Science.gov

Sample records for control hematopoietic stem

  1. Hospital infection control in hematopoietic stem cell transplant recipients.

    PubMed Central

    Dykewicz, C. A.

    2001-01-01

    Guidelines for Preventing Opportunistic Infections Among Hematopoietic Stem Cell Transplant Recipients contains a section on hospital infection control including evidence-based recommendations regarding ventilation, construction, equipment, plants, play areas and toys, health-care workers, visitors, patient skin and oral care, catheter-related infections, drug-resistant organisms, and specific nosocomial infections. These guidelines are intended to reduce the number and severity of hospital infections in hematopoietic stem cell transplant recipients. PMID:11294720

  2. Mortalin and DJ-1 coordinately regulate hematopoietic stem cell function through the control of oxidative stress.

    PubMed

    Tai-Nagara, Ikue; Matsuoka, Sahoko; Ariga, Hiroyoshi; Suda, Toshio

    2014-01-01

    Hematopoietic stem cells (HSCs) maintain stemness through various mechanisms that protect against stressful conditions. Heat shock proteins (HSPs) preserve cell homeostasis during stress responses through protein quality control, suggesting that HSPs may safeguard HSCs against numerous traumas. Here, we show that mortalin, a mitochondrial HSP, plays an essential role in maintaining HSC properties by regulating oxidative stress. Mortalin is primarily localized in hematopoietic stem and progenitor cell (HSPC) compartments. In this study, the inhibition of mortalin function caused abnormal reactive oxygen species (ROS) elevation in HSCs and reduced HSC numbers. Knockdown (KD) of mortalin in HSPCs impaired their ability to repopulate and form colonies. Moreover, mortalin-KD HSCs could not maintain quiescence and showed severe downregulation of cyclin-dependent kinase inhibitor- and antioxidant-related genes. Conversely, HSCs that overexpressed mortalin maintained a high reconstitution capacity and low ROS levels. Furthermore, DJ-1, one of the genes responsible for Parkinson's disease, directly bound to mortalin and acted as a negative ROS regulator. Using DJ-1-deficient mice, we demonstrated that mortalin and DJ-1 coordinately maintain normal ROS levels and HSC numbers. Collectively, these results indicate that the mortalin/DJ-1 complex guards against mitochondrial oxidative stress and is indispensable for the maintenance of HSCs. PMID:24243970

  3. [Hematopoietic stem cells and hematopoietic neoplasias].

    PubMed

    Wickenhauser, C

    2002-11-01

    Pluripotent hematopoietic stem cells have been defined as cells with extensive self-renewal capacity and lympho-hematopoietic differentiation potential. Clonal selection of a stem cell as a first step in the progression to neoplasia can be achieved by an alteration of this self-renewal potency. Our current understanding of the pathogenesis of the myeloproliferative disorders including acute myeloid leukemias, chronic myeloproliferative disorders (CMPD) and myelodysplastic syndromes (MDS), is based on the assumption that they represent a clonal disorder resulting from transformation of a hematopoietic stem cell. However, when performing methods for determining X-chromosome inactivation in female patients as a clonality marker, a significant minority of the patients with Philadelphia chromosome negative (Ph(-)) CMPD and MDS exhibit polyclonal proliferation. The implications of these results are not yet clarified and the lack of a proven target cell impairs the understanding of the underlying molecular defect. In this context, altered response to cytokine stimulation in vitro provides indirect information concerning molecular dysregulation. A subset of patients with MPD present with translocations that facilitate molecular investigation and clonality proof. They nearly always result in rearrangements of at least one transcription factor gene. Most of these fusion genes are constitutively active, sending out continuous proliferative and antiapoptotic signals or activate an overlapping set of signalling pathways. The classical example for a balanced translocation is the t(9;22) bcr-abl aberration in chronic myelogeneous leukemia. Many other karyotypic abnormalities have also been associated with CMPD and MDS and involve deletions of chromosomes 20q, 13q, 1q, 7q and 5q as well as trisomy of 8 and 9. Our increased understanding of the hematopoietic stem cell compartment and the molecular basis of regulation of its self-renewal and differentiation bears a direct impact on

  4. SWEF Proteins Distinctly Control Maintenance and Differentiation of Hematopoietic Stem Cells.

    PubMed

    Ripich, Tatsiana; Chacón-Martínez, Carlos Andrés; Fischer, Luise; Pernis, Alessandra; Kiessling, Nadine; Garbe, Annette I; Jessberger, Rolf

    2016-01-01

    SWAP-70 and DEF6, two proteins that feature similar domain and motif arrangements, are mainly known for their functions in differentiated hematopoietic cells. Both proteins interact with and regulate RhoGTPases and F-actin dynamics, yet their role in hematopoietic stem and precursor cells (HSPCs) remained unexplored. Here, the role of the SWEF proteins SWAP-70 and DEF6 in HSPCs was examined. Both SWEF proteins are expressed in HSCs. HSCs and different precursor populations were analyzed in mice deficient for SWAP-70, DEF6, SWAP-70 and DEF6 (double knockout, DKO), and wild-type controls. HSPCs isolated from these strains were used for competitive adoptive transfer into irradiated wild-type mice. Reconstitution of the myeloid and lymphoid lineages in the recipient mice was determined. The numbers of HSPCs in the bone marrow of Swap-70-/- and Swap-70-/-Def6-/- mice were >3-fold increased. When transplanted into lethally irradiated wild-type recipients, the reconstitution potential of Swap-70-/- HSPCs was intrinsically impaired in competing with wild-type HSPCs for contribution to hematopoiesis. Def6-/- HSPCs show wild type-like reconstitution potential under the same transplantation conditions. DKO HSPCs reconstituted to only 25% of wild-type levels, indicating a partial rescue by DEF6 deficiency in the Swap-70-/- background. Our study reveals the two SWEF proteins as important contributors to HSPC biology. Despite their similarity these two proteins regulate HSC/progenitor homeostasis, self-renewal, lineage contributions and repopulation in a distinct and mostly antagonistic manner. PMID:27561029

  5. SWEF Proteins Distinctly Control Maintenance and Differentiation of Hematopoietic Stem Cells

    PubMed Central

    Ripich, Tatsiana; Chacón-Martínez, Carlos Andrés; Fischer, Luise; Pernis, Alessandra; Kiessling, Nadine; Garbe, Annette I.; Jessberger, Rolf

    2016-01-01

    SWAP-70 and DEF6, two proteins that feature similar domain and motif arrangements, are mainly known for their functions in differentiated hematopoietic cells. Both proteins interact with and regulate RhoGTPases and F-actin dynamics, yet their role in hematopoietic stem and precursor cells (HSPCs) remained unexplored. Here, the role of the SWEF proteins SWAP-70 and DEF6 in HSPCs was examined. Both SWEF proteins are expressed in HSCs. HSCs and different precursor populations were analyzed in mice deficient for SWAP-70, DEF6, SWAP-70 and DEF6 (double knockout, DKO), and wild-type controls. HSPCs isolated from these strains were used for competitive adoptive transfer into irradiated wild-type mice. Reconstitution of the myeloid and lymphoid lineages in the recipient mice was determined. The numbers of HSPCs in the bone marrow of Swap-70-/- and Swap-70-/-Def6-/- mice were >3-fold increased. When transplanted into lethally irradiated wild-type recipients, the reconstitution potential of Swap-70-/- HSPCs was intrinsically impaired in competing with wild-type HSPCs for contribution to hematopoiesis. Def6-/- HSPCs show wild type-like reconstitution potential under the same transplantation conditions. DKO HSPCs reconstituted to only 25% of wild-type levels, indicating a partial rescue by DEF6 deficiency in the Swap-70-/- background. Our study reveals the two SWEF proteins as important contributors to HSPC biology. Despite their similarity these two proteins regulate HSC/progenitor homeostasis, self-renewal, lineage contributions and repopulation in a distinct and mostly antagonistic manner. PMID:27561029

  6. Aberrant epigenetic regulators control expansion of human CD34+ hematopoietic stem/progenitor cells

    PubMed Central

    Faridi, Farnaz; Ponnusamy, Kanagaraju; Quagliano-Lo Coco, Isabell; Chen-Wichmann, Linping; Grez, Manuel; Henschler, Reinhard; Wichmann, Christian

    2013-01-01

    Transcription is a tightly regulated process ensuring the proper expression of numerous genes regulating all aspects of cellular behavior. Transcription factors regulate multiple genes including other transcription factors that together control a highly complex gene network. The transcriptional machinery can be “hijacked” by oncogenic transcription factors, thereby leading to malignant cell transformation. Oncogenic transcription factors manipulate a variety of epigenetic control mechanisms to fulfill gene regulatory and cell transforming functions. These factors assemble epigenetic regulators at target gene promoter sequences, thereby disturbing physiological gene expression patterns. Retroviral vector technology and the availability of “healthy” human hematopoietic CD34+ progenitor cells enable the generation of pre-leukemic cell models for the analysis of aberrant human hematopoietic progenitor cell expansion mediated by leukemogenic transcription factors. This review summarizes recent findings regarding the mechanism by which leukemogenic gene products control human hematopoietic CD34+ progenitor cell expansion by disrupting the normal epigenetic program. PMID:24348510

  7. Captopril to Mitigate Chronic Renal Failure After Hematopoietic Stem Cell Transplantation: A Randomized Controlled Trial

    SciTech Connect

    Cohen, Eric P. Irving, Amy A. B.A.; Drobyski, William R.; Klein, John P.; Passweg, Jakob; Talano, Julie-An M.; Juckett, Mark B.; Moulder, John E.

    2008-04-01

    Purpose: To test whether the angiotensin-converting enzyme inhibitor captopril was effective in mitigating chronic renal failure after hematopoietic stem cell transplantation (HSCT). Methods and Materials: A total of 55 subjects undergoing total body irradiation (TBI)-HSCT were enrolled in this randomized controlled trial. Captopril or identical placebo was started at engraftment and continued as tolerated until 1 year after HSCT. Results: The baseline serum creatinine and calculated glomerular filtration rate (GFR) did not differ between groups. The 1-year serum creatinine level was lower and the GFR higher in the captopril compared with the placebo group (p = 0.07 for GFR). Patient survival was higher in the captopril compared with the placebo group, but this was also not statistically significant (p = 0.09). In study subjects who received the study drug for more than 2 months, the 1-year calculated GFRs were 92 mL/min and 80 mL/min, for the captopril and placebo groups, respectively (p = 0.1). There was no adverse effect on hematologic outcome. Conclusions: There is a trend in favor of captopril in mitigation of chronic renal failure after radiation-based HSCT.

  8. Epigenetic Regulation of Hematopoietic Stem Cells.

    PubMed

    Sharma, Shilpa; Gurudutta, Gangenahalli

    2016-05-30

    Hematopoietic stem cells are endowed with a distinct potential to bolster self-renewal and to generate progeny that differentiate into mature cells of myeloid and lymphoid lineages. Both hematopoietic stem cells and mature cells have the same genome, but their gene expression is controlled by an additional layer of epigenetics such as DNA methylation and post-translational histone modifications, enabling each cell-type to acquire various forms and functions. Until recently, several studies have largely focussed on the transcription factors andniche factors for the understanding of the molecular mechanisms by which hematopoietic cells replicate and differentiate. Several lines of emerging evidence suggest that epigenetic modifications eventually result in a defined chromatin structure and an "individual" gene expression pattern, which play an essential role in the regulation of hematopoietic stem cell self-renewal and differentiation. Distinct epigenetic marks decide which sets of genes may be expressed and which genes are kept silent. Epigenetic mechanisms are interdependent and ensure lifelong production of blood and bone marrow, thereby contributing to stem cell homeostasis. The epigenetic analysis of hematopoiesis raises the exciting possibility that chromatin structure is dynamic enough for regulated expression of genes. Though controlled chromatin accessibility plays an essential role in maintaining blood homeostasis; mutations in chromatin impacts on the regulation of genes critical to the development of leukemia. In this review, we explored the contribution of epigenetic machinery which has implications for the ramification of molecular details of hematopoietic self-renewal for normal development and underlying events that potentially co-operate to induce leukemia.

  9. Plasticity of hematopoietic stem cells.

    PubMed

    Ogawa, Makio; LaRue, Amanda C; Mehrotra, Meenal

    2015-01-01

    Almost two decades ago, a number of cell culture and preclinical transplantation studies suggested the striking concept of the tissue-reconstituting ability of hematopoietic stem cells (HSCs). While this heralded an exciting time of radically new therapies for disorders of many organs and tissues, the concept was soon mired by controversy and remained dormant. This chapter provides a brief review of evidence for HSC plasticity including our findings based on single HSC transplantation in mouse. These studies strongly support the concept that HSCs are pluripotent and may be the source for the majority, if not all, of the cell types in our body. PMID:26590762

  10. Chronic variable stress activates hematopoietic stem cells

    PubMed Central

    Courties, Gabriel; Dutta, Partha; Iwamoto, Yoshiko; Zaltsman, Alex; von zur Muhlen, Constantin; Bode, Christoph; Fricchione, Gregory L.; Denninger, John; Lin, Charles P.; Vinegoni, Claudio; Libby, Peter; Swirski, Filip K.; Weissleder, Ralph; Nahrendorf, Matthias

    2014-01-01

    Exposure to psychosocial stress is a risk factor for many diseases, including atherosclerosis1,2. While incompletely understood, interaction between the psyche and the immune system provides one potential mechanism linking stress and disease inception and progression. Known crosstalk between the brain and immune system includes the hypothalamic–pituitary–adrenal axis, which centrally drives glucocorticoid production in the adrenal cortex, and the sympathetic–adrenal–medullary axis, which controls stress–induced catecholamine release in support of the fight–or–flight reflex3,4. It remains unknown however if chronic stress changes hematopoietic stem cell activity. Here we show that stress increases proliferation of these most primitive progenitors, giving rise to higher levels of disease–promoting inflammatory leukocytes. We found that chronic stress induced monocytosis and neutrophilia in humans. While investigating the source of leukocytosis in mice, we discovered that stress activates upstream hematopoietic stem cells. Sympathetic nerve fibers release surplus noradrenaline, which uses the β3 adrenergic receptor to signal bone marrow niche cells to decrease CXCL12 levels. Consequently, elevated hematopoietic stem cell proliferation increases output of neutrophils and inflammatory monocytes. When atherosclerosis–prone ApoE−/− mice encounter chronic stress, accelerated hematopoiesis promotes plaque features associated with vulnerable lesions that cause myocardial infarction and stroke in humans. PMID:24952646

  11. Epigenetic regulation of hematopoietic stem cell aging

    SciTech Connect

    Beerman, Isabel

    2014-12-10

    Aging is invariably associated with alterations of the hematopoietic stem cell (HSC) compartment, including loss of functional capacity, altered clonal composition, and changes in lineage contribution. Although accumulation of DNA damage occurs during HSC aging, it is unlikely such consistent aging phenotypes could be solely attributed to changes in DNA integrity. Another mechanism by which heritable traits could contribute to the changes in the functional potential of aged HSCs is through alterations in the epigenetic landscape of adult stem cells. Indeed, recent studies on hematopoietic stem cells have suggested that altered epigenetic profiles are associated with HSC aging and play a key role in modulating the functional potential of HSCs at different stages during ontogeny. Even small changes of the epigenetic landscape can lead to robustly altered expression patterns, either directly by loss of regulatory control or through indirect, additive effects, ultimately leading to transcriptional changes of the stem cells. Potential drivers of such changes in the epigenetic landscape of aged HSCs include proliferative history, DNA damage, and deregulation of key epigenetic enzymes and complexes. This review will focus largely on the two most characterized epigenetic marks – DNA methylation and histone modifications – but will also discuss the potential role of non-coding RNAs in regulating HSC function during aging.

  12. Parasitic Infections in Hematopoietic Stem Cell Transplantation.

    PubMed

    Jarque, Isidro; Salavert, Miguel; Pemán, Javier

    2016-01-01

    Parasitic infections are rarely documented in hematopoietic stem cell transplant recipients. However they may be responsible for fatal complications that are only diagnosed at autopsy. Increased awareness of the possibility of parasitic diseases both in autologous and allogeneic stem cell transplant patients is relevant not only for implementing preventive measures but also for performing an early diagnosis and starting appropriate therapy for these unrecognized but fatal infectious complications in hematopoietic transplant recipients. In this review, we will focus on parasitic diseases occurring in this population especially those with major clinical relevance including toxoplasmosis, American trypanosomiasis, leishmaniasis, malaria, and strongyloidiasis, among others, highlighting the diagnosis and management in hematopoietic transplant recipients. PMID:27413527

  13. Parasitic Infections in Hematopoietic Stem Cell Transplantation

    PubMed Central

    Jarque, Isidro; Salavert, Miguel; Pemán, Javier

    2016-01-01

    Parasitic infections are rarely documented in hematopoietic stem cell transplant recipients. However they may be responsible for fatal complications that are only diagnosed at autopsy. Increased awareness of the possibility of parasitic diseases both in autologous and allogeneic stem cell transplant patients is relevant not only for implementing preventive measures but also for performing an early diagnosis and starting appropriate therapy for these unrecognized but fatal infectious complications in hematopoietic transplant recipients. In this review, we will focus on parasitic diseases occurring in this population especially those with major clinical relevance including toxoplasmosis, American trypanosomiasis, leishmaniasis, malaria, and strongyloidiasis, among others, highlighting the diagnosis and management in hematopoietic transplant recipients. PMID:27413527

  14. Osteoblasts and Bone Marrow Mesenchymal Stromal Cells Control Hematopoietic Stem Cell Migration and Proliferation in 3D In Vitro Model

    PubMed Central

    de Barros, Ana Paula D. N.; Takiya, Christina M.; Garzoni, Luciana R.; Leal-Ferreira, Mona Lisa; Dutra, Hélio S.; Chiarini, Luciana B.; Meirelles, Maria Nazareth; Borojevic, Radovan; Rossi, Maria Isabel D.

    2010-01-01

    Background Migration, proliferation, and differentiation of hematopoietic stem cells (HSCs) are dependent upon a complex three-dimensional (3D) bone marrow microenvironment. Although osteoblasts control the HSC pool, the subendosteal niche is complex and its cellular composition and the role of each cell population in HSC fate have not been established. In vivo models are complex and involve subtle species-specific differences, while bidimensional cultures do not reflect the 3D tissue organization. The aim of this study was to investigate in vitro the role of human bone marrow–derived mesenchymal stromal cells (BMSC) and active osteoblasts in control of migration, lodgment, and proliferation of HSCs. Methodology/Principal Findings A complex mixed multicellular spheroid in vitro model was developed with human BMSC, undifferentiated or induced for one week into osteoblasts. A clear limit between the two stromal cells was established, and deposition of extracellular matrix proteins fibronectin, collagens I and IV, laminin, and osteopontin was similar to the observed in vivo. Noninduced BMSC cultured as spheroid expressed higher levels of mRNA for the chemokine CXCL12, and the growth factors Wnt5a and Kit ligand. Cord blood and bone marrow CD34+ cells moved in and out the spheroids, and some lodged at the interface of the two stromal cells. Myeloid colony-forming cells were maintained after seven days of coculture with mixed spheroids, and the frequency of cycling CD34+ cells was decreased. Conclusions/Significance Undifferentiated and one-week osteo-induced BMSC self-assembled in a 3D spheroid and formed a microenvironment that is informative for hematopoietic progenitor cells, allowing their lodgment and controlling their proliferation. PMID:20161704

  15. The role of CD44 in fetal and adult hematopoietic stem cell regulation.

    PubMed

    Cao, Huimin; Heazlewood, Shen Y; Williams, Brenda; Cardozo, Daniela; Nigro, Julie; Oteiza, Ana; Nilsson, Susan K

    2016-01-01

    Throughout development, hematopoietic stem cells migrate to specific microenvironments, where their fate is, in part, extrinsically controlled. CD44 standard as a member of the cell adhesion molecule family is extensively expressed within adult bone marrow and has been previously reported to play important roles in adult hematopoietic regulation via CD44 standard-ligand interactions. In this manuscript, CD44 expression and function are further assessed and characterized on both fetal and adult hematopoietic stem cells. Using a CD44(-/-) mouse model, conserved functional roles of CD44 are revealed throughout development. CD44 is critical in the maintenance of hematopoietic stem and progenitor pools, as well as in hematopoietic stem cell migration. CD44 expression on hematopoietic stem cells as well as other hematopoietic cells within the bone marrow microenvironment is important in the homing and lodgment of adult hematopoietic stem cells isolated from the bone/bone marrow interface. CD44 is also involved in fetal hematopoietic stem cell migration out of the liver, via a process involving stromal cell-derived factor-1α. The absence of CD44 in neonatal bone marrow has no impact on the size of the long-term reconstituting hematopoietic stem cell pool, but results in an enhanced long-term engraftment potential of hematopoietic stem cells.

  16. Development of a Reliable, Low-cost, Controlled Cooling Rate Instrument for the Cryopreservation of Hematopoietic Stem Cells

    PubMed Central

    Shu, Zhiquan; Kang, Xianjiang; Chen, Hsiuhung; Zhou, Xiaoming; Purtteman, Jester; Yadock, David; Heimfeld, Shelly; Gao, Dayong

    2011-01-01

    An optimal cooling rate is one of the critical factors influencing the survival of cells during cryopreservation. In this paper we describe a novel device, named the box-in-box, which was developed for optimal cryopreservation of human hematopoietic stem cells (HSC). This work presents the design of the device, a mathematical formulation describing the expected temperature histories of samples during the freezing process, along with actual experimental results of thermal profile tests. In experiments, when the box-in-box device was transferred from room temperature to a −80 °C freezer, a cooling rate of −1~−3.5 °C/min, which has been widely used for the cryopreservation of HSC, was achieved. In order to further evaluate this device, HSC cryopreservation was compared between the box-in-box device and a commercially available controlled rate freezer (CryoMed). The experimental data, including total cell population and CD34+ hematopoietic progenitor cell recovery rates, viability, and cell culture colony assays, showed that box-in-box worked as well as CryoMed instrument. There was no significant difference in either survival rate or the culture/colony outcome between the two devices. In conclusion, the box-in-box device can work as a cheap, durable, reliable and maintenance-free instrument for the cryopreservation of HSC. This concept of a box-in-box may also be adapted to other cooling rates to support cryopreservation in a wide variety of tissues and cells. PMID:19929459

  17. miR-382-5p Controls Hematopoietic Stem Cell Differentiation Through the Downregulation of MXD1.

    PubMed

    Zini, Roberta; Rossi, Chiara; Norfo, Ruggiero; Pennucci, Valentina; Barbieri, Greta; Ruberti, Samantha; Rontauroli, Sebastiano; Salati, Simona; Bianchi, Elisa; Manfredini, Rossella

    2016-10-01

    microRNAs are key regulators of gene expression that control stem cell fate by posttranscriptional downregulation of hundreds of target genes through seed pairing in their 3' untranslated region. In fact, miRNAs tightly regulate fundamental stem cell processes, like self-renewal, proliferation, and differentiation; therefore, miRNA deregulation may contribute to the development of solid tumors and hematological malignancies. miR-382-5p has been found to be upregulated in patients with myeloid neoplasms, but its role in normal hematopoiesis is still unknown. In this study, we demonstrated that miR-382-5p overexpression in CD34(+) hematopoietic stem/progenitor cells (HSPCs) leads to a significant decrease of megakaryocyte precursors coupled to increase of granulocyte ones. Furthermore, by means of a computational analysis using different prediction algorithms, we identified several putative mRNA targets of miR-382-5p that are downregulated upon miRNA overexpression (ie, FLI1, GATA2, MAF, MXD1, RUNX1, and SGK1). Among these, we validated MXD1 as real target of miR-382-5p by luciferase reporter assay. Finally, we showed that MXD1 knockdown mimics the effects of miR-382-5p overexpression on granulocyte and megakaryocyte differentiation of CD34(+) cells. Overall, our results demonstrated that miR-382-5p expression favors the expansion of granulocyte lineage and impairs megakaryocyte commitment through MXD1 downregulation. Therefore, our data showed for the first time that the miR-382-5p/MXD1 axis plays a critical role in myelopoiesis by affecting the lineage choice of CD34(+) HSPCs. PMID:27520398

  18. Management of Uterine Bleeding During Hematopoietic Stem Cell Transplantation

    PubMed Central

    Purisch, Stephanie E.; Shanis, Dana; Zerbe, Christa; Merideth, Melissa; Cuellar-Rodriguez, Jennifer; Stratton, Pamela

    2013-01-01

    BACKGROUND Hematopoietic stem cell transplant is an effective treatment strategy for a variety of hematologic disorders, but patients are at risk for dysfunctional coagulation and abnormal bleeding. Gynecologists are often consulted before transplant for management of abnormal uterine bleeding, which may be particularly challenging in this context. CASE A premenopausal woman with MonoMAC (a rare adult-onset immunodeficiency syndrome characterized by monocytopenia and Mycobacterium avium complex infections resulting from mutations in GATA2, a crucial gene in early hematopoiesis) presented with pancytopenia, evolving leukemia, and recent strokes, necessitating anticoagulation. During preparation for hematopoietic stem cell transplant, she experienced prolonged menorrhagia requiring transfusions. Surgical therapy was contraindicated, and medical management was successful only when combined with balloon tamponade. CONCLUSION Balloon tamponade may be a potentially life-saving adjunct to medical therapy for control of uterine hemorrhage before hematopoietic stem cell transplant. PMID:23344397

  19. Biology of hematopoietic stem cells and progenitors: implications for clinical application.

    PubMed

    Kondo, Motonari; Wagers, Amy J; Manz, Markus G; Prohaska, Susan S; Scherer, David C; Beilhack, Georg F; Shizuru, Judith A; Weissman, Irving L

    2003-01-01

    Stem cell biology is scientifically, clinically, and politically a current topic. The hematopoietic stem cell, the common ancestor of all types of blood cells, is one of the best-characterized stem cells in the body and the only stem cell that is clinically applied in the treatment of diseases such as breast cancer, leukemias, and congenital immunodeficiencies. Multicolor cell sorting enables the purification not only of hematopoietic stem cells, but also of their downstream progenitors such as common lymphoid progenitors and common myeloid progenitors. Recent genetic approaches including gene chip technology have been used to elucidate the gene expression profile of hematopoietic stem cells and other progenitors. Although the mechanisms that control self-renewal and lineage commitment of hematopoietic stem cells are still ambiguous, recent rapid advances in understanding the biological nature of hematopoietic stem and progenitor cells have broadened the potential application of these cells in the treatment of diseases. PMID:12615892

  20. A randomized control trial of a psychosocial intervention for caregivers of allogeneic hematopoietic stem cell transplant patients: Effects on distress

    PubMed Central

    Laudenslager, Mark L.; Simoneau, Teri L.; Kilbourn, Kristin; Natvig, Crystal; Philips, Sam; Spradley, Janet; Benitez, Patrick; McSweeney, Peter; Mikulich-Gilbertson, Susan K.

    2015-01-01

    Caregivers of patients receiving allogeneic hematopoietic stem cell transplants (Allo-HSCT) serve a pivotal role in patient care but experience high stress, anxiety, and depression as a result. We theorized that a stress management adapted for Allo-HSCT caregivers would reduce distress compared to treatment as usual (TAU). From 267 consecutive caregivers of Allo-HSCT patients approached, 148 (mean=53.5 years, 75.7% female) were randomized to either psychosocial intervention (n=74) or TAU (n=74). Eight 1-on-1 stress management sessions delivered across the 100 day post-transplant period focused on understanding stress, changing role(s) as caregiver, cognitive behavioral stress management, pacing respiration, and identifying social support. Primary outcomes included perceived stress (psychological) and salivary cortisol awakening response (CAR) (physiological). Randomized groups were not statistically different at baseline. Mixed models analysis of covariance (intent-to-treat) showed that intervention was associated with significantly lower caregiver stress 3 months post-transplant (Mean=20.0, CI95=17.9-22.0) compared to TAU (Mean=23.0, CI95=21.0-25.0) with an effect size (ES) of 0.39 (p=0.039). Secondary psychological outcomes, including depression and anxiety, were significantly reduced with ESs of 0.46 and 0.66 respectively. Caregiver CAR did not differ from non-caregiving controls at baseline and was unchanged by intervention. Despite significant caregiving burden, this psychosocial intervention significantly mitigated distress in Allo-HSCT caregivers. PMID:25961767

  1. Distinct Stromal Cell Factor Combinations Can Separately Control Hematopoietic Stem Cell Survival, Proliferation, and Self-Renewal

    PubMed Central

    Wohrer, Stefan; Knapp, David J.H.F.; Copley, Michael R.; Benz, Claudia; Kent, David G.; Rowe, Keegan; Babovic, Sonja; Mader, Heidi; Oostendorp, Robert A.J.; Eaves, Connie J.

    2014-01-01

    Summary Hematopoietic stem cells (HSCs) are identified by their ability to sustain prolonged blood cell production in vivo, although recent evidence suggests that durable self-renewal (DSR) is shared by HSC subtypes with distinct self-perpetuating differentiation programs. Net expansions of DSR-HSCs occur in vivo, but molecularly defined conditions that support similar responses in vitro are lacking. We hypothesized that this might require a combination of factors that differentially promote HSC viability, proliferation, and self-renewal. We now demonstrate that HSC survival and maintenance of DSR potential are variably supported by different Steel factor (SF)-containing cocktails with similar HSC-mitogenic activities. In addition, stromal cells produce other factors, including nerve growth factor and collagen 1, that can antagonize the apoptosis of initially quiescent adult HSCs and, in combination with SF and interleukin-11, produce >15-fold net expansions of DSR-HSCs ex vivo within 7 days. These findings point to the molecular basis of HSC control and expansion. PMID:24910437

  2. Regulation of stem cells in the zebra fish hematopoietic system.

    PubMed

    Huang, H-T; Zon, L I

    2008-01-01

    Hematopoietic stem cells (HSCs) have been used extensively as a model for stem cell biology. Stem cells share the ability to self-renew and differentiate into multiple cell types, making them ideal candidates for tissue regeneration or replacement therapies. Current applications of stem cell technology are limited by our knowledge of the molecular mechanisms that control their proliferation and differentiation, and various model organisms have been used to fill these gaps. This chapter focuses on the contributions of the zebra fish model to our understanding of stem cell regulation within the hematopoietic system. Studies in zebra fish have been valuable for identifying new genetic and signaling factors that affect HSC formation and development with important implications for humans, and new advances in the zebra fish toolbox will allow other aspects of HSC behavior to be investigated as well, including migration, homing, and engraftment.

  3. Murine hematopoietic stem cell dormancy controlled by induction of a novel short form of PSF1 by histone deacetylase inhibitors

    SciTech Connect

    Han, Yinglu; Gong, Zhi-Yuan; Takakura, Nobuyuki

    2015-06-10

    Hematopoietic stem cells (HSCs) can survive long-term in a state of dormancy. Little is known about how histone deacetylase inhibitors (HDACi) affect HSC kinetics. Here, we use trichostatin A (TSA), a histone deacetylase inhibitor, to enforce histone acetylation and show that this suppresses cell cycle entry by dormant HSCs. Previously, we found that haploinsufficiency of PSF1, a DNA replication factor, led to attenuation of the bone marrow (BM) HSC pool size and lack of acute proliferation after 5-FU ablation. Because PSF1 protein is present in CD34{sup +} transiently amplifying HSCs but not in CD34{sup −} long-term reconstituting-HSCs which are resting in a dormant state, we analyzed the relationship between dormancy and PSF1 expression, and how a histone deacetylase inhibitor affects this. We found that CD34{sup +} HSCs produce long functional PSF1 (PSF1a) but CD34{sup −} HSCs produce a shorter possibly non-functional PSF1 (PSF1b, c, dominantly PSF1c). Using PSF1a-overexpressing NIH-3T3 cells in which the endogenous PSF1 promoter is suppressed, we found that TSA treatment promotes production of the shorter form of PSF1 possibly by inducing recruitment of E2F family factors upstream of the PSF1 transcription start site. Our data document one mechanism by which histone deacetylase inhibitors affect the dormancy of HSCs by regulating the DNA replication factor PSF1. - Highlights: • Hematopoetic stem cell dormancy is controlled by histone deacetylation inhibitors. • Dormancy of HSCs is associated with a shorter form of non-functional PSF1. • Histone deacetylase inhibitors suppress PSF1 promoter activity.

  4. Hematopoietic stem cell engineering at a crossroads.

    PubMed

    Rivière, Isabelle; Dunbar, Cynthia E; Sadelain, Michel

    2012-02-01

    The genetic engineering of hematopoietic stem cells is the basis for potentially treating a large array of hereditary and acquired diseases, and stands as the paradigm for stem cell engineering in general. Recent clinical reports support the formidable promise of this approach but also highlight the limitations of the technologies used to date, which have on occasion resulted in clonal expansion, myelodysplasia, or leukemogenesis. New research directions, predicated on improved vector designs, targeted gene delivery or the therapeutic use of pluripotent stem cells, herald the advent of safer and more effective hematopoietic stem cell therapies that may transform medical practice. In this review, we place these recent advances in perspective, emphasizing the solutions emerging from a wave of new technologies and highlighting the challenges that lie ahead.

  5. Hematopoietic stem cell engineering at a crossroads

    PubMed Central

    Rivière, Isabelle; Dunbar, Cynthia E.

    2012-01-01

    The genetic engineering of hematopoietic stem cells is the basis for potentially treating a large array of hereditary and acquired diseases, and stands as the paradigm for stem cell engineering in general. Recent clinical reports support the formidable promise of this approach but also highlight the limitations of the technologies used to date, which have on occasion resulted in clonal expansion, myelodysplasia, or leukemogenesis. New research directions, predicated on improved vector designs, targeted gene delivery or the therapeutic use of pluripotent stem cells, herald the advent of safer and more effective hematopoietic stem cell therapies that may transform medical practice. In this review, we place these recent advances in perspective, emphasizing the solutions emerging from a wave of new technologies and highlighting the challenges that lie ahead. PMID:22096239

  6. Hematopoietic stem cells burn fat to prevent exhaustion.

    PubMed

    Lallemand-Breitenbach, Valerie; de Thé, Hugues

    2012-10-01

    Ito et al. (2012) recently report in Nature Medicine that fatty acid oxidation (FAO) regulated by PPARδ controls asymmetric division in hematopoietic stem cells (HSCs). This metabolic mechanism prevents HSC exhaustion and is downstream of the promyelocytic leukemia protein PML, suggesting therapeutic implications for HSC function and disease.

  7. Signal, Transduction, and the Hematopoietic Stem Cell

    PubMed Central

    Louria-Hayon, Igal

    2014-01-01

    The hematopoietic stem cell (HSC) is a unique cell positioned highest in the hematopoietic hierarchical system. The HSC has the ability to stay in quiescence, to self-renew, or to differentiate and generate all lineages of blood cells. The path to be actualized is influenced by signals that derive from the cell’s microenvironment, which activate molecular pathways inside the cell. Signaling pathways are commonly organized through inducible protein–protein interactions, mediated by adaptor proteins that link activated receptors to cytoplasmic effectors. This review will focus on the signaling molecules and how they work in concert to determine the HSC’s fate. PMID:25386349

  8. Hematopoietic stem cell origin of connective tissues.

    PubMed

    Ogawa, Makio; Larue, Amanda C; Watson, Patricia M; Watson, Dennis K

    2010-07-01

    Connective tissue consists of "connective tissue proper," which is further divided into loose and dense (fibrous) connective tissues and "specialized connective tissues." Specialized connective tissues consist of blood, adipose tissue, cartilage, and bone. In both loose and dense connective tissues, the principal cellular element is fibroblasts. It has been generally believed that all cellular elements of connective tissue, including fibroblasts, adipocytes, chondrocytes, and bone cells, are generated solely by mesenchymal stem cells. Recently, a number of studies, including those from our laboratory based on transplantation of single hematopoietic stem cells, strongly suggested a hematopoietic stem cell origin of these adult mesenchymal tissues. This review summarizes the experimental evidence for this new paradigm and discusses its translational implications.

  9. Hematopoietic stem cell mobilization: updated conceptual renditions

    PubMed Central

    Bonig, H; Papayannopoulou, T

    2013-01-01

    Despite its specific clinical relevance, the field of hematopoietic stem cell mobilization has received broad attention, owing mainly to the belief that pharmacologic stem cell mobilization might provide clues as to how stem cells are retained in their natural environment, the bone marrow ‘niche’. Inherent to this knowledge is also the desire to optimally engineer stem cells to interact with their target niche (such as after transplantation), or to lure malignant stem cells out of their protective niches (in order to kill them), and in general to decipher the niche’s structural components and its organization. Whereas, with the exception of the recent addition of CXCR4 antagonists to the armamentarium for mobilization of patients refractory to granulocyte colony-stimulating factor alone, clinical stem cell mobilization has not changed significantly over the last decade or so, much effort has been made trying to explain the complex mechanism(s) by which hematopoietic stem and progenitor cells leave the marrow. This brief review will report some of the more recent advances about mobilization, with an attempt to reconcile some of the seemingly inconsistent data in mobilization and to interject some commonalities among different mobilization regimes. PMID:22951944

  10. Hematopoietic stem cell transplantation for HIV cure.

    PubMed

    Kuritzkes, Daniel R

    2016-02-01

    The apparent cure of an HIV-infected person following hematopoietic stem cell transplantation (HSCT) from an allogeneic donor homozygous for the ccr5Δ32 mutation has stimulated the search for strategies to eradicate HIV or to induce long-term remission without requiring ongoing antiretroviral therapy. A variety of approaches, including allogeneic HSCT from CCR5-deficient donors and autologous transplantation of genetically modified hematopoietic stem cells, are currently under investigation. This Review covers the experience with HSCT in HIV infection to date and provides a survey of ongoing work in the field. The challenges of developing HSCT for HIV cure in the context of safe, effective, and convenient once-daily antiretroviral therapy are also discussed.

  11. Critical role for NAD glycohydrolase in regulation of erythropoiesis by hematopoietic stem cells through control of intracellular NAD content.

    PubMed

    Nam, Tae-Sik; Park, Kwang-Hyun; Shawl, Asif Iqbal; Kim, Byung-Ju; Han, Myung-Kwan; Kim, Youngho; Moss, Joel; Kim, Uh-Hyun

    2014-06-01

    NAD glycohydrolases (NADases) catalyze the hydrolysis of NAD to ADP-ribose and nicotinamide. Although many members of the NADase family, including ADP-ribosyltransferases, have been cloned and characterized, the structure and function of NADases with pure hydrolytic activity remain to be elucidated. Here, we report the structural and functional characterization of a novel NADase from rabbit reticulocytes. The novel NADase is a glycosylated, glycosylphosphatidylinositol-anchored cell surface protein exclusively expressed in reticulocytes. shRNA-mediated knockdown of the NADase in bone marrow cells resulted in a reduction of erythroid colony formation and an increase in NAD level. Furthermore, treatment of bone marrow cells with NAD, nicotinamide, or nicotinamide riboside, which induce an increase in NAD content, resulted in a significant decrease in erythroid progenitors. These results indicate that the novel NADase may play a critical role in regulating erythropoiesis of hematopoietic stem cells by modulating intracellular NAD. PMID:24759100

  12. Proinflammatory signaling regulates hematopoietic stem cell emergence

    PubMed Central

    Espín-Palazón, Raquel; Stachura, David L.; Campbell, Clyde A.; García-Moreno, Diana; Cid, Natasha Del; Kim, Albert D.; Candel, Sergio; Meseguer, José; Mulero, Victoriano; Traver, David

    2014-01-01

    Summary Hematopoietic stem cells (HSCs) underlie the production of blood and immune cells for the lifetime of an organism. In vertebrate embryos, HSCs arise from the unique transdifferentiation of hemogenic endothelium comprising the floor of the dorsal aorta during a brief developmental window. To date, this process has not been replicated in vitro from pluripotent precursors, partly because the full complement of required signaling inputs remains to be determined. Here, we show that TNFR2 via TNFα activates the Notch and NF-κB signaling pathways to establish HSC fate, indicating a requirement for inflammatory signaling in HSC generation. We determine that primitive neutrophils are the major source of TNFα, assigning a role for transient innate immune cells in establishing the HSC program. These results demonstrate that proinflammatory signaling, in the absence of infection, is utilized by the developing embryo to generate the lineal precursors of the adult hematopoietic system. PMID:25416946

  13. Making sense of hematopoietic stem cell niches

    PubMed Central

    Boulais, Philip E.

    2015-01-01

    The hematopoietic stem cell (HSC) niche commonly refers to the pairing of hematopoietic and mesenchymal cell populations that regulate HSC self-renewal, differentiation, and proliferation. Anatomic localization of the niche is a dynamic unit from the developmental stage that allows proliferating HSCs to expand before they reach the bone marrow where they adopt a quiescent phenotype that protects their integrity and functions. Recent studies have sought to clarify the complexity behind the HSC niche by assessing the contributions of specific cell populations to HSC maintenance. In particular, perivascular microenvironments in the bone marrow confer distinct vascular niches that regulate HSC quiescence and the supply of lineage-committed progenitors. Here, we review recent data on the cellular constituents and molecular mechanisms involved in the communication between HSCs and putative niches. PMID:25762174

  14. Autologous Hematopoietic Stem Cell Transplantation for Multiple Myeloma without Cryopreservation

    PubMed Central

    Al-Anazi, Khalid Ahmed

    2012-01-01

    High-dose chemotherapy followed by autologous hematopoietic stem cell transplantation is considered the standard of care for multiple myeloma patients who are eligible for transplantation. The process of autografting comprises the following steps: control of the primary disease by using a certain induction therapeutic protocol, mobilization of stem cells, collection of mobilized stem cells by apheresis, cryopreservation of the apheresis product, administration of high-dose pretransplant conditioning therapy, and finally infusion of the cryopreserved stem cells after thawing. However, in cancer centers that treat patients with multiple myeloma and have transplantation capabilities but lack or are in the process of acquiring cryopreservation facilities, alternatively noncryopreserved autologous stem cell therapy has been performed with remarkable success as the pretransplant conditioning therapy is usually brief. PMID:22693672

  15. Lis1 regulates asymmetric division in hematopoietic stem cells and in leukemia

    PubMed Central

    Zimdahl, Bryan; Ito, Takahiro; Blevins, Allen; Bajaj, Jeevisha; Konuma, Takaaki; Weeks, Joi; Koechlein, Claire S.; Kwon, Hyog Young; Arami, Omead; Rizzieri, David; Broome, H. Elizabeth; Chuah, Charles; Oehler, Vivian G.; Sasik, Roman; Hardiman, Gary; Reya, Tannishtha

    2014-01-01

    Cell fate can be controlled through asymmetric division and segregation of protein determinants. But the regulation of this process in the hematopoietic system is poorly understood. Here we show that the dynein binding protein Lis1 (Pafah1b1) is critically required for blood formation and hematopoietic stem cell function. Conditional deletion of Lis1 in the hematopoietic system led to a severe bloodless phenotype, depletion of the stem cell pool and embryonic lethality. Further, the loss of Lis1 accelerated cell differentiation, in part through defects in spindle positioning and inheritance of cell fate determinants. Finally, deletion of Lis1 blocked propagation of myeloid leukemia and led to a marked improvement in animal survival, suggesting that Lis1 is also required for oncogenic growth. These data identify a key role for Lis1 in hematopoietic stem cells, and mark the directed control of asymmetric division as a critical regulator of normal and malignant hematopoietic development. PMID:24487275

  16. Slug deficiency enhances self-renewal of hematopoietic stem cells during hematopoietic regeneration.

    PubMed

    Sun, Yan; Shao, Lijian; Bai, Hao; Wang, Zack Z; Wu, Wen-Shu

    2010-03-01

    Both extrinsic and intrinsic mechanisms tightly govern hematopoietic stem cell (HSC) decisions of self-renewal and differentiation. However, transcription factors that can selectively regulate HSC self-renewal division after stress remain to be identified. Slug is an evolutionarily conserved zinc-finger transcription factor that is highly expressed in primitive hematopoietic cells and is critical for the radioprotection of these key cells. We studied the effect of Slug in the regulation of HSCs in Slug-deficient mice under normal and stress conditions using serial functional assays. Here, we show that Slug deficiency does not disturb hematopoiesis or alter HSC homeostasis and differentiation in bone marrow but increases the numbers of primitive hematopoietic cells in the extramedullary spleen site. Deletion of Slug enhances HSC repopulating potential but not its homing and differentiation ability. Furthermore, Slug deficiency increases HSC proliferation and repopulating potential in vivo after myelosuppression and accelerates HSC expansion during in vitro culture. Therefore, we propose that Slug is essential for controlling the transition of HSCs from relative quiescence under steady-state condition to rapid proliferation under stress conditions. Our data suggest that inhibition of Slug in HSCs may present a novel strategy for accelerating hematopoietic recovery, thus providing therapeutic benefits for patients after clinical myelosuppressive treatment.

  17. Hematopoietic specification from human pluripotent stem cells: current advances and challenges toward de novo generation of hematopoietic stem cells.

    PubMed

    Slukvin, Igor I

    2013-12-12

    Significant advances in cellular reprogramming technologies and hematopoietic differentiation from human pluripotent stem cells (hPSCs) have already enabled the routine production of multiple lineages of blood cells in vitro and opened novel opportunities to study hematopoietic development, model genetic blood diseases, and manufacture immunologically matched cells for transfusion and cancer immunotherapy. However, the generation of hematopoietic cells with robust and sustained multilineage engraftment has not been achieved. Here, we highlight the recent advances in understanding the molecular and cellular pathways leading to blood development from hPSCs and discuss potential approaches that can be taken to facilitate the development of technologies for de novo production of hematopoietic stem cells.

  18. Fancb deficiency impairs hematopoietic stem cell function.

    PubMed

    Du, Wei; Amarachintha, Surya; Erden, Ozlem; Wilson, Andrew; Meetei, Amom Ruhikanta; Andreassen, Paul R; Namekawa, Satoshi H; Pang, Qishen

    2015-01-01

    Fanconi anemia (FA) is a genetic disorder characterized by bone marrow failure, variable congenital malformations and a predisposition to malignancies. FANCB (also known as FAAP95), is the only X-linked FA gene discovered thus far. In the present study, we investigated hematopoiesis in adult Fancb deficient (Fancb(-/y)) mice and found that Fancb(-/y) mice have decreased hematopoietic stem cell (HSC) quiescence accompanied by reduced progenitor activity in vitro and reduced repopulating capacity in vivo. Like other FA mouse models previously reported, the hematopoietic system of Fancb(-/y) mice is hypersensitive to DNA cross-linking agent mitomycin C (MMC), which induces bone marrow failure in Fancb(-/y) mice. Furthermore, Fancb(-/y) BM exhibits slower recovery kinetics and less tolerance to myelotoxic stress induced by 5-fluorouracil than wild-type littermates. RNA-seq analysis reveals altered expression of genes involved in HSC function and cell cycle regulation in Fancb(-/y) HSC and progenitor cells. Thus, this Fancb(-/y) mouse model provides a novel approach for studying the critical role of the FA pathway not only in germ cell development but also in the maintenance of HSC function. PMID:26658157

  19. Cell cycle regulation of hematopoietic stem or progenitor cells.

    PubMed

    Hao, Sha; Chen, Chen; Cheng, Tao

    2016-05-01

    The highly regulated process of blood production is achieved through the hierarchical organization of hematopoietic stem cell (HSC) subsets and their progenies, which differ in self-renewal and differentiation potential. Genetic studies in mice have demonstrated that cell cycle is tightly controlled by the complex interplay between extrinsic cues and intrinsic regulatory pathways involved in HSC self-renewal and differentiation. Deregulation of these cellular programs may transform HSCs or hematopoietic progenitor cells (HPCs) into disease-initiating stem cells, and can result in hematopoietic malignancies such as leukemia. While previous studies have shown roles for some cell cycle regulators and related signaling pathways in HSCs and HPCs, a more complete picture regarding the molecular mechanisms underlying cell cycle regulation in HSCs or HPCs is lacking. Based on accumulated studies in this field, the present review introduces the basic components of the cell cycle machinery and discusses their major cellular networks that regulate the dormancy and cell cycle progression of HSCs. Knowledge on this topic would help researchers and clinicians to better understand the pathogenesis of relevant blood disorders and to develop new strategies for therapeutic manipulation of HSCs.

  20. p19INK4d Controls Hematopoietic Stem Cells in a Cell-Autonomous Manner during Genotoxic Stress and through the Microenvironment during Aging

    PubMed Central

    Hilpert, Morgane; Legrand, Céline; Bluteau, Dominique; Balayn, Natalie; Betems, Aline; Bluteau, Olivier; Villeval, Jean-Luc; Louache, Fawzia; Gonin, Patrick; Debili, Najet; Plo, Isabelle; Vainchenker, William; Gilles, Laure; Raslova, Hana

    2014-01-01

    Summary Hematopoietic stem cells (HSCs) are characterized by the capacity for self-renewal and the ability to reconstitute the entire hematopoietic compartment. Thrombopoietin maintains adult HSCs in a quiescent state through the induction of cell cycle inhibitors p57Kip2 and p19INK4d. Using the p19INK4d−/− mouse model, we investigated the role of p19INK4d in basal and stress-induced hematopoiesis. We demonstrate that p19INK4d is involved in the regulation of HSC quiescence by inhibition of the G0/G1 cell cycle transition. Under genotoxic stress conditions, the absence of p19INK4d in HSCs leads to accelerated cell cycle exit, accumulation of DNA double-strand breaks, and apoptosis when cells progress to the S/G2-M stages of the cell cycle. Moreover, p19INK4d controls the HSC microenvironment through negative regulation of megakaryopoiesis. Deletion of p19INK4d results in megakaryocyte hyperproliferation and increased transforming growth factor β1 secretion. This leads to fibrosis in the bone marrow and spleen, followed by loss of HSCs during aging. PMID:25458892

  1. Ex vivo expansion of hematopoietic stem cells.

    PubMed

    Xie, JingJing; Zhang, ChengCheng

    2015-09-01

    Ex vivo expansion of hematopoietic stem cells (HSCs) would benefit clinical applications in several aspects, to improve patient survival, utilize cord blood stem cells for adult applications, and selectively propagate stem cell populations after genetic manipulation. In this review we summarize and discuss recent advances in the culture systems of mouse and human HSCs, which include stroma/HSC co-culture, continuous perfusion and fed-batch cultures, and those supplemented with extrinsic ligands, membrane transportable transcription factors, complement components, protein modification enzymes, metabolites, or small molecule chemicals. Some of the expansion systems have been tested in clinical trials. The optimal condition for ex vivo expansion of the primitive and functional human HSCs is still under development. An improved understanding of the mechanisms for HSC cell fate determination and the HSC culture characteristics will guide development of new strategies to overcome difficulties. In the future, development of a combination treatment regimen with agents that enhance self-renewal, block differentiation, and improve homing will be critical. Methods to enhance yields and lower cost during collection and processing should be employed. The employment of an efficient system for ex vivo expansion of HSCs will facilitate the further development of novel strategies for cell and gene therapies including genome editing.

  2. [The methods used to collect hematopoietic stem cells].

    PubMed

    Hequet, O

    2011-04-01

    The methods used to collect hematopoietic stem cells in their natural environment (bone marrow or cord blood) or in the peripheral blood after stimulation are well-defined and ruled both to ensure the donor security and perform a quality hematopoietic transplantation. Safety of the familial or non-familial donor must be ensured not only during the collection but also on a medium- or a long-term basis. The stem cells amount in a graft and its characterisation depend on the collection site of hematopoietic stem cells and on the technique used. The knowledge of conditions influencing these amounts allows optimising the hematopoietic stem cells collection while preventing conditions in which the donor safety could be decreased. The collection site also influences the collection of significant amounts of other blood cells. This knowledge conditions the preparation procedures of the graft in cell therapy units or the management of per- or post-transplantations complications in haematology units. Thus, hematopoietic transplantations concern not only hematological units but also the teams involved in various stages of donor selection, hematopoietic stem cells collection and graft preparation. In order to allow an appropriate care of both donor and recipient, a concomitant knowledge of all the stages involved in hematopoietic collection conditions, characterisation of collected cells, hematological diseases and conditioning must be brought to hematological, collection and cell therapy teams. PMID:21397542

  3. Gene-modified hematopoietic stem cells for cancer immunotherapy.

    PubMed

    Larson, Sarah; De Oliveira, Satiro N

    2014-01-01

    The rapid expansion of available cancer immunotherapies has resulted in favorable early outcomes. Specifically the use of gene therapy to introduce chimeric antigen receptors (CARs) and T cell receptors (TCRs) in T cells creates new immunotherapy options for patients. While showing early success with these approaches, limitations remain that can be overcome by the use of modification of hematopoietic stem cells (HSCs) to express CARs and TCRs. With modern gene therapy technologies, increased safety and control of the modification of the HSCs can be achieved through the use of a suicide gene.

  4. Hematopoietic stem cells: interplay with immunity

    PubMed Central

    Zhang, Cheng Cheng

    2012-01-01

    Ample evidence indicated that hematopoietic stem cells (HSCs) receive signaling from infection or other immune responses to adjust their differentiation and self-renewal. More recent reports also suggested that, while the bone marrow microenvironment or niche may provide the immune privilege for HSCs, HSCs can present surface immune inhibitors per se to suppress innate immunity and adaptive immunity to evade potential immune surveillance and attack. These findings support the hypothesis that HSCs are capable of interacting with the immune system as signal “receivers” and signal “providers”. On the one hand, HSCs are capable of directly sensing the signals from the immune system through their surface receptors to modulate their self-renewal and differentiation (“in” signaling); on the other hand, HSCs display surface immune inhibitory molecules to evade the attack from the innate and adaptive immune systems (“out” signaling). The continuing investigation of the interplay between HSCs and immunity may lead to the open-up of a new research filed – the immunology of stem cells. PMID:23226622

  5. Mesenchymal Stem Cells in Hematopoietic Stem Cell Transplantation

    PubMed Central

    Battiwalla, Minoo; Hematti, Peiman

    2009-01-01

    Mesenchymal stromal/stem cells (MSCs) of bone marrow (BM) origin not only provide the supportive microenvironmental niche for hematopoietic stem cells (HSCs) but are also capable of differentiating into various cell types of mesenchymal origin, such as bone, fat, and cartilage. In vitro and in vivo data suggest that MSCs have low inherent immunogenicity, modulate/suppress immunological responses through interactions with immune cells, and home to damaged tissues to participate in regeneration processes through their diverse biological properties. MSCs derived from BM are being evaluated for a wide range of clinical applications including disorders as diverse as myocardial infarction or newly diagnosed diabetes mellitus type-1. However, their use in HSC transplantation, either for enhancement of hematopoietic engraftment or for treatment/prevention of graft versus host disease, is far ahead of other indications. Ease of isolation and ex vivo expansion of MSCs, combined with their intriguing immunomodulatory properties, and their impressive record of safety in a wide variety of clinical trials make these cells promising candidates for further investigation. PMID:19728189

  6. Hematopoietic stem cell characterization and isolation.

    PubMed

    Rossi, Lara; Challen, Grant A; Sirin, Olga; Lin, Karen Kuan-Yin; Goodell, Margaret A

    2011-01-01

    Hematopoietic stem cells (HSCs) are defined by the capabilities of multi-lineage differentiation and long-term self-renewal. Both these characteristics contribute to maintain the homeostasis of the system and allow the restoration of hematopoiesis after insults, such as infections or therapeutic ablation. Reconstitution after lethal irradiation strictly depends on a third, fundamental property of HSCs: the capability to migrate under the influence of specific chemokines. Directed by a chemotactic compass, after transplant HSCs find their way to the bone marrow, where they eventually home and engraft. HSCs represent a rare population that primarily resides in the bone marrow with an estimated frequency of 0.01% of total nucleated cells. Separating HSCs from differentiated cells that reside in the bone marrow has been the focus of intense investigation for years. In this chapter, we will describe in detail the strategy routinely used by our laboratory to purify murine HSCs, by exploiting their antigenic phenotype (KSL), combined with the physiological capability to efficiently efflux the vital dye Hoechst 33342, generating the so-called Side Population, or SP.

  7. The regulation of hematopoietic stem cell populations

    PubMed Central

    Mayani, Hector

    2016-01-01

    Evidence presented over the last few years indicates that the hematopoietic stem cell (HSC) compartment comprises not just one but a number of different cell populations. Based on HSCs’ proliferation and engraftment potential, it has been suggested that there are two classes of HSC, with long- and short-term engraftment potential. HSC heterogeneity seems to involve differentiation capacities as well, since it has been shown that some HSC clones are able to give rise to both myeloid and lymphoid progeny, whereas others are lymphoid deficient. It has been recognized that HSC function depends on intrinsic cell regulators, which are modulated by external signals. Among the former, we can include transcription factors and non-coding RNAs as well as epigenetic modifiers. Among the latter, cytokines and extracellular matrix molecules have been implicated. Understanding the elements and mechanisms that regulate HSC populations is of significant relevance both in biological and in clinical terms, and research in this area still has to face several complex and exciting challenges. PMID:27408695

  8. Autologous hematopoietic stem cell transplantation for pediatric solid tumors.

    PubMed

    Hale, Gregory A

    2005-10-01

    While advances in the treatment of pediatric cancers have increased cure rates, children with metastatic or recurrent solid tumors have a dismal prognosis despite initial transient responses to therapy. Autologous hematopoietic stem cell transplantation takes advantage of the steep dose-response relationship observed with many chemotherapeutic agents. While clearly demonstrated to improve outcomes in patients with metastatic neuroblastoma, autologous hematopoietic stem cell transplantation is also frequently used to treat patients with other high-risk diseases such as Ewing sarcoma, osteosarcoma, rhabdomyosarcoma, Wilms' tumor, retinoblastoma, germ cell tumors, lymphomas and brain tumors. Most published experience consists of retrospective, single-arm studies; randomized clinical trials are lacking, due in part to the rarity of pediatric cancers treatable by autologous hematopoietic stem cell transplantation. These published literature demonstrate that autologous hematopoietic stem cell transplantation results in most cases in equivalent or superior outcomes when compared with conventional therapies. However, patient heterogeneity, patient selection, graft characteristics and processing and the varied conditioning regimens are additional factors to consider. Since the inception of autologous hematopoietic stem cell transplantation, regimen-related toxicity has markedly decreased and the vast majority of treatment failures are now due to disease recurrence. Prospective clinical trials are needed to identify specific high-risk patient populations, with randomization (when possible) to compare outcomes of patients undergoing autologous hematopoietic stem cell transplantation with those receiving standard therapy. In addition, investigators need to better define the role of autologous hematopoietic stem cell transplantation in these solid tumors, particularly in combination with other therapeutic modalities such as immunotherapy and novel cell processing methodologies.

  9. The effect of a multimodal intervention on treatment-related symptoms in patients undergoing hematopoietic stem cell transplantation: a randomized controlled trial.

    PubMed

    Jarden, Mary; Nelausen, Knud; Hovgaard, Doris; Boesen, Ellen; Adamsen, Lis

    2009-08-01

    Studies applying exercise, relaxation training, and psychoeducation have each indicated a positive impact on physical performance and/or psychological factors in patients diagnosed with cancer. We explored the longitudinal effect of a combination of these interventions on treatment-related symptoms in patients undergoing myeloablative allogeneic hematopoietic stem cell transplantation (allo-HSCT). Forty-two patients (18-65 years) were randomized either to an intervention or a control group. The intervention group received standard treatment and care, and a supervised four- to six-week structured exercise program, progressive relaxation, and psychoeducation during hospitalization, one hour per day for five days per week. The control group received standard treatment, care, and physiotherapy. A 24-item symptom assessment questionnaire was completed weekly during hospitalization, and at three and six months after allo-HCST. Through principal component analysis with varimax rotation, individual symptoms were grouped into five symptom clusters: mucositis, cognitive, gastrointestinal, affective, and functional symptom clusters. Then, a subsequent general estimate equation analysis revealed similar longitudinal patterns of intensity in all symptom clusters for intervention and control groups, but in the intervention group, there was an overall significant reduction (P<0.05) in symptom intensity over time for all clusters except the affective symptom cluster. This study provides beginning evidence for the efficacy of an exercise-based multimodal intervention in reducing the intensity of a spectrum of symptoms in this small sample of patients undergoing allo-HSCT.

  10. Unrelated hematopoietic stem cell registry and the role of the Hematopoietic Stem Cell Bank

    PubMed Central

    Beom, Su-Hee; Kim, Eung Jo; Kim, Miok

    2016-01-01

    Background The hematopoietic stem cell bank has been actively recruiting registrants since 1994. This study systematically reviews its operations and outcomes over the last 20 years. Methods Retrospective data on a total of 47,711 registrants were reviewed. Relevant data were processed using PASW Statistics for Windows, version 18.0. Results As of 2013, the Korean Network for Organ Sharing database contained 265,307 registrants. Of these, 49,037 (18%) registrants committed to hematopoietic cell donation from 1994 to 2013. Fifty-seven percent of the registrants were men, and 43% were women. The reasons for opting out of the registry included refusal to donate (70%), family refusal (28%), and others (2%). The donation willingness of registrants was significantly higher than those who refused to receive a mail to confirm their continued enrollment (χ2=6.103, P=0.013). The bank successfully coordinated a total of 512 donors among newly matched donors from 1995 to 2013, of which the bone marrow and peripheral blood stem cell accounted for 40.8% and 59.2% of the total donations, respectively. Conclusion Our recruitment activities focus on promoting voluntary registration and the importance of updating personal contact information. We expect that these data may be useful for diverse studies and demonstrate the positive impacts on the donation program. PMID:27382555

  11. ETS transcription factors in hematopoietic stem cell development.

    PubMed

    Ciau-Uitz, Aldo; Wang, Lu; Patient, Roger; Liu, Feng

    2013-12-01

    Hematopoietic stem cells (HSCs) are essential for the maintenance of the hematopoietic system. However, these cells cannot be maintained or created in vitro, and very little is known about their generation during embryogenesis. Many transcription factors and signaling pathways play essential roles at various stages of HSC development. Members of the ETS ('E twenty-six') family of transcription factors are recognized as key regulators within the gene regulatory networks governing hematopoiesis, including the ontogeny of HSCs. Remarkably, although all ETS transcription factors bind the same DNA consensus sequence and overlapping tissue expression is observed, individual ETS transcription factors play unique roles in the development of HSCs. Also, these transcription factors are recurrently used throughout development and their functions are context-dependent, increasing the challenge of studying their mechanism of action. Critically, ETS factors also play roles under pathological conditions, such as leukemia and, therefore, deciphering their mechanism of action will not only enhance our knowledge of normal hematopoiesis, but also inform protocols for their creation in vitro from pluripotent stem cells and the design of new therapeutic approaches for the treatment of malignant blood cell diseases. In this review, we summarize the key findings on the roles of ETS transcription factors in HSC development and discuss novel mechanisms by which they could control hematopoiesis.

  12. In search of human hematopoietic stem cell identity.

    PubMed

    Ivanovs, Andrejs; Medvinsky, Alexander

    2015-01-01

    Better insight into hematopoietic stem cell (HSC) development in the human embryo and fetus is crucial for translational research. In this issue of Cell Stem Cell, Prashad et al. (2014) describe a novel surface marker for human fetal liver HSCs, glycosylphosphatidylinositol-anchored protein GPI-80, that is functionally required for their self-renewal.

  13. Engineering antigen-specific T cells from genetically modified human hematopoietic stem cells in immunodeficient mice.

    PubMed

    Kitchen, Scott G; Bennett, Michael; Galić, Zoran; Kim, Joanne; Xu, Qing; Young, Alan; Lieberman, Alexis; Joseph, Aviva; Goldstein, Harris; Ng, Hwee; Yang, Otto; Zack, Jerome A

    2009-01-01

    There is a desperate need for effective therapies to fight chronic viral infections. The immune response is normally fastidious at controlling the majority of viral infections and a therapeutic strategy aimed at reestablishing immune control represents a potentially powerful approach towards treating persistent viral infections. We examined the potential of genetically programming human hematopoietic stem cells to generate mature CD8+ cytotoxic T lymphocytes that express a molecularly cloned, "transgenic" human anti-HIV T cell receptor (TCR). Anti-HIV TCR transduction of human hematopoietic stem cells directed the maturation of a large population of polyfunctional, HIV-specific CD8+ cells capable of recognizing and killing viral antigen-presenting cells. Thus, through this proof-of-concept we propose that genetic engineering of human hematopoietic stem cells will allow the tailoring of effector T cell responses to fight HIV infection or other diseases that are characterized by the loss of immune control.

  14. Leukemia cell microvesicles promote survival in umbilical cord blood hematopoietic stem cells

    PubMed Central

    Razmkhah, Farnaz; Soleimani, Masoud; Mehrabani, Davood; Karimi, Mohammad Hossein; Kafi-abad, Sedigheh Amini

    2015-01-01

    Microvesicles can transfer their contents, proteins and RNA, to target cells and thereby transform them. This may induce apoptosis or survival depending on cell origin and the target cell. In this study, we investigate the effect of leukemic cell microvesicles on umbilical cord blood hematopoietic stem cells to seek evidence of apoptosis or cell survival. Microvesicles were isolated from both healthy donor bone marrow samples and Jurkat cells by ultra-centrifugation and were added to hematopoietic stem cells sorted from umbilical cord blood samples by magnetic associated cell sorting (MACS) technique. After 7 days, cell count, cell viability, flow cytometry analysis for hematopoietic stem cell markers and qPCR for P53 gene expression were performed. The results showed higher cell number, higher cell viability rate and lower P53 gene expression in leukemia group in comparison with normal and control groups. Also, CD34 expression as the most important hematopoietic stem cell marker, did not change during the treatment and lineage differentiation was not observed. In conclusion, this study showed anti-apoptotic effect of leukemia cell derived microvesicles on umbilical cord blood hematopoietic stem cells. PMID:26862318

  15. Transfer of hematopoietic stem cells encoding autoantigen prevents autoimmune diabetes.

    PubMed

    Steptoe, Raymond J; Ritchie, Janine M; Harrison, Leonard C

    2003-05-01

    Bone marrow or hematopoietic stem cell transplantation is a potential treatment for autoimmune disease. The clinical application of this approach is, however, limited by the risks associated with allogeneic transplantation. In contrast, syngeneic transplantation would be safe and have wide clinical application. Because T cell tolerance can be induced by presenting antigen on resting antigen-presenting cells (APCs), we reasoned that hematopoietic stem cells engineered to express autoantigen in resting APCs could be used to prevent autoimmune disease. Proinsulin is a major autoantigen associated with pancreatic beta cell destruction in humans with type 1 diabetes (T1D) and in autoimmune NOD mice. Here, we demonstrate that syngeneic transplantation of hematopoietic stem cells encoding proinsulin transgenically targeted to APCs totally prevents the development of spontaneous autoimmune diabetes in NOD mice. This antigen-specific immunotherapeutic strategy could be applied to prevent T1D and other autoimmune diseases in humans. PMID:12727927

  16. Subclinical left ventricular dysfunction in children after hematopoietic stem cell transplantation for severe aplastic anemia: a case control study using speckle tracking echocardiography

    PubMed Central

    Kim, Beom Joon; Moon, Kyung Pil; Yoon, Ji-Hong; Lee, Eun-Jung; Kim, Seong Koo; Lee, Jae Wook; Chung, Nack Gyun; Cho, Bin; Kim, Hack Ki

    2016-01-01

    Purpose Severe aplastic anemia (SAA), a fatal disease, requires multiple transfusion, immunosuppressive therapy, and finally, hematopoietic stem cell transplantation (HSCT) as the definitive treatment. We hypothesized that iron overloading associated with multiple transfusions and HSCTrelated complications may adversely affect cardiac function. Left ventricular (LV) function was assessed in children after HSCT for SAA. Methods Forty-six consecutive patients with a median age of 9.8 years (range, 1.5-18 years), who received HSCT for SAA and who underwent comprehensive echocardiography before and after HSCT, were included in this study. The data of LV functional parameters obtained using conventional echocardiography, tissue Doppler imaging (TDI), and speckle-tracking echocardiography (STE) were collected from pre- and post-HSCT echocardiography. These data were compared to those of 40 age-matched normal controls. Results In patients, the LV ejection fraction, shortening fraction, end-diastolic dimension, mitral early diastolic E velocity, TDI mitral septal E' velocity, and STE LV longitudinal systolic strain rate (SSR) decreased significantly after HSCT. Compared to normal controls, patients had significantly lower post-HSCT early diastolic E velocity and E/A ratio. On STE, patients had significantly decreased LV deformational parameters including LV longitudinal systolic strain (SS), SSR, and diastolic SR (DSR), and circumferential SS and DSR. Serum ferritin levels showed weak but significant correlations (P<0.05) with LV longitudinal SS and SSR and circumferential SS and DSR. Conclusion Subclinical LV dysfunction is evident in patients after HSCT for SAA, and was associated with increased iron load. Serial monitoring of cardiac function is mandatory in this population. PMID:27186230

  17. Regulation of hematopoietic stem cells in the niche.

    PubMed

    Zhao, Meng; Li, LinHeng

    2015-12-01

    Hematopoiesis provides a suitable model for understanding adult stem cells and their niche. Hematopoietic stem cells (HSCs) continuously produce blood cells through orchestrated proliferation, self-renewal, and differentiation in the bone marrow (BM). Within the BM exists a highly organized microenvironment termed "niche" where stem cells reside and are maintained. HSC niche is the first evidence that a microenvironment contributes to protecting stem cell integrity and functionality in mammals. Although multiple models exist, recent progress has principally elucidated the cellular complexity of the HSC niche that maintains and regulates HSCs in BM. Here we introduce the development and summarize the achievements of HSC niche studies.

  18. The Hematopoietic Stem Cell Therapy for Exploration of Deep Space

    NASA Astrophysics Data System (ADS)

    Ohi, Seigo; Roach, Allana-Nicole; Ramsahai, Shweta; Kim, Bak C.; Fitzgerald, Wendy; Riley, Danny A.; Gonda, Steven R.

    2004-02-01

    Astronauts experience severe/invasive disorders caused by space environments. These include hematological and cardiac abnormalities, bone and muscle losses, immunodeficiency, neurological disorders and cancer. Exploiting the extraordinary plasticity of hematopoietic stem cells (HSCs), which differentiate not only to all types of blood cells, but also to various tissues, including muscle, bone, skin, liver, and neuronal cells, we advanced a hypothesis that some of the space-caused disorders might be amenable to hematopoietic stem cell therapy (HSCT) so as to maintain astronauts' homeostasis. If this were achievable, the HSCT could promote human exploration of deep space. Using mouse models of human anemia (β-thalassemia) and spaceflight (hindlimb suspension unloading system), we have obtained feasibility results of HSCT for space anemia, muscle loss, and immunodeficiency. For example, the β-thalassemic mice were successfully transplanted with isologous HSCs, resulting in chimerism of hemoglobin species and alleviation of the hemoglobinopathy. In the case of HSCT for muscle loss, β-galactosidase-marked HSCs, which were prepared from β-galactosidase-transgenic mice, were detected by the X-gal wholemount staining procedure in the hindlimbs of unloaded mice following transplantation. Histochemical and physical analyses indicated structural contribution of HSCs to the muscle. To investigate HSCT for immunodeficiency, β-galactosidase-transformed Escherichia coli was used as the reporter bacteria, and infected to control and the hindlimb suspended mice. Results of the X-gal stained tissues indicated that the HSCT could help eliminate the E. coli infection. In an effort to facilitate the HSCT in space, growth of HSCs has been optimized in the NASA Rotating Wall Vessel (RWV) culture systems, including Hydrodynamic Focusing Bioreactor (HFB).

  19. Does hematopoietic stem cell transplantation benefit infants with acute leukemia?

    PubMed Central

    Sison, Edward Allan R.; Brown, Patrick

    2015-01-01

    A 6-month-old girl was diagnosed with acute lymphoblastic leukemia (ALL). She has completed induction therapy and is currently in first complete remission (CR1). You are asked by your resident if hematopoietic stem cell transplantation (HSCT) would benefit infants with acute leukemia. PMID:24319238

  20. Expansion of human cord blood hematopoietic stem cells for transplantation.

    PubMed

    Chou, Song; Chu, Pat; Hwang, William; Lodish, Harvey

    2010-10-01

    A recent Science paper reported a purine derivative that expands human cord blood hematopoietic stem cells in culture (Boitano et al., 2010) by antagonizing the aryl hydrocarbon receptor. Major problems need to be overcome before ex vivo HSC expansion can be used clinically.

  1. Lentiviral Hematopoietic Stem Cell Gene Therapy in Inherited Metabolic Disorders

    PubMed Central

    2014-01-01

    Abstract After more than 20 years of development, lentiviral hematopoietic stem cell gene therapy has entered the stage of initial clinical implementation for immune deficiencies and storage disorders. This brief review summarizes the development and applications, focusing on the lysosomal enzyme deficiencies, especially Pompe disease. PMID:25184354

  2. Eicosanoid Regulation of Hematopoiesis and Hematopoietic Stem and Progenitor Trafficking

    PubMed Central

    Hoggatt, Jonathan; Pelus, Louis M.

    2011-01-01

    Hematopoietic stem cell (HSC) transplantation is a potentially curative treatment for numerous hematologic malignancies. The transplant procedure as performed today takes advantage of HSC trafficking; either egress of HSC from the bone marrow to the peripheral blood, i.e. mobilization, for acquisition of the hematopoietic graft, and/or trafficking of HSC from the peripheral blood to bone marrow niches in the recipient patient, i.e. HSC homing. Numerous studies, many of which are reviewed herein, have defined hematopoietic regulatory mechanisms mediated by the 20-carbon lipid family of eicosanoids, and recent evidence strongly supports a role for eicosanoids in regulation of hematopoietic trafficking, adding a new role whereby eicosanoids regulate hematopoiesis. Short-term exposure of HSC to the eicosanoid prostaglandin E2 (PGE2) increases CXCR4 receptor expression, migration and in vivo homing of HSC. In contrast, cannabinoids reduce hematopoietic progenitor cell (HPC) CXCR4 expression and induce HPC mobilization when administered in vivo. Leukotrienes have been shown to alter CD34+ cell adhesion, migration, and regulate HSC proliferation, suggesting that eicosanoids have both opposing and complimentary roles in the regulation of hematopoiesis. Since numerous FDA approved compounds regulate eicosanoid signaling or biosynthesis, the utility of eicosanoid based therapeutic strategies to improve hematopoietic transplantation can be rapidly evaluated. PMID:20882043

  3. Mouse gene targeting reveals an essential role of mTOR in hematopoietic stem cell engraftment and hematopoiesis.

    PubMed

    Guo, Fukun; Zhang, Shuangmin; Grogg, Matthew; Cancelas, Jose A; Varney, Melinda E; Starczynowski, Daniel T; Du, Wei; Yang, Jun-Qi; Liu, Wei; Thomas, George; Kozma, Sara; Pang, Qishen; Zheng, Yi

    2013-09-01

    mTOR integrates signals from nutrients and growth factors to control protein synthesis, cell growth, and survival. Although mTOR has been established as a therapeutic target in hematologic malignancies, its physiological role in regulating hematopoiesis remains unclear. Here we show that conditional gene targeting of mTOR causes bone marrow failure and defects in multi-lineage hematopoiesis including myelopoiesis, erythropoiesis, thrombopoiesis, and lymphopoiesis. mTOR deficiency results in loss of quiescence of hematopoietic stem cells, leading to a transient increase but long-term exhaustion and defective engraftment of hematopoietic stem cells in lethally irradiated recipient mice. Furthermore, ablation of mTOR causes increased apoptosis in lineage-committed blood cells but not hematopoietic stem cells, indicating a differentiation stage-specific function. These results demonstrate that mTOR is essential for hematopoietic stem cell engraftment and multi-lineage hematopoiesis.

  4. Mouse gene targeting reveals an essential role of mTOR in hematopoietic stem cell engraftment and hematopoiesis

    PubMed Central

    Guo, Fukun; Zhang, Shuangmin; Grogg, Matthew; Cancelas, Jose A.; Varney, Melinda E.; Starczynowski, Daniel T.; Du, Wei; Yang, Jun-Qi; Liu, Wei; Thomas, George; Kozma, Sara; Pang, Qishen; Zheng, Yi

    2013-01-01

    mTOR integrates signals from nutrients and growth factors to control protein synthesis, cell growth, and survival. Although mTOR has been established as a therapeutic target in hematologic malignancies, its physiological role in regulating hematopoiesis remains unclear. Here we show that conditional gene targeting of mTOR causes bone marrow failure and defects in multi-lineage hematopoiesis including myelopoiesis, erythropoiesis, thrombopoiesis, and lymphopoiesis. mTOR deficiency results in loss of quiescence of hematopoietic stem cells, leading to a transient increase but long-term exhaustion and defective engraftment of hematopoietic stem cells in lethally irradiated recipient mice. Furthermore, ablation of mTOR causes increased apoptosis in lineage-committed blood cells but not hematopoietic stem cells, indicating a differentiation stage-specific function. These results demonstrate that mTOR is essential for hematopoietic stem cell engraftment and multi-lineage hematopoiesis. PMID:23716557

  5. Cellular complexity of the bone marrow hematopoietic stem cell niche.

    PubMed

    Calvi, Laura M; Link, Daniel C

    2014-01-01

    The skeleton serves as the principal site for hematopoiesis in adult terrestrial vertebrates. The function of the hematopoietic system is to maintain homeostatic levels of all circulating blood cells, including myeloid cells, lymphoid cells, red blood cells, and platelets. This action requires the daily production of more than 500 billion blood cells. The vast majority of these cells are synthesized in the bone marrow, where they arise from a limited number of hematopoietic stem cells (HSCs) that are multipotent and capable of extensive self-renewal. These attributes of HSCs are best demonstrated by marrow transplantation, where even a single HSC can repopulate the entire hematopoietic system. HSCs are therefore adult stem cells capable of multilineage repopulation, poised between cell fate choices which include quiescence, self-renewal, differentiation, and apoptosis. While HSC fate choices are in part determined by multiple stochastic fluctuations of cell autonomous processes, according to the niche hypothesis, signals from the microenvironment are also likely to determine stem cell fate. While it had long been postulated that signals within the bone marrow could provide regulation of hematopoietic cells, it is only in the past decade that advances in flow cytometry and genetic models have allowed for a deeper understanding of the microenvironmental regulation of HSCs. In this review, we will highlight the cellular regulatory components of the HSC niche.

  6. Hematopoietic stem cells: can old cells learn new tricks?

    PubMed

    Ho, Anthony D; Punzel, Michael

    2003-05-01

    Since the establishment of cell lines derived from human embryonic stem (ES) cells, it has been speculated that out of such "raw material," we could some day produce all sorts of replacement parts for the human body. Human pluripotent stem cells can be isolated from embryonic, fetal, or adult tissues. Enormous self-renewal capacity and developmental potential are the characteristics of ES cells. Somatic stem cells, especially those derived from hematopoietic tissues, have also been reported to exhibit developmental potential heretofore not considered possible. The initial evidences for the plasticity potential of somatic stem cells were so encouraging that the opponents of ES cell research used them as arguments for restricting ES cell research. In the past months, however, critical issues have been raised challenging the validity and the interpretation of the initial data. Whereas hematopoietic stem-cell therapy has been a clinical reality for almost 40 years, there is still a long way to go in basic research before novel therapy strategies with stem cells as replacement for other organ systems can be established. Given the present status, we should keep all options open for research in ES cells and adult stem cells to appreciate the complexity of their differentiation pathways and the relative merits of various types of stem cells for regenerative medicine. PMID:12714568

  7. Mitochondrial metabolism in hematopoietic stem cells requires functional FOXO3

    PubMed Central

    Rimmelé, Pauline; Liang, Raymond; Bigarella, Carolina L; Kocabas, Fatih; Xie, Jingjing; Serasinghe, Madhavika N; Chipuk, Jerry; Sadek, Hesham; Zhang, Cheng Cheng; Ghaffari, Saghi

    2015-01-01

    Hematopoietic stem cells (HSC) are primarily dormant but have the potential to become highly active on demand to reconstitute blood. This requires a swift metabolic switch from glycolysis to mitochondrial oxidative phosphorylation. Maintenance of low levels of reactive oxygen species (ROS), a by-product of mitochondrial metabolism, is also necessary for sustaining HSC dormancy. Little is known about mechanisms that integrate energy metabolism with hematopoietic stem cell homeostasis. Here, we identify the transcription factor FOXO3 as a new regulator of metabolic adaptation of HSC. ROS are elevated in Foxo3−/− HSC that are defective in their activity. We show that Foxo3−/− HSC are impaired in mitochondrial metabolism independent of ROS levels. These defects are associated with altered expression of mitochondrial/metabolic genes in Foxo3−/− hematopoietic stem and progenitor cells (HSPC). We further show that defects of Foxo3−/− HSC long-term repopulation activity are independent of ROS or mTOR signaling. Our results point to FOXO3 as a potential node that couples mitochondrial metabolism with HSC homeostasis. These findings have critical implications for mechanisms that promote malignant transformation and aging of blood stem and progenitor cells. PMID:26209246

  8. Cell cycle measurement of mouse hematopoietic stem/progenitor cells.

    PubMed

    Chitteti, Brahmananda Reddy; Srour, Edward F

    2014-01-01

    Lifelong production of blood cells is sustained by hematopoietic stem cells (HSC). HSC reside in a mitotically quiescent state within specialized areas of the bone marrow (BM) microenvironment known as the hematopoietic niche (HN). HSC enter into active phases of cell cycle in response to intrinsic and extrinsic biological cues thereby undergoing differentiation or self-renewal divisions. Quiescent and mitotically active HSC have different metabolic states and different functional abilities such as engraftment and BM repopulating potential following their transplantation into conditioned recipients. Recent studies reveal that various cancers also utilize the same mechanisms of quiescence as normal stem cells and preserve the root of malignancy thus contributing to relapse and metastasis. Therefore, exploring the stem cell behavior and function in conjunction with their cell cycle status has significant clinical implications in HSC transplantation and in treating cancers. In this chapter, we describe methodologies to isolate or analytically measure the frequencies of quiescent (G0) and active (G1, S, and G2-M) hematopoietic progenitor and stem cells among murine BM cells.

