An intelligent control system for rocket engines - Need, vision, and issues
NASA Technical Reports Server (NTRS)
Lorenzo, Carl F.; Merrill, Walter C.
1991-01-01
Several components of intelligence are defined. Within the context of these definitions an intelligent control system for rocket engines is described. The description includes a framework for development of an intelligent control system, including diagnostics, coordination, and direct control. Some current results and issues are presented.
Intelligent controller of novel design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou Qi Jian; Bai Jian Kuo
1983-01-01
This paper presents the authors attempt to combine the control engineering principle with human intelligence to form a new control algorithm. The hybrid system thus formed is both analogous and logical in actions and is called the intelligent controller (IC). With the help of cybernetics princple, the operator's intelligent action of control is programmed into the controller and the system is thus taught to act like an intelligent being within the prescribed range. Remarkable results were obtained from experiments conducted on an electronic model simulating the above mentioned system. Stability studies and system analysis are presented. 12 references.
An intelligent robotic aid system for human services
NASA Technical Reports Server (NTRS)
Kawamura, K.; Bagchi, S.; Iskarous, M.; Pack, R. T.; Saad, A.
1994-01-01
The long term goal of our research at the Intelligent Robotic Laboratory at Vanderbilt University is to develop advanced intelligent robotic aid systems for human services. As a first step toward our goal, the current thrusts of our R&D are centered on the development of an intelligent robotic aid called the ISAC (Intelligent Soft Arm Control). In this paper, we describe the overall system architecture and current activities in intelligent control, adaptive/interactive control and task learning.
Smart Prosthetic Hand Technology - Phase 2
2011-05-01
identification and estimation, hand motion estimation, intelligent embedded systems and control, robotic hand and biocompatibility and signaling. The...Smart Prosthetics, Bio- Robotics , Intelligent EMG Signal Processing, Embedded Systems and Intelligent Control, Inflammatory Responses of Cells, Toxicity...estimation, intelligent embedded systems and control, robotic hand and biocompatibility and signaling. The developed identification algorithm using a new
Intelligent flight control systems
NASA Technical Reports Server (NTRS)
Stengel, Robert F.
1993-01-01
The capabilities of flight control systems can be enhanced by designing them to emulate functions of natural intelligence. Intelligent control functions fall in three categories. Declarative actions involve decision-making, providing models for system monitoring, goal planning, and system/scenario identification. Procedural actions concern skilled behavior and have parallels in guidance, navigation, and adaptation. Reflexive actions are spontaneous, inner-loop responses for control and estimation. Intelligent flight control systems learn knowledge of the aircraft and its mission and adapt to changes in the flight environment. Cognitive models form an efficient basis for integrating 'outer-loop/inner-loop' control functions and for developing robust parallel-processing algorithms.
Integrated intelligent systems in advanced reactor control rooms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beckmeyer, R.R.
1989-01-01
An intelligent, reactor control room, information system is designed to be an integral part of an advanced control room and will assist the reactor operator's decision making process by continuously monitoring the current plant state and providing recommended operator actions to improve that state. This intelligent system is an integral part of, as well as an extension to, the plant protection and control systems. This paper describes the interaction of several functional components (intelligent information data display, technical specifications monitoring, and dynamic procedures) of the overall system and the artificial intelligence laboratory environment assembled for testing the prototype. 10 refs.,more » 5 figs.« less
Intelligent control based on fuzzy logic and neural net theory
NASA Technical Reports Server (NTRS)
Lee, Chuen-Chien
1991-01-01
In the conception and design of intelligent systems, one promising direction involves the use of fuzzy logic and neural network theory to enhance such systems' capability to learn from experience and adapt to changes in an environment of uncertainty and imprecision. Here, an intelligent control scheme is explored by integrating these multidisciplinary techniques. A self-learning system is proposed as an intelligent controller for dynamical processes, employing a control policy which evolves and improves automatically. One key component of the intelligent system is a fuzzy logic-based system which emulates human decision making behavior. It is shown that the system can solve a fairly difficult control learning problem. Simulation results demonstrate that improved learning performance can be achieved in relation to previously described systems employing bang-bang control. The proposed system is relatively insensitive to variations in the parameters of the system environment.
Fixed Point Learning Based Intelligent Traffic Control System
NASA Astrophysics Data System (ADS)
Zongyao, Wang; Cong, Sui; Cheng, Shao
2017-10-01
Fixed point learning has become an important tool to analyse large scale distributed system such as urban traffic network. This paper presents a fixed point learning based intelligence traffic network control system. The system applies convergence property of fixed point theorem to optimize the traffic flow density. The intelligence traffic control system achieves maximum road resources usage by averaging traffic flow density among the traffic network. The intelligence traffic network control system is built based on decentralized structure and intelligence cooperation. No central control is needed to manage the system. The proposed system is simple, effective and feasible for practical use. The performance of the system is tested via theoretical proof and simulations. The results demonstrate that the system can effectively solve the traffic congestion problem and increase the vehicles average speed. It also proves that the system is flexible, reliable and feasible for practical use.
An Artificial Neural Network Controller for Intelligent Transportation Systems Applications
DOT National Transportation Integrated Search
1996-01-01
An Autonomous Intelligent Cruise Control (AICC) has been designed using a feedforward artificial neural network, as an example for utilizing artificial neural networks for nonlinear control problems arising in intelligent transportation systems appli...
Artificial intelligence in robot control systems
NASA Astrophysics Data System (ADS)
Korikov, A.
2018-05-01
This paper analyzes modern concepts of artificial intelligence and known definitions of the term "level of intelligence". In robotics artificial intelligence system is defined as a system that works intelligently and optimally. The author proposes to use optimization methods for the design of intelligent robot control systems. The article provides the formalization of problems of robotic control system design, as a class of extremum problems with constraints. Solving these problems is rather complicated due to the high dimensionality, polymodality and a priori uncertainty. Decomposition of the extremum problems according to the method, suggested by the author, allows reducing them into a sequence of simpler problems, that can be successfully solved by modern computing technology. Several possible approaches to solving such problems are considered in the article.
The application of intelligent process control to space based systems
NASA Technical Reports Server (NTRS)
Wakefield, G. Steve
1990-01-01
The application of Artificial Intelligence to electronic and process control can help attain the autonomy and safety requirements of manned space systems. An overview of documented applications within various industries is presented. The development process is discussed along with associated issues for implementing an intelligence process control system.
F-15 Intelligent Flight Control System and Aeronautics Research at NASA Dryden
NASA Technical Reports Server (NTRS)
Brown, Nelson A.
2009-01-01
This viewgraph presentation reviews the F-15 Intelligent Flight Control System and Aeronautics including Autonomous Aerial Refueling Demonstrations, X-48B Blended Wing Body, F-15 Quiet Spike, and NF-15 Intelligent Flight Controls.
Intelligent on-line fault tolerant control for unanticipated catastrophic failures.
Yen, Gary G; Ho, Liang-Wei
2004-10-01
As dynamic systems become increasingly complex, experience rapidly changing environments, and encounter a greater variety of unexpected component failures, solving the control problems of such systems is a grand challenge for control engineers. Traditional control design techniques are not adequate to cope with these systems, which may suffer from unanticipated dynamic failures. In this research work, we investigate the on-line fault tolerant control problem and propose an intelligent on-line control strategy to handle the desired trajectories tracking problem for systems suffering from various unanticipated catastrophic faults. Through theoretical analysis, the sufficient condition of system stability has been derived and two different on-line control laws have been developed. The approach of the proposed intelligent control strategy is to continuously monitor the system performance and identify what the system's current state is by using a fault detection method based upon our best knowledge of the nominal system and nominal controller. Once a fault is detected, the proposed intelligent controller will adjust its control signal to compensate for the unknown system failure dynamics by using an artificial neural network as an on-line estimator to approximate the unexpected and unknown failure dynamics. The first control law is derived directly from the Lyapunov stability theory, while the second control law is derived based upon the discrete-time sliding mode control technique. Both control laws have been implemented in a variety of failure scenarios to validate the proposed intelligent control scheme. The simulation results, including a three-tank benchmark problem, comply with theoretical analysis and demonstrate a significant improvement in trajectory following performance based upon the proposed intelligent control strategy.
The Lateral Tracking Control for the Intelligent Vehicle Based on Adaptive PID Neural Network.
