk samples from different time periods. Our results reveal, for the first time, a method capable of detecting silk from a few milligrams of archaeological fabric that has been buried for thousands of years, confirming that the ancient practice of wearing silk products while praying for rebirth dated back to at least 400 BCE. This method also complements current approaches in silk detection, especially for the characterization of poorly preserved silks, promoting the investigation of silk origins and of ancient clothing cultures.
Highly water-absorbing silk yarn with interpenetrating network via in situ polymerization.
Lee, Ka I; Wang, Xiaowen; Guo, Xia; Yung, Ka-Fu; Fei, Bin
2017-02-01
Silk was modified via in situ polymerization of two monomers acrylamide and sodium acrylate by swelling in an effective LiBr dissolution system. Swelling of natural silks in LiBr solutions of low concentration was clearly observed under optical microscope, and their conformational changes were revealed by X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. Dissolution tests and FTIR spectra of these modified silks suggested the presence of interpenetrating network of polyacrylamide and poly(sodium acrylate) in the silk yarns. These modified silks exhibited superior water absorption to that of raw silk and greatly improved mechanical properties in both dry and wet states. These novel modified silks also showed low cytotoxicity towards skin keratinocytes, having potential applications in biomedical textiles. This modification method by in situ polymerization after swelling in LiBr provides a new route to highly enhance the properties and performance of silk for various applications. Copyright © 2016 Elsevier B.V. All rights reserved.
Dong, Yang; Dai, Fangyin; Ren, Yandong; Liu, Hui; Chen, Lei; Yang, Pengcheng; Liu, Yanqun; Li, Xin; Wang, Wen; Xiang, Hui
2015-03-17
Silk has numerous unique properties that make it a staple of textile manufacturing for several thousand years. However, wider applications of silk in modern have been stalled due to limitations of traditional silk produced by Bombyx mori. While silk is commonly produced by B. mori, several wild non-mulberry silkmoths--especially members of family Saturniidae--produce silk with superior properties that may be useful for wider applications. Further utilization of such silks is hampered by the non-domestication status or limited culturing population of wild silkworms. To date there is insufficient basic genomic or transcriptomic data on these organisms or their silk production. We sequenced and compared the transcriptomes of silk glands of six Saturniidae wild silkmoth species through next-generation sequencing technology, identifying 37758 ~ 51734 silkmoth unigenes, at least 36.3% of which are annotated with an e-value less than 10(-5). Sequence analyses of these unigenes identified a batch of genes specific to Saturniidae that are enriched in growth and development. Analyses of silk proteins including fibroin and sericin indicate intra-genus conservation and inter-genus diversification of silk protein features among the wild silkmoths, e.g., isoelectric points, hydrophilicity profile and amino acid composition in motifs of silk H-fibroin. Interestingly, we identified p25 in two of the silkmoths, which were previously predicted to be absent in Saturniidae. There are rapid evolutionary changes in sericin proteins, which might account for the highly heterogeneity of sericin in Saturniidae silkmoths. Within the six sikmoths, both colored-cocoon silkmoth specific transcripts and differentially expressed genes between the colored-cocoon and non-colored-cocoon silkmoths are significantly enriched in catalytic activity, especially transferase activity, suggesting potentially viable targets for future gene mining or genetic manipulation. Our results characterize novel and potentially valuable gene resources of saturniid silkmoths that may facilitate future genetic improvement and modification of mulberry silkworms. Our results suggest that the disparate features of silk--coloration, retention, strength, etc. --are likely not only due to silk proteins, but also to the environment of silk assembly, and more specifically, that stable silk coloration exhibited by some Saturniidae silkmoths may be attributable to active catalytic progress in pigmentation.
Xu, Hanfu
2014-10-01
The silk gland of silkworm Bombyx mori, is one of the most important organs that has been fully studied and utilized so far. It contributes finest silk fibers to humankind. The silk gland has excellent ability of synthesizing silk proteins and is a kind tool to produce some useful recombinant proteins, which can be widely used in the biological, biotechnical and pharmaceutical application fields. It's a very active area to express recombinant proteins using the silk gland as a bioreactor, and great progress has been achieved recently. This review recapitulates the progress of producing recombinant proteins and silk-based biomaterials in the silk gland of silkworm in addition to the construction of expression systems. Current challenges and future trends in the production of valuable recombinant proteins using transgenic silkworms are also discussed.
X-ray investigation of cross-breed silk in cocoon, yarn and fabric forms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radhalakshmi, Y. C.; Kariappa,; Siddaraju, G. N.
2012-06-05
Recently Central Sericulture Research and Training Institute, Mysore developed many improved cross breeds and bivoltine hybrids. Newly developed cross breeds recorded fibre characteristics which are significantly superior over existing control hybrids. This aspect has been investigated using X-ray diffraction technique. We have employed line profile analysis to compute microstructural parameters. These parameters are compared with physical parameters of newly developed cross breed silk fibers for a better understanding of structure-property relation in these samples.
Dong, Zhaoming; Zhao, Ping; Wang, Chen; Zhang, Yan; Chen, Jianping; Wang, Xin; Lin, Ying; Xia, Qingyou
2013-11-01
Silkworms (Bombyx mori) produce massive amounts of silk proteins to make cocoons during the final stages of larval development. Although the major components, fibroin and sericin, have been the focus for a long time, few researchers have realized the complexity of the silk proteome. We collected seven kinds of silk fibers spun by silkworm larvae at different developmental stages: the silks spun by new hatched larvae, second instar day 0 larvae, third instar day 0 larvae, fourth instar day 0 larvae, and fourth instar molting larvae, the scaffold silk used to attach the cocoon to the substrate and the cocoon silk. Analysis by liquid chromatography-tandem mass spectrometry identified 500 proteins from the seven silks. In addition to the expected fibroins, sericins, and some known protease inhibitors, we also identified further protease inhibitors, enzymes, proteins of unknown function, and other proteins. Unsurprisingly, our quantitative results showed fibroins and sericins were the most abundant proteins in all seven silks. Except for fibroins and sericins, protease inhibitors, enzymes, and proteins of unknown function were more abundant than other proteins. We found significant change in silk protein compositions through development, being consistent with their different biological functions and complicated formation.
Hamilton, Diana C; Shih, Hank H; Schubert, Richard A; Michie, Sara A; Staats, Paul N; Kaplan, David L; Fontaine, Magali J
2017-03-01
The success of pancreatic islet (PI) transplantation is challenged by PI functional damage during the peritransplantation period. A silk-based encapsulation platform including mesenchymal stromal cells (MSCs) was evaluated for islet cell delivery in vivo. Islet equivalents (IEQs) were transplanted into the epididymal fat pads of mice with streptozotocin-induced diabetes. Three PI combinations were tested: (A) co-encapsulated in silk with MSCs; (b) encapsulated in silk alone; or (c) pelleted. Blood glucose levels were monitored and intraperitoneal glucose tolerance test (IPGTT) was performed upon return to euglycaemia. Grafts were removed for histology and cytokine content analysis. Mice with PI grafts in silk showed a prompt return to euglycaemia. IPGTT was significantly improved with PI in silk with MSCs, compared to PI in silk alone or pelleted. Both Th 1 and Th 2 cytokines were increased in PI grafts in silk, but Th 1 cytokines were decreased significantly with PI and MSC co-encapsulation. Histological analysis showed osteogenesis and chondrogenesis in the silk grafts containing MSCs. Future studies will evaluate MSC stability and function in vivo and improve silk biocompatibility for applications in islet transplantation. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
MicroRNA profile of silk gland reveals different silk yields of three silkworm strains.
Qin, Sheng; Danso, Blessing; Zhang, Jing; Li, Juan; Liu, Na; Sun, Xia; Hou, Chengxiang; Luo, Heng; Chen, Keping; Zhang, Guozheng; Li, Muwang
2018-05-05
Silk proteins are synthesized and secreted by the silk gland. The differential gene expression in it leads to different silk yield among various silkworm strains. As crucial factors, microRNAs (miRNAs) regulate protein synthesis at post-transcriptional level in silk gland. MiRNAs expression level in the silk gland of three silkworm strains (Jingsong, Lan10 and Dazao) was analyzed and 33 differentially expressed miRNAs (DEMs) were discovered between JingSong (JS) and Lan10 (L10), 60 DEMs between JS and Dazao, 54 DEMs between L10 and Dazao respectively. The DEMs target genes were predicted combing with two different methods and their functions were annotated according to gene ontology. Our previous studies showed that a batch of genes related to silk yield were identified in JS and L10 strains by comparative transcriptome and quantitative trait loci (QTL) method. Thirteen DEMs whose target genes are related to protein biosynthesis processes were screened by combining with these researches. Twelve DEMs potentially regulate nineteen genes which exist in our QTL results. Six common DEMs potentially regulate the genes in both of previous results. Finally, five DEMs were selected to verify their expression levels between JS and L10 by qRT-PCR, which showed similar difference as the results of small RNA-sequencing. MiRNAs in the silk gland may directly affect silk protein biosynthesis in different silkworm strains. In current work, we identified a batch of DEMs which potentially regulate the genes related to silk yield. Further functionally study of these miRNAs will contribute to improve varieties and boost the silk yield. Our research provides a basis for studying these miRNAs and their functions in silk production. Copyright © 2018 Elsevier B.V. All rights reserved.
Mizuno, Kentaro; Mikami, Yasuo; Hase, Hitoshi; Ikeda, Takumi; Nagae, Masateru; Tonomura, Hitoshi; Shirai, Toshiharu; Fujiwara, Hiroyoshi; Kubo, Toshikazu
2017-02-01
A technical note and retrospective study. The objectives were to describe a new method of drainage tube placement during microendoscopic spinal decompression, and compare the positioning and fluid discharge obtained with this method and the conventional method. To prevent postoperative epidural hematoma after microendoscopic decompression, a drainage tube must be placed in a suitable location. However, the narrow operative field makes precise control of the position of the tube technically difficult. We developed a method to reliably place the tube in the desired location. We use a Deschamps aneurysm needle with a slightly curved tip, which we call a drain passer. With the microendoscope in position, the drain passer, with a silk thread passed through the eye at the needle tip, is inserted percutaneously into the endoscopic field of view. The drainage tube is passed through the loop of silk thread protruding from the inside of the tubular retractor, and the thread is pulled to the outside, guiding the end of the drainage tube into the wound. This method was used in 23 cases at 44 intervertebral levels (drain passer group), and the conventional method in 20 cases at 32 intervertebral levels (conventional group). Postoperative plain radiographs were taken, and the amount of fluid discharge at postoperative hour 24 was measured. Drainage tube positioning was favorable at 43 intervertebral levels (97.7%) in the drain passer group and 26 intervertebral levels (81.3%) in the conventional group. Mean fluid discharge was 58.4±32.2 g in the drain passer group and 38.4±23.0 g in the conventional group. Positioning was significantly better and fluid discharge was significantly greater in the drain passer group. The results indicate that this method is a useful drainage tube placement technique for preventing postoperative epidural hematoma.
Silk-elastin-like protein biomaterials for the controlled delivery of therapeutics.
Huang, Wenwen; Rollett, Alexandra; Kaplan, David L
2015-05-01
Genetically engineered biomaterials are useful for controlled delivery owing to their rational design, tunable structure-function, biocompatibility, degradability and target specificity. Silk-elastin-like proteins (SELPs), a family of genetically engineered recombinant protein polymers, possess these properties. Additionally, given the benefits of combining semi-crystalline silk-blocks and elastomeric elastin-blocks, SELPs possess multi-stimuli-responsive properties and tunability, thereby becoming promising candidates for targeted cancer therapeutics delivery and controlled gene release. An overview of SELP biomaterials for drug delivery and gene release is provided. Biosynthetic strategies used for SELP production, fundamental physicochemical properties and self-assembly mechanisms are discussed. The review focuses on sequence-structure-function relationships, stimuli-responsive features and current and potential drug delivery applications. The tunable material properties allow SELPs to be pursued as promising biomaterials for nanocarriers and injectable drug release systems. Current applications of SELPs have focused on thermally-triggered biomaterial formats for the delivery of therapeutics, based on local hyperthermia in tumors or infections. Other prominent controlled release applications of SELPs as injectable hydrogels for gene release have also been pursued. Further biomedical applications that utilize other stimuli to trigger the reversible material responses of SELPs for targeted delivery, including pH, ionic strength, redox, enzymatic stimuli and electric field, are in progress. Exploiting these additional stimuli-responsive features will provide a broader range of functional biomaterials for controlled therapeutics release and tissue regeneration.
Recombinant DNA production of spider silk proteins.
Tokareva, Olena; Michalczechen-Lacerda, Valquíria A; Rech, Elíbio L; Kaplan, David L
2013-11-01
Spider dragline silk is considered to be the toughest biopolymer on Earth due to an extraordinary combination of strength and elasticity. Moreover, silks are biocompatible and biodegradable protein-based materials. Recent advances in genetic engineering make it possible to produce recombinant silks in heterologous hosts, opening up opportunities for large-scale production of recombinant silks for various biomedical and material science applications. We review the current strategies to produce recombinant spider silks. © 2013 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
Roy, Kislay; Patel, Yogesh S; Kanwar, Rupinder K; Rajkhowa, Rangam; Wang, Xungai; Kanwar, Jagat R
2016-01-01
This study used the Eri silk nanoparticles (NPs) for delivering apo-bovine lactoferrin (Apo-bLf) (~2% iron saturated) and Fe-bLf (100% iron saturated) in MDA-MB-231 and MCF-7 breast cancer cell lines. Apo-bLf and Fe-bLf-loaded Eri silk NPs with sizes between 200 and 300 nm (±10 nm) showed a significant internalization within 4 hours in MDA-MB-231 cells when compared to MCF-7 cells. The ex vivo loop assay with chitosan-coated Fe-bLf-loaded silk NPs was able to substantiate its future use in oral administration and showed the maximum absorption within 24 hours by ileum. Both Apo-bLf and Fe-bLf induced increase in expression of low-density lipoprotein receptor-related protein 1 and lactoferrin receptor in epidermal growth factor (EGFR)-positive MDA-MB-231 cells, while transferrin receptor (TfR) and TfR2 in MCF-7 cells facilitated the receptor-mediated endocytosis of NPs. Controlled and sustained release of both bLf from silk NPs was shown to induce more cancer-specific cytotoxicity in MDA-MB-231 and MCF-7 cells compared to normal MCF-10A cells. Due to higher degree of internalization, the extent of cytotoxicity and apoptosis was significantly higher in MDA-MB-231 (EGFR+) cells when compared to MCF-7 (EGFR−) cells. The expression of a prominent anticancer target, survivin, was found to be downregulated at both gene and protein levels. Taken together, all the observations suggest the potential use of Eri silk NPs as a delivery vehicle for an anti-cancer milk protein, and indicate bLf for the treatment of breast cancer. PMID:26730188
Ancient trade routes shaped the genetic structure of horses in eastern Eurasia.
Warmuth, Vera M; Campana, Michael G; Eriksson, Anders; Bower, Mim; Barker, Graeme; Manica, Andrea
2013-11-01
Animal exchange networks have been shown to play an important role in determining gene flow among domestic animal populations. The Silk Road is one of the oldest continuous exchange networks in human history, yet its effectiveness in facilitating animal exchange across large geographical distances and topographically challenging landscapes has never been explicitly studied. Horses are known to have been traded along the Silk Roads; however, extensive movement of horses in connection with other human activities may have obscured the genetic signature of the Silk Roads. To investigate the role of the Silk Roads in shaping the genetic structure of horses in eastern Eurasia, we analysed microsatellite genotyping data from 455 village horses sampled from 17 locations. Using least-cost path methods, we compared the performance of models containing the Silk Roads as corridors for gene flow with models containing single landscape features. We also determined whether the recent isolation of former Soviet Union countries from the rest of Eurasia has affected the genetic structure of our samples. The overall level of genetic differentiation was low, consistent with historically high levels of gene flow across the study region. The spatial genetic structure was characterized by a significant, albeit weak, pattern of isolation by distance across the continent with no evidence for the presence of distinct genetic clusters. Incorporating landscape features considerably improved the fit of the data; however, when we controlled for geographical distance, only the correlation between genetic differentiation and the Silk Roads remained significant, supporting the effectiveness of this ancient trade network in facilitating gene flow across large geographical distances in a topographically complex landscape. © 2013 John Wiley & Sons Ltd.
Hardy, John G; Khaing, Zin Z; Xin, Shangjing; Tien, Lee W; Ghezzi, Chiara E; Mouser, David J; Sukhavasi, Rushi C; Preda, Rucsanda C; Gil, Eun S; Kaplan, David L; Schmidt, Christine E
2015-01-01
Instructive biomaterials capable of controlling the behaviour of the cells are particularly interesting scaffolds for tissue engineering and regenerative medicine. Novel biomaterials are particularly important in societies with rapidly aging populations, where demand for organ/tissue donations is greater than their supply. Herein we describe the preparation of electrically conductive silk film-based nerve tissue scaffolds that are manufactured using all aqueous processing. Aqueous solutions of Bombyx mori silk were cast on flexible polydimethylsiloxane substrates with micrometer-scale grooves on their surfaces, allowed to dry, and annealed to impart β-sheets to the silk which assures that the materials are stable for further processing in water. The silk films were rendered conductive by generating an interpenetrating network of polypyrrole and polystyrenesulfonate in the silk matrix. Films were incubated in an aqueous solution of pyrrole (monomer), polystyrenesulfonate (dopant) and iron chloride (initiator), after which they were thoroughly washed to remove low molecular weight components (monomers, initiators, and oligomers) and dried, yielding conductive films with sheet resistances of 124 ± 23 kΩ square(-1). The micrometer-scale grooves that are present on the surface of the films are analogous to the natural topography in the extracellular matrix of various tissues (bone, muscle, nerve, skin) to which cells respond. Dorsal root ganglions (DRG) adhere to the films and the grooves in the surface of the films instruct the aligned growth of processes extending from the DRG. Such materials potentially enable the electrical stimulation (ES) of cells cultured on them, and future in vitro studies will focus on understanding the interplay between electrical and topographical cues on the behaviour of cells cultured on them.
Su, Honghua; Cheng, Yuming; Wang, Zhongyang; Li, Zhong; Stanley, David; Yang, Yizhong
2015-01-01
The cotton leaf roller, Sylepta derogata, is a silk-producing insect pest. While young larvae feed on the underside of leaves, the older ones roll cotton leaves and feed on the leaf edges, which defoliates cotton plants. The larvae produce silk to stabilize the rolled leaf and to balloon from used to new leaves. Despite the significance of silk in the biology of pest insect species, there is virtually no information on the genes involved in their silk production. This is a substantial knowledge gap because some of these genes may be valuable targets for developing molecular pest management technologies. We addressed the gap by posing the hypothesis that silk gland gene expression changes during the transition from larvae to pupae. We tested our hypothesis using RNA-seq to investigate changes in silk gland gene expression at three developmental stages, 5th instar larvae (silk producing; 15,445,926 clean reads), prepupae (reduced silk producing; 13,758,154) and pupae (beyond silk producing; 16,787,792). We recorded 60,298 unigenes and mapped 50,158 (larvae), 48,415 (prepupae) and 46,623 (pupae) of them to the NCBI database. Most differentially expressed genes in the 5th instar larvae/prepupae libraries were relevant to nucleotide synthesis and maintenance of silk gland function. We identified down-regulated transcriptional factors and several genes involved in silk formation in the three libraries and verified the expression pattern of eight genes by qPCR. The developmental- and tissue-specific expression patterns of the fibroin light chain gene showed it was highly expressed during the larval silk-producing stage. We recorded highest expression of this gene in the larval silk gland, compared to other tissues, including midgut, hindgut, epidermis, Malpighian tubes, hemolymph and fat body. These data are a genetic resource to guide selection of key genes that may be targeted for in planta and other gene-silencing technologies for sustainable cotton agriculture. PMID:26352931
Su, Honghua; Cheng, Yuming; Wang, Zhongyang; Li, Zhong; Stanley, David; Yang, Yizhong
2015-01-01
The cotton leaf roller, Sylepta derogata, is a silk-producing insect pest. While young larvae feed on the underside of leaves, the older ones roll cotton leaves and feed on the leaf edges, which defoliates cotton plants. The larvae produce silk to stabilize the rolled leaf and to balloon from used to new leaves. Despite the significance of silk in the biology of pest insect species, there is virtually no information on the genes involved in their silk production. This is a substantial knowledge gap because some of these genes may be valuable targets for developing molecular pest management technologies. We addressed the gap by posing the hypothesis that silk gland gene expression changes during the transition from larvae to pupae. We tested our hypothesis using RNA-seq to investigate changes in silk gland gene expression at three developmental stages, 5th instar larvae (silk producing; 15,445,926 clean reads), prepupae (reduced silk producing; 13,758,154) and pupae (beyond silk producing; 16,787,792). We recorded 60,298 unigenes and mapped 50,158 (larvae), 48,415 (prepupae) and 46,623 (pupae) of them to the NCBI database. Most differentially expressed genes in the 5th instar larvae/prepupae libraries were relevant to nucleotide synthesis and maintenance of silk gland function. We identified down-regulated transcriptional factors and several genes involved in silk formation in the three libraries and verified the expression pattern of eight genes by qPCR. The developmental- and tissue-specific expression patterns of the fibroin light chain gene showed it was highly expressed during the larval silk-producing stage. We recorded highest expression of this gene in the larval silk gland, compared to other tissues, including midgut, hindgut, epidermis, Malpighian tubes, hemolymph and fat body. These data are a genetic resource to guide selection of key genes that may be targeted for in planta and other gene-silencing technologies for sustainable cotton agriculture.
Lyophilized Silk Sponges: A Versatile Biomaterial Platform for Soft Tissue Engineering
2015-01-01
We present a silk biomaterial platform with highly tunable mechanical and degradation properties for engineering and regeneration of soft tissues such as, skin, adipose, and neural tissue, with elasticity properties in the kilopascal range. Lyophilized silk sponges were prepared under different process conditions and the effect of silk molecular weight, concentration and crystallinity on 3D scaffold formation, structural integrity, morphology, mechanical and degradation properties, and cell interactions in vitro and in vivo were studied. Tuning the molecular weight distribution (via degumming time) of silk allowed the formation of stable, highly porous, 3D scaffolds that held form with silk concentrations as low as 0.5% wt/v. Mechanical properties were a function of silk concentration and scaffold degradation was driven by beta-sheet content. Lyophilized silk sponges supported the adhesion of mesenchymal stem cells throughout 3D scaffolds, cell proliferation in vitro, and cell infiltration and scaffold remodeling when implanted subcutaneously in vivo. PMID:25984573
Engineering aqueous fiber assembly into silk-elastin-like protein polymers.
Zeng, Like; Jiang, Linan; Teng, Weibing; Cappello, Joseph; Zohar, Yitshak; Wu, Xiaoyi
2014-07-01
Self-assembled peptide/protein nanofibers are valuable 1D building blocks for creating complex structures with designed properties and functions. It is reported that the self-assembly of silk-elastin-like protein polymers into nanofibers or globular aggregates in aqueous solutions can be modulated by tuning the temperature of the protein solutions, the size of the silk blocks, and the charge of the elastin blocks. A core-sheath model is proposed for nanofiber formation, with the silk blocks in the cores and the hydrated elastin blocks in the sheaths. The folding of the silk blocks into stable cores--affected by the size of the silk blocks and the charge of the elastin blocks--plays a critical role in the assembly of silk-elastin nanofibers. Furthermore, enhanced hydrophobic interactions between the elastin blocks at elevated temperatures greatly influence the nanoscale features of silk-elastin nanofibers. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mechanical Properties of Transgenic Silkworm Silk Under High Strain Rate Tensile Loading
NASA Astrophysics Data System (ADS)
Chu, J.-M.; Claus, B.; Chen, W.
2017-12-01
Studies have shown that transgenic silkworm silk may be capable of having similar properties of spider silk while being mass-producible. In this research, the tensile stress-strain response of transgenic silkworm silk fiber is systematically characterized using a quasi-static load frame and a tension Kolsky bar over a range of strain-rates between 10^{-3} and 700/s. The results show that transgenic silkworm silk tends to have higher overall ultimate stress and failure strain at high strain rate (700/s) compared to quasi-static strain rates, indicating rate sensitivity of the material. The failure strain at the high strain rate is higher than that of spider silk. However, the stress levels are significantly below that of spider silk, and far below that of high-performance fiber. Failure surfaces are examined via scanning electron microscopy and reveal that the failure modes are similar to those of spider silk.
The processing and heterostructuring of silk with light
NASA Astrophysics Data System (ADS)
Sidhu, Mehra S.; Kumar, Bhupesh; Singh, Kamal P.