  9. Hematopoietic Stem-Cell Transplantation for Advanced Systemic Mastocytosis

    PubMed Central

    Ustun, Celalettin; Reiter, Andreas; Scott, Bart L.; Nakamura, Ryotaro; Damaj, Gandhi; Kreil, Sebastian; Shanley, Ryan; Hogan, William J.; Perales, Miguel-Angel; Shore, Tsiporah; Baurmann, Herrad; Stuart, Robert; Gruhn, Bernd; Doubek, Michael; Hsu, Jack W.; Tholouli, Eleni; Gromke, Tanja; Godley, Lucy A.; Pagano, Livio; Gilman, Andrew; Wagner, Eva Maria; Shwayder, Tor; Bornhäuser, Martin; Papadopoulos, Esperanza B.; Böhm, Alexandra; Vercellotti, Gregory; Van Lint, Maria Teresa; Schmid, Christoph; Rabitsch, Werner; Pullarkat, Vinod; Legrand, Faezeh; Yakoub-agha, Ibrahim; Saber, Wael; Barrett, John; Hermine, Olivier; Hagglund, Hans; Sperr, Wolfgang R.; Popat, Uday; Alyea, Edwin P.; Devine, Steven; Deeg, H. Joachim; Weisdorf, Daniel; Akin, Cem; Valent, Peter

    2014-01-01

    Purpose Advanced systemic mastocytosis (SM), a fatal hematopoietic malignancy characterized by drug resistance, has no standard therapy. The effectiveness of allogeneic hematopoietic stem-cell transplantation (alloHCT) in SM remains unknown. Patients and Methods In a global effort to define the value of HCT in SM, 57 patients with the following subtypes of SM were evaluated: SM associated with clonal hematologic non–mast cell disorders (SM-AHNMD; n = 38), mast cell leukemia (MCL; n = 12), and aggressive SM (ASM; n = 7). Median age of patients was 46 years (range, 11 to 67 years). Donors were HLA-identical (n = 34), unrelated (n = 17), umbilical cord blood (n = 2), HLA-haploidentical (n = 1), or unknown (n = 3). Thirty-six patients received myeloablative conditioning (MAC), and 21 patients received reduced-intensity conditioning (RIC). Results Responses in SM were observed in 40 patients (70%), with complete remission in 16 patients (28%). Twelve patients (21%) had stable disease, and five patients (9%) had primary refractory disease. Overall survival (OS) at 3 years was 57% for all patients, 74% for patients with SM-AHNMD, 43% for those with ASM, and 17% for those with MCL. The strongest risk factor for poor OS was MCL. Survival was also lower in patients receiving RIC compared with MAC and in patients having progression compared with patients having stable disease or response. Conclusion AlloHCT was associated with long-term survival in patients with advanced SM. Although alloHCT may be considered as a viable and potentially curative therapeutic option for advanced SM in the meantime, given that this is a retrospective analysis with no control group, the definitive role of alloHCT will need to be determined by a prospective trial. PMID:25154823

  10. [Bone and Stem Cells. Bone marrow microenvironment niches for hematopoietic stem and progenitor cells].

    PubMed

    Nagasawa, Takashi

    2014-04-01

    In bone marrow, the special microenvironments known as niches control proliferation and differentiation of hematopoietic stem and progenitor cells (HSPCs) . However, the identity and functions of the niches has been a subject of longstanding debate. Although it has been reported previously that osteoblasts lining the bone surface act as HSC niches, their precise role in HSC maintenance remains unclear. On the other hand, the adipo-osteogenic progenitors with long processes, termed CXCL12-abundant reticular (CAR) cells, which preferentially express the chemokine CXCL12, stem cell factor (SCF) , leptin receptor and PDGF receptor-β were identified in the bone marrow. Recent studies revealed that endothelial cells of bone marrow vascular sinuses and CAR cells provided niches for HSCs. The identity and functions of various other candidate HSC niche cells, including nestin-expressing cells and Schwann cells would also be discussed in this review.

  11. Polycomb group proteins in hematopoietic stem cell aging and malignancies.

    PubMed

    Klauke, Karin; de Haan, Gerald

    2011-07-01

    Protection of the transcriptional "stemness" network is important to maintain a healthy hematopoietic stem cells (HSCs) compartment during the lifetime of the organism. Recent evidence shows that fundamental changes in the epigenetic status of HSCs might be one of the driving forces behind many age-related HSC changes and might pave the way for HSC malignant transformation and subsequent leukemia development, the incidence of which increases exponentially with age. Polycomb group (PcG) proteins are key epigenetic regulators of HSC cellular fate decisions and are often found to be misregulated in human hematopoietic malignancies. In this review, we speculate that PcG proteins balance HSC aging against the risk of developing cancer, since a disturbance in PcG genes and proteins affects several important cellular processes such as cell fate decisions, senescence, apoptosis, and DNA damage repair.

  12. Transcription factor-mediated reprogramming toward hematopoietic stem cells

    PubMed Central

    Ebina, Wataru; Rossi, Derrick J

    2015-01-01

    De novo generation of human hematopoietic stem cells (HSCs) from renewable cell types has been a long sought-after but elusive goal in regenerative medicine. Paralleling efforts to guide pluripotent stem cell differentiation by manipulating developmental cues, substantial progress has been made recently toward HSC generation via combinatorial transcription factor (TF)-mediated fate conversion, a paradigm established by Yamanaka's induction of pluripotency in somatic cells by mere four TFs. This review will integrate the recently reported strategies to directly convert a variety of starting cell types toward HSCs in the context of hematopoietic transcriptional regulation and discuss how these findings could be further developed toward the ultimate generation of therapeutic human HSCs. PMID:25712209

  13. Cord blood-derived CD34+ hematopoietic cells with low mitochondrial mass are enriched in hematopoietic repopulating stem cell function.

    PubMed

    Romero-Moya, Damia; Bueno, Clara; Montes, Rosa; Navarro-Montero, Oscar; Iborra, Francisco J; López, Luis Carlos; Martin, Miguel; Menendez, Pablo

    2013-07-01

    The homeostasis of the hematopoietic stem/progenitor cell pool relies on a fine-tuned balance between self-renewal, differentiation and proliferation. Recent studies have proposed that mitochondria regulate these processes. Although recent work has contributed to understanding the role of mitochondria during stem cell differentiation, it remains unclear whether the mitochondrial content/function affects human hematopoietic stem versus progenitor function. We found that mitochondrial mass correlates strongly with mitochondrial membrane potential in CD34(+) hematopoietic stem/progenitor cells. We, therefore, sorted cord blood CD34(+) cells on the basis of their mitochondrial mass and analyzed the in vitro homeostasis and clonogenic potential as well as the in vivo repopulating potential of CD34(+) cells with high (CD34(+) Mito(High)) versus low (CD34(+) Mito(Low)) mitochondrial mass. The CD34(+) Mito(Low) fraction contained 6-fold more CD34(+)CD38(-) primitive cells and was enriched in hematopoietic stem cell function, as demonstrated by its significantly greater hematopoietic reconstitution potential in immuno-deficient mice. In contrast, the CD34(+) Mito(High) fraction was more enriched in hematopoietic progenitor function with higher in vitro clonogenic capacity. In vitro differentiation of CD34(+) Mito(Low) cells was significantly delayed as compared to that of CD34(+) Mito(High) cells. The eventual complete differentiation of CD34(+) Mito(Low) cells, which coincided with a robust expansion of the CD34(-) differentiated progeny, was accompanied by mitochondrial adaptation, as shown by significant increases in ATP production and expression of the mitochondrial genes ND1 and COX2. In conclusion, cord blood CD34(+) cells with low levels of mitochondrial mass are enriched in hematopoietic repopulating stem cell function whereas high levels of mitochondrial mass identify hematopoietic progenitors. A mitochondrial response underlies hematopoietic stem/progenitor cell

  14. Cord blood-derived CD34+ hematopoietic cells with low mitochondrial mass are enriched in hematopoietic repopulating stem cell function

    PubMed Central

    Romero-Moya, Damia; Bueno, Clara; Montes, Rosa; Navarro-Montero, Oscar; Iborra, Francisco J.; López, Luis Carlos; Martin, Miguel; Menendez, Pablo

    2013-01-01

    The homeostasis of the hematopoietic stem/progenitor cell pool relies on a fine-tuned balance between self-renewal, differentiation and proliferation. Recent studies have proposed that mitochondria regulate these processes. Although recent work has contributed to understanding the role of mitochondria during stem cell differentiation, it remains unclear whether the mitochondrial content/function affects human hematopoietic stem versus progenitor function. We found that mitochondrial mass correlates strongly with mitochondrial membrane potential in CD34+ hematopoietic stem/progenitor cells. We, therefore, sorted cord blood CD34+ cells on the basis of their mitochondrial mass and analyzed the in vitro homeostasis and clonogenic potential as well as the in vivo repopulating potential of CD34+ cells with high (CD34+ MitoHigh) versus low (CD34+ MitoLow) mitochondrial mass. The CD34+ MitoLow fraction contained 6-fold more CD34+CD38− primitive cells and was enriched in hematopoietic stem cell function, as demonstrated by its significantly greater hematopoietic reconstitution potential in immuno-deficient mice. In contrast, the CD34+ MitoHigh fraction was more enriched in hematopoietic progenitor function with higher in vitro clonogenic capacity. In vitro differentiation of CD34+ MitoLow cells was significantly delayed as compared to that of CD34+ MitoHigh cells. The eventual complete differentiation of CD34+ MitoLow cells, which coincided with a robust expansion of the CD34− differentiated progeny, was accompanied by mitochondrial adaptation, as shown by significant increases in ATP production and expression of the mitochondrial genes ND1 and COX2. In conclusion, cord blood CD34+ cells with low levels of mitochondrial mass are enriched in hematopoietic repopulating stem cell function whereas high levels of mitochondrial mass identify hematopoietic progenitors. A mitochondrial response underlies hematopoietic stem/progenitor cell differentiation and proliferation of

  15. Accelerating immune reconstitution after hematopoietic stem cell transplantation

    PubMed Central

    Tzannou, Ifigeneia; Leen, Ann M

    2014-01-01

    Viral infections remain a significant cause of morbidity and mortality after hematopoietic stem cell transplantation. Pharmacologic agents are effective against some pathogens, but they are costly and can be associated with significant toxicities. Thus, many groups have investigated adoptive T-cell transfer as a means of hastening immune reconstitution and preventing and treating viral infections. This review discusses the immunotherapeutic strategies that have been explored. PMID:25505959

  16. Distinguishing autocrine and paracrine signals in hematopoietic stem cell culture using a biofunctional microcavity platform

    PubMed Central

    Müller, Eike; Wang, Weijia; Qiao, Wenlian; Bornhäuser, Martin; Zandstra, Peter W.; Werner, Carsten; Pompe, Tilo

    2016-01-01

    Homeostasis of hematopoietic stem cells (HSC) in the mammalian bone marrow stem cell niche is regulated by signals of the local microenvironment. Besides juxtacrine, endocrine and metabolic cues, paracrine and autocrine signals are involved in controlling quiescence, proliferation and differentiation of HSC with strong implications on expansion and differentiation ex vivo as well as in vivo transplantation. Towards this aim, a cell culture analysis on a polymer microcavity carrier platform was combined with a partial least square analysis of a mechanistic model of cell proliferation. We could demonstrate the discrimination of specific autocrine and paracrine signals from soluble factors as stimulating and inhibitory effectors in hematopoietic stem and progenitor cell culture. From that we hypothesize autocrine signals to be predominantly involved in maintaining the quiescent state of HSC in single-cell niches and advocate our analysis platform as an unprecedented option for untangling convoluted signaling mechanisms in complex cell systems being it of juxtacrine, paracrine or autocrine origin. PMID:27535453

  17. Issues in the manufacture and transplantation of genetically modified hematopoietic stem cells.

    PubMed

    Sadelain, M; Frassoni, F; Rivière, I

    2000-11-01

    The advent of safe and practical means to correct, enhance or protect blood cells at the genetic level offers tantalizing therapeutic perspectives. At present, gene delivery using a replication-defective retrovirus is the most efficient method to stably transduce hematopoietic cells. The successful adaptation of retroviral infection to hematopoietic stem cells requires optimized transduction conditions that maximize gene transfer while preserving the cells' potential for engraftment and longterm hematopoiesis. The successful establishment of effective transduction protocols hinges on retrovirus biology as well as stem cell and transplantation biology. Interestingly, the genetic approach could permit novel strategies to promote host repopulation by transplanted stem cells. However, regulated and predictable expression of any transgene integrated at random chromosomal locations cannot be taken for granted. Investigation of the control of transgene expression and prevention of vector silencing will become increasingly important.

  18. Distinguishing autocrine and paracrine signals in hematopoietic stem cell culture using a biofunctional microcavity platform

    NASA Astrophysics Data System (ADS)

    Müller, Eike; Wang, Weijia; Qiao, Wenlian; Bornhäuser, Martin; Zandstra, Peter W.; Werner, Carsten; Pompe, Tilo

    2016-08-01

    Homeostasis of hematopoietic stem cells (HSC) in the mammalian bone marrow stem cell niche is regulated by signals of the local microenvironment. Besides juxtacrine, endocrine and metabolic cues, paracrine and autocrine signals are involved in controlling quiescence, proliferation and differentiation of HSC with strong implications on expansion and differentiation ex vivo as well as in vivo transplantation. Towards this aim, a cell culture analysis on a polymer microcavity carrier platform was combined with a partial least square analysis of a mechanistic model of cell proliferation. We could demonstrate the discrimination of specific autocrine and paracrine signals from soluble factors as stimulating and inhibitory effectors in hematopoietic stem and progenitor cell culture. From that we hypothesize autocrine signals to be predominantly involved in maintaining the quiescent state of HSC in single-cell niches and advocate our analysis platform as an unprecedented option for untangling convoluted signaling mechanisms in complex cell systems being it of juxtacrine, paracrine or autocrine origin.

  19. Distinguishing autocrine and paracrine signals in hematopoietic stem cell culture using a biofunctional microcavity platform.

    PubMed

    Müller, Eike; Wang, Weijia; Qiao, Wenlian; Bornhäuser, Martin; Zandstra, Peter W; Werner, Carsten; Pompe, Tilo

    2016-01-01

    Homeostasis of hematopoietic stem cells (HSC) in the mammalian bone marrow stem cell niche is regulated by signals of the local microenvironment. Besides juxtacrine, endocrine and metabolic cues, paracrine and autocrine signals are involved in controlling quiescence, proliferation and differentiation of HSC with strong implications on expansion and differentiation ex vivo as well as in vivo transplantation. Towards this aim, a cell culture analysis on a polymer microcavity carrier platform was combined with a partial least square analysis of a mechanistic model of cell proliferation. We could demonstrate the discrimination of specific autocrine and paracrine signals from soluble factors as stimulating and inhibitory effectors in hematopoietic stem and progenitor cell culture. From that we hypothesize autocrine signals to be predominantly involved in maintaining the quiescent state of HSC in single-cell niches and advocate our analysis platform as an unprecedented option for untangling convoluted signaling mechanisms in complex cell systems being it of juxtacrine, paracrine or autocrine origin. PMID:27535453

  20. Role of hematopoietic stem cell transplantation in multiple myeloma.

    PubMed

    Garcia, Ima N

    2015-02-01

    High-dose therapy followed by autologous stem cell transplantation (ASCT) has been the standard frontline consolidative therapy for patients with newly diagnosed multiple myeloma (MM) for > 2 decades. This approach has resulted in higher complete response (CR) rates and increased event-free survival and overall survival (OS) compared with conventional chemotherapy. The emergence of novel agent-based therapy combined with ASCT has revolutionized MM therapy by improving the CR rates and OS, raising questions concerning the role of hematopoietic stem cell transplantation in this setting.

  1. Analysis of Cell Cycle Status of Murine Hematopoietic Stem Cells.

    PubMed

    Szade, Krzysztof; Bukowska-Strakova, Karolina; Zukowska, Monika; Jozkowicz, Alicja; Dulak, Józef

    2016-01-01

    Hematopoietic stem cells (HSC) act as paradigmatic tissue-specific adult stem cells. While they are quiescent in steady-state conditions, they enter the cell cycle and proliferate in stress conditions and during tissue regeneration. Therefore, analysis of cell cycle status of HSC is crucial for understanding their biology. However, due to low number of HSC in tissue and need to use many surface markers for their identification, analysis of their cycle status is technically complicated. Here, we presented our simple strategy to analyze cell cycle of strictly defined LKS CD48(-)CD150(+)CD34(-) HSC, together with Ki67 and DAPI staining by flow cytometry.

  2. Cryopreservation of hematopoietic stem/progenitor cells for therapeutic use.

    PubMed

    Watt, Suzanne M; Austin, Eric; Armitage, Sue

    2007-01-01

    To date, more than 25,000 hematopoietic transplants have been carried out across Europe for hematological disorders, the majority being for hematological malignancies. At least 70% of these are autologous transplants, the remaining 30% being allogeneic, which are sourced from related (70% of the allogeneic) or unrelated donors. Peripheral blood mobilized with granulocyte colony stimulating factor is the major source of stem cells for transplantation, being used in approx 95% of autologous transplants and in approx 65% of allogeneic transplants. Other cell sources used for transplantation are bone marrow and umbilical cord blood. One crucial advance in the treatment of these disorders has been the development of the ability to cryopreserve hematopoietic stem cells for future transplantation. For bone marrow and mobilized peripheral blood, the majority of cryopreserved harvests come from autologous collections that are stored prior to a planned infusion following further treatment of the patient or at the time of a subsequent relapse. Other autologous harvests are stored as backup or "rainy day" harvests, the former specifically being intended to rescue patients who develop graft failure following an allogeneic transplant or who may require this transplant at a later date. Allogeneic bone marrow and mobilized peripheral blood are less often cryopreserved than autologous harvests. This is in contrast to umbilical cord blood that may be banked for directed or sibling (related) hematopoietic stem cell transplants, for allogeneic unrelated donations, and for autologous donations. Allogeneic unrelated donations are of particular use for providing a source of hematopoietic stem cells for ethnic minorities, patients with rare human leukocyte antigen types, or where the patient urgently requires a transplant and cannot wait for the weeks to months required to prepare a bone marrow donor. There are currently more than 200,000 banked umbilical cord blood units registered with

  3. Genetic and Epigenetic Mechanisms That Maintain Hematopoietic Stem Cell Function

    PubMed Central

    Kosan, Christian; Godmann, Maren

    2016-01-01

    All hematopoiesis cells develop from multipotent progenitor cells. Hematopoietic stem cells (HSC) have the ability to develop into all blood lineages but also maintain their stemness. Different molecular mechanisms have been identified that are crucial for regulating quiescence and self-renewal to maintain the stem cell pool and for inducing proliferation and lineage differentiation. The stem cell niche provides the microenvironment to keep HSC in a quiescent state. Furthermore, several transcription factors and epigenetic modifiers are involved in this process. These create modifications that regulate the cell fate in a more or less reversible and dynamic way and contribute to HSC homeostasis. In addition, HSC respond in a unique way to DNA damage. These mechanisms also contribute to the regulation of HSC function and are essential to ensure viability after DNA damage. How HSC maintain their quiescent stage during the entire life is still matter of ongoing research. Here we will focus on the molecular mechanisms that regulate HSC function. PMID:26798358

  4. Transduction of Murine Hematopoietic Stem Cells with Tetracycline-regulated Lentiviral Vectors.

    PubMed

    Stahlhut, Maike; Schambach, Axel; Kustikova, Olga S

    2016-01-01

    Tetracycline-regulated integrating vectors allow pharmacologically controlled genetic modification of murine and human hematopoietic stem cells (HSCs). This approach combines the stable transgene insertion into a host genome with the opportunity for time- and dose-controlled reversible transgene expression in HSCs. Here, we describe the step-by-step protocol for transduction of murine stem-cell enriched populations of bone marrow cells, such as lineage negative cells (Lin(-)), with a lentiviral vector expressing the enhanced green fluorescent protein (EGFP) under the control of the tetracycline-regulated promoter. This chapter explains how to establish in vitro and in vivo systems to study transgene dose-dependent mechanisms affecting cell fate decisions of genetically modified hematopoietic cells. PMID:27317173

  5. Engineering the hematopoietic stem cell niche: Frontiers in biomaterial science

    PubMed Central

    Choi, Ji Sun; Mahadik, Bhushan P.; Harley, Brendan A. C.

    2016-01-01

    Hematopoietic stem cells (HSCs) play a crucial role in the generation of the body’s blood and immune cells. This process takes place primarily in the bone marrow in specialized ‘niche’ microenvironments, which provide signals responsible for maintaining a balance between HSC quiescence, self-renewal, and lineage specification required for life-long hematopoiesis. While our understanding of these signaling mechanisms continues to improve, our ability to engineer them in vitro for the expansion of clinically relevant HSC populations is still lacking. In this review, we focus on development of biomaterials-based culture platforms for in vitro study of interactions between HSCs and their local microenvironment. The tools and techniques used for both examining HSC-niche interactions as well as applying these findings towards controlled HSC expansion or directed differentiation in 2D and 3D platforms are discussed. These novel techniques hold the potential to push the existing boundaries of HSC cultures towards high-throughput, real-time, and single-cell level biomimetic approaches that enable a more nuanced understanding of HSC regulation and function. Their application in conjunction with innovative biomaterial platforms can pave the way for engineering artificial bone marrow niches for clinical applications as well as elucidating the pathology of blood-related cancers and disorders. PMID:26356030

  6. Hematopoietic stem cell transplantation for infantile osteopetrosis

    PubMed Central

    Fasth, Anders L.; Le Rademacher, Jennifer; He, Wensheng; Boelens, Jaap Jan; Horwitz, Edwin M.; Al-Seraihy, Amal; Ayas, Mouhab; Bonfim, Carmem M.; Boulad, Farid; Lund, Troy; Buchbinder, David K.; Kapoor, Neena; O’Brien, Tracey A.; Perez, Miguel A. Diaz; Veys, Paul A.; Eapen, Mary

    2015-01-01

    We report the international experience in outcomes after related and unrelated hematopoietic transplantation for infantile osteopetrosis in 193 patients. Thirty-four percent of transplants used grafts from HLA-matched siblings, 13% from HLA-mismatched relatives, 12% from HLA-matched, and 41% from HLA-mismatched unrelated donors. The median age at transplantation was 12 months. Busulfan and cyclophosphamide was the most common conditioning regimen. Long-term survival was higher after HLA-matched sibling compared to alternative donor transplantation. There were no differences in survival after HLA-mismatched related, HLA-matched unrelated, or mismatched unrelated donor transplantation. The 5- and 10-year probabilities of survival were 62% and 62% after HLA-matched sibling and 42% and 39% after alternative donor transplantation (P = .01 and P = .002, respectively). Graft failure was the most common cause of death, accounting for 50% of deaths after HLA-matched sibling and 43% of deaths after alternative donor transplantation. The day-28 incidence of neutrophil recovery was 66% after HLA-matched sibling and 61% after alternative donor transplantation (P = .49). The median age of surviving patients is 7 years. Of evaluable surviving patients, 70% are visually impaired; 10% have impaired hearing and gross motor delay. Nevertheless, 65% reported performance scores of 90 or 100, and in 17%, a score of 80 at last contact. Most survivors >5 years are attending mainstream or specialized schools. Rates of veno-occlusive disease and interstitial pneumonitis were high at 20%. Though allogeneic transplantation results in long-term survival with acceptable social function, strategies to lower graft failure and hepatic and pulmonary toxicity are urgently needed. PMID:26012570

  7. Hematopoietic stem cell transplantation: clinical use and perspectives.

    PubMed

    Barriga, Francisco; Ramírez, Pablo; Wietstruck, Angélica; Rojas, Nicolás

    2012-01-01

    Hematopoietic stem cell transplantation is the accepted therapy of choice for a variety of malignant and non-malignant diseases in children and adults. Initially developed as rescue therapy for a patient with cancer after high doses of chemotherapy and radiation as well as the correction of severe deficiencies in the hematopoietic system, it has evolved into an adoptive immune therapy for malignancies and autoimmune disorders. The procedure has helped to obtain key information about the bone marrow environment, the biology of hematopoietic stem cells and histocompatibility. The development of this new discipline has allowed numerous groups working around the world to cure patients of diseases previously considered lethal. Together with the ever growing list of volunteer donors and umbilical cord blood banks, this has resulted in life saving therapy for thousands of patients yearly. We present an overview of the procedure from its cradle to the most novel applications, as well as the results of the HSC transplant program developed at our institution since 1989. PMID:23283440

  8. Designer blood: creating hematopoietic lineages from embryonic stem cells

    PubMed Central

    Olsen, Abby L.; Stachura, David L.; Weiss, Mitchell J.

    2006-01-01

    Embryonic stem (ES) cells exhibit the remarkable capacity to become virtually any differentiated tissue upon appropriate manipulation in culture, a property that has been beneficial for studies of hematopoiesis. Until recently, the majority of this work used murine ES cells for basic research to elucidate fundamental properties of blood-cell development and establish methods to derive specific mature lineages. Now, the advent of human ES cells sets the stage for more applied pursuits to generate transplantable cells for treating blood disorders. Current efforts are directed toward adapting in vitro hematopoietic differentiation methods developed for murine ES cells to human lines, identifying the key interspecies differences in biologic properties of ES cells, and generating ES cell-derived hematopoietic stem cells that are competent to repopulate adult hosts. The ultimate medical goal is to create patient-specific and generic ES cell lines that can be expanded in vitro, genetically altered, and differentiated into cell types that can be used to treat hematopoietic diseases. PMID:16254136

  9. Sleep disruption impairs hematopoietic stem cell transplantation in mice

    PubMed Central

    Rolls, Asya; Pang, Wendy W.; Ibarra, Ingrid; Colas, Damien; Bonnavion, Patricia; Korin, Ben; Heller, H. Craig; Weissman, Irving L.; de Lecea, Luis

    2015-01-01

    Many of the factors affecting the success of hematopoietic cell transplantation are still unknown. Here we show in mice that donor’s sleep deprivation reduces the ability of its hematopoietic stem cells (HSCs) to engraft and reconstitute the blood and bone marrow of an irradiated recipient by more than 50%. We demonstrate that sleep deprivation downregulates the expression of microRNA (miR)-19b, a negative regulator of the suppressor of cytokine signaling (SOCS) genes, which inhibit HSC migration and homing. Accordingly, HSCs from sleep-deprived mice have higher levels of SOCS genes expression, lower migration capacity in vitro and reduced homing to the bone marrow in vivo. Recovery of sleep after sleep deprivation restored the reconstitution potential of the HSCs. Taken together, this study provides insights into cellular and molecular mechanisms underlying the effects of sleep deprivation on HSCs, emphasizing the potentially critical role of donor sleep in the success of bone marrow transplantation. PMID:26465715

  10. Hematopoietic stem cells, progenitor cells and leukemic stem cells in adult myeloproliferative neoplasms.

    PubMed

    Ng, Ashley P

    2013-05-01

    The understanding of myeloproliferative neoplasms has changed dramatically since Dameshek proposed his classification over 50 years ago. Our knowledge of the types of cells which constitute the hematopoietic system and of how they are regulated has also appreciated significantly over this time. This review relates what is currently known about the acquired genetic mutations associated with adult myeloproliferative neoplasms to how they lead to the hematopoietic perturbations of myeloproliferative disease. There is a particular focus on how stem and progenitor cell compartments are affected by BCR-ABL1 and JAK2V617F mutations, and the particular issue of resistance of leukemic stem cells to conventional and targeted therapies. PMID:23013358

  11. Hematopoietic Stem and Immune Cells in Chronic HIV Infection.

    PubMed

    Zhang, Jielin; Crumpacker, Clyde

    2015-01-01

    Hematopoietic stem cell (HSC) belongs to multipotent adult somatic stem cells. A single HSC can reconstitute the entire blood system via self-renewal, differentiation into all lineages of blood cells, and replenishment of cells lost due to attrition or disease in a person's lifetime. Although all blood and immune cells derive from HSC, immune cells, specifically immune memory cells, have the properties of HSC on self-renewal and differentiation into lineage effector cells responding to the invading pathogens. Moreover, the interplay between immune memory cell and viral pathogen determines the course of a viral infection. Here, we state our point of view on the role of blood stem and progenitor cell in chronic HIV infection, with a focus on memory CD4 T-cell in the context of HIV/AIDS eradication and cure. PMID:26300920

  12. CMV in Hematopoietic Stem Cell Transplantation

    PubMed Central

    de la Cámara, Rafael

    2016-01-01

    Due to its negative impact on the outcome of stem cell transplant (SCT) and solid organ transplant patients (SOT) CMV has been called “the troll of transplantation”. One of the greatest advances in the management of SCT has been the introduction of the preemptive strategy. Since its introduction, the incidence of the viremia, as expected, remains unchanged but there has been a marked decline in the incidence of early CMV disease. However, in spite of the advances in prevention of CMV disease, CMV is still today an important cause of morbidity and mortality. Late CMV disease is still occurring in a significant proportion of patients and the so-called indirect effects of CMV are causing significant morbidity and mortality. Fortunately there have been several advances in the development of new antivirals, adoptive immunotherapy and DNA-CMV vaccines that might transform the management of CMV in the near future. PMID:27413524

  13. CD133 is a modifier of hematopoietic progenitor frequencies but is dispensable for the maintenance of mouse hematopoietic stem cells

    PubMed Central

    Arndt, Kathrin; Grinenko, Tatyana; Mende, Nicole; Reichert, Doreen; Portz, Melanie; Ripich, Tatsiana; Carmeliet, Peter; Corbeil, Denis; Waskow, Claudia

    2013-01-01

    Pentatransmembrane glycoprotein prominin-1 (CD133) is expressed at the cell surface of multiple somatic stem cells, and it is widely used as a cell surface marker for the isolation and characterization of human hematopoietic stem cells (HSCs) and cancer stem cells. CD133 has been linked on a cell biological basis to stem cell-fate decisions in human HSCs and emerges as an important physiological regulator of stem cell maintenance and expansion. Its expression and physiological relevance in the murine hematopoietic system is nevertheless elusive. We show here that CD133 is expressed by bone marrow-resident murine HSCs and myeloid precursor cells with the developmental propensity to give rise to granulocytes and monocytes. However, CD133 is dispensable for the pool size and function of HSCs during steady-state hematopoiesis and after transplantation, demonstrating a substantial species difference between mouse and man. Blood cell numbers in the periphery are normal; however, CD133 appears to be a modifier for the development of growth-factor responsive myeloerythroid precursor cells in the bone marrow under steady state and mature red blood cells after hematopoietic stress. Taken together, these studies show that CD133 is not a critical regulator of hematopoietic stem cell function in mouse but that it modifies frequencies of growth-factor responsive hematopoietic progenitor cells during steady state and after myelotoxic stress in vivo. PMID:23509298

  14. CD166 regulates human and murine hematopoietic stem cells and the hematopoietic niche

    PubMed Central

    Chitteti, Brahmananda Reddy; Kobayashi, Michihiro; Cheng, Yinghua; Zhang, Huajia; Poteat, Bradley A.; Broxmeyer, Hal E.; Pelus, Louis M.; Hanenberg, Helmut; Zollman, Amy; Kamocka, Malgorzata M.; Carlesso, Nadia; Cardoso, Angelo A.; Kacena, Melissa A.

    2014-01-01

    We previously showed that immature CD166+ osteoblasts (OB) promote hematopoietic stem cell (HSC) function. Here, we demonstrate that CD166 is a functional HSC marker that identifies both murine and human long-term repopulating cells. Both murine LSKCD48−CD166+CD150+ and LSKCD48−CD166+CD150+CD9+ cells, as well as human Lin−CD34+CD38−CD49f+CD166+ cells sustained significantly higher levels of chimerism in primary and secondary recipients than CD166− cells. CD166−/− knockout (KO) LSK cells engrafted poorly in wild-type (WT) recipients and KO bone marrow cells failed to radioprotect lethally irradiated WT recipients. CD166−/− hosts supported short-term, but not long-term WT HSC engraftment, confirming that loss of CD166 is detrimental to the competence of the hematopoietic niche. CD166−/− mice were significantly more sensitive to hematopoietic stress. Marrow-homed transplanted WT hematopoietic cells lodged closer to the recipient endosteum than CD166−/− cells, suggesting that HSC-OB homophilic CD166 interactions are critical for HSC engraftment. STAT3 has 3 binding sites on the CD166 promoter and STAT3 inhibition reduced CD166 expression, suggesting that both CD166 and STAT3 may be functionally coupled and involved in HSC competence. These studies illustrate the significance of CD166 in the identification and engraftment of HSC and in HSC-niche interactions, and suggest that CD166 expression can be modulated to enhance HSC function. PMID:24740813

  15. Infusing CD19-directed T cells to augment disease control in patients undergoing autologous hematopoietic stem-cell transplantation for advanced B-lymphoid malignancies.

    PubMed

    Kebriaei, Partow; Huls, Helen; Jena, Bipulendu; Munsell, Mark; Jackson, Rineka; Lee, Dean A; Hackett, Perry B; Rondon, Gabriela; Shpall, Elizabeth; Champlin, Richard E; Cooper, Laurence J N

    2012-05-01

    Limited curative treatment options exist for patients with advanced B-lymphoid malignancies, and new therapeutic approaches are needed to augment the efficacy of hematopoietic stem-cell transplantation (HSCT). Cellular therapies, such as adoptive transfer of T cells that are being evaluated to target malignant disease, use mechanisms independent of chemo- and radiotherapy with nonoverlapping toxicities. Gene therapy is employed to generate tumor-specific T cells, as specificity can be redirected through enforced expression of a chimeric antigen receptor (CAR) to achieve antigen recognition based on the specificity of a monoclonal antibody. By combining cell and gene therapies, we have opened a new Phase I protocol at the MD Anderson Cancer Center (Houston, TX) to examine the safety and feasibility of administering autologous genetically modified T cells expressing a CD19-specific CAR (capable of signaling through chimeric CD28 and CD3-ζ) into patients with high-risk B-lymphoid malignancies undergoing autologous HSCT. The T cells are genetically modified by nonviral gene transfer of the Sleeping Beauty system and CAR(+) T cells selectively propagated in a CAR-dependent manner on designer artificial antigen-presenting cells. The results of this study will lay the foundation for future protocols including CAR(+) T-cell infusions derived from allogeneic sources. PMID:22107246

  16. Infusing CD19-Directed T Cells to Augment Disease Control in Patients Undergoing Autologous Hematopoietic Stem-Cell Transplantation for Advanced B-Lymphoid Malignancies

    PubMed Central

    Kebriaei, Partow; Huls, Helen; Jena, Bipulendu; Munsell, Mark; Jackson, Rineka; Lee, Dean A.; Hackett, Perry B.; Rondon, Gabriela; Shpall, Elizabeth; Champlin, Richard E.

    2012-01-01

    Abstract Limited curative treatment options exist for patients with advanced B-lymphoid malignancies, and new therapeutic approaches are needed to augment the efficacy of hematopoietic stem-cell transplantation (HSCT). Cellular therapies, such as adoptive transfer of T cells that are being evaluated to target malignant disease, use mechanisms independent of chemo- and radiotherapy with nonoverlapping toxicities. Gene therapy is employed to generate tumor-specific T cells, as specificity can be redirected through enforced expression of a chimeric antigen receptor (CAR) to achieve antigen recognition based on the specificity of a monoclonal antibody. By combining cell and gene therapies, we have opened a new Phase I protocol at the MD Anderson Cancer Center (Houston, TX) to examine the safety and feasibility of administering autologous genetically modified T cells expressing a CD19-specific CAR (capable of signaling through chimeric CD28 and CD3-ζ) into patients with high-risk B-lymphoid malignancies undergoing autologous HSCT. The T cells are genetically modified by nonviral gene transfer of the Sleeping Beauty system and CAR+ T cells selectively propagated in a CAR-dependent manner on designer artificial antigen-presenting cells. The results of this study will lay the foundation for future protocols including CAR+ T-cell infusions derived from allogeneic sources. PMID:22107246

  17. Autologous hematopoietic stem cell transplantation in classical Hodgkin's lymphoma

    PubMed Central

    Cortez, Afonso José Pereira; Dulley, Frederico Luiz; Saboya, Rosaura; Mendrone Júnior, Alfredo; Amigo Filho, Ulisses; Coracin, Fabio Luiz; Buccheri, Valéria; Linardi, Camila da Cruz Gouveia; Ruiz, Milton Artur; Chamone, Dalton de Alencar Fischer

    2011-01-01

    Background Hodgkin's lymphoma has high rates of cure, but in 15% to 20% of general patients and between 35% and 40% of those in advanced stages, the disease will progress or will relapse after initial treatment. For this group, hematopoietic stem cell transplantation is considered one option of salvage therapy. Objectives To evaluate a group of 106 patients with Hodgkin's lymphoma, who suffered relapse or who were refractory to treatment, submitted to autologous hematopoietic stem cell transplantation in a single transplant center. Methods A retrospective study was performed with data collected from patient charts. The analysis involved 106 classical Hodgkin's lymphoma patients who were consecutively submitted to high-dose chemotherapy followed by autologous transplants in a single institution from April 1993 to December 2006. Results The overall survival rates of this population at five and ten years were 86% and 70%, respectively. The disease-free survival was approximately 60% at five years. Four patients died of procedure-related causes but relapse of classical Hodgkin's lymphoma after transplant was the most frequent cause of death. Univariate analysis shows that sensitivity to pre-transplant treatment and hemoglobin < 10 g/dL at diagnosis had an impact on patient survival. Unlike other studies, B-type symptoms did not seem to affect overall survival. Lactic dehydrogenase and serum albumin concentrations analyzed at diagnosis did not influence patient survival either. Conclusion Autologous hematopoietic stem cell transplantation is an effective treatment strategy for early and late relapse in classical Hodgkin's lymphoma for cases that were responsive to pre-transplant chemotherapy. Refractory to treatment is a sign of worse prognosis. Additionally, a hemoglobin concentration below 10 g/dL at diagnosis of Hodgkin's lymphoma has a negative impact on the survival of patients after transplant. As far as we know this relationship has not been previously reported

  18. The Hematopoietic Stem Cell Therapy for Exploration of Space

    NASA Technical Reports Server (NTRS)

    Roach, Allana Nicole; Brezo, Jelena

    2002-01-01

    Astronauts experience severe/invasive disorders caused by space environments. These include hematological/cardiac abnormalities, bone and muscle losses, immunodeficiency, neurological disorders and cancer. While the cause of these symptoms are not yet fully delineated, one possible explanation could be the inhibition of hematopoietic stem cell (HSC) growth and hematopoiesis in space. HSCs differentiate into all types of blood cells, and growing evidence indicates that the HSCs also have the ability to transdifferentiate to various tissues, including muscle, skin, liver, neuronal cells and possibly bone. Therefore, a hypothesis was advanced in this laboratory that the hematopoietic stem cell-based therapy, herein called the hematopoietic stem cell therapy (HSCT), could mitigate some of the disorders described above. Due to the magnitude of this project our laboratory has subdivided it into 3 sections: a) HSCT for space anemia; b) HSCT for muscle and bone losses; and c) HSCT for immunodeficiency. Toward developing the HSCT protocol for space anemia, the HSC transplantation procedure was established using a mouse model of beta thalassemia. In addition, the NASA Rotating Wall Vessel (RWV) culture system was used to grow HSCs in space condition. To investigate the HSCT for muscle loss and bone loss, donor HSCs were genetically marked either by transfecting the beta-galactosidase-containing plasmid, pCMV.SPORT-beta-gal or by preparing from b-galactosidase transgenic mice. The transdifferentiation of HSCs to muscle is traced by the reporter gene expression in the hindlimb suspended mice with some positive outcome, as studied by the X-gal staining procedure. The possible structural contribution of HSCs against muscle loss is being investigated histochemically.

  19. [Parenteral nutrition in hematopoietic stem cell transplantation].

    PubMed

    Gómez Alvarez, M E

    2004-01-01

    Haematopoietic stem cell transplantation (HSCT) is a sophisticated procedure used in the treatment of solid tumors, haematological diseases and autoimmune disorders, which were characterized by an extremely poor prognosis only a few years earlier. Thousands of patients receive high-dose chemotherapy and radiotherapy around the world every year in order to treat these diseases. Therapy can induce aggressive changes associated with multiple organ failure, which is usually reversible, that can lead to special nutritional and metabolic conditions. Artificial nutrition, total parenteral nutrition in particular, is provided to patients undergoing HSCT to help minimize nutritional consequences of both conditioning regimens (mucositis, malabsorption, etc.) as well as complications resulting from the procedure (graft versus host disease, venoocclusive disease of the liver). This study reviews published guidelines for the use of parenteral nutrition in HSCT and includes important aspects for nutritional support in children, including controversy on potential benefits of special nutrients (glutamine, antioxidants, etc.) and furthermore discusses future trends. This paper also addresses the pharmacists role and the necessity for multidisciplinary teams to develop specific protocols.

  20. The Hematopoietic Stem Cell Therapy for Exploration of Deep Space

    NASA Technical Reports Server (NTRS)

    Ohi, Seigo; Roach, Allana-Nicole; Fitzgerald, Wendy; Riley, Danny A.; Gonda, Steven R.

    2003-01-01

    It is hypothesized that the hematopoietic stem cell therapy (HSCT) might countermeasure various space-caused disorders so as to maintain astronauts' homeostasis. If this were achievable, the HSCT could promote human exploration of deep space. Using animal models of disorders (hindlimb suspension unloading system and beta-thalassemia), the HSCT was tested for muscle loss, immunodeficiency and space anemia. The results indicate feasibility of HSCT for these disorders. To facilitate the HSCT in space, growth of HSCs were optimized in the NASA Rotating Wall Vessel (RWV) culture systems, including Hydrodynamic Focusing Bioreactor (HFB).

  1. [Varicella-zoster virus infection after hematopoietic stem cell transplantation].

    PubMed

    Akiyama, H; Inoue, T; Okoshi, Y; Mori, S; Ohashi, K; Maeda, Y; Sasaki, T; Okuyama, Y; Hiruma, K; Sakamaki, H

    2000-01-01

    Of 264 patients aged 15 years or more who underwent hematopoietic stem cell transplantation between 1989 and September 1998 at the Tokyo Metropolitan Komagome Hospital, 47 were infected by the varicella-zoster virus (VZV). In 2 patients, visceral disease preceded cutaneous dissemination. One of these patients exhibited gastrointestinal symptoms followed by disseminated skin rash 6 days later. In the other patient, epigastralgia developed and was followed by seizures secondary to meningitis; the appearance of a skin rash 5 days after these initial symptoms yielded the diagnosis. Early diagnosis and treatment of VZV infection are important, especially for patients who present with visceral symptoms suspected to be due to VZV. PMID:10695394

  2. Oxidized low-density lipoprotein induces hematopoietic stem cell senescence.

    PubMed

    Zhang, Xian-Ping; Zhang, Gui-Hai; Wang, Yu-Ying; Liu, Jun; Wei, Qiang; Xu, Chun-Yan; Wang, Jian-Wei; Wang, Ya-Ping

    2013-09-01

    We have investigated oxidized low-density lipoprotein (ox-LDL) induced senescence in hematopoietic stem cells (HCs). Mouse Sca-1+ HCs were separated and purified using the magnetic activated cell sorting technique. Ox-LDL induced significant senescence in HCs measured by SA-β-Gal staining, and reduced CFU-Mix colony-forming capacity, arresting cells at G0/G1 phase. In agreement with the cell cycle arrest, ox-LDL markedly reduced the expression of CDK4, cyclin D, and cyclin E. As possible contributing factors for cell senescence, ox-LDL also induced cellular oxidative stress and reduced telomerase activity.

  3. Hematopoietic stem cell niche maintenance during homeostasis and regeneration

    PubMed Central

    Mendelson, Avital; Frenette, Paul S

    2015-01-01

    The bone marrow niche has mystified scientists for many years, leading to widespread investigation to shed light into its molecular and cellular composition. Considerable efforts have been devoted toward uncovering the regulatory mechanisms of hematopoietic stem cell (HSC) niche maintenance. Recent advances in imaging and genetic manipulation of mouse models have allowed the identification of distinct vascular niches that have been shown to orchestrate the balance between quiescence, proliferation and regeneration of the bone marrow after injury. Here we highlight the recently discovered intrinsic mechanisms, microenvironmental interactions and communication with surrounding cells involved in HSC regulation, during homeostasis and in regeneration after injury and discuss their implications for regenerative therapy. PMID:25100529

  4. Total body irradiation selectively induces murine hematopoietic stem cell senescence.

    PubMed

    Wang, Yong; Schulte, Bradley A; LaRue, Amanda C; Ogawa, Makio; Zhou, Daohong

    2006-01-01

    Exposure to ionizing radiation (IR) and certain chemotherapeutic agents not only causes acute bone marrow (BM) suppression but also leads to long-term residual hematopoietic injury. This latter effect has been attributed to damage to hematopoietic stem cell (HSC) self-renewal. Using a mouse model, we investigated whether IR induces senescence in HSCs, as induction of HSC senescence can lead to the defect in HSC self-renewal. It was found that exposure of C57BL/6 mice to a sublethal dose (6.5 Gy) of total body irradiation (TBI) resulted in a sustained quantitative and qualitative reduction of LKS+ HSCs. In addition, LKS+ HSCs from irradiated mice exhibited an increased expression of the 2 commonly used biomarkers of cellular senescence, p16(Ink4a) and SA-beta-gal. In contrast, no such changes were observed in irradiated LKS- hematopoietic progenitor cells. These results provide the first direct evidence demonstrating that IR exposure can selectively induce HSC senescence. Of interest, the induction of HSC senescence was associated with a prolonged elevation of p21(Cip1/Waf1), p19(Arf), and p16(Ink4a) mRNA expression, while the expression of p27(Kip1) and p18(Ink4c) mRNA was not increased following TBI. This suggests that p21(Cip1/Waf1), p19(Arf), and p16(Ink4a) may play an important role in IR-induced senescence in HSCs.

  5. Autologous hematopoietic stem cell transplantation in autoimmune diseases.

    PubMed

    Annaloro, Claudio; Onida, Francesco; Lambertenghi Deliliers, Giorgio

    2009-12-01

    The term 'autoimmune diseases' encompasses a spectrum of diseases whose clinical manifestations and, possibly, biological features vary widely. The results of conventional treatment are considered unsatisfactory in aggressive forms, with subsets of patients having short life expectancies. Relying on wide experimental evidence and more feeble clinical data, some research groups have used autologous hematopoietic stem cell transplantation (HSCT) in the most disabling autoimmune diseases with the aim of resetting the patient's immune system. Immunoablative conditioning regimens are preferred over their myeloablative counterparts, and some form of in vivo and/or ex vivo T-cell depletion is generally adopted. Despite 15 years' experience, published controlled clinical trials are still lacking, with the evidence so far available coming from pilot studies and registry surveys. In multiple sclerosis, clinical improvement, or at least lasting disease stabilization, can be achieved in the majority of the patients; nevertheless, the worst results are observed in patients with progressive disease, where no benefit can be expected from conventional therapy. Concerning rheumatologic diseases, wide experience has been acquired in systemic sclerosis, with long-term improvements in cutaneous disease being frequently reported, although visceral involvement remains unchanged at best. Autografting has proved to be barely effective in rheumatoid arthritis and quite toxic in juvenile idiopathic arthritis, whereas it leads to clinical remission and the reversal of visceral impairment in the majority of patients with systemic lupus erythematosus. A promising indication is Crohn's disease, in which long-term endoscopic remission is frequently observed. Growing experience with autologous HCST in autoimmune diseases has progressively reduced concerns about transplant-related mortality and secondary myelodysplasia/leukemia. Therefore, a sustained complete remission seems to be within the

  6. Terminal differentiation induction as DNA damage response in hematopoietic stem cells by GADD45A.

    PubMed

    Wingert, Susanne; Rieger, Michael A

    2016-07-01

    Hematopoietic stem cells (HSCs) sustain lifelong blood cell regeneration by balancing their ability for self-renewal with their ability to differentiate into all blood cell types. To prevent organ exhaustion and malignant transformation, long-lived HSCs, in particular, must be protected from exogenous and endogenous stress, which cause severe DNA damage. When DNA is damaged, distinct DNA repair mechanisms and cell fate controls occur in adult HSCs compared with committed cells. Growth arrest and DNA damage-inducible 45 alpha (GADD45A) is known to coordinate a variety of cellular stress responses, indicating the molecule is an important stress mediator. So far, the function of GADD45A in hematopoietic stem and progenitor cells is controversial and appears highly dependent on the cell type and stress stimulus. Recent studies have analyzed its role in cell fate decision control of prospectively isolated HSCs and have revealed unexpected functions of GADD45A, as discussed here. The upregulation of GADD45A by DNA damage-causing conditions results in enhanced HSC differentiation, probably to efficiently eliminate aberrant HSCs from the system. These findings, in concert with a few studies on other stem cell systems, have led us to propose DNA damage-induced differentiation as a novel DNA damage response mechanism in stem cells that circumvents the fatal consequences of cumulative DNA damage in the stem cell compartment. PMID:27262218

  7. Hematopoietic Stem Cell Transplantation for Primary Immune Deficiency Disorders.

    PubMed

    Kapoor, Neena; Raj, Revathi

    2016-05-01

    Hematopoietic stem cell transplantation provides a curative option for children with primary immune deficiency disorders. Increased awareness and rapid diagnosis of these conditions has resulted in early referral and the chance to offer a curative option for affected children. Management of these children involves a multidisciplinary team including infectious disease specialists and intensivists. The use of reduced intensity conditioning chemotherapy, advances in detection and therapy of viral and fungal infections, optimal supportive care and techniques in stem cell processing, including T cell depletion has enabled doctors to transplant children with co-morbid conditions and no matched donors. Transplantation for these children has also brought in deep insights into the world of immunology and infectious diseases. PMID:26920397

  8. Melanoma Stem Cells and Metastasis: Mimicking Hematopoietic Cell Trafficking?

    PubMed Central

    Lee, Nayoung; Barthel, Steven R.; Schatton, Tobias

    2014-01-01

    Malignant melanoma is a highly metastatic cancer that bears responsibility for the majority of skin cancer-related deaths. Amidst the research efforts to better understand melanoma progression, there has been increasing evidence that hints at a role for a subpopulation of virulent cancer cells, termed malignant melanoma stem or initiating cells (MMICs), in metastasis formation. MMICs are characterized by their preferential ability to initiate and propagate tumor growth and their selective capacity for self-renewal and differentiation into less tumorigenic melanoma cells. The frequency of MMICs has been shown to correlate with poor clinical prognosis in melanoma. Additionally, MMICs are enriched among circulating tumor cells (CTCs) in the peripheral blood of cancer patients, suggesting that MMICs may be a critical player in the metastatic cascade. Although these links exist between MMICs and metastatic disease, the mechanisms by which MMICs may advance metastatic progression are only beginning to be elucidated. Recent studies have shown that MMICs express molecules critical for hematopoietic cell maintenance and trafficking, providing a possible explanation for how circulating MMICs could drive melanoma dissemination. We therefore propose that MMICs might fuel melanoma metastasis by exploiting homing mechanisms commonly utilized by hematopoietic cells. Here we review the biological properties of MMICs and the existing literature on their metastatic potential. We will discuss possible mechanisms by which MMICs might initiate metastases in the context of established knowledge of cancer stem cells (CSCs) in other cancers and of hematopoietic homing molecules, with a particular focus on selectins, integrins, chemokines, and chemokine receptors known to be expressed by melanoma cells. Biological understanding of how these molecules might be utilized by MMICs to propel the metastatic cascade could critically impact the development of more effective therapies for advanced

  9. Prdm16 is a physiologic regulator of hematopoietic stem cells

    PubMed Central

    Aguilo, Francesca; Avagyan, Serine; Labar, Amy; Sevilla, Ana; Lee, Dung-Fang; Kumar, Parameet; Lemischka, Ihor R.; Zhou, Betty Y.

    2011-01-01

    Fetal liver and adult bone marrow hematopoietic stem cells (HSCs) renew or differentiate into committed progenitors to generate all blood cells. PRDM16 is involved in human leukemic translocations and is expressed highly in some karyotypically normal acute myeloblastic leukemias. As many genes involved in leukemogenic fusions play a role in normal hematopoiesis, we analyzed the role of Prdm16 in the biology of HSCs using Prdm16-deficient mice. We show here that, within the hematopoietic system, Prdm16 is expressed very selectively in the earliest stem and progenitor compartments, and, consistent with this expression pattern, is critical for the establishment and maintenance of the HSC pool during development and after transplantation. Prdm16 deletion enhances apoptosis and cycling of HSCs. Expression analysis revealed that Prdm16 regulates a remarkable number of genes that, based on knockout models, both enhance and suppress HSC function, and affect quiescence, cell cycling, renewal, differentiation, and apoptosis to various extents. These data suggest that Prdm16 may be a critical node in a network that contains negative and positive feedback loops and integrates HSC renewal, quiescence, apoptosis, and differentiation. PMID:21343612

  10. Desensitization for solid organ and hematopoietic stem cell transplantation.

    PubMed

    Zachary, Andrea A; Leffell, Mary S

    2014-03-01

    Desensitization protocols are being used worldwide to enable kidney transplantation across immunologic barriers, i.e. antibody to donor HLA or ABO antigens, which were once thought to be absolute contraindications to transplantation. Desensitization protocols are also being applied to permit transplantation of HLA mismatched hematopoietic stem cells to patients with antibody to donor HLA, to enhance the opportunity for transplantation of non-renal organs, and to treat antibody-mediated rejection. Although desensitization for organ transplantation carries an increased risk of antibody-mediated rejection, ultimately these transplants extend and enhance the quality of life for solid organ recipients, and desensitization that permits transplantation of hematopoietic stem cells is life saving for patients with limited donor options. Complex patient factors and variability in treatment protocols have made it difficult to identify, precisely, the mechanisms underlying the downregulation of donor-specific antibodies. The mechanisms underlying desensitization may differ among the various protocols in use, although there are likely to be some common features. However, it is likely that desensitization achieves a sort of immune detente by first reducing the immunologic barrier and then by creating an environment in which an autoregulatory process restricts the immune response to the allograft.

  11. Preclinical modeling of hematopoietic stem cell transplantation - advantages and limitations.

    PubMed

    Stolfi, Jessica L; Pai, Chien-Chun S; Murphy, William J

    2016-05-01

    Hematopoietic stem cell transplantation, which was first successfully performed in the 1950s, remains a critical therapeutic modality for treatment of a diverse array of diseases, including a multitude of hematological malignancies, autoimmune disorders, amyloidosis and inherited genetic hematological disorders. Although great advances have been made in understanding and application of this therapy, significant complications still exist, warranting further investigation. Of critical importance, graft-versus-host disease (GVHD), in both acute and chronic forms, remains a major complication of hematopoietic stem cell transplantation, responsible for both the development of chronic illness and morbidity, as well as mortality. Use of an appropriate preclinical model may provide significant insight into the mechanistic pathways leading to the development and progression of graft-versus-host disease, as well as cancer in general. However, existing preclinical modeling systems exhibit significant limitations, and development of models that recapitulate the complex and comprehensive clinical scenario and provide a tool by which therapeutic intervention may be developed and assessed is of utmost importance. Here, we review the present status of the field of graft-versus-host disease research. We discuss and summarize the preclinical models currently in use, as well as their advantages and limitations.

  12. Functional screen identifies regulators of murine hematopoietic stem cell repopulation

    PubMed Central

    Holmfeldt, Per; Ganuza, Miguel; Marathe, Himangi; He, Bing; Hall, Trent; Kang, Guolian; Moen, Joseph; Pardieck, Jennifer; Saulsberry, Angelica C.; Cico, Alba; Gaut, Ludovic; McGoldrick, Daniel; Finkelstein, David; Tan, Kai

    2016-01-01

    Understanding the molecular regulation of hematopoietic stem and progenitor cell (HSPC) engraftment is paramount to improving transplant outcomes. To discover novel regulators of HSPC repopulation, we transplanted >1,300 mice with shRNA-transduced HSPCs within 24 h of isolation and transduction to focus on detecting genes regulating repopulation. We identified 17 regulators of HSPC repopulation: Arhgef5, Armcx1, Cadps2, Crispld1, Emcn, Foxa3, Fstl1, Glis2, Gprasp2, Gpr56, Myct1, Nbea, P2ry14, Smarca2, Sox4, Stat4, and Zfp521. Knockdown of each of these genes yielded a loss of function, except in the cases of Armcx1 and Gprasp2, whose loss enhanced hematopoietic stem cell (HSC) repopulation. The discovery of multiple genes regulating vesicular trafficking, cell surface receptor turnover, and secretion of extracellular matrix components suggests active cross talk between HSCs and the niche and that HSCs may actively condition the niche to promote engraftment. We validated that Foxa3 is required for HSC repopulating activity, as Foxa3−/− HSC fails to repopulate ablated hosts efficiently, implicating for the first time Foxa genes as regulators of HSPCs. We further show that Foxa3 likely regulates the HSC response to hematologic stress. Each gene discovered here offers a window into the novel processes that regulate stable HSPC engraftment into an ablated host. PMID:26880577

  13. Desensitization for solid organ and hematopoietic stem cell transplantation

    PubMed Central

    Zachary, Andrea A; Leffell, Mary S

    2014-01-01

    Desensitization protocols are being used worldwide to enable kidney transplantation across immunologic barriers, i.e. antibody to donor HLA or ABO antigens, which were once thought to be absolute contraindications to transplantation. Desensitization protocols are also being applied to permit transplantation of HLA mismatched hematopoietic stem cells to patients with antibody to donor HLA, to enhance the opportunity for transplantation of non-renal organs, and to treat antibody-mediated rejection. Although desensitization for organ transplantation carries an increased risk of antibody-mediated rejection, ultimately these transplants extend and enhance the quality of life for solid organ recipients, and desensitization that permits transplantation of hematopoietic stem cells is life saving for patients with limited donor options. Complex patient factors and variability in treatment protocols have made it difficult to identify, precisely, the mechanisms underlying the downregulation of donor-specific antibodies. The mechanisms underlying desensitization may differ among the various protocols in use, although there are likely to be some common features. However, it is likely that desensitization achieves a sort of immune detente by first reducing the immunologic barrier and then by creating an environment in which an autoregulatory process restricts the immune response to the allograft. PMID:24517434

  14. Mesenchymal stromal cells and hematopoietic stem cell transplantation.

    PubMed

    Bernardo, Maria Ester; Fibbe, Willem E

    2015-12-01

    Mesenchymal stromal cells (MSCs) comprise a heterogeneous population of multipotent cells that can be isolated from various human tissues and culture-expanded ex vivo for clinical use. Due to their immunoregulatory properties and their ability to secrete growth factors, MSCs play a key role in the regulation of hematopoiesis and in the modulation of immune responses against allo- and autoantigens. In light of these properties, MSCs have been employed in clinical trials in the context of hematopoietic stem cell transplantation (HSCT) to facilitate engraftment of hematopoietic stem cells (HSCs) and to prevent graft failure, as well as to treat steroid-resistant acute graft-versus-host disease (GvHD). The available clinical evidence derived from these studies indicates that MSC administration is safe. Moreover, promising preliminary results in terms of efficacy have been reported in some clinical trials, especially in the treatment of acute GvHD. In this review we critically discuss recent advances in MSC therapy by reporting on the most relevant studies in the field of HSCT.

  15. Exercise as an Adjuvant Therapy for Hematopoietic Stem Cell Mobilization

    PubMed Central

    Emmons, Russell; Niemiro, Grace M.; De Lisio, Michael

    2016-01-01

    Hematopoietic stem cell transplant (HSCT) using mobilized peripheral blood hematopoietic stem cells (HSPCs) is the only curative strategy for many patients suffering from hematological malignancies. HSPC collection protocols rely on pharmacological agents to mobilize HSPCs to peripheral blood. Limitations including variable donor responses and long dosing protocols merit further investigations into adjuvant therapies to enhance the efficiency of HSPCs collection. Exercise, a safe and feasible intervention in patients undergoing HSCT, has been previously shown to robustly stimulate HSPC mobilization from the bone marrow. Exercise-induced HSPC mobilization is transient limiting its current clinical potential. Thus, a deeper investigation of the mechanisms responsible for exercise-induced HSPC mobilization and the factors responsible for removal of HSPCs from circulation following exercise is warranted. The present review will describe current research on exercise and HSPC mobilization, outline the potential mechanisms responsible for exercise-induced HSPC mobilization, and highlight potential sites for HSPC homing following exercise. We also outline current barriers to the implementation of exercise as an adjuvant therapy for HSPC mobilization and suggest potential strategies to overcome these barriers. PMID:27123008

  16. SHIPi Enhances Autologous and Allogeneic Hematopoietic Stem Cell Transplantation

    PubMed Central

    Fernandes, Sandra; Brooks, Robert; Gumbleton, Matthew; Park, Mi-Young; Russo, Christopher M.; Howard, Kyle T.; Chisholm, John D.; Kerr, William G.

    2015-01-01

    Hematopoietic stem cell transplantation (HSCT) is a highly effective procedure enabling long-term survival for patients with hematologic malignancy or heritable defects. Although there has been a dramatic increase in the success rate of HSCT over the last two decades, HSCT can result in serious, sometimes untreatable disease due to toxic conditioning regimens and Graft-versus-Host-Disease. Studies utilizing germline knockout mice have discovered several candidate genes that could be targeted pharmacologically to create a more favorable environment for transplant success. SHIP1 deficiency permits improved engraftment of hematopoietic stem-progenitor cells (HS-PCs) and produces an immunosuppressive microenvironment ideal for incoming allogeneic grafts. The recent development of small molecule SHIP1 inhibitors has opened a different therapeutic approach by creating transient SHIP1-deficiency. Here we show that SHIP1 inhibition (SHIPi) mobilizes functional HS-PC, accelerates hematologic recovery, and enhances donor HS-PC engraftment in both allogeneic and autologous transplant settings. We also observed the expansion of key cell populations known to suppress host-reactive cells formed during engraftment. Therefore, SHIPi represents a non-toxic, new therapeutic that has significant potential to improve the success and safety of therapies that utilize autologous and allogeneic HSCT. PMID:26052545

  17. Polycomb-group proteins in hematopoietic stem cell regulation and hematopoietic neoplasms.

    PubMed

    Radulović, V; de Haan, G; Klauke, K

    2013-03-01

    The equilibrium between self-renewal and differentiation of hematopoietic stem cells is regulated by epigenetic mechanisms. In particular, Polycomb-group (PcG) proteins have been shown to be involved in this process by repressing genes involved in cell-cycle regulation and differentiation. PcGs are histone modifiers that reside in two multi-protein complexes: Polycomb Repressive Complex 1 and 2 (PRC1 and PRC2). The existence of multiple orthologs for each Polycomb gene allows the formation of a multitude of distinct PRC1 and PRC2 sub-complexes. Changes in the expression of individual PcG genes are likely to cause perturbations in the composition of the PRC, which affect PRC enzymatic activity and target selectivity. An interesting recent development is that aberrant expression of, and mutations in, PcG genes have been shown to occur in hematopoietic neoplasms, where they display both tumor-suppressor and oncogenic activities. We therefore comprehensively reviewed the latest research on the role of PcG genes in normal and malignant blood cell development. We conclude that future research to elucidate the compositional changes of the PRCs and methods to intervene in PRC assembly will be of great therapeutic relevance to combat hematological malignancies.

  18. Index sorting resolves heterogeneous murine hematopoietic stem cell populations.

    PubMed

    Schulte, Reiner; Wilson, Nicola K; Prick, Janine C M; Cossetti, Chiara; Maj, Michal K; Gottgens, Berthold; Kent, David G

    2015-09-01

    Recent advances in the cellular and molecular biology of single stem cells have uncovered significant heterogeneity in the functional properties of stem cell populations. This has prompted the development of approaches to study single cells in isolation, often performed using multiparameter flow cytometry. However, many stem cell populations are too rare to test all possible cell surface marker combinations, and virtually nothing is known about functional differences associated with varying intensities of such markers. Here we describe the use of index sorting for further resolution of the flow cytometric isolation of single murine hematopoietic stem cells (HSCs). Specifically, we associate single-cell functional assay outcomes with distinct cell surface marker expression intensities. High levels of both CD150 and EPCR associate with delayed kinetics of cell division and low levels of differentiation. Moreover, cells that do not form single HSC-derived clones appear in the 7AAD(dim) fraction, suggesting that even low levels of 7AAD staining are indicative of less healthy cell populations. These data indicate that when used in combination with single-cell functional assays, index sorting is a powerful tool for refining cell isolation strategies. This approach can be broadly applied to other single-cell systems, both to improve isolation and to acquire additional cell surface marker information.

  19. Ex vivo targeting of p21Cip1/Waf1 permits relative expansion of human hematopoietic stem cells.

    PubMed

    Stier, Sebastian; Cheng, Tao; Forkert, Randolf; Lutz, Christoph; Dombkowski, David M; Zhang, Jie Lin; Scadden, David T

    2003-08-15

    Relative quiescence is a defining characteristic of hematopoietic stem cells. Reasoning that inhibitory tone dominates control of stem cell cycling, we previously showed that mice engineered to be deficient in the cyclin-dependent kinase inhibitor, p21Cip1/Waf1 (p21), have an increased stem cell pool under homeostatic conditions. Since p21 was necessary to maintain stem cell quiescence and its absence sufficient to permit increased murine stem cell cycling, we tested whether reduction of p21 alone in human adult-derived stem cells could affect stem cell proliferation. We demonstrate here that interrupting p21 expression ex vivo resulted in expanded stem cell number and in vivo stem cell function compared with control, manipulated cells. Further, we demonstrate full multilineage reconstitution capability in cells where p21 expression was knocked down. Therefore, lifting the brake on cell proliferation by altering cell cycle checkpoints provides an alternative paradigm for increasing hematopoietic stem cell numbers. This approach may be useful for relative ex vivo human stem cell expansion. PMID:12702511

  20. Hematopoietic Stem Cell Injury Induced by Ionizing Radiation

    PubMed Central

    Shao, Lijian; Luo, Yi

    2014-01-01

    Abstract Significance: Exposure to ionizing radiation (IR) as the result of nuclear accidents or terrorist attacks is a significant threat and a major medical concern. Hematopoietic stem cell (HSC) injury is the primary cause of death after accidental or intentional exposure to a moderate or high dose of IR. Protecting HSCs from IR should be a primary goal in the development of novel medical countermeasures against radiation. Recent Advances: Significant progress has been made in our understanding of the mechanisms by which IR causes HSC damage. The mechanisms include (i) induction of HSC apoptosis via the p53-Puma pathway; (ii) promotion of HSC differentiation via the activation of the G-CSF/Stat3/BATF-dependent differentiation checkpoint; (iii) induction of HSC senescence via the ROS-p38 pathway; and (iv) damage to the HSC niche. Critical Issues: Induction of apoptosis in HSCs and hematopoietic progenitor cells is primarily responsible for IR-induced acute bone marrow (BM) injury. Long-term BM suppression caused by IR is mainly attributable to the induction of HSC senescence. However, the promotion of HSC differentiation and damage to the HSC niche can contribute to both the acute and long-term effects of IR on the hematopoietic system. Future Directions: In this review, we have summarized a number of recent findings that provide new insights into the mechanisms whereby IR damages HSCs. These findings will provide new opportunities for developing a mechanism-based strategy to prevent and/or mitigate IR-induced BM suppression. Antioxid. Redox Signal. 20, 1447–1462. PMID:24124731

  1. Parvovirus Infection Suppresses Long-Term Repopulating Hematopoietic Stem Cells

    PubMed Central

    Segovia, José C.; Guenechea, Guillermo; Gallego, Jesús M.; Almendral, José M.; Bueren, Juan A.

    2003-01-01

    The functional disturbance of self-renewing and multipotent hematopoietic stem cells (HSCs) in viral diseases is poorly understood. In this report, we have assessed the susceptibility of mouse HSCs to strain i of the autonomous parvovirus minute virus of mice (MVMi) in vitro and during persistent infection of an immunodeficient host. Purified 5FUr Lin− Sca-1+ primitive hematopoietic precursors were permissive for MVMi genome replication and the expression of viral gene products. The lymphoid and myeloid repopulating capacity of bone marrow (BM) cells was significantly impaired after in vitro infection, although the degree of functional effect proportionally decreased with the posttransplantation time. This indicated that MVMi targets the heterogeneous compartment of repopulating cells with differential affinity and suggests that the virus may persist in some primitive HSCs in the quiescent stage, killing those eventually recruited for proliferative activity. Immunodeficient SCID mice oronasally infected with MVMi were cured of the characteristic virus-induced lethal leukopenia by transplantation of immunocompetent BM grafts. However, two double-stranded viral DNA species, probably uncommon replicative intermediates, remained in the marrow of every transplanted mouse months after infectious virus clearance. Genetic analysis of the rescued mice showed that the infection ensured a stable engraftment of donor hematopoiesis by markedly depleting the pool of endogenous HSCs. The MVMi-induced suppression of HSC functions illustrates the accessibility of this compartment to infection during a natural viral hematological disease. These results may provide clues to understanding delayed hematopoietic syndromes associated with persistent viral infections and to prospective gene delivery to HSCs in vivo. PMID:12857918

  2. Distinct Functions of Different scl Isoforms in Zebrafish Definitive Hematopoietic Stem Cell Initiation and Maintenance

    NASA Astrophysics Data System (ADS)

    Lan, Yahui

    2011-07-01

    The establishment of entire blood system relies on the multi-potent hematopoietic stem cells (HSCs), thus identifying the molecular mechanism in HSC generation is of importance for not only complementing the fundamental knowledge in stem cell biology, but also providing insights to the regenerative therapies. Recent researches have documented the formation of nascent HSCs through a direct transition from ventral aortic endothelium, named as endothelial hematopoietic transition (EHT) process. However, the precise genetic program engaged in this process remains largely elusive. The transcription factor scl plays pivotal and conserved roles in embryonic and adult hematopoiesis from teleosts to mammals. Our lab have previously identified a new truncated scl isoform, scl-beta, which is indispensible for the specification of HSCs in the ventral wall of dorsal aorta (VDA), the zebrafish equivalent of mammalian fetal hematopoietic organ. Here we observe that, by combining time-lapse confocal imaging of transgenic zebrafish and genetic epistasis analysis, scl-beta is expressed in a subset of ventral aortic endothelial cells and critical for their forthcoming transformation to hemogenic endothelium; in contrast, runx1 is required downstream to govern the successful egress of the hemogenic endothelial cells to become naive HSCs. In addition, the traditional known full-length scl-alpha isoform is firstly evidenced to be required for the maintenance or survival of newly formed HSCs in VDA. Collectively our data has established the genetic hierarchy controlling discrete steps in the consecutive process of HSC formation from endothelial cells and further development in VDA.

  3. Potent agonists of a hematopoietic stem cell cytokine receptor, c-Mpl.

    PubMed

    Tarasova, Anna; Haylock, David N; Meagher, Laurence; Be, Cheang Ly; White, Jacinta; Nilsson, Susan K; Andrade, Jessica; Cartledge, Kellie; Winkler, David A

    2013-05-01

    Several growth factors feature prominently in the control of hematopoiesis. Thrombopoietin, a class I hematopoietic cytokine, plays critical roles in regulating hematopoietic stem cell numbers and also stimulates the production and differentiation of megakaryocytes, the bone marrow cells that ultimately produce platelets. Thrombopoietin interacts with the c-Mpl cell-surface receptor. Recently, several peptide and small-molecule agonists and antagonists of c-Mpl have been reported. We conducted a bioinformatics and molecular modeling study aimed at understanding the agonist activities of peptides that bind to c-Mpl, and developed new potent peptide agonists with low nanomolar activity. These agonists also show very high activity in human CD34(+) primary cell cultures, and doubled the mean blood platelet counts when injected into mice.

  4. The Hematopoietic Stem Cell Therapy for Exploration of Space

    NASA Astrophysics Data System (ADS)

    Ohi, S.

    Departments of Biochemistry &Molecular Biology, Genetics &Human Genetics, Pediatrics &Child Long-duration space missions require countermeasures against severe/invasive disorders in astronauts that are caused by space environments, such as hematological/cardiac abnormalities, bone/muscle losses, immunodeficiency, neurological disorders, and cancer. Some, if not all, of these disorders may be amenable to hematopoietic stem cell therapy and gene therapy. Growing evidence indicates that hematopoietic stem cells (HSCs) possess extraordinary plasticity to differentiate not only to all types of blood cells but also to various tissues, including bone, muscle, skin, liver and neuronal cells. Therefore, our working hypothesis is that the hematopoietic stem cell-based therapy, herein called as the hematopoietic stem cell therapy (HSCT), might provide countermeasure/prevention for hematological abnormalities, bone and muscle losses in space, thereby maintaining astronauts' homeostasis. Our expertise lies in recombinant adeno-associated virus (rAAV)-mediated gene therapy for the hemoglobinopathies, -thalassemia and sickle cell disease (Ohi S, Kim BC, J Pharm Sci 85: 274-281, 1996; Ohi S, et al. Grav Space Biol Bull 14: 43, 2000). As the requisite steps in this protocol, we established procedures for purification of HSCs from both mouse and human bone marrow in 1 G. Furthermore, we developed an easily harvestable, long-term liquid suspension culture system, which lasts more than one year, for growing/expanding HSCs without stromal cells. Human globin cDNAs/gene were efficiently expressed from the rAAVs in the mouse HSCs in culture. Additionally, the NASA Rotating Wall Vessel (RWV) culture system is being optimized for the HSC growth/expansion. Thus, using these technologies, the above hypothesis is being investigated by the ground-based experiments as follows: 1) -thalassemic mice (C57BL/6-Hbbth/Hbbth, Hbd-minor) are transplanted with normal isologous HSCs to correct the

  5. Bullous pemphigoid after allogeneic hematopoietic stem cell transplantation.

    PubMed

    Kato, Keisuke; Koike, Kazutoshi; Kobayashi, Chie; Iijima, Shigeruko; Hashimoto, Takashi; Tsuchida, Masahiro

    2015-06-01

    Bullous pemphigoid (BP) is an autoimmune skin disorder characterized by subepidermal blisters due to deposit of autoantibody against dermal basement membrane protein. It has been reported that BP can occur after allogeneic hematopoietic stem cell transplantation (HSCT). We describe a patient with BP having autoantibody against BP180 after unrelated-donor HSCT against T lymphoblastic leukemia. The patient was treated with steroid leading to complete resolution of BP, but T lymphoblastic leukemia progressed rapidly after steroid hormone treatment. Given that immunosuppressant may reduce graft-versus-tumor effect, immunomodulatory agents such as nicotinamide and tetracycline, erythromycin, and immunoglobulin may be appropriate as soon as typical blister lesions are seen after HSCT. PMID:26113316

  6. Hematopoietic stem cell transplantation for non-Hodgkin lymphoma.

    PubMed

    Bhatt, Vijaya Raj; Vose, Julie M

    2014-12-01

    Up-front rituximab-based chemotherapy has improved outcomes in non-Hodgkin lymphoma (NHL); refractory or relapsed NHL still accounts for approximately 18,000 deaths in the United States. Autologous hematopoietic stem cell transplantation (SCT) can improve survival in primary refractory or relapsed aggressive NHL and mantle cell lymphoma and in relapsed follicular or peripheral T-cell lymphoma. Autologous SCT as a consolidation therapy after first complete or partial remission in high-risk aggressive NHL, mantle cell lymphoma, and peripheral T-cell lymphoma may improve progression-free survival. Allogeneic SCT offers a lower relapse rate but a higher nonrelapse mortality resulting in overall survival similar to autologous SCT. PMID:25459180

  7. The use of hematopoietic stem cells in autoimmune diseases.

    PubMed

    Ben Nasr, Moufida; Bassi, Roberto; Usuelli, Vera; Valderrama-Vasquez, Alessandro; Tezza, Sara; D'Addio, Francesca; Fiorina, Paolo

    2016-06-01

    Hematopoietic stem cells (HSCs) have been shown recently to hold much promise in curing autoimmune diseases. Newly diagnosed Type 1 diabetes individuals have been successfully reverted to normoglycemia by administration of autologous HSCs in association with a nonmyeloablative regimen (antithymocyte globulin + cyclophasmide). Furthermore, recent trials reported positive results by using HSCs in treatment of systemic sclerosis, multiple sclerosis and rheumatoid arthritis as well. Early data suggested that HSCs possess immunological properties that may be harnessed to alleviate the symptoms of individuals with autoimmune disorders and possibly induce remission of autoimmune diseases. Mechanistically, HSCs may facilitate the generation of regulatory T cells, may inhibit the function of autoreactive T-cell function and may reshape the immune system. PMID:27165670

  8. Sexual Health in Hematopoietic Stem Cell Transplant Recipients

    PubMed Central

    Li, Zhuoyan; Mewawalla, Prerna; Stratton, Pamela; Yong, Agnes S.M.; Shaw, Bronwen E.; Hashmi, Shahrukh; Jagasia, Madan; Mohty, Mohamad; Majhail, Navneet S.; Savani, Bipin N.; Rovó, Alicia

    2016-01-01

    Hematopoietic stem cell transplantation (HSCT) plays a central role in patients with malignant and, increasingly, nonmalignant conditions. As the number of transplants increases and the survival rate improves, long-term complications are important to recognize and treat to maintain quality of life. Sexual dysfunction is a commonly described but relatively often underestimated complication after HSCT. Conditioning regimens, generalized or genital graft-versus-host disease, medications, and cardiovascular complications as well as psychosocial problems are known to contribute significantly to physical and psychological sexual dysfunction. Moreover, it is often a difficult topic for patients, their significant others, and health care providers to discuss. Early recognition and management of sexual dysfunction after HSCT can lead to improved quality of life and outcomes for patients and their partners. This review focuses on the risk factors for and treatment of sexual dysfunction after transplantation and provides guidance concerning how to approach and manage a patient with sexual dysfunction after HSCT. PMID:26372459

  9. Late cytomegalovirus infection after hematopoietic stem cell transplantation: case reports

    PubMed Central

    Pinheiro, Sâmara Grapiuna; de Matos, Sócrates Bezerra; Botura, Mônica Borges; Meyer, Roberto; Lima, Fernanda Washington de Mendonça

    2013-01-01

    Cytomegalovirus is related to high rates of morbidity and mortality after hematopoietic stem cell transplantation. This report highlights the importance of adequate monitoring and management of this infection. We report on two cases of patients with late subclinical cytomegalovirus infection. These patients were monitored for antigenemia by indirect immunofluorescence assay. Active cytomegalovirus infection is most common in the first three months after transplantation however the cases reported herein show the importance of monitoring for active infection after Day +100 post-transplantation. Early detection of active infection enables quick preemptive therapy. In conclusion, we emphasize that patients with risk factors for developing severe or late cytomegalovirus disease should be monitored for more than 100 post-transplant days as late active infection is a reality. PMID:24478611

  10. Hematopoietic stem cell transplantation in China: current status and prospects

    PubMed Central

    Huang, Xiao-Jun

    2011-01-01

    During the past four decades, a substantial progress has been made in the field of hematopoietic stem cell transplantation (HSCT). From July, 2007 to December, 2010, a transplant survey from 42 HSCT units indicates that the types of transplantation performed are related identical (43%), related mismatched/haploidentical (28%), unrelated donor matched (11%), unrelated donor mismatched (7%), umbilical cord blood (UCB, 2%) and autologous (9%). The distribution of disease entities being transplanted in allogeneic settings is acute myeloid leukemia (AML) (34%), acute lymphoblastic leukemia(ALL) (24%), chronic myeloid leukemia (CML) (20%), myelodysplastic syndrome (MDS) (8%), aplastic anemia (AA) (7%), Mediterranean anemia (MIA) (2%), non-Hodgkin's lymphoma (NHL) (3%), and other diseases (3%). Clinical data from Peking University Institute of Hematology and other transplant centers suggest that haploidentical transplantation has been a choice of the best alternative source of stem cells for individual patients without matched sibling donors. A modified donor lymphocyte infusion (DLI) approach can be safely used for prophylaxis and treatment of leukemia relapse in patients with advanced leukemia following mismatched transplant. The number of transplants from unrelated donor or related mismatched/haploidentical donor has increased significantly during recent years. Double UCBT is a promising strategy for the therapy of hematological disease. In addition, mesenchymal stem cell (MSC) transplantation may be a potential therapeutic approach for treating systemic lupus erythematosus (SLE). PMID:22432069

  11. The Hematopoietic Stem Cell Niche—Home for Friend and Foe?

    PubMed Central

    Krause, Daniela S.; Scadden, David T.; Preffer, Frederic I.

    2013-01-01

    The hematopoietic stem cell (HSC) niche is involved in the maintainance and regulation of quiescence, self-renewal and differentiation of hematopoietic stem cells and the fate of their progeny in mammals dealing with the daily stresses to the hematopoietic system. From the discovery that perturbations of the HSC niche can lead to hematopoietic disorders, we have now arrived at the prospect that the HSC niche may play a role in hematological malignancies and that this HSC niche may be a target for therapy. This review attempts to capture the discoveries of the last few years regarding the normal and malignant hematopoietic stem cell niche and possible ways to target this niche. PMID:23281119

  12. Hematopoietic Stem Cell Transplantation for CD3δ deficiency

    PubMed Central

    Marcus, Nufar; Takada, Hidetoshi; Law, Jason; Cowan, Morton J; Gil, Juana; Regueiro, Jose; Lopez de Sabando, Diego Plaza; Lopez-Granados, Eduardo; Dalal, Jignesh; Friedrich, Wilhelm; Manfred, Hoenig; Hanson, I. Celine; Grunebaum, Eyal; Shearer, William T; Roifman, Chaim M.

    2012-01-01

    Background CD3δ deficiency is a fatal form of severe combined immunodeficiency which can be cured by hematopoietic stem cell transplantation (HSCT). The presence of a thymus loaded with T cell progenitors in these patients may require special considerations in choosing the regimen of conditioning and the type of HSCT. Objectives To study the outcome of CD3δ deficiency using various modalities of stem cell transplantation. Methods We analyzed data on 13 patients with CD3δ deficiency who underwent HSCT in 7 centers. HSCT was performed using different sources of donor stem cells as well as various conditioning regimens. Results Two patients who received stem cells from matched related donors and survived, both needed substantial conditioning in order to engraft. Only one of six other patients who received a related mismatched donor (MMRD) transplant survived, two of them had no conditioning while the others received various combinations of conditioning regimens. Three other patients received stem cells from a matched unrelated donor (MUD), survived and enjoyed full immune reconstitution. Two other patients received unrelated cord blood without conditioning. One of them has had a partial but stable engraftment, while the other engrafted well but is only 12 months after HSCT. We also report here for the first time that patients with CD3δ deficiency can present with typical features of Omenn syndrome. Conclusions HSCT is a successful treatment for patients with CD3δ deficiency. The small number of patients in this report prevent definitive statements on the importance of survival factors, but several are suggested: 1) HLA matched donor transplants are associated with superior reconstitution and survival than mismatched donor transplants; 2) substantial conditioning appears necessary; 3) early diagnosis and absence of opportunistic infections. PMID:21757226

  13. Retroviral transduction of hematopoietic progenitors derived from human embryonic stem cells.

    PubMed

    Menendez, Pablo; Wang, Lisheng; Cerdan, Chantal; Bhatia, Mickie

    2006-01-01

    It has been recently identified that cytokines and BMP-4 promote hematopoiesis from human embryonic stem cells (hESC) and that, before hematopoietic commitment, a rare subpopulation of cells lacking CD45, but expressing PECAM-1, Flk-1, and VE-cadherin (hereinafter termed CD45(neg)PFV precursors), are exclusively responsible for hematopoietic cell fate on cytokine stimulation. Efficient strategies to stably transduce these hematopoietic precursors specifically generated from hESCs would provide a novel and desirable tool to study hematopoietic development through the introduction and characterization of candidate genes suspected to regulate self-renewal processes of hESC-derived hematopoietic cells or dynamically track hESC-derived hematopoietic stem cells in vivo. To date, only transient transfection and stable transduction using lentiviral vectors have been reported in undifferentiated hESC followed by random and spontaneous differentiation into different cell types. However, protocols for stable transduction of hematopoietic progenitors prospectively derived from hESC need to be developed yet. In the present chapter, we described detailed methods on the recently characterized and optimized GALV-pseudotyped retroviral gene transfer strategy to stably transduce the hematopoietic progenitor cells prospectively derived from CD45(neg)PFV hemogenic precursors as a vital tool to study hematopoietic development and to characterize candidate genes suspected to eventually confer robust and sustained repopulating ability to hESC-derived hematopoietic cells.