Han, Gaining; Fu, Weiping; Wang, Wen; Wu, Zongsheng
2017-05-30
The intelligent vehicle is a complicated nonlinear system, and the design of a path tracking controller is one of the key technologies in intelligent vehicle research. This paper mainly designs a lateral control dynamic model of the intelligent vehicle, which is used for lateral tracking control. Firstly, the vehicle dynamics model (i.e., transfer function) is established according to the vehicle parameters. Secondly, according to the vehicle steering control system and the CARMA (Controlled Auto-Regression and Moving-Average) model, a second-order control system model is built. Using forgetting factor recursive least square estimation (FFRLS), the system parameters are identified. Finally, a neural network PID (Proportion Integral Derivative) controller is established for lateral path tracking control based on the vehicle model and the steering system model. Experimental simulation results show that the proposed model and algorithm have the high real-time and robustness in path tracing control. This provides a certain theoretical basis for intelligent vehicle autonomous navigation tracking control, and lays the foundation for the vertical and lateral coupling control.
The Lateral Tracking Control for the Intelligent Vehicle Based on Adaptive PID Neural Network
Han, Gaining; Fu, Weiping; Wang, Wen; Wu, Zongsheng
2017-01-01
The intelligent vehicle is a complicated nonlinear system, and the design of a path tracking controller is one of the key technologies in intelligent vehicle research. This paper mainly designs a lateral control dynamic model of the intelligent vehicle, which is used for lateral tracking control. Firstly, the vehicle dynamics model (i.e., transfer function) is established according to the vehicle parameters. Secondly, according to the vehicle steering control system and the CARMA (Controlled Auto-Regression and Moving-Average) model, a second-order control system model is built. Using forgetting factor recursive least square estimation (FFRLS), the system parameters are identified. Finally, a neural network PID (Proportion Integral Derivative) controller is established for lateral path tracking control based on the vehicle model and the steering system model. Experimental simulation results show that the proposed model and algorithm have the high real-time and robustness in path tracing control. This provides a certain theoretical basis for intelligent vehicle autonomous navigation tracking control, and lays the foundation for the vertical and lateral coupling control. PMID:28556817
Intelligent Home Control System Based on ARM10
NASA Astrophysics Data System (ADS)
Chen, G. X.; Jiang, J.; Zhong, L. H.
2017-10-01
Intelligent home is becoming the hot spot of social attention in the 21st century. When it is in China, it is a really new industry. However, there is no doubt that Intelligent home will become a new economic growth point of social development; it will change the life-style of human being. To develop the intelligent home, we should keep up with the development trend of technology. This is the reason why I talk about the intelligent home control system here. In this paper, intelligent home control system is designed for alarm and remote control on gas- leaking, fire disaster, earthquake prediction, etc., by examining environmental changes around house. When the Intelligent home control system has detected an accident occurs, the processor will communicate with the GSM module, informing the house keeper the occurrence of accident. User can receive and send the message to the system to cut the power by mobile phone. The system can get access to DCCthrough ARM10 JTAG interface, using DCC to send and receive messages. At the same time, the debugger on the host is mainly used to receive the user’s command and send it to the debug component in the target system. The data that returned from the target system is received and displayed to the user in a certain format.
Artificial Intelligence for Controlling Robotic Aircraft
NASA Technical Reports Server (NTRS)
Krishnakumar, Kalmanje
2005-01-01
A document consisting mostly of lecture slides presents overviews of artificial-intelligence-based control methods now under development for application to robotic aircraft [called Unmanned Aerial Vehicles (UAVs) in the paper] and spacecraft and to the next generation of flight controllers for piloted aircraft. Following brief introductory remarks, the paper presents background information on intelligent control, including basic characteristics defining intelligent systems and intelligent control and the concept of levels of intelligent control. Next, the paper addresses several concepts in intelligent flight control. The document ends with some concluding remarks, including statements to the effect that (1) intelligent control architectures can guarantee stability of inner control loops and (2) for UAVs, intelligent control provides a robust way to accommodate an outer-loop control architecture for planning and/or related purposes.
Intelligent Traffic Light Based on PLC Control
NASA Astrophysics Data System (ADS)
Mei, Lin; Zhang, Lijian; Wang, Lingling
2017-11-01
The traditional traffic light system with a fixed control mode and single control function is contradicted with the current traffic section. The traditional one has been unable to meet the functional requirements of the existing flexible traffic control system. This paper research and develop an intelligent traffic light called PLC control system. It uses PLC as control core, using a sensor module for receiving real-time information of vehicles, traffic control mode for information to select the traffic lights. Of which control mode is flexible and changeable, and it also set the countdown reminder to improve the effectiveness of traffic lights, which can realize the goal of intelligent traffic diversion, intelligent traffic diversion.
Implementation of Integrated System Fault Management Capability
NASA Technical Reports Server (NTRS)
Figueroa, Fernando; Schmalzel, John; Morris, Jon; Smith, Harvey; Turowski, Mark
2008-01-01
Fault Management to support rocket engine test mission with highly reliable and accurate measurements; while improving availability and lifecycle costs. CORE ELEMENTS: Architecture, taxonomy, and ontology (ATO) for DIaK management. Intelligent Sensor Processes; Intelligent Element Processes; Intelligent Controllers; Intelligent Subsystem Processes; Intelligent System Processes; Intelligent Component Processes.
TOWARDS MEASURES OF INTELLIGENCE BASED ON SEMIOTIC CONTROL
DOE Office of Scientific and Technical Information (OSTI.GOV)
C. JOSLYN
2000-08-01
We address the question of how to identify and measure the degree of intelligence in systems. We define the presence of intelligence as equivalent to the presence of a control relation. We contrast the distinct atomic semioic definitions of models and controls, and discuss hierarchical and anticipatory control. We conclude with a suggestion about moving towards quantitative measures of the degree of such control in systems.
The Intelligent Control System and Experiments for an Unmanned Wave Glider.
Liao, Yulei; Wang, Leifeng; Li, Yiming; Li, Ye; Jiang, Quanquan
2016-01-01
The control system designing of Unmanned Wave Glider (UWG) is challenging since the control system is weak maneuvering, large time-lag and large disturbance, which is difficult to establish accurate mathematical model. Meanwhile, to complete marine environment monitoring in long time scale and large spatial scale autonomously, UWG asks high requirements of intelligence and reliability. This paper focuses on the "Ocean Rambler" UWG. First, the intelligent control system architecture is designed based on the cerebrum basic function combination zone theory and hierarchic control method. The hardware and software designing of the embedded motion control system are mainly discussed. A motion control system based on rational behavior model of four layers is proposed. Then, combining with the line-of sight method(LOS), a self-adapting PID guidance law is proposed to compensate the steady state error in path following of UWG caused by marine environment disturbance especially current. Based on S-surface control method, an improved S-surface heading controller is proposed to solve the heading control problem of the weak maneuvering carrier under large disturbance. Finally, the simulation experiments were carried out and the UWG completed autonomous path following and marine environment monitoring in sea trials. The simulation experiments and sea trial results prove that the proposed intelligent control system, guidance law, controller have favorable control performance, and the feasibility and reliability of the designed intelligent control system of UWG are verified.
The Intelligent Control System and Experiments for an Unmanned Wave Glider
Liao, Yulei; Wang, Leifeng; Li, Yiming; Li, Ye; Jiang, Quanquan
2016-01-01
The control system designing of Unmanned Wave Glider (UWG) is challenging since the control system is weak maneuvering, large time-lag and large disturbance, which is difficult to establish accurate mathematical model. Meanwhile, to complete marine environment monitoring in long time scale and large spatial scale autonomously, UWG asks high requirements of intelligence and reliability. This paper focuses on the “Ocean Rambler” UWG. First, the intelligent control system architecture is designed based on the cerebrum basic function combination zone theory and hierarchic control method. The hardware and software designing of the embedded motion control system are mainly discussed. A motion control system based on rational behavior model of four layers is proposed. Then, combining with the line-of sight method(LOS), a self-adapting PID guidance law is proposed to compensate the steady state error in path following of UWG caused by marine environment disturbance especially current. Based on S-surface control method, an improved S-surface heading controller is proposed to solve the heading control problem of the weak maneuvering carrier under large disturbance. Finally, the simulation experiments were carried out and the UWG completed autonomous path following and marine environment monitoring in sea trials. The simulation experiments and sea trial results prove that the proposed intelligent control system, guidance law, controller have favorable control performance, and the feasibility and reliability of the designed intelligent control system of UWG are verified. PMID:28005956
NASA Astrophysics Data System (ADS)
Park, Sangsoo; Miura, Yushi; Ise, Toshifumi
This paper proposes an intelligent control for the distributed flexible network photovoltaic system using autonomous control and agent. The distributed flexible network photovoltaic system is composed of a secondary battery bank and a number of subsystems which have a solar array, a dc/dc converter and a load. The control mode of dc/dc converter can be selected based on local information by autonomous control. However, if only autonomous control using local information is applied, there are some problems associated with several cases such as voltage drop on long power lines. To overcome these problems, the authors propose introducing agents to improve control characteristics. The autonomous control with agents is called as intelligent control in this paper. The intelligent control scheme that employs the communication between agents is applied for the model system and proved with simulation using PSCAD/EMTDC.