2017-09-01
Spider silk is a tough, elastic and lightweight biomaterial, although there is a lack of tools available for non-invasive processing of silk structures. Here we show that nonlinear multiphoton interactions of silk with few-cycle femtosecond pulses allow the processing and heterostructuring of the material in ambient air. Two qualitatively different responses, bulging by multiphoton absorption and plasma-assisted ablation, are observed for low- and high-peak intensities, respectively. Plasma ablation allows us to make localized nanocuts, microrods, nanotips and periodic patterns with minimal damage while preserving molecular structure. The bulging regime facilitates confined bending and microwelding of silk with materials such as metal, glass and Kevlar with strengths comparable to pristine silk. Moreover, analysis of Raman bands of microwelded joints reveals that the polypeptide backbone remains intact while perturbing its weak hydrogen bonds. Using this approach, we fabricate silk-based functional topological microstructures, such as Mobiüs strips, chiral helices and silk-based sensors.
The processing and heterostructuring of silk with light.
Sidhu, Mehra S; Kumar, Bhupesh; Singh, Kamal P
2017-09-01
Spider silk is a tough, elastic and lightweight biomaterial, although there is a lack of tools available for non-invasive processing of silk structures. Here we show that nonlinear multiphoton interactions of silk with few-cycle femtosecond pulses allow the processing and heterostructuring of the material in ambient air. Two qualitatively different responses, bulging by multiphoton absorption and plasma-assisted ablation, are observed for low- and high-peak intensities, respectively. Plasma ablation allows us to make localized nanocuts, microrods, nanotips and periodic patterns with minimal damage while preserving molecular structure. The bulging regime facilitates confined bending and microwelding of silk with materials such as metal, glass and Kevlar with strengths comparable to pristine silk. Moreover, analysis of Raman bands of microwelded joints reveals that the polypeptide backbone remains intact while perturbing its weak hydrogen bonds. Using this approach, we fabricate silk-based functional topological microstructures, such as Mobiüs strips, chiral helices and silk-based sensors.
Forest habitat conservation in Africa using commercially important insects.
Raina, Suresh Kumar; Kioko, Esther; Zethner, Ole; Wren, Susie
2011-01-01
African forests, which host some of the world's richest biodiversity, are rapidly diminishing. The loss of flora and fauna includes economically and socially important insects. Honey bees and silk moths, grouped under commercial insects, are the source for insect-based enterprises that provide income to forest-edge communities to manage the ecosystem. However, to date, research output does not adequately quantify the impact of such enterprises on buffering forest ecosystems and communities from climate change effects. Although diseases/pests of honey bees and silk moths in Africa have risen to epidemic levels, there is a dearth of practical research that can be utilized in developing effective control mechanisms that support the proliferation of these commercial insects as pollinators of agricultural and forest ecosystems. This review highlights the critical role of commercial insects within the environmental complexity of African forest ecosystems, in modern agroindustry, and with respect to its potential contribution to poverty alleviation and pollination services. It identifies significant research gaps that exist in understanding how insects can be utilized as ecosystem health indicators and nurtured as integral tools for important socioeconomic and industrial gains.
Thermal crystallization mechanism of silk fibroin protein
NASA Astrophysics Data System (ADS)
Hu, Xiao
In this thesis, the thermal crystallization mechanism of silk fibroin protein from Bombyx mori silkworm, was treated as a model for the general study of protein based materials, combining theories from both biophysics and polymer physics fields. A systematic and scientific path way to model the dynamic beta-sheet crystallization process of silk fibroin protein was presented in the following sequence: (1) The crystallinity, fractions of secondary structures, and phase compositions in silk fibroin proteins at any transition stage were determined. Two experimental methods, Fourier transform infrared spectroscopy (FTIR) with Fourier self-deconvolution, and specific reversing heat capacity, were used together for the first time for modeling the static structures and phases in the silk fibroin proteins. The protein secondary structure fractions during the crystallization were quantitatively determined. The possibility of existence of a "rigid amorphous phase" in silk protein was also discussed. (2) The function of bound water during the crystallization process of silk fibroin was studied using heat capacity, and used to build a silk-water dynamic crystallization model. The fundamental concepts and thermal properties of silk fibroin with/without bound water were discussed. Results show that intermolecular bound water molecules, acting as a plasticizer, will cause silk to display a water-induced glass transition around 80°C. During heating, water is lost, and the change of the microenvironment in the silk fibroin chains induces a mesophase prior to thermal crystallization. Real time FTIR during heating and isothermal holding above Tg show the tyrosine side chain changes only during the former process, while beta sheet crystallization occurs only during the latter process. Analogy is made between the crystallization of synthetic polymers according to the four-state scheme of Strobl, and the crystallization process of silk fibroin, which includes an intermediate precursor stage before crystallization. (3) The beta-sheet crystallization kinetics in silk fibroin protein were measured using X-ray, FTIR and heat flow, and the structure reveals the formation mechanism of the silk crystal network. Avrami kinetics theories, which were established for studies of synthetic polymer crystal growth, were for the first time extended to investigate protein self-assembly in multiblock silk fibroin samples. The Avrami exponent, n, was close to two for all methods, indicating formation of beta sheet crystals in silk proteins is different from the 3-D spherulitic crystal growth found in most synthetic homopolymers. A microphase separation pattern after chymotrypsin enzyme biodegradation was shown in the protein structures using scanning electron microscopy. A model was then used to explain the crystallization of silk fibroin protein by analogy to block copolymers. (4) The effects of metal ions during the crystallization of silk fibroin was investigated using thermal analysis. Advanced thermal analysis methods were used to analyze the thermal protein-metallic ion interactions in silk fibroin proteins. Results show that K+ and Ca2+ metallic salts play different roles in silk fibroin proteins, which either reduce (K+) or increase (Ca2+ ) the glass transition (Tg) of pure silk protein and affect the thermal stability of this structure.
Rapid Characterization of Spider Silk Genes via Exon Capture
2015-03-28
SECURITY CLASSIFICATION OF: Spider silks are high-performance materials with an array of potential military and civilian applications. As such, there...is persistent demand for the mass production of silks, which requires knowledge of the underlying silk gene sequences. Spidroins ( spider fibroins...2015 1-May-2014 31-Jan-2015 Approved for Public Release; Distribution Unlimited Final Report: Rapid Characterization of Spider Silk Genes via Exon
Elahi, M Fazley; Guan, Guoping; Wang, Lu; Zhao, Xinzhe; Wang, Fujun; King, Martin W
2015-03-03
There is an urgent need to develop a biologically active implantable small-diameter vascular prosthesis with long-term patency. Silk-fibroin-based small-diameter vascular prosthesis is a promising candidate having higher patency rate; however, the surface modification is indeed required to improve its further hemocompatibility. In this study, silk fibroin fabric was modified by a two-stage process. First, the surface of silk fibroin fabric was coated using a layer-by-layer polyelectrolyte deposition technique by stepwise dipping the silk fibroin fabric into a solution of cationic poly(allylamine hydrochloride) (PAH) and anionic poly(acrylic acid) (PAA) solution. The dipping procedure was repeated to obtain the PAH/PAA multilayers deposited on the silk fibroin fabrics. Second, the polyelectrolyte-deposited silk fibroin fabrics were treated in EDC/NHS-activated low-molecular-weight heparin (LMWH) solution at 4 °C for 24 h, resulting in immobilization of LMWH on the silk fibroin fabrics surface. Scanning electron microscopy, atomic force microscopy, and energy-dispersive X-ray data revealed the accomplishment of LMWH immobilization on the polyelectrolyte-deposited silk fibroin fabric surface. The higher the number of PAH/PAA coating layers on the silk fibroin fabric, the more surface hydrophilicity could be obtained, resulting in a higher fetal bovine serum protein and platelets adhesion resistance properties when tested in vitro. In addition, compared with untreated sample, the surface-modified silk fibroin fabrics showed negligible loss of bursting strength and thus reveal the acceptability of polyelectrolytes deposition and heparin immobilization approach for silk-fibroin-based small-diameter vascular prostheses modification.
Li, Da-Wei; He, Jin; He, Feng-Li; Liu, Ya-Li; Liu, Yang-Yang; Ye, Ya-Jing; Deng, Xudong; Yin, Da-Chuan
2018-04-01
As a biodegradable polymer thin film, silk fibroin/chitosan composite film overcomes the defects of pure silk fibroin and chitosan films, respectively, and shows remarkable biocompatibility, appropriate hydrophilicity and mechanical properties. Silk fibroin/chitosan thin film can be used not only as metal implant coating for bone injury repair, but also as tissue engineering scaffold for skin, cornea, adipose, and other soft tissue injury repair. However, the biocompatibility of silk fibroin/chitosan thin film for mesenchymal stem cells, a kind of important seed cell of tissue engineering and regenerative medicine, is rarely reported. In this study, silk fibroin/chitosan film was prepared by solvent casting method, and the rat bone marrow-derived mesenchymal stem cells were cultured on the silk fibroin/chitosan thin film. Osteogenic and adipogenic differentiation of rat bone marrow-derived mesenchymal stem cells were induced, respectively. The proliferation ability, osteogenic and adipogenic differentiation abilities of rat bone marrow-derived mesenchymal stem cells were systematically compared between silk fibroin/chitosan thin film and polystyrene tissue culture plates. The results showed that silk fibroin/chitosan thin film not only provided a comparable environment for the growth and proliferation of rat bone marrow-derived mesenchymal stem cells but also promoted their osteogenic and adipogenic differentiation. This work provided information of rat bone marrow-derived mesenchymal stem cells behavior on silk fibroin/chitosan thin film and extended the application of silk fibroin/chitosan thin film. Based on the results, we suggested that the silk fibroin/chitosan thin film could be a promising material for tissue engineering of bone, cartilage, adipose, and skin.
Marhabaie, Mohammad; Leeper, Thomas C; Blackledge, Todd A
2014-01-13
We investigated the natural variation in silk composition and mechanical performance of the orb-weaving spider Argiope trifasciata at multiple spatial and temporal scales in order to assess how protein composition contributes to the remarkable material properties of spider dragline silk. Major ampullate silk in orb-weaving spiders consists predominantly of two proteins (MaSp1 and MaSp2) with divergent amino acid compositions and functionally different microstructures. Adjusting the expression of these two proteins therefore provides spiders with a simple mechanism to alter the material properties of their silk. We first assessed the reliability and precision of the Waters AccQ-Tag amino acid composition analysis kit for determining the amino acid composition of small quantities of spider silk. We then tested how protein composition varied within single draglines, across draglines spun by the same spider on different days, and finally between spiders. Then, we correlated chemical composition with the material properties of dragline silk. Overall, we found that the chemical composition of major ampullate silk was in general homogeneous among individuals of the same population. Variation in chemical composition was not detectable within silk spun by a single spider on a single day. However, we found that variation within a single spider's silk across different days could, in rare instances, be greater than variation among individual spiders. Most of the variation in silk composition in our investigation resulted from a small number of outliers (three out of sixteen individuals) with a recent history of stress, suggesting stress affects silk production process in orb web spiders. Based on reported sequences for MaSp genes, we developed a gene expression model showing the covariation of the most abundant amino acids in major ampullate silk. Our gene expression model supports that dragline silk composition was mostly determined by the relative abundance of MaSp1 and MaSp2. Finally, we showed that silk composition (especially proline content) strongly correlated with some measures of mechanical performance, particularly how much fibers shrunk during supercontraction as well as their breaking strains. Our findings suggest that spiders are able to change the relative expression rates of different MaSp genes to produce silk fibers with different chemical compositions, and hence, different material properties.
Almost a spider: a 305-million-year-old fossil arachnid and spider origins.
Garwood, Russell J; Dunlop, Jason A; Selden, Paul A; Spencer, Alan R T; Atwood, Robert C; Vo, Nghia T; Drakopoulos, Michael
2016-03-30
Spiders are an important animal group, with a long history. Details of their origins remain limited, with little knowledge of their stem group, and no insights into the sequence of character acquisition during spider evolution. We describe a new fossil arachnid, Idmonarachne brasierigen. et sp. nov. from the Late Carboniferous (Stephanian,ca 305-299 Ma) of Montceau-les-Mines, France. It is three-dimensionally preserved within a siderite concretion, allowing both laboratory- and synchrotron-based phase-contrast computed tomography reconstruction. The latter is a first for siderite-hosted fossils and has allowed us to investigate fine anatomical details. Although distinctly spider-like in habitus, this remarkable fossil lacks a key diagnostic character of Araneae: spinnerets on the underside of the opisthosoma. It also lacks a flagelliform telson found in the recently recognized, spider-related, Devonian-Permian Uraraneida. Cladistic analysis resolves our new fossil as sister group to the spiders: the spider stem-group comprises the uraraneids and I. brasieri While we are unable to demonstrate the presence of spigots in this fossil, the recovered phylogeny suggests the earliest character to evolve on the spider stem-group is the secretion of silk. This would have been followed by the loss of a flagelliform telson, and then the ability to spin silk using spinnerets. This last innovation defines the true spiders, significantly post-dates the origins of silk, and may be a key to the group's success. The Montceau-les-Mines locality has previously yielded a mesothele spider (with spinnerets). Evidently, Late Palaeozoic spiders lived alongside Palaeozoic arachnid grades which approached the spider condition, but did not express the full suite of crown-group autapomorphies. © 2016 The Authors.
Silk sericin loaded alginate nanoparticles: Preparation and anti-inflammatory efficacy.
Khampieng, Thitikan; Aramwit, Pornanong; Supaphol, Pitt
2015-09-01
In this study, silk sericin loaded alginate nanoparticles were prepared by the emulsification method followed by internal crosslinking. The effects of various silk sericin loading concentration on particle size, shape, thermal properties, and release characteristics were investigated. The initial silk sericin loadings of 20, 40, and 80% w/w to polymer were incorporated into these alginate nanoparticles. SEM images showed a spherical shape and small particles of about 71.30-89.50 nm. TGA analysis showed that thermal stability slightly increased with increasing silk sericin loadings. FTIR analysis suggested interactions between alginate and silk sericin in the nanoparticles. The release study was performed in acetate buffer at normal skin conditions (pH 5.5; 32 °C). The release profiles of silk sericin exhibited initial rapid release, consequently with sustained release. These silk sericin loaded alginate nanoparticles were further incorporated into topical hydrogel and their anti-inflammatory properties were studied using carrageenan-induced paw edema assay. The current study confirms the hypothesis that the application of silk sericin loaded alginate nanoparticle gel can inhibit inflammation induced by carrageenan. Copyright © 2015 Elsevier B.V. All rights reserved.
The protective ability of Camellia meal extract on the silk protein
NASA Astrophysics Data System (ADS)
Weng, JZ; Cai, C.; Zhang, DY; Dai, BK
2018-02-01
With the enhancement of living standards, people pay more and more attention to the health. The edible oil become more and more popular, but also produced a large amount of Camellia meal which can not fully put into utilization. In this study, the extracting liquid of Camellia meal was used on the process of silk degumming. Firstly, tussah silk was treated by degumming in the Na2CO3 solution, and the preliminary condition of tussah silk degumming was obtained by orthogonal experiment: the concentration Na2CO3 was 0.1%, the degumming time was 1 hour, and the ratio of silk/water was 40:1. Then the extract of Camellia meal (GCJSY) was added before the bleaching process of tussah silk to investigate the protective ability of GCJSY on the silk protein basry on the residual ratio of the silk. While the concentration of GYJSY was 0.08%, the residual ratio of silk after degumming in the Na2CO3 solution and bleaching in the 2% H2O2 solution was 87.2%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, Randolph
Spider silks have the potential to provide new bio-inspired materials for numerous applications in bioenergetics and products ranging from protective clothing to artificial ligaments and tendons. A number of spider silk genes have been cloned and sequenced by the Lewis laboratory revealing the basis for understanding the key elements of spider silk proteins with respect to their materials performance. In particular, specific amino acid motifs have been identified which have been conserved for over 125 million years in all spiders that use their silk to physically trap prey. The key element in taking the next step toward generating bio-based materialsmore » from spider silks will be to move from the current descriptive data to predictive knowledge. Current efforts are focused on mimicking spider silk through synthetic proteins. In developing synthetic silk fibers, we first need to understand the complete secondary and tertiary structure of natural silk so that we can compare synthetic constructs to the natural material. Being able to compare the structure on a single fiber level is critical to the future of molecular directed mimic development because we can vary mechanical properties by different spinning methods. The new generation of synchrotron x-ray diffraction and neutron beamlines will allow, for the first time, determination of the molecular structure of silk fibers and synthetic mimics. We propose an exciting new collaborative research team working jointly between Argonne National Laboratory, Arizona State U. and the University of Wyoming to address the ?characterization of synthetic and natural spider silk fibers using x-ray and neutron diffraction.? Thus these new methodologies will provide understanding of current fibers and determine changes needed to produce fibers with specific properties. The following specific aims are proposed: ? Synthesize spider silk fibers with molecular structures mimicking that of natural silks. Test the mechanic properties of these materials and compare them to natural silk fibers. ? Develop x-ray and neutron diffraction techniques to better determine the structure in amorphous and semicrystalline biopolymers, such as spider silk fibers. ? Combine mechanical testing and structural x-ray and neutron diffraction data to develop a molecular understanding of the structure-function relationship in spider silk materials. ? Elucidate the role water plays in spider silk fiber formation and structure. Emphasis will be placed on combined neutron and NMR studies. ? Use solid-state Nuclear Magnetic Resonance (NMR) to characterize synthetic and natural spider silk materials that show potential as a biomimetic material or bio-inspired polymer architecture. ? Develop EPSCoR student and postdoctoral training and exposure to national laboratory facilities. ? Further develop scientific outreach and chemical education programs and research.« less
Zhou, Feifei; Zhang, Xianzhu; Cai, Dandan; Li, Jun; Mu, Qin; Zhang, Wei; Zhu, Shouan; Jiang, Yangzi; Shen, Weiliang; Zhang, Shufang; Ouyang, Hong Wei
2017-11-01
The demand of favorable scaffolds has increased for the emerging cartilage tissue engineering. Chondroitin sulfate (CS) and silk fibroin have been investigated and reported with safety and excellent biocompatibility as tissue engineering scaffolds. However, the rapid degradation rate of pure CS scaffolds presents a challenge to effectively recreate neo-tissue similar to natural articular cartilage. Meanwhile the silk fibroin is well used as a structural constituent material because its remarkable mechanical properties, long-lasting in vivo stability and hypoimmunity. The application of composite silk fibroin and CS scaffolds for joint cartilage repair has not been well studied. Here we report that the combination of silk fibroin and CS could synergistically promote articular cartilage defect repair. The silk fibroin (silk) and silk fibroin/CS (silk-CS) scaffolds were fabricated with salt-leaching, freeze-drying and crosslinking methodologies. The biocompatibility of the scaffolds was investigated in vitro by cell adhesion, proliferation and migration with human articular chondrocytes. We found that silk-CS scaffold maintained better chondrocyte phenotype than silk scaffold; moreover, the silk-CS scaffolds reduced chondrocyte inflammatory response that was induced by interleukin (IL)-1β, which is in consistent with the well-documented anti-inflammatory activities of CS. The in vivo cartilage repair was evaluated with a rabbit osteochondral defect model. Silk-CS scaffold induced more neo-tissue formation and better structural restoration than silk scaffold after 6 and 12weeks of implantation in ICRS histological evaluations. In conclusion, we have developed a silk fibroin/ chondroitin sulfate scaffold for cartilage tissue engineering that exhibits immuno-inhibition property and can improve the self-repair capacity of cartilage. Severe cartilage defect such as osteoarthritis (OA) is difficult to self-repair because of its avascular, aneural and alymphatic nature. Current scaffolds often focus on providing sufficient mechanical support or bio-mimetic structure to promote cartilage repair. Thus, silk has been adopted and investigated broadly. However, inflammation is one of the most important factors in OA. But few scaffolds for cartilage repair reported anti-inflammation property. Meanwhile, chondroitin sulfate (CS) is a glycosaminoglycan present in the natural cartilage ECM, and has exhibited a number of useful biological properties including anti-inflammatory activity. Thus, we designed this silk-CS scaffold and proved that this scaffold exhibited good anti-inflammatory effects both in vitro and in vivo, promoted the repair of articular cartilage defect in animal model. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Fabrication and Biocompatibility of Electrospun Silk Biocomposites
Wei, Kai; Kim, Byoung-Suhk; Kim, Ick-Soo
2011-01-01
Silk fibroin has attracted great interest in tissue engineering because of its outstanding biocompatibility, biodegradability and minimal inflammatory reaction. In this study, two kinds of biocomposites based on regenerated silk fibroin are fabricated by electrospinning and post-treatment processes, respectively. Firstly, regenerated silk fibroin/tetramethoxysilane (TMOS) hybrid nanofibers with high hydrophilicity are prepared, which is superior for fibroblast attachment. The electrospinning process causes adjacent fibers to ‘weld’ at contact points, which can be proved by scanning electron microscope (SEM). The water contact angle of silk/tetramethoxysilane (TMOS) composites shows a sharper decrease than pure regenerated silk fibroin nanofiber, which has a great effect on the early stage of cell attachment behavior. Secondly, a novel tissue engineering scaffold material based on electrospun silk fibroin/nano-hydroxyapatite (nHA) biocomposites is prepared by means of an effective calcium and phosphate (Ca–P) alternate soaking method. nHA is successfully produced on regenerated silk fibroin nanofiber within several min without any pre-treatments. The osteoblastic activities of this novel nanofibrous biocomposites are also investigated by employing osteoblastic-like MC3T3-E1 cell line. The cell functionality such as alkaline phosphatase (ALP) activity is ameliorated on mineralized silk nanofibers. All these results indicate that this silk/nHA biocomposite scaffold material may be a promising biomaterial for bone tissue engineering. PMID:24957869
Silk elasticity as a potential constraint on spider body size.
Rodríguez-Gironés, Miguel A; Corcobado, Guadalupe; Moya-Laraño, Jordi
2010-10-07
Silk is known for its strength and extensibility and has played a key role in the radiation of spiders. Individual spiders use different glands to produce silk types with unique sets of proteins. Most research has studied the properties of major ampullate and capture spiral silks and their ecological implications, while little is known about minor ampullate silk, the type used by those spider species studied to date for bridging displacements. A biomechanical model parameterised with available data shows that the minimum radius of silk filaments required for efficient bridging grows with the square root of the spider's body mass, faster than the radius of minor ampullate silk filaments actually produced by spiders. Because the morphology of spiders adapted to walking along or under silk threads is ill suited for moving on a solid surface, for these species there is a negative relationship between body mass and displacement ability. As it stands, the model suggests that spiders that use silk for their displacements are prevented from attaining a large body size if they must track their resources in space. In particular, silk elasticity would favour sexual size dimorphism because males that must use bridging lines to search for females cannot grow large. 2010 Elsevier Ltd. All rights reserved.
Ye, Chunhong; Nikolov, Svetoslav V; Geryak, Ren D; Calabrese, Rossella; Ankner, John F; Alexeev, Alexander; Kaplan, David L; Tsukruk, Vladimir V
2016-07-13
Microscaled self-rolling construct sheets from silk protein material have been fabricated, containing a silk bimorph composed of silk ionomers as an active layer and cross-linked silk β-sheet as the passive layer. The programmable morphology was experimentally explored along with a computational simulation to understand the mechanism of shape reconfiguration. The neutron reflectivity shows that the active silk ionomers layer undergoes remarkable swelling (eight times increase in thickness) after deprotonation while the passive silk β-sheet retains constant volume under the same conditions and supports the bimorph construct. This selective swelling within the silk-on-silk bimorph microsheets generates strong interfacial stress between layers and out-of-plane forces, which trigger autonomous self-rolling into various 3D constructs such as cylindrical and helical tubules. The experimental observations and computational modeling confirmed the role of interfacial stresses and allow programming the morphology of the 3D constructs with particular design. We demonstrated that the biaxial stress distribution over the 2D planar films depends upon the lateral dimensions, thickness and the aspect ratio of the microsheets. The results allow the fine-tuning of autonomous shape transformations for the further design of complex micro-origami constructs and the silk based rolling/unrolling structures provide a promising platform for polymer-based biomimetic devices for implant applications.
NASA Astrophysics Data System (ADS)
Little, Douglas J.; Kane, Deb M.