  14. DNA Damage: A Sensible Mediator of the Differentiation Decision in Hematopoietic Stem Cells and in Leukemia

    PubMed Central

    Weiss, Cary N.; Ito, Keisuke

    2015-01-01

    In the adult, the source of functionally diverse, mature blood cells are hematopoietic stem cells, a rare population of quiescent cells that reside in the bone marrow niche. Like stem cells in other tissues, hematopoietic stem cells are defined by their ability to self-renew, in order to maintain the stem cell population for the lifetime of the organism, and to differentiate, in order to give rise to the multiple lineages of the hematopoietic system. In recent years, increasing evidence has suggested a role for the accumulation of reactive oxygen species and DNA damage in the decision for hematopoietic stem cells to exit quiescence and to differentiate. In this review, we will examine recent work supporting the idea that detection of cell stressors, such as oxidative and genetic damage, is an important mediator of cell fate decisions in hematopoietic stem cells. We will explore the benefits of such a system in avoiding the development and progression of malignancies, and in avoiding tissue exhaustion and failure. Additionally, we will discuss new work that examines the accumulation of DNA damage and replication stress in aging hematopoietic stem cells and causes us to rethink ideas of genoprotection in the bone marrow niche. PMID:25789504

  15. Inducible gene and shRNA expression in resident hematopoietic stem cells in vivo.

    PubMed

    Laurenti, Elisa; Barde, Isabelle; Verp, Sonia; Offner, Sandra; Wilson, Anne; Quenneville, Simon; Wiznerowicz, Maciej; Macdonald, H Robson; Trono, Didier; Trumpp, Andreas

    2010-08-01

    Hematopoietic stem cells (HSC) are probably the best understood somatic stem cells and often serve as a paradigm for other stem cells. Nevertheless, most current techniques to genetically manipulate them in vivo are either constitutive and/or induced in settings of hematopoietic stress such as after irradiation. Here, we present a conditional expression system that allows for externally controllable transgenesis and knockdown in resident HSCs, based on a lentiviral vector containing a tet-O sequence and a transgenic mouse line expressing a doxycyclin-regulated tTR-KRAB repressor protein. HSCs harvested from tTR-KRAB mice are transduced with the lentiviral vector containing a cDNA (i.e., Green Fluorescent Protein (GFP)) and/or shRNA (i.e., p53) of interest and then transplanted into lethally irradiated recipients. While the vector is effectively repressed by tTR-KRAB during homing and engraftment, robust GFP/shp53 expression is induced on doxycyclin treatment in HSCs and their progeny. Doxycylin-controllable transcription is maintained on serial transplantation, indicating that repopulating HSCs are stably modified by this approach. In summary, this easy to implement conditional system provides inducible and reversible overexpression or knock down of genes in resident HSCs in vivo using a drug devoid of toxic or activating effects. PMID:20641037

  16. Enhancement of committed hematopoietic stem cell colony formation by nandrolone decanoate after sublethal whole body irradiation

    SciTech Connect

    Gallicchio, V.S.; Chen, M.G.; Watts, T.D.

    1984-11-01

    The ability of an anabolic steroid, nandrolone decanoate, to increase committed topoietic stem cell (CFU-gm, CFU-e, and BFU-e) colony formation after sublethal irradiation was evaluated. Immediately after receiving whole body irradiation and on the next two days, each mouse was injected intraperitoneally with nandrolone decanoate (1.25 mg) in propylene glycol. Irradiated control mice received only propylene glycol. Compared to controls, drug-treated mice showed marked peripheral blood leukocytosis and more stable packed red cell volume. Drug-treated mice also demonstrated increased erythropoiesis, as CFU-e/BFU-e concentrations from both marrow (9% to 581%) and spleen (15% to 797%) were elevated. Granulopoiesis was increased similarly, as CFU-gm concentrations from marrow (38% to 685%) and spleen (9% to 373%) were elevated. These results demonstrate that nandrolone decanoate enhances hematopoietic stem cell recovery after sublethal whole body irradiation. This suggests that following hematopoietic suppression, nandrolone decanoate may stimulate the recovery of hematopoiesis at the stem cell level and in peripheral blood.

  17. Fractionated stem cell infusions for patients with plasma cell myeloma undergoing autologous hematopoietic cell transplantation.

    PubMed

    Landau, Heather; Wood, Kevin; Chung, David J; Koehne, Guenther; Lendvai, Nikoletta; Hassoun, Hani; Lesokhin, Alexander; Hoover, Elizabeth; Zheng, Junting; Devlin, Sean M; Giralt, Sergio

    2016-08-01

    We conducted a phase II trial investigating the impact of fractionated hematopoietic cell infusions on engraftment kinetics and symptom burden in patients with plasma cell myeloma (PCM) undergoing autologous hematopoietic cell transplant (AHCT). We hypothesized that multiple hematopoietic cell infusions would reduce duration of neutropenia and enhance immune recovery resulting in a better tolerated procedure. Twenty-six patients received high-dose melphalan followed by multiple cell infusions (Days 0, +2, +4, +6) and were compared to PCM patients (N = 77) who received high-dose melphalan and a single infusion (Day 0) (concurrent control group). The primary endpoint was number of days with ANC <500K/mcL. Symptom burden was assessed using the MSK-modified MD Anderson Symptom Inventory. Median duration of neutropenia was similar in study (4 days, range 3-5) and control patients (4 days, range 3-9) (p = 0.654). There was no significant difference in the number of red cell or platelet transfusions, days of fever, diarrhea, antibiotics, number of documented infections, or length of admission. Symptom burden surveys showed that AHCT was well-tolerated in both study and control patients. We conclude that fractionated stem cell infusions following high-dose melphalan do not enhance engraftment kinetics or significantly alter patients' clinical course following AHCT in PCM.

  18. TC1(C8orf4) Regulates Hematopoietic Stem/Progenitor Cells and Hematopoiesis

    PubMed Central

    Lee, Soyoung; Kim, Jungtae; Park, Surim; Song, Kyuyoung; Lee, Inchul

    2014-01-01

    Hematopoiesis is a complex process requiring multiple regulators for hematopoietic stem/progenitor cells (HSPC) and differentiation to multi-lineage blood cells. TC1(C8orf4) is implicated in cancers, hematological malignancies and inflammatory activation. Here, we report that Tc1 regulates hematopoiesis in mice. Myeloid and lymphoid cells are increased markedly in peripheral blood of Tc1–deleted mice compared to wild type controls. Red blood cells are small-sized but increased in number. The bone marrow of Tc1−/− mice is normocellular histologically. However, Lin−Sca-1+c-Kit+ (LSK) cells are expanded in Tc1−/− mice compared to wild type controls. The expanded population mostly consists of CD150−CD48+ cells, suggesting the expansion of lineage-restricted hematopoietic progenitor cells. Colony forming units (CFU) are increased in Tc1−/− mice bone marrow cells compared to controls. In wild type mice bone marrow, Tc1 is expressed in a limited population of HSPC but not in differentiated cells. Major myeloid transcriptional regulators such as Pu.1 and Cebpα are not up-regulated in Tc1−/− mice bone marrow. Our findings indicate that TC1 is a novel hematopoietic regulator. The mechanisms of TC1-dependent HSPC regulation and lineage determination are unknown. PMID:24937306

  19. Brain, Behavior, and Immunity: Biobehavioral influences on recovery following hematopoietic stem cell transplantation

    Cancer.gov

    Review of hematopoietic stem cell transplantation and its potential “window of opportunity” during which interventions targeting stress-related behavioral factors can influence the survival, health, and well-being of recipients.

  20. Hematopoietic Stem Cells in Regenerative Medicine: Astray or on the Path?

    PubMed Central

    Müller, Albrecht M.; Huppertz, Sascha; Henschler, Reinhard

    2016-01-01

    Hematopoietic stem cells (HSCs) are the best characterized adult stem cells and the only stem cell type in routine clinical use. The concept of stem cell transplantation laid the foundations for the development of novel cell therapies within, and even outside, the hematopoietic system. Here, we report on the history of hematopoietic cell transplantation (HCT) and of HSC isolation, we briefly summarize the capabilities of HSCs to reconstitute the entire hemato/lymphoid cell system, and we assess current indications for HCT. We aim to draw the lines between areas where HCT has been firmly established, areas where HCT can in the future be expected to be of clinical benefit using their regenerative functions, and areas where doubts persist. We further review clinical trials for diverse approaches that are based on HCT. Finally, we highlight the advent of genome editing in HSCs and critically view the use of HSCs in non-hematopoietic tissue regeneration. PMID:27721700

  1. Immunologic special forces: anti-pathogen cytotoxic T-lymphocyte immunotherapy following hematopoietic stem cell transplantation

    PubMed Central

    Keller, Michael D; Bollard, Catherine M

    2014-01-01

    Anti-pathogen adoptive T-cell immunotherapy has been proven to be highly effective in preventing or controlling viral infections following hematopoietic stem cell transplantation. Recent advances in manufacturing protocols allow an increased number of targeted pathogens, eliminate the need for viral transduction, broaden the potential donor pool to include pathogen-naïve sources, and reduce the time requirement for production. Early studies suggest that anti-fungal immunotherapy may also have clinical benefit. Future advances include further broadening of the pathogens that can be targeted and development of T-cells with resistance to pharmacologic immunosuppression. PMID:27274983

  2. Successful allogeneic hematopoietic stem cell transplantation for GATA2 deficiency

    PubMed Central

    Cuellar-Rodriguez, Jennifer; Gea-Banacloche, Juan; Freeman, Alexandra F.; Hsu, Amy P.; Zerbe, Christa S.; Calvo, Katherine R.; Wilder, Jennifer; Kurlander, Roger; Olivier, Kenneth N.; Holland, Steven M.

    2011-01-01

    We performed nonmyeloablative HSCT in 6 patients with a newly described genetic immunodeficiency syndrome caused by mutations in GATA2—a disease characterized by nontuberculous mycobacterial infection, monocytopenia, B- and NK-cell deficiency, and the propensity to transform to myelodysplastic syndrome/acute myelogenous leukemia. Two patients received peripheral blood stem cells (PBSCs) from matched-related donors, 2 received PBSCs from matched-unrelated donors, and 2 received stem cells from umbilical cord blood (UCB) donors. Recipients of matched-related and -unrelated donors received fludarabine and 200 cGy of total body irradiation (TBI); UCB recipients received cyclophosphamide in addition to fludarabine and TBI as conditioning. All patients received tacrolimus and sirolimus posttransplantation. Five patients were alive at a median follow-up of 17.4 months (range, 10-25). All patients achieved high levels of donor engraftment in the hematopoietic compartments that were deficient pretransplantation. Adverse events consisted of delayed engraftment in the recipient of a single UCB, GVHD in 4 patients, and immune-mediated pancytopenia and nephrotic syndrome in the recipient of a double UCB transplantation. Nonmyeloablative HSCT in GATA2 deficiency results in reconstitution of the severely deficient monocyte, B-cell, and NK-cell populations and reversal of the clinical phenotype. Registered at www.clinicaltrials.gov as NCT00923364. PMID:21816832

  3. Endoplasmic reticulum stress regulation in hematopoietic stem cells.

    PubMed

    Miharada, Kenichi

    2016-08-01

    Adult hematopoietic stem cells (HSCs) reside in bone marrow and are maintained in a dormant state within a special microenvironment, their so-called "niche". Detaching from the niche induces cell cycle progression, resulting in a reduction of the reconstitution capacity of HSCs. In contrast, fetal liver HSCs actively divide without losing their stem cell potentials. Thus, it has been unclear what types of cellular responses and metabolic changes occur in growing HSCs. We previously discovered that HSCs express relatively low levels of endoplasmic reticulum (ER) chaperone proteins governing protein folding, making HSCs vulnerable to an elevation of stress signals caused by accumulation of un-/misfolded proteins (ER stress) upon in vitro culture. Interestingly, fetal liver HSCs do not show ER stress elevation despite unchanged levels of chaperone proteins. Our latest studies utilizing multiple mouse models revealed that in the fetal liver bile acids as chemical chaperones play a key role supporting the protein folding which results in the suppression of ER stress induction. These findings highlight the importance of ER stress regulations in hematopoiesis. PMID:27599423

  4. [Potential of hematopoietic stem cells as the basis for generation of advanced therapy medicinal products].

    PubMed

    Bönig, H; Heiden, M; Schüttrumpf, J; Müller, M M; Seifried, E

    2011-07-01

    Individualized, (stem) cell-based therapies of congenital and acquired illnesses are among the most exciting medical challenges of the twenty-first century. Before the full potential of such therapies can be achieved, many basic scientific and biotechnological questions remain to be answered. What is the ideal source for the generation of such cellular drugs is one of those issues. In many respects, hematopoietic stem cells fulfill the requirements for stem cells as starting material for novel cellular therapeutics, including the simple access to large amounts of stem cells, the availability of good phenotypic markers for their prospective isolation, and an extensive body of knowledge about the in vitro manipulation of these cells. This manuscript discusses the general and specific usability of hematopoietic stem cells as starting material for novel cellular therapeutics and presents some examples of hematological and nonhematological therapeutic approaches which are based on hematopoietic stem cells.

  5. In vitro generation of hematopoietic stem cells from an embryonic stem cell line.

    PubMed Central

    Palacios, R; Golunski, E; Samaridis, J

    1995-01-01

    Hematopoietic stem cells (HSC) are unique in that they give rise both to new stem cells (self-renewal) and to all blood cell types. The cellular and molecular events responsible for the formation of HSC remain unknown mainly because no system exists to study it. Embryonic stem (ES) cells were induced to differentiate by coculture with the stromal cell line RP010 and the combination of interleukin (IL) 3, IL-6, and F (cell-free supernatants from cultures of the FLS4.1 fetal liver stromal cell line). Cell cytometry analysis of the mononuclear cells produced in the cultures was consistent with the presence of PgP-1+ Lin- early hematopoietic (B-220- Mac-1- JORO 75- TER 119-) cells and of fewer B-220+ IgM- B-cell progenitors and JORO 75+ T-lymphocyte progenitors. The cell-sorter-purified PgP-1+ Lin- cells produced by induced ES cells could repopulate the lymphoid, myeloid, and erythroid lineages of irradiated mice. The ES-derived PgP-1+ Lin- cells must possess extensive self-renewal potential, as they were able to produce hematopoietic repopulation of secondary mice recipients. Indeed, marrow cells from irradiated mice reconstituted (15-18 weeks before) with PgP-1+ Lin- cell-sorter-purified cells generated by induced ES cells repopulated the lymphoid, myeloid, and erythroid lineages of secondary mouse recipients assessed 16-20 weeks after their transfer into irradiated secondary mice. The results show that the culture conditions described here support differentiation of ES cells into hematopoietic cells with functional properties of HSC. It should now be possible to unravel the molecular events leading to the formation of HSC. Images Fig. 3 PMID:7638225

  6. Hematopoietic differentiation of pluripotent stem cells in culture.

    PubMed

    Mills, Jason A; Paluru, Prasuna; Weiss, Mitchell J; Gadue, Paul; French, Deborah L

    2014-01-01

    This chapter describes a two-dimensional "monolayer" system for differentiating human pluripotent stem cells (PSCs) into "primitive" hematopoietic progenitor cells (HPCs) resembling those produced in vivo by the early embryonic yolk sac. This experimental system utilizes defined conditions without serum or feeder cells. Cytokines are added sequentially to stimulate the formation of mesoderm and its subsequent patterning to hematopoietic progenitors. The HPCs produced by this protocol have multi-lineage potential (erythroid, megakaryocyte, and myeloid) and can be isolated as a homogeneous population for use in standard hematopoietic studies including liquid expansion to mature lineages and colony assays. In addition, the HPCs can be cryopreserved for distribution or analysis at later times. The HPCs generated by this protocol have been used successfully to better define intrinsic variation in hematopoietic potential between different PSC lines and to model human hematopoietic diseases using patient-derived induced pluripotent stem cells. PMID:25062629

  7. Life satisfaction in young adults 10 or more years after hematopoietic stem cell transplantation for childhood malignant and nonmalignant diseases does not show significant impairment compared with healthy controls: a case-matched study.

    PubMed

    Uderzo, Cornelio; Corti, Paola; Pappalettera, Marco; Baldini, Valentina; Lucchini, Giovanna; Meani, Dario; Rovelli, Attilio

    2012-11-01

    Patients undergoing hematopoietic stem cell transplantation (HSCT) may experience physical and psychological deterioration that impairs their life satisfaction (LS). This study focused on LS in long-term survivors at 10 or more years after HSCT. Fifty-five patients (39 males, median age 25 years) undergoing allogeneic HSCT for childhood malignant (n = 52) or nonmalignant diseases (n = 3) were enrolled. A control group of 98 young adults (59 males, median age 24 years) was considered. A questionnaire with a modified Satisfaction Life Domain Scale was administered. We assessed such domains as education, employment, leisure time, social relationships, and perception of physical status with a 30-item questionnaire. To investigate the association between the domains and the probability of diminished LS, we performed a logistical procedure using the maximum likelihood method. Predictive factors of LS were adjusted for sociodemographic variables. In the multivariate analysis, the participant's level of LS was not significantly correlated with sociodemographic factors or with HSCT status. The same analysis showed a slight trend in favor of the control group (P = .06) for body perception. Our data suggest that the patients who undergo HSCT in childhood have no significant difference in long-term LS compared with healthy controls.

  8. Granulomatous amebic encephalitis following hematopoietic stem cell transplantation

    PubMed Central

    Doan, Ninh; Rozansky, Gregory; Nguyen, Ha Son; Gelsomino, Michael; Shabani, Saman; Mueller, Wade; Johnson, Vijay

    2015-01-01

    Background: Granulomatous amebic encephalitis (GAE) is rare, but often fatal. The infection has been documented predominantly among the immunocompromised population or among those with chronic disease. To date, however, there have only been eight cases regarding the infection following hematopoietic stem cell transplantation (HSCT). Case Description: A 62-year-old female with a history of relapsed diffuse large B-cell lymphoma, recently underwent peripheral blood autologous stem cell transplant after BEAM conditioning (day 0). On day +15, she began to exhibit worsening fatigue, generalized weakness, and fever. Symptoms progressed to nausea, emesis, somnolence, confusion, and frontal headaches over the next few days. Imaging demonstrated multifocal ill-defined vasogenic edema with patchy enhancement. The patient was started on broad antibiotics, antifungals, and seizure prophylaxis. Evaluation for bacterial, fungal, mycobacterial, and viral etiologies was fruitless. Her mental status progressively deteriorated. On day +22, she exhibited severe lethargy and went into pulseless electrical activity arrest, requiring chest compressions. The episode lasted <2 min and her pulse was restored. She was taken to the operating room for a brain biopsy. Postoperatively, her right pupil began to dilate compared to the left; she demonstrated extensor posturing in her upper extremities and withdrawal in her lower extremities. Repeat computed tomography demonstrated progressive edema. Given poor prognosis and poor neurological examination, the family opted for withdrawal of care. Final pathology was consistent with Acanthamoeba GAE. Conclusion: The authors report the third case of GAE after autologous stem cell transplant, and the ninth case overall after HSCT. This case is unusual due to its rapid clinical presentation after HSCT compared to prior literature. The case highlights the need for high suspicion of Acanthamoeba infection in this patient population. PMID:26539322

  9. Risk analysis of hematopoietic stem cell transplant process: failure mode, effect, and criticality analysis and hazard analysis critical control point methods integration based on guidelines to good manufacturing practice for medicinal product ANNEX 20 (February 2008).

    PubMed

    Gianassi, S; Bisin, S; Bindi, B; Spitaleri, I; Bambi, F

    2010-01-01

    The collection and handling of hematopoietic stem cells (HSCs) must meet high quality requirements. An integrated Quality Risk Management can help to identify and contain potential risks related to HSC production. Risk analysis techniques allow one to "weigh" identified hazards, considering the seriousness of their effects, frequency, and detectability, seeking to prevent the most harmful hazards. The Hazard Analysis Critical Point, recognized as the most appropriate technique to identify risks associated with physical, chemical, and biological hazards for cellular products, consists of classifying finished product specifications and limits of acceptability, identifying all off-specifications, defining activities that can cause them, and finally establishing both a monitoring system for each Critical Control Point and corrective actions for deviations. The severity of possible effects on patients, as well as the occurrence and detectability of critical parameters, are measured on quantitative scales (Risk Priority Number [RPN]). Risk analysis was performed with this technique on manipulation process of HPC performed at our blood center. The data analysis showed that hazards with higher values of RPN with greater impact on the process are loss of dose and tracking; technical skills of operators and manual transcription of data were the most critical parameters. Problems related to operator skills are handled by defining targeted training programs, while other critical parameters can be mitigated with the use of continuous control systems. The blood center management software was completed by a labeling system with forms designed to be in compliance with standards in force and by starting implementation of a cryopreservation management module.

  10. Proteome Profiling in Lung Injury after Hematopoietic Stem Cell Transplantation.

    PubMed

    Bhargava, Maneesh; Viken, Kevin J; Dey, Sanjoy; Steinbach, Michael S; Wu, Baolin; Jagtap, Pratik D; Higgins, LeeAnn; Panoskaltsis-Mortari, Angela; Weisdorf, Daniel J; Kumar, Vipin; Arora, Mukta; Bitterman, Peter B; Ingbar, David H; Wendt, Chris H

    2016-08-01

    Pulmonary complications due to infection and idiopathic pneumonia syndrome (IPS), a noninfectious lung injury in hematopoietic stem cell transplant (HSCT) recipients, are frequent causes of transplantation-related mortality and morbidity. Our objective was to characterize the global bronchoalveolar lavage fluid (BALF) protein expression of IPS to identify proteins and pathways that differentiate IPS from infectious lung injury after HSCT. We studied 30 BALF samples from patients who developed lung injury within 180 days of HSCT or cellular therapy transfusion (natural killer cell transfusion). Adult subjects were classified as having IPS or infectious lung injury by the criteria outlined in the 2011 American Thoracic Society statement. BALF was depleted of hemoglobin and 14 high-abundance proteins, treated with trypsin, and labeled with isobaric tagging for relative and absolute quantification (iTRAQ) 8-plex reagent for two-dimensional capillary liquid chromatography (LC) and data dependent peptide tandem mass spectrometry (MS) on an Orbitrap Velos system in higher-energy collision-induced dissociation activation mode. Protein identification employed a target-decoy strategy using ProteinPilot within Galaxy P. The relative protein abundance was determined with reference to a global internal standard consisting of pooled BALF from patients with respiratory failure and no history of HSCT. A variance weighted t-test controlling for a false discovery rate of ≤5% was used to identify proteins that showed differential expression between IPS and infectious lung injury. The biological relevance of these proteins was determined by using gene ontology enrichment analysis and Ingenuity Pathway Analysis. We characterized 12 IPS and 18 infectious lung injury BALF samples. In the 5 iTRAQ LC-MS/MS experiments 845, 735, 532, 615, and 594 proteins were identified for a total of 1125 unique proteins and 368 common proteins across all 5 LC-MS/MS experiments. When comparing IPS to

  11. Prostaglandin-modulated umbilical cord blood hematopoietic stem cell transplantation.

    PubMed

    Cutler, Corey; Multani, Pratik; Robbins, David; Kim, Haesook T; Le, Thuy; Hoggatt, Jonathan; Pelus, Louis M; Desponts, Caroline; Chen, Yi-Bin; Rezner, Betsy; Armand, Philippe; Koreth, John; Glotzbecker, Brett; Ho, Vincent T; Alyea, Edwin; Isom, Marlisa; Kao, Grace; Armant, Myriam; Silberstein, Leslie; Hu, Peirong; Soiffer, Robert J; Scadden, David T; Ritz, Jerome; Goessling, Wolfram; North, Trista E; Mendlein, John; Ballen, Karen; Zon, Leonard I; Antin, Joseph H; Shoemaker, Daniel D

    2013-10-24

    Umbilical cord blood (UCB) is a valuable source of hematopoietic stem cells (HSCs) for use in allogeneic transplantation. Key advantages of UCB are rapid availability and less stringent requirements for HLA matching. However, UCB contains an inherently limited HSC count, which is associated with delayed time to engraftment, high graft failure rates, and early mortality. 16,16-Dimethyl prostaglandin E2 (dmPGE2) was previously identified to be a critical regulator of HSC homeostasis, and we hypothesized that brief ex vivo modulation with dmPGE2 could improve patient outcomes by increasing the "effective dose" of HSCs. Molecular profiling approaches were used to determine the optimal ex vivo modulation conditions (temperature, time, concentration, and media) for use in the clinical setting. A phase 1 trial was performed to evaluate the safety and therapeutic potential of ex vivo modulation of a single UCB unit using dmPGE2 before reduced-intensity, double UCB transplantation. Results from this study demonstrated clear safety with durable, multilineage engraftment of dmPGE2-treated UCB units. We observed encouraging trends in efficacy, with accelerated neutrophil recovery (17.5 vs 21 days, P = .045), coupled with preferential, long-term engraftment of the dmPGE2-treated UCB unit in 10 of 12 treated participants.

  12. Mental Status Changes after Hematopoietic Stem Cell Transplantation

    PubMed Central

    Chang, Grace; Meadows, Mary-Ellen; Orav, E. John; Antin, Joseph H.

    2009-01-01

    Background The growing numbers of survivors of innovative cancer treatments such as hematopoietic stem cell transplantation (HSCT) often report subsequent cognitive difficulties. The purpose of this study is to evaluate and compare neurocognitive changes in patients with chronic myelogenous leukemia (CML) or primary myelodysplastic syndrome (MDS) after allogeneic HSCT or other therapies. Methods Prospective cohort study employing serial evaluations of attention, concentration, memory, mood and quality of life in a consecutive sample of 106 eligible patients with CML (n=91) or MDS (n=15) at enrollment, and then 12 and 18 months after HSCT or other therapy. Results The three evaluations were completed by 98%, 95%, and 89% of surviving participants, respectively. Among all patients, there was significant improvement in memory over 18 months. For example, the 45 people receiving HSCT (42 with CML, 3 with MDS) compared favorably to those who had other treatment on most measures of neuropsychological function, except they had improved mental health (p=.034), worse physical function (p=.049), and more difficulty with coordination and fine motor speed bilaterally (dominant, p=.005, and non-dominant hands, p=.0019). CML patients overall had improved phonemic fluency (p=.014). Conclusions Time and diagnosis may be important factors when assessing neurocognitive and other changes. Complaints about “chemobrain” following HSCT merit further study, as deficits may actually pre-date initiation of treatment and then subsequently improve. Study results could reassure prospective HSCT recipients since it compares favorably to other treatments when mental status side effects are considered. PMID:19551887

  13. Endocrinopathies after Allogeneic and Autologous Transplantation of Hematopoietic Stem Cells

    PubMed Central

    Muscogiuri, Giovanna; Palomba, Stefano; Serio, Bianca; Sessa, Mariarosaria; Giudice, Valentina; Ferrara, Idalucia; Tauchmanovà, Libuse; Colao, Annamaria; Selleri, Carmine

    2014-01-01

    Early and late endocrine disorders are among the most common complications in survivors after hematopoietic allogeneic- (allo-) and autologous- (auto-) stem cell transplant (HSCT). This review summarizes main endocrine disorders reported in literature and observed in our center as consequence of auto- and allo-HSCT and outlines current options for their management. Gonadal impairment has been found early in approximately two-thirds of auto- and allo-HSCT patients: 90–99% of women and 60–90% of men. Dysfunctions of the hypothalamus-pituitary-growth hormone/insulin growth factor-I axis, hypothalamus-pituitary-thyroid axis, and hypothalamus-pituitary-adrenal axis were documented as later complicances, occurring in about 10, 30, and 40–50% of transplanted patients, respectively. Moreover, overt or subclinical thyroid complications (including persistent low-T3 syndrome, chronic thyroiditis, subclinical hypo- or hyperthyroidism, and thyroid carcinoma), gonadal failure, and adrenal insufficiency may persist many years after HSCT. Our analysis further provides evidence that main recognized risk factors for endocrine complications after HSCT are the underlying disease, previous pretransplant therapies, the age at HSCT, gender, total body irradiation, posttransplant derangement of immune system, and in the allogeneic setting, the presence of graft-versus-host disease requiring prolonged steroid treatment. Early identification of endocrine complications can greatly improve the quality of life of long-term survivors after HSCT. PMID:24883377

  14. Systematic Nutritional Support in Allogeneic Hematopoietic Stem Cell Transplant Recipients.

    PubMed

    Fuji, Shigeo; Einsele, Hermann; Savani, Bipin N; Kapp, Markus

    2015-10-01

    Allogeneic hematopoietic stem cell transplantation (HSCT) has become an established treatment modality for various hematological diseases. However, in allogeneic HSCT, patients often suffer from severe gastrointestinal complications caused by the conditioning regimen and acute/chronic graft-versus-host disease, which requires support by multidisciplinary nutritional support teams (NST). In addition, pretransplantation nutritional status can affect the clinical outcome after allogeneic HSCT. Therefore, it is important to refer the patient to a NST when becoming aware of nutritional problems before allogeneic HSCT. It is also important to follow nutritional status over the long term, as patients often suffer from various nutritional problems, such as malnutrition and metabolic syndrome, even late after allogeneic HSCT. In summary, NST can contribute to the improvement of nutritional status and possibly prognosis at every stage before and after allogeneic HSCT. Here, we aim to give a comprehensive overview of current understanding about nutritional support in allogeneic HSCT and try to provoke a constructive discussion to stimulate further investigation.

  15. Dyslipidemia after allogeneic hematopoietic stem cell transplantation: evaluation and management.

    PubMed

    Griffith, Michelle L; Savani, Bipin N; Boord, Jeffrey B

    2010-08-26

    Currently, approximately 15,000 to 20,000 patients undergo allogeneic hematopoietic stem cell transplantation (HSCT) annually throughout the world, with the number of long-term survivors increasing rapidly. In long-term follow-up after transplantation, the focus of care moves beyond cure of the original disease to the identification and treatment of late effects after HSCT. One of the more serious complications is therapy-related cardiovascular disease. Long-term survivors after HSCT probably have an increased risk of premature cardiovascular events. Cardiovascular complications related to dyslipidemia and other risk factors account for a significant proportion of late nonrelapse morbidity and mortality. This review addresses the risk and causes of dyslipidemia and impact on cardiovascular complications after HSCT. Immunosuppressive therapy, chronic graft-versus-host disease, and other long-term complications influence the management of dyslipidemia. There are currently no established guidelines for evaluation and management of dyslipidemia in HSCT patients; in this review, we have summarized our suggested approach in the HSCT population.

  16. Endocrinopathies after allogeneic and autologous transplantation of hematopoietic stem cells.

    PubMed

    Orio, Francesco; Muscogiuri, Giovanna; Palomba, Stefano; Serio, Bianca; Sessa, Mariarosaria; Giudice, Valentina; Ferrara, Idalucia; Tauchmanovà, Libuse; Colao, Annamaria; Selleri, Carmine

    2014-01-01

    Early and late endocrine disorders are among the most common complications in survivors after hematopoietic allogeneic- (allo-) and autologous- (auto-) stem cell transplant (HSCT). This review summarizes main endocrine disorders reported in literature and observed in our center as consequence of auto- and allo-HSCT and outlines current options for their management. Gonadal impairment has been found early in approximately two-thirds of auto- and allo-HSCT patients: 90-99% of women and 60-90% of men. Dysfunctions of the hypothalamus-pituitary-growth hormone/insulin growth factor-I axis, hypothalamus-pituitary-thyroid axis, and hypothalamus-pituitary-adrenal axis were documented as later complicances, occurring in about 10, 30, and 40-50% of transplanted patients, respectively. Moreover, overt or subclinical thyroid complications (including persistent low-T3 syndrome, chronic thyroiditis, subclinical hypo- or hyperthyroidism, and thyroid carcinoma), gonadal failure, and adrenal insufficiency may persist many years after HSCT. Our analysis further provides evidence that main recognized risk factors for endocrine complications after HSCT are the underlying disease, previous pretransplant therapies, the age at HSCT, gender, total body irradiation, posttransplant derangement of immune system, and in the allogeneic setting, the presence of graft-versus-host disease requiring prolonged steroid treatment. Early identification of endocrine complications can greatly improve the quality of life of long-term survivors after HSCT. PMID:24883377

  17. [Human Herpesvirus-6 Encephalitis in Allogeneic Hematopoietic Stem Cell Transplantation].

    PubMed

    Ogata, Masao

    2015-07-01

    The reactivation of human herpesvirus-6B (HHV-6B) is common after allogeneic hematopoietic cell transplantation (allo-HCT), and it is sporadically associated with the development of HHV-6 encephalitis. HHV-6 encephalitis typically develops around 2-6 weeks after allo-HCT, and it is characterized by short-term memory loss. Magnetic resonance imaging typically shows bilateral signal abnormalities in the limbic system. The incidence of HHV-6 encephalitis is reportedly 0-11.6% after bone marrow or peripheral blood stem cell transplantation and 4.9-21.4% after cord blood transplantation. The mortality of HHV-6 encephalitis is high, and survivors are often left with serious sequelae. Antiviral therapy using foscarnet or ganciclovir is recommended for the treatment of HHV-6 encephalitis, but the efficacy of the currently available treatment is insufficient once HHV-6 encephalitis has developed. The elucidation of the pathogenesis of HHV-6 encephalitis and the establishment of preventative therapy are needed to overcome this disease.

  18. Genotoxicity of retroviral hematopoietic stem cell gene therapy

    PubMed Central

    Trobridge, Grant D

    2012-01-01

    Introduction Retroviral vectors have been developed for hematopoietic stem cell (HSC) gene therapy and have successfully cured X-linked severe combined immunodeficiency (SCID-X1), adenosine deaminase deficiency (ADA-SCID), adrenoleukodystrophy, and Wiskott-Aldrich syndrome. However, in HSC gene therapy clinical trials, genotoxicity mediated by integrated vector proviruses has led to clonal expansion, and in some cases frank leukemia. Numerous studies have been performed to understand the molecular basis of vector-mediated genotoxicity with the aim of developing safer vectors and safer gene therapy protocols. These genotoxicity studies are critical to advancing HSC gene therapy. Areas covered This review provides an introduction to the mechanisms of retroviral vector genotoxicity. It also covers advances over the last 20 years in designing safer gene therapy vectors, and in integration site analysis in clinical trials and large animal models. Mechanisms of retroviral-mediated genotoxicity, and the risk factors that contribute to clonal expansion and leukemia in HSC gene therapy are introduced. Expert opinion Continued research on virus–host interactions and next-generation vectors should further improve the safety of future HSC gene therapy vectors and protocols. PMID:21375467

  19. The histone H2A deubiquitinase Usp16 regulates hematopoiesis and hematopoietic stem cell function

    PubMed Central

    Gu, Yue; Jones, Amanda E.; Yang, Wei; Liu, Shanrun; Dai, Qian; Liu, Yudong; Swindle, C. Scott; Zhou, Dewang; Zhang, Zhuo; Ryan, Thomas M.; Townes, Tim M.; Klug, Christopher A.; Chen, Dongquan; Wang, Hengbin

    2016-01-01

    Epigenetic mechanisms play important regulatory roles in hematopoiesis and hematopoietic stem cell (HSC) function. Subunits of polycomb repressive complex 1 (PRC1), the major histone H2A ubiquitin ligase, are critical for both normal and pathological hematopoiesis; however, it is unclear which of the several counteracting H2A deubiquitinases functions along with PRC1 to control H2A ubiquitination (ubH2A) level and regulates hematopoiesis in vivo. Here we investigated the function of Usp16 in mouse hematopoiesis. Conditional deletion of Usp16 in bone marrow resulted in a significant increase of global ubH2A level and lethality. Usp16 deletion did not change HSC number but was associated with a dramatic reduction of mature and progenitor cell populations, revealing a role in governing HSC lineage commitment. ChIP- and RNA-sequencing studies in HSC and progenitor cells revealed that Usp16 bound to many important hematopoietic regulators and that Usp16 deletion altered the expression of genes in transcription/chromosome organization, immune response, hematopoietic/lymphoid organ development, and myeloid/leukocyte differentiation. The altered gene expression was partly rescued by knockdown of PRC1 subunits, suggesting that Usp16 and PRC1 counterbalance each other to regulate cellular ubH2A level and gene expression in the hematopoietic system. We further discovered that knocking down Cdkn1a (p21cip1), a Usp16 target and regulated gene, rescued the altered cell cycle profile and differentiation defect of Usp16-deleted HSCs. Collectively, these studies identified Usp16 as one of the histone H2A deubiquitinases, which coordinates with the H2A ubiquitin ligase PRC1 to regulate hematopoiesis, and revealed cell cycle regulation by Usp16 as key for HSC differentiation. PMID:26699484

  20. The potential use of mesenchymal stem cells in hematopoietic stem cell transplantation

    PubMed Central

    Kim, Eun-Jung; Kim, Nayoun; Cho, Seok-Goo

    2013-01-01

    In the last 10 years, mesenchymal stem cells (MSCs) have emerged as a therapeutic approach to regenerative medicine, cancer, autoimmune diseases, and many more due to their potential to differentiate into various tissues, to repair damaged tissues and organs, and also for their immunomodulatory properties. Findings in vitro and in vivo have demonstrated immune regulatory function of MSCs and have facilitated their application in clinical trials, such as those of autoimmune diseases and chronic inflammatory diseases. There has been an increasing interest in the role of MSCs in allogeneic hematopoietic stem cell transplantation (HSCT), including hematopoietic stem cell engraftment and the prevention and treatment of graft-versus-host disease (GVHD), and their therapeutic potential has been reported in numerous clinical trials. Although the safety of clinical application of MSCs is established, further modifications to improve their efficacy are required. In this review, we summarize advances in the potential use of MSCs in HSCT. In addition, we discuss their use in clinical trials of the treatment of GVHD following HSCT, the immunomodulatory capacity of MSCs, and their regenerative and therapeutic potential in the field of HSCT. PMID:23306700

  1. Perforin gene transfer into hematopoietic stem cells improves immune dysregulation in murine models of perforin deficiency.

    PubMed

    Carmo, Marlene; Risma, Kimberly A; Arumugam, Paritha; Tiwari, Swati; Hontz, Adrianne E; Montiel-Equihua, Claudia A; Alonso-Ferrero, Maria E; Blundell, Michael P; Schambach, Axel; Baum, Christopher; Malik, Punam; Thrasher, Adrian J; Jordan, Michael B; Gaspar, H Bobby

    2015-04-01

    Defects in perforin lead to the failure of T and NK cell cytotoxicity, hypercytokinemia, and the immune dysregulatory condition known as familial hemophagocytic lymphohistiocytosis (FHL). The only curative treatment is allogeneic hematopoietic stem cell transplantation which carries substantial risks. We used lentiviral vectors (LV) expressing the human perforin gene, under the transcriptional control of the ubiquitous phosphoglycerate kinase promoter or a lineage-specific perforin promoter, to correct the defect in different murine models. Following LV-mediated gene transfer into progenitor cells from perforin-deficient mice, we observed perforin expression in mature T and NK cells, and there was no evidence of progenitor cell toxicity when transplanted into irradiated recipients. The resulting perforin-reconstituted NK cells showed partial recovery of cytotoxicity, and we observed full recovery of cytotoxicity in polyclonal CD8(+) T cells. Furthermore, reconstituted T cells with defined antigen specificity displayed normal cytotoxic function against peptide-loaded targets. Reconstituted CD8(+) lymphoblasts had reduced interferon-γ secretion following stimulation in vitro, suggesting restoration of normal immune regulation. Finally, upon viral challenge, mice with >30% engraftment of gene-modified cells exhibited reduction of cytokine hypersecretion and cytopenias. This study demonstrates the potential of hematopoietic stem cell gene therapy as a curative treatment for perforin-deficient FHL.

  2. Tolerization of a type I allergic immune response through transplantation of genetically modified hematopoietic stem cells.

    PubMed

    Baranyi, Ulrike; Linhart, Birgit; Pilat, Nina; Gattringer, Martina; Bagley, Jessamyn; Muehlbacher, Ferdinand; Iacomini, John; Valenta, Rudolf; Wekerle, Thomas

    2008-06-15

    Allergy represents a hypersensitivity disease that affects >25% of the population in industrialized countries. The underlying type I allergic immune reaction occurs in predisposed atopic individuals in response to otherwise harmless Ags (i.e., allergens) and is characterized by the production of allergen-specific IgE, an allergen-specific T cell response, and the release of biologically active mediators such as histamine from mast cells and basophils. Regimens permanently tolerizing an allergic immune response still need to be developed. We therefore retrovirally transduced murine hematopoietic stem cells to express the major grass pollen allergen Phl p 5 on their cell membrane. Transplantation of these genetically modified hematopoietic stem cells led to durable multilineage molecular chimerism and permanent immunological tolerance toward the introduced allergen at the B cell, T cell, and effector cell levels. Notably, Phl p 5-specific serum IgE and IgG remained undetectable, and T cell nonresponsiveness persisted throughout follow-up (40 wk). Besides, mediator release was specifically absent in in vitro and in vivo assays. B cell, T cell, and effector cell responses to an unrelated control allergen (Bet v 1) were unperturbed, demonstrating specificity of this tolerance protocol. We thus describe a novel cell-based strategy for the prevention of allergy.

  3. Importance of killer immunoglobulin-like receptors in allogeneic hematopoietic stem cell transplantation

    PubMed Central

    Franceschi, Danilo Santana Alessio; de Souza, Cármino Antonio; Aranha, Francisco José Penteado; Cardozo, Daniela Maira; Sell, Ana Maria; Visentainer, Jeane Eliete Laguila

    2011-01-01

    Hematopoietic stem cell transplantation is the treatment of choice for many hematologic diseases, such as multiple myeloma, bone marrow aplasia and leukemia. Human leukocyte antigen (HLA) compatibility is an important tool to prevent post-transplant complications such as graft rejection and graft-versus-host disease, but the high rates of relapse limit the survival of transplant patients. Natural Killer cells, a type of lymphocyte that is a key element in the defense against tumor cells, cells infected with viruses and intracellular microbes, have different receptors on their surfaces that regulate their cytotoxicity. Killer immunoglobulin-like receptors are the most important, interacting consistently with human leukocyte antigen class I molecules present in other cells and thus controlling the activation of natural killer cells. Several studies have shown that certain combinations of killer immunoglobulin-like receptors and human leukocyte antigens (in both donors and recipients) can affect the chances of survival of transplant patients, particularly in relation to the graft-versusleukemia effect, which may be associated to decreased relapse rates in certain groups. This review aims to shed light on the mechanisms and effects of killer immunoglobulin-like receptors - human leukocyte antigen associations and their implications following hematopoietic stem cell transplantation, and to critically analyze the results obtained by the studies presented herein. PMID:23284260

  4. Perforin gene transfer into hematopoietic stem cells improves immune dysregulation in murine models of perforin deficiency.

    PubMed

    Carmo, Marlene; Risma, Kimberly A; Arumugam, Paritha; Tiwari, Swati; Hontz, Adrianne E; Montiel-Equihua, Claudia A; Alonso-Ferrero, Maria E; Blundell, Michael P; Schambach, Axel; Baum, Christopher; Malik, Punam; Thrasher, Adrian J; Jordan, Michael B; Gaspar, H Bobby

    2015-04-01

    Defects in perforin lead to the failure of T and NK cell cytotoxicity, hypercytokinemia, and the immune dysregulatory condition known as familial hemophagocytic lymphohistiocytosis (FHL). The only curative treatment is allogeneic hematopoietic stem cell transplantation which carries substantial risks. We used lentiviral vectors (LV) expressing the human perforin gene, under the transcriptional control of the ubiquitous phosphoglycerate kinase promoter or a lineage-specific perforin promoter, to correct the defect in different murine models. Following LV-mediated gene transfer into progenitor cells from perforin-deficient mice, we observed perforin expression in mature T and NK cells, and there was no evidence of progenitor cell toxicity when transplanted into irradiated recipients. The resulting perforin-reconstituted NK cells showed partial recovery of cytotoxicity, and we observed full recovery of cytotoxicity in polyclonal CD8(+) T cells. Furthermore, reconstituted T cells with defined antigen specificity displayed normal cytotoxic function against peptide-loaded targets. Reconstituted CD8(+) lymphoblasts had reduced interferon-γ secretion following stimulation in vitro, suggesting restoration of normal immune regulation. Finally, upon viral challenge, mice with >30% engraftment of gene-modified cells exhibited reduction of cytokine hypersecretion and cytopenias. This study demonstrates the potential of hematopoietic stem cell gene therapy as a curative treatment for perforin-deficient FHL. PMID:25523759

  5. Persistent seropositivity for yellow fever in a previously vaccinated autologous hematopoietic stem cell transplantation recipient.

    PubMed

    Hayakawa, Kayoko; Takasaki, Tomohiko; Tsunemine, Hiroko; Kanagawa, Shuzo; Kutsuna, Satoshi; Takeshita, Nozomi; Mawatari, Momoko; Fujiya, Yoshihiro; Yamamoto, Kei; Ohmagari, Norio; Kato, Yasuyuki

    2015-08-01

    The duration of a protective level of yellow fever antibodies after autologous hematopoietic stem cell transplantation in a previously vaccinated person is unclear. The case of a patient who had previously been vaccinated for yellow fever and who remained seropositive for 22 months after autologous peripheral blood stem cell transplantation for malignant lymphoma is described herein.

  6. Reconstitution of Human Cytomegalovirus-Specific CD4+ T Cells is Critical for Control of Virus Reactivation in Hematopoietic Stem Cell Transplant Recipients but Does Not Prevent Organ Infection.

    PubMed

    Gabanti, Elisa; Lilleri, Daniele; Ripamonti, Francesco; Bruno, Francesca; Zelini, Paola; Furione, Milena; Colombo, Anna A; Alessandrino, Emilio P; Gerna, Giuseppe

    2015-12-01

    The relative contribution of human cytomegalovirus (HMCV)-specific CD4(+) and CD8(+) T cells to the control of HCMV infection in hematopoietic stem cell transplant (HSCT) recipients is still controversial. HCMV reactivation and HCMV-specific CD4(+) and CD8(+) T cell reconstitution were monitored for 1 year in 63 HCMV-seropositive patients receiving HSCT. HCMV reactivation was detected in all but 2 patients. In 20 of 63 (31.7%) patients (group 1) HCMV infection resolved spontaneously, whereas 32 of 63 (50.8%) patients (group 2) controlled the infection after a single short-course of pre-emptive therapy and the remaining 9 (14.3%) patients (group 3) suffered from relapsing episodes of HCMV infection, requiring multiple courses of antiviral therapy. The kinetics and magnitude of HCMV-specific CD8(+) T cell reconstitution were comparable among the 3 groups, but HCMV-specific CD4(+) T cells were lower in number in patients requiring antiviral treatment. HCMV-seronegative donors, as well as unrelated donors (receiving antithymocyte globulin) and acute graft-versus-host disease (GVHD) were associated with both delayed HCMV-specific CD4(+) T cell reconstitution and severity of infection. Conversely, these risk factors had no impact on HCMV-specific CD8(+) T cells. Eight patients with previous GVHD suffered from HCMV gastrointestinal disease, although in the presence of HCMV-specific CD4(+) and CD8(+) systemic immunity and undetectable HCMV DNA in blood. Reconstitution of systemic HCMV-specific CD4(+) T cell immunity is required for control of HCMV reactivation in adult HSCT recipients, but it may not be sufficient to prevent late-onset organ localization in patients with GVHD. HCMV-specific CD8(+) T cells contribute to control of HCMV infection, but only after HCMV-specific CD4(+) T cell reconstitution.

  7. Genetic modification of hematopoietic stem cells with nonviral systems: past progress and future prospects.

    PubMed

    Papapetrou, E P; Zoumbos, N C; Athanassiadou, A

    2005-10-01

    Serious unwanted complications provoked by retroviral gene transfer into hematopoietic stem cells (HSCs) have recently raised the need for the development and assessment of alternative gene transfer vectors. Within this context, nonviral gene transfer systems are attracting increasing interest. Their main advantages include low cost, ease of handling and large-scale production, large packaging capacity and, most importantly, biosafety. While nonviral gene transfer into HSCs has been restricted in the past by poor transfection efficiency and transient maintenance, in recent years, biotechnological developments are converting nonviral transfer into a realistic approach for genetic modification of cells of hematopoietic origin. Herein we provide an overview of past accomplishments in the field of nonviral gene transfer into hematopoietic progenitor/stem cells and we point at future challenges. We argue that episomally maintained self-replicating vectors combined with physical methods of delivery show the greatest promise among nonviral gene transfer strategies for the treatment of disorders of the hematopoietic system.

  8. Fetal hepatic progenitors support long-term expansion of hematopoietic stem cells.

    PubMed

    Chou, Song; Flygare, Johan; Lodish, Harvey F

    2013-05-01

    We have developed a coculture system that establishes DLK(+) fetal hepatic progenitors as the authentic supportive cells for expansion of hematopoietic stem (HSCs) and progenitor cells. In 1-week cultures supplemented with serum and supportive cytokines, both cocultured DLK(+) fetal hepatic progenitors and their conditioned medium supported rapid expansion of hematopoietic progenitors and a small increase in HSC numbers. In 2- and 3-week cultures DLK(+) cells, but not their conditioned medium, continuously and significantly (>20-fold) expanded both hematopoietic stem and progenitor cells. Physical contact between HSCs and DLK(+) cells was crucial to maintaining this long-term expansion. Similar HSC expansion (approximately sevenfold) was achieved in cocultures using a serum-free, low cytokine- containing medium. In contrast, DLK(-) cells are incapable of expanding hematopoietic cells, demonstrating that hepatic progenitors are the principle supportive cells for HSC expansion in the fetal liver.

  9. Cell-intrinsic in vivo requirement for the E47-p21 pathway in long-term hematopoietic stem cells.

    PubMed

    Santos, Patricia M; Ding, Ying; Borghesi, Lisa

    2014-01-01

    Major regulators of long-term hematopoietic stem cell (LT-HSC) self-renewal and proliferation have been identified, but knowledge of their in vivo interaction in a linear pathway is lacking. In this study, we show a direct genetic link between the transcription factor E47 and the major cell cycle regulator p21 in controlling LT-HSC integrity in vivo under repopulation stress. Numerous studies have shown that E47 activates p21 transcription in hematopoietic subsets in vitro, and we now reveal the in vivo relevance of the E47-p21 pathway by reducing the gene dose of each factor individually (E47(het) or p21(het)) versus in tandem (E47(het)p21(het)). E47(het)p21(het) LT-HSCs and downstream short-term hematopoietic stem cells exhibit hyperproliferation and preferential susceptibility to mitotoxin compared to wild-type or single haploinsufficient controls. In serial adoptive transfers that rigorously challenge self-renewal, E47(het)p21(het) LT-HSCs dramatically and progressively decline, indicating the importance of cell-intrinsic E47-p21 in preserving LT-HSCs under stress. Transient numeric recovery of downstream short-term hematopoietic stem cells enabled the production of functionally competent myeloid but not lymphoid cells, as common lymphoid progenitors were decreased, and peripheral lymphocytes were virtually ablated. Thus, we demonstrate a developmental compartment-specific and lineage-specific requirement for the E47-p21 pathway in maintaining LT-HSCs, B cells, and T cells under hematopoietic repopulation stress in vivo.

  10. Child-rearing and adult leukemia: Epidemiologic evidence in support of competing hematopoietic stem cell differentiation

    SciTech Connect

    Steven, R.G. ); Severson, R.K. . Japan-Hawaii Cancer Study); Heuser, L. )

    1988-05-01

    The hypothesis that lack of child-rearing increases the risk of acute non-lymphocytic leukemia (ANLL) in adults was examined in a case-control study in western Washington State. Among 159 study subjects over age 50 in 1985, there were 76 cases of ANLL and 83 controls. The crude odds ratio associated with lack of child-rearing was 1.8, with a 95% confidence range of 0.7 to 5.0. The average total number of children ever living with cases was 2.6 and with controls was 3.1 (p = 0.06). The mean total number of years living with a child, or children, under age 18 was 17.6 in cases and 20.2 in controls (p = 0.05). These results were not materially altered after adjustment for age, smoking, race, income, and sex. The data provide evidence that cases of ANLL were less likely to ever have had children and that fewer years were spent rearing children than were spent by controls. The hypothesis was based on the competing stem cell'' theory of hematopoietic ontogeny. If valid, then exposure to children would increase exposure to infection, leading to increased lymphocytic stem cell turnover, and decreased non-lymphocytic stem cell turnover. This, in turn, may reduce risk of ANLL in adults. 18 refs., 3 tabs.

  11. Hematopoietic "stem cell" transplantation: are there any clouds on an expanding horizon?

    PubMed

    Lowry, P A

    1996-01-01

    Clinicians contemplating stem cell transplantation for the treatment of their patients are faced with an increasing number and complexity of options for the source of the stem cells and their manipulation prior to transplant. Many of these strategies focus on the traditional concept of the "hematopoietic stem cell" as a unitary and independent source of reconstitution. Evolving animal studies suggest that the stem cell concept is incompletely defined and that the stem cell compartment retains significant heterogeneity of function. These findings should be combined with the increasingly heterogeneous goals of stem cell transplantation to induce caution in proceeding forward with new technologies.

  12. Enhanced generation of myeloid lineages in hematopoietic differentiation from embryonic stem cells by silencing transcriptional repressor Twist-2.

    PubMed

    Sharabi, Andrew B; Lee, Sung-Hyung; Goodell, Margaret A; Huang, Xue F; Chen, Si-Yi

    2009-12-01

    The self-renewal and multilineage differentiation of embryonic stem cells (ESC) is largely governed by transcription factors or repressors. Extensive efforts have focused on elucidating critical factors that control the differentiation of specific cell lineages, for instance, myeloid lineages in hematopoietic development. In this study, we found that Twist-2, a basic helix-loop-helix (bHLH) transcription factor, plays a critical role in inhibiting the differentiation of ESC. Murine ES cells, in which Twist-2 expression is silenced by lentivirally delivered shRNA, exhibit an enhanced formation of primary embryoid bodies (EB) and enhanced differentiation into mesodermally derived hematopoietic colonies. Furthermore, Twist-2 silenced (LV-siTwist-2) ESC display significantly increased generation of myeloid lineages (Gr-1(+) and F4/80(+) cells) during in vitro hematopoietic differentiation. Treatment with the Toll-like receptor (TLR) 4 ligand synergistically stimulates the generation of primary EB formation as well as of hematopoietic progenitors differentiated from LV-siTwist-2 ES cells. Thus, this study reveals the critical role of the transcriptional repressor Twist-2 in regulating the development of myeloid lineage in hematopoietic differentiation from ESC. This study also suggests a potential strategy for directional differentiation of ESC by inhibiting a transcriptional repressor.

  13. National Hematopoietic Stem Cells Transplant Registry in Poland: Nationwide Internet Reporting System and Results.

    PubMed

    Łęczycka, A; Dudkiewicz, M; Czerwiński, J; Malanowski, P; Żalikowska-Hołoweńko, J; Danielewicz, R

    2016-06-01

    History of hematopoietic stem cell transplantations in Poland begins in early 1980s; the 1st bone marrow allotransplantation was performed in 1983 in the Central Clinical Hospital of the Military Medical Academy in Warsaw. Following years brought the 1st autologous stem cell transplantations. Ten years later, unrelated bone marrow transplantation was performed for the 1st time by the team of the Hematology and Blood and Marrow Transplantation Unit in Katowice. Since then, hematopoietic stem cell transplantation developed to be standard procedure and one of the most important therapies applied in leukemia treatment. The number of allotransplantations in Poland has grown significantly in the past 2 decades, which generated new needs and problems. In 2005, based on a new Transplant Law, a National Transplants Registry was created. Its main role is to collect data (registration of procedures and follow-up data) related to every transplantation case for stem cells and tissues as well as for organs. We present statistics concerning stem cell transplantations performed in Poland, as collected in the National Transplants Registry in the years 2006-2014. There are 18 centers transplanting hematopoietic stem cells in Poland. The total number of hematopoietic stem cell transplantations performed in 2006-2014 was 3,537, with allotransplantations from relatives accounted for 1,491 and from unrelated donors for 2,046. The main indication for allotransplantation in past years was acute leukemia. PMID:27496493

  14. National Hematopoietic Stem Cells Transplant Registry in Poland: Nationwide Internet Reporting System and Results.

    PubMed

    Łęczycka, A; Dudkiewicz, M; Czerwiński, J; Malanowski, P; Żalikowska-Hołoweńko, J; Danielewicz, R

    2016-06-01

    History of hematopoietic stem cell transplantations in Poland begins in early 1980s; the 1st bone marrow allotransplantation was performed in 1983 in the Central Clinical Hospital of the Military Medical Academy in Warsaw. Following years brought the 1st autologous stem cell transplantations. Ten years later, unrelated bone marrow transplantation was performed for the 1st time by the team of the Hematology and Blood and Marrow Transplantation Unit in Katowice. Since then, hematopoietic stem cell transplantation developed to be standard procedure and one of the most important therapies applied in leukemia treatment. The number of allotransplantations in Poland has grown significantly in the past 2 decades, which generated new needs and problems. In 2005, based on a new Transplant Law, a National Transplants Registry was created. Its main role is to collect data (registration of procedures and follow-up data) related to every transplantation case for stem cells and tissues as well as for organs. We present statistics concerning stem cell transplantations performed in Poland, as collected in the National Transplants Registry in the years 2006-2014. There are 18 centers transplanting hematopoietic stem cells in Poland. The total number of hematopoietic stem cell transplantations performed in 2006-2014 was 3,537, with allotransplantations from relatives accounted for 1,491 and from unrelated donors for 2,046. The main indication for allotransplantation in past years was acute leukemia.

  15. Antifungal Therapy in Hematopoietic Stem Cell Transplant Recipients.

    PubMed

    Busca, Alessandro; Pagano, Livio

    2016-01-01

    Invasive fungal infections (IFI) represent a major hindrance to the success of hematopoietic stem cell transplantation (HSCT), contributing substantially to morbidity and infection-related mortality. During the most recent years several reports indicate an overall increase of IFI among hematologic patients, in particular, invasive aspergillosis, that may be explained, at least partially, by the fact that diagnoses only suspected in the past, are now more easily established due to the application of serum biomarkers and early use of CT scan. Along with new diagnostic options, comes the recent development of novel antifungal agents that expanded the spectrum of activity over traditional treatments contributing to the successful management of fungal diseases. When introduced in 1959, Amphotericin B deoxycholate (d-AmB) was a life-saving drug, and the clinical experience over 50 years has proven that this compound is effective although toxic. Given the superior safety profile, lipid formulations of AmB have now replaced d-AmB in many circumstances. Similarly, echinocandins have been investigated as initial therapy for IA in several clinical trials including HSCT recipients, although the results were moderately disappointing leading to a lower grade of recommendation in the majority of published guidelines. Azoles represent the backbone of therapy for treating immunocompromised patients with IFI, including voriconazole and the newcomer isavuconazole; in addition, large studies support the use of mold-active azoles, namely voriconazole and posaconazole, as antifungal prophylaxis in HSCT recipients. The aim of the present review is to summarize the clinical application of antifungal agents most commonly employed in the treatment of IFI. PMID:27648202

  16. Autologous hematopoietic stem cell transplantation for autoimmune diseases.

    PubMed

    Gratwohl, A; Passweg, J; Bocelli-Tyndall, C; Fassas, A; van Laar, J M; Farge, D; Andolina, M; Arnold, R; Carreras, E; Finke, J; Kötter, I; Kozak, T; Lisukov, I; Löwenberg, B; Marmont, A; Moore, J; Saccardi, R; Snowden, J A; van den Hoogen, F; Wulffraat, N M; Zhao, X W; Tyndall, A

    2005-05-01

    Experimental data and early phase I/II studies suggest that high-dose chemotherapy followed by autologous hematopoietic stem cell transplantation (HSCT) can arrest progression of severe autoimmune diseases. We have evaluated the toxicity and disease response in 473 patients with severe autoimmune disease treated with autologous HSCT between 1995 and 2003, from 110 centers participating in the European Group for Blood and Marrow Transplantation (EBMT) autoimmune disease working party database. Survival, transplant-related mortality, treatment response and disease progression were assessed. In all, 420 patients (89%; 86+/-4% at 3 years, median follow-up 20 months) were alive, 53 (11%) had died from transplant-related mortality (N=31; 7+/-3% at 3 years) or disease progression (N=22; 9+/-4% at 3 years). Of 370 patients, 299 evaluable for response (81%) showed a treatment response, which was sustained in 213 (71% of responders). Response was associated with disease (P<0.001), was better in patients who received cyclophosphamide during mobilization (relative risk (RR)3.28 (1.57-6.83)) and was worse with increasing age (>40 years, RR0.29 (0.11-0.82)). Disease progression was associated with disease (P<0.001) and conditioning intensity (high intensity, RR1; intermediate intensity, RR1.81 (0.96-3.42)); low intensity, RR2.34 (1.074-5.11)). These data from the collective EBMT experience support the hypothesis that autologous HSCT can alter disease progression in severe autoimmune disease.

  17. Antifungal Therapy in Hematopoietic Stem Cell Transplant Recipients

    PubMed Central

    Busca, Alessandro; Pagano, Livio

    2016-01-01

    Invasive fungal infections (IFI) represent a major hindrance to the success of hematopoietic stem cell transplantation (HSCT), contributing substantially to morbidity and infection-related mortality. During the most recent years several reports indicate an overall increase of IFI among hematologic patients, in particular, invasive aspergillosis, that may be explained, at least partially, by the fact that diagnoses only suspected in the past, are now more easily established due to the application of serum biomarkers and early use of CT scan. Along with new diagnostic options, comes the recent development of novel antifungal agents that expanded the spectrum of activity over traditional treatments contributing to the successful management of fungal diseases. When introduced in 1959, Amphotericin B deoxycholate (d-AmB) was a life-saving drug, and the clinical experience over 50 years has proven that this compound is effective although toxic. Given the superior safety profile, lipid formulations of AmB have now replaced d-AmB in many circumstances. Similarly, echinocandins have been investigated as initial therapy for IA in several clinical trials including HSCT recipients, although the results were moderately disappointing leading to a lower grade of recommendation in the majority of published guidelines. Azoles represent the backbone of therapy for treating immunocompromised patients with IFI, including voriconazole and the newcomer isavuconazole; in addition, large studies support the use of mold-active azoles, namely voriconazole and posaconazole, as antifungal prophylaxis in HSCT recipients. The aim of the present review is to summarize the clinical application of antifungal agents most commonly employed in the treatment of IFI.

  18. Hypoxia and Metabolic Properties of Hematopoietic Stem Cells

    PubMed Central

    2014-01-01

    Abstract Significance: The effect of redox signaling on hematopoietic stem cell (HSC) function is not clearly understood. Recent Advances: A growing body of evidence suggests that adult HSCs reside in the hypoxic bone marrow microenvironment or niche during homeostasis. It was recently shown that primitive HSCs in the bone marrow prefer to utilize anaerobic glycolysis to meet their energy demands and have lower rates of oxygen consumption and lower ATP levels. Hypoxia-inducible factor-α (Hif-1α) is a master regulator of cellular metabolism. With hundreds of downstream target genes and crosstalk with other signaling pathways, it regulates various aspects of metabolism from the oxidative stress response to glycolysis and mitochondrial respiration. Hif-1α is highly expressed in HSCs, where it regulates their function and metabolic phenotype. However, the regulation of Hif-1α in HSCs is not entirely understood. The homeobox transcription factor myeloid ecotropic viral integration site 1 (Meis1) is expressed in the most primitive HSCs populations, and it is required for primitive hematopoiesis. Recent reports suggest that Meis1 is required for normal adult HSC function by regulating the metabolism and redox state of HSCs transcriptionally through Hif-1α and Hif-2α. Critical Issues: Given the profound effect of redox status on HSC function, it is critical to fully characterize the intrinsic, and microenvironment-related mechanisms of metabolic and redox regulation in HSCs. Future Directions: Future studies will be needed to elucidate the link between HSC metabolism and HSC fates, including quiescence, self-renewal, differentiation, apoptosis, and migration. Antioxid. Redox Signal. 20, 1891–1901. PMID:23621582

  19. Antifungal Therapy in Hematopoietic Stem Cell Transplant Recipients

    PubMed Central

    Busca, Alessandro; Pagano, Livio

    2016-01-01

    Invasive fungal infections (IFI) represent a major hindrance to the success of hematopoietic stem cell transplantation (HSCT), contributing substantially to morbidity and infection-related mortality. During the most recent years several reports indicate an overall increase of IFI among hematologic patients, in particular, invasive aspergillosis, that may be explained, at least partially, by the fact that diagnoses only suspected in the past, are now more easily established due to the application of serum biomarkers and early use of CT scan. Along with new diagnostic options, comes the recent development of novel antifungal agents that expanded the spectrum of activity over traditional treatments contributing to the successful management of fungal diseases. When introduced in 1959, Amphotericin B deoxycholate (d-AmB) was a life-saving drug, and the clinical experience over 50 years has proven that this compound is effective although toxic. Given the superior safety profile, lipid formulations of AmB have now replaced d-AmB in many circumstances. Similarly, echinocandins have been investigated as initial therapy for IA in several clinical trials including HSCT recipients, although the results were moderately disappointing leading to a lower grade of recommendation in the majority of published guidelines. Azoles represent the backbone of therapy for treating immunocompromised patients with IFI, including voriconazole and the newcomer isavuconazole; in addition, large studies support the use of mold-active azoles, namely voriconazole and posaconazole, as antifungal prophylaxis in HSCT recipients. The aim of the present review is to summarize the clinical application of antifungal agents most commonly employed in the treatment of IFI. PMID:27648202

  20. Hematopoietic stem/progenitor cell commitment to the megakaryocyte lineage.

    PubMed

    Woolthuis, Carolien M; Park, Christopher Y

    2016-03-10

    The classical model of hematopoiesis has long held that hematopoietic stem cells (HSCs) sit at the apex of a developmental hierarchy in which HSCs undergo long-term self-renewal while giving rise to cells of all the blood lineages. In this model, self-renewing HSCs progressively lose the capacity for self-renewal as they transit into short-term self-renewing and multipotent progenitor states, with the first major lineage commitment occurring in multipotent progenitors, thus giving rise to progenitors that initiate the myeloid and lymphoid branches of hematopoiesis. Subsequently, within the myeloid lineage, bipotent megakaryocyte-erythrocyte and granulocyte-macrophage progenitors give rise to unipotent progenitors that ultimately give rise to all mature progeny. However, over the past several years, this developmental scheme has been challenged, with the origin of megakaryocyte precursors being one of the most debated subjects. Recent studies have suggested that megakaryocytes can be generated from multiple pathways and that some differentiation pathways do not require transit through a requisite multipotent or bipotent megakaryocyte-erythrocyte progenitor stage. Indeed, some investigators have argued that HSCs contain a subset of cells with biased megakaryocyte potential, with megakaryocytes directly arising from HSCs under steady-state and stress conditions. In this review, we discuss the evidence supporting these nonclassical megakaryocytic differentiation pathways and consider their relative strengths and weaknesses as well as the technical limitations and potential pitfalls in interpreting these studies. Ultimately, such pitfalls will need to be overcome to provide a comprehensive and definitive understanding of megakaryopoiesis. PMID:26787736

  1. Donor Dependent Variations in Hematopoietic Differentiation among Embryonic and Induced Pluripotent Stem Cell Lines.

    PubMed

    Féraud, Olivier; Valogne, Yannick; Melkus, Michael W; Zhang, Yanyan; Oudrhiri, Noufissa; Haddad, Rima; Daury, Aurélie; Rocher, Corinne; Larbi, Aniya; Duquesnoy, Philippe; Divers, Dominique; Gobbo, Emilie; Brunet de la Grange, Philippe; Louache, Fawzia; Bennaceur-Griscelli, Annelise; Mitjavila-Garcia, Maria Teresa

    2016-01-01

    Hematopoiesis generated from human embryonic stem cells (ES) and induced pluripotent stem cells (iPS) are unprecedented resources for cell therapy. We compared hematopoietic differentiation potentials from ES and iPS cell lines originated from various donors and derived them using integrative and non-integrative vectors. Significant differences in differentiation toward hematopoietic lineage were observed among ES and iPS. The ability of engraftment of iPS or ES-derived cells in NOG mice varied among the lines with low levels of chimerism. iPS generated from ES cell-derived mesenchymal stem cells (MSC) reproduce a similar hematopoietic outcome compared to their parental ES cell line. We were not able to identify any specific hematopoietic transcription factors that allow to distinguish between good versus poor hematopoiesis in undifferentiated ES or iPS cell lines. There is a relatively unpredictable variation in hematopoietic differentiation between ES and iPS cell lines that could not be predicted based on phenotype or gene expression of the undifferentiated cells. These results demonstrate the influence of genetic background in variation of hematopoietic potential rather than the reprogramming process.

  2. Donor Dependent Variations in Hematopoietic Differentiation among Embryonic and Induced Pluripotent Stem Cell Lines

    PubMed Central

    Féraud, Olivier; Valogne, Yannick; Melkus, Michael W.; Zhang, Yanyan; Oudrhiri, Noufissa; Haddad, Rima; Daury, Aurélie; Rocher, Corinne; Larbi, Aniya; Duquesnoy, Philippe; Divers, Dominique; Gobbo, Emilie; Brunet de la Grange, Philippe; Louache, Fawzia; Bennaceur-Griscelli, Annelise; Mitjavila-Garcia, Maria Teresa

    2016-01-01

    Hematopoiesis generated from human embryonic stem cells (ES) and induced pluripotent stem cells (iPS) are unprecedented resources for cell therapy. We compared hematopoietic differentiation potentials from ES and iPS cell lines originated from various donors and derived them using integrative and non-integrative vectors. Significant differences in differentiation toward hematopoietic lineage were observed among ES and iPS. The ability of engraftment of iPS or ES-derived cells in NOG mice varied among the lines with low levels of chimerism. iPS generated from ES cell-derived mesenchymal stem cells (MSC) reproduce a similar hematopoietic outcome compared to their parental ES cell line. We were not able to identify any specific hematopoietic transcription factors that allow to distinguish between good versus poor hematopoiesis in undifferentiated ES or iPS cell lines. There is a relatively unpredictable variation in hematopoietic differentiation between ES and iPS cell lines that could not be predicted based on phenotype or gene expression of the undifferentiated cells. These results demonstrate the influence of genetic background in variation of hematopoietic potential rather than the reprogramming process. PMID:26938212

  3. Olive leaf components apigenin 7-glucoside and luteolin 7-glucoside direct human hematopoietic stem cell differentiation towards erythroid lineage.

    PubMed

    Samet, Imen; Villareal, Myra O; Motojima, Hideko; Han, Junkyu; Sayadi, Sami; Isoda, Hiroko

    2015-06-01

    The generation of blood cellular components from hematopoietic stem cells is important for the therapy of a broad spectrum of hematological disorders. In recent years, several lines of evidence suggested that certain nutrients, vitamins and flavonoids may have important roles in controlling the stem cell fate decision by maintaining their self-renewal or stimulating the lineage-specific differentiation. In this study, main olive leaf phytochemicals oleuropein (Olp), apigenin 7-glucoside (Api7G) and luteolin 7-glucoside (Lut7G) were investigated for their potential effects on hematopoietic stem cell differentiation using both phenotypic and molecular analysis. Oleuropein and the combination of the three compounds enhanced the differentiation of CD34+ cells into myelomonocytic cells and lymphocytes progenitors and inhibited the commitment to megakaryocytic and erythroid lineages. Treatment with Lut7G stimulated both the erythroid and the myeloid differentiation, while treatment with Api7G specifically induced the differentiation of CD34+ cells towards the erythroid lineage and inhibited the myeloid differentiation. Erythroid differentiation induced by Api7G and Lut7G treatments was confirmed by the increase in hemoglobin genes expressions (α-hemoglobin, β-hemoglobin and γ-hemoglobin) and erythroid transcription factor GATA1 expression. As revealed by microarray analysis, the mechanisms underlying the erythroid differentiation-inducing effect of Api7G on hematopoietic stem cells involves the activation of JAK/STAT signaling pathway. These findings prove the differentiation-inducing effects of olive leaf compounds on hematopoietic stem cells and highlight their potential use in the ex vivo generation of blood cells.

  4. Olive leaf components apigenin 7-glucoside and luteolin 7-glucoside direct human hematopoietic stem cell differentiation towards erythroid lineage.

    PubMed

    Samet, Imen; Villareal, Myra O; Motojima, Hideko; Han, Junkyu; Sayadi, Sami; Isoda, Hiroko

    2015-06-01

    The generation of blood cellular components from hematopoietic stem cells is important for the therapy of a broad spectrum of hematological disorders. In recent years, several lines of evidence suggested that certain nutrients, vitamins and flavonoids may have important roles in controlling the stem cell fate decision by maintaining their self-renewal or stimulating the lineage-specific differentiation. In this study, main olive leaf phytochemicals oleuropein (Olp), apigenin 7-glucoside (Api7G) and luteolin 7-glucoside (Lut7G) were investigated for their potential effects on hematopoietic stem cell differentiation using both phenotypic and molecular analysis. Oleuropein and the combination of the three compounds enhanced the differentiation of CD34+ cells into myelomonocytic cells and lymphocytes progenitors and inhibited the commitment to megakaryocytic and erythroid lineages. Treatment with Lut7G stimulated both the erythroid and the myeloid differentiation, while treatment with Api7G specifically induced the differentiation of CD34+ cells towards the erythroid lineage and inhibited the myeloid differentiation. Erythroid differentiation induced by Api7G and Lut7G treatments was confirmed by the increase in hemoglobin genes expressions (α-hemoglobin, β-hemoglobin and γ-hemoglobin) and erythroid transcription factor GATA1 expression. As revealed by microarray analysis, the mechanisms underlying the erythroid differentiation-inducing effect of Api7G on hematopoietic stem cells involves the activation of JAK/STAT signaling pathway. These findings prove the differentiation-inducing effects of olive leaf compounds on hematopoietic stem cells and highlight their potential use in the ex vivo generation of blood cells. PMID:26299581

  5. Hematopoietic stem cell transplantation in utero produces sheep-goat chimeras.

    PubMed

    Oppenheim, S M; Muench, M O; Gutiérrez-Adán, A; Moyer, A L; BonDurant, R H; Rowe, J D; Anderson, G B

    2001-01-01

    Both allogeneic and xenogeneic hematopoietic chimera models have been developed, including fetal sheep models that demonstrated high levels of stable, multilineage engraftment created by in utero hematopoietic stem cell transplantation. The aim of this study was to test the efficacy of in utero transplantation to create xenogeneic sheep-goat hematopoietic chimeras. Fetal liver cells and T-cell-depleted adult bone marrow were tested as sources of hematopoietic stem cells. Donor cells were injected intraperitoneally into 130 recipient fetuses between 49 and 62 days of gestation. Groups 1 and 2 received crude fetal liver cell preparations. Group 3 received fetal liver cells that were incubated overnight in a phytohemagglutinin-stimulated lymphocyte-conditioned medium (PHA-LCM). In Group 4, hematopoietic stem cells were concentrated by using additional density separations. Group 5 fetal recipients received low-density, T-cell-depleted adult bone marrow cells. In Group 1, fetuses were accessed via hysterotomy. Hematopoietic stem cells were injected into Groups 2, 3, 4, and 5 without cutting through the uterine wall. Fetal survival in the five groups ranged from 56 to 100%. The percentage of chimeras from injected fetuses ranged from 43 to 92% by FACS and PCR analyses; however, levels of chimerism were low (<1%). The highest rates of chimerism were found among recipients of low-density fetal liver cells. Despite the pre-immunocompetent status of the fetal recipients and the genetic similarities between sheep and goats, high levels of engraftment were not observed. The consistently low levels of chimerism observed in this study, as well as the poor results recently reported by others using these procedures, indicate that significant barriers exist to transplanting hematopoietic stem cells in utero. PMID:11358392

  6. Non-genotoxic conditioning for hematopoietic stem cell transplantation using a hematopoietic-cell-specific internalizing immunotoxin.

    PubMed

    Palchaudhuri, Rahul; Saez, Borja; Hoggatt, Jonathan; Schajnovitz, Amir; Sykes, David B; Tate, Tiffany A; Czechowicz, Agnieszka; Kfoury, Youmna; Ruchika, Fnu; Rossi, Derrick J; Verdine, Gregory L; Mansour, Michael K; Scadden, David T

    2016-07-01

    Hematopoietic stem cell transplantation (HSCT) offers curative therapy for patients with hemoglobinopathies, congenital immunodeficiencies, and other conditions, possibly including AIDS. Autologous HSCT using genetically corrected cells would avoid the risk of graft-versus-host disease (GVHD), but the genotoxicity of conditioning remains a substantial barrier to the development of this approach. Here we report an internalizing immunotoxin targeting the hematopoietic-cell-restricted CD45 receptor that effectively conditions immunocompetent mice. A single dose of the immunotoxin, CD45-saporin (SAP), enabled efficient (>90%) engraftment of donor cells and full correction of a sickle-cell anemia model. In contrast to irradiation, CD45-SAP completely avoided neutropenia and anemia, spared bone marrow and thymic niches, enabling rapid recovery of T and B cells, preserved anti-fungal immunity, and had minimal overall toxicity. This non-genotoxic conditioning method may provide an attractive alternative to current conditioning regimens for HSCT in the treatment of non-malignant blood diseases. PMID:27272386

  7. The road to purified hematopoietic stem cell transplants is paved with antibodies

    PubMed Central

    Logan, Aaron C.; Weissman, Irving L.; Shizuru, Judith A.

    2016-01-01

    Hematopoietic progenitor cell replacement therapy remains a surprisingly unrefined process. In general, unmanipulated bone marrow or mobilized peripheral blood grafts which carry potentially harmful passenger cells are administered after treating recipients with high-dose chemo- and/or radiotherapy to eradicate malignant disease, eliminate immunologic barriers to allogeneic cell engraftment, and to “make space” for rare donor stem cells within the stem cell niche. The sequalae of such treatments are substantial, including direct organ toxicity and non-specific inflammation that contributes to the development of graft-versus-host disease and poor immune reconstitution. Passenger tumor cells that contaminate autologous hematopoietic grafts may contribute to relapse post-transplant. Use of antibodies to rid grafts of unwanted cell populations, and to eliminate or minimize the need for non-specifically cytotoxic therapies used to condition transplant recipients, will dramatically improve the safety profile of allogeneic and gene-modified autologous hematopoietic stem cell therapies. PMID:22939368

  8. A problem-solving education intervention in caregivers and patients during allogeneic hematopoietic stem cell transplantation.

    PubMed

    Bevans, Margaret; Wehrlen, Leslie; Castro, Kathleen; Prince, Patricia; Shelburne, Nonniekaye; Soeken, Karen; Zabora, James; Wallen, Gwenyth R

    2014-05-01

    The aim of this study was to determine the effect of problem-solving education on self-efficacy and distress in informal caregivers of allogeneic hematopoietic stem cell transplantation patients. Patient/caregiver teams attended three 1-hour problem-solving education sessions to help cope with problems during hematopoietic stem cell transplantation. Primary measures included the Cancer Self-Efficacy Scale-transplant and Brief Symptom Inventory-18. Active caregivers reported improvements in self-efficacy (p < 0.05) and distress (p < 0.01) post-problem-solving education; caregiver responders also reported better health outcomes such as fatigue. The effect of problem-solving education on self-efficacy and distress in hematopoietic stem cell transplantation caregivers supports its inclusion in future interventions to meet the multifaceted needs of this population.

  9. Are neural crest stem cells the missing link between hematopoietic and neurogenic niches?

    PubMed

    Coste, Cécile; Neirinckx, Virginie; Gothot, André; Wislet, Sabine; Rogister, Bernard

    2015-01-01

    Hematopoietic niches are defined as cellular and molecular microenvironments that regulate hematopoietic stem cell (HSC) function together with stem cell autonomous mechanisms. Many different cell types have been characterized as contributors to the formation of HSC niches, such as osteoblasts, endothelial cells, Schwann cells, and mesenchymal progenitors. These mesenchymal progenitors have themselves been classified as CXC chemokine ligand (CXCL) 12-abundant reticular (CAR) cells, stem cell factor expressing cells, or nestin-positive mesenchymal stem cells (MSCs), which have been recently identified as neural crest-derived cells (NCSCs). Together, these cells are spatially associated with HSCs and believed to provide appropriate microenvironments for HSC self-renewal, differentiation, mobilization and hibernation both by cell-cell contact and soluble factors. Interestingly, it appears that regulatory pathways governing the hematopoietic niche homeostasis are operating in the neurogenic niche as well. Therefore, this review paper aims to compare both the regulation of hematopoietic and neurogenic niches, in order to highlight the role of NCSCs and nervous system components in the development and the regulation of the hematopoietic system.