Intelligent editor/printer enhancements
NASA Technical Reports Server (NTRS)
Woodfill, M. C.; Pheanis, D. C.
1983-01-01
Microprocessor support hardware, software, and cross assemblers relating to the Motorola 6800 and 6809 process systems were developed. Pinter controller and intelligent CRT development are discussed. The user's manual, design specifications for the MC6809 version of the intelligent printer controller card, and a 132-character by 64-line intelligent CRT display system using a Motorola 6809 MPU, and a one-line assembler and disassembler are provided.
Using generic tool kits to build intelligent systems
NASA Technical Reports Server (NTRS)
Miller, David J.
1994-01-01
The Intelligent Systems and Robots Center at Sandia National Laboratories is developing technologies for the automation of processes associated with environmental remediation and information-driven manufacturing. These technologies, which focus on automated planning and programming and sensor-based and model-based control, are used to build intelligent systems which are able to generate plans of action, program the necessary devices, and use sensors to react to changes in the environment. By automating tasks through the use of programmable devices tied to computer models which are augmented by sensing, requirements for faster, safer, and cheaper systems are being satisfied. However, because of the need for rapid cost-effect prototyping and multi-laboratory teaming, it is also necessary to define a consistent approach to the construction of controllers for such systems. As a result, the Generic Intelligent System Controller (GISC) concept has been developed. This concept promotes the philosophy of producing generic tool kits which can be used and reused to build intelligent control systems.
Intelligent failure-tolerant control
NASA Technical Reports Server (NTRS)
Stengel, Robert F.
1991-01-01
An overview of failure-tolerant control is presented, beginning with robust control, progressing through parallel and analytical redundancy, and ending with rule-based systems and artificial neural networks. By design or implementation, failure-tolerant control systems are 'intelligent' systems. All failure-tolerant systems require some degrees of robustness to protect against catastrophic failure; failure tolerance often can be improved by adaptivity in decision-making and control, as well as by redundancy in measurement and actuation. Reliability, maintainability, and survivability can be enhanced by failure tolerance, although each objective poses different goals for control system design. Artificial intelligence concepts are helpful for integrating and codifying failure-tolerant control systems, not as alternatives but as adjuncts to conventional design methods.
An intelligent automated command and control system for spacecraft mission operations
NASA Technical Reports Server (NTRS)
Stoffel, A. William
1994-01-01
The Intelligent Command and Control (ICC) System research project is intended to provide the technology base necessary for producing an intelligent automated command and control (C&C) system capable of performing all the ground control C&C functions currently performed by Mission Operations Center (MOC) project Flight Operations Team (FOT). The ICC research accomplishments to date, details of the ICC, and the planned outcome of the ICC research, mentioned above, are discussed in detail.
An intelligent training system for payload-assist module deploys
NASA Technical Reports Server (NTRS)
Loftin, R. Bowen; Wang, Lui; Baffes, Paul; Rua, Monica
1987-01-01
An autonomous intelligent training system which integrates expert system technology with training/teaching methodologies is described. The Payload-Assist Module Deploys/Intelligent Computer-Aided Training (PD/ICAT) system has, so far, proven to be a potentially valuable addition to the training tools available for training Flight Dynamics Officers in shuttle ground control. The authors are convinced that the basic structure of PD/ICAT can be extended to form a general architecture for intelligent training systems for training flight controllers and crew members in the performance of complex, mission-critical tasks.
Li, Yongcheng; Sun, Rong; Zhang, Bin; Wang, Yuechao; Li, Hongyi
2015-01-01
Neural networks are considered the origin of intelligence in organisms. In this paper, a new design of an intelligent system merging biological intelligence with artificial intelligence was created. It was based on a neural controller bidirectionally connected to an actual mobile robot to implement a novel vehicle. Two types of experimental preparations were utilized as the neural controller including 'random' and '4Q' (cultured neurons artificially divided into four interconnected parts) neural network. Compared to the random cultures, the '4Q' cultures presented absolutely different activities, and the robot controlled by the '4Q' network presented better capabilities in search tasks. Our results showed that neural cultures could be successfully employed to control an artificial agent; the robot performed better and better with the stimulus because of the short-term plasticity. A new framework is provided to investigate the bidirectional biological-artificial interface and develop new strategies for a future intelligent system using these simplified model systems.
Zhang, Bin; Wang, Yuechao; Li, Hongyi
2015-01-01
Neural networks are considered the origin of intelligence in organisms. In this paper, a new design of an intelligent system merging biological intelligence with artificial intelligence was created. It was based on a neural controller bidirectionally connected to an actual mobile robot to implement a novel vehicle. Two types of experimental preparations were utilized as the neural controller including ‘random’ and ‘4Q’ (cultured neurons artificially divided into four interconnected parts) neural network. Compared to the random cultures, the ‘4Q’ cultures presented absolutely different activities, and the robot controlled by the ‘4Q’ network presented better capabilities in search tasks. Our results showed that neural cultures could be successfully employed to control an artificial agent; the robot performed better and better with the stimulus because of the short-term plasticity. A new framework is provided to investigate the bidirectional biological-artificial interface and develop new strategies for a future intelligent system using these simplified model systems. PMID:25992579
Intelligent control of PV system on the basis of the fuzzy recurrent neuronet*
NASA Astrophysics Data System (ADS)
Engel, E. A.; Kovalev, I. V.; Engel, N. E.
2016-04-01
This paper presents the fuzzy recurrent neuronet for PV system’s control. Based on the PV system’s state, the fuzzy recurrent neural net tracks the maximum power point under random perturbations. The validity and advantages of the proposed intelligent control of PV system are demonstrated by numerical simulations. The simulation results show that the proposed intelligent control of PV system achieves real-time control speed and competitive performance, as compared to a classical control scheme on the basis of the perturbation & observation algorithm.
Composite Intelligent Learning Control of Strict-Feedback Systems With Disturbance.
Xu, Bin; Sun, Fuchun
2018-02-01
This paper addresses the dynamic surface control of uncertain nonlinear systems on the basis of composite intelligent learning and disturbance observer in presence of unknown system nonlinearity and time-varying disturbance. The serial-parallel estimation model with intelligent approximation and disturbance estimation is built to obtain the prediction error and in this way the composite law for weights updating is constructed. The nonlinear disturbance observer is developed using intelligent approximation information while the disturbance estimation is guaranteed to converge to a bounded compact set. The highlight is that different from previous work directly toward asymptotic stability, the transparency of the intelligent approximation and disturbance estimation is included in the control scheme. The uniformly ultimate boundedness stability is analyzed via Lyapunov method. Through simulation verification, the composite intelligent learning with disturbance observer can efficiently estimate the effect caused by system nonlinearity and disturbance while the proposed approach obtains better performance with higher accuracy.
Intelligent building system for airport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ancevic, M.
1997-11-01
The Munich airport uses a state-of-the-art intelligent building management system to control systems such as HVAC, runway lights, baggage handling, etc. Planning the new Munich II international airport provided a unique opportunity to use the latest state-of-the-art technical systems, while integrating their control through a single intelligent building management system. Opened in 1992, the airport is Germany`s second-largest airport after Frankfurt. The airport is staffed by 16,000 employees and can handle 17 million passengers a year. The sprawling site encompasses more than 120 buildings. The airport`s distributed control system is specifically designed to optimize the complex`s unique range of functions,more » while providing a high degree of comfort, convenience and safety for airport visitors. With the capacity to control 200,000 points, this system controls more than 112,000 points and integrates 13 major subsystems from nine different vendors. It provides convenient, accessible control of everything including the complex`s power plant, HVAC Control, the terminal`s people-moving functions, interior lighting controls, runway lights, baggage forwarding systems, elevators, and boarding bridges. The airport was named 1993 intelligent building of the year by the Intelligent Buildings Institute Foundation. Its building management system is a striking example of the degree to which a building complex`s functions can be integrated for greater operational control and efficiency.« less
Large Efficient Intelligent Heating Relay Station System
NASA Astrophysics Data System (ADS)
Wu, C. Z.; Wei, X. G.; Wu, M. Q.