2017-01-01
The transverse optical structure of two orb-weaver (family Araneidae) spider dragline silks was investigated using a variant of the inverse-scattering technique. Immersing the silks in a closely refractive index-matched liquid, the minimum achievable image contrast was greater than expected for an optically homogeneous silk, given what is currently known about the optical absorption of these silks. This "excess contrast" indicated the presence of transverse optical structure within the spider silk. Applying electromagnetic scattering theory to a transparent double cylinder, the minimum achievable irradiance contrast for the Plebs eburnus and Argiope keyserlingi dragline silks was determined to be consistent with step index refractive index contrasts of 1-4×10-4 and 6-7×10-4, respectively, supposing outer-layer thicknesses consistent with previous TEM studies (50 nm and 100 nm, respectively). The possibility of graded index refractive index contrasts within the spider silks is also discussed. This is the strongest evidence, to date, that there is a refractive index contrast associated with the layered morphology of spider silks and/or variation of proportion of nanocrystalline components within the spider silk structure. The method is more generally applicable to optical micro-fibers, including those with refractive index variations on a sub-wavelength scale.
Effects of Microwave Radiation on Selected Mechanical Properties of Silk
NASA Astrophysics Data System (ADS)
Reed, Emily Jane
Impressive mechanical properties have served to peak interest in silk as an engineering material. In addition, the ease with which silk can be altered through processing has led to its use in various biomaterial applications. As the uses of silk branch into new territory, it is imperative (and inevitable) to discover the boundary conditions beyond which silk no longer performs as expected. These boundary conditions include factors as familiar as temperature and humidity, but may also include other less familiar contributions, such as exposure to different types of radiation. The inherent variations in mechanical properties of silk, as well as its sensitivity to moisture, suggest that in an engineering context silk is best suited for use in composite materials; that way, silk can be shielded from ambient moisture fluctuations, and the surrounding matrix allows efficient load transfer from weaker fibers to stronger ones. One such application is to use silk as a reinforcing fiber in epoxy composites. When used in this way, there are several instances in which exposure to microwave radiation is likely (for example, as a means of speeding epoxy cure rates), the effects of which remain mostly unstudied. It will be the purpose of this dissertation to determine whether selected mechanical properties of B. mori cocoon silk are affected by exposure to microwave radiation, under specified temperature and humidity conditions. Results of our analyses are directly applicable wherever exposure of silk to microwave radiation is possible, including in fiber reinforced epoxy composites (the entire composite may be microwaved to speed epoxy cure time), or when silk is used as a component in the material used to construct the radome of an aircraft (RADAR units use frequencies in the microwave range of the electromagnetic spectrum), or when microwave energy is used to sterilize biomaterials (such as cell scaffolds) made of silk. In general, we find that microwave exposure does not detract from the average mechanical properties of silk, but that it may increase the spread of data points around that average. Along the way, we come to a number of useful conclusions, summarized here: Regarding silk in general: • Storage conditions can have a significant and enduring effect on tensile properties of degummed B. mori silk. Samples stored in a sealed container with desiccant (silica gel) have a lower yield stress and yield strain than samples stored without desiccant and they also relax more rapidly in stress relaxation tests. The ability of this silk to resist plastic deformation is optimized at intermediate hydration levels. Sensitivity to the humidity levels encountered by samples prior to testing complicates the interpretation of results, and makes inter-laboratory comparisons challenging. Silk storage conditions should therefore be reported---and, ideally, standardized---to enable useful comparison between studies. (Abstract shortened by UMI.)
Electrospun silk fibroin fibers for storage and controlled release of human platelet lysate.
Pignatelli, Cataldo; Perotto, Giovanni; Nardini, Marta; Cancedda, Ranieri; Mastrogiacomo, Maddalena; Athanassiou, Athanassia
2018-04-17
Human platelet lysate (hPL) is a pool of growth factors and cytokines able to induce regeneration of different tissues. Despite its good potentiality as therapeutic tool for regenerative medicine applications, hPL has been only moderately exploited in this field. A more widespread adoption has been limited because of its rapid degradation at room temperature that decreases its functionality. Another limiting factor for its extensive use is the difficulty of handling the hPL gels. In this work, silk fibroin-based patches were developed to address several points: improving the handling of hPL, enabling their delivery in a controlled manner and facilitating their storage by creating a device ready to use with expanded shelf life. Patches of fibroin loaded with hPL were synthesized by electrospinning to take advantage of the fibrous morphology. The release kinetics of the material was characterized and tuned through the control of fibroin crystallinity. Cell viability assays, performed with primary human dermal fibroblasts, demonstrated that fibroin is able to preserve the hPL biological activity and prolong its shelf-life. The strategy of storing and preserving small active molecules within a naturally-derived, protein-based fibrous scaffold was successfully implemented, leading to the design of a biocompatible device, which can potentially simplify the storage and the application of the hPL on a human patient, undergoing medical procedures such as surgery and wound care. Human platelets lysate (hPL) is a mixture of growth factors and cytokines able to induce the regeneration of damaged tissues. This study aims at enclosing hPL in a silk fibroin electrospun matrix to expand its utilization. Silk fibroin showed the ability to preserve the hPL activity at temperature up to 60 °C and the manipulation of fibroin's crystallinity provided a tool to modulate the hPL release kinetic. This entails the possibility to fabricate the hPL silk fibroin patches in advance and store them, resulting in an easy and fast accessibility and an expanded use of hPL for wound healing. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Invited review current progress and limitations of spider silk for biomedical applications.
Widhe, Mona; Johansson, Jan; Hedhammar, My; Rising, Anna
2012-06-01
Spider silk is a fascinating material combining remarkable mechanical properties with low density and biodegradability. Because of these properties and historical descriptions of medical applications, spider silk has been proposed to be the ideal biomaterial. However, overcoming the obstacles to produce spider silk in sufficient quantities and in a manner that meets regulatory demands has proven to be a difficult task. Also, there are relatively few studies of spider silk in biomedical applications available, and the methods and materials used vary a lot. Herein we summarize cell culture- and in vivo implantation studies of natural and synthetic spider silk, and also review the current status and future challenges in the quest for a large scale production of spider silk for medical applications. Copyright © 2011 Wiley Periodicals, Inc.
Zhuang, Yan; Zhang, Qian; Feng, Jinqi; Wang, Na; Xu, Weilin; Yang, Hongjun
2017-04-01
Naturally derived fibers such as silk fibroin can potentially enhance the biocompatibility of currently used biomaterials. This study investigated the physical properties of native silk fibroin powder and its effect on the biocompatibility of biomedical polyurethane. Native silk fibroin powder with an average diameter of 3 µm was prepared on a purpose-built machine. A simple method of phase inversion was used to produce biomedical polyurethane/native silk fibroin powder hybrid membranes at different blend ratios by immersing a biomedical polyurethane/native silk fibroin powder solution in deionized water at room temperature. The physical properties of the membranes including morphology, hydrophilicity, roughness, porosity, and compressive modulus were characterized, and in vitro biocompatibility was evaluated by seeding the human umbilical vein endothelial cells on the top surface. Native silk fibroin powder had a concentration-dependent effect on the number and morphology of human umbilical vein endothelial cells growing on the membranes; cell number increased as native silk fibroin powder content in the biomedical polyurethane/native silk fibroin powder hybrid membrane was increased from 0% to 50%, and cell morphology changed from spindle-shaped to cobblestone-like as the native silk fibroin powder content was increased from 0% to 70%. The latter change was related to the physical characteristics of the membrane, including hydrophilicity, roughness, and mechanical properties. The in vivo biocompatibility of the native silk fibroin powder-modified biomedical polyurethane membrane was evaluated in a rat model; the histological analysis revealed no systemic toxicity. These results indicate that the biomedical polyurethane/native silk fibroin powder hybrid membrane has superior in vitro and in vivo biocompatibility relative to 100% biomedical polyurethane membranes and thus has potential applications in the fabrication of small-diameter vascular grafts and in tissue engineering.
Traveling the Silk Road: A Measurement of a Large Anonymous Online Marketplace
2012-11-28
Silk Road, an anonymous, international online marketplace that operates as a Tor hidden service and uses Bitcoin as its exchange currency. We gather...analysis of Silk Road, an anonymous, international on- line marketplace that operates as a Tor hidden service and uses Bitcoin as its exchange currency. We...anonymity, Silk Road needs to also preserve payment anonymity. To that effect, Silk Road only supports Bitcoin (BTC, [30]) as a trading currency
Evaluating drug trafficking on the Tor Network: Silk Road 2, the sequel.
Dolliver, Diana S
2015-11-01
Housing an illicit, online drug retail market generating sales in the millions of USD, the Silk Road was a profitable marketplace with a growing and loyal consumer base. Following its FBI-forced shut down in October 2013, the Silk Road enjoyed newfound fame that contributed to an increase in new users downloading and accessing the Tor Network; however, with this particular marketplace out of order, Silk Road 2 was launched to fill the void. The goals of this study were to (1) compare the metrics of Silk Road 2 to the original site, and to (2) determine if there were any indications of the presence of more sophisticated drug trafficking operations. Data were collected from Silk Road 2 during the months of August and September 2014 using webcrawling software. Silk Road 2 was a much smaller marketplace than the original Silk Road. Of the 1834 unique items for sale, 348 were drug items sold by 145 distinct vendors shipping from 19 countries. Of the drug items advertised, most were stimulants and hallucinogens. The United States is both the number one country of origin for drug sales on Silk Road 2 and the number one destination country. Interestingly, 73% of all vendor accounts on Silk Road 2 advertised drug items, even though drugs only constituted 19% of all items advertised. This study was the first to research Silk Road 2, the replacement illicit marketplace to the original virtual Silk Road. This study was also the first to examine indications of the presence of more coordinated drug trafficking efforts in an online setting. The findings indicated that while Silk Road 2 was not primarily a drug market, there were indications that some vendor accounts may have connections reaching beyond a base retail market. Copyright © 2015 Elsevier B.V. All rights reserved.
Inhibitory effect of corn silk on skin pigmentation.
Choi, Sang Yoon; Lee, Yeonmi; Kim, Sung Soo; Ju, Hyun Min; Baek, Ji Hwoon; Park, Chul-Soo; Lee, Dong-Hyuk
2014-03-03
In this study, the inhibitory effect of corn silk on melanin production was evaluated. This study was performed to investigate the inhibitory effect of corn silk on melanin production in Melan-A cells by measuring melanin production and protein expression. The corn silk extract applied on Melan-A cells at a concentration of 100 ppm decreased melanin production by 37.2% without cytotoxicity. This was a better result than arbutin, a positive whitening agent, which exhibited a 26.8% melanin production inhibitory effect at the same concentration. The corn silk extract did not suppress tyrosinase activity but greatly reduced the expression of tyrosinase in Melan-A cells. In addition, corn silk extract was applied to the human face with hyperpigmentation, and skin color was measured to examine the degree of skin pigment reduction. The application of corn silk extract on faces with hyperpigmentation significantly reduced skin pigmentation without abnormal reactions. Based on the results above, corn silk has good prospects for use as a material for suppressing skin pigmentation.
An Unlikely Silk: The Composite Material of Green Lacewing Cocoons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weisman, Sarah; Trueman, Holly E.; Mudie, Stephen T.
2009-01-15
Spiders routinely produce multiple types of silk; however, common wisdom has held that insect species produce one type of silk each. This work reports that the green lacewing (Mallada signata, Neuroptera) produces two distinct classes of silk. We identified and sequenced the gene that encodes the major protein component of the larval lacewing cocoon silk and demonstrated that it is unrelated to the adult lacewing egg-stalk silk. The cocoon silk protein is 49 kDa in size and is alanine rich (>40%), and it contains an {alpha}-helical secondary structure. The final instar lacewing larvae spin protein fibers of {approx}2 {mu}m diametermore » to construct a loosely woven cocoon. In a second stage of cocoon construction, the insects lay down an inner wall of lipids that uses the fibers as a scaffold. We propose that the silk protein fibers provide the mechanical strength of the composite lacewing cocoon whereas the lipid layer provides a barrier to water loss during pupation.« less
De novo design of recombinant spider silk proteins for material applications.
Zheng, Ke; Ling, Shengjie
2018-05-21
Spider silks are well known for their superior mechanical properties that are stronger and tougher than steel despite being assembled at close to ambient conditions and using water as the solvent. However, it is a significant challenge to utilize spider silks for practical applications due to their limited sources. Fortunately, genetic engineering techniques offer a promising approach to produce useable amounts of spider silk variants. Starting from these recombinant spider silk proteins, a series of experiments and simulations strategies were developed to improve the recombinant spider silk proteins (RSSP) material design and fabrication with the aim of biomimicking the structure-property-function relationships of spider silks. Accordingly, in this review, we first introduce the structure-property-function relationship of spider silks. Then, we discuss the recent progress in the genetic synthesis of RSSPs and summarize their related multiscale self-assembly behaviors. Finally, we outline works utilizing multiscale modeling to assist RSSP material design. This article is protected by copyright. All rights reserved.
Silk-microfluidics for advanced biotechnological applications: A progressive review.
Konwarh, Rocktotpal; Gupta, Prerak; Mandal, Biman B
2016-01-01
Silk based biomaterials have not only carved a unique niche in the domain of regenerative medicine but new avenues are also being explored for lab-on-a-chip applications. It is pertinent to note that biospinning of silk represents nature's signature microfluidic-maneuver. Elucidation of non-Newtonian flow of silk in the glands of spiders and silkworms has inspired researchers to fabricate devices for continuous extrusion and concentration of silk. Microfluidic channel networks within porous silk scaffolds ensure optimal nutrient and oxygen supply apart from serving as precursors for vascularization in tissue engineering applications. On the other hand, unique topographical features and surface wettability of natural silk fibers have inspired development of a number of simple and cost-effective devices for applications like blood typing and chemical sensing. This review mirrors the recent progress and challenges in the domain of silk-microfluidics for prospective avant-garde applications in the realm of biotechnology. Copyright © 2016 Elsevier Inc. All rights reserved.
DNA replication events during larval silk gland development in the silkworm, Bombyx mori.
Zhang, Chun-Dong; Li, Fang-Fang; Chen, Xiang-Yun; Huang, Mao-Hua; Zhang, Jun; Cui, Hongjuan; Pan, Min-Hui; Lu, Cheng
2012-07-01
The silk gland is an important organ in silkworm as it synthesizes silk proteins and is critical to spinning. The genomic DNA content of silk gland cells dramatically increases 200-400 thousand times for the larval life span through the process of endomitosis. Using in vitro culture, DNA synthesis was measured using BrdU labeling during the larval molt and intermolt periods. We found that the cell cycle of endomitosis was activated during the intermolt and was inhibited during the molt phase. The anterior silk gland, middle silk gland, and posterior silk gland cells asynchronously exit the endomitotic cycle after day 6 in 5th instar larvae, which correlated with the reduced expression of the cell cycle-related cdt1, pcna, cyclin E, cdk2 and cdk1 mRNAs in the wandering phase. Additional starvation had no effect on the initiation of silk gland DNA synthesis of the freshly ecdysed larvae. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhu, Bofan
Biocompatible scaffolds mimicking the locally aligned fibrous structure of native extracellular matrix (ECM) are in high demand in tissue engineering. In this thesis research, unidirectionally aligned fibers were generated via a home-built electrospinning system. Collagen type I, as a major ECM component, was chosen in this study due to its support of cell proliferation and promotion of neuroectodermal commitment in stem cell differentiation. Synthetic dragline silk proteins, as biopolymers with remarkable tensile strength and superior elasticity, were also used as a model material. Good alignment, controllable fiber size and morphology, as well as a desirable deposition density of fibers were achieved via the optimization of solution and electrospinning parameters. The incorporation of silk proteins into collagen was found to significantly enhance mechanical properties and stability of electrospun fibers. Glutaraldehyde (GA) vapor post-treatment was demonstrated as a simple and effective way to tune the properties of collagen/silk fibers without changing their chemical composition. With 6-12 hours GA treatment, electrospun collagen/silk fibers were not only biocompatible, but could also effectively induce the polarization and neural commitment of stem cells, which were optimized on collagen rich fibers due to the unique combination of biochemical and biophysical cues imposed to cells. Taken together, electrospun collagen rich composite fibers are mechanically strong, stable and provide excellent cell adhesion. The unidirectionally aligned fibers can accelerate neural differentiation of stem cells, representing a promising therapy for neural tissue degenerative diseases and nerve injuries.
Biomedical Applications of Mulberry Silk and its Proteins: A Review
NASA Astrophysics Data System (ADS)
Nivedita, S.; Sivaprasad, V.
2014-04-01
Silk is a natural fibre used mainly for aesthetic purposes. It has also been used for making surgical sutures for centuries. The recent rediscovery of silk's biological properties have led to new areas of research and utilization in cosmetic, health and medical fields. The silk proteins, fibroin and sericin are processed into biomaterials because of bio-compatibility, bio-degradability, excellent mechanical properties, thermo tolerance and UV protective properties. Silk proteins could be obtained as pure liquids and regenerated in different forms suitable for tissue engineering applications. This paper presents some of the biomedical products and biomaterials made from native, degraded and regenerated silk and their fabrication techniques.
Lv, Lili; Han, Xiangsheng; Zong, Lu; Li, Mingjie; You, Jun; Wu, Xiaochen; Li, Chaoxu
2017-08-22
Silk, one of the strongest natural biopolymers, was hybridized with Kevlar, one of the strongest synthetic polymers, through a biomimetic nanofibrous strategy. Regenerated silk materials have outstanding properties in transparency, biocompatibility, biodegradability and sustainability, and promising applications as diverse as in pharmaceutics, electronics, photonic devices and membranes. To compete with super mechanic properties of their natural counterpart, regenerated silk materials have been hybridized with inorganic fillers such as graphene and carbon nanotubes, but frequently lose essential mechanic flexibility. Inspired by the nanofibrous strategy of natural biomaterials (e.g., silk fibers, hemp and byssal threads of mussels) for fantastic mechanic properties, Kevlar was integrated in regenerated silk materials by combining nanometric fibrillation with proper hydrothermal treatments. The resultant hybrid films showed an ultimate stress and Young's modulus two times as high as those of pure regenerated SF films. This is not only because of the reinforcing effect of Kevlar nanofibrils, but also because of the increasing content of silk β-sheets. When introducing Kevlar nanofibrils into the membranes of silk nanofibrils assembled by regenerated silk fibroin, the improved mechanic properties further enabled potential applications as pressure-driven nanofiltration membranes and flexible substrates of electronic devices.
NASA Astrophysics Data System (ADS)
Lepore, Emiliano; Isaia, Marco; Mammola, Stefano; Pugno, Nicola
2016-05-01
Spider silk is regarded as one of the best natural polymer fibers especially in terms of low density, high tensile strength and high elongation until breaking. Since only a few bio-engineering studies have been focused on spider silk ageing, we conducted nano-tensile tests on the vertical naturally spun silk fibers of the bridge spider Larinioides cornutus (Clerck, 1757) (Arachnida, Araneae) to evaluate changes in the mechanical properties of the silk (ultimate stress and strain, Young’s modulus, toughness) over time. We studied the natural process of silk ageing at different time intervals from spinning (20 seconds up to one month), comparing silk fibers spun from adult spiders collected in the field. Data were analyzed using Linear Mixed Models. We detected a positive trend versus time for the Young’s modulus, indicating that aged silks are stiffer and possibly less effective in catching prey. Moreover, we observed a negative trend for the ultimate strain versus time, attesting a general decrement of the resistance force. These trends are interpreted as being due to the drying of the silk protein chains and the reorientation among the fibers.
Timing of autophagy and apoptosis during posterior silk gland degeneration in Bombyx mori.
Montali, Aurora; Romanelli, Davide; Cappellozza, Silvia; Grimaldi, Annalisa; de Eguileor, Magda; Tettamanti, Gianluca
2017-07-01
Over the years, the silkworm, Bombyx mori, has been manipulated by means of chemical and genetic approaches to improve silk production both quantitatively and qualitatively. The silk is produced by the silk gland, which degenerates quickly once the larva has finished spinning the cocoon. Thus, interfering with this degeneration process could help develop new technologies aimed at ameliorating silk yield. To this end, in this work we studied the cell death processes that lead to the demise of the posterior silk gland of B. mori, directing in particular our attention to autophagy and apoptosis. We focused on this portion of the gland because it produces fibroin, the main component of the silk thread. By using multiple markers, we provide a morphological, biochemical and molecular characterization of the apoptotic and autophagic processes and define their timing in this biological setting. Our data demonstrate that the activation of both autophagy and apoptosis is preceded by a transcriptional rise in key regulatory genes. Moreover, while autophagy is maintained active for several days and progressively digests silk gland cells, apoptosis is only switched on at a very late stage of silk gland demise. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sheikh, Faheem A; Ju, Hyung Woo; Moon, Bo Mi; Park, Hyun Jung; Kim, Jung-Ho; Lee, Ok Joo; Park, Chan Hum
2014-10-01
In this study, a good combination consisting of electrospun silk fibroin nanofibers incorporated with high-purity hydroxyapatite (HAp) nanoparticles (NPs) and silver NPs is introduced as antimicrobial for tissue engineering applications. The variable pressure field emission scanning electron microscope results confirmed randomly placed nanofibers are produced with highly dispersed HAp and silver NPs in nanofibers after electrospinning. The X-ray diffraction results demonstrated crystalline features of each of the three components used for electrospinning. Moreover, the TEM-EDS analysis confirmed the presence and chemical nature of each component over individual silk nanofiber. The FT-IR analyses was used confirm the different vibration modes caused due to functional groups present in silk fibroin, Hap, and silver NPs. The obtained nanofibers were checked for antimicrobial activity by using two model organisms Escherichia coli and Staphylococcus aureus. Subsequently, the antimicrobial tests have indicated that prepared nanofibers do possess good bactericidal activity. The ability of N,N-dimethylformamide and silk fibroin used to reduce silver nitrate into silver metal was evaluated using MTT assay. The nanofibers were grown in presence of NIH 3T3 fibroblasts, which revealed toxic behavior to fibroblasts at higher concentrations of silver nitrate used in this study. Furthermore, cell attachment studies on nanofibers for 3 and 12 days of incubation time were minutely observed and correlated with the results of MTT assay. The reported results confirmed the high amounts of silver nitrate can lead to toxic effects on viability of fibroblasts and had bad effect in cell attachment. © 2013 Wiley Periodicals, Inc.
Phosphorylation of fibrous materials as a "green" method of their functional diversification =
NASA Astrophysics Data System (ADS)
Volkov, Vadim
The need for the material diversification is typically demanded in research and industry, and it stems from the particular applications of the given material. The current work describes three successful applications of in vitro enzymatic modification of fibrous materials. The chosen materials are silk fibroin (SF) from Bombyx mori (domesticated silkworm) and human hair keratin; the modification is phosphorylation with an ATP as a source of exogenous phosphate group. Protein kinase A from bovine source was the enzyme of choice. Natural fibrous materials are known for their outstanding mechanical properties, environmental stability, biocompatibility and shape control. In the last decades, the knowledge on both SF and keratin has considerably increased, regarding their fine structure and molecular biology, similarly to their practical applications in the field of biotechnology. Produced through sustainable, relatively simple and cheap processes, the natural fibrous materials are one of the main raw sources for biomaterial production. Unlike many biologically derived proteins, both silk and keratin are inherently stable to environmental changes and are mechanically robust. Silk and keratin contain several functional groups on the backbone and side chains of their constituting proteins, therefore exerting an ideal components for production of different protein-derived biomaterials. Therefore, it was of our interest to explore the possibility of "green" treatment of SF and keratin for biomedical (SF) and cosmetic (keratin) applications. The piece of evidence, presented in this thesis, strongly support the idea of enzymatically-mediated in vitro modification of both materials. Although high enzymatic specificity, accompanied by steric hindrance, resulted in somewhat low levels of phosphorylation, it was sufficient to cause considerable structural (SF) and chemical (SF and keratin) changes. The obtained results indicate that kinases can be potentially used to diversify both fibrous material types for a wide range of applications. This is particularly important in the fields of biocompatible devices, or any implementations, designed towards a contact with living tissue. None
Controlling exotic plants in your forest
James H. Miller
1999-01-01
The author discusses the impacts of exotic plants and suggests control and rehabilitation measures. Trees, shrubs, and vines addressed include silk tree or mimosa, Chinese and Japanese privet, kudzu, multiflora rose, Japanese honeysuckle, and Chinese wisteria.