  10. Role of Hematopoietic Stem Cells in Inflammation of the Pancreas during Diabetes Mellitus.

    PubMed

    Dygai, A M; Skurikhin, E G; Pershina, O V; Ermakova, N N; Krupin, V A; Ermolaeva, L A; Stakheeva, M N; Choinzonov, E L; Goldberg, V E; Reikhart, D V; Ellinidi, V N; Kravtsov, V Yu

    2016-02-01

    The model of streptozotocin-induced diabetes mellitus in C57Bl/6 mice was employed to study the role of precursors of insulin-producing β-cells, hematopoietic stem cells, and progenitor hematopoietic cells in inflammation. In addition to provoking hyperglycemia, streptozotocin elevated serum levels of IL-1β and hyaluronic acid, induced edema in the pancreatic insular tissue and its infiltration by inflammatory cells (neutrophils, lymphocytes, and macrophages) and fibroblasts. Inflammation in pancreatic islets was accompanied by necrotic processes and decreasing counts of multipotent progenitor β-cells (CD45(-), TER119(-), c-kit-1(-), and Flk-1(-)), oligopotent progenitor β-cells (CD45(-), TER119(-), CD133(+), and CD49f(low)), and insulinproducing β-cells (Pdx1(+)). Pancreatic infl ammation was preceded by elevation of the number of short-term hematopoietic stem cells (Lin-Sca-1(+)c-kit(+)CD34(+)) relative to long-term cells (Lin(-)Sca-1(+)c-kit(+)CD34(-)) in the bone marrow as well as recruitment of hematopoietic stem and progenitor cells into circulation. Transplantation of bone marrow hematopoietic stem and progenitor cells from diabetic C57Bl/6 donor mice to recipient CBA mice with 5-fluorouracilinduced leukopenia accelerated regeneration of granulocytopoiesis in recipient mice. PMID:26906195

  11. Are neural crest stem cells the missing link between hematopoietic and neurogenic niches?

    PubMed Central

    Coste, Cécile; Neirinckx, Virginie; Gothot, André; Wislet, Sabine; Rogister, Bernard

    2015-01-01

    Hematopoietic niches are defined as cellular and molecular microenvironments that regulate hematopoietic stem cell (HSC) function together with stem cell autonomous mechanisms. Many different cell types have been characterized as contributors to the formation of HSC niches, such as osteoblasts, endothelial cells, Schwann cells, and mesenchymal progenitors. These mesenchymal progenitors have themselves been classified as CXC chemokine ligand (CXCL) 12-abundant reticular (CAR) cells, stem cell factor expressing cells, or nestin-positive mesenchymal stem cells (MSCs), which have been recently identified as neural crest-derived cells (NCSCs). Together, these cells are spatially associated with HSCs and believed to provide appropriate microenvironments for HSC self-renewal, differentiation, mobilization and hibernation both by cell-cell contact and soluble factors. Interestingly, it appears that regulatory pathways governing the hematopoietic niche homeostasis are operating in the neurogenic niche as well. Therefore, this review paper aims to compare both the regulation of hematopoietic and neurogenic niches, in order to highlight the role of NCSCs and nervous system components in the development and the regulation of the hematopoietic system. PMID:26136659

  12. Inhibition of osteoclast function reduces hematopoietic stem cell numbers in vivo.

    PubMed

    Lymperi, Stefania; Ersek, Adel; Ferraro, Francesca; Dazzi, Francesco; Horwood, Nicole J

    2011-02-01

    Osteoblasts play a crucial role in the hematopoietic stem cell (HSC) niche; however, an overall increase in their number does not necessarily promote hematopoiesis. Because the activity of osteoblasts and osteoclasts is coordinately regulated, we hypothesized that active bone-resorbing osteoclasts would participate in HSC niche maintenance. Mice treated with bisphosphonates exhibited a decrease in proportion and absolute number of Lin(-)cKit(+)Sca1(+) Flk2(-) (LKS Flk2(-)) and long-term culture-initiating cells in bone marrow (BM). In competitive transplantation assays, the engraftment of treated BM cells was inferior to that of controls, confirming a decrease in HSC numbers. Accordingly, bisphosphonates abolished the HSC increment produced by parathyroid hormone. In contrast, the number of colony-forming-unit cells in BM was increased. Because a larger fraction of LKS in the BM of treated mice was found in the S/M phase of the cell cycle, osteoclast impairment makes a proportion of HSCs enter the cell cycle and differentiate. To prove that HSC impairment was a consequence of niche manipulation, a group of mice was treated with bisphosphonates and then subjected to BM transplantation from untreated donors. Treated recipient mice experienced a delayed hematopoietic recovery compared with untreated controls. Our findings demonstrate that osteoclast function is fundamental in the HSC niche.

  13. A Rare Complication Developing After Hematopoietic Stem Cell Transplantation: Wernicke’s Encephalopathy

    PubMed Central

    Solmaz, Soner; Gereklioğlu, Çiğdem; Tan, Meliha; Demir, Şenay; Yeral, Mahmut; Korur, Aslı; Boğa, Can; Özdoğu, Hakan

    2015-01-01

    Thiamine is a water-soluble vitamin. Thiamine deficiency can present as a central nervous system disorder known as Wernicke’s encephalopathy, which classically manifests as confusion, ataxia, and ophthalmoplegia. Wernicke’s encephalopathy has rarely been reported following hematopoietic stem cell transplantation. Herein, we report Wernicke’s encephalopathy in a patient with acute myeloid leukemia who had been receiving prolonged total parenteral nutrition after haploidentical allogeneic hematopoietic stem cell transplantation. To the best of our knowledge, this is the first case reported from Turkey in the literature. PMID:25912759

  14. BLOS2 negatively regulates Notch signaling during neural and hematopoietic stem and progenitor cell development

    PubMed Central

    Zhou, Wenwen; He, Qiuping; Zhang, Chunxia; He, Xin; Cui, Zongbin; Liu, Feng; Li, Wei

    2016-01-01

    Notch signaling plays a crucial role in controling the proliferation and differentiation of stem and progenitor cells during embryogenesis or organogenesis, but its regulation is incompletely understood. BLOS2, encoded by the Bloc1s2 gene, is a shared subunit of two lysosomal trafficking complexes, biogenesis of lysosome-related organelles complex-1 (BLOC-1) and BLOC-1-related complex (BORC). Bloc1s2−/− mice were embryonic lethal and exhibited defects in cortical development and hematopoiesis. Loss of BLOS2 resulted in elevated Notch signaling, which consequently increased the proliferation of neural progenitor cells and inhibited neuronal differentiation in cortices. Likewise, ablation of bloc1s2 in zebrafish or mice led to increased hematopoietic stem and progenitor cell production in the aorta-gonad-mesonephros region. BLOS2 physically interacted with Notch1 in endo-lysosomal trafficking of Notch1. Our findings suggest that BLOS2 is a novel negative player in regulating Notch signaling through lysosomal trafficking to control multiple stem and progenitor cell homeostasis in vertebrates. DOI: http://dx.doi.org/10.7554/eLife.18108.001 PMID:27719760

  15. Challenges and strategies for generating therapeutic patient-specific hemangioblasts and hematopoietic stem cells from human pluripotent stem cells

    PubMed Central

    PETERS, ANN; BURRIDGE, PAUL W.; PRYZHKOVA, MARINA V.; LEVINE, MICHAL A.; PARK, TEA-SOON; ROXBURY, CHRISTOPHER; YUAN, XUAN; PÉAULT, BRUNO; ZAMBIDIS, ELIAS T.

    2012-01-01

    Recent characterization of hemangioblasts differentiated from human embryonic stem cells (hESC) has further confirmed evidence from murine, zebrafish and avian experimental systems that hematopoietic and endothelial lineages arise from a common progenitor. Such progenitors may provide a valuable resource for delineating the initial developmental steps of human hemato-endotheliogenesis, which is a process normally difficult to study due to the very limited accessibility of early human embryonic/fetal tissues. Moreover, efficient hemangioblast and hematopoietic stem cell (HSC) generation from patient-specific pluripotent stem cells has enormous potential for regenerative medicine, since it could lead to strategies for treating a multitude of hematologic and vascular disorders. However, significant scientific challenges remain in achieving these goals, and the generation of transplantable hemangioblasts and HSC derived from hESC currently remains elusive. Our previous work has suggested that the failure to derive engraftable HSC from hESC is due to the fact that current methodologies for differentiating hESC produce hematopoietic progenitors developmentally similar to those found in the human yolk sac, and are therefore too immature to provide adult-type hematopoietic reconstitution. Herein, we outline the nature of this challenge and propose targeted strategies for generating engraftable human pluripotent stem cell-derived HSC from primitive hemangioblasts using a developmental approach. We also focus on methods by which reprogrammed somatic cells could be used to derive autologous pluripotent stem cells, which in turn could provide unlimited sources of patient-specific hemangioblasts and HSC. PMID:20563986

  16. Protein Malnutrition Induces Bone Marrow Mesenchymal Stem Cells Commitment to Adipogenic Differentiation Leading to Hematopoietic Failure

    PubMed Central

    Cunha, Mayara Caldas Ramos; Lima, Fabiana da Silva; Vinolo, Marco Aurélio Ramirez; Hastreiter, Araceli; Curi, Rui; Borelli, Primavera; Fock, Ricardo Ambrósio

    2013-01-01

    Protein malnutrition (PM) results in pathological changes that are associated with peripheral leukopenia, bone marrow (BM) hypoplasia and alterations in the BM microenvironment leading to hematopoietic failure; however, the mechanisms involved are poorly understood. In this context, the BM mesenchymal stem cells (MSCs) are cells intimately related to the formation of the BM microenvironment, and their differentiation into adipocytes is important because adipocytes are cells that have the capability to negatively modulate hematopoiesis. Two-month-old male Balb/c mice were subjected to protein-energy malnutrition with a low-protein diet containing 2% protein, whereas control animals were fed a diet containing 12% protein. The hematopoietic parameters and the expression of CD45 and CD117 positive cells in the BM were evaluated. MSCs were isolated from BM, and their capability to produce SCF, IL-3, G-CSF and GM-CSF were analyzed. The expression of PPAR-γ and C/EBP-α as well as the expression of PPAR-γ and SREBP mRNAs were evaluated in MSCs together with their capability to differentiate into adipocytes in vitro. The malnourished animals had anemia and leukopenia as well as spleen and bone marrow hypoplasia and a reduction in the expression of CD45 and CD117 positive cells from BM. The MSCs of the malnourished mice presented an increased capability to produce SCF and reduced production of G-CSF and GM-CSF. The MSCs from the malnourished animals showed increased expression of PPAR-γ protein and PPAR-γ mRNA associated with an increased capability to differentiate into adipocytes. The alterations found in the malnourished animals allowed us to conclude that malnutrition committed MSC differentiation leading to adipocyte decision and compromised their capacity for cytokine production, contributing to an impaired hematopoietic microenvironment and inducing the bone marrow failure commonly observed in protein malnutrition states. PMID:23516566

  17. Risk factors for mortality in patients with bloodstream infections during the pre-engraftment period after hematopoietic stem cell transplantation

    PubMed Central

    Karpov, Igor; Milanovich, Natalia; Uss, Anatoly; Iskrov, Igor

    2016-01-01

    Background Bloodstream infections (BSI) remain a frequent complication during the pre-engraftment period after hematopoietic stem cell transplantation (HSCT), resulting in high mortality rates. This study evaluated risk factors for mortality in hematopoietic stem cell transplant recipients with BSI in the pre-engraftment period. Methods This prospective case control study was performed at the Center of Hematology and Bone Marrow Transplantation in Minsk, Republic of Belarus. Data relating to patient age and gender, date and type of transplantation, conditioning chemotherapy regimen, microorganisms isolated from blood, and antibacterial therapy were prospectively collected from all hematopoietic stem cell recipients with microbiologically proven cases of BSI in the pre-engraftment period. The primary outcome was all-cause 30-day mortality after onset of febrile neutropenia. Results A total of 135 adult patients with microbiologically proven BSI after HSCT were studied, with 65.2% of cases caused by gram-negative microorganisms and 21.5% by non-fermenting bacteria. Inadequate empiric antibacterial therapy and isolation of carbapenem-resistant non-fermenting gram-negative bacteria (Acinetobacter baumannii and Pseudomonas aeruginosa) were independently associated with increased all-cause 30-day mortality in these patients. Conclusion The risk factors for mortality in adult patients with BSI in the pre-engraftment period after HSCT were inadequacy of empirical antibacterial therapy and isolation of carbapenem-resistant A. baumannii or P. aeruginosa. PMID:27382554

  18. Bone Marrow GvHD after Allogeneic Hematopoietic Stem Cell Transplantation

    PubMed Central

    Szyska, Martin; Na, Il-Kang

    2016-01-01

    The bone marrow is the origin of all hematopoietic lineages and an important homing site for memory cells of the adaptive immune system. It has recently emerged as a graft-versus-host disease (GvHD) target organ after allogeneic stem cell transplantation (alloHSCT), marked by depletion of both hematopoietic progenitors and niche-forming cells. Serious effects on the restoration of hematopoietic function and immunological memory are common, especially in patients after myeloablative conditioning therapy. Cytopenia and durable immunodeficiency caused by the depletion of hematopoietic progenitors and destruction of bone marrow niches negatively influence the outcome of alloHSCT. The complex balance between immunosuppressive and cell-depleting treatments, GvHD and immune reconstitution, as well as the desirable graft-versus-tumor (GvT) effect remains a great challenge for clinicians. PMID:27066008

  19. BMP and Hedgehog Regulate Distinct AGM Hematopoietic Stem Cells Ex Vivo

    PubMed Central

    Crisan, Mihaela; Solaimani Kartalaei, Parham; Neagu, Alex; Karkanpouna, Sofia; Yamada-Inagawa, Tomoko; Purini, Caterina; Vink, Chris S.; van der Linden, Reinier; van Ijcken, Wilfred; Chuva de Sousa Lopes, Susana M.; Monteiro, Rui; Mummery, Christine; Dzierzak, Elaine

    2016-01-01

    Summary Hematopoietic stem cells (HSC), the self-renewing cells of the adult blood differentiation hierarchy, are generated during embryonic stages. The first HSCs are produced in the aorta-gonad-mesonephros (AGM) region of the embryo through endothelial to a hematopoietic transition. BMP4 and Hedgehog affect their production and expansion, but it is unknown whether they act to affect the same HSCs. In this study using the BRE GFP reporter mouse strain that identifies BMP/Smad-activated cells, we find that the AGM harbors two types of adult-repopulating HSCs upon explant culture: One type is BMP-activated and the other is a non-BMP-activated HSC type that is indirectly controlled by Hedgehog signaling through the VEGF pathway. Transcriptomic analyses demonstrate that the two HSC types express distinct but overlapping genetic programs. These results revealing the bifurcation in HSC types at early embryonic stages in the AGM explant model suggest that their development is dependent upon the signaling molecules in the microenvironment. PMID:26923823

  20. Regulation of hematopoietic stem and progenitor cell mobilization by cholesterol efflux pathways

    PubMed Central

    Westerterp, Marit; Gourion-Arsiquaud, Samuel; Murphy, Andrew J; Shih, Alan; Cremers, Serge; Levine, Ross L.; Tall, Alan R; Yvan-Charvet, Laurent

    2012-01-01

    Summary Intact cholesterol homeostasis helps to maintain hematopoietic stem and multipotential progenitor cell (HSPC) quiescence. Mice with defects in cholesterol efflux pathways due to deficiencies of the ATP binding cassette transporters ABCA1 and ABCG1 displayed a dramatic increase in HSPC mobilization and extramedullary hematopoiesis. Increased extramedullary hematopoiesis was associated with elevated serum levels of G-CSF due to generation of IL-23 by splenic macrophages and dendritic cells. This favored hematopoietic lineage decisions towards granulocytes rather than macrophages in the bone marrow leading to impaired support for osteoblasts and decreased Cxcl12/SDF-1 production by mesenchymal progenitors. Greater HSPC mobilization and extramedullary hematopoiesis were reversed by raising HDL levels in Abca1−/−Abcg1−/− and Apoe−/− mice or in a mouse model of myeloproliferative neoplasm mediated by Flt3-ITD mutation. Our data identify a novel role of cholesterol efflux pathways in the control of HSPC mobilization. This may translate into novel therapeutic strategies for atherosclerosis and hematologic malignancies. PMID:22862945

  1. RhoA GTPase controls cytokinesis and programmed necrosis of hematopoietic progenitors

    PubMed Central

    Zhou, Xuan; Florian, Maria Carolina; Arumugam, Paritha; Chen, Xiaoyi; Cancelas, Jose A.; Lang, Richard; Malik, Punam; Geiger, Hartmut

    2013-01-01

    Hematopoietic progenitor cells (HPCs) are central to hematopoiesis as they provide large numbers of lineage-defined blood cells necessary to sustain blood homeostasis. They are one of the most actively cycling somatic cells, and their precise control is critical for hematopoietic homeostasis. The small GTPase RhoA is an intracellular molecular switch that integrates cytokine, chemokine, and adhesion signals to coordinate multiple context-dependent cellular processes. By using a RhoA conditional knockout mouse model, we show that RhoA deficiency causes a multilineage hematopoietic failure that is associated with defective multipotent HPCs. Interestingly, RhoA−/− hematopoietic stem cells retained long-term engraftment potential but failed to produce multipotent HPCs and lineage-defined blood cells. This multilineage hematopoietic failure was rescued by reconstituting wild-type RhoA into the RhoA−/− Lin−Sca-1+c-Kit+ compartment. Mechanistically, RhoA regulates actomyosin signaling, cytokinesis, and programmed necrosis of the HPCs, and loss of RhoA results in a cytokinesis failure of HPCs manifested by an accumulation of multinucleated cells caused by failed abscission of the cleavage furrow after telophase. Concomitantly, the HPCs show a drastically increased death associated with increased TNF–RIP-mediated necrosis. These results show that RhoA is a critical and specific regulator of multipotent HPCs during cytokinesis and thus essential for multilineage hematopoiesis. PMID:24101377

  2. Effect of systemic heparan sulfate haploinsufficiency on steady state hematopoiesis and engraftment of hematopoietic stem cells.

    PubMed

    Shekels, Laurie L; Buelt-Gebhardt, Melissa; Gupta, Pankaj

    2015-06-01

    Heparan sulfate (HS) proteoglycans on stromal and hematopoietic stem/progenitor cells (HSPC) help form the stem cell niche, co-localize molecules that direct stem cell fate, and modulate HSPC homing and retention. Inhibition of HS function mobilizes marrow HSPC. In vitro, HSPC maintenance is influenced by stromal HS structure and concentration. Because inhibition of HS activity or synthesis may be developed for HSPC transplantation, it is important to examine if systemic HS deficiency influences hematopoiesis in vivo. In a transgenic mouse model of HS haploinsufficiency, we examined endogenous hematopoiesis and engraftment of allogeneic bone marrow. Endogenous hematopoiesis was normal except gender-specific alterations in peripheral blood monocyte and platelet counts. Donor engraftment was achieved in all mice following myeloablative irradiation, but HS deficiency in the stromal microenvironment, on HSPC, or both (the 3 test conditions), was associated with a trend towards lower donor engraftment percentage in the bone marrow. Following non-myeloablative irradiation, competitive engraftment was achieved in 22% of mice in the test conditions, vs 50% of control animals (P = 0.03). HS deficiency did not re-direct donor engraftment from bone marrow to spleen or liver. Normal HS levels in the stromal microenvironment and HSPC are required for HSPC engraftment following non-myeloablative conditioning. PMID:25976459

  3. Hematopoietic stem and progenitor cell activation during chronic dermatitis provoked by constitutively active aryl-hydrocarbon receptor driven by Keratin 14 promoter.

    PubMed

    Murakami, Shohei; Yamamoto, Masayuki; Motohashi, Hozumi

    2014-03-01

    Polycyclic aromatic hydrocarbons (PAHs) activate aryl-hydrocarbon receptor (AhR). Because PAHs are known as a risk factor for allergic diseases, PAH-induced AhR activation is expected to be involved in the development of the pathology. We previously generated transgenic mice expressing a constitutively active AhR (AhR-CA) under the control of Keratin 14 (K14) promoter (AhR-CA mouse). The mice develop chronic dermatitis with immune imbalance toward Th2 predominance, indicating that the AhR activation driven by K14 promoter provokes allergic response. Because hematopoietic cells actively participate in the development of allergic inflammation, it is important to understand the hematopoietic status under allergic conditions. To clarify how the K14 promoter-driven AhR activation influences hematopoiesis, we analyzed bone marrow and spleen of AhR-CA mice. We verified that AhR-CA was expressed in keratinocytes and thymic epithelial cells but not in hematopoietic cells. The AhR-CA mice with full-blown dermatitis exhibited leukocytosis and skewed differentiation of hematopoietic progenitor cells toward granulocyte-monocyte lineages. They also showed a significant expansion of short-term hematopoietic stem cells and multipotent progenitors and a subtle reduction in long-term hematopoietic stem cells (LT-HSCs). Their spleens were enlarged and abundantly accumulated hematopoietic stem and progenitor cells. AhR-CA mice at the early stage of dermatitis did not show leukocytosis or splenomegaly but exhibited the granulocyte-monocyte skewing and the reduction in LT-HSCs. Thus, AhR activation driven by K14 promoter already alters the hematopoietic differentiation and reduces LT-HSCs at the initial stage of dermatitis development. These results suggest that nonhematopoietic exposure to PAHs triggers allergic response and concomitantly affects hematopoiesis.

  4. Effectiveness of Partner Social Support Predicts Enduring Psychological Distress after Hematopoietic Stem Cell Transplantation

    ERIC Educational Resources Information Center

    Rini, Christine; Redd, William H.; Austin, Jane; Mosher, Catherine E.; Meschian, Yeraz Markarian; Isola, Luis; Scigliano, Eileen; Moskowitz, Craig H.; Papadopoulos, Esperanza; Labay, Larissa E.; Rowley, Scott; Burkhalter, Jack E.; Schetter, Christine Dunkel; DuHamel, Katherine N.

    2011-01-01

    Objective: Hematopoietic stem cell transplant (HSCT) survivors who are 1 to 3 years posttransplant are challenged by the need to resume valued social roles and activities--a task that may be complicated by enduring transplant-related psychological distress common in this patient population. The present study investigated whether transplant…

  5. Genetic regulatory networks programming hematopoietic stem cells and erythroid lineage specification.

    PubMed

    Swiers, Gemma; Patient, Roger; Loose, Matthew

    2006-06-15

    Erythroid cell production results from passage through cellular hierarchies dependent on differential gene expression under the control of transcription factors responsive to changing niches. We have constructed Genetic Regulatory Networks (GRNs) describing this process, based predominantly on mouse data. Regulatory network motifs identified in E. coli and yeast GRNs are found in combination in these GRNs. Feed-forward motifs with autoregulation generate forward momentum and also control its rate, which is at its lowest in hematopoietic stem cells (HSCs). The simultaneous requirement for multiple regulators in multi-input motifs (MIMs) provides tight control over expression of target genes. Combinations of MIMs, exemplified by the SCL/LMO2 complexes, which have variable content and binding sites, explain how individual regulators can have different targets in HSCs and erythroid cells and possibly also how HSCs maintain stem cell functions while expressing lineage-affiliated genes at low level, so-called multi-lineage priming. MIMs combined with cross-antagonism describe the relationship between PU.1 and GATA-1 and between two of their target genes, Fli-1 and EKLF, with victory for GATA-1 and EKLF leading to erythroid lineage specification. These GRNs are useful repositories for current regulatory information, are accessible in interactive form via the internet, enable the consequences of perturbation to be predicted, and can act as seed networks to organize the rapidly accumulating microarray data.

  6. Evidence for the involvement of sphingosine-1-phosphate in the homing and engraftment of hematopoietic stem cells to bone marrow

    PubMed Central

    Adamiak, Mateusz; Borkowska, Sylwia; Wysoczynski, Marcin; Suszynska, Malwina; Kucia, Magda; Rokosh, Gregg; Abdel-Latif, Ahmed; Ratajczak, Janina; Ratajczak, Mariusz Z.

    2015-01-01

    The α-chemokine stromal-derived factor 1 (SDF-1), which binds to the CXCR4 receptor, directs migration and homing of CXCR4+ hematopoietic stem/progenitor cells (HSPCs) to bone marrow (BM) stem cell niches. Nevertheless, it is also known that CXCR4−/− fetal liver-derived hematopoietic stem cells engraft into BM and that blockade of CXCR4 by its antagonist AMD3100 does not prevent engraftment of HSPCs. Because of this finding of SDF-1-CXCR4-independent BM homing, the unique role of SDF-1 in HSPC homing has recently been challenged. While SDF-1 is the only chemokine that chemoattracts HSPCs, other chemoattractants for these cells have recently been described, including the bioactive phosphosphingolipid sphingosine-1-phosphate (S1P). To address the potential role of S1P in homing of HSPCs to BM, we performed hematopoietic transplants into mice deficient in BM-expressed sphingosine kinase 1 (Sphk1−/−) using hematopoietic cells from normal control mice as well as cells from mice in which floxed CXCR4 (CXCR4fl/fl) was conditionally deleted. We observed the presence of a homing and engraftment defect in HSPCs of Sphk1−/− mice that was particularly profound after transplantation of CXCR4−/− BM cells. Thus, our results indicate that BM-microenvironment-expressed S1P plays a role in homing of HSPCs. They also support the concept that, in addition to the SDF-1-CXCR4 axis, other chemotactic axes are also involved in homing and engraftment of HSPCs. PMID:26299919

  7. Microbial contamination of peripheral blood and bone marrow hematopoietic cell products and environmental contamination in a stem cell bank: a single-center report.

    PubMed

    Kozlowska-Skrzypczak, M; Bembnista, E; Kubiak, A; Matuszak, P; Schneider, A; Komarnicki, M

    2014-10-01

    Hematopoietic stem cells (HSC) derived from peripheral blood (PB) and bone marrow (BM) are frequently used for autologous and allogenic transplantations. Establishing quality control at appropriate steps of the stem cell preparation process is crucial for a successful transplantation. Microbial contamination of haematopoietic stem cells is rare but could cause a potentially mortal complication of a stem cells transplantation. We investigated the microbiological contamination of PB (291 donations) and BM (39 donations) products. Microbial cultures of 330 donations between January 2012 and June 2013 were retrospectively analyzed after the collection and preparation steps. The microbiological analysis was performed with an automated system. Hematopoietic stem cells were processed in a closed system. Additionally, in this report the environment of the working areas of stem cell preparation was monitored. We analyzed microbial contamination of the air in a class I laminar air flow clean bench at the time of preparation and in the laboratory once per month. We reported 9 (2.73%) contaminated HSC products. The most frequent bacteria isolated from PB and BM products were Bacillus species. Coagulase-negative staphylococci and Micrococcus species were the most frequent micro-organisms detected in the air microbial control. Microbial control results are necessary for the safety of hematopoietic stem cell products transplantation. Microbial control of hematopoietic stem cell products enables an early contamination detection and allows for knowledgeable decision making concerning either discarding the contaminated product or introducing an efficient antibiotic therapy. Each step of cell processing may cause a bacterial contamination. A minimum of manipulation steps is crucial for increasing the microbial purity of the transplant material. Also, the air contamination control is essential to ensure the highest quality standards of HSC products preparation.

  8. Hematopoietic stem cells: potential new applications for translational medicine.

    PubMed

    Felfly, Hady; Haddad, Gabriel G

    2014-01-01

    Hematopoietic stem cells (HSC) are multipotent cells that produce the various lineages of blood and HSC transplantations (HSCT) are widely used to reconstitute damaged bone marrow (BM). Over time, HSCT has evolved for the treatment of non-blood diseases as well, brain in particular. However, HSCT required total myeloablation through irradiation and/or chemotherapy for the treatment of BM-related diseases, and HSCs are difficult to safely deliver in large amounts into the brain. In blood disorders, for a minimal myelosuppression to be sufficient and allow donor cells to engraft, it is necessary to determine the minimal percentage of normal BM cells needed to achieve phenotypic correction. Recent studies on animal models of ?-thalassemia and sickle cell disease (SCD), through Competitive Repopulation Assay (CRA) following lethal irradiation of recipients, demonstrated that an average of 25% normal BM cells allows the production of enough normal red blood cells to significantly correct the ?-thalassemia and SCD phenotypes, at the levels of BM, blood, histology, and survival, with normal donor cells contributing to 50-60% of peripheral red blood cells. Further assays using mild myelosuppression showed that long term sustained phenotypic correction can be obtained for both diseases through a novel transplantation strategy based on modulating four parameters: dose of irradiation/myelosuppression, number of transplanted cells, timing of cell injections, and number of cell doses. Through a minimal dose of irradiation of 1Gy (100 Rads) or 2Gy, two injections of BM cells within the first 24h after myelosuppression resulted in engraftment in 100% of mice and a sustained therapeutic mixed chimerism in ?-thalassemia, while three to four injections were needed to achieve a similar outcome in SCD. Following the success of these trials, we modified this novel HSCT strategy and applied it to determine whether we can protect mice from lethal stroke induced through the Middle

  9. TopBP1 Governs Hematopoietic Stem/Progenitor Cells Survival in Zebrafish Definitive Hematopoiesis.

    PubMed

    Gao, Lei; Li, Dantong; Ma, Ke; Zhang, Wenjuan; Xu, Tao; Fu, Cong; Jing, Changbin; Jia, Xiaoe; Wu, Shuang; Sun, Xin; Dong, Mei; Deng, Min; Chen, Yi; Zhu, Wenge; Peng, Jinrong; Wan, Fengyi; Zhou, Yi; Zon, Leonard I; Pan, Weijun

    2015-07-01

    In vertebrate definitive hematopoiesis, nascent hematopoietic stem/progenitor cells (HSPCs) migrate to and reside in proliferative hematopoietic microenvironment for transitory expansion. In this process, well-established DNA damage response pathways are vital to resolve the replication stress, which is deleterious for genome stability and cell survival. However, the detailed mechanism on the response and repair of the replication stress-induced DNA damage during hematopoietic progenitor expansion remains elusive. Here we report that a novel zebrafish mutantcas003 with nonsense mutation in topbp1 gene encoding topoisomerase II β binding protein 1 (TopBP1) exhibits severe definitive hematopoiesis failure. Homozygous topbp1cas003 mutants manifest reduced number of HSPCs during definitive hematopoietic cell expansion, without affecting the formation and migration of HSPCs. Moreover, HSPCs in the caudal hematopoietic tissue (an equivalent of the fetal liver in mammals) in topbp1cas003 mutant embryos are more sensitive to hydroxyurea (HU) treatment. Mechanistically, subcellular mislocalization of TopBP1cas003 protein results in ATR/Chk1 activation failure and DNA damage accumulation in HSPCs, and eventually induces the p53-dependent apoptosis of HSPCs. Collectively, this study demonstrates a novel and vital role of TopBP1 in the maintenance of HSPCs genome integrity and survival during hematopoietic progenitor expansion.

  10. Deletion of proapoptotic Puma selectively protects hematopoietic stem and progenitor cells against high-dose radiation.

    PubMed

    Shao, Lijian; Sun, Yan; Zhang, Zhonghui; Feng, Wei; Gao, Yongxing; Cai, Zailong; Wang, Zack Z; Look, A Thomas; Wu, Wen-Shu

    2010-06-10

    Bone marrow injury is a major adverse side effect of radiation and chemotherapy. Attempts to limit such damage are warranted, but their success requires a better understanding of how radiation and anticancer drugs harm the bone marrow. Here, we report one pivotal role of the BH3-only protein Puma in the radiosensitivity of hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs). Puma deficiency in mice confers resistance to high-dose radiation in a hematopoietic cell-autonomous manner. Unexpectedly, loss of one Puma allele is sufficient to confer mice radioresistance. Interestingly, null mutation in Puma protects both primitive and differentiated hematopoietic cells from damage caused by low-dose radiation but selectively protects HSCs and HPCs against high-dose radiation, thereby accelerating hematopoietic regeneration. Consistent with these findings, Puma is required for radiation-induced apoptosis in HSCs and HPCs, and Puma is selectively induced by irradiation in primitive hematopoietic cells, and this induction is impaired in Puma-heterozygous cells. Together, our data indicate that selective targeting of p53 downstream apoptotic targets may represent a novel strategy to protecting HSCs and HPCs in patients undergoing intensive cancer radiotherapy and chemotherapy.

  11. TopBP1 Governs Hematopoietic Stem/Progenitor Cells Survival in Zebrafish Definitive Hematopoiesis

    PubMed Central

    Gao, Lei; Li, Dantong; Ma, Ke; Zhang, Wenjuan; Xu, Tao; Fu, Cong; Jing, Changbin; Jia, Xiaoe; Wu, Shuang; Sun, Xin; Dong, Mei; Deng, Min; Chen, Yi; Zhu, Wenge; Peng, Jinrong; Wan, Fengyi; Zhou, Yi; Zon, Leonard I.; Pan, Weijun

    2015-01-01

    In vertebrate definitive hematopoiesis, nascent hematopoietic stem/progenitor cells (HSPCs) migrate to and reside in proliferative hematopoietic microenvironment for transitory expansion. In this process, well-established DNA damage response pathways are vital to resolve the replication stress, which is deleterious for genome stability and cell survival. However, the detailed mechanism on the response and repair of the replication stress-induced DNA damage during hematopoietic progenitor expansion remains elusive. Here we report that a novel zebrafish mutantcas003 with nonsense mutation in topbp1 gene encoding topoisomerase II β binding protein 1 (TopBP1) exhibits severe definitive hematopoiesis failure. Homozygous topbp1cas003 mutants manifest reduced number of HSPCs during definitive hematopoietic cell expansion, without affecting the formation and migration of HSPCs. Moreover, HSPCs in the caudal hematopoietic tissue (an equivalent of the fetal liver in mammals) in topbp1cas003 mutant embryos are more sensitive to hydroxyurea (HU) treatment. Mechanistically, subcellular mislocalization of TopBP1cas003 protein results in ATR/Chk1 activation failure and DNA damage accumulation in HSPCs, and eventually induces the p53-dependent apoptosis of HSPCs. Collectively, this study demonstrates a novel and vital role of TopBP1 in the maintenance of HSPCs genome integrity and survival during hematopoietic progenitor expansion. PMID:26131719

  12. Endothelial cells mitigate DNA damage and promote the regeneration of hematopoietic stem cells after radiation injury

    PubMed Central

    Zachman, Derek K.; Leon, Ronald P.; Das, Prerna; Goldman, Devorah C.; Hamlin, Kimberly L.; Guha, Chandan; Fleming, William H.

    2014-01-01

    Endothelial cells (ECs) are an essential component of the hematopoietic microenvironment, which maintains and regulates hematopoietic stem cells (HSCs). Although ECs can support the regeneration of otherwise lethally-irradiated HSCs, the mechanisms are not well understood. To further understand this phenomenon, we studied HSC regeneration from irradiated bone marrow using co-culture with human aortic endothelial cells (HAECs). Co-culture with HAECs induced a 24-fold expansion of long-term HSCs (CD150+, lineagelo, Sca-1+, c-Kit+; CD150+LSK cells) in vitro. These cells gave rise to functional hematopoietic stem and progenitor cells (HSPCs) with colony-forming activity, multilineage reconstitution and serial transplantation potential. Furthermore, HAECs significantly reduced DNA damage in irradiated LSK cells within 24 hours. Remarkably, we were able to delay the exposure of irradiated bone marrow to the regenerative, HAEC-derived signals for up to 48 hours and still rescue functional HSCs. G-CSF is the gold standard for promoting hematopoietic regeneration in vivo. However, when compared to HAECs, in vitro G-CSF treatment promoted lineage differentiation and regenerated 5-fold fewer CD150+LSK cells. Together, our results show that HAECs are powerful, direct mitigators of HSC injury and DNA damage. Identification of the HAEC-derived factors that rescue HSCs may lead to improved therapies for hematopoietic regeneration after radiation injury. PMID:23939266

  13. Endothelial cells mitigate DNA damage and promote the regeneration of hematopoietic stem cells after radiation injury.

    PubMed

    Zachman, Derek K; Leon, Ronald P; Das, Prerna; Goldman, Devorah C; Hamlin, Kimberly L; Guha, Chandan; Fleming, William H

    2013-11-01

    Endothelial cells (ECs) are an essential component of the hematopoietic microenvironment, which maintains and regulates hematopoietic stem cells (HSCs). Although ECs can support the regeneration of otherwise lethally-irradiated HSCs, the mechanisms are not well understood. To further understand this phenomenon, we studied HSC regeneration from irradiated bone marrow using co-culture with human aortic ECs (HAECs). Co-culture with HAECs induced a 24-fold expansion of long-term HSCs (CD150(+), lineage(lo), Sca-1(+), c-Kit(+); CD150(+)LSK cells) in vitro. These cells gave rise to functional hematopoietic stem and progenitor cells (HSPCs) with colony-forming activity, multilineage reconstitution and serial transplantation potential. Furthermore, HAECs significantly reduced DNA damage in irradiated LSK cells within 24h. Remarkably, we were able to delay the exposure of irradiated bone marrow to the regenerative, HAEC-derived signals for up to 48h and still rescue functional HSCs. G-CSF is the gold standard for promoting hematopoietic regeneration in vivo. However, when compared to HAECs, in vitro G-CSF treatment promoted lineage differentiation and regenerated 5-fold fewer CD150(+)LSK cells. Together, our results show that HAECs are powerful, direct mitigators of HSC injury and DNA damage. Identification of the HAEC-derived factors that rescue HSCs may lead to improved therapies for hematopoietic regeneration after radiation injury. PMID:23939266

  14. Embryonic hematopoiesis in vertebrate somites gives rise to definitive hematopoietic stem cells.

    PubMed

    Qiu, Juhui; Fan, Xiaoying; Wang, Yixia; Jin, Hongbin; Song, Yixiao; Han, Yang; Huang, Shenghong; Meng, Yaping; Tang, Fuchou; Meng, Anming

    2016-08-01

    Hematopoietic stem cells (HSCs) replenish all types of blood cells. It is debating whether HSCs in adults solely originate from the aorta-gonad-mesonephros (AGM) region, more specifically, the dorsal aorta, during embryogenesis. Here, we report that somite hematopoiesis, a previously unwitnessed hematopoiesis, can generate definitive HSCs (dHSCs) in zebrafish. By transgenic lineage tracing, we found that a subset of cells within the forming somites emigrate ventromedially and mix with lateral plate mesoderm-derived primitive hematopoietic cells before the blood circulation starts. These somite-derived hematopoietic precursors and stem cells (sHPSCs) subsequently enter the circulation and colonize the kidney of larvae and adults. RNA-seq analysis reveals that sHPSCs express hematopoietic genes with sustained expression of many muscle/skeletal genes. Embryonic sHPSCs transplanted into wild-type embryos expand during growth and survive for life time with differentiation into various hematopoietic lineages, indicating self-renewal and multipotency features. Therefore, the embryonic origin of dHSCs in adults is not restricted to the AGM.

  15. Long-term in vivo provision of antigen-specific T cell immunity by programming hematopoietic stem cells

    NASA Astrophysics Data System (ADS)

    Yang, Lili; Baltimore, David

    2005-03-01

    A method to genetically program mouse hematopoietic stem cells to develop into functional CD8 or CD4 T cells of defined specificity in vivo is described. For this purpose, a bicistronic retroviral vector was engineered that efficiently delivers genes for both and chains of T cell receptor (TCR) to hematopoietic stem cells. When modified cell populations were used to reconstruct the hematopoietic lineages of recipient mice, significant percentages of antigen-specific CD8 or CD4 T cells were observed. These cells expressed normal surface markers and responded to peptide antigen stimulation by proliferation and cytokine production. Moreover, they could mature into memory cells after peptide stimulation. Using TCRs specific for a model tumor antigen, we found that the recipient mice were able to partially resist a challenge with tumor cells carrying the antigen. By combining cells modified with CD8- and CD4-specific TCRs, and boosting with dendritic cells pulsed with cognate peptides, complete suppression of tumor could be achieved and even tumors that had become established would regress and be eliminated after dendritic cell/peptide immunization. This methodology of "instructive immunotherapy" could be developed for controlling the growth of human tumors and attacking established pathogens.

  16. Generation of human memory stem T cells after haploidentical T-replete hematopoietic stem cell transplantation.

    PubMed

    Cieri, Nicoletta; Oliveira, Giacomo; Greco, Raffaella; Forcato, Mattia; Taccioli, Cristian; Cianciotti, Beatrice; Valtolina, Veronica; Noviello, Maddalena; Vago, Luca; Bondanza, Attilio; Lunghi, Francesca; Marktel, Sarah; Bellio, Laura; Bordignon, Claudio; Bicciato, Silvio; Peccatori, Jacopo; Ciceri, Fabio; Bonini, Chiara

    2015-04-30

    Memory stem T cells (TSCM) have been proposed as key determinants of immunologic memory. However, their exact contribution to a mounting immune response, as well as the mechanisms and timing of their in vivo generation, are poorly understood. We longitudinally tracked TSCM dynamics in patients undergoing haploidentical hematopoietic stem cell transplantation (HSCT), thereby providing novel hints on the contribution of this subset to posttransplant immune reconstitution in humans. We found that donor-derived TSCM are highly enriched early after HSCT. We showed at the antigen-specific and clonal level that TSCM lymphocytes can differentiate directly from naive precursors infused within the graft and that the extent of TSCM generation might correlate with interleukin 7 serum levels. In vivo fate mapping through T-cell receptor sequencing allowed defining the in vivo differentiation landscapes of human naive T cells, supporting the notion that progenies of single naive cells embrace disparate fates in vivo and highlighting TSCM as relevant novel players in the diversification of immunological memory after allogeneic HSCT.

  17. Expressive talking among caregivers of hematopoietic stem cell transplant survivors: acceptability and concurrent subjective, objective and physiologic indicators of emotion

    PubMed Central

    Langer, Shelby L.; Kelly, Thomas H.; Storer, Barry E.; Hall, Suzanne P.; Lucas, Heather G.; Syrjala, Karen L.

    2013-01-01

    This study sought to examine the effects of an expressive talking intervention for 58 caregiving partners of hematopoietic stem cell transplant survivors, persons known to experience distress. Caregivers were randomly assigned to a 3-session emotional expression (EE) or control condition. Subjective, objective and physiologic indicators of emotion were assessed. Relative to controls, EE participants experienced more negative emotion, uttered more negative emotion words, and perceived the exercises as more helpful and meaningful. The trajectory of skin conductance and the use of cognitive mechanism words increased across EE sessions, suggesting sustained emotional engagement. Future research is warranted to determine the optimal dose and timing of EE for this population. PMID:22571245

  18. Resveratrol Increases the Bone Marrow Hematopoietic Stem and Progenitor Cell Capacity

    PubMed Central

    Rimmelé, Pauline; Lofek-Czubek, Sébastien; Ghaffari, Saghi

    2014-01-01

    Resveratrol is a plant-derived polyphenol that has shown protective effects against many disorders including, several types of cancers and other age-associated diseases as well as blood disorders in cultured cells and/or animal models. However, whether resveratrol has any impact specifically on normal blood stem cells remains unknown. Here we show that a three-week treatment of resveratrol increases the frequency and total numbers of normal bone marrow hematopoietic stem cells (HSC) without any impact on their competitive repopulation capacity. In addition, we show that resveratrol enhances the bone marrow multipotent progenitor capacity in vivo. These results have therapeutic value for disorders of hematopoietic stem and progenitor cells (HSPC) as well as for bone marrow transplantation settings. PMID:25163926

  19. CBFB and MYH11 in inv(16)(p13q22) of Acute Myeloid Leukemia Display Close Spatial Proximity in Interphase Nuclei of Human Hematopoietic Stem Cells

    PubMed Central

    Weckerle, Allison B.; Santra, Madhumita; Ng, Maggie C.Y.; Koty, Patrick P.; Wang, Yuh-Hwa

    2013-01-01

    To gain a better understanding of the mechanism of chromosomal translocations in cancer, we investigated the spatial proximity between CBFB and MYH11 genes involved in inv(16)(p13q22) found in acute myeloid leukemia patients. Previous studies have demonstrated a role for spatial genome organization in the formation of tumorigenic abnormalities. The non-random localization of chromosomes and, more specifically, of genes appears to play a role in the mechanism of chromosomal translocations. Here, two-color fluorescence in situ hybridization and confocal microscopy were used to measure the interphase distance between CBFB and MYH11 in hematopoietic stem cells, where inv(16)(p13q22) is believed to occur, leading to leukemia development. The measured distances in hematopoietic stem cells were compared to mesenchymal stem cells, peripheral blood lymphocytes and fibroblasts, as spatial genome organization is determined to be cell-type specific. Results indicate that CBFB and MYH11 are significantly closer in hematopoietic stem cells compared to all other cell types examined. Furthermore, the CBFB-MYH11 distance is significantly reduced compared to CBFB and a control locus in hematopoietic stem cells, although separation between CBFB and the control is ~70% of that between CBFB and MYH11 on metaphase chromosomes. Hematopoietic stem cells were also treated with fragile site-inducing chemicals since both genes contain translocation breakpoints within these regions. However, treatment with fragile site-inducing chemicals did not significantly affect the interphase distance. Consistent with previous studies, our results suggest that gene proximity may play a role in the formation of cancer-causing rearrangements, providing insight into the mechanism of chromosomal abnormalities in human tumors. PMID:21638519

  20. CD44, Hyaluronan, the Hematopoietic Stem Cell, and Leukemia-Initiating Cells

    PubMed Central

    Zöller, Margot

    2015-01-01

    CD44 is an adhesion molecule that varies in size due to glycosylation and insertion of so-called variant exon products. The CD44 standard isoform (CD44s) is highly expressed in many cells and most abundantly in cells of the hematopoietic system, whereas expression of CD44 variant isoforms (CD44v) is more restricted. CD44s and CD44v are known as stem cell markers, first described for hematopoietic stem cells and later on confirmed for cancer- and leukemia-initiating cells. Importantly, both abundantly expressed CD44s as well as CD44v actively contribute to the maintenance of stem cell features, like generating and embedding in a niche, homing into the niche, maintenance of quiescence, and relative apoptosis resistance. This is surprising, as CD44 is not a master stem cell gene. I here will discuss that the functional contribution of CD44 relies on its particular communication skills with neighboring molecules, adjacent cells and, last not least, the surrounding matrix. In fact, it is the interaction of the hyaluronan receptor CD44 with its prime ligand, which strongly assists stem cells to fulfill their special and demanding tasks. Recent fundamental progress in support of this “old” hypothesis, which may soon pave the way for most promising new therapeutics, is presented for both hematopoietic stem cell and leukemia-initiating cell. The contribution of CD44 to the generation of a stem cell niche, to homing of stem cells in their niche, to stem cell quiescence and apoptosis resistance will be in focus. PMID:26074915

  1. MOZ-mediated repression of p16(INK) (4) (a) is critical for the self-renewal of neural and hematopoietic stem cells.

    PubMed

    Perez-Campo, Flor M; Costa, Guilherme; Lie-A-Ling, Michael; Stifani, Stefano; Kouskoff, Valerie; Lacaud, Georges

    2014-06-01

    Although inhibition of p16(INK4a) expression is critical to preserve the proliferative capacity of stem cells, the molecular mechanisms responsible for silencing p16(INK4a) expression remain poorly characterized. Here, we show that the histone acetyltransferase (HAT) monocytic leukemia zinc finger protein (MOZ) controls the proliferation of both hematopoietic and neural stem cells by modulating the transcriptional repression of p16(INK4a) . In the absence of the HAT activity of MOZ, expression of p16(INK4a) is upregulated in progenitor and stem cells, inducing an early entrance into replicative senescence. Genetic deletion of p16(INK4a) reverses the proliferative defect in both Moz(HAT) (-) (/) (-) hematopoietic and neural progenitors. Our results suggest a critical requirement for MOZ HAT activity to silence p16(INK4a) expression and to protect stem cells from early entrance into replicative senescence. PMID:24307508

  2. Microliter-bioreactor array with buoyancy-driven stirring for human hematopoietic stem cell culture

    PubMed Central

    Luni, Camilla; Feldman, Hope C.; Pozzobon, Michela; De Coppi, Paolo; Meinhart, Carl D.; Elvassore, Nicola

    2010-01-01

    This work presents the development of an array of bioreactors where finely controlled stirring is provided at the microliter scale (100–300 μl). The microliter-bioreactor array is useful for performing protocol optimization in up to 96 parallel experiments of hematopoietic stem cell (HSC) cultures. Exploring a wide range of experimental conditions at the microliter scale minimizes cost and labor. Once the cell culture protocol is optimized, it can be applied to large-scale bioreactors for stem cell production at the clinical level. The controlled stirring inside the wells of a standard 96-well plate is provided by buoyancy-driven thermoconvection. The temperature and velocity fields within the culture volume are determined with numerical simulations. The numerical results are verified with experimental velocity measurements using microparticle image velocimetry (μPIV) and are used to define feasible experimental conditions for stem cell cultures. To test the bioreactor array’s functionality, human umbilical cord blood-derived CD34+ cells were cultured for 7 days at five different stirring conditions (0.24–0.58 μm∕s) in six repeated experiments. Cells were characterized in terms of proliferation, and flow cytometry measurements of viability and CD34 expression. The microliter-bioreactor array demonstrates its ability to support HSC cultures under stirred conditions without adversely affecting the cell behavior. Because of the highly controlled operative conditions, it can be used to explore culture conditions where the mass transport of endogenous and exogenous growth factors is selectively enhanced, and cell suspension provided. While the bioreactor array was developed for culturing HSCs, its application can be extended to other cell types. PMID:20824067

  3. Reconstructing the in vivo dynamics of hematopoietic stem cells from telomere length distributions.

    PubMed

    Werner, Benjamin; Beier, Fabian; Hummel, Sebastian; Balabanov, Stefan; Lassay, Lisa; Orlikowsky, Thorsten; Dingli, David; Brümmendorf, Tim H; Traulsen, Arne

    2015-10-15

    We investigate the in vivo patterns of stem cell divisions in the human hematopoietic system throughout life. In particular, we analyze the shape of telomere length distributions underlying stem cell behavior within individuals. Our mathematical model shows that these distributions contain a fingerprint of the progressive telomere loss and the fraction of symmetric cell proliferations. Our predictions are tested against measured telomere length distributions in humans across all ages, collected from lymphocyte and granulocyte sorted telomere length data of 356 healthy individuals, including 47 cord blood and 28 bone marrow samples. We find an increasing stem cell pool during childhood and adolescence and an approximately maintained stem cell population in adults. Furthermore, our method is able to detect individual differences from a single tissue sample, i.e. a single snapshot. Prospectively, this allows us to compare cell proliferation between individuals and identify abnormal stem cell dynamics, which affects the risk of stem cell related diseases.

  4. Aneuploidy impairs hematopoietic stem cell fitness and is selected against in regenerating tissues in vivo.

    PubMed

    Pfau, Sarah J; Silberman, Rebecca E; Knouse, Kristin A; Amon, Angelika

    2016-06-15

    Aneuploidy, an imbalanced karyotype, is a widely observed feature of cancer cells that has long been hypothesized to promote tumorigenesis. Here we evaluate the fitness of cells with constitutional trisomy or chromosomal instability (CIN) in vivo using hematopoietic reconstitution experiments. We did not observe cancer but instead found that aneuploid hematopoietic stem cells (HSCs) exhibit decreased fitness. This reduced fitness is due at least in part to the decreased proliferative potential of aneuploid hematopoietic cells. Analyses of mice with CIN caused by a hypomorphic mutation in the gene Bub1b further support the finding that aneuploidy impairs cell proliferation in vivo. Whereas nonregenerating adult tissues are highly aneuploid in these mice, HSCs and other regenerative adult tissues are largely euploid. These findings indicate that, in vivo, mechanisms exist to select against aneuploid cells.

  5. The Hematopoietic Differentiation and Production of Mature Myeloid Cells from Human Pluripotent Stem Cells

    PubMed Central

    Choi, Kyung-Dal; Vodyanik, Maxim; Slukvin, Igor I.

    2011-01-01

    Here we describe a protocol for hematopoietic differentiation of human pluripotent stem cells (hPSCs) and generation of mature myeloid cells from hPSCs through expansion and differentiation of hPSC-derived lin-CD34+CD43+CD45+ multipotent progenitors. The protocol is comprised of three major steps: (i) induction of hematopoietic differentiation by coculture of hPSCs with OP9 bone marrow stromal cells, (ii) short-term expansion of multipotent myeloid progenitors with a high dose of GM-CSF, and (iii) directed differentiation of myeloid progenitors into neutrophils, eosinophils, dendritic cells (DCs), Langerhans cells (LCs), macrophages, and osteoclasts. The generation of multipotent hematopoietic progenitors from hPSCs requires 9 days of culture, and an additional 2 days are needed to expand myeloid progenitors. Differentiation of myeloid progenitors into mature myeloid cells requires an additional 5–19 days of culture with cytokines, depending on the cell type. PMID:21372811

  6. Role of SOX17 in hematopoietic development from human embryonic stem cells.

    PubMed

    Nakajima-Takagi, Yaeko; Osawa, Mitsujiro; Oshima, Motohiko; Takagi, Haruna; Miyagi, Satoru; Endoh, Mitsuhiro; Endo, Takaho A; Takayama, Naoya; Eto, Koji; Toyoda, Tetsuro; Koseki, Haruhiko; Nakauchi, Hiromitsu; Iwama, Atsushi

    2013-01-17

    To search for genes that promote hematopoietic development from human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs), we overexpressed several known hematopoietic regulator genes in hESC/iPSC-derived CD34(+)CD43(-) endothelial cells (ECs) enriched in hemogenic endothelium (HE). Among the genes tested, only Sox17, a gene encoding a transcription factor of the SOX family, promoted cell growth and supported expansion of CD34(+)CD43(+)CD45(-/low) cells expressing the HE marker VE-cadherin. SOX17 was expressed at high levels in CD34(+)CD43(-) ECs compared with low levels in CD34(+)CD43(+)CD45(-) pre-hematopoietic progenitor cells (pre-HPCs) and CD34(+)CD43(+)CD45(+) HPCs. Sox17-overexpressing cells formed semiadherent cell aggregates and generated few hematopoietic progenies. However, they retained hemogenic potential and gave rise to hematopoietic progenies on inactivation of Sox17. Global gene-expression analyses revealed that the CD34(+)CD43(+)CD45(-/low) cells expanded on overexpression of Sox17 are HE-like cells developmentally placed between ECs and pre-HPCs. Sox17 overexpression also reprogrammed both pre-HPCs and HPCs into HE-like cells. Genome-wide mapping of Sox17-binding sites revealed that Sox17 activates the transcription of key regulator genes for vasculogenesis, hematopoiesis, and erythrocyte differentiation directly. Depletion of SOX17 in CD34(+)CD43(-) ECs severely compromised their hemogenic activity. These findings suggest that SOX17 plays a key role in priming hemogenic potential in ECs, thereby regulating hematopoietic development from hESCs/iPSCs.

  7. Improved Survival and Hematopoietic Differentiation of Murine Embryonic Stem Cells on Electrospun Polycaprolactone Nanofiber

    PubMed Central

    Dehdilani, Nima; Shamsasenjan, Karim; Movassaghpour, Aliakbar; Akbarzadehlaleh, Parvin; Amoughli Tabrizi, Bahram; Parsa, Hamed; Sabagi, Fatemeh

    2016-01-01

    Objective Three-dimensional (3D) biomimetic nanofiber scaffolds have widespread ap- plications in biomedical tissue engineering. They provide a suitable environment for cel- lular adhesion, survival, proliferation and differentiation, guide new tissue formation and development, and are one of the outstanding goals of tissue engineering. Electrospinning has recently emerged as a leading technique for producing biomimetic scaffolds with mi- cro to nanoscale topography and a high porosity similar to the natural extracellular matrix (ECM). These scaffolds are comprised of synthetic and natural polymers for tissue engi- neering applications. Several kinds of cells such as human embryonic stem cells (hESCs) and mouse ESCs (mESCs) have been cultured and differentiated on nanofiber scaffolds. mESCs can be induced to differentiate into a particular cell lineage when cultured as em- bryoid bodies (EBs) on nano-sized scaffolds. Materials and Methods We cultured mESCs (2500 cells/100 µl) in 96-well plates with knockout Dulbecco’s modified eagle medium (DMEM-KO) and Roswell Park Memorial Institute-1640 (RPMI-1640), both supplemented with 20% ESC grade fetal bovine serum (FBS) and essential factors in the presence of leukemia inhibitory factor (LIF). mESCs were seeded at a density of 2500 cells/100 µl onto electrospun polycaprolactone (PCL) nanofibers in 96-well plates. The control group comprised mESCs grown on tissue cul- ture plates (TCP) at a density of 2500 cells/100 µl. Differentiation of mESCs into mouse hematopoietic stem cells (mHSCs) was performed by stem cell factor (SCF), interleukin-3 (IL-3), IL-6 and Fms-related tyrosine kinase ligand (Flt3-L) cytokines for both the PCL and TCP groups. We performed an experimental study of mESCs differentiation. Results PCL was compared to conventional TCP for survival and differentiation of mESCs to mHSCs. There were significantly more mESCs in the PCL group. Flowcyto- metric analysis revealed differences in hematopoietic

  8. Homing in hematopoietic stem cells: focus on regulatory role of CXCR7 on SDF1a/CXCR4 axis

    PubMed Central

    Asri, Amir; Sabour, Javid; Atashi, Amir; Soleimani, Masoud

    2016-01-01

    Hematopoietic stem cells (HSCs) form a rare population of multipotent stem cells, which give rise to all hematopoietic lineages. HSCs home to bone marrow niches and circulate between blood and bone marrow. Many factors, especially SDF1a, affect the circulation of HSCs, but these have not been fully recognized. SDF1a has been shown to bind CXCR7 in addition to CXCR4 and can also function as SDF1a/CXCR4 modulator. CXCR7 plays a role in HSCs homing via SDF1a gradient and is a mediator of CXCR4/SDF1a axis. This review describes the current concepts and questions concerning CXCR7/CXCR4/SDF1a axis as an important key in hematopoietic stem cells homing with particular emphasis on CXCR7 receptor. Homing of HSCs is an essential step for successful hematopoietic stem cell transplantation. PMID:27092040

  9. Remuneration of hematopoietic stem cell donors: principles and perspective of the World Marrow Donor Association.

    PubMed

    Boo, Michael; van Walraven, Suzanna M; Chapman, Jeremy; Lindberg, Brian; Schmidt, Alexander H; Shaw, Bronwen E; Switzer, Galen E; Yang, Edward; Egeland, Torstein

    2011-01-01

    Hematopoietic stem cell transplantation is a curative procedure for life-threatening hematologic diseases. Donation of hematopoietic stem cells (HSCs) from an unrelated donor, frequently residing in another country, may be the only option for 70% of those in need of unrelated hematopoietic stem cell transplantation. To maximize the opportunity to find the best available donor, individual donor registries collaborate internationally. To provide homogeneity of practice among registries, the World Marrow Donor Association (WMDA) sets standards against which registries are accredited and provides guidance and regulations about unrelated donor safety and care. A basic tenet of the donor registries is that unrelated HSC donation is an altruistic act; nonpayment of donors is entrenched in the WMDA standards and in international practice. In the United States, the prohibition against remuneration of donors has recently been challenged. Here, we describe the reasons that the WMDA continues to believe that HSC donors should not be paid because of ethical concerns raised by remuneration, potential to damage the public will to act altruistically, the potential for coercion and exploitation of donors, increased risk to patients, harm to local transplantation programs and international stem cell exchange, and the possibility of benefiting some patients while disadvantaging others.

  10. [Research Progress on the Development and Regulation of Embryonic Hematopoietic Stem Cells].

    PubMed

    Mu, Weiyun; Yao, Weijuan

    2015-10-01

    Hematopoietic stem cells (HSCs) are tissue specific stem cells that replenish all mature blood lineages during the lifetime of an individual. Hematopoietic cell clusters in the aorta of vertebrate embryos play a pivotal role in the formation of the adult blood system. Recently, people have learned a lot about the embryonic HSCs on their development and homing. During their differentiation, HSCs are regulated by the transcription factors, such as Runx1 and Notch signaling pathway, etc. MicroRNAs also regulate the self-renewal and differentiation of hematopoietic stem/progenitor cells on the post-transcriptional levels. Since the onset of circulation, the formation of HSCs and their differentiation into blood cells, especially red blood cells, are regulated by the hemodynamic forces. It would be of great significance if we could treat hematologic diseases with induced HSCs in vitro on the basis of fully understanding of hemotopoietic stem cell development. This review is focused on the advances in the research of HSCs' development and regulation.

  11. Selective erythroid replacement in murine beta-thalassemia using fetal hematopoietic stem cells.

    PubMed Central

    Bethel, C. A.; Murugesh, D.; Harrison, M. R.; Mohandas, N.; Rubin, E. M.

    1993-01-01

    We have explored the application of fetal hematopoietic stem cell (HSC) transplants for cellular replacement in a murine model of beta-thalassemia. Liver-derived HSCs from nonthalassemic syngeneic murine fetal donors were transplanted into nonirradiated neonatal beta-thalassemic recipients. Significant erythrocyte chimerism (9-27%) was demonstrated in the majority of recipients at 1 month and remained stable or increased (up to 55%) during long-term follow-up in almost all cases. Chimeras had improved phenotypes, as evidenced by decreased reticulocyte counts, increased mean erythrocyte deformability, and decreased iron deposits in comparison to controls. To investigate whether the high degree of peripheral blood chimerism was predominantly a feature of erythroid elements or was a general feature of all hematopoietic elements, chimeras were created using donor HSCs "tagged" with a DNA transgene. Whereas donor hemoglobin comprised > 30% of total hemoglobin, nucleated tagged nonerythroid donor cells comprised < 1% of peripheral blood elements. Explanations for the observed selective increase in erythroid chimerism include longer survival of normal donor red cells compared to that of thalassemic red cells and the effective maturation of the donor erythroid elements in the bone marrow in chimeric animals. The latter explanation bears consideration because it is consistent with the process of ineffective erythropoiesis, well documented to occur in thalassemia, in which the majority of thalassemic erythroid cells are destroyed during erythropoiesis prior to release from the bone marrow. Overall, these data demonstrate the potential for significant erythroid chimerism and suggest that fetal HSC transplantation may play a significant role in future treatment. Images Fig. 1 Fig. 4 Fig. 7 PMID:7980734

  12. Selective erythroid replacement in murine beta-thalassemia using fetal hematopoietic stem cells.

    PubMed

    Bethel, C A; Murugesh, D; Harrison, M R; Mohandas, N; Rubin, E M

    1993-11-01

    We have explored the application of fetal hematopoietic stem cell (HSC) transplants for cellular replacement in a murine model of beta-thalassemia. Liver-derived HSCs from nonthalassemic syngeneic murine fetal donors were transplanted into nonirradiated neonatal beta-thalassemic recipients. Significant erythrocyte chimerism (9-27%) was demonstrated in the majority of recipients at 1 month and remained stable or increased (up to 55%) during long-term follow-up in almost all cases. Chimeras had improved phenotypes, as evidenced by decreased reticulocyte counts, increased mean erythrocyte deformability, and decreased iron deposits in comparison to controls. To investigate whether the high degree of peripheral blood chimerism was predominantly a feature of erythroid elements or was a general feature of all hematopoietic elements, chimeras were created using donor HSCs "tagged" with a DNA transgene. Whereas donor hemoglobin comprised > 30% of total hemoglobin, nucleated tagged nonerythroid donor cells comprised < 1% of peripheral blood elements. Explanations for the observed selective increase in erythroid chimerism include longer survival of normal donor red cells compared to that of thalassemic red cells and the effective maturation of the donor erythroid elements in the bone marrow in chimeric animals. The latter explanation bears consideration because it is consistent with the process of ineffective erythropoiesis, well documented to occur in thalassemia, in which the majority of thalassemic erythroid cells are destroyed during erythropoiesis prior to release from the bone marrow. Overall, these data demonstrate the potential for significant erythroid chimerism and suggest that fetal HSC transplantation may play a significant role in future treatment.

  13. Hematopoietic Stem and Progenitor Cell Migration After Hypofractionated Radiation Therapy in a Murine Model

    SciTech Connect

    Kane, Jonathan; Krueger, Sarah A.; Dilworth, Joshua T.; Torma, John T.; Wilson, George D.; Marples, Brian; Madlambayan, Gerard J.

    2013-12-01

    Purpose: To characterize the recruitment of bone marrow (BM)-derived hematopoietic stem and progenitor cells (HSPCs) within tumor microenvironment after radiation therapy (RT) in a murine, heterotopic tumor model. Methods and Materials: Lewis lung carcinoma tumors were established in C57BL/6 mice and irradiated with 30 Gy given as 2 fractions over 2 days. Tumors were imaged with positron emission tomography/computed tomography (PET/CT) and measured daily with digital calipers. The HSPC and myelomonocytic cell content was assessed via immunofluorescent staining and flow cytometry. Functionality of tumor-associated HSPCs was verified in vitro using colony-forming cell assays and in vivo by rescuing lethally irradiated C57BL/6 recipients. Results: Irradiation significantly reduced tumor volumes and tumor regrowth rates compared with nonirradiated controls. The number of CD133{sup +} HSPCs present in irradiated tumors was higher than in nonirradiated tumors during all stages of regrowth. CD11b{sup +} counts were similar. PET/CT imaging and growth rate analysis based on standardized uptake value indicated that HSPC recruitment directly correlated to the extent of regrowth and intratumor cell activity after irradiation. The BM-derived tumor-associated HSPCs successfully formed hematopoietic colonies and engrafted irradiated mice. Finally, targeted treatment with a small animal radiation research platform demonstrated localized HSPC recruitment to defined tumor subsites exposed to radiation. Conclusions: Hypofractionated irradiation resulted in a pronounced and targeted recruitment of BM-derived HSPCs, possibly as a mechanism to promote tumor regrowth. These data indicate for the first time that radiation therapy regulates HSPC content within regrowing tumors.

  14. Bone marrow hematopoietic stem cells behavior with or without growth factors in trauma hemorrhagic shock

    PubMed Central

    Kumar, Manoj; Bhoi, Sanjeev; Mohanty, Sujata; Kamal, Vineet Kumar; Rao, D. N.; Mishra, Pravas; Galwankar, Sagar

    2016-01-01

    Background: Hemorrhagic shock (HS) is the major leading cause of death after trauma. Up to 50% of early deaths are due to massive hemorrhage. Excessive release of pro-inflammatory cytokine and hypercatecholamine induces hematopoietic progenitor cells (HPCs) apoptosis, leading to multiorgan failure and death. However, still, result remains elusive for hematopoietic stem cells (HSCs) behavior in trauma HS (T/HS). Objectives: Therefore, our aim was to evaluate the in vitro HSCs behavior with or without recombinant human erythropoietin (rhEPO), recombinant human granulocyte macrophage-colony-stimulating factor (rhGM-CSF), recombinant human interleukin-3 (rhIL-3) alone, and combination with rhEPO + rhGM-CSF + rhIL-3 (EG3) in T/HS patients. Methodology: Bone marrow (BM) aspirates (n = 14) were collected from T/HS patients, those survived on day 3. BM cells were cultured for HPCs: Colony-forming unit-erythroid (CFU-E), burst-forming unit-erythroid (BFU-E), and colony-forming unit-granulocyte, monocyte/macrophage colonies growth. HPCs were counted with or without rhEPO, rhGM-CSF, rhIL-3 alone, and combination with EG3 in T/HS patients. Results: BM HSCs growth significantly suppressed in T/HS when compared with control group (P < 0.05). In addition, CFU-E and BFU-E colony growth were increased with additional growth factor (AGF) (rhEPO, rhGM-CSF, and rhIL-3) as compared to baseline (without AGF) (P < 0.05). Conclusion: Suppressed HPCs may be reactivated by addition of erythropoietin, GM-CSF, IL-3 alone and with combination in T/HS. PMID:27722113

  15. Dasatinib promotes the activation of quiescent hematopoietic stem cells in mice.

    PubMed

    Duyvestyn, Johanna M; Taylor, Samuel J; Dagger, Samantha A; Langdon, Wallace Y

    2016-05-01

    Dasatinib is an orally available broad-spectrum tyrosine kinase inhibitor that is widely used to treat chronic myeloid leukemia. It is also in clinical trials for the treatment of other malignancies, including solid tumors. Despite its wide use, little is known of its effects on normal hematopoietic stem and progenitor cells. Here, we study wild-type mice dosed with dasatinib and find that it causes the transient induction of proliferation of quiescent hematopoietic stem cells (HSCs). This finding was unexpected given the ability of dasatinib to inhibit c-Kit signaling and promote cell cycle arrest in many cell types. The transient induction of HSC proliferation in dasatinib-dosed mice coincided with a marked induction in the expression of Sca-1 and phospho-S6. Also evident at this time was a rapid but transient loss of lineage-committed hematopoietic progenitors that express high levels of c-Kit and the induction of stem cell factor in the serum. These findings suggest that activation of quiescent HSCs is part of a rapid rescue response that restores hematopoietic progenitors to pretreatment levels. This restoration coincides with HSCs returning to quiescence, and the expression of Sca-1 and phospho-S6 reverting to pre-treatment levels, even though dasatinib dosing is maintained. These data suggest that equilibrium is reached between the opposing forces of dasatinib and hematopoietic growth factors. The transient induction of HSC proliferation provided a window of opportunity whereby these cells became sensitive to killing by the cytotoxic drug 5-fluorouracil. PMID:26921649

  16. Immunological Basis of Bone Marrow Failure after Allogeneic Hematopoietic Stem Cell Transplantation

    PubMed Central

    Masouridi-Levrat, Stavroula; Simonetta, Federico; Chalandon, Yves

    2016-01-01

    Bone marrow failure (BMF) syndromes are severe complications of allogeneic hematopoietic stem cell transplantation (allo-HSCT). In this paper, we distinguish two different entities, the graft failure (GF) and the poor graft function (PGF), and we review the current understanding of the interactions between the immune and hematopoietic compartments in these conditions. We first discuss how GF occurs as the result of classical alloreactive immune responses mediated by residual host cellular and humoral immunity persisting after conditioning and prevented by host and donor regulatory T cells. We next summarize the current knowledge about the contribution of inflammatory mediators to the development of PGF. In situations of chronic inflammation complicating allo-HSCT, such as graft-versus-host disease or infections, PGF seems to be essentially the result of a sustained impairment of hematopoietic stem cells (HSC) self-renewal and proliferation caused by inflammatory mediators, such as interferon-γ (IFN-γ) and tumor necrosis factor-α, and of induction of apoptosis through the Fas/Fas ligand pathway. Interestingly, the production of inflammatory molecules leads to a non-MHC restricted, bystander inhibition of hematopoiesis, therefore, representing a promising target for immunological interventions. Finally, we discuss immune-mediated impairment of bone marrow microenvironment as a potential mechanism hampering hematopoietic recovery. Better understanding of immunological mechanisms responsible for BMF syndromes after allo-HSCT may lead to the development of more efficient immunotherapeutic interventions. PMID:27695456

  17. Immunological Basis of Bone Marrow Failure after Allogeneic Hematopoietic Stem Cell Transplantation

    PubMed Central

    Masouridi-Levrat, Stavroula; Simonetta, Federico; Chalandon, Yves

    2016-01-01

    Bone marrow failure (BMF) syndromes are severe complications of allogeneic hematopoietic stem cell transplantation (allo-HSCT). In this paper, we distinguish two different entities, the graft failure (GF) and the poor graft function (PGF), and we review the current understanding of the interactions between the immune and hematopoietic compartments in these conditions. We first discuss how GF occurs as the result of classical alloreactive immune responses mediated by residual host cellular and humoral immunity persisting after conditioning and prevented by host and donor regulatory T cells. We next summarize the current knowledge about the contribution of inflammatory mediators to the development of PGF. In situations of chronic inflammation complicating allo-HSCT, such as graft-versus-host disease or infections, PGF seems to be essentially the result of a sustained impairment of hematopoietic stem cells (HSC) self-renewal and proliferation caused by inflammatory mediators, such as interferon-γ (IFN-γ) and tumor necrosis factor-α, and of induction of apoptosis through the Fas/Fas ligand pathway. Interestingly, the production of inflammatory molecules leads to a non-MHC restricted, bystander inhibition of hematopoiesis, therefore, representing a promising target for immunological interventions. Finally, we discuss immune-mediated impairment of bone marrow microenvironment as a potential mechanism hampering hematopoietic recovery. Better understanding of immunological mechanisms responsible for BMF syndromes after allo-HSCT may lead to the development of more efficient immunotherapeutic interventions.

  18. Heparan sulfate inhibits hematopoietic stem and progenitor cell migration and engraftment in mucopolysaccharidosis I.

    PubMed

    Watson, H Angharad; Holley, Rebecca J; Langford-Smith, Kia J; Wilkinson, Fiona L; van Kuppevelt, Toin H; Wynn, Robert F; Wraith, J Edmond; Merry, Catherine L R; Bigger, Brian W

    2014-12-26

    Mucopolysaccharidosis I Hurler (MPSI-H) is a pediatric lysosomal storage disease caused by genetic deficiencies in IDUA, coding for α-l-iduronidase. Idua(-/-) mice share similar clinical pathology with patients, including the accumulation of the undegraded glycosaminoglycans (GAGs) heparan sulfate (HS), and dermatan sulfate (DS), progressive neurodegeneration, and dysostosis multiplex. Hematopoietic stem cell transplantation (HSCT) is the most effective treatment for Hurler patients, but reduced intensity conditioning is a risk factor in transplantation, suggesting an underlying defect in hematopoietic cell engraftment. HS is a co-receptor in the CXCL12/CXCR4 axis of hematopoietic stem and progenitor cell (HSPC) migration to the bone marrow (BM), but the effect of HS alterations on HSPC migration, or the functional role of HS in MPSI-H are unknown. We demonstrate defective WT HSPC engraftment and migration in Idua(-/-) recipient BM, particularly under reduced intensity conditioning. Both intra- but especially extracellular Idua(-/-) BM HS was significantly increased and abnormally sulfated. Soluble heparinase-sensitive GAGs from Idua(-/-) BM and specifically 2-O-sulfated HS, elevated in Idua(-/-) BM, both inhibited CXCL12-mediated WT HSPC transwell migration, while DS had no effect. Thus we have shown that excess overly sulfated extracellular HS binds, and sequesters CXCL12, limiting hematopoietic migration and providing a potential mechanism for the limited scope of HSCT in Hurler disease.

  19. Bcl11a Deficiency Leads to Hematopoietic Stem Cell Defects with an Aging-like Phenotype.

    PubMed

    Luc, Sidinh; Huang, Jialiang; McEldoon, Jennifer L; Somuncular, Ece; Li, Dan; Rhodes, Claire; Mamoor, Shahan; Hou, Serena; Xu, Jian; Orkin, Stuart H

    2016-09-20

    B cell CLL/lymphoma 11A (BCL11A) is a transcription factor and regulator of hemoglobin switching that has emerged as a promising therapeutic target for sickle cell disease and thalassemia. In the hematopoietic system, BCL11A is required for B lymphopoiesis, yet its role in other hematopoietic cells, especially hematopoietic stem cells (HSCs) remains elusive. The extensive expression of BCL11A in hematopoiesis implicates context-dependent roles, highlighting the importance of fully characterizing its function as part of ongoing efforts for stem cell therapy and regenerative medicine. Here, we demonstrate that BCL11A is indispensable for normal HSC function. Bcl11a deficiency results in HSC defects, typically observed in the aging hematopoietic system. We find that downregulation of cyclin-dependent kinase 6 (Cdk6), and the ensuing cell-cycle delay, correlate with HSC dysfunction. Our studies define a mechanism for BCL11A in regulation of HSC function and have important implications for the design of therapeutic approaches to targeting BCL11A. PMID:27653684

  20. Delivery of nucleic acid therapeutics by genetically engineered hematopoietic stem cells

    PubMed Central

    Doering, Christopher B.; Archer, David; Spencer, H. Trent

    2010-01-01

    Several populations of adult human stem cells have been identified, but only a few of these are in routine clinical use. The hematopoietic stem cell (HSC) is arguably the most well characterized and the most routinely transplanted adult stem cell. Although details regarding several aspects of this cell’s phenotype are not well understood, transplant of HSCs has advanced to become the standard of care for the treatment of a range of monogenic diseases and several types of cancer. It has also proven to be an excellent target for genetic manipulation, and clinical trials have already demonstrated the usefulness of targeting this cell as a means of delivering nucleic acid therapeutics for the treatment of several previously incurable diseases. It is anticipated that additional clinical trials will soon follow, such as genetically engineering HSCs with vectors to treat monogenic diseases such as hemophilia A. In addition to the direct targeting of HSCs, induced pluripotent stem (iPS) cells have the potential to replace virtually any engineered stem cell therapeutic, including HSCs. We now know that for the broad use of genetically-modified HSCs for the treatment of non-lethal diseases, e.g. hemophilia A, we must be able to regulate the introduction of nucleic acid sequences into these target cells. We can begin to refine transduction protocols to provide safer approaches to genetically manipulate HSCs and strategies are being developed to improve the overall safety of gene transfer. This review focuses on recent advances in the systemic delivery of nucleic acid therapeutics using genetically-modified stem cells, specifically focusing on i) the use of retroviral vectors to genetically modify HSCs, ii) the expression of fVIII from hematopoietic stem cells for the treatment of hemophilia A, and iii) the use of genetically engineered hematopoietic cells generated from iPS cells as treatment for disorders of hematopoiesis. PMID:20869414

  1. A single-cell resolution map of mouse hematopoietic stem and progenitor cell differentiation.

    PubMed

    Nestorowa, Sonia; Hamey, Fiona K; Pijuan Sala, Blanca; Diamanti, Evangelia; Shepherd, Mairi; Laurenti, Elisa; Wilson, Nicola K; Kent, David G; Göttgens, Berthold

    2016-08-25

    Maintenance of the blood system requires balanced cell fate decisions by hematopoietic stem and progenitor cells (HSPCs). Because cell fate choices are executed at the individual cell level, new single-cell profiling technologies offer exciting possibilities for mapping the dynamic molecular changes underlying HSPC differentiation. Here, we have used single-cell RNA sequencing to profile more than 1600 single HSPCs, and deep sequencing has enabled detection of an average of 6558 protein-coding genes per cell. Index sorting, in combination with broad sorting gates, allowed us to retrospectively assign cells to 12 commonly sorted HSPC phenotypes while also capturing intermediate cells typically excluded by conventional gating. We further show that independently generated single-cell data sets can be projected onto the single-cell resolution expression map to directly compare data from multiple groups and to build and refine new hypotheses. Reconstruction of differentiation trajectories reveals dynamic expression changes associated with early lymphoid, erythroid, and granulocyte-macrophage differentiation. The latter two trajectories were characterized by common upregulation of cell cycle and oxidative phosphorylation transcriptional programs. By using external spike-in controls, we estimate absolute messenger RNA (mRNA) levels per cell, showing for the first time that despite a general reduction in total mRNA, a subset of genes shows higher expression levels in immature stem cells consistent with active maintenance of the stem-cell state. Finally, we report the development of an intuitive Web interface as a new community resource to permit visualization of gene expression in HSPCs at single-cell resolution for any gene of choice.

  2. A single-cell resolution map of mouse hematopoietic stem and progenitor cell differentiation.

    PubMed

    Nestorowa, Sonia; Hamey, Fiona K; Pijuan Sala, Blanca; Diamanti, Evangelia; Shepherd, Mairi; Laurenti, Elisa; Wilson, Nicola K; Kent, David G; Göttgens, Berthold

    2016-08-25

    Maintenance of the blood system requires balanced cell fate decisions by hematopoietic stem and progenitor cells (HSPCs). Because cell fate choices are executed at the individual cell level, new single-cell profiling technologies offer exciting possibilities for mapping the dynamic molecular changes underlying HSPC differentiation. Here, we have used single-cell RNA sequencing to profile more than 1600 single HSPCs, and deep sequencing has enabled detection of an average of 6558 protein-coding genes per cell. Index sorting, in combination with broad sorting gates, allowed us to retrospectively assign cells to 12 commonly sorted HSPC phenotypes while also capturing intermediate cells typically excluded by conventional gating. We further show that independently generated single-cell data sets can be projected onto the single-cell resolution expression map to directly compare data from multiple groups and to build and refine new hypotheses. Reconstruction of differentiation trajectories reveals dynamic expression changes associated with early lymphoid, erythroid, and granulocyte-macrophage differentiation. The latter two trajectories were characterized by common upregulation of cell cycle and oxidative phosphorylation transcriptional programs. By using external spike-in controls, we estimate absolute messenger RNA (mRNA) levels per cell, showing for the first time that despite a general reduction in total mRNA, a subset of genes shows higher expression levels in immature stem cells consistent with active maintenance of the stem-cell state. Finally, we report the development of an intuitive Web interface as a new community resource to permit visualization of gene expression in HSPCs at single-cell resolution for any gene of choice. PMID:27365425

  3. The Role of Autologous and Allogeneic Hematopoietic Stem Cell Transplantation for Hodgkin Lymphoma

    PubMed Central

    Holmberg, Leona; Maloney, David G.

    2011-01-01

    Patients with Hodgkin lymphoma are usually cured by primary therapy using chemotherapy alone or combined modality therapy with external beam radiation. Patients who do not experience a complete remission or those who experience relapse may by salvaged by high-dose therapy and autologous hematopoietic stem cell transplantation (ASCT). Success of this approach is largely dependent on the tumor being sensitive to salvage chemotherapy before transplant. More studies are showing the predictive value of functional imaging in this setting. Allogeneic hematopoietic stem cell transplantation has greater risk of nonrelapse mortality and is generally reserved for patients who experience relapse post-ASCT, but may provide long-term survival for some patients through graft-versus-tumor immune effects. PMID:21917627

  4. Cerebral salt-wasting syndrome after hematopoietic stem cell transplantation in adolescents: 3 case reports.

    PubMed

    Jeon, Yeon Jin; Lee, Hyun Young; Jung, In Ah; Cho, Won-Kyoung; Cho, Bin; Suh, Byung-Kyu

    2015-12-01

    Cerebral salt-wasting syndrome (CSWS) is a rare disease characterized by a extracellular volume depletion and hyponatremia induced by marked natriuresis. It is mainly reported in patients who experience a central nervous system insult, such as cerebral hemorrhage or encephalitis. The syndrome of inappropriate antidiuretic hormone secretion is a main cause of severe hyponatremia after hematopoietic stem cell transplantation, whereas CSWS is rarely reported. We report 3 patients with childhood acute leukemia who developed CSWS with central nervous system complication after hematopoietic stem cell transplantation. The diagnosis of CSW was made on the basis of severe hyponatremia accompanied by increased urine output with clinical signs of dehydration. All patients showed elevated natriuretic peptide and normal antidiuretic hormone. Aggressive water and sodium replacement treatment was instituted in all 3 patients and 2 of them were effectively recovered, the other one was required to add fludrocortisone administration.

  5. Cerebral salt-wasting syndrome after hematopoietic stem cell transplantation in adolescents: 3 case reports

    PubMed Central

    Jeon, Yeon Jin; Lee, Hyun Young; Jung, In Ah; Cho, Won-Kyoung; Cho, Bin

    2015-01-01

    Cerebral salt-wasting syndrome (CSWS) is a rare disease characterized by a extracellular volume depletion and hyponatremia induced by marked natriuresis. It is mainly reported in patients who experience a central nervous system insult, such as cerebral hemorrhage or encephalitis. The syndrome of inappropriate antidiuretic hormone secretion is a main cause of severe hyponatremia after hematopoietic stem cell transplantation, whereas CSWS is rarely reported. We report 3 patients with childhood acute leukemia who developed CSWS with central nervous system complication after hematopoietic stem cell transplantation. The diagnosis of CSW was made on the basis of severe hyponatremia accompanied by increased urine output with clinical signs of dehydration. All patients showed elevated natriuretic peptide and normal antidiuretic hormone. Aggressive water and sodium replacement treatment was instituted in all 3 patients and 2 of them were effectively recovered, the other one was required to add fludrocortisone administration. PMID:26817009

  6. Hematopoietic stem cell compartment: Acute and late effects of radiation therapy an chemotherapy

    SciTech Connect

    Mauch, P.; Constine, L.; Greenberger, J.