2017-12-01
The design of large efficient intelligent heating relay station system aims at the improvement of the existing heating system in our country, such as low heating efficiency, waste of energy and serious pollution, and the control still depends on the artificial problem. In this design, we first improve the existing plate heat exchanger. Secondly, the ATM89C51 is used to control the whole system and realize the intelligent control. The detection part is using the PT100 temperature sensor, pressure sensor, turbine flowmeter, heating temperature, detection of user end liquid flow, hydraulic, and real-time feedback, feedback signal to the microcontroller through the heating for users to adjust, realize the whole system more efficient, intelligent and energy-saving.
Rice-obot 1: An intelligent autonomous mobile robot
NASA Technical Reports Server (NTRS)
Defigueiredo, R.; Ciscon, L.; Berberian, D.
1989-01-01
The Rice-obot I is the first in a series of Intelligent Autonomous Mobile Robots (IAMRs) being developed at Rice University's Cooperative Intelligent Mobile Robots (CIMR) lab. The Rice-obot I is mainly designed to be a testbed for various robotic and AI techniques, and a platform for developing intelligent control systems for exploratory robots. Researchers present the need for a generalized environment capable of combining all of the control, sensory and knowledge systems of an IAMR. They introduce Lisp-Nodes as such a system, and develop the basic concepts of nodes, messages and classes. Furthermore, they show how the control system of the Rice-obot I is implemented as sub-systems in Lisp-Nodes.
Facts and fiction of learning systems. [decision making intelligent control
NASA Technical Reports Server (NTRS)
Saridis, G. N.
1975-01-01
The methodology that will provide the updated precision for the hardware control and the advanced decision making and planning in the software control is called learning systems and intelligent control. It was developed theoretically as an alternative for the nonsystematic heuristic approaches of artificial intelligence experiments and the inflexible formulation of modern optimal control methods. Its basic concepts are discussed and some feasibility studies of some practical applications are presented.
Overview of Intelligent Systems and Operations Development
NASA Technical Reports Server (NTRS)
Pallix, Joan; Dorais, Greg; Penix, John
2004-01-01
To achieve NASA's ambitious mission objectives for the future, aircraft and spacecraft will need intelligence to take the correct action in a variety of circumstances. Vehicle intelligence can be defined as the ability to "do the right thing" when faced with a complex decision-making situation. It will be necessary to implement integrated autonomous operations and low-level adaptive flight control technologies to direct actions that enhance the safety and success of complex missions despite component failures, degraded performance, operator errors, and environment uncertainty. This paper will describe the array of technologies required to meet these complex objectives. This includes the integration of high-level reasoning and autonomous capabilities with multiple subsystem controllers for robust performance. Future intelligent systems will use models of the system, its environment, and other intelligent agents with which it interacts. They will also require planners, reasoning engines, and adaptive controllers that can recommend or execute commands enabling the system to respond intelligently. The presentation will also address the development of highly dependable software, which is a key component to ensure the reliability of intelligent systems.
Intelligent system of coordination and control for manufacturing
NASA Astrophysics Data System (ADS)
Ciortea, E. M.
2016-08-01
This paper wants shaping an intelligent system monitoring and control, which leads to optimizing material and information flows of the company. The paper presents a model for tracking and control system using intelligent real. Production system proposed for simulation analysis provides the ability to track and control the process in real time. Using simulation models be understood: the influence of changes in system structure, commands influence on the general condition of the manufacturing process conditions influence the behavior of some system parameters. Practical character consists of tracking and real-time control of the technological process. It is based on modular systems analyzed using mathematical models, graphic-analytical sizing, configuration, optimization and simulation.
NASA Glenn Research in Controls and Diagnostics for Intelligent Aerospace Propulsion Systems
NASA Technical Reports Server (NTRS)
2005-01-01
With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. Also the propulsion systems required to enable the NASA (National Aeronautics and Space Administration) Vision for Space Exploration in an affordable manner will need to have high reliability, safety and autonomous operation capability. The Controls and Dynamics Branch at NASA Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced controls and health management technologies that will help meet these challenges through the concept of Intelligent Propulsion Systems. The key enabling technologies for an Intelligent Propulsion System are the increased efficiencies of components through active control, advanced diagnostics and prognostics integrated with intelligent engine control to enhance operational reliability and component life, and distributed control with smart sensors and actuators in an adaptive fault tolerant architecture. This paper describes the current activities of the Controls and Dynamics Branch in the areas of active component control and propulsion system intelligent control, and presents some recent analytical and experimental results in these areas.
Intelligent Systems For Aerospace Engineering: An Overview
NASA Technical Reports Server (NTRS)
KrishnaKumar, K.
2003-01-01
Intelligent systems are nature-inspired, mathematically sound, computationally intensive problem solving tools and methodologies that have become extremely important for advancing the current trends in information technology. Artificially intelligent systems currently utilize computers to emulate various faculties of human intelligence and biological metaphors. They use a combination of symbolic and sub-symbolic systems capable of evolving human cognitive skills and intelligence, not just systems capable of doing things humans do not do well. Intelligent systems are ideally suited for tasks such as search and optimization, pattern recognition and matching, planning, uncertainty management, control, and adaptation. In this paper, the intelligent system technologies and their application potential are highlighted via several examples.
Intelligent Systems for Aerospace Engineering: An Overview
NASA Technical Reports Server (NTRS)
Krishnakumar, Kalmanje
2002-01-01
Intelligent systems are nature-inspired, mathematically sound, computationally intensive problem solving tools and methodologies that have become extremely important for advancing the current trends in information technology. Artificially intelligent systems currently utilize computers to emulate various faculties of human intelligence and biological metaphors. They use a combination of symbolic and sub-symbolic systems capable of evolving human cognitive skills and intelligence, not just systems capable of doing things humans do not do well. Intelligent systems are ideally suited for tasks such as search and optimization, pattern recognition and matching, planning, uncertainty management, control, and adaptation. In this paper, the intelligent system technologies and their application potential are highlighted via several examples.
F-15 IFCS: Intelligent Flight Control System
NASA Technical Reports Server (NTRS)
Bosworth, John
2007-01-01
This viewgraph presentation describes the F-15 Intelligent Flight Control System (IFCS). The goals of this project include: 1) Demonstrate revolutionary control approaches that can efficiently optimize aircraft performance in both normal and failure conditions; and 2) Demonstrate advance neural network-based flight control technology for new aerospace systems designs.
NASA Technical Reports Server (NTRS)
Lum, Henry, Jr.
1988-01-01
Information on systems autonomy is given in viewgraph form. Information is given on space systems integration, intelligent autonomous systems, automated systems for in-flight mission operations, the Systems Autonomy Demonstration Project on the Space Station Thermal Control System, the architecture of an autonomous intelligent system, artificial intelligence research issues, machine learning, and real-time image processing.
NASA Technical Reports Server (NTRS)
Malin, Jane T.; Flores, Luis; Fleming, Land; Throop, Daiv
2002-01-01
A hybrid discrete/continuous simulation tool, CONFIG, has been developed to support evaluation of the operability life support systems. CON FIG simulates operations scenarios in which flows and pressures change continuously while system reconfigurations occur as discrete events. In simulations, intelligent control software can interact dynamically with hardware system models. CONFIG simulations have been used to evaluate control software and intelligent agents for automating life support systems operations. A CON FIG model of an advanced biological water recovery system has been developed to interact with intelligent control software that is being used in a water system test at NASA Johnson Space Center
77 FR 27202 - 36(b)(1) Arms Sales Notification
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-09
... includes: Electronic Warfare Systems, Command, Control, Communication, Computers and Intelligence/Communication, Navigational and Identifications (C4I/CNI), Autonomic Logistics Global Support System (ALGS... Systems, Command, Control, Communication, Computers and Intelligence/Communication, Navigational and...
Intelligent fault-tolerant controllers
NASA Technical Reports Server (NTRS)
Huang, Chien Y.
1987-01-01
A system with fault tolerant controls is one that can detect, isolate, and estimate failures and perform necessary control reconfiguration based on this new information. Artificial intelligence (AI) is concerned with semantic processing, and it has evolved to include the topics of expert systems and machine learning. This research represents an attempt to apply AI to fault tolerant controls, hence, the name intelligent fault tolerant control (IFTC). A generic solution to the problem is sought, providing a system based on logic in addition to analytical tools, and offering machine learning capabilities. The advantages are that redundant system specific algorithms are no longer needed, that reasonableness is used to quickly choose the correct control strategy, and that the system can adapt to new situations by learning about its effects on system dynamics.
Intelligent systems technology infrastructure for integrated systems
NASA Technical Reports Server (NTRS)
Lum, Henry, Jr.
