Science.gov

Sample records for control hematopoietic stem

  1. Hospital infection control in hematopoietic stem cell transplant recipients.

    PubMed Central

    Dykewicz, C. A.

    2001-01-01

    Guidelines for Preventing Opportunistic Infections Among Hematopoietic Stem Cell Transplant Recipients contains a section on hospital infection control including evidence-based recommendations regarding ventilation, construction, equipment, plants, play areas and toys, health-care workers, visitors, patient skin and oral care, catheter-related infections, drug-resistant organisms, and specific nosocomial infections. These guidelines are intended to reduce the number and severity of hospital infections in hematopoietic stem cell transplant recipients. PMID:11294720

  2. Mom Knows Best: Imprinted Control of Hematopoietic Stem Cell Quiescence.

    PubMed

    Serrano-Lopez, Juana; Cancelas, Jose A

    2016-02-04

    The mechanisms by which imprinted loci control activity of hematopoietic stem cells (HSCs) are not known. In this issue of Cell Stem Cell, Qian et al. (2016) demonstrate that non-coding RNAs expressed by the maternal-imprinted locus Dlk1-Gtl2 maintain HSC self-renewal through the inhibition of PI3K-mTOR signaling, mitochondrial biogenesis, and metabolic activity.

  3. ERG dependence distinguishes developmental control of hematopoietic stem cell maintenance from hematopoietic specification

    PubMed Central

    Taoudi, Samir; Bee, Thomas; Hilton, Adrienne; Knezevic, Kathy; Scott, Julie; Willson, Tracy A.; Collin, Caitlin; Thomas, Tim; Voss, Anne K.; Kile, Benjamin T.; Alexander, Warren S.; Pimanda, John E.; Hilton, Douglas J.

    2011-01-01

    Although many genes are known to be critical for early hematopoiesis in the embryo, it remains unclear whether distinct regulatory pathways exist to control hematopoietic specification versus hematopoietic stem cell (HSC) emergence and function. Due to their interaction with key regulators of hematopoietic commitment, particular interest has focused on the role of the ETS family of transcription factors; of these, ERG is predicted to play an important role in the initiation of hematopoiesis, yet we do not know if or when ERG is required. Using in vitro and in vivo models of hematopoiesis and HSC development, we provide strong evidence that ERG is at the center of a distinct regulatory program that is not required for hematopoietic specification or differentiation but is critical for HSC maintenance during embryonic development. We show that, from the fetal period, ERG acts as a direct upstream regulator of Gata2 and Runx1 gene activity. Without ERG, physiological HSC maintenance fails, leading to the rapid exhaustion of definitive hematopoiesis. PMID:21245161

  4. Hematopoietic Stem Cells Therapies.

    PubMed

    Chivu-Economescu, Mihaela; Rubach, Martin

    2017-01-01

    Stem cell-based therapies are recognized as a new way to treat various diseases and injuries, with a wide range of health benefits. The goal is to heal or replace diseased or destroyed organs or body parts with healthy new cells provided by stem cell transplantation. The current practical form of stem cell therapy is the hematopoietic stem cells transplant applied for the treatment of hematological disorders. There are over 2100 clinical studies in progress concerning hematopoietic stem cell therapies. All of them are using hematopoietic stem cells to treat various diseases like: cancers, leukemia, lymphoma, cardiac failure, neural disorders, auto-immune diseases, immunodeficiency, metabolic or genetic disorders. Several challenges are to be addressed prior to developing and applying large scale cell therapies: 1) to explain and control the mechanisms of differentiation and development toward a specific cell type needed to treat the disease, 2) to obtain a sufficient number of desired cell type for transplantation, 3) to overcome the immune rejection and 4) to show that transplanted cells fulfill their normal functions in vivo after transplants.

  5. On hematopoietic stem cell fate.

    PubMed

    Metcalf, Donald

    2007-06-01

    Multipotential hematopoietic stem cells (HSCs) maintain blood-cell formation throughout life. Here, Metcalf considers the origin and heterogeneity of HSCs, their ability to self-generate, and their commitment to the various hematopoietic lineages.

  6. Mortalin and DJ-1 coordinately regulate hematopoietic stem cell function through the control of oxidative stress.

    PubMed

    Tai-Nagara, Ikue; Matsuoka, Sahoko; Ariga, Hiroyoshi; Suda, Toshio

    2014-01-02

    Hematopoietic stem cells (HSCs) maintain stemness through various mechanisms that protect against stressful conditions. Heat shock proteins (HSPs) preserve cell homeostasis during stress responses through protein quality control, suggesting that HSPs may safeguard HSCs against numerous traumas. Here, we show that mortalin, a mitochondrial HSP, plays an essential role in maintaining HSC properties by regulating oxidative stress. Mortalin is primarily localized in hematopoietic stem and progenitor cell (HSPC) compartments. In this study, the inhibition of mortalin function caused abnormal reactive oxygen species (ROS) elevation in HSCs and reduced HSC numbers. Knockdown (KD) of mortalin in HSPCs impaired their ability to repopulate and form colonies. Moreover, mortalin-KD HSCs could not maintain quiescence and showed severe downregulation of cyclin-dependent kinase inhibitor- and antioxidant-related genes. Conversely, HSCs that overexpressed mortalin maintained a high reconstitution capacity and low ROS levels. Furthermore, DJ-1, one of the genes responsible for Parkinson's disease, directly bound to mortalin and acted as a negative ROS regulator. Using DJ-1-deficient mice, we demonstrated that mortalin and DJ-1 coordinately maintain normal ROS levels and HSC numbers. Collectively, these results indicate that the mortalin/DJ-1 complex guards against mitochondrial oxidative stress and is indispensable for the maintenance of HSCs.

  7. Captopril to Mitigate Chronic Renal Failure After Hematopoietic Stem Cell Transplantation: A Randomized Controlled Trial

    SciTech Connect

    Cohen, Eric P. Irving, Amy A. B.A.; Drobyski, William R.; Klein, John P.; Passweg, Jakob; Talano, Julie-An M.; Juckett, Mark B.; Moulder, John E.

    2008-04-01

    Purpose: To test whether the angiotensin-converting enzyme inhibitor captopril was effective in mitigating chronic renal failure after hematopoietic stem cell transplantation (HSCT). Methods and Materials: A total of 55 subjects undergoing total body irradiation (TBI)-HSCT were enrolled in this randomized controlled trial. Captopril or identical placebo was started at engraftment and continued as tolerated until 1 year after HSCT. Results: The baseline serum creatinine and calculated glomerular filtration rate (GFR) did not differ between groups. The 1-year serum creatinine level was lower and the GFR higher in the captopril compared with the placebo group (p = 0.07 for GFR). Patient survival was higher in the captopril compared with the placebo group, but this was also not statistically significant (p = 0.09). In study subjects who received the study drug for more than 2 months, the 1-year calculated GFRs were 92 mL/min and 80 mL/min, for the captopril and placebo groups, respectively (p = 0.1). There was no adverse effect on hematologic outcome. Conclusions: There is a trend in favor of captopril in mitigation of chronic renal failure after radiation-based HSCT.

  8. The non-canonical Wnt receptor Ryk regulates hematopoietic stem cell repopulation in part by controlling proliferation and apoptosis

    PubMed Central

    Famili, Farbod; Perez, Laura Garcia; Naber, Brigitta AE; Noordermeer, Jasprina N; Fradkin, Lee G; Staal, Frank JT

    2016-01-01

    The development of blood and immune cells requires strict control by various signaling pathways in order to regulate self-renewal, differentiation and apoptosis in stem and progenitor cells. Recent evidence indicates critical roles for the canonical and non-canonical Wnt pathways in hematopoiesis. The non-canonical Wnt pathway is important for establishment of cell polarity and cell migration and regulates apoptosis in the thymus. We here investigate the role of the non-canonical Wnt receptor Ryk in hematopoiesis and lymphoid development. We show that there are dynamic changes in Ryk expression during development and in different hematopoietic tissues. Functionally, Ryk regulates NK cell development in a temporal fashion. Moreover, Ryk-deficient mice show diminished, but not absent self-renewal of hematopoietic stem cells (HSC), via effects on mildly increased proliferation and apoptosis. Thus, Ryk deficiency in HSCs from fetal liver reduces their quiescence, leading to proliferation-induced apoptosis and decreased self-renewal. PMID:27882948

  9. Quality control and assurance in hematopoietic stem cell transplantation data registries in Japan and other countries.

    PubMed

    Kuwatsuka, Yachiyo

    2016-01-01

    Observational studies from national and international registries with large volumes of patients are commonly performed to identify superior strategies for hematopoietic stem cell transplantation. Major international and national stem cell transplant registries collect outcome data using electronic data capture systems, and a systematic study support process has been developed. Statistical support for studies is available from some major international registries, and international and national registries also mutually collaborate to promote stem cell transplant outcome studies and transplant-related activities. Transplant registries additionally take measures to improve data quality to further improve the quality of outcome studies by utilizing data capture systems and manual data management. Data auditing can potentially even further improve data quality; however, human and budgetary resources can be limiting factors in system construction and audits of the Japanese transplant registry are not currently performed.

  10. Epigenetic Regulation of Hematopoietic Stem Cells

    PubMed Central

    Sharma, Shilpa; Gurudutta, Gangenahalli

    2016-01-01

    Hematopoietic stem cells are endowed with a distinct potential to bolster self-renewal and to generate progeny that differentiate into mature cells of myeloid and lymphoid lineages. Both hematopoietic stem cells and mature cells have the same genome, but their gene expression is controlled by an additional layer of epigenetics such as DNA methylation and post-translational histone modifications, enabling each cell-type to acquire various forms and functions. Until recently, several studies have largely focussed on the transcription factors andniche factors for the understanding of the molecular mechanisms by which hematopoietic cells replicate and differentiate. Several lines of emerging evidence suggest that epigenetic modifications eventually result in a defined chromatin structure and an “individual” gene expression pattern, which play an essential role in the regulation of hematopoietic stem cell self-renewal and differentiation. Distinct epigenetic marks decide which sets of genes may be expressed and which genes are kept silent. Epigenetic mechanisms are interdependent and ensure lifelong production of blood and bone marrow, thereby contributing to stem cell homeostasis. The epigenetic analysis of hematopoiesis raises the exciting possibility that chromatin structure is dynamic enough for regulated expression of genes. Though controlled chromatin accessibility plays an essential role in maintaining blood homeostasis; mutations in chromatin impacts on the regulation of genes critical to the development of leukemia. In this review, we explored the contribution of epigenetic machinery which has implications for the ramification of molecular details of hematopoietic self-renewal for normal development and underlying events that potentially co-operate to induce leukemia. PMID:27426084

  11. [Peripheral blood hematopoietic stem cell collection].

    PubMed

    Bojanić, Ines; Mazić, Sanja; Cepulić, Branka Golubić

    2009-01-01

    Summary. Peripheral blood hematopoietic stem cells (PBSC) have numerous advatages in comparison with traditionally used bone marrow. PBSC collection by leukapheresis procedure is simpler and better tolerated than bone marrow harvest. PBCS are mobilized by myelosupressive chemotherapy or/and hematopoietic growth factors. Leukapheresis product contains PBSC along with lineage commited progenitors and precursors which contribute to faster hematopoietic recovery. In "poor mobilizers" options are large-volume leukapheresis (LVL) procedure or second generation of mobilising agents (pegfilgrastim, CXCR4 receptor antagonists). Total blood volume is processed 2-3 times in standard procedure compared to more than 3 times in LVL. LVL yields significantly higher numbers of CD34+ cells. Adverse effects of leukapheresis are electrolyte disbalance (hypocalcemia) caused by citrat administration and risk of bleeding due to trobocytopenia and heparin administration. PBSC collection and product quality control are regulated by national and international standards and recommendations.

  12. Rho GTPases control specific cytoskeleton-dependent functions of hematopoietic stem cells

    PubMed Central

    Nayak, Ramesh C.; Chang, Kyung-Hee; Vaitinadin, Nataraja-Sarma; Cancelas, Jose A.

    2013-01-01

    Summary The Rho family of guanosine triphosphatases (GTPases) is composed of members of the Ras superfamily of proteins. They are GTP-bound molecules with a modest intrinsic GTPase activity that can be accelerated upon activation/localization of specialized guanine nucleotide exchange factors. Members of this family act as molecular switches and are required for coordinated cytoskeletal rearrangements that are crucial in a set of specialized functions of mammalian stem cells. These functions include self-renewal, adhesion, and migration. Mouse gene-targeting studies have provided convincing evidence of the indispensable and dispensable roles of individual members of the Rho GTPase family and the putative upstream and downstream mediators in stem cell-specific functions. The role of Rho GTPases and related signaling pathways previously seen in other cell types and organisms have been confirmed in mammalian hematopoietic stem cells (HSCs), and new signaling pathways and unexpected functions unique to HSCs have been identified and dissected. This review summarizes our current understanding of the role of Rho family of GTPases on HSC and progenitor activity through cytoskeleton-mediated signaling pathways, providing insight on relevant signaling pathways that regulate mammalian stem cell self-renewal, adhesion, and migration. PMID:24117826

  13. Control of hematopoietic stem cell emergence by antagonistic functions of ribosomal protein paralogs.

    PubMed

    Zhang, Yong; Duc, Anne-Cécile E; Rao, Shuyun; Sun, Xiao-Li; Bilbee, Alison N; Rhodes, Michele; Li, Qin; Kappes, Dietmar J; Rhodes, Jennifer; Wiest, David L

    2013-02-25

    It remains controversial whether the highly homologous ribosomal protein (RP) paralogs found in lower eukaryotes have distinct functions and this has not been explored in vertebrates. Here we demonstrate that despite ubiquitous expression, the RP paralogs, Rpl22 and Rpl22-like1 (Rpl22l1) play essential, distinct, and antagonistic roles in hematopoietic development. Knockdown of Rpl22 in zebrafish embryos selectively blocks the development of T lineage progenitors after they have seeded the thymus. In contrast, knockdown of the Rpl22 paralog, Rpl22l1, impairs the emergence of hematopoietic stem cells (HSC) in the aorta-gonad-mesonephros by abrogating Smad1 expression and the consequent induction of essential transcriptional regulator, Runx1. Indeed, despite the ability of both paralogs to bind smad1 RNA, Rpl22 and Rpl22l1 have opposing effects on Smad1 expression. Accordingly, circumstances that tip the balance of these paralogs in favor of Rpl22 (e.g., Rpl22l1 knockdown or Rpl22 overexpression) result in repression of Smad1 and blockade of HSC emergence.

  14. Control of hematopoietic stem cell emergence by antagonistic functions of ribosomal protein paralogs

    PubMed Central

    Zhang, Yong; Duc, Anne-Cécile E.; Rao, Shuyun; Sun, Xiao-Li; Bilbee, Alison N.; Rhodes, Michele; Li, Qin; Kappes, Dietmar J.; Rhodes, Jennifer; Wiest, David L.

    2013-01-01

    Summary It remains controversial whether the highly-homologous ribosomal protein (RP) paralogs found in lower eukaryotes have distinct functions and this has not been explored in vertebrates. Here we demonstrate that despite ubiquitous expression, the RP paralogs, Rpl22 and Rpl22-like1 (Rpl22l1) play essential, distinct, and antagonistic roles in hematopoietic development. Knockdown of rpl22 in zebrafish embryos selectively blocks the development of T lineage progenitors after they have seeded the thymus. In contrast, knockdown of the rpl22 paralog, rpl22l1, impairs the emergence of hematopoietic stem cells (HSC) in the aorta-gonad-mesonephros by abrogating Smad1 expression and the consequent induction of essential transcriptional regulator, Runx1. Indeed, despite the ability of both paralogs to bind Smad1 RNA, Rpl22 and Rpl22l1 have opposing effects on Smad1 expression. Accordingly, circumstances that tip the balance of these paralogs in favor of Rpl22 (e.g., Rpl22l1 knockdown or Rpl22 overexpression) result in repression of Smad1 and blockade of HSC emergence. PMID:23449473

  15. Muscle-derived hematopoietic stem cells are hematopoietic in origin

    PubMed Central

    McKinney-Freeman, Shannon L.; Jackson, Kathyjo A.; Camargo, Fernando D.; Ferrari, Giuliana; Mavilio, Fulvio; Goodell, Margaret A.

    2002-01-01

    It has recently been shown that mononuclear cells from murine skeletal muscle contain the potential to repopulate all major peripheral blood lineages in lethally irradiated mice, but the origin of this activity is unknown. We have fractionated muscle cells on the basis of hematopoietic markers to show that the active population exclusively expresses the hematopoietic stem cell antigens Sca-1 and CD45. Muscle cells obtained from 6- to 8-week-old C57BL/6-CD45.1 mice and enriched for cells expressing Sca-1 and CD45 were able to generate hematopoietic but not myogenic colonies in vitro and repopulated multiple hematopoietic lineages of lethally irradiated C57BL/6-CD45.2 mice. These data show that muscle-derived hematopoietic stem cells are likely derived from the hematopoietic system and are a result not of transdifferentiation of myogenic stem cells but instead of the presence of substantial numbers of hematopoietic stem cells in the muscle. Although CD45-negative cells were highly myogenic in vitro and in vivo, CD45-positive muscle-derived cells displayed only very limited myogenic activity and only in vivo. PMID:11830662

  16. Distinct signaling programs control human hematopoietic stem cell survival and proliferation

    PubMed Central

    Hammond, Colin A.; Aghaeepour, Nima; Miller, Paul H.; Pellacani, Davide; Beer, Philip A.; Sachs, Karen; Qiao, Wenlian; Wang, WeiJia; Humphries, R. Keith; Sauvageau, Guy; Zandstra, Peter W.; Bendall, Sean C.; Nolan, Garry P.; Hansen, Carl

    2017-01-01

    Several growth factors (GFs) that together promote quiescent human hematopoietic stem cell (HSC) expansion ex vivo have been identified; however, the molecular mechanisms by which these GFs regulate the survival, proliferation. and differentiation of human HSCs remain poorly understood. We now describe experiments in which we used mass cytometry to simultaneously measure multiple surface markers, transcription factors, active signaling intermediates, viability, and cell-cycle indicators in single CD34+ cord blood cells before and up to 2 hours after their stimulation with stem cell factor, Fms-like tyrosine kinase 3 ligand, interleukin-3, interleukin-6, and granulocyte colony-stimulating factor (5 GFs) either alone or combined. Cells with a CD34+CD38−CD45RA−CD90+CD49f+ (CD49f+) phenotype (∼10% HSCs with >6-month repopulating activity in immunodeficient mice) displayed rapid increases in activated STAT1/3/5, extracellular signal-regulated kinase 1/2, AKT, CREB, and S6 by 1 or more of these GFs, and β-catenin only when the 5 GFs were combined. Certain minority subsets within the CD49f+ compartment were poorly GF-responsive and, among the more GF-responsive subsets of CD49f+ cells, different signaling intermediates correlated with the levels of the myeloid- and lymphoid-associated transcription factors measured. Phenotypically similar, but CD90−CD49f− cells (MPPs) contained lower baseline levels of multiple signaling intermediates than the CD90+CD49f+ cells, but showed similar response amplitudes to the same GFs. Importantly, we found activation or inhibition of AKT and β-catenin directly altered immediate CD49f+ cell survival and proliferation. These findings identify rapid signaling events that 5 GFs elicit directly in the most primitive human hematopoietic cell types to promote their survival and proliferation. PMID:27827829

  17. Distinct signaling programs control human hematopoietic stem cell survival and proliferation.

    PubMed

    Knapp, David J H F; Hammond, Colin A; Aghaeepour, Nima; Miller, Paul H; Pellacani, Davide; Beer, Philip A; Sachs, Karen; Qiao, Wenlian; Wang, WeiJia; Humphries, R Keith; Sauvageau, Guy; Zandstra, Peter W; Bendall, Sean C; Nolan, Garry P; Hansen, Carl; Eaves, Connie J

    2017-01-19

    Several growth factors (GFs) that together promote quiescent human hematopoietic stem cell (HSC) expansion ex vivo have been identified; however, the molecular mechanisms by which these GFs regulate the survival, proliferation. and differentiation of human HSCs remain poorly understood. We now describe experiments in which we used mass cytometry to simultaneously measure multiple surface markers, transcription factors, active signaling intermediates, viability, and cell-cycle indicators in single CD34(+) cord blood cells before and up to 2 hours after their stimulation with stem cell factor, Fms-like tyrosine kinase 3 ligand, interleukin-3, interleukin-6, and granulocyte colony-stimulating factor (5 GFs) either alone or combined. Cells with a CD34(+)CD38(-)CD45RA(-)CD90(+)CD49f(+) (CD49f(+)) phenotype (∼10% HSCs with >6-month repopulating activity in immunodeficient mice) displayed rapid increases in activated STAT1/3/5, extracellular signal-regulated kinase 1/2, AKT, CREB, and S6 by 1 or more of these GFs, and β-catenin only when the 5 GFs were combined. Certain minority subsets within the CD49f(+) compartment were poorly GF-responsive and, among the more GF-responsive subsets of CD49f(+) cells, different signaling intermediates correlated with the levels of the myeloid- and lymphoid-associated transcription factors measured. Phenotypically similar, but CD90(-)CD49f(-) cells (MPPs) contained lower baseline levels of multiple signaling intermediates than the CD90(+)CD49f(+) cells, but showed similar response amplitudes to the same GFs. Importantly, we found activation or inhibition of AKT and β-catenin directly altered immediate CD49f(+) cell survival and proliferation. These findings identify rapid signaling events that 5 GFs elicit directly in the most primitive human hematopoietic cell types to promote their survival and proliferation.

  18. Plasticity of hematopoietic stem cells.

    PubMed

    Ogawa, Makio; LaRue, Amanda C; Mehrotra, Meenal

    2015-01-01

    Almost two decades ago, a number of cell culture and preclinical transplantation studies suggested the striking concept of the tissue-reconstituting ability of hematopoietic stem cells (HSCs). While this heralded an exciting time of radically new therapies for disorders of many organs and tissues, the concept was soon mired by controversy and remained dormant. This chapter provides a brief review of evidence for HSC plasticity including our findings based on single HSC transplantation in mouse. These studies strongly support the concept that HSCs are pluripotent and may be the source for the majority, if not all, of the cell types in our body.

  19. Mouse lysocardiolipin acyltransferase controls the development of hematopoietic and endothelial lineages during in vitro embryonic stem-cell differentiation

    PubMed Central

    Wang, Chengyan; Faloon, Patrick W.; Tan, Zhijia; Lv, Yaxin; Zhang, Pengbo; Ge, Yu; Deng, Hongkui

    2007-01-01

    The blast colony-forming cell (BL-CFC) was identified as an equivalent to the hemangioblast during in vitro embryonic stem (ES) cell differentiation. However, the molecular mechanisms underlying the generation of the BL-CFC remain largely unknown. Here we report the isolation of mouse lysocardiolipin acyltransferase (Lycat) based on homology to zebrafish lycat, a candidate gene for the cloche locus. Mouse Lycat is expressed in hematopoietic organs and is enriched in the Lin−C-Kit+Sca-1+ hematopoietic stem cells in bone marrow and in the Flk1+/hCD4+(Scl+) hemangioblast population in embryoid bodies. The forced Lycat transgene leads to increased messenger RNA expression of hematopoietic and endothelial genes as well as increased blast colonies and their progenies, endothelial and hematopoietic lineages. The Lycat small interfering RNA transgene leads to a decrease expression of hematopoietic and endothelial genes. An unbiased genomewide microarray analysis further substantiates that the forced Lycat transgene specifically up-regulates a set of genes related to hemangioblasts and hematopoietic and endothelial lineages. Therefore, mouse Lycat plays an important role in the early specification of hematopoietic and endothelial cells, probably acting at the level of the hemangioblast. PMID:17675553

  20. Epigenetic regulation of hematopoietic stem cell aging

    SciTech Connect

    Beerman, Isabel

    2014-12-10

    Aging is invariably associated with alterations of the hematopoietic stem cell (HSC) compartment, including loss of functional capacity, altered clonal composition, and changes in lineage contribution. Although accumulation of DNA damage occurs during HSC aging, it is unlikely such consistent aging phenotypes could be solely attributed to changes in DNA integrity. Another mechanism by which heritable traits could contribute to the changes in the functional potential of aged HSCs is through alterations in the epigenetic landscape of adult stem cells. Indeed, recent studies on hematopoietic stem cells have suggested that altered epigenetic profiles are associated with HSC aging and play a key role in modulating the functional potential of HSCs at different stages during ontogeny. Even small changes of the epigenetic landscape can lead to robustly altered expression patterns, either directly by loss of regulatory control or through indirect, additive effects, ultimately leading to transcriptional changes of the stem cells. Potential drivers of such changes in the epigenetic landscape of aged HSCs include proliferative history, DNA damage, and deregulation of key epigenetic enzymes and complexes. This review will focus largely on the two most characterized epigenetic marks – DNA methylation and histone modifications – but will also discuss the potential role of non-coding RNAs in regulating HSC function during aging.

  1. Parasitic Infections in Hematopoietic Stem Cell Transplantation

    PubMed Central

    Jarque, Isidro; Salavert, Miguel; Pemán, Javier

    2016-01-01

    Parasitic infections are rarely documented in hematopoietic stem cell transplant recipients. However they may be responsible for fatal complications that are only diagnosed at autopsy. Increased awareness of the possibility of parasitic diseases both in autologous and allogeneic stem cell transplant patients is relevant not only for implementing preventive measures but also for performing an early diagnosis and starting appropriate therapy for these unrecognized but fatal infectious complications in hematopoietic transplant recipients. In this review, we will focus on parasitic diseases occurring in this population especially those with major clinical relevance including toxoplasmosis, American trypanosomiasis, leishmaniasis, malaria, and strongyloidiasis, among others, highlighting the diagnosis and management in hematopoietic transplant recipients. PMID:27413527

  2. The control of hematopoietic stem cell maintenance, self-renewal, and differentiation by Mysm1-mediated epigenetic regulation

    PubMed Central

    Wang, Tao; Nandakumar, Vijayalakshmi; Jiang, Xiao-Xia; Jones, Lindsey; Yang, An-Gang; Huang, Xue F.

    2013-01-01

    Epigenetic histone modifications play critical roles in the control of self-renewal and differentiation of hematopoietic stem cells (HSCs). Mysm1 is a recently identified histone H2A deubiquitinase with essential and intrinsic roles for maintaining functional HSCs. In this study, in addition to confirming this function of Mysm1, by using Mysm1-deficient (Mysm1−/−) mice, we provide more evidence for how Mysm1 controls HSC homeostasis. Mysm1 deletion drives HSCs from quiescence into rapid cycling and increases their apoptotic rate, resulting in an exhaustion of the stem cell pool, which leads to an impaired self-renewal and lineage reconstituting abilities in the Mysm1-deficient mice. Our study identified Gfi1 as one of the candidate genes responsible for the HSC defect in Mysm1-deficient mice. Mechanistic studies revealed that Mysm1 modulates histone modifications and directs the recruitment of key transcriptional factors such as Gata2 and Runx1 to the Gfi1 locus in HSCs. We found that Mysm1 directly associates with the Gfi1 enhancer element and promotes its transcription through Gata2 and Runx1 transactivation. Thus, our study not only elaborates on the initial reports of Mysm1 association with HSC homeostasis but also delineates a possible epigenetic mechanism through which Mysm1 carries out this function in the HSCs. PMID:24014243

  3. The role of CD44 in fetal and adult hematopoietic stem cell regulation.

    PubMed

    Cao, Huimin; Heazlewood, Shen Y; Williams, Brenda; Cardozo, Daniela; Nigro, Julie; Oteiza, Ana; Nilsson, Susan K

    2016-01-01

    Throughout development, hematopoietic stem cells migrate to specific microenvironments, where their fate is, in part, extrinsically controlled. CD44 standard as a member of the cell adhesion molecule family is extensively expressed within adult bone marrow and has been previously reported to play important roles in adult hematopoietic regulation via CD44 standard-ligand interactions. In this manuscript, CD44 expression and function are further assessed and characterized on both fetal and adult hematopoietic stem cells. Using a CD44(-/-) mouse model, conserved functional roles of CD44 are revealed throughout development. CD44 is critical in the maintenance of hematopoietic stem and progenitor pools, as well as in hematopoietic stem cell migration. CD44 expression on hematopoietic stem cells as well as other hematopoietic cells within the bone marrow microenvironment is important in the homing and lodgment of adult hematopoietic stem cells isolated from the bone/bone marrow interface. CD44 is also involved in fetal hematopoietic stem cell migration out of the liver, via a process involving stromal cell-derived factor-1α. The absence of CD44 in neonatal bone marrow has no impact on the size of the long-term reconstituting hematopoietic stem cell pool, but results in an enhanced long-term engraftment potential of hematopoietic stem cells.

  4. The role of CD44 in fetal and adult hematopoietic stem cell regulation

    PubMed Central

    Cao, Huimin; Heazlewood, Shen Y.; Williams, Brenda; Cardozo, Daniela; Nigro, Julie; Oteiza, Ana; Nilsson, Susan K.

    2016-01-01

    Throughout development, hematopoietic stem cells migrate to specific microenvironments, where their fate is, in part, extrinsically controlled. CD44 standard as a member of the cell adhesion molecule family is extensively expressed within adult bone marrow and has been previously reported to play important roles in adult hematopoietic regulation via CD44 standard-ligand interactions. In this manuscript, CD44 expression and function are further assessed and characterized on both fetal and adult hematopoietic stem cells. Using a CD44−/− mouse model, conserved functional roles of CD44 are revealed throughout development. CD44 is critical in the maintenance of hematopoietic stem and progenitor pools, as well as in hematopoietic stem cell migration. CD44 expression on hematopoietic stem cells as well as other hematopoietic cells within the bone marrow microenvironment is important in the homing and lodgment of adult hematopoietic stem cells isolated from the bone/bone marrow interface. CD44 is also involved in fetal hematopoietic stem cell migration out of the liver, via a process involving stromal cell-derived factor-1α. The absence of CD44 in neonatal bone marrow has no impact on the size of the long-term reconstituting hematopoietic stem cell pool, but results in an enhanced long-term engraftment potential of hematopoietic stem cells. PMID:26546504

  5. Osteoblasts and Bone Marrow Mesenchymal Stromal Cells Control Hematopoietic Stem Cell Migration and Proliferation in 3D In Vitro Model

    PubMed Central

    de Barros, Ana Paula D. N.; Takiya, Christina M.; Garzoni, Luciana R.; Leal-Ferreira, Mona Lisa; Dutra, Hélio S.; Chiarini, Luciana B.; Meirelles, Maria Nazareth; Borojevic, Radovan; Rossi, Maria Isabel D.

    2010-01-01

    Background Migration, proliferation, and differentiation of hematopoietic stem cells (HSCs) are dependent upon a complex three-dimensional (3D) bone marrow microenvironment. Although osteoblasts control the HSC pool, the subendosteal niche is complex and its cellular composition and the role of each cell population in HSC fate have not been established. In vivo models are complex and involve subtle species-specific differences, while bidimensional cultures do not reflect the 3D tissue organization. The aim of this study was to investigate in vitro the role of human bone marrow–derived mesenchymal stromal cells (BMSC) and active osteoblasts in control of migration, lodgment, and proliferation of HSCs. Methodology/Principal Findings A complex mixed multicellular spheroid in vitro model was developed with human BMSC, undifferentiated or induced for one week into osteoblasts. A clear limit between the two stromal cells was established, and deposition of extracellular matrix proteins fibronectin, collagens I and IV, laminin, and osteopontin was similar to the observed in vivo. Noninduced BMSC cultured as spheroid expressed higher levels of mRNA for the chemokine CXCL12, and the growth factors Wnt5a and Kit ligand. Cord blood and bone marrow CD34+ cells moved in and out the spheroids, and some lodged at the interface of the two stromal cells. Myeloid colony-forming cells were maintained after seven days of coculture with mixed spheroids, and the frequency of cycling CD34+ cells was decreased. Conclusions/Significance Undifferentiated and one-week osteo-induced BMSC self-assembled in a 3D spheroid and formed a microenvironment that is informative for hematopoietic progenitor cells, allowing their lodgment and controlling their proliferation. PMID:20161704

  6. [Hematopoietic stem cell transplantation in autoimmune diseases].

    PubMed

    Albarracín, Flavio; López Meiller, María José; Naswetter, Gustavo; Longoni, Héctor

    2008-01-01

    Transplantation of hematopoietic stem cells, which are capable of self renewal and reconstitution of all types of blood cells, can be a treatment for numerous potential lethal diseases, including leukemias and lymphomas. It may now be applicable for the treatment of severe autoimmune diseases, such as therapy-resistant multiple sclerosis, lupus and systemic sclerosis. Studies in animal models show that the transfer of hematopoietic stem cells can reverse autoimmunity. The outcome of ongoing clinical trials, as well as of studies in patients and animal models, will help to determine the role that stem-cell transplantation can play in the treatment of autoimmune diseases.

  7. Development of a Reliable, Low-cost, Controlled Cooling Rate Instrument for the Cryopreservation of Hematopoietic Stem Cells

    PubMed Central

    Shu, Zhiquan; Kang, Xianjiang; Chen, Hsiuhung; Zhou, Xiaoming; Purtteman, Jester; Yadock, David; Heimfeld, Shelly; Gao, Dayong

    2011-01-01

    An optimal cooling rate is one of the critical factors influencing the survival of cells during cryopreservation. In this paper we describe a novel device, named the box-in-box, which was developed for optimal cryopreservation of human hematopoietic stem cells (HSC). This work presents the design of the device, a mathematical formulation describing the expected temperature histories of samples during the freezing process, along with actual experimental results of thermal profile tests. In experiments, when the box-in-box device was transferred from room temperature to a −80 °C freezer, a cooling rate of −1~−3.5 °C/min, which has been widely used for the cryopreservation of HSC, was achieved. In order to further evaluate this device, HSC cryopreservation was compared between the box-in-box device and a commercially available controlled rate freezer (CryoMed). The experimental data, including total cell population and CD34+ hematopoietic progenitor cell recovery rates, viability, and cell culture colony assays, showed that box-in-box worked as well as CryoMed instrument. There was no significant difference in either survival rate or the culture/colony outcome between the two devices. In conclusion, the box-in-box device can work as a cheap, durable, reliable and maintenance-free instrument for the cryopreservation of HSC. This concept of a box-in-box may also be adapted to other cooling rates to support cryopreservation in a wide variety of tissues and cells. PMID:19929459

  8. Distinct Stromal Cell Factor Combinations Can Separately Control Hematopoietic Stem Cell Survival, Proliferation, and Self-Renewal

    PubMed Central

    Wohrer, Stefan; Knapp, David J.H.F.; Copley, Michael R.; Benz, Claudia; Kent, David G.; Rowe, Keegan; Babovic, Sonja; Mader, Heidi; Oostendorp, Robert A.J.; Eaves, Connie J.

    2014-01-01

    Summary Hematopoietic stem cells (HSCs) are identified by their ability to sustain prolonged blood cell production in vivo, although recent evidence suggests that durable self-renewal (DSR) is shared by HSC subtypes with distinct self-perpetuating differentiation programs. Net expansions of DSR-HSCs occur in vivo, but molecularly defined conditions that support similar responses in vitro are lacking. We hypothesized that this might require a combination of factors that differentially promote HSC viability, proliferation, and self-renewal. We now demonstrate that HSC survival and maintenance of DSR potential are variably supported by different Steel factor (SF)-containing cocktails with similar HSC-mitogenic activities. In addition, stromal cells produce other factors, including nerve growth factor and collagen 1, that can antagonize the apoptosis of initially quiescent adult HSCs and, in combination with SF and interleukin-11, produce >15-fold net expansions of DSR-HSCs ex vivo within 7 days. These findings point to the molecular basis of HSC control and expansion. PMID:24910437

  9. Murine hematopoietic stem cell dormancy controlled by induction of a novel short form of PSF1 by histone deacetylase inhibitors

    SciTech Connect

    Han, Yinglu; Gong, Zhi-Yuan; Takakura, Nobuyuki

    2015-06-10

    Hematopoietic stem cells (HSCs) can survive long-term in a state of dormancy. Little is known about how histone deacetylase inhibitors (HDACi) affect HSC kinetics. Here, we use trichostatin A (TSA), a histone deacetylase inhibitor, to enforce histone acetylation and show that this suppresses cell cycle entry by dormant HSCs. Previously, we found that haploinsufficiency of PSF1, a DNA replication factor, led to attenuation of the bone marrow (BM) HSC pool size and lack of acute proliferation after 5-FU ablation. Because PSF1 protein is present in CD34{sup +} transiently amplifying HSCs but not in CD34{sup −} long-term reconstituting-HSCs which are resting in a dormant state, we analyzed the relationship between dormancy and PSF1 expression, and how a histone deacetylase inhibitor affects this. We found that CD34{sup +} HSCs produce long functional PSF1 (PSF1a) but CD34{sup −} HSCs produce a shorter possibly non-functional PSF1 (PSF1b, c, dominantly PSF1c). Using PSF1a-overexpressing NIH-3T3 cells in which the endogenous PSF1 promoter is suppressed, we found that TSA treatment promotes production of the shorter form of PSF1 possibly by inducing recruitment of E2F family factors upstream of the PSF1 transcription start site. Our data document one mechanism by which histone deacetylase inhibitors affect the dormancy of HSCs by regulating the DNA replication factor PSF1. - Highlights: • Hematopoetic stem cell dormancy is controlled by histone deacetylation inhibitors. • Dormancy of HSCs is associated with a shorter form of non-functional PSF1. • Histone deacetylase inhibitors suppress PSF1 promoter activity.

  10. Hematopoietic stem cell engineering at a crossroads.

    PubMed

    Rivière, Isabelle; Dunbar, Cynthia E; Sadelain, Michel

    2012-02-02

    The genetic engineering of hematopoietic stem cells is the basis for potentially treating a large array of hereditary and acquired diseases, and stands as the paradigm for stem cell engineering in general. Recent clinical reports support the formidable promise of this approach but also highlight the limitations of the technologies used to date, which have on occasion resulted in clonal expansion, myelodysplasia, or leukemogenesis. New research directions, predicated on improved vector designs, targeted gene delivery or the therapeutic use of pluripotent stem cells, herald the advent of safer and more effective hematopoietic stem cell therapies that may transform medical practice. In this review, we place these recent advances in perspective, emphasizing the solutions emerging from a wave of new technologies and highlighting the challenges that lie ahead.

  11. Hematopoietic stem cells burn fat to prevent exhaustion.

    PubMed

    Lallemand-Breitenbach, Valerie; de Thé, Hugues

    2012-10-05

    Ito et al. (2012) recently report in Nature Medicine that fatty acid oxidation (FAO) regulated by PPARδ controls asymmetric division in hematopoietic stem cells (HSCs). This metabolic mechanism prevents HSC exhaustion and is downstream of the promyelocytic leukemia protein PML, suggesting therapeutic implications for HSC function and disease.

  12. The embryonic origins of hematopoietic stem cells: a tale of hemangioblast and hemogenic endothelium.

    PubMed

    Bollerot, Karine; Pouget, Claire; Jaffredo, Thierry

    2005-01-01

    The developmental origin of hematopoietic stem cells has been for decades the subject of great interest. Once thought to emerge from the yolk sac, hematopoietic stem cells have now been shown to originate from the embryonic aorta. Increasing evidence suggests that hematopoietic stem cells are produced from an endothelial intermediate designated by the authors as hemangioblast or hemogenic endothelium. Recently, the allantois in the avian embryo and the placenta in the mouse embryo were shown to be a site of hematopoietic cell production/expansion and thus appear to play a critical role in the formation of the hematopoietic system. In this review we shall give an overview of the data obtained from human, mouse and avian models on the cellular origins of the hematopoietic system and discuss some aspects of the molecular mechanisms controlling hematopoietic cell production.

  13. Hematopoietic stem cell origin of connective tissues.

    PubMed

    Ogawa, Makio; Larue, Amanda C; Watson, Patricia M; Watson, Dennis K

    2010-07-01

    Connective tissue consists of "connective tissue proper," which is further divided into loose and dense (fibrous) connective tissues and "specialized connective tissues." Specialized connective tissues consist of blood, adipose tissue, cartilage, and bone. In both loose and dense connective tissues, the principal cellular element is fibroblasts. It has been generally believed that all cellular elements of connective tissue, including fibroblasts, adipocytes, chondrocytes, and bone cells, are generated solely by mesenchymal stem cells. Recently, a number of studies, including those from our laboratory based on transplantation of single hematopoietic stem cells, strongly suggested a hematopoietic stem cell origin of these adult mesenchymal tissues. This review summarizes the experimental evidence for this new paradigm and discusses its translational implications.

  14. Hematopoietic stem cell transplantation for HIV cure

    PubMed Central

    Kuritzkes, Daniel R.

    2016-01-01

    The apparent cure of an HIV-infected person following hematopoietic stem cell transplantation (HSCT) from an allogeneic donor homozygous for the ccr5Δ32 mutation has stimulated the search for strategies to eradicate HIV or to induce long-term remission without requiring ongoing antiretroviral therapy. A variety of approaches, including allogeneic HSCT from CCR5-deficient donors and autologous transplantation of genetically modified hematopoietic stem cells, are currently under investigation. This Review covers the experience with HSCT in HIV infection to date and provides a survey of ongoing work in the field. The challenges of developing HSCT for HIV cure in the context of safe, effective, and convenient once-daily antiretroviral therapy are also discussed. PMID:26731468

  15. DNA methylation profiling of hematopoietic stem cells.

    PubMed

    Begtrup, Amber Hogart

    2014-01-01

    DNA methylation is a key epigenetic mark that is essential for properly functioning hematopoietic stem cells. Determining where functionally relevant DNA methylation marks exist in the genome is crucial to understanding the role that methylation plays in hematopoiesis. This chapter describes a method to profile DNA methylation by selectively enriching methylated DNA sequences that are bound in vitro by methyl-binding domain (MBD) proteins. The MBD-pulldown approach selects for DNA sequences that have the potential to be "read" by the endogenous machinery involved in epigenetic regulation. Furthermore, this approach is feasible with very small quantities of DNA, and is compatible with the use of any downstream high-throughput sequencing approach. This technique offers a reliable, simple, and powerful tool for exploration of the role of DNA methylation in hematopoietic stem cells.

  16. Hematopoietic stem cells are pluripotent and not just "hematopoietic".

    PubMed

    Ogawa, Makio; LaRue, Amanda C; Mehrotra, Meenal

    2013-06-01

    Over a decade ago, several preclinical transplantation studies suggested the striking concept of the tissue-reconstituting ability (often referred to as HSC plasticity) of hematopoietic stem cells (HSCs). While this heralded an exciting time of radically new therapies for disorders of many organs and tissues, the concept was soon mired in controversy and remained dormant for almost a decade. This commentary provides a concise review of evidence for HSC plasticity, including more recent findings based on single HSC transplantation in mouse and clinical transplantation studies. There is strong evidence for the concept that HSCs are pluripotent and are the source for the majority, if not all, of the cell types in our body. Also discussed are some biological and experimental issues that need to be considered in the future investigation of HSC plasticity.

  17. Critical role for NAD glycohydrolase in regulation of erythropoiesis by hematopoietic stem cells through control of intracellular NAD content.

    PubMed

    Nam, Tae-Sik; Park, Kwang-Hyun; Shawl, Asif Iqbal; Kim, Byung-Ju; Han, Myung-Kwan; Kim, Youngho; Moss, Joel; Kim, Uh-Hyun

    2014-06-06

    NAD glycohydrolases (NADases) catalyze the hydrolysis of NAD to ADP-ribose and nicotinamide. Although many members of the NADase family, including ADP-ribosyltransferases, have been cloned and characterized, the structure and function of NADases with pure hydrolytic activity remain to be elucidated. Here, we report the structural and functional characterization of a novel NADase from rabbit reticulocytes. The novel NADase is a glycosylated, glycosylphosphatidylinositol-anchored cell surface protein exclusively expressed in reticulocytes. shRNA-mediated knockdown of the NADase in bone marrow cells resulted in a reduction of erythroid colony formation and an increase in NAD level. Furthermore, treatment of bone marrow cells with NAD, nicotinamide, or nicotinamide riboside, which induce an increase in NAD content, resulted in a significant decrease in erythroid progenitors. These results indicate that the novel NADase may play a critical role in regulating erythropoiesis of hematopoietic stem cells by modulating intracellular NAD.

  18. Uhrf1 controls the self-renewal versus differentiation of hematopoietic stem cells by epigenetically regulating the cell-division modes.

    PubMed

    Zhao, Jingyao; Chen, Xufeng; Song, Guangrong; Zhang, Jiali; Liu, Haifeng; Liu, Xiaolong

    2017-01-10

    Hematopoietic stem cells (HSCs) are able to both self-renew and differentiate. However, how individual HSC makes the decision between self-renewal and differentiation remains largely unknown. Here we report that ablation of the key epigenetic regulator Uhrf1 in the hematopoietic system depletes the HSC pool, leading to hematopoietic failure and lethality. Uhrf1-deficient HSCs display normal survival and proliferation, yet undergo erythroid-biased differentiation at the expense of self-renewal capacity. Notably, Uhrf1 is required for the establishment of DNA methylation patterns of erythroid-specific genes during HSC division. The expression of these genes is enhanced in the absence of Uhrf1, which disrupts the HSC-division modes by promoting the symmetric differentiation and suppressing the symmetric self-renewal. Moreover, overexpression of one of the up-regulated genes, Gata1, in HSCs is sufficient to phenocopy Uhrf1-deficient HSCs, which show impaired HSC symmetric self-renewal and increased differentiation commitment. Taken together, our findings suggest that Uhrf1 controls the self-renewal versus differentiation of HSC through epigenetically regulating the cell-division modes, thus providing unique insights into the relationship among Uhrf1-mediated DNA methylation, cell-division mode, and HSC fate decision.

  19. Proinflammatory signaling regulates hematopoietic stem cell emergence

    PubMed Central

    Espín-Palazón, Raquel; Stachura, David L.; Campbell, Clyde A.; García-Moreno, Diana; Cid, Natasha Del; Kim, Albert D.; Candel, Sergio; Meseguer, José; Mulero, Victoriano; Traver, David

    2014-01-01

    Summary Hematopoietic stem cells (HSCs) underlie the production of blood and immune cells for the lifetime of an organism. In vertebrate embryos, HSCs arise from the unique transdifferentiation of hemogenic endothelium comprising the floor of the dorsal aorta during a brief developmental window. To date, this process has not been replicated in vitro from pluripotent precursors, partly because the full complement of required signaling inputs remains to be determined. Here, we show that TNFR2 via TNFα activates the Notch and NF-κB signaling pathways to establish HSC fate, indicating a requirement for inflammatory signaling in HSC generation. We determine that primitive neutrophils are the major source of TNFα, assigning a role for transient innate immune cells in establishing the HSC program. These results demonstrate that proinflammatory signaling, in the absence of infection, is utilized by the developing embryo to generate the lineal precursors of the adult hematopoietic system. PMID:25416946

  20. Mobilization of hematopoietic stem cells into the peripheral blood.

    PubMed

    Damon, Lloyd E; Damon, Lauren E

    2009-12-01

    Hematopoietic stem cells can be mobilized out of the bone marrow into the blood for the reconstitution of hematopoiesis following high-dose therapy. Methods to improve mobilization efficiency and yields are rapidly emerging. Traditional methods include chemotherapy with or without myeloid growth factors. Plerixafor, a novel agent that disrupts the CXCR4-CXCL12 bond, the primary hematopoietic stem cell anchor in the bone marrow, has recently been US FDA-approved for mobilizing hematopoietic stem cells in patients with non-Hodgkin lymphoma and multiple myeloma. Plerixafor and myeloid growth factors as single agents appear safe to use in family or volunteer hematopoietic stem cells donors. Plerixafor mobilizes leukemic stem cells and is not approved for use in patients with acute leukemia. Patients failing to mobilize adequate hematopoietic stem cells with myeloid growth factors can often be successfully mobilized with chemotherapy plus myeloid growth factors or with plerixafor and granulocyte colony-stimulating factor.

  1. Hematopoietic Stem Cell Expansion and Gene Therapy

    PubMed Central

    Watts, Korashon Lynn; Adair, Jennifer; Kiem, Hans-Peter

    2012-01-01

    Hematopoietic stem cell (HSC) gene therapy remains a highly attractive treatment option for many disorders including hematologic conditions, immunodeficiencies including HIV/AIDS, and other genetic disorders like lysosomal storage diseases, among others. In this review, we discuss the successes, side effects, and limitations of current gene therapy protocols. In addition, we describe the opportunities presented by implementing ex vivo expansion of gene-modified HSCs, as well as summarize the most promising ex vivo expansion techniques currently available. We conclude by discussing how some of the current limitations of HSC gene therapy could be overcome by combining novel HSC expansion strategies with gene therapy. PMID:21999373

  2. Hematopoietic stem cell transplantation for osteopetrosis.

    PubMed

    Steward, Colin G

    2010-02-01

    Osteopetrosis is the generic name for a group of diseases caused by deficient formation or function of osteoclasts, inherited in either autosomal recessive or dominant fashion. Osteopetrosis varies in severity from a disease that may kill infants to an incidental radiological finding in adults. It is increasingly clear that prognosis is governed by which gene is affected, making detailed elucidation of the cause of the disease a critical component of optimal care, including the decision on whether hematopoietic stem cell transplantation is appropriate. This article reviews the characteristics and management of osteopetrosis.

  3. [Pegfilgrastim in hematopoietic stem cell transplantation].

    PubMed

    Fernández Alvarez, R

    2010-12-01

    Pegylation implies progress in filgrastim therapy. The addition of one molecule of polyethylene glycol (PEG) increases the drug's half-life by reducing renal excretion. A single dose of pegfilgrastim is equivalent to a daily administration of G-CSF for recovering from neutropenia after cancer chemotherapy. Pegfilgrastim is also useful to mobilize hematopoietic stem cells. Several studies have researched its efficacy in this context, in patients with myeloma or lymphoma. Outcomes suggest that it has an efficacy similar to daily G-CSF. In allogeneic donors, a single 12-mg dose of pegfilgrastim produces sufficient increase of CD34+ in peripheral blood, with acceptable toxicity. There is interest on the data about the various functional and biologic properties of hematopoietic stem cells mobilized with pegfilgrastim compared to G-CSF, and on the effect that these differences may have on the graft composition. The administration of a single dose of pegfilgrastim after autologous transplantation has been shown to shorten the time for leukocyte recovery in a manner similar to G-CSF

  4. p19INK4d Controls Hematopoietic Stem Cells in a Cell-Autonomous Manner during Genotoxic Stress and through the Microenvironment during Aging

    PubMed Central

    Hilpert, Morgane; Legrand, Céline; Bluteau, Dominique; Balayn, Natalie; Betems, Aline; Bluteau, Olivier; Villeval, Jean-Luc; Louache, Fawzia; Gonin, Patrick; Debili, Najet; Plo, Isabelle; Vainchenker, William; Gilles, Laure; Raslova, Hana

    2014-01-01

    Summary Hematopoietic stem cells (HSCs) are characterized by the capacity for self-renewal and the ability to reconstitute the entire hematopoietic compartment. Thrombopoietin maintains adult HSCs in a quiescent state through the induction of cell cycle inhibitors p57Kip2 and p19INK4d. Using the p19INK4d−/− mouse model, we investigated the role of p19INK4d in basal and stress-induced hematopoiesis. We demonstrate that p19INK4d is involved in the regulation of HSC quiescence by inhibition of the G0/G1 cell cycle transition. Under genotoxic stress conditions, the absence of p19INK4d in HSCs leads to accelerated cell cycle exit, accumulation of DNA double-strand breaks, and apoptosis when cells progress to the S/G2-M stages of the cell cycle. Moreover, p19INK4d controls the HSC microenvironment through negative regulation of megakaryopoiesis. Deletion of p19INK4d results in megakaryocyte hyperproliferation and increased transforming growth factor β1 secretion. This leads to fibrosis in the bone marrow and spleen, followed by loss of HSCs during aging. PMID:25458892

  5. Cell cycle regulation of hematopoietic stem or progenitor cells.

    PubMed

    Hao, Sha; Chen, Chen; Cheng, Tao

    2016-05-01

    The highly regulated process of blood production is achieved through the hierarchical organization of hematopoietic stem cell (HSC) subsets and their progenies, which differ in self-renewal and differentiation potential. Genetic studies in mice have demonstrated that cell cycle is tightly controlled by the complex interplay between extrinsic cues and intrinsic regulatory pathways involved in HSC self-renewal and differentiation. Deregulation of these cellular programs may transform HSCs or hematopoietic progenitor cells (HPCs) into disease-initiating stem cells, and can result in hematopoietic malignancies such as leukemia. While previous studies have shown roles for some cell cycle regulators and related signaling pathways in HSCs and HPCs, a more complete picture regarding the molecular mechanisms underlying cell cycle regulation in HSCs or HPCs is lacking. Based on accumulated studies in this field, the present review introduces the basic components of the cell cycle machinery and discusses their major cellular networks that regulate the dormancy and cell cycle progression of HSCs. Knowledge on this topic would help researchers and clinicians to better understand the pathogenesis of relevant blood disorders and to develop new strategies for therapeutic manipulation of HSCs.

  6. Pericytes, integral components of adult hematopoietic stem cell niches.

    PubMed

    Sá da Bandeira, D; Casamitjana, J; Crisan, M

    2017-03-01

    The interest in perivascular cells as a niche for adult hematopoietic stem cells (HSCs) is significantly growing. In the adult bone marrow (BM), perivascular cells and HSCs cohabit. Among perivascular cells, pericytes are precursors of mesenchymal stem/stromal cells (MSCs) that are capable of differentiating into osteoblasts, adipocytes and chondrocytes. In situ, pericytes are recognised by their localisation to the abluminal side of the blood vessel wall and closely associated with endothelial cells, in combination with the expression of markers such as CD146, neural glial 2 (NG2), platelet derived growth factor receptor β (PDGFRβ), α-smooth muscle actin (α-SMA), nestin (Nes) and/or leptin receptor (LepR). However, not all pericytes share a common phenotype: different immunophenotypes can be associated with distinct mesenchymal features, including hematopoietic support. In adult BM, arteriolar and sinusoidal pericytes control HSC behaviour, maintenance, quiescence and trafficking through paracrine effects. Different groups identified and characterized hematopoietic supportive pericyte subpopulations using various markers and mouse models. In this review, we summarize recent work performed by others to understand the role of the perivascular niche in the biology of HSCs in adults, as well as their importance in the development of therapies.

  7. Impact of chronic GVHD therapy on the development of squamous-cell cancers after hematopoietic stem-cell transplantation: an international case-control study.

    PubMed

    Curtis, Rochelle E; Metayer, Catherine; Rizzo, J Douglas; Socié, Gérard; Sobocinski, Kathleen A; Flowers, Mary E D; Travis, William D; Travis, Lois B; Horowitz, Mary M; Deeg, H Joachim

    2005-05-15

    Previous studies of recipients of hematopoietic stem-cell transplants suggest that graft-versus-host disease (GVHD) and its therapy may increase the risk for solid cancers, particularly squamous-cell carcinomas (SCCs) of the buccal cavity and skin. However, the importance and magnitude of these associations are not well characterized. We conducted a case-control study of 183 patients with posttransplantation solid cancers (58 SCCs, 125 non-SCCs) and 501 matched control patients within a cohort of 24,011 patients who underwent hematopoietic stem-cell transplantation (HSCT) at 215 centers worldwide. Our results showed that chronic GVHD and its therapy were strongly related to the risk for SCC, whereas no increase in risk was found for non-SCCs. Major risk factors for the development of SCC were long duration of chronic GVHD therapy (P < .001); use of azathioprine, particularly when combined with cyclosporine and steroids (P < .001); and severe chronic GVHD (P = .004). Given that most patients who received prolonged immunosuppressive therapy and those with severe chronic GVHD were also treated with azathioprine, the independent effects of these factors could not be evaluated. Additional analyses determined that prolonged immunosuppressive therapy and azathioprine use were also significant risk factors for SCC of the skin and of the oral mucosa. These data provide further encouragement for strategies to prevent chronic GVHD and for the development of more effective and less carcinogenic treatment regimens for patients with moderate or severe chronic GVHD. Our results also suggest that clinical screening for SCC is appropriate among patients exposed to persistent chronic GVHD, prolonged immunosuppressive therapy, or both.

  8. Ex vivo expansion of hematopoietic stem cells.

    PubMed

    Xie, JingJing; Zhang, ChengCheng

    2015-09-01

    Ex vivo expansion of hematopoietic stem cells (HSCs) would benefit clinical applications in several aspects, to improve patient survival, utilize cord blood stem cells for adult applications, and selectively propagate stem cell populations after genetic manipulation. In this review we summarize and discuss recent advances in the culture systems of mouse and human HSCs, which include stroma/HSC co-culture, continuous perfusion and fed-batch cultures, and those supplemented with extrinsic ligands, membrane transportable transcription factors, complement components, protein modification enzymes, metabolites, or small molecule chemicals. Some of the expansion systems have been tested in clinical trials. The optimal condition for ex vivo expansion of the primitive and functional human HSCs is still under development. An improved understanding of the mechanisms for HSC cell fate determination and the HSC culture characteristics will guide development of new strategies to overcome difficulties. In the future, development of a combination treatment regimen with agents that enhance self-renewal, block differentiation, and improve homing will be critical. Methods to enhance yields and lower cost during collection and processing should be employed. The employment of an efficient system for ex vivo expansion of HSCs will facilitate the further development of novel strategies for cell and gene therapies including genome editing.

  9. Tuberculosis in Hematopoietic Stem Cell Transplant Recipients

    PubMed Central

    Ramos, Jéssica Fernandes; Batista, Marjorie Vieira; Costa, Silvia Figueiredo

    2013-01-01

    Literature on tuberculosis (TB) occurring in recipients of Hematopoietic Stem Cell Transplant (HSCT) is scanty even in countries where TB is common. Most reports of TB in HSCT patients were from ASIA, in fact the TB incidence ranging from 0.0014 (USA) to 16% (Pakistan). There are few reports of TB diagnosis during the first two weeks after HSCT; most of cases described in the literature occurred after 90 days of HSCT, and the lung was the organ most involved. The mortality ranged from 0 to 50% and is higher in allogeneic HSCT than in autologous. There is no consensus regarding the screening with tuberculin skin test or QuantiFERON-TB gold, primary prophylaxis for latent TB, and whether the epidemiologic query should be emphasized in developing countries with high prevalence of TB. PMID:24363876

  10. Sustained telomere erosion due to increased stem cell turnover during triple autologous hematopoietic stem cell transplantation.

    PubMed

    Widmann, Thomas; Kneer, Harald; König, Jochem; Herrmann, Markus; Pfreundschuh, Michael

    2008-01-01

    Telomeres cap chromosomal ends and are shortened throughout a lifetime. Additional telomere erosion has been documented during conventional chemotherapy or hematopoietic stem cell transplantation. Previous studies of stem cell transplantation reported variable amounts of telomere shortening with inconsistent results regarding the persistence of telomere shortening. Here we have prospectively studied telomere length and proliferation kinetics of hematopoietic cells in aggressive non-Hodgkin lymphoma patients who underwent a four-course high-dose chemotherapy protocol combined with triple autologous stem cell transplantation. We observed sustained telomere shortening in hematopoietic cells after triple stem cell transplantation with prolonged stem cell replication during the first year after stem cell transplantation.

  11. Lnk controls mouse hematopoietic stem cell self-renewal and quiescence through direct interactions with JAK2

    PubMed Central

    Bersenev, Alexey; Wu, Chao; Balcerek, Joanna; Tong, Wei

    2008-01-01

    In addition to its role in megakaryocyte production, signaling initiated by thrombopoietin (TPO) activation of its receptor, myeloproliferative leukemia virus protooncogene (c-Mpl, or Mpl), controls HSC homeostasis and self-renewal. Under steady-state conditions, mice lacking the inhibitory adaptor protein Lnk harbor an expanded HSC pool with enhanced self-renewal. We found that HSCs from Lnk–/– mice have an increased quiescent fraction, decelerated cell cycle kinetics, and enhanced resistance to repeat treatments with cytoablative 5-fluorouracil in vivo compared with WT HSCs. We further provide genetic evidence demonstrating that Lnk controls HSC quiescence and self-renewal, predominantly through Mpl. Consistent with this observation, Lnk–/– HSCs displayed potentiated activation of JAK2 specifically in response to TPO. Biochemical experiments revealed that Lnk directly binds to phosphorylated tyrosine residues in JAK2 following TPO stimulation. Of note, the JAK2 V617F mutant, found at high frequencies in myeloproliferative diseases, retains the ability to bind Lnk. Therefore, we identified Lnk as a physiological negative regulator of JAK2 in stem cells and TPO/Mpl/JAK2/Lnk as a major regulatory pathway in controlling stem cell self-renewal and quiescence. PMID:18618018

  12. FHL2 regulates hematopoietic stem cell functions under stress conditions

    PubMed Central

    Hou, Yu; Wang, Xiaoqin; Li, LiPing; Fan, Rong; Chen, Ju; Zhu, Tongyu; Li, Wen; Jiang, Yanwen; Mittal, Nupur; Wu, Wenshu; Peace, David; Qian, Zhijian

    2014-01-01

    FHL2, a member of the four and one half LIM domain protein family, is a critical transcriptional modulator. Here, we identify FHL2 as a critical regulator of hematopoietic stem cells (HSCs) that is essential for maintaining HSC self-renewal under regenerative stress. We find that Fhl2 loss has limited effects on hematopoiesis under homeostatic conditions. In contrast, Fhl2-null chimeric mice reconstituted with Fhl2-null bone marrow cells developed abnormal hematopoiesis with significantly reduced numbers of HSCs, hematopoietic progenitor cells (HPCs), red blood cells and platelets as well as hemoglobin levels. In addition, HSCs displayed a significantly reduced self-renewal capacity and were skewed toward myeloid lineage differentiation. We find that Fhl2 loss reduces both HSC quiescence and survival in response to regenerative stress, probably as a consequence of Fhl2-loss-mediated down-regulation of cyclin dependent kinase (CDK)-inhibitors, including p21(Cip) and p27(Kip1). Interestingly, FHL2 is regulated under control of a tissue specific promoter in hematopoietic cells and it is down-regulated by DNA hypermethylation in the leukemia cell line and primary leukemia cells. Furthermore, we find that down-regulation of FHL2 frequently occurs in myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) patients, raising a possibility that FHL2 down-regulation plays a role in the pathogenesis of myeloid malignancies. PMID:25179730

  13. Gs signaling in osteoblasts and hematopoietic stem cells.

    PubMed

    Kronenberg, Henry M

    2010-03-01

    The heterotrimeric G protein Gs is a major mediator of the actions of several G protein-coupled receptors that target cells of the osteoblast lineage. For this reason, we generated chimeric mice with normal host cells and cells derived from embryonic stem cells missing the gene encoding the alpha subunit of Gs. While the mutant cells contributed to cortical osteoblasts and to hematopoietic cells in the liver, the marrow space contained few if any osteoblasts or hematopoietic cells missing Gs. Subsequent studies using the Cre-lox approach to delete Gsalpha from early cells of the osteoblast lineage and from hematopoietic stem cells were performed. These studies demonstrated the crucial roles of Gsalpha in osteoblastic cells in regulating the differentiation of osteoblasts and in supporting B-cell development as well as the essential role for Gsalpha in hematopoietic stem cells in allowing the homing of these cells to the marrow.

  14. All hematopoietic stem cells engraft in submyeloablatively irradiated mice.

    PubMed

    Forgacova, Katarina; Savvulidi, Filipp; Sefc, Ludek; Linhartova, Jana; Necas, Emanuel

    2013-05-01

    Significant controversy exists regarding the impact of hematopoietic stroma damage by irradiation on the efficiency of engraftment of intravenously transplanted stem cells. It was previously demonstrated that in normal syngenic mice, all intravenously transplanted donor stem cells, present in the bone marrow, compete equally with those of the host. In this study, we comprehensively compared the blood cell production derived from transplanted donor stem cells with that from the host stem cells surviving various doses of submyeloablative irradiation. We compared the partial chimerism resulting from transplantation with theoretical estimates that assumed transplantation efficiencies ranging from 100% to 20%. The highest level of consensus between the experimental and the theoretical results was 100% for homing and engraftment (ie, the utilization of all transplanted stem cells). These results point to a very potent mechanism through which intravenously administered hematopoietic stem cells are captured from circulation, engraft in the hematopoietic tissue, and contribute to blood cell production in irradiated recipients. The damage done to hematopoietic stroma and to the trabecular bone by submyeloablative doses of ionizing radiation does not negatively affect the homing and engraftment mechanisms of intravenously transplanted hematopoietic progenitor and stem cells.

  15. Hematopoietic stem cell transplantation in thalassemia and sickle cell anemia.

    PubMed

    Lucarelli, Guido; Isgrò, Antonella; Sodani, Pietro; Gaziev, Javid

    2012-05-01

    The globally widespread single-gene disorders β-thalassemia and sickle cell anemia (SCA) can only be cured by allogeneic hematopoietic stem cell transplantation (HSCT). HSCT treatment of thalassemia has substantially improved over the last two decades, with advancements in preventive strategies, control of transplant-related complications, and preparative regimens. A risk class-based transplantation approach results in disease-free survival probabilities of 90%, 84%, and 78% for class 1, 2, and 3 thalassemia patients, respectively. Because of disease advancement, adult thalassemia patients have a higher risk for transplant-related toxicity and a 65% cure rate. Patients without matched donors could benefit from haploidentical mother-to-child transplantation. There is a high cure rate for children with SCA who receive HSCT following myeloablative conditioning protocols. Novel non-myeloablative transplantation protocols could make HSCT available to adult SCA patients who were previously excluded from allogeneic stem cell transplantation.

  16. Distinct Brca1 Mutations Differentially Reduce Hematopoietic Stem Cell Function.

    PubMed

    Mgbemena, Victoria E; Signer, Robert A J; Wijayatunge, Ranjula; Laxson, Travis; Morrison, Sean J; Ross, Theodora S

    2017-01-24

    BRCA1 is a well-known DNA repair pathway component and a tissue-specific tumor suppressor. However, its role in hematopoiesis is uncertain. Here, we report that a cohort of patients heterozygous for BRCA1 mutations experienced more hematopoietic toxicity from chemotherapy than those with BRCA2 mutations. To test whether this reflects a requirement for BRCA1 in hematopoiesis, we generated mice with Brca1 mutations in hematopoietic cells. Mice homozygous for a null Brca1 mutation in the embryonic hematopoietic system (Vav1-iCre;Brca1(F22-24/F22-24)) developed hematopoietic defects in early adulthood that included reduced hematopoietic stem cells (HSCs). Although mice homozygous for a huBRCA1 knockin allele (Brca1(BRCA1/BRCA1)) were normal, mice with a mutant huBRCA1/5382insC allele and a null allele (Mx1-Cre;Brca1(F22-24/5382insC)) had severe hematopoietic defects marked by a complete loss of hematopoietic stem and progenitor cells. Our data show that Brca1 is necessary for HSC maintenance and normal hematopoiesis and that distinct mutations lead to different degrees of hematopoietic dysfunction.

  17. Major complications following hematopoietic stem cell transplantation.

    PubMed

    Afessa, Bekele; Peters, Steve G

    2006-06-01

    Tens of thousands of patients undergo hematopoietic stem cell transplantation (HSCT) annually, 15 to 40% of whom are admitted to the intensive care unit. Pulmonary complications are the most life threatening conditions that develop in HSCT recipients. Both infectious and noninfectious complications occur more frequently in allogeneic HSCT. The management of HSCT recipients requires knowledge of their immune status, appropriate diagnostic evaluation, and early treatment. During the pre-engraftment phase (0 to 30 days after transplant), the most prevalent pathogens causing infection are bacteria and Candida species and, if the neutropenia persists, Aspergillus species. The early post-engraftment phase (30 to 100 days) is characterized by cytomegalovirus (CMV), Pneumocystis jiroveci, and Aspergillus infections. During the late posttransplant phase (> 100 days), allogeneic HSCT recipients are at risk for CMV, community-acquired respiratory virus, and encapsulated bacterial infections. Antigen and polymerase chain reaction assays are important for the diagnosis of CMV and Aspergillus infections. Diffuse alveolar hemorrhage (DAH) and peri-engraftment respiratory distress syndrome occur in both allogeneic and autologous HSCT recipients, usually during the first 30 days. Bronchiolitis obliterans occurs exclusively in allogeneic HSCT recipients with graft versus host disease. Idiopathic pneumonia syndrome occurs at any time following transplant. Bronchoscopy is usually helpful for the diagnosis of the infectious pulmonary complications and DAH.

  18. The regulation of hematopoietic stem cell populations

    PubMed Central

    Mayani, Hector

    2016-01-01

    Evidence presented over the last few years indicates that the hematopoietic stem cell (HSC) compartment comprises not just one but a number of different cell populations. Based on HSCs’ proliferation and engraftment potential, it has been suggested that there are two classes of HSC, with long- and short-term engraftment potential. HSC heterogeneity seems to involve differentiation capacities as well, since it has been shown that some HSC clones are able to give rise to both myeloid and lymphoid progeny, whereas others are lymphoid deficient. It has been recognized that HSC function depends on intrinsic cell regulators, which are modulated by external signals. Among the former, we can include transcription factors and non-coding RNAs as well as epigenetic modifiers. Among the latter, cytokines and extracellular matrix molecules have been implicated. Understanding the elements and mechanisms that regulate HSC populations is of significant relevance both in biological and in clinical terms, and research in this area still has to face several complex and exciting challenges. PMID:27408695

  19. Hematopoietic stem cells for cancer immunotherapy.

    PubMed

    Gschweng, Eric; De Oliveira, Satiro; Kohn, Donald B

    2014-01-01

    Hematopoietic stem cells (HSCs) provide an attractive target for immunotherapy of cancer and leukemia by the introduction of genes encoding T-cell receptors (TCRs) or chimeric antigen receptors (CARs) directed against tumor-associated antigens. HSCs engraft for long-term blood cell production and could provide a continuous source of targeted anti-cancer effector cells to sustain remissions. T cells produced de novo from HSCs may continuously replenish anti-tumor T cells that have become anergic or exhausted from ex vivo expansion or exposure to the intratumoral microenvironment. In addition, transgenic T cells produced in vivo undergo allelic exclusion, preventing co-expression of an endogenous TCR that could mis-pair with the introduced TCR chains and blunt activity or even cause off-target reactivity. CAR-engineered HSCs may produce myeloid and natural killer cells in addition to T cells expressing the CAR, providing broader anti-tumor activity that arises quickly after transplant and does not solely require de novo thymopoiesis. Use of TCR- or CAR-engineered HSCs would likely require cytoreductive conditioning to achieve long-term engraftment, and this approach may be used in clinical settings where autologous HSC transplant is being performed to add a graft-versus-tumor effect. Results of experimental and preclinical studies performed to date are reviewed.

  20. ETS transcription factors in hematopoietic stem cell development.

    PubMed

    Ciau-Uitz, Aldo; Wang, Lu; Patient, Roger; Liu, Feng

    2013-12-01

    Hematopoietic stem cells (HSCs) are essential for the maintenance of the hematopoietic system. However, these cells cannot be maintained or created in vitro, and very little is known about their generation during embryogenesis. Many transcription factors and signaling pathways play essential roles at various stages of HSC development. Members of the ETS ('E twenty-six') family of transcription factors are recognized as key regulators within the gene regulatory networks governing hematopoiesis, including the ontogeny of HSCs. Remarkably, although all ETS transcription factors bind the same DNA consensus sequence and overlapping tissue expression is observed, individual ETS transcription factors play unique roles in the development of HSCs. Also, these transcription factors are recurrently used throughout development and their functions are context-dependent, increasing the challenge of studying their mechanism of action. Critically, ETS factors also play roles under pathological conditions, such as leukemia and, therefore, deciphering their mechanism of action will not only enhance our knowledge of normal hematopoiesis, but also inform protocols for their creation in vitro from pluripotent stem cells and the design of new therapeutic approaches for the treatment of malignant blood cell diseases. In this review, we summarize the key findings on the roles of ETS transcription factors in HSC development and discuss novel mechanisms by which they could control hematopoiesis.

  1. Unrelated hematopoietic stem cell registry and the role of the Hematopoietic Stem Cell Bank

    PubMed Central

    Beom, Su-Hee; Kim, Eung Jo; Kim, Miok

    2016-01-01

    Background The hematopoietic stem cell bank has been actively recruiting registrants since 1994. This study systematically reviews its operations and outcomes over the last 20 years. Methods Retrospective data on a total of 47,711 registrants were reviewed. Relevant data were processed using PASW Statistics for Windows, version 18.0. Results As of 2013, the Korean Network for Organ Sharing database contained 265,307 registrants. Of these, 49,037 (18%) registrants committed to hematopoietic cell donation from 1994 to 2013. Fifty-seven percent of the registrants were men, and 43% were women. The reasons for opting out of the registry included refusal to donate (70%), family refusal (28%), and others (2%). The donation willingness of registrants was significantly higher than those who refused to receive a mail to confirm their continued enrollment (χ2=6.103, P=0.013). The bank successfully coordinated a total of 512 donors among newly matched donors from 1995 to 2013, of which the bone marrow and peripheral blood stem cell accounted for 40.8% and 59.2% of the total donations, respectively. Conclusion Our recruitment activities focus on promoting voluntary registration and the importance of updating personal contact information. We expect that these data may be useful for diverse studies and demonstrate the positive impacts on the donation program. PMID:27382555

  2. The Fanconi anemia pathway controls oncogenic response in hematopoietic stem and progenitor cells by regulating PRMT5-mediated p53 arginine methylation

    PubMed Central

    Du, Wei; Amarachintha, Surya; Erden, Ozlem; Wilson, Andrew; Pang, Qishen

    2016-01-01

    The Fanconi anemia (FA) pathway is involved in DNA damage and other cellular stress responses. We have investigated the role of the FA pathway in oncogenic stress response by employing an in vivo stress-response model expressing the Gadd45β-luciferase transgene. Using two inducible models of oncogenic activation (LSL-K-rasG12D and MycER), we show that hematopoietic stem and progenitor cells (HSPCs) from mice deficient for the FA core complex components Fanca or Fancc exhibit aberrant short-lived response to oncogenic insults. Mechanistic studies reveal that FA deficiency in HSPCs impairs oncogenic stress-induced G1 cell-cycle checkpoint, resulting from a compromised K-rasG12D-induced arginine methylation of p53 mediated by the protein arginine methyltransferase 5 (PRMT5). Furthermore, forced expression of PRMT5 in HSPCs from LSL-K-rasG12D/CreER-Fanca−/− mice prolongs oncogenic response and delays leukemia development in recipient mice. Our study defines an arginine methylation-dependent FA-p53 interplay that controls oncogenic stress response. PMID:27507053

  3. Concise review: hematopoietic stem cells and tissue stem cells: current concepts and unanswered questions.

    PubMed

    Metcalf, Donald

    2007-10-01

    The term hematopoietic stem cells has at times been used to include a miscellany of precursor cells ranging from multipotential self-generating cells to lineage-restricted progenitors with little capacity for self-generation. It is probable that the stem cells of other tissues also vary widely in their multipotentiality and proliferative capacity. This review questions several dogmas regarding the self-generative capacity of various hematopoietic cells, the single episodic origin of hematopoietic cells, and the irreversible nature of progressive mature cell formation in individual hematopoietic lineages. Disclosure of potential conflicts of interest is found at the end of this article.

  4. Bone Niches, Hematopoietic Stem Cells, and Vessel Formation

    PubMed Central

    Tamma, Roberto; Ribatti, Domenico

    2017-01-01

    Bone marrow (BM) is a source of hematopoietic stem cells (HSCs). HSCs are localized in both the endosteum, in the so-called endosteal niche, and close to thin-walled and fenestrated sinusoidal vessel in the center of BM, in the so-called vascular niche. HSCs give rise to all types of mature blood cells through a process finely controlled by numerous signals emerging from the bone marrow niches where HSCs reside. This review will focus on the description of the role of BM niches in the control of the fate of HSCs and will also highlight the role of the BM niches in the regulation of vasculogenesis and angiogenesis. Moreover, alterations of the signals in niche microenvironment are involved in many aspects of tumor progression and vascularization and further knowledge could provide the basis for the development of new therapeutic strategies. PMID:28098778

  5. Children's lived experiences of hematopoietic stem cell transplantation.

    PubMed

    Manookian, Arpi; Nasrabadi, Alireza Nikbakht; Asadi, Monireh

    2014-09-01

    Although hematopoietic stem cell transplantation is a valuable treatment in many life-threatening pediatric disorders, a large number of children who receive hematopoietic stem cell transplantation are faced with a variety of physical and psychological problems throughout this process. In this study, we explored the lived experiences of these children during their treatment to provide a better understanding of their main concerns, emotions, and expectations. The participants were six children, aged between 6 and 17 years, who underwent hematopoietic stem cell transplantation. Data were collected through individual, in-depth, and semistructured interviews. Using interpretive phenomenological analysis, the findings revealed that the children experienced "transplantation rejoicing" in this "difficult passage", which was associated with "deepening of family ties". Awareness of these experiences, feelings, and concerns can help in the development of more professional interventions to provide children with holistic care during their hospitalization.

  6. A randomized double blind control trial comparing filgrastim and pegfilgrastim in cyclophosphamide peripheral blood hematopoietic stem cell mobilization.

    PubMed

    Kuan, Jew-Win; Su, Anselm-Ting; Wong, Shu-Ping; Sim, Xavier Yoon-Han; Toh, See-Guan; Ong, Tee-Chuan; Rajasuriarr, Jay-Suria; Lim, Su-Hong; Guan, Yong-Khee; Liew, Hong-Keng; Liew, Pek-Kuen; Tan, Jerome Tsen-Chuen; Kori, Ahlam-Naila; Cheng, Yuin-Yin; Tan, Sen-Mui; Chang, Kian-Meng

    2015-10-01

    There are few randomized trials comparing filgrastim and pegfilgrastim in peripheral blood stem cell mobilization (PBSCM). None of the trials studied the effects of the timing of pegfilgrastim administration on the outcomes of mobilization. We conducted a randomized triple blind control trial comparing the outcomes of filgrastim 5 µg/kg daily from day 3 onwards, 'early' pegfilgrastim 6 mg on day 3 and 'delayed' pegfilgrastim 6 mg on day 7 in cyclophosphamide PBSCM in patients with no previous history of mobilization. Peripheral blood (PB) CD34+ cell count was checked on day 8 and day 11 onward. Apheresis was started when PB CD34+ ≥ 10/µl from day 11 onward. The primary outcome was the successful mobilization rate, defined as cumulative collection of ≥ 2 × 10(6)/kg CD34+ cells in three or less apheresis. The secondary outcomes were the day of neutrophil and platelet engraftment post transplantation. There were 156 patients randomized and 134 patients' data analyzed. Pegfilgrastim 6 mg day 7 produced highest percentage of successful mobilization, 34 out of 48 (70.8%) analyzed patients, followed by daily filgrastim, 28 out of 44 (63.6%) and day 3 pegfilgrastim, 20 out of 42 (47.6%) (p = 0.075). Pegfilgrastim day 7 and daily filgrastim reported 1.48 (p = 0.014) and 1.49 (p = 0.013) times higher successful mobilization rate respectively as compared to pegfilgrastim day 3 after adjusting for disease, gender and exposure to myelotoxic agent. Multiple myeloma patients were three times more likely to achieve successful mobilization as compared to acute leukemia or lymphoma patients. Pegfilgrastim avoided the overshoot of white cells compared to filgrastim. There was no difference in the duration of both white cells and platelet recovery post transplantation between the three interventional arms.