    1995-03-30

    The bone marrow is an important dose-limiting cell renewal tissue for chemotherapy, wide-field irradiation, and autologous bone marrow transplantion. Over the past 5-10 years a great deal has been discovered about the hematopoietic stem cell compartment. Although the toxicity associated with prolonged myelosuppression continue to limit the wider use of chemotherapy and irradiation, ways are being discovered to circumvent this toxicity such as with the increasing use of cytokines. This review describes what is known of how chemotherapy and irradiation damage stem cells and the microenvironment, how cytokines protect hematopoietic cells from radiation damage and speed marrow recovery after chemotherapy or marrow transplantation, and how various types of blood marrow cells contribute to engraftment and long-term hematopoiesis after high doses of cytotoxic agents and/or total body irradiation. 167 refs., 7 figs., 6 tabs.

  7. Prophylaxis and treatment of acute lymphoblastic leukemia relapse after allogeneic hematopoietic stem cell transplantation

    PubMed Central

    Chen, Runzhe; Campbell, Jos L; Chen, Baoan

    2015-01-01

    Relapse of acute lymphoblastic leukemia remains a major cause of death in patients following allogeneic hematopoietic stem cell transplantation. Several factors may affect the concurrence and outcome of relapse, which include graft-versus-host disease, minimal residual disease or intrinsic factors of the disease, and transplantation characteristics. The mainstay of relapse prevention and treatment is donor leukocyte infusions, targeted therapies, second transplantation, and other novel therapies. In this review, we mainly focus on addressing the impact of graft-versus-host disease on relapse and the prophylaxis and treatment of acute lymphoblastic leukemia relapse following allogeneic hematopoietic stem cell transplantation. We also make recommendations for critical strategies to prevent relapse after transplantation and challenges that must be addressed to ensure success. PMID:25709473

  8. Different Motile Behaviors of Human Hematopoietic Stem versus Progenitor Cells at the Osteoblastic Niche

    PubMed Central

    Foster, Katie; Lassailly, François; Anjos-Afonso, Fernando; Currie, Erin; Rouault-Pierre, Kevin; Bonnet, Dominique

    2015-01-01

    Summary Despite advances in our understanding of interactions between mouse hematopoietic stem cells (HSCs) and their niche, little is known about communication between human HSCs and the microenvironment. Using a xenotransplantation model and intravital imaging, we demonstrate that human HSCs display distinct motile behaviors to their hematopoietic progenitor cell (HPC) counterparts, and the same pattern can be found between mouse HSCs and HPCs. HSCs become significantly less motile after transplantation, while progenitor cells remain motile. We show that human HSCs take longer to find their niche than previously expected and suggest that the niche be defined as the position where HSCs stop moving. Intravital imaging is the only technique to determine where in the bone marrow stem cells stop moving, and future analyses should focus on the environment surrounding the HSC at this point. PMID:26455414

  9. Sodium Caseinate (CasNa) Induces Mobilization of Hematopoietic Stem Cells in a BALB/c Mouse Model

    PubMed Central

    Santiago-Osorio, Edelmiro; Ledesma-Martínez, Edgar; Aguiñiga-Sánchez, Itzen; Poblano-Pérez, Ignacio; Weiss-Steider, Benny; Montesinos-Montesinos, Juan José; de Lourdes Mora-García, María

    2015-01-01

    Background Hematopoietic stem cells transplantation has high clinical potential against a wide variety of hematologic, metabolic, and autoimmune diseases and solid tumors. Clinically, hematopoietic stem cells derived from peripheral blood are currently used more than those obtained from sources such as bone marrow. However, mobilizing agents used in the clinic tend to fail in high rates, making the number of mobilized cells insufficient for transplantation. We investigated whether sodium caseinate induces functional mobilization of hematopoietic stem cells into peripheral blood of Balb/c mice. Material/Methods Using a mouse model, we administrated sodium caseinate or Plerixafor, a commercial mobilizing agent, and analyzed counts of hematopoietic stem cells in peripheral blood, and then cells were transplanted into lethally irradiated mice to restore hematopoiesis. All assays were performed at least twice. Results We found that sodium caseinate increases the number of mononuclear cells in peripheral blood with the immunophenotype of hematopoietic stem cells (0.2 to 0.5% LSK cells), allowing them to form colonies of various cell lineages in semisolid medium (p<0.05). This effect is similar to that of Plerixafor, and cells transplanted into lethally irradiated mice can restore hematopoiesis at higher percentages than mononuclear cells mobilized by Plerixafor (40% vs. 20%, respectively). Further, a secondary transplant rescued a separate group of irradiated mice from death, proving definitive evidence of hematopoietic reconstitution after hematopoietic stem cells transplantation. Data are presented as mean ± standard deviation. To determine significant differences between the data, one-way ANOVA and the Tukey test were used. Conclusions Collectively these results show the utility of sodium caseinate as a mobilizer of hematopoietic stem cells and its potential clinical application in transplantation settings. PMID:26409928

  10. Cutaneous graft-versus-host disease after hematopoietic stem cell transplant - a review*

    PubMed Central

    Villarreal, Cesar Daniel Villarreal; Alanis, Julio Cesar Salas; Pérez, Jose Carlos Jaime; Candiani, Jorge Ocampo

    2016-01-01

    Graft-versus-host disease (GVHD) is a major complication of allogeneic hematopoietic stem cell transplants (allo-HSCT) associated with significant morbidity and mortality. The earliest and most common manifestation is cutaneous graft-versus-host disease. This review focuses on the pathophysiology, clinical features, prevention and treatment of cutaneous graft-versus-host disease. We discuss various insights into the disease's mechanisms and the different treatments for acute and chronic skin graft-versus-host disease. PMID:27438202

  11. Hyperthyroidism After Allogeneic Hematopoietic Stem Cell Transplantation: A Report of Four Cases

    PubMed Central

    Sağ, Erdal; Gönç, Nazlı; Alikaşifoğlu, Ayfer; Kuşkonmaz, Barış; Uçkan, Duygu; Özön, Alev; Kandemir, Nurgün

    2015-01-01

    Hematopoietic stem cell transplantation (HSCT) is the only curative treatment for many hematological disorders, primary immunodeficiencies, and metabolic disorders. Thyroid dysfunction is one of the frequently seen complications of HSCT. However, hyperthyroidism due to Graves’ disease, autoimmune thyroiditis, and thyrotoxicosis are rare. Herein, we report a series of 4 patients who were euthyroid before HSCT but developed hyperthyroidism (3 of them developed autoimmune thyroid disease) after transplantation. PMID:26777050

  12. Efficient infection of primitive hematopoietic stem cells by modified adenovirus.

    PubMed

    Yotnda, P; Onishi, H; Heslop, H E; Shayakhmetov, D; Lieber, A; Brenner, M; Davis, A

    2001-06-01

    Almost all studies of adenoviral vector-mediated gene transfer have made use of the adenovirus type 5 (Ad5). Unfortunately, Ad5 has been ineffective at infecting hematopoietic progenitor cells (HPC). Chimeric Ad5/F35 vectors that have been engineered to substitute the shorter-shafted fiber protein from Ad35 can efficiently infect committed hematopoietic cells and we now show highly effective gene transfer to primitive progenitor subsets. An Ad5GFP and Ad5/F35GFP vector was added to CD34(+) and CD34(-)lineage(-) (lin(-)) HPC. Only 5-20% of CD34(+) and CD34(-)lin(-) cells expressed GFP after Ad5 exposure. In contrast, with the Ad5/F35 vector, 30-70% of the CD34(+), 50-70% of the CD34(-)lin(-) and up to 60% of the CD38(-) HPC expressed GFP and there was little evident cellular toxicity. Because of these improved results, we also analyzed the ability of Ad5/F35 virus to infect the hoechst negative 'side population' (SP) of marrow cells, which appear to be among the very earliest multipotent HPC. Between 51% and 80% of marrow SP cells expressed GFP. The infected populations retained their ability to form colonies in two short-term culture systems, with no loss of viability. We also studied the transfer and expression of immunomodulatory genes, CD40L (cell surface expression) and interleukin-2 (secreted). Both were expressed at immunomodulatory levels for >5 days. The ability of Ad5/F35 to deliver transgenes to primitive HPC with high efficiency and low toxicity in the absence of growth factors provides an improved means of studying the consequences of transient gene expression in these cells.

  13. Phagocytic activity of monocytes, their subpopulations and granulocytes during post-transplant adverse events after hematopoietic stem cell transplantation.

    PubMed

    Döring, Michaela; Cabanillas Stanchi, Karin Melanie; Erbacher, Annika; Haufe, Susanne; Schwarze, Carl Philipp; Handgretinger, Rupert; Hofbeck, Michael; Kerst, Gunter

    2015-05-01

    Phagocytosis of granulocytes and monocytes presents a major mechanism that contributes to the clearance of pathogens and cell debris. We analyzed the phagocytic activity of the peripheral blood cell monocytes, three monocyte subpopulations and granulocytes before and up to one year after hematopoietic stem cell transplantation, as well as during transplant-related adverse events. 25 pediatric patients and young adults (median age of 11.0 years) with hemato-oncological malignancies and non malignancies were enrolled in the prospective study. Ingestion of fluorescence-labeled Escherichia coli bacteria was used to assess the phagocytic activity of monocytes and their subpopulations and granulocytes by means of flow cytometry in the patient group as well as in a control group (n=36). During sepsis, a significant increase of phagocytic activity of monocytes (P=0.0003) and a significant decrease of the phagocytic activity of granulocytes (P=0.0003) and the CD14+ CD16++ monocyte subpopulation (P=0.0020) occurred. At the onset of a veno-occlusive disease, a significant increase of phagocytic activity in the CD14++ CD16+ monocyte subpopulation (P=0.001) and a significant decrease in the phagocytic activity of the CD14++ CD16- monocyte subpopulation (P=0.0048) were observed. In conclusion, the phagocytic activity of monocytes, their subpopulations and granulocytes might be a useful and easy determinable parameter that enables identification of post-transplant complications after hematopoietic stem cell transplantation. The alterations of phagocytic activity contribute to the altered immune response that accompanies adverse events after hematopoietic stem cell transplantation.

  14. Hypercholesterolemia Tunes Hematopoietic Stem/Progenitor Cells for Inflammation and Atherosclerosis

    PubMed Central

    Ma, Xiaojuan; Feng, Yingmei

    2016-01-01

    As the pathological basis of cardiovascular disease (CVD), atherosclerosis is featured as a chronic inflammation. Hypercholesterolemia is an independent risk factor for CVD. Accumulated studies have shown that hypercholesterolemia is associated with myeloid cell expansion, which stimulates innate and adaptive immune responses, strengthens inflammation, and accelerates atherosclerosis progression. Hematopoietic stem/progenitor cells (HSPC) in bone marrow (BM) expresses a panel of lipoprotein receptors to control cholesterol homeostasis. Deficiency of these receptors abrogates cellular cholesterol efflux, resulting in HSPC proliferation and differentiation in hypercholesterolemic mice. Reduction of the cholesterol level in the lipid rafts by infusion of reconstituted high-density lipoprotein (HDL) or its major apolipoprotein, apoA-I, reverses hypercholesterolemia-induced HSPC expansion. Apart from impaired cholesterol metabolism, inhibition of reactive oxygen species production suppresses HSPC activation and leukocytosis. These data indicate that the mechanisms underlying the effects of hypercholesterolemia on HSPC proliferation and differentiation could be multifaceted. Furthermore, dyslipidemia also regulates HSPC-neighboring cells, resulting in HSPC mobilization. In the article, we review how hypercholesterolemia evokes HSPC activation and mobilization directly or via its modification of BM microenvironment. We hope this review will bring light to finding key molecules to control HSPC expansion, inflammation, and atherosclerosis for the treatment of CVD. PMID:27447612

  15. Nutraceutical augmentation of circulating endothelial progenitor cells and hematopoietic stem cells in human subjects

    PubMed Central

    2010-01-01

    The medical significance of circulating endothelial or hematopoietic progenitors is becoming increasing recognized. While therapeutic augmentation of circulating progenitor cells using G-CSF has resulted in promising preclinical and early clinical data for several degenerative conditions, this approach is limited by cost and inability to perform chronic administration. Stem-Kine is a food supplement that was previously reported to augment circulating EPC in a pilot study. Here we report a trial in 18 healthy volunteers administered Stem-Kine twice daily for a 2 week period. Significant increases in circulating CD133 and CD34 cells were observed at days 1, 2, 7, and 14 subsequent to initiation of administration, which correlated with increased hematopoietic progenitors as detected by the HALO assay. Augmentation of EPC numbers in circulation was detected by KDR-1/CD34 staining and colony forming assays. These data suggest Stem-Kine supplementation may be useful as a stimulator of reparative processes associated with mobilization of hematopoietic and endothelial progenitors. PMID:20377846

  16. Nutraceutical augmentation of circulating endothelial progenitor cells and hematopoietic stem cells in human subjects.

    PubMed

    Mikirova, Nina A; Jackson, James A; Hunninghake, Ron; Kenyon, Julian; Chan, Kyle W H; Swindlehurst, Cathy A; Minev, Boris; Patel, Amit N; Murphy, Michael P; Smith, Leonard; Ramos, Famela; Ichim, Thomas E; Riordan, Neil H

    2010-01-01

    The medical significance of circulating endothelial or hematopoietic progenitors is becoming increasing recognized. While therapeutic augmentation of circulating progenitor cells using G-CSF has resulted in promising preclinical and early clinical data for several degenerative conditions, this approach is limited by cost and inability to perform chronic administration. Stem-Kine is a food supplement that was previously reported to augment circulating EPC in a pilot study. Here we report a trial in 18 healthy volunteers administered Stem-Kine twice daily for a 2 week period. Significant increases in circulating CD133 and CD34 cells were observed at days 1, 2, 7, and 14 subsequent to initiation of administration, which correlated with increased hematopoietic progenitors as detected by the HALO assay. Augmentation of EPC numbers in circulation was detected by KDR-1/CD34 staining and colony forming assays. These data suggest Stem-Kine supplementation may be useful as a stimulator of reparative processes associated with mobilization of hematopoietic and endothelial progenitors. PMID:20377846

  17. Selective transgene expression for detection and elimination of contaminating carcinoma cells in hematopoietic stem cell sources.

    PubMed Central

    Chen, L; Pulsipher, M; Chen, D; Sieff, C; Elias, A; Fine, H A; Kufe, D W

    1996-01-01

    Tumor contamination of bone marrow (BM) and peripheral blood (PB) may affect the outcome of patients receiving high dose chemotherapy with autologous transplantation of hematopoietic stem cell products. In this report, we demonstrate that replication defective adenoviral vectors containing the cytomegalovirus (CMV) or DF3/MUC1 carcinoma-selective promoter can be used to selectively transduce contaminating carcinoma cells. Adenoviral-mediated reporter gene expression in breast cancer cells was five orders of magnitude higher than that found in BM, PB, and CD34+ cells. Our results demonstrate that CD34+ cells have low to undetectable levels of integrins responsible for adenoviral internalization. We show that adenoviral-mediated transduction of a reporter gene can detect one breast cancer cell in 5 x 10(5) BM or PB cells with a vector containing the DF3/MUC1 promoter. We also show that transduction of the HSV-tk gene for selective killing by ganciclovir can be exploited for purging cancer cells from hematopoietic stem cell populations. The selective expression of TK followed by ganciclovir treatment resulted in the elimination of 6-logs of contaminating cancer cells. By contrast, there was little effect on CFU-GM and BFU-E formulation or on long term culture initiating cells. These results indicate that adenoviral vectors with a tumor-selective promoter provide a highly efficient and effective approach for the detection and purging of carcinoma cells in hematopoietic stem cell preparations. PMID:8958216

  18. Dietary recommendations for immunosuppressed patients of 17 hematopoietic stem cell transplantation centers in Brazil

    PubMed Central

    Vicenski, Paola Pasini; Alberti, Paloma; do Amaral, Denise Johnsson Campos

    2012-01-01

    Introduction Low-microbial diets are recommended to reduce the risk of foodborne infections when hematopoietic stem cell transplantation patients have neutropenia. However there is no pattern concerning the composition of such a diet. Objective To collect information concerning the structure of nutrition departments and the diets recommended for immunosuppressed patients in transplant centers in Brazil. Methods Questionnaires were sent to the 45 Bone Marrow Transplantation Centers listed by the Sociedade Brasileira de Transplante de Medula Óssea (SBTMO). Completed questionnaires were returned by 17 centers. The questions were related to the profile and the structure of the nutrition department, at what point a general diet is allowed after transplantation, and which food is allowed during the critical period of immunosuppression and soon after transplantation. Results Of the 17 centers that participated, 82% have a professional nutritionist exclusively for the Transplant Department but only 41% have an area specifically for the preparation of diets for immunosuppressed patients. The patients are released from the low-microbial diet to general diets 90-100 days after allogeneic hematopoietic stem cell transplantation by 29% of the centers and only after suspension of immunosuppressive drugs in 24%. Most centers (88%) restrict the consumption of raw fruits, all restrict the consumption of raw vegetables and 88% forbid the consumption of yogurt in the critical period of immunosuppression. There was no consensus on forbidden foods soon after transplantation. Conclusion Major differences in diets recommended to hematopoietic stem cell transplantation patients were observed between the different centers. PMID:23049398

  19. [Clinical significance of monitoring BK polyomavirus in patients after hematopoietic stem cell transplantation].

    PubMed

    Yin, Chang-Xin; Jiang, Qian-Li; He, Han; Yu, Guo-Pan; Xu, Yue; Meng, Fan-Yi; Yang, Mo

    2012-02-01

    This study was aimed to establish a method for rapid detecting BK polyomavirus (BKV) and to investigate the feasibility and value used in leukemia patients undergoing hematopoietic stem cell transplantation. Primers were designed according to BKV gene sequence; the quantitative standards for BKV and a real-time fluorescent quantitative PCR for BKV were established. The BKV level in urine samples from 36 patients after hematopoietic stem cell transplantation were detected by established method. The results showed that the standard of reconstructed plasmid and real time fluorescent quantitative PCR method were successfully established, its good specificity, sensitivity and stability were confirmed by experiments. BKV was found in 55.56% of urine samples, and the BKV load in urine was 2.46 × 10(4) - 7.8 × 10(9) copy/ml. It is concluded that the establishment of real-time fluorescent quantitative PCR for BKV detection provides a method for early diagnosis of the patients with hemorrhagic cystitis after hematopoietic stem cell transplantation.

  20. Medical Students' Knowledge, Familiarity, and Attitudes towards Hematopoietic Stem Cell Donation: Stem Cell Donation Behaviors.

    PubMed

    Narayanan, Praveena; Wolanskyj, Alexandra; Ehlers, Shawna L; Litzow, Mark R; Patnaik, Mrinal S; Hogan, William J; Hashmi, Shahrukh K

    2016-09-01

    Hematopoietic stem cell transplantation (HSCT) is a potentially curative treatment for patients with blood disorders and genetic diseases. Approximately 70% of the HSCTs currently performed in the United States use stems cells from an unrelated donor who donated voluntarily. Medical students (MS) are a young, diverse, influential population whose willingness to engage in altruistic acts, such as donating stem cells, may be correlated with knowledge on the topic. A literature gap exists in MS perspectives towards HSCT and the bone marrow registry (BMR) and prior studies suggest that misconceptions about donation deter MS from participation on the BMR, which may decrease opportunities to educate other potential donors. We performed a cross-sectional survey among the 4-year cohort of MS at Mayo Medical School in Rochester, Minnesota. The questionnaire evaluated multiple areas including whether MS were current members of the BMR and/or prior blood donors, MS current knowledge on donor eligibility (DE) and the donation process (DP), MS familiarity with HSCT and the DP, and MS attitudes towards joining the BMR and towards donating stem cells. The responses were analyzed and assessed alongside a self-reported, standardized scale measuring students' altruistic behaviors. There were 99 out of 247 potential respondents (40%), with 45% (n = 44) of MS in preclinical years 1 or 2, 37% (n = 37) in clinical years 3 or 4, and 18% (n = 18) in research or alternative portions of their training, of which 43% (n = 41) in total were current BMR members. BMR status correlated positively with prior blood donation (P = .015) and female sex (P = .014). Respondents had a 57.7% and 63.7% average correct response rate regarding knowledge of DE and DP, respectively, with knowledge of DE not surprisingly higher in BMR members (P < .0001). The majority of MS surveyed, 68% (n = 65), had learned about HSCT during medical school. BMR status correlated with the

  1. Evidence-based guidelines for the management of neutropenia following outpatient hematopoietic stem cell transplantation.

    PubMed

    West, Fran; Mitchell, Sandra A

    2004-12-01

    Hematopoietic stem cell transplantation (HSCT) involves the transfer of stem cells to establish hematopoiesis in patients who have received myeloablative chemotherapy with or without whole body irradiation. Following high-dose therapy and HSCT, all patients experience a period of neutropenia. Outpatient care delivery models place expanded responsibilities on patients and their families for the management of this treatment side effect. Proactive management of neutropenia is critical to decrease the depth and duration of neutropenia following HSCT, limit exposure to opportunistic and nosocomial pathogens, and ensure prompt intervention should febrile neutropenia or infection develop. Patient and family education, psychosocial support, and coordination of care are key nursing responsibilities.

  2. [Single nucleotide polymorphism and its application in allogeneic hematopoietic stem cell transplantation--review].

    PubMed

    Li, Su-Xia

    2004-12-01

    Single nucleotide polymorphism (SNP) is the third genetic marker after restriction fragment length polymorphism (RFLP) and short tandem repeat. It represents the most density genetic variability in the human genome and has been widely used in gene location, cloning, and research of heredity variation, as well as parenthood identification in forensic medicine. As steady heredity polymorphism, single nucleotide polymorphism is becoming the focus of attention in monitoring chimerism and minimal residual disease in the patients after allogeneic hematopoietic stem cell transplantation. The article reviews SNP heredity characterization, analysis techniques and its applications in allogeneic stem cell transplantation and other fields.

  3. Infections Caused by Mycobacterium tuberculosis in Recipients of Hematopoietic Stem Cell Transplantation

    PubMed Central

    Al-Anazi, Khalid Ahmed; Al-Jasser, Asma Marzouq; Alsaleh, Khalid

    2014-01-01

    Mycobacterium tuberculosis (M. tuberculosis) infections are uncommon in recipients of hematopoietic stem cell transplantation. These infections are 10–40 times commoner in recipients of stem cell transplantation than in the general population but they are 10 times less in stem cell transplantation recipients compared to solid organ transplant recipients. The incidence of M. tuberculosis infections in recipients of allogeneic stem cell transplantation ranges between <1 and 16% and varies considerably according to the type of transplant and the geographical location. Approximately 80% of M. tuberculosis infections in stem cell transplant recipients have been reported in patients receiving allografts. Several risk factors predispose to M. tuberculosis infections in recipients of hematopoietic stem cell transplantation and these are related to the underlying medical condition and its treatment, the pre-transplant conditioning therapies in addition to the transplant procedure and its own complications. These infections can develop as early as day 11 and as late as day 3337 post-transplant. The course may become rapidly progressive and the patient may develop life-threatening complications. The diagnosis of M. tuberculosis infections in stem cell transplant recipients is usually made on clinical grounds, cultures obtained from clinical specimens, tissues biopsies in addition to serology and molecular tests. Unfortunately, a definitive diagnosis of M. tuberculosis infections in these patients may occasionally be difficult to be established. However, M. tuberculosis infections in transplant recipients usually respond well to treatment with anti-tuberculosis agents provided the diagnosis is made early. A high index of suspicion should be maintained in recipients of stem cell transplantation living in endemic areas and presenting with compatible clinical and radiological manifestations. High mortality rates are associated with infections caused by multidrug

  4. Frozen cord blood hematopoietic stem cells differentiate into higher numbers of functional natural killer cells in vitro than mobilized hematopoietic stem cells or freshly isolated cord blood hematopoietic stem cells.

    PubMed

    Luevano, Martha; Domogala, Anna; Blundell, Michael; Jackson, Nicola; Pedroza-Pacheco, Isabela; Derniame, Sophie; Escobedo-Cousin, Michelle; Querol, Sergio; Thrasher, Adrian; Madrigal, Alejandro; Saudemont, Aurore

    2014-01-01

    Adoptive natural killer (NK) cell therapy relies on the acquisition of large numbers of NK cells that are cytotoxic but not exhausted. NK cell differentiation from hematopoietic stem cells (HSC) has become an alluring option for NK cell therapy, with umbilical cord blood (UCB) and mobilized peripheral blood (PBCD34(+)) being the most accessible HSC sources as collection procedures are less invasive. In this study we compared the capacity of frozen or freshly isolated UCB hematopoietic stem cells (CBCD34(+)) and frozen PBCD34(+) to generate NK cells in vitro. By modifying a previously published protocol, we showed that frozen CBCD34(+) cultures generated higher NK cell numbers without loss of function compared to fresh CBCD34(+) cultures. NK cells generated from CBCD34(+) and PBCD34(+) expressed low levels of killer-cell immunoglobulin-like receptors but high levels of activating receptors and of the myeloid marker CD33. However, blocking studies showed that CD33 expression did not impact on the functions of the generated cells. CBCD34(+)-NK cells exhibited increased capacity to secrete IFN-γ and kill K562 in vitro and in vivo as compared to PBCD34(+)-NK cells. Moreover, K562 killing by the generated NK cells could be further enhanced by IL-12 stimulation. Our data indicate that the use of frozen CBCD34(+) for the production of NK cells in vitro results in higher cell numbers than PBCD34(+), without jeopardizing their functionality, rendering them suitable for NK cell immunotherapy. The results presented here provide an optimal strategy to generate NK cells in vitro for immunotherapy that exhibit enhanced effector function when compared to alternate sources of HSC.

  5. [Hematopoietic stem cell transplantation: is it an immunologic therapy?].

    PubMed

    Olaya Vargas, Alberto; Pérez Gonzáles, Oscar

    2003-01-01

    The graft-versus-tumor effect occurring after allogeneic (genetically different) haematopoietic cell transplantation for treating human malignancies, represents the clearest example of the power of the human immune system to eradicate cancer. Recent advances in our understanding of the immunobiology of stem-cell engraftment, tolerance and tumor eradication are allowing clinicians to better harness this powerful effect.

  6. Actinomycosis after allogeneic hematopoietic stem cell transplantation despite penicillin prophylaxis.

    PubMed

    Barraco, F; Labussière-Wallet, H; Valour, F; Ducastelle-Leprêtre, S; Nicolini, F-E; Thomas, X; Ferry, T; Dumitrescu, O; Michallet, M; Ader, F

    2016-08-01

    Actinomycosis is a rare chronic and multifaceted disease caused by Actinomyces species frequently mimicking malignancy or other chronic granulomatous lung diseases. We report 4 original presentations of actinomycosis arising under supposed penicillin prophylaxis in allogeneic stem cell transplantation recipients. PMID:27203624

  7. Measuring ATP Concentration in a Small Number of Murine Hematopoietic Stem Cells.

    PubMed

    Szade, Krzysztof; Zukowska, Monika; Jozkowicz, Alicja; Dulak, Jozef

    2016-01-01

    The metabolism of quiescent adult stem cells differs from the metabolism of differentiated cells. The metabolic processes are tightly regulated and their alterations disturb function of stem cells. One of the indicators of metabolic status of cells is the ATP level. While the method of measuring the ATP levels has been known for many years, estimating ATP levels in small population of defined stem cells isolated directly from the tissue has remained challenging. Here, we show our method of measuring the ATP levels in hematopoietic stem cells sorted from murine bone marrow. We used magnetic sorting as well as cell sorter and adopted the commonly used bioluminescence-based detection kits in described protocol. Our strategy allows to measure ATP levels in 1000 highly purified HSC.

  8. Measuring ATP Concentration in a Small Number of Murine Hematopoietic Stem Cells.

    PubMed

    Szade, Krzysztof; Zukowska, Monika; Jozkowicz, Alicja; Dulak, Jozef

    2016-01-01

    The metabolism of quiescent adult stem cells differs from the metabolism of differentiated cells. The metabolic processes are tightly regulated and their alterations disturb function of stem cells. One of the indicators of metabolic status of cells is the ATP level. While the method of measuring the ATP levels has been known for many years, estimating ATP levels in small population of defined stem cells isolated directly from the tissue has remained challenging. Here, we show our method of measuring the ATP levels in hematopoietic stem cells sorted from murine bone marrow. We used magnetic sorting as well as cell sorter and adopted the commonly used bioluminescence-based detection kits in described protocol. Our strategy allows to measure ATP levels in 1000 highly purified HSC. PMID:27138010

  9. Induced Developmental Arrest of Early Hematopoietic Progenitors Leads to the Generation of Leukocyte Stem Cells

    PubMed Central

    Ikawa, Tomokatsu; Masuda, Kyoko; Huijskens, Mirelle J.A.J.; Satoh, Rumi; Kakugawa, Kiyokazu; Agata, Yasutoshi; Miyai, Tomohiro; Germeraad, Wilfred T.V.; Katsura, Yoshimoto; Kawamoto, Hiroshi

    2015-01-01

    Summary Self-renewal potential and multipotency are hallmarks of a stem cell. It is generally accepted that acquisition of such stemness requires rejuvenation of somatic cells through reprogramming of their genetic and epigenetic status. We show here that a simple block of cell differentiation is sufficient to induce and maintain stem cells. By overexpression of the transcriptional inhibitor ID3 in murine hematopoietic progenitor cells and cultivation under B cell induction conditions, the cells undergo developmental arrest and enter a self-renewal cycle. These cells can be maintained in vitro almost indefinitely, and the long-term cultured cells exhibit robust multi-lineage reconstitution when transferred into irradiated mice. These cells can be cloned and re-expanded with 50% plating efficiency, indicating that virtually all cells are self-renewing. Equivalent progenitors were produced from human cord blood stem cells, and these will ultimately be useful as a source of cells for immune cell therapy. PMID:26607950

  10. Autologous transplant: microbial contamination of hematopoietic stem cell products.

    PubMed

    Almeida, Igor Dullius; Schmalfuss, Tissiana; Röhsig, Liane Marise; Goldani, Luciano Zubaran

    2012-01-01

    Hematopoietic progenitor cells from peripheral blood (HPCPB) are commonly used for autologous and allogenic transplants in patients with most various onco-hematological diseases, and despite the utilization of sterile techniques during collection and processing of these products, bacterial contamination can occur. This study aimed to investigate the microbial contamination of HPCPB products. Microbial cultures of 837 HPCPB products between the year 2000 and 2009 were retrospectively analyzed to determine the incidence of culture positivity and identify the main organisms that cause contamination. The microbiological studies were performed with an automated system (BacT/Alert(®) bioMérieux Corporate). Thirty-six (4.3%) of 837 microbial cultures were contaminated. Coagulase-negative Staphylococcus was the most frequent bacteria isolated from HPCPB products (20 [56%] of the 36 positive microbial cultures). Considering the 36 contaminated samples, 22 HPCPB products were infused and 14 discarded. Pre- and post-infusion antibiotic therapy of the patients transfused with contaminated products was established based on the isolated microorganism and its antibiogram. Microbial contamination rate of HPCPB products was low. Clinically significant outcomes after infusion of contaminated HPCPB products were not observed. PMID:22846122

  11. Enrichment of human hematopoietic stem/progenitor cells facilitates transduction for stem cell gene therapy.

    PubMed

    Baldwin, Kismet; Urbinati, Fabrizia; Romero, Zulema; Campo-Fernandez, Beatriz; Kaufman, Michael L; Cooper, Aaron R; Masiuk, Katelyn; Hollis, Roger P; Kohn, Donald B

    2015-05-01

    Autologous hematopoietic stem cell (HSC) gene therapy for sickle cell disease has the potential to treat this illness without the major immunological complications associated with allogeneic transplantation. However, transduction efficiency by β-globin lentiviral vectors using CD34-enriched cell populations is suboptimal and large vector production batches may be needed for clinical trials. Transducing a cell population more enriched for HSC could greatly reduce vector needs and, potentially, increase transduction efficiency. CD34(+) /CD38(-) cells, comprising ∼1%-3% of all CD34(+) cells, were isolated from healthy cord blood CD34(+) cells by fluorescence-activated cell sorting and transduced with a lentiviral vector expressing an antisickling form of beta-globin (CCL-β(AS3) -FB). Isolated CD34(+) /CD38(-) cells were able to generate progeny over an extended period of long-term culture (LTC) compared to the CD34(+) cells and required up to 40-fold less vector for transduction compared to bulk CD34(+) preparations containing an equivalent number of CD34(+) /CD38(-) cells. Transduction of isolated CD34(+) /CD38(-) cells was comparable to CD34(+) cells measured by quantitative PCR at day 14 with reduced vector needs, and average vector copy/cell remained higher over time for LTC initiated from CD34(+) /38(-) cells. Following in vitro erythroid differentiation, HBBAS3 mRNA expression was similar in cultures derived from CD34(+) /CD38(-) cells or unfractionated CD34(+) cells. In vivo studies showed equivalent engraftment of transduced CD34(+) /CD38(-) cells when transplanted in competition with 100-fold more CD34(+) /CD38(+) cells. This work provides initial evidence for the beneficial effects from isolating human CD34(+) /CD38(-) cells to use significantly less vector and potentially improve transduction for HSC gene therapy.

  12. Impact of Adenoviral Stool Load on Adenoviremia in Pediatric Hematopoietic Stem Cell Transplant Recipients

    PubMed Central

    Srinivasan, Ashok; Klepper, Corie; Sunkara, Anusha; Kang, Guolian; Carr, Jeanne; Gu, Zhengming; Leung, Wing; Hayden, Randall T.

    2015-01-01

    Background Adenoviremia adversely affects prognosis in the post-hematopoietic stem cell transplant (HSCT) setting. Methods We sought to determine retrospectively the cutoff load of adenovirus in the stool as a predictor of adenoviremia, in children who underwent an allogeneic HSCT. The prevalence of sapovirus, norovirus and astrovirus in the stool was also studied. Results The study cohort consisted of 117 patients, of which 71 (60%) had diarrhea. Adenovirus was detected in the stool in 39 out of 71 (55%) patients. Age ≤ 10 years (P = 0.05; odds ratio, 2.57; 95% confidence interval: 0.98–6.75), and male sex (P = 0.04; odds ratio 2.67; 95% confidence interval: 1.02–6.99) increased risk for detection of adenovirus in stool on univariate analysis. Co-infections with enteric pathogens were infrequent. Viral load > 106 copies / gram stool predicted adenoviremia with a sensitivity and specificity of 82%. Sapovirus, norovirus, and astrovirus were detected in 3, 4 and one patient, respectively. Conclusions Quantitative detection of adenovirus in stool may have implications for pre-emptive therapy. Testing for other enteric viruses may have implications for infection control. PMID:25742243

  13. Infections Caused by Stenotrophomonas maltophilia in Recipients of Hematopoietic Stem Cell Transplantation

    PubMed Central

    Al-Anazi, Khalid Ahmed; Al-Jasser, Asma M.

    2014-01-01

    Stenotrophomonas maltophilia (S. maltophilia) is a globally emerging Gram-negative bacillus that is widely spread in environment and hospital equipment. Recently, the incidence of infections caused by this organism has increased, particularly in patients with hematological malignancy and in recipients of hematopoietic stem cell transplantation (HSCT) having neutropenia, mucositis, diarrhea, central venous catheters or graft versus host disease and receiving intensive cytotoxic chemotherapy, immunosuppressive therapy, or broad-spectrum antibiotics. The spectrum of infections in HSCT recipients includes pneumonia, urinary tract and surgical site infection, peritonitis, bacteremia, septic shock, and infection of indwelling medical devices. The organism exhibits intrinsic resistance to many classes of antibiotics including carbapenems, aminoglycosides, most of the third-generation cephalosporins, and other β-lactams. Despite the increasingly reported drug resistance, trimethoprim-sulfamethoxazole is still the drug of choice. However, the organism is still susceptible to ticarcillin-clavulanic acid, tigecycline, fluoroquinolones, polymyxin-B, and rifampicin. Genetic factors play a significant role not only in evolution of drug resistance but also in virulence of the organism. The outcome of patients having S. maltophilia infections can be improved by: using various combinations of novel therapeutic agents and aerosolized aminoglycosides or colistin, prompt administration of in vitro active antibiotics, removal of possible sources of infection such as infected indwelling intravascular catheters, and application of strict infection control measures. PMID:25202682

  14. ERG promotes the maintenance of hematopoietic stem cells by restricting their differentiation

    PubMed Central

    Knudsen, Kasper Jermiin; Rehn, Matilda; Hasemann, Marie Sigurd; Rapin, Nicolas; Bagger, Frederik Otzen; Ohlsson, Ewa; Willer, Anton; Frank, Anne-Katrine; Søndergaard, Elisabeth; Jendholm, Johan; Thorén, Lina; Lee, Julie; Rak, Justyna; Theilgaard-Mönch, Kim; Porse, Bo Torben

    2015-01-01

    The balance between self-renewal and differentiation is crucial for the maintenance of hematopoietic stem cells (HSCs). Whereas numerous gene regulatory factors have been shown to control HSC self-renewal or drive their differentiation, we have relatively few insights into transcription factors that serve to restrict HSC differentiation. In the present work, we identify ETS (E-twenty-six)-related gene (ERG) as a critical factor protecting HSCs from differentiation. Specifically, loss of Erg accelerates HSC differentiation by >20-fold, thus leading to rapid depletion of immunophenotypic and functional HSCs. Molecularly, we could demonstrate that ERG, in addition to promoting the expression of HSC self-renewal genes, also represses a group of MYC targets, thereby explaining why Erg loss closely mimics Myc overexpression. Consistently, the BET domain inhibitor CPI-203, known to repress Myc expression, confers a partial phenotypic rescue. In summary, ERG plays a critical role in coordinating the balance between self-renewal and differentiation of HSCs. PMID:26385962

  15. Hematopoietic stem cells from NOD mice exhibit autonomous behavior and a competitive advantage in allogeneic recipients.

    PubMed

    Chilton, Paula M; Rezzoug, Francine; Ratajczak, Mariusz Z; Fugier-Vivier, Isabelle; Ratajczak, Janina; Kucia, Magda; Huang, Yiming; Tanner, Michael K; Ildstad, Suzanne T

    2005-03-01

    Type 1 diabetes is a systemic autoimmune disease that can be cured by transplantation of hematopoietic stem cells (HSCs) from disease-resistant donors. Nonobese diabetic (NOD) mice have a number of features that distinguish them as bone marrow transplant recipients that must be understood prior to the clinical application of chimerism to induce tolerance. In the present studies, we characterized NOD HSCs, comparing their engraftment characteristics to HSCs from disease-resistant strains. Strikingly, NOD HSCs are significantly enhanced in engraftment potential compared with HSCs from disease-resistant donors. Unlike HSCs from disease-resistant strains, they do not require graft-facilitating cells to engraft in allogeneic recipients. Additionally, they exhibit a competitive advantage when coadministered with increasing numbers of syngeneic HSCs, produce significantly more spleen colony-forming units (CFU-Ss) in vivo in allogeneic recipients, and more granulocyte macrophage-colony-forming units (CFU-GMs) in vitro compared with HSCs from disease-resistant controls. NOD HSCs also exhibit significantly enhanced chemotaxis to a stromal cell-derived factor 1 (SDF-1) gradient and adhere significantly better on primary stroma. This enhanced engraftment potential maps to the insulin-dependent diabetes locus 9 (Idd9) locus, and as such the tumor necrosis factor (TNF) receptor family as well as ski/sno genes may be involved in the mechanism underlying the autonomy of NOD HSCs. These findings may have important implications to understand the evolution of autoimmune disease and impact on potential strategies for cure. PMID:15522953

  16. CD133-targeted gene transfer into long-term repopulating hematopoietic stem cells.

    PubMed

    Brendel, Christian; Goebel, Benjamin; Daniela, Abriss; Brugman, Martijn; Kneissl, Sabrina; Schwäble, Joachim; Kaufmann, Kerstin B; Müller-Kuller, Uta; Kunkel, Hana; Chen-Wichmann, Linping; Abel, Tobias; Serve, Hubert; Bystrykh, Leonid; Buchholz, Christian J; Grez, Manuel

    2015-01-01

    Gene therapy for hematological disorders relies on the genetic modification of CD34(+) cells, a heterogeneous cell population containing about 0.01% long-term repopulating cells. Here, we show that the lentiviral vector CD133-LV, which uses a surface marker on human primitive hematopoietic stem cells (HSCs) as entry receptor, transfers genes preferentially into cells with high engraftment capability. Transduction of unstimulated CD34(+) cells with CD133-LV resulted in gene marking of cells with competitive proliferative advantage in vitro and in immunodeficient mice. The CD133-LV-transduced population contained significantly more cells with repopulating capacity than cells transduced with vesicular stomatitis virus (VSV)-LV, a lentiviral vector pseudotyped with the vesicular stomatitis virus G protein. Upon transfer of a barcode library, CD133-LV-transduced cells sustained gene marking in vivo for a prolonged period of time with a 6.7-fold higher recovery of barcodes compared to transduced control cells. Moreover, CD133-LV-transduced cells were capable of repopulating secondary recipients. Lastly, we show that this targeting strategy can be used for transfer of a therapeutic gene into CD34(+) cells obtained from patients suffering of X-linked chronic granulomatous disease. In conclusion, direct gene transfer into CD133(+) cells allows for sustained long-term engraftment of gene corrected cells.

  17. Therapeutic Role of Hematopoietic Stem Cells in Autism Spectrum Disorder-Related Inflammation

    PubMed Central

    Siniscalco, Dario; Bradstreet, James Jeffrey; Antonucci, Nicola

    2013-01-01

    Autism and autism spectrum disorders (ASDs) are heterogeneous, severe neuro-developmental disorders with core symptoms of dysfunctions in social interactions and communication skills, restricted interests, repetitive – stereotypic verbal and non-verbal behaviors. Biomolecular evidence points to complex gene-environmental interactions in ASDs. Several biochemical processes are associated with ASDs: oxidative stress (including endoplasmic reticulum stress), decreased methylation capacity, limited production of glutathione; mitochondrial dysfunction, intestinal dysbiosis, increased toxic metal burden, and various immune abnormalities. The known immunological disorders include: T-lymphocyte populations and function, gene expression changes in monocytes, several autoimmune-related findings, high levels of N-acetylgalactosaminidase (which precludes macrophage activation), and primary immune deficiencies. These immunological observations may result in minicolumn structural changes in the brain, as well as, abnormal immune mediation of synaptic functions. Equally, these immune dysregulations serve as the rationale for immune-directed interventions such as hematopoietic stem cells (HSCs), which are pivotal in controlling chronic inflammation and in the restoration of immunological balance. These properties make them intriguing potential agents for ASD treatments. This prospective review will focus on the current state-of-the-art knowledge and challenges intrinsic in the application of HSCs for ASD-related immunological disorders. PMID:23772227

  18. [Mycobacterium tuberculosis infection in a pediatric patient who underwent a hematopoietic stem cell transplant].

    PubMed

    Palma, Julia; Catalán, Paula; Mardones, Patricia; Santolaya, M Elena

    2013-04-01

    We report the case of a 10 year old girl with a relapsed acute lymphoblastic leukemia, who underwent a haploidentical hematopoietic stem cell transplant (HSCT), with grade II skin and digestive graft versus host disease, treated with corticosteroids and cyclosporine. On day + 54, she presented fever, with no other remarkable clinical findings. Imaging study showed the presence of lung and liver nodules, liver biopsy was performed. The study included histology, staining and culture for bacteria and fungi, and the preservation of a piece of tissue at -20°C for future prospective studies. Ziehl Nielsen stain was positive, and study for Mycobacterium infection was performed. Microbiological smears of tracheal and gastric aspirate, and bronchial fluid obtained by bronchoalveolar lavage (BAL) were positive. The final report confirmed Mycobacterium tuberculosis in gastric content, sputum, BAL and liver tissue, susceptible to rifampin, isoniazid, streptomycin and ethambutol, with determination of mutations for genes rpoβ and kat G (-). Tuberculosis (TB) diagnosis was confirmed. The girl received daily therapy for two months and then she continued on three times per week therapy for 9 months. Controlled by the transplant, infectious diseases and respiratory teams, the patient remained in good general condition, with radiologic resolution of pulmonary and liver involvement and negative smears. We conclude that Mycobacterium tuberculosis infection should be part of differential diagnosis of febrile illness in patients undergoing HSCT, and biopsy should be a standard practice of early diagnosis in these patients. PMID:23677159

  19. [Expression of CD48 as a live marker to distinguish division of hematopoietic stem cells].

    PubMed

    Yang, Xin; Zhang, Yu; Peng, Lu-Yun; Pang, Ya-Kun; Dong, Fang; Ji, Qing; Xu, Jing; Cheng, Tao; Yuan, Wei-Ping; Gao, Ying-Dai

    2014-06-01

    Hematopoietic stem cells are capable of self-renewal or differentiation when they divide. Three types of cell divisions exist. A dividing stem cell may generate 2 new stem cells (symmetrical renewal division), or 2 differentiating cells (symmetrical differentiation division), or 1 cell of each type (asymmetrical division). This study was aimed to explore an efficient and stable method to distinguish the way of cell division in hematopoietic stem cells. Previous studies showed that the distribution of Numb in a cell could be used to distinguish the type of cell division in various kinds of cells. Therefore, the distribution of Numb protein was detected by immunofluorescence in mitotic CD48(-)CD150(+)LSK cells of mice exploring the relationship between Numb protein and centrosomes. Since CD48 positive marks the HSC that have lost the ability to reconstitute the blood system in mice, CD48 marker could be used to distinguish cell fate decision between self-renewal and differentiation as a living marker. In this study, the CD48(-)CD150(+)LSK cells were sorted from bone marrow cells of mice and the cells were directly labeled with Alexa Fluor (AF) 488-conjugated anti-CD48 antibody in living cultures. After 3 days, the percentage of AF488(+) cells was evaluated under microscope and by FACS. Then colony forming cell assay (CFC) was performed and the ability of cell proliferation were compared between AF488(+) and AF488(-) cells. The results showed that Numb could be used to distinguish different cell division types of hematopoietic stem cells, which was symmetrically or asymmetrically segregated in mitotic CD48(-)CD150(+)LSK cells. The self-labeled fluorochrome could be detected both by FACS as well as microscope. There were about 40% AF488(+) cells after 3 day-cultures in medium titrated with self-labeled AF 488-conjugated anti-CD48 antibody, and the results were consistent between confocal fluorescence microscopy and flow cytometry analysis. The colony forming ability of

  20. RARγ is critical for maintaining a balance between hematopoietic stem cell self-renewal and differentiation

    PubMed Central

    Purton, Louise E.; Dworkin, Sebastian; Olsen, Gemma Haines; Walkley, Carl R.; Fabb, Stewart A.; Collins, Steven J.; Chambon, Pierre

    2006-01-01

    Hematopoietic stem cells (HSCs) sustain lifelong production of all blood cell types through finely balanced divisions leading to self-renewal and differentiation. Although several genes influencing HSC self-renewal have been identified, to date no gene has been described that, when activated, enhances HSC self-renewal and, when activated, promotes HSC differentiation. We observe that the retinoic acid receptor (RAR)γ is selectively expressed in primitive hematopoietic precursors and that the bone marrow of RARγ knockout mice exhibit markedly reduced numbers of HSCs associated with increased numbers of more mature progenitor cells compared with wild-type mice. In contrast, RARα is widely expressed in hematopoietic cells, but RARα knockout mice do not exhibit any HSC or progenitor abnormalities. Primitive hematopoietic precursors overexpressing RARα differentiate predominantly to granulocytes in short-term culture, whereas those overexpressing RARγ exhibit a much more undifferentiated phenotype. Furthermore, loss of RARγ abrogated the potentiating effects of all-trans retinoic acid on the maintenance of HSCs in ex vivo culture. Finally, pharmacological activation of RARγ ex vivo promotes HSC self-renewal, as demonstrated by serial transplant studies. We conclude that the RARs have distinct roles in hematopoiesis and that RARγ is a critical physiological and pharmacological regulator of the balance between HSC self-renewal and differentiation. PMID:16682494

  1. Hematopoietic Stem Cell Regeneration Enhanced by Ectopic Expression of ROS-detoxifying Enzymes in Transplant Mice

    PubMed Central

    Miao, Weimin; XuFeng, Richard; Park, Moo-Rim; Gu, Haihui; Hu, Linping; Kang, Jin Wook; Ma, Shihui; Liang, Paulina H; Li, Yanxin; Cheng, Haizi; Yu, Hui; Epperly, Michael; Greenberger, Joel; Cheng, Tao

    2013-01-01

    High levels of reactive oxygen species (ROS) can exhaust hematopoietic stem cells (HSCs). Thus, maintaining a low state of redox in HSCs by modulating ROS-detoxifying enzymes may augment the regeneration potential of HSCs. Our results show that basal expression of manganese superoxide dismutase (MnSOD) and catalase were at low levels in long-term and short-term repopulating HSCs, and administration of a MnSOD plasmid and lipofectin complex (MnSOD-PL) conferred radiation protection on irradiated recipient mice. To assess the intrinsic role of elevated MnSOD or catalase in HSCs and hematopoietic progenitor cells, the MnSOD or catalase gene was overexpressed in mouse hematopoietic cells via retroviral transduction. The impact of MnSOD and catalase on hematopoietic progenitor cells was mild, as measured by colony-forming units (CFUs). However, overexpressed catalase had a significant beneficial effect on long-term engraftment of transplanted HSCs, and this effect was further enhanced after an insult of low-dose γ-irradiation in the transplant mice. In contrast, overexpressed MnSOD exhibited an insignificant effect on long-term engraftment of transplanted HSCs, but had a significant beneficial effect after an insult of sublethal irradiation. Taken together, these results demonstrate that HSC function can be enhanced by ectopic expression of ROS-detoxifying enzymes, especially after radiation exposure in vivo. PMID:23295952

  2. Distinctive and indispensable roles of PU.1 in maintenance of hematopoietic stem cells and their differentiation

    PubMed Central

    Iwasaki, Hiromi; Somoza, Chamorro; Shigematsu, Hirokazu; Duprez, Estelle A.; Iwasaki-Arai, Junko; Mizuno, Shin-ichi; Arinobu, Yojiro; Geary, Kristin; Zhang, Pu; Dayaram, Tajhal; Fenyus, Maris L.; Elf, Shannon; Chan, Susan; Kastner, Philippe; Huettner, Claudia S.; Murray, Richard; Tenen, Daniel G.; Akashi, Koichi

    2005-01-01

    The PU.1 transcription factor is a key regulator of hematopoietic development, but its role at each hematopoietic stage remains unclear. In particular, the expression of PU.1 in hematopoietic stem cells (HSCs) could simply represent “priming” of genes related to downstream myelolymphoid lineages. By using a conditional PU.1 knock-out model, we here show that HSCs express PU.1, and its constitutive expression is necessary for maintenance of the HSC pool in the bone marrow. Bone marrow HSCs disrupted with PU.1 in situ could not maintain hematopoiesis and were outcompeted by normal HSCs. PU.1-deficient HSCs also failed to generate the earliest myeloid and lymphoid progenitors. PU.1 disruption in granulocyte/monocyte-committed progenitors blocked their maturation but not proliferation, resulting in myeloblast colony formation. PU.1 disruption in common lymphoid progenitors, however, did not prevent their B-cell maturation. In vivo disruption of PU.1 in mature B cells by the CD19-Cre locus did not affect B-cell maturation, and PU.1-deficient mature B cells displayed normal proliferation in response to mitogenic signals including the cross-linking of surface immunoglobulin M (IgM). Thus, PU.1 plays indispensable and distinct roles in hematopoietic development through supporting HSC self-renewal as well as commitment and maturation of myeloid and lymphoid lineages. PMID:15914556

  3. Hematopoietic stem cells derived from human umbilical cord ameliorate cisplatin-induced acute renal failure in rats

    PubMed Central

    Shalaby, Rokaya H; Rashed, Laila A; Ismaail, Alaa E; Madkour, Naglaa K; Elwakeel, Sherien H

    2014-01-01

    Injury to a target organ can be sensed by bone marrow stem cells that migrate to the site of damage, undergo differentiation, and promote structural and functional repair. This remarkable stem cell capacity prompted an investigation of the potential of mesenchymal and hematopoietic stem cells to cure acute renal failure. On the basis of the recent demonstration that hematopoietic stem cells (HSCs) can differentiate into renal cells, the current study tested the hypothesis that HSCs can contribute to the regeneration of renal tubular epithelial cells after renal injury. HSCs from human umbilical cord blood which isolated and purified by magnetic activated cell sorting were transplanted intraperitoneal into acute renal failure (ARF) rats which was established by a single dose of cisplatin 5 mg/kg for five days. The Study was carried on 48 male white albino rats, of average weight 120-150 gm. The animals were divided into 4 groups, Group one Served as control and received normal saline throughout the experiments. Group two (model control) received a single dose of cisplatin. Group three and four male-albino rats with induced ARF received interapritoneally (HSCs) at two week and four week respectively. Injection of a single dose of cisplatin resulted in a significant increase in serum creatinine and urea levels, histo-pathological examination of kidney tissue from cisplatin showed severe nephrotoxicity in which 50-75% of glomeruli and renal tubules exhibited massive degenerative change. Four weeks after HSC transplantation, Serum creatinine and urea nitrogen decreased 3.5 times and 2.1 times as well as HGF, IGF-1, VEGF and P53 using quantitative real-time PCR increased 4.3 times, 3.2, 2.4 and 4.2 times compared to ARF groups, respectively. The proliferation of cell nuclear antigen (PCNA)-positive cells (500.083±35.167) was higher than that in the cisplatin groups (58.612±15.743). In addition, the transplanted umbilical cord hematopoietic stem cells UC-HSCs could

  4. Aspergillus Thyroiditis after Allogeneic Hematopoietic Stem Cell Transplantation

    PubMed Central

    Ataca, Pinar; Atilla, Erden; Saracoglu, Pelin; Yilmaz, Gulden; Civriz Bozdag, Sinem; Toprak, Selami Kocak; Yuksel, Meltem Kurt; Ceyhan, Koray; Topcuoglu, Pervin

    2015-01-01

    Aspergillus thyroiditis is a rare disorder detected in immunocompromised patients during disseminated infections. Early management is essential to prevent high mortality. A 61-year-old allogeneic stem cell male recipient presented with painful thyroid nodular enlargement. He had low TSH and low free T4 levels. The thyroid ultrasound showed a hypoechoic nodule; biopsy indicated suppurative Aspergillus thyroiditis. He was successfully treated by amphotericin B. PMID:26640727

  5. The Src homology 2 protein Shb promotes cell cycle progression in murine hematopoietic stem cells by regulation of focal adhesion kinase activity

    SciTech Connect

    Gustafsson, Karin; Heffner, Garrett; Wenzel, Pamela L.; Curran, Matthew; Grawé, Jan; McKinney-Freeman, Shannon L.; Daley, George Q.; Welsh, Michael

    2013-07-15

    The widely expressed adaptor protein Shb has previously been reported to contribute to T cell function due to its association with the T cell receptor and furthermore, several of Shb's known interaction partners are established regulators of blood cell development and function. In addition, Shb deficient embryonic stem cells displayed reduced blood cell colony formation upon differentiation in vitro. The aim of the current study was therefore to explore hematopoietic stem and progenitor cell function in the Shb knockout mouse. Shb deficient bone marrow contained reduced relative numbers of long-term hematopoietic stem cells (LT-HSCs) that exhibited lower proliferation rates. Despite this, Shb knockout LT-HSCs responded promptly by entering the cell cycle in response to genotoxic stress by 5-fluorouracil treatment. In competitive LT-HSC transplantations, Shb null cells initially engrafted as well as the wild-type cells but provided less myeloid expansion over time. Moreover, Shb knockout bone marrow cells exhibited elevated basal activities of focal adhesion kinase/Rac1/p21-activated kinase signaling and reduced responsiveness to Stem Cell Factor stimulation. Consequently, treatment with a focal adhesion kinase inhibitor increased Shb knockout LT-HSC proliferation. The altered signaling characteristics thus provide a plausible mechanistic explanation for the changes in LT-HSC proliferation since these signaling intermediates have all been shown to participate in LT-HSC cell cycle control. In summary, the loss of Shb dependent signaling in bone marrow cells, resulting in elevated focal adhesion kinase activity and reduced proliferative responses in LT-HSCs under steady state hematopoiesis, confers a disadvantage to the maintenance of LT-HSCs over time. -- Highlights: • Shb is an adaptor protein operating downstream of tyrosine kinase receptors. • Shb deficiency reduces hematopoietic stem cell proliferation. • The proliferative effect of Shb occurs via increased

  6. Transforming Growth Factor β Drives Hemogenic Endothelium Programming and the Transition to Hematopoietic Stem Cells.

    PubMed

    Monteiro, Rui; Pinheiro, Philip; Joseph, Nicola; Peterkin, Tessa; Koth, Jana; Repapi, Emmanouela; Bonkhofer, Florian; Kirmizitas, Arif; Patient, Roger

    2016-08-22

    Hematopoietic stem cells (HSCs) are self-renewing multipotent stem cells that generate mature blood lineages throughout life. They, together with hematopoietic progenitor cells (collectively known as HSPCs), emerge from hemogenic endothelium in the floor of the embryonic dorsal aorta by an endothelial-to-hematopoietic transition (EHT). Here we demonstrate that transforming growth factor β (TGFβ) is required for HSPC specification and that it regulates the expression of the Notch ligand Jagged1a in endothelial cells prior to EHT, in a striking parallel with the epithelial-to-mesenchymal transition (EMT). The requirement for TGFβ is two fold and sequential: autocrine via Tgfβ1a and Tgfβ1b produced in the endothelial cells themselves, followed by a paracrine input of Tgfβ3 from the notochord, suggesting that the former programs the hemogenic endothelium and the latter drives EHT. Our findings have important implications for the generation of HSPCs from pluripotent cells in vitro. PMID:27499523

  7. CD34 expression on long-term repopulating hematopoietic stem cells changes during developmental stages.

    PubMed

    Matsuoka, S; Ebihara, Y; Xu, M; Ishii, T; Sugiyama, D; Yoshino, H; Ueda, T; Manabe, A; Tanaka, R; Ikeda, Y; Nakahata, T; Tsuji, K

    2001-01-15

    The CD34 antigen serves as an important marker for primitive hematopoietic cells in therapeutic transplantation of hematopoietic stem cells (HSC) and gene therapy, but it has remained an open question as to whether or not most HSC express CD34. Using a competitive long-term reconstitution assay, the results of this study confirm developmental changes in CD34 expression on murine HSC. In fetuses and neonates, CD34 was expressed on Lin(-)c-Kit(+) long-term repopulating HSC of bone marrow (BM), liver, and spleen. However, CD34 expression on HSC decreased with aging, and in mice older than 10 weeks, HSC were most enriched in the Lin(-)c-Kit(+)CD34(-) marrow cell fraction. A second transplantation was performed from primary recipients who were transplanted with neonatal Lin(-)c-Kit(+) CD34(high) HSC marrow. Although donor-type HSC resided in CD34-expressing cell fraction in BM cells of the first recipients 4 weeks after the first transplantation, the stem cell activity had shifted to Lin(-)c-Kit(+)CD34(-) cells after 16 weeks, indicating that adult Lin(-)c-Kit(+)CD34(-) HSC are the progeny of neonatal CD34-expresssing HSC. Assays for colony-forming cells showed that hematopoietic progenitor cells, unlike HSC, continue to express CD34 throughout murine development. The present findings are important because the clinical application of HSC can be extended, in particular as related to CD34-enriched HSC and umbilical cord blood HSC.

  8. Reticular dysgenesis–associated AK2 protects hematopoietic stem and progenitor cell development from oxidative stress

    PubMed Central

    Rissone, Alberto; Weinacht, Katja Gabriele; la Marca, Giancarlo; Bishop, Kevin; Giocaliere, Elisa; Jagadeesh, Jayashree; Felgentreff, Kerstin; Dobbs, Kerry; Al-Herz, Waleed; Jones, Marypat; Chandrasekharappa, Settara; Kirby, Martha; Wincovitch, Stephen; Simon, Karen Lyn; Itan, Yuval; DeVine, Alex; Schlaeger, Thorsten; Schambach, Axel; Sood, Raman

    2015-01-01

    Adenylate kinases (AKs) are phosphotransferases that regulate the cellular adenine nucleotide composition and play a critical role in the energy homeostasis of all tissues. The AK2 isoenzyme is expressed in the mitochondrial intermembrane space and is mutated in reticular dysgenesis (RD), a rare form of severe combined immunodeficiency (SCID) in humans. RD is characterized by a maturation arrest in the myeloid and lymphoid lineages, leading to early onset, recurrent, and overwhelming infections. To gain insight into the pathophysiology of RD, we studied the effects of AK2 deficiency using the zebrafish model and induced pluripotent stem cells (iPSCs) derived from fibroblasts of an RD patient. In zebrafish, Ak2 deficiency affected hematopoietic stem and progenitor cell (HSPC) development with increased oxidative stress and apoptosis. AK2-deficient iPSCs recapitulated the characteristic myeloid maturation arrest at the promyelocyte stage and demonstrated an increased AMP/ADP ratio, indicative of an energy-depleted adenine nucleotide profile. Antioxidant treatment rescued the hematopoietic phenotypes in vivo in ak2 mutant zebrafish and restored differentiation of AK2-deficient iPSCs into mature granulocytes. Our results link hematopoietic cell fate in AK2 deficiency to cellular energy depletion and increased oxidative stress. This points to the potential use of antioxidants as a supportive therapeutic modality for patients with RD. PMID:26150473

  9. Dnmt3a Regulates Myeloproliferation and Liver-Specific Expansion of Hematopoietic Stem and Progenitor Cells

    PubMed Central

    Guryanova, Olga A.; Lieu, Yen K.; Garrett-Bakelman, Francine E.; Spitzer, Barbara; Glass, Jacob L.; Shank, Kaitlyn; Valencia Martinez, Ana Belen; Rivera, Sharon A.; Durham, Benjamin H.; Rapaport, Franck; Keller, Matthew D.; Pandey, Suveg; Bastian, Lennart; Tovbin, Daniel; Weinstein, Abby R.; Teruya-Feldstein, Julie; Abdel-Wahab, Omar; Santini, Valeria; Mason, Christopher E.; Melnick, Ari M.; Mukherjee, Siddhartha; Levine, Ross L.

    2015-01-01

    DNMT3A mutations are observed in myeloid malignancies, including myeloproliferative neoplasms (MPN), myelodysplastic syndromes (MDS), and acute myeloid leukemia (AML). Transplantation studies have elucidated an important role for Dnmt3a in stem cell self-renewal and in myeloid differentiation. Here we investigated the impact of conditional hematopoietic Dnmt3a loss on disease phenotype in primary mice. Mx1-Cre-mediated Dnmt3a ablation led to the development of a lethal, fully penetrant myeloproliferative neoplasm with myelodysplasia (MDS/MPN) characterized by peripheral cytopenias and by marked, progressive hepatomegaly. We detected expanded stem/progenitor populations in the liver of Dnmt3a-ablated mice. The MDS/MPN induced by Dnmt3a ablation was transplantable, including the marked hepatomegaly. Homing studies showed that Dnmt3a-deleted bone marrow cells preferentially migrated to the liver. Gene expression and DNA methylation analyses of progenitor cell populations identified differential regulation of hematopoietic regulatory pathways, including fetal liver hematopoiesis transcriptional programs. These data demonstrate that Dnmt3a ablation in the hematopoietic system leads to myeloid transformation in vivo, with cell autonomous aberrant tissue tropism and marked extramedullary hematopoiesis (EMH) with liver involvement. Hence, in addition to the established role of Dnmt3a in regulating self-renewal, Dnmt3a regulates tissue tropism and limits myeloid progenitor expansion in vivo. PMID:26710888

  10. Early Exposure of Murine Embryonic Stem Cells to Hematopoietic Cytokines Differentially Directs Definitive Erythropoiesis and Cardiomyogenesis in Alginate Hydrogel Three-Dimensional Cultures

    PubMed Central

    Fauzi, Iliana

    2014-01-01

    HepG2-conditioned medium (CM) facilitates early differentiation of murine embryonic stem cells (mESCs) into hematopoietic cells in two-dimensional cultures through formation of embryoid-like colonies (ELCs), bypassing embryoid body (EB) formation. We now demonstrate that three-dimensional (3D) cultures of alginate-encapsulated mESCs cultured in a rotating wall vessel bioreactor can be differentially driven toward definitive erythropoiesis and cardiomyogenesis in the absence of ELC formation. Three groups were evaluated: mESCs in maintenance medium with leukemia inhibitory factor (LIF, control) and mESCs cultured with HepG2 CM (CM1 and CM2). Control and CM1 groups were cultivated for 8 days in early differentiation medium with murine stem cell factor (mSCF) followed by 10 days in hematopoietic differentiation medium (HDM) containing human erythropoietin, m-interleukin (mIL)-3, and mSCF. CM2 cells were cultured for 18 days in HDM, bypassing early differentiation. In CM1, a fivefold expansion of hematopoietic colonies was observed at day 14, with enhancement of erythroid progenitors, hematopoietic genes (Gata-2 and SCL), erythroid genes (EKLF and β-major globin), and proteins (Gata-1 and β-globin), although ζ-globin was not expressed. In contrast, CM2 primarily produced beating colonies in standard hematopoietic colony assay and expressed early cardiomyogenic markers, anti-sarcomeric α-actinin and Gata-4. In conclusion, a scalable, automatable, integrated, 3D bioprocess for the differentiation of mESC toward definitive erythroblasts has been established. Interestingly, cardiomyogenesis was also directed in a specific protocol with HepG2 CM and hematopoietic cytokines making this platform a useful tool for the study of erythroid and cardiomyogenic development. PMID:24926614

  11. Necdin, a p53 target gene, regulates the quiescence and response to genotoxic stress of hematopoietic stem/progenitor cells.

    PubMed

    Asai, Takashi; Liu, Yan; Di Giandomenico, Silvana; Bae, Narae; Ndiaye-Lobry, Delphine; Deblasio, Anthony; Menendez, Silvia; Antipin, Yevgeniy; Reva, Boris; Wevrick, Rachel; Nimer, Stephen D

    2012-08-23

    We recently defined a critical role for p53 in regulating the quiescence of adult hematopoietic stem cells (HSCs) and identified necdin as a candidate p53 target gene. Necdin is a growth-suppressing protein and the gene encoding it is one of several that are deleted in patients with Prader-Willi syndrome. To define the intrinsic role of necdin in adult hematopoiesis, in the present study, we transplanted necdin-null fetal liver cells into lethally irradiated recipients. We show that necdin-null adult HSCs are less quiescent and more proliferative than normal HSCs, demonstrating the similar role of necdin and p53 in promoting HSC quiescence during steady-state conditions. However, wild-type recipients repopulated with necdin-null hematopoietic stem/progenitor cells show enhanced sensitivity to irradiation and chemotherapy, with increased p53-dependent apoptosis, myelosuppression, and mortality. Necdin controls the HSC response to genotoxic stress via both cell-cycle-dependent and cell-cycle-independent mechanisms, with the latter occurring in a Gas2L3-dependent manner. We conclude that necdin functions as a molecular switch in adult hematopoiesis, acting in a p53-like manner to promote HSC quiescence in the steady state, but suppressing p53-dependent apoptosis in response to genotoxic stress.

  12. Is mobilized peripheral blood comparable with bone marrow as a source of hematopoietic stem cells for allogeneic transplantation from HLA-identical sibling donors? A case-control study

    PubMed Central

    Gallardo, David; de la Cámara, Rafael; Nieto, Jose B.; Espigado, Ildefonso; Iriondo, Arturo; Jiménez-Velasco, Antonio; Vallejo, Carlos; Martín, Carmen; Caballero, Dolores; Brunet, Salut; Serrano, David; Solano, Carlos; Ribera, Josep M.; de la Rubia, Javier; Carreras, Enric

    2009-01-01

    Background Granulocyte colony-stimulating factor mobilized peripheral blood stem cells are increasingly used instead of bone marrow as a stem cell source for transplantation. Whereas this change is almost complete for autologous transplantation, there are some concerns when considering allogeneic transplants. Design and Methods We performed a retrospective case-control study including 820 adult patients who had received an allogeneic stem cell transplant from an HLA-identical sibling donor. Quality of life (QoL) was assessed in 150 patients using the EORTC Quality of Life Questionnaire C30 (QLQ-C30). Results There were no statistically significant differences in overall survival at ten years (bone marrow: 48.9% vs. peripheral blood stem cells: 39.8%; p=0.621), transplant-related mortality (bone marrow: 28.9% vs. peripheral blood stem cells: 34.4%; p=0.682) or relapse incidence at 9 years (29.4% vs. 35.2%, respectively; p=0.688). Similar outcomes were maintained independently of the phase of the disease. However, multivariate analysis identified a higher incidence of acute graft-versus-host disease grades II-IV (p: 0.023; Hazard ratio [HR]: 1.41; 95% confidence interval [CI]: 1.05–1.89) and grades III-IV (p: 0.006; HR: 1.89; 95% CI: 1.20–2.98), in the peripheral blood stem cells-stem cell transplant group. As previously described, extensive chronic graft-versus-host disease was also more frequent in the peripheral blood stem cells group (28% vs. 15.6%; p<0.001). Patients transplanted with peripheral blood stem cells had significant impairment of role and social functioning. Conclusions Although overall survival was not affected by the stem cell source, peripheral blood stem cell transplants were associated with a higher risk of both acute and chronic GvHD. Global quality of life was similar in both groups, but patients transplanted with peripheral blood stem cells showed worse role and social functioning scores, probably related to the increased incidence of

  13. Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice.

    PubMed

    Chang, Jianhui; Wang, Yingying; Shao, Lijian; Laberge, Remi-Martin; Demaria, Marco; Campisi, Judith; Janakiraman, Krishnamurthy; Sharpless, Norman E; Ding, Sheng; Feng, Wei; Luo, Yi; Wang, Xiaoyan; Aykin-Burns, Nukhet; Krager, Kimberly; Ponnappan, Usha; Hauer-Jensen, Martin; Meng, Aimin; Zhou, Daohong

    2016-01-01

    Senescent cells (SCs) accumulate with age and after genotoxic stress, such as total-body irradiation (TBI). Clearance of SCs in a progeroid mouse model using a transgenic approach delays several age-associated disorders, suggesting that SCs play a causative role in certain age-related pathologies. Thus, a 'senolytic' pharmacological agent that can selectively kill SCs holds promise for rejuvenating tissue stem cells and extending health span. To test this idea, we screened a collection of compounds and identified ABT263 (a specific inhibitor of the anti-apoptotic proteins BCL-2 and BCL-xL) as a potent senolytic drug. We show that ABT263 selectively kills SCs in culture in a cell type- and species-independent manner by inducing apoptosis. Oral administration of ABT263 to either sublethally irradiated or normally aged mice effectively depleted SCs, including senescent bone marrow hematopoietic stem cells (HSCs) and senescent muscle stem cells (MuSCs). Notably, this depletion mitigated TBI-induced premature aging of the hematopoietic system and rejuvenated the aged HSCs and MuSCs in normally aged mice. Our results demonstrate that selective clearance of SCs by a pharmacological agent is beneficial in part through its rejuvenation of aged tissue stem cells. Thus, senolytic drugs may represent a new class of radiation mitigators and anti-aging agents. PMID:26657143

  14. Hematopoietic stem cells in research and clinical applications: The “CD34 issue”

    PubMed Central

    Ivanovic, Zoran

    2010-01-01

    In this paper, experimental findings concerning the kinetics of hematopoietic reconstitution are compared to corresponding clinical data. Although not clearly apparent, the transplantation practice seems to confirm the basic proposals of experimental hematology concerning hematopoietic reconstitution resulting from successive waves of repopulation stemming from different subpopulations of progenitor and stem cells. One of the “first rate” parameters in clinical transplantations in hematology; i.e. the CD34+ positive cell dose, has been discussed with respect to the functional heterogeneity and variability of cell populations endowed by expression of CD34. This parameter is useful only if the relative proportion of stem and progenitor cells in the CD34+ cell population is more or less maintained in a series of patients or donors. This proportion could vary with respect to the source, pathology, treatment, processing procedure, the graft ex vivo treatment and so on. Therefore, a universal dose of CD34+ cells cannot be defined. In addition, to avoid further confusion, the CD34+ cells should not be named “stem cells” or “progenitor cells” since these denominations only concern functionally characterized cell entities. PMID:21607112

  15. Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice.

    PubMed

    Chang, Jianhui; Wang, Yingying; Shao, Lijian; Laberge, Remi-Martin; Demaria, Marco; Campisi, Judith; Janakiraman, Krishnamurthy; Sharpless, Norman E; Ding, Sheng; Feng, Wei; Luo, Yi; Wang, Xiaoyan; Aykin-Burns, Nukhet; Krager, Kimberly; Ponnappan, Usha; Hauer-Jensen, Martin; Meng, Aimin; Zhou, Daohong

    2016-01-01

    Senescent cells (SCs) accumulate with age and after genotoxic stress, such as total-body irradiation (TBI). Clearance of SCs in a progeroid mouse model using a transgenic approach delays several age-associated disorders, suggesting that SCs play a causative role in certain age-related pathologies. Thus, a 'senolytic' pharmacological agent that can selectively kill SCs holds promise for rejuvenating tissue stem cells and extending health span. To test this idea, we screened a collection of compounds and identified ABT263 (a specific inhibitor of the anti-apoptotic proteins BCL-2 and BCL-xL) as a potent senolytic drug. We show that ABT263 selectively kills SCs in culture in a cell type- and species-independent manner by inducing apoptosis. Oral administration of ABT263 to either sublethally irradiated or normally aged mice effectively depleted SCs, including senescent bone marrow hematopoietic stem cells (HSCs) and senescent muscle stem cells (MuSCs). Notably, this depletion mitigated TBI-induced premature aging of the hematopoietic system and rejuvenated the aged HSCs and MuSCs in normally aged mice. Our results demonstrate that selective clearance of SCs by a pharmacological agent is beneficial in part through its rejuvenation of aged tissue stem cells. Thus, senolytic drugs may represent a new class of radiation mitigators and anti-aging agents.

  16. CDK6 as a key regulator of hematopoietic and leukemic stem cell activation.

    PubMed

    Scheicher, Ruth; Hoelbl-Kovacic, Andrea; Bellutti, Florian; Tigan, Anca-Sarmiza; Prchal-Murphy, Michaela; Heller, Gerwin; Schneckenleithner, Christine; Salazar-Roa, María; Zöchbauer-Müller, Sabine; Zuber, Johannes; Malumbres, Marcos; Kollmann, Karoline; Sexl, Veronika

    2015-01-01

    The cyclin-dependent kinase 6 (CDK6) and CDK4 have redundant functions in regulating cell-cycle progression. We describe a novel role for CDK6 in hematopoietic and leukemic stem cells (hematopoietic stem cells [HSCs] and leukemic stem cells [LSCs]) that exceeds its function as a cell-cycle regulator. Although hematopoiesis appears normal under steady-state conditions, Cdk6(-/-) HSCs do not efficiently repopulate upon competitive transplantation, and Cdk6-deficient mice are significantly more susceptible to 5-fluorouracil treatment. We find that activation of HSCs requires CDK6, which interferes with the transcription of key regulators, including Egr1. Transcriptional profiling of HSCs is consistent with the central role of Egr1. The impaired repopulation capacity extends to BCR-ABL(p210+) LSCs. Transplantation with BCR-ABL(p210+)-infected bone marrow from Cdk6(-/-) mice fails to induce disease, although recipient mice do harbor LSCs. Egr1 knock-down in Cdk6(-/-) BCR-ABL(p210+) LSKs significantly enhances the potential to form colonies, underlining the importance of the CDK6-Egr1 axis. Our findings define CDK6 as an important regulator of stem cell activation and an essential component of a transcriptional complex that suppresses Egr1 in HSCs and LSCs.

  17. CDK6 as a key regulator of hematopoietic and leukemic stem cell activation

    PubMed Central

    Scheicher, Ruth; Hoelbl-Kovacic, Andrea; Bellutti, Florian; Tigan, Anca-Sarmiza; Prchal-Murphy, Michaela; Heller, Gerwin; Schneckenleithner, Christine; Salazar-Roa, María; Zöchbauer-Müller, Sabine; Zuber, Johannes; Malumbres, Marcos; Kollmann, Karoline

    2015-01-01

    The cyclin-dependent kinase 6 (CDK6) and CDK4 have redundant functions in regulating cell-cycle progression. We describe a novel role for CDK6 in hematopoietic and leukemic stem cells (hematopoietic stem cells [HSCs] and leukemic stem cells [LSCs]) that exceeds its function as a cell-cycle regulator. Although hematopoiesis appears normal under steady-state conditions, Cdk6−/− HSCs do not efficiently repopulate upon competitive transplantation, and Cdk6-deficient mice are significantly more susceptible to 5-fluorouracil treatment. We find that activation of HSCs requires CDK6, which interferes with the transcription of key regulators, including Egr1. Transcriptional profiling of HSCs is consistent with the central role of Egr1. The impaired repopulation capacity extends to BCR-ABLp210+ LSCs. Transplantation with BCR-ABLp210+–infected bone marrow from Cdk6−/− mice fails to induce disease, although recipient mice do harbor LSCs. Egr1 knock-down in Cdk6−/− BCR-ABLp210+ LSKs significantly enhances the potential to form colonies, underlining the importance of the CDK6-Egr1 axis. Our findings define CDK6 as an important regulator of stem cell activation and an essential component of a transcriptional complex that suppresses Egr1 in HSCs and LSCs. PMID:25342715

  18. Proteomic Cornerstones of Hematopoietic Stem Cell Differentiation: Distinct Signatures of Multipotent Progenitors and Myeloid Committed Cells*

    PubMed Central

    Klimmeck, Daniel; Hansson, Jenny; Raffel, Simon; Vakhrushev, Sergey Y.; Trumpp, Andreas; Krijgsveld, Jeroen

    2012-01-01

    Regenerative tissues such as the skin epidermis, the intestinal mucosa or the hematopoietic system are organized in a hierarchical manner with stem cells building the top of this hierarchy. Somatic stem cells harbor the highest self-renewal activity and generate a series of multipotent progenitors which differentiate into lineage committed progenitors and subsequently mature cells. In this report, we applied an in-depth quantitative proteomic approach to analyze and compare the full proteomes of ex vivo isolated and FACS-sorted populations highly enriched for either multipotent hematopoietic stem/progenitor cells (HSPCs, LinnegSca-1+c-Kit+) or myeloid committed precursors (LinnegSca-1−c-Kit+). By employing stable isotope dimethyl labeling and high-resolution mass spectrometry, more than 5000 proteins were quantified. From biological triplicate experiments subjected to rigorous statistical evaluation, 893 proteins were found differentially expressed between multipotent and myeloid committed cells. The differential protein content in these cell populations points to a distinct structural organization of the cytoskeleton including remodeling activity. In addition, we found a marked difference in the expression of metabolic enzymes, including a clear shift of specific protein isoforms of the glycolytic pathway. Proteins involved in translation showed a collective higher expression in myeloid progenitors, indicating an increased translational activity. Strikingly, the data uncover a unique signature related to immune defense mechanisms, centering on the RIG-I and type-1 interferon response systems, which are installed in multipotent progenitors but not evident in myeloid committed cells. This suggests that specific, and so far unrecognized, mechanisms protect these immature cells before they mature. In conclusion, this study indicates that the transition of hematopoietic stem/progenitors toward myeloid commitment is accompanied by a profound change in processing of

  19. Blockage of caspase-1 activation ameliorates bone marrow inflammation in mice after hematopoietic stem cell transplantation.

    PubMed

    Qiao, Jianlin; Wu, Jinyan; Li, Yuanyuan; Xia, Yuan; Chu, Peipei; Qi, Kunming; Yan, Zhiling; Yao, Haina; Liu, Yun; Xu, Kailin; Zeng, Lingyu

    2016-01-01

    Conditioning regimens before hematopoietic stem cell transplantation (HSCT), cause damage to bone marrow and inflammation. Whether inflammasomes are involved in bone marrow inflammation remains unclear. The study aims to evaluate the role of inflammasomes in bone marrow inflammation after HSCT. On days 7, 14, 21 and 28 after HSCT, mice were sacrificed for analysis of bone marrow inflammation, pro-inflammatory cytokines secretion, inflammasomes expression and caspase-1 activation. Bone marrow inflammation with neutrophils and macrophages infiltration was observed after HSCT. Secretion of IL-1β, IL-18, TNF-α and IL-6 were elevated, with increased caspase-1 activation and inflammasomes expression. Caspase-1 inhibitor administration after HSCT significantly reduced infiltration of neutrophils and macrophages into bone marrow and increased the numbers of megakaryocytes and platelets. In conclusion, inflammasomes activation is involved in bone marrow inflammation after HSCT and caspase-1 inhibition attenuates bone marrow inflammation and promoted hematopoietic reconstitution, suggesting targeting caspase-1 might be beneficial for improving HSCT outcomes.

  20. Immuno-metabolism and adipose tissue: The key role of hematopoietic stem cells.

    PubMed

    Cousin, B; Casteilla, L; Laharrague, P; Luche, E; Lorsignol, A; Cuminetti, V; Paupert, J

    2016-05-01

    The field of immunometabolism has come a long way in the past decade, leading to the emergence of a new role for white adipose tissue (WAT) that is now recognized to stand at the junction of immune and metabolic regulations. Interestingly, a crucial role of the abundant and heterogeneous immune population present in WAT has been proposed in the induction and development of metabolic diseases. Although a large body of data focused on mature immune cells, only few scattered studies are dedicated to leukocyte production, and the activity of hematopoietic stem cells (HSC) in these pathological states. Considering that blood cell production and the differentiation of HSCs and their progeny is orchestrated, in part, by complex interacting signals emanating from their microenvironment, it thus seems worth to better understand the relationships between metabolism and HSC. This review discusses the alterations of hematopoietic process described in metabolic diseases and focused on the emerging data concerning HSC present in WAT.