1991-01-01
Significant advances have occurred during the last decade in intelligent systems technologies (a.k.a. knowledge-based systems, KBS) including research, feasibility demonstrations, and technology implementations in operational environments. Evaluation and simulation data obtained to date in real-time operational environments suggest that cost-effective utilization of intelligent systems technologies can be realized for Automated Rendezvous and Capture applications. The successful implementation of these technologies involve a complex system infrastructure integrating the requirements of transportation, vehicle checkout and health management, and communication systems without compromise to systems reliability and performance. The resources that must be invoked to accomplish these tasks include remote ground operations and control, built-in system fault management and control, and intelligent robotics. To ensure long-term evolution and integration of new validated technologies over the lifetime of the vehicle, system interfaces must also be addressed and integrated into the overall system interface requirements. An approach for defining and evaluating the system infrastructures including the testbed currently being used to support the on-going evaluations for the evolutionary Space Station Freedom Data Management System is presented and discussed. Intelligent system technologies discussed include artificial intelligence (real-time replanning and scheduling), high performance computational elements (parallel processors, photonic processors, and neural networks), real-time fault management and control, and system software development tools for rapid prototyping capabilities.
Controls and Health Management Technologies for Intelligent Aerospace Propulsion Systems
NASA Technical Reports Server (NTRS)
Garg, Sanjay
2004-01-01
With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Technology Branch at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced controls and health management technologies that will help meet these challenges through the concept of an Intelligent Engine. The key enabling technologies for an Intelligent Engine are the increased efficiencies of components through active control, advanced diagnostics and prognostics integrated with intelligent engine control to enhance component life, and distributed control with smart sensors and actuators in an adaptive fault tolerant architecture. This paper describes the current activities of the Controls and Dynamics Technology Branch in the areas of active component control and propulsion system intelligent control, and presents some recent analytical and experimental results in these areas.
Measuring the Performance and Intelligence of Systems: Proceedings of the 2002 PerMIS Workshop
NASA Technical Reports Server (NTRS)
Messina, E. R.; Meystel, A. M.
2002-01-01
Contents include the following: Performance Metrics; Performance of Multiple Agents; Performance of Mobility Systems; Performance of Planning Systems; General Discussion Panel 1; Uncertainty of Representation I; Performance of Robots in Hazardous Domains; Modeling Intelligence; Modeling of Mind; Measuring Intelligence; Grouping: A Core Procedure of Intelligence; Uncertainty in Representation II; Towards Universal Planning/Control Systems.
Rule-based mechanisms of learning for intelligent adaptive flight control
NASA Technical Reports Server (NTRS)
Handelman, David A.; Stengel, Robert F.
1990-01-01
How certain aspects of human learning can be used to characterize learning in intelligent adaptive control systems is investigated. Reflexive and declarative memory and learning are described. It is shown that model-based systems-theoretic adaptive control methods exhibit attributes of reflexive learning, whereas the problem-solving capabilities of knowledge-based systems of artificial intelligence are naturally suited for implementing declarative learning. Issues related to learning in knowledge-based control systems are addressed, with particular attention given to rule-based systems. A mechanism for real-time rule-based knowledge acquisition is suggested, and utilization of this mechanism within the context of failure diagnosis for fault-tolerant flight control is demonstrated.
NASA Technical Reports Server (NTRS)
Conway, Lynn; Volz, Richard; Walker, Michael W.
1989-01-01
There is a growing need for humans to perform complex remote operations and to extend the intelligence and experience of experts to distant applications. It is asserted that a blending of human intelligence, modern information technology, remote control, and intelligent autonomous systems is required, and have coined the term tele-autonomous technology, or tele-automation, for methods producing intelligent action at a distance. Tele-automation goes beyond autonomous control by blending in human intelligence. It goes beyond tele-operation by incorporating as much autonomy as possible and/or reasonable. A new approach is discussed for solving one of the fundamental problems facing tele-autonomous systems: The need to overcome time delays due to telemetry and signal propagation. New concepts are introduced called time and position clutches, that allow the time and position frames between the local user control and the remote device being controlled, to be desynchronized respectively. The design and implementation of these mechanisms are described in detail. It is demonstrated that these mechanisms lead to substantial telemanipulation performance improvements, including the result of improvements even in the absence of time delays. The new controls also yield a simple protocol for control handoffs of manipulation tasks between local operators and remote systems.
Li, Shanzhi; Wang, Haoping; Tian, Yang; Aitouch, Abdel; Klein, John
2016-09-01
This paper presents an intelligent proportional-integral sliding mode control (iPISMC) for direct power control of variable speed-constant frequency wind turbine system. This approach deals with optimal power production (in the maximum power point tracking sense) under several disturbance factors such as turbulent wind. This controller is made of two sub-components: (i) an intelligent proportional-integral module for online disturbance compensation and (ii) a sliding mode module for circumventing disturbance estimation errors. This iPISMC method has been tested on FAST/Simulink platform of a 5MW wind turbine system. The obtained results demonstrate that the proposed iPISMC method outperforms the classical PI and intelligent proportional-integral control (iPI) in terms of both active power and response time. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Compact Microscope Imaging System With Intelligent Controls Improved
NASA Technical Reports Server (NTRS)
McDowell, Mark
2004-01-01
The Compact Microscope Imaging System (CMIS) with intelligent controls is a diagnostic microscope analysis tool with intelligent controls for use in space, industrial, medical, and security applications. This compact miniature microscope, which can perform tasks usually reserved for conventional microscopes, has unique advantages in the fields of microscopy, biomedical research, inline process inspection, and space science. Its unique approach integrates a machine vision technique with an instrumentation and control technique that provides intelligence via the use of adaptive neural networks. The CMIS system was developed at the NASA Glenn Research Center specifically for interface detection used for colloid hard spheres experiments; biological cell detection for patch clamping, cell movement, and tracking; and detection of anode and cathode defects for laboratory samples using microscope technology.
Artificial intelligence in process control: Knowledge base for the shuttle ECS model
NASA Technical Reports Server (NTRS)
Stiffler, A. Kent
1989-01-01
The general operation of KATE, an artificial intelligence controller, is outlined. A shuttle environmental control system (ECS) demonstration system for KATE is explained. The knowledge base model for this system is derived. An experimental test procedure is given to verify parameters in the model.
NASA Technical Reports Server (NTRS)
Dufrene, Warren R., Jr.
2004-01-01
This paper describes the development of a planned approach for Autonomous operation of an Unmanned Aerial Vehicle (UAV). A Hybrid approach will seek to provide Knowledge Generation through the application of Artificial Intelligence (AI) and Intelligent Agents (IA) for UAV control. The applications of several different types of AI techniques for flight are explored during this research effort. The research concentration is directed to the application of different AI methods within the UAV arena. By evaluating AI and biological system approaches. which include Expert Systems, Neural Networks. Intelligent Agents, Fuzzy Logic, and Complex Adaptive Systems, a new insight may be gained into the benefits of AI and CAS techniques applied to achieving true autonomous operation of these systems. Although flight systems were explored, the benefits should apply to many Unmanned Vehicles such as: Rovers. Ocean Explorers, Robots, and autonomous operation systems. A portion of the flight system is broken down into control agents that represent the intelligent agent approach used in AI. After the completion of a successful approach, a framework for applying an intelligent agent is presented. The initial results from simulation of a security agent for communication are presented.
Intelligent Systems: Shaping the Future of Aeronautics and Space Exploration
NASA Technical Reports Server (NTRS)
Krishnakumar, Kalmanje; Lohn, Jason; Kaneshige, John
2004-01-01
Intelligent systems are nature-inspired, mathematically sound, computationally intensive problem solving tools and methodologies that have become important for NASA's future roles in Aeronautics and Space Exploration. Intelligent systems will enable safe, cost and mission-effective approaches to air& control, system design, spacecraft autonomy, robotic space exploration and human exploration of Moon, Mars, and beyond. In this talk, we will discuss intelligent system technologies and expand on the role of intelligent systems in NASA's missions. We will also present several examples of which some are highlighted m this extended abstract.
Chang, Yeong-Chan
2005-12-01
This paper addresses the problem of designing adaptive fuzzy-based (or neural network-based) robust controls for a large class of uncertain nonlinear time-varying systems. This class of systems can be perturbed by plant uncertainties, unmodeled perturbations, and external disturbances. Nonlinear H(infinity) control technique incorporated with adaptive control technique and VSC technique is employed to construct the intelligent robust stabilization controller such that an H(infinity) control is achieved. The problem of the robust tracking control design for uncertain robotic systems is employed to demonstrate the effectiveness of the developed robust stabilization control scheme. Therefore, an intelligent robust tracking controller for uncertain robotic systems in the presence of high-degree uncertainties can easily be implemented. Its solution requires only to solve a linear algebraic matrix inequality and a satisfactorily transient and asymptotical tracking performance is guaranteed. A simulation example is made to confirm the performance of the developed control algorithms.