  7. Of birds and mice: hematopoietic stem cell development.

    PubMed

    Godin, Isabelle; Cumano, Ana

    2005-01-01

    For many years it has been assumed that the ontogeny of the mammalian hematopoietic system involves sequential transfers of hematopoietic stem cells (HSCs) generated in the yolk sac blood islands, to successive hematopoietic organs as these become active in the embryo (fetal liver, thymus, spleen and eventually bone marrow). Very little was known about early events related to hematopoiesis that could take place during the 4.5 day gap separating the appearance of the yolk sac blood islands and the stage of a fully active fetal liver. Experiments performed in birds documented that the yolk sac only produce erythro-myeloid precursors that become extinct after the emergence of a second wave of intra-embryonic HSCs from the region neighbouring the dorsal aorta. The experimental approaches undertaken over the last ten years in the murine model, which are reviewed here, led to the conclusion that the rules governing avian hematopoietic development basically apply to higher vertebrates.

  8. Characterization of hematopoietic potential of mesenchymal stem cells.

    PubMed

    Freisinger, Eva; Cramer, Christopher; Xia, Xiujin; Murthy, Subramanyam N; Slakey, Douglas P; Chiu, Ernest; Newsome, Edward R; Alt, Eckhard U; Izadpanah, Reza

    2010-11-01

    Mesenchymal and hematopoietic tissues are important reservoirs of adult stem cells. The potential of tissue resident mesenchymal stem cells (MSCs) to differentiate into cells of mesodermal and ectodermal lineages has been reported previously. We examined the hypothesis that adherent adipose tissue resident mesenchymal stem cells (ASCs) are capable of generating cells with hematopoietic characteristics. When cultured in differentiation media, clonally isolated ASCs develop into cells with hematopoietic attributes. The hematopoietic differentiated cells (HD) express early hematopoietic (c-kit, PROM1, CD4) as well as monocyte/macrophage markers (CCR5, CD68, MRC1, CD11b, CSF1R). Additionally, HD cells display functional characteristics of monocyte/macrophages such as phagocytosis and enzymatic activity of α-Naphthyl Acetate Esterase. HD cells are also responsive to stimulation by IL-4 and LPS as shown by increased CD14 and HLA-DRB1 expressions and release of IL-2, IL10, and TNF. Taken together, this study characterizes the potential of ASCs to generate functional macrophages in vitro, and therefore paves way for their possible use in cell therapy applications.

  9. The Hematopoietic Stem Cell Therapy for Exploration of Deep Space

    NASA Astrophysics Data System (ADS)

    Ohi, Seigo; Roach, Allana-Nicole; Ramsahai, Shweta; Kim, Bak C.; Fitzgerald, Wendy; Riley, Danny A.; Gonda, Steven R.

    2004-02-01

    Astronauts experience severe/invasive disorders caused by space environments. These include hematological and cardiac abnormalities, bone and muscle losses, immunodeficiency, neurological disorders and cancer. Exploiting the extraordinary plasticity of hematopoietic stem cells (HSCs), which differentiate not only to all types of blood cells, but also to various tissues, including muscle, bone, skin, liver, and neuronal cells, we advanced a hypothesis that some of the space-caused disorders might be amenable to hematopoietic stem cell therapy (HSCT) so as to maintain astronauts' homeostasis. If this were achievable, the HSCT could promote human exploration of deep space. Using mouse models of human anemia (β-thalassemia) and spaceflight (hindlimb suspension unloading system), we have obtained feasibility results of HSCT for space anemia, muscle loss, and immunodeficiency. For example, the β-thalassemic mice were successfully transplanted with isologous HSCs, resulting in chimerism of hemoglobin species and alleviation of the hemoglobinopathy. In the case of HSCT for muscle loss, β-galactosidase-marked HSCs, which were prepared from β-galactosidase-transgenic mice, were detected by the X-gal wholemount staining procedure in the hindlimbs of unloaded mice following transplantation. Histochemical and physical analyses indicated structural contribution of HSCs to the muscle. To investigate HSCT for immunodeficiency, β-galactosidase-transformed Escherichia coli was used as the reporter bacteria, and infected to control and the hindlimb suspended mice. Results of the X-gal stained tissues indicated that the HSCT could help eliminate the E. coli infection. In an effort to facilitate the HSCT in space, growth of HSCs has been optimized in the NASA Rotating Wall Vessel (RWV) culture systems, including Hydrodynamic Focusing Bioreactor (HFB).

  10. Broadening the indications for hematopoietic stem cell genetic therapies.

    PubMed

    Williams, David A

    2013-09-05

    The use of recombinant retroviral vectors to effect corrective genetic therapies in hematopoietic stem cells (HSCs) has long been predicted to revolutionize medicine. Two recent papers in Science now show that this technology could be considered as effective as, and perhaps superior to, allogeneic HSC transplants in some rare diseases.

  11. Lentiviral hematopoietic stem cell gene therapy in inherited metabolic disorders.

    PubMed

    Wagemaker, Gerard

    2014-10-01

    After more than 20 years of development, lentiviral hematopoietic stem cell gene therapy has entered the stage of initial clinical implementation for immune deficiencies and storage disorders. This brief review summarizes the development and applications, focusing on the lysosomal enzyme deficiencies, especially Pompe disease.

  12. Lentiviral Hematopoietic Stem Cell Gene Therapy in Inherited Metabolic Disorders

    PubMed Central

    2014-01-01

    Abstract After more than 20 years of development, lentiviral hematopoietic stem cell gene therapy has entered the stage of initial clinical implementation for immune deficiencies and storage disorders. This brief review summarizes the development and applications, focusing on the lysosomal enzyme deficiencies, especially Pompe disease. PMID:25184354

  13. Expansion of human cord blood hematopoietic stem cells for transplantation.

    PubMed

    Chou, Song; Chu, Pat; Hwang, William; Lodish, Harvey

    2010-10-08

    A recent Science paper reported a purine derivative that expands human cord blood hematopoietic stem cells in culture (Boitano et al., 2010) by antagonizing the aryl hydrocarbon receptor. Major problems need to be overcome before ex vivo HSC expansion can be used clinically.

  14. Efficacy of Oral Cryotherapy on Oral Mucositis Prevention in Patients with Hematological Malignancies Undergoing Hematopoietic Stem Cell Transplantation: A Meta-Analysis of Randomized Controlled Trials

    PubMed Central

    Zhai, Ruiren; Zhao, Shasha; Luo, Lan; Li, Dandan; Zhao, Xiaoli; Wei, Huaping; Pang, Zhaoxia; Wang, Lili; Liu, Daihong; Wang, Quanshun; Gao, Chunji

    2015-01-01

    Objectives Controversy exists regarding whether oral cryotherapy can prevent oral mucositis (OM) in patients with hematological malignancies undergoing hematopoietic stem cell transplantation (HSCT). The aim of the present meta-analysis was to evaluate the efficacy of oral cryotherapy for OM prevention in patients with hematological malignancies undergoing HSCT. Methods PubMed and the Cochrane Library were searched through October 2014. Randomized controlled trials (RCTs) comparing the effect of oral cryotherapy with no treatment or with other interventions for OM in patients undergoing HSCT were included. The primary outcomes were the incidence, severity, and duration of OM. The secondary outcomes included length of analgesic use, total parenteral nutrition (TPN) use, and length of hospital stay. Results Seven RCTs involving eight articles analyzing 458 patients were included. Oral cryotherapy significantly decreased the incidence of severe OM (RR = 0.52, 95% CI = 0.27 to 0.99) and OM severity (SMD = -2.07, 95% CI = -3.90 to -0.25). In addition, the duration of TPN use and the length of hospitalization were markedly reduced (SMD = -0.56, 95% CI = -0.92 to -0.19; SMD = -0.44, 95% CI = -0.76 to -0.13; respectively). However, the pooled results were uncertain for the duration of OM and analgesic use (SMD = -0.13, 95% CI = -0.41 to 0.15; SMD = -1.15, 95% CI = -2.57 to 0.27; respectively). Conclusions Oral cryotherapy is a readily applicable and cost-effective prophylaxis for OM in patients undergoing HSCT. PMID:26024220

  15. [Origin of Hematopoietic Stem Cells in Bone Marrow--Endothelial to Hematopoietic Transition (EHT)?].

    PubMed

    Wang, Fen; Yuan, Yan; Chen, Tong

    2015-06-01

    In contrast to primitive hematopoiesis, during embryonic definitive hematopoiesis, it has been demonstrated that multilineage hematopoietic stem/progenitor cells (HSPCs) arise from hemogenic endothelium, and the endothelial to hematopoietic transition (EHT) exists within the yolk sac, placenta, AGM, mouse head vascular and extraembryonic vessels. However, whether hemogenic endothelial cells contribute to blood cell development at other sites of definitive hematopoiesis, including fetal liver and bone marrow, remains largely unknown. Recently, more and more researches showed that hematopoiesis within bone marrow had a close relationship with vascular endothelium development, too. This review summarizes the mechanism of EHT during embryo development, and discuss whether EHT exists in adult hematopoiesis.

  16. Nanofiber Expansion of Umbilical Cord Blood Hematopoietic Stem Cells

    PubMed Central

    Eskandari, F; Allahverdi, A; Nasiri, H; Azad, M; Kalantari, N; Soleimani, M; Zare-Zardini, H

    2015-01-01

    Background The aim of this study was the ex vivo expansion of Umbilical Cord Blood hematopoietic stem cells on biocompatible nanofiber scaffolds. Materials and Methods CD133+ hematopoietic stem cells were separated from umbilical cord blood using MidiMacs (positive selection) system by means of monocolonal antibody CD133 (microbeads); subsequently, flowcytometry method was done to assess the purity of separated cells. Isolated cells were cultured on plate (2 Dimensional) and fibronectin conjugated polyethersulfon nanofiber scaffold, simultaneously (3 Dimensional). Colony assay test was performed to show colonization ability of expanded cells. Results Cell count analysis revealed that expansion of hematopoietic stem cells in 2dimensional (2D) environment was greater than 3dimensional (3D) condition (p= 0.01). Assessment of stem cell- phenotype after expansions was performed by flowcytometric analysis which is showed that the maintenance of CD133 marker in expanded cells in 3 dimensional condition were higher than expanded cells in 2 dimensional condition (p=0.01). Moreover, colony assay test was performed before and after of expansion to show colonization ability of expanded cells both in 3D and 2D culture and results revealed more ability of 3D culture compared with 2D culture (p= 0.03). Conclusion The results of current study confirmed that umbilical cord blood CD133+ haematopoietic stem cells are able to expand on fibronectin conjugated polyethersulfon scaffold. These findings indicated that 3D is a proper and valuable cell culture system for hematopoietic stem cells expansion, compared to 2D in invitro situation. PMID:26985349

  17. Diet-induced obesity promotes myelopoiesis in hematopoietic stem cells

    PubMed Central

    Singer, Kanakadurga; DelProposto, Jennifer; Lee Morris, David; Zamarron, Brian; Mergian, Taleen; Maley, Nidhi; Cho, Kae Won; Geletka, Lynn; Subbaiah, Perla; Muir, Lindsey; Martinez-Santibanez, Gabriel; Nien-Kai Lumeng, Carey

    2014-01-01

    Obesity is associated with an activated macrophage phenotype in multiple tissues that contributes to tissue inflammation and metabolic disease. To evaluate the mechanisms by which obesity potentiates myeloid activation, we evaluated the hypothesis that obesity activates myeloid cell production from bone marrow progenitors to potentiate inflammatory responses in metabolic tissues. High fat diet-induced obesity generated both quantitative increases in myeloid progenitors as well as a potentiation of inflammation in macrophages derived from these progenitors. In vivo, hematopoietic stem cells from obese mice demonstrated the sustained capacity to preferentially generate inflammatory CD11c+ adipose tissue macrophages after serial bone marrow transplantation. We identified that hematopoietic MyD88 was important for the accumulation of CD11c+ adipose tissue macrophage accumulation by regulating the generation of myeloid progenitors from HSCs. These findings demonstrate that obesity and metabolic signals potentiate leukocyte production and that dietary priming of hematopoietic progenitors contributes to adipose tissue inflammation. PMID:25161889

  18. Mitochondrial metabolism in hematopoietic stem cells requires functional FOXO3

    PubMed Central

    Rimmelé, Pauline; Liang, Raymond; Bigarella, Carolina L; Kocabas, Fatih; Xie, Jingjing; Serasinghe, Madhavika N; Chipuk, Jerry; Sadek, Hesham; Zhang, Cheng Cheng; Ghaffari, Saghi

    2015-01-01

    Hematopoietic stem cells (HSC) are primarily dormant but have the potential to become highly active on demand to reconstitute blood. This requires a swift metabolic switch from glycolysis to mitochondrial oxidative phosphorylation. Maintenance of low levels of reactive oxygen species (ROS), a by-product of mitochondrial metabolism, is also necessary for sustaining HSC dormancy. Little is known about mechanisms that integrate energy metabolism with hematopoietic stem cell homeostasis. Here, we identify the transcription factor FOXO3 as a new regulator of metabolic adaptation of HSC. ROS are elevated in Foxo3−/− HSC that are defective in their activity. We show that Foxo3−/− HSC are impaired in mitochondrial metabolism independent of ROS levels. These defects are associated with altered expression of mitochondrial/metabolic genes in Foxo3−/− hematopoietic stem and progenitor cells (HSPC). We further show that defects of Foxo3−/− HSC long-term repopulation activity are independent of ROS or mTOR signaling. Our results point to FOXO3 as a potential node that couples mitochondrial metabolism with HSC homeostasis. These findings have critical implications for mechanisms that promote malignant transformation and aging of blood stem and progenitor cells. PMID:26209246

  19. [Bone and Stem Cells. Bone marrow microenvironment niches for hematopoietic stem and progenitor cells].

    PubMed

    Nagasawa, Takashi

    2014-04-01

    In bone marrow, the special microenvironments known as niches control proliferation and differentiation of hematopoietic stem and progenitor cells (HSPCs) . However, the identity and functions of the niches has been a subject of longstanding debate. Although it has been reported previously that osteoblasts lining the bone surface act as HSC niches, their precise role in HSC maintenance remains unclear. On the other hand, the adipo-osteogenic progenitors with long processes, termed CXCL12-abundant reticular (CAR) cells, which preferentially express the chemokine CXCL12, stem cell factor (SCF) , leptin receptor and PDGF receptor-β were identified in the bone marrow. Recent studies revealed that endothelial cells of bone marrow vascular sinuses and CAR cells provided niches for HSCs. The identity and functions of various other candidate HSC niche cells, including nestin-expressing cells and Schwann cells would also be discussed in this review.

  20. Co-transplantation of Hematopoietic Stem Cells and Cxcr4 Gene-Transduced Mesenchymal Stem Cells Promotes Hematopoiesis.

    PubMed

    Chen, Wei; Li, Miao; Su, Guizhen; Zang, Yu; Yan, Zhiling; Cheng, Hai; Pan, Bin; Cao, Jiang; Wu, Qingyun; Zhao, Kai; Zhu, Feng; Zeng, Lingyu; Li, Zhenyu; Xu, Kailin

    2015-04-01

    Mesenchymal stem cells (MSCs) are a promising candidate for cellular therapies. Co-transplantation of MSCs and hematopoietic stem cells (HSCs) promotes successful engraftment and improves hematopoietic recovery. In this study, the effects of co-transplantation of HSCs and mouse bone marrow (BM)-derived MSCs overexpressing CXCR4 (CXCR4-MSC) on CXCR4-MSC homing capacity and the reconstitution potential in lethally irradiated mice were evaluated. Recovery of donor-derived peripheral blood leukocytes and platelets was accelerated when CXCR4-MSCs were co-transplanted with BM cells. The frequency of c-kit(+)Sca(+)Lin(-) HSCs was higher in recipient BM following co-transplantation of CXCR4-MSCs compared with the EGFP-MSC control and the BMT only groups. Surprisingly, the rate of early engraftment of donor-derived BM cells in recipients co-transplanted with CXCR4-MSCs was slightly lower than in the absence of MSCs on day 7. Moreover, co-transplantation of CXCR4-MSCs regulated the balance of T helper cells subsets. Hematopoietic tissue reconstitution was evaluated by histopathological analysis of BM and spleen. Co-transplantation of CXCR4-MSCs was shown to promote the recovery of hematopoietic organs. These findings indicate that co-transplantation of CXCR4-MSCs promotes the early phase of hematopoietic recovery and sustained hematopoiesis.

  1. DNA Damage Response in Hematopoietic Stem Cell Ageing.

    PubMed

    Li, Tangliang; Zhou, Zhong-Wei; Ju, Zhenyu; Wang, Zhao-Qi

    2016-06-01

    Maintenance of tissue-specific stem cells is vital for organ homeostasis and organismal longevity. Hematopoietic stem cells (HSCs) are the most primitive cell type in the hematopoietic system. They divide asymmetrically and give rise to daughter cells with HSC identity (self-renewal) and progenitor progenies (differentiation), which further proliferate and differentiate into full hematopoietic lineages. Mammalian ageing process is accompanied with abnormalities in the HSC self-renewal and differentiation. Transcriptional changes and epigenetic modulations have been implicated as the key regulators in HSC ageing process. The DNA damage response (DDR) in the cells involves an orchestrated signaling pathway, consisting of cell cycle regulation, cell death and senescence, transcriptional regulation, as well as chromatin remodeling. Recent studies employing DNA repair-deficient mouse models indicate that DDR could intrinsically and extrinsically regulate HSC maintenance and play important roles in tissue homeostasis of the hematopoietic system. In this review, we summarize the current understanding of how the DDR determines the HSC fates and finally contributes to organismal ageing.

  2. Hematopoietic stem cell transplantation for auto immune rheumatic diseases

    PubMed Central

    Ramaswamy, Subramanian; Jain, Sandeep; Ravindran, Vinod

    2016-01-01

    Stem cells have their origins in the embryo and during the process of organogenesis, these differentiate into specialized cells which mature to form tissues. In addition, stem cell are characterized by an ability to indefinitely self renew. Stem cells are broadly classified into embryonic stem cells and adult stem cells. Adult stem cells can be genetically reprogrammed to form pluripotent stem cells and exist in an embroyonic like state. In the early phase of embryogenesis, human embryonic stem cells only exist transiently. Adult stem cells are omnipresent in the body and function to regenerate during the process of apoptosis or tissue repair. Hematopoietic stem cells (HSC) are adult stem cells that form blood and immune cells. Autoimmune responses are sustained due to the perennial persistence of tissue self autoantigens and/or auto reactive lymphocytes. Immune reset is a process leading to generation of fresh self-tolerant lymphocytes after chemotherapy induced elimination of self or autoreactive lymphocytes. This forms the basis for autologous HSC transplantation (HSCT). In the beginning HSCT had been limited to refractory autoimmune rheumatic diseases (AIRD) due to concern about transplant related mortality and morbidity. However HSCT for AIRD has come a long way with better understanding of patient selection, conditioning regime and supportive care. In this narrative review we have examined the available literature regarding the HSCT use in AIRD. PMID:27011918

  3. Imaging of complications from hematopoietic stem cell transplant

    PubMed Central

    Pandey, Tarun; Maximin, Suresh; Bhargava, Puneet

    2014-01-01

    Stem cell transplant has been the focus of clinical research for a long time given its potential to treat several incurable diseases like hematological malignancies, diabetes mellitus, and neuro-degenerative disorders like Parkinson disease. Hematopoietic stem cell transplantation (HSCT) is the oldest and most widely used technique of stem cell transplant. HSCT has not only been used to treat hematological disorders including hematological malignancies, but has also been found useful in treamtent of genetic, immunological, and solid tumors like neuroblastoma, lymphoma, and germ cell tumors. In spite of the rapid advances in stem cell technology, success rate with this technique has not been universal and many complications have also been seen with this form of therapy. The key to a successful HSCT therapy lies in early diagnosis and effective management of complications associated with this treatment. Our article aims to review the role of imaging in diagnosis and management of stem cell transplant complications associated with HSCT. PMID:25489126

  4. Novel chemical attempts at ex vivo hematopoietic stem cell expansion.

    PubMed

    Zhang, Yu; Gao, Yingdai

    2016-05-01

    Hematopoietic stem cells (HSCs) are the most extensively studied stem cell type in adults, and the only stem cell type with proof of clinical utility. However, the greatest challenge for the broader use of HSCs remains the true expansion of the stem cells ex vivo. The development of researches on small-molecule compounds that support the safe and efficient ex vivo expansion of HSCs would help to promote the clinical application of HSCs. In recent years, several novel small-molecule compounds have been reported to improve ex vivo HSC expansion by promoting self-renewal, delaying differentiation, increasing homing, and inhibiting apoptosis. Here, we review recent chemical developments in stem cell research and the mechanisms underlying these compounds' effects.

  5. In utero depletion of fetal hematopoietic stem cells improves engraftment after neonatal transplantation in mice.

    PubMed

    Derderian, S Christopher; Togarrati, P Priya; King, Charmin; Moradi, Patriss W; Reynaud, Damien; Czechowicz, Agnieszka; Weissman, Irving L; MacKenzie, Tippi C

    2014-08-07

    Although in utero hematopoietic cell transplantation is a promising strategy to treat congenital hematopoietic disorders, levels of engraftment have not been therapeutic for diseases in which donor cells have no survival advantage. We used an antibody against the murine c-Kit receptor (ACK2) to deplete fetal host hematopoietic stem cells (HSCs) and increase space within the hematopoietic niche for donor cell engraftment. Fetal mice were injected with ACK2 on embryonic days 13.5 to 14.5 and surviving pups were transplanted with congenic hematopoietic cells on day of life 1. Low-dose ACK2 treatment effectively depleted HSCs within the bone marrow with minimal toxicity and the antibody was cleared from the serum before the neonatal transplantation. Chimerism levels were significantly higher in treated pups than in controls; both myeloid and lymphoid cell chimerism increased because of higher engraftment of HSCs in the bone marrow. To test the strategy of repeated HSC depletion and transplantation, some mice were treated with ACK2 postnatally, but the increase in engraftment was lower than that seen with prenatal treatment. We demonstrate a successful fetal conditioning strategy associated with minimal toxicity. Such strategies could be used to achieve clinically relevant levels of engraftment to treat congenital stem cell disorders.

  6. [Research progress on visual observations of hematopoietic stem cell homing].

    PubMed

    Wu, Meng-Yao; Chen, Tong

    2014-02-01

    Hematopoietic stem cell transplantation (HSCT) is an important mean for clinical treatment to many of hematological diseases, malignant diseases, hereditary diseases and autoimmune diseases. Whether the implanted hematopoietic stem cells (HSC) can home to bone marrow (BM) smoothly and reconstitute the hematopoiesis is the key to successful HSCT. With the cognition of HSC homing mechanism, the visual observation of HSC homing to BM is attracting more and more attention and helps to clarify the micro-dialogue between HSC and BM microenvironment. In recent years, with the development of imaging technology, confocal laser scanning microscope (CLSM) and two-photon microscope are able to make 3D reconstruction and real-time observation of the tissue or cells. Researches on HSC homing process visibly become reality. In this article the methods of visual research and their application in HSC homing observation are reviewed.

  7. Transcription factor-mediated reprogramming toward hematopoietic stem cells

    PubMed Central

    Ebina, Wataru; Rossi, Derrick J

    2015-01-01

    De novo generation of human hematopoietic stem cells (HSCs) from renewable cell types has been a long sought-after but elusive goal in regenerative medicine. Paralleling efforts to guide pluripotent stem cell differentiation by manipulating developmental cues, substantial progress has been made recently toward HSC generation via combinatorial transcription factor (TF)-mediated fate conversion, a paradigm established by Yamanaka's induction of pluripotency in somatic cells by mere four TFs. This review will integrate the recently reported strategies to directly convert a variety of starting cell types toward HSCs in the context of hematopoietic transcriptional regulation and discuss how these findings could be further developed toward the ultimate generation of therapeutic human HSCs. PMID:25712209

  8. Long-term hematopoietic stem cell damage in a murine model of the hematopoietic syndrome of the acute radiation syndrome.

    PubMed

    Chua, Hui Lin; Plett, P Artur; Sampson, Carol H; Joshi, Mandar; Tabbey, Rebeka; Katz, Barry P; MacVittie, Thomas J; Orschell, Christie M

    2012-10-01

    Residual bone marrow damage (RBMD) persists for years following exposure to radiation and is believed to be due to decreased self-renewal potential of radiation-damaged hematopoietic stem cells (HSC). Current literature has examined primarily sublethal doses of radiation and time points within a few months of exposure. In this study, the authors examined RBMD in mice surviving lethal doses of total body ionizing irradiation (TBI) in a murine model of the Hematopoietic Syndrome of the Acute Radiation Syndrome (H-ARS). Survivors were analyzed at various time points up to 19 mo post-TBI for hematopoietic function. The competitive bone marrow (BM) repopulating potential of 150 purified c-Kit+ Sca-1+ lineage- CD150+ cells (KSLCD150+) remained severely deficient throughout the study compared to KSLCD150+ cells from non-TBI age-matched controls. The minimal engraftment from these TBI HSCs is predominantly myeloid, with minimal production of lymphocytes both in vitro and in vivo. All classes of blood cells as well as BM cellularity were significantly decreased in TBI mice, especially at later time points as mice aged. Primitive BM hematopoietic cells (KSLCD150+) displayed significantly increased cell cycling in TBI mice at all time points, which may be a physiological attempt to maintain HSC numbers in the post-irradiation state. Taken together, these data suggest that the increased cycling among primitive hematopoietic cells in survivors of lethal radiation may contribute to long-term HSC exhaustion and subsequent RBMD, exacerbated by the added insult of aging at later time points.

  9. Homing and migration assays of hematopoietic stem/progenitor cells.

    PubMed

    He, Xi C; Li, Zhenrui; Sugimura, Rio; Ross, Jason; Zhao, Meng; Li, Linheng

    2014-01-01

    Hematopoietic stem and progenitor cells (HSPCs) reside mainly in bone marrow; however, under homeostatic and stressed conditions, HSPCs dynamically change their location-either egressing from bone marrow and getting into circulation, a process of mobilization; or coming back to the bone marrow, the homing process. How to analyze these two processes will be critical for understanding the behavior of HSPCs. Here we provide an experimental protocol to monitor and analyze homing and migration of HSPCs.

  10. Accelerating immune reconstitution after hematopoietic stem cell transplantation

    PubMed Central

    Tzannou, Ifigeneia; Leen, Ann M

    2014-01-01

    Viral infections remain a significant cause of morbidity and mortality after hematopoietic stem cell transplantation. Pharmacologic agents are effective against some pathogens, but they are costly and can be associated with significant toxicities. Thus, many groups have investigated adoptive T-cell transfer as a means of hastening immune reconstitution and preventing and treating viral infections. This review discusses the immunotherapeutic strategies that have been explored. PMID:25505959

  11. Distinguishing autocrine and paracrine signals in hematopoietic stem cell culture using a biofunctional microcavity platform

    NASA Astrophysics Data System (ADS)

    Müller, Eike; Wang, Weijia; Qiao, Wenlian; Bornhäuser, Martin; Zandstra, Peter W.; Werner, Carsten; Pompe, Tilo

    2016-08-01

    Homeostasis of hematopoietic stem cells (HSC) in the mammalian bone marrow stem cell niche is regulated by signals of the local microenvironment. Besides juxtacrine, endocrine and metabolic cues, paracrine and autocrine signals are involved in controlling quiescence, proliferation and differentiation of HSC with strong implications on expansion and differentiation ex vivo as well as in vivo transplantation. Towards this aim, a cell culture analysis on a polymer microcavity carrier platform was combined with a partial least square analysis of a mechanistic model of cell proliferation. We could demonstrate the discrimination of specific autocrine and paracrine signals from soluble factors as stimulating and inhibitory effectors in hematopoietic stem and progenitor cell culture. From that we hypothesize autocrine signals to be predominantly involved in maintaining the quiescent state of HSC in single-cell niches and advocate our analysis platform as an unprecedented option for untangling convoluted signaling mechanisms in complex cell systems being it of juxtacrine, paracrine or autocrine origin.

  12. Distinguishing autocrine and paracrine signals in hematopoietic stem cell culture using a biofunctional microcavity platform

    PubMed Central

    Müller, Eike; Wang, Weijia; Qiao, Wenlian; Bornhäuser, Martin; Zandstra, Peter W.; Werner, Carsten; Pompe, Tilo

    2016-01-01

    Homeostasis of hematopoietic stem cells (HSC) in the mammalian bone marrow stem cell niche is regulated by signals of the local microenvironment. Besides juxtacrine, endocrine and metabolic cues, paracrine and autocrine signals are involved in controlling quiescence, proliferation and differentiation of HSC with strong implications on expansion and differentiation ex vivo as well as in vivo transplantation. Towards this aim, a cell culture analysis on a polymer microcavity carrier platform was combined with a partial least square analysis of a mechanistic model of cell proliferation. We could demonstrate the discrimination of specific autocrine and paracrine signals from soluble factors as stimulating and inhibitory effectors in hematopoietic stem and progenitor cell culture. From that we hypothesize autocrine signals to be predominantly involved in maintaining the quiescent state of HSC in single-cell niches and advocate our analysis platform as an unprecedented option for untangling convoluted signaling mechanisms in complex cell systems being it of juxtacrine, paracrine or autocrine origin. PMID:27535453

  13. Interferon gamma Signaling Positively Regulates Hematopoietic Stem Cell Emergence

    PubMed Central

    Sawamiphak, Suphansa; Kontarakis, Zacharias; Stainier, Didier Y.R.

    2014-01-01

    Summary Vertebrate hematopoietic stem cells (HSCs) emerge in the aorta-gonad-mesonephros (AGM) region from “hemogenic” endothelium. Here we show that the pro-inflammatory cytokine Ifn-γ and its receptor Crfb17 positively regulate HSC development in zebrafish. This regulation does not appear to modulate the proliferation or survival of HSCs or endothelial cells, but rather the endothelial to HSC transition. Notch signaling and blood flow positively regulate the expression of ifng and crfb17 in the AGM. Notably, Ifn-γ overexpression partially rescues the HSC loss observed in the absence of blood flow or Notch signaling. Importantly, Ifn-γ signaling acts cell-autonomously to control the endothelial to HSC transition. Ifn-γ activates Stat3, an atypical transducer of Ifn-γ signaling, in the AGM, and Stat3 inhibition decreases HSC formation. Together, our findings uncover a developmental role for an inflammatory cytokine and place its action downstream of Notch signaling and blood flow to control Stat3 activation and HSC emergence. PMID:25490269

  14. Ex vivo expansion of human hematopoietic stem and progenitor cells

    PubMed Central

    Dahlberg, Ann; Delaney, Colleen

    2011-01-01

    Despite progress in our understanding of the growth factors that support the progressive maturation of the various cell lineages of the hematopoietic system, less is known about factors that govern the self-renewal of hematopoietic stem and progenitor cells (HSPCs), and our ability to expand human HSPC numbers ex vivo remains limited. Interest in stem cell expansion has been heightened by the increasing importance of HSCs in the treatment of both malignant and nonmalignant diseases, as well as their use in gene therapy. To date, most attempts to ex vivo expand HSPCs have used hematopoietic growth factors but have not achieved clinically relevant effects. More recent approaches, including our studies in which activation of the Notch signaling pathway has enabled a clinically relevant ex vivo expansion of HSPCs, have led to renewed interest in this arena. Here we briefly review early attempts at ex vivo expansion by cytokine stimulation followed by an examination of our studies investigating the role of Notch signaling in HSPC self-renewal. We will also review other recently developed approaches for ex vivo expansion, primarily focused on the more extensively studied cord blood–derived stem cell. Finally, we discuss some of the challenges still facing this field. PMID:21436068

  15. Adenosine signaling promotes hematopoietic stem and progenitor cell emergence.

    PubMed

    Jing, Lili; Tamplin, Owen J; Chen, Michael J; Deng, Qing; Patterson, Shenia; Kim, Peter G; Durand, Ellen M; McNeil, Ashley; Green, Julie M; Matsuura, Shinobu; Ablain, Julien; Brandt, Margot K; Schlaeger, Thorsten M; Huttenlocher, Anna; Daley, George Q; Ravid, Katya; Zon, Leonard I

    2015-05-04

    Hematopoietic stem cells (HSCs) emerge from aortic endothelium via the endothelial-to-hematopoietic transition (EHT). The molecular mechanisms that initiate and regulate EHT remain poorly understood. Here, we show that adenosine signaling regulates hematopoietic stem and progenitor cell (HSPC) development in zebrafish embryos. The adenosine receptor A2b is expressed in the vascular endothelium before HSPC emergence. Elevated adenosine levels increased runx1(+)/cmyb(+) HSPCs in the dorsal aorta, whereas blocking the adenosine pathway decreased HSPCs. Knockdown of A2b adenosine receptor disrupted scl(+) hemogenic vascular endothelium and the subsequent EHT process. A2b adenosine receptor activation induced CXCL8 via cAMP-protein kinase A (PKA) and mediated hematopoiesis. We further show that adenosine increased multipotent progenitors in a mouse embryonic stem cell colony-forming assay and in embryonic day 10.5 aorta-gonad-mesonephros explants. Our results demonstrate that adenosine signaling plays an evolutionary conserved role in the first steps of HSPC formation in vertebrates.

  16. Role of hematopoietic stem cell transplantation in multiple myeloma.

    PubMed

    Garcia, Ima N

    2015-02-01

    High-dose therapy followed by autologous stem cell transplantation (ASCT) has been the standard frontline consolidative therapy for patients with newly diagnosed multiple myeloma (MM) for > 2 decades. This approach has resulted in higher complete response (CR) rates and increased event-free survival and overall survival (OS) compared with conventional chemotherapy. The emergence of novel agent-based therapy combined with ASCT has revolutionized MM therapy by improving the CR rates and OS, raising questions concerning the role of hematopoietic stem cell transplantation in this setting.

  17. Genetic and Epigenetic Mechanisms That Maintain Hematopoietic Stem Cell Function

    PubMed Central

    Kosan, Christian; Godmann, Maren

    2016-01-01

    All hematopoiesis cells develop from multipotent progenitor cells. Hematopoietic stem cells (HSC) have the ability to develop into all blood lineages but also maintain their stemness. Different molecular mechanisms have been identified that are crucial for regulating quiescence and self-renewal to maintain the stem cell pool and for inducing proliferation and lineage differentiation. The stem cell niche provides the microenvironment to keep HSC in a quiescent state. Furthermore, several transcription factors and epigenetic modifiers are involved in this process. These create modifications that regulate the cell fate in a more or less reversible and dynamic way and contribute to HSC homeostasis. In addition, HSC respond in a unique way to DNA damage. These mechanisms also contribute to the regulation of HSC function and are essential to ensure viability after DNA damage. How HSC maintain their quiescent stage during the entire life is still matter of ongoing research. Here we will focus on the molecular mechanisms that regulate HSC function. PMID:26798358

  18. Cryopreservation of hematopoietic stem/progenitor cells for therapeutic use.

    PubMed

    Watt, Suzanne M; Austin, Eric; Armitage, Sue

    2007-01-01

    To date, more than 25,000 hematopoietic transplants have been carried out across Europe for hematological disorders, the majority being for hematological malignancies. At least 70% of these are autologous transplants, the remaining 30% being allogeneic, which are sourced from related (70% of the allogeneic) or unrelated donors. Peripheral blood mobilized with granulocyte colony stimulating factor is the major source of stem cells for transplantation, being used in approx 95% of autologous transplants and in approx 65% of allogeneic transplants. Other cell sources used for transplantation are bone marrow and umbilical cord blood. One crucial advance in the treatment of these disorders has been the development of the ability to cryopreserve hematopoietic stem cells for future transplantation. For bone marrow and mobilized peripheral blood, the majority of cryopreserved harvests come from autologous collections that are stored prior to a planned infusion following further treatment of the patient or at the time of a subsequent relapse. Other autologous harvests are stored as backup or "rainy day" harvests, the former specifically being intended to rescue patients who develop graft failure following an allogeneic transplant or who may require this transplant at a later date. Allogeneic bone marrow and mobilized peripheral blood are less often cryopreserved than autologous harvests. This is in contrast to umbilical cord blood that may be banked for directed or sibling (related) hematopoietic stem cell transplants, for allogeneic unrelated donations, and for autologous donations. Allogeneic unrelated donations are of particular use for providing a source of hematopoietic stem cells for ethnic minorities, patients with rare human leukocyte antigen types, or where the patient urgently requires a transplant and cannot wait for the weeks to months required to prepare a bone marrow donor. There are currently more than 200,000 banked umbilical cord blood units registered with

  19. Vaccination of Hematopoietic Stem Cell Transplantation Recipients: Perspective in Korea

    PubMed Central

    2013-01-01

    Antibody titers to vaccine-preventable diseases such as tetanus, polio, measles, mumps, and rubella decline within 1-10 years after allogeneic or autologous hematopoietic stem cell transplantation (SCT) if the recipient is not vaccinated. Vaccine-preventable diseases such as pneumococcal diseases, Haemophilus influenzae type b infections, influenza, measles, and varicella can pose an increased risk for SCT recipients. Therefore, after SCT, the recipients should be routinely revaccinated. Vaccination recommendations have previously been developed and published by the European Group of Blood and Marrow Transplantation and the Centers for Disease Control, by the Infectious Diseases Society of America, and by the American Society for Blood and Marrow Transplantation in 2009. Different epidemiologies and strategies have existed in Korea. In 2012, the Korean Society of Infectious Diseases published "Vaccination for Adult" describing the guidelines for vaccination, one of the chapters assigned for vaccination of SCT recipients. The present article reviews the current available vaccination strategies for SCT recipients, their family members, and healthcare workers, with the focus on recent Korean perspectives. PMID:24396628

  20. Hematopoietic stem cell transplantation for infantile osteopetrosis

    PubMed Central

    Fasth, Anders L.; Le Rademacher, Jennifer; He, Wensheng; Boelens, Jaap Jan; Horwitz, Edwin M.; Al-Seraihy, Amal; Ayas, Mouhab; Bonfim, Carmem M.; Boulad, Farid; Lund, Troy; Buchbinder, David K.; Kapoor, Neena; O’Brien, Tracey A.; Perez, Miguel A. Diaz; Veys, Paul A.; Eapen, Mary

    2015-01-01

    We report the international experience in outcomes after related and unrelated hematopoietic transplantation for infantile osteopetrosis in 193 patients. Thirty-four percent of transplants used grafts from HLA-matched siblings, 13% from HLA-mismatched relatives, 12% from HLA-matched, and 41% from HLA-mismatched unrelated donors. The median age at transplantation was 12 months. Busulfan and cyclophosphamide was the most common conditioning regimen. Long-term survival was higher after HLA-matched sibling compared to alternative donor transplantation. There were no differences in survival after HLA-mismatched related, HLA-matched unrelated, or mismatched unrelated donor transplantation. The 5- and 10-year probabilities of survival were 62% and 62% after HLA-matched sibling and 42% and 39% after alternative donor transplantation (P = .01 and P = .002, respectively). Graft failure was the most common cause of death, accounting for 50% of deaths after HLA-matched sibling and 43% of deaths after alternative donor transplantation. The day-28 incidence of neutrophil recovery was 66% after HLA-matched sibling and 61% after alternative donor transplantation (P = .49). The median age of surviving patients is 7 years. Of evaluable surviving patients, 70% are visually impaired; 10% have impaired hearing and gross motor delay. Nevertheless, 65% reported performance scores of 90 or 100, and in 17%, a score of 80 at last contact. Most survivors >5 years are attending mainstream or specialized schools. Rates of veno-occlusive disease and interstitial pneumonitis were high at 20%. Though allogeneic transplantation results in long-term survival with acceptable social function, strategies to lower graft failure and hepatic and pulmonary toxicity are urgently needed. PMID:26012570

  1. Lentiviral hematopoietic stem cell gene therapy benefits metachromatic leukodystrophy.

    PubMed

    Biffi, Alessandra; Montini, Eugenio; Lorioli, Laura; Cesani, Martina; Fumagalli, Francesca; Plati, Tiziana; Baldoli, Cristina; Martino, Sabata; Calabria, Andrea; Canale, Sabrina; Benedicenti, Fabrizio; Vallanti, Giuliana; Biasco, Luca; Leo, Simone; Kabbara, Nabil; Zanetti, Gianluigi; Rizzo, William B; Mehta, Nalini A L; Cicalese, Maria Pia; Casiraghi, Miriam; Boelens, Jaap J; Del Carro, Ubaldo; Dow, David J; Schmidt, Manfred; Assanelli, Andrea; Neduva, Victor; Di Serio, Clelia; Stupka, Elia; Gardner, Jason; von Kalle, Christof; Bordignon, Claudio; Ciceri, Fabio; Rovelli, Attilio; Roncarolo, Maria Grazia; Aiuti, Alessandro; Sessa, Maria; Naldini, Luigi

    2013-08-23

    Metachromatic leukodystrophy (MLD) is an inherited lysosomal storage disease caused by arylsulfatase A (ARSA) deficiency. Patients with MLD exhibit progressive motor and cognitive impairment and die within a few years of symptom onset. We used a lentiviral vector to transfer a functional ARSA gene into hematopoietic stem cells (HSCs) from three presymptomatic patients who showed genetic, biochemical, and neurophysiological evidence of late infantile MLD. After reinfusion of the gene-corrected HSCs, the patients showed extensive and stable ARSA gene replacement, which led to high enzyme expression throughout hematopoietic lineages and in cerebrospinal fluid. Analyses of vector integrations revealed no evidence of aberrant clonal behavior. The disease did not manifest or progress in the three patients 7 to 21 months beyond the predicted age of symptom onset. These findings indicate that extensive genetic engineering of human hematopoiesis can be achieved with lentiviral vectors and that this approach may offer therapeutic benefit for MLD patients.

  2. Immature hematopoietic stem cells undergo maturation in the fetal liver.

    PubMed

    Kieusseian, Aurelie; Brunet de la Grange, Philippe; Burlen-Defranoux, Odile; Godin, Isabelle; Cumano, Ana

    2012-10-01

    Hematopoietic stem cells (HSCs), which are defined by their capacity to reconstitute adult conventional mice, are first found in the dorsal aorta after 10.5 days post coitus (dpc) and in the fetal liver at 11 dpc. However, lympho-myeloid hematopoietic progenitors are detected in the dorsal aorta from 9 dpc, raising the issue of their role in establishing adult hematopoiesis. Here, we show that these progenitors are endowed with long-term reconstitution capacity, but only engraft natural killer (NK)-deficient Rag2γc(-/-) mice. This novel population, called here immature HSCs, evolves in culture with thrombopoietin and stromal cells, into HSCs, defined by acquisition of CD45 and MHC-1 expression and by the capacity to reconstitute NK-competent mice. This evolution occurs during ontogeny, as early colonization of fetal liver by immature HSCs precedes that of HSCs. Moreover, organ culture experiments show that immature HSCs acquire, in this environment, the features of HSCs.

  3. Hematopoietic Stem and Immune Cells in Chronic HIV Infection

    PubMed Central

    Zhang, Jielin; Crumpacker, Clyde

    2015-01-01

    Hematopoietic stem cell (HSC) belongs to multipotent adult somatic stem cells. A single HSC can reconstitute the entire blood system via self-renewal, differentiation into all lineages of blood cells, and replenishment of cells lost due to attrition or disease in a person's lifetime. Although all blood and immune cells derive from HSC, immune cells, specifically immune memory cells, have the properties of HSC on self-renewal and differentiation into lineage effector cells responding to the invading pathogens. Moreover, the interplay between immune memory cell and viral pathogen determines the course of a viral infection. Here, we state our point of view on the role of blood stem and progenitor cell in chronic HIV infection, with a focus on memory CD4 T-cell in the context of HIV/AIDS eradication and cure. PMID:26300920

  4. CMV in Hematopoietic Stem Cell Transplantation

    PubMed Central

    de la Cámara, Rafael

    2016-01-01

    Due to its negative impact on the outcome of stem cell transplant (SCT) and solid organ transplant patients (SOT) CMV has been called “the troll of transplantation”. One of the greatest advances in the management of SCT has been the introduction of the preemptive strategy. Since its introduction, the incidence of the viremia, as expected, remains unchanged but there has been a marked decline in the incidence of early CMV disease. However, in spite of the advances in prevention of CMV disease, CMV is still today an important cause of morbidity and mortality. Late CMV disease is still occurring in a significant proportion of patients and the so-called indirect effects of CMV are causing significant morbidity and mortality. Fortunately there have been several advances in the development of new antivirals, adoptive immunotherapy and DNA-CMV vaccines that might transform the management of CMV in the near future. PMID:27413524

  5. Hematopoietic stem cell transplantation in thalassemia major and sickle cell disease: indications and management recommendations from an international expert panel.

    PubMed

    Angelucci, Emanuele; Matthes-Martin, Susanne; Baronciani, Donatella; Bernaudin, Françoise; Bonanomi, Sonia; Cappellini, Maria Domenica; Dalle, Jean-Hugues; Di Bartolomeo, Paolo; de Heredia, Cristina Díaz; Dickerhoff, Roswitha; Giardini, Claudio; Gluckman, Eliane; Hussein, Ayad Achmed; Kamani, Naynesh; Minkov, Milen; Locatelli, Franco; Rocha, Vanderson; Sedlacek, Petr; Smiers, Frans; Thuret, Isabelle; Yaniv, Isaac; Cavazzana, Marina; Peters, Christina

    2014-05-01

    Thalassemia major and sickle cell disease are the two most widely disseminated hereditary hemoglobinopathies in the world. The outlook for affected individuals has improved in recent years due to advances in medical management in the prevention and treatment of complications. However, hematopoietic stem cell transplantation is still the only available curative option. The use of hematopoietic stem cell transplantation has been increasing, and outcomes today have substantially improved compared with the past three decades. Current experience world-wide is that more than 90% of patients now survive hematopoietic stem cell transplantation and disease-free survival is around 80%. However, only a few controlled trials have been reported, and decisions on patient selection for hematopoietic stem cell transplantation and transplant management remain principally dependent on data from retrospective analyses and on the clinical experience of the transplant centers. This consensus document from the European Blood and Marrow Transplantation Inborn Error Working Party and the Paediatric Diseases Working Party aims to report new data and provide consensus-based recommendations on indications for hematopoietic stem cell transplantation and transplant management.

  6. Autologous hematopoietic stem cell transplantation in classical Hodgkin's lymphoma

    PubMed Central

    Cortez, Afonso José Pereira; Dulley, Frederico Luiz; Saboya, Rosaura; Mendrone Júnior, Alfredo; Amigo Filho, Ulisses; Coracin, Fabio Luiz; Buccheri, Valéria; Linardi, Camila da Cruz Gouveia; Ruiz, Milton Artur; Chamone, Dalton de Alencar Fischer

    2011-01-01

    Background Hodgkin's lymphoma has high rates of cure, but in 15% to 20% of general patients and between 35% and 40% of those in advanced stages, the disease will progress or will relapse after initial treatment. For this group, hematopoietic stem cell transplantation is considered one option of salvage therapy. Objectives To evaluate a group of 106 patients with Hodgkin's lymphoma, who suffered relapse or who were refractory to treatment, submitted to autologous hematopoietic stem cell transplantation in a single transplant center. Methods A retrospective study was performed with data collected from patient charts. The analysis involved 106 classical Hodgkin's lymphoma patients who were consecutively submitted to high-dose chemotherapy followed by autologous transplants in a single institution from April 1993 to December 2006. Results The overall survival rates of this population at five and ten years were 86% and 70%, respectively. The disease-free survival was approximately 60% at five years. Four patients died of procedure-related causes but relapse of classical Hodgkin's lymphoma after transplant was the most frequent cause of death. Univariate analysis shows that sensitivity to pre-transplant treatment and hemoglobin < 10 g/dL at diagnosis had an impact on patient survival. Unlike other studies, B-type symptoms did not seem to affect overall survival. Lactic dehydrogenase and serum albumin concentrations analyzed at diagnosis did not influence patient survival either. Conclusion Autologous hematopoietic stem cell transplantation is an effective treatment strategy for early and late relapse in classical Hodgkin's lymphoma for cases that were responsive to pre-transplant chemotherapy. Refractory to treatment is a sign of worse prognosis. Additionally, a hemoglobin concentration below 10 g/dL at diagnosis of Hodgkin's lymphoma has a negative impact on the survival of patients after transplant. As far as we know this relationship has not been previously reported

  7. The Hematopoietic Stem Cell Therapy for Exploration of Space

    NASA Technical Reports Server (NTRS)

    Roach, Allana Nicole; Brezo, Jelena

    2002-01-01

    Astronauts experience severe/invasive disorders caused by space environments. These include hematological/cardiac abnormalities, bone and muscle losses, immunodeficiency, neurological disorders and cancer. While the cause of these symptoms are not yet fully delineated, one possible explanation could be the inhibition of hematopoietic stem cell (HSC) growth and hematopoiesis in space. HSCs differentiate into all types of blood cells, and growing evidence indicates that the HSCs also have the ability to transdifferentiate to various tissues, including muscle, skin, liver, neuronal cells and possibly bone. Therefore, a hypothesis was advanced in this laboratory that the hematopoietic stem cell-based therapy, herein called the hematopoietic stem cell therapy (HSCT), could mitigate some of the disorders described above. Due to the magnitude of this project our laboratory has subdivided it into 3 sections: a) HSCT for space anemia; b) HSCT for muscle and bone losses; and c) HSCT for immunodeficiency. Toward developing the HSCT protocol for space anemia, the HSC transplantation procedure was established using a mouse model of beta thalassemia. In addition, the NASA Rotating Wall Vessel (RWV) culture system was used to grow HSCs in space condition. To investigate the HSCT for muscle loss and bone loss, donor HSCs were genetically marked either by transfecting the beta-galactosidase-containing plasmid, pCMV.SPORT-beta-gal or by preparing from b-galactosidase transgenic mice. The transdifferentiation of HSCs to muscle is traced by the reporter gene expression in the hindlimb suspended mice with some positive outcome, as studied by the X-gal staining procedure. The possible structural contribution of HSCs against muscle loss is being investigated histochemically.

  8. Hematopoietic Stem Cell Transplantation for Severe Combined Immunodeficiency

    PubMed Central

    Wahlstrom, Justin T.; Dvorak, Christopher C.; Cowan, Morton J.

    2015-01-01

    Hematopoietic stem cell transplantation (HSCT) is an effective approach for the treatment of severe combined immunodeficiency (SCID). However, SCID is not a homogeneous disease, and the treatment required for successful transplantation varies significantly between SCID subtypes and the degree of HLA mismatch between the best available donor and the patient. Recent studies are beginning to more clearly define this heterogeneity and how outcomes may vary. With a more detailed understanding of SCID, new approaches can be developed to maximize immune reconstitution, while minimizing acute and long-term toxicities associated with chemotherapy conditioning. PMID:25821657

  9. The Hematopoietic Stem Cell Therapy for Exploration of Deep Space

    NASA Technical Reports Server (NTRS)

    Ohi, Seigo; Roach, Allana-Nicole; Fitzgerald, Wendy; Riley, Danny A.; Gonda, Steven R.

    2003-01-01

    It is hypothesized that the hematopoietic stem cell therapy (HSCT) might countermeasure various space-caused disorders so as to maintain astronauts' homeostasis. If this were achievable, the HSCT could promote human exploration of deep space. Using animal models of disorders (hindlimb suspension unloading system and beta-thalassemia), the HSCT was tested for muscle loss, immunodeficiency and space anemia. The results indicate feasibility of HSCT for these disorders. To facilitate the HSCT in space, growth of HSCs were optimized in the NASA Rotating Wall Vessel (RWV) culture systems, including Hydrodynamic Focusing Bioreactor (HFB).

  10. Oxidized low-density lipoprotein induces hematopoietic stem cell senescence.

    PubMed

    Zhang, Xian-Ping; Zhang, Gui-Hai; Wang, Yu-Ying; Liu, Jun; Wei, Qiang; Xu, Chun-Yan; Wang, Jian-Wei; Wang, Ya-Ping

    2013-09-01

    We have investigated oxidized low-density lipoprotein (ox-LDL) induced senescence in hematopoietic stem cells (HCs). Mouse Sca-1+ HCs were separated and purified using the magnetic activated cell sorting technique. Ox-LDL induced significant senescence in HCs measured by SA-β-Gal staining, and reduced CFU-Mix colony-forming capacity, arresting cells at G0/G1 phase. In agreement with the cell cycle arrest, ox-LDL markedly reduced the expression of CDK4, cyclin D, and cyclin E. As possible contributing factors for cell senescence, ox-LDL also induced cellular oxidative stress and reduced telomerase activity.

  11. On the origin of hematopoietic stem cells: progress and controversy.

    PubMed

    Boisset, Jean-Charles; Robin, Catherine

    2012-01-01

    Hematopoietic Stem Cells (HSCs) are responsible for the production and replenishment of all blood cell types during the entire life of an organism. Generated during embryonic development, HSCs transit through different anatomical niches where they will expand before colonizing in the bone marrow, where they will reside during adult life. Although the existence of HSCs has been known for more than fifty years and despite extensive research performed in different animal models, there is still uncertainty with respect to the precise origins of HSCs. We review the current knowledge on embryonic hematopoiesis and highlight the remaining questions regarding the anatomical and cellular identities of HSC precursors.

  12. Giardiasis in a hematopoietic stem cell transplant patient.

    PubMed

    Ajumobi, A B; Daniels, J A; Sostre, C F; Trevino, H H

    2014-12-01

    Giardiasis can mimic diarrhea secondary to mucosal injury from the conditioning therapy prior to hematopoietic stem cell transplant (HSCT), as well as from graft-versus-host disease (GVHD). Herein, we describe the endoscopic diagnosis of giardiasis in a patient 2 months after HSCT for myelodysplastic syndrome. The patient was referred to gastroenterology service for suspected GVHD, but duodenal biopsy results showed Giardia lamblia. He was successfully treated with metronidazole with prompt resolution of all of his gastrointestinal symptoms. This case highlights the need to consider giardiasis in the differential diagnosis of diarrhea in the peri-transplant period.

  13. Allogeneic hematopoietic stem cell transplantation for neuromyelitis optica.

    PubMed

    Greco, Raffaella; Bondanza, Attilio; Vago, Luca; Moiola, Lucia; Rossi, Paolo; Furlan, Roberto; Martino, Gianvito; Radaelli, Marta; Martinelli, Vittorio; Carbone, Maria Rosaria; Lupo Stanghellini, Maria Teresa; Assanelli, Andrea; Bernardi, Massimo; Corti, Consuelo; Peccatori, Jacopo; Bonini, Chiara; Vezzulli, Paolo; Falini, Andrea; Ciceri, Fabio; Comi, Giancarlo

    2014-03-01

    Neuromyelitis optica is a rare neurological autoimmune disorder characterized by a poor prognosis. Immunosuppression can halt disease progression, but some patients are refractory to multiple treatments, experiencing frequent relapses with accumulating disability. Here we report on durable clinical remissions after allogeneic hematopoietic stem cell transplantation in 2 patients suffering from severe forms of the disease. Immunological data evidenced disappearance of the pathogenic antibodies and regeneration of a naive immune system of donor origin. These findings correlated with evident clinical and radiological improvement in both patients, warranting extended clinical trials to investigate this promising therapeutic option.

  14. ABO blood group mismatched hematopoietic stem cell transplantation.

    PubMed

    Tekgündüz, Sibel Akpınar; Özbek, Namık

    2016-02-01

    Apart from solid organ transplantations, use of ABO-blood group mismatched (ABO-mismatched) donors is acceptable in hematopoietic stem cell transplantation (HSCT) patients. About 20-40% of allogeneic HSCT recipients will receive grafts from ABO-mismatched donors. ABO incompatible HSCT procedures are associated with immediate and late consequences, including but not restricted to acute or delayed hemolytic reactions, delayed red blood cell recovery, pure red cell aplasia and graft-versus-host disease. This review summarizes the current knowledge about consequences of ABO-mismatched HSCT in terms of associated complications and will evaluate its impact on important outcome parameters of HSCT.

  15. Ex vivo expansion of hematopoietic stem cell by fusion protein TAT-Zfx

    SciTech Connect

    Xu Chong; Zhang Yanbing; Jiang Hua

    2009-02-13

    The relative inability of hemopoietic stem cells (HSCs) to reproduce themselves (self-renew) ex vivo imposes substantial limitations on the current use of HSC transplantation. Recently, the transcription factor Zfx has been demonstrated that played an important in controlling the self-renewal of hematopoietic stem cells. Here, we reported that Zfx could enable high-level expansion of HSCs in vitro, by combination of protein transduction domain, TAT. Furthermore, we also demonstrated that expanded HSCs population retains their normal in vivo potential of pluripotency. It is thus that TAT-Zfx has the potential to expand HSCs significantly in vitro, and will have enormous clinical potentials.

  16. Large animal models of hematopoietic stem cell gene therapy.

    PubMed

    Trobridge, G D; Kiem, H-P

    2010-08-01

    Large animal models have been instrumental in advancing hematopoietic stem cell (HSC) gene therapy. Here we review the advantages of large animal models, their contributions to the field of HSC gene therapy and recent progress in this field. Several properties of human HSCs including their purification, their cell-cycle characteristics, their response to cytokines and the proliferative demands placed on them after transplantation are more similar in large animal models than in mice. Progress in the development and use of retroviral vectors and ex vivo transduction protocols over the last decade has led to efficient gene transfer in both dogs and nonhuman primates. Importantly, the approaches developed in these models have translated well to the clinic. Large animals continue to be useful to evaluate the efficacy and safety of gene therapy, and dogs with hematopoietic diseases have now been cured by HSC gene therapy. Nonhuman primates allow evaluation of aspects of transplantation as well as disease-specific approaches such as AIDS (acquired immunodeficiency syndrome) gene therapy that can not be modeled well in the dog. Finally, large animal models have been used to evaluate the genotoxicity of viral vectors by comparing integration sites in hematopoietic repopulating cells and monitoring clonality after transplantation.

  17. Hematopoietic Stem Cells in Neural-crest Derived Bone Marrow

    PubMed Central

    Jiang, Nan; Chen, Mo; Yang, Guodong; Xiang, Lusai; He, Ling; Hei, Thomas K.; Chotkowski, Gregory; Tarnow, Dennis P.; Finkel, Myron; Ding, Lei; Zhou, Yanheng; Mao, Jeremy J.

    2016-01-01

    Hematopoietic stem cells (HSCs) in the endosteum of mesoderm-derived appendicular bones have been extensively studied. Neural crest-derived bones differ from appendicular bones in developmental origin, mode of bone formation and pathological bone resorption. Whether neural crest-derived bones harbor HSCs is elusive. Here, we discovered HSC-like cells in postnatal murine mandible, and benchmarked them with donor-matched, mesoderm-derived femur/tibia HSCs, including clonogenic assay and long-term culture. Mandibular CD34 negative, LSK cells proliferated similarly to appendicular HSCs, and differentiated into all hematopoietic lineages. Mandibular HSCs showed a consistent deficiency in lymphoid differentiation, including significantly fewer CD229 + fractions, PreProB, ProB, PreB and B220 + slgM cells. Remarkably, mandibular HSCs reconstituted irradiated hematopoietic bone marrow in vivo, just as appendicular HSCs. Genomic profiling of osteoblasts from mandibular and femur/tibia bone marrow revealed deficiencies in several HSC niche regulators among mandibular osteoblasts including Cxcl12. Neural crest derived bone harbors HSCs that function similarly to appendicular HSCs but are deficient in the lymphoid lineage. Thus, lymphoid deficiency of mandibular HSCs may be accounted by putative niche regulating genes. HSCs in craniofacial bones have functional implications in homeostasis, osteoclastogenesis, immune functions, tumor metastasis and infections such as osteonecrosis of the jaw. PMID:28000662

  18. SHIP1-expressing mesenchymal stem cells regulate hematopoietic stem cell homeostasis and lineage commitment during aging.

    PubMed

    Iyer, Sonia; Brooks, Robert; Gumbleton, Matthew; Kerr, William G

    2015-05-01

    Hematopoietic stem cell (HSC) self-renewal and lineage choice are subject to intrinsic control. However, this intrinsic regulation is also impacted by external cues provided by niche cells. There are multiple cellular components that participate in HSC support with the mesenchymal stem cell (MSC) playing a pivotal role. We had previously identified a role for SH2 domain-containing inositol 5'-phosphatase-1 (SHIP1) in HSC niche function through analysis of mice with germline or induced SHIP1 deficiency. In this study, we show that the HSC compartment expands significantly when aged in a niche that contains SHIP1-deficient MSC; however, this expanded HSC compartment exhibits a strong bias toward myeloid differentiation. In addition, we show that SHIP1 prevents chronic G-CSF production by the aging MSC compartment. These findings demonstrate that intracellular signaling by SHIP1 in MSC is critical for the control of HSC output and lineage commitment during aging. These studies increase our understanding of how myeloid bias occurs in aging and thus could have implications for the development of myeloproliferative disease in aging.

  19. Dynamic equilibrium of reconstituting hematopoietic stem cell populations.

    PubMed

    O'Quigley, John

    2010-12-01

    Clonal dominance in hematopoietic stem cell populations is an important question of interest but not one we can directly answer. Any estimates are based on indirect measurement. For marked populations, we can equate empirical and theoretical moments for binomial sampling, in particular we can use the well-known formula for the sampling variation of a binomial proportion. The empirical variance itself cannot always be reliably estimated and some caution is needed. We describe the difficulties here and identify ready solutions which only require appropriate use of variance-stabilizing transformations. From these we obtain estimators for the steady state, or dynamic equilibrium, of the number of hematopoietic stem cells involved in repopulating the marrow. The calculations themselves are not too involved. We give the distribution theory for the estimator as well as simple approximations for practical application. As an illustration, we rework on data recently gathered to address the question as to whether or not reconstitution of marrow grafts in the clinical setting might be considered to be oligoclonal.

  20. Desensitization for solid organ and hematopoietic stem cell transplantation

    PubMed Central

    Zachary, Andrea A; Leffell, Mary S

    2014-01-01

    Desensitization protocols are being used worldwide to enable kidney transplantation across immunologic barriers, i.e. antibody to donor HLA or ABO antigens, which were once thought to be absolute contraindications to transplantation. Desensitization protocols are also being applied to permit transplantation of HLA mismatched hematopoietic stem cells to patients with antibody to donor HLA, to enhance the opportunity for transplantation of non-renal organs, and to treat antibody-mediated rejection. Although desensitization for organ transplantation carries an increased risk of antibody-mediated rejection, ultimately these transplants extend and enhance the quality of life for solid organ recipients, and desensitization that permits transplantation of hematopoietic stem cells is life saving for patients with limited donor options. Complex patient factors and variability in treatment protocols have made it difficult to identify, precisely, the mechanisms underlying the downregulation of donor-specific antibodies. The mechanisms underlying desensitization may differ among the various protocols in use, although there are likely to be some common features. However, it is likely that desensitization achieves a sort of immune detente by first reducing the immunologic barrier and then by creating an environment in which an autoregulatory process restricts the immune response to the allograft. PMID:24517434

  1. Exercise as an Adjuvant Therapy for Hematopoietic Stem Cell Mobilization

    PubMed Central

    Emmons, Russell; Niemiro, Grace M.; De Lisio, Michael

    2016-01-01

    Hematopoietic stem cell transplant (HSCT) using mobilized peripheral blood hematopoietic stem cells (HSPCs) is the only curative strategy for many patients suffering from hematological malignancies. HSPC collection protocols rely on pharmacological agents to mobilize HSPCs to peripheral blood. Limitations including variable donor responses and long dosing protocols merit further investigations into adjuvant therapies to enhance the efficiency of HSPCs collection. Exercise, a safe and feasible intervention in patients undergoing HSCT, has been previously shown to robustly stimulate HSPC mobilization from the bone marrow. Exercise-induced HSPC mobilization is transient limiting its current clinical potential. Thus, a deeper investigation of the mechanisms responsible for exercise-induced HSPC mobilization and the factors responsible for removal of HSPCs from circulation following exercise is warranted. The present review will describe current research on exercise and HSPC mobilization, outline the potential mechanisms responsible for exercise-induced HSPC mobilization, and highlight potential sites for HSPC homing following exercise. We also outline current barriers to the implementation of exercise as an adjuvant therapy for HSPC mobilization and suggest potential strategies to overcome these barriers. PMID:27123008

  2. High-grade cytomegalovirus antigenemia after hematopoietic stem cell transplantation.

    PubMed

    Asano-Mori, Y; Oshima, K; Sakata-Yanagimoto, M; Nakagawa, M; Kandabashi, K; Izutsu, K; Hangaishi, A; Motokura, T; Chiba, S; Kurokawa, M; Hirai, H; Kanda, Y

    2005-11-01

    Clinical impact of high-grade (HG) cytomegalovirus (CMV) antigenemia after hematopoietic stem cell transplantation has not been clarified. Therefore, in order to investigate the risk factors and outcome for HG-CMV antigenemia, we retrospectively analyzed the records of 154 Japanese adult patients who underwent allogeneic hematopoietic stem cell transplantation for the first time from 1995 to 2002 at the University of Tokyo Hospital. Among 107 patients who developed positive CMV antigenemia at any level, 74 received risk-adapted preemptive therapy with ganciclovir (GCV), and 17 of these developed HG-antigenemia defined as > or = 50 positive cells per two slides. The use of systemic corticosteroids at > or = 0.5 mg/kg/day at the initiation of GCV was identified as an independent significant risk factor for HG-antigenemia. Seven of the 17 HG-antigenemia patients developed CMV disease, with a cumulative incidence of 49.5%, which was significantly higher than that in the low-grade antigenemia patients (4%, P<0.001). However, overall survival was almost equivalent in the two groups. In conclusion, the development of HG-antigenemia appeared to depend on the profound immune suppression of the recipient. Although CMV disease frequently developed in HG-antigenemia patients, antiviral therapy could prevent a fatal outcome.

  3. Hematopoietic Stem Cell Injury Induced by Ionizing Radiation

    PubMed Central

    Shao, Lijian; Luo, Yi

    2014-01-01

    Abstract Significance: Exposure to ionizing radiation (IR) as the result of nuclear accidents or terrorist attacks is a significant threat and a major medical concern. Hematopoietic stem cell (HSC) injury is the primary cause of death after accidental or intentional exposure to a moderate or high dose of IR. Protecting HSCs from IR should be a primary goal in the development of novel medical countermeasures against radiation. Recent Advances: Significant progress has been made in our understanding of the mechanisms by which IR causes HSC damage. The mechanisms include (i) induction of HSC apoptosis via the p53-Puma pathway; (ii) promotion of HSC differentiation via the activation of the G-CSF/Stat3/BATF-dependent differentiation checkpoint; (iii) induction of HSC senescence via the ROS-p38 pathway; and (iv) damage to the HSC niche. Critical Issues: Induction of apoptosis in HSCs and hematopoietic progenitor cells is primarily responsible for IR-induced acute bone marrow (BM) injury. Long-term BM suppression caused by IR is mainly attributable to the induction of HSC senescence. However, the promotion of HSC differentiation and damage to the HSC niche can contribute to both the acute and long-term effects of IR on the hematopoietic system. Future Directions: In this review, we have summarized a number of recent findings that provide new insights into the mechanisms whereby IR damages HSCs. These findings will provide new opportunities for developing a mechanism-based strategy to prevent and/or mitigate IR-induced BM suppression. Antioxid. Redox Signal. 20, 1447–1462. PMID:24124731

  4. Isolation and analysis of hematopoietic stem cells from the placenta.

    PubMed

    Gekas, Christos; E Rhodes, Katrin; K A Mikkola, Hanna

    2008-06-24

    Hematopoietic stem cells (HSCs) have the ability to self-renew and generate all cell types of the blood lineages throughout the lifetime of an individual. All HSCs emerge during embryonic development, after which their pool size is maintained by self-renewing cell divisions. Identifying the anatomical origin of HSCs and the critical developmental events regulating the process of HSC development has been complicated as many anatomical sites participate during fetal hematopoiesis. Recently, we identified the placenta as a major hematopoietic organ where HSCs are generated and expanded in unique microenvironmental niches (Gekas, et al 2005, Rhodes, et al 2008). Consequently, the placenta is an important source of HSCs during their emergence and initial expansion. In this article, we show dissection techniques for the isolation of murine placenta from E10.5 and E12.5 embryos, corresponding to the developmental stages of initiation of HSCs and the peak in the size of the HSC pool in the placenta, respectively. In addition, we present an optimized protocol for enzymatic and mechanical dissociation of placental tissue into single-cell suspension for use in flow cytometry or functional assays. We have found that use of collagenase for single-cell suspension of placenta gives sufficient yields of HSCs. An important factor affecting HSC yield from the placenta is the degree of mechanical dissociation prior to, and duration of, enzymatic treatment. We also provide a protocol for the preparation of fixed-frozen placental tissue sections for the visualization of developing HSCs by immunohistochemistry in their precise cellular niches. As hematopoietic specific antigens are not preserved during preparation of paraffin embedded sections, we routinely use fixed frozen sections for localizing placental HSCs and progenitors.

  5. Effect of Radiofrequency Radiation on Human Hematopoietic Stem Cells.

    PubMed

    Gläser, Katharina; Rohland, Martina; Kleine-Ostmann, Thomas; Schrader, Thorsten; Stopper, Helga; Hintzsche, Henning

    2016-11-01

    Exposure to electromagnetic fields in the radiofrequency range is ubiquitous, mainly due to the worldwide use of mobile communication devices. With improving technologies and affordability, the number of cell phone subscriptions continues to increase. Therefore, the potential effect on biological systems at low-intensity radiation levels is of great interest. While a number of studies have been performed to investigate this issue, there has been no consensus reached based on the results. The goal of this study was to elucidate the extent to which cells of the hematopoietic system, particularly human hematopoietic stem cells (HSC), were affected by mobile phone radiation. We irradiated HSC and HL-60 cells at frequencies used in the major technologies, GSM (900 MHz), UMTS (1,950 MHz) and LTE (2,535 MHz) for a short period (4 h) and a long period (20 h/66 h), and with five different intensities ranging from 0 to 4 W/kg specific absorption rate (SAR). Studied end points included apoptosis, oxidative stress, cell cycle, DNA damage and DNA repair. In all but one of these end points, we detected no clear effect of mobile phone radiation; the only alteration was found when quantifying DNA damage. Exposure of HSC to the GSM modulation for 4 h caused a small but statistically significant decrease in DNA damage compared to sham exposure. To our knowledge, this is the first published study in which putative effects (e.g., genotoxicity or influence on apoptosis rate) of radiofrequency radiation were investigated in HSC. Radiofrequency electromagnetic fields did not affect cells of the hematopoietic system, in particular HSC, under the given experimental conditions.

  6. Distinct Functions of Different scl Isoforms in Zebrafish Definitive Hematopoietic Stem Cell Initiation and Maintenance

    NASA Astrophysics Data System (ADS)

    Lan, Yahui

    2011-07-01

    The establishment of entire blood system relies on the multi-potent hematopoietic stem cells (HSCs), thus identifying the molecular mechanism in HSC generation is of importance for not only complementing the fundamental knowledge in stem cell biology, but also providing insights to the regenerative therapies. Recent researches have documented the formation of nascent HSCs through a direct transition from ventral aortic endothelium, named as endothelial hematopoietic transition (EHT) process. However, the precise genetic program engaged in this process remains largely elusive. The transcription factor scl plays pivotal and conserved roles in embryonic and adult hematopoiesis from teleosts to mammals. Our lab have previously identified a new truncated scl isoform, scl-beta, which is indispensible for the specification of HSCs in the ventral wall of dorsal aorta (VDA), the zebrafish equivalent of mammalian fetal hematopoietic organ. Here we observe that, by combining time-lapse confocal imaging of transgenic zebrafish and genetic epistasis analysis, scl-beta is expressed in a subset of ventral aortic endothelial cells and critical for their forthcoming transformation to hemogenic endothelium; in contrast, runx1 is required downstream to govern the successful egress of the hemogenic endothelial cells to become naive HSCs. In addition, the traditional known full-length scl-alpha isoform is firstly evidenced to be required for the maintenance or survival of newly formed HSCs in VDA. Collectively our data has established the genetic hierarchy controlling discrete steps in the consecutive process of HSC formation from endothelial cells and further development in VDA.

  7. Hematopoietic stem cell-independent B-1a lineage.

    PubMed

    Ghosn, Eliver Eid Bou; Yang, Yang

    2015-12-01

    The accepted dogma has been that a single long-term hematopoietic stem cell (LT-HSC) can reconstitute all components of the immune system. However, our single-cell transfer studies have shown that highly purified LT-HSCs selectively fail to reconstitute B-1a cells in otherwise fully reconstituted hosts (i.e., LT-HSCs fully reconstitute follicular, marginal zone, and B-1b B cells, but not B-1a cells). These results suggest that B-1a cells are a separate B cell lineage that develops independently of classical LT-HSCs. We provide an evolutionary two-pathway development model (HSC independent versus HSC dependent), and suggest that this lineage separation is employed not only by B cells but by all hematopoietic lineages. Collectively, these findings challenge the current notion that LT-HSCs can reconstitute all components of the immune system and raise key questions about human HSC transplantation. We discuss the implications of these findings in light of our recent studies demonstrating the ability of B-1a cells to elicit antigen-specific responses that differ markedly from those mounted by follicular B cells. These findings have implications for vaccine development, in particular vaccines that may elicit the B-1a repertoire.

  8. Infection-responsive expansion of the hematopoietic stem and progenitor cell compartment in zebrafish is dependent upon inducible nitric oxide.

    PubMed

    Hall, Christopher J; Flores, Maria Vega; Oehlers, Stefan H; Sanderson, Leslie E; Lam, Enid Y; Crosier, Kathryn E; Crosier, Philip S

    2012-02-03

    Hematopoietic stem cells (HSCs) are rare multipotent cells that contribute to all blood lineages. During inflammatory stress, hematopoietic stem and progenitor cells (HSPCs) can be stimulated to proliferate and differentiate into the required immune cell lineages. Manipulating signaling pathways that alter HSPC capacity holds great promise in the treatment of hematological malignancies. To date, signaling pathways that influence HSPC capacity, in response to hematopoietic stress, remain largely unknown. Using a zebrafish model of demand-driven granulopoiesis to explore the HSPC response to infection, we present data supporting a model where the zebrafish ortholog of the cytokine-inducible form of nitric oxide synthase (iNOS/NOS2) Nos2a acts downstream of the transcription factor C/ebpβ to control expansion of HSPCs following infection. These results provide new insights into the reactive capacity of HSPCs and how the blood system is "fine-tuned" in response to inflammatory stress.

  9. Management of infections complicating allogeneic hematopoietic stem cell transplantation.

    PubMed

    Hiemenz, John W

    2009-07-01

    The use of allogeneic hematopoietic stem cell transplantation for the treatment of hematologic malignancies, as well as some benign hematologic disorders, has continued to grow over the last 10 years. The availability of this procedure to an increasing number of patients has been facilitated by the use of newer techniques, including reduced intensity conditioning (RIC) regimens, peripheral blood stem cells (PBSCs) and cord blood as donor sources, graft manipulation such as selective T-cell depletion, and other in vitro and in vivo attempts to reduce the risk and severity of graft-versus-host disease (GVHD) after transplantation without losing the potential benefits of a graft-versus-tumor effect for patients with hematologic malignancies. The underlying theme of many of these newer techniques has been to minimize the severity and duration of transplant-related immune suppression, thus reducing the risk of morbidity and mortality from infectious complications. This article reviews immune suppression and recovery that occur after allogeneic stem cell transplantation, with changes in the epidemiology, and some of the recent advances that have been made in management of infectious complications.

  10. Manipulation of hematopoietic stem cells for regenerative medicine.

    PubMed

    Nakajima-Takagi, Yaeko; Osawa, Mitsujiro; Iwama, Atsushi

    2014-01-01

    Hematopoietic stem cells (HSCs) are defined by their capacity to self-renew and to differentiate into all blood cell lineages while retaining robust capacity to regenerate hematopoiesis. Based on these characteristics, they are widely used for transplantation and gene therapy. However, the dose of HSCs available for use in treatments is limited. Therefore, extensive work has been undertaken to expand HSCs in culture and to produce HSCs from embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) in order to improve the efficiency and outcome of HSC-based therapies. Various surface markers have been characterized to improve the purification of HSCs and a huge number of cytokines and small-molecule compounds have been screened for use in the expansion of HSCs. In addition, attempts to generate not only HSCs but also mature blood cells from ESCs and iPSCs are currently ongoing. This review covers recent approaches for the purification, expansion or production of human HSCs and provides insight into problems that need to be resolved.

  11. Hematopoietic stem cell transplantation for sickle cell anemia.

    PubMed

    Vermylen, C; Cornu, G

    1997-11-01

    Hematopoietic stem cell transplantation is the only therapy able to cure sickle cell anemia at the present time. So far, transplantations have been undertaken in approximatively 140 sickle cell patients all over the world, with good results. The selection of patients for transplantation remains a subject of dilemma because of the unpredictable course of the disease and the lack of valuable prognostic markers. The selection criteria accepted so far concern young patients under the age of 16, with a morbid course of the disease and having a HLA-compatible sibling. In Belgium, patients going back to their country of origin were also considered for transplantation. For 100 patients who underwent transplantation in Europe, the current Kaplan-Meier estimates of overall survival, event-free survival, and disease-free survival rates are 90%, 79%, and 81%, respectively. Benefits and side effects are analyzed.

  12. Psychosocial Factors and Hematopoietic Stem Cell Transplantation: Potential Biobehavioral Pathways

    PubMed Central

    Knight, Jennifer M.; Lyness, Jeffrey M.; Sahler, Olle Jane Z.; Liesveld, Jane L.; Moynihan, Jan A.