  1. Replication stress caused by low MCM expression limits fetal erythropoiesis and hematopoietic stem cell functionality

    PubMed Central

    Alvarez, Silvia; Díaz, Marcos; Flach, Johanna; Rodriguez-Acebes, Sara; López-Contreras, Andrés J.; Martínez, Dolores; Cañamero, Marta; Fernández-Capetillo, Oscar; Isern, Joan; Passegué, Emmanuelle; Méndez, Juan

    2015-01-01

    Replicative stress during embryonic development influences ageing and predisposition to disease in adults. A protective mechanism against replicative stress is provided by the licensing of thousands of origins in G1 that are not necessarily activated in the subsequent S-phase. These ‘dormant' origins provide a backup in the presence of stalled forks and may confer flexibility to the replication program in specific cell types during differentiation, a role that has remained unexplored. Here we show, using a mouse strain with hypomorphic expression of the origin licensing factor mini-chromosome maintenance (MCM)3 that limiting origin licensing in vivo affects the functionality of hematopoietic stem cells and the differentiation of rapidly-dividing erythrocyte precursors. Mcm3-deficient erythroblasts display aberrant DNA replication patterns and fail to complete maturation, causing lethal anemia. Our results indicate that hematopoietic progenitors are particularly sensitive to replication stress, and full origin licensing ensures their correct differentiation and functionality. PMID:26456157

  2. Genetic modification of hematopoietic stem cells as a therapy for HIV/AIDS.

    PubMed

    Younan, Patrick; Kowalski, John; Kiem, Hans-Peter

    2013-12-01

    The combination of genetic modification and hematopoietic stem cell (HSC) transplantation may provide the necessary means to develop an alternative treatment option to conventional antiretroviral therapy. As HSCs give rise to all hematopoietic cell types susceptible to HIV infection, modification of HSCs is an ideal strategy for the development of infection-resistant immune cell populations. Although promising results have been obtained in multiple animal models, additional evidence is needed to convincingly demonstrate the feasibility of this approach as a treatment of HIV-1 infected patients. Here, we review the potential of HSC transplantation and the recently identified limitations of this approach. Using the Berlin Patient as a model for a functional cure, we contrast the confines of autologous versus allogeneic transplantation. Finally, we suggest that although autologous, gene-modified HSC-transplantation may significantly reduce plasma viremia, reaching the lower detection limits currently obtainable through daily HAART will remain a challenging endeavor that will require innovative combinatorial therapies.

  3. Septic shock caused by Sphingomonas paucimobilis bacteremia in a patient with hematopoietic stem cell transplantation.

    PubMed

    Al-Anazi, K A; Abu Jafar, S; Al-Jasser, A M; Al-Shangeeti, A; Chaudri, N A; Al Jurf, M D; Al-Mohareb, F I

    2008-04-01

    Sphingomonas paucimobilis is an aerobic gram-negative bacillus that causes a variety of infections in healthy as well as in immunocompromised individuals. The organism is usually susceptible to tetracycline, chloramphenicol, aminoglycosides, trimethoprim-sulfamethoxazole, and carbapenems. However, resistance to penicillins and the first-generation cephalosporins is commonly encountered. Reported here is a patient with acute myeloid leukemia who developed S. paucimobilis bacteremia complicated by septic shock just before receiving an autologous hematopoietic stem cell transplant (SCT) at King Faisal Specialist Hospital and Research Centre in Riyadh. The septic episode was successfully treated in the intensive care unit. To our knowledge, this is the first case report of septic shock caused by S. paucimobilis bacteremia in a hematopoietic SCT recipient.

  4. HEMATOPOIETIC STEM CELL GENE THERAPY: ASSESSING THE RELEVANCE OF PRE-CLINICAL MODELS

    PubMed Central

    Larochelle, Andre; Dunbar, Cynthia E.

    2013-01-01

    The modern laboratory mouse has become a central tool for biomedical research with a notable influence in the field of hematopoiesis. Application of retroviral-based gene transfer approaches to mouse hematopoietic stem cells (HSCs) has led to a sophisticated understanding of the hematopoietic hierarchy in this model. However, the assumption that gene transfer methodologies developed in the mouse could be similarly applied to human HSCs for the treatment of human diseases left the field of gene therapy in a decade-long quandary. It is not until more relevant humanized xenograft mouse models and phylogenetically related large animal species were used to optimize gene transfer methodologies that unequivocal clinical successes were achieved. However, the subsequent reporting of severe adverse events in these clinical trials casted doubts on the predictive value of conventional pre-clinical testing, and encouraged the development of new assays for assessing the relative genotoxicity of various vector designs. PMID:24014892

  5. [Human herpesvirus-6 associated with hematopoietic stem cell transplantation].

    PubMed

    Ogata, Masao

    2015-10-01

    Reactivation of human herpesvirus (HHV)-6B is a relatively common occurrence after allogeneic stem cell transplantation (SCT), and it is associated with the development of various post-transplant complications. HHV-6 encephalitis appears to be a significant, life-threatening complication caused by HHV-6B reactivation. HHV-6 encephalitis typically develops 2-6 weeks after SCT, and the symptoms are characterized by memory loss, seizures, and consciousness loss. Magnetic resonance imaging typically shows limbic encephalitis. Recent large-scale studies and a prospective study showed a similar incidence of HHV-6 encephalitis development, with 7.9-9.9% in cord blood transplant recipients and 0.5-1.2% in bone marrow or peripheral blood stem cell transplant recipients. Epidemiological studies suggest that post-transplant immune reactions such as GVHD, pre-engraftment immune reaction, or engraftment syndrome play important roles in the development of HHV-6 encephalitis. The mortality rate remains high, and even among survivors, many patients are left with serious neurological impairments, such as memory disturbance and seizures. Elucidation of the pathophysiology and establishment of appropriate prophylactic measures are necessary to overcome this serious complication. Besides encephalitis, associations between HHV-6 and various post-transplant complications have been reported, including pneumonitis, gastroenterocolitis, hepatitis, bone marrow suppression, and GVHD. Further investigations are needed to determine the role of HHV-6 in these complications.

  6. Pim1 serine/threonine kinase regulates the number and functions of murine hematopoietic stem cells.

    PubMed

    An, Ningfei; Lin, Ying-Wei; Mahajan, Sandeep; Kellner, Joshua N; Wang, Yong; Li, Zihai; Kraft, Andrew S; Kang, Yubin

    2013-06-01

    The genes and pathways that govern the functions and expansion of hematopoietic stem cells (HSC) are not completely understood. In this study, we investigated the roles of serine/threonine Pim kinases in hematopoiesis in mice. We generated PIM1 transgenic mice (Pim1-Tx) overexpressing human PIM1 driven by vav hematopoietic promoter/regulatory elements. Compared to wild-type littermates, Pim1-Tx mice showed enhanced hematopoiesis as demonstrated by increased numbers of Lin(-) Sca-1 (+) c-Kit (+) (LSK) hematopoietic stem/progenitor cells and cobblestone area forming cells, higher BrdU incorporation in long-term HSC population, and a better ability to reconstitute lethally irradiated mice. We then extended our study using Pim1(-/-), Pim2(-/-), Pim3(-/-) single knockout (KO) mice. HSCs from Pim1(-/-) KO mice showed impaired long-term hematopoietic repopulating capacity in secondary and competitive transplantations. Interestingly, these defects were not observed in HSCs from Pim2(-/-) or Pim3(-/-) KO mice. Limiting dilution competitive transplantation assay estimated that the frequency of LSKCD34(-) HSCs was reduced by approximately 28-fold in Pim1(-/-) KO mice compared to wild-type littermates. Mechanistic studies demonstrated an important role of Pim1 kinase in regulating HSC cell proliferation and survival. Finally, our polymerase chain reaction (PCR) array and confirmatory real-time PCR (RT-PCR) studies identified several genes including Lef-1, Pax5, and Gata1 in HSCs that were affected by Pim1 deletion. Our data provide the first direct evidence for the important role of Pim1 kinase in the regulation of HSCs. Our study also dissects out the relative role of individual Pim kinase in HSC functions and regulation. PMID:23495171

  7. Effective treatment of severe BK virus-associated hemorrhagic cystitis with leflunomide in children after hematopoietic stem cell transplantation: a pilot study.

    PubMed

    Wu, Kang-Hsi; Weng, Tefu; Wu, Han-Ping; Peng, Ching-Tien; Sheu, Ji-Nan; Chao, Yu-Hua

    2014-11-01

    Leflunomide, an immunosuppressant with antiviral activity, was used to treat 5 children with severe BK virus-associated hemorrhagic cystitis after hematopoietic stem cell transplantation. Without severe side effects, BK viral loads in blood and urine decreased significantly after leflunomide treatment. Compared with 7 historical controls, duration of BK virus-associated hemorrhagic cystitis was significantly shorter in patients receiving leflunomide therapy (P < 0.01).

  8. Estimating the number of hematopoietic or lymphoid stem cells giving rise to clonal chromosome aberrations in blood T lymphocytes.

    PubMed

    Nakano, M; Kodama, Y; Ohtaki, K; Itoh, M; Awa, A A; Cologne, J; Kusunoki, Y; Nakamura, N

    2004-03-01

    Quantifying the proliferative capacity of long-term hematopoietic stem cells in humans is important for bone marrow transplantation and gene therapy. Obtaining appropriate data is difficult, however, because the experimental tools are limited. We hypothesized that tracking clonal descendants originating from hematopoietic stem cells would be possible if we used clonal chromosome aberrations as unique tags of individual hematopoietic stem cells in vivo. Using FISH, we screened 500 blood T lymphocytes from each of 513 atomic bomb survivors and detected 96 clones composed of at least three cells with identical aberrations. The number of clones was inversely related to their population size, which we interpreted to mean that the progenitor cells were heterogeneous in the number of progeny that they could produce. The absolute number of progenitor cells contributing to the formation of the observed clones was estimated as about two in an unexposed individual. Further, scrutiny of ten clones revealed that lymphocyte clones could originate roughly equally from hematopoietic stem cells or from mature T lymphocytes, thereby suggesting that the estimated two progenitor cells are shared as one hematopoietic stem cell and one mature T cell. Our model predicts that one out of ten people bears a non- aberrant clone comprising >10% of the total lymphocytes, which indicates that clonal expansions are common and probably are not health-threatening. PMID:14982487

  9. The Sirt1 activator SRT3025 expands hematopoietic stem and progenitor cells and improves hematopoiesis in Fanconi anemia mice.

    PubMed

    Zhang, Qing-Shuo; Deater, Matthew; Schubert, Kathryn; Marquez-Loza, Laura; Pelz, Carl; Sinclair, David A; Grompe, Markus

    2015-07-01

    Fanconi anemia is a genetic bone marrow failure syndrome. The current treatment options are suboptimal and do not prevent the eventual onset of aplastic anemia requiring bone marrow transplantation. We previously showed that resveratrol, an antioxidant and an activator of the protein deacetylase Sirt1, enhanced hematopoiesis in Fancd2 mutant mice and improved the impaired stem cell quiescence observed in this disease. Given that Sirt1 is important for the function of hematopoietic stem cells, we hypothesized that Sirt1 activation may improve hematopoiesis. Indeed, Fancd2(-/-) mice and wild-type mice treated with the selective Sirt1 activator SRT3025 had increased numbers of hematopoietic stem and progenitor cells, platelets and white blood cells. SRT3025 was also protective against acetaldehyde-induced hematopoietic damage. Unlike resveratrol, however, SRT3025 did not affect stem cell quiescence, suggesting distinct mechanisms of action. Conditional deletion of Sirt1 in hematopoietic cells did not abrogate the beneficial effects of SRT3025, indicating that the drug did not act by directly stimulating Sirt1 in stem cells, but must be acting indirectly via extra-hematopoietic effects. RNA-Seq transcriptome analysis revealed the down-regulation of Egr1-p21 expression, providing a potential mechanism for improved hematopoiesis. Overall, our data indicate that SRT3025 or related compounds may be beneficial in Fanconi anemia and other bone marrow failure syndromes.

  10. Whole-Body Proton Irradiation Causes Long-Term Damage to Hematopoietic Stem Cells in Mice

    PubMed Central

    Chang, Jianhui; Feng, Wei; Wang, Yingying; Luo, Yi; Allen, Antiño R.; Koturbash, Igor; Turner, Jennifer; Stewart, Blair; Raber, Jacob; Hauer-Jensen, Martin; Zhou, Daohong; Shao, Lijian

    2016-01-01

    Space flight poses certain health risks to astronauts, including exposure to space radiation, with protons accounting for more than 80% of deep-space radiation. Proton radiation is also now being used with increasing frequency in the clinical setting to treat cancer. For these reasons, there is an urgent need to better understand the biological effects of proton radiation on the body. Such improved understanding could also lead to more accurate assessment of the potential health risks of proton radiation, as well as the development of improved strategies to prevent and mitigate its adverse effects. Previous studies have shown that exposure to low doses of protons is detrimental to mature leukocyte populations in peripheral blood, however, the underlying mechanisms are not known. Some of these detriments may be attributable to damage to hematopoietic stem cells (HSCs) that have the ability to self-renew, proliferate and differentiate into different lineages of blood cells through hematopoietic progenitor cells (HPCs). The goal of this study was to investigate the long-term effects of low-dose proton irradiation on HSCs. We exposed C57BL/6J mice to 1.0 Gy whole-body proton irradiation (150 MeV) and then studied the effects of proton radiation on HSCs and HPCs in the bone marrow (BM) 22 weeks after the exposure. The results showed that mice exposed to 1.0 Gy whole-body proton irradiation had a significant and persistent reduction of BM HSCs compared to unirradiated controls. In contrast, no significant changes were observed in BM HPCs after proton irradiation. Furthermore, irradiated HSCs and their progeny exhibited a significant impairment in clonogenic function, as revealed by the cobblestone area-forming cell (CAFC) and colony-forming cell assays, respectively. These long-term effects of proton irradiation on HSCs may be attributable to the induction of chronic oxidative stress in HSCs, because HSCs from irradiated mice exhibited a significant increase in NADPH

  11. Whole-body proton irradiation causes long-term damage to hematopoietic stem cells in mice.

    PubMed

    Chang, Jianhui; Feng, Wei; Wang, Yingying; Luo, Yi; Allen, Antiño R; Koturbash, Igor; Turner, Jennifer; Stewart, Blair; Raber, Jacob; Hauer-Jensen, Martin; Zhou, Daohong; Shao, Lijian

    2015-02-01

    Space flight poses certain health risks to astronauts, including exposure to space radiation, with protons accounting for more than 80% of deep-space radiation. Proton radiation is also now being used with increasing frequency in the clinical setting to treat cancer. For these reasons, there is an urgent need to better understand the biological effects of proton radiation on the body. Such improved understanding could also lead to more accurate assessment of the potential health risks of proton radiation, as well as the development of improved strategies to prevent and mitigate its adverse effects. Previous studies have shown that exposure to low doses of protons is detrimental to mature leukocyte populations in peripheral blood, however, the underlying mechanisms are not known. Some of these detriments may be attributable to damage to hematopoietic stem cells (HSCs) that have the ability to self-renew, proliferate and differentiate into different lineages of blood cells through hematopoietic progenitor cells (HPCs). The goal of this study was to investigate the long-term effects of low-dose proton irradiation on HSCs. We exposed C57BL/6J mice to 1.0 Gy whole-body proton irradiation (150 MeV) and then studied the effects of proton radiation on HSCs and HPCs in the bone marrow (BM) 22 weeks after the exposure. The results showed that mice exposed to 1.0 Gy whole-body proton irradiation had a significant and persistent reduction of BM HSCs compared to unirradiated controls. In contrast, no significant changes were observed in BM HPCs after proton irradiation. Furthermore, irradiated HSCs and their progeny exhibited a significant impairment in clonogenic function, as revealed by the cobblestone area-forming cell (CAFC) and colony-forming cell assays, respectively. These long-term effects of proton irradiation on HSCs may be attributable to the induction of chronic oxidative stress in HSCs, because HSCs from irradiated mice exhibited a significant increase in NADPH

  12. Whole-body proton irradiation causes long-term damage to hematopoietic stem cells in mice.

    PubMed

    Chang, Jianhui; Feng, Wei; Wang, Yingying; Luo, Yi; Allen, Antiño R; Koturbash, Igor; Turner, Jennifer; Stewart, Blair; Raber, Jacob; Hauer-Jensen, Martin; Zhou, Daohong; Shao, Lijian

    2015-02-01

    Space flight poses certain health risks to astronauts, including exposure to space radiation, with protons accounting for more than 80% of deep-space radiation. Proton radiation is also now being used with increasing frequency in the clinical setting to treat cancer. For these reasons, there is an urgent need to better understand the biological effects of proton radiation on the body. Such improved understanding could also lead to more accurate assessment of the potential health risks of proton radiation, as well as the development of improved strategies to prevent and mitigate its adverse effects. Previous studies have shown that exposure to low doses of protons is detrimental to mature leukocyte populations in peripheral blood, however, the underlying mechanisms are not known. Some of these detriments may be attributable to damage to hematopoietic stem cells (HSCs) that have the ability to self-renew, proliferate and differentiate into different lineages of blood cells through hematopoietic progenitor cells (HPCs). The goal of this study was to investigate the long-term effects of low-dose proton irradiation on HSCs. We exposed C57BL/6J mice to 1.0 Gy whole-body proton irradiation (150 MeV) and then studied the effects of proton radiation on HSCs and HPCs in the bone marrow (BM) 22 weeks after the exposure. The results showed that mice exposed to 1.0 Gy whole-body proton irradiation had a significant and persistent reduction of BM HSCs compared to unirradiated controls. In contrast, no significant changes were observed in BM HPCs after proton irradiation. Furthermore, irradiated HSCs and their progeny exhibited a significant impairment in clonogenic function, as revealed by the cobblestone area-forming cell (CAFC) and colony-forming cell assays, respectively. These long-term effects of proton irradiation on HSCs may be attributable to the induction of chronic oxidative stress in HSCs, because HSCs from irradiated mice exhibited a significant increase in NADPH

  13. Effectiveness of repeated transplantations of hematopoietic stem cells in spinal cord injury

    PubMed Central

    Bryukhovetskiy, Andrey S; Bryukhovetskiy, Igor S

    2015-01-01

    AIM: To evaluate the short and long-term effects of the complex cell therapy of 202 cases of spinal cord injury (SCI). METHODS: The main arm included 202 cases of SCI and the control arm included 20 SCI cases. For the therapy the hematopoietic stem cells (HSCs) and progenitor cells (PCs) were mobilized to peripheral blood by 8 subcutaneous injections of granulocyte colony-stimulating factor (G-CSF) for 4 d and are harvested at day 5. The cells were administered to the main arm intrathecally every 3 mo for a long term (3-5 years) according to the internal research protocol international medical institute of tissue engineering. Magnetic resonance imaging of the site of injury and urodynamic tests were performed every 6 mo. Motor evoked potentials (MEP), somatosensory evoked potentials (SSEP) were evaluated every 3 mo. The patients were evaluated with american spianl injury association (ASIA) index, functional independence measure index, the Medical Research Council Scale, the International Standards for Neurological Classification of Spinal Cord Injury (ISCSCI-92) and specifically developed scales. The function of bladder was evaluated by a specifically developed clinical scale. The long-term clinical outcomes were assessed for the SCI patients who received no less than 20 intrathecal transplantations of HSCs and hematopoietic precursors (HPs). RESULTS: The restoration of neurologic deficit after HSCs and HPs transplantations was proved stable and evident in 57.4% of the cases. In 42.6% cases no neurologic improvement has been observed. In 50% of the cases the motor restoration began after the first transplantation, which is confirmed in average by 9.9 points improvement in neurologic impairment as compared to the baseline (P < 0.05). Repair of the urinary system was observed in 47.7% of the cases. The sensitivity improved from baseline 124.3 points to 138.4 after the first and to 153.5 points after the second transplantations of HSCs and HPs (P < 0.05, between the

  14. Developmental potential of hematopoietic and neural stem cells: unique or all the same?

    PubMed

    Kirchhof, Nicole; Harder, Friedrich; Petrovic, Suzana; Kreutzfeldt, Simon; Schmittwolf, Carolin; Dürr, Michael; Kirsten, Jan; Mühl, Bettina; Merkel, Angela; Müller, Albrecht M

    2002-01-01

    Like many other animals, mammals develop from fertilized oocytes - the ultimate stem cells. As embryogenesis proceeds, most cells lose developmental potential and eventually become restricted to a specific cell lineage. The result is the formation of a complete and structured mature organism with complex organs composed of a great variety of mature, mostly mitotically quiescent effector cells. However, along the way, some exceptional cells, known as somatic stem cells (SSCs) are set aside and maintain a high proliferation and tissue-specific differentiation potential. SSCs, in contrast to embryonic stem (ES) cells, which are able to give rise to all cell types of the body, have been regarded as being more limited in their differentiation potential in the sense that they were thought to be committed exclusively to their tissue of origin. However, recent studies have demonstrated that somatic stem cells from a given tissue can also contribute to heterologous tissues and thus show a broad nontissue restricted differentiation potential. The question arises: how plastic are somatic stem cells? To provide a tentative answer, we describe and review here recent investigations into the developmental potentials of two somatic stem cell types, namely hematopoietic and neural stem cells. PMID:12021493

  15. Allogeneic hematopoietic stem cell transplantation for Leukocyte Adhesion Deficiency

    PubMed Central

    Qasim, Waseem; Cavazzana-Calvo, Marina; Davies, E.Graham; Davis, Jeffery; Duval, Michel; Eames, Gretchen; Farinha, Nuno; Filopovich, Alexandra; Fischer, Alain; Friedrich, Wilhelm; Gennery, Andrew; Heilmann, Carsten; Landais, Paul; Horwitz, Mitchell; Porta, Fulvio; Sedlacek, Petr; Seger, Reinhard; Slatter, Mary; Teague, Lochie; Eapen, Mary; Veys, Paul

    2012-01-01

    OBJECTIVES Leukocyte Adhesion Deficiency (LAD) is a rare primary immune disorder caused by defects of the CD18 β-integrin molecule on immune cells. The condition usually presents in early infancy and is characterised by deep tissue infections, leukocytosis with impaired formation of pus and delayed wound healing. Allogeneic haematopoietic stem cell transplantation (HSCT) offers the possibility of curative therapy, and with patient numbers at any individual centre being limited, we surveyed the transplant experience at 14 centres worldwide. PATIENTS & METHODS The course of 36 children with a confirmed diagnosis of LAD who underwent HSCT between 1993 and 2007 was retrospectively analysed. Data was collected by the registries of the European Society for Immunodeficiencies (ESID)/European Group for Blood and Marrow Transplantation (EBMT), and the Center for International Blood and Marrow Transplant Research (CIBMTR) RESULTS At median followup of 62 months (extending to 14 years) overall survival was 75%. Myeloablative conditioning regimens were used in 28 patients, and reduced intensity conditioning (RIC) in 8 patients, with no deaths in this subgroup. Survival after matched family donor and unrelated donor transplants was similar, with 11/14 matched family donor and 12/14 unrelated donor recipients alive; mortality was greatest following haplo-identical transplants, where 4/8 children did not survive. Twenty seven transplant recipients are alive, with full donor engraftment in 17 cases, mixed multi-lineage chimerism in 7 patients, and mononuclear cell restricted chimerism in a further 3 cases. CONCLUSIONS HSCT offers long term benefit in LAD and should be considered as an early therapeutic option if a suitable HLA-matched stem cell donation is available. Reduced intensity conditioning was particularly safe, and mixed donor chimersim appears sufficient to prevent significant symptoms, although careful long term monitoring will be required for these patients. PMID

  16. The use of covalently immobilized stem cell factor to selectively affect hematopoietic stem cell activity within a gelatin hydrogel.

    PubMed

    Mahadik, Bhushan P; Pedron Haba, Sara; Skertich, Luke J; Harley, Brendan A C

    2015-10-01

    Hematopoietic stem cells (HSCs) are a rare stem cell population found primarily in the bone marrow and responsible for the production of the body's full complement of blood and immune cells. Used clinically to treat a range of hematopoietic disorders, there is a significant need to identify approaches to selectively expand their numbers ex vivo. Here we describe a methacrylamide-functionalized gelatin (GelMA) hydrogel for in vitro culture of primary murine HSCs. Stem cell factor (SCF) is a critical biomolecular component of native HSC niches in vivo and is used in large dosages in cell culture media for HSC expansion in vitro. We report a photochemistry based approach to covalently immobilize SCF within GelMA hydrogels via acrylate-functionalized polyethylene glycol (PEG) tethers. PEG-functionalized SCF retains the native bioactivity of SCF but can be stably incorporated and retained within the GelMA hydrogel over 7 days. Freshly-isolated murine HSCs cultured in GelMA hydrogels containing covalently-immobilized SCF showed reduced proliferation and improved selectivity for maintaining primitive HSCs. Comparatively, soluble SCF within the GelMA hydrogel network induced increased proliferation of differentiating hematopoietic cells. We used a microfluidic templating approach to create GelMA hydrogels containing gradients of immobilized SCF that locally direct HSC response. Together, we report a biomaterial platform to examine the effect of the local presentation of soluble vs. matrix-immobilized biomolecular signals on HSC expansion and lineage specification. This approach may be a critical component of a biomaterial-based artificial bone marrow to provide the correct sequence of niche signals to grow HSCs in the laboratory.

  17. The use of covalently immobilized stem cell factor to selectively affect hematopoietic stem cell activity within a gelatin hydrogel

    PubMed Central

    Mahadik, B.P.; Haba, S. Pedron; Skertich, L.J.; Harley, B.A.C.

    2015-01-01

    Hematopoietic stem cells (HSCs) are a rare stem cell population found primarily in the bone marrow and responsible for the production of the body’s full complement of blood and immune cells. Used clinically to treat a range of hematopoietic disorders, there is a significant need to identify approaches to selectively expand their numbers ex vivo. Here we describe a methacrylamide-functionalized gelatin (GelMA) hydrogel for in vitro culture of primary murine HSCs. Stem cell factor (SCF) is a critical biomolecular component of native HSC niches in vivo and is used in large dosages in cell culture media for HSC expansion in vitro. We report a photochemistry based approach to covalently immobilize SCF within GelMA hydrogels via acrylate-functionalized polyethylene glycol (PEG) tethers. PEG-functionalized SCF retains the native bioactivity of SCF but can be stably incorporated and retained within the GelMA hydrogel over 7 days. Freshly-isolated murine HSCs cultured in GelMA hydrogels containing covalently-immobilized SCF showed reduced proliferation and improved selectivity for maintaining primitive HSCs. Comparatively, soluble SCF within the GelMA hydrogel network induced increased proliferation of differentiating hematopoietic cells. We used a microfluidic templating approach to create GelMA hydrogels containing gradients of immobilized SCF that locally direct HSC response. Together, we report a biomaterial platform to examine the effect of the local presentation of soluble vs. matrix-immobilized biomolecular signals on HSC expansion and lineage specification. This approach may be a critical component of a biomaterial-based artificial bone marrow to provide the correct sequence of niche signals to grow HSCs in the laboratory. PMID:26232879

  18. A model of hematopoietic stem cell proliferation under the influence of a chemotherapeutic agent in combination with a hematopoietic inducing agent

    PubMed Central

    2014-01-01

    Background Hematopoiesis is a complex process that encompasses both pro-mitotic and anti-mitotic stimuli. Pharmacological agents used in chemotherapy have a prominent anti-mitotic effect. The approach of inhibiting cell proliferation is rational with respect to the rapidly dividing malignant cells. However, it poses a serious problem with respect to cell proliferation of cell types required for the ‘house-keeping’ operations of the human body. One such affected system is hematopoiesis. Chemotherapy induced anemia is an undesired side effect of chemotherapy that can lead to serious complications. Patients exhibiting anemia or leukopenia during chemotherapy are frequently administered a hematopoietic inducing agent that enhances hematopoiesis. Methods In previous work, we derived a mathematical model consisting of a set of delay differential equations that was dependent on the effect of a hematopoietic inducing agent. The aim of the current work was to formulate a mathematical model that captures both the effect of a chemotherapeutic agent in combination with a hematopoietic inducing agent. Steady state solutions and stability analysis of the system of equations is performed and numerical simulations of the stem cell population are provided. Results Numerical simulations confirm that our mathematical model captures the desired result which is that the use of hematopoietic agents in conjunction with chemotherapeutic agents can decrease the negative secondary effects often experienced by patients. Conclusions The proposed model indicates that the introduction of hematopoietic inducing agents have clinical potential to offset the deleterious effects of chemotherapy treatment. Furthermore, the proposed model is relevant in that it enhances the understanding of stem cell dynamics and provides insight on the stem cell kinetics. PMID:24438084

  19. Angiogenin Promotes Hematopoietic Regeneration by Dichotomously Regulating Quiescence of Stem and Progenitor Cells.

    PubMed

    Goncalves, Kevin A; Silberstein, Lev; Li, Shuping; Severe, Nicolas; Hu, Miaofen G; Yang, Hailing; Scadden, David T; Hu, Guo-Fu

    2016-08-11

    Regulation of stem and progenitor cell populations is critical in the development, maintenance, and regeneration of tissues. Here, we define a novel mechanism by which a niche-secreted RNase, angiogenin (ANG), distinctively alters the functional characteristics of primitive hematopoietic stem/progenitor cells (HSPCs) compared with lineage-committed myeloid-restricted progenitor (MyePro) cells. Specifically, ANG reduces the proliferative capacity of HSPC while simultaneously increasing proliferation of MyePro cells. Mechanistically, ANG induces cell-type-specific RNA-processing events: tRNA-derived stress-induced small RNA (tiRNA) generation in HSPCs and rRNA induction in MyePro cells, leading to respective reduction and increase in protein synthesis. Recombinant ANG protein improves survival of irradiated animals and enhances hematopoietic regeneration of mouse and human HSPCs in transplantation. Thus, ANG plays a non-cell-autonomous role in regulation of hematopoiesis by simultaneously preserving HSPC stemness and promoting MyePro proliferation. These cell-type-specific functions of ANG suggest considerable therapeutic potential. PMID:27518564

  20. Oncolytic viral purging of leukemic hematopoietic stem and progenitor cells with Myxoma virus.

    PubMed

    Rahman, Masmudur M; Madlambayan, Gerard J; Cogle, Christopher R; McFadden, Grant

    2010-01-01

    High-dose chemotherapy and radiation followed by autologous blood and marrow transplantation (ABMT) has been used for the treatment of certain cancers that are refractory to standard therapeutic regimes. However, a major challenge with ABMT for patients with hematologic malignancies is disease relapse, mainly due to either contamination with cancerous hematopoietic stem and progenitor cells (HSPCs) within the autograft or the persistence of residual therapy-resistant disease niches within the patient. Oncolytic viruses represent a promising therapeutic approach to prevent cancer relapse by eliminating tumor-initiating cells that contaminate the autograft. Here we summarize an ex vivo "purging" strategy with oncolytic Myxoma virus (MYXV) to remove cancer-initiating cells from patient autografts prior to transplantation. MYXV, a novel oncolytic poxvirus with potent anti-cancer properties in a variety of in vivo tumor models, can specifically eliminate cancerous stem and progenitor cells from samples obtained from acute myelogenous leukemia (AML) patients, while sparing normal CD34+ hematopoietic stem and progenitor cells capable of rescuing hematopoiesis following high dose conditioning. We propose that a broader subset of patients with intractable hematologic malignancies who have failed standard therapy could become eligible for ABMT when the treatment schema is coupled with ex vivo oncolytic therapy. PMID:20211576

  1. Simultaneous measurement of human hematopoietic stem and progenitor cells in blood using multicolor flow cytometry.

    PubMed

    Cimato, Thomas R; Furlage, Rosemary L; Conway, Alexis; Wallace, Paul K

    2016-09-01

    Hematopoietic stem cells are the source of all inflammatory cell types. Discovery of specific cell surface markers unique to human hematopoietic stem (HSC) and progenitor (HSPC) cell populations has facilitated studies of their development from stem cells to mature cells. The specific marker profiles of HSCs and HSPCs can be used to understand their role in human inflammatory diseases. The goal of this study is to simultaneously measure HSCs and HSPCs in normal human venous blood using multicolor flow cytometry. Our secondary aim is to determine how G-CSF mobilization alters the quantity of each HSC and HSPC population. Here we show that cells within the CD34+ fraction of human venous blood contains cells with the same cell surface markers found in human bone marrow samples. Mobilization with G-CSF significantly increases the quantity of total CD34+ cells, blood borne HSCs, multipotent progenitors, common myeloid progenitors, and megakaryocyte erythroid progenitors as a percentage of total MNCs analyzed. The increase in blood borne common lymphoid and granulocyte macrophage progenitors with G-CSF treatment did not reach significance. G-CSF treatment predominantly increased the numbers of HSCs and multipotent progenitors in the total CD34+ cell population; common myeloid progenitors and megakaryocyte erythroid progenitors were enriched relative to total MNCs analyzed, but not relative to total CD34+ cells. Our findings illustrate the utility of multicolor flow cytometry to quantify circulating HSCs and HSPCs in venous blood samples from human subjects. © 2016 International Clinical Cytometry Society. PMID:26663713

  2. The Use of Statins in Hematopoietic Stem Cell Transplantation and Solid Organ Transplantation.

    PubMed

    Shimabukuro-Vornhagen, Alexander; Schlösser, Hans; Kisner, Tulay; Stippel, Dirk L; von Bergwelt-Baildon, Michael

    2013-01-14

    Allogeneic hematopoietic stem cell transplantation and solid organ transplantation have become established treatments offered to patients for whom there are otherwise no curative treatment options. Unfortunately, these therapeutic modalities are associated with severe complications that limit its applicability. Alloimmunity is an important cause of morbidity and mortality after both organ transplantation and allogeneic hematopoietic stem cell transplantation and represents a major barrier to the more wide-spread use of these treatment modalities. Statins are a class of lipid-lowering drugs, which also posses immunomodulatory effects. Results from preclinial research and early-stage clinical studies indicate that treatment with statins could be beneficial for the prevention and treatment of graft-versus-host disease and transplant rejection. In addition to preventing graft-versus-host disease or graft rejection statins possess several other effects that might prove beneficial in the setting of transplantation, such as cardiovascular protection and antineoplastic activity. Here we summarize the current knowledge about the immunomodulatory effects of statins and discuss the clinical implications for their use in patients undergoing stem cell transplantation or solid organ transplantation.

  3. Polycomb Repressive Complex 2 (PRC2) Restricts Hematopoietic Stem Cell Activity

    PubMed Central

    Majewski, Ian J; Blewitt, Marnie E; de Graaf, Carolyn A; McManus, Edward J; Bahlo, Melanie; Hilton, Adrienne A; Hyland, Craig D; Smyth, Gordon K; Corbin, Jason E; Metcalf, Donald; Alexander, Warren S; Hilton, Douglas J

    2008-01-01

    Polycomb group proteins are transcriptional repressors that play a central role in the establishment and maintenance of gene expression patterns during development. Using mice with an N-ethyl-N-nitrosourea (ENU)-induced mutation in Suppressor of Zeste 12 (Suz12), a core component of Polycomb Repressive Complex 2 (PRC2), we show here that loss of Suz12 function enhances hematopoietic stem cell (HSC) activity. In addition to these effects on a wild-type genetic background, mutations in Suz12 are sufficient to ameliorate the stem cell defect and thrombocytopenia present in mice that lack the thrombopoietin receptor (c-Mpl). To investigate the molecular targets of the PRC2 complex in the HSC compartment, we examined changes in global patterns of gene expression in cells deficient in Suz12. We identified a distinct set of genes that are regulated by Suz12 in hematopoietic cells, including eight genes that appear to be highly responsive to PRC2 function within this compartment. These data suggest that PRC2 is required to maintain a specific gene expression pattern in hematopoiesis that is indispensable to normal stem cell function. PMID:18416604

  4. Gene Map of the HLA Region, Graves' Disease and Hashimoto Thyroiditis, and Hematopoietic Stem Cell Transplantation.

    PubMed

    Sasazuki, Takehiko; Inoko, Hidetoshi; Morishima, Satoko; Morishima, Yasuo

    2016-01-01

    The human leukocyte antigen (HLA) genomic region spanning about 4 Mb is the most gene dense and the polymorphic stretches in the human genome. A total of the 269 loci were identified, including 145 protein coding genes mostly important for immunity and 50 noncoding RNAs (ncRNAs). Biological function of these ncRNAs remains unknown, becoming hot spot in the studies of HLA-associated diseases. The genomic diversity analysis in the HLA region facilitated by next-generation sequencing will pave the way to molecular understanding of linkage disequilibrium structure, population diversity, histocompatibility in transplantation, and associations with autoimmune diseases. The 4-digit DNA genotyping of HLA for six HLA loci, HLA-A through DP, in the patients with Graves' disease (GD) and Hashimoto thyroiditis (HT) identified six susceptible and three resistant HLA alleles. Their epistatic interactions in controlling the development of these diseases are shown. Four susceptible and one resistant HLA alleles are shared by GD and HT. Two HLA alleles associated with GD or HT control the titers of autoantibodies to thyroid antigens. All these observations led us to propose a new model for the development of GD and HT. Hematopoietic stem cell transplantation from unrelated donor (UR-HSCT) provides a natural experiment to elucidate the role of allogenic HLA molecules in immune response. Large cohort studies using HLA allele and clinical outcome data have elucidated that (1) HLA locus, allele, and haplotype mismatches between donor and patient, (2) specific amino acid substitution at specific positions of HLA molecules, and (3) ethnic background are all responsible for the immunological events related to UR-HSCT including acute graft-versus-host disease (GVHD), chronic GVHD, graft-versus-leukemia (GvL) effect, and graft failure.

  5. Vascular niche promotes hematopoietic multipotent progenitor formation from pluripotent stem cells

    PubMed Central

    Gori, Jennifer L.; Butler, Jason M.; Chan, Yan-Yi; Chandrasekaran, Devikha; Poulos, Michael G.; Ginsberg, Michael; Nolan, Daniel J.; Elemento, Olivier; Wood, Brent L.; Adair, Jennifer E.; Rafii, Shahin; Kiem, Hans-Peter

    2015-01-01

    Pluripotent stem cells (PSCs) represent an alternative hematopoietic stem cell (HSC) source for treating hematopoietic disease. The limited engraftment of human PSC–derived (hPSC-derived) multipotent progenitor cells (MPP) has hampered the clinical application of these cells and suggests that MPP require additional cues for definitive hematopoiesis. We hypothesized that the presence of a vascular niche that produces Notch ligands jagged-1 (JAG1) and delta-like ligand-4 (DLL4) drives definitive hematopoiesis. We differentiated hes2 human embryonic stem cells (hESC) and Macaca nemestrina–induced PSC (iPSC) line-7 with cytokines in the presence or absence of endothelial cells (ECs) that express JAG1 and DLL4. Cells cocultured with ECs generated substantially more CD34+CD45+ hematopoietic progenitors compared with cells cocultured without ECs or with ECs lacking JAG1 or DLL4. EC-induced cells exhibited Notch activation and expressed HSC-specific Notch targets RUNX1 and GATA2. EC-induced PSC-MPP engrafted at a markedly higher level in NOD/SCID/IL-2 receptor γ chain–null (NSG) mice compared with cytokine-induced cells, and low-dose chemotherapy-based selection further increased engraftment. Long-term engraftment and the myeloid-to-lymphoid ratio achieved with vascular niche induction were similar to levels achieved for cord blood–derived MPP and up to 20-fold higher than those achieved with hPSC-derived MPP engraftment. Our findings indicate that endothelial Notch ligands promote PSC-definitive hematopoiesis and production of long-term engrafting CD34+ cells, suggesting these ligands are critical for HSC emergence. PMID:25664855

  6. Hematopoietic stem cell transplantation in sickle cell disease: patient selection and special considerations.

    PubMed

    Bhatia, Monica; Sheth, Sujit

    2015-01-01

    Hematopoietic stem cell transplantation remains the only curative treatment currently in use for patients with sickle cell disease (SCD). The first successful hematopoietic stem cell transplantation was performed in 1984. To date, approximately 1,200 transplants have been reported. Given the high prevalence of this disorder in Africa, and its emergence in the developed world through immigration, this number is relatively small. There are many reasons for this; primary among them are the availability of a donor, the risks associated with this complex procedure, and the cost and availability of resources in the developing world. Of these, it is fair to say that the risks associated with the procedure have steadily decreased to the point where, if currently performed in a center with experience using a matched sibling donor, overall survival is close to 100% and event-free survival is over 90%. While there is little controversy around offering hematopoietic stem cell transplantation to symptomatic SCD patients with a matched sibling donor, there is much debate surrounding the use of this modality in "less severe" patients. An overview of the current state of our understanding of the pathology and treatment of SCD is important to show that our current strategy is not having the desired impact on survival of homozygous SCD patients, and should be changed to significantly impact the small proportion of these patients who have matched siblings and could be cured, especially those without overt clinical manifestations. Both patient families and providers must be made to understand the progressive nature of SCD, and should be encouraged to screen full siblings of patients with homozygous SCD for their potential to be donors. Matched siblings should be referred to an experienced transplant center for evaluation and counseling. In this review, we will discuss the rationale for these opinions and make recommendations for patient selection. PMID:26203293

  7. Hematopoietic stem cell transplantation in sickle cell disease: patient selection and special considerations

    PubMed Central

    Bhatia, Monica; Sheth, Sujit

    2015-01-01

    Hematopoietic stem cell transplantation remains the only curative treatment currently in use for patients with sickle cell disease (SCD). The first successful hematopoietic stem cell transplantation was performed in 1984. To date, approximately 1,200 transplants have been reported. Given the high prevalence of this disorder in Africa, and its emergence in the developed world through immigration, this number is relatively small. There are many reasons for this; primary among them are the availability of a donor, the risks associated with this complex procedure, and the cost and availability of resources in the developing world. Of these, it is fair to say that the risks associated with the procedure have steadily decreased to the point where, if currently performed in a center with experience using a matched sibling donor, overall survival is close to 100% and event-free survival is over 90%. While there is little controversy around offering hematopoietic stem cell transplantation to symptomatic SCD patients with a matched sibling donor, there is much debate surrounding the use of this modality in “less severe” patients. An overview of the current state of our understanding of the pathology and treatment of SCD is important to show that our current strategy is not having the desired impact on survival of homozygous SCD patients, and should be changed to significantly impact the small proportion of these patients who have matched siblings and could be cured, especially those without overt clinical manifestations. Both patient families and providers must be made to understand the progressive nature of SCD, and should be encouraged to screen full siblings of patients with homozygous SCD for their potential to be donors. Matched siblings should be referred to an experienced transplant center for evaluation and counseling. In this review, we will discuss the rationale for these opinions and make recommendations for patient selection. PMID:26203293

  8. The hematopoietic stem cell transplantation in Indonesia: an unsolved dilemma.

    PubMed

    Hariman, H

    2008-08-01

    Allogeneic BMT was performed in Indonesia, but had to be stopped prematurely because of the small number of patients. In the beginning, only patients with sufficient financial resources to travel to western countries could undergo transplant procedures. When neighbouring countries (Singapore and Malaysia) began performing transplant, patients were referred to those centres. In both countries, the procedure is more economical and therefore patients come from a broader range of economic classes. The Indonesian hematologist must deal with the post-transplantation side effects, such as GVHD, which are mostly of the chronic type of GVHD. The types of the post-transplant complications do not differ too much from other centres and need the same treatment used in the transplant centres. Hematologists in Indonesia also treat complications of HSCT performed in other countries. When there is no recovery of HSCT development in Indonesia so far, many commercially oriented companies or centres from other countries see Indonesia as a good commercial market and offer services, some of which are not scientifically sound. One of the main problems is umbilical cord blood stem cell banking from foreign countries, which is eagerly offered to parents expecting a baby. Moreover, parents are not fully protected by law. In conclusion, Indonesia needs to revive its own HSCT program to serve and protect its own patients of being used as commercial targets by other countries. PMID:18724313

  9. Current status of hematopoietic stem cell transplant in chronic myeloid leukemia

    PubMed Central

    Gupta, Alok; Khattry, Navin

    2014-01-01

    Indications for hematopoietic stem cell transplant (HSCT) in chronic myeloid leukemia (CML) have changed over time. This change has largely been influenced by the advent of tyrosine kinase inhibitors, increased understanding of the mechanisms underlying disease phase progression as well as drug resistance, refinement of transplant techniques and exploitation of graft versus leukemia effect in this disease. Here, we have discussed the status of HSCT in CML in the present era with regards to the current indications, factors determining outcome and management strategies for posttransplant relapse. PMID:25336791

  10. Novel therapy for type 1 diabetes: autologous hematopoietic stem cell transplantation.

    PubMed

    Li, Lirong; Gu, Weiqiong; Zhu, Dalong

    2012-12-01

    Type 1 diabetes is characterized pathologically by autoimmune insulitis-related islet β-cell destruction. Although intensive insulin therapy for patients with type 1 diabetes can correct hyperglycemia, this therapy does not prevent all diabetes-related complications. Recent studies have shown that autologous hematopoietic stem cell transplantation (HSCT) is a promising new approach for the treatment of type 1 diabetes by reconstitution of immunotolerance and preservation of islet β-cell function. Herein we discuss the therapeutic efficacy and potential mechanisms underlying the action of HSCT and other perspectives in the clinical management of type 1 diabetes.

  11. Rehabilitative intervention during and after pediatric hematopoietic stem cell transplantation: An analysis of the existing literature.

    PubMed

    Rossi, Francesca; Coppo, Monica; Zucchetti, Giulia; Bazzano, Daniela; Ricci, Federica; Vassallo, Elena; Nesi, Francesca; Fagioli, Franca

    2016-11-01

    Hematopoietic stem cell transplantation is a therapeutic strategy for several oncohematological diseases. It increases survival rates but leads to a high incidence of related effects. The objective of this paper was to examine the existing literature on physical exercise interventions among pediatric HSCT recipients to explore the most often utilized rehabilitative assessment and treatment tools. Studies published from 2002 to April 1, 2015 were selected: 10 studies were included. A previous literary review has shown that rehabilitation programs have a positive impact on quality of life. Our analysis identified some significant outcome variables and shared intervention areas. PMID:27409063

  12. A new chapter: hematopoietic stem cells are direct players in immunity

    PubMed Central

    2011-01-01

    Several lines of evidence support the hypothesis that hematopoietic stem cells (HSCs) directly interact with the immune system and have potential for immune privilege. Although the microenvironment or niche provides protection for HSCs from immune attack, HSCs are also capable of interacting with the immune system as signal "providers" and signal "receivers". On the one hand, HSCs display surface immune inhibitory molecules to evade the attack from the innate and adaptive immune systems; on the other hand, HSCs are capable of directly sensing the signals from the immune system through their surface receptors. Thus, HSCs are important direct players in the immune system. PMID:21978817

  13. Nutritional status of patients submitted to transplantation of allogeneic hematopoietic stem cells: a retrospective study

    PubMed Central

    Ferreira, Érika Elias; Guerra, Daiane Cristina; Baluz, Kátia; de Resende Furtado, Wander; da Silva Bouzas, Luis Fernando

    2014-01-01

    Objective This study aimed to describe and compare the nutritional status of adult patients submitted to allogeneic hematopoietic stem cell transplantation at two different time points (admission and discharge). Methods A retrospective, descriptive and quantitative study was performed based on clinical, laboratory and nutritional data obtained from medical records of adult patients of both genders submitted to allogeneic hematopoietic stem cell transplantation in a bone marrow transplantation reference center in Rio de Janeiro in the period from 2010 to 2013. Statistical analysis was performed using the SPSS software (version 22.0). Results Sixty-four patients were evaluated. The mean age was 42.1 ± 3.2 years and the most prevalent disease was acute myeloid leukemia (39%). There was a high prevalence of gastrointestinal symptoms including nausea (100%), vomiting (97%) and mucositis (93%). Between admission and discharge there was a significant decrease in the median weight (−2.5 kg; 71.5 vs. 68.75 kg; p-value < 0.001), body mass index (−0.9 kg/m2; 24.8 vs. 24.4 kg/m2; p-value < 0.001), and serum albumin levels (−0.2 g/dL; 3.7 vs. 3.6 g/dL; p-value = 0.024). The survival time after hematopoietic stem cell transplantation correlated negatively with C-reactive protein at discharge (CC = −0.72; p-value < 0.001) and positively with serum albumin levels (CC = 0.56; p-value = 0.004) and with high total protein level at discharge (CC = 0.53; p-value = 0.006). Conclusion Our results suggest that patients submitted to allogeneic hematopoietic stem cell transplantation have compromised nutritional status during the hospital stay for transplantation. PMID:25453651

  14. Clinical use of statins in hematopoietic stem cell transplantation: Old drugs and new horizons.

    PubMed

    Mohammadi, Mehdi; Vaezi, Mohammad; Mirrahimi, Bahador; Hadjibabaie, Molouk

    2016-01-01

    Hydroxymethylglutaryl Co-enzyme A reductase inhibitors, also known as statins, are a class of anti-hyperlipidemic agents. These drugs have been employed vastly to reduce the morbidity and mortality of cardiovascular disorders. Soon after their introduction, benefits other than their primary actions were discovered. Along with these pleiotropic properties, a series of mainly favorable effects has been proposed in patients intended to undergo hematopoietic stem cell transplantation. These actions address some complications encountered by this special population such as graft-versus-host disease, efficacy of chemotherapy, infections, etc. This review presents the current evidence surrounding these issues. PMID:27047650

  15. Selection of Patients With Myelodysplastic Syndrome for Allogeneic Hematopoietic Stem Cell Transplantation.

    PubMed

    Mishra, Asmita; Anasetti, Claudio

    2016-08-01

    Allogeneic hematopoietic stem cell transplantation (HSCT) is a potentially curative option for patients with myelodysplastic syndrome (MDS). Because MDS predominantly affects an older population, age-associated comorbidities can preclude patients from cure. HSCT is associated with the risk of morbidity and mortality; however, with safer conditioning regimens and improved supportive care, eligible patients with an appropriately matched donor can receive this therapy without exclusion by older age alone. We discuss the role of improved MDS prognostic scoring systems and molecular testing for selection for HSCT, and review the pre-HSCT tolerability assessment required for this advanced aged population. PMID:27521324

  16. Fanca-/- hematopoietic stem cells demonstrate a mobilization defect which can be overcome by administration of the Rac inhibitor NSC23766.

    PubMed

    Milsom, Michael D; Lee, Andrew W; Zheng, Yi; Cancelas, Jose A

    2009-07-01

    Fanconi anemia is a severe bone marrow failure syndrome resulting from inactivating mutations of Fanconi anemia pathway genes. Gene and cell therapy trials using hematopoietic stem cells and progenitors have been hampered by poor mobilization of HSC to peripheral blood in response to G-CSF. Using a murine model of Fanconi anemia (Fanca(-/-) mice), we found that the Fanca deficiency was associated with a profound defect in hematopoietic stem cells and progenitors mobilization in response to G-CSF in absence of bone marrow failure, which correlates with the findings of clinical trials in Fanconi anemia patients. This mobilization defect was overcome by co-administration of the Rac inhibitor NSC23766, suggesting that Rac signaling is implicated in the retention of Fanca(-/-) hematopoietic stem cells and progenitors in the bone marrow. In view of these data, we propose that targeting Rac signaling may enhance G-CSF-induced HSC mobilization in Fanconi anemia.

  17. [Biomarker for Hematopoietic Tumors--Aiming for Personalized Diagnosis of Leukemia Stem Cells].

    PubMed

    Tohda, Shuji

    2015-09-01

    Biomarkers are defined as characteristics that are objectively measured and evaluated as indicators of normal biological processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention. Biomarkers obtained by PCR or flow cytometry are used for the diagnosis and subtyping of hematopoietic tumor cases. They are also used to predict the effectiveness of molecular-targeted therapies and detect minimal residual leukemia cells. In order to cure leukemia, it is necessary to eradicate leukemia stem cells. For that purpose, biomarkers to identify and characterize the leukemia stem cells in each case are needed. Therefore, we examined molecules involved in various stemness-related signaling pathways, especially NOTCH signaling in acute leukemia cells. In T-lymphoblastic leukemia cells, which often have activating NOTCH1 mutations, NOTCH works in oncogenic signaling. Although acute myeloid leukemia (AML) cells express NOTCH and NOTCH ligands, it is still controversial whether NOTCH is oncogenic or tumor-suppressive. To utilize the expression and activation of NOTCH as a leukemia stem cell biomarker, further investigation is required. Other stemness-related signaling molecules such as WNT, HEDGEHOG, HIF, and mTOR are also under investigation to assess whether they can be used as stem cell biomarkers in a clinical setting. PMID:26731901

  18. In vivo imaging of Tregs providing immune privilege to the hematopoietic stem cell niche

    PubMed Central

    Fujisaki, Joji; Wu, Juwell; Carlson, Alicia L.; Silberstein, Lev; Putheti, Prabhakar; Larocca, Rafael; Gao, Wenda; Saito, Toshiki I.; Celso, Cristina Lo; Tsuyuzaki, Hitoshi; Sato, Tatsuyuki; Côté, Daniel; Sykes, Megan; Strom, Terry B.; Scadden, David T.; Lin, Charles P.

    2013-01-01

    Stem cells reside in a specialized regulatory microenvironment or niche1,2, where they receive appropriate support for maintaining self-renewal and multi-lineage differentiation capacity1-3. The niche may also protect stem cells from environmental insults3 including cytotoxic chemotherapy and perhaps pathogenic immunity4. The testis, hair follicle, and placenta are all sites of residence for stem cells and are immune suppressive environments, called immune privileged (IP) sites, where multiple mechanisms conspire to prevent immune attack, even enabling prolonged survival of foreign allografts without immunosuppression (IS)4. We sought to determine if somatic stem cell niches more broadly are IP sites by examining the hematopoietic stem/progenitor cell (HSPC) niche1,2,5-7 in the bone marrow (BM), a site where immune reactivity exists8,9. We observed persistence of allo-HSPCs in non-irradiated recipients for 30 days without IS with the same survival frequency compared to syngeneic HSPCs. These HSPCs were lost after the depletion of FoxP3 regulatory T cells (Tregs). High resolution in vivo imaging over time demonstrated marked co-localization of HSPCs with Tregs that accumulated on the endosteal surface in the calvarial and trabecular BM. Tregs appear to participate in creating a localized zone where HSPCs reside and where Tregs are necessary for allo-HSPC persistence. In addition to processes supporting stem cell function, the niche will provide a relative sanctuary from immune attack. PMID:21654805

  19. Hematopoietic stem cell gene transfer for the treatment of hemoglobin disorders.

    PubMed

    Persons, Derek A

    2009-01-01

    Hematopoietic stem cell (HSC)-targeted gene transfer is an attractive approach for the treatment of a number of hematopoietic disorders caused by single gene defects. Indeed, in a series of gene transfer trials for two different primary immunodeficiencies beginning early in this decade, outstanding success has been achieved. Despite generally low levels of engrafted, genetically modified HSCs, these trials were successful because of the marked selective advantage of gene-corrected lymphoid precursors that allowed reconstitution of the immune system. Unlike the immunodeficiencies, this robust level of in vivo selection is not available to hematopoietic repopulating cells or early progenitor cells following gene transfer of a therapeutic globin gene in the setting of beta-thalassemia and sickle cell disease. Both preclinical and clinical transplant studies involving bone marrow chimeras suggest that 20% or higher levels of engraftment of genetically modified HSCs will be needed for clinical success in the most severe of these disorders. Encouragingly, gene transfer levels in this range have recently been reported in a lentiviral vector gene transfer clinical trial for children with adrenoleukodystrophy. A clinical gene transfer trial for beta-thalassemia has begun in France, and one patient with transfusion-dependent HbE/beta-thalassemia has demonstrated a therapeutic effect after transplantation with autologous CD34(+) cells genetically modified with a beta-globin lentiviral vector. Here, the development and recent progress of gene therapy for the hemoglobin disorders is reviewed.

  20. RNA polymerase III component Rpc9 regulates hematopoietic stem and progenitor cell maintenance in zebrafish.

    PubMed

    Wei, Yonglong; Xu, Jin; Zhang, Wenqing; Wen, Zilong; Liu, Feng

    2016-06-15

    Hematopoietic stem and progenitor cells (HSPCs) are capable of self-renewal and replenishing all lineages of blood cells throughout life and are thus crucial for tissue homeostasis. However, the mechanism regulating HSPC development is still incompletely understood. Here, we isolate a zebrafish mutant with defective T lymphopoiesis and positional cloning identifies that Rpc9, a component of DNA-directed RNA polymerase III (Pol III) complex, is responsible for the mutant phenotype. Further analysis shows that rpc9 deficiency leads to the impairment of HSPCs and their derivatives in zebrafish embryos. Excessive apoptosis is observed in the caudal hematopoietic tissue (CHT; the equivalent of fetal liver in mammals) of rpc9(-/-) embryos and the hematopoietic defects in these embryos can be fully rescued by suppression of p53 Thus, our work illustrates that Rpc9, a component of Pol III, plays an important tissue-specific role in HSPC maintenance during zebrafish embryogenesis and might be conserved across vertebrates, including mammals. PMID:27151951

  1. Pre-malignant lymphoid cells arise from hematopoietic stem/progenitor cells in chronic lymphocytic leukemia.

    PubMed

    Kikushige, Yoshikane; Miyamoto, Toshihiro

    2015-11-01

    Human malignancies progress through a multistep process that includes the development of critical somatic mutations over the clinical course. Recent novel findings have indicated that hematopoietic stem cells (HSCs), which have the potential to self-renew and differentiate into multilineage hematopoietic cells, are an important cellular target for the accumulation of critical somatic mutations in hematological malignancies and play a central role in myeloid malignancy development. In contrast to myeloid malignancies, mature lymphoid malignancies, such as chronic lymphocytic leukemia (CLL), are thought to originate directly from differentiated mature lymphocytes; however, recent compelling data have shown that primitive HSCs and hematopoietic progenitor cells contribute to the pathogenesis of mature lymphoid malignancies. Several representative mutations of hematological malignancies have been identified within the HSCs of CLL and lymphoma patients, indicating that the self-renewing long-lived fraction of HSCs can serve as a reservoir for the development of oncogenic events. Novel mice models have been established as human mature lymphoma models, in which specific oncogenic events target the HSCs and immature progenitor cells. These data collectively suggest that HSCs can be the cellular target involved in the accumulation of oncogenic events in the pathogenesis of mature lymphoid and myeloid malignancies.

  2. Disseminated prostate cancer cells can instruct hematopoietic stem and progenitor cells to regulate bone phenotype.

    PubMed

    Joseph, Jeena; Shiozawa, Yusuke; Jung, Younghun; Kim, Jin Koo; Pedersen, Elisabeth; Mishra, Anjali; Zalucha, Janet Linn; Wang, Jingcheng; Keller, Evan T; Pienta, Kenneth J; Taichman, Russell S

    2012-03-01

    Prostate cancer metastases and hematopoietic stem cells (HSC) frequently home to the bone marrow, where they compete to occupy the same HSC niche. We have also shown that under conditions of hematopoietic stress, HSCs secrete the bone morphogenetic proteins (BMP)-2 and BMP-6 that drives osteoblastic differentiation from mesenchymal precursors. As it is not known, we examined whether metastatic prostate cancer cells can alter regulation of normal bone formation by HSCs and hematopoietic progenitor cells (HPC). HSC/HPCs isolated from mice bearing nonmetastatic and metastatic tumor cells were isolated and their ability to influence osteoblastic and osteoclastic differentiation was evaluated. When the animals were inoculated with the LNCaP C4-2B cell line, which produces mixed osteoblastic and osteolytic lesions in bone, HPCs, but not HSCs, were able to induced stromal cells to differentiate down an osteoblastic phenotype. Part of the mechanism responsible for this activity was the production of BMP-2. On the other hand, when the animals were implanted with PC3 cells that exhibits predominantly osteolytic lesions in bone, HSCs derived from these animals were capable of directly differentiating into tartrate-resistant acid phosphatase-positive osteoclasts through an interleukin-6-mediated pathway. These studies for the first time identify HSC/HPCs as novel targets for future therapy involved in the bone abnormalities of prostate cancer.

  3. Bone marrow-derived hematopoietic stem and progenitor cells infiltrate allogeneic and syngeneic transplants.

    PubMed

    Fan, Z; Enjoji, K; Tigges, J C; Toxavidis, V; Tchipashivili, V; Gong, W; Strom, T B; Koulmanda, M

    2014-12-01

    Lineage (CD3e, CD11b, GR1, B220 and Ly-76) negative hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) infiltrate islet allografts within 24 h posttransplantation. In fact, lineage(negative) Sca-1(+) cKit(+) ("LSK") cells, a classic signature for HSCs, were also detected among these graft infiltrating cells. Lineage negative graft infiltrating cells are functionally multi-potential as determined by a standard competitive bone marrow transplant (BMT) assay. By 3 months post-BMT, both CD45.1 congenic, lineage negative HSCs/HPCs and classic "LSK" HSCs purified from islet allograft infiltrating cells, differentiate and repopulate multiple mature blood cell phenotypes in peripheral blood, lymph nodes, spleen, bone marrow and thymus of CD45.2 hosts. Interestingly, "LSK" HSCs also rapidly infiltrate syngeneic islet transplants as well as allogeneic cardiac transplants and sham surgery sites. It seems likely that an inflammatory response, not an adaptive immune response to allo-antigen, is responsible for the rapid infiltration of islet and cardiac transplants by biologically active HSCs/HPCs. The pattern of hematopoietic differentiation obtained from graft infiltrating HSCs/HPCs, cells that are recovered from inflammatory sites, as noted in the competitive BMT assay, is not precisely the same as that of intramedullary HSCs. This does not refute the obvious multi-lineage potential of graft infiltrating HSCs/HPCs.

  4. The effect of lithium on hematopoietic, mesenchymal and neural stem cells.

    PubMed

    Ferensztajn-Rochowiak, Ewa; Rybakowski, Janusz K

    2016-04-01

    Lithium has been used in modern psychiatry for more than 65 years, constituting a cornerstone for the long-term treatment of bipolar disorder. A number of biological properties of lithium have been discovered, including its hematological, antiviral and neuroprotective effects. In this article, a systematic review of the effect of lithium on hematopoietic, mesenchymal and neural stem cells is presented. The beneficial effects of lithium on the level of hematopoietic stem cells (HSC) and growth factors have been reported since 1970s. Lithium improves homing of stem cells, the ability to form colonies and HSC self-renewal. Lithium also exerts a favorable influence on the proliferation and maintenance of mesenchymal stem cells (MSC). Studies on the effect of lithium on neurogenesis have indicated an increased proliferation of progenitor cells in the dentate gyrus of the hippocampus and enhanced mitotic activity of Schwann cells. This may be connected with the neuroprotective and neurotrophic effects of lithium, reflected in an improvement in synaptic plasticity promoting cell survival and inhibiting apoptosis. In clinical studies, lithium treatment increases cerebral gray matter, mainly in the frontal lobes, hippocampus and amygdala. Recent findings also suggest that lithium may reduce the risk of dementia and exert a beneficial effect in neurodegenerative diseases. The most important mediators and signaling pathways of lithium action are the glycogen synthase kinase-3 and Wnt/β-catenin pathways. Recently, to study of bipolar disorder pathogenesis and the mechanism of lithium action, the induced pluripotent stem cells (iPSC) obtained from bipolar patients have been used.

  5. Lack of caregivers limits use of outpatient hematopoietic stem cell transplant program.

    PubMed

    Frey, P; Stinson, T; Siston, A; Knight, S J; Ferdman, E; Traynor, A; O'Gara, K; Rademaker, A; Bennett, C; Winter, J N

    2002-12-01

    Our goal was to compare direct and indirect medical costs and quality of life associated with inpatient vs outpatient autologous hematopoietic stem cell transplantation (AuHSCT). Twenty-one sequential outpatients and 26 inpatients were enrolled on this prospective trial. All candidates for AuHSCT were screened for eligibility for outpatient transplantation. Patients with either breast cancer or hematologic malignancy, insurance coverage for the outpatient procedure, one to three caregivers available to provide 24 h coverage, and no significant comorbidities were eligible to participate. Patients without caregivers or insurance coverage for outpatient transplant were accrued to the study in a consecutive manner as inpatient controls, based on willingness to participate in the quality of life portion of the study and to permit review of their hospital and billing records. Approximately half of all 139 prospective outpatient candidates were ineligible because they lacked a caregiver. Most commonly, the patient without a caregiver was single or widowed or their family and friends were needed to provide childcare. Most caregivers were college educated from families with incomes greater than US dollars 80000. Indirect costs to the caregivers totaled a median of US dollars 2520 (range US dollars 684-US dollars 4508), with the majority attributed to lost 'opportunity costs'. Overall, there were significant differences in the total costs of treatment for inpatient vs outpatient AuHSCT (US dollars 40985 vs US dollars 29210, P < 0.01)). In general, no significant differences were detected between inpatient and outpatient scores on quality of life measures. Although significant cost savings were associated with outpatient transplantation, this approach was applicable to only half of our otherwise eligible candidates because of a lack of caregivers. The financial burden associated with the caretaking role may underlie this finding.

  6. Mitigation of Late Renal and Pulmonary Injury After Hematopoietic Stem Cell Transplantation

    SciTech Connect

    Cohen, Eric P.; Bedi, Manpreet; Irving, Amy A.; Jacobs, Elizabeth; Tomic, Rade; Klein, John; Lawton, Colleen A.; Moulder, John E.

    2012-05-01

    Purpose: To update the results of a clinical trial that assessed whether the angiotensin-converting enzyme inhibitor captopril was effective in mitigating chronic renal failure and pulmonary-related mortality in subjects undergoing total body irradiation (TBI) in preparation for hematopoietic stem cell transplantation (HSCT). Methods and Materials: Updated records of the 55 subjects who were enrolled in this randomized controlled trial were analyzed. Twenty-eight patients received captopril, and 27 patients received placebo. Definitions of TBI-HSCT-related chronic renal failure (and relapse) were the same as those in the 2007 analysis. Pulmonary-related mortality was based on clinical or autopsy findings of pulmonary failure or infection as the primary cause of death. Follow-up data for overall and pulmonary-related mortality were supplemented by use of the National Death Index. Results: The risk of TBI-HSCT-related chronic renal failure was lower in the captopril group (11% at 4 years) than in the placebo group (17% at 4 years), but this was not statistically significant (p > 0.2). Analysis of mortality was greatly extended by use of the National Death Index, and no patients were lost to follow-up for reasons other than death prior to 67 months. Patient survival was higher in the captopril group than in the placebo group, but this was not statistically significant (p > 0.2). The improvement in survival was influenced more by a decrease in pulmonary mortality (11% risk at 4 years in the captopril group vs. 26% in the placebo group, p = 0.15) than by a decrease in chronic renal failure. There was no adverse effect on relapse risk (p = 0.4). Conclusions: Captopril therapy produces no detectable adverse effects when given after TBI. Captopril therapy reduces overall and pulmonary-related mortality after radiation-based HSCT, and there is a trend toward mitigation of chronic renal failure.

  7. Cellular and humoral immunity elicited by influenza vaccines in pediatric hematopoietic-stem cell transplantation.

    PubMed

    Guérin-El Khourouj, Valérie; Duchamp, Marie; Krivine, Anne; Pédron, Béatrice; Ouachée-Chardin, Marie; Yakouben, Karima; Frémond, Marie-Louise; Baruchel, André; Dalle, Jean-Hugues; Sterkers, Ghislaine

    2012-09-01

    Immunity induced by influenza vaccines following hematopoietic stem-cell transplantation (HSCT) is poorly understood. Here, 14 pediatric recipients (mean age: 6 years) received H1N1 (n=9) or H1N1/H3N2 (n=5) vaccines at a median of 5.7 months post-HSCT (HLA-identical related bone-marrow graft: 10/14). Fourteen clinically-matched non-vaccinated recipients were included as controls. Cellular response to vaccination was assessed by a T-cell proliferation assay. Humoral response was assessed by H1N1-specific antibody titration. IL2 and IFNγ responses to influenza were also evaluated by an intracellular cytokine accumulation method for some of the recipients. Higher proliferative responses to H1N1 (p=0.0001) and higher H1N1-specific antibody titers (p<0.02) were observed in vaccines opposed to non-vaccinated recipients. In some cases, proliferative responses to H1N1 developed while at the same time antibody titers did not reach protective (≥1:40) levels. Most recipients vaccinated with only the H1N1 strain had proliferative responses to both H1N1 and H3N2 (median stimulation index H1N1: 96, H3N2: 126 in responders). Finally, IL2 responses predominated over IFNγ responses (p<0.02) to influenza viruses in responders. In conclusion, H1N1 vaccination induced substantial cell-mediated immunity, and to a lesser extent, humoral immunity at early times post-HSCT. H1N1/H3N2 T-cell cross-reactivity and protective (IL2) rather than effector (IFNγ) cytokinic profiles were elicited.

  8. Co-transplantation of human hematopoietic stem cells and human breast cancer cells in NSG mice

    PubMed Central

    Wege, Anja K; Schmidt, Marcus; Ueberham, Elke; Ponnath, Marvin; Ortmann, Olaf; Brockhoff, Gero; Lehmann, Jörg

    2014-01-01

    Humanized tumor mice (HTM) were generated by the co-transplantation of human hematopoietic stem cells and human breast cancer cells overexpressing HER2 into neonatal NOD-scid IL2Rγnull (NSG) mice. These mice are characterized by the development of a human immune system in combination with human breast cancer growth. Due to concurrent transplantation into newborn mice, transfer of MHC-mismatched tumor cells resulted in solid coexistence and immune cell activation (CD4+ T cells, natural killer cells, and myeloid cells), but without evidence for rejection. Histological staining of the spleen of HTM revealed co-localization of human antigen-presenting cells together with human T and B cells allowing MHC-dependent interaction, and thereby the generation of T cell-dependent antibody production. Here, we investigated the capability of these mice to generate human tumor-specific antibodies and correlated immunoglobulin titers with tumor outgrowth. We found detectable IgM and also IgG amounts in the serum of HTM, which apparently controlled tumor development when IgG serum concentrations were above 10 µg/ml. Western blot analyses revealed that the tumor-specific antibodies generated in HTM did not recognize HER2/neu antigens, but different, possibly relevant antigens for breast cancer therapy. In conclusion, HTM offer a novel approach to generate complete human monoclonal antibodies that do not require further genetic manipulation (e. g., humanization) for a potential application in humans. In addition, efficacy and safety of the generated antibodies can be tested in the same mouse model under human-like conditions. This might be of particular interest for cancer subtypes with no currently available antibody therapy. PMID:24870377

  9. BAF180 regulates cellular senescence and hematopoietic stem cell homeostasis through p21

    PubMed Central

    Lee, Hyemin; Dai, Fangyan; Zhuang, Li; Xiao, Zhen-Dong; Kim, Jongchan; Zhang, Yilei; Ma, Li; You, M. James; Wang, Zhong; Gan, Boyi

    2016-01-01

    BAF180 (also called PBRM1), a subunit of the SWI/SNF complex, plays critical roles in the regulation of chromatin remodeling and gene transcription, and is frequently mutated in several human cancers. However, the role of mammalian BAF180 in tumor suppression and tissue maintenance in vivo remains largely unknown. Here, using a conditional somatic knockout approach, we explored the cellular and organismal functions of BAF180 in mouse. BAF180 deletion in primary mouse embryonic fibroblasts (MEFs) triggers profound cell cycle arrest, premature cellular senescence, without affecting DNA damage response or chromosomal integrity. While somatic deletion of BAF180 in adult mice does not provoke tumor development, BAF180 deficient mice exhibit defects in hematopoietic system characterized by progressive reduction of hematopoietic stem cells (HSCs), defective long-term repopulating potential, and hematopoietic lineage developmental aberrations. BAF180 deletion results in elevated p21 expression in both MEFs and HSCs. Mechanistically, we showed that BAF180 binds to p21 promoter, and BAF180 deletion enhances the binding of modified histones associated with transcriptional activation on p21 promoter. Deletion of p21 rescues cell cycle arrest and premature senescence in BAF180 deficient MEFs, and partially rescues hematopoietic defects in BAF180 deficient mice. Together, our study identifies BAF180 as a critical regulator of cellular senescence and HSC homeostasis, which is at least partially regulated through BAF180-mediated suppression of p21 expression. Our results also suggest that senescence triggered by BAF180 inactivation may serve as a failsafe mechanism to restrain BAF180 deficiency-associated tumor development, providing a conceptual framework to further understand BAF180 function in tumor biology. PMID:26992241

  10. BAF180 regulates cellular senescence and hematopoietic stem cell homeostasis through p21.

    PubMed

    Lee, Hyemin; Dai, Fangyan; Zhuang, Li; Xiao, Zhen-Dong; Kim, Jongchan; Zhang, Yilei; Ma, Li; You, M James; Wang, Zhong; Gan, Boyi

    2016-04-12

    BAF180 (also called PBRM1), a subunit of the SWI/SNF complex, plays critical roles in the regulation of chromatin remodeling and gene transcription, and is frequently mutated in several human cancers. However, the role of mammalian BAF180 in tumor suppression and tissue maintenance in vivo remains largely unknown. Here, using a conditional somatic knockout approach, we explored the cellular and organismal functions of BAF180 in mouse. BAF180 deletion in primary mouse embryonic fibroblasts (MEFs) triggers profound cell cycle arrest, premature cellular senescence, without affecting DNA damage response or chromosomal integrity. While somatic deletion of BAF180 in adult mice does not provoke tumor development, BAF180 deficient mice exhibit defects in hematopoietic system characterized by progressive reduction of hematopoietic stem cells (HSCs), defective long-term repopulating potential, and hematopoietic lineage developmental aberrations. BAF180 deletion results in elevated p21 expression in both MEFs and HSCs. Mechanistically, we showed that BAF180 binds to p21 promoter, and BAF180 deletion enhances the binding of modified histones associated with transcriptional activation on p21 promoter. Deletion of p21 rescues cell cycle arrest and premature senescence in BAF180 deficient MEFs, and partially rescues hematopoietic defects in BAF180 deficient mice. Together, our study identifies BAF180 as a critical regulator of cellular senescence and HSC homeostasis, which is at least partially regulated through BAF180-mediated suppression of p21 expression. Our results also suggest that senescence triggered by BAF180 inactivation may serve as a failsafe mechanism to restrain BAF180 deficiency-associated tumor development, providing a conceptual framework to further understand BAF180 function in tumor biology.

  11. Micro gel column technique is fit for detecting mixed fields post ABO incompatible hematopoietic stem cell transplantation.

    PubMed

    Li, Min-Fang; Liu, Feng; Zhang, Min

    2015-04-01

    How to choose suitable serologic method for assessment of the actual stages of ABO chimera is more important to establish transfusion strategy for patients post-ABO incompatible hematopoietic stem cell transplantation. We reported ABO phenotypes of a patient post-ABO minor incompatible hematopoietic stem cell transplantation from 1+ weak agglutination by tube method was obviously reaffirmed to mixed fields with 4+ positive reaction by micro gel column card. Hence, blood bank technologists must continually work together with hematologist to establish appropriate transfusion strategy, and micro gel column technique can be more appropriate for detecting mixed fields during the whole period of transplantation. PMID:25578650

  12. Reduced Intensity Conditioning, Combined Transplantation of Haploidentical Hematopoietic Stem Cells and Mesenchymal Stem Cells in Patients with Severe Aplastic Anemia

    PubMed Central

    Li, Xiao-Hong; Gao, Chun-Ji; Da, Wan-Ming; Cao, Yong-Bin; Wang, Zhi-Hong; Xu, Li-Xin; Wu, Ya-Mei; Liu, Bei; Liu, Zhou-Yang; Yan, Bei; Li, Song-Wei; Yang, Xue-Liang; Wu, Xiao-Xiong; Han, Zhong-Chao

    2014-01-01

    We examined if transplantation of combined haploidentical hematopoietic stem cells (HSC) and mesenchymal stem cells (MSC) affected graft failure and graft-versus-host disease (GVHD) in patients with severe aplastic anemia (SAA). Patients with SAA-I (N = 17) received haploidentical HSCT plus MSC infusion. Stem cell grafts used a combination of granulocyte colony-stimulating factor (G-CSF)-primed bone marrow and G-CSF-mobilized peripheral blood stem cells of haploidentical donors and the culture-expanded third-party donor-derived umbilical cord MSCs (UC-MSCs), respectively. Reduced intensity conditioning consisted of fludarabine (30 mg/m2·d)+cyclosphamide (500 mg/m2·d)+anti-human thymocyte IgG. Transplant recipients also received cyclosporin A, mycophenolatemofetil, and CD25 monoclonal antibody. A total of 16 patients achieved hematopoietic reconstitution. The median mononuclear cell and CD34 count was 9.3×108/kg and 4.5×106/kg. Median time to ANC was >0.5×109/L and PLT count >20×109/L were 12 and 14 days, respectively. Grade III-IV acute GVHD was seen in 23.5% of the cases, while moderate and severe chronic GVHD were seen in 14.2% of the cases. The 3-month and 6-month survival rates for all patients were 88.2% and 76.5%, respectively; mean survival time was 56.5 months. Combined transplantation of haploidentical HSCs and MSCs on SAA without an HLA-identical sibling donor was safe, effectively reduced the incidence of severe GVHD, and improved patient survival. PMID:24594618

  13. The thrombopoietin receptor, c-Mpl, is a selective surface marker for human hematopoietic stem cells

    PubMed Central

    Ninos, John M; Jefferies, Leigh C; Cogle, Christopher R; Kerr, William G

    2006-01-01

    Background Thrombopoietin (TPO), the primary cytokine regulating megakaryocyte proliferation and differentiation, exerts significant influence on other hematopoietic lineages as well, including erythroid, granulocytic and lymphoid lineages. We previously demonstrated that the receptor for TPO, c-mpl, is expressed by a subset of human adult bone marrow hematopoietic stem/progenitor cells (HSC/PC) that are enriched for long-term multilineage repopulating ability in the SCID-hu Bone in vivo model of human hematopoiesis. Methods Here, we employ flow cytometry and an anti-c-mpl monoclonal antibody to comprehensively define the surface expression pattern of c-mpl in four differentiation stages of human CD34+ HSC/PC (I: CD34+38--, II: CD34+38dim, III: CD34+38+, IV: CD34dim38+) for the major sources of human HSC: fetal liver (FL), umbilical cord blood (UCB), adult bone marrow (ABM), and cytokine-mobilized peripheral blood stem cells (mPBSC). We use a surrogate in vivo model of human thymopoiesis, SCID-hu Thy/Liv, to compare the capacity of c-mpl+ vs. c-mpl-- CD34+38--/dim HSC/PC for thymocyte reconstitution. Results For all tissue sources, the percentage of c-mpl+ cells was significantly highest in stage I HSC/PC (FL 72 ± 10%, UCB 67 ± 19%, ABM 82 ± 16%, mPBSC 71 ± 15%), and decreased significantly through stages II, III, and IV ((FL 3 ± 3%, UCB 8 ± 13%, ABM 0.6 ± 0.6%, mPBSC 0.2 ± 0.1%) [ANOVA: P < 0.0001]. The relative median fluorescence intensity of c-mpl expression was similarly highest in stage I, decreasing through stage IV [ANOVA: P < 0.0001]. No significant differences between tissue sources were observed for either % c-mpl+ cells [P = 0.89] or intensity of c-mpl expression [P = 0.21]. Primary Thy/Liv grafts injected with CD34+38--/dimc-mpl+ cells showed slightly higher levels of donor HLA+ thymocyte reconstitution vs. CD34+38--/dimc-mpl---injected grafts and non-injected controls (c-mpl+ vs. c-mpl--: CD2+ 6.8 ± 4.5% vs. 2.8 ± 3.3%, CD4+8-- 54 ± 35% vs

  14. Intensification of therapy using hematopoietic stem-cell support for high-risk neuroblastoma.

    PubMed

    Matthay, K K

    1999-01-01

    The use of new strategies for dose intensification using peripheral blood stem cell or autologous purged bone marrow rescue has raised expectations for cure in advanced neuroblastoma, although conflicting reports exist regarding the efficacy of these approaches. Using risk groups based on both biological and clinical staging, the Children's Cancer Group and the Pediatric Oncology Group have agreed upon common prognostic criteria for treatment stratification. We summarize below the prognostic classification and treatment approaches that have improved the overall outcome for children with advanced neuroblastoma. Intensive induction therapy, myeloablative therapy, hematopoietic stem cell purging, and post-transplant therapy for minimal residual disease all have an important role in the treatment. Possible future improvements may incorporate more tumor-specific therapy with targeted radiotherapy, monoclonal antibodies, tumor vaccines, and differentiating agents.

  15. Angiopoietin-like proteins stimulate ex vivo expansion of hematopoietic stem cells.

    PubMed

    Zhang, Cheng Cheng; Kaba, Megan; Ge, Guangtao; Xie, Kathleen; Tong, Wei; Hug, Christopher; Lodish, Harvey F

    2006-02-01

    Successful ex vivo expansion of hematopoietic stem cells (HSCs) would greatly benefit the treatment of disease and the understanding of crucial questions of stem cell biology. Here we show, using microarray studies, that the HSC-supportive mouse fetal liver CD3(+) cells specifically express the proteins angiopoietin-like 2 (Angptl2) and angiopoietin-like 3 (Angptl3). We observed a 24- or 30-fold net expansion of long-term HSCs by reconstitution analysis when we cultured highly enriched HSCs for 10 days in the presence of Angptl2 or Angptl3 together with saturating levels of other growth factors. The coiled-coil domain of Angptl2 was capable of stimulating expansion of HSCs. Furthermore, angiopoietin-like 5, angiopoietin-like 7 and microfibril-associated glycoprotein 4 also supported expansion of HSCs in culture.

  16. Effect of The Receptor Activator of Nuclear Factor кB and RANK Ligand on In Vitro Differentiation of Cord Blood CD133+ Hematopoietic Stem Cells to Osteoclasts

    PubMed Central

    Kalantari, Nasim; Abroun, Saeid; Soleimani, Masoud; Kaviani, Saeid; Azad, Mehdi; Eskandari, Fatemeh; Habibi, Hossein

    2016-01-01

    Objective Receptor activator of nuclear factor-kappa B ligand (RANKL) appears to be an osteoclast-activating factor, bearing an important role in the pathogenesis of multiple myeloma. Some studies demonstrated that U-266 myeloma cell line and primary myeloma cells expressed RANK and RANKL. It had been reported that the expression of myeloid and monocytoid markers was increased by co-culturing myeloma cells with hematopoietic stem cells (HSCs). This study also attempted to show the molecular mechanism of RANK and RANKL on differentiation capability of human cord blood HSC to osteoclast, as well as expression of calcitonin receptor (CTR) on cord blood HSC surface. Materials and Methods In this experimental study, CD133+ hematopoietic stem cells were isolated from umbilical cord blood and cultured in the presence of macrophage colony-stimulating factor (M-CSF) and RANKL. Osteoclast differentiation was characterized by using tartrate-resistant acid phosphatase (TRAP) staining, giemsa staining, immunophenotyping, and reverse transcription-polymerase chain reaction (RT-PCR) assay for specific genes. Results Hematopoietic stem cells expressed RANK before and after differentiation into osteoclast. Compared to control group, flow cytometric results showed an increased expression of RANK after differentiation. Expression of CTR mRNA showed TRAP reaction was positive in some differentiated cells, including osteoclast cells. Conclusion Presence of RANKL and M-CSF in bone marrow could induce HSCs differentiation into osteoclast.