Human-computer interaction in distributed supervisory control tasks
NASA Technical Reports Server (NTRS)
Mitchell, Christine M.
1989-01-01
An overview of activities concerned with the development and applications of the Operator Function Model (OFM) is presented. The OFM is a mathematical tool to represent operator interaction with predominantly automated space ground control systems. The design and assessment of an intelligent operator aid (OFMspert and Ally) is particularly discussed. The application of OFM to represent the task knowledge in the design of intelligent tutoring systems, designated OFMTutor and ITSSO (Intelligent Tutoring System for Satellite Operators), is also described. Viewgraphs from symposia presentations are compiled along with papers addressing the intent inferencing capabilities of OFMspert, the OFMTutor system, and an overview of intelligent tutoring systems and the implications for complex dynamic systems.
Active optical control system design of the SONG-China Telescope
NASA Astrophysics Data System (ADS)
Ye, Yu; Kou, Songfeng; Niu, Dongsheng; Li, Cheng; Wang, Guomin
2012-09-01
The standard SONG node structure of control system is presented. The active optical control system of the project is a distributed system, and a host computer and a slave intelligent controller are included. The host control computer collects the information from wave front sensor and sends commands to the slave computer to realize a closed loop model. For intelligent controller, a programmable logic controller (PLC) system is used. This system combines with industrial personal computer (IPC) and PLC to make up a control system with powerful and reliable.
Advanced controls for light sources
NASA Astrophysics Data System (ADS)
Biedron, S. G.; Edelen, A. L.; Milton, S. V.
2016-09-01
We present a summary of our team's recent efforts in developing adaptive, artificial intelligence-inspired techniques specifically to address several control challenges that arise in machines/systems including those in particle accelerator systems. These techniques can readily be adapted to other systems such as lasers, beamline optics, etc… We are not at all suggesting that we create an autonomous system, but create a system with an intelligent control system, that can continually use operational data to improve itself and combines both traditional and advanced techniques. We believe that the system performance and reliability can be increased based on our findings. Another related point is that the controls sub-system of an overall system is usually not the heart of the system architecture or design process. More bluntly, often times all of the peripheral systems are considered as secondary to the main system components in the architecture design process because it is assumed that the controls system will be able to "fix" challenges found later with the sub-systems for overall system operation. We will show that this is not always the case and that it took an intelligent control application to overcome a sub-system's challenges. We will provide a recent example of such a "fix" with a standard controller and with an artificial intelligence-inspired controller. A final related point to be covered is that of system adaptation for requirements not original to a system's original design.
Intelligent Transportation Systems (ITS) plan for Canada : en route to intelligent mobility
DOT National Transportation Integrated Search
1999-11-01
Intelligent Transportation Systems (ITS) include the application of advanced information processing, communications, sensor and control technologies and management strategies in an integrated manner to improve the functioning of the transportation sy...
An intelligent remote control system for ECEI on EAST
NASA Astrophysics Data System (ADS)
Chen, Dongxu; Zhu, Yilun; Zhao, Zhenling; Qu, Chengming; Liao, Wang; Xie, Jinlin; Liu, Wandong
2017-08-01
An intelligent remote control system based on a power distribution unit (PDU) and Arduino has been designed for the electron cyclotron emission imaging (ECEI) system on Experimental Advanced Superconducting Tokamak (EAST). This intelligent system has three major functions: ECEI system reboot, measurement region adjustment and signal amplitude optimization. The observation region of ECEI can be modified for different physics proposals by remotely tuning the optical and electronics systems. Via the remote adjustment of the attenuation level, the ECEI intermediate frequency signal amplitude can be efficiently optimized. The remote control system provides a feasible and reliable solution for the improvement of signal quality and the efficiency of the ECEI diagnostic system, which is also valuable for other diagnostic systems.
Analytical design of intelligent machines
NASA Technical Reports Server (NTRS)
Saridis, George N.; Valavanis, Kimon P.
1987-01-01
The problem of designing 'intelligent machines' to operate in uncertain environments with minimum supervision or interaction with a human operator is examined. The structure of an 'intelligent machine' is defined to be the structure of a Hierarchically Intelligent Control System, composed of three levels hierarchically ordered according to the principle of 'increasing precision with decreasing intelligence', namely: the organizational level, performing general information processing tasks in association with a long-term memory; the coordination level, dealing with specific information processing tasks with a short-term memory; and the control level, which performs the execution of various tasks through hardware using feedback control methods. The behavior of such a machine may be managed by controls with special considerations and its 'intelligence' is directly related to the derivation of a compatible measure that associates the intelligence of the higher levels with the concept of entropy, which is a sufficient analytic measure that unifies the treatment of all the levels of an 'intelligent machine' as the mathematical problem of finding the right sequence of internal decisions and controls for a system structured in the order of intelligence and inverse order of precision such that it minimizes its total entropy. A case study on the automatic maintenance of a nuclear plant illustrates the proposed approach.
Defence R&D Canada's autonomous intelligent systems program
NASA Astrophysics Data System (ADS)
Digney, Bruce L.; Hubbard, Paul; Gagnon, Eric; Lauzon, Marc; Rabbath, Camille; Beckman, Blake; Collier, Jack A.; Penzes, Steven G.; Broten, Gregory S.; Monckton, Simon P.; Trentini, Michael; Kim, Bumsoo; Farell, Philip; Hopkin, Dave
2004-09-01
The Defence Research and Development Canada's (DRDC has been given strategic direction to pursue research to increase the independence and effectiveness of military vehicles and systems. This has led to the creation of the Autonomous Intelligent Systems (AIS) prgram and is notionally divide into air, land and marine vehicle systems as well as command, control and decision support systems. This paper presents an overarching description of AIS research issues, challenges and directions as well as a nominal path that vehicle intelligence will take. The AIS program requires a very close coordination between research and implementation on real vehicles. This paper briefly discusses the symbiotic relationship between intelligence algorithms and implementation mechanisms. Also presented are representative work from two vehicle specific research program programs. Work from the Autonomous Air Systems program discusses the development of effective cooperate control for multiple air vehicle. The Autonomous Land Systems program discusses its developments in platform and ground vehicle intelligence.
An intelligent control and virtual display system for evolutionary space station workstation design
NASA Technical Reports Server (NTRS)
Feng, Xin; Niederjohn, Russell J.; Mcgreevy, Michael W.
1992-01-01
Research and development of the Advanced Display and Computer Augmented Control System (ADCACS) for the space station Body-Ported Cupola Virtual Workstation (BP/VCWS) were pursued. The potential applications were explored of body ported virtual display and intelligent control technology for the human-system interfacing applications is space station environment. The new system is designed to enable crew members to control and monitor a variety of space operations with greater flexibility and efficiency than existing fixed consoles. The technologies being studied include helmet mounted virtual displays, voice and special command input devices, and microprocessor based intelligent controllers. Several research topics, such as human factors, decision support expert systems, and wide field of view, color displays are being addressed. The study showed the significant advantages of this uniquely integrated display and control system, and its feasibility for human-system interfacing applications in the space station command and control environment.
An overview of the artificial intelligence and expert systems component of RICIS
NASA Technical Reports Server (NTRS)
Feagin, Terry
1987-01-01
Artificial Intelligence and Expert Systems are the important component of RICIS (Research Institute and Information Systems) research program. For space applications, a number of problem areas that should be able to make good use of the above tools include: resource allocation and management, control and monitoring, environmental control and life support, power distribution, communications scheduling, orbit and attitude maintenance, redundancy management, intelligent man-machine interfaces and fault detection, isolation and recovery.
A demonstration of an intelligent control system for a reusable rocket engine
NASA Technical Reports Server (NTRS)
Musgrave, Jeffrey L.; Paxson, Daniel E.; Litt, Jonathan S.; Merrill, Walter C.
1992-01-01
An Intelligent Control System for reusable rocket engines is under development at NASA Lewis Research Center. The primary objective is to extend the useful life of a reusable rocket propulsion system while minimizing between flight maintenance and maximizing engine life and performance through improved control and monitoring algorithms and additional sensing and actuation. This paper describes current progress towards proof-of-concept of an Intelligent Control System for the Space Shuttle Main Engine. A subset of identifiable and accommodatable engine failure modes is selected for preliminary demonstration. Failure models are developed retaining only first order effects and included in a simplified nonlinear simulation of the rocket engine for analysis under closed loop control. The engine level coordinator acts as an interface between the diagnostic and control systems, and translates thrust and mixture ratio commands dictated by mission requirements, and engine status (health) into engine operational strategies carried out by a multivariable control. Control reconfiguration achieves fault tolerance if the nominal (healthy engine) control cannot. Each of the aforementioned functionalities is discussed in the context of an example to illustrate the operation of the system in the context of a representative failure. A graphical user interface allows the researcher to monitor the Intelligent Control System and engine performance under various failure modes selected for demonstration.