    2013-01-01

    While psychosocial factors are known to affect cancer progression via biobehavioral pathways in many patient populations, these relationships remain largely unexplored in hematopoietic stem cell transplant (HCT) patients. The purpose of this paper is to critically review the literature regarding psychosocial and endocrine/immune aspects of HCT, with an emphasis on exploring pathways that may mediate the associations between psychosocial factors and disease outcomes. These include the roles of catecholamines, glucocorticoids, inflammation, vascular endothelial growth factor (VEGF), immune reconstitution and infectious susceptibility, as well as the new opportunities available in genomics research. We also discuss the implications for potential immunomodulating psychosocial interventions. Elucidating the biological pathways that account for the associations between psychosocial factors and clinical course could ultimately lead to improved outcomes for this psychologically and immunologically vulnerable population. PMID:23845514

  13. Antibacterial Resistance in Patients with Hematopoietic Stem Cell Transplantation

    PubMed Central

    Alp, Sehnaz; Akova, Murat

    2017-01-01

    Recipients of hematopoietic stem cell transplantation (HSCT) are at substantial risk of bacterial, fungal, viral, and parasitic infections depending on the time elapsed since transplantation, presence of graft-versus-host disease (GVHD), and the degree of immunosuppression. Infectious complications in HSCT recipients are associated with high morbidity and mortality. Bacterial infections constitute the major cause of infectious complications, especially in the early post-transplant period. The emergence of antibacterial resistance complicates the management of bacterial infections in this patient group. Multidrug-resistant bacterial infections in this group of patients have attracted considerable interest and may lead to significant morbidity and mortality. Empirical antibacterial therapy in patients with HSCT and febrile neutropenia has a critical role for survival and should be based on local epidemiology. This review attempts to provide an overview of risk factors and epidemiology of emerging resistant bacterial infections and their management in HSCT recipients. PMID:28101308

  14. Hematopoietic stem cell transplantation for severe combined immunodeficiency.

    PubMed

    Hönig, M; Schulz, A; Friedrich, W

    2011-11-01

    Severe combined immunodeficiency (SCID) is a heterogeneous group of congenital diseases characterized by their presentation with life threatening infections in the first months of life. The clinical presentation and the therapeutic outcome is influenced by multiple factors: the genetic defect, infectious complications, the presence of maternal T cells the development of Omenn syndrome, as well as non-immunological signs and symptoms of the disease. Hematopoietic stem cell transplantation (HSCT) to date is the only established curative option and allows long-term cure of the disease. Therapeutic objectives of HSCT in SCID clearly differ from those in malignant or hematological disease. Disease specific aspects and their influence on the therapeutic strategy in SCID will be discussed in this review.

  15. Parental caregiving of children prior to hematopoietic stem cell transplant.

    PubMed

    Rodday, Angie Mae; Pedowitz, Elizabeth J; Mayer, Deborah K; Ratichek, Sara J; Given, Charles W; Parsons, Susan K

    2012-08-01

    Using the Caregiver Reaction Assessment (CRA), we assessed positive reactions and burdens of the caregiving experience among parental caregivers (n = 189) of children scheduled to undergo hematopoietic stem cell transplant. Although widely used in non-parental caregivers, the CRA has not been used in parents of pediatric patients. Reliability (Cronbach's alpha: .72-.81 vs. .63) and concurrent validity (correlation: .41-.61 vs. .28) were higher for negatively framed than positively framed subscales. Results indicate that the caregiving experience is complex. The parents experienced high caregiver's esteem and moderate family support, but also negative impacts on finances and schedule, and to a lesser degree, health. Compared to non-parental caregivers, parental caregivers experienced higher esteem and more impact on finances and schedule.

  16. Veno-occlusive disease in hematopoietic stem cell transplantation recipients.

    PubMed

    Sosa, Elisabeth C

    2012-10-01

    Veno-occlusive disease (VOD) is a potentially fatal complication of hematopoietic stem cell transplantation that affects the liver, as well as other organs. Although mild cases resolve on their own, severe cases of VOD carry a high mortality rate. The diagnosis usually is clinically based, with nonspecific signs such as weight gain, ascites, hepatomegaly, right upper quadrant abdominal pain, and elevated serum bilirubin. Although studies are ongoing, no U.S. Food and Drug Administration-approved treatments for VOD exist to date. Therefore, supportive care is a critical part of the treatment plan. Oncology nurses should be familiar with the risk factors and clinical signs of VOD so that patients can be monitored closely for its occurrence. Accurate and timely recognition of VOD is crucial for appropriate treatment.

  17. Post-hematopoietic stem cell transplantion immune-mediated cytopenias.

    PubMed

    Tsirigotis, Panagiotis D; Resnick, Igor B; Or, Reuven; Elad, Sharon; Zilberman, Irina; Yoffe, Luba; Levovic, Alexander; Miron, Svetlana; Gesundheit, Benjamin; Slavin, Shimon; Shapira, Michael-Yechiel

    2009-01-01

    Immune-mediated cytopenias after allogeneic stem cell transplantation can be categorized as either alloimmune when host or donor immunity reacts against donor or host elements, respectively, or autoimmune when donor immunity reacts against donor hematopoietic tissue, owing to poorly understood mechanisms that result in severe impairment of central and peripheral tolerance. Immune cytopenias are manifested as monolineage or more rarely as bilineage cytopenias, and are usually mediated through humoral immune mechanisms. On the contrary, immune-mediated pancytopenia is a rare event with only few cases reported in the literature. The exact pathogenesis of immune pancytopenia is not well known although it is possible that cellular immunity may play a significant role. The importance of these syndromes lies in the fact that they can cause severe morbidity and mortality. Differential diagnosis from other causes of post-transplant pancytopenia is of extreme value because these disorders can respond to various treatment modalities.

  18. The Hematopoietic Stem Cell Therapy for Exploration of Space

    NASA Astrophysics Data System (ADS)

    Ohi, S.

    Departments of Biochemistry &Molecular Biology, Genetics &Human Genetics, Pediatrics &Child Long-duration space missions require countermeasures against severe/invasive disorders in astronauts that are caused by space environments, such as hematological/cardiac abnormalities, bone/muscle losses, immunodeficiency, neurological disorders, and cancer. Some, if not all, of these disorders may be amenable to hematopoietic stem cell therapy and gene therapy. Growing evidence indicates that hematopoietic stem cells (HSCs) possess extraordinary plasticity to differentiate not only to all types of blood cells but also to various tissues, including bone, muscle, skin, liver and neuronal cells. Therefore, our working hypothesis is that the hematopoietic stem cell-based therapy, herein called as the hematopoietic stem cell therapy (HSCT), might provide countermeasure/prevention for hematological abnormalities, bone and muscle losses in space, thereby maintaining astronauts' homeostasis. Our expertise lies in recombinant adeno-associated virus (rAAV)-mediated gene therapy for the hemoglobinopathies, -thalassemia and sickle cell disease (Ohi S, Kim BC, J Pharm Sci 85: 274-281, 1996; Ohi S, et al. Grav Space Biol Bull 14: 43, 2000). As the requisite steps in this protocol, we established procedures for purification of HSCs from both mouse and human bone marrow in 1 G. Furthermore, we developed an easily harvestable, long-term liquid suspension culture system, which lasts more than one year, for growing/expanding HSCs without stromal cells. Human globin cDNAs/gene were efficiently expressed from the rAAVs in the mouse HSCs in culture. Additionally, the NASA Rotating Wall Vessel (RWV) culture system is being optimized for the HSC growth/expansion. Thus, using these technologies, the above hypothesis is being investigated by the ground-based experiments as follows: 1) -thalassemic mice (C57BL/6-Hbbth/Hbbth, Hbd-minor) are transplanted with normal isologous HSCs to correct the

  19. Immune Reconstitution after Allogeneic Hematopoietic Stem Cell Transplantation

    PubMed Central

    Ogonek, Justyna; Kralj Juric, Mateja; Ghimire, Sakhila; Varanasi, Pavankumar Reddy; Holler, Ernst; Greinix, Hildegard; Weissinger, Eva

    2016-01-01

    The timely reconstitution and regain of function of a donor-derived immune system is of utmost importance for the recovery and long-term survival of patients after allogeneic hematopoietic stem cell transplantation (HSCT). Of note, new developments such as umbilical cord blood or haploidentical grafts were associated with prolonged immunodeficiency due to delayed immune reconstitution, raising the need for better understanding and enhancing the process of immune reconstitution and finding strategies to further optimize these transplant procedures. Immune reconstitution post-HSCT occurs in several phases, innate immunity being the first to regain function. The slow T cell reconstitution is regarded as primarily responsible for deleterious infections with latent viruses or fungi, occurrence of graft-versus-host disease, and relapse. Here we aim to summarize the major steps of the adaptive immune reconstitution and will discuss the importance of immune balance in patients after HSCT. PMID:27909435

  20. Gastrointestinal and hepatic complications of hematopoietic stem cell transplantation

    PubMed Central

    Tuncer, Hande H; Rana, Naveed; Milani, Cannon; Darko, Angela; Al-Homsi, Samer A

    2012-01-01

    Recognition and management of gastrointestinal and hepatic complications of hematopoietic stem cell transplantation has gained increasing importance as indications and techniques of transplantation have expanded in the last few years. The transplant recipient is at risk for several complications including conditioning chemotherapy related toxicities, infections, bleeding, sinusoidal obstruction syndrome, acute and chronic graft-versus-host disease (GVHD) as well as other long-term problems. The severity and the incidence of many complications have improved in the past several years as the intensity of conditioning regimens has diminished and better supportive care and GVHD prevention strategies have been implemented. Transplant clinicians, however, continue to be challenged with problems arising from human leukocyte antigen-mismatched and unrelated donor transplants, expanding transplant indications and age-limit. This review describes the most commonly seen transplant related complications, focusing on their pathogenesis, differential diagnosis and management. PMID:22563164

  1. Uncoupling VEGFA functions in arteriogenesis and hematopoietic stem cell specification.

    PubMed

    Leung, Amy; Ciau-Uitz, Aldo; Pinheiro, Philip; Monteiro, Rui; Zuo, Jie; Vyas, Paresh; Patient, Roger; Porcher, Catherine

    2013-01-28

    VEGFA signaling is critical for endothelial and hematopoietic stem cell (HSC) specification. However, blood defects resulting from perturbation of the VEGFA pathway are always accompanied by impaired vascular/arterial development. Because HSCs derive from arterial cells, it is unclear whether VEGFA directly contributes to HSC specification. This is an important question for our understanding of how HSCs are formed and for developing their production in vitro. Through knockdown of the regulator ETO2 in embryogenesis, we report a specific decrease in expression of medium/long Vegfa isoforms in somites. This leads to absence of Notch1 expression and failure of HSC specification in the dorsal aorta (DA), independently of vessel formation and arterial specification. Vegfa hypomorphs and isoform-specific (medium/long) morphants not only recapitulate this phenotype but also demonstrate that VEGFA short isoform is sufficient for DA development. Therefore, sequential, isoform-specific VEGFA signaling successively induces the endothelial, arterial, and HSC programs in the DA.

  2. Hematopoietic stem cell transplantation for primary immunodeficiency diseases.

    PubMed

    Slatter, Mary A; Cant, Andrew J

    2011-11-01

    Hematopoietic stem cell transplantation (HSCT) is now highly successfully curing a widening range of primary immunodeficiencies (PIDs). Better tissue typing, matching of donors, less toxic chemotherapy, better virus detection and treatment, improved supportive care, and graft-versus-host disease prophylaxis mean up to a 90% cure for severe combined immunodeficiency patients and a 70-80% cure for other PIDs given a matched unrelated donor, and rising to 95% for young patients with specific PIDs, such as Wiskott-Aldrich syndrome. Precise molecular diagnosis, detailed data on prognosis, and careful pre-HSCT assessment of infective lung and liver damage will ensure an informed benefit analysis of HSCT and the best outcome. It is now recognized that the best treatment option for chronic granulomatous disease is HSCT, which can also be curative for CD40 ligand deficiency and complex immune dysregulation disorders.

  3. Hematopoietic Stem Cell Transplantation for CD3δ deficiency

    PubMed Central

    Marcus, Nufar; Takada, Hidetoshi; Law, Jason; Cowan, Morton J; Gil, Juana; Regueiro, Jose; Lopez de Sabando, Diego Plaza; Lopez-Granados, Eduardo; Dalal, Jignesh; Friedrich, Wilhelm; Manfred, Hoenig; Hanson, I. Celine; Grunebaum, Eyal; Shearer, William T; Roifman, Chaim M.

    2012-01-01

    Background CD3δ deficiency is a fatal form of severe combined immunodeficiency which can be cured by hematopoietic stem cell transplantation (HSCT). The presence of a thymus loaded with T cell progenitors in these patients may require special considerations in choosing the regimen of conditioning and the type of HSCT. Objectives To study the outcome of CD3δ deficiency using various modalities of stem cell transplantation. Methods We analyzed data on 13 patients with CD3δ deficiency who underwent HSCT in 7 centers. HSCT was performed using different sources of donor stem cells as well as various conditioning regimens. Results Two patients who received stem cells from matched related donors and survived, both needed substantial conditioning in order to engraft. Only one of six other patients who received a related mismatched donor (MMRD) transplant survived, two of them had no conditioning while the others received various combinations of conditioning regimens. Three other patients received stem cells from a matched unrelated donor (MUD), survived and enjoyed full immune reconstitution. Two other patients received unrelated cord blood without conditioning. One of them has had a partial but stable engraftment, while the other engrafted well but is only 12 months after HSCT. We also report here for the first time that patients with CD3δ deficiency can present with typical features of Omenn syndrome. Conclusions HSCT is a successful treatment for patients with CD3δ deficiency. The small number of patients in this report prevent definitive statements on the importance of survival factors, but several are suggested: 1) HLA matched donor transplants are associated with superior reconstitution and survival than mismatched donor transplants; 2) substantial conditioning appears necessary; 3) early diagnosis and absence of opportunistic infections. PMID:21757226

  4. The ubiquitin ligase HUWE1 regulates hematopoietic stem cell maintenance and lymphoid commitment

    PubMed Central

    King, Bryan; Boccalatte, Francesco; Moran-Crusio, Kelly; Wolf, Elmar; Wang, Jingjing; Kayembe, Clarisse; Lazaris, Charalampos; Yu, Xiaofeng; Aranda-Orgilles, Beatriz; Lasorella, Anna; Aifantis, Iannis

    2016-01-01

    Hematopoietic stem cells (HSCs) are dormant in the bone marrow and can be activated in response to diverse stresses to replenish all blood cell types. Here we identify the ubiquitin ligase Huwe1 as a crucial regulator of HSC functions via its post-translational control of N-myc. We found Huwe1 to be essential for HSC self-renewal, quiescence and lymphoid fate specification. Using a novel fluorescent fusion allele (MycnM), we observed that N-myc expression was restricted to the most immature, multipotent stem and progenitor populations. N-myc was upregulated in response to stress or upon loss of Huwe1, leading to increased proliferation and stem cell exhaustion. Mycn depletion reversed most of these phenotypes in vivo, suggesting that the attenuation of N-myc by Huwe1 is essential to reestablish homeostasis following stress. PMID:27668798

  5. Enhancement of committed hematopoietic stem cell colony formation by nandrolone decanoate after sublethal whole body irradiation

    SciTech Connect

    Gallicchio, V.S.; Chen, M.G.; Watts, T.D.

    1984-11-01

    The ability of an anabolic steroid, nandrolone decanoate, to increase committed topoietic stem cell (CFU-gm, CFU-e, and BFU-e) colony formation after sublethal irradiation was evaluated. Immediately after receiving whole body irradiation and on the next two days, each mouse was injected intraperitoneally with nandrolone decanoate (1.25 mg) in propylene glycol. Irradiated control mice received only propylene glycol. Compared to controls, drug-treated mice showed marked peripheral blood leukocytosis and more stable packed red cell volume. Drug-treated mice also demonstrated increased erythropoiesis, as CFU-e/BFU-e concentrations from both marrow (9% to 581%) and spleen (15% to 797%) were elevated. Granulopoiesis was increased similarly, as CFU-gm concentrations from marrow (38% to 685%) and spleen (9% to 373%) were elevated. These results demonstrate that nandrolone decanoate enhances hematopoietic stem cell recovery after sublethal whole body irradiation. This suggests that following hematopoietic suppression, nandrolone decanoate may stimulate the recovery of hematopoiesis at the stem cell level and in peripheral blood.

  6. DNA damage: a sensible mediator of the differentiation decision in hematopoietic stem cells and in leukemia.

    PubMed

    Weiss, Cary N; Ito, Keisuke

    2015-03-17

    In the adult, the source of functionally diverse, mature blood cells are hematopoietic stem cells, a rare population of quiescent cells that reside in the bone marrow niche. Like stem cells in other tissues, hematopoietic stem cells are defined by their ability to self-renew, in order to maintain the stem cell population for the lifetime of the organism, and to differentiate, in order to give rise to the multiple lineages of the hematopoietic system. In recent years, increasing evidence has suggested a role for the accumulation of reactive oxygen species and DNA damage in the decision for hematopoietic stem cells to exit quiescence and to differentiate. In this review, we will examine recent work supporting the idea that detection of cell stressors, such as oxidative and genetic damage, is an important mediator of cell fate decisions in hematopoietic stem cells. We will explore the benefits of such a system in avoiding the development and progression of malignancies, and in avoiding tissue exhaustion and failure. Additionally, we will discuss new work that examines the accumulation of DNA damage and replication stress in aging hematopoietic stem cells and causes us to rethink ideas of genoprotection in the bone marrow niche.

  7. DNA Damage: A Sensible Mediator of the Differentiation Decision in Hematopoietic Stem Cells and in Leukemia

    PubMed Central

    Weiss, Cary N.; Ito, Keisuke

    2015-01-01

    In the adult, the source of functionally diverse, mature blood cells are hematopoietic stem cells, a rare population of quiescent cells that reside in the bone marrow niche. Like stem cells in other tissues, hematopoietic stem cells are defined by their ability to self-renew, in order to maintain the stem cell population for the lifetime of the organism, and to differentiate, in order to give rise to the multiple lineages of the hematopoietic system. In recent years, increasing evidence has suggested a role for the accumulation of reactive oxygen species and DNA damage in the decision for hematopoietic stem cells to exit quiescence and to differentiate. In this review, we will examine recent work supporting the idea that detection of cell stressors, such as oxidative and genetic damage, is an important mediator of cell fate decisions in hematopoietic stem cells. We will explore the benefits of such a system in avoiding the development and progression of malignancies, and in avoiding tissue exhaustion and failure. Additionally, we will discuss new work that examines the accumulation of DNA damage and replication stress in aging hematopoietic stem cells and causes us to rethink ideas of genoprotection in the bone marrow niche. PMID:25789504

  8. TC1(C8orf4) regulates hematopoietic stem/progenitor cells and hematopoiesis.

    PubMed

    Jung, Yusun; Kim, Minsung; Soh, Hyunsu; Lee, Soyoung; Kim, Jungtae; Park, Surim; Song, Kyuyoung; Lee, Inchul

    2014-01-01

    Hematopoiesis is a complex process requiring multiple regulators for hematopoietic stem/progenitor cells (HSPC) and differentiation to multi-lineage blood cells. TC1(C8orf4) is implicated in cancers, hematological malignancies and inflammatory activation. Here, we report that Tc1 regulates hematopoiesis in mice. Myeloid and lymphoid cells are increased markedly in peripheral blood of Tc1-deleted mice compared to wild type controls. Red blood cells are small-sized but increased in number. The bone marrow of Tc1-/- mice is normocellular histologically. However, Lin-Sca-1+c-Kit+ (LSK) cells are expanded in Tc1-/- mice compared to wild type controls. The expanded population mostly consists of CD150-CD48+ cells, suggesting the expansion of lineage-restricted hematopoietic progenitor cells. Colony forming units (CFU) are increased in Tc1-/- mice bone marrow cells compared to controls. In wild type mice bone marrow, Tc1 is expressed in a limited population of HSPC but not in differentiated cells. Major myeloid transcriptional regulators such as Pu.1 and Cebpα are not up-regulated in Tc1-/- mice bone marrow. Our findings indicate that TC1 is a novel hematopoietic regulator. The mechanisms of TC1-dependent HSPC regulation and lineage determination are unknown.

  9. Fractionated stem cell infusions for patients with plasma cell myeloma undergoing autologous hematopoietic cell transplantation.

    PubMed

    Landau, Heather; Wood, Kevin; Chung, David J; Koehne, Guenther; Lendvai, Nikoletta; Hassoun, Hani; Lesokhin, Alexander; Hoover, Elizabeth; Zheng, Junting; Devlin, Sean M; Giralt, Sergio

    2016-08-01

    We conducted a phase II trial investigating the impact of fractionated hematopoietic cell infusions on engraftment kinetics and symptom burden in patients with plasma cell myeloma (PCM) undergoing autologous hematopoietic cell transplant (AHCT). We hypothesized that multiple hematopoietic cell infusions would reduce duration of neutropenia and enhance immune recovery resulting in a better tolerated procedure. Twenty-six patients received high-dose melphalan followed by multiple cell infusions (Days 0, +2, +4, +6) and were compared to PCM patients (N = 77) who received high-dose melphalan and a single infusion (Day 0) (concurrent control group). The primary endpoint was number of days with ANC <500K/mcL. Symptom burden was assessed using the MSK-modified MD Anderson Symptom Inventory. Median duration of neutropenia was similar in study (4 days, range 3-5) and control patients (4 days, range 3-9) (p = 0.654). There was no significant difference in the number of red cell or platelet transfusions, days of fever, diarrhea, antibiotics, number of documented infections, or length of admission. Symptom burden surveys showed that AHCT was well-tolerated in both study and control patients. We conclude that fractionated stem cell infusions following high-dose melphalan do not enhance engraftment kinetics or significantly alter patients' clinical course following AHCT in PCM.

  10. The retinoblastoma tumor suppressor is a critical intrinsic regulator for hematopoietic stem and progenitor cells under stress

    PubMed Central

    Daria, Deidre; Filippi, Marie-Dominique; Knudsen, Erik S.; Faccio, Roberta; Li, Zhixiong; Kalfa, Theodosia

    2008-01-01

    The retinoblastoma tumor suppressor protein (RB) plays important roles in the control of the cell division cycle. It is estimated that RB is dysfunctional/inactivated in up to 40% of human leukemias. The consequences of loss of RB on hematopoietic stem and progenitor cell (HSPC) function in vivo are incompletely understood. Here, we report that mice genetically deficient in Rb in all hematopoietic cells (Vav-Cre Rb knockout [KO] animals) showed altered contribution of distinct hematopoietic cell lineages to peripheral blood, bone marrow, and spleen; significantly increased extramedullary hematopoiesis in the spleen; and a 2-fold increase in the frequency of hematopoietic progenitor cells in peripheral blood. Upon competitive transplantation, HSPCs from Vav-Cre Rb KO mice contributed with an at least 4- to 6-fold less efficiency to hematopoiesis compared with control cells. HSPCs deficient in Rb presented with impaired cell-cycle exit upon stress-induced proliferation, which correlated with impaired function. In summary, Rb is critical for hematopoietic stem and progenitor cell function, localization, and differentiation. PMID:18048646

  11. Drug evaluation: ADA-transduced hematopoietic stem cell therapy for ADA-SCID.

    PubMed

    Taupin, Phillippe

    2006-06-01

    San Raffaele Telethon Institute for Gene Therapy is developing an adenosine deaminase-transduced hematopoietic stem cell therapy for the potential intravenous treatment of adenosine deaminase deficiency in severe combined immunocompromised individuals.

  12. Brain, Behavior, and Immunity: Biobehavioral influences on recovery following hematopoietic stem cell transplantation

    Cancer.gov

    Review of hematopoietic stem cell transplantation and its potential “window of opportunity” during which interventions targeting stress-related behavioral factors can influence the survival, health, and well-being of recipients.

  13. Hematopoietic Stem Cells in Regenerative Medicine: Astray or on the Path?

    PubMed Central

    Müller, Albrecht M.; Huppertz, Sascha; Henschler, Reinhard

    2016-01-01

    Hematopoietic stem cells (HSCs) are the best characterized adult stem cells and the only stem cell type in routine clinical use. The concept of stem cell transplantation laid the foundations for the development of novel cell therapies within, and even outside, the hematopoietic system. Here, we report on the history of hematopoietic cell transplantation (HCT) and of HSC isolation, we briefly summarize the capabilities of HSCs to reconstitute the entire hemato/lymphoid cell system, and we assess current indications for HCT. We aim to draw the lines between areas where HCT has been firmly established, areas where HCT can in the future be expected to be of clinical benefit using their regenerative functions, and areas where doubts persist. We further review clinical trials for diverse approaches that are based on HCT. Finally, we highlight the advent of genome editing in HSCs and critically view the use of HSCs in non-hematopoietic tissue regeneration. PMID:27721700

  14. Pleiotrophin regulates the expansion and regeneration of hematopoietic stem cells.

    PubMed

    Himburg, Heather A; Muramoto, Garrett G; Daher, Pamela; Meadows, Sarah K; Russell, J Lauren; Doan, Phuong; Chi, Jen-Tsan; Salter, Alice B; Lento, William E; Reya, Tannishtha; Chao, Nelson J; Chute, John P

    2010-04-01

    Hematopoietic stem cell (HSC) self-renewal is regulated by both intrinsic and extrinsic signals. Although some of the pathways that regulate HSC self-renewal have been uncovered, it remains largely unknown whether these pathways can be triggered by deliverable growth factors to induce HSC growth or regeneration. Here we show that pleiotrophin, a neurite outgrowth factor with no known function in hematopoiesis, efficiently promotes HSC expansion in vitro and HSC regeneration in vivo. Treatment of mouse bone marrow HSCs with pleiotrophin caused a marked increase in long-term repopulating HSC numbers in culture, as measured in competitive repopulating assays. Treatment of human cord blood CD34(+)CDCD38(-)Lin(-) cells with pleiotrophin also substantially increased severe combined immunodeficient (SCID)-repopulating cell counts in culture, compared to input and cytokine-treated cultures. Systemic administration of pleiotrophin to irradiated mice caused a pronounced expansion of bone marrow stem and progenitor cells in vivo, indicating that pleiotrophin is a regenerative growth factor for HSCs. Mechanistically, pleiotrophin activated phosphoinositide 3-kinase (PI3K) signaling in HSCs; antagonism of PI3K or Notch signaling inhibited pleiotrophin-mediated expansion of HSCs in culture. We identify the secreted growth factor pleiotrophin as a new regulator of both HSC expansion and regeneration.

  15. Autologous hematopoietic stem cell transplantation for systemic sclerosis.

    PubMed

    Milanetti, Francesca; Bucha, Jurate; Testori, Alessandro; Burt, Richard K

    2011-03-01

    Systemic sclerosis is a rare disorder manifesting as skin and internal organ fibrosis, a diffuse vasculopathy, inflammation, and features of autoimmunity. Patients with diffuse cutaneous disease or internal organ involvement have a poor prognosis with high mortality. To date no therapy has been shown to reverse the natural course of the disease. Immune suppressive drugs are commonly utilized to treat patients, but randomized trials have generally failed to demonstrate any long-term benefit. In phase I/II trials, autologous hematopoietic stem cell transplantation (HSCT) has demonstrated impressive reversal of skin fibrosis, improved functionality and quality of life, and stabilization of internal organ function, but initial studies were complicated by significant treatment-related mortality. Treatment-related mortality was reduced by better pre-transplant evaluation to exclude patients with compromised cardiac function and by treating patients earlier in disease, allowing selected patients the option of autologous HSCT treatment. There are currently three ongoing randomized trials of autologous HSCT for systemic sclerosis: ASSIST (American Systemic Sclerosis Immune Suppression versus Transplant), SCOT (scleroderma cyclophosphamide versus Transplant), and ASTIS (Autologous Stem cell Transplantation International Scleroderma). The results from these trials should clarify the role of autologous HSCT in the currently limited therapeutic arsenal of severe systemic sclerosis.

  16. ABO-Mismatched Allogeneic Hematopoietic Stem Cell Transplantation

    PubMed Central

    Worel, Nina

    2016-01-01

    Summary Allogeneic hematopoietic stem cell transplantation (HSCT) is a curative option for a variety of malignant and non-malignant hematological and congenital diseases. Due to the fact that the human leukocyte antigen system is inherited independently of the blood group system, approximately 40-50% of all HSCTs are performed across the ABO blood group barrier. The expected immune-hematological consequences after transplantation of an ABO-mismatched stem cell graft are immediate and delayed hemolytic complications due to presence of isohemagglutinins or passenger lymphocyte syndrome. The risks of these complications can partially be prevented by graft manipulation and appropriate transfusion support. Dependent on the kind of ABO mismatch, different effects on engraftment have been observed, e.g. delayed red blood cell recovery and pure red cell aplasia. Data on incidence of acute graft-versus-host disease (GVHD), non-relapse mortality, relapse, and overall survival are inconsistent as most studies include limited patient numbers, various graft sources, and different conditioning and GVHD prophylaxis regimens. This makes it difficult to detect a consistent effect of ABO-mismatched transplantation in the literature. However, knowledge of expectable complications and close monitoring of patients helps to detect problems early and to treat patients efficiently, thus reducing the number of fatal or life-threatening events caused by ABO-mismatched HSCT. PMID:27022317

  17. Hematopoietic stem cell fate decisions are regulated by Wnt antagonists: comparisons and current controversies.

    PubMed

    Cain, Corey J; Manilay, Jennifer O

    2013-01-01

    Wingless and int (Wnt) proteins are secreted proteins that are important for regulating hematopoietic stem cell self-renewal and differentiation in the bone marrow microenvironment in mice. The mechanisms by which Wnt signaling regulates these hematopoietic cell fate decisions are not fully understood. Secreted Wnt antagonists, which are expressed in bone and bone marrow stromal cells, either bind to Wnt ligands directly or block Wnt receptors and co-receptors to halt Wnt-mediated signal transduction in both osteolineage and hematopoietic cell types. Secreted frizzled related proteins-1 and -2, Wnt inhibitory factor-1, Dickkopf-1, and Sclerostin are Wnt antagonists that influence hematopoietic cell fate decisions in the bone marrow niche. In this review, we compare and contrast the roles of these Wnt antagonists and their effects on hematopoietic development in mice, and also discuss the clinical significance of targeting Wnt antagonists within the context of hematopoietic disease.

  18. Progress and obstacles towards generating hematopoietic stem cells from pluripotent stem cells

    PubMed Central

    Lee, Jungmin; Dykstra, Brad; Sackstein, Robert; Rossi, Derrick J.

    2015-01-01

    Purpose of review Human pluripotent stem cells (PSCs) have the potential to provide an inexhaustible source of hematopoietic stem cells (HSCs) that could be used in disease modeling and in clinical applications such as transplantation. Although the goal of deriving definitive HSCs from PSCs has not been achieved, recent studies indicate that progress is being made. This review will provide information on the current status of deriving HSCs from PSCs, and will highlight existing challenges and obstacles. Recent findings Recent strides in HSC generation from PSCs has included derivation of developmental intermediates, identification of transcription factors and small molecules that support hematopoietic derivation, and the development of strategies to recapitulate niche-like conditions. Summary Despite considerable progress in defining the molecular events driving derivation of hematopoietic progenitor cells (HPCs) from PSCs, the generation of robust transplantable HSCs from PSCs remains elusive. We propose that this goal can be facilitated by better understanding of the regulatory pathways governing HSC identity, development of HSC supportive conditions, and examining the marrow homing properties of PSC-derived HSCs. PMID:26049752

  19. Sowing the Seeds of a Fruitful Harvest: Hematopoietic Stem Cell Mobilization

    PubMed Central

    Hoggatt, Jonathan; Speth, Jennifer M.; Pelus, Louis M.

    2014-01-01

    Hematopoietic stem cell transplantation is the only curative option for a number of malignant and non-malignant diseases. As the use of hematopoietic transplant has expanded, so too has the source of stem and progenitor cells. The predominate source of stem and progenitors today, particularly in settings of autologous transplantation, is mobilized peripheral blood. This review will highlight the historical advances which lead to the widespread use of peripheral blood stem cells for transplantation, with a look towards future enhancements to mobilization strategies. PMID:24123398

  20. Granulomatous amebic encephalitis following hematopoietic stem cell transplantation

    PubMed Central

    Doan, Ninh; Rozansky, Gregory; Nguyen, Ha Son; Gelsomino, Michael; Shabani, Saman; Mueller, Wade; Johnson, Vijay

    2015-01-01

    Background: Granulomatous amebic encephalitis (GAE) is rare, but often fatal. The infection has been documented predominantly among the immunocompromised population or among those with chronic disease. To date, however, there have only been eight cases regarding the infection following hematopoietic stem cell transplantation (HSCT). Case Description: A 62-year-old female with a history of relapsed diffuse large B-cell lymphoma, recently underwent peripheral blood autologous stem cell transplant after BEAM conditioning (day 0). On day +15, she began to exhibit worsening fatigue, generalized weakness, and fever. Symptoms progressed to nausea, emesis, somnolence, confusion, and frontal headaches over the next few days. Imaging demonstrated multifocal ill-defined vasogenic edema with patchy enhancement. The patient was started on broad antibiotics, antifungals, and seizure prophylaxis. Evaluation for bacterial, fungal, mycobacterial, and viral etiologies was fruitless. Her mental status progressively deteriorated. On day +22, she exhibited severe lethargy and went into pulseless electrical activity arrest, requiring chest compressions. The episode lasted <2 min and her pulse was restored. She was taken to the operating room for a brain biopsy. Postoperatively, her right pupil began to dilate compared to the left; she demonstrated extensor posturing in her upper extremities and withdrawal in her lower extremities. Repeat computed tomography demonstrated progressive edema. Given poor prognosis and poor neurological examination, the family opted for withdrawal of care. Final pathology was consistent with Acanthamoeba GAE. Conclusion: The authors report the third case of GAE after autologous stem cell transplant, and the ninth case overall after HSCT. This case is unusual due to its rapid clinical presentation after HSCT compared to prior literature. The case highlights the need for high suspicion of Acanthamoeba infection in this patient population. PMID:26539322

  1. Lack of the ubiquitin-editing enzyme A20 results in loss of hematopoietic stem cell quiescence

    PubMed Central

    Nakagawa, Masahiro Marshall; Thummar, Keyur; Mandelbaum, Jonathan; Pasqualucci, Laura

    2015-01-01

    A balance between quiescence and proliferation is critical for proper maintenance of the hematopoietic stem cell (HSC) pool. Although a lot is known about hematopoiesis, molecular mechanisms that control HSC quiescence remain largely unknown. The ubiquitin-editing enzyme A20 functions as a central regulator of inflammation and adaptive immunity. Here, we show that a deficiency of A20 in the hematopoietic system causes anemia, lymphopenia, and postnatal lethality. Lack of A20 in HSCs results in diminished pool size, impaired radioprotection, defective repopulation, and loss of quiescence. A20-deficient HSCs display increased IFN-γ signaling, caused by augmented NF-κB activation. Strikingly, deletion of both IFN-γ and A20 in hematopoietic cells results in partial rescue of the HSC phenotype. We anticipate that our experiments will facilitate the understanding of mechanisms through which A20-mediated inflammatory signals control HSC quiescence and functions. PMID:25624445

  2. Evi1 regulates Notch activation to induce zebrafish hematopoietic stem cell emergence.

    PubMed

    Konantz, Martina; Alghisi, Elisa; Müller, Joëlle S; Lenard, Anna; Esain, Virginie; Carroll, Kelli J; Kanz, Lothar; North, Trista E; Lengerke, Claudia

    2016-11-02

    During development, hematopoietic stem cells (HSCs) emerge from aortic endothelial cells (ECs) through an intermediate stage called hemogenic endothelium by a process known as endothelial-to-hematopoietic transition (EHT). While Notch signaling, including its upstream regulator Vegf, is known to regulate this process, the precise molecular control and temporal specificity of Notch activity remain unclear. Here, we identify the zebrafish transcriptional regulator evi1 as critically required for Notch-mediated EHT In vivo live imaging studies indicate that evi1 suppression impairs EC progression to hematopoietic fate and therefore HSC emergence. evi1 is expressed in ECs and induces these effects cell autonomously by activating Notch via pAKT Global or endothelial-specific induction of notch, vegf, or pAKT can restore endothelial Notch and HSC formations in evi1 morphants. Significantly, evi1 overexpression induces Notch independently of Vegf and rescues HSC numbers in embryos treated with a Vegf inhibitor. In sum, our results unravel evi1-pAKT as a novel molecular pathway that, in conjunction with the shh-vegf axis, is essential for activation of Notch signaling in VDA endothelial cells and their subsequent conversion to HSCs.

  3. Wnts are dispensable for differentiation and self-renewal of adult murine hematopoietic stem cells

    PubMed Central

    Kabiri, Zahra; Numata, Akihiko; Kawasaki, Akira; Tenen, Daniel G.

    2015-01-01

    Wnt signaling controls early embryonic hematopoiesis and dysregulated β-catenin is implicated in leukemia. However, the role of Wnts and their source in adult hematopoiesis is still unclear, and is clinically important as upstream Wnt inhibitors enter clinical trials. We blocked Wnt secretion in hematopoietic lineages by targeting Porcn, a membrane-bound O-acyltransferase that is indispensable for the activity and secretion of all vertebrate Wnts. Surprisingly, deletion of Porcn in Rosa-CreERT2/PorcnDel, MX1-Cre/PorcnDel, and Vav-Cre/PorcnDel mice had no effects on proliferation, differentiation, or self-renewal of adult hematopoietic stem cells. Targeting Wnt secretion in the bone marrow niche by treatment with a PORCN inhibitor, C59, similarly had no effect on hematopoiesis. These results exclude a role for hematopoietic PORCN-dependent Wnts in adult hematopoiesis. Clinical use of upstream Wnt inhibitors is not likely to be limited by effects on hematopoiesis. PMID:26089398

  4. Ptk7-Deficient Mice Have Decreased Hematopoietic Stem Cell Pools as a Result of Deregulated Proliferation and Migration.

    PubMed

    Lhoumeau, Anne-Catherine; Arcangeli, Marie-Laure; De Grandis, Maria; Giordano, Marilyn; Orsoni, Jean-Christophe; Lembo, Frédérique; Bardin, Florence; Marchetto, Sylvie; Aurrand-Lions, Michel; Borg, Jean-Paul

    2016-05-15

    Hematopoietic stem cells (HSCs) located in adult bone marrow or fetal liver in mammals produce all cells from the blood system. At the top of the hierarchy are long-term HSCs endowed with lifelong self-renewal and differentiation properties. These features are controlled through key microenvironmental cues and regulatory pathways, such as Wnt signaling. We showed previously that PTK7, a tyrosine kinase receptor involved in planar cell polarity, plays a role in epithelial Wnt signaling; however, its function in hematopoiesis has remained unexplored. In this article, we show that PTK7 is expressed by hematopoietic stem and progenitor cells, with the highest level of protein expression found on HSCs. Taking advantage of a Ptk7-deficient mouse strain, we demonstrate that loss of Ptk7 leads to a diminished pool of HSCs but does not affect in vitro or in vivo hematopoietic cell differentiation. This is correlated with increased quiescence and reduced homing abilities of Ptk7-deficient hematopoietic stem and progenitor cells, unraveling novel and unexpected functions for planar cell polarity pathways in HSC fate.

  5. SCL/TAL1 Regulates Hematopoietic Specification From Human Embryonic Stem Cells

    PubMed Central

    Real, Pedro J; Ligero, Gertrudis; Ayllon, Veronica; Ramos-Mejia, Veronica; Bueno, Clara; Gutierrez-Aranda, Ivan; Navarro-Montero, Oscar; Lako, Majlinda; Menendez, Pablo

    2012-01-01

    Determining the molecular regulators/pathways responsible for the specification of human embryonic stem cells (hESCs) into hematopoietic precursors has far-reaching implications for potential cell therapies and disease modeling. Mouse models lacking SCL/TAL1 (stem cell leukemia/T-cell acute lymphocytic leukemia 1) do not survive beyond early embryogenesis because of complete absence of hematopoiesis, indicating that SCL is a master early hematopoietic regulator. SCL is commonly found rearranged in human leukemias. However, there is barely information on the role of SCL on human embryonic hematopoietic development. Differentiation and sorting assays show that endogenous SCL expression parallels hematopoietic specification of hESCs and that SCL is specifically expressed in hematoendothelial progenitors (CD45−CD31+CD34+) and, to a lesser extent, on CD45+ hematopoietic cells. Enforced expression of SCL in hESCs accelerates the emergence of hematoendothelial progenitors and robustly promotes subsequent differentiation into primitive (CD34+CD45+) and total (CD45+) blood cells with higher clonogenic potential. Short-hairpin RNA–based silencing of endogenous SCL abrogates hematopoietic specification of hESCs, confirming the early hematopoiesis-promoting effect of SCL. Unfortunately, SCL expression on its own is not sufficient to confer in vivo engraftment to hESC-derived hematopoietic cells, suggesting that additional yet undefined master regulators are required to orchestrate the stepwise hematopoietic developmental process leading to the generation of definitive in vivo functional hematopoiesis from hESCs. PMID:22491213

  6. An X chromosome gene regulates hematopoietic stem cell kinetics

    PubMed Central

    Abkowitz, Janis L.; Taboada, Monica; Shelton, Grady H.; Catlin, Sandra N.; Guttorp, Peter; Kiklevich, J. Veronika

    1998-01-01

    Females are natural mosaics for X chromosome-linked genes. As X chromosome inactivation occurs randomly, the ratio of parental phenotypes among blood cells is approximately 1:1. Recently, however, ratios of greater than 3:1 have been observed in 38–56% of women over age 60. This could result from a depletion of hematopoietic stem cells (HSCs) with aging (and the maintenance of hematopoiesis by a few residual clones) or from myelodysplasia (the dominance of a neoplastic clone). Each possibility has major implications for chemotherapy and for transplantation in elderly patients. We report similar findings in longitudinal studies of female Safari cats and demonstrate that the excessive skewing that develops with aging results from a third mechanism that has no pathologic consequence, hemizygous selection. We show that there is a competitive advantage for all HSCs with a specific X chromosome phenotype and, thus, demonstrate that an X chromosome gene (or genes) regulates HSC replication, differentiation, and/or survival. PMID:9520458

  7. Hematopoietic stem cell transplantation for severe combined immunodeficiency diseases.

    PubMed

    Cowan, Morton J; Neven, Benedicte; Cavazanna-Calvo, M; Fischer, A; Puck, Jennifer

    2008-01-01

    Hematopoietic stem cell transplantation (HSCT) is the only curative option for most children with severe combined immunodeficiency disease (SCID). Survival for SCID following HSCT has significantly improved over the past several decades, and ranges from 70% to 95% depending on the clinical condition of the child at the time of transplant, the availability of an HLA-matched sibling donor, and the SCID genotype/phenotype. In this article we will review the types of SCID and discuss the critical HSCT issues that confront us today, including the optimal source of donor cells when an HLA-matched sibling is not available, as well as the pros and cons of using conditioning therapy pretransplant. As SCID children have been followed for several decades, it is becoming apparent that long-term outcome and durable T and B cell immune reconstitution are quite variable depending on the initial treatment and source of donor cells. Finally, the development of methods to improve the early diagnosis of SCID along with designing prospective trials to evaluate the best approaches to curing these diseases with minimal toxicity are critical to improving outcomes for children with SCID.

  8. EBV Lymphoproliferative Disease after Hematopoietic Stem Cell Transplant

    PubMed Central

    Rouce, Rayne H; Louis, Chrystal U; Heslop, Helen E

    2014-01-01

    PURPOSE OF REVIEW EBV reactivation can cause significant morbidity and mortality after allogeneic hematopoietic stem cell transplant (SCT). Delays in reconstitution of EBV-specific T lymphocyte activity can lead to life-threatening EBV lymphoproliferative disease (EBV-PTLD). This review highlights recent advances in the understanding of pathophysiology, risk factors, diagnosis, and management of EBV viremia and PTLD. RECENT FINDINGS During the past decade, early detection strategies, such as serial measurement of EBV-DNA load, have helped to identify high-risk patients and to diagnose early lymphoproliferation. The most significant advances have come in the form of innovative treatment options, including manipulation of the balance between outgrowing EBV-infected B cells and the EBV cytotoxic T lymphocyte (EBV-CTL) response, and targeting infected B cells with monoclonal antibodies, chemotherapy, unmanipulated donor lymphocytes, and donor or more recently third party EBV-CTLs. Defining criteria for preemptive therapy and remains a challenge. SUMMARY EBV reactivation is a significant complication after SCT. Continued improvements in risk-stratification and treatment options are required to improve the morbidity and mortality caused by EBV associated diseases. Current approaches use Rituximab to deplete B cells or adoptive transfer of EBV-CTL to reconstitute immunity. The availability of rapid EBV specific T cell products offers the possibility of improved outcomes. PMID:25159713

  9. Competitive Transplants to Evaluate Hematopoietic Stem Cell Fitness.

    PubMed

    Kwarteng, Edward O; Heinonen, Krista M

    2016-08-31

    The gold standard definition of a hematopoietic stem cell (HSC) is a cell that when transferred into an irradiated recipient will have the ability to reestablish blood cell production for the lifespan of the recipient. This protocol explains how to set up a functional assay to compare the HSC capacities of two different populations of cells, such as bone marrow from mice of two different genotypes, and how to analyze the recipient mice by flow cytometry. The protocol uses HSC equivalents rather than cell sorting for standardization and discusses the advantages and disadvantages of both approaches. We further discuss different variations to the basic protocol, including serial transplants, limiting dilution assays, homing assays and non-competitive transplants, including the advantages and preferred uses of these varied approaches. These assays are central for the study of HSC function and could be used not only for the investigation of fundamental HSC intrinsic aspects of biology but also for the development of preclinical assays for bone marrow transplant and HSC expansion in culture.

  10. Noncanonical Wnt Signaling Maintains Hematopoietic Stem Cells in the Niche

    PubMed Central

    Sugimura, Ryohichi; He, Xi C.; Venkatraman, Aparna; Arai, Fumio; Box, Andrew; Semerad, Craig; Haug, Jeffrey S.; Peng, Lai; Zhong, Xiao-bo; Suda, Toshio; Li, Linheng

    2015-01-01

    SUMMARY Wnt signaling is involved in self-renewal and maintenance of hematopoietic stem cells (HSCs); however, the particular role of noncanonical Wnt signaling in regulating HSCs in vivo is largely unknown. Here, we show Flamingo (Fmi) and Frizzled (Fz) 8, members of noncanonical Wnt signaling, both express in and functionally maintain quiescent long-term HSCs. Fmi regulates Fz8 distribution at the interface between HSCs and N-cadherin+ osteoblasts (N-cad+OBs that enrich osteoprogenitors) in the niche. We further found that N-cad+OBs predominantly express noncanonical Wnt ligands and inhibitors of canonical Wnt signaling under homeostasis. Under stress, noncanonical Wnt signaling is attenuated and canonical Wnt signaling is enhanced in activation of HSCs. Mechanistically, noncanonical Wnt signaling mediated by Fz8 suppresses the Ca2+-NFAT- IFNγ pathway, directly or indirectly through the CDC42-CK1α complex and also antagonizes canonical Wnt signaling in HSCs. Taken together, our findings demonstrate that noncanonical Wnt signaling maintains quiescent long-term HSCs through Fmi and Fz8 interaction in the niche. PMID:22817897

  11. Evolving Hematopoietic Stem Cell Transplantation Strategies in Severe Aplastic Anemia

    PubMed Central

    Dietz, Andrew C.; Lucchini, Giovanna; Samarasinghe, Sujith; Pulsipher, Michael A.

    2016-01-01

    Purpose of Review Significant improvements in unrelated donor hematopoietic stem cell transplantation (HSCT) in recent years has solidified its therapeutic role in severe aplastic anemia (SAA) and led to evolution of treatment algorithms, particularly for children. Recent Findings Advances in understanding genetics of inherited bone marrow failure syndromes (IBMFS) have allowed more confidence in accurately diagnosing SAA and avoiding treatments that could be dangerous and ineffective in individuals with IBMFS, which can be diagnosed in 10–20% of children presenting with a picture of SAA. Additionally long-term survival after matched sibling donor (MSD) and matched unrelated donor (MUD) HSCT now exceed 90% in children. Late effects after HSCT for SAA are minimal with current strategies and compare favorably to late effects after up-front immunosuppressive therapy (IST), except for patients with chronic graft versus host disease (GVHD). Summary 1) Careful assessment for signs or symptoms of IBMFS along with genetic screening for these disorders is of major importance. 2) MSD HSCT is already considered standard of care for up-front therapy and some groups are evaluating MUD HSCT as primary therapy. 3) Ongoing studies will continue to challenge treatment algorithms and may lead to an even more expanded role for HSCT in SAA. PMID:26626557

  12. Drug hypersensitivity reactions during hematopoietic stem cell transplantation.

    PubMed

    Bircher, Andreas J; Scherer Hofmeier, Kathrin

    2012-01-01

    Drugs may elicit a considerable variety of clinical signs, often affecting the skin and the mucous membranes. The most common are maculopapular exanthema, urticaria and angioedema. More rarely pustular, vesiculobullous, vasculitic and lichenoid lesions may be observed. Apart from the morphology, also the chronology of the occurrence and the evolution of the single skin lesions and the exanthema are paramount in the clinical diagnosis. Often, the skin is the only affected organ; however, it may herald a systemic involvement of internal organs, such as in severe drug-induced hypersensitivity syndromes or anaphylaxis. Cutaneous manifestations, particularly maculopapular exanthemas have a high incidence among patients treated with hematopoietic stem cell transplantation. In many cases, a virus- or drug-induced origin or a combination of both is responsible. However, the transplantation itself may also induce similar skin changes. These exanthemas include most often graft-versus-host disease, and rarely engraftment syndrome or eruption of lymphocyte recovery. The elucidation of the underlying cause of the exanthemas occurring in immune compromised patients and the determination of the correct diagnosis remain challenging. An extensive differential diagnosis has to be put forward. This includes several groups of disorders with sometimes very similar cutaneous manifestations. Manifestations form the underlying disease, complications from therapy, infections and drug reactions are the most common differential diagnoses.

  13. Prostaglandin-modulated umbilical cord blood hematopoietic stem cell transplantation.

    PubMed

    Cutler, Corey; Multani, Pratik; Robbins, David; Kim, Haesook T; Le, Thuy; Hoggatt, Jonathan; Pelus, Louis M; Desponts, Caroline; Chen, Yi-Bin; Rezner, Betsy; Armand, Philippe; Koreth, John; Glotzbecker, Brett; Ho, Vincent T; Alyea, Edwin; Isom, Marlisa; Kao, Grace; Armant, Myriam; Silberstein, Leslie; Hu, Peirong; Soiffer, Robert J; Scadden, David T; Ritz, Jerome; Goessling, Wolfram; North, Trista E; Mendlein, John; Ballen, Karen; Zon, Leonard I; Antin, Joseph H; Shoemaker, Daniel D

    2013-10-24

    Umbilical cord blood (UCB) is a valuable source of hematopoietic stem cells (HSCs) for use in allogeneic transplantation. Key advantages of UCB are rapid availability and less stringent requirements for HLA matching. However, UCB contains an inherently limited HSC count, which is associated with delayed time to engraftment, high graft failure rates, and early mortality. 16,16-Dimethyl prostaglandin E2 (dmPGE2) was previously identified to be a critical regulator of HSC homeostasis, and we hypothesized that brief ex vivo modulation with dmPGE2 could improve patient outcomes by increasing the "effective dose" of HSCs. Molecular profiling approaches were used to determine the optimal ex vivo modulation conditions (temperature, time, concentration, and media) for use in the clinical setting. A phase 1 trial was performed to evaluate the safety and therapeutic potential of ex vivo modulation of a single UCB unit using dmPGE2 before reduced-intensity, double UCB transplantation. Results from this study demonstrated clear safety with durable, multilineage engraftment of dmPGE2-treated UCB units. We observed encouraging trends in efficacy, with accelerated neutrophil recovery (17.5 vs 21 days, P = .045), coupled with preferential, long-term engraftment of the dmPGE2-treated UCB unit in 10 of 12 treated participants.

  14. Alloreactivity: The janus-face of hematopoietic stem cell transplantation.

    PubMed

    Gratwohl, A; Sureda, A; Cornelissen, J; Apperley, J; Dreger, P; Duarte, R; Greinix, H T; Mc Grath, E; Kroeger, N; Lanza, F; Nagler, A; Snowden, J A; Niederwieser, D; Brand, R

    2017-03-08

    Differences in major and minor histocompatibility antigens between donor and recipient trigger powerful graft-versus-host reactions after allogeneic hematopoietic stem cell transplantation (HSCT). The clinical effects of alloreactivity present a Janus face: detrimental graft-versus-host disease increases non-relapse mortality, beneficial graft-versus-malignancy may cure the recipient. The ultimate consequences on long-term outcome remain a matter of debate. We hypothesized that increasing donor-recipient antigen matching would decrease the negative effects, whilst preserving antitumor alloreactivity. We analyzed retrospectively a predefined cohort of 32 838 such patients and compared it to 59 692 patients with autologous HSCT as reference group. We found a significant and systematic decrease in non-relapse mortality with decreasing phenotypic and genotypic antigen disparity, paralleled by a stepwise increase in overall and relapse-free survival (Spearman correlation coefficients of cumulative excess event rates at 5 years 0.964; P<0.00; respectively 0.976; P<0.00). We observed this systematic stepwise effect in all main disease and disease-stage categories. The results suggest that detrimental effects of alloreactivity are additive with each step of mismatching; the beneficial effects remain preserved. Hence, if there is a choice, the best match should be donor of choice. Data support an intensified search for predictive genomic and environmental factors of 'no-graft-versus-host disease'.Leukemia accepted article preview online, 08 March 2017. doi:10.1038/leu.2017.79.

  15. Acute Kidney Injury in Hematopoietic Stem Cell Transplantation: A Review

    PubMed Central

    Gupta, Mohit; Manu, Gurusidda; Kwatra, Shivani; Owusu, Osei-Tutu

    2016-01-01

    Hematopoietic stem cell transplantation (HSCT) is a highly effective treatment strategy for lymphoproliferative disorders and bone marrow failure states including aplastic anemia and thalassemia. However, its use has been limited by the increased treatment related complications, including acute kidney injury (AKI) with an incidence ranging from 20% to 73%. AKI after HSCT has been associated with an increased risk of mortality. The incidence of AKI reported in recipients of myeloablative allogeneic transplant is considerably higher in comparison to other subclasses mainly due to use of cyclosporine and development of graft-versus-host disease (GVHD) in allogeneic groups. Acute GVHD is by itself a major independent risk factor for the development of AKI in HSCT recipients. The other major risk factors are sepsis, nephrotoxic medications (amphotericin B, acyclovir, aminoglycosides, and cyclosporine), hepatic sinusoidal obstruction syndrome (SOS), thrombotic microangiopathy (TMA), marrow infusion toxicity, and tumor lysis syndrome. The mainstay of management of AKI in these patients is avoidance of risk factors contributing to AKI, including use of reduced intensity-conditioning regimen, close monitoring of nephrotoxic medications, and use of alternative antifungals for prophylaxis against infection. Also, early identification and effective management of sepsis, tumor lysis syndrome, marrow infusion toxicity, and hepatic SOS help in reducing the incidence of AKI in HSCT recipients. PMID:27885340

  16. Endocrinopathies after Allogeneic and Autologous Transplantation of Hematopoietic Stem Cells

    PubMed Central

    Muscogiuri, Giovanna; Palomba, Stefano; Serio, Bianca; Sessa, Mariarosaria; Giudice, Valentina; Ferrara, Idalucia; Tauchmanovà, Libuse; Colao, Annamaria; Selleri, Carmine

    2014-01-01

    Early and late endocrine disorders are among the most common complications in survivors after hematopoietic allogeneic- (allo-) and autologous- (auto-) stem cell transplant (HSCT). This review summarizes main endocrine disorders reported in literature and observed in our center as consequence of auto- and allo-HSCT and outlines current options for their management. Gonadal impairment has been found early in approximately two-thirds of auto- and allo-HSCT patients: 90–99% of women and 60–90% of men. Dysfunctions of the hypothalamus-pituitary-growth hormone/insulin growth factor-I axis, hypothalamus-pituitary-thyroid axis, and hypothalamus-pituitary-adrenal axis were documented as later complicances, occurring in about 10, 30, and 40–50% of transplanted patients, respectively. Moreover, overt or subclinical thyroid complications (including persistent low-T3 syndrome, chronic thyroiditis, subclinical hypo- or hyperthyroidism, and thyroid carcinoma), gonadal failure, and adrenal insufficiency may persist many years after HSCT. Our analysis further provides evidence that main recognized risk factors for endocrine complications after HSCT are the underlying disease, previous pretransplant therapies, the age at HSCT, gender, total body irradiation, posttransplant derangement of immune system, and in the allogeneic setting, the presence of graft-versus-host disease requiring prolonged steroid treatment. Early identification of endocrine complications can greatly improve the quality of life of long-term survivors after HSCT. PMID:24883377

  17. Immune Checkpoint Blockade and Hematopoietic Stem Cell Transplant.

    PubMed

    Merryman, Reid W; Armand, Philippe

    2017-02-01

    Allogeneic hematopoietic stem cell transplant (HSCT) relies primarily upon graft-versus-tumor activity for cancer eradication. Relapse remains the principal cause of treatment failure after HSCT, implying frequent immune escape, which in at least some cases, appears to be mediated by increased expression of inhibitory immune checkpoints. In an attempt to restore anti-tumor immunity, checkpoint blockade therapy (CBT) targeting PD-1 and CLTA-4 has been used in conjunction with both allogeneic and autologous HSCT. Clinical experience in this setting is limited to several small clinical trials and case series, but together they suggest that treatment with CBT can effectively amplify anti-tumor immune responses. However, intrinsic to its mechanism is also the risk that CBT in the HSCT setting may also cause significant immune toxicity. Fatal immune-related adverse events and graft-versus-host disease have been observed, but in most cases, immune side effects appear to be reversible with steroids and CBT discontinuation. As clinical investigation continues, improved understanding of immune checkpoint biology will be critical to optimize safe and efficacious treatment strategies.

  18. How I treat adenovirus in hematopoietic stem cell transplant recipients

    PubMed Central

    Lindemans, Caroline A.; Leen, Ann M.

    2010-01-01

    Adenovirus (AdV) infections are very common in the general pediatric population. The delayed clearance in young persons imposes a threat to immunocompromised patients after hematopoietic stem cell transplantation (HSCT), who can reactivate the virus, resulting in life-threatening disseminated disease. Although a definitive cure requires adequate immune reconstitution, 2 approaches appear to be feasible and effective to improve the outcomes of AdV infections. Strict monitoring with AdV quantitative polymerase chain reaction followed by preemptive treatment with low-dose (1 mg/kg) cidofovir 3 times a week, is effective in most cases to bridge the severely immunocompromised period shortly after HSCT, with acceptable toxicity rates. For centers who have the access, AdV-specific cytotoxic T cells can be the other important cornerstone of anti-AdV therapy with promising results so far. Methods to positively influence the reconstitution of the immune system after HSCT and optimizing new and currently available cellular immunotherapies will make HSCT safer against the threat of AdV infection/reactivation and associated disease. PMID:20837781

  19. [Human Herpesvirus-6 Encephalitis in Allogeneic Hematopoietic Stem Cell Transplantation].

    PubMed

    Ogata, Masao

    2015-07-01

    The reactivation of human herpesvirus-6B (HHV-6B) is common after allogeneic hematopoietic cell transplantation (allo-HCT), and it is sporadically associated with the development of HHV-6 encephalitis. HHV-6 encephalitis typically develops around 2-6 weeks after allo-HCT, and it is characterized by short-term memory loss. Magnetic resonance imaging typically shows bilateral signal abnormalities in the limbic system. The incidence of HHV-6 encephalitis is reportedly 0-11.6% after bone marrow or peripheral blood stem cell transplantation and 4.9-21.4% after cord blood transplantation. The mortality of HHV-6 encephalitis is high, and survivors are often left with serious sequelae. Antiviral therapy using foscarnet or ganciclovir is recommended for the treatment of HHV-6 encephalitis, but the efficacy of the currently available treatment is insufficient once HHV-6 encephalitis has developed. The elucidation of the pathogenesis of HHV-6 encephalitis and the establishment of preventative therapy are needed to overcome this disease.

  20. Segmentation of occluded hematopoietic stem cells from tracking.

    PubMed

    Mankowski, Walter C; Winter, Mark R; Wait, Eric; Lodder, Mels; Schumacher, Ton; Naik, Shalin H; Cohen, Andrew R

    2014-01-01

    Image sequences of live proliferating cells often contain visual ambiguities that are difficult even for human domain experts to resolve. Here we present a new approach to analyzing image sequences that capture the development of clones of hematopoietic stem cells (HSCs) from live cell time lapse microscopy. The HSCs cannot survive long term imaging unless they are cultured together with a secondary cell type, OP9 stromal cells. The HSCs frequently disappear under the OP9 cell layer, making segmentation difficult or impossible from a single image frame, even for a human domain expert. We have developed a new approach to the segmentation of HSCs that captures these occluded cells. Starting with an a priori segmentation that uses a Monte Carlo technique to estimate the number of cells in a clump of touching cells, we proceed to track and lineage the image data. Following user validation of the lineage information, an a posteriori resegmentation step utilizing tracking results delineates the HSCs occluded by the OP9 layer. Resegmentation has been applied to 3031 occluded segmentations from 77 tracks, correctly recovering over 84% of the occluded segmentations.

  1. Key factors in experimental mouse hematopoietic stem cell transplantation.

    PubMed

    Nevozhay, Dmitry; Opolski, Adam

    2006-01-01

    The first mouse model of hematopoietic stem cell transplantation (HSCT) was developed more than 50 years ago. HSCT is currently being widely used in a broad range of research areas, which include studies of the engraftment process, the pathogenesis of graft-versus-host disease and possible ways of its treatment and prophylaxis, attempts to use the graft-versus-leukemia/tumor effect in treating hematological and oncological malignancies, cancer vaccine development, induction of transplanted organ tolerance, and gene therapy. However, although this model is widely distributed, many laboratories use different protocols for the procedure. There are a number of papers discussing different HSCT protocols in clinical work, but no articles summarizing mouse laboratory models are available. This review attempts to bring together different details about HSCT in the mouse model, such as the types of transplantation, possible pretreatment regimens and their combinations, methods and sources of graft harvesting and preparation for the transplantation procedure, the influence of graft cell dose and content on the engraftment process, the transplantation method itself, possible complications, symptoms and techniques of their prophylaxis or treatment, as well as follow-up and engraftment assessment. We have also tried to reflect current knowledge of the biology of the engraftment.

  2. Predictors for severe cardiac complications after hematopoietic stem cell transplantation.

    PubMed

    Sakata-Yanagimoto, M; Kanda, Y; Nakagawa, M; Asano-Mori, Y; Kandabashi, K; Izutsu, K; Imai, Y; Hangaishi, A; Kurokawa, M; Tsujino, S; Ogawa, S; Chiba, S; Motokura, T; Hirai, H

    2004-05-01

    The value of pre-transplant factors for predicting the development of cardiac complications after transplantation has been inconsistent among studies. We analyzed the impact of pre-transplant factors on the incidence of severe cardiac complications in 164 hematopoietic stem cell transplant recipients. We identified eight patients (4.8%) who experienced grade III or IV cardiac complications according to the Bearman criteria. Seven died of cardiac causes a median of 3 days after the onset of cardiac complications. On univariate analysis, both the cumulative dose of anthracyclines and the use of anthracyclines within 60 days before transplantation affected the incidence of severe cardiac complications (P=0.0091 and 0.011). The dissociation of heart rate and body temperature, which reflects "relative tachycardia", was also associated with a higher incidence of cardiac complications (P=0.024). None of the variables obtained by electrocardiography or echocardiography were useful for predicting cardiac complications after transplantation, although the statistical power might not be sufficient to detect the usefulness of ejection fraction. On a multivariate analysis, the cumulative dose of anthracyclines was the only independent significant risk factor for severe cardiac complications. We conclude that the cumulative dose of anthracyclines is the most potent predictor of cardiac complications and the administration of anthracyclines should be avoided within two months before transplantation.

  3. The histone H2A deubiquitinase Usp16 regulates hematopoiesis and hematopoietic stem cell function

    PubMed Central

    Gu, Yue; Jones, Amanda E.; Yang, Wei; Liu, Shanrun; Dai, Qian; Liu, Yudong; Swindle, C. Scott; Zhou, Dewang; Zhang, Zhuo; Ryan, Thomas M.; Townes, Tim M.; Klug, Christopher A.; Chen, Dongquan; Wang, Hengbin

    2016-01-01

    Epigenetic mechanisms play important regulatory roles in hematopoiesis and hematopoietic stem cell (HSC) function. Subunits of polycomb repressive complex 1 (PRC1), the major histone H2A ubiquitin ligase, are critical for both normal and pathological hematopoiesis; however, it is unclear which of the several counteracting H2A deubiquitinases functions along with PRC1 to control H2A ubiquitination (ubH2A) level and regulates hematopoiesis in vivo. Here we investigated the function of Usp16 in mouse hematopoiesis. Conditional deletion of Usp16 in bone marrow resulted in a significant increase of global ubH2A level and lethality. Usp16 deletion did not change HSC number but was associated with a dramatic reduction of mature and progenitor cell populations, revealing a role in governing HSC lineage commitment. ChIP- and RNA-sequencing studies in HSC and progenitor cells revealed that Usp16 bound to many important hematopoietic regulators and that Usp16 deletion altered the expression of genes in transcription/chromosome organization, immune response, hematopoietic/lymphoid organ development, and myeloid/leukocyte differentiation. The altered gene expression was partly rescued by knockdown of PRC1 subunits, suggesting that Usp16 and PRC1 counterbalance each other to regulate cellular ubH2A level and gene expression in the hematopoietic system. We further discovered that knocking down Cdkn1a (p21cip1), a Usp16 target and regulated gene, rescued the altered cell cycle profile and differentiation defect of Usp16-deleted HSCs. Collectively, these studies identified Usp16 as one of the histone H2A deubiquitinases, which coordinates with the H2A ubiquitin ligase PRC1 to regulate hematopoiesis, and revealed cell cycle regulation by Usp16 as key for HSC differentiation. PMID:26699484

  4. Emergent Complications in the Pediatric Hematopoietic Stem Cell Transplant Patient

    PubMed Central

    Munchel, Ashley; Chen, Allen; Symons, Heather

    2014-01-01

    Hematopoietic cell transplantation is the only potentially curative option for a variety of pediatric malignant and nonmalignant disorders. Despite advances in transplantation biology and immunology as well as in posttransplant management that have contributed to improved survival and decreased transplant-related mortality, hematopoietic cell transplantation does not come without significant risk of complications. When patients who have undergone hematopoietic cell transplantation present to the emergency department, it is important to consider a variety of therapy-related complications to optimize management and outcome. In this article, we use clinical cases to highlight some of the more common emergent complications after hematopoietic cell transplantation. PMID:25411564

  5. Dual role for Insulin/TOR signaling in the control of hematopoietic progenitor maintenance in Drosophila.

    PubMed

    Benmimoun, Billel; Polesello, Cédric; Waltzer, Lucas; Haenlin, Marc

    2012-05-01

    The interconnected Insulin/IGF signaling (IlS) and Target of Rapamycin (TOR) signaling pathways constitute the main branches of the nutrient-sensing system that couples growth to nutritional conditions in Drosophila. Here, we addressed the influence of these pathways and of diet restriction on the balance between the maintenance of multipotent hematopoietic progenitors and their differentiation in the Drosophila lymph gland. In this larval hematopoietic organ, a pool of stem-like progenitor blood cells (prohemocytes) is kept undifferentiated in response to signaling from a specialized group of cells forming the posterior signaling center (PSC), which serves as a stem cell niche. We show that, reminiscent of the situation in human, loss of the negative regulator of IIS Pten results in lymph gland hyperplasia, aberrant blood cell differentiation and hematopoietic progenitor exhaustion. Using site-directed loss- and gain-of-function analysis, we demonstrate that components of the IIS/TOR pathways control lymph gland homeostasis at two levels. First, they cell-autonomously regulate the size and activity of the hematopoietic niche. Second, they are required within the prohemocytes to control their growth and maintenance. Moreover, we show that diet restriction or genetic alteration mimicking amino acid deprivation triggers progenitor cell differentiation. Hence, our study highlights the role of the IIS/TOR pathways in orchestrating hematopoietic progenitor fate and links blood cell fate to nutritional status.

  6. Importance of killer immunoglobulin-like receptors in allogeneic hematopoietic stem cell transplantation

    PubMed Central

    Franceschi, Danilo Santana Alessio; de Souza, Cármino Antonio; Aranha, Francisco José Penteado; Cardozo, Daniela Maira; Sell, Ana Maria; Visentainer, Jeane Eliete Laguila

    2011-01-01

    Hematopoietic stem cell transplantation is the treatment of choice for many hematologic diseases, such as multiple myeloma, bone marrow aplasia and leukemia. Human leukocyte antigen (HLA) compatibility is an important tool to prevent post-transplant complications such as graft rejection and graft-versus-host disease, but the high rates of relapse limit the survival of transplant patients. Natural Killer cells, a type of lymphocyte that is a key element in the defense against tumor cells, cells infected with viruses and intracellular microbes, have different receptors on their surfaces that regulate their cytotoxicity. Killer immunoglobulin-like receptors are the most important, interacting consistently with human leukocyte antigen class I molecules present in other cells and thus controlling the activation of natural killer cells. Several studies have shown that certain combinations of killer immunoglobulin-like receptors and human leukocyte antigens (in both donors and recipients) can affect the chances of survival of transplant patients, particularly in relation to the graft-versusleukemia effect, which may be associated to decreased relapse rates in certain groups. This review aims to shed light on the mechanisms and effects of killer immunoglobulin-like receptors - human leukocyte antigen associations and their implications following hematopoietic stem cell transplantation, and to critically analyze the results obtained by the studies presented herein. PMID:23284260

  7. Regulation of long-term repopulating hematopoietic stem cells by EPCR/PAR1 signaling

    PubMed Central

    Gur-Cohen, Shiri; Kollet, Orit; Graf, Claudine; Esmon, Charles T.; Ruf, Wolfram; Lapidot, Tsvee

    2016-01-01

    The common developmental origin of endothelial and hematopoietic cells is manifested by coexpression of several cell surface receptors. Adult murine bone marrow (BM) long-term repopulating hematopoietic stem cells (LT-HSCs), endowed with the highest repopulation and self-renewal potential, express endothelial protein C receptor (EPCR), which is used as a marker to isolate them. EPCR/PAR1 signaling in endothelial cells has anticoagulant and anti-inflammatory roles, while thrombin/PAR1 signaling induces coagulation and inflammation. Recent studies define two new PAR1-mediated signaling cascades that regulate EPCR+ LT-HSC BM retention and egress. EPCR/PAR1 signaling facilitates LT-HSC BM repopulation, retention, survival, and chemotherapy resistance by restricting nitric oxide (NO) production, maintaining NOlow LT-HSC BM retention with increased VLA4 expression, affinity, and adhesion. Conversely, acute stress and clinical mobilization upregulate thrombin generation and activate different PAR1 signaling which overcomes BM EPCR+ LT-HSC retention, inducing their recruitment to the bloodstream. Thrombin/PAR1 signaling induces NO generation, TACE-mediated EPCR shedding, and upregulation of CXCR4 and PAR1, leading to CXCL12-mediated stem and progenitor cell mobilization. This review discusses new roles for factors traditionally viewed as coagulation related, which independently act in the BM to regulate PAR1 signaling in bone- and blood-forming progenitor cells, navigating their fate by controlling NO production. PMID:26928241

  8. Less is More: unveiling the functional core of hematopoietic stem cells through knockout mice

    PubMed Central

    Rossi, Lara; Lin, Kuanyin K.; Boles, Nathan C.; Yang, Liubin; King, Katherine Y.; Jeong, Mira; Mayle, Allison; Goodell, Margaret A.

    2012-01-01

    Summary Hematopoietic stem cells (HSCs) represent one of the first recognized somatic stem cells. As such, nearly 200 genes have been examined for roles in HSC function in knockout mice. In this review, we compile the majority of these reports to provide a broad overview of the functional modules revealed by these genetic analyses and highlight some key regulatory pathways involved, including cell cycle control, TGF-β signaling, Pten/AKT signaling, Wnt signaling, and cytokine signaling. Finally, we propose recommendations for characterization of HSC function in knockout mice to facilitate cross-study comparisons that would generate a more cohesive picture of HSC biology. In the field of design, the minimalist movement stripped down buildings and objects to their most basic features, a sentiment that architect Ludwig Mies van der Rohe summarized in his motto “less is more”. By depleting HSCs of specific genes, knockout studies transpose the minimalist approach into research biology, providing insights into the essential core of genetic features that is indispensable for a well-functioning hematopoietic system. PMID:22958929

  9. Perforin gene transfer into hematopoietic stem cells improves immune dysregulation in murine models of perforin deficiency.

    PubMed

    Carmo, Marlene; Risma, Kimberly A; Arumugam, Paritha; Tiwari, Swati; Hontz, Adrianne E; Montiel-Equihua, Claudia A; Alonso-Ferrero, Maria E; Blundell, Michael P; Schambach, Axel; Baum, Christopher; Malik, Punam; Thrasher, Adrian J; Jordan, Michael B; Gaspar, H Bobby

    2015-04-01

    Defects in perforin lead to the failure of T and NK cell cytotoxicity, hypercytokinemia, and the immune dysregulatory condition known as familial hemophagocytic lymphohistiocytosis (FHL). The only curative treatment is allogeneic hematopoietic stem cell transplantation which carries substantial risks. We used lentiviral vectors (LV) expressing the human perforin gene, under the transcriptional control of the ubiquitous phosphoglycerate kinase promoter or a lineage-specific perforin promoter, to correct the defect in different murine models. Following LV-mediated gene transfer into progenitor cells from perforin-deficient mice, we observed perforin expression in mature T and NK cells, and there was no evidence of progenitor cell toxicity when transplanted into irradiated recipients. The resulting perforin-reconstituted NK cells showed partial recovery of cytotoxicity, and we observed full recovery of cytotoxicity in polyclonal CD8(+) T cells. Furthermore, reconstituted T cells with defined antigen specificity displayed normal cytotoxic function against peptide-loaded targets. Reconstituted CD8(+) lymphoblasts had reduced interferon-γ secretion following stimulation in vitro, suggesting restoration of normal immune regulation. Finally, upon viral challenge, mice with >30% engraftment of gene-modified cells exhibited reduction of cytokine hypersecretion and cytopenias. This study demonstrates the potential of hematopoietic stem cell gene therapy as a curative treatment for perforin-deficient FHL.

  10. Persistent seropositivity for yellow fever in a previously vaccinated autologous hematopoietic stem cell transplantation recipient.

    PubMed

    Hayakawa, Kayoko; Takasaki, Tomohiko; Tsunemine, Hiroko; Kanagawa, Shuzo; Kutsuna, Satoshi; Takeshita, Nozomi; Mawatari, Momoko; Fujiya, Yoshihiro; Yamamoto, Kei; Ohmagari, Norio; Kato, Yasuyuki

    2015-08-01

    The duration of a protective level of yellow fever antibodies after autologous hematopoietic stem cell transplantation in a previously vaccinated person is unclear. The case of a patient who had previously been vaccinated for yellow fever and who remained seropositive for 22 months after autologous peripheral blood stem cell transplantation for malignant lymphoma is described herein.

  11. Reconstitution of Human Cytomegalovirus-Specific CD4+ T Cells is Critical for Control of Virus Reactivation in Hematopoietic Stem Cell Transplant Recipients but Does Not Prevent Organ Infection.

    PubMed

    Gabanti, Elisa; Lilleri, Daniele; Ripamonti, Francesco; Bruno, Francesca; Zelini, Paola; Furione, Milena; Colombo, Anna A; Alessandrino, Emilio P; Gerna, Giuseppe

    2015-12-01

    The relative contribution of human cytomegalovirus (HMCV)-specific CD4(+) and CD8(+) T cells to the control of HCMV infection in hematopoietic stem cell transplant (HSCT) recipients is still controversial. HCMV reactivation and HCMV-specific CD4(+) and CD8(+) T cell reconstitution were monitored for 1 year in 63 HCMV-seropositive patients receiving HSCT. HCMV reactivation was detected in all but 2 patients. In 20 of 63 (31.7%) patients (group 1) HCMV infection resolved spontaneously, whereas 32 of 63 (50.8%) patients (group 2) controlled the infection after a single short-course of pre-emptive therapy and the remaining 9 (14.3%) patients (group 3) suffered from relapsing episodes of HCMV infection, requiring multiple courses of antiviral therapy. The kinetics and magnitude of HCMV-specific CD8(+) T cell reconstitution were comparable among the 3 groups, but HCMV-specific CD4(+) T cells were lower in number in patients requiring antiviral treatment. HCMV-seronegative donors, as well as unrelated donors (receiving antithymocyte globulin) and acute graft-versus-host disease (GVHD) were associated with both delayed HCMV-specific CD4(+) T cell reconstitution and severity of infection. Conversely, these risk factors had no impact on HCMV-specific CD8(+) T cells. Eight patients with previous GVHD suffered from HCMV gastrointestinal disease, although in the presence of HCMV-specific CD4(+) and CD8(+) systemic immunity and undetectable HCMV DNA in blood. Reconstitution of systemic HCMV-specific CD4(+) T cell immunity is required for control of HCMV reactivation in adult HSCT recipients, but it may not be sufficient to prevent late-onset organ localization in patients with GVHD. HCMV-specific CD8(+) T cells contribute to control of HCMV infection, but only after HCMV-specific CD4(+) T cell reconstitution.

  12. Fetal hepatic progenitors support long-term expansion of hematopoietic stem cells.

    PubMed

    Chou, Song; Flygare, Johan; Lodish, Harvey F

    2013-05-01

    We have developed a coculture system that establishes DLK(+) fetal hepatic progenitors as the authentic supportive cells for expansion of hematopoietic stem (HSCs) and progenitor cells. In 1-week cultures supplemented with serum and supportive cytokines, both cocultured DLK(+) fetal hepatic progenitors and their conditioned medium supported rapid expansion of hematopoietic progenitors and a small increase in HSC numbers. In 2- and 3-week cultures DLK(+) cells, but not their conditioned medium, continuously and significantly (>20-fold) expanded both hematopoietic stem and progenitor cells. Physical contact between HSCs and DLK(+) cells was crucial to maintaining this long-term expansion. Similar HSC expansion (approximately sevenfold) was achieved in cocultures using a serum-free, low cytokine- containing medium. In contrast, DLK(-) cells are incapable of expanding hematopoietic cells, demonstrating that hepatic progenitors are the principle supportive cells for HSC expansion in the fetal liver.

  13. National Hematopoietic Stem Cells Transplant Registry in Poland: Nationwide Internet Reporting System and Results.

    PubMed

    Łęczycka, A; Dudkiewicz, M; Czerwiński, J; Malanowski, P; Żalikowska-Hołoweńko, J; Danielewicz, R

    2016-06-01

    History of hematopoietic stem cell transplantations in Poland begins in early 1980s; the 1st bone marrow allotransplantation was performed in 1983 in the Central Clinical Hospital of the Military Medical Academy in Warsaw. Following years brought the 1st autologous stem cell transplantations. Ten years later, unrelated bone marrow transplantation was performed for the 1st time by the team of the Hematology and Blood and Marrow Transplantation Unit in Katowice. Since then, hematopoietic stem cell transplantation developed to be standard procedure and one of the most important therapies applied in leukemia treatment. The number of allotransplantations in Poland has grown significantly in the past 2 decades, which generated new needs and problems. In 2005, based on a new Transplant Law, a National Transplants Registry was created. Its main role is to collect data (registration of procedures and follow-up data) related to every transplantation case for stem cells and tissues as well as for organs. We present statistics concerning stem cell transplantations performed in Poland, as collected in the National Transplants Registry in the years 2006-2014. There are 18 centers transplanting hematopoietic stem cells in Poland. The total number of hematopoietic stem cell transplantations performed in 2006-2014 was 3,537, with allotransplantations from relatives accounted for 1,491 and from unrelated donors for 2,046. The main indication for allotransplantation in past years was acute leukemia.