Proteomic Analysis of Silk Viability in Maize Inbred Lines and Their Corresponding Hybrids
Wang, Yafei; Zhao, Xiaofeng; Zhang, Fangfang; Tang, Jihua; Fu, Zhiyuan
2015-01-01
A long period of silk viability is critical for a good seed setting rate in maize (Zea mays L.), especially for inbred lines and hybrids with a long interval between anthesis and silking. To explore the molecular mechanism of silk viability and its heterosis, three inbred lines with different silk viability characteristics (Xun928, Lx9801, and Zong3) and their two hybrids (Xun928×Zong3 and Lx9801×Zong3) were analyzed at different developmental stages by a proteomic method. The differentially accumulated proteins were identified by mass spectrometry and classified into metabolism, protein biosynthesis and folding, signal transduction and hormone homeostasis, stress and defense responses, and cellular processes. Proteins involved in nutrient (methionine) and energy (ATP) supply, which support the pollen tube growth in the silk, were important for silk viability and its heterosis. The additive and dominant effects at a single locus, as well as complex epistatic interactions at two or more loci in metabolic pathways, were the primary contributors for mid-parent heterosis of silk viability. Additionally, the proteins involved in the metabolism of anthocyanins, which indirectly negatively regulate local hormone accumulation, were also important for the mid-parent heterosis of silk viability. These results also might imply the developmental dependence of heterosis, because many of the differentially accumulated proteins made distinct contributions to the heterosis of silk viability at specific developmental stages. PMID:26630375
Proteomic Analysis of Silk Viability in Maize Inbred Lines and Their Corresponding Hybrids.
Ma, Zhihui; Qin, Yongtian; Wang, Yafei; Zhao, Xiaofeng; Zhang, Fangfang; Tang, Jihua; Fu, Zhiyuan
2015-01-01
A long period of silk viability is critical for a good seed setting rate in maize (Zea mays L.), especially for inbred lines and hybrids with a long interval between anthesis and silking. To explore the molecular mechanism of silk viability and its heterosis, three inbred lines with different silk viability characteristics (Xun928, Lx9801, and Zong3) and their two hybrids (Xun928×Zong3 and Lx9801×Zong3) were analyzed at different developmental stages by a proteomic method. The differentially accumulated proteins were identified by mass spectrometry and classified into metabolism, protein biosynthesis and folding, signal transduction and hormone homeostasis, stress and defense responses, and cellular processes. Proteins involved in nutrient (methionine) and energy (ATP) supply, which support the pollen tube growth in the silk, were important for silk viability and its heterosis. The additive and dominant effects at a single locus, as well as complex epistatic interactions at two or more loci in metabolic pathways, were the primary contributors for mid-parent heterosis of silk viability. Additionally, the proteins involved in the metabolism of anthocyanins, which indirectly negatively regulate local hormone accumulation, were also important for the mid-parent heterosis of silk viability. These results also might imply the developmental dependence of heterosis, because many of the differentially accumulated proteins made distinct contributions to the heterosis of silk viability at specific developmental stages.
Novel silk fibroin films prepared by formic acid/hydroxyapatite dissolution method.
Ming, Jinfa; Liu, Zhi; Bie, Shiyu; Zhang, Feng; Zuo, Baoqi
2014-04-01
Bombyx mori silk fibroin from the silkworm was firstly found to be soluble in formic acid/hydroxyapatite system. The rheological behavior of silk fibroin solution was significantly influenced by HAp contents in dissolved solution. At the same time, silk fibroin nanofibers were observed in dissolved solution with 103.6±20.4nm in diameter. Moreover, the structure behavior of SF films prepared by formic acid/hydroxyapatite dissolution method was examined. The secondary structure of silk fibroin films was attributed to silk II structure (β-sheet), indicating that the hydroxyapatite contents in dissolved solution were not significantly affected by the structure of silk fibroin. The X-ray diffraction results exhibited obviously hydroxyapatite crystalline nature existing in silk fibroin films; however, when the hydroxyapatite content was 5.0wt.% in dissolved solution, some hydroxyapatite crystals were converted to calcium hydrogen phosphate dehydrate in silk fibroin dissolution process. This result was also confirmed by Fourier transform infrared analysis and DSC measurement. In addition, silk fibroin films prepared by this dissolution method had higher breaking strength and extension at break. Based on these analyses, an understanding of novel SF dissolution method may provide an additional tool for designing and synthesizing advanced materials with more complex structures, which should be helpful in different fields, including biomaterial applications. Copyright © 2014 Elsevier B.V. All rights reserved.
Structural Analysis of Hand Drawn Bumblebee Bombus terrestris Silk
Woodhead, Andrea L.; Sutherland, Tara D.; Church, Jeffrey S.
2016-01-01
Bombus terrestris, commonly known as the buff-tailed bumblebee, is native to Europe, parts of Africa and Asia. It is commercially bred for use as a pollinator of greenhouse crops. Larvae pupate within a silken cocoon that they construct from proteins produced in modified salivary glands. The amino acid composition and protein structure of hand drawn B. terrestris, silk fibres was investigated through the use of micro-Raman spectroscopy. Spectra were obtained from single fibres drawn from the larvae salivary gland at a rate of 0.14 cm/s. Raman spectroscopy enabled the identification of poly(alanine), poly(alanine-glycine), phenylalanine, tryptophan, and methionine, which is consistent with the results of amino acid analysis. The dominant protein conformation was found to be coiled coil (73%) while the β-sheet content of 10% is, as expected, lower than those reported for hornets and ants. Polarized Raman spectra revealed that the coiled coils were highly aligned along the fibre axis while the β-sheet and random coil components had their peptide carbonyl groups roughly perpendicular to the fibre axis. The protein orientation distribution is compared to those of other natural and recombinant silks. A structural model for the B. terrestris silk fibre is proposed based on these results. PMID:27447623
Predicting Silk Fiber Mechanical Properties through Multiscale Simulation and Protein Design.
Rim, Nae-Gyune; Roberts, Erin G; Ebrahimi, Davoud; Dinjaski, Nina; Jacobsen, Matthew M; Martín-Moldes, Zaira; Buehler, Markus J; Kaplan, David L; Wong, Joyce Y
2017-08-14
Silk is a promising material for biomedical applications, and much research is focused on how application-specific, mechanical properties of silk can be designed synthetically through proper amino acid sequences and processing parameters. This protocol describes an iterative process between research disciplines that combines simulation, genetic synthesis, and fiber analysis to better design silk fibers with specific mechanical properties. Computational methods are used to assess the protein polymer structure as it forms an interconnected fiber network through shearing and how this process affects fiber mechanical properties. Model outcomes are validated experimentally with the genetic design of protein polymers that match the simulation structures, fiber fabrication from these polymers, and mechanical testing of these fibers. Through iterative feedback between computation, genetic synthesis, and fiber mechanical testing, this protocol will enable a priori prediction capability of recombinant material mechanical properties via insights from the resulting molecular architecture of the fiber network based entirely on the initial protein monomer composition. This style of protocol may be applied to other fields where a research team seeks to design a biomaterial with biomedical application-specific properties. This protocol highlights when and how the three research groups (simulation, synthesis, and engineering) should be interacting to arrive at the most effective method for predictive design of their material.
Programming function into mechanical forms by directed assembly of silk bulk materials
Patel, Nereus; Duggan, Thomas; Perotto, Giovanni; Shirman, Elijah; Li, Chunmei; Kaplan, David L.; Omenetto, Fiorenzo G.
2017-01-01
We report simple, water-based fabrication methods based on protein self-assembly to generate 3D silk fibroin bulk materials that can be easily hybridized with water-soluble molecules to obtain multiple solid formats with predesigned functions. Controlling self-assembly leads to robust, machinable formats that exhibit thermoplastic behavior consenting material reshaping at the nanoscale, microscale, and macroscale. We illustrate the versatility of the approach by realizing demonstrator devices where large silk monoliths can be generated, polished, and reshaped into functional mechanical components that can be nanopatterned, embed optical function, heated on demand in response to infrared light, or can visualize mechanical failure through colorimetric chemistries embedded in the assembled (bulk) protein matrix. Finally, we show an enzyme-loaded solid mechanical part, illustrating the ability to incorporate biological function within the bulk material with possible utility for sustained release in robust, programmably shapeable mechanical formats. PMID:28028213
Biomimetic Silk Scaffolds with an Amorphous Structure for Soft Tissue Engineering.
Sang, Yonghuan; Li, Meirong; Liu, Jiejie; Yao, Yuling; Ding, Zhaozhao; Wang, Lili; Xiao, Liying; Lu, Qiang; Fu, Xiaobing; Kaplan, David L
2018-03-21
Fine tuning physical cues of silk fibroin (SF) biomaterials to match specific requirements for different soft tissues would be advantageous. Here, amorphous SF nanofibers were used to fabricate scaffolds with better hierarchical extracellular matrix (ECM) mimetic microstructures than previous silk scaffolds. Kinetic control was introduced into the scaffold forming process, resulting in the direct production of water-stable scaffolds with tunable secondary structures and thus mechanical properties. These biomaterials remained with amorphous structures, offering softer properties than prior scaffolds. The fine mechanical tunability of these systems provides a feasible way to optimize physical cues for improved cell proliferation and enhanced neovascularization in vivo. Multiple physical cues, such as partly ECM mimetic structures and optimized stiffness, provided suitable microenvironments for tissue ingrowth, suggesting the possibility of actively designing bioactive SF biomaterials. These systems suggest a promising strategy to develop novel SF biomaterials for soft tissue repair and regenerative medicine.
Preparation and characterization of silk fibroin as a biomaterial with potential for drug delivery
2012-01-01
Background Degummed silk fibroin from Bombyx mori (silkworm) has potential carrier capabilities for drug delivery in humans; however, the processing methods have yet to be comparatively analyzed to determine the differential effects on the silk protein properties, including crystalline structure and activity. Methods In this study, we treated degummed silk with four kinds of calcium-alcohol solutions, and performed secondary structure measurements and enzyme activity test to distinguish the differences between the regenerated fibroins and degummed silk fibroin. Results Gel electrophoresis analysis revealed that Ca(NO3)2-methanol, Ca(NO3)2-ethanol, or CaCl2-methanol treatments produced more lower molecular weights of silk fibroin than CaCl2-ethanol. X-ray diffraction and Fourier-transform infrared spectroscopy showed that CaCl2-ethanol produced a crystalline structure with more silk I (α-form, type II β-turn), while the other treatments produced more silk II (β-form, anti-parallel β-pleated sheet). Solid-State 13C cross polarization and magic angle spinning-nuclear magnetic resonance measurements suggested that regenerated fibroins from CaCl2-ethanol were nearly identical to degummed silk fibroin, while the other treatments produced fibroins with significantly different chemical shifts. Finally, enzyme activity test indicated that silk fibroins from CaCl2-ethanol had higher activity when linked to a known chemotherapeutic drug, L-asparaginase, than the fibroins from other treatments. Conclusions Collectively, these results suggest that the CaCl2-ethanol processing method produces silk fibroin with biomaterial properties that are appropriate for drug delivery. PMID:22676291
Recursive Directional Ligation Approach for Cloning Recombinant Spider Silks.
Dinjaski, Nina; Huang, Wenwen; Kaplan, David L
2018-01-01
Recent advances in genetic engineering have provided a route to produce various types of recombinant spider silks. Different cloning strategies have been applied to achieve this goal (e.g., concatemerization, step-by-step ligation, recursive directional ligation). Here we describe recursive directional ligation as an approach that allows for facile modularity and control over the size of the genetic cassettes. This approach is based on sequential ligation of genetic cassettes (monomers) where the junctions between them are formed without interrupting key gene sequences with additional base pairs.
Silk fibroin-based scaffolds for tissue engineering
NASA Astrophysics Data System (ADS)
Li, Zi-Heng; Ji, Shi-Chen; Wang, Ya-Zhen; Shen, Xing-Can; Liang, Hong
2013-09-01
Silk fibroin (SF) from the Bombyx mori silkworm exhibits attractive potential applications as biomechanical materials, due to its unique mechanical and biological properties. This review outlines the structure and properties of SF, including of its biocompatibility and biodegradability. It highlights recent researches on the fabrication of various SF-based composites scaffolds that are promising for tissue engineering applications, and discusses synthetic methods of various SF-based composites scaffolds and valuable approaches for controlling cell behaviors to promote the tissue repair. The function of extracellular matrices and their interaction with cells are also reviewed here.
Spider silk MASP1 and MASP2 proteins as carbon fiber precursors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, Randolph V
The objective of this project is to develop an unconventional non-petroleum based carbon fiber precursor which has the potential to be produced in high yield and quantities. Methods will be developed to produce pilot-scale quantities of fibers from spider silk proteins with mechanical properties at least 75% that of the natural dragline silk fibers in tensile strength and elongations of less than 5%. The precursor fibers will be converted to carbon fibers, with a goal of >250Ksi strength and 1-2% elongation. Cost analysis will be performed and the process optimized. Task 1: Subtask 1. Protein production: We exceeded the go/more » no go milestone of 1.0g/L of one of the spider silk protein (MSp2) purified last FY and have now increased from 5L to 500L fermentations. We have made a series of changes to the purification protocol from the initial report last FY. These led to a reduction in the time needed for the purification and reduced the purification costs by nearly 90%. Subtask 2. Fiber spinning: The major focus has been to produce more material to send 24 fiber thread to ONRL. We are still developing the methodology to successfully spin 24 fiber yarns. This involves both the spinning dope solutions as well as the methods to keep the fibers from fusing during the post spin stretch. The second area of focus has been to standardize the spin dopes for making the fibers. We now know that the conductivity (indicative of salt remaining with the protein after purification) is an important factor in successful spinning as is the pH. We now know that we need to be below 600 uS conductivity and that the most effective pH is protein dependent. Subtask 3. Silkworm silk: We have found the transgenic silkworms made using gene replacement at the fibroin light chain instead of heavy chain as we did previously have a higher tensile strength. See figures below showing the curve for the top end of the cocoon fibers. This tensile strength is the same as the average for spider dragline silk. Task 2. Carbonization: The major accomplishment in the latter part of the work is that the ONRL group has successfully heated the spider silk protein fibers all the way up to 1700°C and produced a very competitive carbon fiber based on mechanical properties. Several important factors were discovered during these initial trials: 1) the ramp speed for increasing the temperature is critical; 2) maintaining tension on the fiber during the heating process because as it is heated it tends to expand; and 3) narrow temperature window in which stretching the fiber during heating leads to much better final materials. Task 3. Techno-Economic Methods: The techno-economic analysis was expanded to determine the relative cost of production with the bacterial production system compared to the transgenic alfalfa and goat production systems. The comparisons show two important things. For all systems the key factor in the final price is the amount of spider silk protein produced for whatever measure of volume or weight is used. Second alfalfa can be the cheapest but is subject to the possible regulatory control unless the US develops a more comprehensive approach to GMOs. The silkworm analysis was not completed due to a variety of confounding factors. The primary one was that if the production were shifted overseas then the cost would likely be nearly equivalent to current silk prices of $5-15/kg. However if concerns about the location of production is important then it would need to be done in the US and initial costs would be much higher but if the later scenario is utilized then the cost would be lowered but it was not possible to calculate exact costs.« less
Tough silk fibers prepared in air using a biomimetic microfluidic chip.
Luo, Jie; Zhang, Lele; Peng, Qingfa; Sun, Mengjie; Zhang, Yaopeng; Shao, Huili; Hu, Xuechao
2014-05-01
Microfluidic chips with single channel were built to mimic the shear and elongation conditions in the spinning apparatus of spider and silkworm. Silk fibers dry-spun from regenerated silk fibroin (RSF) aqueous solution using the chip could be tougher than degummed natural silk. The artificial silk exhibited a breaking strength up to 614 MPa, a breaking elongation up to 27% and a breaking energy of 101 kJ/kg. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Osbin, K.; Jayan, Manuel; Bhadrakumari, S.; Predeep, P.
2017-06-01
This study investigates the presence of various amide bands present in different spider silk species, which provides extraordinary physical properties. Three different spider silks were collected from Western Ghats region. The collected spider silks samples belonging to the spider Heteropoda venatoria (species 1), Hersilia savignyi (species 2) and Pholcus phalangioides (species 3). Fourier transform infrared (FTIR) spectra reveals the protein peaks in the amide I, II, and III regions in all the three types of spider silk species.
NASA Astrophysics Data System (ADS)
Cheng, Jie; Lee, Sang-Hoon
2015-12-01
Silks produced by spiders and silkworms are charming natural biological materials with highly optimized hierarchical structures and outstanding physicomechanical properties. The superior performance of silks relies on the integration of a unique protein sequence, a distinctive spinning process, and complex hierarchical structures. Silks have been prepared to form a variety of morphologies and are widely used in diverse applications, for example, in the textile industry, as drug delivery vehicles, and as tissue engineering scaffolds. This review presents an overview of the organization of natural silks, in which chemical and physical functions are optimized, as well as a range of new materials inspired by the desire to mimic natural silk structure and synthesis.
Protective effect of silk lutein on ultraviolet B-irradiated human keratinocytes.
Pongcharoen, Sutatip; Warnnissorn, Prateep; Leŗtkajornsin, Ongart; Limpeanchob, Nanteetip; Sutheerawattananonda, Manote
2013-01-01
Carotenoids are efficient antioxidants that are of great importance for human health. Lutein and zeaxanthin are carotinoids present in high concentrations in the human retina which are involved in the photoprotection of the human eye. Lutein may also protect the skin from ultraviolet (UV)-induced damage. The present study investigated the protective effect of lutein extracted from yellow silk cocoons of Bombyx mori on human keratinocytes against UVB irradiation. A human keratinocyte cell line and primary human keratinocytes were used to investigate the UVB protection effects of silk lutein and plant lutein. Silk lutein showed no cytotoxicity to keratinocytes. Treatment with silk lutein prior to UVB irradiation enhanced cell viability and cell proliferation, and reduced cell apoptosis. The protective effects of silk lutein may be superior to those of plant lutein. Silk lutein may have a benefit for protection of keratinocytes against UVB-irradiation.
Adhesion modulation using glue droplet spreading in spider capture silk
Zhang, Ci; Blackledge, Todd A.
2017-01-01
Orb web spiders use sticky capture spiral silk to retain prey in webs. Capture spiral silk is composed of an axial fibre of flagelliform silk covered with glue droplets that are arranged in a beads-on-a-string morphology that allows multiple droplets to simultaneously extend and resist pull off. Previous studies showed that the adhesion of capture silk is responsive to environmental humidity, increasing up to an optimum humidity that varied among different spider species. The maximum adhesion was hypothesized to occur when the viscoelasticity of the glue optimized contributions from glue spreading and bulk cohesion. In this study, we show how glue droplet shape during peeling contributes significantly to capture silk adhesion. Both overspreading and underspreading of glue droplets reduces adhesion through changes in crack propagation and failure regime. Understanding the mechanism of stimuli-responsive adhesion of spider capture silk will lead to new designs for smarter adhesives. PMID:28490605
Synergistic adhesion mechanisms of spider capture silk.
Guo, Yang; Chang, Zheng; Guo, Hao-Yuan; Fang, Wei; Li, Qunyang; Zhao, Hong-Ping; Feng, Xi-Qiao; Gao, Huajian
2018-03-01
It is well known that capture silk, the main sticky component of the orb web of a spider, plays an important role in the spider's ability to capture prey via adhesion. However, the detailed mechanism with which the spider achieves its unparalleled high-adhesion performance remains elusive. In this work, we combine experiments and theoretical analysis to investigate the adhesion mechanisms of spider silk. In addition to the widely recognized adhesion effect of the sticky glue, we reveal a synergistic enhancement mechanism due to the elasticity of silk fibres. A balance between silk stiffness, strength and glue stickiness is crucial to endow the silk with superior adhesion, as well as outstanding energy absorption capacity and structural robustness. The revealed mechanisms deepen our understanding of the working principles of spider silk and suggest guidelines for biomimetic designs of spider-inspired adhesion and capture devices. © 2018 The Author(s).
Adhesion modulation using glue droplet spreading in spider capture silk.
Amarpuri, Gaurav; Zhang, Ci; Blackledge, Todd A; Dhinojwala, Ali
2017-05-01
Orb web spiders use sticky capture spiral silk to retain prey in webs. Capture spiral silk is composed of an axial fibre of flagelliform silk covered with glue droplets that are arranged in a beads-on-a-string morphology that allows multiple droplets to simultaneously extend and resist pull off. Previous studies showed that the adhesion of capture silk is responsive to environmental humidity, increasing up to an optimum humidity that varied among different spider species. The maximum adhesion was hypothesized to occur when the viscoelasticity of the glue optimized contributions from glue spreading and bulk cohesion. In this study, we show how glue droplet shape during peeling contributes significantly to capture silk adhesion. Both overspreading and underspreading of glue droplets reduces adhesion through changes in crack propagation and failure regime. Understanding the mechanism of stimuli-responsive adhesion of spider capture silk will lead to new designs for smarter adhesives. © 2017 The Author(s).
Silk scaffolds with tunable mechanical capability for cell differentiation
Bai, Shumeng; Han, Hongyan; Huang, Xiaowei; Xu, Weian; Kaplan, David L.; Zhu, Hesun; Lu, Qiang
2015-01-01
Bombyx mori silk fibroin is a promising biomaterial for tissue regeneration and is usually considered an “inert” material with respect to actively regulating cell differentiation due to few specific cell signaling peptide domains in the primary sequence and the generally stiffer mechanical properties due to crystalline content formed in processing. In the present study, silk fibroin porous 3D scaffolds with nanostructures and tunable stiffness were generated via a silk fibroin nanofiber-assisted lyophilization process. The silk fibroin nanofibers with high β-sheet content were added into the silk fibroin solutions to modulate the self-assembly, and to directly induce water-insoluble scaffold formation after lyophilization. Unlike previously reported silk fibroin scaffold formation processes, these new scaffolds had lower overall β-sheet content and softer mechanical properties for improved cell compatibility. The scaffold stiffness could be further tuned to match soft tissue mechanical properties, which resulted in different differentiation outcomes with rat bone marrow-derived mesenchymal stem cells towards myogenic and endothelial cells, respectively. Therefore, these silk fibroin scaffolds regulate cell differentiation outcomes due to their mechanical features. PMID:25858557
NASA Astrophysics Data System (ADS)
Zhang, Zhen; Qu, Yinying; Li, Xiaoshuang; Zhang, Sheng; Wei, Qingsong; Shi, Yusheng; Chen, Lili
2014-06-01
Electrophoretic deposition has been widely used for the fabrication of functional coatings onto metal implant. A characteristic feature of this process is that positively charged materials migrate toward the cathode and can deposit on it. In this study, silk fibroin was decorated with tetracycline in aqueous solution to impart positive charge, and then deposited on negatively titanium cathode under certain electric field. The characterization of the obtained coatings indicated that the intermolecular hydrogen bonds formed between the backbone of silk fibroin and tetracycline molecular. In vitro biological tests demonstrated that osteoblast-like cells achieved acceptable cell affinity on the tetracycline cross-linked silk fibroin coatings, although greater cell viability was seen on pure silk fibroin coatings. The cationic silk fibroin coatings showed remarkable antibacterial activity against gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli) bacteria. Therefore, we concluded that electrophoretic deposition was an effective and efficient technique to prepare cationic silk fibroin coatings on the titanium surface and that cationic silk fibroin coatings with acceptable biocompatibility and antibacterial property were promising candidates for further loading of functional agents.
Infrared and Raman Study of the Recluse Spider Silk
NASA Astrophysics Data System (ADS)
Wang, S. L.; Wang, Qijue; Xing, Zhen; Schniepp, H. C.; Qazilbash, M. M.
Spider silk exhibits remarkable mechanical properties, such as high tensile strength and toughness. We want to gain insight into the composition and structure of spider silk to discover the origin of these properties. We are especially interested in the organization of the crystalline beta sheets that are expected to contribute to the high strength of the silk from the recluse spider, Loxosceles laeta. The recluse spider produces a silk that has a unique geometry amongst arachnids. We measure the silk's optical properties, particularly the infrared-active and Raman-active vibrations. Broadband infrared transmission spectra were collected in the spectral range between 600 cm-1 and 4000 cm-1, with light polarized parallel and perpendicular to the long axis of the silk. Raman micro-spectroscopy was performed in the spectral range 500 cm-1 and 4000 cm- 1 with a 514 nm laser. The infrared and Raman vibrational modes are fit with Lorentzian and pseudo-Voigt functions. The vibrational modes are assigned to specific structures and electronic bonds in the silk. This work was supported by NASA/ Virginia Space Grant Consortium.