Intelligent control of a planning system for astronaut training.
Ortiz, J; Chen, G
1999-07-01
This work intends to design, analyze and solve, from the systems control perspective, a complex, dynamic, and multiconstrained planning system for generating training plans for crew members of the NASA-led International Space Station. Various intelligent planning systems have been developed within the framework of artificial intelligence. These planning systems generally lack a rigorous mathematical formalism to allow a reliable and flexible methodology for their design, modeling, and performance analysis in a dynamical, time-critical, and multiconstrained environment. Formulating the planning problem in the domain of discrete-event systems under a unified framework such that it can be modeled, designed, and analyzed as a control system will provide a self-contained theory for such planning systems. This will also provide a means to certify various planning systems for operations in the dynamical and complex environments in space. The work presented here completes the design, development, and analysis of an intricate, large-scale, and representative mathematical formulation for intelligent control of a real planning system for Space Station crew training. This planning system has been tested and used at NASA-Johnson Space Center.
Introduction to Advanced Engine Control Concepts
NASA Technical Reports Server (NTRS)
Sanjay, Garg
2007-01-01
With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Branch at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced controls and health management technologies that will help meet these challenges through the concept of Intelligent Propulsion Systems. The key enabling technologies for an Intelligent Propulsion System are the increased efficiencies of components through active control, advanced diagnostics and prognostics integrated with intelligent engine control to enhance operational reliability and component life, and distributed control with smart sensors and actuators in an adaptive fault tolerant architecture. This presentation describes the current activities of the Controls and Dynamics Branch in the areas of active component control and propulsion system intelligent control, and presents some recent analytical and experimental results in these areas.
A reusable rocket engine intelligent control
NASA Technical Reports Server (NTRS)
Merrill, Walter C.; Lorenzo, Carl F.
1988-01-01
An intelligent control system for reusable space propulsion systems for future launch vehicles is described. The system description includes a framework for the design. The framework consists of an execution level with high-speed control and diagnostics, and a coordination level which marries expert system concepts with traditional control. A comparison is made between air breathing and rocket engine control concepts to assess the relative levels of development and to determine the applicability of air breathing control concepts ot future reusable rocket engine systems.
Adaptive Neural Network Algorithm for Power Control in Nuclear Power Plants
NASA Astrophysics Data System (ADS)
Masri Husam Fayiz, Al
2017-01-01
The aim of this paper is to design, test and evaluate a prototype of an adaptive neural network algorithm for the power controlling system of a nuclear power plant. The task of power control in nuclear reactors is one of the fundamental tasks in this field. Therefore, researches are constantly conducted to ameliorate the power reactor control process. Currently, in the Department of Automation in the National Research Nuclear University (NRNU) MEPhI, numerous studies are utilizing various methodologies of artificial intelligence (expert systems, neural networks, fuzzy systems and genetic algorithms) to enhance the performance, safety, efficiency and reliability of nuclear power plants. In particular, a study of an adaptive artificial intelligent power regulator in the control systems of nuclear power reactors is being undertaken to enhance performance and to minimize the output error of the Automatic Power Controller (APC) on the grounds of a multifunctional computer analyzer (simulator) of the Water-Water Energetic Reactor known as Vodo-Vodyanoi Energetichesky Reaktor (VVER) in Russian. In this paper, a block diagram of an adaptive reactor power controller was built on the basis of an intelligent control algorithm. When implementing intelligent neural network principles, it is possible to improve the quality and dynamic of any control system in accordance with the principles of adaptive control. It is common knowledge that an adaptive control system permits adjusting the controller’s parameters according to the transitions in the characteristics of the control object or external disturbances. In this project, it is demonstrated that the propitious options for an automatic power controller in nuclear power plants is a control system constructed on intelligent neural network algorithms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohamed Abdelrahman; roger Haggard; Wagdy Mahmoud
The final goal of this project was the development of a system that is capable of controlling an industrial process effectively through the integration of information obtained through intelligent sensor fusion and intelligent control technologies. The industry of interest in this project was the metal casting industry as represented by cupola iron-melting furnaces. However, the developed technology is of generic type and hence applicable to several other industries. The system was divided into the following four major interacting components: 1. An object oriented generic architecture to integrate the developed software and hardware components @. Generic algorithms for intelligent signal analysismore » and sensor and model fusion 3. Development of supervisory structure for integration of intelligent sensor fusion data into the controller 4. Hardware implementation of intelligent signal analysis and fusion algorithms« less
NASA Technical Reports Server (NTRS)
Chu, Rose W.; Mitchell, Christine M.
1993-01-01
In supervisory control systems such as satellite ground control, there is a need for human-centered automation where the focus is to understand and enhance the human-system interaction experience in the complex task environment. Operator support in the form of off-line intelligent tutoring and on-line intelligent aiding is one approach towards this effort. The tutor/aid paradigm is proposed here as a design approach that integrates the two aspects of operator support in one system for technically oriented adults in complex domains. This paper also presents GT-VITA, a proof-of-concept graphical, interactive, intelligent tutoring system that is a first attempt to illustrate the tutoring aspect of the tutor/aid paradigm in the domain of satellite ground control. Evaluation on GT-VITA is conducted with NASA personnel with very positive results. GT-VITA is presented being fielded as it is at Goddard Space Flight Center.
Building intelligent systems: Artificial intelligence research at NASA Ames Research Center
NASA Technical Reports Server (NTRS)
Friedland, P.; Lum, H.
1987-01-01
The basic components that make up the goal of building autonomous intelligent systems are discussed, and ongoing work at the NASA Ames Research Center is described. It is noted that a clear progression of systems can be seen through research settings (both within and external to NASA) to Space Station testbeds to systems which actually fly on the Space Station. The starting point for the discussion is a truly autonomous Space Station intelligent system, responsible for a major portion of Space Station control. Attention is given to research in fiscal 1987, including reasoning under uncertainty, machine learning, causal modeling and simulation, knowledge from design through operations, advanced planning work, validation methodologies, and hierarchical control of and distributed cooperation among multiple knowledge-based systems.
Building intelligent systems - Artificial intelligence research at NASA Ames Research Center
NASA Technical Reports Server (NTRS)
Friedland, Peter; Lum, Henry
1987-01-01
The basic components that make up the goal of building autonomous intelligent systems are discussed, and ongoing work at the NASA Ames Research Center is described. It is noted that a clear progression of systems can be seen through research settings (both within and external to NASA) to Space Station testbeds to systems which actually fly on the Space Station. The starting point for the discussion is a 'truly' autonomous Space Station intelligent system, responsible for a major portion of Space Station control. Attention is given to research in fiscal 1987, including reasoning under uncertainty, machine learning, causal modeling and simulation, knowledge from design through operations, advanced planning work, validation methodologies, and hierarchical control of and distributed cooperation among multiple knowledge-based systems.
Intelligent Integrated System Health Management
NASA Technical Reports Server (NTRS)
Figueroa, Fernando
2012-01-01
Intelligent Integrated System Health Management (ISHM) is the management of data, information, and knowledge (DIaK) with the purposeful objective of determining the health of a system (Management: storage, distribution, sharing, maintenance, processing, reasoning, and presentation). Presentation discusses: (1) ISHM Capability Development. (1a) ISHM Knowledge Model. (1b) Standards for ISHM Implementation. (1c) ISHM Domain Models (ISHM-DM's). (1d) Intelligent Sensors and Components. (2) ISHM in Systems Design, Engineering, and Integration. (3) Intelligent Control for ISHM-Enabled Systems
NASA Astrophysics Data System (ADS)
Xie, Chang; Wen, Jing; Liu, Wenying; Wang, Jiaming
With the development of intelligent dispatching, the intelligence level of network control center full-service urgent need to raise. As an important daily work of network control center, the application of maintenance scheduling intelligent arrangement to achieve high-quality and safety operation of power grid is very important. By analyzing the shortages of the traditional maintenance scheduling software, this paper designs a power grid maintenance scheduling intelligence arrangement supporting system based on power flow forecasting, which uses the advanced technologies in maintenance scheduling, such as artificial intelligence, online security checking, intelligent visualization techniques. It implements the online security checking of maintenance scheduling based on power flow forecasting and power flow adjusting based on visualization, in order to make the maintenance scheduling arrangement moreintelligent and visual.