  17. Effect of The Receptor Activator of Nuclear Factor кB and RANK Ligand on In Vitro Differentiation of Cord Blood CD133+ Hematopoietic Stem Cells to Osteoclasts

    PubMed Central

    Kalantari, Nasim; Abroun, Saeid; Soleimani, Masoud; Kaviani, Saeid; Azad, Mehdi; Eskandari, Fatemeh; Habibi, Hossein

    2016-01-01

    Objective Receptor activator of nuclear factor-kappa B ligand (RANKL) appears to be an osteoclast-activating factor, bearing an important role in the pathogenesis of multiple myeloma. Some studies demonstrated that U-266 myeloma cell line and primary myeloma cells expressed RANK and RANKL. It had been reported that the expression of myeloid and monocytoid markers was increased by co-culturing myeloma cells with hematopoietic stem cells (HSCs). This study also attempted to show the molecular mechanism of RANK and RANKL on differentiation capability of human cord blood HSC to osteoclast, as well as expression of calcitonin receptor (CTR) on cord blood HSC surface. Materials and Methods In this experimental study, CD133+ hematopoietic stem cells were isolated from umbilical cord blood and cultured in the presence of macrophage colony-stimulating factor (M-CSF) and RANKL. Osteoclast differentiation was characterized by using tartrate-resistant acid phosphatase (TRAP) staining, giemsa staining, immunophenotyping, and reverse transcription-polymerase chain reaction (RT-PCR) assay for specific genes. Results Hematopoietic stem cells expressed RANK before and after differentiation into osteoclast. Compared to control group, flow cytometric results showed an increased expression of RANK after differentiation. Expression of CTR mRNA showed TRAP reaction was positive in some differentiated cells, including osteoclast cells. Conclusion Presence of RANKL and M-CSF in bone marrow could induce HSCs differentiation into osteoclast. PMID:27602313

  18. Catalase inhibits ionizing radiation-induced apoptosis in hematopoietic stem and progenitor cells.

    PubMed

    Xiao, Xia; Luo, Hongmei; Vanek, Kenneth N; LaRue, Amanda C; Schulte, Bradley A; Wang, Gavin Y

    2015-06-01

    Hematologic toxicity is a major cause of mortality in radiation emergency scenarios and a primary side effect concern in patients undergoing chemo-radiotherapy. Therefore, there is a critical need for the development of novel and more effective approaches to manage this side effect. Catalase is a potent antioxidant enzyme that coverts hydrogen peroxide into hydrogen and water. In this study, we evaluated the efficacy of catalase as a protectant against ionizing radiation (IR)-induced toxicity in hematopoietic stem and progenitor cells (HSPCs). The results revealed that catalase treatment markedly inhibits IR-induced apoptosis in murine hematopoietic stem cells and hematopoietic progenitor cells. Subsequent colony-forming cell and cobble-stone area-forming cell assays showed that catalase-treated HSPCs can not only survive irradiation-induced apoptosis but also have higher clonogenic capacity, compared with vehicle-treated cells. Moreover, transplantation of catalase-treated irradiated HSPCs results in high levels of multi-lineage and long-term engraftments, whereas vehicle-treated irradiated HSPCs exhibit very limited hematopoiesis reconstituting capacity. Mechanistically, catalase treatment attenuates IR-induced DNA double-strand breaks and inhibits reactive oxygen species. Unexpectedly, we found that the radioprotective effect of catalase is associated with activation of the signal transducer and activator of transcription 3 (STAT3) signaling pathway and pharmacological inhibition of STAT3 abolishes the protective activity of catalase, suggesting that catalase may protect HSPCs against IR-induced toxicity via promoting STAT3 activation. Collectively, these results demonstrate a previously unrecognized mechanism by which catalase inhibits IR-induced DNA damage and apoptosis in HSPCs.

  19. Requirement for Ssbp2 in Hematopoietic Stem Cell Maintenance and Stress Response

    PubMed Central

    Li, June; Kurasawa, Yasuhiro; Wang, Yang; Clise-Dwyer, Karen; Klumpp, Sherry A.; Liang, Hong; Tailor, Ramesh C.; Raymond, Aaron C.; Estrov, Zeev; Brandt, Stephen J.; Davis, Richard E.; Zweidler–McKay, Patrick; Amin, Hesham M.; Nagarajan, Lalitha

    2014-01-01

    Transcriptional mechanisms governing hematopoietic stem cell (HSC) quiescence, self-renewal, and differentiation are not fully understood. Sequence-specific single-stranded DNA-binding protein 2 (SSBP2) is a candidate acute myelogenous leukemia (AML) suppressor gene located at chromosome 5q14. SSBP2 binds the transcriptional adaptor protein Lim-domain binding protein 1 (LDB1) and enhances LDB1 stability to regulate gene expression. Notably, Ldb1 is essential for HSC specification during early development and maintenance in adults. We previously reported shortened lifespan and greater susceptibility to B cell lymphomas and carcinomas in Ssbp2 −/− mice. However, whether Ssbp2 plays a regulatory role in normal HSC function and leukemogenesis is unknown. Here, we provide several lines of evidence to demonstrate a requirement for Ssbp2 in the function and transcriptional program of hematopoietic stem and progenitor cells (HSPCs) in vivo. We found that hematopoietic tissues were hypoplastic in Ssbp2−/− mice and the frequency of lymphoid-primed multipotent progenitor cells in bone marrow was reduced. Other significant features of these mice were delayed recovery from 5-fluorouracil treatment and diminished multilineage reconstitution in lethally irradiated bone marrow recipients. Dramatic reduction of Notch1 transcripts and increased expression of transcripts encoding the transcription factor E2a and its downstream target Cdkn1a also distinguished Ssbp2−/− HSPCs from wild-type HSPCs. Finally, a tendency towards coordinated expression of SSBP2 and the AML suppressor NOTCH1 in a subset of The Cancer Genome Atlas AML cases suggested a role for SSBP2 in AML pathogenesis. Collectively, our results uncovered a critical regulatory function for SSBP2 in HSPC gene expression and function. PMID:25238756

  20. Interleukin-3 and ex vivo maintenance of hematopoietic stem cells: facts and controversies.

    PubMed

    Ivanovic, Zoran

    2004-01-01

    Although the utilization of IL-3 in the ex vivo expansion of hematopoietic stem cells has been considered as an attractive possibility, its mode of action remains unclear and controversial. Some reports show that IL-3 maintains or even enhances primitive stem cell activity, whereas others show the opposite. The presence of serum in culture media enhances the pro-differentiating effect of IL-3 on stem cells. Conversely, addition of IL-3 to serum-free cultures improves the capacity of TPO, SCF and Flt3-ligand to promote the self-renewal of primitive stem cells. The presence or absence of serum or of some serum substitutes (in serum-free cultures), as well as other culture parameters are probably responsible for these contrasting effects of IL-3 on stem cells. However, none of the data presently evaluated bring a clear, definitive explanation to this apparent paradox. Those data that appear to be the most informative are presented and discussed in this "technical review". PMID:15217747

  1. Aldehyde dehydrogenase 2 in aplastic anemia, Fanconi anemia and hematopoietic stem cells.

    PubMed

    Van Wassenhove, Lauren D; Mochly-Rosen, Daria; Weinberg, Kenneth I

    2016-09-01

    Maintenance of the hematopoietic stem cell (HSC) compartment depends on the ability to metabolize exogenously and endogenously generated toxins, and to repair cellular damage caused by such toxins. Reactive aldehydes have been demonstrated to cause specific genotoxic injury, namely DNA interstrand cross-links. Aldehyde dehydrogenase 2 (ALDH2) is a member of a 19 isoenzyme ALDH family with different substrate specificities, subcellular localization, and patterns of expression. ALDH2 is localized in mitochondria and is essential for the metabolism of acetaldehyde, thereby placing it directly downstream of ethanol metabolism. Deficiency in ALDH2 expression and function are caused by a single nucleotide substitution and resulting amino acid change, called ALDH2*2. This genetic polymorphism affects 35-45% of East Asians (about ~560 million people), and causes the well-known Asian flushing syndrome, which results in disulfiram-like reactions after ethanol consumption. Recently, the ALDH2*2 genotype has been found to be associated with marrow failure, with both an increased risk of sporadic aplastic anemia and more rapid progression of Fanconi anemia. This review discusses the unexpected interrelationship between aldehydes, ALDH2 and hematopoietic stem cell biology, and in particular its relationship to Fanconi anemia. PMID:27650066

  2. Hhex is Required at Multiple Stages of Adult Hematopoietic Stem and Progenitor Cell Differentiation

    PubMed Central

    Goodings, Charnise; Smith, Elizabeth; Mathias, Elizabeth; Elliott, Natalina; Cleveland, Susan M.; Tripathi, Rati M.; Layer, Justin H.; Chen, Xi; Guo, Yan; Shyr, Yu; Hamid, Rizwan; Du, Yang; Davé, Utpal P.

    2015-01-01

    Hhex encodes a homeodomain transcription factor that is widely expressed in hematopoietic stem and progenitor cell populations. Its enforced expression induces T-cell leukemia and we have implicated it as an important oncogene in early T-cell precursor leukemias where it is immediately downstream of an LMO2-associated protein complex. Conventional Hhex knockouts cause embryonic lethality precluding analysis of adult hematopoiesis. Thus, we induced highly efficient conditional knockout (cKO) using vav-Cre transgenic mice. Hhex cKO mice were viable and born at normal litter sizes. At steady state, we observed a defect in B-cell development that we localized to the earliest B-cell precursor, the pro-B-cell stage. Most remarkably, bone marrow transplantation using Hhex cKO donor cells revealed a more profound defect in all hematopoietic lineages. In contrast, sublethal irradiation resulted in normal myeloid cell repopulation of the bone marrow but markedly impaired repopulation of T- and B-cell compartments. We noted that Hhex cKO stem and progenitor cell populations were skewed in their distribution and showed enhanced proliferation compared to WT cells. Our results implicate Hhex in the maintenance of LT-HSCs and in lineage allocation from multipotent progenitors especially in stress hematopoiesis. PMID:25968920

  3. Hhex is Required at Multiple Stages of Adult Hematopoietic Stem and Progenitor Cell Differentiation.

    PubMed

    Goodings, Charnise; Smith, Elizabeth; Mathias, Elizabeth; Elliott, Natalina; Cleveland, Susan M; Tripathi, Rati M; Layer, Justin H; Chen, Xi; Guo, Yan; Shyr, Yu; Hamid, Rizwan; Du, Yang; Davé, Utpal P

    2015-08-01

    Hhex encodes a homeodomain transcription factor that is widely expressed in hematopoietic stem and progenitor cell populations. Its enforced expression induces T-cell leukemia and we have implicated it as an important oncogene in early T-cell precursor leukemias where it is immediately downstream of an LMO2-associated protein complex. Conventional Hhex knockouts cause embryonic lethality precluding analysis of adult hematopoiesis. Thus, we induced highly efficient conditional knockout (cKO) using vav-Cre transgenic mice. Hhex cKO mice were viable and born at normal litter sizes. At steady state, we observed a defect in B-cell development that we localized to the earliest B-cell precursor, the pro-B-cell stage. Most remarkably, bone marrow transplantation using Hhex cKO donor cells revealed a more profound defect in all hematopoietic lineages. In contrast, sublethal irradiation resulted in normal myeloid cell repopulation of the bone marrow but markedly impaired repopulation of T- and B-cell compartments. We noted that Hhex cKO stem and progenitor cell populations were skewed in their distribution and showed enhanced proliferation compared to WT cells. Our results implicate Hhex in the maintenance of LT-HSCs and in lineage allocation from multipotent progenitors especially in stress hematopoiesis.

  4. Absence of WASp Enhances Hematopoietic and Megakaryocytic Differentiation in a Human Embryonic Stem Cell Model

    PubMed Central

    Toscano, Miguel G; Muñoz, Pilar; Sánchez-Gilabert, Almudena; Cobo, Marién; Benabdellah, Karim; Anderson, Per; Ramos-Mejía, Verónica; Real, Pedro J; Neth, Olaf; Molinos-Quintana, Agueda; Gregory, Philip D; Holmes, Michael C; Martin, Francisco

    2016-01-01

    The Wiskott-Aldrich syndrome (WAS) is an X-linked primary immunodeficiency caused by mutations in the WAS gene and characterized by severe thrombocytopenia. Although the role of WASp in terminally differentiated lymphocytes and myeloid cells is well characterized, its role in early hematopoietic differentiation and in platelets (Plts) biology is poorly understood. In the present manuscript, we have used zinc finger nucleases targeted to the WAS locus for the development of two isogenic WAS knockout (WASKO) human embryonic stem cell lines (hESCs). Upon hematopoietic differentiation, hESCs-WASKO generated increased ratios of CD34+CD45+ progenitors with altered responses to stem cell factor compared to hESCs-WT. When differentiated toward the megakaryocytic linage, hESCs-WASKO produced increased numbers of CD34+CD41+ progenitors, megakaryocytes (MKs), and Plts. hESCs-WASKO-derived MKs and Plts showed altered phenotype as well as defective responses to agonist, mimicking WAS patients MKs and Plts defects. Interestingly, the defects were more evident in WASp-deficient MKs than in WASp-deficient Plts. Importantly, ectopic WAS expression using lentiviral vectors restored normal Plts development and MKs responses. These data validate the AND-1_WASKO cell lines as a human cellular model for basic research and for preclinical studies for WAS. PMID:26502776

  5. Myelodysplastic syndrome evolving from aplastic anemia treated with immunosuppressive therapy: efficacy of hematopoietic stem cell transplantation

    PubMed Central

    Kim, Sung-Yong; Le Rademacher, Jennifer; Antin, Joseph H.; Anderlini, Paolo; Ayas, Mouhab; Battiwalla, Minoo; Carreras, Jeanette; Kurtzberg, Joanne; Nakamura, Ryotaro; Eapen, Mary; Deeg, H. Joachim

    2014-01-01

    A proportion of patients with aplastic anemia who are treated with immunosuppressive therapy develop clonal hematologic disorders, including post-aplastic anemia myelodysplastic syndrome. Many will proceed to allogeneic hematopoietic stem cell transplantation. We identified 123 patients with post-aplastic anemia myelodysplastic syndrome who from 1991 through 2011 underwent allogeneic hematopoietic stem cell transplantation, and in a matched-pair analysis compared outcome to that in 393 patients with de novo myelodysplastic syndrome. There was no difference in overall survival. There were no significant differences with regard to 5-year probabilities of relapse, non-relapse mortality, relapse-free survival and overall survival; these were 14%, 40%, 46% and 49% for post-aplastic anemia myelodysplastic syndrome, and 20%, 33%, 47% and 49% for de novo myelodysplastic syndrome, respectively. In multivariate analysis, relapse (hazard ratio 0.71; P=0.18), non-relapse mortality (hazard ratio 1.28; P=0.18), relapse-free survival (hazard ratio 0.97; P=0.80) and overall survival (hazard ratio 1.02; P=0.88) of post-aplastic anemia myelodysplastic syndrome were similar to those of patients with de novo myelodysplastic syndrome. Cytogenetic risk was independently associated with overall survival in both groups. Thus, transplant success in patients with post-aplastic anemia myelodysplastic syndrome was similar to that in patients with de novo myelodysplastic syndrome, and cytogenetics was the only significant prognostic factor for post-aplastic anemia myelodysplastic syndrome patients. PMID:25107891

  6. Correction of the sickle cell disease mutation in human hematopoietic stem/progenitor cells.

    PubMed

    Hoban, Megan D; Cost, Gregory J; Mendel, Matthew C; Romero, Zulema; Kaufman, Michael L; Joglekar, Alok V; Ho, Michelle; Lumaquin, Dianne; Gray, David; Lill, Georgia R; Cooper, Aaron R; Urbinati, Fabrizia; Senadheera, Shantha; Zhu, Allen; Liu, Pei-Qi; Paschon, David E; Zhang, Lei; Rebar, Edward J; Wilber, Andrew; Wang, Xiaoyan; Gregory, Philip D; Holmes, Michael C; Reik, Andreas; Hollis, Roger P; Kohn, Donald B

    2015-04-23

    Sickle cell disease (SCD) is characterized by a single point mutation in the seventh codon of the β-globin gene. Site-specific correction of the sickle mutation in hematopoietic stem cells would allow for permanent production of normal red blood cells. Using zinc-finger nucleases (ZFNs) designed to flank the sickle mutation, we demonstrate efficient targeted cleavage at the β-globin locus with minimal off-target modification. By co-delivering a homologous donor template (either an integrase-defective lentiviral vector or a DNA oligonucleotide), high levels of gene modification were achieved in CD34(+) hematopoietic stem and progenitor cells. Modified cells maintained their ability to engraft NOD/SCID/IL2rγ(null) mice and to produce cells from multiple lineages, although with a reduction in the modification levels relative to the in vitro samples. Importantly, ZFN-driven gene correction in CD34(+) cells from the bone marrow of patients with SCD resulted in the production of wild-type hemoglobin tetramers.

  7. Osteoclasts derive from hematopoietic stem cells according to marker, giant lysosomes of beige mice.

    PubMed

    Ash, P; Loutit, J F; Townsend, K M

    1981-01-01

    To ascertain the origin of multinucleated osteoclasts from hematopoietic stem cells, giant lysosomes peculiar to cells of beige mice (bg bg) were used as marker cells of that provenance. Radiation chimeras were established reciprocally between bg bg mice and osteopetrotic mi mi mice with defective osteoclasts. As a result, all the derivative cells of the hematopoietic stem cell would depend on the donor's cell line, whereas osteogenesis would remain the province of the host. It was affirmed in the chimeras mi mi/bg bg that the osteopetrosis was cured within six weeks. Thereafter the definitive osteoclasts of the chimeras contained giant lysosomes attributable to the beige cell line. However, the cure was well advanced before donor osteoclasts were prominent, for which several reasons are offered. In the mouse chimeras, bg bg/mi mi, there was a delay of some six weeks before osteopetrosis became evident, histologically before radiologically, at the major metaphyseal growth centers. During the period one to two months after establishment, osteoclasts appeared to be a mixture of two cell lines according to quantitative assessments for giant lysosomes. Assessments consisted of measurements of the percentage area of osteoclasts occupied by lysosomes over 1 micrometer diameter. The means were 0.018% +/- 0.008% for nonbeige stock and 2.09% +/- 0.58% for beige stock.

  8. Critical Role of Jak2 in the Maintenance and Function of Adult Hematopoietic Stem Cells

    PubMed Central

    AKADA, HAJIME; AKADA, SAEKO; HUTCHISON, ROBERT E.; SAKAMOTO, KAZUHITO; WAGNER, KAY-UWE; MOHI, GOLAM

    2014-01-01

    Jak2, a member of the Janus kinase family of non-receptor protein tyrosine kinases, is activated in response to a variety of cytokines, and functions in survival and proliferation of cells. An activating JAK2V617F mutation has been found in most patients with myeloproliferative neoplasms, and patients treated with Jak2 inhibitors show significant hematopoietic toxicities. However, the role of Jak2 in adult hematopoietic stem cells (HSCs) has not been clearly elucidated. Using a conditional Jak2 knockout allele, we have found that Jak2 deletion results in rapid loss of HSCs/progenitors leading to bone marrow failure and early lethality in adult mice. Jak2 deficiency causes marked impairment in HSC function, and the mutant HSCs are severely defective in reconstituting hematopoiesis in recipient animals. Jak2 deficiency also causes significant apoptosis and loss of quiescence in HSC-enriched LSK (Lin−Sca-1+c-kit+) cells. Jak2-deficient LSK cells exhibit elevated reactive oxygen species levels and enhanced p38 MAPK activation. Mutant LSK cells also show defective Stat5, Erk and Akt activation in response to thrombopoietin and stem cell factor. Gene expression analysis reveals significant downregulation of genes related to HSC quiescence and self-renewal in Jak2-deficient LSK cells. These data suggest that Jak2 plays a critical role in the maintenance and function of adult HSCs. PMID:24677703

  9. Pediatric donor cell leukemia after allogeneic hematopoietic stem cell transplantation in AML patient from related donor.

    PubMed

    Bobadilla-Morales, Lucina; Pimentel-Gutiérrez, Helia J; Gallegos-Castorena, Sergio; Paniagua-Padilla, Jenny A; Ortega-de-la-Torre, Citlalli; Sánchez-Zubieta, Fernando; Silva-Cruz, Rocio; Corona-Rivera, Jorge R; Zepeda-Moreno, Abraham; González-Ramella, Oscar; Corona-Rivera, Alfredo

    2015-01-01

    Here we present a male patient with acute myeloid leukemia (AML) initially diagnosed as M5 and with karyotype 46,XY. After induction therapy, he underwent a HLA-matched allogeneic hematopoietic stem cell transplantation, and six years later he relapsed as AML M1 with an abnormal karyotype //47,XX,+10[2]/47,XX,+11[3]/48,XX,+10,+11[2]/46,XX[13]. Based on this, we tested the possibility of donor cell origin by FISH and molecular STR analysis. We found no evidence of Y chromosome presence by FISH and STR analysis consistent with the success of the allogeneic hematopoietic stem cell transplantation from the female donor. FISH studies confirmed trisomies and no evidence of MLL translocation either p53 or ATM deletion. Additionally 28 fusion common leukemia transcripts were evaluated by multiplex reverse transcriptase-polymerase chain reaction assay and were not rearranged. STR analysis showed a complete donor chimerism. Thus, donor cell leukemia (DCL) was concluded, being essential the use of cytological and molecular approaches. Pediatric DCL is uncommon, our patient seems to be the sixth case and additionally it presented a late donor cell leukemia appearance. Different extrinsic and intrinsic mechanisms have been considered to explain this uncommon finding as well as the implications to the patient. PMID:25674158

  10. Minireview: Complexity of Hematopoietic Stem Cell Regulation in the Bone Marrow Microenvironment

    PubMed Central

    Hoffman, Corey M.

    2014-01-01

    Hematopoiesis in vertebrates is sustained over the duration of an organism's lifetime due to strict regulation of the highly hierarchical hematopoietic system, where a few immature hematopoietic stem cells (HSCs) continuously regenerate the entire blood supply, which is constantly being replaced. Although HSCs self-regulate through cell-autonomous processes, they also receive a variety of signals from their microenvironment or niche. Within the microenvironment, HSCs are regulated through both cell-cell interactions and secreted signals, including hormones. HSCs at the apex of the blood supply integrate these signals to produce progeny to support hematopoiesis while simultaneously maintaining a stem cell pool. In the past 10 years, advances in genetic models and flow cytometry have provided the tools to test how the microenvironment regulates HSCs. This review is organized in 3 main parts and will focus on cellular components of the HSC niche that are potential targets for hormonal signals, then review critical regulatory signals in the HSC niche, and finally highlight the emerging role of hormonal and paracrine signals in the bone marrow. PMID:25083740

  11. Correction of the sickle cell disease mutation in human hematopoietic stem/progenitor cells

    PubMed Central

    Hoban, Megan D.; Cost, Gregory J.; Mendel, Matthew C.; Romero, Zulema; Kaufman, Michael L.; Joglekar, Alok V.; Ho, Michelle; Lumaquin, Dianne; Gray, David; Lill, Georgia R.; Cooper, Aaron R.; Urbinati, Fabrizia; Senadheera, Shantha; Zhu, Allen; Liu, Pei-Qi; Paschon, David E.; Zhang, Lei; Rebar, Edward J.; Wilber, Andrew; Wang, Xiaoyan; Gregory, Philip D.; Holmes, Michael C.; Reik, Andreas; Hollis, Roger P.

    2015-01-01

    Sickle cell disease (SCD) is characterized by a single point mutation in the seventh codon of the β-globin gene. Site-specific correction of the sickle mutation in hematopoietic stem cells would allow for permanent production of normal red blood cells. Using zinc-finger nucleases (ZFNs) designed to flank the sickle mutation, we demonstrate efficient targeted cleavage at the β-globin locus with minimal off-target modification. By codelivering a homologous donor template (either an integrase-defective lentiviral vector or a DNA oligonucleotide), high levels of gene modification were achieved in CD34+ hematopoietic stem and progenitor cells. Modified cells maintained their ability to engraft NOD/SCID/IL2rγnull mice and to produce cells from multiple lineages, although with a reduction in the modification levels relative to the in vitro samples. Importantly, ZFN-driven gene correction in CD34+ cells from the bone marrow of patients with SCD resulted in the production of wild-type hemoglobin tetramers. PMID:25733580

  12. Intestinal aGVHD and infection after hematopoietic stem cell transplantation

    PubMed Central

    Hou, Cai-yan; Xu, Li-li; Chen, Hu; Liu, Na; Jiang, Ming; Wang, Guo-quan; Zhang, Linlin; Wang, Xiao-hong; Zeng, Yan-jun

    2013-01-01

    Background We aimed to guide clinical nursing by studying the relationship between intestinal acute graft-versus-host disease and intestinal infection after hematopoietic stem cell transplantation. Material/Methods We present an effective nursing method by comparing and analyzing the degree, duration time, and volume of diarrhea, and the distribution of pathogens in 44 patients who developed intestinal aGVHD after hematopoietic stem cell transplantation (24 patients with no intestinal infection). Results 21.4% of patients with grade I–II intestinal aGVHD developed into intestinal infection and 87.5% of patients with grade III–IV intestinal aGVHD developed into intestinal infection (P<0.05). Higher mortality was found in the grade III–IV intestinal aGVHD patients with intestinal infection. Patient age had no effect on the incidence of GVHD according to our data (P<0.05). We found remarkable differences in the amount and duration of diarrhea between patients with and without intestinal infection (P<0.05). The most common pathogens cultivated were Candida glabrata (24%) and Candida albicans (22.67%). Conclusions The incidence of intestinal infection increased remarkably after intestinal aGVHD occurred. Severe aGVHD can easily lead to fungus infection. Nursing care can decrease the incidence of intestinal infection in aGVHD. PMID:24077343

  13. CLEC-2 in megakaryocytes is critical for maintenance of hematopoietic stem cells in the bone marrow

    PubMed Central

    Takubo, Keiyo; Kobayashi, Hiroshi; Suzuki-Inoue, Katsue

    2015-01-01

    Hematopoietic stem cells (HSCs) depend on the bone marrow (BM) niche for their maintenance, proliferation, and differentiation. The BM niche is composed of nonhematopoietic and mature hematopoietic cells, including megakaryocytes (Mks). Thrombopoietin (Thpo) is a crucial cytokine produced by BM niche cells. However, the cellular source of Thpo, upon which HSCs primarily depend, is unclear. Moreover, no specific molecular pathway for the regulation of Thpo production in the BM has been identified. Here, we demonstrate that the membrane protein C-type lectin-like receptor-2 (CLEC-2) mediates the production of Thpo and other factors in Mks. Mice conditionally deleted for CLEC-2 in Mks (Clec2MkΔ/Δ) produced lower levels of Thpo in Mks. CLEC-2–deficient Mks showed down-regulation of CLEC-2–related signaling molecules Syk, Lcp2, and Plcg2. Knockdown of these molecules in cultured Mks decreased expression of Thpo. Clec2MkΔ/Δ mice exhibited reduced BM HSC quiescence and repopulation potential, along with extramedullary hematopoiesis. The low level of Thpo production may account for the decline in HSC potential in Clec2MkΔ/Δ mice, as administration of recombinant Thpo to Clec2MkΔ/Δ mice restored stem cell potential. Our study identifies CLEC-2 signaling as a novel molecular mechanism mediating the production of Thpo and other factors for the maintenance of HSCs. PMID:26552707

  14. Bacterial c-di-GMP affects hematopoietic stem/progenitors and their niches through STING.

    PubMed

    Kobayashi, Hiroshi; Kobayashi, Chiharu I; Nakamura-Ishizu, Ayako; Karigane, Daiki; Haeno, Hiroshi; Yamamoto, Kimiyo N; Sato, Taku; Ohteki, Toshiaki; Hayakawa, Yoshihiro; Barber, Glen N; Kurokawa, Mineo; Suda, Toshio; Takubo, Keiyo

    2015-04-01

    Upon systemic bacterial infection, hematopoietic stem and progenitor cells (HSPCs) migrate to the periphery in order to supply a sufficient number of immune cells. Although pathogen-associated molecular patterns reportedly mediate HSPC activation, how HSPCs detect pathogen invasion in vivo remains elusive. Bacteria use the second messenger bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) for a variety of activities. Here, we report that c-di-GMP comprehensively regulated both HSPCs and their niche cells through an innate immune sensor, STING, thereby inducing entry into the cell cycle and mobilization of HSPCs while decreasing the number and repopulation capacity of long-term hematopoietic stem cells. Furthermore, we show that type I interferon acted as a downstream target of c-di-GMP to inhibit HSPC expansion in the spleen, while transforming growth factor-β was required for c-di-GMP-dependent splenic HSPC expansion. Our results define machinery underlying the dynamic regulation of HSPCs and their niches during bacterial infection through c-di-GMP/STING signaling.

  15. Pediatric donor cell leukemia after allogeneic hematopoietic stem cell transplantation in AML patient from related donor.

    PubMed

    Bobadilla-Morales, Lucina; Pimentel-Gutiérrez, Helia J; Gallegos-Castorena, Sergio; Paniagua-Padilla, Jenny A; Ortega-de-la-Torre, Citlalli; Sánchez-Zubieta, Fernando; Silva-Cruz, Rocio; Corona-Rivera, Jorge R; Zepeda-Moreno, Abraham; González-Ramella, Oscar; Corona-Rivera, Alfredo

    2015-01-01

    Here we present a male patient with acute myeloid leukemia (AML) initially diagnosed as M5 and with karyotype 46,XY. After induction therapy, he underwent a HLA-matched allogeneic hematopoietic stem cell transplantation, and six years later he relapsed as AML M1 with an abnormal karyotype //47,XX,+10[2]/47,XX,+11[3]/48,XX,+10,+11[2]/46,XX[13]. Based on this, we tested the possibility of donor cell origin by FISH and molecular STR analysis. We found no evidence of Y chromosome presence by FISH and STR analysis consistent with the success of the allogeneic hematopoietic stem cell transplantation from the female donor. FISH studies confirmed trisomies and no evidence of MLL translocation either p53 or ATM deletion. Additionally 28 fusion common leukemia transcripts were evaluated by multiplex reverse transcriptase-polymerase chain reaction assay and were not rearranged. STR analysis showed a complete donor chimerism. Thus, donor cell leukemia (DCL) was concluded, being essential the use of cytological and molecular approaches. Pediatric DCL is uncommon, our patient seems to be the sixth case and additionally it presented a late donor cell leukemia appearance. Different extrinsic and intrinsic mechanisms have been considered to explain this uncommon finding as well as the implications to the patient.

  16. Hematopoietic Stem Cell Therapy to Countermeasure Cancer in Astronauts during Exploration of Deep Space

    NASA Technical Reports Server (NTRS)

    Ohi, S.; Kindred, R. P.; Roach, A-N.; Edossa, A.; Kim, B. C.; Gonda, S. R.; Emami, K.

    2004-01-01

    Exposure to cosmic radiation can cause chromosomal mutations, which may lead to cancer in astronauts engaged in space exploration. Therefore, our goals are to develop countermeasures to prevent space-induced cancer using hematopoietic stem cell therapy (HSCT) and gene therapy. This presentation focuses on HSCT for cancer. Our previous experiments on a simulated, space-induced immuno-deficiency model (mouse hind limb unloading ) indicated that transplanted hematopoietic stem cells (HSCs) could enhance the host's immunity by effectively eliminating bacterial infection (Ohi S, et. al. J Grav Physiol 10, P63-64, 2003; Ohi S, et. al. Proceedings of the Space Technology and Applications International Forum (STAIF) . American Institute of Physics, New York, pp. 938-950, 2004). Hence, we hypothesized that the HSCs might be effective in combating cancer as well. Studies of cocultured mouse HSCs with beta-galactosidase marked rat gliosarcoma spheroids (9L/lacZ), a cancer model, indicated antagonistic interactions , resulting in destruction of the spheroids by HSCs. Trypan Blue dye-exclusion assays were consistent with the conclusion. These results show potential usehlness of HSCT for cancer. Currently, the NASA Hydrodynamic Focusing Bioreactor (HFB), a space analog tissue/cell culture system, is being used to study invasion of the gliosarcoma (GS) spheroids into mouse brain with or without co-cultured HSCs. This may simulate the metastasis of gliosarcoma to brain. There is a tendency for the HSCs to inhibit invasion of GS spheroids into brain, as evidenced by the X-gal staining.

  17. Aging-like Phenotype and Defective Lineage Specification in SIRT1-Deleted Hematopoietic Stem and Progenitor Cells

    PubMed Central

    Rimmelé, Pauline; Bigarella, Carolina L.; Liang, Raymond; Izac, Brigitte; Dieguez-Gonzalez, Rebeca; Barbet, Gaetan; Donovan, Michael; Brugnara, Carlo; Blander, Julie M.; Sinclair, David A.; Ghaffari, Saghi

    2014-01-01

    Summary Aging hematopoietic stem cells (HSCs) exhibit defective lineage specification that is thought to be central to increased incidence of myeloid malignancies and compromised immune competence in the elderly. Mechanisms underlying these age-related defects remain largely unknown. We show that the deacetylase Sirtuin (SIRT)1 is required for homeostatic HSC maintenance. Differentiation of young SIRT1-deleted HSCs is skewed toward myeloid lineage associated with a significant decline in the lymphoid compartment, anemia, and altered expression of associated genes. Combined with HSC accumulation of damaged DNA and expression patterns of age-linked molecules, these have striking overlaps with aged HSCs. We further show that SIRT1 controls HSC homeostasis via the longevity transcription factor FOXO3. These findings suggest that SIRT1 is essential for HSC homeostasis and lineage specification. They also indicate that SIRT1 might contribute to delaying HSC aging. PMID:25068121

  18. Antagonism between MCL-1 and PUMA governs stem/progenitor cell survival during hematopoietic recovery from stress

    PubMed Central

    Delbridge, Alex R. D.; Opferman, Joseph T.; Grabow, Stephanie

    2015-01-01

    Understanding the critical factors that govern recovery of the hematopoietic system from stress, such as during anticancer therapy and bone marrow transplantation, is of clinical significance. We investigated the importance of the prosurvival proteins myeloid cell leukemia-1 (MCL-1) and B-cell lymphoma–extra large (BCL-XL) in stem/progenitor cell survival and fitness during hematopoietic recovery from stress. Loss of a single Mcl-1 allele, which reduced MCL-1 protein levels, severely compromised hematopoietic recovery from myeloablative challenge and following bone marrow transplantation, whereas BCL-XL was dispensable in both contexts. We identified inhibition of proapoptotic p53 upregulated modulator of apoptosis (PUMA) as the key role of MCL-1 in both settings, with Mcl-1+/−;Puma−/− mice completely protected from the deleterious effects of loss of 1 Mcl-1 allele. These results reveal the molecular mechanisms that govern cell survival during hematopoietic recovery from stress. PMID:25847014

  19. ATF4 plays a pivotal role in the development of functional hematopoietic stem cells in mouse fetal liver.

    PubMed

    Zhao, Yunze; Zhou, Jie; Liu, Dan; Dong, Fang; Cheng, Hui; Wang, Weili; Pang, Yakun; Wang, Yajie; Mu, Xiaohuan; Ni, Yanli; Li, Zhuan; Xu, Huiyu; Hao, Sha; Wang, Xiaochen; Ma, Shihui; Wang, Qian-fei; Xiao, Guozhi; Yuan, Weiping; Liu, Bing; Cheng, Tao

    2015-11-19

    The fetal liver (FL) serves as a predominant site for expansion of functional hematopoietic stem cells (HSCs) during mouse embryogenesis. However, the mechanisms for HSC development in FL remain poorly understood. In this study, we demonstrate that deletion of activating transcription factor 4 (ATF4) significantly impaired hematopoietic development and reduced HSC self-renewal in FL. In contrast, generation of the first HSC population in the aorta-gonad-mesonephros region was not affected. The migration activity of ATF4(-/-) HSCs was moderately reduced. Interestingly, the HSC-supporting ability of both endothelial and stromal cells in FL was significantly compromised in the absence of ATF4. Gene profiling using RNA-seq revealed downregulated expression of a panel of cytokines in ATF4(-/-) stromal cells, including angiopoietin-like protein 3 (Angptl3) and vascular endothelial growth factor A (VEGFA). Addition of Angptl3, but not VEGFA, partially rescued the repopulating defect of ATF4(-/-) HSCs in the culture. Furthermore, chromatin immunoprecipitation assay in conjunction with silencing RNA-mediated silencing and complementary DNA overexpression showed transcriptional control of Angptl3 by ATF4. To summarize, ATF4 plays a pivotal role in functional expansion and repopulating efficiency of HSCs in developing FL, and it acts through upregulating transcription of cytokines such as Angptl3 in the microenvironment.

  20. Solid organ transplants following hematopoietic stem cell transplant in children.

    PubMed

    Bunin, Nancy; Guzikowski, Virginia; Rand, Elizabeth R; Goldfarb, Samuel; Baluarte, Jorge; Meyers, Kevin; Olthoff, Kim M

    2010-12-01

    SOT may be indicated for a select group of pediatric patients who experience permanent organ failure following HSCT. However, there is limited information available about outcomes. We identified eight children at our center who received an SOT following an HSCT. Patients were six months to 18 yr at HSCT. Diseases for which children underwent HSCT included thalassemia, Wiskott-Aldrich syndrome, Shwachman-Diamond/bone marrow failure, sickle cell disease (SCD), erythropoietic porphyria (EP), ALL, chronic granulomatous disease, and neuroblastoma. Time from HSCT to SOT was 13 days to seven yr (median, 27 months. Lung SOT was performed for two patients with BO, kidney transplants for three patients, and liver transplants for three patients (VOD, chronic GVHD). Seven patients are alive with functioning allografts 6-180 months from SOT. Advances in organ procurement, operative technique, immunosuppressant therapy, and infection control may allow SOT for a select group of patients post-HSCT. However, scarcity of donor organs available in a timely fashion continues to be a limiting factor. Children who have undergone HSCT and develop single organ failure should be considered for an SOT if there is a high likelihood of cure of the primary disease.

  1. Loss of Pcgf5 Affects Global H2A Monoubiquitination but Not the Function of Hematopoietic Stem and Progenitor Cells

    PubMed Central

    Aoyama, Kazumasa; Oshima, Motohiko; Saraya, Atsunori; Sugishita, Hiroki; Nakayama, Manabu; Ishikura, Tomoyuki; Koseki, Haruhiko; Iwama, Atsushi

    2016-01-01

    Polycomb-group RING finger proteins (Pcgf1-Pcgf6) are components of Polycomb repressive complex 1 (PRC1)-related complexes that catalyze monoubiquitination of histone H2A at lysine 119 (H2AK119ub1), an epigenetic mark associated with repression of genes. Pcgf5 has been characterized as a component of PRC1.5, one of the non-canonical PRC1, consisting of Ring1a/b, Rybp/Yaf2 and Auts2. However, the biological functions of Pcgf5 have not yet been identified. Here we analyzed the impact of the deletion of Pcgf5 specifically in hematopoietic stem and progenitor cells (HSPCs). Pcgf5 is expressed preferentially in hematopoietic stem cells (HSCs) and multipotent progenitors (MPPs) compared with committed myeloid progenitors and differentiated cells. We transplanted bone marrow (BM) cells from Rosa::Cre-ERT control and Cre-ERT;Pcgf5fl/fl mice into lethally irradiated recipient mice. At 4 weeks post-transplantation, we deleted Pcgf5 by injecting tamoxifen, however, no obvious changes in hematopoiesis were detected including the number of HSPCs during a long-term observation period following the deletion. Competitive BM repopulating assays revealed normal repopulating capacity of Pcgf5-deficient HSCs. Nevertheless, Pcgf5-deficient HSPCs showed a significant reduction in H2AK119ub1 levels compared with the control. ChIP-sequence analysis confirmed the reduction in H2AK119ub1 levels, but revealed no significant association of changes in H2AK119ub1 levels with gene expression levels. Our findings demonstrate that Pcgf5-containing PRC1 functions as a histone modifier in vivo, but its role in HSPCs is limited and can be compensated by other PRC1-related complexes in HSPCs. PMID:27136092

  2. The effect of thrombopoietin on the proliferation and differentiation of murine hematopoietic stem cells.

    PubMed

    Sitnicka, E; Lin, N; Priestley, G V; Fox, N; Broudy, V C; Wolf, N S; Kaushansky, K

    1996-06-15

    In this study, we explored whether thrombopoietin (Tpo) has a direct in vitro effect on the proliferation and differentiation of long-term repopulating hematopoietic stem cells (LTR-HSC). We previously reported a cell separation method that uses the fluorescence-activated cell sorter selection of low Hoescht 33342/low Rhodamine 123 (low Ho/low Rh) fluorescence cell fractions that are highly enriched for LTR-HSC and can reconstitute lethally irradiated recipients with fewer than 20 cells. Low Ho/low Rh cells clone with high proliferative potential in vitro in the presence of stem cell factor (SCF) + interleukin-3 (IL-3) + IL-6 (90% to 100% HPP-CFC). Tpo alone did not induce proliferation of these low Ho/low Rh cells. However, in combination with SCF or IL-3, Tpo had several synergistic effects on cell proliferation. When Tpo was added to single growth factors (either SCF or IL-3 or the combination of both), the time required for the first cell division of low Ho/low Rh cells was significantly shortened and their cloning efficiency increased substantially. Moreover, the subsequent clonal expansion at the early time points of culture was significantly augmented by Tpo. Low Ho/low Rh cells, when assayed in agar directly after sorting, did not form megakaryocyte colonies in any growth condition tested. Several days of culture in the presence of multiple cytokines were required to obtain colony-forming units-megakaryocyte (CFU-Mk). In contrast, more differentiated, low Ho/high Rh cells, previously shown to contain short-term repopulating hematopoietic stem cells (STR-HSC), were able to form megakaryocyte colonies in agar when cultured in Tpo alone directly after sorting. These data establish that Tpo acts directly on primitive hematopoietic stem cells selected using the Ho/Rh method, but this effect is dependent on the presence of pluripotent cytokines. These cells subsequently differentiate into CFU-Mk, which are capable of responding to Tpo alone. Together with the

  3. The rate of protein synthesis in hematopoietic stem cells is limited partly by 4E-BPs

    PubMed Central

    Signer, Robert A.J.; Qi, Le; Zhao, Zhiyu; Thompson, David; Sigova, Alla A.; Fan, Zi Peng; DeMartino, George N.; Young, Richard A.; Sonenberg, Nahum; Morrison, Sean J.

    2016-01-01

    Adult stem cells must limit their rate of protein synthesis, but the underlying mechanisms remain largely unexplored. Differences in protein synthesis among hematopoietic stem cells (HSCs) and progenitor cells did not correlate with differences in proteasome activity, total RNA content, mRNA content, or cell division rate. However, adult HSCs had more hypophosphorylated eukaryotic initiation factor 4E-binding protein 1 (4E-BP1) and 4E-BP2 as compared with most other hematopoietic progenitors. Deficiency for 4E-BP1 and 4E-BP2 significantly increased global protein synthesis in HSCs, but not in other hematopoietic progenitors, and impaired their reconstituting activity, identifying a mechanism that promotes HSC maintenance by attenuating protein synthesis. PMID:27492367

  4. Identification of stem cells from human umbilical cord blood with embryonic and hematopoietic characteristics

    SciTech Connect

    Zhao Yong . E-mail: yongzhao@uic.edu; Wang Honglan; Mazzone, Theodore

    2006-08-01

    We identified stem cells from the umbilical cord blood, designated cord blood-stem cells (CB-SC). CB-SC displayed important embryonic stem (ES) cell characteristics including expression of ES-cell-specific molecular markers including transcription factors OCT-4 and Nanog, along with stage-specific embryonic antigen (SSEA)-3 and SSEA-4. CB-SC also expressed hematopoietic cell antigens including CD9, CD45 and CD117, but were negative for CD34. CB-SC displayed very low immunogenicity as indicated by expression of a very low level of major histocompatibility complex (MHC) antigens and failure to stimulate the proliferation of allogeneic lymphocytes. CB-SC could give rise to cells with endothelial-like and neuronal-like characteristics in vitro, as demonstrated by expression of lineage-associated markers. Notably, CB-SC could be stimulated to differentiate into functional insulin-producing cells in vivo and eliminated hyperglycemia after transplantation into a streptozotocin-induced diabetic mouse model. These findings may have significant potential to advance stem-cell-based therapeutics.

  5. Biochemical analysis and quantification of hematopoietic stem cells by infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Zelig, Udi; Dror, Ziv; Iskovich, Svetlana; Zwielly, Amir; Ben-Harush, Miri; Nathan, Ilana; Mordechai, Shaul; Kapelushnik, Joseph

    2010-05-01

    Identification of hematopoietic stem cells (HSCs) in different stages of maturation is one of the major issues in stem cell research and bone marrow (BM) transplantation. Each stage of maturation of HSCs is characterized by a series of distinct glycoproteins present on the cell plasma membrane surface, named a cluster of differentiation (CD). Currently, complicated and expensive procedures based on CD expression are needed for identification and isolation of HSCs. This method is under dispute, since the correct markers' composition is not strictly clear, thus there is need for a better method for stem cell characterization. In the present study, Fourier transform infrared (FTIR) spectroscopy is employed as a novel optical method for identification and characterization of HSCs based on their entire biochemical features. FTIR spectral analysis of isolated mice HSCs reveals several spectral markers related to lipids, nucleic acids, and carbohydrates, which distinguish HSCs from BM cells. The unique ``open'' conformation of HSC DNA as identified by FTIR is exploited for HSCs quantification in the BM. The proposed method of FTIR spectroscopy for HSC identification and quantification can contribute to stem cell research and BM transplantation.

  6. Index sorting resolves heterogeneous murine hematopoietic stem cell populations

    PubMed Central

    Schulte, Reiner; Wilson, Nicola K.; Prick, Janine C.M.; Cossetti, Chiara; Maj, Michal K.; Gottgens, Berthold; Kent, David G.

    2015-01-01

    Recent advances in the cellular and molecular biology of single stem cells have uncovered significant heterogeneity in the functional properties of stem cell populations. This has prompted the development of approaches to study single cells in isolation, often performed using multiparameter flow cytometry. However, many stem cell populations are too rare to test all possible cell surface marker combinations, and virtually nothing is known about functional differences associated with varying intensities of such markers. Here we describe the use of index sorting for further resolution of the flow cytometric isolation of single murine hematopoietic stem cells (HSCs). Specifically, we associate single-cell functional assay outcomes with distinct cell surface marker expression intensities. High levels of both CD150 and EPCR associate with delayed kinetics of cell division and low levels of differentiation. Moreover, cells that do not form single HSC-derived clones appear in the 7AADdim fraction, suggesting that even low levels of 7AAD staining are indicative of less healthy cell populations. These data indicate that when used in combination with single-cell functional assays, index sorting is a powerful tool for refining cell isolation strategies. This approach can be broadly applied to other single-cell systems, both to improve isolation and to acquire additional cell surface marker information. PMID:26051918

  7. Tumor-promoting phorbol esters support the in vitro proliferation of murine pluripotent hematopoietic stem cells.

    PubMed Central

    Spivak, J L; Hogans, B B; Stuart, R K

    1989-01-01

    The effect of tumor-promoting phorbol esters on the in vitro proliferation of mouse pluripotent hematopoietic stem cells (CFU-S) was examined using a short-term in vitro culture system and an 11-d spleen colony assay. Phorbol myristate acetate (PMA, 10(-7) M), but not the inert compound phorbol, supported the in vitro survival of day 11 CFU-S for 72 h in a manner similar to IL 3. PMA also enhanced the effect of IL 3 on the in vitro survival of day 11 CFU-S and as little as 1 h of exposure to PMA was sufficient for this purpose. The effect of PMA on CFU-S survival in vitro was not mediated by prostaglandins, did not require an established adherent cell population, and was observed at a concentration of 10(-9) M. PMA alone did not enhance the in vitro survival of day 11 CFU-S at very low concentrations of FCS but was still able to potentiate the effect of IL 3 on these cells. PMA also enhanced the in vitro survival of day 11 CFU-S from mice treated with 5-fluorouracil or from marrow cells exposed to merocyanine 540 and light. The interaction of PMA with day 11 CFU-S was not inhibited by a neutralizing antiserum to IL 3 but was inhibited by the protein kinase inhibitor H-7. Together, the data indicate that tumor-promoting phorbol esters interact with pluripotent hematopoietic stem cells. Like IL 3, their effect appears to be permissive and involves stem cells with marrow repopulating ability. PMID:2463264

  8. Distress prior to undergoing hematopoietic stem cell transplantation: demographic and symptom correlations and establishing a baseline

    PubMed Central

    Smith, Sean Robinson; Hobson, Mary Elizabeth; Haig, Andrew J

    2016-01-01

    Background Distress can arise from physical and/or psychosocial impairments and has been documented in patients after hematopoietic stem cell transplantation in the outpatient setting. It has not been evaluated in inpatients admitted to undergo the transplant, nor has potential correlations with length of hospital stay, physical function, and pain after receiving the transplant. Objectives To measure distress in patients admitted to the hospital to undergo hematopoietic stem cell transplantation, and to evaluate potential correlations with length of hospital stay, physical function, pain, and depression/anxiety. Methods Eighty patients were given a questionnaire to report levels of distress and physical and psychosocial functioning. Hierarchical multiple regression analysis was used to test the relationship of demographic and transplant factors with length of stay (LOS), distress, presence of pain, and depression/anxiety. Results Patients reported pretransplant distress with an average score of 2.2 out of 10, and 16 out of 80 patients reported clinically relevant distress. Pain was reported by 42.5% of patients, and 28.8% reported depression/anxiety. Physical functioning was generally high. Distress was correlated with depression/anxiety (P-value <0.01) and pain (0.04) but not with LOS, physical function, patient age, or transplant type. Conclusion LOS after receiving stem cell transplant was not related to pretransplant distress. Distress exists pretransplant but is generally low. Pain and the presence of depression/anxiety may be risk factors for distress. Measuring distress prior to transplant gives a baseline from which to measure changes, potentially leading to earlier intervention. PMID:27695376

  9. Twist-1, a novel regulator of hematopoietic stem cell self-renewal and myeloid lineage development.

    PubMed

    Dong, Cheng-Ya; Liu, Xiao-Yan; Wang, Nan; Wang, Li-Na; Yang, Bin-Xia; Ren, Qian; Liang, Hao-Yue; Ma, Xiao-Tong

    2014-12-01

    Transcription factor Twist-1 plays essential roles in specification and differentiation of mesoderm-derived tissues. Growing evidences now link Twist-1 to the acquisition of stem-cell-like properties. However, the role of Twist-1 in hematopoietic stem cell (HSC) remains largely uncharacterized. We report that Twist-1 is more highly expressed in murine HSC and its expression declines with differentiation. To investigate Twist-1 gene function, retroviral-mediated overexpression or removal experiments are performed. Competitive repopulation studies demonstrate that enforced expression of Twist-1 in HSC-enriched Lin(-) c-Kit(+) Sca-1(+) (LKS) cells results in an increase in the size of the G(0) population, and in their reconstitution ability after the first and a second transplantation. Conversely, removal of Twist-1 in LKS cells impairs their ability to repopulate. In addition, increased Twist-1 expression causes a shift toward production of myeloid cells. Twist-1 transduction in LKS cells activates myeloid lineage-determining factors PU.1 and GATA-1 and downregulates lymphoid factor GATA-3 in vitro, suggesting that Twist-1-mediated myeloid skewing occurs in hematopoietic stem and progenitor cells (HSPCs). These findings indicate that Twist-1 is not only involved in the maintenance of HSC dormancy and self-renewal capacity but also implicated in the myeloid lineage fate choice of HSPCs. Exploration of the underlying mechanisms reveals that Runx1/c-Mpl/Tie2 regulatory pathway could possibly account for the observed effects caused by Twist-1 overexpression. Our study provides the first evidence supporting a role for Twist-1 in hematopoiesis.

  10. Distress prior to undergoing hematopoietic stem cell transplantation: demographic and symptom correlations and establishing a baseline

    PubMed Central

    Smith, Sean Robinson; Hobson, Mary Elizabeth; Haig, Andrew J

    2016-01-01

    Background Distress can arise from physical and/or psychosocial impairments and has been documented in patients after hematopoietic stem cell transplantation in the outpatient setting. It has not been evaluated in inpatients admitted to undergo the transplant, nor has potential correlations with length of hospital stay, physical function, and pain after receiving the transplant. Objectives To measure distress in patients admitted to the hospital to undergo hematopoietic stem cell transplantation, and to evaluate potential correlations with length of hospital stay, physical function, pain, and depression/anxiety. Methods Eighty patients were given a questionnaire to report levels of distress and physical and psychosocial functioning. Hierarchical multiple regression analysis was used to test the relationship of demographic and transplant factors with length of stay (LOS), distress, presence of pain, and depression/anxiety. Results Patients reported pretransplant distress with an average score of 2.2 out of 10, and 16 out of 80 patients reported clinically relevant distress. Pain was reported by 42.5% of patients, and 28.8% reported depression/anxiety. Physical functioning was generally high. Distress was correlated with depression/anxiety (P-value <0.01) and pain (0.04) but not with LOS, physical function, patient age, or transplant type. Conclusion LOS after receiving stem cell transplant was not related to pretransplant distress. Distress exists pretransplant but is generally low. Pain and the presence of depression/anxiety may be risk factors for distress. Measuring distress prior to transplant gives a baseline from which to measure changes, potentially leading to earlier intervention.

  11. Severe fludarabine neurotoxicity after reduced intensity conditioning regimen to allogeneic hematopoietic stem cell transplantation: a case report

    PubMed Central

    Annaloro, Claudio; Costa, Antonella; Fracchiolla, Nicola S; Mometto, Gabriella; Artuso, Silvia; Saporiti, Giorgia; Tagliaferri, Elena; Grifoni, Federica; Onida, Francesco; Cortelezzi, Agostino

    2015-01-01

    Key Clinical Message We present a case of severe, irreversible neurotoxicity in a 55-year-old-patient with myelofibrosis undergoing hematopoietic stem cell transplantation following a reduced intensity conditioning including fludarabine. The patient developed progressive sensory-motor, visual and consciousness disturbances, eventually leading to death. MRI imaging pattern was unique and attributable to fludarabine neurotoxicity. PMID:26273463

  12. Psychosocial Changes Associated with Participation in Art Therapy Interventions for Siblings of Pediatric Hematopoietic Stem Cell Transplant Patients

    ERIC Educational Resources Information Center

    Wallace, Jo; Packman, Wendy; Huffman, Lynne C.; Horn, Biljana; Cowan, Morton; Amylon, Michael D.; Kahn, Colleen; Cordova, Matt; Moses, Jim

    2014-01-01

    Hematopoietic stem cell transplantation (HSCT) is an accepted medical treatment for many serious childhood diseases. HSCT is a demanding procedure that creates both physical and emotional challenges for patients and their family members. Research has demonstrated that siblings of children undergoing HSCT are at risk for developing psychosocial…

  13. Lactobacillus rhamnosus meningitis following recurrent episodes of bacteremia in a child undergoing allogeneic hematopoietic stem cell transplantation.

    PubMed

    Robin, Frédéric; Paillard, Catherine; Marchandin, Hélène; Demeocq, François; Bonnet, Richard; Hennequin, Claire

    2010-11-01

    We report a case of meningitis due to Lactobacillus rhamnosus in a child undergoing allogeneic hematopoietic stem cell transplantation for acute leukemia. Four episodes of bacteremia involving strains with pulsotypes identical to that of the cerebrospinal fluid isolate preceded meningitis. After several courses of clindamycin, no relapse occurred during the patient follow-up.

  14. Angiopoietin-Like Protein 3 Promotes Preservation of Stemness during Ex Vivo Expansion of Murine Hematopoietic Stem Cells

    PubMed Central

    Farahbakhshian, Elnaz; Verstegen, Monique M.; Visser, Trudi P.; Kheradmandkia, Sima; Geerts, Dirk; Arshad, Shazia; Riaz, Noveen; Grosveld, Frank; van Til, Niek P.; Meijerink, Jules P. P.

    2014-01-01

    Allogeneic hematopoietic stem cell (HSC) transplantations from umbilical cord blood or autologous HSCs for gene therapy purposes are hampered by limited number of stem cells. To test the ability to expand HSCs in vitro prior to transplantation, two growth factor cocktails containing stem cell factor, thrombopoietin, fms-related tyrosine kinase-3 ligand (STF) or stem cell factor, thrombopoietin, insulin-like growth factor-2, fibroblast growth factor-1 (STIF) either with or without the addition of angiopoietin-like protein-3 (Angptl3) were used. Culturing HSCs in STF and STIF media for 7 days expanded long-term repopulating stem cells content in vivo by ∼6-fold and ∼10-fold compared to freshly isolated stem cells. Addition of Angptl3 resulted in increased expansion of these populations by ∼17-fold and ∼32-fold, respectively, and was further supported by enforced expression of Angptl3 in HSCs through lentiviral transduction that also promoted HSC expansion. As expansion of highly purified lineage-negative, Sca-1+, c-Kit+ HSCs was less efficient than less pure lineage-negative HSCs, Angptl3 may have a direct effect on HCS but also an indirect effect on accessory cells that support HSC expansion. No evidence for leukemia or toxicity was found during long-term follow up of mice transplanted with ex vivo expanded HSCs or manipulated HSC populations that expressed Angptl3. We conclude that the cytokine combinations used in this study to expand HSCs ex vivo enhances the engraftment in vivo. This has important implications for allogeneic umbilical cord-blood derived HSC transplantations and autologous HSC applications including gene therapy. PMID:25170927

  15. Isolation and characterization of hematopoietic progenitor/stem cells in 5q-deleted myelodysplastic syndromes: evidence for involvement at the hematopoietic stem cell level.

    PubMed

    Nilsson, L; Astrand-Grundström, I; Arvidsson, I; Jacobsson, B; Hellström-Lindberg, E; Hast, R; Jacobsen, S E

    2000-09-15

    Myelodysplastic syndromes (MDS) are a heterogeneous group of clonal disorders characterized by ineffective hematopoiesis and frequent progression to acute myeloid leukemia. Within MDS, 5q- syndrome constitutes a distinct clinical entity characterized by an isolated deletion of the long arm of chromosome 5 (5q-), a relatively good prognosis, and infrequent transformation to acute leukemia. The cell of origin in 5q- syndrome as well as in other 5q-deleted MDS patients has not been established, but evidence for involvement of multiple myeloid (but not lymphoid) lineages has suggested that a myeloid-restricted progenitor rather than a pluripotent (lympho-myeloid) stem cell might be the primary target in most patients. Although in 9 patients no evidence of peripheral blood T-cell and only 1 case of B-cell involvement was found, the data herein support that 5q deletions occur in hematopoietic stem cells (HSCs) with a combined lympho-myeloid potential. First, in all investigated patients a minimum of 94% of cells in the minor CD34(+)CD38(-) HSC compartment were 5q deleted as determined by fluorescence in situ hybridization. Second, in 3 of 5 patients 5q aberrations were detected in a large fraction (25% to 90%) of purified CD34(+)CD19(+) pro-B cells. Furthermore, extensive functional characterization with regard to responsiveness to early-acting cytokines, long-term culture-initiating cells, and nonobese diabetic/severe combined immunodeficiency repopulating cells supported that MDS HSCs in 5q-deleted patients are CD34(+)CD38(-), but inefficient at reconstituting hematopoiesis.

  16. Favorable impact of natural killer cell reconstitution on chronic graft-versus-host disease and cytomegalovirus reactivation after allogeneic hematopoietic stem cell transplantation.

    PubMed

    Kheav, Vissal David; Busson, Marc; Scieux, Catherine; Peffault de Latour, Régis; Maki, Guitta; Haas, Philippe; Mazeron, Marie-Christine; Carmagnat, Maryvonnick; Masson, Emeline; Xhaard, Aliénor; Robin, Marie; Ribaud, Patricia; Dulphy, Nicolas; Loiseau, Pascale; Charron, Dominique; Socié, Gérard; Toubert, Antoine; Moins-Teisserenc, Hélène

    2014-12-01

    Natural killer cells are the first lymphocyte subset to reconstitute, and play a major role in early immunity after allogeneic hematopoietic stem cell transplantation. Cells expressing the activating receptor NKG2C seem crucial in the resolution of cytomegalovirus episodes, even in the absence of T cells. We prospectively investigated natural killer-cell reconstitution in a cohort of 439 adult recipients who underwent non-T-cell-depleted allogeneic hematopoietic stem cell transplantation between 2005 and 2012. Freshly collected blood samples were analyzed 3, 6, 12 and 24 months after transplantation. Data were studied with respect to conditioning regimen, source of stem cells, underlying disease, occurrence of graft-versus-host disease, and profiles of cytomegalovirus reactivation. In multivariate analysis we found that the absolute numbers of CD56(bright) natural killer cells at month 3 were significantly higher after myeloablative conditioning than after reduced intensity conditioning. Acute graft-versus-host disease impaired reconstitution of total and CD56(dim) natural killer cells at month 3. In contrast, high natural killer cell count at month 3 was associated with a lower incidence of chronic graft-versus-host disease, independently of a previous episode of acute graft-versus-host disease and stem cell source. NKG2C(+)CD56(dim) and total natural killer cell counts at month 3 were lower in patients with reactivation of cytomegalovirus between month 0 and month 3, but expanded greatly afterwards. These cells were also less numerous in patients who experienced later cytomegalovirus reactivation between month 3 and month 6. Our results advocate a direct role of NKG2C-expressing natural killer cells in the early control of cytomegalovirus reactivation after allogeneic hematopoietic stem cell transplantation.

  17. Favorable impact of natural killer cell reconstitution on chronic graft-versus-host disease and cytomegalovirus reactivation after allogeneic hematopoietic stem cell transplantation

    PubMed Central

    Kheav, Vissal David; Busson, Marc; Scieux, Catherine; de Latour, Régis Peffault; Maki, Guitta; Haas, Philippe; Mazeron, Marie-Christine; Carmagnat, Maryvonnick; Masson, Emeline; Xhaard, Aliénor; Robin, Marie; Ribaud, Patricia; Dulphy, Nicolas; Loiseau, Pascale; Charron, Dominique; Socié, Gérard; Toubert, Antoine; Moins-Teisserenc, Hélène

    2014-01-01

    Natural killer cells are the first lymphocyte subset to reconstitute, and play a major role in early immunity after allogeneic hematopoietic stem cell transplantation. Cells expressing the activating receptor NKG2C seem crucial in the resolution of cytomegalovirus episodes, even in the absence of T cells. We prospectively investigated natural killer-cell reconstitution in a cohort of 439 adult recipients who underwent non-T-cell-depleted allogeneic hematopoietic stem cell transplantation between 2005 and 2012. Freshly collected blood samples were analyzed 3, 6, 12 and 24 months after transplantation. Data were studied with respect to conditioning regimen, source of stem cells, underlying disease, occurrence of graft-versus-host disease, and profiles of cytomegalovirus reactivation. In multivariate analysis we found that the absolute numbers of CD56bright natural killer cells at month 3 were significantly higher after myeloablative conditioning than after reduced intensity conditioning. Acute graft-versus-host disease impaired reconstitution of total and CD56dim natural killer cells at month 3. In contrast, high natural killer cell count at month 3 was associated with a lower incidence of chronic graft-versus-host disease, independently of a previous episode of acute graft-versus-host disease and stem cell source. NKG2C+CD56dim and total natural killer cell counts at month 3 were lower in patients with reactivation of cytomegalovirus between month 0 and month 3, but expanded greatly afterwards. These cells were also less numerous in patients who experienced later cytomegalovirus reactivation between month 3 and month 6. Our results advocate a direct role of NKG2C-expressing natural killer cells in the early control of cytomegalovirus reactivation after allogeneic hematopoietic stem cell transplantation. PMID:25085354

  18. Teriparatide (PTH 1-34) treatment increases peripheral hematopoietic stem cells in postmenopausal women.

    PubMed

    Yu, Elaine W; Kumbhani, Ruchit; Siwila-Sackman, Erica; DeLelys, Michelle; Preffer, Frederic I; Leder, Benjamin Z; Wu, Joy Y

    2014-06-01

    Cells of the osteoblast lineage play an important role in regulating the hematopoietic stem cell (HSC) niche and early B-cell development in animal models, perhaps via parathyroid hormone (PTH)-dependent mechanisms. There are few human clinical studies investigating this phenomenon. We studied the impact of long-term daily teriparatide (PTH 1-34) treatment on cells of the hematopoietic lineage in postmenopausal women. Twenty-three postmenopausal women at high risk of fracture received teriparatide 20 mcg sc daily for 24 months as part of a prospective longitudinal trial. Whole blood measurements were obtained at baseline, 3, 6, 12, and 18 months. Flow cytometry was performed to identify hematopoietic subpopulations, including HSCs (CD34+/CD45(moderate); ISHAGE protocol) and early transitional B cells (CD19+, CD27-, IgD+, CD24[hi], CD38[hi]). Serial measurements of spine and hip bone mineral density (BMD) as well as serum P1NP, osteocalcin, and CTX were also performed. The average age of study subjects was 64 ± 5 years. We found that teriparatide treatment led to an early increase in circulating HSC number of 40% ± 14% (p = 0.004) by month 3, which persisted to month 18 before returning to near baseline by 24 months. There were no significant changes in transitional B cells or total B cells over the course of the study period. In addition, there were no differences in complete blood count profiles as quantified by standard automated flow cytometry. Interestingly, the peak increase in HSC number was inversely associated with increases in bone markers and spine BMD. Daily teriparatide treatment for osteoporosis increases circulating HSCs by 3 to 6 months in postmenopausal women. This may represent a proliferation of marrow HSCs or increased peripheral HSC mobilization. This clinical study establishes the importance of PTH in the regulation of the HSC niche within humans. © 2014 American Society for Bone and Mineral Research.

  19. Clostridium difficile infection in Chilean patients submitted to hematopoietic stem cell transplantation

    PubMed Central

    Pilcante, Javier; Rojas, Patricio; Ernst, Daniel; Sarmiento, Mauricio; Ocqueteau, Mauricio; Bertin, Pablo; García, Maria; Rodriguez, Maria; Jara, Veronica; Ajenjo, Maria; Ramirez, Pablo

    2015-01-01

    Introduction Patients submitted to hematopoietic stem cell transplantation have an increased risk of Clostridium difficile infection and multiple risk factors have been identified. Published reports have indicated an incidence from 9% to 30% of transplant patients however to date there is no information about infection in these patients in Chile. Methods A retrospective analysis was performed of patients who developed C. difficile infection after hematopoietic stem cell transplantations from 2000 to 2013. Statistical analysis used the Statistical Package for the Social Sciences software. Results Two hundred and fifty patients were studied (mean age: 39 years; range: 17–69), with 147 (59%) receiving allogeneic transplants and 103 (41%) receiving autologous transplants. One hundred and ninety-two (77%) patients had diarrhea, with 25 (10%) cases of C. difficile infection being confirmed. Twenty infected patients had undergone allogeneic transplants, of which ten had acute lymphoblastic leukemia, three had acute myeloid leukemia and seven had other diseases (myelodysplastic syndrome, chronic myeloid leukemia, severe aplastic anemia). In the autologous transplant group, five patients had C. difficile infection; two had multiple myeloma, one had amyloidosis, one had acute myeloid leukemia and one had germinal carcinoma. The overall incidence of C. difficile infection was 4% within the first week, 6.4% in the first month and 10% in one year, with no difference in overall survival between infected and non-infected groups (72.0% vs. 67.6%, respectively; p-value = 0.56). Patients infected after allogeneic transplants had a slower time to neutrophil engraftment compared to non-infected patients (17.5 vs. 14.9 days, respectively; p-value = 0.008). In the autologous transplant group there was no significant difference in the neutrophil engraftment time between infected and non-infected patients (12.5 days vs. 11.8 days, respectively; p-value = 0.71). In the allogeneic

  20. In vivo imaging of transplanted hematopoietic stem and progenitor cells in mouse calvarium bone marrow

    PubMed Central

    Lo Celso, Cristina; Lin, Charles P; Scadden, David T

    2011-01-01

    In vivo imaging of transplanted hematopoietic stem and progenitor cells (HSPCs) was developed to investigate the relationship between HSPCs and components of their microenvironment in the bone marrow. In particular, it allows a direct observation of the behavior of hematopoietic cells during the first few days after transplantation, when the critical events in homing and early engraftment are occurring. By directly imaging these events in living animals, this method permits a detailed assessment of functions previously evaluated by crude assessments of cell counts (homing) or after prolonged periods (engraftment). This protocol offers a new means of investigating the role of cell-intrinsic and cell-extrinsic molecular regulators of hematopoiesis during the early stages of transplantation, and it is the first to allow the study of cell-cell interactions within the bone marrow in three dimensions and in real time. In this paper, we describe how to isolate, label and inject HSPCs, as well as how to perform calvarium intravital microscopy and analyze the resulting images. A typical experiment can be performed and analyzed in ~1 week. PMID:21212779

  1. NrasG12D/+ promotes leukemogenesis by aberrantly regulating hematopoietic stem cell functions

    PubMed Central

    Wang, Jinyong; Kong, Guangyao; Liu, Yangang; Du, Juan; Chang, Yuan-I; Tey, Sin Ruow; Zhang, Xinmin; Ranheim, Erik A.; Saba-El-Leil, Marc K.; Meloche, Sylvain; Damnernsawad, Alisa; Zhang, Jingfang; Zhang, Jing

    2013-01-01

    Oncogenic NRAS mutations are frequently identified in human myeloid leukemias. In mice, expression of endogenous oncogenic Nras (NrasG12D/+) in hematopoietic cells leads to expansion of myeloid progenitors, increased long-term reconstitution of bone marrow cells, and a chronic myeloproliferative neoplasm (MPN). However, acute expression of NrasG12D/+ in a pure C57BL/6 background does not induce hyperactivated granulocyte macrophage colony-stimulating factor signaling or increased proliferation in myeloid progenitors. It is thus unclear how NrasG12D/+ signaling promotes leukemogenesis. Here, we show that hematopoietic stem cells (HSCs) expressing NrasG12D/+ serve as MPN-initiating cells. They undergo moderate hyperproliferation with increased self-renewal. The aberrant NrasG12D/+ HSC function is associated with hyperactivation of ERK1/2 in HSCs. Conversely, downregulation of MEK/ERK by pharmacologic and genetic approaches attenuates the cycling of NrasG12D/+ HSCs and prevents the expansion of NrasG12D/+ HSCs and myeloid progenitors. Our data delineate critical mechanisms of oncogenic Nras signaling in HSC function and leukemogenesis. PMID:23687087

  2. Efficient ablation of genes in human hematopoietic stem and effector cells using CRISPR/Cas9

    PubMed Central

    Mandal, Pankaj K.; Ferreira, Leonardo M. R.; Collins, Ryan; Meissner, Torsten B.; Boutwell, Christian L.; Friesen, Max; Vrbanac, Vladimir; Garrison, Brian S.; Stortchevoi, Alexei; Bryder, David; Musunuru, Kiran; Brand, Harrison; Tager, Andrew M.; Allen, Todd M.; Talkowski, Michael E.; Rossi, Derrick J.; Cowan, Chad A.

    2014-01-01

    SUMMARY Genome editing via CRISPR/Cas9 has rapidly become the tool of choice by virtue of its efficacy and ease of use. However, CRISPR/Cas9 mediated genome editing in clinically relevant human somatic cells remains untested. Here, we report CRISPR/Cas9 targeting of two clinically relevant genes, B2M and CCR5, in primary human CD4+ T cells and CD34+ hematopoietic stem and progenitor cells (HSPCs). Use of single RNA guides led to highly efficient mutagenesis in HSPCs but not in T cells. A dual guide approach improved gene deletion efficacy in both cell types. HSPCs that had undergone genome editing with CRISPR/Cas9 retained multi-lineage potential. We examined predicted on- and off-target mutations via target capture sequencing in HSPCs and observed low levels of off-target mutagenesis at only one site. These results demonstrate that CRISPR/Cas9 can efficiently ablate genes in HSPCs with minimal off-target mutagenesis, which could have broad applicability for hematopoietic cell-based therapy. PMID:25517468

  3. Digital PCR Panel for Sensitive Hematopoietic Chimerism Quantification after Allogeneic Stem Cell Transplantation.

    PubMed

    Stahl, Tanja; Rothe, Caroline; Böhme, Manja U; Kohl, Aloisa; Kröger, Nicolaus; Fehse, Boris

    2016-01-01

    Accurate and sensitive determination of hematopoietic chimerism is a crucial diagnostic measure after allogeneic stem cell transplantation to monitor engraftment and potentially residual disease. Short tandem repeat (STR) amplification, the current "gold standard" for chimerism assessment facilitates reliable accuracy, but is hampered by its limited sensitivity (≥1%). Digital PCR (dPCR) has been shown to combine exact quantification and high reproducibility over a very wide measurement range with excellent sensitivity (routinely ≤0.1%) and thus represents a promising alternative to STR analysis. We here aimed at developing a whole panel of digital-PCR based assays for routine diagnostic. To this end, we tested suitability of 52 deletion/insertion polymorphisms (DIPs) for duplex analysis in combination with either a reference gene or a Y-chromosome specific PCR. Twenty-nine DIPs with high power of discrimination and good performance were identified, optimized and technically validated. We tested the newly established assays on retrospective patient samples that were in parallel also measured by STR amplification and found excellent correlation. Finally, a screening plate for initial genotyping with DIP-specific duplex dPCR assays was designed for convenient assay selection. In conclusion, we have established a comprehensive dPCR system for precise and high-sensitivity measurement of hematopoietic chimerism, which should be highly useful for clinical routine diagnostics. PMID:27618030

  4. Digital PCR Panel for Sensitive Hematopoietic Chimerism Quantification after Allogeneic Stem Cell Transplantation

    PubMed Central

    Stahl, Tanja; Rothe, Caroline; Böhme, Manja U.; Kohl, Aloisa; Kröger, Nicolaus; Fehse, Boris

    2016-01-01

    Accurate and sensitive determination of hematopoietic chimerism is a crucial diagnostic measure after allogeneic stem cell transplantation to monitor engraftment and potentially residual disease. Short tandem repeat (STR) amplification, the current “gold standard” for chimerism assessment facilitates reliable accuracy, but is hampered by its limited sensitivity (≥1%). Digital PCR (dPCR) has been shown to combine exact quantification and high reproducibility over a very wide measurement range with excellent sensitivity (routinely ≤0.1%) and thus represents a promising alternative to STR analysis. We here aimed at developing a whole panel of digital-PCR based assays for routine diagnostic. To this end, we tested suitability of 52 deletion/insertion polymorphisms (DIPs) for duplex analysis in combination with either a reference gene or a Y-chromosome specific PCR. Twenty-nine DIPs with high power of discrimination and good performance were identified, optimized and technically validated. We tested the newly established assays on retrospective patient samples that were in parallel also measured by STR amplification and found excellent correlation. Finally, a screening plate for initial genotyping with DIP-specific duplex dPCR assays was designed for convenient assay selection. In conclusion, we have established a comprehensive dPCR system for precise and high-sensitivity measurement of hematopoietic chimerism, which should be highly useful for clinical routine diagnostics. PMID:27618030

  5. Digital PCR Panel for Sensitive Hematopoietic Chimerism Quantification after Allogeneic Stem Cell Transplantation.

    PubMed

    Stahl, Tanja; Rothe, Caroline; Böhme, Manja U; Kohl, Aloisa; Kröger, Nicolaus; Fehse, Boris

    2016-01-01

    Accurate and sensitive determination of hematopoietic chimerism is a crucial diagnostic measure after allogeneic stem cell transplantation to monitor engraftment and potentially residual disease. Short tandem repeat (STR) amplification, the current "gold standard" for chimerism assessment facilitates reliable accuracy, but is hampered by its limited sensitivity (≥1%). Digital PCR (dPCR) has been shown to combine exact quantification and high reproducibility over a very wide measurement range with excellent sensitivity (routinely ≤0.1%) and thus represents a promising alternative to STR analysis. We here aimed at developing a whole panel of digital-PCR based assays for routine diagnostic. To this end, we tested suitability of 52 deletion/insertion polymorphisms (DIPs) for duplex analysis in combination with either a reference gene or a Y-chromosome specific PCR. Twenty-nine DIPs with high power of discrimination and good performance were identified, optimized and technically validated. We tested the newly established assays on retrospective patient samples that were in parallel also measured by STR amplification and found excellent correlation. Finally, a screening plate for initial genotyping with DIP-specific duplex dPCR assays was designed for convenient assay selection. In conclusion, we have established a comprehensive dPCR system for precise and high-sensitivity measurement of hematopoietic chimerism, which should be highly useful for clinical routine diagnostics.

  6. Loss of Faap20 Causes Hematopoietic Stem and Progenitor Cell Depletion in Mice Under Genotoxic Stress.

    PubMed

    Zhang, Tingting; Wilson, Andrew F; Mahmood Ali, Abdullah; Namekawa, Satoshi H; Andreassen, Paul R; Ruhikanta Meetei, Amom; Pang, Qishen

    2015-07-01

    20-kDa FANCA-associated protein (FAAP20) is a recently identified protein that associates with the Fanconi anemia (FA) core complex component, FANCA. FAAP20 contains a conserved ubiquitin-binding zinc-finger domain and plays critical roles in the FA-BRCA pathway of DNA repair and genome maintenance. The function of FAAP20 in animals has not been explored. Here, we report that deletion of Faap20 in mice led to a mild FA-like phenotype with defects in the reproductive and hematopoietic systems. Specifically, hematopoietic stem and progenitor cells (HSPCs) from Faap20(-) (/) (-) mice showed defects in long-term multilineage reconstitution in lethally irradiated recipient mice, with milder phenotype as compared to HSPCs from Fanca(-) (/) (-) or Fancc(-) (/) (-) mice. Faap20(-) (/) (-) mice are susceptible to mitomycin C (MMC)-induced pancytopenia. That is, acute MMC stress induced a significant progenitor loss especially the erythroid progenitors and megakaryocyte-erythrocyte progenitors in Faap20(-) (/) (-) mice. Furthermore, Faap20(-) (/) (-) HSPCs displayed aberrant cell cycle pattern during chronic MMC treatment. Finally, using Faap20(-) (/) (-) Fanca(-) (/) (-) double-knockout mice, we demonstrated a possible dominant effect of FANCA in the interaction between FAAP20 and FANCA. This novel Faap20 mouse model may be valuable in studying the regulation of the FA pathway during bone marrow failure progress in FA patients. PMID:25917546

  7. Regenerative stromal cell therapy in allogeneic hematopoietic stem cell transplantation: Current impact and future directions

    PubMed Central

    Auletta, Jeffery J.; Cooke, Kenneth R.; Solchaga, Luis A.; Deans, Robert J.; Hof, Wouter van’t

    2014-01-01

    Regenerative stromal cell therapy (RSCT) has the potential to become a novel therapy for preventing and treating acute graft-versus-host disease (GVHD) in the allogeneic hematopoietic stem cell transplant (HSCT) recipient. However, enthusiasm for using RSCT in allogeneic HSCT has been tempered by limited clinical data and poorly-defined in vivo mechanisms of action. As a result, the full clinical potential of RSCT in supporting hematopoietic reconstitution and as treatment for GVHD remains to be determined. This manuscript reviews the immunomodulatory activity of regenerative stromal cells in pre-clinical models of allogeneic HSCT and emphasizes an emerging literature suggesting that microenvironment influences RSC activation and function. Understanding this key finding may ultimately define the proper niche for RSCT in allogeneic HSCT. In particular, mechanistic studies are needed to delineate the in vivo effects of RSCT in response to inflammation and injury associated with allogeneic HSCT and to define the relevant sites of RSC interaction with immune cells in the transplant recipient. Furthermore, development of in vivo imaging technology to correlate biodistribution patterns, desired RSC effect, and clinical outcome will be crucial to establishing dose-response effects and minimal biologic-dose thresholds needed to advance translational treatment strategies for complications like GVHD. PMID:20018250

  8. The aryl hydrocarbon receptor nuclear translocator is an essential regulator of murine hematopoietic stem cell viability

    PubMed Central

    Krock, Bryan L.; Eisinger-Mathason, Tzipora S.; Giannoukos, Dionysios N.; Shay, Jessica E.; Gohil, Mercy; Lee, David S.; Nakazawa, Michael S.; Sesen, Julie; Skuli, Nicolas

    2015-01-01

    Hypoxia-inducible factors (HIFs) are master regulators of the transcriptional response to low oxygen and play essential roles in embryonic development, tissue homeostasis, and disease. Recent studies have demonstrated that hematopoietic stem cells (HSCs) within the bone marrow localize to a hypoxic niche and that HIF-1α promotes HSC adaptation to stress. Because the related factor HIF-2α is also expressed in HSCs, the combined role of HIF-1α and HIF-2α in HSC maintenance is unclear. To this end, we have conditionally deleted the HIF-α dimerization partner, the aryl hydrocarbon receptor nuclear translocator (ARNT) in the hematopoietic system to ablate activity of both HIF-1α and HIF-2α and assessed the functional consequence of ARNT deficiency on fetal liver and adult hematopoiesis. We determined that ARNT is essential for adult and fetal HSC viability and homeostasis. Importantly, conditional knockout of both Hif-1α and Hif-2α phenocopied key aspects of these HSC phenotypes, demonstrating that the impact of Arnt deletion is primarily HIF dependent. ARNT-deficient long-term HSCs underwent apoptosis, potentially because of reduced B-cell lymphoma 2 (BCL-2) and vascular endothelial growth factor A (VEGF-A) expression. Our results suggest that HIF activity may regulate HSC homeostasis through these prosurvival factors. PMID:25855602

  9. Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals.

    PubMed

    Yoder, Mervin C; Mead, Laura E; Prater, Daniel; Krier, Theresa R; Mroueh, Karim N; Li, Fang; Krasich, Rachel; Temm, Constance J; Prchal, Josef T; Ingram, David A

    2007-03-01

    The limited vessel-forming capacity of infused endothelial progenitor cells (EPCs) into patients with cardiovascular dysfunction may be related to a misunderstanding of the biologic potential of the cells. EPCs are generally identified by cell surface antigen expression or counting in a commercially available kit that identifies "endothelial cell colony-forming units" (CFU-ECs). However, the origin, proliferative potential, and differentiation capacity of CFU-ECs is controversial. In contrast, other EPCs with blood vessel-forming ability, termed endothelial colony-forming cells (ECFCs), have been isolated from human peripheral blood. We compared the function of CFU-ECs and ECFCs and determined that CFU-ECs are derived from the hematopoietic system using progenitor assays, and analysis of donor cells from polycythemia vera patients harboring a Janus kinase 2 V617F mutation in hematopoietic stem cell clones. Further, CFU-ECs possess myeloid progenitor cell activity, differentiate into phagocytic macrophages, and fail to form perfused vessels in vivo. In contrast, ECFCs are clonally distinct from CFU-ECs, display robust proliferative potential, and form perfused vessels in vivo. Thus, these studies establish that CFU-ECs are not EPCs and the role of these cells in angiogenesis must be re-examined prior to further clinical trials, whereas ECFCs may serve as a potential therapy for vascular regeneration. PMID:17053059

  10. An acute negative bystander effect of γ-irradiated recipients on transplanted hematopoietic stem cells

    PubMed Central

    Shen, Hongmei; Yu, Hui; Liang, Paulina H.; Cheng, Haizi; XuFeng, Richard; Yuan, Youzhong; Zhang, Peng; Smith, Clayton A.