Silk Electrogel Based Gastroretentive Drug Delivery System
NASA Astrophysics Data System (ADS)
Wang, Qianrui
Gastric cancer has become a global pandemic and there is imperative to develop efficient therapies. Oral dosing strategy is the preferred route to deliver drugs for treating the disease. Recent studies suggested silk electro hydrogel, which is pH sensitive and reversible, has potential as a vehicle to deliver the drug in the stomach environment. The aim of this study is to establish in vitro electrogelation e-gel based silk gel as a gastroretentive drug delivery system. We successfully extended the duration of silk e-gel in artificial gastric juice by mixing silk solution with glycerol at different ratios before the electrogelation. Structural analysis indicated the extended duration was due to the change of beta sheet content. The glycerol mixed silk e-gel had good doxorubicin loading capability and could release doxorubicin in a sustained-release profile. Doxorubicin loaded silk e-gels were applied to human gastric cancer cells. Significant cell viability decrease was observed. We believe that with further characterization as well as functional analysis, the silk e-gel system has the potential to become an effective vehicle for gastric drug delivery applications.
Fabrication of 3D porous SF/β-TCP hybrid scaffolds for bone tissue reconstruction.
Park, Hyun Jung; Min, Kyung Dan; Lee, Min Chae; Kim, Soo Hyeon; Lee, Ok Joo; Ju, Hyung Woo; Moon, Bo Mi; Lee, Jung Min; Park, Ye Ri; Kim, Dong Wook; Jeong, Ju Yeon; Park, Chan Hum
2016-07-01
Bio-ceramic is a biomaterial actively studied in the field of bone tissue engineering. But, only certain ceramic materials can resolve the corrosion problem and possess the biological affinity of conventional metal biomaterials. Therefore, the recent development of composites of hybrid composites and polymers has been widely studied. In this study, we aimed to select the best scaffold of silk fibroin and β-TCP hybrid for bone tissue engineering. We fabricated three groups of scaffold such as SF (silk fibroin scaffold), GS (silk fibroin/small granule size of β-TCP scaffold) and GM (silk fibroin/medium granule size of β-TCP scaffold), and we compared the characteristics of each group. During characterization of the scaffold, we used scanning electron microscopy (SEM) and a Fourier transform infrared spectroscopy (FTIR) for structural analysis. We compared the physiological properties of the scaffold regarding the swelling ratio, water uptake and porosity. To evaluate the mechanical properties, we examined the compressive strength of the scaffold. During in vitro testing, we evaluated cell attachment and cell proliferation (CCK-8). Finally, we confirmed in vivo new bone regeneration from the implanted scaffolds using histological staining and micro-CT. From these evaluations, the fabricated scaffold demonstrated high porosity with good inter-pore connectivity, showed good biocompatibility and high compressive strength and modulus. In particular, the present study indicates that the GM scaffold using β-TCP accelerates new bone regeneration of implanted scaffolds. Accordingly, our scaffold is expected to act a useful application in the field of bone tissue engineering. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1779-1787, 2016. © 2016 Wiley Periodicals, Inc.
Milled non-mulberry silk fibroin microparticles as biomaterial for biomedical applications.
Bhardwaj, Nandana; Rajkhowa, Rangam; Wang, Xungai; Devi, Dipali
2015-11-01
Silk fibroin has been widely employed in various forms as biomaterials for biomedical applications due to its superb biocompatibility and tunable degradation and mechanical properties. Herein, silk fibroin microparticles of non-mulberry silkworm species (Antheraea assamensis, Antheraea mylitta and Philosamia ricini) were fabricated via a top-down approach using a combination of wet-milling and spray drying techniques. Microparticles of mulberry silkworm (Bombyx mori) were also utilized for comparative studies. The fabricated microparticles were physico-chemically characterized for size, stability, morphology, chemical composition and thermal properties. The silk fibroin microparticles of all species were porous (∼5μm in size) and showed nearly spherical morphology with rough surface as revealed from dynamic light scattering and microscopic studies. Non-mulberry silk microparticles maintained the typical silk-II structure with β-sheet secondary conformation with higher thermal stability. Additionally, non-mulberry silk fibroin microparticles supported enhanced cell adhesion, spreading and viability of mouse fibroblasts than mulberry silk fibroin microparticles (p<0.001) as evidenced from fluorescence microscopy and cytotoxicity studies. Furthermore, in vitro drug release from the microparticles showed a significantly sustained release over 3 weeks. Taken together, this study demonstrates promising attributes of non-mulberry silk fibroin microparticles as a potential drug delivery vehicle/micro carrier for diverse biomedical applications. Copyright © 2015 Elsevier B.V. All rights reserved.
Kameda, Tsunenori
2015-01-01
We found that an aqueous solution of silk from cocoons produced by hornet larvae (hornet silk) can be obtained when the solution is adjusted to basic conditions of pH > 9.2. It is known that native hornet cocoons can be dissolved in concentrated aqueous solution of salts, such as lithium bromide (LiBr) and calcium chloride (CaCl2). Upon the removal of these salts from solution by dialysis, solidification, gelation, or sedimentation of hornet silk is known to occur. In the present study, under basic conditions, however, no such solidification occurred, even after salt removal. In this study, ammonia was used for alkalization of solution because it is volatilized during the casting process and pure hornet silk materials can be obtained after drying. The effects of the concentrations of hornet silk and ammonia, as well as dialysis temperature, on preventing gelation during dialysis were investigated. Dialysis conditions that limit the degradation of hornet silk by hydrolysis in alkali solution were identified. Moreover, casting conditions to prepare flexible and transparent hornet silk film from aqueous ammonia solution were optimized. Molecular structural analysis of hornet silk in aqueous ammonia solution and cast film indicated the formation of α-helix conformations. © 2014 Wiley Periodicals, Inc.
Wolff, Jonas O; van der Meijden, Arie; Herberstein, Marie E
2017-07-26
Building behaviour in animals extends biological functions beyond bodies. Many studies have emphasized the role of behavioural programmes, physiology and extrinsic factors for the structure and function of buildings. Structure attachments associated with animal constructions offer yet unrealized research opportunities. Spiders build a variety of one- to three-dimensional structures from silk fibres. The evolution of economic web shapes as a key for ecological success in spiders has been related to the emergence of high performance silks and thread coating glues. However, the role of thread anchorages has been widely neglected in those models. Here, we show that orb-web (Araneidae) and hunting spiders (Sparassidae) use different silk application patterns that determine the structure and robustness of the joint in silk thread anchorages. Silk anchorages of orb-web spiders show a greater robustness against different loading situations, whereas the silk anchorages of hunting spiders have their highest pull-off resistance when loaded parallel to the substrate along the direction of dragline spinning. This suggests that the behavioural 'printing' of silk into attachment discs along with spinneret morphology was a prerequisite for the evolution of extended silk use in a three-dimensional space. This highlights the ecological role of attachments in the evolution of animal architectures. © 2017 The Author(s).
Kerr, Genevieve G; Nahrung, Helen F; Wiegand, Aaron; Kristoffersen, Joanna; Killen, Peter; Brown, Cameron; Macdonald, Joanne
2018-02-22
Silks from orb-weaving spiders are exceptionally tough, producing a model polymer for biomimetic fibre development. The mechanical properties of naturally spun silk threads from two species of Australian orb-weavers, Nephila pilipes and Nephila plumipes , were examined here in relation to overall thread diameter, the size and number of fibres within threads, and spider size. N. pilipes , the larger of the two species, had significantly tougher silk with higher strain capacity than its smaller congener, producing threads with average toughness of 150 MJ m -3 , despite thread diameter, mean fibre diameter and number of fibres per thread not differing significantly between the two species. Within N. pilipes , smaller silk fibres were produced by larger spiders, yielding tougher threads. In contrast, while spider size was correlated with thread diameter in N. plumipes , there were no clear patterns relating to silk toughness, which suggests that the differences in properties between the silk of the two species arise through differing molecular structure. Our results support previous studies that found that the mechanical properties of silk differ between distantly related spider species, and extends on that work to show that the mechanical and physical properties of silk from more closely related species can also differ remarkably. © 2018. Published by The Company of Biologists Ltd.
Altman, Gregory H; Diaz, Frank; Jakuba, Caroline; Calabro, Tara; Horan, Rebecca L; Chen, Jingsong; Lu, Helen; Richmond, John; Kaplan, David L
2003-02-01
Silk from the silkworm, Bombyx mori, has been used as biomedical suture material for centuries. The unique mechanical properties of these fibers provided important clinical repair options for many applications. During the past 20 years, some biocompatibility problems have been reported for silkworm silk; however, contamination from residual sericin (glue-like proteins) was the likely cause. More recent studies with well-defined silkworm silk fibers and films suggest that the core silk fibroin fibers exhibit comparable biocompatibility in vitro and in vivo with other commonly used biomaterials such as polylactic acid and collagen. Furthermore, the unique mechanical properties of the silk fibers, the diversity of side chain chemistries for 'decoration' with growth and adhesion factors, and the ability to genetically tailor the protein provide additional rationale for the exploration of this family of fibrous proteins for biomaterial applications. For example, in designing scaffolds for tissue engineering these properties are particularly relevant and recent results with bone and ligament formation in vitro support the potential role for this biomaterial in future applications. To date, studies with silks to address biomaterial and matrix scaffold needs have focused on silkworm silk. With the diversity of silk-like fibrous proteins from spiders and insects, a range of native or bioengineered variants can be expected for application to a diverse set of clinical needs.
Enhancing the Mechanical Toughness of Epoxy-Resin Composites Using Natural Silk Reinforcements
Yang, Kang; Wu, Sujun; Guan, Juan; ...
2017-09-20
Strong and tough epoxy composites are developed using a less-studied fibre reinforcement, that of natural silk. Two common but structurally distinct silks from the domestic B. mori/Bm and the wild A. pernyi/Ap silkworms are selected in fabric forms. We show that the toughening effects on silk-epoxy composites or SFRPs are dependent on the silk species and the volume fraction of silk. Both silks enhance the room-temperature tensile and flexural mechanical properties of the composite, whereas the more resilient Ap silk shows a more pronounced toughening effect and a lower critical reinforcement volume for the brittle-ductile transition. Specifically, our 60 vol.%more » Ap-SFRP displays a three-fold elevation in tensile and flexural strength, as compared to pure epoxy resin, with an order of magnitude higher breaking energy via a distinct, ductile failure mode. Importantly, the 60 vol.% Ap-SFRP remains ductile with 7% flexural elongation at lower temperatures (-50 °C). Under impact, these SFRPs show significantly improved energy absorption, and the 60 vol.% Ap-SFRP has an impact strength some eight times that of pure epoxy resin. Lastly, the findings demonstrate both marked toughening and strengthening effects for epoxy composites from natural silk reinforcements, which presents opportunities for mechanically superior and "green" structural composites.« less
Shang, Ke; Rnjak-Kovacina, Jelena; Lin, Yinan; Hayden, Rebecca S.; Tao, Hu; Kaplan, David L.
2013-01-01
Purpose: To design patterned, transparent silk films with fast degradation rates for the purpose of tissue engineering corneal stroma. Methods: β-sheet (crystalline) content of silk films was decreased significantly by using a short water annealing time. Additionally, a protocol combining short water annealing time with enzymatic pretreatment of silk films with protease XIV was developed. Results: Low β-sheet content (17%–18%) and enzymatic pretreatment provided film stability in aqueous environments and accelerated degradation of the silk films in the presence of human corneal fibroblasts in vitro. The results demonstrate a direct relationship between reduced β-sheet content and enzymatic pretreatment, and overall degradation rate of the protein films. Conclusions: The novel protocol developed here provides new approaches to modulate the regeneration rate of silk biomaterials for corneal tissue regeneration needs. Translational Relevance: Patterned silk protein films possess desirable characteristics for corneal tissue engineering, including optical transparency, biocompatibility, cell alignment, and tunable mechanical properties, but current fabrication protocols do not provide adequate degradation rates to match the regeneration properties of the human cornea. This novel processing protocol makes silk films more suitable for the construction of human corneal stroma tissue and a promising way to tune silk film degradation properties to match corneal tissue regeneration. PMID:24049717
Shang, Ke; Rnjak-Kovacina, Jelena; Lin, Yinan; Hayden, Rebecca S.; Hu, Tao; Kaplan, David L.
2013-01-01
Purpose To design patterned, transparent silk films with fast degradation rates for the purpose of tissue engineering corneal stroma, Methods β-sheet (crystalline) content of silk films was decreased significantly by using a short water annealing time. Additionally, a protocol combining short water annealing time with enzymatic pretreatment of silk films with protease XIV was developed. Results Low β-sheet content (17–18%) and enzymatic pre-treatment provided film stability in aqueous environments and accelerated degradation of the silk films in the presence of human corneal fibroblasts in vitro. The results demonstrate a direct relationship between reduced β-sheet content and enzymatic pre-treatment and overall degradation rate of the protein films. Conclusions The novel protocol developed here provides new approaches to modulate the regeneration rate of silk biomaterials for corneal tissue regeneration needs. Translational relevance Patterned silk protein films possess desirable characteristics for corneal tissue engineering, including optical transparency, biocompatibility, cell alignment and tunable mechanical properties, but current fabrication protocols do not provide adequate degradation rates to match the regeneration properties of the human cornea. This novel processing protocol makes silk films more suitable for the construction of human corneal stroma tissue and a promising way to tune silk film degradation properties to match corneal tissue regeneration. PMID:23579493
Incorporation of Methionine Analogues Into Bombyx mori Silk Fibroin for Click Modifications.
Teramoto, Hidetoshi; Kojima, Katsura
2015-05-01
Bombyx mori silk fibroin incorporating three methionine (Met) analogues-homopropargylglycine (Hpg), azidohomoalanine (Aha), and homoallylglycine (Hag)-can be produced simply by adding them to the diet of B. mori larvae. The Met analogues are recognized by methionyl-tRNA synthetase, bound to tRNA(Met), and used for the translation of adenine-uracil-guanine (AUG) codons competitively with Met. In the presence of the standard amount of Met in the diet, incorporation of these analogues remains low. Lowering the amount of Met in the diet drastically improves incorporation efficiencies. Alkyne and azide groups in Hpg and Aha incorporated into silk fibroin can be selectively modified with Cu-catalyzed azide-alkyne cycloaddition reactions (click chemistry). Since Met residues exist only at the N-terminal domain of the fibroin heavy chain and in the fibroin light chain, good access to the reactive sites is expected and domain-selective modifications are possible without perturbing other major domains, including repetitive domains. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Functional regeneration of ligament-bone interface using a triphasic silk-based graft.
Li, Hongguo; Fan, Jiabing; Sun, Liguo; Liu, Xincheng; Cheng, Pengzhen; Fan, Hongbin
2016-11-01
The biodegradable silk-based scaffold with unique mechanical property and biocompatibility represents a favorable ligamentous graft for tissue-engineering anterior cruciate ligament (ACL) reconstruction. However, the low efficiency of ligament-bone interface restoration barriers the isotropic silk graft to common ACL therapeutics. To enhance the regeneration of the silk-mediated interface, we developed a specialized stratification approach implementing a sequential modification on isotropic silk to constitute a triphasic silk-based graft in which three regions respectively referring to ligament, cartilage and bone layers of interface were divided, followed by respective biomaterial coating. Furthermore, three types of cells including bone marrow mesenchymal stem cells (BMSCs), chondrocytes and osteoblasts were respectively seeded on the ligament, cartilage and bone region of the triphasic silk graft, and the cell/scaffold complex was rolled up as a multilayered graft mimicking the stratified structure of native ligament-bone interface. In vitro, the trilineage cells loaded on the triphasic silk scaffold revealed a high proliferative capacity as well as enhanced differentiation ability into their corresponding cell lineage. 24 weeks postoperatively after the construct was implanted to repair the ACL defect in rabbit model, the silk-based ligamentous graft exhibited the enhancement of osseointegration detected by a robust pullout force and formation of three-layered structure along with conspicuously corresponding matrix deposition via micro-CT and histological analysis. These findings potentially broaden the application of silk-based ligamentous graft for ACL reconstruction and further large animal study. Copyright © 2016 Elsevier Ltd. All rights reserved.
Conferring biological activity to native spider silk: A biofunctionalized protein-based microfiber.
Wu, Hsuan-Chen; Quan, David N; Tsao, Chen-Yu; Liu, Yi; Terrell, Jessica L; Luo, Xiaolong; Yang, Jen-Chang; Payne, Gregory F; Bentley, William E
2017-01-01
Spider silk is an extraordinary material with physical properties comparable to the best scaffolding/structural materials, and as a fiber it can be manipulated with ease into a variety of configurations. Our work here demonstrates that natural spider silk fibers can also be used to organize biological components on and in devices through rapid and simple means. Micron scale spider silk fibers (5-10 μm in diameter) were surface modified with a variety of biological entities engineered with pentaglutamine tags via microbial transglutaminase (mTG). Enzymes, enzyme pathways, antibodies, and fluorescent proteins were all assembled onto spider silk fibers using this biomolecular engineering/biofabrication process. Additionally, arrangement of biofunctionalized fiber should in of itself generate a secondary level of biomolecular organization. Toward this end, as proofs of principle, spatially defined arrangement of biofunctionalized spider silk fiber was shown to generate effects specific to silk position in two cases. In one instance, arrangement perpendicular to a flow produced selective head and neck carcinoma cell capture on silk with antibodies complexed to conjugated protein G. In a second scenario, asymmetric bacterial chemotaxis arose from asymmetric conjugation of enzymes to arranged silk. Overall, the biofabrication processes used here were rapid, required no complex chemistries, were biologically benign, and also the resulting engineered silk microfibers were flexible, readily manipulated and functionally active. Deployed here in microfluidic environments, biofunctional spider silk fiber provides a means to convey complex biological functions over a range of scales, further extending its potential as a biomaterial in biotechnological settings. Biotechnol. Bioeng. 2017;114: 83-95. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Multiscale mechanisms of nutritionally induced property variation in spider silks
Nobbs, Madeleine; Martens, Penny J.; Tso, I-Min; Chuang, Wei-Tsung; Chang, Chung-Kai; Sheu, Hwo-Shuenn
2018-01-01
Variability in spider major ampullate (MA) silk properties at different scales has proven difficult to determine and remains an obstacle to the development of synthetic fibers mimicking MA silk performance. A multitude of techniques may be used to measure multiscale aspects of silk properties. Here we fed five species of Araneoid spider solutions that either contained protein or were protein deprived and performed silk tensile tests, small and wide-angle X-ray scattering (SAXS/WAXS), amino acid composition analyses, and silk gene expression analyses, to resolve persistent questions about how nutrient deprivation induces variations in MA silk mechanical properties across scales. Our analyses found that the properties of each spider’s silk varied differently in response to variations in their protein intake. We found changes in the crystalline and non-crystalline nanostructures to play specific roles in inducing the property variations we found. Across treatment MaSp expression patterns differed in each of the five species. We found that in most species MaSp expression and amino acid composition variations did not conform with our predictions based on a traditional MaSp expression model. In general, changes to the silk’s alanine and proline compositions influenced the alignment of the proteins within the silk’s amorphous region, which influenced silk extensibility and toughness. Variations in structural alignment in the crystalline and non-crystalline regions influenced ultimate strength independent of genetic expression. Our study provides the deepest insights thus far into the mechanisms of how MA silk properties vary from gene expression to nanostructure formations to fiber mechanics. Such knowledge is imperative for promoting the production of synthetic silk fibers. PMID:29390013
Reversible Hydrogel–Solution System of Silk with High Beta-Sheet Content
2015-01-01
Silkworm silk has been widely used as a textile fiber, as biomaterials and in optically functional materials due to its extraordinary properties. The β-sheet-rich natural nanofiber units of about 10–50 nm in diameter are often considered the origin of these properties, yet it remains unclear how silk self-assembles into these hierarchical structures. A new system composed of β-sheet-rich silk nanofibers about 10–20 nm in diameter is reported here, where these nanofibers formed into “flowing hydrogels” at 0.5–2% solutions and could be transformed back into the solution state at lower concentrations, even with a high β-sheet content. This is in contrast with other silk processed materials, where significant β-sheet content negates reversibility between solution and solid states. These fibers are formed by regulating the self-assembly process of silk in aqueous solution, which changes the distribution of negative charges while still supporting β-sheet formation in the structures. Mechanistically, there appears to be a shift toward negative charges along the outside of the silk nanofibers in our present study, resulting in a higher zeta potential (above −50 mV) than previous silk materials which tend to be below −30 mV. The higher negative charge on silk nanofibers resulted in electrostatic repulsion strong enough to negate further assembly of the nanofibers. Changing silk concentration changed the balance between hydrophobic interactions and electrostatic repulsion of β-sheet-rich silk nanofibers, resulting in reversible hydrogel–solution transitions. Furthermore, the silk nanofibers could be disassembled into shorter fibers and even nanoparticles upon ultrasonic treatment following the transition from hydrogel to solution due to the increased dispersion of hydrophobic smaller particles, without the loss of β-sheet content, and with retention of the ability to transition between hydrogel and solution states through reversion to longer nanofibers during self-assembly. These reversible solution-hydrogel transitions were tunable with ultrasonic intensity, time, or temperature. PMID:25056606
Liu, Yawen; Zheng, Zhaozhu; Gong, He; Liu, Meng; Guo, Shaozhe; Li, Gang; Wang, Xiaoqin; Kaplan, David L
2017-06-27
The structure of DNA is susceptible to alterations at high temperature and on changing pH, irradiation and exposure to DNase. Options to protect and preserve DNA during storage are important for applications in genetic diagnosis, identity authentication, drug development and bioresearch. In the present study, the stability of total DNA purified from human dermal fibroblast cells, as well as that of plasmid DNA, was studied in silk protein materials. The DNA/silk mixtures were stabilized on filter paper (silk/DNA + filter) or filter paper pre-coated with silk and treated with methanol (silk/DNA + PT-filter) as a route to practical utility. After air-drying and water extraction, 50-70% of the DNA and silk could be retrieved and showed a single band on electrophoretic gels. 6% silk/DNA + PT-filter samples provided improved stability in comparison with 3% silk/DNA + filter samples and DNA + filter samples for DNA preservation, with ∼40% of the band intensity remaining at 37 °C after 40 days and ∼10% after exposure to UV light for 10 hours. Quantitative analysis using the PicoGreen assay confirmed the results. The use of Tris/borate/EDTA (TBE) buffer enhanced the preservation and/or extraction of the DNA. The DNA extracted after storage maintained integrity and function based on serving as a functional template for PCR amplification of the gene for zinc finger protein 750 (ZNF750) and for transgene expression of red fluorescence protein (dsRed) in HEK293 cells. The high molecular weight and high content of a crystalline beta-sheet structure formed on the coated surfaces likely accounted for the preservation effects observed for the silk/DNA + PT-filter samples. Although similar preservation effects were also obtained for lyophilized silk/DNA samples, the rapid and simple processing available with the silk-DNA-filter membrane system makes it appealing for future applications.
Reversible hydrogel-solution system of silk with high beta-sheet content.
Bai, Shumeng; Zhang, Xiuli; Lu, Qiang; Sheng, Weiqin; Liu, Lijie; Dong, Boju; Kaplan, David L; Zhu, Hesun
2014-08-11
Silkworm silk has been widely used as a textile fiber, as biomaterials and in optically functional materials due to its extraordinary properties. The β-sheet-rich natural nanofiber units of about 10-50 nm in diameter are often considered the origin of these properties, yet it remains unclear how silk self-assembles into these hierarchical structures. A new system composed of β-sheet-rich silk nanofibers about 10-20 nm in diameter is reported here, where these nanofibers formed into "flowing hydrogels" at 0.5-2% solutions and could be transformed back into the solution state at lower concentrations, even with a high β-sheet content. This is in contrast with other silk processed materials, where significant β-sheet content negates reversibility between solution and solid states. These fibers are formed by regulating the self-assembly process of silk in aqueous solution, which changes the distribution of negative charges while still supporting β-sheet formation in the structures. Mechanistically, there appears to be a shift toward negative charges along the outside of the silk nanofibers in our present study, resulting in a higher zeta potential (above -50 mV) than previous silk materials which tend to be below -30 mV. The higher negative charge on silk nanofibers resulted in electrostatic repulsion strong enough to negate further assembly of the nanofibers. Changing silk concentration changed the balance between hydrophobic interactions and electrostatic repulsion of β-sheet-rich silk nanofibers, resulting in reversible hydrogel-solution transitions. Furthermore, the silk nanofibers could be disassembled into shorter fibers and even nanoparticles upon ultrasonic treatment following the transition from hydrogel to solution due to the increased dispersion of hydrophobic smaller particles, without the loss of β-sheet content, and with retention of the ability to transition between hydrogel and solution states through reversion to longer nanofibers during self-assembly. These reversible solution-hydrogel transitions were tunable with ultrasonic intensity, time, or temperature.