  14. [Proteins support stem cells - use of protein therapeutics in hematopoietic stem cell transplantation].

    PubMed

    Meyer, Sara Christina; Stern, Martin

    2011-11-01

    Hematopoietic stem cell transplantation (HSCT) has evolved from a largely experimental therapeutic approach three decades ago to a well-established therapy today for many malignant and non-malignant disorders of the hematopoietic and the immune system. Although it is per se a therapy by transmission of cells, protein therapeutics such as growth factors and antibodies are relevant in all phases of a HSCT and substantially contribute to the success of this often only curative treatment. This review discusses HSCT with a particular focus on the protein therapeutics involved. Granulocyte colony stimulating factor (G-CSF) for mobilization of stem cells to the peripheral blood, the polyclonal anti-T-cell globulin (ATG) and the monoclonal antibodies alemtuzumab and etanercept for prophylaxis and therapy of graft versus host disease (GvHD) are highlighted. Also rituximab, palivizumab and polyclonal intravenous immunoglobulins for treating infections in post-transplant patients are discussed. Since our understanding of cell surface receptors, cytokine and signaling pathways is increasing, there will emerge new targets for directed therapy by proteins in the future. They may have the potential to further improve the success and to widen theapplication of HSCT.

  15. Stem and stromal cell reconstitution of lethally irradiated mice following transplantation of hematopoietic tissue from donors of various ages

    SciTech Connect

    Schmidt, C.M.; Doran, G.A.; Crouse, D.A.; Sharp, J.G.

    1987-10-01

    If the limited life span of hematopoietic tissues in vitro is due to a finite proliferative capacity of individual stem cells, one might expect tissues of young donors to possess a greater proliferative capacity and to contain a larger population of primitive stem cells than those of older donors. To test this hypothesis, we used 12- and 8-day spleen colony formation (CFU-s) to assay more and less primitive stem cell subpopulations of three murine hematopoietic tissues: fetal liver (FL) and weanling (WBM) and adult (ABM) bone marrow. Subsequently, the same assays and a stromal cell assay were performed on the bone marrow from groups of lethally irradiated mice reconstituted with these tissues. Comparison of the CFU-s content of the donor tissues revealed that FL contained a significantly greater proportion of primitive stem cells as evidenced by a (Day 12):(Day 8) CFU-s ratio of 3.0 +/- 1.0 as compared to 0.9 +/- 0.1 for WBM and ABM. In addition, at 21 weeks post-transplantation the CFU-s/femur values of the FL reconstituted group were significantly greater than those of the ABM and WBM reconstituted groups. These results suggest that fetal hematopoietic tissue contains a greater proportion of primitive stem cells and has a greater proliferative potential than hematopoietic tissue from older donors. No differences were seen in stromal cell reconstitution of the three experimental groups. In all cases, assayable fibroblast colony forming cells (CFU-f) remained at 20-40% of control values, even at 21 weeks postreconstitution.

  16. Donor Dependent Variations in Hematopoietic Differentiation among Embryonic and Induced Pluripotent Stem Cell Lines

    PubMed Central

    Féraud, Olivier; Valogne, Yannick; Melkus, Michael W.; Zhang, Yanyan; Oudrhiri, Noufissa; Haddad, Rima; Daury, Aurélie; Rocher, Corinne; Larbi, Aniya; Duquesnoy, Philippe; Divers, Dominique; Gobbo, Emilie; Brunet de la Grange, Philippe; Louache, Fawzia; Bennaceur-Griscelli, Annelise; Mitjavila-Garcia, Maria Teresa

    2016-01-01

    Hematopoiesis generated from human embryonic stem cells (ES) and induced pluripotent stem cells (iPS) are unprecedented resources for cell therapy. We compared hematopoietic differentiation potentials from ES and iPS cell lines originated from various donors and derived them using integrative and non-integrative vectors. Significant differences in differentiation toward hematopoietic lineage were observed among ES and iPS. The ability of engraftment of iPS or ES-derived cells in NOG mice varied among the lines with low levels of chimerism. iPS generated from ES cell-derived mesenchymal stem cells (MSC) reproduce a similar hematopoietic outcome compared to their parental ES cell line. We were not able to identify any specific hematopoietic transcription factors that allow to distinguish between good versus poor hematopoiesis in undifferentiated ES or iPS cell lines. There is a relatively unpredictable variation in hematopoietic differentiation between ES and iPS cell lines that could not be predicted based on phenotype or gene expression of the undifferentiated cells. These results demonstrate the influence of genetic background in variation of hematopoietic potential rather than the reprogramming process. PMID:26938212

  17. Antifungal Therapy in Hematopoietic Stem Cell Transplant Recipients.

    PubMed

    Busca, Alessandro; Pagano, Livio

    2016-01-01

    Invasive fungal infections (IFI) represent a major hindrance to the success of hematopoietic stem cell transplantation (HSCT), contributing substantially to morbidity and infection-related mortality. During the most recent years several reports indicate an overall increase of IFI among hematologic patients, in particular, invasive aspergillosis, that may be explained, at least partially, by the fact that diagnoses only suspected in the past, are now more easily established due to the application of serum biomarkers and early use of CT scan. Along with new diagnostic options, comes the recent development of novel antifungal agents that expanded the spectrum of activity over traditional treatments contributing to the successful management of fungal diseases. When introduced in 1959, Amphotericin B deoxycholate (d-AmB) was a life-saving drug, and the clinical experience over 50 years has proven that this compound is effective although toxic. Given the superior safety profile, lipid formulations of AmB have now replaced d-AmB in many circumstances. Similarly, echinocandins have been investigated as initial therapy for IA in several clinical trials including HSCT recipients, although the results were moderately disappointing leading to a lower grade of recommendation in the majority of published guidelines. Azoles represent the backbone of therapy for treating immunocompromised patients with IFI, including voriconazole and the newcomer isavuconazole; in addition, large studies support the use of mold-active azoles, namely voriconazole and posaconazole, as antifungal prophylaxis in HSCT recipients. The aim of the present review is to summarize the clinical application of antifungal agents most commonly employed in the treatment of IFI.

  18. Hypoxia and Metabolic Properties of Hematopoietic Stem Cells

    PubMed Central

    2014-01-01

    Abstract Significance: The effect of redox signaling on hematopoietic stem cell (HSC) function is not clearly understood. Recent Advances: A growing body of evidence suggests that adult HSCs reside in the hypoxic bone marrow microenvironment or niche during homeostasis. It was recently shown that primitive HSCs in the bone marrow prefer to utilize anaerobic glycolysis to meet their energy demands and have lower rates of oxygen consumption and lower ATP levels. Hypoxia-inducible factor-α (Hif-1α) is a master regulator of cellular metabolism. With hundreds of downstream target genes and crosstalk with other signaling pathways, it regulates various aspects of metabolism from the oxidative stress response to glycolysis and mitochondrial respiration. Hif-1α is highly expressed in HSCs, where it regulates their function and metabolic phenotype. However, the regulation of Hif-1α in HSCs is not entirely understood. The homeobox transcription factor myeloid ecotropic viral integration site 1 (Meis1) is expressed in the most primitive HSCs populations, and it is required for primitive hematopoiesis. Recent reports suggest that Meis1 is required for normal adult HSC function by regulating the metabolism and redox state of HSCs transcriptionally through Hif-1α and Hif-2α. Critical Issues: Given the profound effect of redox status on HSC function, it is critical to fully characterize the intrinsic, and microenvironment-related mechanisms of metabolic and redox regulation in HSCs. Future Directions: Future studies will be needed to elucidate the link between HSC metabolism and HSC fates, including quiescence, self-renewal, differentiation, apoptosis, and migration. Antioxid. Redox Signal. 20, 1891–1901. PMID:23621582

  19. Antifungal Therapy in Hematopoietic Stem Cell Transplant Recipients

    PubMed Central

    Busca, Alessandro; Pagano, Livio

    2016-01-01

    Invasive fungal infections (IFI) represent a major hindrance to the success of hematopoietic stem cell transplantation (HSCT), contributing substantially to morbidity and infection-related mortality. During the most recent years several reports indicate an overall increase of IFI among hematologic patients, in particular, invasive aspergillosis, that may be explained, at least partially, by the fact that diagnoses only suspected in the past, are now more easily established due to the application of serum biomarkers and early use of CT scan. Along with new diagnostic options, comes the recent development of novel antifungal agents that expanded the spectrum of activity over traditional treatments contributing to the successful management of fungal diseases. When introduced in 1959, Amphotericin B deoxycholate (d-AmB) was a life-saving drug, and the clinical experience over 50 years has proven that this compound is effective although toxic. Given the superior safety profile, lipid formulations of AmB have now replaced d-AmB in many circumstances. Similarly, echinocandins have been investigated as initial therapy for IA in several clinical trials including HSCT recipients, although the results were moderately disappointing leading to a lower grade of recommendation in the majority of published guidelines. Azoles represent the backbone of therapy for treating immunocompromised patients with IFI, including voriconazole and the newcomer isavuconazole; in addition, large studies support the use of mold-active azoles, namely voriconazole and posaconazole, as antifungal prophylaxis in HSCT recipients. The aim of the present review is to summarize the clinical application of antifungal agents most commonly employed in the treatment of IFI. PMID:27648202

  20. Hematopoietic Stem Cell Transplantation for Morquio A Syndrome

    PubMed Central

    Yabe, Hiromasa; Tanaka, Akemi; Chinen, Yasutsugu; Kato, Shunichi; Sawamoto, Kazuki; Yasuda, Eriko; Shintaku, Haruo; Suzuki, Yasuyuki; Orii, Tadao; Tomatsu, Shunji

    2016-01-01

    Morquio A syndrome features systemic skeletal dysplasia. To date, there has been no curative therapy for this skeletal dysplasia. No systemic report on a long-term effect of hematopoietic stem cell transplantation (HSCT) for Morquio A has been described. We conducted HSCT for 4 cases with Morquio A (age at HSCT: 4–15 years, mean 10.5 years) and followed them at least 10 years (range 11–28 years; mean 19 years). Current age ranged between 25 and 36 years of age (mean 29.5 years). All cases had a successful full engraftment of allogeneic bone marrow transplantation without serious GVHD. Transplanted bone marrow derived from HLA-identical siblings (three cases) or HLA-identical unrelated donor. The levels of the enzyme activity in the recipient’s lymphocytes reached the levels of donors’ enzyme activities within two years after HSCT. For the successive over 10 years post-BMT, GALNS activity in lymphocytes was maintained at the same level as the donors. Except one case who had osteotomy in both legs one year later post BMT, other three cases had no orthopedic surgical intervention. All cases remained ambulatory, and three of them could walk over 400 m. Activity of daily living (ADL) in patients with HSCT was better than untreated patients. The patient who underwent HSCT at four years of age showed the best ADL score. In conclusion, the long-term study of HSCT has demonstrated therapeutic effect in amelioration of progression of the disease in respiratory function, ADL, and biochemical findings, suggesting that HSCT is a therapeutic option for patients with Morquio A. PMID:26452513

  1. Immunity to Infections after Haploidentical Hematopoietic Stem Cell Transplantation

    PubMed Central

    Aversa, Franco; Prezioso, Lucia; Manfra, Ilenia; Galaverna, Federica; Spolzino, Angelica; Monti, Alessandro

    2016-01-01

    The advantage of using a Human Leukocyte Antigen (HLA)-mismatched related donor is that almost every patient who does not have an HLA-identical donor or who urgently needs hematopoietic stem cell transplantation (HSCT) has at least one family member with whom shares one haplotype (haploidentical) and who is promptly available as a donor. The major challenge of haplo-HSCT is intense bi-directional alloreactivity leading to high incidences of graft rejection and graft-versus-host disease (GVHD). Advances in graft processing and pharmacologic prophylaxis of GVHD have reduced these risks and have made haplo-HSCT a viable alternative for patients lacking a matched donor. Indeed, the haplo-HSCT has spread to centers worldwide even though some centers have preferred an approach based on T cell depletion of G-CSF-mobilized peripheral blood progenitor cells (PBPCs), others have focused on new strategies for GvHD prevention, such as G-CSF priming of bone marrow and robust post-transplant immune suppression or post-transplant cyclophosphamide (PTCY). Today, the graft can be a megadose of T-cell depleted PBPCs or a standard dose of unmanipulated bone marrow and/or PBPCs. Although haplo-HSCT modalities are based mainly on high intensity conditioning regimens, recently introduced reduced intensity regimens (RIC) showed promise in decreasing early transplant-related mortality (TRM), and extending the opportunity of HSCT to an elderly population with more comorbidities. Infections are still mostly responsible for toxicity and non-relapse mortality due to prolonged immunosuppression related, or not, to GVHD. Future challenges lie in determining the safest preparative conditioning regimen, minimizing GvHD and promoting rapid and more robust immune reconstitution. PMID:27872737

  2. Accelerated Bone Mass Senescence After Hematopoietic Stem Cell Transplantation

    PubMed Central

    Serio, B; Pezzullo, L; Fontana, R; Annunziata, S; Rosamilio, R; Sessa, M; Giudice, V; Ferrara, I; Rocco, M; De Rosa, G; Ricci, P; Tauchmanovà, L; Montuori, N; Selleri, C.

    2013-01-01

    Osteoporosis and avascular necrosis (AVN) are long-lasting and debilitating complications of hematopoietic stem cell transplantation (HSCT). We describe the magnitude of bone loss, AVN and impairment in osteogenic cell compartment following autologous (auto) and allogeneic (allo) HSCT, through the retrospective bone damage revaluation of 100 (50 auto- and 50 allo-HSCT) long-term survivors up to 15 years after transplant. Current treatment options for the management of these complications are also outlined. We found that auto- and allo-HSCT recipients show accelerated bone mineral loss and micro-architectural deterioration during the first years after transplant. Bone mass density (BMD) at the lumbar spine, but not at the femur neck, may improve in some patients after HSCT, suggesting more prolonged bone damage in cortical bone. Phalangeal BMD values remained low for even more years, suggesting persistent bone micro-architectural alterations after transplant. The incidence of AVN was higher in allo-HSCT recipients compared to auto-HSCT recipients. Steroid treatment length, but not its cumulative dose was associated with a higher incidence of bone loss. Allo-HSCT recipients affected by chronic graft versus host disease seem to be at greater risk of continuous bone loss and AVN development. Reduced BMD and higher incidence of AVN was partly related to a reduced regenerating capacity of the normal marrow osteogenic cell compartment. Our results suggest that all patients after auto-HSCT and allo-HSCT should be evaluated for their bone status and treated with anti-resorptive therapy as soon as abnormalities are detected. PMID:23905076

  3. Hepatic veno-occlusive disease after hematopoietic stem cell transplantation: Prophylaxis and treatment controversies.

    PubMed

    Cheuk, Daniel Kl

    2012-04-24

    Hepatic veno-occlusive disease (VOD), also known as sinusoidal obstruction syndrome, is a major complication of hematopoietic stem cell transplantation and it carries a high mortality. Prophylaxis for hepatic VOD is commonly given to transplant recipients from the start of conditioning through the early weeks of transplant. However, high quality evidence from randomized controlled trials is scarce with small sample sizes and the trials yielded conflicting results. Although various treatment options for hepatic VOD are available, most have not undergone stringent evaluation with randomized controlled trial and therefore it remains uncertain which treatment offers real benefit. It remains controversial whether VOD prophylaxis should be given, which prophylactic therapy should be given, who should receive prophylaxis, and what treatment should be offered once VOD is established.

  4. Transplantation of mouse fetal liver cells for analyzing the function of hematopoietic stem and progenitor cells.

    PubMed

    Gudmundsson, Kristbjorn Orri; Stull, Steven W; Keller, Jonathan R

    2012-01-01

    Hematopoietic stem cells are defined by their ability to self-renew and differentiate through progenitor cell stages into all types of mature blood cells. Gene-targeting studies in mice have demonstrated that many genes are essential for the generation and function of hematopoietic stem and progenitor cells. For definitively analyzing the function of these cells, transplantation studies have to be performed. In this chapter, we describe methods to isolate and transplant fetal liver cells as well as how to analyze donor cell reconstitution. This protocol is tailored toward mouse models where embryonic lethality precludes analysis of adult hematopoiesis or where it is suspected that the function of fetal liver hematopoietic stem and progenitor cells is compromised.

  5. The road to purified hematopoietic stem cell transplants is paved with antibodies

    PubMed Central

    Logan, Aaron C.; Weissman, Irving L.; Shizuru, Judith A.

    2016-01-01

    Hematopoietic progenitor cell replacement therapy remains a surprisingly unrefined process. In general, unmanipulated bone marrow or mobilized peripheral blood grafts which carry potentially harmful passenger cells are administered after treating recipients with high-dose chemo- and/or radiotherapy to eradicate malignant disease, eliminate immunologic barriers to allogeneic cell engraftment, and to “make space” for rare donor stem cells within the stem cell niche. The sequalae of such treatments are substantial, including direct organ toxicity and non-specific inflammation that contributes to the development of graft-versus-host disease and poor immune reconstitution. Passenger tumor cells that contaminate autologous hematopoietic grafts may contribute to relapse post-transplant. Use of antibodies to rid grafts of unwanted cell populations, and to eliminate or minimize the need for non-specifically cytotoxic therapies used to condition transplant recipients, will dramatically improve the safety profile of allogeneic and gene-modified autologous hematopoietic stem cell therapies. PMID:22939368

  6. Hematopoietic stem cell gene therapy for adenosine deaminase deficient-SCID.

    PubMed

    Aiuti, Alessandro; Brigida, Immacolata; Ferrua, Francesca; Cappelli, Barbara; Chiesa, Robert; Marktel, Sarah; Roncarolo, Maria-Grazia

    2009-01-01

    Gene therapy is a highly attractive strategy for many types of inherited disorders of the immune system. Adenosine deaminase (ADA) deficient-severe combined immunodeficiency (SCID) has been the target of several clinical trials based on the use of hematopoietic stem/progenitor cells engineered with retroviral vectors. The introduction of a low intensity conditioning regimen has been a crucial factor in achieving stable engrafment of hematopoietic stem cells and therapeutic levels of ADA-expressing cells. Recent studies have demonstrated that gene therapy for ADA-SCID has favorable safety profile and is effective in restoring normal purine metabolism and immune functions. Stem cell gene therapy combined with appropriate conditioning regimens might be extended to other genetic disorders of the hematopoietic system.

  7. Are neural crest stem cells the missing link between hematopoietic and neurogenic niches?

    PubMed Central

    Coste, Cécile; Neirinckx, Virginie; Gothot, André; Wislet, Sabine; Rogister, Bernard

    2015-01-01

    Hematopoietic niches are defined as cellular and molecular microenvironments that regulate hematopoietic stem cell (HSC) function together with stem cell autonomous mechanisms. Many different cell types have been characterized as contributors to the formation of HSC niches, such as osteoblasts, endothelial cells, Schwann cells, and mesenchymal progenitors. These mesenchymal progenitors have themselves been classified as CXC chemokine ligand (CXCL) 12-abundant reticular (CAR) cells, stem cell factor expressing cells, or nestin-positive mesenchymal stem cells (MSCs), which have been recently identified as neural crest-derived cells (NCSCs). Together, these cells are spatially associated with HSCs and believed to provide appropriate microenvironments for HSC self-renewal, differentiation, mobilization and hibernation both by cell-cell contact and soluble factors. Interestingly, it appears that regulatory pathways governing the hematopoietic niche homeostasis are operating in the neurogenic niche as well. Therefore, this review paper aims to compare both the regulation of hematopoietic and neurogenic niches, in order to highlight the role of NCSCs and nervous system components in the development and the regulation of the hematopoietic system. PMID:26136659

  8. Fetal stromal niches enhance human embryonic stem cell-derived hematopoietic differentiation and globin switch.

    PubMed

    Lee, King Yiu; Fong, Benny Shu Pan; Tsang, Kam Sze; Lau, Tze Kin; Ng, Pak Cheung; Lam, Audrey Carmen; Chan, Kathy Yuen Yee; Wang, Chi Chiu; Kung, Hsiang Fu; Li, Chi Kong; Li, Karen

    2011-01-01

    Hematopoiesis during mammalian embryonic development has been perceived as a migratory phenomenon, from the yolk sac blood island to the aorta-gonad-mesonephros (AGM) region, fetal liver (FL), and subsequently, the fetal bone marrow. In this study, we investigated the effects of primary stromal cells from fetal hematopoietic niches and their conditioned media (CM), applied singly or in sequential orders, on induction of human embryonic stem cells, H1, H9, and H14 lines, to hematopoietic cells. Our results demonstrated that stromal support of FL, AGM + FL, and AGM + FL + fetal bone marrow significantly increased the proliferation of embryoid bodies (EB) at day 18 of hematopoietic induction in the presence of thrombopoietin, stem cell factor, and Flt-3 ligand. AGM + FL also increased hematopoietic colony-forming unit (CFU) formation. CM did not enhance EB proliferation but CM of FL and AGM + FL significantly increased the density of total CFU and early erythroid (burst-forming unit) progenitors. Increased commitment to the hematopoietic lineage was demonstrated by enhanced expressions of CD45, alpha-, beta-, and gamma-globins in CFU at day 32, compared with EB at day 18. CM of FL significantly increased these globin expressions, indicating enhanced switches from embryonic to fetal and adult erythropoiesis. Over 50% and 10% of cells derived from CFU expressed CD45 and beta-globin proteins, respectively. Expressions of hematopoietic regulatory genes (Bmi-1, β-Catenin, Hox B4, GATA-1) were increased in EB or CFU cultures supported by FL or sequential CM. Our study has provided a strategy for derivation of hematopoietic cells from embryonic stem cells under the influence of primary hematopoietic niches and CM, particularly the FL.

  9. HEMATOPOIETIC DIFFERENTIATION OF UMBILICAL CORD BLOOD-DERIVED VERY SMALL EMBRYONIC/EPIBLAST-LIKE STEM CELLS

    PubMed Central

    Ratajczak, Janina; Zuba-Surma, Ewa; Klich, Iza; Liu, Rui; Wysoczynski, Marcin; Greco, Nicholas; Kucia, Magda; Laughlin, Mary J.; Ratajczak, Mariusz Z

    2011-01-01

    A population of CD133+lin−CD45− very small embryonic-like stem cells (VSELs) has been purified by multiparameter sorting from umbilical cord blood (UCB). In order to speed up isolation of these cells, we employed anti-CD133-conjugated paramagnetic beads followed by staining with Aldefluor to detect aldehyde dehydrogenase (ALDH) activity; we subsequently sorted CD45−/GlyA−/CD133+/ALDHhigh and CD45−/GlyA−/CD133+/ALDHlow cells, which are enriched for VSELs, and CD45+/GlyA−/CD133+/ALDHhigh and CD45+/GlyA−/CD133+/ALDHlow cells, which are enriched for hematopoietic stem/progenitor cells (HSPCs). While freshly isolated CD45− VSELs did not grow hematopoietic colonies, the same cells, when activated/expanded over OP9 stromal support, acquired hematopoietic potential and grew colonies composed of CD45+ hematopoietic cells in methylcellulose cultures. We also observed that CD45−/GlyA−/CD133+/ALDHhigh VSELs grew colonies earlier than CD45−/GlyA−/CD133+/ALDHlow VSELs, which suggests that the latter cells need more time to acquire hematopoietic commitment. In support of this possibility, real-time PCR analysis confirmed that, while freshly isolated CD45−/GlyA−/CD133+/ALDHhigh VSELs express more hematopoietic transcripts (e.g., c-myb), CD45−/GlyA−/CD133+/ALDHlow VSELs exhibit higher levels of pluripotent stem cell markers (e.g., Oct-4). More importantly, hematopoietic cells derived from VSELs that were co-cultured over OP9 support were able to establish human lympho-hematopoietic chimerism in lethally irradiated NOD/SCID mice 4–6 weeks after transplantation. Overall, our data suggest that UCB-VSELs correspond to the most primitive population of HSPCs in UCB. PMID:21483440

  10. A Rare Complication Developing After Hematopoietic Stem Cell Transplantation: Wernicke’s Encephalopathy

    PubMed Central

    Solmaz, Soner; Gereklioğlu, Çiğdem; Tan, Meliha; Demir, Şenay; Yeral, Mahmut; Korur, Aslı; Boğa, Can; Özdoğu, Hakan

    2015-01-01

    Thiamine is a water-soluble vitamin. Thiamine deficiency can present as a central nervous system disorder known as Wernicke’s encephalopathy, which classically manifests as confusion, ataxia, and ophthalmoplegia. Wernicke’s encephalopathy has rarely been reported following hematopoietic stem cell transplantation. Herein, we report Wernicke’s encephalopathy in a patient with acute myeloid leukemia who had been receiving prolonged total parenteral nutrition after haploidentical allogeneic hematopoietic stem cell transplantation. To the best of our knowledge, this is the first case reported from Turkey in the literature. PMID:25912759

  11. Challenges and strategies for generating therapeutic patient-specific hemangioblasts and hematopoietic stem cells from human pluripotent stem cells

    PubMed Central

    PETERS, ANN; BURRIDGE, PAUL W.; PRYZHKOVA, MARINA V.; LEVINE, MICHAL A.; PARK, TEA-SOON; ROXBURY, CHRISTOPHER; YUAN, XUAN; PÉAULT, BRUNO; ZAMBIDIS, ELIAS T.

    2012-01-01

    Recent characterization of hemangioblasts differentiated from human embryonic stem cells (hESC) has further confirmed evidence from murine, zebrafish and avian experimental systems that hematopoietic and endothelial lineages arise from a common progenitor. Such progenitors may provide a valuable resource for delineating the initial developmental steps of human hemato-endotheliogenesis, which is a process normally difficult to study due to the very limited accessibility of early human embryonic/fetal tissues. Moreover, efficient hemangioblast and hematopoietic stem cell (HSC) generation from patient-specific pluripotent stem cells has enormous potential for regenerative medicine, since it could lead to strategies for treating a multitude of hematologic and vascular disorders. However, significant scientific challenges remain in achieving these goals, and the generation of transplantable hemangioblasts and HSC derived from hESC currently remains elusive. Our previous work has suggested that the failure to derive engraftable HSC from hESC is due to the fact that current methodologies for differentiating hESC produce hematopoietic progenitors developmentally similar to those found in the human yolk sac, and are therefore too immature to provide adult-type hematopoietic reconstitution. Herein, we outline the nature of this challenge and propose targeted strategies for generating engraftable human pluripotent stem cell-derived HSC from primitive hemangioblasts using a developmental approach. We also focus on methods by which reprogrammed somatic cells could be used to derive autologous pluripotent stem cells, which in turn could provide unlimited sources of patient-specific hemangioblasts and HSC. PMID:20563986

  12. BLOS2 negatively regulates Notch signaling during neural and hematopoietic stem and progenitor cell development

    PubMed Central

    Zhou, Wenwen; He, Qiuping; Zhang, Chunxia; He, Xin; Cui, Zongbin; Liu, Feng; Li, Wei

    2016-01-01

    Notch signaling plays a crucial role in controling the proliferation and differentiation of stem and progenitor cells during embryogenesis or organogenesis, but its regulation is incompletely understood. BLOS2, encoded by the Bloc1s2 gene, is a shared subunit of two lysosomal trafficking complexes, biogenesis of lysosome-related organelles complex-1 (BLOC-1) and BLOC-1-related complex (BORC). Bloc1s2−/− mice were embryonic lethal and exhibited defects in cortical development and hematopoiesis. Loss of BLOS2 resulted in elevated Notch signaling, which consequently increased the proliferation of neural progenitor cells and inhibited neuronal differentiation in cortices. Likewise, ablation of bloc1s2 in zebrafish or mice led to increased hematopoietic stem and progenitor cell production in the aorta-gonad-mesonephros region. BLOS2 physically interacted with Notch1 in endo-lysosomal trafficking of Notch1. Our findings suggest that BLOS2 is a novel negative player in regulating Notch signaling through lysosomal trafficking to control multiple stem and progenitor cell homeostasis in vertebrates. DOI: http://dx.doi.org/10.7554/eLife.18108.001 PMID:27719760

  13. Neuropeptide Y regulates the hematopoietic stem cell microenvironment and prevents nerve injury in the bone marrow.

    PubMed

    Park, Min Hee; Jin, Hee Kyung; Min, Woo-Kie; Lee, Won Woo; Lee, Jeong Eun; Akiyama, Haruhiko; Herzog, Herbert; Enikolopov, Grigori N; Schuchman, Edward H; Bae, Jae-sung

    2015-06-12

    Many reports have revealed the importance of the sympathetic nervous system (SNS) in the control of the bone marrow environment. However, the specific role of neuropeptide Y (NPY) in this process has not been systematically studied. Here we show that NPY-deficient mice have significantly reduced hematopoietic stem cell (HSC) numbers and impaired regeneration in bone marrow due to apoptotic destruction of SNS fibers and/or endothelial cells. Furthermore, pharmacological elevation of NPY prevented bone marrow impairments in a mouse model of chemotherapy-induced SNS injury, while NPY injection into conditional knockout mice lacking the Y1 receptor in macrophages did not relieve bone marrow dysfunction. These results indicate that NPY promotes neuroprotection and restores bone marrow dysfunction from chemotherapy-induced SNS injury through the Y1 receptor in macrophages. They also reveal a new role of NPY as a regulator of the bone marrow microenvironment and highlight the potential therapeutic value of this neuropeptide.

  14. Ex vivo T-cell depletion in allogeneic hematopoietic stem cell transplant: past, present and future.

    PubMed

    Saad, A; Lamb, L S

    2017-03-20

    The most common cause of post-transplant mortality in patients with hematological malignancy is relapse, followed by GvHD, infections, organ toxicity and second malignancy. Immune-mediated complications such as GvHD continue to be challenging, yet amenable to control through manipulation of the T-cell compartment of the donor graft with subsequent immunomodulation after transplant. However, risk of both relapse and infection increase concomitantly with T-cell depletion (TCD) strategies that impair immune recovery. In this review, we discuss the clinical outcome of current and emerging strategies of TCD in allogeneic hematopoietic stem cell transplant that have developed during the modern transplantation era, focusing specifically on ex vivo strategies that target selected T-cell subsets.Bone Marrow Transplantation advance online publication, 20 March 2017; doi:10.1038/bmt.2017.22.

  15. Hematopoietic stem cell transplantation: an overview of infection risks and epidemiology.

    PubMed

    Wingard, John R; Hsu, Jack; Hiemenz, John W

    2011-02-01

    Hematopoietic stem cell transplantation (HSCT) is a treatment for multiple medical conditions that result in bone marrow failure and as an antineoplastic adoptive immunotherapy for hematologic malignancies. HSCT is associated with profound compromises in host barriers and all arms of innate and acquired immunity. The degree of immune compromise varies by type of transplant and over time. Immune reconstitution occurs within several months after autologous HSCT but takes up to a year or longer after allogeneic HSCT. In those patients who develop chronic graft-versus-host disease, immune reconstitution may take years or may never completely develop. Over time, with strengthening immune reconstitution and control of graft-versus-host disease, the risk for infection dissipates.

  16. Hematopoietic stem cell transplantation: an overview of infection risks and epidemiology.

    PubMed

    Wingard, John R; Hsu, Jack; Hiemenz, John W

    2010-06-01

    Hematopoietic stem cell transplantation (HSCT) is a treatment for multiple medical conditions that result in bone marrow failure and as an antineoplastic adoptive immunotherapy for hematologic malignancies. HSCT is associated with profound compromises in host barriers and all arms of innate and acquired immunity. The degree of immune compromise varies by type of transplant and over time. Immune reconstitution occurs within several months after autologous HSCT but takes up to a year or longer after allogeneic HSCT. In those patients who develop chronic graft-versus-host disease, immune reconstitution may take years or may never completely develop. Over time, with strengthening immune reconstitution and control of graft-versus-host disease, the risk for infection dissipates.

  17. Neuropeptide Y regulates the hematopoietic stem cell microenvironment and prevents nerve injury in the bone marrow

    PubMed Central

    Park, Min Hee; Jin, Hee Kyung; Min, Woo-Kie; Lee, Won Woo; Lee, Jeong Eun; Akiyama, Haruhiko; Herzog, Herbert; Enikolopov, Grigori N; Schuchman, Edward H; Bae, Jae-sung

    2015-01-01

    Many reports have revealed the importance of the sympathetic nervous system (SNS) in the control of the bone marrow environment. However, the specific role of neuropeptide Y (NPY) in this process has not been systematically studied. Here we show that NPY-deficient mice have significantly reduced hematopoietic stem cell (HSC) numbers and impaired regeneration in bone marrow due to apoptotic destruction of SNS fibers and/or endothelial cells. Furthermore, pharmacological elevation of NPY prevented bone marrow impairments in a mouse model of chemotherapy-induced SNS injury, while NPY injection into conditional knockout mice lacking the Y1 receptor in macrophages did not relieve bone marrow dysfunction. These results indicate that NPY promotes neuroprotection and restores bone marrow dysfunction from chemotherapy-induced SNS injury through the Y1 receptor in macrophages. They also reveal a new role of NPY as a regulator of the bone marrow microenvironment and highlight the potential therapeutic value of this neuropeptide. PMID:25916827

  18. Inflamm-Aging of Hematopoiesis, Hematopoietic Stem Cells, and the Bone Marrow Microenvironment

    PubMed Central

    Kovtonyuk, Larisa V.; Fritsch, Kristin; Feng, Xiaomin; Manz, Markus G.; Takizawa, Hitoshi

    2016-01-01

    All hematopoietic and immune cells are continuously generated by hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) through highly organized process of stepwise lineage commitment. In the steady state, HSCs are mostly quiescent, while HPCs are actively proliferating and contributing to daily hematopoiesis. In response to hematopoietic challenges, e.g., life-threatening blood loss, infection, and inflammation, HSCs can be activated to proliferate and engage in blood formation. The HSC activation induced by hematopoietic demand is mediated by direct or indirect sensing mechanisms involving pattern recognition receptors or cytokine/chemokine receptors. In contrast to the hematopoietic challenges with obvious clinical symptoms, how the aging process, which involves low-grade chronic inflammation, impacts hematopoiesis remains undefined. Herein, we summarize recent findings pertaining to functional alternations of hematopoiesis, HSCs, and the bone marrow (BM) microenvironment during the processes of aging and inflammation and highlight some common cellular and molecular changes during the processes that influence hematopoiesis and its cells of origin, HSCs and HPCs, as well as the BM microenvironment. We also discuss how age-dependent alterations of the immune system lead to subclinical inflammatory states and how inflammatory signaling might be involved in hematopoietic aging. Our aim is to present evidence supporting the concept of “Inflamm-Aging,” or inflammation-associated aging of hematopoiesis. PMID:27895645

  19. SUCCESSFUL FERTILITY RESTORATION AFTER ALLOGENEIC HEMATOPOIETIC STEM CELL TRANSPLANTATION

    PubMed Central

    Gharwan, Helen; Neary, Nicola M.; Link, Mary; Hsieh, Matthew M.; Fitzhugh, Courtney D.; Sherins, Richard J.; Tisdale, John F.

    2015-01-01

    Objective Myeloablative conditioning regimens given prior to hematopoietic stem cell transplantation (HSCT) frequently cause permanent sterility in men. In patients with sickle cell disease (SCD) we use a nonmyeloablative regimen with sirolimus, alemtuzumab, and low-dose total-body irradiation (300 centigrays) with gonadal shielding preceding allogeneic HSCT. We report here the restoration of azoospermia in a patient with SCD after allogeneic HSCT. We discuss the impact of our patient’s underlying chronic medical conditions and the therapies he had received (frequent blood transfusions, iron chelating drugs, ribavirin, hydroxyurea, opioids), as well as the impact of the nonmyeloablative conditioning regimen on male gonadal function, and we review the literature on this topic. Methods We determined the patient’s reproductive hormonal values and his semen parameters before, during, and after HSCT and infertility treatment. In addition, we routinely measured his serum laboratory parameters pertinent to SCD and infertility, such as iron and ferritin levels. A karyotype analysis was performed to assess the potential presence of Klinefelter syndrome. Finally, imaging studies of the patient’s brain and testes were done to rule out further underlying pathology. Results A 42-year-old man with SCD, transfusional iron overload, and hepatitis C underwent a nonmyeloablative allogeneic HSCT. One year later he desired to father a child but was found to be azoospermic in the context of hypogonadotropic hypogonadism. Restoration of fertility was attempted with human chorionic gonadotropin (2,000 IU) plus human menopausal gonadotropin (75 IU follicle-stimulating hormone) injected subcutaneously 3 times weekly. Within 6 months of treatment, the patient’s serum calculated free testosterone value normalized, and his sperm count and sperm motility improved. After 10 months, he successfully initiated a pregnancy through intercourse. The pregnancy was uncomplicated, and a healthy

  20. Histone demethylase Lsd1 represses hematopoietic stem and progenitor cell signatures during blood cell maturation

    PubMed Central

    Kerenyi, Marc A; Shao, Zhen; Hsu, Yu-Jung; Guo, Guoji; Luc, Sidinh; O'Brien, Kassandra; Fujiwara, Yuko; Peng, Cong; Nguyen, Minh; Orkin, Stuart H

    2013-01-01

    Here, we describe that lysine-specific demethylase 1 (Lsd1/KDM1a), which demethylates histone H3 on Lys4 or Lys9 (H3K4/K9), is an indispensible epigenetic governor of hematopoietic differentiation. Integrative genomic analysis, combining global occupancy of Lsd1, genome-wide analysis of its substrates H3K4 monomethylation and dimethylation, and gene expression profiling, reveals that Lsd1 represses hematopoietic stem and progenitor cell (HSPC) gene expression programs during hematopoietic differentiation. We found that Lsd1 acts at transcription start sites, as well as enhancer regions. Loss of Lsd1 was associated with increased H3K4me1 and H3K4me2 methylation on HSPC genes and gene derepression. Failure to fully silence HSPC genes compromised differentiation of hematopoietic stem cells as well as mature blood cell lineages. Collectively, our data indicate that Lsd1-mediated concurrent repression of enhancer and promoter activity of stem and progenitor cell genes is a pivotal epigenetic mechanism required for proper hematopoietic maturation. DOI: http://dx.doi.org/10.7554/eLife.00633.001 PMID:23795291

  1. MERIT40 deficiency expands hematopoietic stem cell pools by regulating thrombopoietin receptor signaling

    PubMed Central

    Rozenova, Krasimira; Jiang, Jing; Donaghy, Ryan; Aressy, Bernadette; Greenberg, Roger A.

    2015-01-01

    Hematopoietic stem cell (HSC) self-renewal and multilineage reconstitution are controlled by positive and negative signaling cues with perturbations leading to disease. Lnk is an essential signaling adaptor protein that dampens signaling by the cytokine thrombopoietin (Tpo) to limit HSC expansion. Here, we show that MERIT40 (Mediator of RAP80 Interactions and Targeting 40 kDa [M40]), a core subunit of an Lnk-associated Lys63 deubiquitinating (DUB) complex, attenuates HSC expansion. M40 deficiency increases the size of phenotypic and functional HSC pools. M40−/− HSCs are more resistant to cytoablative stress, and exhibit superior repopulating ability and self-renewal upon serial transplantation. M40−/− HSCs display increased quiescence and decelerated cell cycle kinetics accompanied by downregulation of gene sets associated with cell division. Mechanistically, M40 deficiency triggers hypersensitivity to Tpo stimulation and the stem cell phenotypes are abrogated on a background null for the Tpo receptor Mpl. These results establish M40-containing DUB complexes as novel HSC regulators of HSC expansion, implicate Lys63 ubiquitination in HSC signaling, and point to DUB-specific inhibitors as reagents to expand stem cell populations. PMID:25636339

  2. Hematopoietic stem and progenitor cell activation during chronic dermatitis provoked by constitutively active aryl-hydrocarbon receptor driven by Keratin 14 promoter.

    PubMed

    Murakami, Shohei; Yamamoto, Masayuki; Motohashi, Hozumi

    2014-03-01

    Polycyclic aromatic hydrocarbons (PAHs) activate aryl-hydrocarbon receptor (AhR). Because PAHs are known as a risk factor for allergic diseases, PAH-induced AhR activation is expected to be involved in the development of the pathology. We previously generated transgenic mice expressing a constitutively active AhR (AhR-CA) under the control of Keratin 14 (K14) promoter (AhR-CA mouse). The mice develop chronic dermatitis with immune imbalance toward Th2 predominance, indicating that the AhR activation driven by K14 promoter provokes allergic response. Because hematopoietic cells actively participate in the development of allergic inflammation, it is important to understand the hematopoietic status under allergic conditions. To clarify how the K14 promoter-driven AhR activation influences hematopoiesis, we analyzed bone marrow and spleen of AhR-CA mice. We verified that AhR-CA was expressed in keratinocytes and thymic epithelial cells but not in hematopoietic cells. The AhR-CA mice with full-blown dermatitis exhibited leukocytosis and skewed differentiation of hematopoietic progenitor cells toward granulocyte-monocyte lineages. They also showed a significant expansion of short-term hematopoietic stem cells and multipotent progenitors and a subtle reduction in long-term hematopoietic stem cells (LT-HSCs). Their spleens were enlarged and abundantly accumulated hematopoietic stem and progenitor cells. AhR-CA mice at the early stage of dermatitis did not show leukocytosis or splenomegaly but exhibited the granulocyte-monocyte skewing and the reduction in LT-HSCs. Thus, AhR activation driven by K14 promoter already alters the hematopoietic differentiation and reduces LT-HSCs at the initial stage of dermatitis development. These results suggest that nonhematopoietic exposure to PAHs triggers allergic response and concomitantly affects hematopoiesis.

  3. Donor selection in T cell-replete haploidentical hematopoietic stem cell transplantation: knowns, unknowns, and controversies.

    PubMed

    Ciurea, Stefan O; Champlin, Richard E

    2013-02-01

    Multiple donors are generally available for haploidentical hematopoietic stem cell transplantation. Here we discuss the factors that should be considered when selecting donors for this type of transplantation according to the currently available evidence. Donor-specific anti-HLA antibodies (DSAs) increase the risk of graft failure and should be avoided whenever possible. Strategies to manage recipients with DSAs are discussed. One should choose a full haplotype mismatch rather than a better-matched donor and maximize the dose of infused hematopoietic cells. Donor age and sex are other important factors. Other factors, including predicted natural killer cell alloreactivity and consideration of noninherited maternal alleles, are more controversial. Larger studies are needed to further clarify the role of these factors for donor selection in haploidentical hematopoietic stem cell transplantation.

  4. Src family kinase mediated negative regulation of hematopoietic stem cell mobilization involves both intrinsic and microenvironmental factors

    PubMed Central

    Borneo, Jovencio; Munugalavadla, Veerendra; Sims, Emily Catherine; Vemula, Sasidhar; Orschell, Christie M.; Yoder, Merv; Kapur, Reuben

    2007-01-01

    Objective The intracellular signals that contribute to G-CSF receptor induced stem cell mobilization are poorly characterized. Methods We show enhanced G-CSF induced mobilization of stem cells in mice deficient in the expression of Src family kinases (SFK−/−), which is associated with hypersensitivity of SFK−/− bone marrow cells to G-CSF as well as sustained activation of Stat3. Results A proteome map of the bone marrow fluid derived from wildtype and SFK−/− mice revealed a significant global reduction in the number of proteins in SFK−/− mice compared to controls, which was associated with elevated MMP-9 levels, reduced SDF-1 expression, and enhanced break down of VCAM-1. Transplantation of wildtype or SFK−/− stem cells into wildtype mice and treatment with G-CSF recapitulated the G-CSF induced increase in stem cell mobilization noted in SFK−/− non-transplanted mice; however, the increase was significantly less. G-CSF treatment of SFK−/− mice engrafted with wildtype stem cells also demonstrated a modest increase in stem cell mobilization compared to controls, however the observed increase was greatest in mice completely devoid of SFKs. Conclusions These data suggest an involvement of both hematopoietic intrinsic and microenvironmental factors in Src kinase mediated mobilization of stem cells and identify Src kinases as potential targets for modulating stem cell mobilization. PMID:17588471

  5. RhoA GTPase controls cytokinesis and programmed necrosis of hematopoietic progenitors

    PubMed Central

    Zhou, Xuan; Florian, Maria Carolina; Arumugam, Paritha; Chen, Xiaoyi; Cancelas, Jose A.; Lang, Richard; Malik, Punam; Geiger, Hartmut

    2013-01-01

    Hematopoietic progenitor cells (HPCs) are central to hematopoiesis as they provide large numbers of lineage-defined blood cells necessary to sustain blood homeostasis. They are one of the most actively cycling somatic cells, and their precise control is critical for hematopoietic homeostasis. The small GTPase RhoA is an intracellular molecular switch that integrates cytokine, chemokine, and adhesion signals to coordinate multiple context-dependent cellular processes. By using a RhoA conditional knockout mouse model, we show that RhoA deficiency causes a multilineage hematopoietic failure that is associated with defective multipotent HPCs. Interestingly, RhoA−/− hematopoietic stem cells retained long-term engraftment potential but failed to produce multipotent HPCs and lineage-defined blood cells. This multilineage hematopoietic failure was rescued by reconstituting wild-type RhoA into the RhoA−/− Lin−Sca-1+c-Kit+ compartment. Mechanistically, RhoA regulates actomyosin signaling, cytokinesis, and programmed necrosis of the HPCs, and loss of RhoA results in a cytokinesis failure of HPCs manifested by an accumulation of multinucleated cells caused by failed abscission of the cleavage furrow after telophase. Concomitantly, the HPCs show a drastically increased death associated with increased TNF–RIP-mediated necrosis. These results show that RhoA is a critical and specific regulator of multipotent HPCs during cytokinesis and thus essential for multilineage hematopoiesis. PMID:24101377

  6. Musashi-2 Attenuates AHR Signaling to Expand Human Hematopoietic Stem Cells

    PubMed Central

    Rentas, Stefan; Voisin, Veronique; Wilhelm, Brian T; Bader, Gary D; Yeo, Gene W; Hope, Kristin J

    2016-01-01

    Umbilical cord blood (CB)-derived hematopoietic stem cells (HSCs) are essential in many life saving regenerative therapies, but their low number in CB units has significantly restricted their clinical use despite the advantages they provide during transplantation1. Select small molecules that enhance hematopoietic stem and progenitor cell (HSPC) expansion in culture have been identified2,3, however, in many cases their mechanisms of action or the nature of the pathways they impinge on are poorly understood. A greater understanding of the molecular pathways that underpin the unique human HSC self-renewal program will facilitate the development of targeted strategies that expand these critical cell types for regenerative therapies. Whereas transcription factor networks have been shown to influence the self-renewal and lineage decisions of human HSCs4,5, the post-transcriptional mechanisms guiding HSC fate have not been closely investigated. Here we show that overexpression of the RNA-binding protein (RBP) Musashi-2 (MSI2) induces multiple pro-self-renewal phenotypes, including a 17-fold increase in short-term repopulating cells and a net 23-fold ex vivo expansion of long-term repopulating HSCs. By performing a global analysis of MSI2-RNA interactions, we determined that MSI2 directly attenuates aryl hydrocarbon receptor (AHR) signaling through post-transcriptional downregulation of canonical AHR pathway components in CB HSPCs. Our study provides new mechanistic insight into RBP-controlled RNA networks that underlie the self-renewal process and give evidence that manipulating such networks ex vivo can provide a novel means to enhance the regenerative potential of human HSCs. PMID:27121842

  7. Nocardia pseudobrasiliensis as an Emerging Cause of Opportunistic Infection after Allogeneic Hematopoietic Stem Cell Transplantation▿

    PubMed Central

    Lebeaux, David; Lanternier, Fanny; Degand, Nicolas; Catherinot, Emilie; Podglajen, Isabelle; Rubio, Marie-Thérèse; Suarez, Felipe; Lecuit, Marc; Mainardi, Jean-Luc; Lortholary, Olivier

    2010-01-01

    We report the case of a 55-year-old man who exhibited a nodular pneumonia 4 months after an allogeneic hematopoietic stem cell transplantation. Culture of the bronchoalveolar lavage fluid revealed Nocardia pseudobrasiliensis. This recently described carbapenem-resistant species should be included in the differential diagnosis of fungal infection in this setting. PMID:19940053

  8. Cure for thalassemia major – from allogeneic hematopoietic stem cell transplantation to gene therapy

    PubMed Central

    Srivastava, Alok; Shaji, Ramachandran V.

    2017-01-01

    Allogeneic hematopoietic stem cell transplantation has been well established for several decades as gene replacement therapy for patients with thalassemia major, and now offers very high rates of cure for patients who have access to this therapy. Outcomes have improved tremendously over the last decade, even in high-risk patients. The limited data available suggests that the long-term outcome is also excellent, with a >90% survival rate, but for the best results, hematopoietic stem cell transplantation should be offered early, before any end organ damage occurs. However, access to this therapy is limited in more than half the patients by the lack of suitable donors. Inadequate hematopoietic stem cell transplantation services and the high cost of therapy are other reasons for this limited access, particularly in those parts of the world which have a high prevalence of this condition. As a result, fewer than 10% of eligible patients are actually able to avail of this therapy. Other options for curative therapies are therefore needed. Recently, gene correction of autologous hematopoietic stem cells has been successfully established using lentiviral vectors, and several clinical trials have been initiated. A gene editing approach to correct the β-globin mutation or disrupt the BCL11A gene to increase fetal hemoglobin production has also been reported, and is expected to be introduced in clinical trials soon. Curative possibilities for the major hemoglobin disorders are expanding. Providing access to these therapies around the world will remain a challenge. PMID:27909215

  9. Resolving the controversy about N-cadherin and hematopoietic stem cells.

    PubMed

    Li, Pulin; Zon, Leonard I

    2010-03-05

    Discrepancies in published results about the role of N-cadherin in hematopoietic stem cells have led to confusion in the field. Attempting to settle the disagreements and reach a consensus, we undertook a collective discussion approach. This process clarified a number of issues but left some questions still unresolved.

  10. Effectiveness of Partner Social Support Predicts Enduring Psychological Distress after Hematopoietic Stem Cell Transplantation

    ERIC Educational Resources Information Center

    Rini, Christine; Redd, William H.; Austin, Jane; Mosher, Catherine E.; Meschian, Yeraz Markarian; Isola, Luis; Scigliano, Eileen; Moskowitz, Craig H.; Papadopoulos, Esperanza; Labay, Larissa E.; Rowley, Scott; Burkhalter, Jack E.; Schetter, Christine Dunkel; DuHamel, Katherine N.

    2011-01-01

    Objective: Hematopoietic stem cell transplant (HSCT) survivors who are 1 to 3 years posttransplant are challenged by the need to resume valued social roles and activities--a task that may be complicated by enduring transplant-related psychological distress common in this patient population. The present study investigated whether transplant…

  11. Pregnancy after allogeneic hematopoietic stem cell transplantation in a Fanconi anemia patient

    PubMed Central

    Atashkhoei, Simin; Fakhari, Solmaz; Bilehjani, Eissa; Farzin, Haleh

    2017-01-01

    Pregnancy in patients with Fanconi anemia (FA) is rare. However, there are reports of successful pregnancy in Fanconi patients after bone marrow transplantation (BMT, hematopoietic stem cell transplantation). We describe the case of a term pregnant woman with FA who was treated with BMT 2 years earlier. She underwent successful delivery with cesarean section using spinal anesthesia without any complications. PMID:28138266

  12. Generation of induced pluripotent stem cells as a potential source of hematopoietic stem cells for transplant in PNH patients.

    PubMed

    Phondeechareon, Tanapol; Wattanapanitch, Methichit; U-Pratya, Yaowalak; Damkham, Chanapa; Klincumhom, Nuttha; Lorthongpanich, Chanchao; Kheolamai, Pakpoom; Laowtammathron, Chuti; Issaragrisil, Surapol

    2016-10-01

    Paroxysmal nocturnal hemoglobinuria (PNH) is an acquired hemolytic anemia caused by lack of CD55 and CD59 on blood cell membrane leading to increased sensitivity of blood cells to complement. Hematopoietic stem cell transplantation (HSCT) is the only curative therapy for PNH, however, lack of HLA-matched donors and post-transplant complications are major concerns. Induced pluripotent stem cells (iPSCs) derived from patients are an attractive source for generating autologous HSCs to avoid adverse effects resulting from allogeneic HSCT. The disease involves only HSCs and their progeny; therefore, other tissues are not affected by the mutation and may be used to produce disease-free autologous HSCs. This study aimed to derive PNH patient-specific iPSCs from human dermal fibroblasts (HDFs), characterize and differentiate to hematopoietic cells using a feeder-free protocol. Analysis of CD55 and CD59 expression was performed before and after reprogramming, and hematopoietic differentiation. Patients' dermal fibroblasts expressed CD55 and CD59 at normal levels and the normal expression remained after reprogramming. The iPSCs derived from PNH patients had typical pluripotent properties and differentiation capacities with normal karyotype. After hematopoietic differentiation, the differentiated cells expressed early hematopoietic markers (CD34 and CD43) with normal CD59 expression. The iPSCs derived from HDFs of PNH patients have normal levels of CD55 and CD59 expression and hold promise as a potential source of HSCs for autologous transplantation to cure PNH patients.

  13. Geminin deletion increases the number of fetal hematopoietic stem cells by affecting the expression of key transcription factors.

    PubMed

    Karamitros, Dimitris; Patmanidi, Alexandra L; Kotantaki, Panoraia; Potocnik, Alexandre J; Bähr-Ivacevic, Tomi; Benes, Vladimir; Lygerou, Zoi; Kioussis, Dimitris; Taraviras, Stavros

    2015-01-01

    Balancing stem cell self-renewal and initiation of lineage specification programs is essential for the development and homeostasis of the hematopoietic system. We have specifically ablated geminin in the developing murine hematopoietic system and observed profound defects in the generation of mature blood cells, leading to embryonic lethality. Hematopoietic stem cells (HSCs) accumulated in the fetal liver following geminin ablation, while committed progenitors were reduced. Genome-wide transcriptome analysis identified key HSC transcription factors as being upregulated upon geminin deletion, revealing a gene network linked with geminin that controls fetal hematopoiesis. In order to obtain mechanistic insight into the ability of geminin to regulate transcription, we examined Hoxa9 as an example of a key gene in definitive hematopoiesis. We demonstrate that in human K562 cells geminin is associated with HOXA9 regulatory elements and its absence increases HOXA9 transcription similarly to that observed in vivo. Moreover, silencing geminin reduced recruitment of the PRC2 component SUZ12 to the HOXA9 locus and resulted in an increase in RNA polymerase II recruitment and H3K4 trimethylation (H3K4me3), whereas the repressive marks H3K9me3 and H3K27me3 were reduced. The chromatin landscape was also modified at the regulatory regions of HOXA10 and GATA1. K562 cells showed a reduced ability to differentiate to erythrocytes and megakaryocytes upon geminin silencing. Our data suggest that geminin is indispensable for fetal hematopoiesis and regulates the generation of a physiological pool of stem and progenitor cells in the fetal hematopoietic system.

  14. Decreased IRF8 Expression in Aging Hematopoietic Progenitor/Stem Cells

    PubMed Central

    Stirewalt, Derek L.; Choi, Yongjae Edward; Sharpless, Norman E.; Pogosova-Agadjanyan, Era L.; Cronk, Michelle R.; Yukawa, Michi; Larson, Eric B.; Wood, Brent L.; Appelbaum, Frederick R.; Radich, Jerald P.; Heimfeld, Shelly

    2008-01-01

    To determine how aging impacts gene expression in hematopoietic stem cells (HSCs), human CD34+ cells from bone marrow (BMCD34+) and mobilized stem cell products (PBCD34+38-) were examined using microarray-based expression profiling. The age-associated expression changes in CD34+ cells were then compared to age-associated expression changes in murine HSCs. Interferon regulatory factor 8 (IRF8) was the only gene with age-associated expression changes in all analyses, decreasing its expression in human CD34+ cells and murine HSCs. Microarray-based expression profiling found that IRF8 expression also decreased with aging in human T-cells, suggesting that the effects of aging on IRF8 expression may extend to more differentiated populations of hematopoietic cells. Quantitative-RT/PCR studies confirmed that IRF8 mRNA expression decreased with aging in additional samples of BMCD34+, PBCD34+38-, and T-cells, and IRF8 protein expression was found to decrease with aging and to correlate with mRNA levels in PBCD34+ cells. The results suggest that IRF8 may be a novel biomarker of aging for hematopoietic cells. Given that inactivation of IRF8 causes CML-like syndromes in mice and decreased IRF8 expression occurs in human hematopoietic malignancies, it will be critical to determine if decreased IRF8 expression plays a role in the increased incidence of hematopoietic malignancies in older adults. PMID:18596738

  15. TopBP1 Governs Hematopoietic Stem/Progenitor Cells Survival in Zebrafish Definitive Hematopoiesis

    PubMed Central

    Gao, Lei; Li, Dantong; Ma, Ke; Zhang, Wenjuan; Xu, Tao; Fu, Cong; Jing, Changbin; Jia, Xiaoe; Wu, Shuang; Sun, Xin; Dong, Mei; Deng, Min; Chen, Yi; Zhu, Wenge; Peng, Jinrong; Wan, Fengyi; Zhou, Yi; Zon, Leonard I.; Pan, Weijun

    2015-01-01

    In vertebrate definitive hematopoiesis, nascent hematopoietic stem/progenitor cells (HSPCs) migrate to and reside in proliferative hematopoietic microenvironment for transitory expansion. In this process, well-established DNA damage response pathways are vital to resolve the replication stress, which is deleterious for genome stability and cell survival. However, the detailed mechanism on the response and repair of the replication stress-induced DNA damage during hematopoietic progenitor expansion remains elusive. Here we report that a novel zebrafish mutantcas003 with nonsense mutation in topbp1 gene encoding topoisomerase II β binding protein 1 (TopBP1) exhibits severe definitive hematopoiesis failure. Homozygous topbp1cas003 mutants manifest reduced number of HSPCs during definitive hematopoietic cell expansion, without affecting the formation and migration of HSPCs. Moreover, HSPCs in the caudal hematopoietic tissue (an equivalent of the fetal liver in mammals) in topbp1cas003 mutant embryos are more sensitive to hydroxyurea (HU) treatment. Mechanistically, subcellular mislocalization of TopBP1cas003 protein results in ATR/Chk1 activation failure and DNA damage accumulation in HSPCs, and eventually induces the p53-dependent apoptosis of HSPCs. Collectively, this study demonstrates a novel and vital role of TopBP1 in the maintenance of HSPCs genome integrity and survival during hematopoietic progenitor expansion. PMID:26131719

  16. PLZF mutation alters mouse hematopoietic stem cell function and cell cycle progression.

    PubMed

    Vincent-Fabert, Christelle; Platet, Nadine; Vandevelde, Amelle; Poplineau, Mathilde; Koubi, Myriam; Finetti, Pascal; Tiberi, Guillaume; Imbert, Anne-Marie; Bertucci, François; Duprez, Estelle

    2016-04-14

    Hematopoietic stem cells (HSCs) give rise to all blood populations due to their long-term self-renewal and multipotent differentiation capacities. Because they have to persist throughout an organism's life span, HSCs tightly regulate the balance between proliferation and quiescence. Here, we investigated the role of the transcription factor promyelocytic leukemia zinc finger (plzf) in HSC fate using the Zbtb16(lu/lu)mouse model, which harbors a natural spontaneous mutation that inactivates plzf. Regenerative stress revealed that Zbtb16(lu/lu)HSCs had a lineage-skewing potential from lymphopoiesis toward myelopoiesis, an increase in the long-term-HSC pool, and a decreased repopulation potential. Furthermore, oldplzf-mutant HSCs present an amplified aging phenotype, suggesting that plzf controls age-related pathway. We found that Zbtb16(lu/lu)HSCs harbor a transcriptional signature associated with a loss of stemness and cell cycle deregulation. Lastly, cell cycle analyses revealed an important role for plzf in the regulation of the G1-S transition of HSCs. Our study reveals a new role for plzf in regulating HSC function that is linked to cell cycle regulation, and positions plzf as a key player in controlling HSC homeostasis.

  17. Divergent effects of supraphysiologic Notch signals on leukemia stem cells and hematopoietic stem cells.

    PubMed

    Chiang, Mark Y; Shestova, Olga; Xu, Lanwei; Aster, Jon C; Pear, Warren S

    2013-02-07

    The leukemia stem cell (LSC) hypothesis proposes that a subset of cells in the bulk leukemia population propagates the leukemia.We tested the LSC hypothesis in a mouse model of Notch-induced T-cell acute lymphoblastic leukemia (T-ALL) in which the tumor cells were largely CD4+ CD8+ T cells. LSC activity was enriched but rare in the CD8+ CD4 HSA(hi) immature single-positive T-cell subset. Although our murine T-ALL model relies on transduction of HSCs, we were unable to isolate Notch-activated HSCs to test for LSC activity. Further analysis showed that Notch activation in HSCs caused an initial expansion of hematopoietic and T-cell progenitors and loss of stem cell quiescence, which was followed by progressive loss of long-term HSCs and T-cell production over several weeks. Similar results were obtained in a conditional transgenic model in which Notch activation is induced in HSCs by Cre recombinase. We conclude that although supraphysiologic Notch signaling in HSCs promotes LSC activity in T-cell progenitors, it extinguishes self-renewal of LT-HSCs. These results provide further evidence for therapeutically targeting T-cell progenitors in T-ALL while also underscoring the need to tightly regulate Notch signaling to expand normal HSC populations for clinical applications.

  18. Generation of human memory stem T cells after haploidentical T-replete hematopoietic stem cell transplantation.

    PubMed

    Cieri, Nicoletta; Oliveira, Giacomo; Greco, Raffaella; Forcato, Mattia; Taccioli, Cristian; Cianciotti, Beatrice; Valtolina, Veronica; Noviello, Maddalena; Vago, Luca; Bondanza, Attilio; Lunghi, Francesca; Marktel, Sarah; Bellio, Laura; Bordignon, Claudio; Bicciato, Silvio; Peccatori, Jacopo; Ciceri, Fabio; Bonini, Chiara

    2015-04-30

    Memory stem T cells (TSCM) have been proposed as key determinants of immunologic memory. However, their exact contribution to a mounting immune response, as well as the mechanisms and timing of their in vivo generation, are poorly understood. We longitudinally tracked TSCM dynamics in patients undergoing haploidentical hematopoietic stem cell transplantation (HSCT), thereby providing novel hints on the contribution of this subset to posttransplant immune reconstitution in humans. We found that donor-derived TSCM are highly enriched early after HSCT. We showed at the antigen-specific and clonal level that TSCM lymphocytes can differentiate directly from naive precursors infused within the graft and that the extent of TSCM generation might correlate with interleukin 7 serum levels. In vivo fate mapping through T-cell receptor sequencing allowed defining the in vivo differentiation landscapes of human naive T cells, supporting the notion that progenies of single naive cells embrace disparate fates in vivo and highlighting TSCM as relevant novel players in the diversification of immunological memory after allogeneic HSCT.

  19. The role of chemokine activation of Rac GTPases in hematopoietic stem cell marrow homing, retention, and peripheral mobilization.

    PubMed

    Cancelas, Jose A; Jansen, Michael; Williams, David A

    2006-08-01

    Signaling downstream from the chemokine receptor CXCR4, the tyrosine kinase receptor c-kit and beta1-integrins has been shown to be crucial in the regulation of migration, homing, and engraftment of hematopoietic stem cells and progenitors. Each of these receptors signal through Rac-type Rho guanosine triphosphatases (GTPases). Rac GTPases play a major role in the organization of the actin cytoskeleton and also in the control of gene expression and the activation of proliferation and survival pathways. Here we review the specific roles of the members of the Rac subfamily of the Rho GTPase family in regulating the intracellular signaling of hematopoietic cells responsible for regulation of homing, marrow retention, and peripheral mobilization.

  20. CBFB and MYH11 in inv(16)(p13q22) of Acute Myeloid Leukemia Display Close Spatial Proximity in Interphase Nuclei of Human Hematopoietic Stem Cells

    PubMed Central

    Weckerle, Allison B.; Santra, Madhumita; Ng, Maggie C.Y.; Koty, Patrick P.; Wang, Yuh-Hwa

    2013-01-01

    To gain a better understanding of the mechanism of chromosomal translocations in cancer, we investigated the spatial proximity between CBFB and MYH11 genes involved in inv(16)(p13q22) found in acute myeloid leukemia patients. Previous studies have demonstrated a role for spatial genome organization in the formation of tumorigenic abnormalities. The non-random localization of chromosomes and, more specifically, of genes appears to play a role in the mechanism of chromosomal translocations. Here, two-color fluorescence in situ hybridization and confocal microscopy were used to measure the interphase distance between CBFB and MYH11 in hematopoietic stem cells, where inv(16)(p13q22) is believed to occur, leading to leukemia development. The measured distances in hematopoietic stem cells were compared to mesenchymal stem cells, peripheral blood lymphocytes and fibroblasts, as spatial genome organization is determined to be cell-type specific. Results indicate that CBFB and MYH11 are significantly closer in hematopoietic stem cells compared to all other cell types examined. Furthermore, the CBFB-MYH11 distance is significantly reduced compared to CBFB and a control locus in hematopoietic stem cells, although separation between CBFB and the control is ~70% of that between CBFB and MYH11 on metaphase chromosomes. Hematopoietic stem cells were also treated with fragile site-inducing chemicals since both genes contain translocation breakpoints within these regions. However, treatment with fragile site-inducing chemicals did not significantly affect the interphase distance. Consistent with previous studies, our results suggest that gene proximity may play a role in the formation of cancer-causing rearrangements, providing insight into the mechanism of chromosomal abnormalities in human tumors. PMID:21638519

  1. MOZ-mediated repression of p16(INK) (4) (a) is critical for the self-renewal of neural and hematopoietic stem cells.

    PubMed

    Perez-Campo, Flor M; Costa, Guilherme; Lie-A-Ling, Michael; Stifani, Stefano; Kouskoff, Valerie; Lacaud, Georges

    2014-06-01

    Although inhibition of p16(INK4a) expression is critical to preserve the proliferative capacity of stem cells, the molecular mechanisms responsible for silencing p16(INK4a) expression remain poorly characterized. Here, we show that the histone acetyltransferase (HAT) monocytic leukemia zinc finger protein (MOZ) controls the proliferation of both hematopoietic and neural stem cells by modulating the transcriptional repression of p16(INK4a) . In the absence of the HAT activity of MOZ, expression of p16(INK4a) is upregulated in progenitor and stem cells, inducing an early entrance into replicative senescence. Genetic deletion of p16(INK4a) reverses the proliferative defect in both Moz(HAT) (-) (/) (-) hematopoietic and neural progenitors. Our results suggest a critical requirement for MOZ HAT activity to silence p16(INK4a) expression and to protect stem cells from early entrance into replicative senescence.

  2. Inflammatory myofibroblastic tumor following hematopoietic stem cell transplantation: report of two pediatric cases.

    PubMed

    Fangusaro, J; Klopfenstein, K; Groner, J; Hammond, S; Altura, R A

    2004-01-01

    Inflammatory myofibroblastic tumors are benign neoplasms histologically composed of lymphocytes, histiocytes, macrophages, foam cells, and plasma cells among a spindle-shaped stroma. Their etiology and potential for metastatic spread is controversial. Numerous predisposing factors have been suggested, including preceding infections, radiotherapy, and local trauma. We present two cases of pseudotumors that developed in children following hematopoietic stem cell transplantation. These are the first cases after hematopoietic transplant reported in the literature. As these neoplasms are difficult to diagnose and are often confused with highly aggressive tumors, our cases demonstrate that a high index of suspicion for such lesions must be maintained when evaluating masses in post transplant patients.

  3. Imaging approaches to hematopoietic stem and progenitor cell function and engraftment.

    PubMed

    Askenasy, Nadir; Stein, Jerry; Farkas, Daniel L

    2007-01-01

    Cell tracking in vivo continues to provide significant insights into hematopoietic cell function and donor cell engraftment after transplantation. The combination of proliferation tracking dyes and induced expression of reporters with advanced imaging modalities has led to better understanding of qualitative and quantitative aspects of hematopoietic cells' homing, seeding and engraftment. Currently, there is no single technique that allows in vivo tracking of cells with molecular resolution, thus several techniques need to be combined. Recent developments promise better implementation of non-invasive imaging modalities to study functional and molecular characteristics of stem cells.

  4. The human chorion contains definitive hematopoietic stem cells from the fifteenth week of gestation.

    PubMed

    Muench, Marcus O; Kapidzic, Mirhan; Gormley, Matthew; Gutierrez, Alan G; Ponder, Kathryn L; Fomin, Marina E; Beyer, Ashley I; Stolp, Haley; Qi, Zhongxia; Fisher, Susan J; Bárcena, Alicia

    2017-04-15

    We examined the contribution of the fetal membranes, amnion and chorion, to human embryonic and fetal hematopoiesis. A population of cells displaying a hematopoietic progenitor phenotype (CD34(++) CD45(low)) of fetal origin was present in the chorion at all gestational ages, associated with stromal cells or near blood vessels, but was absent in the amnion. Prior to 15 weeks of gestation, these cells lacked hematopoietic in vivo engraftment potential. Differences in the chemokine receptor and β1 integrin expression profiles of progenitors between the first and second trimesters suggest that these cells had gestationally regulated responses to homing signals and/or adhesion mechanisms that influenced their ability to colonize the stem cell niche. Definitive hematopoietic stem cells, capable of multilineage and long-term reconstitution when transplanted in immunodeficient mice, were present in the chorion from 15-24 weeks gestation, but were absent at term. The second trimester cells also engrafted secondary recipients in serial transplantation experiments. Thus, the human chorion contains functionally mature hematopoietic stem cells at mid-gestation.

  5. Ex Vivo Virotherapy With Myxoma Virus Does Not Impair Hematopoietic Stem and Progenitor Cells

    PubMed Central

    Villa, Nancy Y.; Bais, Swarna; Meacham, Amy M.; Wise, Elizabeth; Rahman, Masmudur M.; Moreb, Jan S; Rosenau, Emma H.; Wingard, John R.; McFadden, Grant; Cogle, Christopher R.

    2016-01-01

    Background Relapsing disease is a major challenge after hematopoietic cell transplant for hematological malignancies. Myxoma virus (MYXV) is an oncolytic virus that can target and eliminate contaminating cancer cells from auto-transplant grafts. The aims of this study were to examine the impact of MYXV on normal hematopoietic stem and progenitor cells, and define the optimal treatment conditions for ex vivo virotherapy. Methods Bone marrow (BM) and mobilized peripheral blood stem cells (mPBSCs) from patients with hematological malignancies were treated with MYXV at various time, temperature and incubation media conditions. Treated BM cells from healthy normal donors were evaluated by flow cytometry for MYXV infection, LTC-IC assay, and CFC assay. Results MYXV initiated infection in up to 45% of antigen presenting monocytes, B cells and natural killer cells; however, these infections were uniformly aborted in > 95% of all cells. Fresh graft sources showed higher levels of MYXV infection initiation than cryopreserved specimens but all cases, less than 10% of CD34+ cells could be infected after ex vivo MYXV treatment. MYXV did not impair LTC-IC colony numbers compared to mock treatment. CFC colony types and numbers were also not impaired by MYXV treatment. MYXV incubation time, temperature or culture media did not significantly change percentage of infected cells, LTC-IC colony formation or CFC colony formation. Conclusions Human hematopoietic cells are non-permissive for MYXV. Human hematopoietic stem and progenitor cells were not infected and thus unaffected by MYXV ex vivo treatment. PMID:26857235

  6. Conjugated Estrogen in Late-Onset Hemorrhagic Cystitis Associated with Hematopoietic Stem Cell Transplantation

    PubMed Central

    Mousavi, Seyed Asadollah; Moazed, Vahid; Mohebbi, Niayesh; Hadjibabaie, Molouk; Alimoghaddam, Kamran; Bahar, Babak; Jahani, Mohammad; Ghavamzadeh, Ardeshir

    2017-01-01

    Background: Hemorrhagic cystitis (HC) is one of the most challenging complications in hematopoietic stem cell transplantation (HSCT). Estrogen is one of the suggested treatments for controlling this problem. Subjects and Methods : We performed a randomized case-control study to evaluate the efficacy of oral conjugated estrogen on HC management in 56 HSCT patients. Patients were randomly assigned to the drug group (received 6.25 mg conjugated estrogen oral tablets in a daily single dose during hematuria period) or control group. Results : The median time to complete response was 36 and 24 days in the drug and control group, respectively. The median time of down stage was 24 days in the drug group and 12 days in control group. Adjusted for HC grades, the relative risk of complete response for patients in control group was 1.613 times more than that of patients in drug group; nevertheless, not significant (p=0.122). Conclusion: Our study did not show any benefit in use of oral conjugated estrogen in the management of HC. PMID:28286609

  7. Identification of novel genes and networks governing hematopoietic stem cell development.

    PubMed

    Han, Tianxu; Yang, Chao-Shun; Chang, Kung-Yen; Zhang, Danhua; Imam, Farhad B; Rana, Tariq M

    2016-12-01

    Hematopoietic stem cells (HSCs) are capable of giving rise to all blood cell lineages throughout adulthood, and the generation of engraftable HSCs from human pluripotent stem cells is a major goal for regenerative medicine. Here, we describe a functional genome-wide RNAi screen to identify genes required for the differentiation of embryonic stem cell (ESC) into hematopoietic stem/progenitor cells (HSPCs) in vitro We report the discovery of novel genes important for the endothelial-to-hematopoietic transition and subsequently for HSPC specification. High-throughput sequencing and bioinformatic analyses identified twelve groups of genes, including a set of 351 novel genes required for HSPC specification. As in vivo proof of concept, four of these genes, Ap2a1, Mettl22, Lrsam1, and Hal, are selected for validation, confirmed to be essential for HSPC development in zebrafish and for maintenance of human HSCs. Taken together, our results not only identify a number of novel regulatory genes and pathways essential for HSPC development but also serve as valuable resource for directed differentiation of therapy grade HSPCs using human pluripotent stem cells.

  8. Resveratrol Increases the Bone Marrow Hematopoietic Stem and Progenitor Cell Capacity

    PubMed Central

    Rimmelé, Pauline; Lofek-Czubek, Sébastien; Ghaffari, Saghi

    2014-01-01

    Resveratrol is a plant-derived polyphenol that has shown protective effects against many disorders including, several types of cancers and other age-associated diseases as well as blood disorders in cultured cells and/or animal models. However, whether resveratrol has any impact specifically on normal blood stem cells remains unknown. Here we show that a three-week treatment of resveratrol increases the frequency and total numbers of normal bone marrow hematopoietic stem cells (HSC) without any impact on their competitive repopulation capacity. In addition, we show that resveratrol enhances the bone marrow multipotent progenitor capacity in vivo. These results have therapeutic value for disorders of hematopoietic stem and progenitor cells (HSPC) as well as for bone marrow transplantation settings. PMID:25163926

  9. Blood and Bone Marrow Hematopoietic Stem Cells for Transplantation: A Comparative Review.

    PubMed

    Janssen; Hiemenz; Fields; Zorsky; Ballester; Goldstein; Elfenbein

    1994-05-01

    Classical bone marrow transplantation collects bone marrow from a normal individual. This is infused into a patient rendered aplastic by high-dose chemoradiotherapy. Shortcomings include a limited donor pool and morbidity and mortality from graft-vs-host and graft rejection phenomena. Autologous marrow transplantation, in which the marrow of the patient to be transplanted is harvested, cryopreserved, and stored until needed, is not so constrained. Although marrow cannot be collected from some individuals due to hypocellularity, fibrosis, or infiltration with malignant disease, the presence of peripheral blood stem cells in the circulation allows these individuals to be treated with autologous transplantation therapy. It has been postulated that these hematopoietic progenitors have advantages over bone marrow collected stem cells, including safer and less expensive collections and accelerated rates of hematopoietic recovery following high-dose therapy and stem cell reinfusion.

  10. CD44, Hyaluronan, the Hematopoietic Stem Cell, and Leukemia-Initiating Cells

    PubMed Central

    Zöller, Margot

    2015-01-01

    CD44 is an adhesion molecule that varies in size due to glycosylation and insertion of so-called variant exon products. The CD44 standard isoform (CD44s) is highly expressed in many cells and most abundantly in cells of the hematopoietic system, whereas expression of CD44 variant isoforms (CD44v) is more restricted. CD44s and CD44v are known as stem cell markers, first described for hematopoietic stem cells and later on confirmed for cancer- and leukemia-initiating cells. Importantly, both abundantly expressed CD44s as well as CD44v actively contribute to the maintenance of stem cell features, like generating and embedding in a niche, homing into the niche, maintenance of quiescence, and relative apoptosis resistance. This is surprising, as CD44 is not a master stem cell gene. I here will discuss that the functional contribution of CD44 relies on its particular communication skills with neighboring molecules, adjacent cells and, last not least, the surrounding matrix. In fact, it is the interaction of the hyaluronan receptor CD44 with its prime ligand, which strongly assists stem cells to fulfill their special and demanding tasks. Recent fundamental progress in support of this “old” hypothesis, which may soon pave the way for most promising new therapeutics, is presented for both hematopoietic stem cell and leukemia-initiating cell. The contribution of CD44 to the generation of a stem cell niche, to homing of stem cells in their niche, to stem cell quiescence and apoptosis resistance will be in focus. PMID:26074915

  11. Microliter-bioreactor array with buoyancy-driven stirring for human hematopoietic stem cell culture

    PubMed Central

    Luni, Camilla; Feldman, Hope C.; Pozzobon, Michela; De Coppi, Paolo; Meinhart, Carl D.; Elvassore, Nicola

    2010-01-01

    This work presents the development of an array of bioreactors where finely controlled stirring is provided at the microliter scale (100–300 μl). The microliter-bioreactor array is useful for performing protocol optimization in up to 96 parallel experiments of hematopoietic stem cell (HSC) cultures. Exploring a wide range of experimental conditions at the microliter scale minimizes cost and labor. Once the cell culture protocol is optimized, it can be applied to large-scale bioreactors for stem cell production at the clinical level. The controlled stirring inside the wells of a standard 96-well plate is provided by buoyancy-driven thermoconvection. The temperature and velocity fields within the culture volume are determined with numerical simulations. The numerical results are verified with experimental velocity measurements using microparticle image velocimetry (μPIV) and are used to define feasible experimental conditions for stem cell cultures. To test the bioreactor array’s functionality, human umbilical cord blood-derived CD34+ cells were cultured for 7 days at five different stirring conditions (0.24–0.58 μm∕s) in six repeated experiments. Cells were characterized in terms of proliferation, and flow cytometry measurements of viability and CD34 expression. The microliter-bioreactor array demonstrates its ability to support HSC cultures under stirred conditions without adversely affecting the cell behavior. Because of the highly controlled operative conditions, it can be used to explore culture conditions where the mass transport of endogenous and exogenous growth factors is selectively enhanced, and cell suspension provided. While the bioreactor array was developed for culturing HSCs, its application can be extended to other cell types. PMID:20824067

  12. Model-based analysis and optimization of bioreactor for hematopoietic stem cell cultivation.

    PubMed

    Kresnowati, M T A P; Forde, G M; Chen, X D

    2011-01-01

    One of the problems to be solved in attaining the full potentials of hematopoietic stem cell (HSC) applications is the limited availability of the cells. Growing HSCs in a bioreactor offers an alternative solution to this problem. Besides, it also offers the advantages of eliminating labour intensive process as well as the possible contamination involved in the periodic nutrient replenishments in the traditional T-flask stem cell cultivation. In spite of this, the optimization of HSC cultivation in a bioreactor has been barely explored. This manuscript discusses the development of a mathematical model to describe the dynamics in nutrient distribution and cell concentration of an ex vivo HSC cultivation in a microchannel perfusion bioreactor. The model was further used to optimize the cultivation by proposing three alternative feeding strategies in order to prevent the occurrence of nutrient limitation in the bioreactor. The evaluation of these strategies, the periodic step change increase in the inlet oxygen concentration, the periodic step change increase in the media inflow, and the feedback control of media inflow, shows that these strategies can successfully improve the cell yield of the bioreactor. In general, the developed model is useful for the design and optimization of bioreactor operation.