    2012-01-01

    Ultimate success of hematopoietic stem cell transplantation (HSCT) depends not only on donor HSCs themselves but also on the host environment. Total body irradiation is a component in various host conditioning regimens for HSCT. It is known that ionizing radiation exerts “bystander effects” on nontargeted cells and that HSCs transplanted into irradiated recipients undergo proliferative exhaustion. However, whether irradiated recipients pose a proliferation-independent bystander effect on transplanted HSCs is unclear. In this study, we found that irradiated mouse recipients significantly impaired the long-term repopulating ability of transplanted mouse HSCs shortly (∼ 17 hours) after exposure to irradiated hosts and before the cells began to divide. There was an increase of acute cell death associated with accelerated proliferation of the bystander hematopoietic cells. This effect was marked by dramatic down-regulation of c-Kit, apparently because of elevated reactive oxygen species. Administration of an antioxidant chemical, N-acetylcysteine, or ectopically overexpressing a reactive oxygen species scavenging enzyme, catalase, improved the function of transplanted HSCs in irradiated hosts. Together, this study provides evidence for an acute negative, yet proliferation-independent, bystander effect of irradiated recipients on transplanted HSCs, thereby having implications for HSCT in both experimental and clinical scenarios in which total body irradiation is involved. PMID:22374698

  11. BRPF1 is essential for development of fetal hematopoietic stem cells.

    PubMed

    You, Linya; Li, Lin; Zou, Jinfeng; Yan, Kezhi; Belle, Jad; Nijnik, Anastasia; Wang, Edwin; Yang, Xiang-Jiao

    2016-09-01

    Hematopoietic stem cells (HSCs) serve as a life-long reservoir for all blood cell types and are clinically useful for a variety of HSC transplantation-based therapies. Understanding the role of chromatin organization and regulation in HSC homeostasis may provide important insights into HSC development. Bromodomain- and PHD finger-containing protein 1 (BRPF1) is a multivalent chromatin regulator that possesses 4 nucleosome-binding domains and activates 3 lysine acetyltransferases (KAT6A, KAT6B, and KAT7), suggesting that this protein has the potential to stimulate crosstalk between different chromatin modifications. Here, we investigated the function of BRPF1 in hematopoiesis by selectively deleting its gene in murine blood cells. Brpf1-deficient pups experienced early lethality due to acute bone marrow failure and aplastic anemia. The mutant bone marrow and fetal liver exhibited severe deficiency in HSCs and hematopoietic progenitors, along with elevated reactive oxygen species, senescence, and apoptosis. BRPF1 deficiency also reduced the expression of multipotency genes, including Slamf1, Mecom, Hoxa9, Hlf, Gfi1, Egr, and Gata3. Furthermore, BRPF1 was required for acetylation of histone H3 at lysine 23, a highly abundant but not well-characterized epigenetic mark. These results identify an essential role of the multivalent chromatin regulator BRPF1 in definitive hematopoiesis and illuminate a potentially new avenue for studying epigenetic networks that govern HSC ontogeny. PMID:27500495

  12. The transcriptional coactivator Cbp regulates self-renewal and differentiation in adult hematopoietic stem cells.

    PubMed

    Chan, Wai-In; Hannah, Rebecca L; Dawson, Mark A; Pridans, Clare; Foster, Donna; Joshi, Anagha; Göttgens, Berthold; Van Deursen, Jan M; Huntly, Brian J P

    2011-12-01

    The transcriptional coactivator Cbp plays an important role in a wide range of cellular processes, including proliferation, differentiation, and apoptosis. Although studies have shown its requirement for hematopoietic stem cell (HSC) development, its role in adult HSC maintenance, as well as the cellular and molecular mechanisms underlying Cbp function, is not clear. Here, we demonstrate a gradual loss of phenotypic HSCs and differentiation defects following conditional ablation of Cbp during adult homeostasis. In addition, Cbp-deficient HSCs reconstituted hematopoiesis with lower efficiency than their wild-type counterparts, and this response was readily exhausted under replicative stress. This phenotype relates to an alteration in cellular fate decisions for HSCs, with Cbp loss leading to an increase in differentiation, quiescence, and apoptosis. Genome-wide analyses of Cbp occupancy and differential gene expression upon Cbp deletion identified HSC-specific genes regulated by Cbp, providing a molecular basis for the phenotype. Finally, Cbp binding significantly overlapped at genes combinatorially bound by 7 major hematopoietic transcriptional regulators, linking Cbp to a critical HSC transcriptional regulatory network. Our data demonstrate that Cbp plays a role in adult HSC homeostasis by maintaining the balance between different HSC fate decisions, and our findings identify a putative HSC-specific transcriptional network coordinated by Cbp.

  13. Retroviral Infection of Murine Embryonic Stem Cell Derived Embryoid Body Cells for Analysis of Hematopoietic Differentiation

    PubMed Central

    Bikorimana, Emmanuel; Lapid, Danica; Choi, Hyewon; Dahl, Richard

    2014-01-01

    Embryonic stem cells (ESCs) are an outstanding model for elucidating the molecular mechanisms of cellular differentiation. They are especially useful for investigating the development of early hematopoietic progenitor cells (HPCs). Gene expression in ESCs can be manipulated by several techniques that allow the role for individual molecules in development to be determined. One difficulty is that expression of specific genes often has different phenotypic effects dependent on their temporal expression. This problem can be circumvented by the generation of ESCs that inducibly express a gene of interest using technology such as the doxycycline-inducible transgene system. However, generation of these inducible cell lines is costly and time consuming. Described here is a method for disaggregating ESC-derived embryoid bodies (EBs) into single cell suspensions, retrovirally infecting the cell suspensions, and then reforming the EBs by hanging drop. Downstream differentiation is then evaluated by flow cytometry. Using this protocol, it was demonstrated that exogenous expression of a microRNA gene at the beginning of ESC differentiation blocks HPC generation. However, when expressed in EB derived cells after nascent mesoderm is produced, the microRNA gene enhances hematopoietic differentiation. This method is useful for investigating the role of genes after specific germ layer tissue is derived. PMID:25350134

  14. Stem cell biology is population biology: differentiation of hematopoietic multipotent progenitors to common lymphoid and myeloid progenitors

    PubMed Central

    2013-01-01

    The hematopoietic stem cell (HSC) system is a demand control system, with the demand coming from the organism, since the products of the common myeloid and lymphoid progenitor (CMP, CLP respectively) cells are essential for activity and defense against disease. We show how ideas from population biology (combining population dynamics and evolutionary considerations) can illuminate the feedback control of the HSC system by the fully differentiated products, which has recently been verified experimentally. We develop models for the penultimate differentiation of HSC Multipotent Progenitors (MPPs) into CLP and CMP and introduce two concepts from population biology into stem cell biology. The first concept is the Multipotent Progenitor Commitment Response (MPCR) which is the probability that a multipotent progenitor cell follows a CLP route rather than a CMP route. The second concept is the link between the MPCR and a measure of Darwinian fitness associated with organismal performance and the levels of differentiated lymphoid and myeloid cells. We show that many MPCRs are consistent with homeostasis, but that they will lead to different dynamics of cells and signals following a wound or injury and thus have different consequences for Darwinian fitness. We show how coupling considerations of life history to dynamics of the HSC system and its products allows one to compute the selective pressures on cellular processes. We discuss ways that this framework can be used and extended. PMID:23327512

  15. PAR1 signaling regulates the retention and recruitment of EPCR-expressing bone marrow hematopoietic stem cells

    PubMed Central

    Gur-Cohen, Shiri; Itkin, Tomer; Chakrabarty, Sagarika; Graf, Claudine; Kollet, Orit; Ludin, Aya; Golan, Karin; Kalinkovich, Alexander; Ledergor, Guy; Wong, Eitan; Niemeyer, Elisabeth; Porat, Ziv; Erez, Ayelet; Sagi, Irit; Esmon, Charles T; Ruf, Wolfram; Lapidot, Tsvee

    2016-01-01

    Retention of long-term repopulating hematopoietic stem cells (LT-HSCs) in the bone marrow is essential for hematopoiesis and for protection from myelotoxic injury. We report that signaling cascades that are traditionally viewed as coagulation-related also control retention of EPCR+ LT-HSCs in the bone marrow and their recruitment to the blood via two different protease activated receptor 1 (PAR1)-mediated pathways. Thrombin-PAR1 signaling induces nitric oxide (NO) production, leading to TACE-mediated EPCR shedding, enhanced CXCL12-CXCR4-induced motility, and rapid stem and progenitor cell mobilization. Conversely, bone marrow blood vessels provide a microenvironment enriched with protein C that retain EPCR+ LT-HSCs by limiting NO generation, reducing Cdc42 activity and enhancing VLA4 affinity and adhesion. Inhibition of NO production by activated protein C (aPC)-EPCR-PAR1 signaling reduces progenitor cell egress, increases NOlow bone marrow EPCR+ LT-HSCs retention and protects mice from chemotherapy-induced hematological failure and death. Our study reveals new roles for PAR1 and EPCR that control NO production to balance maintenance and recruitment of bone marrow EPCR+ LT-HSCs with clinical relevance. PMID:26457757

  16. Bottlenecks in deriving definitive hematopoietic stem cells from human pluripotent stem cells: a CIRM mini-symposium and workshop report.

    PubMed

    Shepard, Kelly A; Talib, Sohel

    2014-07-01

    On August 29, 2013, the California Institute for Regenerative Medicine (CIRM) convened a small group of investigators in San Francisco, CA, to discuss a longstanding challenge in the stem cell field: the inability to derive fully functional, definitive hematopoietic stem cells (HSCs) from pluripotent stem cells (PSCs). To date, PSC-derived HSCs have been deficient in their developmental potential and their ability to self-renew and engraft upon transplantation. Tasked with identifying key challenges to overcoming this "HSC bottleneck", workshop participants identified critical knowledge gaps in two key areas: (a) understanding the ontogeny of human HSCs, and (b) understanding of the intrinsic and extrinsic factors that govern HSC behavior and function. They agreed that development of new methods and tools is critical for addressing these knowledge gaps. These include molecular profiling of key HSC properties, development of new model systems/assays for predicting and assessing HSC function, and novel technological advancements for manipulating cell culture conditions and genetic programs. The workshop produced tangible advances, including providing a current definition of the nature and challenge of the HSC bottleneck and identifying key mechanistic studies of HSC biology that should be prioritized for future funding initiatives (e.g., including higher risk approaches that have potential for high gain).

  17. Controlled, scalable embryonic stem cell differentiation culture.

    PubMed

    Dang, Stephen M; Gerecht-Nir, Sharon; Chen, Jinny; Itskovitz-Eldor, Joseph; Zandstra, Peter W

    2004-01-01

    Embryonic stem (ES) cells are of significant interest as a renewable source of therapeutically useful cells. ES cell aggregation is important for both human and mouse embryoid body (EB) formation and the subsequent generation of ES cell derivatives. Aggregation between EBs (agglomeration), however, inhibits cell growth and differentiation in stirred or high-cell-density static cultures. We demonstrate that the agglomeration of two EBs is initiated by E-cadherin-mediated cell attachment and followed by active cell migration. We report the development of a technology capable of controlling cell-cell interactions in scalable culture by the mass encapsulation of ES cells in size-specified agarose capsules. When placed in stirred-suspension bioreactors, encapsulated ES cells can be used to produce scalable quantities of hematopoietic progenitor cells in a controlled environment.

  18. Hematopoietic Stem Cells from Ts65Dn Mice Are Deficient in the Repair of DNA Double-Strand Breaks.

    PubMed

    Wang, Yingying; Chang, Jianhui; Shao, Lijian; Feng, Wei; Luo, Yi; Chow, Marie; Du, Wei; Meng, Aimin; Zhou, Daohong

    2016-06-01

    Down syndrome (DS) is a genetic disorder caused by the presence of an extra partial or whole copy of chromosome 21. In addition to musculoskeletal and neurodevelopmental abnormalities, children with DS exhibit various hematologic disorders and have an increased risk of developing acute lymphoblastic leukemia and acute megakaryocytic leukemia. Using the Ts65Dn mouse model, we investigated bone marrow defects caused by trisomy for 132 orthologs of the genes on human chromosome 21. The results showed that, although the total bone marrow cellularity as well as the frequency of hematopoietic progenitor cells (HPCs) was comparable between Ts65Dn mice and their age-matched euploid wild-type (WT) control littermates, human chromosome 21 trisomy led to a significant reduction in hematopoietic stem cell (HSC) numbers and clonogenic function in Ts65Dn mice. We also found that spontaneous DNA double-strand breaks (DSBs) were significantly increased in HSCs from the Ts65Dn mice, which was correlated with the significant reduction in HSC clonogenic activity compared to those from WT controls. Moreover, analysis of the repair kinetics of radiation-induced DSBs revealed that HSCs from Ts65Dn mice were less proficient in DSB repair than the cells from WT controls. This deficiency was associated with a higher sensitivity of Ts65Dn HSCs to radiation-induced suppression of HSC clonogenic activity than that of euploid HSCs. These findings suggest that an additional copy of genes on human chromosome 21 may selectively impair the ability of HSCs to repair DSBs, which may contribute to DS-associated hematological abnormalities and malignancies. PMID:27243896

  19. Effects of Developmental Activation of the Aryl Hydrocarbon Receptor by 2,3,7,8-Tetrachlorodibenzo-p-dioxin on Long-term Self-renewal of Murine Hematopoietic Stem Cells

    PubMed Central

    Laiosa, Michael D.; Tate, Everett R.; Ahrenhoerster, Lori S.; Chen, Yuhong; Wang, Demin

    2015-01-01

    Background: Human epidemiological and animal studies suggest that developmental exposure to contaminants that activate the aryl hydrocarbon receptor (AHR) lead to suppression of immune system function throughout life. The persistence of immune deficiency throughout life suggests that the cellular target of AHR activation is a fetal hematopoietic progenitor or stem cell. Objectives: The aim of this study was to identify the effects of transplacental exposure to an AHR agonist on long-term self-renewal of fetal hematopoietic stem cells. Methods: Pregnant C57BL/6 or AHR+/– mice were exposed to the AHR agonist, 2,3,7,8-tetra-​chlorodibenzo-p-dioxin (TCDD). On day 14 of gestation, hematopoietic progenitors from wild-type or AHR-deficient fetuses were placed into in vitro T-lymphocyte differentiation cultures to identify the effects of transplacental TCDD on AHR activation in the fetus. We next analyzed the fetal hematopoietic progenitor cells for changes in reactive oxygen species (ROS). Finally, hematopoietic progenitors from fetuses exposed transplacentally to TCDD were mixed 1:1 with cells from congenic controls and used to reconstitute lethally irradiated recipients for analysis of long-term self-renewal potential. Results: Our findings suggested that the effects of TCDD on the developing hematopoietic system were mediated by direct AHR activation in the fetus. Furthermore, developmental AHR activation by TCDD increased ROS in the fetal hematopoietic stem cells, and the elevated ROS was associated with a reduced capacity of the TCDD-exposed fetal cells to compete with control cells in a mixed competitive irradiation/reconstitution assay. Conclusions: Our findings indicate that AHR activation by TCDD in the fetus during pregnancy leads to impairment of long-term self-renewal of hematopoietic stem cells. Citation: Laiosa MD, Tate ER, Ahrenhoerster LS, Chen Y, Wang D. 2016. Effects of developmental activation of the aryl hydrocarbon receptor by 2

  20. Protothecosis in hematopoietic stem cell transplantation: case report and review of previous cases.

    PubMed

    Macesic, N; Fleming, S; Kidd, S; Madigan, V; Chean, R; Ritchie, D; Slavin, M

    2014-06-01

    Prototheca species are achlorophyllus algae. Prototheca wickerhamii and Prototheca zopfii cause human disease. In immunocompetent individuals, they cause soft tissue infections and olecranon bursitis, but in transplant recipients, these organisms can cause disseminated disease. We report a fatal case of disseminated P. zopfii infection in an hematopoietic stem cell transplant (HSCT) recipient with bloodstream infection and involvement of multiple soft tissue sites. We review all previous cases of protothecosis in HSCT reported in the literature. Protothecosis is uncommon after HSCT, but has a disseminated presentation that is frequently fatal. It is commonly misidentified as a yeast. Tumor necrosis factor-alpha inhibitors and contamination of central venous catheters may contribute to development of protothecosis. Optimal treatment approaches are yet to be defined. New agents such as miltefosine may be possible future therapies. PMID:24797402

  1. Oral Complications in Hematopoietic Stem Cell Recipients: The Role of Inflammation

    PubMed Central

    Haverman, T. M.; Raber-Durlacher, J. E.; Rademacher, W. M. H.; Vokurka, S.; Epstein, J. B.; Huisman, C.; Hazenberg, M. D.; de Soet, J. J.; de Lange, J.; Rozema, F. R.

    2014-01-01

    Hematopoietic stem cell transplantation (HSCT) is widely used as a potentially curative treatment for patients with various hematological malignancies, bone marrow failure syndromes, and congenital immune deficiencies. The prevalence of oral complications in both autologous and allogeneic HSCT recipients remains high, despite advances in transplant medicine and in supportive care. Frequently encountered oral complications include mucositis, infections, oral dryness, taste changes, and graft versus host disease in allogeneic HSCT. Oral complications are associated with substantial morbidity and in some cases with increased mortality and may significantly affect quality of life, even many years after HSCT. Inflammatory processes are key in the pathobiology of most oral complications in HSCT recipients. This review article will discuss frequently encountered oral complications associated with HSCT focusing on the inflammatory pathways and inflammatory mediators involved in their pathogenesis. PMID:24817792

  2. Cardiac Relapse of Acute Myeloid Leukemia after Allogeneic Hematopoietic Stem Cell Transplantation

    PubMed Central

    Sánchez-Quintana, Ana; Quijada-Fumero, Alejandro; Laynez-Carnicero, Ana; Breña-Atienza, Joaquín; Poncela-Mireles, Francisco J.; Llanos-Gómez, Juan M.; Cabello-Rodríguez, Ana I.; Ramos-López, María

    2016-01-01

    Secondary or metastatic cardiac tumors are much more common than primary benign or malignant cardiac tumors. Any tumor can cause myocardial or pericardial metastasis, although isolated or combined tumor invasion of the pericardium is more common. Types of neoplasia with the highest rates of cardiac or pericardial involvement are melanoma, lung cancer, and breast and mediastinal carcinomas. Acute myeloid leukemia (AML) is the most common type of acute leukemia in adults. Initial treatment involves chemotherapy followed by consolidation treatment to reduce the risk of relapse. In high-risk patients, the treatment of choice for consolidation is hematopoietic stem cell transplantation (HSCT). Relapse of AML is the most common cause of HSCT failure. Extramedullary relapse is rare. The organs most frequently affected, called “sanctuaries,” are the testes, ovaries, and central nervous system. We present a case with extramedullary relapse in the form of a solid cardiac mass.

  3. Cardiac Relapse of Acute Myeloid Leukemia after Allogeneic Hematopoietic Stem Cell Transplantation

    PubMed Central

    Sánchez-Quintana, Ana; Quijada-Fumero, Alejandro; Laynez-Carnicero, Ana; Breña-Atienza, Joaquín; Poncela-Mireles, Francisco J.; Llanos-Gómez, Juan M.; Cabello-Rodríguez, Ana I.; Ramos-López, María

    2016-01-01

    Secondary or metastatic cardiac tumors are much more common than primary benign or malignant cardiac tumors. Any tumor can cause myocardial or pericardial metastasis, although isolated or combined tumor invasion of the pericardium is more common. Types of neoplasia with the highest rates of cardiac or pericardial involvement are melanoma, lung cancer, and breast and mediastinal carcinomas. Acute myeloid leukemia (AML) is the most common type of acute leukemia in adults. Initial treatment involves chemotherapy followed by consolidation treatment to reduce the risk of relapse. In high-risk patients, the treatment of choice for consolidation is hematopoietic stem cell transplantation (HSCT). Relapse of AML is the most common cause of HSCT failure. Extramedullary relapse is rare. The organs most frequently affected, called “sanctuaries,” are the testes, ovaries, and central nervous system. We present a case with extramedullary relapse in the form of a solid cardiac mass. PMID:27642531

  4. Highly proliferative primitive fetal liver hematopoietic stem cells are fueled by oxidative metabolic pathways.

    PubMed

    Manesia, Javed K; Xu, Zhuofei; Broekaert, Dorien; Boon, Ruben; van Vliet, Alex; Eelen, Guy; Vanwelden, Thomas; Stegen, Steve; Van Gastel, Nick; Pascual-Montano, Alberto; Fendt, Sarah-Maria; Carmeliet, Geert; Carmeliet, Peter; Khurana, Satish; Verfaillie, Catherine M

    2015-11-01

    Hematopoietic stem cells (HSCs) in the fetal liver (FL) unlike adult bone marrow (BM) proliferate extensively, posing different metabolic demands. However, metabolic pathways responsible for the production of energy and cellular building blocks in FL HSCs have not been described. Here, we report that FL HSCs use oxygen dependent energy generating pathways significantly more than their BM counterparts. RNA-Seq analysis of E14.5 FL versus BM derived HSCs identified increased expression levels of genes involved in oxidative phosphorylation (OxPhos) and the citric acid cycle (TCA). We demonstrated that FL HSCs contain more mitochondria than BM HSCs, which resulted in increased levels of oxygen consumption and reactive oxygen species (ROS) production. Higher levels of DNA repair and antioxidant pathway gene expression may prevent ROS-mediated (geno)toxicity in FL HSCs. Thus, we here for the first time highlight the underestimated importance of oxygen dependent pathways for generating energy and building blocks in FL HSCs. PMID:26599326

  5. Facing the challenges of hematopoietic stem cell transplantation with mindfulness meditation: a pilot study.

    PubMed

    Bauer-Wu, Susan; Sullivan, Amy M; Rosenbaum, Elana; Ott, Mary Jane; Powell, Mark; McLoughlin, Margo; Healey, Martha W

    2008-06-01

    The hematopoietic stem cell transplant (HSCT) experience is emotionally and physically stressful for cancer patients who undergo this procedure. Mindfulness-based interventions have been studied in patients with various diagnoses, including cancer, although minimal work has applied this intervention to hospitalized patients. Use of mindfulness meditation has potential to provide HSCT patients with coping skills to deal with unpleasant symptoms and an uncertain future. This exploratory study examined feasibility, physiological arousal, and psychological and physical symptoms in HSCT patients participating in a mindfulness meditation intervention that begins before and continues throughout hospitalization and involves one-on-one guided sessions and daily practice using a 17-minute meditation CD. Of the 20 participants, 78.9% completed the intervention. Statistically significant decreases in heart and respiratory rates and improvements in symptoms immediately before and after each session were found. These findings demonstrate feasibility and preliminary support of a mindfulness meditation intervention with symptomatic, hospitalized cancer patients.

  6. Hematopoietic Stem Cells Are the Major Source of Multilineage Hematopoiesis in Adult Animals.

    PubMed

    Sawai, Catherine M; Babovic, Sonja; Upadhaya, Samik; Knapp, David J H F; Lavin, Yonit; Lau, Colleen M; Goloborodko, Anton; Feng, Jue; Fujisaki, Joji; Ding, Lei; Mirny, Leonid A; Merad, Miriam; Eaves, Connie J; Reizis, Boris

    2016-09-20

    Hematopoietic stem cells (HSCs) sustain long-term reconstitution of hematopoiesis in transplantation recipients, yet their role in the endogenous steady-state hematopoiesis remains unclear. In particular, recent studies suggested that HSCs provide a relatively minor contribution to immune cell development in adults. We directed transgene expression in a fraction of HSCs that maintained reconstituting activity during serial transplantations. Inducible genetic labeling showed that transgene-expressing HSCs gave rise to other phenotypic HSCs, confirming their top position in the differentiation hierarchy. The labeled HSCs rapidly contributed to committed progenitors of all lineages and to mature myeloid cells and lymphocytes, but not to B-1a cells or tissue macrophages. Importantly, labeled HSCs gave rise to more than two-thirds of all myeloid cells and platelets in adult mice, and this contribution could be accelerated by an induced interferon response. Thus, classically defined HSCs maintain immune cell development in the steady state and during systemic cytokine responses. PMID:27590115

  7. Stability and bifurcation analysis in hematopoietic stem cell dynamics with multiple delays

    NASA Astrophysics Data System (ADS)

    Qu, Ying; Wei, Junjie; Ruan, Shigui

    2010-10-01

    This paper is devoted to the analysis of a maturity structured system of hematopoietic stem cell (HSC) populations in the bone marrow. The model is a system of differential equations with several time delays. We discuss the stability of equilibria and perform the analysis of Hopf bifurcation. More precisely, we first obtain a set of improved sufficient conditions ensuring the global asymptotical stability of the zero solution using the Lyapunov method and the embedding technique of asymptotically autonomous semiflows. Then we prove that there exists at least one positive periodic solution for the n-dimensional system as a time delay varies in some region. This result is established by combining Hopf bifurcation theory, the global Hopf bifurcation theorem due to Wu [J. Wu, Symmetric functional differential equations and neural networks with memory, Trans. Amer. Math. Soc. 350 (1998) 4799-4838], and a continuation theorem of coincidence degree theory. Some numerical simulations are also presented to illustrate the analytic results.

  8. Back to the future! The Evolving Role of Maintenance Therapy after Hematopoietic Stem Cell Transplantation

    PubMed Central

    Hourigan, Christopher S.; McCarthy, Philip; de Lima, Marcos

    2014-01-01

    Relapse is a devastating event for patients with hematologic cancers treated with hematopoietic stem cell transplantation. In most situations, relapse treatment options are limited. Maintenance therapy offers the possibility of delaying or avoiding disease recurrence, but its role remains unclear in most conditions we transplant. Here, Dr. Hourigan presents an overview of minimal residual disease (MRD) measurement in hematologic malignancies and the applicability of MRD-based post-transplant interventions. Dr. McCarthy reviews current knowledge of maintenance therapy in the autologous transplant context, with emphasis on immunologic interventions and immune modulation strategies designed to prevent relapse. Dr. de Lima discusses current lines of investigation in disease recurrence prevention after allogeneic transplantation, focusing on AML and MDS. PMID:24291784

  9. Endogenous Formaldehyde Is a Hematopoietic Stem Cell Genotoxin and Metabolic Carcinogen.

    PubMed

    Pontel, Lucas B; Rosado, Ivan V; Burgos-Barragan, Guillermo; Garaycoechea, Juan I; Yu, Rui; Arends, Mark J; Chandrasekaran, Gayathri; Broecker, Verena; Wei, Wei; Liu, Limin; Swenberg, James A; Crossan, Gerry P; Patel, Ketan J

    2015-10-01

    Endogenous formaldehyde is produced by numerous biochemical pathways fundamental to life, and it can crosslink both DNA and proteins. However, the consequences of its accumulation are unclear. Here we show that endogenous formaldehyde is removed by the enzyme alcohol dehydrogenase 5 (ADH5/GSNOR), and Adh5(-/-) mice therefore accumulate formaldehyde adducts in DNA. The repair of this damage is mediated by FANCD2, a DNA crosslink repair protein. Adh5(-/-)Fancd2(-/-) mice reveal an essential requirement for these protection mechanisms in hematopoietic stem cells (HSCs), leading to their depletion and precipitating bone marrow failure. More widespread formaldehyde-induced DNA damage also causes karyomegaly and dysfunction of hepatocytes and nephrons. Bone marrow transplantation not only rescued hematopoiesis but, surprisingly, also preserved nephron function. Nevertheless, all of these animals eventually developed fatal malignancies. Formaldehyde is therefore an important source of endogenous DNA damage that is counteracted in mammals by a conserved protection mechanism.

  10. Psychosocial adjustment of adolescent siblings of hematopoietic stem cell transplant patients.

    PubMed

    Packman, Wendy; Gong, Kimberly; VanZutphen, Kelly; Shaffer, Tani; Crittenden, Mary

    2004-01-01

    Hematopoietic stem cell transplantation (HSCT) is a widely practiced therapy for many life-threatening childhood disorders. The authors investigated the psychosocial effects of HSCT on siblings of pediatric HSCT patients (n = 44; 21 donors, 23 nondonors, ages 6 to 18 years). Donor siblings reported significantly more anxiety and lower self-esteem than did nondonors. Nondonors showed significantly more school problems. Approximately one third of all siblings reported moderate to severe posttraumatic stress. The study drew on the developmental theory of Erik Erikson and the psychosocial model of posttraumatic stress. As part of the study, the authors used the Measures of Psychosocial Development (MPD), a self-report measure based on Eriksonian constructs. The MPD was used to assess the psychosocial adjustment of 12 siblings who were adolescents (> or =13 years) at the time the study was conducted. In this article, findings are presented from the MPD as well as salient findings from the larger study.

  11. Haploidentical Hematopoietic Stem Cell Transplantation as Platform for Post-transplant Cellular Therapy

    PubMed Central

    Kongtim, Piyanuch; Lee, Dean A.; Cooper, Laurence J. N.; Kebriaei, Partow; Champlin, Richard E.; Ciurea, Stefan O.

    2016-01-01

    Haploidentical transplantation can extend the opportunity for transplantation to almost all patients who lack an HLA-matched donor. Advances in the field of haploidentical transplantation have led to a marked decrease in treatment-related mortality, allowing investigators to focus on developing rationale pre- and peri-remission therapies aimed at preventing disease relapse post-transplant. Due to widespread availability, low treatment-related mortality and cost, haploidentical donors may become the preferred “alternative” donors for allogeneic hematopoietic stem cell transplantation. One of the major advantages of using a related donor is the possibility to collect or generate additional cellular products from the same immediate available donor, which will not be rejected. Infusion of these cells in the peri-transplant period, derived from the same immune system, is opening the possibility to markedly enhance the anti-tumor effects of the graft and hasten immunologic reconstitution post-transplant. PMID:26172479

  12. Endogenous Formaldehyde Is a Hematopoietic Stem Cell Genotoxin and Metabolic Carcinogen.

    PubMed

    Pontel, Lucas B; Rosado, Ivan V; Burgos-Barragan, Guillermo; Garaycoechea, Juan I; Yu, Rui; Arends, Mark J; Chandrasekaran, Gayathri; Broecker, Verena; Wei, Wei; Liu, Limin; Swenberg, James A; Crossan, Gerry P; Patel, Ketan J

    2015-10-01

    Endogenous formaldehyde is produced by numerous biochemical pathways fundamental to life, and it can crosslink both DNA and proteins. However, the consequences of its accumulation are unclear. Here we show that endogenous formaldehyde is removed by the enzyme alcohol dehydrogenase 5 (ADH5/GSNOR), and Adh5(-/-) mice therefore accumulate formaldehyde adducts in DNA. The repair of this damage is mediated by FANCD2, a DNA crosslink repair protein. Adh5(-/-)Fancd2(-/-) mice reveal an essential requirement for these protection mechanisms in hematopoietic stem cells (HSCs), leading to their depletion and precipitating bone marrow failure. More widespread formaldehyde-induced DNA damage also causes karyomegaly and dysfunction of hepatocytes and nephrons. Bone marrow transplantation not only rescued hematopoiesis but, surprisingly, also preserved nephron function. Nevertheless, all of these animals eventually developed fatal malignancies. Formaldehyde is therefore an important source of endogenous DNA damage that is counteracted in mammals by a conserved protection mechanism. PMID:26412304

  13. Cardiac Relapse of Acute Myeloid Leukemia after Allogeneic Hematopoietic Stem Cell Transplantation.

    PubMed

    Facenda-Lorenzo, María; Sánchez-Quintana, Ana; Quijada-Fumero, Alejandro; Laynez-Carnicero, Ana; Breña-Atienza, Joaquín; Poncela-Mireles, Francisco J; Llanos-Gómez, Juan M; Cabello-Rodríguez, Ana I; Ramos-López, María

    2016-01-01

    Secondary or metastatic cardiac tumors are much more common than primary benign or malignant cardiac tumors. Any tumor can cause myocardial or pericardial metastasis, although isolated or combined tumor invasion of the pericardium is more common. Types of neoplasia with the highest rates of cardiac or pericardial involvement are melanoma, lung cancer, and breast and mediastinal carcinomas. Acute myeloid leukemia (AML) is the most common type of acute leukemia in adults. Initial treatment involves chemotherapy followed by consolidation treatment to reduce the risk of relapse. In high-risk patients, the treatment of choice for consolidation is hematopoietic stem cell transplantation (HSCT). Relapse of AML is the most common cause of HSCT failure. Extramedullary relapse is rare. The organs most frequently affected, called "sanctuaries," are the testes, ovaries, and central nervous system. We present a case with extramedullary relapse in the form of a solid cardiac mass. PMID:27642531

  14. Fatal human metapneumovirus and influenza B virus coinfection in an allogeneic hematopoietic stem cell transplant recipient.

    PubMed

    Ghattas, C; Mossad, S B

    2012-10-01

    Human metapneumovirus (hMPV) infection can occur in all age groups with significant morbidity and mortality. Coinfection with influenza virus occurs mainly with influenza type A and all reported cases recovered completely. We report the case of a 61-year-old man who had hematopoietic stem cell transplant for myelodysplastic syndrome. He was admitted to hospital for septic shock and neutropenia, and blood culture was positive for Pseudomonas aeruginosa. He rapidly developed respiratory failure and required ventilator support. His respiratory culture grew P. aeruginosa and hMPV. His course was complicated by persistent shock requiring vasopressor support, and repeat nasopharyngeal swab was positive for influenza type B and hMPV. His condition rapidly deteriorated, his family elected comfort care, and the patient died shortly thereafter. Coinfection with hMPV and influenza virus type B may have a poor outcome and can be fatal, especially in immunocompromised patients. PMID:22823898

  15. Lentiviral gene transfer into human and murine hematopoietic stem cells: size matters.

    PubMed

    Canté-Barrett, Kirsten; Mendes, Rui D; Smits, Willem K; van Helsdingen-van Wijk, Yvette M; Pieters, Rob; Meijerink, Jules P P

    2016-01-01

    Contemporary biomedical research increasingly depends on techniques to induce or to inhibit expression of genes in hematopoietic stem cells (HSCs) or other primary cells to assess their roles on cellular processes including differentiation, apoptosis and migration. Surprisingly little information is available to optimize lentiviral transduction of HSCs. We have therefore carefully optimized transduction of murine and human HSCs by optimizing vector design, serum-free virus production and virus quantitation. We conclude that the viral RNA length, even in relatively small vectors, is an important factor affecting the lentiviral gene transfer on the level of both the virus production and the cellular transduction efficiency. Efficient transfer of large gene sequences into difficult-to-transduce primary cells will benefit from reducing the lentiviral construct size. PMID:27306375

  16. Respiratory Viral Infections in Hematopoietic Stem Cell and Solid Organ Transplant Recipients

    PubMed Central

    Weigt, S. Samuel; Gregson, Aric L.; Deng, Jane C.; Lynch, Joseph P.; Belperio, John A.

    2014-01-01

    Respiratory viral infections (RVIs) are common causes of mild illness in immunocompetent children and adults with rare occurrences of significant morbidity or mortality. Complications are more common in the very young, very old, and those with underlying lung diseases. However, RVIs are increasingly recognized as a cause of morbidity and mortality in recipients of hematopoietic stem cell transplants (HSCT) and solid organ transplants (SOTs). Diagnostic techniques for respiratory syncytial virus (RSV), parainfluenza, influenza, and adenovirus have been clinically available for decades, and these infections are known to cause serious disease in transplant recipients. Modern molecular technology has now made it possible to detect other RVIs including human metapneumovirus, coronavirus, and bocavirus, and the role of these viruses in causing serious disease in transplant recipients is still being worked out. This article reviews the current information regarding epidemiology, pathogenesis, clinical presentation, diagnosis, and treatment of these infections, as well as the aspects of clinical significance of RVIs unique to HSCT or SOT. PMID:21858751

  17. Diagnosis and treatment of viral diseases in recipients of allogeneic hematopoietic stem cell transplantation

    PubMed Central

    2013-01-01

    Viral infections are important causes of morbidity and mortality after allogeneic stem cell hematopoietic transplantation (allo-HSCT). Although most viral infections present with asymptomatic or subclinical manifestations, viruses may result in fatal complications in severe immunocompromised recipients. Reactivation of latent viruses, such as herpesviruses, is frequent during the immunosuppression that occurs with allo-HSCT. Viruses acquired from community, such as the respiratory and gastrointestinal viruses, are also important pathogens of post-transplant viral diseases. Currently, molecular diagnostic methods have replaced or supplemented traditional methods, such as viral culture and antigen detection, in diagnosis of viral infections. The utilization of polymerase chain reaction facilitates the early diagnosis. In view of lacking efficacious agents for treatment of viral diseases, prevention of viral infections is extremely valuable. Application of prophylactic strategies including preemptive therapy reduces viral infections and diseases. Adoptive cellular therapy for restoring virus-specific immunity is a promising method in the treatment of viral diseases. PMID:24341630

  18. Psychosocial adjustment of adolescent siblings of hematopoietic stem cell transplant patients.

    PubMed

    Packman, Wendy; Gong, Kimberly; VanZutphen, Kelly; Shaffer, Tani; Crittenden, Mary

    2004-01-01

    Hematopoietic stem cell transplantation (HSCT) is a widely practiced therapy for many life-threatening childhood disorders. The authors investigated the psychosocial effects of HSCT on siblings of pediatric HSCT patients (n = 44; 21 donors, 23 nondonors, ages 6 to 18 years). Donor siblings reported significantly more anxiety and lower self-esteem than did nondonors. Nondonors showed significantly more school problems. Approximately one third of all siblings reported moderate to severe posttraumatic stress. The study drew on the developmental theory of Erik Erikson and the psychosocial model of posttraumatic stress. As part of the study, the authors used the Measures of Psychosocial Development (MPD), a self-report measure based on Eriksonian constructs. The MPD was used to assess the psychosocial adjustment of 12 siblings who were adolescents (> or =13 years) at the time the study was conducted. In this article, findings are presented from the MPD as well as salient findings from the larger study. PMID:15490868

  19. Hematopoietic Stem Cell Transplant for Mycosis Fungoides and Sézary Syndrome.

    PubMed

    Virmani, Pooja; Zain, Jasmine; Rosen, Steven T; Myskowski, Patricia L; Querfeld, Christiane

    2015-10-01

    Mycosis fungoides (MF) and Sézary syndrome (SS) are common types of primary cutaneous T-cell lymphoma. Early-stage MF has a favorable prognosis and responds well to skin-directed regimens. Patients with advanced-stage MF, transformed MF, and SS are treated with combined systemic and skin-directed therapies. However, the disease is incurable with standard regimens, and frequent relapses are common. Owing to the lack of improvement in overall survival with standard regimens, hematopoietic stem cell transplant (HSCT) has been explored as a potential curative option. This article reviews the role of HSCT in MF/SS and discusses data regarding conditioning regimens, treatment-related complications, and outcomes.

  20. Candidemia in Cancer Patients: Focus Mainly on Hematological Malignancyand Hematopoietic Stem Cell Transplantation.

    PubMed

    Okinaka, Keiji

    2016-01-01

    Although many new antifungals have become commercially available since 2000, candidemia remains an important public health issue because of its poor prognosis. Some studies have suggested that early antifungal therapy is associated with decreased mortality; however, it is difficult to promptly diagnose candidemia because of the poor sensitivity of blood cultures. Thus, prophylaxis against Candida infection is recommended in patient groups in whom the risk of infection is high, such as allogeneic hematopoietic stem cell transplant recipients or those undergoing intensive remission-induction chemotherapy for acute leukemia. Non-Candida albicans candidemia is dominant among hematology patients, and the use of an echinocandin is recommended as the initial therapy. However, echinocandin-resistant Candida have been reported with increasing frequency, mainly in Candida glabrata. Several studies have reported that echinocandin resistance is associated with prior exposure to an echinocandin. Therefore, susceptibility testing is vital in treating severe or refractory candidemia, and the introduction of an antifungal stewardship program is recommended. PMID:27581780

  1. Role of Pharmacogenetics in Hematopoietic Stem Cell Transplantation Outcome in Children

    PubMed Central

    Franca, Raffaella; Stocco, Gabriele; Favretto, Diego; Giurici, Nagua; Decorti, Giuliana; Rabusin, Marco

    2015-01-01

    Hematopoietic stem cell transplantation (HSCT) is an established therapeutic procedure for several congenital and acquired disorders, both malignant and nonmalignant. Despite the great improvements in HSCT clinical practices over the last few decades, complications, such as graft vs. host disease (GVHD) and sinusoidal obstructive syndrome (SOS), are still largely unpredictable and remain the major causes of morbidity and mortality. Both donor and patient genetic background might influence the success of bone marrow transplantation and could at least partially explain the inter-individual variability in HSCT outcome. This review summarizes some of the recent studies on candidate gene polymorphisms in HSCT, with particular reference to pediatric cohorts. The interest is especially focused on pharmacogenetic variants affecting myeloablative and immunosuppressive drugs, although genetic traits involved in SOS susceptibility and transplant-related mortality are also reviewed. PMID:26266406

  2. Hematopoietic Stem Cell Transplant for Mycosis Fungoides and Sézary Syndrome.

    PubMed

    Virmani, Pooja; Zain, Jasmine; Rosen, Steven T; Myskowski, Patricia L; Querfeld, Christiane

    2015-10-01

    Mycosis fungoides (MF) and Sézary syndrome (SS) are common types of primary cutaneous T-cell lymphoma. Early-stage MF has a favorable prognosis and responds well to skin-directed regimens. Patients with advanced-stage MF, transformed MF, and SS are treated with combined systemic and skin-directed therapies. However, the disease is incurable with standard regimens, and frequent relapses are common. Owing to the lack of improvement in overall survival with standard regimens, hematopoietic stem cell transplant (HSCT) has been explored as a potential curative option. This article reviews the role of HSCT in MF/SS and discusses data regarding conditioning regimens, treatment-related complications, and outcomes. PMID:26433851

  3. Facing the challenges of hematopoietic stem cell transplantation with mindfulness meditation: a pilot study.

    PubMed

    Bauer-Wu, Susan; Sullivan, Amy M; Rosenbaum, Elana; Ott, Mary Jane; Powell, Mark; McLoughlin, Margo; Healey, Martha W

    2008-06-01

    The hematopoietic stem cell transplant (HSCT) experience is emotionally and physically stressful for cancer patients who undergo this procedure. Mindfulness-based interventions have been studied in patients with various diagnoses, including cancer, although minimal work has applied this intervention to hospitalized patients. Use of mindfulness meditation has potential to provide HSCT patients with coping skills to deal with unpleasant symptoms and an uncertain future. This exploratory study examined feasibility, physiological arousal, and psychological and physical symptoms in HSCT patients participating in a mindfulness meditation intervention that begins before and continues throughout hospitalization and involves one-on-one guided sessions and daily practice using a 17-minute meditation CD. Of the 20 participants, 78.9% completed the intervention. Statistically significant decreases in heart and respiratory rates and improvements in symptoms immediately before and after each session were found. These findings demonstrate feasibility and preliminary support of a mindfulness meditation intervention with symptomatic, hospitalized cancer patients. PMID:18550888

  4. Hematopoietic stem cell transplantation in immunocompetent hosts without radiation or chemotherapy.

    PubMed

    Chhabra, Akanksha; Ring, Aaron M; Weiskopf, Kipp; Schnorr, Peter John; Gordon, Sydney; Le, Alan C; Kwon, Hye-Sook; Ring, Nan Guo; Volkmer, Jens; Ho, Po Yi; Tseng, Serena; Weissman, Irving L; Shizuru, Judith A

    2016-08-10

    Hematopoietic stem cell (HSC) transplantation can cure diverse diseases of the blood system, including hematologic malignancies, anemias, and autoimmune disorders. However, patients must undergo toxic conditioning regimens that use chemotherapy and/or radiation to eliminate host HSCs and enable donor HSC engraftment. Previous studies have shown that anti-c-Kit monoclonal antibodies deplete HSCs from bone marrow niches, allowing donor HSC engraftment in immunodeficient mice. We show that host HSC clearance is dependent on Fc-mediated antibody effector functions, and enhancing effector activity through blockade of CD47, a myeloid-specific immune checkpoint, extends anti-c-Kit conditioning to fully immunocompetent mice. The combined treatment leads to elimination of >99% of host HSCs and robust multilineage blood reconstitution after HSC transplantation. This targeted conditioning regimen that uses only biologic agents has the potential to transform the practice of HSC transplantation and enable its use in a wider spectrum of patients. PMID:27510901

  5. Infections Caused by Acinetobacter baumannii in Recipients of Hematopoietic Stem Cell Transplantation

    PubMed Central

    Al-Anazi, Khalid Ahmed; Al-Jasser, Asma M.

    2014-01-01

    Acinetobacter baumannii (A. baumannii) is a Gram-negative, strictly aerobic, non-fermentative coccobacillus, which is widely distributed in nature. Recently, it has emerged as a major cause of health care-associated infections (HCAIs) in addition to its capacity to cause community-acquired infections. Risk factors for A. baumannii infections and bacteremia in recipients of hematopoietic stem cell transplantation include: severe underlying illness such as hematological malignancy, prolonged use of broad-spectrum antibiotics, invasive instrumentation such as central venous catheters or endotracheal intubation, colonization of respiratory, gastrointestinal, or urinary tracts in addition to severe immunosuppression caused by using corticosteroids for treating graft versus host disease. The organism causes a wide spectrum of clinical manifestations, but serious complications such as bacteremia, septic shock, ventilator-associated pneumonia, extensive soft tissue necrosis, and rapidly progressive systemic infections that ultimately lead to multi-organ failure and death are prone to occur in severely immunocompromised hosts. The organism is usually resistant to many antimicrobials including penicillins, cephalosporins, trimethoprim–sulfamethoxazole, almost all fluoroquinolones, and most of the aminoglycosides. The recently increasing resistance to carbapenems, colistin, and polymyxins is alarming. Additionally, there are geographic variations in the resistance patterns and several globally and regionally resistant strains have already been described. Successful management of A. baumannii infections depends upon appropriate utilization of antibiotics and strict application of preventive and infection control measures. In uncomplicated infections, the use of a single active beta-lactam may be justified, while definitive treatment of complicated infections in critically ill individuals may require drug combinations such as colistin and rifampicin or colistin and carbapenem

  6. Reprogramming committed murine blood cells to induced hematopoietic stem cells with defined factors

    PubMed Central

    Riddell, Jonah; Gazit, Roi; Garrison, Brian S.; Guo, Guoji; Saadatpour, Assieh; Mandal, Pankaj K.; Ebina, Wataru; Volchkov, Pavel; Yuan, Guo-Cheng; Orkin, Stuart H.; Rossi, Derrick J.

    2014-01-01

    Hematopoietic stem cells (HSCs) sustain blood formation throughout life and are the functional units of bone marrow transplantation. We show that transient expression of six transcription factors RUNX1T1, HLF, LMO2, PRDM5, PBX1, and ZFP37 imparts multi-lineage transplantation potential onto otherwise committed lymphoid and myeloid progenitors, and myeloid effector cells. Inclusion of MYC-N and MEIS1, and use of polycistronic viruses increase reprogramming efficacy. The reprogrammed cells, designated induced-HSCs (iHSCs), possess clonal multi-lineage differentiation potential, reconstitute stem/progenitor compartments, and are serially transplantable. Single-cell analysis revealed that iHSCs derived under optimal conditions exhibit a gene expression profile that is highly similar to endogenous HSCs. These findings demonstrate that expression of a set of defined factors is sufficient to activate the gene networks governing HSC functional identity in committed blood cells. Our results raise the prospect that blood cell reprogramming may be a strategy for derivation of transplantable stem cells for clinical application. PMID:24766805

  7. Role of Geminin in cell fate determination of hematopoietic stem cells (HSCs).

    PubMed

    Yasunaga, Shin'ichiro; Ohno, Yoshinori; Shirasu, Naoto; Zhang, Bo; Suzuki-Takedachi, Kyoko; Ohtsubo, Motoaki; Takihara, Yoshihiro

    2016-09-01

    Geminin exerts two distinct molecular roles. Geminin negatively regulates DNA replication licensing through the direct interaction with Cdt1 to prevent re-replication in proliferating cells. Geminin also regulates chromatin remodeling through the direct interaction with Brahma/Brg1 to maintain undifferentiated states of stem cells. We previously uncovered that Polycomb-group complex 1 and Hoxb4/Hoxa9, well-known intrinsic factors that are essential for maintaining the hematopoietic stem cell (HSC) activity, alternatively act as ubiquitin-proteasome systems for Geminin protein to reduce the protein expression level, and sustain the HSC activity. Thus, Geminin is presumed to play an important role in determining cell fate, i.e., turning on and off cellular quiescence and proliferation/differentiation, in HSCs. We recently generated recombinant cell-penetrating Geminin (CP-Geminin), enabling rapid incorporation and withdraw of Geminin protein in cells. CP-Geminin may be useful in regulating the cell cycle and chromatin configuration. In this article, we summarize current information on the molecular functions of Geminin and the regulatory system for Geminin protein expression, and argue for the molecular role of Geminin in cell fate determination of HSCs, and future perspective of a new technology for manipulating the activities of HSCs and cancer stem cells (CSCs). PMID:27422432

  8. Management of iron overload before, during, and after hematopoietic stem cell transplantation for thalassemia major.

    PubMed

    Angelucci, Emanuele; Pilo, Federica

    2016-03-01

    Solid evidence has established the negative impact of high iron burden and related tissue damage on the outcome of hemopoietic stem cell transplantation for thalassemia major. Recent improvements in our knowledge of iron metabolism have been focused on elevated non-transferrin-bound iron and labile plasma iron levels in the peritransplantation period as potential contributors to tissue toxicity and subsequent adverse transplant outcome. As mouse models have shown, iron overload can injure bone marrow hematopoiesis by increasing reactive oxygen species. The Pesaro experience, conducted in the deferoxamine-only era, clearly defined three iron-related factors (liver fibrosis, hepatomegaly, and quality of lifelong chelation) as significantly affecting transplant outcome. The detrimental effect of iron has only been clarified in recent years. Active interventional strategies are ongoing. Although successful hematopoietic stem cell transplantation clinically resolves the thalassemia marrow defect, patients still remain carriers of iron overload and of all the clinical complications acquired during prior years of transfusion therapy. Therefore, adequate "iron diagnosis" and management is mandatory after hemopoietic stem cell transplantation. In transplanted thalassemia patients, body iron should be returned to within the normal range. Phlebotomy is the gold standard to reduce iron burden; though deferoxamine is a proven, acceptable alternative, clinical investigations on deferasirox are ongoing. PMID:26999450

  9. Reprogramming committed murine blood cells to induced hematopoietic stem cells with defined factors.

    PubMed

    Riddell, Jonah; Gazit, Roi; Garrison, Brian S; Guo, Guoji; Saadatpour, Assieh; Mandal, Pankaj K; Ebina, Wataru; Volchkov, Pavel; Yuan, Guo-Cheng; Orkin, Stuart H; Rossi, Derrick J

    2014-04-24

    Hematopoietic stem cells (HSCs) sustain blood formation throughout life and are the functional units of bone marrow transplantation. We show that transient expression of six transcription factors Run1t1, Hlf, Lmo2, Prdm5, Pbx1, and Zfp37 imparts multilineage transplantation potential onto otherwise committed lymphoid and myeloid progenitors and myeloid effector cells. Inclusion of Mycn and Meis1 and use of polycistronic viruses increase reprogramming efficacy. The reprogrammed cells, designated induced-HSCs (iHSCs), possess clonal multilineage differentiation potential, reconstitute stem/progenitor compartments, and are serially transplantable. Single-cell analysis revealed that iHSCs derived under optimal conditions exhibit a gene expression profile that is highly similar to endogenous HSCs. These findings demonstrate that expression of a set of defined factors is sufficient to activate the gene networks governing HSC functional identity in committed blood cells. Our results raise the prospect that blood cell reprogramming may be a strategy for derivation of transplantable stem cells for clinical application.

  10. Chimerism of bone marrow mesenchymal stem/stromal cells in allogeneic hematopoietic cell transplantation: is it clinically relevant?

    PubMed

    Miura, Yasuo; Yoshioka, Satoshi; Yao, Hisayuki; Takaori-Kondo, Akifumi; Maekawa, Taira; Ichinohe, Tatsuo

    2013-01-01

    Multipotent mesenchymal stem/stromal cells (MSCs) have been extensively used as a transplantable cell source for regenerative medicine and immunomodulatory therapy. Specifically in allogeneic hematopoietic stem cell transplantation (HSCT), co-transplantation or post-transplant infusion of MSCs derived from bone marrow (BM) of non-self donors has been implicated in accelerating hematopoietic recovery, ameliorating graft-vs.-host disease, and promoting tissue regeneration. However, irrespective of the use of MSC co-administration, post-transplant chimerism of BM-derived MSCs after allogeneic HSCT has been reported to remain of host origin, suggesting that the infused donor MSCs are immunologically rejected or not capable of long-term engraftment in the host microenvironment. Also, hematopoietic cell allografts currently used for HSCT do not seem to contain sufficient amount of MSCs or their precursors to reconstitute host BM microenvironment. Since the toxic conditioning employed in allo-HSCT may impair the function of host MSCs to maintain hematopoietic/regenerative stem cell niches and to provide a local immunomodulatory milieu, we propose that new directions for enhancing immunohematopoietic reconstitution and tissue repair after allogeneic HSCT include the development of strategies to support functional replenishment of residual host MSCs or to support more efficient engraftment of infused donor MSCs. Future areas of research should include in vivo tracking of infused MSCs and detection of their microchimeric presence in extra-marrow sites as well as in BM.

  11. A specific PTPRC/CD45 phosphorylation event governed by stem cell chemokine CXCL12 regulates primitive hematopoietic cell motility.

    PubMed

    Williamson, Andrew J K; Pierce, Andrew; Jaworska, Ewa; Zhou, Cong; Aspinall-O'Dea, Mark; Lancashire, Lee; Unwin, Richard D; Abraham, Sheela A; Walker, Michael J; Cadecco, Sara; Spooncer, Elaine; Holyoake, Tessa L; Whetton, Anthony D

    2013-11-01

    CXCL12 governs cellular motility, a process deregulated by hematopoietic stem cell oncogenes such as p210-BCR-ABL. A phosphoproteomics approach to the analysis of a hematopoietic progenitor cell line treated with CXCL12 and the Rac 1 and 2 inhibitor NSC23766 has been employed to objectively discover novel mechanisms for regulation of stem cells in normal and malignant hematopoiesis. The proteomic data sets identified new aspects of CXCL12-mediated signaling and novel features of stem cell regulation. We also identified a novel phosphorylation event in hematopoietic progenitor cells that correlated with motile response and governed by the chemotactic factor CXCL12. The novel phosphorylation site on PTPRC/CD45; a protein tyrosine phosphatase, was validated by raising an antibody to the site and also using a mass spectrometry absolute quantification strategy. Site directed mutagenesis and inhibitor studies demonstrated that this single phosphorylation site governs hematopoietic progenitor cell and lymphoid cell motility, lies downstream from Rac proteins and potentiates Src signaling. We have also demonstrated that PTPRC/CD45 is down-regulated in leukemogenic tyrosine kinase expressing cells. The use of discovery proteomics has enabled further understanding of the regulation of PTPRC/CD45 and its important role in cellular motility in progenitor cells.

  12. Hematopoietic and mesenchymal stem cells: polymeric nanoparticle uptake and lineage differentiation

    PubMed Central

    Brüstle, Ivonne; Simmet, Thomas; Nienhaus, Gerd Ulrich; Landfester, Katharina

    2015-01-01

    Summary The combination of stem cell therapy and nanoparticles promises to enhance the effect of cellular therapies by using nanocarriers as drug delivery devices to guide the further differentiation or homing of stem cells. The impact of nanoparticles on primary cell types remains much more elusive as most groups study the nanoparticle–cell interaction in malignant cell lines. Here, we report on the influence of polymeric nanoparticles on human hematopoietic stem cells (hHSCs) and mesenchymal stem cells (hMSCs). In this study we systematically investigated the influence of polymeric nanoparticles on the cell functionality and differentiation capacity of hHSCs and hMSCs to obtain a deeper knowledge of the interaction of stem cells and nanoparticles. As model systems of nanoparticles, two sets of either bioinert (polystyrene without carboxylic groups on the surface) or biodegradable (PLLA without magnetite) particles were analyzed. Flow cytometry and microscopy analysis showed high uptake rates and no toxicity for all four tested particles in hMSCs and hHSCs. During the differentiation process, the payload of particles per cell decreased. The PLLA–Fe particle showed a significant increase in the IL-8 release in hMSCs but not in hHSCs. We assume that this is due to an increase of free intracellular iron ions but obviously also depends on the cell type. For hHSCs and hMSCs, lineage differentiation into erythrocytes, granulocytes, and megakaryocytes or adipocytes, osteocytes and chondrocytes, was not influenced by the particles when analyzed with lineage specific cluster of differentiation markers. On the other hand qPCR analysis showed significant changes in the expression of some (but not all) investigated lineage markers for both primary cell types. PMID:25821678

  13. Hematopoietic Stem Cell Activity Is Regulated by Pten Phosphorylation Through a Niche-Dependent Mechanism.

    PubMed

    Li, Jing; Zhang, Jun; Tang, Minghui; Xin, Junping; Xu, Yan; Volk, Andrew; Hao, Caiqin; Hu, Chenglong; Sun, Jiewen; Wei, Wei; Cao, Quichan; Breslin, Peter; Zhang, Jiwang

    2016-08-01

    The phosphorylated form of Pten (p-Pten) is highly expressed in >70% of acute myeloid leukemia samples. However, the role of p-Pten in normal and abnormal hematopoiesis has not been studied. We found that Pten protein levels are comparable among long-term (LT) hematopoietic stem cells (HSCs), short-term (ST) HSCs, and multipotent progenitors (MPPs); however, the levels of p-Pten are elevated during the HSC-to-MPP transition. To study whether p-Pten is involved in regulating self-renewal and differentiation in HSCs, we compared the effects of overexpression of p-Pten and nonphosphorylated Pten (non-p-Pten) on the hematopoietic reconstitutive capacity (HRC) of HSCs. We found that overexpression of non-p-Pten enhances the LT-HRC of HSCs, whereas overexpression of p-Pten promotes myeloid differentiation and compromises the LT-HRC of HSCs. Such phosphorylation-regulated Pten functioning is mediated by repressing the cell:cell contact-induced activation of Fak/p38 signaling independent of Pten's lipid phosphatase activity because both p-Pten and non-p-Pten have comparable activity in repressing PI3K/Akt signaling. Our studies suggest that, in addition to repressing PI3K/Akt/mTor signaling, non-p-Pten maintains HSCs in bone marrow niches via a cell-contact inhibitory mechanism by inhibiting Fak/p38 signaling-mediated proliferation and differentiation. In contrast, p-Pten promotes the proliferation and differentiation of HSCs by enhancing the cell contact-dependent activation of Src/Fak/p38 signaling. Stem Cells 2016;34:2130-2144.

  14. Hematopoietic Stem Cell Activity Is Regulated by Pten Phosphorylation Through a Niche-Dependent Mechanism.

    PubMed

    Li, Jing; Zhang, Jun; Tang, Minghui; Xin, Junping; Xu, Yan; Volk, Andrew; Hao, Caiqin; Hu, Chenglong; Sun, Jiewen; Wei, Wei; Cao, Quichan; Breslin, Peter; Zhang, Jiwang

    2016-08-01

    The phosphorylated form of Pten (p-Pten) is highly expressed in >70% of acute myeloid leukemia samples. However, the role of p-Pten in normal and abnormal hematopoiesis has not been studied. We found that Pten protein levels are comparable among long-term (LT) hematopoietic stem cells (HSCs), short-term (ST) HSCs, and multipotent progenitors (MPPs); however, the levels of p-Pten are elevated during the HSC-to-MPP transition. To study whether p-Pten is involved in regulating self-renewal and differentiation in HSCs, we compared the effects of overexpression of p-Pten and nonphosphorylated Pten (non-p-Pten) on the hematopoietic reconstitutive capacity (HRC) of HSCs. We found that overexpression of non-p-Pten enhances the LT-HRC of HSCs, whereas overexpression of p-Pten promotes myeloid differentiation and compromises the LT-HRC of HSCs. Such phosphorylation-regulated Pten functioning is mediated by repressing the cell:cell contact-induced activation of Fak/p38 signaling independent of Pten's lipid phosphatase activity because both p-Pten and non-p-Pten have comparable activity in repressing PI3K/Akt signaling. Our studies suggest that, in addition to repressing PI3K/Akt/mTor signaling, non-p-Pten maintains HSCs in bone marrow niches via a cell-contact inhibitory mechanism by inhibiting Fak/p38 signaling-mediated proliferation and differentiation. In contrast, p-Pten promotes the proliferation and differentiation of HSCs by enhancing the cell contact-dependent activation of Src/Fak/p38 signaling. Stem Cells 2016;34:2130-2144. PMID:27096933

  15. Risk-factor analysis of poor graft function after allogeneic hematopoietic stem cell transplantation.

    PubMed

    Xiao, Yang; Song, Jiayin; Jiang, Zujun; Li, Yonghua; Gao, Yang; Xu, Wenning; Lu, Ziyuan; Wang, Yaochun; Xiao, Haowen

    2014-01-01

    The objective of this study was to investigate the main risk factors for poor graft function (PGF) after allogeneic hematopoietic stem cell transplantation (allo-HSCT), to allow the improvement of transplantation outcomes through preventive measures. Clinical data for 124 patients who received allo-HSCT were analyzed retrospectively. There were 83 males (66.9%) and 41 females (33.1%) with a median age of 28 years (4-60 years). The median follow-up time was 7 months (1-116 months). Factors analyzed included age, gender, disease diagnosis, source of hematopoietic stem cells, donor type, human leukocyte antigen (HLA) matching, conditioning regimen, numbers of infused mononuclear cells and CD34(+) cells, donor-recipient sex and blood-type matching, prophylactic treatment of graft-versus-host disease (GVHD), grades of GVHD, Epstein-Barr virus or cytomegalovirus (CMV) infection, post-transplantation lymphoproliferative disorders and hepatic veno-occlusive disease. Data were analyzed by univariate and multivariate conditional logistic regression analyses. Among the 124 patients who underwent allo-HSCT, 15 developed PGF (12.1%). Univariate logistic regression analysis identified age, donor-recipient blood type and CMV infection (in 30 days) as potential risk factors for PGF. Multivariate analysis of factors with P<0.1 in univariate analysis showed that age, donor-recipient blood type and CMV infection (in 30 days) were significant risk factors for PGF. Patients were divided into subgroups based on age <20, 20-30, 30-40, and >40 years. The risk of PGF increased 2.747-fold (odds ratio (OR)=2.625, 95% confidence interval: 1.411-5.347) for each increment in age level. Patients with mismatched blood type (OR=4.051) or CMV infection (OR=9.146) had an increased risk of PGF. We conclude that age, donor-recipient blood-type matching and CMV infection are major risk factors for PGF after allo-HSCT.

  16. In vitro production of functional immune cells derived from human hematopoietic stem cells

    PubMed Central

    Payuhakrit, Witchuda; Panichakul, Tasanee; Charoenphon, Natthawut; Chalermsaenyakorn, Panus; Jaovisidha, Adithep; Wongborisuth, Chokdee; Udomsangpetch, Rachanee

    2015-01-01

    Hematopoietic stem cells (HSC) from cord blood are potentially high sources for transplantation due to their low immunogenicity and the presence of the multipotent cells. These cells are capable of differentiating to produce various lineages of blood cells under specific conditions. We have enriched highly purified CD34+ cells from cord blood, determined in vitro growth of the cells in culture systems in the absence (condition A) or presence of GM-CSF and G-CSF (condition B), and determined the profile of immune cells during the period of cultivation by using flow cytometry. PhytohemagglutininA (PHA) was used as a mitogen to stimulate T lymphocytes derived from hematopoietic stem cells. GM-CSF and G-CSF prolonged the survival of the growing cells and also maintained expansion of cells in blastic stage. By day 12 of cultivation, when cell numbers peaked, various types of immune cells had appeared (CD14+ cells, CD40+HLA-DR+ cells, CD3+CD56+ cells, CD19+ cells, CD3+CD4+ cells, CD3+CD8+cells and CD3-CD56+). A significantly higher percentage of monocytes (p = 0.002) were observed under culture with GM-CSF, G-CSF when compared with culture without GM-CSF, G-CSF. In addition, T lymphocytes derived from HSC responded to 50 µg/ml of PHA. This is the first report showing the complete differentiation and proliferation of immune cells derived from CD34+ HSC under in vitro culture conditions. Lymphocytes, monocytes, dendritic cells and polymorph nuclear cells derived from HSC in vitro are unique, and thus may benefit various studies such as innate immunity and pathophysiology of immune disorders. PMID:26933404

  17. Contribution of Bone Marrow Hematopoietic Stem Cells to Adult Mouse Inner Ear: Mesenchymal Cells and Fibrocytes

    PubMed Central

    Lang, Hainan; Ebihara, Yasuhiro; Schmiedt, Richard A.; Minamiguchi, Hitoshi; Zhou, Daohong; Smythe, Nancy; Liu, Liya; Ogawa, Makio; Schulte, Bradley A.

    2008-01-01

    Bone marrow (BM)-derived stem cells have shown plasticity with a capacity to differentiate into a variety of specialized cells. To test the hypothesis that some cells in the inner ear are derived from BM, we transplanted either isolated whole BM cells or clonally expanded hematopoietic stem cells (HSCs) prepared from transgenic mice expressing enhanced green fluorescent protein (EGFP) into irradiated adult mice. Isolated GFP+ BM cells also were transplanted into conditioned newborn mice derived from pregnant mice injected with busulfan (which ablates HSCs in the newborns). Quantification of GFP+ cells was performed 3-20 months after transplant. GFP+ cells were found in the inner ear with all transplant conditions. They were most abundant within the spiral ligament but were also found in other locations normally occupied by fibrocytes and mesenchymal cells. No GFP+ neurons or hair cells were observed in inner ears of transplanted mice. Dual immunofluorescence assays demonstrated that most of the GFP+ cells were negative for CD45, a macrophage and hematopoietic cell marker. A portion of the GFP+ cells in the spiral ligament expressed immunoreactive Na, K-ATPase or the Na-K-Cl transporter (NKCC), proteins used as markers for specialized ion transport fibrocytes. Phenotypic studies indicated that the GFP+ cells did not arise from fusion of donor cells with endogenous cells. This study provides the first evidence for the origin of inner ear cells from BM and more specifically from HSCs. The results suggest that mesenchymal cells, including fibrocytes in the adult inner ear, may be derived continuously from HSCs. PMID:16538683

  18. Gene regulatory networks controlling hematopoietic progenitor niche cell production and differentiation in the Drosophila lymph gland.

    PubMed

    Tokusumi, Yumiko; Tokusumi, Tsuyoshi; Shoue, Douglas A; Schulz, Robert A

    2012-01-01

    Hematopoiesis occurs in two phases in Drosophila, with the first completed during embryogenesis and the second accomplished during larval development. The lymph gland serves as the venue for the final hematopoietic program, with this larval tissue well-studied as to its cellular organization and genetic regulation. While the medullary zone contains stem-like hematopoietic progenitors, the posterior signaling center (PSC) functions as a niche microenvironment essential for controlling the decision between progenitor maintenance versus cellular differentiation. In this report, we utilize a PSC-specific GAL4 driver and UAS-gene RNAi strains, to selectively knockdown individual gene functions in PSC cells. We assessed the effect of abrogating the function of 820 genes as to their requirement for niche cell production and differentiation. 100 genes were shown to be essential for normal niche development, with various loci placed into sub-groups based on the functions of their encoded protein products and known genetic interactions. For members of three of these groups, we characterized loss- and gain-of-function phenotypes. Gene function knockdown of members of the BAP chromatin-remodeling complex resulted in niche cells that do not express the hedgehog (hh) gene and fail to differentiate filopodia believed important for Hh signaling from the niche to progenitors. Abrogating gene function of various members of the insulin-like growth factor and TOR signaling pathways resulted in anomalous PSC cell production, leading to a defective niche organization. Further analysis of the Pten, TSC1, and TSC2 tumor suppressor genes demonstrated their loss-of-function condition resulted in severely altered blood cell homeostasis, including the abundant production of lamellocytes, specialized hemocytes involved in innate immune responses. Together, this cell-specific RNAi knockdown survey and mutant phenotype analyses identified multiple genes and their regulatory networks required for

  19. Influence of Previous Inflammatory Bowel Disease on the Outcome of Allogeneic Hematopoietic Stem Cell Transplantation: A Matched-Pair Analysis.

    PubMed

    Rabian, Florence; Porcher, Raphael; Sicre de Fontbrune, Flore; Lioure, Bruno; Laplace, Anne; Nguyen, Stephanie; Tabrizi, Reza; Vigouroux, Stephane; Tomowiak, Cécile; Maillard, Nathalie; Suarez, Felipe; Delage, Jeremy; Peffault de Latour, Régis; Socié, Gérard

    2016-09-01

    The idiopathic inflammatory bowel diseases (IBDs) Crohn's disease and ulcerative colitis are associated with increased risk of hematologic malignancies. Allogeneic hematopoietic stem cell transplantation (HSCT) could be a curative strategy in this setting, but has been thought to be associated with increased nonrelapse mortality (NRM). We conducted a national French retrospective analysis of patients with IBD who underwent allogeneic HSCT for hematologic malignancies and were matched with 3 controls according to recipient, donor, and transplant characteristics. Between 2004 and 2015, 18 patients with IBD underwent allogeneic HSCT. With a median follow-up of 33 months for the patients with IBD and 57 months for controls, the cumulative incidence of grade II-IV acute graft-versus-host disease (GVHD) was 39% for the patients with IBD and 40% for controls (hazard ratio [HR], 1.10; P = .82). The cumulative incidence of chronic GVHD at 48 months was 52% for the patients with IBD and 43% for controls (HR, 0.92; P = .89). Nonrelapse mortality at 48 months was 19% for the patients with IBD and 11% for controls (HR, 4.93; P = .067). Overall survival at 48 months was 59% for the patients with IBD and 60% for matched controls (HR, 1.35; P = .56). In conclusion, IBD should not be considered a contraindication for transplantation, and its impact on comorbidity indexes should be reduced. PMID:27246370

  20. Radiation-induced, cell cycle-related gene expression in aging hematopoietic stem cells: enigma of their recovery.

    PubMed

    Hirabayashi, Yoko

    2014-03-01

    This paper reviews quantitative and qualitative studies conducted to identify changes in the characteristics of hematopoietic stem/progenitor cells (HSCs/HPCs) with or without radiation exposure. The numerical recovery of HSCs/HPCs after radiation exposure is lower than for other types of cells, an effect that may depend on hierarchical ordering of generation age during blood cell differentiation, from primitive HSCs to various differentiated HPCs. Studies are in progress to evaluate gene expression in bone marrow cells and cells in the lineage-negative, c-Kit(+), stem cell antigen(+) (LKS) fraction from 21-month-old mice, with or without radiation exposure. Preliminary data suggest that cell cycle-related genes, that is, cyclin D1 (Ccnd1), phosphatidylinositol 3 kinase regulatory subunit polypeptide 1 (PiK3r1), and Fyn, are upregulated solely in the LKS fraction from 21-month-old mice irradiated at 6 weeks of age, compared with the LKS fraction from age-matched nonirradiated control mice. Additional studies may provide evidence that the aging phenotype is exaggerated following exposure to ionizing radiation, specifically in the LKS fraction.

  1. Clonal contributions of small numbers of retrovirally marked hematopoietic stem cells engrafted in unirradiated neonatal W/Wv mice.

    PubMed

    Capel, B; Hawley, R; Covarrubias, L; Hawley, T; Mintz, B

    1989-06-01

    Mice were repopulated with small numbers of retrovirally marked hematopoietic cells operationally definable as totipotent hematopoietic stem cells, without engraftment of cells at later stages of hematopoiesis, in order to facilitate analysis of stem cell clonal histories. This result depended upon the use of unirradiated W/Wv newborn recipients. Before transplantation, viral integration markers were introduced during cocultivation of fetal liver or bone marrow cells with helper cell lines exporting defective recombinant murine retroviruses of the HHAM series. Omission of selection in culture [although the vector contained the bacterial neomycin-resistance (neo) gene] also limited the proportion of stem cells that were virally labeled. Under these conditions, engraftment was restricted to a small population of marked and unmarked normal donor stem cells, due to their competitive advantage over the corresponding defective cells of the mutant hosts. A relatively simple and coherent pattern emerged, of one or a few virally marked clones, in contrast to previous studies. In order to establish the totipotent hematopoietic stem cell identity of the engrafted cells, tissues were sampled for viral and inbred-strain markers for periods close to one year after transplantation. The virally labeled clones were characterized as stem cell clones by their extensive self-renewal and by formation of the wide range of myeloid and lymphoid lineages tested. Results clearly documented concurrent contributions of cohorts of stem cells to hematopoiesis. A given stem cell can increase or decrease its proliferative activity, become completely inactive or lost, or become active after a long latent period. The contribution of a single clone present in a particular lineage was usually between 5% and 20%. PMID:2567516

  2. The neural crest is a source of mesenchymal stem cells with specialized hematopoietic stem cell niche function

    PubMed Central

    Isern, Joan; García-García, Andrés; Martín, Ana M; Arranz, Lorena; Martín-Pérez, Daniel; Torroja, Carlos; Sánchez-Cabo, Fátima; Méndez-Ferrer, Simón

    2014-01-01

    Mesenchymal stem cells (MSCs) and osteolineage cells contribute to the hematopoietic stem cell (HSC) niche in the bone marrow of long bones. However, their developmental relationships remain unclear. In this study, we demonstrate that different MSC populations in the developing marrow of long bones have distinct functions. Proliferative mesoderm-derived nestin− MSCs participate in fetal skeletogenesis and lose MSC activity soon after birth. In contrast, quiescent neural crest-derived nestin+ cells preserve MSC activity, but do not generate fetal chondrocytes. Instead, they differentiate into HSC niche-forming MSCs, helping to establish the HSC niche by secreting Cxcl12. Perineural migration of these cells to the bone marrow requires the ErbB3 receptor. The neonatal Nestin-GFP+ Pdgfrα− cell population also contains Schwann cell precursors, but does not comprise mature Schwann cells. Thus, in the developing bone marrow HSC niche-forming MSCs share a common origin with sympathetic peripheral neurons and glial cells, and ontogenically distinct MSCs have non-overlapping functions in endochondrogenesis and HSC niche formation. DOI: http://dx.doi.org/10.7554/eLife.03696.001 PMID:25255216

  3. The SKI proto-oncogene enhances the in vivo repopulation of hematopoietic stem cells and causes myeloproliferative disease.

    PubMed

    Singbrant, Sofie; Wall, Meaghan; Moody, Jennifer; Karlsson, Göran; Chalk, Alistair M; Liddicoat, Brian; Russell, Megan R; Walkley, Carl R; Karlsson, Stefan

    2014-04-01

    The proto-oncogene SKI is highly expressed in human myeloid leukemia and also in murine hematopoietic stem cells. However, its operative relevance in these cells remains elusive. We have over-expressed SKI to define its intrinsic role in hematopoiesis and myeloid neoplasms, which resulted in a robust competitive advantage upon transplantation, a complete dominance of the stem and progenitor compartments, and a marked enhancement of myeloid differentiation at the expense of other lineages. Accordingly, enforced expression of SKI induced a gene signature associated with hematopoietic stem cells and myeloid differentiation, as well as hepatocyte growth factor signaling. Here we demonstrate that, in contrast to what has generally been assumed, the significant impact of SKI on hematopoiesis is independent of its ability to inhibit TGF-beta signaling. Instead, myeloid progenitors expressing SKI are partially dependent on functional hepatocyte growth factor signaling. Collectively our results demonstrate that SKI is an important regulator of hematopoietic stem cell activity and its overexpression leads to myeloproliferative disease.

  4. Exposure of hematopoietic stem cells to benzene or 1,4-benzoquinone induces gender-specific gene expression.

    PubMed

    Faiola, Brenda; Fuller, Elizabeth S; Wong, Victoria A; Pluta, Linda; Abernethy, Diane J; Rose, Jason; Recio, Leslie

    2004-01-01

    Chronic exposure to benzene results in progressive decline of hematopoietic function and may lead to the onset of various disorders, including aplastic anemia, myelodysplastic syndrome, and leukemia. Damage to macromolecules resulting from benzene metabolites and misrepair of DNA lesions may lead to changes in hematopoietic stem cells (HSCs) that give rise to leukemic clones. We have shown previously that male mice exposed to benzene by inhalation were significantly more susceptible to benzene-induced toxicities than females. Because HSCs are targets for benzene-induced cytotoxicity and genotoxicity, we investigated DNA damage responses in HSC from both genders of 129/SvJ mice after exposure to 1,4-benzoquinone (BQ) in vitro or benzene in vivo. 1,4-BQ is a highly reactive metabolite of benzene that can cause cellular damage by forming protein and DNA adducts and producing reactive oxygen species. HSCs cultured in the presence of 1,4-BQ for 24 hours showed a gender-independent, dose-dependent cytotoxic response. RNA isolated from 1,4-BQ-treated HSCs and HSCs from mice exposed to 100 ppm benzene by inhalation showed altered expression of apoptosis, DNA repair, cell cycle, and growth control genes compared with unexposed HSCs. Rad51, xpc, and mdm-2 transcript levels were increased in male but not female HSCs exposed to 1,4-BQ. Males exposed to benzene exhibited higher mRNA levels for xpc, ku80, ccng, and wig1. These gene expression differences may partially explain the gender disparity in benzene susceptibility. HSC culture systems such as the one used here will be useful for testing the hematotoxicity of various substances, including other benzene metabolites.

  5. Hematopoietic Stem Cell Regulation by Type I and II Interferons in the Pathogenesis of Acquired Aplastic Anemia.

    PubMed

    Smith, Julianne N P; Kanwar, Vikramjit S; MacNamara, Katherine C

    2016-01-01

    Aplastic anemia (AA) occurs when the bone marrow fails to support production of all three lineages of blood cells, which are necessary for tissue oxygenation, infection control, and hemostasis. The etiology of acquired AA is elusive in the vast majority of cases but involves exhaustion of hematopoietic stem cells (HSC), which are usually present in the bone marrow in a dormant state, and are responsible for lifelong production of all cells within the hematopoietic system. This destruction is immune mediated and the role of interferons remains incompletely characterized. Interferon gamma (IFNγ) has been associated with AA and type I IFNs (alpha and beta) are well documented to cause bone marrow aplasia during viral infection. In models of infection and inflammation, IFNγ activates HSCs to differentiate and impairs their ability to self-renew, ultimately leading to HSC exhaustion. Recent evidence demonstrating that IFNγ also impacts the HSC microenvironment or niche, raises new questions regarding how IFNγ impairs HSC function in AA. Immune activation can also elicit type I interferons, which may exert effects both distinct from and overlapping with IFNγ on HSCs. IFNα/β increase HSC proliferation in models of sterile inflammation induced by polyinosinic:polycytidylic acid and lead to BM aplasia during viral infection. Moreover, patients being treated with IFNα exhibit cytopenias, in part due to BM suppression. Herein, we review the current understanding of how interferons contribute to the pathogenesis of acquired AA, and we explore additional potential mechanisms by which interferons directly and indirectly impair HSCs. A comprehensive understanding of how interferons impact hematopoiesis is necessary in order to identify novel therapeutic approaches for treating AA patients. PMID:27621733

  6. Hematopoietic Stem Cell Regulation by Type I and II Interferons in the Pathogenesis of Acquired Aplastic Anemia

    PubMed Central

    Smith, Julianne N. P.; Kanwar, Vikramjit S.; MacNamara, Katherine C.

    2016-01-01

    Aplastic anemia (AA) occurs when the bone marrow fails to support production of all three lineages of blood cells, which are necessary for tissue oxygenation, infection control, and hemostasis. The etiology of acquired AA is elusive in the vast majority of cases but involves exhaustion of hematopoietic stem cells (HSC), which are usually present in the bone marrow in a dormant state, and are responsible for lifelong production of all cells within the hematopoietic system. This destruction is immune mediated and the role of interferons remains incompletely characterized. Interferon gamma (IFNγ) has been associated with AA and type I IFNs (alpha and beta) are well documented to cause bone marrow aplasia during viral infection. In models of infection and inflammation, IFNγ activates HSCs to differentiate and impairs their ability to self-renew, ultimately leading to HSC exhaustion. Recent evidence demonstrating that IFNγ also impacts the HSC microenvironment or niche, raises new questions regarding how IFNγ impairs HSC function in AA. Immune activation can also elicit type I interferons, which may exert effects both distinct from and overlapping with IFNγ on HSCs. IFNα/β increase HSC proliferation in models of sterile inflammation induced by polyinosinic:polycytidylic acid and lead to BM aplasia during viral infection. Moreover, patients being treated with IFNα exhibit cytopenias, in part due to BM suppression. Herein, we review the current understanding of how interferons contribute to the pathogenesis of acquired AA, and we explore additional potential mechanisms by which interferons directly and indirectly impair HSCs. A comprehensive understanding of how interferons impact hematopoiesis is necessary in order to identify novel therapeutic approaches for treating AA patients.

  7. Hematopoietic Stem Cell Regulation by Type I and II Interferons in the Pathogenesis of Acquired Aplastic Anemia

    PubMed Central

    Smith, Julianne N. P.; Kanwar, Vikramjit S.; MacNamara, Katherine C.

    2016-01-01

    Aplastic anemia (AA) occurs when the bone marrow fails to support production of all three lineages of blood cells, which are necessary for tissue oxygenation, infection control, and hemostasis. The etiology of acquired AA is elusive in the vast majority of cases but involves exhaustion of hematopoietic stem cells (HSC), which are usually present in the bone marrow in a dormant state, and are responsible for lifelong production of all cells within the hematopoietic system. This destruction is immune mediated and the role of interferons remains incompletely characterized. Interferon gamma (IFNγ) has been associated with AA and type I IFNs (alpha and beta) are well documented to cause bone marrow aplasia during viral infection. In models of infection and inflammation, IFNγ activates HSCs to differentiate and impairs their ability to self-renew, ultimately leading to HSC exhaustion. Recent evidence demonstrating that IFNγ also impacts the HSC microenvironment or niche, raises new questions regarding how IFNγ impairs HSC function in AA. Immune activation can also elicit type I interferons, which may exert effects both distinct from and overlapping with IFNγ on HSCs. IFNα/β increase HSC proliferation in models of sterile inflammation induced by polyinosinic:polycytidylic acid and lead to BM aplasia during viral infection. Moreover, patients being treated with IFNα exhibit cytopenias, in part due to BM suppression. Herein, we review the current understanding of how interferons contribute to the pathogenesis of acquired AA, and we explore additional potential mechanisms by which interferons directly and indirectly impair HSCs. A comprehensive understanding of how interferons impact hematopoiesis is necessary in order to identify novel therapeutic approaches for treating AA patients. PMID:27621733

  8. Defining Molecular Phenotypes of Mesenchymal and hematopoietic Stem Cells derived from Peripheral blood of