NASA Astrophysics Data System (ADS)
Aksakal, Baki; Koç, Kenan; Yargı, Önder; Tsobkallo, Katherina
2016-01-01
The effect of UV-light on the uniaxial tensile properties and the structure of uncoated and TiO2 coated silk fibers in the bave form by using sol-gel method was investigated with tensile testing and FT-IR/ATR spectroscopy methods after the silk filaments were exposed to UV-light with high intensity of 760 W/m2 for different times from 0.5 h to 1 day. It was clearly observed that TiO2 coating considerably increased the Young's modulus of the uncoated silk single filament by around 17% before the UV-irradiation. The yield point and the post yield region disappeared on the stress-strain curves of both uncoated and TiO2 coated silk filaments after UV-irradiation time higher than 1 h. Except for the Young's modulus, most of the tensile characteristics of both uncoated and TiO2 coated silk filaments decreased remarkably with increasing UV-irradiation time, e.g., after 1 h irradiation, although the Young's modulus slightly changed and ultimate tensile strength decreased by only around 18% and 23%, for the uncoated and TiO2 coated silk filaments, respectively; breaking extension decreased dramatically by 67% and 72%, respectively, for uncoated and TiO2 coated silk filaments. Only the Young's modulus of TiO2 coated silk filaments which can be considered as a more stable tensile characteristic became significantly higher than that of the uncoated silk filaments with increasing UV-irradiation time. After 1 day irradiation, even though the uncoated silk filaments could not be tested and completely lost of their fiber properties, the TiO2 coated silk filaments showed a stress-strain curve in initial elastic region with Young's modulus of ∼13 GPa which indicates considerable protective effect of TiO2 on the silk fiber structure, especially on the β-sheet microcrystals against UV-radiation. The FT-IR/ATR spectral results showed that significant photodegradation took place in not only crystalline but also amorphous regions which were deduced from the decrease in the absorbance ratios of the bands assigned to CH3 rocking, Cα-Cβ, Cα-C stretching vibrations in β-sheet crystalline regions as well as the Amide I, II, and III bands for both crystalline and amorphous regions. Even though the ratio of crystalline to amorphous regions in uncoated silk filaments decreased significantly, the ratio in TiO2 coated silk filaments became almost constant with increasing UV-irradiation time which may indicate more stable β-sheet microcrystals against photodegradation.
Protein matrices for wound dressings =
NASA Astrophysics Data System (ADS)
Vasconcelos, Andreia Joana Costa
Fibrous proteins such as silk fibroin (SF), keratin (K) and elastin (EL) are able to mimic the extracellular matrix (ECM) that allows their recognition under physiological conditions. The impressive mechanical properties, the environmental stability, in combination with their biocompatibility and control of morphology, provide an important basis to use these proteins in biomedical applications like protein-based wound dressings. Along time the concept of wound dressings has changed from the traditional dressings such as honey or natural fibres, used just to protect the wound from external factors, to the interactive dressings of the present. Wounds can be classified in acute that heal in the expected time frame, and chronic, which fail to heal because the orderly sequence of events is disrupted at one or more stages of the healing process. Moreover, chronic wound exudates contain high levels of tissue destructive proteolytic enzymes such as human neutrophil elastase (HNE) that need to be controlled for a proper healing. The aim of this work is to exploit the self-assemble properties of silk fibroin, keratin and elastin for the development of new protein materials to be used as wound dressings: i) evaluation of the blending effect on the physical and chemical properties of the materials; ii) development of materials with different morphologies; iii) assessment of the cytocompatibility of the protein matrices; iv) ultimately, study the ability of the developed protein matrices as wound dressings through the use of human chronic wound exudate; v) use of innovative short peptide sequences that allow to target the control of high levels of HNE found on chronic wounds. Chapter III reports the preparation of silk fibroin/keratin (SF/K) blend films by solvent casting evaporation. Two solvent systems, aqueous and acidic, were used for the preparation of films from fibroin and keratin extracted from the respective silk and wool fibres. The effect of solvent system used was studied by evaluating the physical-chemical properties of the resulting films. It was shown that SF and K are able to establish intermolecular interactions when mixed and, that the mechanical properties and the biological degradation can be tuned by the blend composition. In Chapter IV, SF/K films were further used to serve as a platform for the release of HNE inhibitors peptides. Bowman-Birk inhibitor (BBI) based peptide was incorporated onto the SF/K films that were consequently incubated with porcine pancreatic elastase (PPE) as a model for HNE, to monitor the decrease in activity. The results indicated that swelling properties, degradation and release rates are dependent on the amount of keratin present in the blend. Furthermore, no cytotoxicity was observed in the presence of mouse fibroblasts, which makes these SF/K films suitable candidates for interactive wound dressings with a specific goal - controlling high levels of HNE. The next step of the work, Chapter V, reports for the first time blends of silk fibroin with elastin (SF/EL) for the production of scaffolds. These were prepared by lyophilization technique and crosslinked with a natural and low toxic agent, genipin. The crosslink allows the control of the scaffolds morphology, such as pore size and porosity, which in turns, modulates the ex vivo degradation rates, by a human chronic wound exudate, and the release rates of model compounds. In addition, no cytotoxicity was observed for SF/EL samples, with and without genipin, by human skin fibroblasts. Thus, the high porosity observed for SF/EL scaffolds, allowing the growth and cellular attachment, together with their biocompatibility provide fitting characteristics for wound dressings. Chapter VI, describes the design of two elastase inhibitors peptides based on the reactive site-loop of the BBI protein in order to control the high levels HNE. To a known peptide sequence, modifications were made at both N- and C-terminal. Inhibition kinetics analysis indicated that these peptides are competitive inhibitors for HNE and PPE and, that the inhibitory potency can be regulated by the introduced modifications. Additionally, these peptides showed no toxicity with human skin fibroblasts and, were also effective in reducing the HNE activity found in a human chronic wound exudate, which allow them to be applied to those wounds. The motivation for this thesis was to combine the excellent properties of silk fibroin with other proteins. Blending allows modulating the physical-chemical properties of the resulting materials such as mechanical strength, swelling, morphology, degradation and release rates. Silk fibroin is widely characterized in the literature for the production of biomaterials, but this work is the first that successfully evaluates the blends silk fibroin/keratin (SF/K) and silk fibroin/elastin (SF/EL) for their application as wound dressings.
Silk Roads or Steppe Roads? The Silk Roads in World History.
ERIC Educational Resources Information Center
Christian, David
2000-01-01
Explores the prehistory of the Silk Roads, reexamines their structure and history in the classical era, and explores shifts in their geography in the last one thousand years. Explains that a revised understanding of the Silk Roads demonstrates how the Afro-Eurasian land mass has been linked by networks of exchange since the Bronze Age. (CMK)
Derivation of a variational principle for plane strain elastic-plastic silk biopolymers
NASA Astrophysics Data System (ADS)
He, J. H.; Liu, F. J.; Cao, J. H.; Zhang, L.
2014-01-01
Silk biopolymers, such as spider silk and Bombyx mori silk, behave always elastic-plastically. An elastic-plastic model is adopted and a variational principle for the small strain, rate plasticity problem is established by semi-inverse method. A trial Lagrangian is constructed where an unknown function is included which can be identified step by step.
Structural and thermal properties of silk fibroin - Silver nanoparticles composite films
NASA Astrophysics Data System (ADS)
Shivananda, C. S.; Rao B, B. Lakshmeesha; Shetty, G. Rajesh; Sangappa, Y.
2018-05-01
In this work, silk fibroin-silver nanoparticles (SF-AgNPs) composite films have been prepared by simple solution casting method. The composite films were examined for structural and thermal properties using X-ray diffraction (XRD), thermogravimatric (TGA) and differential scanning calorimetry (DSC) analysis. The XRD results showed that with the introduction of AgNPs in the silk fibroin matrix the amorphous nature of the silk fibroin decreases with increasing nanoparticles concentration. The silk fibroin films possess good thermal stability with the presence of AgNPs.
Silk fabric dyed with extract of sophora flower bud.
Yan, Su; Pan, Shanshan; Ji, Junling
2018-02-01
This study analysed the use of sophora flower bud extract for dyeing and the resulting colour character and fastness of dyed silk fabric. The pigment composition on the silk fabric and recycling of this extract were also studied. The results indicated that the dyed silk fabric possessed good washing, rubbing and perspiration fastness, and the pigment composition on the silk fabric was mainly rutin and quercetin. The average recovery rate of the dye was 55.00%. These results demonstrate that the sophora flower bud extract is an effective natural dye.
Regeneration of high-quality silk fibroin fiber by wet spinning from CaCl2-formic acid solvent.
Zhang, Feng; Lu, Qiang; Yue, Xiaoxiao; Zuo, Baoqi; Qin, Mingde; Li, Fang; Kaplan, David L; Zhang, Xueguang
2015-01-01
Silks spun by silkworms and spiders feature outstanding mechanical properties despite being spun under benign conditions. The superior physical properties of silk are closely related to its complicated hierarchical structures constructed from nanoscale building blocks, such as nanocrystals and nanofibrils. Here, we report a novel silk dissolution behavior, which preserved nanofibrils in CaCl2-formic acid solution, that enables spinning of high-quality fibers with a hierarchical structure. This process is characterized by simplicity, high efficiency, low cost, environmental compatibility and large-scale industrialization potential, as well as having utility and potential for the recycling of silk waste and the production of silk-based functional materials. Copyright © 2014. Published by Elsevier Ltd.
Corn silk extract improves cholesterol metabolism in C57BL/6J mouse fed high-fat diets.
Cha, Jae Hoon; Kim, Sun Rim; Kang, Hyun Joong; Kim, Myung Hwan; Ha, Ae Wha; Kim, Woo Kyoung
2016-10-01
Corn silk (CS) extract contains large amounts of maysin, which is a major flavonoid in CS. However, studies regarding the effect of CS extract on cholesterol metabolism is limited. Therefore, the purpose of this study was to determine the effect of CS extract on cholesterol metabolism in C57BL/6J mouse fed high-fat diets. Normal-fat group fed 7% fat diet, high-fat (HF) group fed 25% fat diet, and high-fat with corn silk (HFCS) group were orally administered CS extract (100 mg/kg body weight) daily. Serum and hepatic levels of total lipids, triglycerides, and total cholesterol as well as serum free fatty acid, glucose, and insulin levels were determined. The mRNA expression levels of acyl-CoA: cholesterol acyltransferase (ACAT), cholesterol 7-alpha hydroxylase (CYP7A1), farnesoid X receptor (FXR), lecithin cholesterol acyltransferase (LCAT), low-density lipoprotein receptor, 3-hyroxy-3-methylglutaryl-coenzyme A reductase (HMG-CoA reductase), adiponectin, leptin, and tumor necrosis factor α were determined. Oral administration of CS extract with HF improved serum glucose and insulin levels as well as attenuated HF-induced fatty liver. CS extracts significantly elevated mRNA expression levels of adipocytokines and reduced mRNA expression levels of HMG-CoA reductase, ACAT, and FXR. The mRNA expression levels of CYP7A1 and LCAT between the HF group and HFCS group were not statistically different. CS extract supplementation with a high-fat diet improves levels of adipocytokine secretion and glucose homeostasis. CS extract is also effective in decreasing the regulatory pool of hepatic cholesterol, in line with decreased blood and hepatic levels of cholesterol though modulation of mRNA expression levels of HMG-CoA reductase, ACAT, and FXR.
Electrodeposited silk coatings for functionalized implant applications
NASA Astrophysics Data System (ADS)
Elia, Roberto
The mechanical and morphological properties of titanium as well as its biocompatibility and osteoinductive characteristics have made it the material of choice for dental implant systems. Although the success rate of titanium implants exceeds 90% in healthy individuals, a large subset of the population has one or more risk factors that inhibit implant integration. Treatments and coatings have been developed to improve clinical outcomes via introduction of appropriate surface topography, texture and roughness or incorporation of bioactive molecules. It is essential that the coatings and associated deposition techniques are controllable and reproducible. Currently, methods of depositing functional coatings are dictated by numerous parameters (temperature, particle size distribution, pH and voltage), which result in variable coating thickness, strength, porosity and weight, and hinder or preclude biomolecule incorporation. Silk is a highly versatile protein with a unique combination of mechanical and physical properties, including tunable degradation, biocompatibility, drug stabilizing capabilities and mechanical properties. Most recently an electrogelation technique was developed which allows for the deposition of gels which dry seamlessly over the contoured topography of the conductive substrate. In this work we examine the potential use of silk electrogels as mechanically robust implant coatings capable of sequestering and releasing therapeutic agents. Electrodeposition of silk electrogels formed in uniform electric fields was characterized with respect to field intensity and deposition time. Gel formation kinetics were used to derive functions which allowed for the prediction of coating deposition over a range of process and solution parameters. Silk electrogel growth orientation was shown to be influenced by the applied electric field. Coatings were reproducible and tunable via intrinsic silk solution properties and extrinsic process parameters. Adhesion was modulated over a 10-fold range and implant insertion into bone mimics demonstrated that the coatings were able to withstand delamination forces experienced during these mock implantations. Antibiotic release from coated implant studs inhibited bacterial growth and dexamethasone release was shown to stimulate calcium deposition in mesenchymal stem cells.
Functional Analysis of Maize Silk-Specific ZmbZIP25 Promoter.
Li, Wanying; Yu, Dan; Yu, Jingjuan; Zhu, Dengyun; Zhao, Qian
2018-03-12
ZmbZIP25 ( Zea mays bZIP (basic leucine zipper) transcription factor 25) is a function-unknown protein that belongs to the D group of the bZIP transcription factor family. RNA-seq data showed that the expression of ZmbZIP25 was tissue-specific in maize silks, and this specificity was confirmed by RT-PCR (reverse transcription-polymerase chain reaction). In situ RNA hybridization showed that ZmbZIP25 was expressed exclusively in the xylem of maize silks. A 5' RACE (rapid amplification of cDNA ends) assay identified an adenine residue as the transcription start site of the ZmbZIP25 gene. To characterize this silk-specific promoter, we isolated and analyzed a 2450 bp (from -2083 to +367) and a 2600 bp sequence of ZmbZIP25 (from -2083 to +517, the transcription start site was denoted +1). Stable expression assays in Arabidopsis showed that the expression of the reporter gene GUS driven by the 2450 bp ZmbZIP25 5'-flanking fragment occurred exclusively in the papillae of Arabidopsis stigmas. Furthermore, transient expression assays in maize indicated that GUS and GFP expression driven by the 2450 bp ZmbZIP25 5'-flanking sequences occurred only in maize silks and not in other tissues. However, no GUS or GFP expression was driven by the 2600 bp ZmbZIP25 5'-flanking sequences in either stable or transient expression assays. A series of deletion analyses of the 2450 bp ZmbZIP25 5'-flanking sequence was performed in transgenic Arabidopsis plants, and probable elements prediction analysis revealed the possible presence of negative regulatory elements within the 161 bp region from -1117 to -957 that were responsible for the specificity of the ZmbZIP25 5'-flanking sequence.
Functional Analysis of Maize Silk-Specific ZmbZIP25 Promoter
Li, Wanying; Yu, Dan; Yu, Jingjuan; Zhu, Dengyun; Zhao, Qian
2018-01-01
ZmbZIP25 (Zea mays bZIP (basic leucine zipper) transcription factor 25) is a function-unknown protein that belongs to the D group of the bZIP transcription factor family. RNA-seq data showed that the expression of ZmbZIP25 was tissue-specific in maize silks, and this specificity was confirmed by RT-PCR (reverse transcription-polymerase chain reaction). In situ RNA hybridization showed that ZmbZIP25 was expressed exclusively in the xylem of maize silks. A 5′ RACE (rapid amplification of cDNA ends) assay identified an adenine residue as the transcription start site of the ZmbZIP25 gene. To characterize this silk-specific promoter, we isolated and analyzed a 2450 bp (from −2083 to +367) and a 2600 bp sequence of ZmbZIP25 (from −2083 to +517, the transcription start site was denoted +1). Stable expression assays in Arabidopsis showed that the expression of the reporter gene GUS driven by the 2450 bp ZmbZIP25 5′-flanking fragment occurred exclusively in the papillae of Arabidopsis stigmas. Furthermore, transient expression assays in maize indicated that GUS and GFP expression driven by the 2450 bp ZmbZIP25 5′-flanking sequences occurred only in maize silks and not in other tissues. However, no GUS or GFP expression was driven by the 2600 bp ZmbZIP25 5′-flanking sequences in either stable or transient expression assays. A series of deletion analyses of the 2450 bp ZmbZIP25 5′-flanking sequence was performed in transgenic Arabidopsis plants, and probable elements prediction analysis revealed the possible presence of negative regulatory elements within the 161 bp region from −1117 to −957 that were responsible for the specificity of the ZmbZIP25 5′-flanking sequence. PMID:29534529
NASA Astrophysics Data System (ADS)
Daniels, M.; Albertson, L.; Sklar, L. S.; Tumolo, B.; Mclaughlin, M. K.
2017-12-01
Several studies have demonstrated the substantial effects that organisms can have on earth surface processes. Known as ecosystem engineers, in streams these organisms maintain, modify, or create physical habitat structure by influencing fluvial processes such as gravel movement, fine sediment deposition and bank erosion. However, the ecology of ecosystem engineers and the magnitude of ecosystem engineering effects in a world increasingly influence by anthropogenically-driven changes is not well understood. Here we present a synthesis of research findings on the potential gravel stabilization effects of Hydropsychid caddisflies, a globally distributed group of net-spinning insects that live in the benthic substrate of most freshwater streams. Hydropsychid caddisflies act as ecosystem engineers because these silk structures can fundamentally alter sediment transport conditions, including sediment stability and flow currents. The silk nets spun by these insects attach gravel grains to one another, increasing the shear stress required to initiate grain entrainment. In a series of independent laboratory experiments, we investigate the gravel size fractions most affected by these silk attachments. We also investigate the role of anthropogenic environmental stresses on ecosystem engineering potential by assessing the impact of two common stressors, high fine sediment loads and stream drying, on silk structures. Finally, an extensive field survey of grain size and Hydropsychid caddisfly population densities informs a watershed-scale network model of Hydropsychid caddisfly gravel stabilizing potential. Our findings provide some of the first evidence that caddisfly silk may be a biological structure that is resilient to various forms of human-mediated stress and that the effects of animal ecosystem engineers are underappreciated as an agent of resistance and recovery for aquatic communities experiencing changes in sediment loads and hydrologic regimes.
Bioconjugation of silk fibroin nanoparticles with enzyme and Peptide and their characterization.
Wang, Fei; Zhang, Yu-Qing
2015-01-01
Bombyx mori silk fibroin is a type of protein-based polymer with unique characteristics that is widely used in the research and development of medical biomaterials. The degummed filament of silk fibroin can be dissolved in a highly concentrated salt solution. After desalination, the regenerated liquid silk fibroin (LSF) solution could be made into various forms of silk biomaterials, such as powder, fiber, film, porous matrix, 3D scaffold, and hydrogel, depending on its application. In this study, we mixed the liquid silk solution with enzymes, including oxidase and hydrolase, and rapidly injected the mixture into an excess of acetone. The enzyme retained most of its enzymatic activity and was also captured in silk fibroin nanoparticles (SFNs), which instantly formed via a configuration transition of the regenerated silk protein from a random coil and α-helix to a β-sheet. The resulting enzyme-captured SFNs displayed a fine crystal structure with a high activity recovery and good thermal stability. Moreover, the affinities of these modified enzymes to their substrate did not evidently suffer from the capture. When only the liquid silk solution was rapidly injected into acetone, the resulting globular SFNs with the same crystallinity were also a good carrier that was covalently conjugated to enzymes and insulin. Thus, silk protein nanoparticles are of potential value as an enzyme or peptide delivery system for the research and development of medical biomaterials. In this report, the bioconjugation of SFNs with glucose oxidase, superoxidase, β-glucosidase, L-asparaginase, neutral protease, and insulin and their characterization are described in detail. © 2015 Elsevier Inc. All rights reserved.
Li, Chunmei; Luo, Tingting; Zheng, Zhaozhu; Murphy, Amanda R.; Wang, Xiaoqin; Kaplan, David L.
2014-01-01
Curcumin, a natural phenolic compound derived from the plant Curcuma longa, was physically entrapped and stabilized in silk hydrogel films and its influence on human bone marrow-derived mesenchymal stem cells (hBMSCs) was assessed related to adipogenic differentiation. The presence of curcumin significantly reduced silk gelation time and changed the porous morphology of gel matrix, but did not change the formation of silk beta-sheet structure. Based on spectrofluorimetric analysis, curcumin likely interacted with hydrophobic residues in silk, interacting with the beta-sheet domains formed in the hydrogels. The antioxidant activity of silk film-associated curcumin remained functional over at least one month in both the dry and hydrated state. Negligible curcumin was released from silk hydrogel films over 48 hours incubation in aqueous solution. For hBMSCs cultured on silk films containing more than 0.25 mg/mL curcumin, cell proliferation was inhibited while adipogenesis was significantly promoted based on transcripts as well as oil red O staining. When hBMSCs were cultured in media containing free curcumin, both proliferation and adipogenesis of hBMSCs were inhibited when curcumin concentrations exceeded 5 μM, which is more than 1,000-times higher than the level of curcumin released from the films in aqueous solution. Thus, silk film-associated curcumin exhibited different effects on hBMSC proliferation and differentiation when compared to curcumin in solution. PMID:25132274
YorkieCA overexpression in the posterior silk gland improves silk yield in Bombyx mori.
Zhang, Panli; Liu, Shumin; Song, Hong-Sheng; Zhang, Guozheng; Jia, Qiangqiang; Li, Sheng
2017-07-01
The traditional hybrid breeding techniques can no longer meet the increasing demands for silk production by the silkworm, Bombyx mori, and further improvement of the silk yield will depend on modern molecular breeding techniques. Here, we report improved silk yield in transgenic silkworms overexpressing the oncogene Yorkie CA specifically in the posterior silk gland (PSG). The Yorkie CA cDNA was ligated downstream of the hr3 enhancer and the fibroin L-chain (Fil) promoter, then inserted into a piggyBac vector for transgene. Overexpression of Yorkie CA in the PSG significantly increased the weight of the PSG, and also increased the weight of the cocoon, larval body, and pupal body to decreasing degrees. Overexpression of Yorkie CA up-regulated the Yorkie target genes resulting in increased cell size, endomitosis, the number of protein synthesis organelles, the expression of fibroin genes in the PSG, and eventually silk yield. Additionally, as we reported previously using the binary GAL4/UAS system, transgenic silkworms overexpressing Ras1 CA with the hr3 enhancer and the Fil promoter also showed improved silk yield. Unfortunately, the hybrid progeny of Yorkie CA -overexpressing silkworms and Ras1 CA -overexpressing silkworms did not show overlapping improved silk yield due to the failure to increase expression of both Yorkie and Ras1. Copyright © 2017. Published by Elsevier Ltd.
A highly divergent gene cluster in honey bees encodes a novel silk family.
Sutherland, Tara D; Campbell, Peter M; Weisman, Sarah; Trueman, Holly E; Sriskantha, Alagacone; Wanjura, Wolfgang J; Haritos, Victoria S
2006-11-01
The pupal cocoon of the domesticated silk moth Bombyx mori is the best known and most extensively studied insect silk. It is not widely known that Apis mellifera larvae also produce silk. We have used a combination of genomic and proteomic techniques to identify four honey bee fiber genes (AmelFibroin1-4) and two silk-associated genes (AmelSA1 and 2). The four fiber genes are small, comprise a single exon each, and are clustered on a short genomic region where the open reading frames are GC-rich amid low GC intergenic regions. The genes encode similar proteins that are highly helical and predicted to form unusually tight coiled coils. Despite the similarity in size, structure, and composition of the encoded proteins, the genes have low primary sequence identity. We propose that the four fiber genes have arisen from gene duplication events but have subsequently diverged significantly. The silk-associated genes encode proteins likely to act as a glue (AmelSA1) and involved in silk processing (AmelSA2). Although the silks of honey bees and silkmoths both originate in larval labial glands, the silk proteins are completely different in their primary, secondary, and tertiary structures as well as the genomic arrangement of the genes encoding them. This implies independent evolutionary origins for these functionally related proteins.
3D Bioprinting of Self-Standing Silk-Based Bioink.