  13. B-myb is an essential regulator of hematopoietic stem cell and myeloid progenitor cell development

    PubMed Central

    Baker, Stacey J.; Ma’ayan, Avi; Lieu, Yen K.; John, Premila; Reddy, M. V. Ramana; Chen, Edward Y.; Duan, Qiaonan; Snoeck, Hans-Willem; Reddy, E. Premkumar

    2014-01-01

    The B-myb (MYBL2) gene is a member of the MYB family of transcription factors and is involved in cell cycle regulation, DNA replication, and maintenance of genomic integrity. However, its function during adult development and hematopoiesis is unknown. We show here that conditional inactivation of B-myb in vivo results in depletion of the hematopoietic stem cell (HSC) pool, leading to profound reductions in mature lymphoid, erythroid, and myeloid cells. This defect is autonomous to the bone marrow and is first evident in stem cells, which accumulate in the S and G2/M phases. B-myb inactivation also causes defects in the myeloid progenitor compartment, consisting of depletion of common myeloid progenitors but relative sparing of granulocyte–macrophage progenitors. Microarray studies indicate that B-myb–null LSK+ cells differentially express genes that direct myeloid lineage development and commitment, suggesting that B-myb is a key player in controlling cell fate. Collectively, these studies demonstrate that B-myb is essential for HSC and progenitor maintenance and survival during hematopoiesis. PMID:24516162

  14. B-myb is an essential regulator of hematopoietic stem cell and myeloid progenitor cell development.

    PubMed

    Baker, Stacey J; Ma'ayan, Avi; Lieu, Yen K; John, Premila; Reddy, M V Ramana; Chen, Edward Y; Duan, Qiaonan; Snoeck, Hans-Willem; Reddy, E Premkumar

    2014-02-25

    The B-myb (MYBL2) gene is a member of the MYB family of transcription factors and is involved in cell cycle regulation, DNA replication, and maintenance of genomic integrity. However, its function during adult development and hematopoiesis is unknown. We show here that conditional inactivation of B-myb in vivo results in depletion of the hematopoietic stem cell (HSC) pool, leading to profound reductions in mature lymphoid, erythroid, and myeloid cells. This defect is autonomous to the bone marrow and is first evident in stem cells, which accumulate in the S and G2/M phases. B-myb inactivation also causes defects in the myeloid progenitor compartment, consisting of depletion of common myeloid progenitors but relative sparing of granulocyte-macrophage progenitors. Microarray studies indicate that B-myb-null LSK(+) cells differentially express genes that direct myeloid lineage development and commitment, suggesting that B-myb is a key player in controlling cell fate. Collectively, these studies demonstrate that B-myb is essential for HSC and progenitor maintenance and survival during hematopoiesis.

  15. [Protective effects of human bone marrow mesenchymal stem cells on hematopoietic organs of irradiated mice].

    PubMed

    Chen, Ling-Zhen; Yin, Song-Mei; Zhang, Xiao-Ling; Chen, Jia-Yu; Wei, Bo-Xiong; Zhan, Yu; Yu, Wei; Wu, Jin-Ming; Qu, Jia; Guo, Zi-Kuan

    2012-12-01

    The objective of this study was to explore the protective effects of human bone marrow mesenchymal stem cells (MSC) on hematopoietic organs of irradiated mice. Human bone marrow MSC were isolated, ex vivo expanded, and identified by cell biological tests. Female BALB/c mice were irradiated with (60)Co γ-ray at a single dose of 6 Gy, and received different doses of human MSC and MSC lysates or saline via tail veins. The survival of mice was record daily, and the femurs and spleens were harvested on day 9 and 16 for pathologic examination. The histological changes were observed and the cellularity was scored. The results showed that the estimated survival time of MSC- and MSC lysate-treated mice was comparable to that of controls. The hematopoiesis in the bone marrow of mice that received high-dose (5×10(6)) of MSC or MSC lysates was partially restored on day 9 and the capacity of hemopoietic tissue and cellularity scorings were significantly elevated as compared with that of controls (P < 0.05). Proliferative nudes were also obviously observed in the spleens of mice that received high-dose of MSC or MSC lysates on d 9 after irradiation. The histological structures of the spleen and bone marrow of the mice that received high-doses (5×10(6)) of MSC or MSC lysates were restored to normal, the cell proliferation displayed extraordinarily active. Further, the cellularity scores of the bone marrow were not significantly different between the high-dose MSC and MSC lysate-treated mice. It is concluded that the bone marrow MSC can promote the hematopoietic recovery of the irradiated mice, which probably is associated with the bioactive materials inherently existed in bone marrow cells.

  16. Cartography of hematopoietic stem cell commitment dependent upon a reporter for transcription factor activation.

    PubMed

    Akashi, Koichi

    2007-06-01

    A hierarchical hematopoietic developmental tree has been proposed based on the result of prospective purification of lineage-restricted progenitors. For more detailed mapping for hematopoietic stem cell (HSC) commitment, we tracked the expression of PU.1, a major granulocyte/monocyte (GM)- and lymphoid-related transcription factor, from the HSC to the myelolymphoid progenitor stages by using a mouse line harboring a knockin reporter for PU.1. This approach enabled us to find a new progenitor population committed to GM and lymphoid lineages within the HSC fraction. This result suggests that there should be another developmental pathway independent of the conventional one with myeloid versus lymphoid bifurcation, represented by common myeloid progenitors and common lymphoid progenitors, respectively. The utilization of the transcription factor expression as a functional marker might be useful to obtain cartography of the hematopoietic development at a higher resolution.

  17. Glucocorticoid hormone-induced chromatin remodeling enhances human hematopoietic stem cell homing and engraftment.

    PubMed

    Guo, Bin; Huang, Xinxin; Cooper, Scott; Broxmeyer, Hal E

    2017-03-06

    Efficient hematopoietic stem cell (HSC) homing is important for hematopoietic cell transplantation (HCT), especially when HSC numbers are limited, as in the use of cord blood (CB). In a screen of small-molecule compounds, we identified glucocorticoid (GC) hormone signaling as an activator of CXCR4 expression in human CB HSCs and hematopoietic progenitor cells (HPCs). Short-term GC pretreatment of human CB HSCs and HPCs promoted SDF-1-CXCR4-axis-mediated chemotaxis, homing, and long-term engraftment when these cells were transplanted into primary- and secondary-recipient NSG mice. Mechanistically, activated glucocorticoid receptor binds directly to a glucocorticoid response element in the CXCR4 promoter and recruits the SRC-1-p300 complex to promote H4K5 and H4K16 histone acetylation, facilitating transcription of CXCR4. These results suggest a new and readily available means to enhance the clinical efficacy of CB HCT.

  18. Aneuploidy impairs hematopoietic stem cell fitness and is selected against in regenerating tissues in vivo

    PubMed Central

    Pfau, Sarah J.; Silberman, Rebecca E.; Knouse, Kristin A.; Amon, Angelika

    2016-01-01

    Aneuploidy, an imbalanced karyotype, is a widely observed feature of cancer cells that has long been hypothesized to promote tumorigenesis. Here we evaluate the fitness of cells with constitutional trisomy or chromosomal instability (CIN) in vivo using hematopoietic reconstitution experiments. We did not observe cancer but instead found that aneuploid hematopoietic stem cells (HSCs) exhibit decreased fitness. This reduced fitness is due at least in part to the decreased proliferative potential of aneuploid hematopoietic cells. Analyses of mice with CIN caused by a hypomorphic mutation in the gene Bub1b further support the finding that aneuploidy impairs cell proliferation in vivo. Whereas nonregenerating adult tissues are highly aneuploid in these mice, HSCs and other regenerative adult tissues are largely euploid. These findings indicate that, in vivo, mechanisms exist to select against aneuploid cells. PMID:27313317

  19. Development of patient-specific hematopoietic stem and progenitor cell grafts from pluripotent stem cells, in vitro.

    PubMed

    Klump, H; Teichweyde, N; Meyer, C; Horn, P A

    2013-06-01

    Pluripotent stem cells hold great promise for future applications in many areas of regenerative medicine. Their defining property of differentiation towards any of the three germ layers and all derivatives thereof, including somatic stem cells, explains the special interest of the biomedical community in this cell type. In this review, we focus on the current state of directed differentiation of pluripotent stem cells towards hematopoietic stem cells (HSCs). HSCs are especially interesting because they are the longest known and, thus, most intensively investigated somatic stem cells. They were the first stem cells successfully used for regenerative purposes in clinical human medicine, namely in bone marrow transplantation, and also the first stem cells to be genetically altered for the first successful gene therapy trial in humans. However, because of the technical difficulties associated with this rare type of cell, such as the current incapability of prospective isolation, in vitro expansion and gene repair by homologous recombination, there is great interest in using pluripotent stem cells, such as Embryonic Stem (ES-) cells, as a source for generating and genetically altering HSCs, ex vivo. This has been hampered by ethical concerns associated with the use of human ES-cells. However, since Shinya Yamanaka´s successful attempts to reprogram somatic cells of mice and men to an ES-cell like state, so-called induced pluripotent stem (iPS) cells, this field of research has experienced a huge boost. In this brief review, we will reflect on the status quo of directed hematopoietic differentiation of human and mouse pluripotent stem cells.

  20. POEMS Syndrome (Polyneuropathy, Organomegaly, Endocrinopathy, Monoclonal Gammopathy and Skin Changes) Treated with Autologous Hematopoietic Stem Cell Transplantation: A Case Report and Literature Review

    PubMed Central

    Arana, Carlos; Pérez de León, José Antonio; Gómez-Moreno, Gerardo; Pérez-Cano, Ramón; Hernández, Tomás Martín

    2015-01-01

    Patient: Male, 62 Final Diagnosis: POEMS syndrome Symptoms: General malaise • pretibial edemas • weight loss Medication: — Clinical Procedure: Autologous hematopoietic stem cell transplantation Specialty: Hematology Objective: Rare disease Background: POEMS syndrome is a rare systemic pathology of paraneoplastic origin that is associated with plasma cell dyscrasia. It is characterized by the presence of sensorimotor polyneuropathy, organomegaly, endocrinopathy, monoclonal gammopathy, skin changes, and other systemic manifestations. The pathogenesis of the syndrome is unknown but over-production of vascular endothelial growth factor is probably responsible for most of the more characteristic symptoms. There is no standard treatment for POEMS syndrome and no randomized controlled clinical trials of treatment exist in the available literature. High-dose melphalan with autologous hematopoietic stem cell transplantation should be considered for younger patients with widespread osteosclerotic lesions, and for patients with rapidly progressive neuropathy. Case Report: This is the case of a 62-year-old Caucasian man who was admitted to our center presenting pretibial edema accompanied by significant weight loss and difficulty walking. POEMS criteria were present and an immunofixation test confirmed the presence of a monoclonal plasmaproliferative disorder. After autologous hematopoietic stem cell transplantation, the monoclonal component disappeared and the patient’s clinical status improved markedly. Conclusions: Autologous hematopoietic stem cell transplantation following high-dose melphalan is an effective therapy for younger patients with widespread osteosclerotic lesions in POEMS syndrome. PMID:25726020

  1. Homing in hematopoietic stem cells: focus on regulatory role of CXCR7 on SDF1a/CXCR4 axis.

    PubMed

    Asri, Amir; Sabour, Javid; Atashi, Amir; Soleimani, Masoud

    2016-01-01

    Hematopoietic stem cells (HSCs) form a rare population of multipotent stem cells, which give rise to all hematopoietic lineages. HSCs home to bone marrow niches and circulate between blood and bone marrow. Many factors, especially SDF1a, affect the circulation of HSCs, but these have not been fully recognized. SDF1a has been shown to bind CXCR7 in addition to CXCR4 and can also function as SDF1a/CXCR4 modulator. CXCR7 plays a role in HSCs homing via SDF1a gradient and is a mediator of CXCR4/SDF1a axis. This review describes the current concepts and questions concerning CXCR7/CXCR4/SDF1a axis as an important key in hematopoietic stem cells homing with particular emphasis on CXCR7 receptor. Homing of HSCs is an essential step for successful hematopoietic stem cell transplantation.

  2. Successful treatment of severe myasthenia gravis developed after allogeneic hematopoietic stem cell transplantation with plasma exchange and rituximab.

    PubMed

    Unal, Sule; Sag, Erdal; Kuskonmaz, Baris; Kesici, Selman; Bayrakci, Benan; Ayvaz, Deniz C; Tezcan, Ilhan; Yalnızoglu, Dilek; Uckan, Duygu

    2014-05-01

    Myasthenia gravis is among the rare complications after allogeneic hematopoietic stem cell transplantation and is usually associated with chronic GVHD. Herein, we report a 2-year and 10 months of age female with Griscelli syndrome, who developed severe myasthenia gravis at post-transplant +22nd month and required respiratory support with mechanical ventilation. She was unresponsive to cyclosporine A, methylprednisolone, intravenous immunoglobulin, and mycophenolate mofetil and the symptoms could only be controlled after plasma exchange and subsequent use of rituximab, in addition to cyclosporine A and mycophenolate mofetil maintenance. She is currently asymptomatic on the 6th month of follow-up.

  3. The Involvment of Hematopoietic-Specific PLC -β2 in Homing and Engraftment of Hematopoietic Stem/Progenitor Cells.

    PubMed

    Adamiak, Mateusz; Suszynska, Malwina; Abdel-Latif, Ahmed; Abdelbaset-Ismail, Ahmed; Ratajczak, Janina; Ratajczak, Mariusz Z

    2016-12-01

    Migration and bone marrow (BM) homing of hematopoietic stem progenitor cells (HSPCs) is regulated by several signaling pathways, and here we provide evidence for the involvement in this process of hematopoietic-specific phospholipase C-β2 (PLC-β2). This enzyme is involved in release of intracellular calcium and activation of protein kinase C (PKC). Recently we reported that PLC-β2 promotes mobilization of HSPCs from BM into peripheral blood (PB), and this effect is mediated by the involvement of PLC-β2 in the release of proteolytic enzymes from granulocytes and its role in disintegration of membrane lipid rafts. Here we report that, besides the role of PLC-β2 in the release of HSPCs from BM niches, PLC-β2 regulates the migration of HSPCs in response to chemotactic gradients of BM homing factors, including SDF-1, S1P, C1P, and ATP. Specifically, HSPCs from PLC-β2-KO mice show impaired homing and engraftment in vivo after transplantation into lethally irradiated mice. This decrease in migration of HSPCs can be explained by impaired calcium release in PLC-β2-KO mice and a high baseline level of heme oxygenase 1 (HO-1), an enzyme that negatively regulates cell migration.

  4. Non-genotoxic conditioning for hematopoietic stem cell transplantation using a hematopoietic-cell-specific internalizing immunotoxin

    PubMed Central

    Palchaudhuri, Rahul; Saez, Borja; Hoggatt, Jonathan; Schajnovitz, Amir; Sykes, David B; Tate, Tiffany A; Czechowicz, Agnieszka; Kfoury, Youmna; Ruchika, FNU; Rossi, Derrick J; Verdine, Gregory L; Mansour, Michael K; Scadden, David T

    2016-01-01

    Hematopoietic stem cell transplantation (HSCT) offers curative therapy for patients with hemoglobinopathies, congenital immunodeficiencies, and other conditions, possibly including AIDS. Autologous HSCT using genetically corrected cells would avoid the risk of graft-versus-host disease (GVHD), but the genotoxicity of conditioning remains a substantial barrier to the development of this approach. Here we report an internalizing immunotoxin targeting the hematopoietic-cell-restricted CD45 receptor that effectively conditions immunocompetent mice. A single dose of the immunotoxin, CD45–saporin (SAP), enabled efficient (>90%) engraftment of donor cells and full correction of a sickle-cell anemia model. In contrast to irradiation, CD45–SAP completely avoided neutropenia and anemia, spared bone marrow and thymic niches, enabling rapid recovery of T and B cells, preserved anti-fungal immunity, and had minimal overall toxicity. This non-genotoxic conditioning method may provide an attractive alternative to current conditioning regimens for HSCT in the treatment of non-malignant blood diseases. PMID:27272386

  5. Bone marrow hematopoietic stem cells behavior with or without growth factors in trauma hemorrhagic shock

    PubMed Central

    Kumar, Manoj; Bhoi, Sanjeev; Mohanty, Sujata; Kamal, Vineet Kumar; Rao, D. N.; Mishra, Pravas; Galwankar, Sagar

    2016-01-01

    Background: Hemorrhagic shock (HS) is the major leading cause of death after trauma. Up to 50% of early deaths are due to massive hemorrhage. Excessive release of pro-inflammatory cytokine and hypercatecholamine induces hematopoietic progenitor cells (HPCs) apoptosis, leading to multiorgan failure and death. However, still, result remains elusive for hematopoietic stem cells (HSCs) behavior in trauma HS (T/HS). Objectives: Therefore, our aim was to evaluate the in vitro HSCs behavior with or without recombinant human erythropoietin (rhEPO), recombinant human granulocyte macrophage-colony-stimulating factor (rhGM-CSF), recombinant human interleukin-3 (rhIL-3) alone, and combination with rhEPO + rhGM-CSF + rhIL-3 (EG3) in T/HS patients. Methodology: Bone marrow (BM) aspirates (n = 14) were collected from T/HS patients, those survived on day 3. BM cells were cultured for HPCs: Colony-forming unit-erythroid (CFU-E), burst-forming unit-erythroid (BFU-E), and colony-forming unit-granulocyte, monocyte/macrophage colonies growth. HPCs were counted with or without rhEPO, rhGM-CSF, rhIL-3 alone, and combination with EG3 in T/HS patients. Results: BM HSCs growth significantly suppressed in T/HS when compared with control group (P < 0.05). In addition, CFU-E and BFU-E colony growth were increased with additional growth factor (AGF) (rhEPO, rhGM-CSF, and rhIL-3) as compared to baseline (without AGF) (P < 0.05). Conclusion: Suppressed HPCs may be reactivated by addition of erythropoietin, GM-CSF, IL-3 alone and with combination in T/HS. PMID:27722113

  6. Gene Editing of Human Hematopoietic Stem and Progenitor Cells: Promise and Potential Hurdles.

    PubMed

    Yu, Kyung-Rok; Natanson, Hannah; Dunbar, Cynthia E

    2016-08-02

    Hematopoietic stem and progenitor cells (HSPCs) have great therapeutic potential because of their ability to both self-renew and differentiate. It has been proposed that, given their unique properties, a small number of genetically modified HSPCs could accomplish lifelong, corrective reconstitution of the entire hematopoietic system in patients with various hematologic disorders. Scientists have demonstrated that gene addition therapies-targeted to HSPCs and using integrating retroviral vectors-possess clear clinical benefits in multiple diseases, among them immunodeficiencies, storage disorders, and hemoglobinopathies. Scientists attempting to develop clinically relevant gene therapy protocols have, however, encountered a number of unexpected hurdles because of their incomplete knowledge of target cells, genomic control, and gene transfer technologies. Targeted gene-editing technologies using engineered nucleases such as ZFN, TALEN, and/or CRISPR/Cas9 RGEN show great clinical promise, allowing for the site-specific correction of disease-causing mutations-a process with important applications in autosomal dominant or dominant-negative genetic disorders. The relative simplicity of the CRISPR/Cas9 system, in particular, has sparked an exponential increase in the scientific community's interest in and use of these gene-editing technologies. In this minireview, we discuss the specific applications of gene-editing technologies in human HSPCs, as informed by prior experience with gene addition strategies. HSPCs are desirable but challenging targets; the specific mechanisms these cells evolved to protect themselves from DNA damage render them potentially more susceptible to oncogenesis, especially given their ability to self-renew and their long-term proliferative potential. We further review scientists' experience with gene-editing technologies to date, focusing on strategies to move these techniques toward implementation in safe and effective clinical trials.

  7. Hematopoietic Stem and Progenitor Cell Migration After Hypofractionated Radiation Therapy in a Murine Model

    SciTech Connect

    Kane, Jonathan; Krueger, Sarah A.; Dilworth, Joshua T.; Torma, John T.; Wilson, George D.; Marples, Brian; Madlambayan, Gerard J.

    2013-12-01

    Purpose: To characterize the recruitment of bone marrow (BM)-derived hematopoietic stem and progenitor cells (HSPCs) within tumor microenvironment after radiation therapy (RT) in a murine, heterotopic tumor model. Methods and Materials: Lewis lung carcinoma tumors were established in C57BL/6 mice and irradiated with 30 Gy given as 2 fractions over 2 days. Tumors were imaged with positron emission tomography/computed tomography (PET/CT) and measured daily with digital calipers. The HSPC and myelomonocytic cell content was assessed via immunofluorescent staining and flow cytometry. Functionality of tumor-associated HSPCs was verified in vitro using colony-forming cell assays and in vivo by rescuing lethally irradiated C57BL/6 recipients. Results: Irradiation significantly reduced tumor volumes and tumor regrowth rates compared with nonirradiated controls. The number of CD133{sup +} HSPCs present in irradiated tumors was higher than in nonirradiated tumors during all stages of regrowth. CD11b{sup +} counts were similar. PET/CT imaging and growth rate analysis based on standardized uptake value indicated that HSPC recruitment directly correlated to the extent of regrowth and intratumor cell activity after irradiation. The BM-derived tumor-associated HSPCs successfully formed hematopoietic colonies and engrafted irradiated mice. Finally, targeted treatment with a small animal radiation research platform demonstrated localized HSPC recruitment to defined tumor subsites exposed to radiation. Conclusions: Hypofractionated irradiation resulted in a pronounced and targeted recruitment of BM-derived HSPCs, possibly as a mechanism to promote tumor regrowth. These data indicate for the first time that radiation therapy regulates HSPC content within regrowing tumors.

  8. Purified Hematopoietic Stem Cell Transplantation—The Next Generation of Blood and Immune Replacement

    PubMed Central

    Czechowicz, Agnieszka; Weissman, Irving

    2011-01-01

    Severe Combined Immunodeficiency (SCID), Systemic Lupus Erythematosus (SLE), and Type I Diabetes share one commonality: these diverse disorders can all be attributed to faulty immune effector cells which are largely caused by genetic mutations that alter hematopoietic cell-intrinsic function. These defective immune cells inherit their genetic deficiencies from hematopoietic stem cells (HSC) as they differentiate. Thus, each of these unique diseases should be theoretically curable through the same strategy: replacement of patients’ HSCs carrying the problematic mutation with normal HSCs from disease-free donors, thereby generating entire new, healthy hematolymphoid systems. Replacement of disease-causing stem cells with healthy ones has been achieved clinically via hematopoietic cell transplantation (HCT) for the last 50 years, as a treatment modality for a variety of cancers and immunodeficiencies with moderate, but increasing success. This has traditionally included transplantation of mixed hematopoietic populations that include HSC and other cells, such as T-cells. This review article explores and delineates the potential expansion of this technique to treat a variety of inherited diseases of immune function, the current barriers in HCT and pure HSC transplantation, as well as the up-and-coming strategies to combat these obstacles. PMID:20493393

  9. Human fetal liver stromal cells expressing erythropoietin promote hematopoietic development from human embryonic stem cells.

    PubMed

    Yang, Chao; Ji, Lei; Yue, Wen; Shi, Shuang-Shuang; Wang, Ruo-Yong; Li, Yan-Hua; Xie, Xiao-Yan; Xi, Jia-Fei; He, Li-Juan; Nan, Xue; Pei, Xue-Tao

    2012-02-01

    Blood cells transfusion and hematopoietic stem cells (HSCs) transplantation are important methods for cell therapy. They are widely used in the treatment of incurable hematological disorder, infectious diseases, genetic diseases, and immunologic deficiency. However, their availability is limited by quantity, capacity of proliferation and the risk of blood transfusion complications. Recently, human embryonic stem cells (hESCs) have been shown to be an alternative resource for the generation of hematopoietic cells. In the current study, we describe a novel method for the efficient production of hematopoietic cells from hESCs. The stable human fetal liver stromal cell lines (hFLSCs) expressing erythropoietin (EPO) were established using the lentiviral system. We observed that the supernatant from the EPO transfected hFLSCs could induce the hESCs differentiation into hematopoietic cells, especially erythroid cells. They not only expressed fetal and embryonic globins but also expressed the adult-globin chain on further maturation. In addition, these hESCs-derived erythroid cells possess oxygen-transporting capacity, which indicated hESCs could generate terminally mature progenies. This should be useful for ultimately developing an animal-free culture system to generate large numbers of erythroid cells from hESCs and provide an experimental model to study early human erythropoiesis.

  10. Bcl11a Deficiency Leads to Hematopoietic Stem Cell Defects with an Aging-like Phenotype.

    PubMed

    Luc, Sidinh; Huang, Jialiang; McEldoon, Jennifer L; Somuncular, Ece; Li, Dan; Rhodes, Claire; Mamoor, Shahan; Hou, Serena; Xu, Jian; Orkin, Stuart H

    2016-09-20

    B cell CLL/lymphoma 11A (BCL11A) is a transcription factor and regulator of hemoglobin switching that has emerged as a promising therapeutic target for sickle cell disease and thalassemia. In the hematopoietic system, BCL11A is required for B lymphopoiesis, yet its role in other hematopoietic cells, especially hematopoietic stem cells (HSCs) remains elusive. The extensive expression of BCL11A in hematopoiesis implicates context-dependent roles, highlighting the importance of fully characterizing its function as part of ongoing efforts for stem cell therapy and regenerative medicine. Here, we demonstrate that BCL11A is indispensable for normal HSC function. Bcl11a deficiency results in HSC defects, typically observed in the aging hematopoietic system. We find that downregulation of cyclin-dependent kinase 6 (Cdk6), and the ensuing cell-cycle delay, correlate with HSC dysfunction. Our studies define a mechanism for BCL11A in regulation of HSC function and have important implications for the design of therapeutic approaches to targeting BCL11A.

  11. Heparan sulfate inhibits hematopoietic stem and progenitor cell migration and engraftment in mucopolysaccharidosis I.

    PubMed

    Watson, H Angharad; Holley, Rebecca J; Langford-Smith, Kia J; Wilkinson, Fiona L; van Kuppevelt, Toin H; Wynn, Robert F; Wraith, J Edmond; Merry, Catherine L R; Bigger, Brian W

    2014-12-26

    Mucopolysaccharidosis I Hurler (MPSI-H) is a pediatric lysosomal storage disease caused by genetic deficiencies in IDUA, coding for α-l-iduronidase. Idua(-/-) mice share similar clinical pathology with patients, including the accumulation of the undegraded glycosaminoglycans (GAGs) heparan sulfate (HS), and dermatan sulfate (DS), progressive neurodegeneration, and dysostosis multiplex. Hematopoietic stem cell transplantation (HSCT) is the most effective treatment for Hurler patients, but reduced intensity conditioning is a risk factor in transplantation, suggesting an underlying defect in hematopoietic cell engraftment. HS is a co-receptor in the CXCL12/CXCR4 axis of hematopoietic stem and progenitor cell (HSPC) migration to the bone marrow (BM), but the effect of HS alterations on HSPC migration, or the functional role of HS in MPSI-H are unknown. We demonstrate defective WT HSPC engraftment and migration in Idua(-/-) recipient BM, particularly under reduced intensity conditioning. Both intra- but especially extracellular Idua(-/-) BM HS was significantly increased and abnormally sulfated. Soluble heparinase-sensitive GAGs from Idua(-/-) BM and specifically 2-O-sulfated HS, elevated in Idua(-/-) BM, both inhibited CXCL12-mediated WT HSPC transwell migration, while DS had no effect. Thus we have shown that excess overly sulfated extracellular HS binds, and sequesters CXCL12, limiting hematopoietic migration and providing a potential mechanism for the limited scope of HSCT in Hurler disease.

  12. Quantitative stability of hematopoietic stem and progenitor cell clonal output in rhesus macaques receiving transplants.

    PubMed

    Koelle, Samson J; Espinoza, Diego A; Wu, Chuanfeng; Xu, Jason; Lu, Rong; Li, Brian; Donahue, Robert E; Dunbar, Cynthia E

    2017-03-16

    Autologous transplantation of hematopoietic stem and progenitor cells lentivirally labeled with unique oligonucleotide barcodes flanked by sequencing primer targets enables quantitative assessment of the self-renewal and differentiation patterns of these cells in a myeloablative rhesus macaque model. Compared with other approaches to clonal tracking, this approach is highly quantitative and reproducible. We documented stable multipotent long-term hematopoietic clonal output of monocytes, granulocytes, B cells, and T cells from a polyclonal pool of hematopoietic stem and progenitor cells in 4 macaques observed for up to 49 months posttransplantation. A broad range of clonal behaviors characterized by contribution level and biases toward certain cell types were extremely stable over time. Correlations between granulocyte and monocyte clonalities were greatest, followed by correlations between these cell types and B cells. We also detected quantitative expansion of T cell-biased clones consistent with an adaptive immune response. In contrast to recent data from a nonquantitative murine model, there was little evidence for clonal succession after initial hematopoietic reconstitution. These findings have important implications for human hematopoiesis, given the similarities between macaque and human physiologies.

  13. Kinetics of hematopoietic stem cells and supportive activities of stromal cells in a three-dimensional bone marrow culture system.

    PubMed

    Harada, Tomonori; Hirabayashi, Yukio; Hatta, Yoshihiro; Tsuboi, Isao; Glomm, Wilhelm Robert; Yasuda, Masahiro; Aizawa, Shin

    2015-01-01

    In the bone marrow, hematopoietic cells proliferate and differentiate in close association with a three-dimensional (3D) hematopoietic microenvironment. Previously, we established a 3D bone marrow culture system. In this study, we analyzed the kinetics of hematopoietic cells, and more than 50% of hematopoietic progenitor cells, including CFU-Mix, CFU-GM and BFU-E in 3D culture were in a resting (non-S) phase. Furthermore, we examined the hematopoietic supportive ability of stromal cells by measuring the expression of various mRNAs relevant to hematopoietic regulation. Over the 4 weeks of culture, the stromal cells in the 3D culture are not needlessly activated and "quietly" regulate hematopoietic cell proliferation and differentiation during the culture, resulting in the presence of resting hematopoietic stem cells in the 3D culture for a long time. Thus, the 3D culture system may be a new tool for investigating hematopoietic stem cell-stromal cell interactions in vitro.

  14. Delivery of nucleic acid therapeutics by genetically engineered hematopoietic stem cells

    PubMed Central

    Doering, Christopher B.; Archer, David; Spencer, H. Trent

    2010-01-01

    Several populations of adult human stem cells have been identified, but only a few of these are in routine clinical use. The hematopoietic stem cell (HSC) is arguably the most well characterized and the most routinely transplanted adult stem cell. Although details regarding several aspects of this cell’s phenotype are not well understood, transplant of HSCs has advanced to become the standard of care for the treatment of a range of monogenic diseases and several types of cancer. It has also proven to be an excellent target for genetic manipulation, and clinical trials have already demonstrated the usefulness of targeting this cell as a means of delivering nucleic acid therapeutics for the treatment of several previously incurable diseases. It is anticipated that additional clinical trials will soon follow, such as genetically engineering HSCs with vectors to treat monogenic diseases such as hemophilia A. In addition to the direct targeting of HSCs, induced pluripotent stem (iPS) cells have the potential to replace virtually any engineered stem cell therapeutic, including HSCs. We now know that for the broad use of genetically-modified HSCs for the treatment of non-lethal diseases, e.g. hemophilia A, we must be able to regulate the introduction of nucleic acid sequences into these target cells. We can begin to refine transduction protocols to provide safer approaches to genetically manipulate HSCs and strategies are being developed to improve the overall safety of gene transfer. This review focuses on recent advances in the systemic delivery of nucleic acid therapeutics using genetically-modified stem cells, specifically focusing on i) the use of retroviral vectors to genetically modify HSCs, ii) the expression of fVIII from hematopoietic stem cells for the treatment of hemophilia A, and iii) the use of genetically engineered hematopoietic cells generated from iPS cells as treatment for disorders of hematopoiesis. PMID:20869414

  15. Risk of melanocytic nevi and nonmelanoma skin cancer in children after allogeneic hematopoietic stem cell transplantation.

    PubMed

    Song, J S; London, W B; Hawryluk, E B; Guo, D; Sridharan, M; Fisher, D E; Lehmann, L E; Duncan, C N; Huang, J T

    2017-04-03

    There is a known increased risk of skin cancer in the adult population after hematopoietic stem cell transplantation (HSCT). However, late dermatologic effects that children may experience after HSCT have not been well described. The primary objective of this study was to characterize nevi and skin cancers affecting children after allogeneic HSCT. A cross-sectional cohort study of 85 pediatric HSCT recipients and 85 controls matched for age, sex and skin phototype was performed at a single institution. All participants underwent a full skin examination. Median age at study visit was 13.8 years in HSCT patients with median time post-HSCT of 3.6 years. HSCT patients had significantly more nevi than control patients (median (range): 44 (0-150) vs 11 (0-94), P<0.0001). HSCT patients also had significantly more nevi >5 mm in diameter and atypical nevi than controls. Factors associated with increased nevus count included malignant indication for HSCT, pretransplant chemotherapy, TBI exposure and myeloablative conditioning. A total of 16.5% of HSCT patients developed cancerous, precancerous lesions and/or lentigines. Our study suggests that pediatric HSCT recipients have an increased risk of benign and atypical melanocytic proliferations and nonmelanoma skin cancer that can manifest even during childhood.Bone Marrow Transplantation advance online publication, 3 April 2017; doi:10.1038/bmt.2017.57.

  16. A single-cell resolution map of mouse hematopoietic stem and progenitor cell differentiation

    PubMed Central

    Nestorowa, Sonia; Hamey, Fiona K.; Pijuan Sala, Blanca; Diamanti, Evangelia; Shepherd, Mairi; Laurenti, Elisa; Wilson, Nicola K.; Kent, David G.

    2016-01-01

    Maintenance of the blood system requires balanced cell fate decisions by hematopoietic stem and progenitor cells (HSPCs). Because cell fate choices are executed at the individual cell level, new single-cell profiling technologies offer exciting possibilities for mapping the dynamic molecular changes underlying HSPC differentiation. Here, we have used single-cell RNA sequencing to profile more than 1600 single HSPCs, and deep sequencing has enabled detection of an average of 6558 protein-coding genes per cell. Index sorting, in combination with broad sorting gates, allowed us to retrospectively assign cells to 12 commonly sorted HSPC phenotypes while also capturing intermediate cells typically excluded by conventional gating. We further show that independently generated single-cell data sets can be projected onto the single-cell resolution expression map to directly compare data from multiple groups and to build and refine new hypotheses. Reconstruction of differentiation trajectories reveals dynamic expression changes associated with early lymphoid, erythroid, and granulocyte-macrophage differentiation. The latter two trajectories were characterized by common upregulation of cell cycle and oxidative phosphorylation transcriptional programs. By using external spike-in controls, we estimate absolute messenger RNA (mRNA) levels per cell, showing for the first time that despite a general reduction in total mRNA, a subset of genes shows higher expression levels in immature stem cells consistent with active maintenance of the stem-cell state. Finally, we report the development of an intuitive Web interface as a new community resource to permit visualization of gene expression in HSPCs at single-cell resolution for any gene of choice. PMID:27365425

  17. A single-cell resolution map of mouse hematopoietic stem and progenitor cell differentiation.

    PubMed

    Nestorowa, Sonia; Hamey, Fiona K; Pijuan Sala, Blanca; Diamanti, Evangelia; Shepherd, Mairi; Laurenti, Elisa; Wilson, Nicola K; Kent, David G; Göttgens, Berthold

    2016-08-25

    Maintenance of the blood system requires balanced cell fate decisions by hematopoietic stem and progenitor cells (HSPCs). Because cell fate choices are executed at the individual cell level, new single-cell profiling technologies offer exciting possibilities for mapping the dynamic molecular changes underlying HSPC differentiation. Here, we have used single-cell RNA sequencing to profile more than 1600 single HSPCs, and deep sequencing has enabled detection of an average of 6558 protein-coding genes per cell. Index sorting, in combination with broad sorting gates, allowed us to retrospectively assign cells to 12 commonly sorted HSPC phenotypes while also capturing intermediate cells typically excluded by conventional gating. We further show that independently generated single-cell data sets can be projected onto the single-cell resolution expression map to directly compare data from multiple groups and to build and refine new hypotheses. Reconstruction of differentiation trajectories reveals dynamic expression changes associated with early lymphoid, erythroid, and granulocyte-macrophage differentiation. The latter two trajectories were characterized by common upregulation of cell cycle and oxidative phosphorylation transcriptional programs. By using external spike-in controls, we estimate absolute messenger RNA (mRNA) levels per cell, showing for the first time that despite a general reduction in total mRNA, a subset of genes shows higher expression levels in immature stem cells consistent with active maintenance of the stem-cell state. Finally, we report the development of an intuitive Web interface as a new community resource to permit visualization of gene expression in HSPCs at single-cell resolution for any gene of choice.

  18. A Prospective Study of Bone Marrow Hematopoietic and Mesenchymal Stem Cells in Type 1 Gaucher Disease Patients

    PubMed Central

    Lecourt, Séverine; Mouly, Enguerran; Freida, Delphine; Cras, Audrey; Ceccaldi, Raphaël; Heraoui, Djazia; Chomienne, Christine; Marolleau, Jean-Pierre; Arnulf, Bertrand; Porcher, Raphael; Caillaud, Catherine; Vanneaux, Valérie; Belmatoug, Nadia; Larghero, Jérôme

    2013-01-01

    Gaucher disease (GD) is an autosomal recessive disorder characterized by lysosomal glucocerebrosidase (GBA) deficiency leading to hematological and skeletal manifestations. Mechanisms underlying these symptoms have not yet been elucidated. In vivo, bone marrow (BM) mesenchymal stem cells (MSCs) have important role in the regulation of bone mass and in the support of hematopoiesis, thus representing potential candidate that could contribute to the disease. GBA deficiency may also directly impair hematopoietic stem/progenitors cells (HSPCs) intrinsic function and induce hematological defect. In order to evaluate the role of BM stem cells in GD pathophysiology, we prospectively analyzed BM-MSCs and HSPCs properties in a series of 10 patients with type 1 GD. GBA activity was decreased in all tested cell subtypes. GD-MSCs had an impaired growth potential, morphological and cell cycle abnormalities, decreased capacities to differentiate into osteoblasts. Moreover, GD-MSCs secreted soluble factors that stimulated osteoclasts resorbing activities. In vitro and in vivo primitive and mature hematopoiesis were similar between patients and controls. However, GD-MSCs had a lower hematopoietic supportive capacity than those from healthy donors. These data suggest that BM microenvironment is altered in GD and that MSCs are key components of the manifestations observed in GD. PMID:23935976

  19. Chemokine-mobilized adult stem cells; defining a better hematopoietic graft.

    PubMed

    Pelus, L M; Fukuda, S

    2008-03-01

    Stem cell research is currently focused on totipotent stem cells and their therapeutic potential, however adult stem cells, while restricted to differentiation within their tissue or origin, also have therapeutic utility. Transplantation with bone marrow hematopoietic stem cells (HSC) has been used for curative therapy for decades. More recently, alternative sources of HSC, particularly those induced to exit marrow or mobilize to peripheral blood by G-CSF, have become the most widely used hematopoietic graft and show significant superiority to marrow HSC. The chemokine/chemokine receptor axis also mobilizes HSC that occurs more rapidly than with G-CSF. In mice, the HSC and progenitor cells (HPC) mobilized by the CXCR2 receptor agonist GRObeta can be harvested within minutes of administration and show significantly lower levels of apoptosis, enhanced homing to marrow, expression of more activated integrin receptors and superior repopulation kinetics and more competitive engraftment than the equivalent cells mobilized by G-CSF. These characteristics suggest that chemokine axis-mobilized HSC represent a population of adult stem cells distinct from those mobilized by G-CSF, with superior therapeutic potential. It remains to be determined if the chemokine mobilization axis can be harnessed to mobilize other populations of unique adult stem cells with clinical utility.

  20. Development of hematopoietic stem cell gene therapy for Wiskott-Aldrich syndrome.

    PubMed

    Boztug, Kaan; Dewey, Ricardo A; Klein, Christoph

    2006-10-01

    Wiskott-Aldrich syndrome (WAS) is a complex primary immunodeficiency disorder associated with microthrombocytopenia, autoinnmunity and susceptibility to malignant lymphoma. At the molecular level, this rare disorder is caused by mutations in the gene encoding the Wiskott-Aldrich syndrome protein (WASP). WASP is a cytosolic adaptor protein mediating the rearrangement of the actin cytoskeleton upon surface receptor signaling. Allogenic hematopoietic stem cell (HSC) transplantation represents a curative approach but remains problematic in light of severe risks and side effects. Recently, HSC gene therapy has emerged as an alternative treatment option. Cumulative preclinical data obtained from WASP-deficient murine models and human cells indicate a marked improvement of the impaired cellular and immunological phenotypes associated with WASP deficiency. The first clinical trial is currently being conducted to assess the feasibility, toxicity, and potential therapeutic benefit of transplanting autologous WASP-reconstituted hematopoietic stem cells.

  1. Microsatellite instability confounds engraftment analysis of hematopoietic stem-cell transplantation.

    PubMed

    Tseng, Li-Hui; Tang, Jih-Luh; Haley, Lisa; Beierl, Katie; Gocke, Christopher D; Eshleman, James R; Lin, Ming-Tseh

    2014-07-01

    Polymorphic short tandem-repeat, or microsatellite, loci have been widely used to analyze chimerism status after allogeneic hematopoietic stem-cell transplantation. In molecular diagnostic laboratories, it is recommended to calculate mixed chimerism for at least 2 informative loci and to avoid microsatellite loci on chromosomes with copy number changes. In this report, we show that microsatellite instability observed in 2 patients with acute leukemia may confound chimerism analysis. Interpretation errors may occur even if 2 to 3 loci are analyzed because of length variation in multiple microsatellite loci. Although microsatellite loci with length variation should not be selected for chimerism analysis, the presence of microsatellite instability, like copy number alteration because of aberrant chromosomes, provides evidence of recurrent or residual cancer cells after hematopoietic stem-cell transplantation.

  2. Resolution of myelofibrosis-associated pulmonary arterial hypertension following allogeneic hematopoietic stem cell transplantation

    PubMed Central

    Iliescu, Cezar; Lopez-Mattei, Juan; Patel, Bela; Bashoura, Lara; Popat, Uday

    2016-01-01

    Abstract We present the case of a 62-year-old man with myelofibrosis-associated pulmonary arterial hypertension (PAH) who underwent allogeneic hematopoietic stem cell transplantation with subsequent resolution of disease and PAH. Right heart catheterization was used to guide PAH therapy before and after transplantation. Drug interactions, adverse effects, and renal insufficiency posed clinical challenges for the management of PAH-specific medications after transplantation. PAH improved soon after transplantation, and vasoactive medications were tapered off. Resolution of PAH was confirmed with repeat measurement of pulmonary hemodynamic characteristics. Although the etiology and pathophysiology for the resolution of PAH was unclear, the myelopulmonary pathophysiologic link was likely to have contributed. This is the first report describing resolution of myelofibrosis-associated PAH after allogeneic hematopoietic stem cell transplantation. PMID:28090305

  3. [Eight years using the "Mexican method" for allogeneic hematopoietic stem cell transplants].

    PubMed

    Ruiz-Argüelles, Guillermo J; Gómez-Almaguer, David; Ruiz-Delgado, Guillermo J; del Carmen Tarin-Arzaga, Luz

    2007-01-01

    In the past eight years, in Mexico and in other developing countries, over 350 patients have undergone allogeneic hematopoietic stem cell transplants using a non-myeloablative conditioning regimen developed in Mexico and based on international standards. The so called "Mexican method" to conduct allogeneic stem cell transplants is endowed with certain advantages which make it affordable and in turn, available to individuals living in resource-poor countries. The best results using this method have been observed among patients with stage 1 chronic myelogenous leukemia and aplastic anemia. The less favourable results have been observed among patients with acute lymphoblastic leukemia; mild to moderate results have been reported among patients with acute myelogenous leukemia. The "Mexican method" to conduct hematopoietic cells allografting has resulted not only in turning this method accessible to patients in developing countries, but also it has witnessed an increase in the academic activities of physicians from these countries involved in the field.

  4. Cerebral salt-wasting syndrome after hematopoietic stem cell transplantation in adolescents: 3 case reports

    PubMed Central

    Jeon, Yeon Jin; Lee, Hyun Young; Jung, In Ah; Cho, Won-Kyoung; Cho, Bin

    2015-01-01

    Cerebral salt-wasting syndrome (CSWS) is a rare disease characterized by a extracellular volume depletion and hyponatremia induced by marked natriuresis. It is mainly reported in patients who experience a central nervous system insult, such as cerebral hemorrhage or encephalitis. The syndrome of inappropriate antidiuretic hormone secretion is a main cause of severe hyponatremia after hematopoietic stem cell transplantation, whereas CSWS is rarely reported. We report 3 patients with childhood acute leukemia who developed CSWS with central nervous system complication after hematopoietic stem cell transplantation. The diagnosis of CSW was made on the basis of severe hyponatremia accompanied by increased urine output with clinical signs of dehydration. All patients showed elevated natriuretic peptide and normal antidiuretic hormone. Aggressive water and sodium replacement treatment was instituted in all 3 patients and 2 of them were effectively recovered, the other one was required to add fludrocortisone administration. PMID:26817009

  5. [Level of evidence for therapeutic drug monitoring of MPA in hematopoietic stem cell transplantation].

    PubMed

    Gerritsen-van Schieveen, Pauline; Royer, Bernard

    2011-01-01

    Mycophenolic acid (MPA) is more and more used to prevent GVHD (Graft Versus Host Disease) during hematopoietic stem cell transplantation with reduce-intensity conditioning. If several facts argue in favor of therapeutic drug monitoring, the used pharmacokinetic parameter is to be defined. Especially, the choice between total or ultrafilterable MPA is still under debate even if therapeutic drug monitoring seems to be more practicable with total MPA. The role of other factors implied in GVHD occurrence are also to be assessed in studies which aim at assessing therapeutic drug monitoring of MPA in such situation. For theses reasons, the level evidence of MPA as GVHD prophylaxis during hematopoietic stem cell transplantation with reduce-intensity conditioning is potentially useful.

  6. Cerebral salt-wasting syndrome after hematopoietic stem cell transplantation in adolescents: 3 case reports.

    PubMed

    Jeon, Yeon Jin; Lee, Hyun Young; Jung, In Ah; Cho, Won-Kyoung; Cho, Bin; Suh, Byung-Kyu

    2015-12-01

    Cerebral salt-wasting syndrome (CSWS) is a rare disease characterized by a extracellular volume depletion and hyponatremia induced by marked natriuresis. It is mainly reported in patients who experience a central nervous system insult, such as cerebral hemorrhage or encephalitis. The syndrome of inappropriate antidiuretic hormone secretion is a main cause of severe hyponatremia after hematopoietic stem cell transplantation, whereas CSWS is rarely reported. We report 3 patients with childhood acute leukemia who developed CSWS with central nervous system complication after hematopoietic stem cell transplantation. The diagnosis of CSW was made on the basis of severe hyponatremia accompanied by increased urine output with clinical signs of dehydration. All patients showed elevated natriuretic peptide and normal antidiuretic hormone. Aggressive water and sodium replacement treatment was instituted in all 3 patients and 2 of them were effectively recovered, the other one was required to add fludrocortisone administration.

  7. Rare complications after second hematopoietic stem cell transplantation for thalassemia major.

    PubMed

    Yanir, Asaf; Yatsiv, Ido; Braun, Jacques; Zilkha, Amir; Brooks, Rebecca; Bouhanna, Dalia; Weintraub, Michael; Stepensky, Polina

    2012-07-01

    We describe an 11-year-old girl with thalassemia major who underwent a second hematopoietic stem cell transplantation from a matched related donor and who subsequently developed posttransplant lymphoproliferative disorder complicated by severe ascending paralysis resembling Guillian-Barré syndrome. Six months later she developed a massive pericardial effusion. She received a multimodal treatment for these complications and currently, 18 months after transplantation, she is in a good clinical condition, is transfusion independent, with no evidence of graft-versus-host disease and off all treatment. This case highlights the dilemma surrounding second hematopoietic stem cell transplantations in hemoglobinopathies and the need for a careful, well informed, and collaborative decision-making process by patients, families, and medical professionals.

  8. Management of psychiatric complications in unrelated donor before unrelated peripheral hematopoietic stem cell collections

    PubMed Central

    Hequet, Olivier; Mialou, Valerie; Audat, Francoise; Wattel, Eric; Chapel, Valerie; Revesz, Damiela; Jouet, Jean-Piere; Fisseaux, Brigitte; Saoud, Mohamed; Michallet, Mauricette

    2017-01-01

    Allogeneic hematopoietic stem cell transplantation can efficiently treat patients with severe hematological diseases. A human leukocyte antigen-compatible donor is required for performing transplantation. The occurrence of unexpected acute severe diseases in a donor can compromise the feasibility of allogeneic hematopoietic stem cell transplantation. However, when a severe health problem occurs in a donor while the recipient has already received a conditioning regimen, hematologists have to find the best solutions for the recipient, while the team in charge of the donor has to find the best medical solutions for the donor. We describe here the occurrence of psychiatric acute complications in an unrelated donor while the myeloablative conditioning regimen had already been given to the recipient. We report the successive decisions that were made in an emergency based upon the expertise of physicians specialized in hematology, apheresis, cell therapy, and psychiatry to preserve the donor’s health and recipient’s life. PMID:28115876

  9. Sodium Caseinate (CasNa) Induces Mobilization of Hematopoietic Stem Cells in a BALB/c Mouse Model

    PubMed Central

    Santiago-Osorio, Edelmiro; Ledesma-Martínez, Edgar; Aguiñiga-Sánchez, Itzen; Poblano-Pérez, Ignacio; Weiss-Steider, Benny; Montesinos-Montesinos, Juan José; de Lourdes Mora-García, María

    2015-01-01

    Background Hematopoietic stem cells transplantation has high clinical potential against a wide variety of hematologic, metabolic, and autoimmune diseases and solid tumors. Clinically, hematopoietic stem cells derived from peripheral blood are currently used more than those obtained from sources such as bone marrow. However, mobilizing agents used in the clinic tend to fail in high rates, making the number of mobilized cells insufficient for transplantation. We investigated whether sodium caseinate induces functional mobilization of hematopoietic stem cells into peripheral blood of Balb/c mice. Material/Methods Using a mouse model, we administrated sodium caseinate or Plerixafor, a commercial mobilizing agent, and analyzed counts of hematopoietic stem cells in peripheral blood, and then cells were transplanted into lethally irradiated mice to restore hematopoiesis. All assays were performed at least twice. Results We found that sodium caseinate increases the number of mononuclear cells in peripheral blood with the immunophenotype of hematopoietic stem cells (0.2 to 0.5% LSK cells), allowing them to form colonies of various cell lineages in semisolid medium (p<0.05). This effect is similar to that of Plerixafor, and cells transplanted into lethally irradiated mice can restore hematopoiesis at higher percentages than mononuclear cells mobilized by Plerixafor (40% vs. 20%, respectively). Further, a secondary transplant rescued a separate group of irradiated mice from death, proving definitive evidence of hematopoietic reconstitution after hematopoietic stem cells transplantation. Data are presented as mean ± standard deviation. To determine significant differences between the data, one-way ANOVA and the Tukey test were used. Conclusions Collectively these results show the utility of sodium caseinate as a mobilizer of hematopoietic stem cells and its potential clinical application in transplantation settings. PMID:26409928

  10. Virological analysis of inherited chromosomally integrated human herpesvirus-6 in three hematopoietic stem cell transplant patients.

    PubMed

    Miura, H; Kawamura, Y; Kudo, K; Ihira, M; Ohye, T; Kurahashi, H; Kawashima, N; Miyamura, K; Yoshida, N; Kato, K; Takahashi, Y; Kojima, S; Yoshikawa, T

    2015-10-01

    We analyzed 3 hematopoietic stem cell transplant (HSCT) recipients with inherited chromosomally integrated human herpesvirus-6 (inherited CIHHV-6). Cases 1 (inherited CIHHV-6A) and 2 (inherited CIHHV-6B) were inherited CIHHV-6 recipients. Case 3 received bone marrow from a donor with inherited CIHHV-6B. Following HSCT, HHV-6B was isolated from Case 1. HHV-6A and -6B messenger RNAs were detected in Cases 1 and 3.

  11. Hematopoietic stem and progenitor cells: their mobilization and homing to bone marrow and peripheral tissue.

    PubMed

    Schulz, Christian; von Andrian, Ulrich H; Massberg, Steffen

    2009-01-01

    Hematopoietic stem and progenitor cells (HSPCs) are a rare population of precursor cells that possess the capacity for self-renewal and multilineage differentiation. In the bone marrow (BM), HSPCs warrant blood cell homeostasis. In addition, they may also replenish tissue-resident myeloid cells and directly participate in innate immune responses once they home to peripheral tissues. In this review, we summarize recent data on the signaling molecules that modulate the mobilization of HSPCs from BM and their migration to peripheral tissues.

  12. Hyperthyroidism After Allogeneic Hematopoietic Stem Cell Transplantation: A Report of Four Cases.

    PubMed

    Sağ, Erdal; Gönç, Nazlı; Alikaşifoğlu, Ayfer; Kuşkonmaz, Barış; Uçkan, Duygu; Özön, Alev; Kandemir, Nurgün

    2015-12-01

    Hematopoietic stem cell transplantation (HSCT) is the only curative treatment for many hematological disorders, primary immunodeficiencies, and metabolic disorders. Thyroid dysfunction is one of the frequently seen complications of HSCT. However, hyperthyroidism due to Graves' disease, autoimmune thyroiditis, and thyrotoxicosis are rare. Herein, we report a series of 4 patients who were euthyroid before HSCT but developed hyperthyroidism (3 of them developed autoimmune thyroid disease) after transplantation.

  13. Standardization of terminology for episodes of hematopoietic stem cell patient transplant care.

    PubMed

    LeMaistre, C Fred; Farnia, Stephanie; Crawford, Stephen; McGuirk, Joseph; Maziarz, Richard T; Coates, James; Irwin, Dennis; Martin, Patricia; Gajewski, James L

    2013-06-01

    The nomenclature describing hematopoietic stem cell transplantation has evolved, adding precision and definition in research and regulation. The lack of coordination and standardization in terminology has left some gaps in the definition of episodes of clinical care. These voids have caused particular problems in contracting for payment and billing for services rendered. The purpose of this report is to propose definitions for cell products, cell infusions, and transplantation episodes.

  14. Mechanical unloading of bone in microgravity reduces mesenchymal and hematopoietic stem cell-mediated tissue regeneration.

    PubMed

    Blaber, E A; Dvorochkin, N; Torres, M L; Yousuf, R; Burns, B P; Globus, R K; Almeida, E A C

    2014-09-01

    Mechanical loading of mammalian tissues is a potent promoter of tissue growth and regeneration, whilst unloading in microgravity can cause reduced tissue regeneration, possibly through effects on stem cell tissue progenitors. To test the specific hypothesis that mechanical unloading alters differentiation of bone marrow mesenchymal and hematopoietic stem cell lineages, we studied cellular and molecular aspects of how bone marrow in the mouse proximal femur responds to unloading in microgravity. Trabecular and cortical endosteal bone surfaces in the femoral head underwent significant bone resorption in microgravity, enlarging the marrow cavity. Cells isolated from the femoral head marrow compartment showed significant down-regulation of gene expression markers for early mesenchymal and hematopoietic differentiation, including FUT1(-6.72), CSF2(-3.30), CD90(-3.33), PTPRC(-2.79), and GDF15(-2.45), but not stem cell markers, such as SOX2. At the cellular level, in situ histological analysis revealed decreased megakaryocyte numbers whilst erythrocytes were increased 2.33 fold. Furthermore, erythrocytes displayed elevated fucosylation and clustering adjacent to sinuses forming the marrow-blood barrier, possibly providing a mechanistic basis for explaining spaceflight anemia. Culture of isolated bone marrow cells immediately after microgravity exposure increased the marrow progenitor's potential for mesenchymal differentiation into in-vitro mineralized bone nodules, and hematopoietic differentiation into osteoclasts, suggesting an accumulation of undifferentiated progenitors during exposure to microgravity. These results support the idea that mechanical unloading of mammalian tissues in microgravity is a strong inhibitor of tissue growth and regeneration mechanisms, acting at the level of early mesenchymal and hematopoietic stem cell differentiation.

  15. Cutaneous graft-versus-host disease after hematopoietic stem cell transplant - a review*

    PubMed Central

    Villarreal, Cesar Daniel Villarreal; Alanis, Julio Cesar Salas; Pérez, Jose Carlos Jaime; Candiani, Jorge Ocampo

    2016-01-01

    Graft-versus-host disease (GVHD) is a major complication of allogeneic hematopoietic stem cell transplants (allo-HSCT) associated with significant morbidity and mortality. The earliest and most common manifestation is cutaneous graft-versus-host disease. This review focuses on the pathophysiology, clinical features, prevention and treatment of cutaneous graft-versus-host disease. We discuss various insights into the disease's mechanisms and the different treatments for acute and chronic skin graft-versus-host disease. PMID:27438202

  16. Antagonizing Retinoic Acid Receptors Increases Myeloid Cell Production by Cultured Human Hematopoietic Stem Cells.

    PubMed

    Brown, Geoffrey; Marchwicka, Aleksandra; Cunningham, Alan; Toellner, Kai-Michael; Marcinkowska, Ewa

    2017-02-01

    Activities of the retinoic acid receptor (RAR)α and RARγ are important to hematopoiesis. Here, we have investigated the effects of receptor selective agonists and antagonists on the primitive human hematopoietic cell lines KG1 and NB-4 and purified normal human hematopoietic stem cells (HSCs). Agonizing RARα (by AGN195183) was effective in driving neutrophil differentiation of NB-4 cells and this agonist synergized with a low amount (10 nM) of 1α,25-dihydroxyvitamin D3 to drive monocyte differentiation of NB-4 and KG1 cells. Treatment of cultures of human HSCs (supplemented with stem cell factor ± interleukin 3) with an antagonist of all RARs (AGN194310) or of RARα (AGN196996) prolonged the lifespan of cultures, up to 55 days, and increased the production of neutrophils and monocytes. Slowing down of cell differentiation was not observed, and instead, hematopoietic stem and progenitor cells had expanded in number. Antagonism of RARγ (by AGN205728) did not affect cultures of HSCs. Studies of CV-1 and LNCaP cells transfected with RAR expression vectors and a reporter vector revealed that RARγ and RARβ are activated by sub-nM all-trans retinoic acid (EC50-0.3 nM): ~50-fold more is required for activation of RARα (EC50-16 nM). These findings further support the notion that the balance of expression and activity of RARα and RARγ are important to hematopoietic stem and progenitor cell expansion and differentiation.

  17. BK virus encephalitis with thrombotic microangiopathy in an allogeneic hematopoietic stem cell transplant recipient.

    PubMed

    Lopes da Silva, R; Ferreira, I; Teixeira, G; Cordeiro, D; Mafra, M; Costa, I; Bravo Marques, J M; Abecasis, M

    2011-04-01

    BK virus (BKV) infection occurs most often in immunocompromised hosts, in the setting of renal or bone marrow transplantation. Hemorrhagic cystitis is the commonest manifestation but in recent years infections in other organ systems have been reported. We report an unusual case of biopsy-proven BKV encephalitis in a hematopoietic stem cell transplant patient who subsequently developed thrombotic microangiopathy. As far as we know, this is the first report of such an association in a transplant patient.

  18. Pharmacoeconomic analysis of palifermin to prevent mucositis among patients undergoing autologous hematopoietic stem cell transplantation.

    PubMed

    Nooka, Ajay K; Johnson, Heather R; Kaufman, Jonathan L; Flowers, Christopher R; Langston, Amelia; Steuer, Conor; Graiser, Michael; Ali, Zahir; Shah, Nishi N; Rangaraju, Sravanti; Nickleach, Dana; Gao, Jingjing; Lonial, Sagar; Waller, Edmund K

    2014-06-01

    Trials have shown benefits of palifermin in reducing the incidence and severity of oral mucositis in patients with hematological malignancies undergoing autologous hematopoietic stem cell transplantation (HSCT) with total body irradiation (TBI)-based conditioning regimens. Similar outcome data are lacking for patients receiving non-TBI-based regimens. We performed a retrospective evaluation on the pharmacoeconomic benefit of palifermin in the setting of non-TBI-based conditioning and autologous HSCT. Between January 2002 and December 2010, 524 patients undergoing autologous HSCT for myeloma (melphalan 200 mg/m²) and lymphoma (high-dose busulfan, cyclophosphamide, and etoposide) as preparative regimen were analyzed. Use of patient-controlled analgesia (PCA) was significantly lower in the palifermin-treated groups (myeloma: 13% versus 53%, P < .001; lymphoma: 46% versus 68%, P < .001). Median total transplant charges were significantly higher in the palifermin-treated group, after controlling for inflation (myeloma: $167,820 versus $143,200, P < .001; lymphoma: $168,570 versus $148,590, P < .001). Palifermin treatment was not associated with a difference in days to neutrophil engraftment, length of stay, and overall survival and was associated with an additional cost of $5.5K (myeloma) and $14K (lymphoma) per day of PCA avoided. Future studies are suggested to evaluate the cost-effectiveness of palifermin compared with other symptomatic treatments to reduce transplant toxicity using validated measures for pain and quality of life.

  19. Hypercholesterolemia Tunes Hematopoietic Stem/Progenitor Cells for Inflammation and Atherosclerosis

    PubMed Central

    Ma, Xiaojuan; Feng, Yingmei

    2016-01-01

    As the pathological basis of cardiovascular disease (CVD), atherosclerosis is featured as a chronic inflammation. Hypercholesterolemia is an independent risk factor for CVD. Accumulated studies have shown that hypercholesterolemia is associated with myeloid cell expansion, which stimulates innate and adaptive immune responses, strengthens inflammation, and accelerates atherosclerosis progression. Hematopoietic stem/progenitor cells (HSPC) in bone marrow (BM) expresses a panel of lipoprotein receptors to control cholesterol homeostasis. Deficiency of these receptors abrogates cellular cholesterol efflux, resulting in HSPC proliferation and differentiation in hypercholesterolemic mice. Reduction of the cholesterol level in the lipid rafts by infusion of reconstituted high-density lipoprotein (HDL) or its major apolipoprotein, apoA-I, reverses hypercholesterolemia-induced HSPC expansion. Apart from impaired cholesterol metabolism, inhibition of reactive oxygen species production suppresses HSPC activation and leukocytosis. These data indicate that the mechanisms underlying the effects of hypercholesterolemia on HSPC proliferation and differentiation could be multifaceted. Furthermore, dyslipidemia also regulates HSPC-neighboring cells, resulting in HSPC mobilization. In the article, we review how hypercholesterolemia evokes HSPC activation and mobilization directly or via its modification of BM microenvironment. We hope this review will bring light to finding key molecules to control HSPC expansion, inflammation, and atherosclerosis for the treatment of CVD. PMID:27447612

  20. Selective transgene expression for detection and elimination of contaminating carcinoma cells in hematopoietic stem cell sources.

    PubMed Central

    Chen, L; Pulsipher, M; Chen, D; Sieff, C; Elias, A; Fine, H A; Kufe, D W

    1996-01-01

    Tumor contamination of bone marrow (BM) and peripheral blood (PB) may affect the outcome of patients receiving high dose chemotherapy with autologous transplantation of hematopoietic stem cell products. In this report, we demonstrate that replication defective adenoviral vectors containing the cytomegalovirus (CMV) or DF3/MUC1 carcinoma-selective promoter can be used to selectively transduce contaminating carcinoma cells. Adenoviral-mediated reporter gene expression in breast cancer cells was five orders of magnitude higher than that found in BM, PB, and CD34+ cells. Our results demonstrate that CD34+ cells have low to undetectable levels of integrins responsible for adenoviral internalization. We show that adenoviral-mediated transduction of a reporter gene can detect one breast cancer cell in 5 x 10(5) BM or PB cells with a vector containing the DF3/MUC1 promoter. We also show that transduction of the HSV-tk gene for selective killing by ganciclovir can be exploited for purging cancer cells from hematopoietic stem cell populations. The selective expression of TK followed by ganciclovir treatment resulted in the elimination of 6-logs of contaminating cancer cells. By contrast, there was little effect on CFU-GM and BFU-E formulation or on long term culture initiating cells. These results indicate that adenoviral vectors with a tumor-selective promoter provide a highly efficient and effective approach for the detection and purging of carcinoma cells in hematopoietic stem cell preparations. PMID:8958216

  1. Epigenetic chromatin states uniquely define the developmental plasticity of murine hematopoietic stem cells.

    PubMed

    Weishaupt, Holger; Sigvardsson, Mikael; Attema, Joanne L

    2010-01-14

    Heritable epigenetic signatures are proposed to serve as an important regulatory mechanism in lineage fate determination. To investigate this, we profiled chromatin modifications in murine hematopoietic stem cells, lineage-restricted progenitors, and CD4(+) T cells using modified genome-scale mini-chromatin immunoprecipitation technology. We show that genes involved in mature hematopoietic cell function associate with distinct chromatin states in stem and progenitor cells, before their activation or silencing upon cellular maturation. Many lineage-restricted promoters are associated with bivalent histone methylation and highly combinatorial histone modification patterns, which may determine their selective priming of gene expression during lineage commitment. These bivalent chromatin states are conserved in mammalian evolution, with a particular overrepresentation of promoters encoding key regulators of hematopoiesis. After differentiation into progenitors and T cells, activating histone modifications persist at transcriptionally repressed promoters, suggesting that these transcriptional programs might be reactivated after lineage restriction. Collectively, our data reveal the epigenetic framework that underlies the cell fate options of hematopoietic stem cells.

  2. Fancd2 is required for nuclear retention of Foxo3a in hematopoietic stem cell maintenance.

    PubMed

    Li, Xiaoli; Li, Jie; Wilson, Andrew; Sipple, Jared; Schick, Jonathan; Pang, Qishen

    2015-01-30

    Functional maintenance of hematopoietic stem cells (HSCs) is constantly challenged by stresses like DNA damage and oxidative stress. Here we show that the Fanconi anemia protein Fancd2 and stress transcriptional factor Foxo3a cooperate to prevent HSC exhaustion in mice. Deletion of both Fancd2 and Foxo3a led to an initial expansion followed by a progressive decline of bone marrow stem and progenitor cells. Limiting dilution transplantation and competitive repopulating experiments demonstrated a dramatic reduction of competitive repopulating units and progressive decline in hematopoietic repopulating ability of double-knockout (dKO) HSCs. Analysis of the transcriptome of dKO HSCs revealed perturbation of multiple pathways implicated in HSC exhaustion. Fancd2 deficiency strongly promoted cytoplasmic localization of Foxo3a in HSCs, and re-expression of Fancd2 completely restored nuclear Foxo3a localization. By co-expressing a constitutively active CA-FOXO3a and WT or a nonubiquitinated Fancd2 in dKO bone marrow stem/progenitor cells, we demonstrated that Fancd2 was required for nuclear retention of CA-FOXO3a and for maintaining hematopoietic repopulation of the HSCs. Collectively, these results implicate a functional interaction between the Fanconi anemia DNA repair and FOXO3a pathways in HSC maintenance.

  3. Evaluation of Quality of Life and Care Needs of Turkish Patients Undergoing Hematopoietic Stem Cell Transplantation

    PubMed Central

    Yasar, Neslisah

    2016-01-01

    This descriptive study explored the quality of life and care needs of Turkish patients who underwent hematopoietic stem cell transplantation. The study sample consisted of 100 hematopoietic stem cell transplant patients. Their quality of life was assessed using Functional Assessment of Cancer Therapy-Bone Marrow Transplant Scale. The mean patient age was 44.99 ± 13.92 years. Changes in sexual functions, loss of hair, loss of taste, loss of appetite, and sleep disturbances were the most common symptoms. The quality of life of transplant patients was moderately affected; the functional well-being and social/family well-being subscales were the most adversely and least negatively affected (12.13 ± 6.88) dimensions, respectively. Being female, being between 50 and 59 years of age, being single, having a chronic disease, and having a history of hospitalization were associated with lower quality of life scores. Interventions to improve functional status, physical well-being, and emotional status of patients during the transplantation process may help patients cope with treatment-related impairments more effectively. Frequent screening and management of patient symptoms in order to help patients adapt to life following allogeneic hematopoietic stem cell transplantation are crucial for meeting care needs and developing strategies to improve their quality of life. PMID:28116155

  4. Decitabine maintains hematopoietic precursor self-renewal by preventing repression of stem cell genes by a differentiation inducing stimulus

    PubMed Central

    Hu, Zhenbo; Negrotto, Soledad; Gu, Xiaorong; Mahfouz, Reda; Ng, Kwok Peng; Ebrahem, Quteba; Copelan, Edward; Singh, Harinder; Maciejewski, Jaroslaw P; Saunthararajah, Yogen

    2010-01-01

    The cytosine analogue decitabine alters hematopoietic differentiation. For example, decitabine treatment increases self-renewal of normal hematopoietic stem cells. The mechanisms underlying decitabine induced shifts in differentiation are poorly understood, but likely relate to the ability of decitabine to deplete the chromatin-modifying enzyme DNA methyl-transferase 1 (DNMT1) that plays a central role in transcription repression. HOXB4 is a transcription factor that promotes hematopoietic stem cell self-renewal. In hematopoietic precursors induced to differentiate by the lineage-specifying transcription factor Pu.1, or by the cytokine granulocyte-colony stimulating factor (G-CSF), there is rapid repression of HOXB4 and other stem cell genes. Depletion of DNMT1 using shRNA or decitabine prevents HOXB4 repression by Pu.1 or G-CSF, and maintains hematopoietic precursor self-renewal. In contrast, depletion of DNMT1 by decitabine six hours after the differentiation stimulus, that is, after repression of HOXB4 has occurred, augments differentiation. Therefore, DNMT1 is required for the early repression of stem cell genes that occurs in response to a differentiation stimulus, providing a mechanistic explanation for the observation that decitabine can maintain or increase hematopoietic stem cell self-renewal in the presence of a differentiation stimulus. Using decitabine to deplete DNMT1 after this early repression phase does not impair progressive differentiation. PMID:20501800

  5. Identifying states along the hematopoietic stem cell differentiation hierarchy with single cell specificity via Raman spectroscopy

    PubMed Central

    Ilin, Yelena; Choi, Ji Sun; Harley, Brendan A. C.; Kraft, Mary L.

    2015-01-01

    A major challenge for expanding specific types of hematopoietic cells ex vivo for the treatment of blood cell pathologies is identifying the combinations of cellular and matrix cues that direct hematopoietic stem cells (HSC) to self-renew or differentiate into cell populations ex vivo. Microscale screening platforms enable minimizing the number of rare HSCs required to screen the effects of numerous cues on HSC fate decisions. These platforms create a strong demand for label-free methods that accurately identify the fate decisions of individual hematopoietic cells at specific locations on the platform. We demonstrate the capacity to identify discrete cells along the HSC differentiation hierarchy via multivariate analysis of Raman spectra. Notably, cell state identification is accurate for individual cells and independent of the biophysical properties of the functionalized polyacrylamide gels upon which these cells are cultured. We report partial least-squares discriminant analysis (PLS-DA) models of single cell Raman spectra enable identifying four dissimilar hematopoietic cell populations across the HSC lineage specification. Successful discrimination was obtained for a population enriched for long-term repopulating HSCs (LT-HSCs) versus their more differentiated progeny, including closely-related short-term repopulating HSCs (ST-HSCs), and fully differentiated lymphoid (B cells) and myeloid (granulocytes) cells. The lineage-specific differentiation states of cells from these four sub-populations were accurately identified independent of the stiffness of the underlying biomaterial substrate, indicating subtle spectral variations that discriminated these populations were not masked by features from the culture substrate. This approach enables identifying the lineage-specific differentiation stages of hematopoietic cells on biomaterial substrates of differing composition, and may facilitate correlating hematopoietic cell fate decisions with the extrinsic cues that

  6. Infections Caused by Mycobacterium tuberculosis in Recipients of Hematopoietic Stem Cell Transplantation

    PubMed Central

    Al-Anazi, Khalid Ahmed; Al-Jasser, Asma Marzouq; Alsaleh, Khalid

    2014-01-01

    Mycobacterium tuberculosis (M. tuberculosis) infections are uncommon in recipients of hematopoietic stem cell transplantation. These infections are 10–40 times commoner in recipients of stem cell transplantation than in the general population but they are 10 times less in stem cell transplantation recipients compared to solid organ transplant recipients. The incidence of M. tuberculosis infections in recipients of allogeneic stem cell transplantation ranges between <1 and 16% and varies considerably according to the type of transplant and the geographical location. Approximately 80% of M. tuberculosis infections in stem cell transplant recipients have been reported in patients receiving allografts. Several risk factors predispose to M. tuberculosis infections in recipients of hematopoietic stem cell transplantation and these are related to the underlying medical condition and its treatment, the pre-transplant conditioning therapies in addition to the transplant procedure and its own complications. These infections can develop as early as day 11 and as late as day 3337 post-transplant. The course may become rapidly progressive and the patient may develop life-threatening complications. The diagnosis of M. tuberculosis infections in stem cell transplant recipients is usually made on clinical grounds, cultures obtained from clinical specimens, tissues biopsies in addition to serology and molecular tests. Unfortunately, a definitive diagnosis of M. tuberculosis infections in these patients may occasionally be difficult to be established. However, M. tuberculosis infections in transplant recipients usually respond well to treatment with anti-tuberculosis agents provided the diagnosis is made early. A high index of suspicion should be maintained in recipients of stem cell transplantation living in endemic areas and presenting with compatible clinical and radiological manifestations. High mortality rates are associated with infections caused by multidrug

  7. Infections Caused by Mycobacterium tuberculosis in Recipients of Hematopoietic Stem Cell Transplantation.

    PubMed

    Al-Anazi, Khalid Ahmed; Al-Jasser, Asma Marzouq; Alsaleh, Khalid

    2014-01-01

    Mycobacterium tuberculosis (M. tuberculosis) infections are uncommon in recipients of hematopoietic stem cell transplantation. These infections are 10-40 times commoner in recipients of stem cell transplantation than in the general population but they are 10 times less in stem cell transplantation recipients compared to solid organ transplant recipients. The incidence of M. tuberculosis infections in recipients of allogeneic stem cell transplantation ranges between <1 and 16% and varies considerably according to the type of transplant and the geographical location. Approximately 80% of M. tuberculosis infections in stem cell transplant recipients have been reported in patients receiving allografts. Several risk factors predispose to M. tuberculosis infections in recipients of hematopoietic stem cell transplantation and these are related to the underlying medical condition and its treatment, the pre-transplant conditioning therapies in addition to the transplant procedure and its own complications. These infections can develop as early as day 11 and as late as day 3337 post-transplant. The course may become rapidly progressive and the patient may develop life-threatening complications. The diagnosis of M. tuberculosis infections in stem cell transplant recipients is usually made on clinical grounds, cultures obtained from clinical specimens, tissues biopsies in addition to serology and molecular tests. Unfortunately, a definitive diagnosis of M. tuberculosis infections in these patients may occasionally be difficult to be established. However, M. tuberculosis infections in transplant recipients usually respond well to treatment with anti-tuberculosis agents provided the diagnosis is made early. A high index of suspicion should be maintained in recipients of stem cell transplantation living in endemic areas and presenting with compatible clinical and radiological manifestations. High mortality rates are associated with infections caused by multidrug-resistant strains

  8. Effects of priming with recombinant human granulocyte colony-stimulating factor on conditioning regimen for high-risk acute myeloid leukemia patients undergoing human leukocyte antigen-haploidentical hematopoietic stem cell transplantation: a multicenter randomized controlled study in southwest China.

    PubMed

    Gao, Lei; Wen, Qin; Chen, Xinghua; Liu, Yao; Zhang, Cheng; Gao, Li; Kong, Peiyan; Zhang, Yanqi; Li, Yunlong; Liu, Jia; Wang, Qingyu; Su, Yi; Wang, Chunsen; Wang, Sanbin; Zeng, Yun; Sun, Aihua; Du, Xin; Zeng, Dongfeng; Liu, Hong; Peng, Xiangui; Zhang, Xi

    2014-12-01

    HLA-haploidentical hematopoietic stem cell transplantation (haplo-HSCT) is an effective and immediate treatment for high-risk acute myeloid leukemia (HR-AML) patients lacking matched donors. Relapse remains the leading cause of death for HR-AML patients after haplo-HSCT. Accordingly, the prevention of relapse remains a challenge in the treatment of HR-AML. In a multicenter randomized controlled trial in southwestern China, 178 HR-AML patients received haplo-HSCT with conditioning regimens involving recombinant human granulocyte colony-stimulating factor (rhG-CSF) or non-rhG-CSF. The cumulative incidences of relapse and graft-versus-host disease (GVHD), 2-year leukemia-free survival (LFS), and overall survival (OS) were evaluated. HR-AML patients who underwent the priming conditioning regimen with rhG-CSF had a lower relapse rate than those who were treated with non-rhG-CSF (38.2%; 95% confidence interval [CI], 28.1% to 48.3% versus 60.7%, 95% CI, 50.5% to 70.8%; P < .01). The cumulative incidences of acute GVHD, chronic GVHD, transplantation-related toxicity, and infectious complications appeared to be equivalent. In total, 53 patients in the rhG-CSF-priming group and 31 patients in the non-rhG-CSF-priming group were still alive at the median follow-up time of 42 months (range, 24 to 80 months). The 2-year probabilities of LFS and OS in the rhG-CSF-priming and non-rhG-CSF-priming groups were 55.1% (95% CI, 44.7% to 65.4%) versus 32.6% (95% CI, 22.8% to 42.3%) (P < .01) and 59.6% (95% CI, 49.4% to 69.7%) versus 34.8% (95% CI, 24.9% to 44.7%) (P < .01), respectively. Multivariate analyses indicated that the 2-year probability of LFS of patients who achieved complete remission (CR) before transplantation was better than that of patients who did not achieve CR. The 2-year probability of LFS of patients with no M4/M5/M6 subtype was better than that of patients with the M4/M5/M6 subtype in the G-CSF-priming group (67.4%; 95% CI, 53.8% to 80.9% versus 41.9%; 95% CI, 27

  9. Release of Matrix Metalloproteinase-8 During Physiological Trafficking and Induced Mobilization of Human Hematopoietic Stem Cells

    PubMed Central

    Steinl, Carolin; Essl, Mike; Schreiber, Thomas D.; Geiger, Konstanze; Prokop, Lea; Stevanović, Stefan; Pötz, Oliver; Abele, Harald; Wessels, Johannes T.; Aicher, Wilhelm K.

    2013-01-01

    Previous studies indicate that the release of proteases, including the gelatinase matrix metalloproteinase (MMP)-9, from mature granulocytes plays a crucial role in cytokine-induced hematopoietic stem and progenitor cell (HSPC) mobilization. However, studies with MMP-9-deficient mice revealed that HSPC mobilization was normal in these animals, suggesting that additional proteases must be active at clinically relevant cytokine concentrations. In the present study, we provide evidence that the collagenase MMP-8 is involved in stem cell mobilization. A rapid release of MMP-8 from isolated neutrophil granulocytes can be observed during an in vitro culture. During granulocyte colony-stimulating factor-induced HSPC mobilization, highly elevated serum concentrations of MMP-8 were observed on days 4 to 6 of the mobilization regimen, concomitantly with elevated MMP-9 serum levels and higher numbers of circulating CD34+ cells. Elevated serum concentrations of both proteases were also found in umbilical cord blood serum. In functional assays, adhesion of HSPC to osteoblasts as an essential component of the endosteal stem cell niche is negatively influenced by MMP-8. The chemokine CXCL12, which is critically involved in stem cell trafficking, can be proteolytically processed by MMP-8 treatment. This degradation has a strong inhibitory influence on HSPC migration. Taken together, our data strongly suggest that MMP-8 can be directly involved in hematopoietic stem cell mobilization and trafficking. PMID:23259856

  10. High-Dose Chemotherapy With Autologous Hematopoietic Stem-Cell Transplantation in Metastatic Breast Cancer: Overview of Six Randomized Trials

    PubMed Central

    Berry, Donald A.; Ueno, Naoto T.; Johnson, Marcella M.; Lei, Xiudong; Caputo, Jean; Smith, Dori A.; Yancey, Linda J.; Crump, Michael; Stadtmauer, Edward A.; Biron, Pierre; Crown, John P.; Schmid, Peter; Lotz, Jean-Pierre; Rosti, Giovanni; Bregni, Marco; Demirer, Taner

    2011-01-01

    Purpose High doses of effective chemotherapy are compelling if they can be delivered safely. Substantial interest in supporting high-dose chemotherapy with bone marrow or autologous hematopoietic stem-cell transplantation in the 1980s and 1990s led to the initiation of randomized trials to evaluate its effect in the treatment of metastatic breast cancer. Methods We identified six randomized trials in metastatic breast cancer that evaluated high doses of chemotherapy with transplant support versus a control regimen without stem-cell support. We assembled a single database containing individual patient information from these trials. The primary analysis of overall survival was a log-rank test comparing high dose versus control. We also used Cox proportional hazards regression, adjusting for known covariates. We addressed potential treatment differences within subsets of patients. Results The effect of high-dose chemotherapy on overall survival was not statistically different (median, 2.16 v 2.02 years; P = .08). A statistically significant advantage in progression-free survival (median, 0.91 v 0.69 years) did not translate into survival benefit. Subset analyses found little evidence that there are groups of patients who might benefit from high-dose chemotherapy with hematopoietic support. Conclusion Overall survival of patients with metastatic breast cancer in the six randomized trials was not significantly improved by high-dose chemotherapy; any benefit from high doses was small. No identifiable subset of patients seems to benefit from high-dose chemotherapy. PMID:21768454

  11. Visualizing Human Hematopoietic Stem Cell Trafficking In Vivo Using a Zebrafish Xenograft Model.

    PubMed

    Staal, Frank J T; Spaink, Herman P; Fibbe, Willem E

    2016-02-15

    Zebrafish is gaining increased popularity as a model organism to study stem cell biology. It also is widely used as model system to visualize human leukemic stem cells. However, xenotransplantation of primary human stem/progenitor cells has not been described. Here, we use casper pigmentation mutant fish that are transparent crossed to fli-GFP transgenic fish as recipients of red labeled human CD34(+) cells. We have investigated various conditions and protocols with the aim to monitor and visualize the fate of transplanted human CD34(+) cells. We here report successful use of casper mutant zebrafish embryos for the direct monitoring of human hematopoietic stem cell transplantation, differentiation, and trafficking in vivo.

  12. Epigenetic Memory Underlies Cell-Autonomous Heterogeneous Behavior of Hematopoietic Stem Cells.

    PubMed

    Yu, Vionnie W C; Yusuf, Rushdia Z; Oki, Toshihiko; Wu, Juwell; Saez, Borja; Wang, Xin; Cook, Colleen; Baryawno, Ninib; Ziller, Michael J; Lee, Eunjung; Gu, Hongcang; Meissner, Alexander; Lin, Charles P; Kharchenko, Peter V; Scadden, David T

    2016-11-17

    Stem cells determine homeostasis and repair of many tissues and are increasingly recognized as functionally heterogeneous. To define the extent of-and molecular basis for-heterogeneity, we overlaid functional, transcriptional, and epigenetic attributes of hematopoietic stem cells (HSCs) at a clonal level using endogenous fluorescent tagging. Endogenous HSC had clone-specific functional attributes over time in vivo. The intra-clonal behaviors were highly stereotypic, conserved under the stress of transplantation, inflammation, and genotoxic injury, and associated with distinctive transcriptional, DNA methylation, and chromatin accessibility patterns. Further, HSC function corresponded to epigenetic configuration but not always to transcriptional state. Therefore, hematopoiesis under homeostatic and stress conditions represents the integrated action of highly heterogeneous clones of HSC with epigenetically scripted behaviors. This high degree of epigenetically driven cell autonomy among HSCs implies that refinement of the concepts of stem cell plasticity and of the stem cell niche is warranted.

  13. Enrichment of human hematopoietic stem/progenitor cells facilitates transduction for stem cell gene therapy.

    PubMed

    Baldwin, Kismet; Urbinati, Fabrizia; Romero, Zulema; Campo-Fernandez, Beatriz; Kaufman, Michael L; Cooper, Aaron R; Masiuk, Katelyn; Hollis, Roger P; Kohn, Donald B

    2015-05-01

    Autologous hematopoietic stem cell (HSC) gene therapy for sickle cell disease has the potential to treat this illness without the major immunological complications associated with allogeneic transplantation. However, transduction efficiency by β-globin lentiviral vectors using CD34-enriched cell populations is suboptimal and large vector production batches may be needed for clinical trials. Transducing a cell population more enriched for HSC could greatly reduce vector needs and, potentially, increase transduction efficiency. CD34(+) /CD38(-) cells, comprising ∼1%-3% of all CD34(+) cells, were isolated from healthy cord blood CD34(+) cells by fluorescence-activated cell sorting and transduced with a lentiviral vector expressing an antisickling form of beta-globin (CCL-β(AS3) -FB). Isolated CD34(+) /CD38(-) cells were able to generate progeny over an extended period of long-term culture (LTC) compared to the CD34(+) cells and required up to 40-fold less vector for transduction compared to bulk CD34(+) preparations containing an equivalent number of CD34(+) /CD38(-) cells. Transduction of isolated CD34(+) /CD38(-) cells was comparable to CD34(+) cells measured by quantitative PCR at day 14 with reduced vector needs, and average vector copy/cell remained higher over time for LTC initiated from CD34(+) /38(-) cells. Following in vitro erythroid differentiation, HBBAS3 mRNA expression was similar in cultures derived from CD34(+) /CD38(-) cells or unfractionated CD34(+) cells. In vivo studies showed equivalent engraftment of transduced CD34(+) /CD38(-) cells when transplanted in competition with 100-fold more CD34(+) /CD38(+) cells. This work provides initial evidence for the beneficial effects from isolating human CD34(+) /CD38(-) cells to use significantly less vector and potentially improve transduction for HSC gene therapy.

  14. Frozen Cord Blood Hematopoietic Stem Cells Differentiate into Higher Numbers of Functional Natural Killer Cells In Vitro than Mobilized Hematopoietic Stem Cells or Freshly Isolated Cord Blood Hematopoietic Stem Cells

    PubMed Central

    Luevano, Martha; Domogala, Anna; Blundell, Michael; Jackson, Nicola; Pedroza-Pacheco, Isabela; Derniame, Sophie; Escobedo-Cousin, Michelle; Querol, Sergio; Thrasher, Adrian; Madrigal, Alejandro; Saudemont, Aurore

    2014-01-01

    Adoptive natural killer (NK) cell therapy relies on the acquisition of large numbers of NK cells that are cytotoxic but not exhausted. NK cell differentiation from hematopoietic stem cells (HSC) has become an alluring option for NK cell therapy, with umbilical cord blood (UCB) and mobilized peripheral blood (PBCD34+) being the most accessible HSC sources as collection procedures are less invasive. In this study we compared the capacity of frozen or freshly isolated UCB hematopoietic stem cells (CBCD34+) and frozen PBCD34+ to generate NK cells in vitro. By modifying a previously published protocol, we showed that frozen CBCD34+ cultures generated higher NK cell numbers without loss of function compared to fresh CBCD34+ cultures. NK cells generated from CBCD34+ and PBCD34+ expressed low levels of killer-cell immunoglobulin-like receptors but high levels of activating receptors and of the myeloid marker CD33. However, blocking studies showed that CD33 expression did not impact on the functions of the generated cells. CBCD34+-NK cells exhibited increased capacity to secrete IFN-γ and kill K562 in vitro and in vivo as compared to PBCD34+-NK cells. Moreover, K562 killing by the generated NK cells could be further enhanced by IL-12 stimulation. Our data indicate that the use of frozen CBCD34+ for the production of NK cells in vitro results in higher cell numbers than PBCD34+, without jeopardizing their functionality, rendering them suitable for NK cell immunotherapy. The results presented here provide an optimal strategy to generate NK cells in vitro for immunotherapy that exhibit enhanced effector function when compared to alternate sources of HSC. PMID:24489840

  15. Lack of Phenotypical and Morphological Evidences of Endothelial to Hematopoietic Transition in the Murine Embryonic Head during Hematopoietic Stem Cell Emergence

    PubMed Central

    Iizuka, Kazuhide; Yokomizo, Tomomasa; Watanabe, Naoki; Tanaka, Yosuke; Osato, Motomi; Takaku, Tomoiku; Komatsu, Norio

    2016-01-01

    During mouse ontogeny, hematopoietic cells arise from specialized endothelial cells, i.e., the hemogenic endothelium, and form clusters in the lumen of arterial vessels. Hemogenic endothelial cells have been observed in several embryonic tissues, such as the dorsal aorta, the placenta and the yolk sac. Recent work suggests that the mouse embryonic head also produces hematopoietic stem cells (HSCs)/progenitors. However, a histological basis for HSC generation in the head has not yet been determined because the hematopoietic clusters and hemogenic endothelium in the head region have not been well characterized. In this study, we used whole-mount immunostaining and 3D confocal reconstruction techniques to analyze both c-Kit+ hematopoietic clusters and Runx1+ hemogenic endothelium in the whole-head vasculature. The number of c-Kit+ hematopoietic cells was 20-fold less in the head arteries than in the dorsal aorta. In addition, apparent nascent hematopoietic cells, which are characterized by a “budding” structure and a Runx1+ hemogenic endothelium, were not observed in the head. These results suggest that head HSCs may not be or are rarely generated from the endothelium in the same manner as aortic HSCs. PMID:27227884

  16. [Hematopoietic stem cell transplantation: is it an immunologic therapy?].

    PubMed

    Olaya Vargas, Alberto; Pérez Gonzáles, Oscar

    2003-01-01

    The graft-versus-tumor effect occurring after allogeneic (genetically different) haematopoietic cell transplantation for treating human malignancies, represents the clearest example of the power of the human immune system to eradicate cancer. Recent advances in our understanding of the immunobiology of stem-cell engraftment, tolerance and tumor eradication are allowing clinicians to better harness this powerful effect.

  17. Cognitive problems following hematopoietic stem cell transplant: relationships with sleep, depression and fatigue.

    PubMed

    Ghazikhanian, S E; Dorfman, C S; Somers, T J; O'Sullivan, M L; Fisher, H M; Edmond, S N; Wren, A A; Kelleher, S A; Rowe Nichols, K A; Chao, N; Shelby, R A

    2017-02-01

    Cognitive problems are a significant, persistent concern for patients undergoing hematopoietic stem cell transplant (HSCT). Sleep is important for many cognitive tasks; however, the relationship between sleep and cognitive problems for HSCT patients is unknown. This study examined the relationship between sleep and cognitive problems for HSCT patients from pre to post transplant. Patients undergoing HSCT (N=138) completed questionnaires at pre-transplant and during the 12 months following transplant. Questionnaires assessed sleep and cognitive problems as well as commonly co-occurring symptoms: depressive symptoms, fatigue and pain. Post hoc analyses examined the relationship of specific sleep problems with cognitive problems. Sleep problems covaried with cognitive problems even after controlling for depressive symptoms, fatigue and pain. Depressive symptoms and fatigue were also uniquely related to cognitive problems. Post hoc analyses suggest that sleep somnolence, shortness of breath, snoring and perceptions of inadequate sleep may contribute to the association found between sleep and cognitive problems. Findings suggest that sleep problems are associated with and may contribute to cognitive problems for HSCT patients. However, sleep problems are rarely screened for or discussed during clinic visits. Assessing and treating specific sleep problems in addition to depressive symptoms and fatigue may have implications for improving cognitive problems for HSCT patients.

  18. The role of the nervous system in hematopoietic stem cell mobilization.

    PubMed

    Saba, Fakhredin; Soleimani, Masoud; Atashi, Amir; Mortaz, Esmaeil; Shahjahani, Mohammad; Roshandel, Elham; Jaseb, Kaveh; Saki, Najmaldin

    2013-09-01

    Hematopoietic stem cells (HSCs) and blood cell progenitors, such as maturing leucocytes, steadily enter from bone marrow (BM) into the circulation under steady-state conditions, and their mobilization is dramatically amplified during stress conditions and by mediators such as granulocyte colony-stimulating factor (G-CSF). This mobilization is dependent upon bone remodeling, the proteolytic enzymes of bone marrow-derived stromal cells, and adhesion molecules such as integrin, but the main mechanisms controlling this traffic are still unclear. The nervous system, as the most important regulator of the body, can affect the mobilization network by secreting catecholamines, so that denervation of catecholaminergic fibers in the BM of mice could lead to declining mobilization in steady state and stress situations, even in the presence of other intact environmental factors in the BM. Thus, due to the importance of the nervous system, we have attempted to give a general overview of how the nervous system is involved in the mobilization of HSCs in this review. Then, we will try to describe the mobilization process induced by the nervous system, which consists of 3 mechanisms: stromal cell-derived factor 1 (SDF-1)/CXC chemokine receptor type 4 (CXCR4), proteolytic enzymes, and bone remodeling.

  19. Salivary proteomic analysis and acute graft-versus-host disease after allogeneic hematopoietic stem cell transplantation.

    PubMed

    Chiusolo, Patrizia; Giammarco, Sabrina; Fanali, Chiara; Bellesi, Silvia; Metafuni, Elisabetta; Sica, Simona; Iavarone, Federica; Cabras, Tiziana; Messana, Irene; Leone, Giuseppe; Castagnola, Massimo

    2013-06-01

    Graft-versus-host disease (GVHD) is the major life-threatening complication after allogeneic hematopoietic stem cell transplantation (allo-HSCT), developing in 35%-70% of all allo-HSCT recipients despite immunosuppressive prophylaxis. The recent application of proteomic tools that allow screening for differentially expressed or excreted proteins in body fluids could possibly identify specific biomarkers for GVHD. Whole saliva is highly attractive for noninvasive specimen collection. In the present study, we collected saliva specimens from 40 consecutives patients who underwent allo-HSCT between December 2008 and March 2011 at our institution. The specimens were analyzed by HPLC coupled to electrospray-ionization mass spectrometry. Variable expression of S100 protein family members (S100A8, S100A9, and S100A7) was detected. Fourteen of 23 patients with GVHD demonstrated the presence of S100A8, compared with only 2 patients without GVHD and 0 patients in the control group (P = .001). S100A7 was detectable in 11 of the 23 patients with GVHD but was absent in the other 2 groups (P = .0001). S100A9-short was detected in 20 patients with GVHD, in 9 patients without GVHD, and in 8 healthy volunteers (P = .01) Further studies are needed to clarify the role of these proteins as a marker of GVHD or as an index of mucosal inflammation.

  20. Impact of Adenoviral Stool Load on Adenoviremia in Pediatric Hematopoietic Stem Cell Transplant Recipients

    PubMed Central

    Srinivasan, Ashok; Klepper, Corie; Sunkara, Anusha; Kang, Guolian; Carr, Jeanne; Gu, Zhengming; Leung, Wing; Hayden, Randall T.

    2015-01-01

    Background Adenoviremia adversely affects prognosis in the post-hematopoietic stem cell transplant (HSCT) setting. Methods We sought to determine retrospectively the cutoff load of adenovirus in the stool as a predictor of adenoviremia, in children who underwent an allogeneic HSCT. The prevalence of sapovirus, norovirus and astrovirus in the stool was also studied. Results The study cohort consisted of 117 patients, of which 71 (60%) had diarrhea. Adenovirus was detected in the stool in 39 out of 71 (55%) patients. Age ≤ 10 years (P = 0.05; odds ratio, 2.57; 95% confidence interval: 0.98–6.75), and male sex (P = 0.04; odds ratio 2.67; 95% confidence interval: 1.02–6.99) increased risk for detection of adenovirus in stool on univariate analysis. Co-infections with enteric pathogens were infrequent. Viral load > 106 copies / gram stool predicted adenoviremia with a sensitivity and specificity of 82%. Sapovirus, norovirus, and astrovirus were detected in 3, 4 and one patient, respectively. Conclusions Quantitative detection of adenovirus in stool may have implications for pre-emptive therapy. Testing for other enteric viruses may have implications for infection control. PMID:25742243

  1. Infections Caused by Stenotrophomonas maltophilia in Recipients of Hematopoietic Stem Cell Transplantation

    PubMed Central

    Al-Anazi, Khalid Ahmed; Al-Jasser, Asma M.

    2014-01-01

    Stenotrophomonas maltophilia (S. maltophilia) is a globally emerging Gram-negative bacillus that is widely spread in environment and hospital equipment. Recently, the incidence of infections caused by this organism has increased, particularly in patients with hematological malignancy and in recipients of hematopoietic stem cell transplantation (HSCT) having neutropenia, mucositis, diarrhea, central venous catheters or graft versus host disease and receiving intensive cytotoxic chemotherapy, immunosuppressive therapy, or broad-spectrum antibiotics. The spectrum of infections in HSCT recipients includes pneumonia, urinary tract and surgical site infection, peritonitis, bacteremia, septic shock, and infection of indwelling medical devices. The organism exhibits intrinsic resistance to many classes of antibiotics including carbapenems, aminoglycosides, most of the third-generation cephalosporins, and other β-lactams. Despite the increasingly reported drug resistance, trimethoprim-sulfamethoxazole is still the drug of choice. However, the organism is still susceptible to ticarcillin-clavulanic acid, tigecycline, fluoroquinolones, polymyxin-B, and rifampicin. Genetic factors play a significant role not only in evolution of drug resistance but also in virulence of the organism. The outcome of patients having S. maltophilia infections can be improved by: using various combinations of novel therapeutic agents and aerosolized aminoglycosides or colistin, prompt administration of in vitro active antibiotics, removal of possible sources of infection such as infected indwelling intravascular catheters, and application of strict infection control measures. PMID:25202682

  2. T-cell suicide gene therapy prompts thymic renewal in adults after hematopoietic stem cell transplantation.

    PubMed

    Vago, Luca; Oliveira, Giacomo; Bondanza, Attilio; Noviello, Maddalena; Soldati, Corrado; Ghio, Domenico; Brigida, Immacolata; Greco, Raffaella; Lupo Stanghellini, Maria Teresa; Peccatori, Jacopo; Fracchia, Sergio; Del Fiacco, Matteo; Traversari, Catia; Aiuti, Alessandro; Del Maschio, Alessandro; Bordignon, Claudio; Ciceri, Fabio; Bonini, Chiara

    2012-08-30

    The genetic modification of T cells with a suicide gene grants a mechanism of control of adverse reactions, allowing safe infusion after partially incompatible hematopoietic stem cell transplantation (HSCT). In the TK007 clinical trial, 22 adults with hematologic malignancies experienced a rapid and sustained immune recovery after T cell-depleted HSCT and serial infusions of purified donor T cells expressing the HSV thymidine kinase suicide gene (TK+ cells). After a first wave of circulating TK+ cells, the majority of T cells supporting long-term immune reconstitution did not carry the suicide gene and displayed high numbers of naive lymphocytes, suggesting the thymus-dependent development of T cells, occurring only upon TK+ -cell engraftment. Accordingly, after the infusions, we documented an increase in circulating TCR excision circles and CD31+ recent thymic emigrants and a substantial expansion of the active thymic tissue as shown by chest tomography scans. Interestingly, a peak in the serum level of IL-7 was observed after each infusion of TK+ cells, anticipating the appearance of newly generated T cells. The results of the present study show that the infusion of genetically modified donor T cells after HSCT can drive the recovery of thymic activity in adults, leading to immune reconstitution.

  3. CD133-targeted gene transfer into long-term repopulating hematopoietic stem cells.

    PubMed

    Brendel, Christian; Goebel, Benjamin; Daniela, Abriss; Brugman, Martijn; Kneissl, Sabrina; Schwäble, Joachim; Kaufmann, Kerstin B; Müller-Kuller, Uta; Kunkel, Hana; Chen-Wichmann, Linping; Abel, Tobias; Serve, Hubert; Bystrykh, Leonid; Buchholz, Christian J; Grez, Manuel

    2015-01-01

    Gene therapy for hematological disorders relies on the genetic modification of CD34(+) cells, a heterogeneous cell population containing about 0.01% long-term repopulating cells. Here, we show that the lentiviral vector CD133-LV, which uses a surface marker on human primitive hematopoietic stem cells (HSCs) as entry receptor, transfers genes preferentially into cells with high engraftment capability. Transduction of unstimulated CD34(+) cells with CD133-LV resulted in gene marking of cells with competitive proliferative advantage in vitro and in immunodeficient mice. The CD133-LV-transduced population contained significantly more cells with repopulating capacity than cells transduced with vesicular stomatitis virus (VSV)-LV, a lentiviral vector pseudotyped with the vesicular stomatitis virus G protein. Upon transfer of a barcode library, CD133-LV-transduced cells sustained gene marking in vivo for a prolonged period of time with a 6.7-fold higher recovery of barcodes compared to transduced control cells. Moreover, CD133-LV-transduced cells were capable of repopulating secondary recipients. Lastly, we show that this targeting strategy can be used for transfer of a therapeutic gene into CD34(+) cells obtained from patients suffering of X-linked chronic granulomatous disease. In conclusion, direct gene transfer into CD133(+) cells allows for sustained long-term engraftment of gene corrected cells.

  4. Cognitive and behavioral abnormalities in children after hematopoietic stem cell transplantation for severe congenital immunodeficiencies.

    PubMed

    Titman, Penny; Pink, Elizabeth; Skucek, Emily; O'Hanlon, Katherine; Cole, Tim J; Gaspar, Jane; Xu-Bayford, Jinhua; Jones, Alison; Thrasher, Adrian J; Davies, E Graham; Veys, Paul A; Gaspar, H Bobby

    2008-11-01

    Hematopoietic stem cell transplantation (HSCT) is a highly successful treatment for severe congenital immunodeficiencies. However, some studies have suggested that children may experience cognitive difficulties after HSCT. This large-scale study assessed cognitive and behavioral function for the cohort of children treated by HSCT at one center between 1979 and 2003 to determine the frequency and severity of problems and to identify risk factors. A total of 105 patients were assessed on standardized measures of cognitive and emotional and behavioral function together with a control group of unaffected siblings. The average IQ for the cohort was 85 (95% confidence interval, 81-90), significantly lower than both the population average of 100 (P < .001) and unaffected siblings. Multivariate analysis indicated that the underlying genetic defect, diagnosis of adenosine deaminase-deficient severe combined immunodeficiency, and consanguinity were associated with worse outcome but that age at transplantation and chemotherapy conditioning were not. Children treated by HSCT for severe immunodeficiency have an increased risk of long-term cognitive difficulties and associated emotional and behavioral difficulties. The specific genetic diagnosis, consanguinity, and severe clinical course are associated with poor outcome. Long-term follow-up of these patients should include screening to identify and manage these problems more effectively.

  5. [Expression of CD48 as a live marker to distinguish division of hematopoietic stem cells].

    PubMed

    Yang, Xin; Zhang, Yu; Peng, Lu-Yun; Pang, Ya-Kun; Dong, Fang; Ji, Qing; Xu, Jing; Cheng, Tao; Yuan, Wei-Ping; Gao, Ying-Dai

    2014-06-01

    Hematopoietic stem cells are capable of self-renewal or differentiation when they divide. Three types of cell divisions exist. A dividing stem cell may generate 2 new stem cells (symmetrical renewal division), or 2 differentiating cells (symmetrical differentiation division), or 1 cell of each type (asymmetrical division). This study was aimed to explore an efficient and stable method to distinguish the way of cell division in hematopoietic stem cells. Previous studies showed that the distribution of Numb in a cell could be used to distinguish the type of cell division in various kinds of cells. Therefore, the distribution of Numb protein was detected by immunofluorescence in mitotic CD48(-)CD150(+)LSK cells of mice exploring the relationship between Numb protein and centrosomes. Since CD48 positive marks the HSC that have lost the ability to reconstitute the blood system in mice, CD48 marker could be used to distinguish cell fate decision between self-renewal and differentiation as a living marker. In this study, the CD48(-)CD150(+)LSK cells were sorted from bone marrow cells of mice and the cells were directly labeled with Alexa Fluor (AF) 488-conjugated anti-CD48 antibody in living cultures. After 3 days, the percentage of AF488(+) cells was evaluated under microscope and by FACS. Then colony forming cell assay (CFC) was performed and the ability of cell proliferation were compared between AF488(+) and AF488(-) cells. The results showed that Numb could be used to distinguish different cell division types of hematopoietic stem cells, which was symmetrically or asymmetrically segregated in mitotic CD48(-)CD150(+)LSK cells. The self-labeled fluorochrome could be detected both by FACS as well as microscope. There were about 40% AF488(+) cells after 3 day-cultures in medium titrated with self-labeled AF 488-conjugated anti-CD48 antibody, and the results were consistent between confocal fluorescence microscopy and flow cytometry analysis. The colony forming ability of

  6. Hyaluronan Is Required for Generation of Hematopoietic Cells during Differentiation of Human Embryonic Stem Cells

    PubMed Central

    Schraufstatter, Ingrid U.; Serobyan, Naira; Loring, Jeanne; Khaldoyanidi, Sophia K.

    2010-01-01

    Hyaluronan (HA) is an important component of the microenvironment in bone marrow, but its role in regulation of the development of hematopoietic cells is not well understood. To address the role of HA in regulation of human embryonic stem cell (hESC) differentiation into the hematopoietic lineage, we screened for genes encoding components of the HA pathway. Using gene arrays, we found that HA synthases and HA receptors are expressed in both undifferentiated and differentiating hESCs. Enzymatic degradation of HA resulted in decreased numbers of hematopoietic progenitors and lower numbers of CD45+ cells generated in HA-deprived embryoid bodies (EBs). In addition, deprivation of HA resulted in the inhibition of generation of CD31+ cells, stromal fibroblast-like cells and contracting myocytes in EBs. RT-PCR and immunocytochemistry revealed that HA deprivation did not influence the dynamics of OCT4 expression, but decreased the expression of BRY, an early mesoderm marker, and BMP2, a later mesoderm marker in differentiating EBs. In addition, the endoderm markers α-FP and SOX17 were decreased, whereas the expression of the ectoderm markers GFAP and FGF5 was higher in HA-deprived cultures. Our findings indicate that endogenously produced HA contributes to the network that regulates the differentiation of hESC and the generation of mesodermal lineage in general and hematopoietic cells specifically. PMID:20861924

  7. Hematopoietic stem cells derived from human umbilical cord ameliorate cisplatin-induced acute renal failure in rats.

    PubMed

    Shalaby, Rokaya H; Rashed, Laila A; Ismaail, Alaa E; Madkour, Naglaa K; Elwakeel, Sherien H

    2014-01-01

    Injury to a target organ can be sensed by bone marrow stem cells that migrate to the site of damage, undergo differentiation, and promote structural and functional repair. This remarkable stem cell capacity prompted an investigation of the potential of mesenchymal and hematopoietic stem cells to cure acute renal failure. On the basis of the recent demonstration that hematopoietic stem cells (HSCs) can differentiate into renal cells, the current study tested the hypothesis that HSCs can contribute to the regeneration of renal tubular epithelial cells after renal injury. HSCs from human umbilical cord blood which isolated and purified by magnetic activated cell sorting were transplanted intraperitoneal into acute renal failure (ARF) rats which was established by a single dose of cisplatin 5 mg/kg for five days. The Study was carried on 48 male white albino rats, of average weight 120-150 gm. The animals were divided into 4 groups, Group one Served as control and received normal saline throughout the experiments. Group two (model control) received a single dose of cisplatin. Group three and four male-albino rats with induced ARF received interapritoneally (HSCs) at two week and four week respectively. Injection of a single dose of cisplatin resulted in a significant increase in serum creatinine and urea levels, histo-pathological examination of kidney tissue from cisplatin showed severe nephrotoxicity in which 50-75% of glomeruli and renal tubules exhibited massive degenerative change. Four weeks after HSC transplantation, Serum creatinine and urea nitrogen decreased 3.5 times and 2.1 times as well as HGF, IGF-1, VEGF and P53 using quantitative real-time PCR increased 4.3 times, 3.2, 2.4 and 4.2 times compared to ARF groups, respectively. The proliferation of cell nuclear antigen (PCNA)-positive cells (500.083±35.167) was higher than that in the cisplatin groups (58.612±15.743). In addition, the transplanted umbilical cord hematopoietic stem cells UC-HSCs could

  8. Hematopoietic stem cells derived from human umbilical cord ameliorate cisplatin-induced acute renal failure in rats

    PubMed Central

    Shalaby, Rokaya H; Rashed, Laila A; Ismaail, Alaa E; Madkour, Naglaa K; Elwakeel, Sherien H

    2014-01-01

    Injury to a target organ can be sensed by bone marrow stem cells that migrate to the site of damage, undergo differentiation, and promote structural and functional repair. This remarkable stem cell capacity prompted an investigation of the potential of mesenchymal and hematopoietic stem cells to cure acute renal failure. On the basis of the recent demonstration that hematopoietic stem cells (HSCs) can differentiate into renal cells, the current study tested the hypothesis that HSCs can contribute to the regeneration of renal tubular epithelial cells after renal injury. HSCs from human umbilical cord blood which isolated and purified by magnetic activated cell sorting were transplanted intraperitoneal into acute renal failure (ARF) rats which was established by a single dose of cisplatin 5 mg/kg for five days. The Study was carried on 48 male white albino rats, of average weight 120-150 gm. The animals were divided into 4 groups, Group one Served as control and received normal saline throughout the experiments. Group two (model control) received a single dose of cisplatin. Group three and four male-albino rats with induced ARF received interapritoneally (HSCs) at two week and four week respectively. Injection of a single dose of cisplatin resulted in a significant increase in serum creatinine and urea levels, histo-pathological examination of kidney tissue from cisplatin showed severe nephrotoxicity in which 50-75% of glomeruli and renal tubules exhibited massive degenerative change. Four weeks after HSC transplantation, Serum creatinine and urea nitrogen decreased 3.5 times and 2.1 times as well as HGF, IGF-1, VEGF and P53 using quantitative real-time PCR increased 4.3 times, 3.2, 2.4 and 4.2 times compared to ARF groups, respectively. The proliferation of cell nuclear antigen (PCNA)-positive cells (500.083±35.167) was higher than that in the cisplatin groups (58.612±15.743). In addition, the transplanted umbilical cord hematopoietic stem cells UC-HSCs could

  9. The Src homology 2 protein Shb promotes cell cycle progression in murine hematopoietic stem cells by regulation of focal adhesion kinase activity

    SciTech Connect

    Gustafsson, Karin; Heffner, Garrett; Wenzel, Pamela L.; Curran, Matthew; Grawé, Jan; McKinney-Freeman, Shannon L.; Daley, George Q.; Welsh, Michael

    2013-07-15

    The widely expressed adaptor protein Shb has previously been reported to contribute to T cell function due to its association with the T cell receptor and furthermore, several of Shb's known interaction partners are established regulators of blood cell development and function. In addition, Shb deficient embryonic stem cells displayed reduced blood cell colony formation upon differentiation in vitro. The aim of the current study was therefore to explore hematopoietic stem and progenitor cell function in the Shb knockout mouse. Shb deficient bone marrow contained reduced relative numbers of long-term hematopoietic stem cells (LT-HSCs) that exhibited lower proliferation rates. Despite this, Shb knockout LT-HSCs responded promptly by entering the cell cycle in response to genotoxic stress by 5-fluorouracil treatment. In competitive LT-HSC transplantations, Shb null cells initially engrafted as well as the wild-type cells but provided less myeloid expansion over time. Moreover, Shb knockout bone marrow cells exhibited elevated basal activities of focal adhesion kinase/Rac1/p21-activated kinase signaling and reduced responsiveness to Stem Cell Factor stimulation. Consequently, treatment with a focal adhesion kinase inhibitor increased Shb knockout LT-HSC proliferation. The altered signaling characteristics thus provide a plausible mechanistic explanation for the changes in LT-HSC proliferation since these signaling intermediates have all been shown to participate in LT-HSC cell cycle control. In summary, the loss of Shb dependent signaling in bone marrow cells, resulting in elevated focal adhesion kinase activity and reduced proliferative responses in LT-HSCs under steady state hematopoiesis, confers a disadvantage to the maintenance of LT-HSCs over time. -- Highlights: • Shb is an adaptor protein operating downstream of tyrosine kinase receptors. • Shb deficiency reduces hematopoietic stem cell proliferation. • The proliferative effect of Shb occurs via increased

  10. Regulation of hematopoietic and leukemic stem cells by the immune system.

    PubMed

    Riether, C; Schürch, C M; Ochsenbein, A F

    2015-02-01

    Hematopoietic stem cells (HSCs) are rare, multipotent cells that generate via progenitor and precursor cells of all blood lineages. Similar to normal hematopoiesis, leukemia is also hierarchically organized and a subpopulation of leukemic cells, the leukemic stem cells (LSCs), is responsible for disease initiation and maintenance and gives rise to more differentiated malignant cells. Although genetically abnormal, LSCs share many characteristics with normal HSCs, including quiescence, multipotency and self-renewal. Normal HSCs reside in a specialized microenvironment in the bone marrow (BM), the so-called HSC niche that crucially regulates HSC survival and function. Many cell types including osteoblastic, perivascular, endothelial and mesenchymal cells contribute to the HSC niche. In addition, the BM functions as primary and secondary lymphoid organ and hosts various mature immune cell types, including T and B cells, dendritic cells and macrophages that contribute to the HSC niche. Signals derived from the HSC niche are necessary to regulate demand-adapted responses of HSCs and progenitor cells after BM stress or during infection. LSCs occupy similar niches and depend on signals from the BM microenvironment. However, in addition to the cell types that constitute the HSC niche during homeostasis, in leukemia the BM is infiltrated by activated leukemia-specific immune cells. Leukemic cells express different antigens that are able to activate CD4(+) and CD8(+) T cells. It is well documented that activated T cells can contribute to the control of leukemic cells and it was hoped that these cells may be able to target and eliminate the therapy-resistant LSCs. However, the actual interaction of leukemia-specific T cells with LSCs remains ill-defined. Paradoxically, many immune mechanisms that evolved to activate emergency hematopoiesis during infection may actually contribute to the expansion and differentiation of LSCs, promoting leukemia progression. In this review, we

  11. The current status in hematopoietic stem cell mobilization.

    PubMed

    Civriz Bozdag, Sinem; Tekgunduz, Emre; Altuntas, Fevzi

    2015-10-01

    Hemotopoietic stem cell mobilization with cytokines alone, has still been widely accepted as the initial attempt for stem cell mobilization. Chemotherapy based mobilization can be preferred as first choice in high risk patients or for remobilization. But mobilization failure still remains to be a problem in one third of patients. Salvage mobilization strategies have been composed to give one more chance to 'poor mobilizers'. Synergistic effect of a reversible inhibitor of CXCR4, plerixafor, with G-CSF has opened a new era for these patients. Preemptive approach in predicted poor mobilizers, immediate salvage approach for patients with suboptimal mobilization or remobilization approach of plerixafor in failed mobilizers have all been demonstrated convincing results in various studies. Alternative CXCR4 inhibitors, VLA4 inhibitors, bortezomib, parathormone have also been emerged as novel agents for mobilization failure.

  12. Hematopoietic cytokines.

    PubMed

    Metcalf, Donald

    2008-01-15

    The production of hematopoietic cells is under the tight control of a group of hematopoietic cytokines. Each cytokine has multiple actions mediated by receptors whose cytoplasmic domains contain specialized regions initiating the various responses-survival, proliferation, differentiation commitment, maturation, and functional activation. Individual cytokines can be lineage specific or can regulate cells in multiple lineages, and for some cell types, such as stem cells or megakaryocyte progenitors, the simultaneous action of multiple cytokines is required for proliferative responses. The same cytokines control basal and emergency hematopoietic cell proliferation. Three cytokines, erythropoietin, granulocyte colony-stimulating factor, and granulocyte-macrophage colony-stimulating factor, have now been in routine clinical use to stimulate cell production and in total have been used in the management of many millions of patients. In this little review, discussion will be restricted to those cytokines well established as influencing the production of hematopoietic cells and will exclude newer candidate regulators and those active on lymphoid cells. As requested, this account will describe the cytokines in a historical manner, using a sequential format of discovery, understanding, validation, and puzzlement, a sequence that reflects the evolving views on these cytokines over the past 50 years.

  13. Hematopoietic stem cells as a tool for the treatment of glioblastoma multiforme

    PubMed Central

    Bryukhovetskiy, Igor S.; Dyuizen, Inessa V.; Shevchenko, Valeriy E.; Bryukhovetskiy, Andrey S.; Mischenko, Polina V.; Milkina, Elena V.; Khotimchenko, Yuri S.

    2016-01-01

    Glioblastoma multiforme is an aggressive malignant brain tumor with terminal consequences. A primary reason for its resistance to treatment is associated with cancer stem cells (CSCs), of which there are currently no effective ways to destroy. It remains unclear what cancer cells become a target of stem cell migration, what the role of this process is in oncogenesis and what stem cell lines should be used in developing antitumor technologies. Using modern post-genome technologies, the present study investigated the migration of human stem cells to cancer cells in vitro, the comparative study of cell proteomes of certain stem cells (including CSCs) was conducted and stem cell migration in vivo was examined. Of all glioblastoma cells, CSCs have the stability to attract normal stem cells. Critical differences in cell proteomes allow the consideration of hematopoietic stem cells (HSCs) as an instrument for interaction with glioblastoma CSCs. Following injection into the bloodstream of animals with glioblastoma, the majority of HSCs migrated to the tumor-containing brain hemisphere and penetrated the tumor tissue. HSCs therefore are of potential use in the development of methods to target CSCs. PMID:27748891

  14. Exercise-Induced Norepinephrine Decreases Circulating Hematopoietic Stem and Progenitor Cell Colony-Forming Capacity

    PubMed Central

    Mangge, Harald; Pekovits, Karin; Fuchs, Robert; Allard, Nathalie; Schinagl, Lukas; Hofmann, Peter; Dohr, Gottfried; Wallner-Liebmann, Sandra; Domej, Wolfgang; Müller, Wolfram

    2014-01-01

    A recent study showed that ergometry increased circulating hematopoietic stem and progenitor cell (CPC) numbers, but reduced hematopoietic colony forming capacity/functionality under normoxia and normobaric hypoxia. Herein we investigated whether an exercise-induced elevated plasma free/bound norepinephrine (NE) concentration could be responsible for directly influencing CPC functionality. Venous blood was taken from ten healthy male subjects (25.3+/−4.4 yrs) before and 4 times after ergometry under normoxia and normobaric hypoxia (FiO2<0.15). The circulating hematopoietic stem and progenitor cell numbers were correlated with free/bound NE, free/bound epinephrine (EPI), cortisol (Co) and interleukin-6 (IL-6). Additionally, the influence of exercise-induced NE and blood lactate (La) on CPC functionality was analyzed in a randomly selected group of subjects (n = 6) in vitro under normoxia by secondary colony-forming unit granulocyte macrophage assays. Concentrations of free NE, EPI, Co and IL-6 were significantly increased post-exercise under normoxia/hypoxia. Ergometry-induced free NE concentrations found in vivo showed a significant impairment of CPC functionality in vitro under normoxia. Thus, ergometry-induced free NE was thought to trigger CPC mobilization 10 minutes post-exercise, but as previously shown impairs CPC proliferative capacity/functionality at the same time. The obtained results suggest that an ergometry-induced free NE concentration has a direct negative effect on CPC functionality. Cortisol may further influence CPC dynamics and functionality. PMID:25180783

  15. Reticular dysgenesis–associated AK2 protects hematopoietic stem and progenitor cell development from oxidative stress

    PubMed Central

    Rissone, Alberto; Weinacht, Katja Gabriele; la Marca, Giancarlo; Bishop, Kevin; Giocaliere, Elisa; Jagadeesh, Jayashree; Felgentreff, Kerstin; Dobbs, Kerry; Al-Herz, Waleed; Jones, Marypat; Chandrasekharappa, Settara; Kirby, Martha; Wincovitch, Stephen; Simon, Karen Lyn; Itan, Yuval; DeVine, Alex; Schlaeger, Thorsten; Schambach, Axel; Sood, Raman

    2015-01-01

    Adenylate kinases (AKs) are phosphotransferases that regulate the cellular adenine nucleotide composition and play a critical role in the energy homeostasis of all tissues. The AK2 isoenzyme is expressed in the mitochondrial intermembrane space and is mutated in reticular dysgenesis (RD), a rare form of severe combined immunodeficiency (SCID) in humans. RD is characterized by a maturation arrest in the myeloid and lymphoid lineages, leading to early onset, recurrent, and overwhelming infections. To gain insight into the pathophysiology of RD, we studied the effects of AK2 deficiency using the zebrafish model and induced pluripotent stem cells (iPSCs) derived from fibroblasts of an RD patient. In zebrafish, Ak2 deficiency affected hematopoietic stem and progenitor cell (HSPC) development with increased oxidative stress and apoptosis. AK2-deficient iPSCs recapitulated the characteristic myeloid maturation arrest at the promyelocyte stage and demonstrated an increased AMP/ADP ratio, indicative of an energy-depleted adenine nucleotide profile. Antioxidant treatment rescued the hematopoietic phenotypes in vivo in ak2 mutant zebrafish and restored differentiation of AK2-deficient iPSCs into mature granulocytes. Our results link hematopoietic cell fate in AK2 deficiency to cellular energy depletion and increased oxidative stress. This points to the potential use of antioxidants as a supportive therapeutic modality for patients with RD. PMID:26150473

  16. The role of osteoblasts in regulating hematopoietic stem cell activity and tumor metastasis.

    PubMed

    Neiva, K; Sun, Y-X; Taichman, R S

    2005-10-01

    Bone marrow stromal cells are critical regulators of hematopoiesis. Osteoblasts are part of the stromal cell support system in bone marrow and may be derived from a common precursor. Several studies suggested that osteoblasts regulate hematopoiesis, yet the entire mechanism is not understood. It is clear, however, that both hematopoietic precursors and osteoblasts interact for the production of osteoclasts and the activation of resorption. We observed that hematopoietic stem cells (HSCs) regulate osteoblastic secretion of various growth factors, and that osteoblasts express some soluble factors exclusively in the presence of HSCs. Osteoblasts and hematopoietic cells are closely associated with each other in the bone marrow, suggesting a reciprocal relationship between them to develop the HSC niche. One critical component regulating the niche is stromal-derived factor-1 (SDF-1) and its receptor CXCR4 which regulates stem cell homing and, as we have recently demonstrated, plays a crucial role in facilitating those tumors which metastasize to bone. Osteoblasts produce abundant amounts of SDF-1 and therefore osteoblasts play an important role in metastasis. These findings are discussed in the context of the role of osteoblasts in marrow function in health and disease.

  17. N-cadherin expression level distinguishes reserved versus primed states of hematopoietic stem cells.

    PubMed

    Haug, Jeffrey S; He, Xi C; Grindley, Justin C; Wunderlich, Joshua P; Gaudenz, Karin; Ross, Jason T; Paulson, Ariel; Wagner, Kathryn P; Xie, Yucai; Zhu, Ruihong; Yin, Tong; Perry, John M; Hembree, Mark J; Redenbaugh, Erin P; Radice, Glenn L; Seidel, Christopher; Li, Linheng

    2008-04-10

    Osteoblasts expressing the homophilic adhesion molecule N-cadherin form a hematopoietic stem cell (HSC) niche. Therefore, we examined how N-cadherin expression in HSCs relates to their function. We found that bone marrow (BM) cells highly expressing N-cadherin (N-cadherin(hi)) are not stem cells, being largely devoid of a Lineage(-)Sca1(+)cKit(+) population and unable to reconstitute hematopoietic lineages in irradiated recipient mice. Instead, long-term HSCs form distinct populations expressing N-cadherin at intermediate (N-cadherin(int)) or low (N-cadherin(lo)) levels. The minority N-cadherin(lo) population can robustly reconstitute the hematopoietic system, express genes that may prime them to mobilize, and predominate among HSCs mobilized from BM to spleen. The larger N-cadherin(int) population performs poorly in reconstitution assays when freshly isolated but improves in response to overnight in vitro culture. Their expression profile and lower cell-cycle entry rate suggest N-cadherin(int) cells are being held in reserve. Thus, differential N-cadherin expression reflects functional distinctions between two HSC subpopulations.

  18. [Research Progress on Gene Expression Abnormality of Hematopoietic Stem/Progenitor Cells in Myelodysplastic Syndromes].

    PubMed

    Zhang, Jing; Ma, Yan; Xu, Xiao-Ping

    2015-10-01

    Myelodysplastic syndrome (MDS) is a group of heterogeneous clonal disease involving one or more series of hematopoietic cells. Its pathogenesis is still unclear. No effective targeted drug is available to prevent this disease progression. MDS originates in hematopoietic stem cells. Recent researches found that the complex abnormal gene expression occurred in bone marrow CD34⁺ cells plays a key role in development of MDS. Some of these genes are closely related with the patient's prognosis and survival, such as DLK1, ribosomal transcripts gene, Toll-like receptors gene, EPA-1 and interferon-stimulated genes. Due to heterogeneity of this disease, abnormal gene expression profiles in bone marrow CD34⁺ cells are closely associated with particular FAB or cytogenetic subtypes. To elucidate the pathogenesis of MDS and investigate its therapeutic target, this article reviews progress of researches on abnormal gene expression profiles of hematopoietic stem/progenitor cells in low-risk, high-risk patients and MDS patients who carry common cytogenetic abnormalities.

  19. Transforming Growth Factor β Drives Hemogenic Endothelium Programming and the Transition to Hematopoietic Stem Cells.

    PubMed

    Monteiro, Rui; Pinheiro, Philip; Joseph, Nicola; Peterkin, Tessa; Koth, Jana; Repapi, Emmanouela; Bonkhofer, Florian; Kirmizitas, Arif; Patient, Roger

    2016-08-22

    Hematopoietic stem cells (HSCs) are self-renewing multipotent stem cells that generate mature blood lineages throughout life. They, together with hematopoietic progenitor cells (collectively known as HSPCs), emerge from hemogenic endothelium in the floor of the embryonic dorsal aorta by an endothelial-to-hematopoietic transition (EHT). Here we demonstrate that transforming growth factor β (TGFβ) is required for HSPC specification and that it regulates the expression of the Notch ligand Jagged1a in endothelial cells prior to EHT, in a striking parallel with the epithelial-to-mesenchymal transition (EMT). The requirement for TGFβ is two fold and sequential: autocrine via Tgfβ1a and Tgfβ1b produced in the endothelial cells themselves, followed by a paracrine input of Tgfβ3 from the notochord, suggesting that the former programs the hemogenic endothelium and the latter drives EHT. Our findings have important implications for the generation of HSPCs from pluripotent cells in vitro.

  20. Fumarate hydratase is a critical metabolic regulator of hematopoietic stem cell functions

    PubMed Central

    Vukovic, Milica; van de Lagemaat, Louie N.; Morgan, Marcos; Gonzalez, Marta Vila; Paris, Jasmin; Gezer, Deniz; Wills, Jimi; Coman, David; So, Chi Wai Eric; O’Carroll, Donal; Vernimmen, Douglas; Rodrigues, Neil P.; Pollard, Patrick J.; Morton, Nicholas M.

    2017-01-01

    Strict regulation of stem cell metabolism is essential for tissue functions and tumor suppression. In this study, we investigated the role of fumarate hydratase (Fh1), a key component of the mitochondrial tricarboxylic acid (TCA) cycle and cytosolic fumarate metabolism, in normal and leukemic hematopoiesis. Hematopoiesis-specific Fh1 deletion (resulting in endogenous fumarate accumulation and a genetic TCA cycle block reflected by decreased maximal mitochondrial respiration) caused lethal fetal liver hematopoietic defects and hematopoietic stem cell (HSC) failure. Reexpression of extramitochondrial Fh1 (which normalized fumarate levels but not maximal mitochondrial respiration) rescued these phenotypes, indicating the causal role of cellular fumarate accumulation. However, HSCs lacking mitochondrial Fh1 (which had normal fumarate levels but defective maximal mitochondrial respiration) failed to self-renew and displayed lymphoid differentiation defects. In contrast, leukemia-initiating cells lacking mitochondrial Fh1 efficiently propagated Meis1/Hoxa9-driven leukemia. Thus, we identify novel roles for fumarate metabolism in HSC maintenance and hematopoietic differentiation and reveal a differential requirement for mitochondrial Fh1 in normal hematopoiesis and leukemia propagation. PMID:28202494

  1. Tunneling nanotubes mediate the transfer of stem cell marker CD133 between hematopoietic progenitor cells.

    PubMed

    Reichert, Doreen; Scheinpflug, Julia; Karbanová, Jana; Freund, Daniel; Bornhäuser, Martin; Corbeil, Denis

    2016-11-01

    Deciphering all mechanisms of intercellular communication used by hematopoietic progenitors is important, not only for basic stem cell research, but also in view of their therapeutic relevance. Here, we investigated whether these cells can produce the thin F-actin-based plasma membrane protrusions referred to as tunneling nanotubes (TNTs), which are known to bridge cells over long distances without contact with the substratum and transfer cargo molecules along them in various biological processes. We found that human primary CD34(+) hematopoietic progenitors and leukemic KG1a cells develop such structures upon culture on primary mesenchymal stromal cells or specific extracellular-matrix-based substrata. Time-lapse video microscopy revealed that cell dislodgement is the primary mechanism responsible for TNT biogenesis. Surprisingly, we found that, among various cluster of differentiation (CD) markers, only the stem cell antigen CD133 is transferred between cells. It is selectively and directionally transported along the surface of TNTs in small clusters, such as cytoplasmic phospho-myosin light chain 2, suggesting that the latter actin motor protein might be implicated in this process. Our data provide new insights into the biology of hematopoietic progenitors that can contribute to our understanding of all facets of intercellular communication in the bone marrow microenvironment under healthy or cancerous conditions.

  2. Replication stress caused by low MCM expression limits fetal erythropoiesis and hematopoietic stem cell functionality

    PubMed Central

    Alvarez, Silvia; Díaz, Marcos; Flach, Johanna; Rodriguez-Acebes, Sara; López-Contreras, Andrés J.; Martínez, Dolores; Cañamero, Marta; Fernández-Capetillo, Oscar; Isern, Joan; Passegué, Emmanuelle; Méndez, Juan

    2015-01-01

    Replicative stress during embryonic development influences ageing and predisposition to disease in adults. A protective mechanism against replicative stress is provided by the licensing of thousands of origins in G1 that are not necessarily activated in the subsequent S-phase. These ‘dormant' origins provide a backup in the presence of stalled forks and may confer flexibility to the replication program in specific cell types during differentiation, a role that has remained unexplored. Here we show, using a mouse strain with hypomorphic expression of the origin licensing factor mini-chromosome maintenance (MCM)3 that limiting origin licensing in vivo affects the functionality of hematopoietic stem cells and the differentiation of rapidly-dividing erythrocyte precursors. Mcm3-deficient erythroblasts display aberrant DNA replication patterns and fail to complete maturation, causing lethal anemia. Our results indicate that hematopoietic progenitors are particularly sensitive to replication stress, and full origin licensing ensures their correct differentiation and functionality. PMID:26456157

  3. Genetic modification of hematopoietic stem cells as a therapy for HIV/AIDS.

    PubMed

    Younan, Patrick; Kowalski, John; Kiem, Hans-Peter

    2013-11-28

    The combination of genetic modification and hematopoietic stem cell (HSC) transplantation may provide the necessary means to develop an alternative treatment option to conventional antiretroviral therapy. As HSCs give rise to all hematopoietic cell types susceptible to HIV infection, modification of HSCs is an ideal strategy for the development of infection-resistant immune cell populations. Although promising results have been obtained in multiple animal models, additional evidence is needed to convincingly demonstrate the feasibility of this approach as a treatment of HIV-1 infected patients. Here, we review the potential of HSC transplantation and the recently identified limitations of this approach. Using the Berlin Patient as a model for a functional cure, we contrast the confines of autologous versus allogeneic transplantation. Finally, we suggest that although autologous, gene-modified HSC-transplantation may significantly reduce plasma viremia, reaching the lower detection limits currently obtainable through daily HAART will remain a challenging endeavor that will require innovative combinatorial therapies.

  4. FGF signaling specifies hematopoietic stem cells through its regulation of somitic Notch signaling

    PubMed Central

    Lee, Yoonsung; Manegold, Jennifer E; Kim, Albert D; Pouget, Claire; Stachura, David L; Clements, Wilson K; Traver, David

    2014-01-01

    Hematopoietic stem cells (HSCs) derive from hemogenic endothelial cells of the primitive dorsal aorta (DA) during vertebrate embryogenesis. The molecular mechanisms governing this unique endothelial to hematopoietic transition remain unclear. Here, we demonstrate a novel requirement for fibroblast growth factor (FGF) signaling in HSC emergence. This requirement is non-cell-autonomous, and acts within the somite to bridge the Wnt and Notch signaling pathways. We previously demonstrated that Wnt16 regulates the somitic expression of two Notch ligands, deltaC (dlc) and deltaD (dld), whose combined function is required for HSC fate. How Wnt16 connects to Notch function has remained an open question. Our current studies demonstrate that FGF signaling, via FGF receptor 4 (Fgfr4), mediates a signal transduction pathway between Wnt16 and Dlc, but not Dld, to regulate HSC specification. Our findings demonstrate that FGF signaling acts as a key molecular relay within the developmental HSC niche to instruct HSC fate. PMID:25428693

  5. Hematopoietic Stem Cell Origin of BRAFV600E Mutations in Hairy Cell Leukemia

    PubMed Central

    Chung, Young Rock; Lito, Piro; Teruya-Feldstein, Julie; Hu, Wenhuo; Beguelin, Wendy; Monette, Sebastien; Duy, Cihangir; Rampal, Raajit; Telis, Leon; Patel, Minal; Kim, Min Kyung; Huberman, Kety; Bouvier, Nancy; Berger, Michael F.; Melnick, Ari M.; Rosen, Neal; Tallman, Martin S.

    2014-01-01

    Hairy cell leukemia (HCL) is a chronic lymphoproliferative disorder characterized by somatic BRAFV600E mutations. The malignant cell in HCL has immunophenotypic features of a mature B cell, but no normal counterpart along the continuum of developing B lymphocytes has been delineated as the cell of origin. We find that the BRAFV600E mutation is present in hematopoietic stem cells (HSCs) in HCL patients, and that these patients exhibit marked alterations in hematopoietic stem/progenitor cell (HSPC) frequencies. Quantitative sequencing analysis revealed a mean BRAFV600E-mutant allele frequency of 4.97% in HSCs from HCL patients. Moreover, transplantation of BRAFV600E-mutant HSCs from an HCL patient into immunodeficient mice resulted in stable engraftment of BRAFV600E-mutant human hematopoietic cells, revealing the functional self-renewal capacity of HCL HSCs. Consistent with the human genetic data, expression of BRafV600E in murine HSPCs resulted in a lethal hematopoietic disorder characterized by splenomegaly, anemia, thrombocytopenia, increased circulating soluble CD25, and increased clonogenic capacity of B lineage cells—all classic features of human HCL. In contrast, restricting expression of BRafV600E to the mature B cell compartment did not result in disease. Treatment of HCL patients with vemurafenib, an inhibitor of mutated BRAF, resulted in normalization of HSPC frequencies and increased myeloid and erythroid output from HSPCs. These findings link the pathogenesis of HCL to somatic mutations that arise in HSPCs and further suggest that chronic lymphoid malignancies may be initiated by aberrant HSCs. PMID:24871132

  6. Estimating the number of hematopoietic or lymphoid stem cells giving rise to clonal chromosome aberrations in blood T lymphocytes.

    PubMed

    Nakano, M; Kodama, Y; Ohtaki, K; Itoh, M; Awa, A A; Cologne, J; Kusunoki, Y; Nakamura, N

    2004-03-01

    Quantifying the proliferative capacity of long-term hematopoietic stem cells in humans is important for bone marrow transplantation and gene therapy. Obtaining appropriate data is difficult, however, because the experimental tools are limited. We hypothesized that tracking clonal descendants originating from hematopoietic stem cells would be possible if we used clonal chromosome aberrations as unique tags of individual hematopoietic stem cells in vivo. Using FISH, we screened 500 blood T lymphocytes from each of 513 atomic bomb survivors and detected 96 clones composed of at least three cells with identical aberrations. The number of clones was inversely related to their population size, which we interpreted to mean that the progenitor cells were heterogeneous in the number of progeny that they could produce. The absolute number of progenitor cells contributing to the formation of the observed clones was estimated as about two in an unexposed individual. Further, scrutiny of ten clones revealed that lymphocyte clones could originate roughly equally from hematopoietic stem cells or from mature T lymphocytes, thereby suggesting that the estimated two progenitor cells are shared as one hematopoietic stem cell and one mature T cell. Our model predicts that one out of ten people bears a non- aberrant clone comprising >10% of the total lymphocytes, which indicates that clonal expansions are common and probably are not health-threatening.

  7. [Human herpesvirus-6 associated with hematopoietic stem cell transplantation].

    PubMed

    Ogata, Masao

    2015-10-01

    Reactivation of human herpesvirus (HHV)-6B is a relatively common occurrence after allogeneic stem cell transplantation (SCT), and it is associated with the development of various post-transplant complications. HHV-6 encephalitis appears to be a significant, life-threatening complication caused by HHV-6B reactivation. HHV-6 encephalitis typically develops 2-6 weeks after SCT, and the symptoms are characterized by memory loss, seizures, and consciousness loss. Magnetic resonance imaging typically shows limbic encephalitis. Recent large-scale studies and a prospective study showed a similar incidence of HHV-6 encephalitis development, with 7.9-9.9% in cord blood transplant recipients and 0.5-1.2% in bone marrow or peripheral blood stem cell transplant recipients. Epidemiological studies suggest that post-transplant immune reactions such as GVHD, pre-engraftment immune reaction, or engraftment syndrome play important roles in the development of HHV-6 encephalitis. The mortality rate remains high, and even among survivors, many patients are left with serious neurological impairments, such as memory disturbance and seizures. Elucidation of the pathophysiology and establishment of appropriate prophylactic measures are necessary to overcome this serious complication. Besides encephalitis, associations between HHV-6 and various post-transplant complications have been reported, including pneumonitis, gastroenterocolitis, hepatitis, bone marrow suppression, and GVHD. Further investigations are needed to determine the role of HHV-6 in these complications.

  8. Reduced-intensity hematopoietic stem cell transplantation (RIST) for solid malignancies.

    PubMed

    Kami, Masahiro; Makimoto, Atsushi; Heike, Yuji; Takaue, Yoichi

    2004-12-01

    Reduced intensity stem cell transplantation (RIST) is a new approach of stem cell transplantation, which has shown promising features as reported in multiple phase I and II studies. Elderly patients, who are not eligible for conventional myeloablative hematopoietic stem cell transplantation (HSCT), are now treatable with RIST. It has also reduced regimen-related toxicity and provided better prognosis in short-term follow-up than conventional HSCT. Among solid tumors, metastatic renal cell carcinoma was found to respond well to RIST. Clinical studies are currently being conducted to evaluate the efficacy of RIST in other types of solid tumors. However, the mechanism of graft-versus-host disease (GVHD) and graft-versus-tumor (GVT) effects remains unclear. More knowledge on the mechanism is crucial to enhance the antitumor effect and to improve the prognosis further.

  9. Evidence for a mitotic clock in human hematopoietic stem cells: loss of telomeric DNA with age.

    PubMed Central

    Vaziri, H; Dragowska, W; Allsopp, R C; Thomas, T E; Harley, C B; Lansdorp, P M

    1994-01-01

    The proliferative life-span of the stem cells that sustain hematopoiesis throughout life is not known. It has been proposed that the sequential loss of telomeric DNA from the ends of human chromosomes with each somatic cell division eventually reaches a critical point that triggers cellular senescence. We now show that candidate human stem cells with a CD34+CD38lo phenotype that were purified from adult bone marrow have shorter telomeres than cells from fetal liver or umbilical cord blood. We also found that cells produced in cytokine-supplemented cultures of purified precursor cells show a proliferation-associated loss of telomeric DNA. These findings strongly suggest that the proliferative potential of most, if not all, hematopoietic stem cells is limited and decreases with age, a concept that has widespread implications for models of normal and abnormal hematopoiesis as well as gene therapy. Images PMID:7937905

  10. Comparison of hematopoietic cancer stem cells with normal stem cells leads to discovery of novel differentially expressed SSRs.

    PubMed

    Hosseinpour, Batool; Bakhtiarizadeh, Mohammad Reza; Mirabbassi, Seyedeh Maryam; Ebrahimie, Esmaeil

    2014-10-15

    Tandem repeat expansion in the transcriptomics level has been considered as one of the underlying causes of different cancers. Cancer stem cells are a small portion of cancer cells within the main neoplasm and can remain alive during chemotherapy and re-induce tumor growth. The EST-SSR background of cancer stem cells and possible roles of expressed SSRs in altering normal stem cells to cancer ones have not been investigated yet. Here, SSR distributions in hematopoietic normal and cancer stem cells were compared based on the expressed EST-SSR. One hundred eighty nine and 223 EST-SSRs were identified in cancer and normal stem cells, respectively. The EST-SSR expression pattern was significantly different between normal and cancer stem cells. The frequencies of AC/GT and TA/TA EST-SSRs were about 10% higher in cancer than normal stem cells. Remarkably, the number of triplets in cancer stem cells was 1.5 times higher than that in normal stem cells. GAT EST-SSR was frequent in cancer stem cells, but, conversely, normal stem cells did not express GAT EST-SSR. We suggest this EST-SSR as a novel triplet in cancer stem cell induction. Translating EST-SSRs to amino acids demonstrated that Asp and Ile were more abundant in cancer stem cells compared to normal stem cells. Finally, Gene Ontology (GO) enrichment analysis was carried out on genes containing triplet SSRs and showed that SSRs intentionally visit some specific GO classes. Interestingly, a NF-kappa (nuclear factor-kB) binding transcription factor was significantly hit by SSR instability which is a hallmark for leukemia stem cells. NF-kappa is an over represented transcription factor during cancer progression. It seems that there is a crosstalk between the NF-kB transcription factor and expressed GAT tandem repeat which negatively regulate apoptosis. In addition to better understanding of tumorigenesis, the findings of this study offer new DNA markers for diagnostic purposes and identifying at risk populations. In

  11. HIF prolyl hydroxylase 2 (PHD2) is a critical regulator of hematopoietic stem cell maintenance during steady-state and stress.

    PubMed

    Singh, Rashim Pal; Franke, Kristin; Kalucka, Joanna; Mamlouk, Soulafa; Muschter, Antje; Gembarska, Agnieszka; Grinenko, Tatyana; Willam, Carsten; Naumann, Ronald; Anastassiadis, Konstantinos; Stewart, A Francis; Bornstein, Stefan; Chavakis, Triantafyllos; Breier, Georg; Waskow, Claudia; Wielockx, Ben

    2013-06-27

    Hypoxia is a prominent feature in the maintenance of hematopoietic stem cell (HSC) quiescence and multipotency. Hypoxia-inducible factor (HIF) prolyl hydroxylase domain proteins (PHDs) serve as oxygen sensors and may therefore regulate this system. Here, we describe a mouse line with conditional loss of HIF prolyl hydroxylase 2 (PHD2) in very early hematopoietic precursors that results in self-renewal of multipotent progenitors under steady-state conditions in a HIF1α- and SMAD7-dependent manner. Competitive bone marrow (BM) transplantations show decreased peripheral and central chimerism of PHD2-deficient cells but not of the most primitive progenitors. Conversely, in whole BM transfer, PHD2-deficient HSCs replenish the entire hematopoietic system and display an enhanced self-renewal capacity reliant on HIF1α. Taken together, our results demonstrate that loss of PHD2 controls the maintenance of the HSC compartment under physiological conditions and causes the outcompetition of PHD2-deficient hematopoietic cells by their wild-type counterparts during stress while promoting the self-renewal of very early hematopoietic progenitors.

  12. Whole-body proton irradiation causes long-term damage to hematopoietic stem cells in mice.

    PubMed

    Chang, Jianhui; Feng, Wei; Wang, Yingying; Luo, Yi; Allen, Antiño R; Koturbash, Igor; Turner, Jennifer; Stewart, Blair; Raber, Jacob; Hauer-Jensen, Martin; Zhou, Daohong; Shao, Lijian

    2015-02-01

    Space flight poses certain health risks to astronauts, including exposure to space radiation, with protons accounting for more than 80% of deep-space radiation. Proton radiation is also now being used with increasing frequency in the clinical setting to treat cancer. For these reasons, there is an urgent need to better understand the biological effects of proton radiation on the body. Such improved understanding could also lead to more accurate assessment of the potential health risks of proton radiation, as well as the development of improved strategies to prevent and mitigate its adverse effects. Previous studies have shown that exposure to low doses of protons is detrimental to mature leukocyte populations in peripheral blood, however, the underlying mechanisms are not known. Some of these detriments may be attributable to damage to hematopoietic stem cells (HSCs) that have the ability to self-renew, proliferate and differentiate into different lineages of blood cells through hematopoietic progenitor cells (HPCs). The goal of this study was to investigate the long-term effects of low-dose proton irradiation on HSCs. We exposed C57BL/6J mice to 1.0 Gy whole-body proton irradiation (150 MeV) and then studied the effects of proton radiation on HSCs and HPCs in the bone marrow (BM) 22 weeks after the exposure. The results showed that mice exposed to 1.0 Gy whole-body proton irradiation had a significant and persistent reduction of BM HSCs compared to unirradiated controls. In contrast, no significant changes were observed in BM HPCs after proton irradiation. Furthermore, irradiated HSCs and their progeny exhibited a significant impairment in clonogenic function, as revealed by the cobblestone area-forming cell (CAFC) and colony-forming cell assays, respectively. These long-term effects of proton irradiation on HSCs may be attributable to the induction of chronic oxidative stress in HSCs, because HSCs from irradiated mice exhibited a significant increase in NADPH

  13. Whole-Body Proton Irradiation Causes Long-Term Damage to Hematopoietic Stem Cells in Mice

    PubMed Central

    Chang, Jianhui; Feng, Wei; Wang, Yingying; Luo, Yi; Allen, Antiño R.; Koturbash, Igor; Turner, Jennifer; Stewart, Blair; Raber, Jacob; Hauer-Jensen, Martin; Zhou, Daohong; Shao, Lijian

    2016-01-01

    Space flight poses certain health risks to astronauts, including exposure to space radiation, with protons accounting for more than 80% of deep-space radiation. Proton radiation is also now being used with increasing frequency in the clinical setting to treat cancer. For these reasons, there is an urgent need to better understand the biological effects of proton radiation on the body. Such improved understanding could also lead to more accurate assessment of the potential health risks of proton radiation, as well as the development of improved strategies to prevent and mitigate its adverse effects. Previous studies have shown that exposure to low doses of protons is detrimental to mature leukocyte populations in peripheral blood, however, the underlying mechanisms are not known. Some of these detriments may be attributable to damage to hematopoietic stem cells (HSCs) that have the ability to self-renew, proliferate and differentiate into different lineages of blood cells through hematopoietic progenitor cells (HPCs). The goal of this study was to investigate the long-term effects of low-dose proton irradiation on HSCs. We exposed C57BL/6J mice to 1.0 Gy whole-body proton irradiation (150 MeV) and then studied the effects of proton radiation on HSCs and HPCs in the bone marrow (BM) 22 weeks after the exposure. The results showed that mice exposed to 1.0 Gy whole-body proton irradiation had a significant and persistent reduction of BM HSCs compared to unirradiated controls. In contrast, no significant changes were observed in BM HPCs after proton irradiation. Furthermore, irradiated HSCs and their progeny exhibited a significant impairment in clonogenic function, as revealed by the cobblestone area-forming cell (CAFC) and colony-forming cell assays, respectively. These long-term effects of proton irradiation on HSCs may be attributable to the induction of chronic oxidative stress in HSCs, because HSCs from irradiated mice exhibited a significant increase in NADPH

  14. Dexamethasone facilitates erythropoiesis in murine embryonic stem cells differentiating into hematopoietic cells in vitro

    SciTech Connect

    Srivastava, Anand S.; Kaushal, Sharmeela; Mishra, Rangnath; Lane, Thomas A.; Carrier, Ewa . E-mail: assrivastava@ucsd.edu

    2006-07-28

    Differentiating embryonic stem (ES) cells are increasingly emerging as an important source of hematopoietic progenitors with a potential to be useful for both basic and clinical research applications. It has been suggested that dexamethasone facilitates differentiation of ES cells towards erythrocytes but the mechanism responsible for sequential expression of genes regulating this process are not well-understood. Therefore, we in vitro induced differentiation of murine ES cells towards erythropoiesis and studied the sequential expression of a set of genes during the process. We hypothesized that dexamethasone-activates its cognate nuclear receptors inducing up-regulation of erythropoietic genes such as GATA-1, Flk-1, Epo-R, and direct ES cells towards erythropoietic differentiation. ES cells were cultured in primary hematopoietic differentiation media containing methyl-cellulose, IMDM, IL-3, IL-6, and SCF to promote embryoid body (EB) formation. Total RNA of day 3, 5, and 9-old EBs was isolated for gene expression studies using RT-PCR. Cells from day 9 EBs were subjected to secondary differentiation using three different cytokines and growth factors combinations: (1) SCF, EPO, dexamethasone, and IGF; (2) SCF, IL-3, IL-6, and TPO; and (3) SCF IL-3, IL-6, TPO, and EPO. Total RNA from day 12 of secondary differentiated ES cells was isolated to study the gene expression pattern during this process. Our results demonstrate an up-regulation of GATA-1, Flk-1, HoxB-4, Epo-R, and globin genes ({alpha}-globin, {beta}H-1 globin, {beta}-major globin, {epsilon} -globin, and {zeta}-globin) in the 9-day-old EBs, whereas, RNA from 5-day-old EBs showed expression of HoxB-4, {epsilon}-globin, {gamma}-globin, {beta}H1-globin, and Flk-1. Three-day-old EBs showed only HoxB-4 and Flk-1 gene expression and lacked expression of all globin genes. These findings indicate that erythropoiesis-specific genes are activated later in the course of differentiation. Gene expression studies on the

  15. The use of covalently immobilized stem cell factor to selectively affect hematopoietic stem cell activity within a gelatin hydrogel

    PubMed Central

    Mahadik, B.P.; Haba, S. Pedron; Skertich, L.J.; Harley, B.A.C.

    2015-01-01

    Hematopoietic stem cells (HSCs) are a rare stem cell population found primarily in the bone marrow and responsible for the production of the body’s full complement of blood and immune cells. Used clinically to treat a range of hematopoietic disorders, there is a significant need to identify approaches to selectively expand their numbers ex vivo. Here we describe a methacrylamide-functionalized gelatin (GelMA) hydrogel for in vitro culture of primary murine HSCs. Stem cell factor (SCF) is a critical biomolecular component of native HSC niches in vivo and is used in large dosages in cell culture media for HSC expansion in vitro. We report a photochemistry based approach to covalently immobilize SCF within GelMA hydrogels via acrylate-functionalized polyethylene glycol (PEG) tethers. PEG-functionalized SCF retains the native bioactivity of SCF but can be stably incorporated and retained within the GelMA hydrogel over 7 days. Freshly-isolated murine HSCs cultured in GelMA hydrogels containing covalently-immobilized SCF showed reduced proliferation and improved selectivity for maintaining primitive HSCs. Comparatively, soluble SCF within the GelMA hydrogel network induced increased proliferation of differentiating hematopoietic cells. We used a microfluidic templating approach to create GelMA hydrogels containing gradients of immobilized SCF that locally direct HSC response. Together, we report a biomaterial platform to examine the effect of the local presentation of soluble vs. matrix-immobilized biomolecular signals on HSC expansion and lineage specification. This approach may be a critical component of a biomaterial-based artificial bone marrow to provide the correct sequence of niche signals to grow HSCs in the laboratory. PMID:26232879

  16. Progressive Chromatin Condensation and H3K9 Methylation Regulate the Differentiation of Embryonic and Hematopoietic Stem Cells

    PubMed Central

    Ugarte, Fernando; Sousae, Rebekah; Cinquin, Bertrand; Martin, Eric W.; Krietsch, Jana; Sanchez, Gabriela; Inman, Margaux; Tsang, Herman; Warr, Matthew; Passegué, Emmanuelle; Larabell, Carolyn A.; Forsberg, E. Camilla

    2015-01-01

    Summary Epigenetic regulation serves as the basis for stem cell differentiation into distinct cell types, but it is unclear how global epigenetic changes are regulated during this process. Here, we tested the hypothesis that global chromatin organization affects the lineage potential of stem cells and that manipulation of chromatin dynamics influences stem cell function. Using nuclease sensitivity assays, we found a progressive decrease in chromatin digestion among pluripotent embryonic stem cells (ESCs), multipotent hematopoietic stem cells (HSCs), and mature hematopoietic cells. Quantitative high-resolution microscopy revealed that ESCs contain significantly more euchromatin than HSCs, with a further reduction in mature cells. Increased cellular maturation also led to heterochromatin localization to the nuclear periphery. Functionally, prevention of heterochromatin formation by inhibition of the histone methyltransferase G9A resulted in delayed HSC differentiation. Our results demonstrate global chromatin rearrangements during stem cell differentiation and that heterochromatin formation by H3K9 methylation regulates HSC differentiation. PMID:26489895

  17. [Hematopoietic stem cell transplantation in autoimmune diseases. Pros and cons

    PubMed

    Ferraccioli, G. F.

    2001-01-01

    New therapeutics have clearly advanced our chances of inducing remission in several aggressive autoimmune diseases like rheumatoid arthritis (RA) or systemic lupus erythematosus (SLE). Despite this, subgroups of patients with RA or SLE or of other diseases like systemic sclerosis (SSc) or multiple sclerosis (MS) still present a poor response to conventional drugs. In this kind of patients, haematopoietic stem cell transplantation (HSCT) provided important clinical benefits in several studies. This might depend upon several possible mechanisms such as purging of autoreactive T cells during conditioning or changes of the TH1/TH2 biological milieu. An overview of the results obtained so far, the drawbacks and the perspectives in this field are presented.

  18. Topical Recombinant Human Epidermal Growth Factor for Oral Mucositis Induced by Intensive Chemotherapy with Hematopoietic Stem Cell Transplantation: Final Analysis of a Randomized, Double-Blind, Placebo-Controlled, Phase 2 Trial

    PubMed Central

    Kim, Ji-Won; Kim, Myeong Gyu; Lee, Hyun Jung; Koh, Youngil; Kwon, Ji-Hyun; Kim, Inho; Park, Seonyang; Kim, Byoung Kook; Oh, Jung Mi; Kim, Kyung Im; Yoon, Sung-Soo

    2017-01-01

    The aim of this study was to evaluate the efficacy and safety of recombinant human epidermal growth factor (rhEGF) oral spray for oral mucositis (OM) induced by intensive chemotherapy with hematopoietic stem cell transplantation. In this phase 2 study, patients were randomized to either rhEGF (50 microg/mL) or placebo in a 1:1 ratio. The primary endpoint was incidence of National Cancer Institute (NCI) grade ≥2 OM. A total of 138 patients were enrolled in this study. In the intention-to-treat analysis, rhEGF did not reduce the incidence of NCI grade ≥2 OM (p = 0.717) nor reduce its duration (p = 0.725). Secondary endpoints including the day of onset and duration of NCI grade ≥2 OM, the incidence of NCI grade ≥3 OM and its duration, and patient-reported quality of life were also similar between the two groups. In the per-protocol analysis, however, the duration of opioid analgesic use was shorter in the rhEGF group (p = 0.036), and recipients in the rhEGF group required a lower cumulative dose of opioid analgesics than those in the placebo group (p = 0.046), among patients with NCI grade ≥2 OM. Adverse events were mild and transient. This study found no evidence to suggest that rhEGF oral spray reduces the incidence of OM. However, further studies are needed to investigate the effect of rhEGF on OM-induced pain reduction after intensive chemotherapy. PMID:28045958

  19. Developments in hematopoietic stem-cell transplantation in the treatment of autoimmune diseases.

    PubMed

    Kozák, Tomás; Rychlík, Ivan

    2002-04-01

    Intractable forms of autoimmune diseases follow a rapid course, with a significantly shortened life expectancy sometimes comparable to that of malignant diseases. Immunoablative therapy, including high dose cytotoxic agents and hematopoietic autologous stem-cell rescue, was recently introduced as an aggressive approach to treat autoimmune diseases that have a rapid course and are resistant to conventional therapy. The most frequent indication for this type of treatment is multiple sclerosis, seconded by systemic sclerosis. The results of immunoablative treatment with documented responses in both diseases are encouraging. The data are mature enough to begin comparative randomized studies of immunoablative versus conventional treatment to validate the benefit of the aggressive approach. A randomized trial involving SSc was recently launched (ASTIS) and a trial involving MS is in preparation. Considerably less experience with immunoablative treatment has been gained in systemic lupus erythematosus, rheumatoid arthritis, and other disorders with an autoimmune pathophysiology. Autologous hematopoietic stem cell transplantation in humans offers more long-lasting immunosuppression than reeducation of lymphocytes. In fact, allogeneic transplantation may replace the whole immune system. However, this attractive approach is still associated with considerable morbidity and mortality and is not yet justified for treatment of autoimmune diseases. Non-myeloablative allogeneic transplantation and sub-myeloblative high dose cyclophosphamide without stem cell support are alternative approaches that could be explored in pilot studies.