Zheng, Zhaozhu; Wu, Jianbing; Liu, Meng; Wang, Heng; Li, Chunmei; Rodriguez, María J; Li, Gang; Wang, Xiaoqin; Kaplan, David L
2018-03-01
Silk/polyethylene glycol (PEG) hydrogels are studied as self-standing bioinks for 3D printing for tissue engineering. The two components of the bioink, silk fibroin protein (silk) and PEG, are both Food and Drug Administration approved materials in drug and medical device products. Mixing PEG with silk induces silk β-sheet structure formation and thus gelation and water insolubility due to physical crosslinking. A variety of constructs with high resolution, high shape fidelity, and homogeneous gel matrices are printed. When human bone marrow mesenchymal stem cells are premixed with the silk solution prior to printing and the constructs are cultured in this medium, the cell-loaded constructs maintain their shape over at least 12 weeks. Interestingly, the cells grow faster in the higher silk concentration (10%, w/v) gel than in lower ones (7.5 and 5%, w/v), likely due to the difference in material stiffness and the amount of residual PEG remaining in the gel related to material hydrophobicity. Subcutaneous implantation of 7.5% (w/v) bioink gels with and without printed fibroblast cells in mice reveals that the cells survive and proliferate in the gel matrix for at least 6 week postimplantation. The results suggest that these silk/PEG bioink gels may provide suitable scaffold environments for cell printing and function. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Natural Occurring Silks and Their Analogues as Materials for Nerve Conduits.
Radtke, Christine
2016-10-20
Spider silk and its synthetic derivatives have a light weight in combination with good strength and elasticity. Their high cytocompatibility and low immunogenicity make them well suited for biomaterial products such as nerve conduits. Silk proteins slowly degrade enzymatically in vivo, thus allowing for an initial therapeutic effect such as in nerve scaffolding to facilitate endogenous repair processes, and then are removed. Silks are biopolymers naturally produced by many species of arthropods including spiders, caterpillars and mites. The silk fibers are secreted by the labial gland of the larvae of some orders of Holometabola (insects with pupa) or the spinnerets of spiders. The majority of studies using silks for biomedical applications use materials from silkworms or spiders, mostly of the genus Nephila clavipes . Silk is one of the most promising biomaterials with effects not only in nerve regeneration, but in a number of regenerative applications. The development of silks for human biomedical applications is of high scientific and clinical interest. Biomaterials in use for biomedical applications have to meet a number of requirements such as biocompatibility and elicitation of no more than a minor inflammatory response, biodegradability in a reasonable time and specific structural properties. Here we present the current status in the field of silk-based conduit development for nerve repair and discuss current advances with regard to potential clinical transfer of an implantable nerve conduit for enhancement of nerve regeneration.
Tissue Regeneration: A Silk Road.
Jao, Dave; Mou, Xiaoyang; Hu, Xiao
2016-08-05
Silk proteins are natural biopolymers that have extensive structural possibilities for chemical and mechanical modifications to facilitate novel properties, functions, and applications in the biomedical field. The versatile processability of silk fibroins (SF) into different forms such as gels, films, foams, membranes, scaffolds, and nanofibers makes it appealing in a variety of applications that require mechanically superior, biocompatible, biodegradable, and functionalizable biomaterials. There is no doubt that nature is the world's best biological engineer, with simple, exquisite but powerful designs that have inspired novel technologies. By understanding the surface interaction of silk materials with living cells, unique characteristics can be implemented through structural modifications, such as controllable wettability, high-strength adhesiveness, and reflectivity properties, suggesting its potential suitability for surgical, optical, and other biomedical applications. All of the interesting features of SF, such as tunable biodegradation, anti-bacterial properties, and mechanical properties combined with potential self-healing modifications, make it ideal for future tissue engineering applications. In this review, we first demonstrate the current understanding of the structures and mechanical properties of SF and the various functionalizations of SF matrices through chemical and physical manipulations. Then the diverse applications of SF architectures and scaffolds for different regenerative medicine will be discussed in detail, including their current applications in bone, eye, nerve, skin, tendon, ligament, and cartilage regeneration.
Lu, Zhisong; Xiao, Jing; Wang, Ying; Meng, Mei
2015-08-15
Fabrication of silver nanoparticles (AgNPs)-modified silk for antibacterial application is one of the hottest topics in the textile material research. However, the utilization of a polymer as both 3-dimensional matrix and reductant for the in-situ synthesis of AgNPs on silk fibers has not been realized. In this work, a facile, efficient and green approach was developed to in-situ grow AgNPs on the polydopamine (PDA)-functionalized silk. AgNPs with the size of 30-90 nm were uniformly deposited on the silk fiber surface with the PDA coating layer as a reduction reagent. The AgNPs exhibit excellent face-centered cubic crystalline structures. The bacterial growth curve and inhibition zone assays clearly demonstrate the antibacterial properties of the functionalized silk. Both high Ag(+) release level and long-time release profile were observed for the as-prepared AgNPs-PDA-coated silk, indicating the high-density loading of AgNPs and the possible long-term antibacterial effects. This work may provide a new method for the preparation of AgNPs-functionalized silk with antibacterial activity for the clothing and textile industry. Copyright © 2015 Elsevier Inc. All rights reserved.
Silk Spinning in Silkworms and Spiders
Andersson, Marlene; Johansson, Jan; Rising, Anna
2016-01-01
Spiders and silkworms spin silks that outcompete the toughness of all natural and manmade fibers. Herein, we compare and contrast the spinning of silk in silkworms and spiders, with the aim of identifying features that are important for fiber formation. Although spiders and silkworms are very distantly related, some features of spinning silk seem to be universal. Both spiders and silkworms produce large silk proteins that are highly repetitive and extremely soluble at high pH, likely due to the globular terminal domains that flank an intermediate repetitive region. The silk proteins are produced and stored at a very high concentration in glands, and then transported along a narrowing tube in which they change conformation in response primarily to a pH gradient generated by carbonic anhydrase and proton pumps, as well as to ions and shear forces. The silk proteins thereby convert from random coil and alpha helical soluble conformations to beta sheet fibers. We suggest that factors that need to be optimized for successful production of artificial silk proteins capable of forming tough fibers include protein solubility, pH sensitivity, and preservation of natively folded proteins throughout the purification and initial spinning processes. PMID:27517908
Li, David; Jacobsen, Matthew M; Gyune Rim, Nae; Backman, Daniel; Kaplan, David L; Wong, Joyce Y
2017-05-31
Silkworm silk is an attractive biopolymer for biomedical applications due to its high mechanical strength and biocompatibility; as a result, there is increasing interest in scalable devices to spin silk and recombinant silk so as to improve and customize their properties for diverse biomedical purposes (Vepari and Kaplan 2007 Prog. Polym. Sci. 32 ). While artificial spinning of regenerated silk fibroins adds tunability to properties such as degradation rate and surface functionalization, the resulting fibers do not yet approach the mechanical strength of native silkworm silk. These drawbacks reduce the applicability and attractiveness of artificial silk (Kinahan et al 2011 Biomacromolecules 12 ). Here, we used computational fluid dynamic simulations to incorporate shear in tandem with biomimetic ion gradients by coupling a modular novel glass microfluidic device to our previous co-axial flow device. Fibers spun with this combined apparatus demonstrated a significant increase in mechanical strength compared to fibers spun with the basic apparatus alone, with a three-fold increase in Young's modulus and extensibility and a twelve-fold increase in toughness. These results thus demonstrate the critical importance of ionic milieu and shear stress in spinning strong fibers from solubilized silk fibroin.
Silk Spinning in Silkworms and Spiders.
Andersson, Marlene; Johansson, Jan; Rising, Anna
2016-08-09
Spiders and silkworms spin silks that outcompete the toughness of all natural and manmade fibers. Herein, we compare and contrast the spinning of silk in silkworms and spiders, with the aim of identifying features that are important for fiber formation. Although spiders and silkworms are very distantly related, some features of spinning silk seem to be universal. Both spiders and silkworms produce large silk proteins that are highly repetitive and extremely soluble at high pH, likely due to the globular terminal domains that flank an intermediate repetitive region. The silk proteins are produced and stored at a very high concentration in glands, and then transported along a narrowing tube in which they change conformation in response primarily to a pH gradient generated by carbonic anhydrase and proton pumps, as well as to ions and shear forces. The silk proteins thereby convert from random coil and alpha helical soluble conformations to beta sheet fibers. We suggest that factors that need to be optimized for successful production of artificial silk proteins capable of forming tough fibers include protein solubility, pH sensitivity, and preservation of natively folded proteins throughout the purification and initial spinning processes.
Pro-apoptotic and anti-proliferative effects of corn silk extract on human colon cancer cell lines.
Guo, Hao; Guan, Hong; Yang, Wenqin; Liu, Han; Hou, Huiling; Chen, Xue; Liu, Zhenyan; Zang, Chuangang; Liu, Yuchao; Liu, Jicheng
2017-02-01
Corn silk is an economically and nutritionally significant natural product as it represents a staple food for a large proportion of the world population. This study investigated the anticancer activity of corn silk extract in human colon cancer cells and human gastric cancer cells. Following treatment with corn silk extract, certain apoptosis-related events were observed, including inhibition of cell proliferation, loss of mitochondrial membrane potential (ΔΨm), release of Ca2+ and release of cytochrome c from the mitochondria into the cytosol. Our results revealed that corn silk extract inhibited the proliferation of cancer cells and increased the level of apoptosis in a concentration-dependent manner. Western blot analysis revealed that corn silk extract upregulated the levels of Bax, cytochrome c , caspase-3 and caspase-9, but downregulated the levels of B-cell lymphoma 2. These results suggest that corn silk extract may induce apoptosis through the mitochondria-mediated pathway.
Electrodeposited silk coatings for bone implants.
Elia, Roberto; Michelson, Courtney D; Perera, Austin L; Brunner, Teresa F; Harsono, Masly; Leisk, Gray G; Kugel, Gerard; Kaplan, David L
2015-11-01
The aim of this study was to characterize the mechanical properties and drug elution features of silk protein-based electrodeposited dental implant coatings. Silk processing conditions were modified to obtain coatings with a range of mechanical properties on titanium studs. These coatings were assessed for adhesive strength and dissolution, with properties tuned using water vapor annealing or glycerol incorporation to modulate crystalline content. Coating reproducibility was demonstrated over a range of silk concentrations from 1% to 10%. Surface roughness of titanium substrates was altered using industry relevant acid etching and grit blasting, and the effect of surface topography on silk coating adhesion was assessed. Florescent compounds were incorporated into the silk coatings, which were modulated for crystalline content, to achieve four days of sustained release of the compounds. This silk electrogelation technique offers a safe and relatively simple approach to generate mechanically robust, biocompatible, and degradable implant coatings that can also be functionalized with bioactive compounds to modulate the local regenerative tissue environment. © 2014 Wiley Periodicals, Inc.
Electrodeposited silk coatings for bone implants
Elia, Roberto; Michelson, Courtney D.; Perera, Austin L.; Brunner, Teresa F.; Harsono, Masly; Leisk, Gray G.; Kugel, Gerard; Kaplan, David L.
2014-01-01
The aim of this study was to characterize the mechanical properties and drug elution features of silk protein-based electrodeposited dental implant coatings. Silk processing conditions were modified to obtain coatings with a range of mechanical properties on titanium studs. These coatings were assessed for adhesive strength and dissolution, with properties tuned using water vapor annealing or glycerol incorporation to modulate crystalline content. Coating reproducibility was demonstrated over a range of silk concentrations from 1 to 10%. Surface roughness of titanium substrates was altered using industry relevant acid etching and grit blasting, and the effect of surface topography on silk coating adhesion was assessed. Florescent compounds were incorporated into the silk coatings, which were modulated for crystalline content, to achieve four days of sustained release of the compounds. This silk electrogelation technique offers a safe and relatively simple approach to generate mechanically robust, biocompatible and degradable implant coatings that can also be functionalized with bioactive compounds to modulate the local regenerative tissue environment. PMID:25545462
Munro, Troy; Putzeys, Tristan; Copeland, Cameron G; Xing, Changhu; Lewis, Randolph V; Ban, Heng; Glorieux, Christ; Wubbenhorst, Michael
2017-04-01
The processes used to create synthetic spider silk greatly affect the properties of the produced fibers. This paper investigates the effect of process variations during artificial spinning on the thermal and mechanical properties of the produced silk. Property values are also compared to the ones of the natural dragline silk of the N. clavipes spider, and to unprocessed (as-spun) synthetic silk. Structural characterization by scanning pyroelectric microscopy is employed to provide insight into the axial orientation of the crystalline regions of the fiber and is supported by XRD data. The results show that stretching and passage through liquid baths induce crystal formation and axial alignment in synthetic fibers, but with different structural organization than natural silks. Furthermore, an increase in thermal diffusivity and elastic modulus is observed with decreasing fiber diameter, trending towards properties of natural fiber. This effect seems to be related to silk fibers being subjected to a radial gradient during production.
Munro, Troy; Putzeys, Tristan; Copeland, Cameron G.; Xing, Changhu; Lewis, Randolph V; Ban, Heng; Glorieux, Christ; Wubbenhorst, Michael
2018-01-01
The processes used to create synthetic spider silk greatly affect the properties of the produced fibers. This paper investigates the effect of process variations during artificial spinning on the thermal and mechanical properties of the produced silk. Property values are also compared to the ones of the natural dragline silk of the N. clavipes spider, and to unprocessed (as-spun) synthetic silk. Structural characterization by scanning pyroelectric microscopy is employed to provide insight into the axial orientation of the crystalline regions of the fiber and is supported by XRD data. The results show that stretching and passage through liquid baths induce crystal formation and axial alignment in synthetic fibers, but with different structural organization than natural silks. Furthermore, an increase in thermal diffusivity and elastic modulus is observed with decreasing fiber diameter, trending towards properties of natural fiber. This effect seems to be related to silk fibers being subjected to a radial gradient during production. PMID:29430211
Use of spider silk fibres as an innovative material in a biocompatible artificial nerve conduit
Allmeling, Christina; Jokuszies, Andreas; Reimers, Kerstin; Kall, Susanne; Vogt, Peter M
2006-01-01
Defects of peripheral nerves still represent a challenge for surgical nerve reconstruction. Recent studies concentrated on replacement by artificial nerve conduits from different synthetic or biological materials. In our study, we describe for the first time the use of spider silk fibres as a new material in nerve tissue engineering. Schwann cells (SC) were cultivated on spider silk fibres. Cells adhered quickly on the fibres compared to polydioxanone monofilaments (PDS). SC survival and proliferation was normal in Live/Dead assays. The silk fibres were ensheathed completely with cells. We developed composite nerve grafts of acellularized veins, spider silk fibres and SC diluted in matrigel. These artificial nerve grafts could be cultivated in vitro for one week. Histological analysis showed that the cells were vital and formed distinct columns along the silk fibres. In conclusion, our results show that artificial nerve grafts can be constructed successfully from spider silk, acellularized veins and SC mixed with matrigel. PMID:16989736
Effect of Sericin on Mechanical Behavior of Composite Material Reinforced by Silk Woven Fabric
NASA Astrophysics Data System (ADS)
Kimura, Teruo; Ino, Haruhiro; Hanada, Koji; Katori, Sigetaka
Recent, attention has been given to shift from glass fibers and carbon fibers to natural fibers for FRP composites for the goal of protecting the environment. This paper concerned with the application of silk fabric for composite materials. Polypropylene (PP) was used for the matrix material and the silk fabric composites were molded using a compression molding method. Especially, the effect of sericin on mechanical behaviors of composite materials was discussed. Good adhesion between silk and PP was obtained by removing the sericin existing around the fibroin. The tensile modulus of composite decreased with decreasing the sericin because of the flexibility of silk fibers without sericin. In particular, the higher Izod impact value was obtained for the composites containing the silk fibers without sericin.
Chenu, Karine; Chapman, Scott C; Tardieu, François; McLean, Greg; Welcker, Claude; Hammer, Graeme L
2009-12-01
Under drought, substantial genotype-environment (G x E) interactions impede breeding progress for yield. Identifying genetic controls associated with yield response is confounded by poor genetic correlations across testing environments. Part of this problem is related to our inability to account for the interplay of genetic controls, physiological traits, and environmental conditions throughout the crop cycle. We propose a modeling approach to bridge this "gene-to-phenotype" gap. For maize under drought, we simulated the impact of quantitative trait loci (QTL) controlling two key processes (leaf and silk elongation) that influence crop growth, water use, and grain yield. Substantial G x E interaction for yield was simulated for hypothetical recombinant inbred lines (RILs) across different seasonal patterns of drought. QTL that accelerated leaf elongation caused an increase in crop leaf area and yield in well-watered or preflowering water deficit conditions, but a reduction in yield under terminal stresses (as such "leafy" genotypes prematurely exhausted the water supply). The QTL impact on yield was substantially enhanced by including pleiotropic effects of these QTL on silk elongation and on consequent grain set. The simulations obtained illustrated the difficulty of interpreting the genetic control of yield for genotypes influenced only by the additive effects of QTL associated with leaf and silk growth. The results highlight the potential of integrative simulation modeling for gene-to-phenotype prediction and for exploiting G x E interactions for complex traits such as drought tolerance.
Hardy, John G; Pfaff, André; Leal-Egaña, Aldo; Müller, Axel H E; Scheibel, Thomas R
2014-07-01
Silk protein-based materials are promising biomaterials for application as tissue scaffolds, due to their processability, biocompatibility, and biodegradability. The preparation of films composed of an engineered spider silk protein (eADF4(C16)) and their functionalization with glycopolymers are described. The glycopolymers bind proteins found in the extracellular matrix, providing a biomimetic coating on the films that improves cell adhesion to the surfaces of engineered spider silk films. Such silk-based materials have potential as coatings for degradable implantable devices. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Trail and arena marking by caterpillars ofArchips cerasivoranus (lepidoptera: Tortricidae).
Fitzgerald, T D
1993-07-01
The activity ofArchips cerasivoranus caterpillars is largely limited to their colonial silk web and trails. Silk pulled directly from the spinnerets of caterpillars and wound onto paper strips to form artificial trails elicited locomotion from the larvae. Trails made from extracts of silk and silk glands also elicited locomotion. These and other observations reported here indicate that the caterpillars are responsive to a water-soluble pheromone that is a component of the silk strand. Marker pheromones appear not to be secreted from other regions of the body, as has been reported for some other trail-following caterpillars.
Second-order nonlinear optical microscopy of spider silk
NASA Astrophysics Data System (ADS)
Zhao, Yue; Hien, Khuat Thi Thu; Mizutani, Goro; Rutt, Harvey N.
2017-06-01
Asymmetric β-sheet protein structures in spider silk should induce nonlinear optical interaction such as second harmonic generation (SHG) which is experimentally observed for a radial line and dragline spider silk using an imaging femtosecond laser SHG microscope. By comparing different spider silks, we found that the SHG signal correlates with the existence of the protein β-sheets. Measurements of the polarization dependence of SHG from the dragline indicated that the β-sheet has a nonlinear response depending on the direction of the incident electric field. We propose a model of what orientation the β-sheet takes in spider silk.
Aksakal, Baki; Koç, Kenan; Yargı, Önder; Tsobkallo, Katherina
2016-01-05
The effect of UV-light on the uniaxial tensile properties and the structure of uncoated and TiO2 coated silk fibers in the bave form by using sol-gel method was investigated with tensile testing and FT-IR/ATR spectroscopy methods after the silk filaments were exposed to UV-light with high intensity of 760W/m(2) for different times from 0.5h to 1day. It was clearly observed that TiO2 coating considerably increased the Young's modulus of the uncoated silk single filament by around 17% before the UV-irradiation. The yield point and the post yield region disappeared on the stress-strain curves of both uncoated and TiO2 coated silk filaments after UV-irradiation time higher than 1h. Except for the Young's modulus, most of the tensile characteristics of both uncoated and TiO2 coated silk filaments decreased remarkably with increasing UV-irradiation time, e.g., after 1h irradiation, although the Young's modulus slightly changed and ultimate tensile strength decreased by only around 18% and 23%, for the uncoated and TiO2 coated silk filaments, respectively; breaking extension decreased dramatically by 67% and 72%, respectively, for uncoated and TiO2 coated silk filaments. Only the Young's modulus of TiO2 coated silk filaments which can be considered as a more stable tensile characteristic became significantly higher than that of the uncoated silk filaments with increasing UV-irradiation time. After 1day irradiation, even though the uncoated silk filaments could not be tested and completely lost of their fiber properties, the TiO2 coated silk filaments showed a stress-strain curve in initial elastic region with Young's modulus of ∼13GPa which indicates considerable protective effect of TiO2 on the silk fiber structure, especially on the β-sheet microcrystals against UV-radiation. The FT-IR/ATR spectral results showed that significant photodegradation took place in not only crystalline but also amorphous regions which were deduced from the decrease in the absorbance ratios of the bands assigned to CH3 rocking, Cα-Cβ, Cα-C stretching vibrations in β-sheet crystalline regions as well as the Amide I, II, and III bands for both crystalline and amorphous regions. Even though the ratio of crystalline to amorphous regions in uncoated silk filaments decreased significantly, the ratio in TiO2 coated silk filaments became almost constant with increasing UV-irradiation time which may indicate more stable β-sheet microcrystals against photodegradation. Copyright © 2015 Elsevier B.V. All rights reserved.
Interfacial Shear Strength and Adhesive Behavior of Silk Ionomer Surfaces.
Kim, Sunghan; Geryak, Ren D; Zhang, Shuaidi; Ma, Ruilong; Calabrese, Rossella; Kaplan, David L; Tsukruk, Vladimir V
2017-09-11
The interfacial shear strength between different layers in multilayered structures of layer-by-layer (LbL) microcapsules is a crucial mechanical property to ensure their robustness. In this work, we investigated the interfacial shear strength of modified silk fibroin ionomers utilized in LbL shells, an ionic-cationic pair with complementary ionic pairing, (SF)-poly-l-glutamic acid (Glu) and SF-poly-l-lysine (Lys), and a complementary pair with partially screened Coulombic interactions due to the presence of poly(ethylene glycol) (PEG) segments and SF-Glu/SF-Lys[PEG] pair. Shearing and adhesive behavior between these silk ionomer surfaces in the swollen state were probed at different spatial scales and pressure ranges by using functionalized atomic force microscopy (AFM) tips as well as functionalized colloidal probes. The results show that both approaches were consistent in analyzing the interfacial shear strength of LbL silk ionomers at different spatial scales from a nanoscale to a fraction of a micron. Surprisingly, the interfacial shear strength between SF-Glu and SF-Lys[PEG] pair with partially screened ionic pairing was greater than the interfacial shear strength of the SF-Glu and SF-Lys pair with a high density of complementary ionic groups. The difference in interfacial shear strength and adhesive strength is suggested to be predominantly facilitated by the interlayer hydrogen bonding of complementary amino acids and overlap of highly swollen PEG segments.
Silk produced by hornets: thermophotovoltaic properties-a review.
Kirshboim, S; Ishay, J S
2000-09-01
This article deals with the silk weave produced by pupating larvae of the Oriental hornet and its electric properties. Larvae of this hornet commence pupation at approximately 2 weeks of age. Creation of the cocoonal silk weave requires a number of hours and the encased pupa remains in the cocoon for approximately 2 more weeks before ecloding as an adult. The silk weave is initially of a creamish white color, but gradually becomes brown-gray owing to the activity of certain bacteria secreted in the silk. The silk weave is composed of fibers arranged in multiple layers with interposed surfaces occupying a considerable part of the area and containing pockets of bacteria. The spun silk contains both metallic and non-metallic elements, mostly K and Cl but also Mg, P, S, Ca, Ti and V. Shaped as a dome, the silk projects considerably beyond the cell proper, contributing importantly to its total volume and providing a shield for the contained pupa against predators, parasites, or extreme changes in temperature, as well as affording a 'sterile and clean room' in which the pupa can form its new cuticle without the interference of contaminating dust particles or the turbulence of air currents. The silk is endowed with electric properties. Inter alia, a thermoelectric phenomenon was observed in the dark, namely, upon increase in temperature the current rose to several hundred nano Amperes (nA); in light, a photovoltaic effect was observed involving voltages of several dozen millivolts (mV), with a sharp transition between the current and voltage during transition from darkness to light. Also recorded was a very high electric capacitance, amounting to scores of milli farads (mF). In all, the pupal silk behaves like an organic semiconductor, in that its electric properties are temperature-dependent, and it also displays ferroelectric properties. Additionally, a luminescence phenomenon was recorded on the silk, wherein excitation at wavelengths within the UV(i.e. 249, 290 and 312 nm) range yielded an emission spectrum at a wavelength of 450 and of 530 nm. The silk caps are anisotropic in that the emission from the outside is lower than that from the inside. By way of recap, the various mentioned properties of the pupal silk are discussed from their biological and physical aspects.
In vivo bioresponses to silk proteins.