  20. Oncolytic viral purging of leukemic hematopoietic stem and progenitor cells with Myxoma virus.

    PubMed

    Rahman, Masmudur M; Madlambayan, Gerard J; Cogle, Christopher R; McFadden, Grant

    2010-01-01

    High-dose chemotherapy and radiation followed by autologous blood and marrow transplantation (ABMT) has been used for the treatment of certain cancers that are refractory to standard therapeutic regimes. However, a major challenge with ABMT for patients with hematologic malignancies is disease relapse, mainly due to either contamination with cancerous hematopoietic stem and progenitor cells (HSPCs) within the autograft or the persistence of residual therapy-resistant disease niches within the patient. Oncolytic viruses represent a promising therapeutic approach to prevent cancer relapse by eliminating tumor-initiating cells that contaminate the autograft. Here we summarize an ex vivo "purging" strategy with oncolytic Myxoma virus (MYXV) to remove cancer-initiating cells from patient autografts prior to transplantation. MYXV, a novel oncolytic poxvirus with potent anti-cancer properties in a variety of in vivo tumor models, can specifically eliminate cancerous stem and progenitor cells from samples obtained from acute myelogenous leukemia (AML) patients, while sparing normal CD34+ hematopoietic stem and progenitor cells capable of rescuing hematopoiesis following high dose conditioning. We propose that a broader subset of patients with intractable hematologic malignancies who have failed standard therapy could become eligible for ABMT when the treatment schema is coupled with ex vivo oncolytic therapy.

  1. Oncolytic viral purging of leukemic hematopoietic stem and progenitor cells with Myxoma virus

    PubMed Central

    Rahman, Masmudur M.; Madlambayan, Gerard J.; Cogle, Christopher R.; McFadden, Grant

    2010-01-01

    High-dose chemotherapy and radiation followed by autologous blood and marrow transplantation (ABMT) has been extensively used for the treatment of certain cancers that are refractory to standard therapeutic regimes. However, a major challenge with ABMT for patients with hematologic malignancies is disease relapse, mainly due to either contamination with cancerous hematopoietic stem and progenitor cells (HSPCs) within the autograft or the persistence of residual therapy-resistant disease niches within the patient. Oncolytic viruses represent a promising therapeutic approach to prevent cancer relapse by eliminating tumor-initiating cells that contaminate the autograft. Here we summarize an ex vivo “purging” strategy with oncolytic myxoma virus (MYXV) to remove cancer-initiating cells from patient autografts prior to transplantation. MYXV, a novel oncolytic poxvirus with potent anti-cancer properties in a variety of in vivo tumor models, can specifically eliminate cancerous stem and progenitor cells from samples obtained from acute myelogenous leukemia (AML) patients, while sparing normal CD34+ hematopoietic stem and progenitor cells capable of rescuing hematopoiesis following high dose conditioning. We propose that a broader subset of patients with intractable hematologic malignancies who have failed standard therapy could become eligible for ABMT when the treatment schema is coupled with ex vivo oncolytic therapy. PMID:20211576

  2. Autologous hematopoietic stem cell transplantation for autoimmune disease--is it now ready for prime time?

    PubMed

    Atkins, Harold L; Muraro, Paolo A; van Laar, Jacob M; Pavletic, Steven Z

    2012-01-01

    Current systemic therapies are rarely curative for patients with severe life-threatening forms of autoimmune disease (AID). During the past 15 years, autologous hematopoietic stem cell transplantation (HCT) has been demonstrated to cure some patients with severe AID refractory to all other available therapies, and thus AID has become an emerging indication for cell therapy. The sustained clinical effects after autologous HCT are better explained by qualitative change in the reconstituted immune repertoire rather than transient depletion of immune cells. Since 1996, more than 1300 AID patients have been registered by the European Group for Blood and Marrow Transplantation (EBMT) and almost 500 patients by the Center for International Blood and Marrow Transplant Research (CIBMTR). Autologous HCT is most commonly performed for patients with multiple sclerosis (MS) or systemic sclerosis (SSc). Systemic lupus, Crohn's disease, type I diabetes, and juvenile idiopathic arthritis are other common indications. Allogeneic transplants are still considered too toxic for use in AID, except for cases of immune cytopenia. Although biologic therapies have been effective at controlling the manifestations of the disease, they require continuous administration, thus raising questions about their increasing costs, morbidity, and mortality related to prolonged therapy. Perhaps it is a reasonable time to ask, "Is autologous HCT for severe AID now ready for prime time?" Yet, the paucity of controlled studies, the short-term toxicities, and the upcoming availability of second-generation biologic and targeted immunotherapies argues that perhaps HCT for AID should be still limited to clinical trials. In this article, we focus on the results of autologous HCT for MS and SSc because these are the two most commonly transplanted diseases. The promising data that is emerging may establish these diseases as standard indications for HCT.

  3. Icing oral mucositis: Oral cryotherapy in multiple myeloma patients undergoing autologous hematopoietic stem cell transplant.

    PubMed

    Chen, Joey; Seabrook, Jamie; Fulford, Adrienne; Rajakumar, Irina

    2017-03-01

    Background Up to 70% of patients receiving hematopoietic stem cell transplant develop oral mucositis as a side effect of high-dose melphalan conditioning chemotherapy. Oral cryotherapy has been documented to be potentially effective in reducing oral mucositis. The aim of this study was to examine the effectiveness of the cryotherapy protocol implemented within the hematopoietic stem cell transplant program. Methods A retrospective chart review was conducted of adult multiple myeloma patients who received high-dose melphalan conditioning therapy for autologous hematopoietic stem cell transplant. Primary endpoints were incidence and severity of oral mucositis. Secondary endpoints included duration of oral mucositis, duration of hospital stay, parenteral narcotics use and total parenteral nutrition use. Results One hundred and forty patients were included in the study, 70 patients in both no cryotherapy and cryotherapy groups. Both oral mucositis incidence and severity were found to be significantly lower in the cryotherapy group. Fifty (71.4%) experienced mucositis post cryotherapy compared to 67 (95.7%) in the no cryotherapy group (p < 0.001). The median oral mucositis severity, assessed using the WHO oral toxicity scale from grade 0-4, experienced in the no group was 2.5 vs. 2 in the cryotherapy group (p = 0.03). Oral mucositis duration and use of parenteral narcotics were also significantly reduced. Duration of hospital stay and use of parenteral nutrition were similar between the two groups. Conclusion The cryotherapy protocol resulted in a significantly lower incidence and severity of oral mucositis. These results provide evidence for the continued use of oral cryotherapy, an inexpensive and generally well-tolerated practice.

  4. MicroRNA Modulation during the In vitro Culture of Hematopoietic Stem Cells Prior to Transplantation

    PubMed Central

    Shahrabi, Saeid; Kaviani, Saeid; Soleimani, Masoud; Pourfathollah, Ali Akbar; Bakhshandeh, Behnaz; Hajizamani, Saeideh; Saki, Najmaldin

    2017-01-01

    Background: Human umbilical cord blood (HUCB) is an acceptable and readily accessible source of stem cells. There is an ongoing interest in cord blood stem cell therapies; however, little is known about the possible unfavorable effects of laboratory modifications on the isolated HUCB cells. The involvement of miRNAs in several biological processes has been shown. The aim of this study was to evaluate the possible changes in miRNA expression profiles in CD133+ hematopoietic cells after in vitro culture. Methods: HUCBCD133+ hematopoietic stem cells were isolated by magnetic-activated cell sorting, and then the cells were counted using flow cytometry. The cells were divided into 2 groups. In the first group, RNA was extracted and the cells of the second group were cultured in vitro for 12 days and then these cells were used to assay miRNAs expression using real-time qPCR. Results: The results showed that the expression of 349 out of 1,151 screened miRNAs was upregulated following a 12-day in vitro culture of CD133+ cells, whereas the expression of 293 miRNAs was downregulated. In addition, the expression of 509 miRNAs was not significantly altered. Another in-silico analysis involving the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways related to the selected miRNAs was also conducted. Conclusion: Based on our results, the in vitro expansion of HUCB resulted in altered expression levels of miRNAs. This study provides information on the effects of 2-dimensional culture of hematopoietic cells prior to transplantation for more successful transplantation. PMID:28293049

  5. Hematopoietic stem cell transplantation in sickle cell disease: patient selection and special considerations

    PubMed Central

    Bhatia, Monica; Sheth, Sujit

    2015-01-01

    Hematopoietic stem cell transplantation remains the only curative treatment currently in use for patients with sickle cell disease (SCD). The first successful hematopoietic stem cell transplantation was performed in 1984. To date, approximately 1,200 transplants have been reported. Given the high prevalence of this disorder in Africa, and its emergence in the developed world through immigration, this number is relatively small. There are many reasons for this; primary among them are the availability of a donor, the risks associated with this complex procedure, and the cost and availability of resources in the developing world. Of these, it is fair to say that the risks associated with the procedure have steadily decreased to the point where, if currently performed in a center with experience using a matched sibling donor, overall survival is close to 100% and event-free survival is over 90%. While there is little controversy around offering hematopoietic stem cell transplantation to symptomatic SCD patients with a matched sibling donor, there is much debate surrounding the use of this modality in “less severe” patients. An overview of the current state of our understanding of the pathology and treatment of SCD is important to show that our current strategy is not having the desired impact on survival of homozygous SCD patients, and should be changed to significantly impact the small proportion of these patients who have matched siblings and could be cured, especially those without overt clinical manifestations. Both patient families and providers must be made to understand the progressive nature of SCD, and should be encouraged to screen full siblings of patients with homozygous SCD for their potential to be donors. Matched siblings should be referred to an experienced transplant center for evaluation and counseling. In this review, we will discuss the rationale for these opinions and make recommendations for patient selection. PMID:26203293

  6. Differential expression of CD150 (SLAM) family receptors by human hematopoietic stem and progenitor cells

    PubMed Central

    Sintes, Jordi; Romero, Xavier; Marin, Pedro; Terhorst, Cox; Engel, Pablo

    2015-01-01

    Objectives Human hematopoietic stem cell (HSC)–containing grafts are most commonly used to treat various blood diseases, including leukemias and autoimmune disorders. CD150 (SLAM) family receptors have recently been shown to be differentially expressed by mouse HSC and progenitor cells. Members of the CD150 family are key regulators of leukocyte activation and differentiation. The goal of the present study is to analyze the expression patterns of the CD150 receptors CD48, CD84, CD150 (SLAM), CD229 (Ly9), and CD244 (2B4) on the different sources of human hematopoietic stem and progenitor cells. Materials and Methods Expression of CD150 receptors was analyzed on human mobilized peripheral blood CD133+-isolated cells and CD34+ bone marrow (BM) and umbilical cord blood (CB) cells using multicolor flow cytometry. Results CD244 was present on most CD133+Lin−-mobilized cells and CD34+Lin− BM and CB cells, including virtually all CD38−Lin− primitive progenitor cells. CD48 had a restricted expression pattern on CD133+Lin−CD38− cells, while its levels were significantly higher in CD34+Lin− BM and CB cells. In addition, CD84 was present on a significant number of CD133+Lin− cells, but only on a small fraction of CD133+Lin−CD38− peripheral blood mobilized cells. In contrast, CD84 was expressed on practically all CD34+Lin− BM cells. No CD150 expression was observed in mobilized peripheral blood CD133+Lin− or CD34+Lin− BM and CB cells. Furthermore, only a small fraction of CD34+Lin− BM and CB cells expressed CD229. Conclusions Our results show that CD150 family molecules are present on human hematopoietic stem and progenitor cells and that their expression patterns differ between humans and mice. PMID:18495325

  7. Haploidentical hematopoietic stem cell transplantation with a megadose T-cell-depleted graft: harnessing natural and adaptive immunity.

    PubMed

    Aversa, Franco; Martelli, Massimo F; Velardi, Andrea

    2012-12-01

    For patients with high-risk acute leukemia who do not have a matched donor or who urgently need a transplant, transplantation from a full human leukocyte antigen (HLA) haplotype mismatched family donor should be considered a viable option. Clinical trials have shown that a strategy for haploidentical transplantation based on the infusion of high numbers of T-cell-depleted hematopoietic progenitor cells and no post-transplant immunosuppression controls bi-directional T-cell alloreactivity, ie, graft rejection and graft-versus-host disease (GvHD) in patients with leukemia. Overall, event-free survival compares favorably with reports of transplants using sources of stem cells other than the matched sibling. This transplant modality has highlighted the crucial role of donor-versus-recipient natural killer cell (NK) alloreactivity in the control of leukemia relapse. Current studies are focusing on rebuilding post-transplant immunity to improve clinical outcomes.

  8. Clinical use of statins in hematopoietic stem cell transplantation: Old drugs and new horizons

    PubMed Central

    Mohammadi, Mehdi; Vaezi, Mohammad; Mirrahimi, Bahador; Hadjibabaie, Molouk

    2016-01-01

    Hydroxymethylglutaryl Co-enzyme A reductase inhibitors, also known as statins, are a class of anti-hyperlipidemic agents. These drugs have been employed vastly to reduce the morbidity and mortality of cardiovascular disorders. Soon after their introduction, benefits other than their primary actions were discovered. Along with these pleiotropic properties, a series of mainly favorable effects has been proposed in patients intended to undergo hematopoietic stem cell transplantation. These actions address some complications encountered by this special population such as graft-versus-host disease, efficacy of chemotherapy, infections, etc. This review presents the current evidence surrounding these issues. PMID:27047650

  9. Expansion of CD133+ Umbilical Cord Blood Derived Hematopoietic Stem Cells on a Biocompatible Microwells

    PubMed Central

    Soufizomorrod, Mina; Soleimani, Masoud; Hajifathali, Abbas; Mohammadi, Majid Mossahebi; Abroun, Saeed

    2013-01-01

    Umbilical cord Blood (UCB) as a source of Hematopoietic Stem/Progenitor cells (HSPCs) used for Umbilical cord blood transplantation (UCBT). The main obstacle in application of this source as an appropriate source of HSPCs is low volume of this product. So ex vivo expansion of these cells in a microenvironment which mimic body condition is important. In current study we designed biocompatible microwells in which collagene type I is coated by softlitography method. Our findings designated that in 3-Dimensional (3D) microenvironment CD133+ UCB derived HSC expanded significantly compared to 2-Dimensional (2D) microenvironment. PMID:24505514

  10. Melphalan Culprit or Confounder in Acute Encephalopathy during Autologous Hematopoietic Stem Cell Transplantation?

    PubMed Central

    Alayón-Laguer, Diógenes; Alsina, Melissa; Ochoa-Bayona, Jose L.; Ayala, Ernesto

    2012-01-01

    We report a case of a female patient with Durie-Salmon stage 3A/ISS stage I IgG kappa multiple myeloma (MM) who developed encephalopathy after high-dose melphalan and hematopoietic stem cell transplant (HSCT). The most common etiologies for encephalopathy such as infection, narcotic medications, metabolic-electrolyte disturbance, stroke, and central nervous system (CNS) hemorrhages were ruled out. The patient recovered from the altered mental status spontaneously. The possibilities of melphalan-induced encephalopathy versus critical-state delirium versus hypercytokinemia induce encephalopathy were contemplated. PMID:23259145

  11. Hematopoietic stem cell transplantation for patients with sickle cell disease: progress and future directions.

    PubMed

    Fitzhugh, Courtney D; Abraham, Allistair A; Tisdale, John F; Hsieh, Matthew M

    2014-12-01

    Research has solidified matched sibling marrow, cord blood, or mobilized peripheral blood as the best source for allogeneic hematopoietic stem cell transplantation for patients with sickle cell disease, with low graft rejection and graft-versus-host disease (GVHD) and high disease-free survival rates. Fully allelic matched unrelated donor is an option for transplant-eligible patients without HLA-matched sibling donors. Unrelated cord transplant studies reported high GVHD and low engraftment rates. Haploidentical transplants have less GVHD, but improvements are needed to increase the low engraftment rate. The decision to use unrelated cord blood units or haploidentical donors depends on institutional expertise.

  12. Allogeneic hematopoietic stem cell transplantation in children with sickle cell disease.

    PubMed

    Locatelli, Franco; Pagliara, Daria

    2012-08-01

    Allogeneic hematopoietic stem cell transplantation (allo-HSCT) represents the only curative treatment for sickle cell disease (SCD), being successful in around 85-90% of patients. Mortality and long-term morbidity (including infertility, gonadal failure, and chronic graft-vs.-host disease) associated with conventional approaches curtail the number of patients who undergo allo-HSCT. Recently, it has been demonstrated that cord blood is as effective as and possibly safer than bone marrow in pediatric patients with SCD. Likewise, transplant strategies based on the use of reduced-intensity regimens and the induction of mixed chimerism have been explored to decrease allo-HSCT short- and long-term complications.

  13. Nutritional status of patients submitted to transplantation of allogeneic hematopoietic stem cells: a retrospective study

    PubMed Central

    Ferreira, Érika Elias; Guerra, Daiane Cristina; Baluz, Kátia; de Resende Furtado, Wander; da Silva Bouzas, Luis Fernando

    2014-01-01

    Objective This study aimed to describe and compare the nutritional status of adult patients submitted to allogeneic hematopoietic stem cell transplantation at two different time points (admission and discharge). Methods A retrospective, descriptive and quantitative study was performed based on clinical, laboratory and nutritional data obtained from medical records of adult patients of both genders submitted to allogeneic hematopoietic stem cell transplantation in a bone marrow transplantation reference center in Rio de Janeiro in the period from 2010 to 2013. Statistical analysis was performed using the SPSS software (version 22.0). Results Sixty-four patients were evaluated. The mean age was 42.1 ± 3.2 years and the most prevalent disease was acute myeloid leukemia (39%). There was a high prevalence of gastrointestinal symptoms including nausea (100%), vomiting (97%) and mucositis (93%). Between admission and discharge there was a significant decrease in the median weight (−2.5 kg; 71.5 vs. 68.75 kg; p-value < 0.001), body mass index (−0.9 kg/m2; 24.8 vs. 24.4 kg/m2; p-value < 0.001), and serum albumin levels (−0.2 g/dL; 3.7 vs. 3.6 g/dL; p-value = 0.024). The survival time after hematopoietic stem cell transplantation correlated negatively with C-reactive protein at discharge (CC = −0.72; p-value < 0.001) and positively with serum albumin levels (CC = 0.56; p-value = 0.004) and with high total protein level at discharge (CC = 0.53; p-value = 0.006). Conclusion Our results suggest that patients submitted to allogeneic hematopoietic stem cell transplantation have compromised nutritional status during the hospital stay for transplantation. PMID:25453651

  14. Rehabilitative intervention during and after pediatric hematopoietic stem cell transplantation: An analysis of the existing literature.

    PubMed

    Rossi, Francesca; Coppo, Monica; Zucchetti, Giulia; Bazzano, Daniela; Ricci, Federica; Vassallo, Elena; Nesi, Francesca; Fagioli, Franca

    2016-11-01

    Hematopoietic stem cell transplantation is a therapeutic strategy for several oncohematological diseases. It increases survival rates but leads to a high incidence of related effects. The objective of this paper was to examine the existing literature on physical exercise interventions among pediatric HSCT recipients to explore the most often utilized rehabilitative assessment and treatment tools. Studies published from 2002 to April 1, 2015 were selected: 10 studies were included. A previous literary review has shown that rehabilitation programs have a positive impact on quality of life. Our analysis identified some significant outcome variables and shared intervention areas.

  15. Acquired factor VII deficiency in hematopoietic stem cell transplant recipients.

    PubMed

    Toor, A A; Slungaard, A; Hedner, U; Weisdorf, D J; Key, N S

    2002-03-01

    Acquired factor VII (FVII) deficiency in the absence of vitamin K deficiency, oral anticoagulant therapy, synthetic liver dysfunction, or DIC is rare, with only a handful of cases thus far reported. In the period from 1990 to 1996 we identified eight patients with acquired FVII deficiency, all of whom presented with prolongation of the prothrombin time (PT) in the first 2 weeks following stem cell transplantation (SCT). The mean plasma FVII clotting activity (FVII:c) was 22% (range 8-35%) with an approximately equivalent reduction in FVII antigen (FVII:Ag) level. Mean plasma levels of fibrinogen and factors II, V, IX, and X were normal. Protein C activity was significantly depressed in only one of the three patients in whom it was measured. Several patients experienced bleeding complications, and hemorrhage directly accounted for death in two cases. Veno-occlusive disease of the liver developed in three patients. We conclude that FVII deficiency should be considered in the differential diagnosis of prolonged PT in patients who have recently undergone SCT. The mechanism of this acquired deficiency state remains to be defined.

  16. Observations on the contributions of environmental restraints and innate stem cell ability to hematopoietic regeneration

    SciTech Connect

    Duke-Cohan, J.S.

    1988-03-01

    A competitive repopulation assay utilizing chromosome markers was used to assay the reconstituting potential of hematopoietic populations. The test populations consisted of tibial murine marrow locally irradiated with doses ranging from 1.5 Gy to 8.5 Gy and of marrow generated from either murine splenic or marrow stem cells. The purpose of this assay was to assess the innate proliferative potential and microenvironmental influences on the ability to repopulate. Regardless of origin, spleen repopulating ability consistently agreed with spleen colony-forming unit (CFU-s) content. Doses of radiation from 5 Gy to 8.5 Gy diminished, by a factor of 2, the ability to repopulate marrow despite maintenance of CFU-s levels. Marrow generated from splenic stem cells had one-fifth the repopulating ability of marrow derived from marrow stem cells, even though CFU-s levels were equivalent. The results imply that the splenic environment can only maintain stem cells at the level of the CFU-s, even if the stem cells were originally of higher quality, and that their original potential cannot be regained in a marrow environment. Nevertheless, the marrow can maintain more primitive stem cells, but this reserve is drained to support CFU-s levels.

  17. The effect of lithium on hematopoietic, mesenchymal and neural stem cells.

    PubMed

    Ferensztajn-Rochowiak, Ewa; Rybakowski, Janusz K

    2016-04-01

    Lithium has been used in modern psychiatry for more than 65 years, constituting a cornerstone for the long-term treatment of bipolar disorder. A number of biological properties of lithium have been discovered, including its hematological, antiviral and neuroprotective effects. In this article, a systematic review of the effect of lithium on hematopoietic, mesenchymal and neural stem cells is presented. The beneficial effects of lithium on the level of hematopoietic stem cells (HSC) and growth factors have been reported since 1970s. Lithium improves homing of stem cells, the ability to form colonies and HSC self-renewal. Lithium also exerts a favorable influence on the proliferation and maintenance of mesenchymal stem cells (MSC). Studies on the effect of lithium on neurogenesis have indicated an increased proliferation of progenitor cells in the dentate gyrus of the hippocampus and enhanced mitotic activity of Schwann cells. This may be connected with the neuroprotective and neurotrophic effects of lithium, reflected in an improvement in synaptic plasticity promoting cell survival and inhibiting apoptosis. In clinical studies, lithium treatment increases cerebral gray matter, mainly in the frontal lobes, hippocampus and amygdala. Recent findings also suggest that lithium may reduce the risk of dementia and exert a beneficial effect in neurodegenerative diseases. The most important mediators and signaling pathways of lithium action are the glycogen synthase kinase-3 and Wnt/β-catenin pathways. Recently, to study of bipolar disorder pathogenesis and the mechanism of lithium action, the induced pluripotent stem cells (iPSC) obtained from bipolar patients have been used.

  18. Ex Vivo Expansion of Hematopoietic Stem and Progenitor Cells from Umbilical Cord Blood

    PubMed Central

    Sotnezova, E.V.; Andreeva, E.R.; Grigoriev, A.I.; Buravkova, L.B.

    2016-01-01

    Transplantation of umbilical cord blood cells is currently widely used in modern cell therapy. However, the limited number of hematopoietic stem and progenitor cells (HSPCs) and prolonged time of recovery after the transplantation are significant limitations in the use of cord blood. Ex vivo expansion with various cytokine combinations is one of the most common approaches for increasing the number of HSPCs from one cord blood unit. In addition, there are protocols that enable ex vivo amplification of cord blood cells based on native hematopoietic microenvironmental cues, including stromal components and the tissue-relevant oxygen level. The newest techniques for ex vivo expansion of HSPCs are based on data from the elucidation of the molecular mechanisms governing the hematopoietic niche function. Application of these methods has provided an improvement of several important clinical outcomes. Alternative methods of cord blood transplantation enhancement based on optimization of HPSC homing and engraftment in patient tissues have also been successful. The goal of the present review is to analyze recent methodological approaches to cord blood HSPC ex vivo amplification. PMID:27795840

  19. FIP200 is required for the cell-autonomous maintenance of fetal hematopoietic stem cells.

    PubMed

    Liu, Fei; Lee, Jae Y; Wei, Huijun; Tanabe, Osamu; Engel, James D; Morrison, Sean J; Guan, Jun-Lin

    2010-12-02

    Little is known about whether autophagic mechanisms are active in hematopoietic stem cells (HSCs) or how they are regulated. FIP200 (200-kDa FAK-family interacting protein) plays important roles in mammalian autophagy and other cellular functions, but its role in hematopoietic cells has not been examined. Here we show that conditional deletion of FIP200 in hematopoietic cells leads to perinatal lethality and severe anemia. FIP200 was cell-autonomously required for the maintenance and function of fetal HSCs. FIP200-deficient HSC were unable to reconstitute lethally irradiated recipients. FIP200 ablation did not result in increased HSC apoptosis, but it did increase the rate of HSC proliferation. Consistent with an essential role for FIP200 in autophagy, FIP200-null fetal HSCs exhibited both increased mitochondrial mass and reactive oxygen species. These data identify FIP200 as a key intrinsic regulator of fetal HSCs and implicate a potential role for autophagy in the maintenance of fetal hematopoiesis and HSCs.

  20. Innate immunity as orchestrator of bone marrow homing for hematopoietic stem/progenitor cells.

    PubMed

    Ratajczak, Mariusz Z; Kim, ChiHwa; Ratajczak, Janina; Janowska-Wieczorek, Anna

    2013-01-01

    The first step that precedes hematopoietic transplantation is elimination of pathological hematopoiesis by administration of myeloablative doses of radiochemotherapy. This eliminates hematolymphopoietic cells and at the same time damages hematopoietic microenvironment in bone marrow (BM). The damage of BM tissue leads to activation of complement cascade (CC), and bioactive CC cleavage fragments modulate several steps of BM recovery after transplantation of hematopoietic stem progenitor cells (HSPCs). Accordingly, C3 cleavage fragments (soluble C3a/desArgC3a and solid phase iC3b) and generation of soluble form of C5b-C9 also known as membrane attack complex (MAC) as well as release of antimicrobial cationic peptides from stromal cells (cathelicidin or LL-37 and beta-2 defensin) promote homing of HSPCs. To support this, C3 cleavage fragments and antimicrobial cationic peptides increase homing responsiveness of transplanted HSPCs to stroma-derived factor-1 (SDF-1) gradient. Furthermore, damaged BM cells release several other chemoattractants for HSPCs such as bioactive lipids sphingosine-1-phosphate (S1P) and ceramide-1-phosphate (C1P) and chemotactic purines (ATP and UTP). In this chapter, we will discuss the current view on homing of transplanted HSPCs into BM that in addition to SDF-1 is orchestrated by CC, antimicrobial cationic peptides, and several other prohoming factors. We also propose modulation of CC as a novel strategy to optimize/accelerate homing of HSPCs.

  1. Quiescent hematopoietic stem cells are activated by IFNγ in response to chronic infection

    PubMed Central

    Baldridge, Megan T.; King, Katherine Y.; Boles, Nathan C.; Weksberg, David C.; Goodell, Margaret A.

    2010-01-01

    Summary Lymphocytes and neutrophils are rapidly depleted by systemic infection1. Progenitor cells of the hematopoietic system, such as common myeloid progenitors (CMPs) and common lymphoid progenitors (CLPs), increase the production of immune cells to restore and maintain homeostasis during chronic infection, but the contribution of hematopoietic stem cells (HSCs) to this process is largely unknown2. Using an in vivo mouse model of Mycobacterium avium infection, we show that an increased proportion of long-term repopulating HSCs (LT-HSCs) proliferate during M. avium infection, and that this response requires interferon-gamma (IFNγ) but not interferon-alpha (IFNα) signaling. Thus, the hematopoietic response to chronic bacterial infection involves the activation not only of intermediate blood progenitors but of LT-HSCs as well. IFNγ is sufficient to promote LT-HSC proliferation in vivo; furthermore, HSCs from mice deficient in IFNγ have a lower proliferative rate, indicating that baseline IFNγ tone regulates HSC activity. These findings are the first to implicate IFNγ both as a regulator of HSCs during homeostasis and under conditions of infectious stress. Our studies contribute to a deeper understanding of hematologic responses in patients with chronic infections such as HIV/AIDS or tuberculosis3-5. PMID:20535209

  2. Fucci-guided purification of hematopoietic stem cells with high repopulating activity.

    PubMed

    Yo, Masahiro; Sakaue-Sawano, Asako; Noda, Shinichi; Miyawaki, Atsushi; Miyoshi, Hiroyuki

    2015-01-30

    Fluorescent ubiquitination-based cell cycle indicator (Fucci) technology utilizing the cell cycle-dependent proteolysis of ubiquitin oscillators enables visualization of cell cycle progression in living cells. The Fucci probe consists of two chimeric fluorescent proteins, FucciS/G2/M and FucciG1, which label the nuclei of cells in S/G2/M phase green and those in G1 phase red, respectively. In this study, we generated Fucci transgenic mice and analyzed transgene expression in hematopoietic cells using flow cytometry. The FucciS/G2/M-#474 and FucciG1-#639 mouse lines exhibited high-level transgene expression in most hematopoietic cell populations. The FucciG1-#610 line expressed the transgene at high levels predominantly in the hematopoietic stem cell (HSC) population. Analysis of the HSC (CD34(-)KSL: CD34(-/low)c-Kit(+)Sca-1(+)lineage marker(-)) population in the transgenic mice expressing both FucciS/G2/M and FucciG1 (#474/#610) confirmed that more than 95% of the cells were in G0/G1 phase, although the FucciG1(red) intensity was heterogeneous. An in vivo competitive repopulation assay revealed that repopulating activity resided largely in the FucciG1(red)(high) fraction of CD34(-)KSL cells. Thus, the CD34(-)KSL HSC population can be further purified on the basis of the Fucci intensity.

  3. Distinct Hematopoietic Stem Cell Subtypes Are Differentially Regulated by TGFβ1

    PubMed Central

    Challen, Grant A.; Boles, Nathan C.; Chambers, Stuart M.; Goodell, Margaret A.

    2010-01-01

    Summary The traditional view of hematopoiesis has been that all the cells of the peripheral blood are the progeny of a unitary homogeneous pool of hematopoietic stem cells (HSCs). Recent evidence suggests that the hematopoietic system is actually maintained by a consortium of HSC subtypes with distinct functional characteristics. We show here that myeloid-biased HSCs (My-HSCs) and lymphoid-biased (Ly-HSCs) can be purified according to their capacity for Hoechst dye efflux in combination with canonical HSC markers. These phenotypes are stable under natural (aging) or artificial (serial transplantation) stress and are exacerbated in the presence of competing HSCs. My- and Ly-HSCs respond differently to TGFβ1, presenting a possible mechanism for differential regulation of HSC subtype activation. This study demonstrates definitive isolation of lineage-biased HSC subtypes and contributes to the fundamental change in view that the hematopoietic system is maintained by a continuum of HSC subtypes, rather than a functionally uniform pool. PMID:20207229

  4. MiR-24 Is Required for Hematopoietic Differentiation of Mouse Embryonic Stem Cells

    PubMed Central

    Roy, Lynn; Bikorimana, Emmanuel; Lapid, Danica; Choi, Hyewon; Nguyen, Tan; Dahl, Richard

    2015-01-01

    Overexpression of miRNA, miR-24, in mouse hematopoietic progenitors increases monocytic/ granulocytic differentiation and inhibits B cell development. To determine if endogenous miR-24 is required for hematopoiesis, we antagonized miR-24 in mouse embryonic stem cells (ESCs) and performed in vitro differentiations. Suppression of miR-24 resulted in an inability to produce blood and hematopoietic progenitors (HPCs) from ESCs. The phenotype is not a general defect in mesoderm production since we observe production of nascent mesoderm as well as mesoderm derived cardiac muscle and endothelial cells. Results from blast colony forming cell (BL-CFC) assays demonstrate that miR-24 is not required for generation of the hemangioblast, the mesoderm progenitor that gives rise to blood and endothelial cells. However, expression of the transcription factors Runx1 and Scl is greatly reduced, suggesting an impaired ability of the hemangioblast to differentiate. Lastly, we observed that known miR-24 target, Trib3, is upregulated in the miR-24 antagonized embryoid bodies (EBs). Overexpression of Trib3 alone in ESCs was able to decrease HPC production, though not as great as seen with miR-24 knockdown. These results demonstrate an essential role for miR-24 in the hematopoietic differentiation of ESCs. Although many miRNAs have been implicated in regulation of hematopoiesis, this is the first miRNA observed to be required for the specification of mammalian blood progenitors from early mesoderm. PMID:25634354

  5. Bone Marrow Derived Hematopoietic Stem and Progenitor Cells Infiltrate Allogeneic and Syngeneic Transplants

    PubMed Central

    Fan, Z.; Enjoji, K.; Tigges, J. C.; Toxavidis, V.; Tchipashivili, V.; Gong, W.; Strom, T. B.; Koulmanda, M.

    2015-01-01

    Lineage (CD3e, CD11b, GR1, B220 and Ly-76) negative hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) infiltrate islet allografts within 24 h posttransplantation. In fact, lineagenegative Sca-1+cKit+ (“LSK”) cells, a classic signature for HSCs, were also detected among these graft infiltrating cells. Lineage negative graft infiltrating cells are functionally multi-potential as determined by a standard competitive bone marrow transplant (BMT) assay. By 3 months post-BMT, both CD45.1 congenic, lineage negative HSCs/HPCs and classic “LSK” HSCs purified from islet allograft infiltrating cells, differentiate and repopulate multiple mature blood cell phenotypes in peripheral blood, lymph nodes, spleen, bone marrow and thymus of CD45.2 hosts. Interestingly, “LSK” HSCs also rapidly infiltrate syngeneic islet transplants as well as allogeneic cardiac transplants and sham surgery sites. It seems likely that an inflammatory response, not an adaptive immune response to allo-antigen, is responsible for the rapid infiltration of islet and cardiac transplants by biologically active HSCs/HPCs. The pattern of hematopoietic differentiation obtained from graft infiltrating HSCs/HPCs, cells that are recovered from inflammatory sites, as noted in the competitive BMT assay, is not precisely the same as that of intra-medullary HSCs. This does not refute the obvious multi-lineage potential of graft infiltrating HSCs/HPCs. PMID:25387427

  6. [A contribution to a study of apoptosis of hematopoietic stem cells CD34+ by flow cytometry before and after cryopreservation].

    PubMed

    Ben Nasr, M; Jenhani, F

    2008-06-01

    Apoptosis represents a particular form of programmed cell death which appears in all the damaged cells and potentially hazardous. It plays a crucial role in the development of multicellular organisms by assuring and maintaining the cellular homeostasis. Thus, apoptosis intervenes not only in the normal process of organisms' development but also in immune defence and in cancerous cells detection. Indeed, any blockage in the program of the apoptotic machinery would be responsible of some neurodegenerative and auto-immune diseases and could play a crucial role in different steps of carcinogenesis. Some researchers were very interested in studying apoptosis in hematopoietic stem cells CD34+ which could be intended to be reinfused to patients suffering from malignant diseases. They have noted that kinetic study of apoptosis of the hematopoietic stem cells CD34+ after the process of cryoconservation is also necessary. Such study permits to quantify the real and exact number of the viable hematopoietic stem cells CD34+ and therefore to eliminate such risk which would be associated with the reinfusion of apoptotic cells to patients. In this paper, we describe our contribution to hematopoietic stem cells CD34+ study by flow cytometry before and after cryopreservation by using annexin V as a specific probe allowing detection of phosphatidyl serine, one of the major features of apoptosis. But, we have noted a pronounced induction of apoptosis in peripheral mobilized blood compared to cytapheresis (after cryopreservation: 29.79% of apoptotic HSC CD34+ in peripheral mobilized blood but only 11.67% apoptotic HSC CD34+ in cytapheresis). Besides, we have noticed that hematopoietic stem cells CD34+ have had a statute of viability better than other mononuclear cells. These results put in value the reliability, the simplicity and the efficiency of flow cytometry for the analysis of apoptosis in hematopoietic stem cells CD34+ by following the intensity of fluorescence of annexin V.

  7. Mitigation of Late Renal and Pulmonary Injury After Hematopoietic Stem Cell Transplantation

    SciTech Connect

    Cohen, Eric P.; Bedi, Manpreet; Irving, Amy A.; Jacobs, Elizabeth; Tomic, Rade; Klein, John; Lawton, Colleen A.; Moulder, John E.

    2012-05-01

    Purpose: To update the results of a clinical trial that assessed whether the angiotensin-converting enzyme inhibitor captopril was effective in mitigating chronic renal failure and pulmonary-related mortality in subjects undergoing total body irradiation (TBI) in preparation for hematopoietic stem cell transplantation (HSCT). Methods and Materials: Updated records of the 55 subjects who were enrolled in this randomized controlled trial were analyzed. Twenty-eight patients received captopril, and 27 patients received placebo. Definitions of TBI-HSCT-related chronic renal failure (and relapse) were the same as those in the 2007 analysis. Pulmonary-related mortality was based on clinical or autopsy findings of pulmonary failure or infection as the primary cause of death. Follow-up data for overall and pulmonary-related mortality were supplemented by use of the National Death Index. Results: The risk of TBI-HSCT-related chronic renal failure was lower in the captopril group (11% at 4 years) than in the placebo group (17% at 4 years), but this was not statistically significant (p > 0.2). Analysis of mortality was greatly extended by use of the National Death Index, and no patients were lost to follow-up for reasons other than death prior to 67 months. Patient survival was higher in the captopril group than in the placebo group, but this was not statistically significant (p > 0.2). The improvement in survival was influenced more by a decrease in pulmonary mortality (11% risk at 4 years in the captopril group vs. 26% in the placebo group, p = 0.15) than by a decrease in chronic renal failure. There was no adverse effect on relapse risk (p = 0.4). Conclusions: Captopril therapy produces no detectable adverse effects when given after TBI. Captopril therapy reduces overall and pulmonary-related mortality after radiation-based HSCT, and there is a trend toward mitigation of chronic renal failure.

  8. Lifespan differences in hematopoietic stem cells are due to imperfect repair and unstable mean-reversion.

    PubMed

    Sieburg, Hans B; Cattarossi, Giulio; Muller-Sieburg, Christa E

    2013-04-01

    The life-long supply of blood cells depends on the long-term function of hematopoietic stem cells (HSCs). HSCs are functionally defined by their multi-potency and self-renewal capacity. Because of their self-renewal capacity, HSCs were thought to have indefinite lifespans. However, there is increasing evidence that genetically identical HSCs differ in lifespan and that the lifespan of a HSC is predetermined and HSC-intrinsic. Lifespan is here defined as the time a HSC gives rise to all mature blood cells. This raises the intriguing question: what controls the lifespan of HSCs within the same animal, exposed to the same environment? We present here a new model based on reliability theory to account for the diversity of lifespans of HSCs. Using clonal repopulation experiments and computational-mathematical modeling, we tested how small-scale, molecular level, failures are dissipated at the HSC population level. We found that the best fit of the experimental data is provided by a model, where the repopulation failure kinetics of each HSC are largely anti-persistent, or mean-reverting, processes. Thus, failure rates repeatedly increase during population-wide division events and are counteracted and decreased by repair processes. In the long-run, a crossover from anti-persistent to persistent behavior occurs. The cross-over is due to a slow increase in the mean failure rate of self-renewal and leads to rapid clonal extinction. This suggests that the repair capacity of HSCs is self-limiting. Furthermore, we show that the lifespan of each HSC depends on the amplitudes and frequencies of fluctuations in the failure rate kinetics. Shorter and longer lived HSCs differ significantly in their pre-programmed ability to dissipate perturbations. A likely interpretation of these findings is that the lifespan of HSCs is determined by preprogrammed differences in repair capacity.

  9. Lifespan Differences in Hematopoietic Stem Cells are Due to Imperfect Repair and Unstable Mean-Reversion

    PubMed Central

    Sieburg, Hans B; Cattarossi, Giulio; Muller-Sieburg, Christa E.

    2013-01-01

    The life-long supply of blood cells depends on the long-term function of hematopoietic stem cells (HSCs). HSCs are functionally defined by their multi-potency and self-renewal capacity. Because of their self-renewal capacity, HSCs were thought to have indefinite lifespans. However, there is increasing evidence that genetically identical HSCs differ in lifespan and that the lifespan of a HSC is predetermined and HSC-intrinsic. Lifespan is here defined as the time a HSC gives rise to all mature blood cells. This raises the intriguing question: what controls the lifespan of HSCs within the same animal, exposed to the same environment? We present here a new model based on reliability theory to account for the diversity of lifespans of HSCs. Using clonal repopulation experiments and computational-mathematical modeling, we tested how small-scale, molecular level, failures are dissipated at the HSC population level. We found that the best fit of the experimental data is provided by a model, where the repopulation failure kinetics of each HSC are largely anti-persistent, or mean-reverting, processes. Thus, failure rates repeatedly increase during population-wide division events and are counteracted and decreased by repair processes. In the long-run, a crossover from anti-persistent to persistent behavior occurs. The cross-over is due to a slow increase in the mean failure rate of self-renewal and leads to rapid clonal extinction. This suggests that the repair capacity of HSCs is self-limiting. Furthermore, we show that the lifespan of each HSC depends on the amplitudes and frequencies of fluctuations in the failure rate kinetics. Shorter and longer lived HSCs differ significantly in their pre-programmed ability to dissipate perturbations. A likely interpretation of these findings is that the lifespan of HSCs is determined by preprogrammed differences in repair capacity. PMID:23637582

  10. BAF180 regulates cellular senescence and hematopoietic stem cell homeostasis through p21

    PubMed Central

    Lee, Hyemin; Dai, Fangyan; Zhuang, Li; Xiao, Zhen-Dong; Kim, Jongchan; Zhang, Yilei; Ma, Li; You, M. James; Wang, Zhong; Gan, Boyi

    2016-01-01

    BAF180 (also called PBRM1), a subunit of the SWI/SNF complex, plays critical roles in the regulation of chromatin remodeling and gene transcription, and is frequently mutated in several human cancers. However, the role of mammalian BAF180 in tumor suppression and tissue maintenance in vivo remains largely unknown. Here, using a conditional somatic knockout approach, we explored the cellular and organismal functions of BAF180 in mouse. BAF180 deletion in primary mouse embryonic fibroblasts (MEFs) triggers profound cell cycle arrest, premature cellular senescence, without affecting DNA damage response or chromosomal integrity. While somatic deletion of BAF180 in adult mice does not provoke tumor development, BAF180 deficient mice exhibit defects in hematopoietic system characterized by progressive reduction of hematopoietic stem cells (HSCs), defective long-term repopulating potential, and hematopoietic lineage developmental aberrations. BAF180 deletion results in elevated p21 expression in both MEFs and HSCs. Mechanistically, we showed that BAF180 binds to p21 promoter, and BAF180 deletion enhances the binding of modified histones associated with transcriptional activation on p21 promoter. Deletion of p21 rescues cell cycle arrest and premature senescence in BAF180 deficient MEFs, and partially rescues hematopoietic defects in BAF180 deficient mice. Together, our study identifies BAF180 as a critical regulator of cellular senescence and HSC homeostasis, which is at least partially regulated through BAF180-mediated suppression of p21 expression. Our results also suggest that senescence triggered by BAF180 inactivation may serve as a failsafe mechanism to restrain BAF180 deficiency-associated tumor development, providing a conceptual framework to further understand BAF180 function in tumor biology. PMID:26992241

  11. Effect of The Receptor Activator of Nuclear Factor кB and RANK Ligand on In Vitro Differentiation of Cord Blood CD133+ Hematopoietic Stem Cells to Osteoclasts

    PubMed Central

    Kalantari, Nasim; Abroun, Saeid; Soleimani, Masoud; Kaviani, Saeid; Azad, Mehdi; Eskandari, Fatemeh; Habibi, Hossein

    2016-01-01

    Objective Receptor activator of nuclear factor-kappa B ligand (RANKL) appears to be an osteoclast-activating factor, bearing an important role in the pathogenesis of multiple myeloma. Some studies demonstrated that U-266 myeloma cell line and primary myeloma cells expressed RANK and RANKL. It had been reported that the expression of myeloid and monocytoid markers was increased by co-culturing myeloma cells with hematopoietic stem cells (HSCs). This study also attempted to show the molecular mechanism of RANK and RANKL on differentiation capability of human cord blood HSC to osteoclast, as well as expression of calcitonin receptor (CTR) on cord blood HSC surface. Materials and Methods In this experimental study, CD133+ hematopoietic stem cells were isolated from umbilical cord blood and cultured in the presence of macrophage colony-stimulating factor (M-CSF) and RANKL. Osteoclast differentiation was characterized by using tartrate-resistant acid phosphatase (TRAP) staining, giemsa staining, immunophenotyping, and reverse transcription-polymerase chain reaction (RT-PCR) assay for specific genes. Results Hematopoietic stem cells expressed RANK before and after differentiation into osteoclast. Compared to control group, flow cytometric results showed an increased expression of RANK after differentiation. Expression of CTR mRNA showed TRAP reaction was positive in some differentiated cells, including osteoclast cells. Conclusion Presence of RANKL and M-CSF in bone marrow could induce HSCs differentiation into osteoclast. PMID:27602313

  12. Outcomes in patients with multiple myeloma with TP53 deletion after autologous hematopoietic stem cell transplant.

    PubMed

    Gaballa, Sameh; Saliba, Rima M; Srour, Samer; Lu, Gary; Brammer, Jonathan E; Shah, Nina; Bashir, Qaiser; Patel, Krina; Bock, Fabian; Parmar, Simrit; Hosing, Chitra; Popat, Uday; Delgado, Ruby; Rondon, Gabriela; Shah, Jatin J; Manasanch, Elisabet E; Orlowski, Robert Z; Champlin, Richard; Qazilbash, Muzaffar H

    2016-10-01

    TP53 gene deletion is associated with poor outcomes in multiple myeloma (MM). We report the outcomes of patients with MM with and without TP53 deletion who underwent immunomodulatory drug (IMiD) and/or proteasome inhibitor (PI) induction followed by autologous hematopoietic stem cell transplant (auto-HCT). We identified 34 patients with MM and TP53 deletion who underwent IMiD and/or PI induction followed by auto-HCT at our institution during 2008-2014. We compared their outcomes with those of control patients (n = 111) with MM without TP53 deletion. Median age at auto-HCT was 59 years in the TP53-deletion group and 58 years in the control group (P = 0.4). Twenty-one patients (62%) with TP53 deletion and 69 controls (62%) achieved at least partial remission before auto-HCT (P = 0.97). Twenty-three patients (68%) with TP53 deletion and 47 controls (42%) had relapsed disease at auto-HCT (P = 0.01). Median progression-free survival was 8 months for patients with TP53 deletion and 28 months for controls (P < 0.001). Median overall survival was 21 months for patients with TP53 deletion and 56 months for controls (P < 0.001). On multivariate analysis of both groups, TP53 deletion (hazard ratio 3.4, 95% confidence interval 1.9-5.8, P < 0.001) and relapsed disease at auto-HCT (hazard ratio 2.0, 95% confidence interval 1.2-3.4, P = 0.008) were associated with a higher risk of earlier progression. In MM patients treated with PI and/or IMiD drugs, and auto-HCT, TP53 deletion and relapsed disease at the time of auto-HCT are independent predictors of progression. Novel approaches should be evaluated in this high-risk population. Am. J. Hematol. 91:E442-E447, 2016. © 2016 Wiley Periodicals, Inc.

  13. Cytokines regulate postnatal hematopoietic stem cell expansion: opposing roles of thrombopoietin and LNK

    PubMed Central

    Buza-Vidas, Natalija; Antonchuk, Jennifer; Qian, Hong; Månsson, Robert; Luc, Sidinh; Zandi, Sasan; Anderson, Kristina; Takaki, Satoshi; Nygren, Jens M.; Jensen, Christina T.; Jacobsen, Sten Eirik W.

    2006-01-01

    The role of cytokines as regulators of hematopoietic stem cell (HSC) expansion remains elusive. Herein, we identify thrombopoietin (THPO) and the cytokine signaling inhibitor LNK, as opposing physiological regulators of HSC expansion. Lnk−/− HSCs continue to expand postnatally, up to 24-fold above normal by 6 mo of age. Within the stem cell compartment, this expansion is highly selective for self-renewing long-term HSCs (LT-HSCs), which show enhanced THPO responsiveness. Lnk−/− HSC expansion is dependent on THPO, and 12-wk-old Lnk−/−Thpo−/− mice have 65-fold fewer LT-HSCs than Lnk−/− mice. Expansions of multiple myeloid, but not lymphoid, progenitors in Lnk−/− mice also proved THPO-dependent. PMID:16882979

  14. Angiopoietin-like proteins stimulate ex vivo expansion of hematopoietic stem cells.

    PubMed

    Zhang, Cheng Cheng; Kaba, Megan; Ge, Guangtao; Xie, Kathleen; Tong, Wei; Hug, Christopher; Lodish, Harvey F

    2006-02-01

    Successful ex vivo expansion of hematopoietic stem cells (HSCs) would greatly benefit the treatment of disease and the understanding of crucial questions of stem cell biology. Here we show, using microarray studies, that the HSC-supportive mouse fetal liver CD3(+) cells specifically express the proteins angiopoietin-like 2 (Angptl2) and angiopoietin-like 3 (Angptl3). We observed a 24- or 30-fold net expansion of long-term HSCs by reconstitution analysis when we cultured highly enriched HSCs for 10 days in the presence of Angptl2 or Angptl3 together with saturating levels of other growth factors. The coiled-coil domain of Angptl2 was capable of stimulating expansion of HSCs. Furthermore, angiopoietin-like 5, angiopoietin-like 7 and microfibril-associated glycoprotein 4 also supported expansion of HSCs in culture.

  15. Reverse seroconversion of hepatitis B virus after hematopoietic stem cell transplantation.

    PubMed

    Goyama, S; Kanda, Y; Nannya, Y; Kawazu, M; Takeshita, M; Niino, M; Komeno, Y; Nakamoto, T; Kurokawa, M; Tsujino, S; Ogawa, S; Aoki, K; Chiba, S; Motokura, T; Shiratori, Y; Hirai, H

    2002-11-01

    Hepatitis B virus (HBV) reactivation in patients previously positive for hepatitis B surface antibody (HBsAb), so-called reverse seroconversion, has been considered to be a rare complication after hematopoietic stem cell transplantation (HSCT). We experienced two patients who developed reverse seroconversion among nine who were HBsAb positive and Hepatitis B core antibody (HBcAb) positive before HSCT; one after autologous bone marrow transplantation (BMT) and another after allogeneic peripheral blood stem cell transplantation (PBSCT). We reviewed the literature and considered that reverse seroconversion of HBV after HSCT is not uncommon among HBsAb positive recipients. The use of corticosteroids, the lack of HBsAb in donor, and a decrease in serum HBsAb and HBcAb levels may predict reverse seroconversion after HSCT.

  16. Interleukin-3 and ex vivo maintenance of hematopoietic stem cells: facts and controversies.

    PubMed

    Ivanovic, Zoran

    2004-01-01

    Although the utilization of IL-3 in the ex vivo expansion of hematopoietic stem cells has been considered as an attractive possibility, its mode of action remains unclear and controversial. Some reports show that IL-3 maintains or even enhances primitive stem cell activity, whereas others show the opposite. The presence of serum in culture media enhances the pro-differentiating effect of IL-3 on stem cells. Conversely, addition of IL-3 to serum-free cultures improves the capacity of TPO, SCF and Flt3-ligand to promote the self-renewal of primitive stem cells. The presence or absence of serum or of some serum substitutes (in serum-free cultures), as well as other culture parameters are probably responsible for these contrasting effects of IL-3 on stem cells. However, none of the data presently evaluated bring a clear, definitive explanation to this apparent paradox. Those data that appear to be the most informative are presented and discussed in this "technical review".

  17. Milestones of Hematopoietic Stem Cell Transplantation – From First Human Studies to Current Developments

    PubMed Central

    Juric, Mateja Kralj; Ghimire, Sakhila; Ogonek, Justyna; Weissinger, Eva M.; Holler, Ernst; van Rood, Jon J.; Oudshoorn, Machteld; Dickinson, Anne; Greinix, Hildegard T.

    2016-01-01

    Since the early beginnings, in the 1950s, hematopoietic stem cell transplantation (HSCT) has become an established curative treatment for an increasing number of patients with life-threatening hematological, oncological, hereditary, and immunological diseases. This has become possible due to worldwide efforts of preclinical and clinical research focusing on issues of transplant immunology, reduction of transplant-associated morbidity, and mortality and efficient malignant disease eradication. The latter has been accomplished by potent graft-versus-leukemia (GvL) effector cells contained in the stem cell graft. Exciting insights into the genetics of the human leukocyte antigen (HLA) system allowed improved donor selection, including HLA-identical related and unrelated donors. Besides bone marrow, other stem cell sources like granulocyte-colony stimulating-mobilized peripheral blood stem cells and cord blood stem cells have been established in clinical routine. Use of reduced-intensity or non-myeloablative conditioning regimens has been associated with a marked reduction of non-hematological toxicities and eventually, non-relapse mortality allowing older patients and individuals with comorbidities to undergo allogeneic HSCT and to benefit from GvL or antitumor effects. Whereas in the early years, malignant disease eradication by high-dose chemotherapy or radiotherapy was the ultimate goal; nowadays, allogeneic HSCT has been recognized as cellular immunotherapy relying prominently on immune mechanisms and to a lesser extent on non-specific direct cellular toxicity. This chapter will summarize the key milestones of HSCT and introduce current developments. PMID:27881982

  18. Catalase inhibits ionizing radiation-induced apoptosis in hematopoietic stem and progenitor cells.

    PubMed

    Xiao, Xia; Luo, Hongmei; Vanek, Kenneth N; LaRue, Amanda C; Schulte, Bradley A; Wang, Gavin Y

    2015-06-01

    Hematologic toxicity is a major cause of mortality in radiation emergency scenarios and a primary side effect concern in patients undergoing chemo-radiotherapy. Therefore, there is a critical need for the development of novel and more effective approaches to manage this side effect. Catalase is a potent antioxidant enzyme that coverts hydrogen peroxide into hydrogen and water. In this study, we evaluated the efficacy of catalase as a protectant against ionizing radiation (IR)-induced toxicity in hematopoietic stem and progenitor cells (HSPCs). The results revealed that catalase treatment markedly inhibits IR-induced apoptosis in murine hematopoietic stem cells and hematopoietic progenitor cells. Subsequent colony-forming cell and cobble-stone area-forming cell assays showed that catalase-treated HSPCs can not only survive irradiation-induced apoptosis but also have higher clonogenic capacity, compared with vehicle-treated cells. Moreover, transplantation of catalase-treated irradiated HSPCs results in high levels of multi-lineage and long-term engraftments, whereas vehicle-treated irradiated HSPCs exhibit very limited hematopoiesis reconstituting capacity. Mechanistically, catalase treatment attenuates IR-induced DNA double-strand breaks and inhibits reactive oxygen species. Unexpectedly, we found that the radioprotective effect of catalase is associated with activation of the signal transducer and activator of transcription 3 (STAT3) signaling pathway and pharmacological inhibition of STAT3 abolishes the protective activity of catalase, suggesting that catalase may protect HSPCs against IR-induced toxicity via promoting STAT3 activation. Collectively, these results demonstrate a previously unrecognized mechanism by which catalase inhibits IR-induced DNA damage and apoptosis in HSPCs.

  19. Cytokine combinations on the potential for ex vivo expansion of murine hematopoietic stem cells.

    PubMed

    Lui, Wing Chi; Chan, Yuen Fan; Chan, Li Chong; Ng, Ray Kit

    2014-08-01

    Hematopoietic stem cell (HSC) is a rare cell population, which is capable of self-renewal and differentiation to all blood lineages. The clinical potential of HSCs for treating hematological disorders has led to the use of cytokine stimulation for ex vivo expansion. However, little is known about the molecular features of the HSC populations expanded under different cytokine combinations. We studied the expansion of murine HSCs cultured with six different cytokine combinations under serum-containing or serum-free conditions for 14days. We found that all the cytokine combinations promoted expansion of murine HSCs. Although SCF/IL-3/IL-6 induced the highest expansion of the immunophenotypic Lineage(-)Sca-1(+)c-Kit(+) (LSK) cells at day 14, over 90% of them were FcεRIα(+) mast cells. In contrast, the serum-free medium with SCF/Flt3-L/IL-11 effectively promoted the expansion of LSK/FcεRIα(-) HSCs by over 50-fold. HSCs expanded by SCF/Flt3-L/IL-11 combination formed compact hematopoietic colonies and demonstrated a higher degree of multipotency compared to the HSCs cultured with other cytokine combinations. Surprisingly, despite the same LSK/FcεRIα(-) immunophenotype, HSCs cultured with different cytokine combinations demonstrated differential patterns of hematopoietic gene expression. HSCs cultured with SCF/Flt3-L/IL-11 maintained a transcription profile resembling that of freshly isolated HSCs. We propose that serum-free medium supplemented with SCF/Flt3-L/IL-11 is the optimal culture condition to maintain the stemness of ex vivo expanded HSCs. This study used molecular characterization of cytokine-expanded murine HSCs to facilitate the selection of cytokine combinations that could induce fully competent HSC for clinical applications.

  20. Aging-like Phenotype and Defective Lineage Specification in SIRT1-Deleted Hematopoietic Stem and Progenitor Cells

    PubMed Central

    Rimmelé, Pauline; Bigarella, Carolina L.; Liang, Raymond; Izac, Brigitte; Dieguez-Gonzalez, Rebeca; Barbet, Gaetan; Donovan, Michael; Brugnara, Carlo; Blander, Julie M.; Sinclair, David A.; Ghaffari, Saghi

    2014-01-01

    Summary Aging hematopoietic stem cells (HSCs) exhibit defective lineage specification that is thought to be central to increased incidence of myeloid malignancies and compromised immune competence in the elderly. Mechanisms underlying these age-related defects remain largely unknown. We show that the deacetylase Sirtuin (SIRT)1 is required for homeostatic HSC maintenance. Differentiation of young SIRT1-deleted HSCs is skewed toward myeloid lineage associated with a significant decline in the lymphoid compartment, anemia, and altered expression of associated genes. Combined with HSC accumulation of damaged DNA and expression patterns of age-linked molecules, these have striking overlaps with aged HSCs. We further show that SIRT1 controls HSC homeostasis via the longevity transcription factor FOXO3. These findings suggest that SIRT1 is essential for HSC homeostasis and lineage specification. They also indicate that SIRT1 might contribute to delaying HSC aging. PMID:25068121

  1. Aging-like phenotype and defective lineage specification in SIRT1-deleted hematopoietic stem and progenitor cells.

    PubMed

    Rimmelé, Pauline; Bigarella, Carolina L; Liang, Raymond; Izac, Brigitte; Dieguez-Gonzalez, Rebeca; Barbet, Gaetan; Donovan, Michael; Brugnara, Carlo; Blander, Julie M; Sinclair, David A; Ghaffari, Saghi

    2014-07-08

    Aging hematopoietic stem cells (HSCs) exhibit defective lineage specification that is thought to be central to increased incidence of myeloid malignancies and compromised immune competence in the elderly. Mechanisms underlying these age-related defects remain largely unknown. We show that the deacetylase Sirtuin (SIRT)1 is required for homeostatic HSC maintenance. Differentiation of young SIRT1-deleted HSCs is skewed toward myeloid lineage associated with a significant decline in the lymphoid compartment, anemia, and altered expression of associated genes. Combined with HSC accumulation of damaged DNA and expression patterns of age-linked molecules, these have striking overlaps with aged HSCs. We further show that SIRT1 controls HSC homeostasis via the longevity transcription factor FOXO3. These findings suggest that SIRT1 is essential for HSC homeostasis and lineage specification. They also indicate that SIRT1 might contribute to delaying HSC aging.

  2. Sustained expression of alpha1-antitrypsin after transplantation of manipulated hematopoietic stem cells.

    PubMed

    Wilson, Andrew A; Kwok, Letty W; Hovav, Avi-Hai; Ohle, Sarah J; Little, Frederic F; Fine, Alan; Kotton, Darrell N

    2008-08-01

    Inherited mutations in the human alpha(1)-antitrypsin (AAT) gene lead to deficient circulating levels of AAT protein and a predisposition to developing emphysema. Gene therapy for individuals deficient in AAT is an attractive goal, because transfer of a normal AAT gene into any cell type able to secrete AAT should reverse deficient AAT levels and attenuate progression of lung disease. Here we present an approach for AAT gene transfer based on the transplantation of lentivirally transduced hematopoietic stem cells (HSCs). We develop a novel dual-promoter lentiviral system to transfer normal human AAT cDNA as well as a fluorescent tracking "reporter gene" into murine HSCs. After transplantation of 3,000 transduced HSCs into irradiated mouse recipients, we demonstrate simultaneous and sustained systemic expression of both genes in vivo for at least 31 weeks. The stem cells transduced with this protocol maintain multipotency, self-renewal potential, and the ability to reconstitute the hematopoietic systems of both primary and secondary recipients. This lentiviral-based system may be useful for investigations requiring the systemic secretion of anti-proteases or cytokines relevant to the pathogenesis of a variety of lung diseases.

  3. An epigenetic component of hematopoietic stem cell aging amenable to reprogramming into a young state.

    PubMed

    Wahlestedt, Martin; Norddahl, Gudmundur L; Sten, Gerd; Ugale, Amol; Frisk, Mary-Ann Micha; Mattsson, Ragnar; Deierborg, Tomas; Sigvardsson, Mikael; Bryder, David

    2013-05-23

    Aging of hematopoietic stem cells (HSCs) leads to several functional changes, including alterations affecting self-renewal and differentiation. Although it is well established that many of the age-induced changes are intrinsic to HSCs, less is known regarding the stability of this state. Here, we entertained the hypothesis that HSC aging is driven by the acquisition of permanent genetic mutations. To examine this issue at a functional level in vivo, we applied induced pluripotent stem (iPS) cell reprogramming of aged hematopoietic progenitors and allowed the resulting aged-derived iPS cells to reform hematopoiesis via blastocyst complementation. Next, we functionally characterized iPS-derived HSCs in primary chimeras and after the transplantation of re-differentiated HSCs into new hosts, the gold standard to assess HSC function. Our data demonstrate remarkably similar functional properties of iPS-derived and endogenous blastocyst-derived HSCs, despite the extensive chronological and proliferative age of the former. Our results, therefore, favor a model in which an underlying, but reversible, epigenetic component is a hallmark of HSC aging.

  4. Collaboration between hematopoietic stem cell donor registry and cord blood banks.

    PubMed

    Raffoux, C

    2010-10-01

    Despite the huge number of volunteer donors registered worldwide, only a mean of 50% of patients not having a family donor are transplanted with an unrelated donor. Since 1990, a network has been implemented among some European registries. With the help of the European Community, a more sophisticated network has been developed, the European Marrow Donor Information System (EMDIS). A new project underwent development by registries and the Bone Marrow Donor Worldwide: the EMDIS Cord Blood Registry. It will in the future permit to obtain after a search request, one report containing all of the best donors worldwide and best umbilic cord blood for each patient, taking into account possible double cord blood transplantations and other factors, such as number of nucleated cells, number of CD34+ cells, and methods of reduction. Only a strong collaboration between all hematopoietic stem cell registries and cord blood banks would allow a Registry to propose the best donor/cord blood unit for each patient in each country. Progress in the field of hematopoietic stem cell transplantation may be obtained by the parallel development of cord blood banks worldwide and bone marrow donor registries among countries that include minorities.

  5. PRES in Children Undergoing Hematopoietic Stem Cell or Solid Organ Transplantation.

    PubMed

    Masetti, Riccardo; Cordelli, Duccio Maria; Zama, Daniele; Vendemini, Francesca; Biagi, Carlotta; Franzoni, Emilio; Pession, Andrea

    2015-05-01

    Posterior reversible encephalopathy syndrome (PRES) is a clinical neuroradiologic entity that is becoming increasingly well known and documented in pediatrics. It is characterized by a variable association of seizures, headache, vomiting, altered mental status, visual disturbances, and seizures, as well as imaging suggesting white-gray matter edema involving the posterior regions of the central nervous system in most cases. The pathophysiology of PRES remains unclear. Although PRES has been associated with a widespread range of clinical conditions, namely infections, adverse drug events, autoimmune diseases, and many others, its onset after hematopoietic stem cell and solid organ transplantation remains the most commonly reported. Historically, PRES has proved to be generally reversible and associated with good clinical outcomes; however, severe complications, sometimes life-threatening, can also occur. Most reported cases of childhood PRES after hematopoietic stem cell or solid organ transplantation have been case reports or series across a broad spectrum of different transplant settings, and no clear consensus exists regarding how best to manage the syndrome. Thus, in this article, we provide a comprehensive review of the pathophysiological, clinical, and diagnostic aspects of PRES in children, with a specific focus on the transplant scenario. Differential diagnoses with other neurologic complications after pediatric transplantation are reviewed, and crucial issues in the management of PRES and the development of future research are ultimately addressed.

  6. Hematopoietic Stem Cell Therapy to Countermeasure Cancer in Astronauts during Exploration of Deep Space

    NASA Technical Reports Server (NTRS)

    Ohi, S.; Kindred, R. P.; Roach, A-N.; Edossa, A.; Kim, B. C.; Gonda, S. R.; Emami, K.

    2004-01-01

    Exposure to cosmic radiation can cause chromosomal mutations, which may lead to cancer in astronauts engaged in space exploration. Therefore, our goals are to develop countermeasures to prevent space-induced cancer using hematopoietic stem cell therapy (HSCT) and gene therapy. This presentation focuses on HSCT for cancer. Our previous experiments on a simulated, space-induced immuno-deficiency model (mouse hind limb unloading ) indicated that transplanted hematopoietic stem cells (HSCs) could enhance the host's immunity by effectively eliminating bacterial infection (Ohi S, et. al. J Grav Physiol 10, P63-64, 2003; Ohi S, et. al. Proceedings of the Space Technology and Applications International Forum (STAIF) . American Institute of Physics, New York, pp. 938-950, 2004). Hence, we hypothesized that the HSCs might be effective in combating cancer as well. Studies of cocultured mouse HSCs with beta-galactosidase marked rat gliosarcoma spheroids (9L/lacZ), a cancer model, indicated antagonistic interactions , resulting in destruction of the spheroids by HSCs. Trypan Blue dye-exclusion assays were consistent with the conclusion. These results show potential usehlness of HSCT for cancer. Currently, the NASA Hydrodynamic Focusing Bioreactor (HFB), a space analog tissue/cell culture system, is being used to study invasion of the gliosarcoma (GS) spheroids into mouse brain with or without co-cultured HSCs. This may simulate the metastasis of gliosarcoma to brain. There is a tendency for the HSCs to inhibit invasion of GS spheroids into brain, as evidenced by the X-gal staining.

  7. Absence of WASp Enhances Hematopoietic and Megakaryocytic Differentiation in a Human Embryonic Stem Cell Model

    PubMed Central

    Toscano, Miguel G; Muñoz, Pilar; Sánchez-Gilabert, Almudena; Cobo, Marién; Benabdellah, Karim; Anderson, Per; Ramos-Mejía, Verónica; Real, Pedro J; Neth, Olaf; Molinos-Quintana, Agueda; Gregory, Philip D; Holmes, Michael C; Martin, Francisco

    2016-01-01

    The Wiskott-Aldrich syndrome (WAS) is an X-linked primary immunodeficiency caused by mutations in the WAS gene and characterized by severe thrombocytopenia. Although the role of WASp in terminally differentiated lymphocytes and myeloid cells is well characterized, its role in early hematopoietic differentiation and in platelets (Plts) biology is poorly understood. In the present manuscript, we have used zinc finger nucleases targeted to the WAS locus for the development of two isogenic WAS knockout (WASKO) human embryonic stem cell lines (hESCs). Upon hematopoietic differentiation, hESCs-WASKO generated increased ratios of CD34+CD45+ progenitors with altered responses to stem cell factor compared to hESCs-WT. When differentiated toward the megakaryocytic linage, hESCs-WASKO produced increased numbers of CD34+CD41+ progenitors, megakaryocytes (MKs), and Plts. hESCs-WASKO-derived MKs and Plts showed altered phenotype as well as defective responses to agonist, mimicking WAS patients MKs and Plts defects. Interestingly, the defects were more evident in WASp-deficient MKs than in WASp-deficient Plts. Importantly, ectopic WAS expression using lentiviral vectors restored normal Plts development and MKs responses. These data validate the AND-1_WASKO cell lines as a human cellular model for basic research and for preclinical studies for WAS. PMID:26502776

  8. Hypercholesterolemia Induces Oxidant Stress That Accelerates the Ageing of Hematopoietic Stem Cells

    PubMed Central

    Tie, Guodong; Messina, Katharine E.; Yan, Jinglian; Messina, Julia A.; Messina, Louis M.

    2014-01-01

    Background Clinical studies suggest that hypercholesterolemia may cause ageing in hematopoietic stem cells (HSCs) because ageing‐associated alterations were found in peripheral blood cells and their bone marrow residing precursors in patients with advanced atherosclerosis. We hypothesized that hypercholesterolemia induces oxidant stress in hematopoietic stems cells that accelerates their ageing. Methods and Results Here we show that HSCs from ApoE−/− mice, as well as HSCs from C57Bl/6 mice fed a high cholesterol diet (HCD) accumulated oxLDL and had greater ROS levels. In accordance, the expression pattern of the genes involved in ROS metabolism changed significantly in HSCs from ApoE−/− mice. Hypercholesterolemia caused a significant reduction in phenotypically defined long‐term HSC compartment, telomere length, and repopulation capacity of KTLS cells, indicating accelerated ageing in these cells. Gene array analysis suggested abnormal cell cycle status, and the key cell cycle regulators including p19ARF, p27Kip1 and p21Waf1 were upregulated in KTLS cells from hypercholesterolemic mice. These effects were p38‐dependent and reversed in vivo by treatment of hypercholesterolemic mice with antioxidant N‐acetylcysteine. The oxidant stress also caused aberrant expression of Notch1 that caused loss of quiescence and proliferation leading to the expansion of KTLS compartment in hypercholesterolemic mice. Conclusion Taken together, we provide evidence that hypercholesterolemia can cause oxidant stress that accelerates the ageing and impairs the reconstitution capacity of HSCs. PMID:24470519

  9. Bacterial c-di-GMP affects hematopoietic stem/progenitors and their niches through STING.

    PubMed

    Kobayashi, Hiroshi; Kobayashi, Chiharu I; Nakamura-Ishizu, Ayako; Karigane, Daiki; Haeno, Hiroshi; Yamamoto, Kimiyo N; Sato, Taku; Ohteki, Toshiaki; Hayakawa, Yoshihiro; Barber, Glen N; Kurokawa, Mineo; Suda, Toshio; Takubo, Keiyo

    2015-04-07

    Upon systemic bacterial infection, hematopoietic stem and progenitor cells (HSPCs) migrate to the periphery in order to supply a sufficient number of immune cells. Although pathogen-associated molecular patterns reportedly mediate HSPC activation, how HSPCs detect pathogen invasion in vivo remains elusive. Bacteria use the second messenger bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) for a variety of activities. Here, we report that c-di-GMP comprehensively regulated both HSPCs and their niche cells through an innate immune sensor, STING, thereby inducing entry into the cell cycle and mobilization of HSPCs while decreasing the number and repopulation capacity of long-term hematopoietic stem cells. Furthermore, we show that type I interferon acted as a downstream target of c-di-GMP to inhibit HSPC expansion in the spleen, while transforming growth factor-β was required for c-di-GMP-dependent splenic HSPC expansion. Our results define machinery underlying the dynamic regulation of HSPCs and their niches during bacterial infection through c-di-GMP/STING signaling.

  10. Late-Onset Cerebral Toxoplasmosis After Allogeneic Hematopoietic Stem Cell Transplantation.

    PubMed

    Khalaf, Ahmed M; Hashim, Mahmoud A; Alsharabati, Mohammed; Fallon, Kenneth; Cure, Joel K; Pappas, Peter; Mineishi, Shin; Saad, Ayman

    2017-03-10

    BACKGROUND Toxoplasmosis is an uncommon but potentially fatal complication following allogeneic hematopoietic stem cell transplantation (HCT). Post-transplant toxoplasmosis is often a reactivation of prior infection and typically occurs within the first 6 months of transplant. Herein, we report that cerebral toxoplasmosis may occur 22 months after allogeneic hematopoietic stem cell transplantation. CASE REPORT We describe a case of cerebral toxoplasmosis that occurred 22 months after an allogeneic HCT while the patient was on aerosolized pentamidine for Pneumocystis jiroveci pneumonia (PCP) prophylaxis. The disease was only diagnosed after brain biopsy because of atypical MRI appearance of the cerebral lesion and negative Toxoplasma gondii IgG antibody test result in the cerebrospinal fluid (CSF). The patient received pyrimethamine and sulfadiazine treatment, with dramatic improvement after several months. The patient is alive 2 years after infection diagnosis, with no evidence of disease and is off Toxoplasma prophylaxis. CONCLUSIONS Cerebral toxoplasmosis can occur late after allogeneic HCT while patients are on immunosuppression therapy, with atypical features on imaging studies and negative Toxoplasma gondii IgG antibody test result in the CSF. Pre-transplant serologic screening for T. gondii antibodies in allogeneic transplant candidates is warranted. Brain biopsy can be a helpful diagnostic tool for cerebral lesions.

  11. Late-Onset Cerebral Toxoplasmosis After Allogeneic Hematopoietic Stem Cell Transplantation

    PubMed Central

    Khalaf, Ahmed M.; Hashim, Mahmoud A.; Alsharabati, Mohammed; Fallon, Kenneth; Cure, Joel K.; Pappas, Peter; Mineishi, Shin; Saad, Ayman

    2017-01-01

    Patient: Male, 44 Final Diagnosis: Cerebral toxoplasmosis after HSCT Symptoms: Hemiparesis • muscle weakness Medication: — Clinical Procedure: — Specialty: Hematology Objective: Unusual clinical course Background: Toxoplasmosis is an uncommon but potentially fatal complication following allogeneic hematopoietic stem cell transplantation (HCT). Post-transplant toxoplasmosis is often a reactivation of prior infection and typically occurs within the first 6 months of transplant. Herein, we report that cerebral toxoplasmosis may occur 22 months after allogeneic hematopoietic stem cell transplantation. Case Report: We describe a case of cerebral toxoplasmosis that occurred 22 months after an allogeneic HCT while the patient was on aerosolized pentamidine for Pneumocystis jiroveci pneumonia (PCP) prophylaxis. The disease was only diagnosed after brain biopsy because of atypical MRI appearance of the cerebral lesion and negative Toxoplasma gondii IgG antibody test result in the cerebrospinal fluid (CSF). The patient received pyrimethamine and sulfadiazine treatment, with dramatic improvement after several months. The patient is alive 2 years after infection diagnosis, with no evidence of disease and is off Toxoplasma prophylaxis. Conclusions: Cerebral toxoplasmosis can occur late after allogeneic HCT while patients are on immunosuppression therapy, with atypical features on imaging studies and negative Toxoplasma gondii IgG antibody test result in the CSF. Pre-transplant serologic screening for T. gondii antibodies in allogeneic transplant candidates is warranted. Brain biopsy can be a helpful diagnostic tool for cerebral lesions. PMID:28280256

  12. Marrow-inspired matrix cues rapidly affect early fate decisions of hematopoietic stem and progenitor cells

    PubMed Central

    Choi, Ji Sun; Harley, Brendan A. C.

    2017-01-01

    Hematopoiesis is the physiological process where hematopoietic stem cells (HSCs) continuously generate the body’s complement of blood and immune cells within unique regions of the bone marrow termed niches. Although previous investigations have revealed gradients in cellular and extracellular matrix (ECM) content across the marrow, and matrix elasticity and ligand type are believed to be strong regulators of stem cell fate, the impact of biophysical signals on HSC response is poorly understood. Using marrow-inspired ECM ligand–coated polyacrylamide substrates that present defined stiffness and matrix ligand cues, we demonstrate that the interplay between integrin engagement and myosin II activation processes affects the morphology, proliferation, and myeloid lineage specification of primary murine HSCs within 24 hours ex vivo. Notably, the impact of discrete biophysical signals on HSC fate decisions appears to be correlated to known microenvironmental transitions across the marrow. The combination of fibronectin and marrow matrix-associated stiffness was sufficient to maintain hematopoietic progenitor populations, whereas collagen and laminin enhanced proliferation and myeloid differentiation, respectively. Inhibiting myosin II–mediated contraction or adhesion to fibronectin via specific integrins (α5β1 and ανβ3) selectively abrogated the impact of the matrix environment on HSC fate decisions. Together, these findings indicate that adhesive interactions and matrix biophysical properties are critical design considerations in the development of biomaterials to direct HSC behavior in vitro. PMID:28070554

  13. Correction of the sickle cell disease mutation in human hematopoietic stem/progenitor cells.

    PubMed

    Hoban, Megan D; Cost, Gregory J; Mendel, Matthew C; Romero, Zulema; Kaufman, Michael L; Joglekar, Alok V; Ho, Michelle; Lumaquin, Dianne; Gray, David; Lill, Georgia R; Cooper, Aaron R; Urbinati, Fabrizia; Senadheera, Shantha; Zhu, Allen; Liu, Pei-Qi; Paschon, David E; Zhang, Lei; Rebar, Edward J; Wilber, Andrew; Wang, Xiaoyan; Gregory, Philip D; Holmes, Michael C; Reik, Andreas; Hollis, Roger P; Kohn, Donald B

    2015-04-23

    Sickle cell disease (SCD) is characterized by a single point mutation in the seventh codon of the β-globin gene. Site-specific correction of the sickle mutation in hematopoietic stem cells would allow for permanent production of normal red blood cells. Using zinc-finger nucleases (ZFNs) designed to flank the sickle mutation, we demonstrate efficient targeted cleavage at the β-globin locus with minimal off-target modification. By co-delivering a homologous donor template (either an integrase-defective lentiviral vector or a DNA oligonucleotide), high levels of gene modification were achieved in CD34(+) hematopoietic stem and progenitor cells. Modified cells maintained their ability to engraft NOD/SCID/IL2rγ(null) mice and to produce cells from multiple lineages, although with a reduction in the modification levels relative to the in vitro samples. Importantly, ZFN-driven gene correction in CD34(+) cells from the bone marrow of patients with SCD resulted in the production of wild-type hemoglobin tetramers.