Thurber, Amy E; Omenetto, Fiorenzo G; Kaplan, David L
2015-12-01
Silks are appealing materials for numerous biomedical applications involving drug delivery, tissue engineering, or implantable devices, because of their tunable mechanical properties and wide range of physical structures. In addition to the functionalities needed for specific clinical applications, a key factor necessary for clinical success for any implanted material is appropriate interactions with the body in vivo. This review summarizes our current understanding of the in vivo biological responses to silks, including degradation, the immune and inflammatory response, and tissue remodeling with particular attention to vascularization. While we focus in this review on silkworm silk fibroin protein due to the large quantity of in vivo data thanks to its widespread use in medical materials and consumer products, spider silk information is also included if available. Silk proteins are degraded in the body on a time course that is dependent on the method of silk fabrication and can range from hours to years. Silk protein typically induces a mild inflammatory response that decreases within a few weeks of implantation. The response involves recruitment and activation of macrophages and may include activation of a mild foreign body response with the formation of multinuclear giant cells, depending on the material format and location of implantation. The number of immune cells present decreases with time and granulation tissue, if formed, is replaced by endogenous, not fibrous, tissue. Importantly, silk materials have not been demonstrated to induce mineralization, except when used in calcified tissues. Due to its ability to be degraded, silk can be remodeled in the body allowing for vascularization and tissue ingrowth with eventual complete replacement by native tissue. The degree of remodeling, tissue ingrowth, or other specific cell behaviors can be modulated with addition of growth or other signaling factors. Silk can also be combined with numerous other materials including proteins, synthetic polymers, and ceramics to enhance its characteristics for a particular function. Overall, the diverse array of silk materials shows excellent bioresponses in vivo with low immunogenicity and the ability to be remodeled and replaced by native tissue making it suitable for numerous clinical applications. Copyright © 2015 Elsevier Ltd. All rights reserved.
Padol, Amol R.; Jayakumar, K.; Shridhar, N. B.; Narayana Swamy, H. D.; Narayana Swamy, M.; Mohan, K.
2011-01-01
Acute dermal toxicity study was conducted in rats. The parameters studied were body weight, serum biochemistry and gross pathology. The animals were also observed for clinical signs and mortality after the application of test film. The dermal irritation potential of silk protein film was examined using Draize test. In the initial test, three test patches were applied sequentially for 3 min, 1 and 4 hours, respectively, and skin reaction was graded. The irritant or negative response was confirmed using two additional animals, each with one patch, for an exposure period of 4 hours. The responses were scored at 1, 24, 48 and 72 hours after the patch removal. Skin sensitization study was conducted according to Buehler test in guinea pigs, in which on day 0, 7 and 14, the animals were exposed to test material for 6 hours (Induction phase) and on day 28, the animals were exposed for a period of 24 hours (Challenge phase). The skin was observed and recorded at 24 and 48 hours after the patch removal. In acute dermal toxicity study, the rats dermally treated with silk film did not show any abnormal clinical signs and the body weight, biochemical parameters and gross pathological observations were not significantly different from the control group. In acute dermal irritation study, the treated rabbits showed no signs of erythema, edema and eschar, and the scoring was given as “0” for all time points of observations according to Draize scoring system. In skin sensitization study, there were no skin reactions 24 and 48 hours after the removal of challenge patch, which was scored “0” based on Magnusson/Kligman grading scale. PMID:21430915
Spider Silk Constructs Enhance Axonal Regeneration and Remyelination in Long Nerve Defects in Sheep
Radtke, Christine; Allmeling, Christina; Waldmann, Karl-Heinz; Reimers, Kerstin; Thies, Kerstin; Schenk, Henning C.; Hillmer, Anja; Guggenheim, Merlin; Brandes, Gudrun; Vogt, Peter M.
2011-01-01
Background Surgical reapposition of peripheral nerve results in some axonal regeneration and functional recovery, but the clinical outcome in long distance nerve defects is disappointing and research continues to utilize further interventional approaches to optimize functional recovery. We describe the use of nerve constructs consisting of decellularized vein grafts filled with spider silk fibers as a guiding material to bridge a 6.0 cm tibial nerve defect in adult sheep. Methodology/Principal Findings The nerve constructs were compared to autologous nerve grafts. Regeneration was evaluated for clinical, electrophysiological and histological outcome. Electrophysiological recordings were obtained at 6 months and 10 months post surgery in each group. Ten months later, the nerves were removed and prepared for immunostaining, electrophysiological and electron microscopy. Immunostaining for sodium channel (NaV 1.6) was used to define nodes of Ranvier on regenerated axons in combination with anti-S100 and neurofilament. Anti-S100 was used to identify Schwann cells. Axons regenerated through the constructs and were myelinated indicating migration of Schwann cells into the constructs. Nodes of Ranvier between myelin segments were observed and identified by intense sodium channel (NaV 1.6) staining on the regenerated axons. There was no significant difference in electrophysiological results between control autologous experimental and construct implantation indicating that our construct are an effective alternative to autologous nerve transplantation. Conclusions/Significance This study demonstrates that spider silk enhances Schwann cell migration, axonal regrowth and remyelination including electrophysiological recovery in a long-distance peripheral nerve gap model resulting in functional recovery. This improvement in nerve regeneration could have significant clinical implications for reconstructive nerve surgery. PMID:21364921
Tunable green graphene-silk biomaterials: Mechanism of protein-based nanocomposites.
Wang, Fang; Jyothirmayee Aravind, S S; Wu, Hao; Forys, Joseph; Venkataraman, Venkat; Ramanujachary, Kandalam; Hu, Xiao
2017-10-01
Green graphene materials prepared by photoreduction of graphite oxide were first time blended with aqueous-based silk fibroin proteins to improve the mechanical and thermal properties of silk biomaterials, and their nanocomposite interaction mechanism was illustrated. Powder X-ray diffraction (XRD) analysis confirmed the complete exfoliation of graphite oxide to graphene in presence of focused pulses of solar radiation. By varying the concentration of graphene (0.1wt% to 10wt%), a series of free standing graphene-silk films were prepared and were systematically characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and nanoindentation measurements. The homogeneity of graphene in silk as well as the thermal stability of the composite films was demonstrated by thermal gravimetric analysis (TGA) and temperature-modulated differential scanning calorimetry (TMDSC). Surprisingly, silk composite film containing only 0.5wt% of graphene gives the highest Young's modulus of 1.65GPa (about 5.8 times higher than the pure silk's modulus), indicating a nano-composite to micro-composite transition of silk-graphene structure occurred around this mixing ratio. This finding provided an easy approach to improve the elastic modulus and other physical properties of silk materials by adding a tiny amount of graphene sheets. Fibroblast cells studies also proved that these graphene-silk materials can significantly improve cell adhesion, growth and proliferation. This protein nanocomposite study provided a useful model to understand how to manipulate the hydrophobic-hydrophobic and polar-polar interactions between high-surface-area inorganic nanomaterials and amphiphilic protein materials, which has many emerging applications in the material science and engineering, such as bio-device fabrication, drug storage and release, and tissue regeneration. Copyright © 2017 Elsevier B.V. All rights reserved.
Kim, Seong-Ryul; Kwak, Woori; Kim, Hyaekang; Kim, Kee-Young; Kim, Su-Bae; Choi, Kwang-Ho; Kim, Seong-Wan; Hwang, Jae-Sam; Kim, Minjee; Kim, Iksoo; Goo, Tae-Won
2018-01-01
Abstract Background Antheraea yamamai, also known as the Japanese oak silk moth, is a wild species of silk moth. Silk produced by A. yamamai, referred to as tensan silk, shows different characteristics such as thickness, compressive elasticity, and chemical resistance compared with common silk produced from the domesticated silkworm, Bombyx mori. Its unique characteristics have led to its use in many research fields including biotechnology and medical science, and the scientific as well as economic importance of the wild silk moth continues to gradually increase. However, no genomic information for the wild silk moth, including A. yamamai, is currently available. Findings In order to construct the A. yamamai genome, a total of 147G base pairs using Illumina and Pacbio sequencing platforms were generated, providing 210-fold coverage based on the 700-Mb estimated genome size of A. yamamai. The assembled genome of A. yamamai was 656 Mb (>2 kb) with 3675 scaffolds, and the N50 length of assembly was 739 Kb with a 34.07% GC ratio. Identified repeat elements covered 37.33% of the total genome, and the completeness of the constructed genome assembly was estimated to be 96.7% by Benchmarking Universal Single-Copy Orthologs v2 analysis. A total of 15 481 genes were identified using Evidence Modeler based on the gene prediction results obtained from 3 different methods (ab initio, RNA-seq-based, known-gene-based) and manual curation. Conclusions Here we present the genome sequence of A. yamamai, the first genome sequence of the wild silk moth. These results provide valuable genomic information, which will help enrich our understanding of the molecular mechanisms relating to not only specific phenotypes such as wild silk itself but also the genomic evolution of Saturniidae. PMID:29186418
NASA Astrophysics Data System (ADS)
Cao, Jiliang; Huang, Zhan; Wang, Chaoxia
2018-05-01
Graphene conductive silk substrate is a preferred material because of its biocompatibility, flexibility and comfort. A flexible natural printed silk substrate circuit was fabricated by one step transfer of graphene oxide (GO) paste from transfer paper to the surface of silk fabric and reduction of the GO to reduced graphene oxide (RGO) using a simple hot press treatment. The GO paste was obtained through ultrasonic stirring exfoliation under low temperature, and presented excellent printing rheological properties at high concentration. The silk fabric was obtained a surface electric resistance as low as 12.15 KΩ cm-1, in the concentration of GO 50 g L-1 and hot press at 220 °C for 120 s. Though the whiteness and strength decreased with the increasing of hot press temperature and time slowly, the electric conductivity of RGO surface modification silk substrate improved obviously. The surface electric resistance of RGO/silk fabrics increased from 12.15 KΩ cm-1 to 18.05 KΩ cm-1, 28.54 KΩ cm-1 and 32.53 KΩ cm-1 after 10, 20 and 30 washing cycles, respectively. The results showed that the printed silk substrate circuit has excellent washability. This process requires no chemical reductant, and the reduction efficiency and reduction degree of GO is high. This time-effective and environmentally-friendly one step thermal transfer and reduction graphene oxide onto natural silk substrate method can be easily used to production of reduced graphene oxide (RGO) based flexible printed circuit.
Beating the Heat - Fast Scanning Melts Silk Beta Sheet Crystals
NASA Astrophysics Data System (ADS)
Cebe, Peggy; Hu, Xiao; Kaplan, David L.; Zhuravlev, Evgeny; Wurm, Andreas; Arbeiter, Daniela; Schick, Christoph
2013-01-01
Beta-pleated-sheet crystals are among the most stable of protein secondary structures, and are responsible for the remarkable physical properties of many fibrous proteins, such as silk, or proteins forming plaques as in Alzheimer's disease. Previous thinking, and the accepted paradigm, was that beta-pleated-sheet crystals in the dry solid state were so stable they would not melt upon input of heat energy alone. Here we overturn that assumption and demonstrate that beta-pleated-sheet crystals melt directly from the solid state to become random coils, helices, and turns. We use fast scanning chip calorimetry at 2,000 K/s and report the first reversible thermal melting of protein beta-pleated-sheet crystals, exemplified by silk fibroin. The similarity between thermal melting behavior of lamellar crystals of synthetic polymers and beta-pleated-sheet crystals is confirmed. Significance for controlling beta-pleated-sheet content during thermal processing of biomaterials, as well as towards disease therapies, is envisioned based on these new findings.
Wang, Fei; Zhang, Yu-Qing
2017-05-01
Alkyl polyglycoside (APG), a nonionic surfactant, is often considered to be a green surfactant and is synthesized using glucose and long chain fatty alcohols. It is used as a degumming agent of Bombyx mori silk fibre in this study for the first time. We studied APG systematically in comparison to the traditional degumming methods, such as aqueous solutions of sodium carbonate (Na 2 CO 3 ) and neutral soap (NS). After repeatedly boiling silk fibres in an aqueous solution of 0.25% APG three times for 30min and using a bath ratio of 1:90-120 (g/mL), sericin was completely removed from the fibre. SDS-PAGE showed that the degumming in APG did not induce an evident breakage of the silk fibroin peptide chains, including the light chain and P25 protein. The tensile properties, thermal analysis, and scanning electron microscopic (SEM) observation of the degummed fibroin fibre all show that APG is a degumming agent similar to NS and far superior to Na 2 CO 3 . These results indicate that APG is an environment-friendly silk degumming/refining agent in the silk textile industry and in the manufacture of silk floss quilts. Copyright © 2017 Elsevier B.V. All rights reserved.
Ma, Sanyuan; Shi, Run; Wang, Xiaogang; Liu, Yuanyuan; Chang, Jiasong; Gao, Jie; Lu, Wei; Zhang, Jianduo; Zhao, Ping; Xia, Qingyou
2014-01-01
Evolution has produced some remarkable creatures, of which silk gland is a fascinating organ that exists in a variety of insects and almost half of the 34,000 spider species. The impressive ability to secrete huge amount of pure silk protein, and to store proteins at an extremely high concentration (up to 25%) make the silk gland of Bombyx mori hold great promise to be a cost-effective platform for production of recombinant proteins. However, the extremely low production yields of the numerous reported expression systems greatly hindered the exploration and application of silk gland bioreactors. Using customized zinc finger nucleases (ZFN), we successfully performed genome editing of Bmfib-H gene, which encodes the largest and most abundant silk protein, in B. mori with efficiency higher than any previously reported. The resulted Bmfib-H knocked-out B. mori showed a smaller and empty silk gland, abnormally developed posterior silk gland cells, an extremely thin cocoon that contain only sericin proteins, and a slightly heavier pupae. We also showed that removal of endogenous Bmfib-H protein could significantly increase the expression level of exogenous protein. Furthermore, we demonstrated that the bioreactor is suitable for large scale production of protein-based materials. PMID:25359576
The embryonic origin of the ampullate silk glands of the spider Cupiennius salei.
Hilbrant, Maarten; Damen, Wim G M
2015-05-01
Silk production in spiders is considered a key innovation, and to have been vital for the diversification of the clade. The evolutionary origin of the organs involved in spider silk production, however, and in particular of the silk glands, is poorly understood. Homologies have been proposed between these and other glands found in arachnids, but lacking knowledge of the embryonic development of spider silk glands hampers an evaluation of hypotheses. This study focuses on the embryonic origin of the largest silk glands of the spider Cupiennius salei, the major and minor ampullate glands. We show how the ampullate glands originate from ectodermal invaginations on the embryonic spinneret limb buds, in relation to morphogenesis of these buds. Moreover, we visualize the subsequent growth of the ampullate glands in sections of the early postembryonic stages. The invaginations are shown to correlate with expression of the proneural gene CsASH2, which is remarkable since it has been proposed that spider silk glands and their nozzles originate from sensory bristles. Hence, by confirming the ectodermal origin of spider silk glands, and by describing the (post-)embryonic morphogenesis of the ampullate glands, this work provides a starting point for further investigating into the genetic program that underlies their development. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Kang; Wu, Sujun; Guan, Juan
Strong and tough epoxy composites are developed using a less-studied fibre reinforcement, that of natural silk. Two common but structurally distinct silks from the domestic B. mori/Bm and the wild A. pernyi/Ap silkworms are selected in fabric forms. We show that the toughening effects on silk-epoxy composites or SFRPs are dependent on the silk species and the volume fraction of silk. Both silks enhance the room-temperature tensile and flexural mechanical properties of the composite, whereas the more resilient Ap silk shows a more pronounced toughening effect and a lower critical reinforcement volume for the brittle-ductile transition. Specifically, our 60 vol.%more » Ap-SFRP displays a three-fold elevation in tensile and flexural strength, as compared to pure epoxy resin, with an order of magnitude higher breaking energy via a distinct, ductile failure mode. Importantly, the 60 vol.% Ap-SFRP remains ductile with 7% flexural elongation at lower temperatures (-50 °C). Under impact, these SFRPs show significantly improved energy absorption, and the 60 vol.% Ap-SFRP has an impact strength some eight times that of pure epoxy resin. Lastly, the findings demonstrate both marked toughening and strengthening effects for epoxy composites from natural silk reinforcements, which presents opportunities for mechanically superior and "green" structural composites.« less
Lovtsova, Julia; Gorb, Elena; Dai, Zhendong; Ji, Aihong; Zhao, Zhihui; Jiang, Nan; Gorb, Stanislav N.
2017-01-01
Silks play an important role in the life of various arthropods. A highly neglected prerequisite to make versatile use of silks is sufficient attachment to substrates. Although there have been some studies on the structure and mechanics of silk anchorages of spiders, for insects only anecdotal reports on attachment-associated spinning behaviour exist. Here, we experimentally studied the silk attachment of the pupae and last instar caterpillars of the tea bagworm Eumeta minuscula (Butler 1881) (Lepidoptera, Psychidae) to the leaves of its host plant Ilex chinensis. We found that the bagworms spin attachment discs, which share some structural features with those of spiders, like a plaque consisting of numerous overlaid, looped glue-coated silk fibres and the medially attaching suspension thread. Although the glue, which coats the fibres, cannot spread and adhere very well to the leaf surface, high pull-off forces were measured, yielding a mean safety factor (force divided by the animal weight) of 385.6. Presumably, the bagworms achieve this by removal of the leaf epidermis prior to silk attachment, which exposes the underlying tissue that represents a much better bonding site. This ensures a reliable attachment during the immobile, vulnerable pupal stage. This is the first study on the biomechanics and structure of silk attachments to substrates in insects. PMID:28250101
NASA Astrophysics Data System (ADS)
Cheng, Xian-Wei; Liang, Cheng-Xi; Guan, Jin-Ping; Yang, Xu-Hong; Tang, Ren-Cheng
2018-01-01
In this work, a novel phosphorus-rich hybrid organic-inorganic silica coating for improving the flame retardancy of silk fabric was prepared using naturally occurring phytic acid as phosphorus precursor and catalyst for the hydrolysis of tetraethoxysilane. In addition, three silane coupling agents, namely 3-aminopropyldimethoxymethylsilane, 3-chloropropyltrimethoxysilane and 3-methacryloxypropyltrimethoxysilane, were added in the hybrid sol as cross-linkers with the aim of developing hydrophobic coatings and improving the washing durability of the treated silk fabric. The condensation degree of the hybrid sol was characterized by solid-state 29Si nuclear magnetic resonance spectroscopy. The flammability and thermal degradation properties of the treated silk fabrics were determined in terms of limiting oxygen index, vertical burning, pyrolysis combustion flow calorimetry and thermogravimetric analyses. The surface morphology and hydrophobicity of the treated silk fabrics were evaluated by scanning electron microscopy, atomic force microscopy and water contact angle tests. The flammability tests revealed that the silicon sol could endow silk fabric with excellent flame retardancy when doped with phytic acid, and the treated silk fabrics self-extinguished immediately when the ignition source was removed. The silk fabrics treated with the modified hybrid sols exhibited hydrophobic surface and also better durability to washing.
Recombinant production and film properties of full-length hornet silk proteins.
Kambe, Yusuke; Sutherland, Tara D; Kameda, Tsunenori
2014-08-01
Full-length versions of the four main components of silk cocoons of Vespa simillima hornets, Vssilk1-4, were produced as recombinant proteins in Escherichia coli. In shake flasks, the recombinant Vssilk proteins yielded 160-330mg recombinant proteinl(-1). Films generated from solutions of single Vssilk proteins had a secondary structure similar to that of films generated from native hornet silk. The films made from individual recombinant hornet silk proteins had similar or enhanced mechanical performance compared with films generated from native hornet silk, possibly reflecting the homogeneity of the recombinant proteins. The pH-dependent changes in zeta (ζ) potential of each Vssilk film were measured, and isoelectric points (pI) of Vssilk1-4 were determined as 8.9, 9.1, 5.0 and 4.2, respectively. The pI of native hornet silk, a combination of the four Vssilk proteins, was 4.7, a value similar to that of Bombyx mori silkworm silk. Films generated from Vssilk1 and 2 had net positive charge under physiological conditions and showed significantly higher cell adhesion activity. It is proposed that recombinant hornet silk is a valuable new material with potential for cell culture applications. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Li, Bing; Yu, Xiaohong; Gui, Suxin; Xie, Yi; Hong, Jie; Zhao, Xiaoyang; Sheng, Lei; Sang, Xuezi; Sun, Qingqing; Wang, Ling; Shen, Weide; Hong, Fashui
2013-12-18
Organophosphate pesticides are applied widely in the world for agricultural purposes, and their exposures often resulted in non-cocooning of Bombyx mori in China. TiO2 nanoparticles have been demonstrated to increase pesticide resistance of Bombyx mori. While the toxicity of phoxim is well-documented, very limited information exists on the mechanisms of TiO2 nanoparticles improving the cocooning function of Bombyx mori following exposure to phoxim. The present study was, therefore, undertaken to determine whether TiO2 nanoparticles attenuate silk gland injury and elevate cocooning of B. mori following exposure to phoxim. The findings suggested that phoxim exposure resulted in severe damages of the silk gland structure and significantly decreased the cocooning in the silk gland of Bombyx mori. Furthermore, phoxim exposure significantly resulted in reductions of total protein concentrations and suppressed expressions of silk protein synthesis-related genes, including Fib-L, Fib-H, P25, Ser-2, and Ser-3, in the silk gland. TiO2 nanoparticle pretreatment, however, could significantly relieve silk gland injury of Bombyx mori. Importantly, TiO2 nanoparticles could remarkably elevate cocooning and total protein contents and promote expressions of Fib-L, Fib-H, P25, Ser-2, and Ser-3 in the silk gland following exposure to phoxim.
Folding process of silk fibroin induced by ferric and ferrous ions
NASA Astrophysics Data System (ADS)
Ji, Dan; Deng, Yi-Bin; Zhou, Ping
2009-12-01
Bombyx mori silk fiber has useful mechanical properties largely due to a high content of ordered β-sheet crystallites separated by non-crystalline spacers. Metallic ions present in the silk dope in nature could affect the β-sheet content. In this work, we used solid-state 13C NMR, EPR and Raman spectroscopy to investigate how the ferric/ferrous ions affect the folding process of the silk fibroin. NMR and Raman results indicate that ferric and ferrous ions have different effects on the secondary structure of silk fibroin. Ferric ions can induce a conformation change from helix to β-sheet form in silk fibroin when their concentration exceeds a critical value, while ferrous ions cannot. EPR results indicate that the ferric ions bound with silk fibroin have a high-spin state ( S = 5/2) with g-value of g1 = 1.950, g2 = 1.990 and g3 = 1.995, zero-field splitting interaction D of 1.2-2 cm -1, and symmetric character of E/ D = 1/3, resulting in an effective g-value of g' = 4.25. The hydrophilic spacer GTGSSGFGPYVAN(H)GGYSGYEYAWSSESDFGT in the heavy chain of silk fibroin is likely to be involved in the binding of ferric ions, and His, Asn and Tyr residues are considered as the potential binding sites.
Li, Li; Gong, Yuxuan; Yin, Hao; Gong, Decai
2015-01-01
Archaeological silk provides abundant information for studying ancient technologies and cultures. However, due to the spontaneous degradation and the damages from burial conditions, most ancient silk fibers which suffered the damages for thousands of years were turned into invisible molecular residues. For the obtained rare samples, extra care needs to be taken to accurately identify the genuine archaeological silk remains from modern contaminations. Although mass spectrometry (MS) is a powerful tool for identifying and analyzing the ancient protein residues, the traditional approach could not directly determine the dating and contamination of each sample. In this paper, a series of samples with a broad range of ages were tested by MS to find an effective and innovative approach to determine whether modern contamination exists, in order to verify the authenticity and reliability of the ancient samples. The new findings highlighted that the detected peptide types of the fibroin light chain can indicate the degradation levels of silk samples and help to distinguish contamination from ancient silk remains. PMID:26186676
Muiznieks, Lisa D; Keeley, Fred W
2016-10-01
Elastin and silk spidroins are fibrous, structural proteins with elastomeric properties of extension and recoil. While elastin is highly extensible and has excellent recovery of elastic energy, silks are particularly strong and tough. This study describes the biophysical characterization of recombinant polypeptides designed by combining spider wrapping silk and elastin-like sequences as a strategy to rationally increase the strength of elastin-based materials while maintaining extensibility. We demonstrate a thermo-responsive phase separation and spontaneous colloid-like droplet formation from silk-elastin block copolymers, and from a 34 residue disordered region of Argiope trifasciata wrapping silk alone, and measure a comprehensive suite of tensile mechanical properties from cross-linked materials. Silk-elastin materials exhibited significantly increased strength, toughness, and stiffness compared to an elastin-only material, while retaining high failure strains and low energy loss upon recoil. These data demonstrate the mechanical tunability of protein polymer biomaterials through modular, chimeric recombination, and provide structural insights into mechanical design. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 693-703, 2016. © 2016 Wiley Periodicals, Inc.