  14. The Diagnostic Value of Hepatic Arterial Velocity in Venoocclusive Disease After Pediatric Hematopoietic Stem Cell Transplantation.

    PubMed

    Kaya, Nusabe; Erbey, Fatih; Atay, Didem; Akçay, Arzu; Bozkurt, Ceyhun; Ozturk, Gulyuz

    2017-03-06

    The aim of this study was to determine usefulness of measurements of maximal systolic velocity of the hepatic artery with Doppler ultrasonography in the diagnosis of venoocclusive disease (VOD) after hematopoietic stem cell transplantation. We prospectively obtained 5 sonograms per patient: pretransplantation, day +1, +7, +14, and +28 on 36 nonconsecutive children who underwent hematopoietic stem cell transplantation. We examined the hepatic artery, the portal, hepatic and splenic veins, the thickness of the gallbladder wall, the presence of ascites, and the liver and spleen size. The diagnosis of VOD was based on clinical and laboratory data. Patients were divided into 2 groups: those with VOD (n=18) and those without VOD (n=18). The variance of 2 groups was analyzed. Vmax of the hepatic artery had a strong correlation with clinical VOD diagnosis (P<0.001). There was no statistically significant difference in the other Doppler parameters. The results of our study showed that the measurement of Vmax of the hepatic artery can provide important support in the diagnosis of VOD and can be useful in the follow-up of treatment response.

  15. Cytohesin 1 regulates homing and engraftment of human hematopoietic stem and progenitor cells

    PubMed Central

    Foster, Katie; Potrzebowska, Katarzyna; Miharada, Natsumi; Torngren, Therese; Bonnet, Dominique

    2017-01-01

    Adhesion is a key component of hematopoietic stem cell regulation mediating homing and retention to the niche in the bone marrow. Here, using an RNA interference screen, we identify cytohesin 1 (CYTH1) as a critical mediator of adhesive properties in primary human cord blood–derived hematopoietic stem and progenitor cells (HSPCs). Knockdown of CYTH1 disrupted adhesion of HSPCs to primary human mesenchymal stroma cells. Attachment to fibronectin and ICAM1, 2 integrin ligands, was severely impaired, and CYTH1-deficient cells showed a reduced integrin β1 activation response, suggesting that CYTH1 mediates integrin-dependent functions. Transplantation of CYTH1-knockdown cells to immunodeficient mice resulted in significantly lower long-term engraftment levels, associated with a reduced capacity of the transplanted cells to home to the bone marrow. Intravital microscopy showed that CYTH1 deficiency profoundly affects HSPC mobility and localization within the marrow space and thereby impairs proper lodgment into the niche. Thus, CYTH1 is a novel major regulator of adhesion and engraftment in human HSPCs through mechanisms that, at least in part, involve the activation of integrins. PMID:27899358

  16. Pediatric donor cell leukemia after allogeneic hematopoietic stem cell transplantation in AML patient from related donor.

    PubMed

    Bobadilla-Morales, Lucina; Pimentel-Gutiérrez, Helia J; Gallegos-Castorena, Sergio; Paniagua-Padilla, Jenny A; Ortega-de-la-Torre, Citlalli; Sánchez-Zubieta, Fernando; Silva-Cruz, Rocio; Corona-Rivera, Jorge R; Zepeda-Moreno, Abraham; González-Ramella, Oscar; Corona-Rivera, Alfredo

    2015-01-01

    Here we present a male patient with acute myeloid leukemia (AML) initially diagnosed as M5 and with karyotype 46,XY. After induction therapy, he underwent a HLA-matched allogeneic hematopoietic stem cell transplantation, and six years later he relapsed as AML M1 with an abnormal karyotype //47,XX,+10[2]/47,XX,+11[3]/48,XX,+10,+11[2]/46,XX[13]. Based on this, we tested the possibility of donor cell origin by FISH and molecular STR analysis. We found no evidence of Y chromosome presence by FISH and STR analysis consistent with the success of the allogeneic hematopoietic stem cell transplantation from the female donor. FISH studies confirmed trisomies and no evidence of MLL translocation either p53 or ATM deletion. Additionally 28 fusion common leukemia transcripts were evaluated by multiplex reverse transcriptase-polymerase chain reaction assay and were not rearranged. STR analysis showed a complete donor chimerism. Thus, donor cell leukemia (DCL) was concluded, being essential the use of cytological and molecular approaches. Pediatric DCL is uncommon, our patient seems to be the sixth case and additionally it presented a late donor cell leukemia appearance. Different extrinsic and intrinsic mechanisms have been considered to explain this uncommon finding as well as the implications to the patient.

  17. Myelodysplastic syndrome evolving from aplastic anemia treated with immunosuppressive therapy: efficacy of hematopoietic stem cell transplantation

    PubMed Central

    Kim, Sung-Yong; Le Rademacher, Jennifer; Antin, Joseph H.; Anderlini, Paolo; Ayas, Mouhab; Battiwalla, Minoo; Carreras, Jeanette; Kurtzberg, Joanne; Nakamura, Ryotaro; Eapen, Mary; Deeg, H. Joachim

    2014-01-01

    A proportion of patients with aplastic anemia who are treated with immunosuppressive therapy develop clonal hematologic disorders, including post-aplastic anemia myelodysplastic syndrome. Many will proceed to allogeneic hematopoietic stem cell transplantation. We identified 123 patients with post-aplastic anemia myelodysplastic syndrome who from 1991 through 2011 underwent allogeneic hematopoietic stem cell transplantation, and in a matched-pair analysis compared outcome to that in 393 patients with de novo myelodysplastic syndrome. There was no difference in overall survival. There were no significant differences with regard to 5-year probabilities of relapse, non-relapse mortality, relapse-free survival and overall survival; these were 14%, 40%, 46% and 49% for post-aplastic anemia myelodysplastic syndrome, and 20%, 33%, 47% and 49% for de novo myelodysplastic syndrome, respectively. In multivariate analysis, relapse (hazard ratio 0.71; P=0.18), non-relapse mortality (hazard ratio 1.28; P=0.18), relapse-free survival (hazard ratio 0.97; P=0.80) and overall survival (hazard ratio 1.02; P=0.88) of post-aplastic anemia myelodysplastic syndrome were similar to those of patients with de novo myelodysplastic syndrome. Cytogenetic risk was independently associated with overall survival in both groups. Thus, transplant success in patients with post-aplastic anemia myelodysplastic syndrome was similar to that in patients with de novo myelodysplastic syndrome, and cytogenetics was the only significant prognostic factor for post-aplastic anemia myelodysplastic syndrome patients. PMID:25107891

  18. Myelodysplastic syndrome evolving from aplastic anemia treated with immunosuppressive therapy: efficacy of hematopoietic stem cell transplantation.

    PubMed

    Kim, Sung-Yong; Le Rademacher, Jennifer; Antin, Joseph H; Anderlini, Paolo; Ayas, Mouhab; Battiwalla, Minoo; Carreras, Jeanette; Kurtzberg, Joanne; Nakamura, Ryotaro; Eapen, Mary; Deeg, H Joachim

    2014-12-01

    A proportion of patients with aplastic anemia who are treated with immunosuppressive therapy develop clonal hematologic disorders, including post-aplastic anemia myelodysplastic syndrome. Many will proceed to allogeneic hematopoietic stem cell transplantation. We identified 123 patients with post-aplastic anemia myelodysplastic syndrome who from 1991 through 2011 underwent allogeneic hematopoietic stem cell transplantation, and in a matched-pair analysis compared outcome to that in 393 patients with de novo myelodysplastic syndrome. There was no difference in overall survival. There were no significant differences with regard to 5-year probabilities of relapse, non-relapse mortality, relapse-free survival and overall survival; these were 14%, 40%, 46% and 49% for post-aplastic anemia myelodysplastic syndrome, and 20%, 33%, 47% and 49% for de novo myelodysplastic syndrome, respectively. In multivariate analysis, relapse (hazard ratio 0.71; P=0.18), non-relapse mortality (hazard ratio 1.28; P=0.18), relapse-free survival (hazard ratio 0.97; P=0.80) and overall survival (hazard ratio 1.02; P=0.88) of post-aplastic anemia myelodysplastic syndrome were similar to those of patients with de novo myelodysplastic syndrome. Cytogenetic risk was independently associated with overall survival in both groups. Thus, transplant success in patients with post-aplastic anemia myelodysplastic syndrome was similar to that in patients with de novo myelodysplastic syndrome, and cytogenetics was the only significant prognostic factor for post-aplastic anemia myelodysplastic syndrome patients.

  19. Hhex is Required at Multiple Stages of Adult Hematopoietic Stem and Progenitor Cell Differentiation

    PubMed Central

    Goodings, Charnise; Smith, Elizabeth; Mathias, Elizabeth; Elliott, Natalina; Cleveland, Susan M.; Tripathi, Rati M.; Layer, Justin H.; Chen, Xi; Guo, Yan; Shyr, Yu; Hamid, Rizwan; Du, Yang; Davé, Utpal P.

    2015-01-01

    Hhex encodes a homeodomain transcription factor that is widely expressed in hematopoietic stem and progenitor cell populations. Its enforced expression induces T-cell leukemia and we have implicated it as an important oncogene in early T-cell precursor leukemias where it is immediately downstream of an LMO2-associated protein complex. Conventional Hhex knockouts cause embryonic lethality precluding analysis of adult hematopoiesis. Thus, we induced highly efficient conditional knockout (cKO) using vav-Cre transgenic mice. Hhex cKO mice were viable and born at normal litter sizes. At steady state, we observed a defect in B-cell development that we localized to the earliest B-cell precursor, the pro-B-cell stage. Most remarkably, bone marrow transplantation using Hhex cKO donor cells revealed a more profound defect in all hematopoietic lineages. In contrast, sublethal irradiation resulted in normal myeloid cell repopulation of the bone marrow but markedly impaired repopulation of T- and B-cell compartments. We noted that Hhex cKO stem and progenitor cell populations were skewed in their distribution and showed enhanced proliferation compared to WT cells. Our results implicate Hhex in the maintenance of LT-HSCs and in lineage allocation from multipotent progenitors especially in stress hematopoiesis. PMID:25968920

  20. Absence of WASp Enhances Hematopoietic and Megakaryocytic Differentiation in a Human Embryonic Stem Cell Model.

    PubMed

    Toscano, Miguel G; Muñoz, Pilar; Sánchez-Gilabert, Almudena; Cobo, Marién; Benabdellah, Karim; Anderson, Per; Ramos-Mejía, Verónica; Real, Pedro J; Neth, Olaf; Molinos-Quintana, Agueda; Gregory, Philip D; Holmes, Michael C; Martin, Francisco

    2016-02-01

    The Wiskott-Aldrich syndrome (WAS) is an X-linked primary immunodeficiency caused by mutations in the WAS gene and characterized by severe thrombocytopenia. Although the role of WASp in terminally differentiated lymphocytes and myeloid cells is well characterized, its role in early hematopoietic differentiation and in platelets (Plts) biology is poorly understood. In the present manuscript, we have used zinc finger nucleases targeted to the WAS locus for the development of two isogenic WAS knockout (WASKO) human embryonic stem cell lines (hESCs). Upon hematopoietic differentiation, hESCs-WASKO generated increased ratios of CD34(+)CD45(+) progenitors with altered responses to stem cell factor compared to hESCs-WT. When differentiated toward the megakaryocytic linage, hESCs-WASKO produced increased numbers of CD34(+)CD41(+) progenitors, megakaryocytes (MKs), and Plts. hESCs-WASKO-derived MKs and Plts showed altered phenotype as well as defective responses to agonist, mimicking WAS patients MKs and Plts defects. Interestingly, the defects were more evident in WASp-deficient MKs than in WASp-deficient Plts. Importantly, ectopic WAS expression using lentiviral vectors restored normal Plts development and MKs responses. These data validate the AND-1_WASKO cell lines as a human cellular model for basic research and for preclinical studies for WAS.

  1. Hematopoietic stem cell gene therapy as a treatment for autoimmune diseases.

    PubMed

    Alderuccio, Frank; Nasa, Zeyad; Chung, Jieyu; Ko, Hyun-Ja; Chan, James; Toh, Ban-Hock

    2011-10-03

    A key function of the immune system is to protect us from foreign pathogens such as viruses, bacteria, fungi and multicellular parasites. However, it is also important in many other aspects of human health such as cancer surveillance, tissue transplantation, allergy and autoimmune disease. Autoimmunity can be defined as a chronic immune response that targets self-antigens leading to tissue pathology and clinical disease. Autoimmune diseases, as a group of diseases that include type 1 diabetes, multiple sclerosis, rheumatoid arthritis and systemic lupus erythematosus, have no effective cures, and treatment is often based on long-term broad-spectrum immunosuppressive regimes. While a number of strategies aimed at providing disease specific treatments are being explored, one avenue of study involves the use of hematopoietic stem cells to promote tolerance. In this manuscript, we will review the literature in this area but in particular examine the relatively new experimental field of gene therapy and hematopoietic stem cell transplantation as a molecular therapeutic strategy to combat autoimmune disease.

  2. ATF4 plays a pivotal role in the development of functional hematopoietic stem cells in mouse fetal liver.

    PubMed

    Zhao, Yunze; Zhou, Jie; Liu, Dan; Dong, Fang; Cheng, Hui; Wang, Weili; Pang, Yakun; Wang, Yajie; Mu, Xiaohuan; Ni, Yanli; Li, Zhuan; Xu, Huiyu; Hao, Sha; Wang, Xiaochen; Ma, Shihui; Wang, Qian-fei; Xiao, Guozhi; Yuan, Weiping; Liu, Bing; Cheng, Tao

    2015-11-19

    The fetal liver (FL) serves as a predominant site for expansion of functional hematopoietic stem cells (HSCs) during mouse embryogenesis. However, the mechanisms for HSC development in FL remain poorly understood. In this study, we demonstrate that deletion of activating transcription factor 4 (ATF4) significantly impaired hematopoietic development and reduced HSC self-renewal in FL. In contrast, generation of the first HSC population in the aorta-gonad-mesonephros region was not affected. The migration activity of ATF4(-/-) HSCs was moderately reduced. Interestingly, the HSC-supporting ability of both endothelial and stromal cells in FL was significantly compromised in the absence of ATF4. Gene profiling using RNA-seq revealed downregulated expression of a panel of cytokines in ATF4(-/-) stromal cells, including angiopoietin-like protein 3 (Angptl3) and vascular endothelial growth factor A (VEGFA). Addition of Angptl3, but not VEGFA, partially rescued the repopulating defect of ATF4(-/-) HSCs in the culture. Furthermore, chromatin immunoprecipitation assay in conjunction with silencing RNA-mediated silencing and complementary DNA overexpression showed transcriptional control of Angptl3 by ATF4. To summarize, ATF4 plays a pivotal role in functional expansion and repopulating efficiency of HSCs in developing FL, and it acts through upregulating transcription of cytokines such as Angptl3 in the microenvironment.

  3. Tif1γ regulates the TGF-β1 receptor and promotes physiological aging of hematopoietic stem cells

    PubMed Central

    Quéré, Ronan; Saint-Paul, Laetitia; Carmignac, Virginie; Martin, Romain Z.; Chrétien, Marie-Lorraine; Largeot, Anne; Hammann, Arlette; Pais de Barros, Jean-Paul; Bastie, Jean-Noël; Delva, Laurent

    2014-01-01

    The hematopoietic system declines with age. Myeloid-biased differentiation and increased incidence of myeloid malignancies feature aging of hematopoietic stem cells (HSCs), but the mechanisms involved remain uncertain. Here, we report that 4-mo-old mice deleted for transcription intermediary factor 1γ (Tif1γ) in HSCs developed an accelerated aging phenotype. To reinforce this result, we also show that Tif1γ is down-regulated in HSCs during aging in 20-mo-old wild-type mice. We established that Tif1γ controls TGF-β1 receptor (Tgfbr1) turnover. Compared with young HSCs, Tif1γ−/− and old HSCs are more sensitive to TGF-β signaling. Importantly, we identified two populations of HSCs specifically discriminated by Tgfbr1 expression level and provided evidence of the capture of myeloid-biased (Tgfbr1hi) and myeloid-lymphoid-balanced (Tgfbr1lo) HSCs. In conclusion, our data provide a new paradigm for Tif1γ in regulating the balance between lymphoid- and myeloid-derived HSCs through TGF-β signaling, leading to HSC aging. PMID:25002492

  4. Tif1γ regulates the TGF-β1 receptor and promotes physiological aging of hematopoietic stem cells.

    PubMed

    Quéré, Ronan; Saint-Paul, Laetitia; Carmignac, Virginie; Martin, Romain Z; Chrétien, Marie-Lorraine; Largeot, Anne; Hammann, Arlette; Pais de Barros, Jean-Paul; Bastie, Jean-Noël; Delva, Laurent

    2014-07-22

    The hematopoietic system declines with age. Myeloid-biased differentiation and increased incidence of myeloid malignancies feature aging of hematopoietic stem cells (HSCs), but the mechanisms involved remain uncertain. Here, we report that 4-mo-old mice deleted for transcription intermediary factor 1γ (Tif1γ) in HSCs developed an accelerated aging phenotype. To reinforce this result, we also show that Tif1γ is down-regulated in HSCs during aging in 20-mo-old wild-type mice. We established that Tif1γ controls TGF-β1 receptor (Tgfbr1) turnover. Compared with young HSCs, Tif1γ(-/-) and old HSCs are more sensitive to TGF-β signaling. Importantly, we identified two populations of HSCs specifically discriminated by Tgfbr1 expression level and provided evidence of the capture of myeloid-biased (Tgfbr1(hi)) and myeloid-lymphoid-balanced (Tgfbr1(lo)) HSCs. In conclusion, our data provide a new paradigm for Tif1γ in regulating the balance between lymphoid- and myeloid-derived HSCs through TGF-β signaling, leading to HSC aging.

  5. Differentially-expressed genes identified by suppression subtractive hybridization in the bone marrow hematopoietic stem cells of patients with psoriasis.

    PubMed

    Zhang, Zhenying; Yu, Zhen; Tian, Pan; Hou, Suchun; Han, Shixin; Tan, Xuejing; Piao, Yongjun; Liu, Xiaoming

    2014-07-01

    Psoriasis is a T cell-mediated, chronic, relapsing and inflammatory cutaneous disorder. The dysfunctional activity of T cells in patients with psoriasis is attributed to bone marrow hematopoietic stem cells (BMHSCs). To understand the pathogenic roles of BMHSCs in psoriasis, a differential gene expression analysis was performed using suppression subtractive hybridization of the BMHSCs from a patient with psoriasis and a healthy control. Using a cDNA array dot blot screening to screen 600 genes from forward- and reverse-subtracted cDNA libraries, 17 differentially-expressed sequence tags (ESTs) were identified. The genes within the ESTs were observed to be the homologs of genes that are involved in various cellular processes, including hormone signaling, RNA catabolism, protein ADP DNA base melting, transcriptional regulation, cell cycle regulation and metabolism. CD45, which was overexpressed in the psoriatic BMHSCs, was further analyzed using relative quantitative polymerase chain reaction. In addition, the levels of CD45 in the peripheral blood cells (PBCs) of the patients with psoriasis were markedly increased and closely associated with disease severity. An abnormality of hematopoietic progenitor cells, e.g., CD45 overexpression, may be transferred to PBCs via hematopoiesis, and may account for the psoriasis-inducing properties of activated T cells.

  6. Whole-transcriptome analysis of endothelial to hematopoietic stem cell transition reveals a requirement for Gpr56 in HSC generation.

    PubMed

    Solaimani Kartalaei, Parham; Yamada-Inagawa, Tomoko; Vink, Chris S; de Pater, Emma; van der Linden, Reinier; Marks-Bluth, Jonathon; van der Sloot, Anthon; van den Hout, Mirjam; Yokomizo, Tomomasa; van Schaick-Solernó, M Lucila; Delwel, Ruud; Pimanda, John E; van IJcken, Wilfred F J; Dzierzak, Elaine

    2015-01-12

    Hematopoietic stem cells (HSCs) are generated via a natural transdifferentiation process known as endothelial to hematopoietic cell transition (EHT). Because of small numbers of embryonal arterial cells undergoing EHT and the paucity of markers to enrich for hemogenic endothelial cells (ECs [HECs]), the genetic program driving HSC emergence is largely unknown. Here, we use a highly sensitive RNAseq method to examine the whole transcriptome of small numbers of enriched aortic HSCs, HECs, and ECs. Gpr56, a G-coupled protein receptor, is one of the most highly up-regulated of the 530 differentially expressed genes. Also, highly up-regulated are hematopoietic transcription factors, including the "heptad" complex of factors. We show that Gpr56 (mouse and human) is a target of the heptad complex and is required for hematopoietic cluster formation during EHT. Our results identify the processes and regulators involved in EHT and reveal the surprising requirement for Gpr56 in generating the first HSCs.

  7. Whole-transcriptome analysis of endothelial to hematopoietic stem cell transition reveals a requirement for Gpr56 in HSC generation

    PubMed Central

    Solaimani Kartalaei, Parham; Yamada-Inagawa, Tomoko; Vink, Chris S.; de Pater, Emma; van der Linden, Reinier; Marks-Bluth, Jonathon; van der Sloot, Anthon; van den Hout, Mirjam; Yokomizo, Tomomasa; van Schaick-Solernó, M. Lucila; Delwel, Ruud; Pimanda, John E.; van IJcken, Wilfred F.J.

    2015-01-01

    Hematopoietic stem cells (HSCs) are generated via a natural transdifferentiation process known as endothelial to hematopoietic cell transition (EHT). Because of small numbers of embryonal arterial cells undergoing EHT and the paucity of markers to enrich for hemogenic endothelial cells (ECs [HECs]), the genetic program driving HSC emergence is largely unknown. Here, we use a highly sensitive RNAseq method to examine the whole transcriptome of small numbers of enriched aortic HSCs, HECs, and ECs. Gpr56, a G-coupled protein receptor, is one of the most highly up-regulated of the 530 differentially expressed genes. Also, highly up-regulated are hematopoietic transcription factors, including the “heptad” complex of factors. We show that Gpr56 (mouse and human) is a target of the heptad complex and is required for hematopoietic cluster formation during EHT. Our results identify the processes and regulators involved in EHT and reveal the surprising requirement for Gpr56 in generating the first HSCs. PMID:25547674

  8. Fusion-derived epithelial cancer cells express hematopoietic markers and contribute to stem cell and migratory phenotype in ovarian carcinoma.

    PubMed

    Ramakrishnan, Mallika; Mathur, Sandeep R; Mukhopadhyay, Asok

    2013-09-01

    For a long time, the external milieu of cancer cells was considered to be of secondary importance when compared with its intrinsic properties. That has changed now as the microenvironment is considered to be a major contributing factor toward the progression of tumor. In this study, we show that in human and mouse epithelial ovarian carcinoma and mouse lung carcinoma, the interaction between tumor-infiltrating hematopoietic cells and epithelial cancer cells results in their fusion. Intriguingly, even after the fusion event, cancer cells retain the expression of the pan-hematopoietic marker (CD45) and various markers of hematopoietic lineage, including those of hematopoietic stem cells, indicating that the hematopoietic genome is not completely reprogrammed. This observation may have implications on the bone marrow contribution to the cancer stem cell population. Interestingly, it was seen that in both cancer models, the expression of chemokine receptor CXCR4 was largely contributed to by the fused compartment of cancer cells. We hypothesize that the superior migratory potential gained by the cancer cells due to the fusion helps in its dissemination to various secondary organs upon activation of the CXCR4/CXCL12 axis. We are the first to report the presence of a hemato-epithelial cancer compartment, which contributes to stem cell markers and CXCR4 in epithelial carcinoma. This finding has repercussions on CXCR4-based therapeutics and opens new avenues in discovering novel molecular targets against fusion and metastasis.

  9. Solid organ transplants following hematopoietic stem cell transplant in children.

    PubMed

    Bunin, Nancy; Guzikowski, Virginia; Rand, Elizabeth R; Goldfarb, Samuel; Baluarte, Jorge; Meyers, Kevin; Olthoff, Kim M

    2010-12-01

    SOT may be indicated for a select group of pediatric patients who experience permanent organ failure following HSCT. However, there is limited information available about outcomes. We identified eight children at our center who received an SOT following an HSCT. Patients were six months to 18 yr at HSCT. Diseases for which children underwent HSCT included thalassemia, Wiskott-Aldrich syndrome, Shwachman-Diamond/bone marrow failure, sickle cell disease (SCD), erythropoietic porphyria (EP), ALL, chronic granulomatous disease, and neuroblastoma. Time from HSCT to SOT was 13 days to seven yr (median, 27 months. Lung SOT was performed for two patients with BO, kidney transplants for three patients, and liver transplants for three patients (VOD, chronic GVHD). Seven patients are alive with functioning allografts 6-180 months from SOT. Advances in organ procurement, operative technique, immunosuppressant therapy, and infection control may allow SOT for a select group of patients post-HSCT. However, scarcity of donor organs available in a timely fashion continues to be a limiting factor. Children who have undergone HSCT and develop single organ failure should be considered for an SOT if there is a high likelihood of cure of the primary disease.

  10. Development of model for analysing respective collections of intended hematopoietic stem cells and harvests of unintended mature cells in apheresis for autologous hematopoietic stem cell collection.

    PubMed

    Hequet, O; Le, Q H; Rodriguez, J; Dubost, P; Revesz, D; Clerc, A; Rigal, D; Salles, G; Coiffier, B

    2014-04-01

    Hematopoietic stem cells (HSCs) required to perform peripheral hematopoietic autologous stem cell transplantation (APBSCT) can be collected by processing several blood volumes (BVs) in leukapheresis sessions. However, this may cause granulocyte harvest in graft and decrease in patient's platelet blood level. Both consequences may induce disturbances in patient. One apheresis team's current purpose is to improve HSC collection by increasing HSC collection and prevent increase in granulocyte and platelet harvests. Before improving HSC collection it seemed important to know more about the way to harvest these types of cells. The purpose of our study was to develop a simple model for analysing respective collections of intended CD34+ cells among HSC (designated here as HSC) and harvests of unintended platelets or granulocytes among mature cells (designated here as mature cells) considering the number of BVs processed and factors likely to influence cell collection or harvest. For this, we processed 1, 2 and 3 BVs in 59 leukapheresis sessions and analysed corresponding collections and harvests with a referent device (COBE Spectra). First we analysed the amounts of HSC collected and mature cells harvested and second the evolution of the respective shares of HSC and mature cells collected or harvested throughout the BV processes. HSC collections and mature cell harvests increased globally (p<0.0001) and their respective shares remained stable throughout the BV processes (p non-significant). We analysed the role of intrinsic (patient's features) and extrinsic (features before starting leukapheresis sessions) factors in collections and harvests, which showed that only pre-leukapheresis blood levels (CD34+cells and platelets) influenced both cell collections and harvests (CD34+cells and platelets) (p<0.001) and shares of HSC collections and mature unintended cells harvests (p<0.001) throughout the BV processes. Altogether, our results suggested that the main factors likely

  11. Overexpression of the zinc finger protein MZF1 inhibits hematopoietic development from embryonic stem cells: correlation with negative regulation of CD34 and c-myb promoter activity.

    PubMed Central

    Perrotti, D; Melotti, P; Skorski, T; Casella, I; Peschle, C; Calabretta, B

    1995-01-01

    Zinc finger genes encode proteins that act as transcription factors. The myeloid zinc finger 1 (MZF1) gene encodes a zinc finger protein with two DNA-binding domains that recognize two distinct consensus sequences, is preferentially expressed in hematopoietic cells, and may be involved in the transcriptional regulation of hematopoiesis-specific genes. Reverse transcription-PCR analysis of human peripheral blood CD34+ cells cultured under lineage-restricted conditions demonstrated MZF1 expression during both myeloid and erythroid differentiation. Sequence analysis of the 5'-flanking region of the CD34 and c-myb genes, which are a marker of and a transcriptional factor required for hematopoietic proliferation and differentiation, respectively, revealed closely spaced MZF1 consensus binding sites found by electrophoretic mobility shift assays to interact with recombinant MZF1 protein. Transient or constitutive MZF1 expression in different cell types resulted in specific inhibition of chloramphenicol acetyltransferase activity driven by the CD34 or c-myb 5'-flanking region. To determine whether transcriptional modulation by MZF1 activity plays a role in hematopoietic differentiation, constructs containing the MZF1 cDNA under the control of different promoters were transfected into murine embryonic stem cells which, under defined in vitro culture conditions, generate colonies of multiple hematopoietic lineages. Constitutive MZF1 expression interfered with the ability of embryonic stem cells to undergo hematopoietic commitment and erythromyeloid colony formation and prevented the induced expression of CD34 and c-myb mRNAs during differentiation of these cells. These data indicate that MZF1 plays a critical role in hematopoiesis by modulating the expression of genes involved in this process. PMID:7565760

  12. Continuous cell supply from Krt7-expressing hematopoietic stem cells during native hematopoiesis revealed by targeted in vivo gene transfer method

    PubMed Central

    Tajima, Yoko; Ito, Keiichi; Umino, Ayumi; Wilkinson, Adam C.; Nakauchi, Hiromitsu; Yamazaki, Satoshi

    2017-01-01

    The nature of hematopoietic stem cells under normal hematopoiesis remained largely unknown due to the limited assays available to monitor their behavior in situ. Here, we develop a new mouse model to transfer genes specifically into the primitive hematopoietic stem cell compartment through the utilization of a modified Rcas/TVA system. We succeeded in transferring a GFP reporter gene into adult hematopoietic stem cells in vivo, which are predominantly quiescent, by generating pseudotyped-lentivirus. Furthermore, we demonstrate the utility of this system to study neonatal hematopoiesis, a developmental stage that has been difficult to analyze to date. Using the system developed in this study, we observed continuous multi-lineage hematopoietic cell supply in peripheral blood from Krt7-positive hematopoietic stem cells during unperturbed homeostatic condition. This powerful experimental system could provide a new standard tool to analyze hematopoiesis under physiological condition without transplantation. PMID:28098173

  13. Dpp dependent Hematopoietic stem cells give rise to Hh dependent blood progenitors in larval lymph gland of Drosophila.

    PubMed

    Dey, Nidhi Sharma; Ramesh, Parvathy; Chugh, Mayank; Mandal, Sudip; Mandal, Lolitika

    2016-10-26

    Drosophila hematopoiesis bears striking resemblance with that of vertebrates, both in the context of distinct phases and the signaling molecules. Even though, there has been no evidence of Hematopoietic stem cells (HSCs) in Drosophila, the larval lymph gland with its Hedgehog dependent progenitors served as an invertebrate model of progenitor biology. Employing lineage-tracing analyses, we have now identified Notch expressing HSCs in the first instar larval lymph gland. Our studies clearly establish the hierarchical relationship between Notch expressing HSCs and the previously described Domeless expressing progenitors. These HSCs require Decapentapelagic (Dpp) signal from the hematopoietic niche for their maintenance in an identical manner to vertebrate aorta-gonadal-mesonephros (AGM) HSCs. Thus, this study not only extends the conservation across these divergent taxa, but also provides a new model that can be exploited to gain better insight into the AGM related Hematopoietic stem cells (HSCs).

  14. Generation of hematopoietic stem cells from human embryonic stem cells using a defined, stepwise, serum-free, and serum replacement-free monolayer culture method

    PubMed Central

    Kim, So-Jung; Jung, Ji-Won; Ha, Hye-Yeong; Koo, Soo Kyung; Kim, Eung-Gook

    2017-01-01

    Background Embryonic stem cells (ESCs) can be expanded infinitely in vitro and have the potential to differentiate into hematopoietic stem cells (HSCs); thus, they are considered a useful source of cells for HSC production. Although several technical in vitro methods for engineering HSCs from pluripotent stem cells have been developed, clinical application of HSCs engineered from pluripotent stem cells is restricted because of the possibility of xenogeneic contamination resulting from the use of murine materials. Methods Human ESCs (CHA-hES15) were cultured on growth factor-reduced Matrigel-coated dishes in the mTeSR1 serum-free medium. When the cells were 70% confluent, we initiated HSC differentiation by three methods involving (1) knockout serum replacement (KSR), cytokines, TGFb1, EPO, and FLT3L; (2) KSR, cytokines, and bFGF; or (3) cytokines and bFGF. Results Among the three differentiation methods, the minimal number of cytokines without KSR resulted in the greatest production of HSCs. The optimized method resulted in a higher proportion of CD34+CD43+ hematopoietic progenitor cells (HPCs) and CD34+CD45+ HPCs compared to the other methods. In addition, the HSCs showed the potential to differentiate into multiple lineages of hematopoietic cells in vitro. Conclusion In this study, we optimized a two-step, serum-free, animal protein-free, KSR-free, feeder-free, chemically defined monolayer culture method for generation of HSCs and hematopoietic stem and progenitor cells (HSPCs) from human ESCs.

  15. Biosimilar G-CSF based mobilization of peripheral blood hematopoietic stem cells for autologous and allogeneic stem cell transplantation.

    PubMed

    Schmitt, Michael; Publicover, Amy; Orchard, Kim H; Görlach, Matthias; Wang, Lei; Schmitt, Anita; Mani, Jiju; Tsirigotis, Panagiotis; Kuriakose, Reeba; Nagler, Arnon

    2014-01-01

    The use of granulocyte colony stimulating factor (G-CSF) biosimilars for peripheral blood hematopoietic stem cell (PBSC) mobilization has stimulated an ongoing debate regarding their efficacy and safety. However, the use of biosimilar G-CSF was approved by the European Medicines Agency (EMA) for all the registered indications of the originator G-CSF (Neupogen (®) ) including mobilization of stem cells. Here, we performed a comprehensive review of published reports on the use of biosimilar G-CSF covering patients with hematological malignancies as well as healthy donors that underwent stem cell mobilization at multiple centers using site-specific non-randomized regimens with a biosimilar G-CSF in the autologous and allogeneic setting. A total of 904 patients mostly with hematological malignancies as well as healthy donors underwent successful autologous or allogeneic stem cell mobilization, respectively, using a biosimilar G-CSF (520 with Ratiograstim®/Tevagrastim, 384 with Zarzio®). The indication for stem cell mobilization in hematology patients included 326 patients with multiple myeloma, 273 with Non-Hodgkin's lymphoma (NHL), 79 with Hodgkin's lymphoma (HL), and other disease. 156 sibling or volunteer unrelated donors were mobilized using biosimilar G-CSF. Mobilization resulted in good mobilization of CD34+ stem cells with side effects similar to originator G-CSF. Post transplantation engraftment did not significantly differ from results previously documented with the originator G-CSF. The side effects experienced by the patients or donors mobilized by biosimilar G-CSF were minimal and were comparable to those of originator G-CSF. In summary, the efficacy of biosimilar G-CSFs in terms of PBSC yield as well as their toxicity profile are equivalent to historical data with the reference G-CSF.

  16. Angiopoietin-Like Protein 3 Promotes Preservation of Stemness during Ex Vivo Expansion of Murine Hematopoietic Stem Cells

    PubMed Central

    Farahbakhshian, Elnaz; Verstegen, Monique M.; Visser, Trudi P.; Kheradmandkia, Sima; Geerts, Dirk; Arshad, Shazia; Riaz, Noveen; Grosveld, Frank; van Til, Niek P.; Meijerink, Jules P. P.

    2014-01-01

    Allogeneic hematopoietic stem cell (HSC) transplantations from umbilical cord blood or autologous HSCs for gene therapy purposes are hampered by limited number of stem cells. To test the ability to expand HSCs in vitro prior to transplantation, two growth factor cocktails containing stem cell factor, thrombopoietin, fms-related tyrosine kinase-3 ligand (STF) or stem cell factor, thrombopoietin, insulin-like growth factor-2, fibroblast growth factor-1 (STIF) either with or without the addition of angiopoietin-like protein-3 (Angptl3) were used. Culturing HSCs in STF and STIF media for 7 days expanded long-term repopulating stem cells content in vivo by ∼6-fold and ∼10-fold compared to freshly isolated stem cells. Addition of Angptl3 resulted in increased expansion of these populations by ∼17-fold and ∼32-fold, respectively, and was further supported by enforced expression of Angptl3 in HSCs through lentiviral transduction that also promoted HSC expansion. As expansion of highly purified lineage-negative, Sca-1+, c-Kit+ HSCs was less efficient than less pure lineage-negative HSCs, Angptl3 may have a direct effect on HCS but also an indirect effect on accessory cells that support HSC expansion. No evidence for leukemia or toxicity was found during long-term follow up of mice transplanted with ex vivo expanded HSCs or manipulated HSC populations that expressed Angptl3. We conclude that the cytokine combinations used in this study to expand HSCs ex vivo enhances the engraftment in vivo. This has important implications for allogeneic umbilical cord-blood derived HSC transplantations and autologous HSC applications including gene therapy. PMID:25170927

  17. F4/80+ Host Macrophages Are a Barrier to Murine Embryonic Stem Cell-Derived Hematopoietic Progenitor Engraftment In Vivo

    PubMed Central

    Thompson, Heather L.; van Rooijen, Nico; McLelland, Bryce T.

    2016-01-01

    Understanding how embryonic stem cells and their derivatives interact with the adult host immune system is critical to developing their therapeutic potential. Murine embryonic stem cell-derived hematopoietic progenitors (ESHPs) were generated via coculture with the bone marrow stromal cell line, OP9, and then transplanted into NOD.SCID.Common Gamma Chain (NSG) knockout mice, which lack B, T, and natural killer cells. Compared to control mice transplanted with adult lineage-negative bone marrow (Lin− BM) progenitors, ESHP-transplanted mice attained a low but significant level of donor hematopoietic chimerism. Based on our previous studies, we hypothesized that macrophages might contribute to the low engraftment of ESHPs in vivo. Enlarged spleens were observed in ESHP-transplanted mice and found to contain higher numbers of host F4/80+ macrophages compared to BM-transplanted controls. In vivo depletion of host macrophages using clodronate-loaded liposomes improved the ESHP-derived hematopoietic chimerism in the spleen but not in the BM. F4/80+ macrophages demonstrated a striking propensity to phagocytose ESHP targets in vitro. Taken together, these results suggest that macrophages are a barrier to both syngeneic and allogeneic ESHP engraftment in vivo. PMID:27872864

  18. Retrospective Study of Incidence and Prognostic Significance of Eosinophilia after Allogeneic Hematopoietic Stem Cell Transplantation: Influence of Corticosteroid Therapy

    PubMed Central

    Yamamoto, Wataru; Ogusa, Eriko; Matsumoto, Kenji; Maruta, Atsuo; Ishigatsubo, Yoshiaki; Kanamori, Heiwa

    2016-01-01

    Objective: The clinical significance of eosinophilia after allogeneic hematopoietic stem cell transplantation is controversial. This study aimed to retrospectively study the impact of eosinophilia on the outcome of allogeneic hematopoietic stem cell transplantation by taking into account the influence of corticosteroid therapy. Materials and Methods: We retrospectively studied 204 patients with acute myeloid leukemia, acute lymphoblastic leukemia, and myelodysplastic syndrome who underwent allogeneic hematopoietic stem cell transplantation from January 2001 to December 2010. Results: The median age was 43 years (minimum-maximum: 17-65 years). Myeloablative conditioning was used in 153 patients and reduced intensity conditioning was employed in 51 patients. Donor cells were from bone marrow in 132 patients, peripheral blood in 34, and cord blood in 38. Eosinophilia was detected in 71 patients and there was no significant predictor of eosinophilia by multivariate analysis. There was no relationship between occurrence of eosinophilia and the incidence or grade of acute graft-versus-host disease when the patients were stratified according to corticosteroid treatment. Although eosinophilia was a prognostic factor for 5-year overall survival by univariate analysis, it was not a significant indicator by multivariate analysis. Conclusion: These results suggest that the clinical significance of eosinophilia in patients receiving allogeneic hematopoietic stem cell transplantation should be assessed with consideration of systemic corticosteroid administration. PMID:27094383

  19. Viral respiratory infections diagnosed by multiplex PCR after allogeneic hematopoietic stem cell transplantation: long-term incidence and outcome.

    PubMed

    Wolfromm, Alice; Porcher, Raphael; Legoff, Jérome; Peffault de Latour, Régis; Xhaard, Aliénor; de Fontbrune, Flore Sicre; Ribaud, Patricia; Bergeron, Anne; Socié, Gérard; Robin, Marie

    2014-08-01

    Viral respiratory infections (VRIs) are frequent after hematopoietic stem cell transplantation and constitute a potential cause of mortality. We analyzed the incidence, risk factors, and prognosis of VRIs in a cohort of transplanted patients. More frequent viruses were human coronavirus and human rhinovirus followed by flu-like viruses and adenovirus. Risk factors for death were lymphocytopenia and high steroid dosage.

  20. Successful clinical treatment and functional immunological normalization of human MALT1 deficiency following hematopoietic stem cell transplantation.

    PubMed

    Rozmus, Jacob; McDonald, Rachel; Fung, Shan-Yu; Del Bel, Kate L; Roden, Juliana; Senger, Christof; Schultz, Kirk R; McKinnon, Margaret L; Davis, Jeffrey; Turvey, Stuart E

    2016-07-01

    MALT1 mutations impair normal NF-κB activation and paracaspase activity to cause a novel combined immunodeficiency. The clinical and immunological phenotype of MALT1 deficiency can be successfully treated with hematopoietic stem cell transplantation following reduced intensity conditioning.

  1. Psychosocial Changes Associated with Participation in Art Therapy Interventions for Siblings of Pediatric Hematopoietic Stem Cell Transplant Patients

    ERIC Educational Resources Information Center

    Wallace, Jo; Packman, Wendy; Huffman, Lynne C.; Horn, Biljana; Cowan, Morton; Amylon, Michael D.; Kahn, Colleen; Cordova, Matt; Moses, Jim

    2014-01-01

    Hematopoietic stem cell transplantation (HSCT) is an accepted medical treatment for many serious childhood diseases. HSCT is a demanding procedure that creates both physical and emotional challenges for patients and their family members. Research has demonstrated that siblings of children undergoing HSCT are at risk for developing psychosocial…

  2. High-dose ifosfamide/carboplatin/etoposide: maximum tolerable doses, toxicities, and hematopoietic recovery after autologous stem cell reinfusion.

    PubMed

    Fields, K K; Elfenbein, G J; Perkins, J B; Janssen, W E; Ballester, O F; Hiemenz, J W; Zorsky, P E; Kronish, L E; Foody, M C

    1994-10-01

    We treated 115 patients in a phase I/II dose-escalation study of ifosfamide/carboplatin/etoposide (ICE) followed by autologous stem cell rescue. Patients treated had a variety of diagnoses, including breast cancer (high-risk stage II disease with eight or more positive nodes, stage III disease, and responsive metastatic disease), non-Hodgkin's lymphoma, Hodgkin's disease, acute leukemia in first remission, and various solid tumors that were responsive to induction therapy. Patients received autologous bone marrow stem cells or peripheral blood stem cells primed by one of several methods. The maximum tolerated dose of ICE was determined to be ifosfamide 20,100 mg/m2, carboplatin 1,800 mg/m2, and etoposide 3,000 mg/m2 when administered as a 6-day regimen. The dose-limiting toxicities included acute renal failure, severe central nervous system toxicity, and "leaky capillary syndrome" with hypoalbuminemia, profound fluid overload, and pulmonary insufficiency. Analysis of hematologic recovery based on stem cell source and influence of hematopoietic growth factor administration was undertaken. Hematopoietic growth factor use significantly reduced neutrophil engraftment time for patients receiving bone marrow stem cells, with evidence of earlier recovery times for patients receiving granulocyte colony-stimulating factor compared with granulocyte-macrophage colony-stimulating factor. Neutrophil recovery times varied based on the source of stem cells used, with the earliest engraftment times seen for patients receiving peripheral blood stem cells primed with cyclophosphamide and granulocyte colony-stimulating factor. Platelet recovery times were not statistically different for any of the subsets. In conclusion, the maximum tolerated dose of ICE has been defined, and the source of stem cells and the use of hematopoietic growth factors influence hematopoietic recovery.

  3. Distress prior to undergoing hematopoietic stem cell transplantation: demographic and symptom correlations and establishing a baseline

    PubMed Central

    Smith, Sean Robinson; Hobson, Mary Elizabeth; Haig, Andrew J

    2016-01-01

    Background Distress can arise from physical and/or psychosocial impairments and has been documented in patients after hematopoietic stem cell transplantation in the outpatient setting. It has not been evaluated in inpatients admitted to undergo the transplant, nor has potential correlations with length of hospital stay, physical function, and pain after receiving the transplant. Objectives To measure distress in patients admitted to the hospital to undergo hematopoietic stem cell transplantation, and to evaluate potential correlations with length of hospital stay, physical function, pain, and depression/anxiety. Methods Eighty patients were given a questionnaire to report levels of distress and physical and psychosocial functioning. Hierarchical multiple regression analysis was used to test the relationship of demographic and transplant factors with length of stay (LOS), distress, presence of pain, and depression/anxiety. Results Patients reported pretransplant distress with an average score of 2.2 out of 10, and 16 out of 80 patients reported clinically relevant distress. Pain was reported by 42.5% of patients, and 28.8% reported depression/anxiety. Physical functioning was generally high. Distress was correlated with depression/anxiety (P-value <0.01) and pain (0.04) but not with LOS, physical function, patient age, or transplant type. Conclusion LOS after receiving stem cell transplant was not related to pretransplant distress. Distress exists pretransplant but is generally low. Pain and the presence of depression/anxiety may be risk factors for distress. Measuring distress prior to transplant gives a baseline from which to measure changes, potentially leading to earlier intervention. PMID:27695376

  4. Favorable impact of natural killer cell reconstitution on chronic graft-versus-host disease and cytomegalovirus reactivation after allogeneic hematopoietic stem cell transplantation.

    PubMed

    Kheav, Vissal David; Busson, Marc; Scieux, Catherine; Peffault de Latour, Régis; Maki, Guitta; Haas, Philippe; Mazeron, Marie-Christine; Carmagnat, Maryvonnick; Masson, Emeline; Xhaard, Aliénor; Robin, Marie; Ribaud, Patricia; Dulphy, Nicolas; Loiseau, Pascale; Charron, Dominique; Socié, Gérard; Toubert, Antoine; Moins-Teisserenc, Hélène

    2014-12-01

    Natural killer cells are the first lymphocyte subset to reconstitute, and play a major role in early immunity after allogeneic hematopoietic stem cell transplantation. Cells expressing the activating receptor NKG2C seem crucial in the resolution of cytomegalovirus episodes, even in the absence of T cells. We prospectively investigated natural killer-cell reconstitution in a cohort of 439 adult recipients who underwent non-T-cell-depleted allogeneic hematopoietic stem cell transplantation between 2005 and 2012. Freshly collected blood samples were analyzed 3, 6, 12 and 24 months after transplantation. Data were studied with respect to conditioning regimen, source of stem cells, underlying disease, occurrence of graft-versus-host disease, and profiles of cytomegalovirus reactivation. In multivariate analysis we found that the absolute numbers of CD56(bright) natural killer cells at month 3 were significantly higher after myeloablative conditioning than after reduced intensity conditioning. Acute graft-versus-host disease impaired reconstitution of total and CD56(dim) natural killer cells at month 3. In contrast, high natural killer cell count at month 3 was associated with a lower incidence of chronic graft-versus-host disease, independently of a previous episode of acute graft-versus-host disease and stem cell source. NKG2C(+)CD56(dim) and total natural killer cell counts at month 3 were lower in patients with reactivation of cytomegalovirus between month 0 and month 3, but expanded greatly afterwards. These cells were also less numerous in patients who experienced later cytomegalovirus reactivation between month 3 and month 6. Our results advocate a direct role of NKG2C-expressing natural killer cells in the early control of cytomegalovirus reactivation after allogeneic hematopoietic stem cell transplantation.

  5. PAR1 signaling regulates the retention and recruitment of EPCR-expressing bone marrow hematopoietic stem cells

    PubMed Central

    Gur-Cohen, Shiri; Itkin, Tomer; Chakrabarty, Sagarika; Graf, Claudine; Kollet, Orit; Ludin, Aya; Golan, Karin; Kalinkovich, Alexander; Ledergor, Guy; Wong, Eitan; Niemeyer, Elisabeth; Porat, Ziv; Erez, Ayelet; Sagi, Irit; Esmon, Charles T; Ruf, Wolfram; Lapidot, Tsvee

    2016-01-01

    Retention of long-term repopulating hematopoietic stem cells (LT-HSCs) in the bone marrow is essential for hematopoiesis and for protection from myelotoxic injury. We report that signaling cascades that are traditionally viewed as coagulation-related also control retention of EPCR+ LT-HSCs in the bone marrow and their recruitment to the blood via two different protease activated receptor 1 (PAR1)-mediated pathways. Thrombin-PAR1 signaling induces nitric oxide (NO) production, leading to TACE-mediated EPCR shedding, enhanced CXCL12-CXCR4-induced motility, and rapid stem and progenitor cell mobilization. Conversely, bone marrow blood vessels provide a microenvironment enriched with protein C that retain EPCR+ LT-HSCs by limiting NO generation, reducing Cdc42 activity and enhancing VLA4 affinity and adhesion. Inhibition of NO production by activated protein C (aPC)-EPCR-PAR1 signaling reduces progenitor cell egress, increases NOlow bone marrow EPCR+ LT-HSCs retention and protects mice from chemotherapy-induced hematological failure and death. Our study reveals new roles for PAR1 and EPCR that control NO production to balance maintenance and recruitment of bone marrow EPCR+ LT-HSCs with clinical relevance. PMID:26457757

  6. An acute negative bystander effect of γ-irradiated recipients on transplanted hematopoietic stem cells.

    PubMed

    Shen, Hongmei; Yu, Hui; Liang, Paulina H; Cheng, Haizi; XuFeng, Richard; Yuan, Youzhong; Zhang, Peng; Smith, Clayton A; Cheng, Tao

    2012-04-12

    Ultimate success of hematopoietic stem cell transplantation (HSCT) depends not only on donor HSCs themselves but also on the host environment. Total body irradiation is a component in various host conditioning regimens for HSCT. It is known that ionizing radiation exerts "bystander effects" on nontargeted cells and that HSCs transplanted into irradiated recipients undergo proliferative exhaustion. However, whether irradiated recipients pose a proliferation-independent bystander effect on transplanted HSCs is unclear. In this study, we found that irradiated mouse recipients significantly impaired the long-term repopulating ability of transplanted mouse HSCs shortly (∼ 17 hours) after exposure to irradiated hosts and before the cells began to divide. There was an increase of acute cell death associated with accelerated proliferation of the bystander hematopoietic cells. This effect was marked by dramatic down-regulation of c-Kit, apparently because of elevated reactive oxygen species. Administration of an antioxidant chemical, N-acetylcysteine, or ectopically overexpressing a reactive oxygen species scavenging enzyme, catalase, improved the function of transplanted HSCs in irradiated hosts. Together, this study provides evidence for an acute negative, yet proliferation-independent, bystander effect of irradiated recipients on transplanted HSCs, thereby having implications for HSCT in both experimental and clinical scenarios in which total body irradiation is involved.

  7. Expansion and homing of umbilical cord blood hematopoietic stem and progenitor cells for clinical transplantation.

    PubMed

    Bari, Sudipto; Seah, Kevin Kwee Hong; Poon, Zhiyong; Cheung, Alice Man Sze; Fan, Xiubo; Ong, Shin-Yeu; Li, Shang; Koh, Liang Piu; Hwang, William Ying Khee

    2015-06-01

    The successful expansion of hematopoietic stem and progenitor cells (HSPCs) from umbilical cord blood (UCB) for transplantation could revolutionize clinical practice by improving transplantation-related outcomes and making available UCB units that have suboptimal cell doses for transplantation. New cytokine combinations appear able to promote HSPC growth with minimal differentiation into mature precursors and new agents, such as insulin-like growth factor-binding protein 2, are being used in clinical trials. Molecules that simulate the HSPC niche, such as Notch ligand, have also shown promise. Further improvements have been made with the use of mesenchymal stromal cells, which have made possible UCB expansion without a potentially deleterious prior CD34/CD133 cell selection step. Chemical molecules, such as copper chelators, nicotinamide, and aryl hydrocarbon antagonists, have shown excellent outcomes in clinical studies. The use of bioreactors could further add to HSPC studies in future. Drugs that could improve HSPC homing also appear to have potential in improving engraftment times in UCB transplantation. Technologies to expand HSPC from UCB and to enhance the homing of these cells appear to have attained the goal of accelerating hematopoietic recovery. Further discoveries and clinical studies are likely to make the goal of true HSPC expansion a reality for many applications in future.

  8. BRPF1 is essential for development of fetal hematopoietic stem cells

    PubMed Central

    Li, Lin; Zou, Jinfeng; Yan, Kezhi; Belle, Jad; Nijnik, Anastasia; Wang, Edwin

    2016-01-01

    Hematopoietic stem cells (HSCs) serve as a life-long reservoir for all blood cell types and are clinically useful for a variety of HSC transplantation-based therapies. Understanding the role of chromatin organization and regulation in HSC homeostasis may provide important insights into HSC development. Bromodomain- and PHD finger–containing protein 1 (BRPF1) is a multivalent chromatin regulator that possesses 4 nucleosome-binding domains and activates 3 lysine acetyltransferases (KAT6A, KAT6B, and KAT7), suggesting that this protein has the potential to stimulate crosstalk between different chromatin modifications. Here, we investigated the function of BRPF1 in hematopoiesis by selectively deleting its gene in murine blood cells. Brpf1-deficient pups experienced early lethality due to acute bone marrow failure and aplastic anemia. The mutant bone marrow and fetal liver exhibited severe deficiency in HSCs and hematopoietic progenitors, along with elevated reactive oxygen species, senescence, and apoptosis. BRPF1 deficiency also reduced the expression of multipotency genes, including Slamf1, Mecom, Hoxa9, Hlf, Gfi1, Egr, and Gata3. Furthermore, BRPF1 was required for acetylation of histone H3 at lysine 23, a highly abundant but not well-characterized epigenetic mark. These results identify an essential role of the multivalent chromatin regulator BRPF1 in definitive hematopoiesis and illuminate a potentially new avenue for studying epigenetic networks that govern HSC ontogeny. PMID:27500495

  9. CXCR4/CXCL12 axis counteracts hematopoietic stem cell exhaustion through selective protection against oxidative stress

    PubMed Central

    Zhang, Yanyan; Dépond, Mallorie; He, Liang; Foudi, Adlen; Kwarteng, Edward Owusu; Lauret, Evelyne; Plo, Isabelle; Desterke, Christophe; Dessen, Philippe; Fujii, Nobutaka; Opolon, Paule; Herault, Olivier; Solary, Eric; Vainchenker, William; Joulin, Virginie; Louache, Fawzia; Wittner, Monika

    2016-01-01

    Hematopoietic stem cells (HSCs) undergo self-renewal to maintain hematopoietic homeostasis for lifetime, which is regulated by the bone marrow (BM) microenvironment. The chemokine receptor CXCR4 and its ligand CXCL12 are critical factors supporting quiescence and BM retention of HSCs. Here, we report an unknown function of CXCR4/CXCL12 axis in the protection of HSCs against oxidative stress. Disruption of CXCR4 receptor in mice leads to increased endogenous production of reactive oxygen species (ROS), resulting in p38 MAPK activation, increased DNA double-strand breaks and apoptosis leading to marked reduction in HSC repopulating potential. Increased ROS levels are directly responsible for exhaustion of the HSC pool and are not linked to loss of quiescence of CXCR4-deficient HSCs. Furthermore, we report that CXCL12 has a direct rescue effect on oxidative stress-induced HSC damage at the mitochondrial level. These data highlight the importance of CXCR4/CXCL12 axis in the regulation of lifespan of HSCs by limiting ROS generation and genotoxic stress. PMID:27886253

  10. Efficient ablation of genes in human hematopoietic stem and effector cells using CRISPR/Cas9

    PubMed Central

    Mandal, Pankaj K.; Ferreira, Leonardo M. R.; Collins, Ryan; Meissner, Torsten B.; Boutwell, Christian L.; Friesen, Max; Vrbanac, Vladimir; Garrison, Brian S.; Stortchevoi, Alexei; Bryder, David; Musunuru, Kiran; Brand, Harrison; Tager, Andrew M.; Allen, Todd M.; Talkowski, Michael E.; Rossi, Derrick J.; Cowan, Chad A.

    2014-01-01

    SUMMARY Genome editing via CRISPR/Cas9 has rapidly become the tool of choice by virtue of its efficacy and ease of use. However, CRISPR/Cas9 mediated genome editing in clinically relevant human somatic cells remains untested. Here, we report CRISPR/Cas9 targeting of two clinically relevant genes, B2M and CCR5, in primary human CD4+ T cells and CD34+ hematopoietic stem and progenitor cells (HSPCs). Use of single RNA guides led to highly efficient mutagenesis in HSPCs but not in T cells. A dual guide approach improved gene deletion efficacy in both cell types. HSPCs that had undergone genome editing with CRISPR/Cas9 retained multi-lineage potential. We examined predicted on- and off-target mutations via target capture sequencing in HSPCs and observed low levels of off-target mutagenesis at only one site. These results demonstrate that CRISPR/Cas9 can efficiently ablate genes in HSPCs with minimal off-target mutagenesis, which could have broad applicability for hematopoietic cell-based therapy. PMID:25517468

  11. The hematopoietic stem cell transplantation in Hodgkin's disease: questions and controversies.

    PubMed

    Fleury, J; Legros, M; Cure, H; Tortochaux, J; Condat, P; Dionet, C; Travade, P; Belembaogo, E; Tavernier, F; Kwiatkowski, F

    1994-11-01

    Most patients with Hodgkin's disease (HD) are cured with chemotherapy and/or radiotherapy. However, half of those with advanced stage disease (IIIB, IV) do not respond adequately to treatment or relapse. Salvage therapy used in such cases gives from 10% to 50% complete remission but only 10% long term survival. The results of bone marrow transplantation reported in acute leukemia and non-Hodgkin's lymphoma encouraged some authors to develop this new therapeutic strategy in Hodgkin's disease. In the early 1980's promising results were achieved when refractory and relapsed patients were selected to receive myeloablative therapy followed by bone marrow transplantation. Today, high dose chemotherapy with hematopoietic stem cell transplantation (HSCT) is used more and more often in poor prognosis Hodgkin's disease. After a review of the literature concerning the results of transplantation in Hodgkin's disease, we develop the numerous problems associated with this procedure which remain to be solved such as: the optimal indication, the timing of HSCT, the type of graft, the conditioning regimen, the place of radiotherapy and the optimal use of hematopoietic growth factors. We conclude with future prospects.

  12. Mitochondria defects are involved in lead-acetate-induced adult hematopoietic stem cell decline.

    PubMed

    Liu, Jun; Jia, Dao-Yong; Cai, Shi-Zhong; Li, Cheng-Peng; Zhang, Meng-Si; Zhang, Yan-Yan; Yan, Chong-Huai; Wang, Ya-Ping

    2015-05-19

    Occupational high-grade lead exposure has been reduced in recent decades as a result of increased regulation. However, environmental lead exposure remains widespread, and is associated with severe toxicity implicated in human diseases. We performed oral intragastric administration of various dose lead acetate to adult Sprague Dawley rats to define the role of lead exposure in hematopoietic stem cells (HSCs) function, and to clarify its underlying mechanism. Lead acetate-exposed rats exhibited developmental abnormalities in myeloid and lymphoid lineages, and a significant decline in immune functions. It also showed HSCs functional decline associated with senescent phenotype with low grade lead acetate exposure or apoptotic phenotype with relative higher grade dose exposure. Mechanistic exploration showed a significant increase in reactive oxygen species (ROS) in the lead acetate-exposed CD90(+)CD45(-) compartment, which correlated with functional defects in cellular mitochondria. Furthermore, in vivo treatment with the antioxidant vitamin C led to reversion of the CD90(+)CD45(-) compartment functional decline. These results indicate that lead acetate perturbs the hematopoietic balance of adult HSCs, associated with cellular mitochondria defects, increased intracellular ROS generation.

  13. Correction of metachromatic leukodystrophy in the mouse model by transplantation of genetically modified hematopoietic stem cells

    PubMed Central

    Biffi, Alessandra; De Palma, Michele; Quattrini, Angelo; Del Carro, Ubaldo; Amadio, Stefano; Visigalli, Ilaria; Sessa, Maria; Fasano, Stefania; Brambilla, Riccardo; Marchesini, Sergio; Bordignon, Claudio; Naldini, Luigi

    2004-01-01

    Gene-based delivery can establish a sustained supply of therapeutic proteins within the nervous system. For diseases characterized by extensive CNS and peripheral nervous system (PNS) involvement, widespread distribution of the exogenous gene may be required, a challenge to in vivo gene transfer strategies. Here, using lentiviral vectors (LVs), we efficiently transduced hematopoietic stem cells (HSCs) ex vivo and evaluated the potential of their progeny to target therapeutic genes to the CNS and PNS of transplanted mice and correct a neurodegenerative disorder, metachromatic leukodystrophy (MLD). We proved extensive repopulation of CNS microglia and PNS endoneurial macrophages by transgene-expressing cells. Intriguingly, recruitment of these HSC-derived cells was faster and more robust in MLD mice. By transplanting HSCs transduced with the arylsulfatase A gene, we fully reconstituted enzyme activity in the hematopoietic system of MLD mice and prevented the development of motor conduction impairment, learning and coordination deficits, and neuropathological abnormalities typical of the disease. Remarkably, ex vivo gene therapy had a significantly higher therapeutic impact than WT HSC transplantation, indicating a critical role for enzyme overexpression in the HSC progeny. These results indicate that transplantation of LV-transduced autologous HSCs represents a potentially efficacious therapeutic strategy for MLD and possibly other neurodegenerative disorders. PMID:15085191

  14. The aryl hydrocarbon receptor nuclear translocator is an essential regulator of murine hematopoietic stem cell viability

    PubMed Central

    Krock, Bryan L.; Eisinger-Mathason, Tzipora S.; Giannoukos, Dionysios N.; Shay, Jessica E.; Gohil, Mercy; Lee, David S.; Nakazawa, Michael S.; Sesen, Julie; Skuli, Nicolas

    2015-01-01

    Hypoxia-inducible factors (HIFs) are master regulators of the transcriptional response to low oxygen and play essential roles in embryonic development, tissue homeostasis, and disease. Recent studies have demonstrated that hematopoietic stem cells (HSCs) within the bone marrow localize to a hypoxic niche and that HIF-1α promotes HSC adaptation to stress. Because the related factor HIF-2α is also expressed in HSCs, the combined role of HIF-1α and HIF-2α in HSC maintenance is unclear. To this end, we have conditionally deleted the HIF-α dimerization partner, the aryl hydrocarbon receptor nuclear translocator (ARNT) in the hematopoietic system to ablate activity of both HIF-1α and HIF-2α and assessed the functional consequence of ARNT deficiency on fetal liver and adult hematopoiesis. We determined that ARNT is essential for adult and fetal HSC viability and homeostasis. Importantly, conditional knockout of both Hif-1α and Hif-2α phenocopied key aspects of these HSC phenotypes, demonstrating that the impact of Arnt deletion is primarily HIF dependent. ARNT-deficient long-term HSCs underwent apoptosis, potentially because of reduced B-cell lymphoma 2 (BCL-2) and vascular endothelial growth factor A (VEGF-A) expression. Our results suggest that HIF activity may regulate HSC homeostasis through these prosurvival factors. PMID:25855602

  15. A systems biology approach for defining the molecular framework of the hematopoietic stem cell niche.

    PubMed

    Charbord, Pierre; Pouget, Claire; Binder, Hans; Dumont, Florent; Stik, Grégoire; Levy, Pacifique; Allain, Fabrice; Marchal, Céline; Richter, Jenna; Uzan, Benjamin; Pflumio, Françoise; Letourneur, Franck; Wirth, Henry; Dzierzak, Elaine; Traver, David; Jaffredo, Thierry; Durand, Charles

    2014-09-04

    Despite progress in identifying the cellular composition of hematopoietic stem/progenitor cell (HSPC) niches, little is known about the molecular requirements of HSPC support. To address this issue, we used a panel of six recognized HSPC-supportive stromal lines and less-supportive counterparts originating from embryonic and adult hematopoietic sites. Through comprehensive transcriptomic meta-analyses, we identified 481 mRNAs and 17 microRNAs organized in a modular network implicated in paracrine signaling. Further inclusion of 18 additional cell strains demonstrated that this mRNA subset was predictive of HSPC support. Our gene set contains most known HSPC regulators as well as a number of unexpected ones, such as Pax9 and Ccdc80, as validated by functional studies in zebrafish embryos. In sum, our approach has identified the core molecular network required for HSPC support. These cues, along with a searchable web resource, will inform ongoing efforts to instruct HSPC ex vivo amplification and formation from pluripotent precursors.

  16. Successful treatment of congenital erythropoietic porphyria using matched unrelated hematopoietic stem cell transplantation.

    PubMed

    Martinez Peinado, Carmen; Díaz de Heredia, Cristina; To-Figueras, Jordi; Arias-Santiago, Salvador; Nogueras, Paloma; Elorza, Izaskun; Olivé, Teresa; Bádenas, Célia; Moreno, M José; Tercedor, Jesús; Herrero, Carmen

    2013-01-01

    Congenital erythropoietic porphyria (CEP), or Günther's disease, is an inborn error of metabolism produced by a deficiency of uroporphyrinogen III synthase (UROS), the fourth enzyme of the heme biosynthesis pathway. This enzymatic defect induces the accumulation of isomer I porphyrins in erythrocytes, skin, and tissues, producing various clinical manifestations. Severe cases are characterized by extreme photosensitivity, causing scarring and mutilations, and by hemolytic anemia, reducing life expectancy. CEP is caused by mutations in the UROS gene, and one of the most severe forms of the disease is associated with a cysteine to arginine substitution at residue 73 of the protein (C73R). CEP has been successfully treated only by the transplantation of hematopoietic precursors. We report the case of a male infant with severe postdelivery symptoms diagnosed with CEP and found to be homozygous for the C73R mutation. He underwent successful allogeneic bone marrow transplantation from a matched unrelated donor at 7 months of age. The hemolytic anemia was corrected and the porphyrin overproduction was significantly reduced. The patient remained asymptomatic after 1 year. This new case confirms that patients with severe CEP can benefit from early postnatal hematopoietic stem cell transplantation.

  17. Expression of cytochrome P450 genes in CD34+ hematopoietic stem and progenitor cells.

    PubMed

    Soucek, Pavel; Anzenbacher, Pavel; Skoumalová, Ivana; Dvorák, Michal

    2005-10-01

    Expression of major cytochrome P450 forms (P450) was followed in preparation of purified hematopoietic CD34+ stem and progenitor cells. Levels of transcripts as well as mature proteins were traced by quantitative real-time polymerase chain reaction and by Northern and Western blotting. P450 1B1 and P450 2E1 proteins and respective mRNAs were found in all cases. On the other hand, no expression of P450 3A4, P450 3A7, and P450 2C9 was found. The results showed that expression of various P450 enzymes starts at different stages of cell differentiation. Both P450 forms found are known to be connected with cancer cells and with activation of procarcinogens (P450 1B1, polycyclic aromatic hydrocarbons; P450 2E1, nitrosamines, and solvents). Hence, cells at the early stage of differentiation already may be influenced by interaction with xenobiotics. This fact should also be taken into consideration when hematopoietic cell transplant therapy is applied.

  18. Sensitivity of hematopoietic stem cells to mitochondrial dysfunction by SdhD gene deletion

    PubMed Central

    Bejarano-García, José Antonio; Millán-Uclés, África; Rosado, Iván V; Sánchez-Abarca, Luís Ignacio; Caballero-Velázquez, Teresa; Durán-Galván, María José; Pérez-Simón, José Antonio; Piruat, José I

    2016-01-01

    It is established that hematopoietic stem cells (HSC) in the hypoxic bone marrow have adapted their metabolism to oxygen-limiting conditions. This adaptation includes suppression of mitochondrial activity, induction of anerobic glycolysis, and activation of hypoxia-inducible transcription factor 1α (Hif1α)-dependent gene expression. During progression of hematopoiesis, a metabolic switch towards mitochondrial oxidative phosphorylation is observed, making this organelle essential for determining cell fate choice in bone marrow. However, given that HSC metabolism is essentially oxygen-independent, it is still unclear whether functional mitochondria are absolutely required for their survival. To assess the actual dependency of these undifferentiated cells on mitochondrial function, we have performed an analysis of the hematopoiesis in a mouse mutant, named SDHD-ESR, with inducible deletion of the mitochondrial protein-encoding SdhD gene. This gene encodes one of the subunits of the mitochondrial complex II (MCII). In this study, we demonstrate that, in contrast to what has been previously established, survival of HSC, and also myeloid and B-lymphoid progenitors, depends on proper mitochondrial activity. In addition, gene expression analysis of these hematopoietic lineages in SDHD-ESR mutants calls into question the proposed activation of Hif1α in response to MCII dysfunction. PMID:27929539

  19. Digital PCR Panel for Sensitive Hematopoietic Chimerism Quantification after Allogeneic Stem Cell Transplantation

    PubMed Central

    Stahl, Tanja; Rothe, Caroline; Böhme, Manja U.; Kohl, Aloisa; Kröger, Nicolaus; Fehse, Boris

    2016-01-01

    Accurate and sensitive determination of hematopoietic chimerism is a crucial diagnostic measure after allogeneic stem cell transplantation to monitor engraftment and potentially residual disease. Short tandem repeat (STR) amplification, the current “gold standard” for chimerism assessment facilitates reliable accuracy, but is hampered by its limited sensitivity (≥1%). Digital PCR (dPCR) has been shown to combine exact quantification and high reproducibility over a very wide measurement range with excellent sensitivity (routinely ≤0.1%) and thus represents a promising alternative to STR analysis. We here aimed at developing a whole panel of digital-PCR based assays for routine diagnostic. To this end, we tested suitability of 52 deletion/insertion polymorphisms (DIPs) for duplex analysis in combination with either a reference gene or a Y-chromosome specific PCR. Twenty-nine DIPs with high power of discrimination and good performance were identified, optimized and technically validated. We tested the newly established assays on retrospective patient samples that were in parallel also measured by STR amplification and found excellent correlation. Finally, a screening plate for initial genotyping with DIP-specific duplex dPCR assays was designed for convenient assay selection. In conclusion, we have established a comprehensive dPCR system for precise and high-sensitivity measurement of hematopoietic chimerism, which should be highly useful for clinical routine diagnostics. PMID:27618030

  20. Hematopoietic stem cell expansion and generation: the ways to make a breakthrough

    PubMed Central

    Park, Bokyung

    2015-01-01

    Hematopoietic stem cell transplantation (HSCT) is the first field where human stem cell therapy was successful. Flooding interest on human stem cell therapy to cure previously incurable diseases is largely indebted to HSCT success. Allogeneic HSCT has been an important modality to cure various diseases including hematologic malignancies, various non-malignant hematologic diseases, primary immunodeficiency diseases, and inborn errors of metabolism, while autologous HSCT is generally performed to rescue bone marrow aplasia following high-dose chemotherapy for solid tumors or multiple myeloma. Recently, HSCs are also spotlighted in the field of regenerative medicine for the amelioration of symptoms caused by neurodegenerative diseases, heart diseases, and others. Although the demand for HSCs has been growing, their supply often fails to meet the demand of the patients needing transplant due to a lack of histocompatible donors or a limited cell number. This review focuses on the generation and large-scale expansion of HSCs, which might overcome current limitations in the application of HSCs for clinical use. Furthermore, current proof of concept to replenish hematological homeostasis from non-hematological origin will be covered. PMID:26770947

  1. Hematopoietic stem and progenitor cells acquire distinct DNA-hypermethylation during in vitro culture.

    PubMed

    Weidner, Carola Ingrid; Walenda, Thomas; Lin, Qiong; Wölfler, Monika Martina; Denecke, Bernd; Costa, Ivan Gesteira; Zenke, Martin; Wagner, Wolfgang

    2013-11-28

    Hematopoietic stem and progenitor cells (HPCs) can be maintained in vitro, but the vast majority of their progeny loses stemness during culture. In this study, we compared DNA-methylation (DNAm) profiles of freshly isolated and culture-expanded HPCs. Culture conditions of CD34(+) cells - either with or without mesenchymal stromal cells (MSCs) - had relatively little impact on DNAm, although proliferation is greatly increased by stromal support. However, all cultured HPCs - even those which remained CD34(+) - acquired significant DNA-hypermethylation. DNA-hypermethylation occurred particularly in up-stream promoter regions, shore-regions of CpG islands, binding sites for PU.1, HOXA5 and RUNX1, and it was reflected in differential gene expression and variant transcripts of DNMT3A. Low concentrations of DNAm inhibitors slightly increased the frequency of colony-forming unit initiating cells. Our results demonstrate that HPCs acquire DNA-hypermethylation at specific sites in the genome which is relevant for the rapid loss of stemness during in vitro manipulation.

  2. A Transcriptional Switch Point During Hematopoietic Stem and Progenitor Cell Ontogeny.

    PubMed

    Sugiyama, Daisuke; Joshi, Anagha; Kulkeaw, Kasem; Tan, Keai Sinn; Yokoo-Inoue, Tomoko; Mizuochi-Yanagi, Chiyo; Yasuda, Kaori; Doi, Atsushi; Iino, Tadafumi; Itoh, Masayoshi; Nagao-Sato, Sayaka; Tani, Kenzaburo; Akashi, Koichi; Hayashizaki, Yoshihide; Suzuki, Harukazu; Kawaji, Hideya; Carninci, Piero; Forrest, Alistair R R

    2017-03-01

    During mammalian embryogenesis, hematopoietic stem and progenitor cells (HSPCs) originate from mesoderm-derived endothelial cells in the aorta-gonad-mesonephros (AGM) region and placenta (PL). Later, HSPCs expand in fetal liver (FL) and migrate to bone marrow (BM) shortly before birth. Understanding global transcriptional regulation governing HSPC emergence from embryonic stem/induced pluripotent stem cells is necessary to devise clinical applications, such as novel transplantation approaches. In this study, to assess transcriptional dynamics during development, we performed cap analysis of gene expression on 10 developmental murine HSPC populations isolated from the AGM region, PL, FL, and BM and identified 15,681 transcripts across HSPC ontogeny. We performed microarray analysis of AGM-derived HSPCs at 9.5 and 10.5 days postcoitum (dpc) and identified 40 differentially expressed genes, 23 confirmed as significantly changed by real-time polymerase chain reaction. We conclude that a transcriptional switch point occurs in HSPC ontogeny between 9.5 and 10.5 dpc in the AGM region.

  3. Role of Geminin in cell fate determination of hematopoietic stem cells (HSCs).

    PubMed

    Yasunaga, Shin'ichiro; Ohno, Yoshinori; Shirasu, Naoto; Zhang, Bo; Suzuki-Takedachi, Kyoko; Ohtsubo, Motoaki; Takihara, Yoshihiro

    2016-09-01

    Geminin exerts two distinct molecular roles. Geminin negatively regulates DNA replication licensing through the direct interaction with Cdt1 to prevent re-replication in proliferating cells. Geminin also regulates chromatin remodeling through the direct interaction with Brahma/Brg1 to maintain undifferentiated states of stem cells. We previously uncovered that Polycomb-group complex 1 and Hoxb4/Hoxa9, well-known intrinsic factors that are essential for maintaining the hematopoietic stem cell (HSC) activity, alternatively act as ubiquitin-proteasome systems for Geminin protein to reduce the protein expression level, and sustain the HSC activity. Thus, Geminin is presumed to play an important role in determining cell fate, i.e., turning on and off cellular quiescence and proliferation/differentiation, in HSCs. We recently generated recombinant cell-penetrating Geminin (CP-Geminin), enabling rapid incorporation and withdraw of Geminin protein in cells. CP-Geminin may be useful in regulating the cell cycle and chromatin configuration. In this article, we summarize current information on the molecular functions of Geminin and the regulatory system for Geminin protein expression, and argue for the molecular role of Geminin in cell fate determination of HSCs, and future perspective of a new technology for manipulating the activities of HSCs and cancer stem cells (CSCs).

  4. Hematopoietic and nature killer cell development from human pluripotent stem cells.

    PubMed

    Ni, Zhenya; Knorr, David A; Kaufman, Dan S

    2013-01-01

    Natural killer (NK) cells are key effectors of the innate immune system, protecting the host from a variety of infections, as well as malignant cells. Recent advances in the field of NK cell biology have led to a better understanding of how NK cells develop. This progress has directly translated to improved outcomes in patients receiving hematopoietic stem cell transplants to treat potentially lethal malignancies. However, key differences between mouse and human NK cell development and biology limits the use of rodents to attain a more in depth understanding of NK cell development. Therefore, a readily accessible and genetically tractable cell source to study human NK cell development is warranted. Our lab has pioneered the development of lymphocytes, specifically NK cells, from human embryonic stem cells (hESCs) and more recently induced pluripotent stem cells (iPSCs). This chapter describes a reliable method to generate NK cells from hESCs and iPSCs using murine stromal cell lines. Additionally, we include an updated approach using a spin-embryoid body (spin-EB) differentiation system that allows for human NK cell development completely defined in vitro conditions.

  5. Adverse Late and Long-Term Treatment Effects in Adult Allogeneic Hematopoietic Stem Cell Transplant Survivors.

    PubMed

    Mosesso, Kara

    2015-11-01

    Hematopoietic stem cell transplantation (HSCT) has become the standard of care for many malignant and nonmalignant hematologic diseases that don't respond to traditional therapy. There are two types: autologous transplantation (auto-HSCT), in which an individual's stem cells are collected, stored, and infused back into that person; and allogeneic transplantation (allo-HSCT), in which healthy donor stem cells are infused into a recipient whose bone marrow has been damaged or destroyed. There have been numerous advancements in this field, leading to marked increases in the number of transplants performed annually. This article--the first of several on cancer survivorship--focuses on the care of adult allo-HSCT survivors because of the greater complexity of their posttransplant course. The author summarizes potential adverse late and long-term treatment-related effects, with special focus on the evaluation and management of several cardiovascular disease risk factors that can occur either independently or concurrently as part of the metabolic syndrome. These risk factors are potentially modifiable with appropriate nursing interventions and lifest