2007-09-01
AFRL-RZ-WP-TP-2008-2044 ADVANCED, ADAPTIVE, MODULAR, DISTRIBUTED, GENERIC UNIVERSAL FADEC FRAMEWORK FOR INTELLIGENT PROPULSION CONTROL...GRANT NUMBER 4. TITLE AND SUBTITLE ADVANCED, ADAPTIVE, MODULAR, DISTRIBUTED, GENERIC UNIVERSAL FADEC FRAMEWORK FOR INTELLIGENT PROPULSION... FADEC is unique and expensive to develop, produce, maintain, and upgrade for its particular application. Each FADEC is a centralized system, with a
Issues in the design of an executive controller shell for Space Station automation
NASA Technical Reports Server (NTRS)
Erickson, William K.; Cheeseman, Peter C.
1986-01-01
A major goal of NASA's Systems Autonomy Demonstration Project is to focus research in artificial intelligence, human factors, and dynamic control systems in support of Space Station automation. Another goal is to demonstrate the use of these technologies in real space systems, for both round-based mission support and on-board operations. The design, construction, and evaluation of an intelligent autonomous system shell is recognized as an important part of the Systems Autonomy research program. His paper describes autonomous systems and executive controllers, outlines how these intelligent systems can be utilized within the Space Station, and discusses a number of key design issues that have been raised during some preliminary work to develop an autonomous executive controller shell at NASA Ames Research Center.
A computer architecture for intelligent machines
NASA Technical Reports Server (NTRS)
Lefebvre, D. R.; Saridis, G. N.
1992-01-01
The theory of intelligent machines proposes a hierarchical organization for the functions of an autonomous robot based on the principle of increasing precision with decreasing intelligence. An analytic formulation of this theory using information-theoretic measures of uncertainty for each level of the intelligent machine has been developed. The authors present a computer architecture that implements the lower two levels of the intelligent machine. The architecture supports an event-driven programming paradigm that is independent of the underlying computer architecture and operating system. Execution-level controllers for motion and vision systems are briefly addressed, as well as the Petri net transducer software used to implement coordination-level functions. A case study illustrates how this computer architecture integrates real-time and higher-level control of manipulator and vision systems.
The implementation of intelligent home controller
NASA Astrophysics Data System (ADS)
Li, Biqing; Li, Zhao
2018-04-01
This paper mainly talks about the working way of smart home terminal controller and the design of hardware and software. Controlling the lights and by simulating the lamp and the test of the curtain, destroy the light of lamp ON-OFF and the curtain's UP-DOWN by simulating the lamp and the test of the cuetain. Through the sensor collects the ambient information and sends to the network, such as light, temperature and humidity. Besides, it can realise the control of intelligent home control by PCS. Terminal controller of intelligent home which is based on ZiBee technology has into the intelligent home system, it provides people with convenient, safe and intelligent household experience.
Design Of An Intelligent Robotic System Organizer Via Expert System Tecniques
NASA Astrophysics Data System (ADS)
Yuan, Peter H.; Valavanis, Kimon P.
1989-02-01
Intelligent Robotic Systems are a special type of Intelligent Machines. When modeled based on Vle theory of Intelligent Controls, they are composed of three interactive levels, namely: organization, coordination, and execution, ordered according, to the ,Principle of Increasing, Intelligence with Decreasing Precl.sion. Expert System techniques, are used to design an Intelligent Robotic System Organizer with a dynamic Knowledge Base and an interactive Inference Engine. Task plans are formulated using, either or both of a Probabilistic Approach and Forward Chapling Methodology, depending on pertinent information associated with a spec;fic requested job. The Intelligent Robotic System, Organizer is implemented and tested on a prototype system operating in an uncertain environment. An evaluation of-the performance, of the prototype system is conducted based upon the probability of generating a successful task sequence versus the number of trials taken by the organizer.
Evaluation of the intelligent cruise control system. Volume 2, Appendices
DOT National Transportation Integrated Search
1999-10-01
The Intelligent Cruise Control (ICC) system evaluation was sponsored by the National Highway Traffic Safety Administration (NHTSA) and based on an ICC Field Operational Test (FOT) conducted under a cooperative agreement between the NHTSA and the Univ...
ERIC Educational Resources Information Center
Duchastel, P.; And Others
1989-01-01
Discusses intelligent computer assisted instruction (ICAI) and presents various models of learning which have been proposed. Topics discussed include artificial intelligence; intelligent tutorial systems; tutorial strategies; learner control; system design; learning theory; and knowledge representation of proper and improper (i.e., incorrect)…
Neural computing thermal comfort index PMV for the indoor environment intelligent control system
NASA Astrophysics Data System (ADS)
Liu, Chang; Chen, Yifei
2013-03-01
Providing indoor thermal comfort and saving energy are two main goals of indoor environmental control system. An intelligent comfort control system by combining the intelligent control and minimum power control strategies for the indoor environment is presented in this paper. In the system, for realizing the comfort control, the predicted mean vote (PMV) is designed as the control goal, and with chastening formulas of PMV, it is controlled to optimize for improving indoor comfort lever by considering six comfort related variables. On the other hand, a RBF neural network based on genetic algorithm is designed to calculate PMV for better performance and overcoming the nonlinear feature of the PMV calculation better. The formulas given in the paper are presented for calculating the expected output values basing on the input samples, and the RBF network model is trained depending on input samples and the expected output values. The simulation result is proved that the design of the intelligent calculation method is valid. Moreover, this method has a lot of advancements such as high precision, fast dynamic response and good system performance are reached, it can be used in practice with requested calculating error.
Intelligent control of non-linear dynamical system based on the adaptive neurocontroller
NASA Astrophysics Data System (ADS)
Engel, E.; Kovalev, I. V.; Kobezhicov, V.
2015-10-01
This paper presents an adaptive neuro-controller for intelligent control of non-linear dynamical system. The formed as the fuzzy selective neural net the adaptive neuro-controller on the base of system's state, creates the effective control signal under random perturbations. The validity and advantages of the proposed adaptive neuro-controller are demonstrated by numerical simulations. The simulation results show that the proposed controller scheme achieves real-time control speed and the competitive performance, as compared to PID, fuzzy logic controllers.
An Integrated Modeling and Simulation Methodology for Intelligent Systems Design and Testing
2002-08-01
simulation and actual execution. KEYWORDS: Model Continuity, Modeling, Simulation, Experimental Frame, Real Time Systems , Intelligent Systems...the methodology for a stand-alone real time system. Then it will scale up to distributed real time systems . For both systems, step-wise simulation...MODEL CONTINUITY Intelligent real time systems monitor, respond to, or control, an external environment. This environment is connected to the digital
Research of home energy management system based on technology of PLC and ZigBee
NASA Astrophysics Data System (ADS)
Wei, Qi; Shen, Jiaojiao
2015-12-01
In view of the problem of saving effectively energy and energy management in home, this paper designs a home energy intelligent control system based on power line carrier communication and wireless ZigBee sensor networks. The system is based on ARM controller, power line carrier communication and wireless ZigBee sensor network as the terminal communication mode, and realizes the centralized and intelligent control of home appliances. Through the combination of these two technologies, the advantages of the two technologies complement each other, and provide a feasible plan for the construction of energy-efficient, intelligent home energy management system.
Autonomous Power System intelligent diagnosis and control
NASA Technical Reports Server (NTRS)
Ringer, Mark J.; Quinn, Todd M.; Merolla, Anthony
1991-01-01
The Autonomous Power System (APS) project at NASA Lewis Research Center is designed to demonstrate the abilities of integrated intelligent diagnosis, control, and scheduling techniques to space power distribution hardware. Knowledge-based software provides a robust method of control for highly complex space-based power systems that conventional methods do not allow. The project consists of three elements: the Autonomous Power Expert System (APEX) for fault diagnosis and control, the Autonomous Intelligent Power Scheduler (AIPS) to determine system configuration, and power hardware (Brassboard) to simulate a space based power system. The operation of the Autonomous Power System as a whole is described and the responsibilities of the three elements - APEX, AIPS, and Brassboard - are characterized. A discussion of the methodologies used in each element is provided. Future plans are discussed for the growth of the Autonomous Power System.
Autonomous power system intelligent diagnosis and control
NASA Technical Reports Server (NTRS)
Ringer, Mark J.; Quinn, Todd M.; Merolla, Anthony
1991-01-01
The Autonomous Power System (APS) project at NASA Lewis Research Center is designed to demonstrate the abilities of integrated intelligent diagnosis, control, and scheduling techniques to space power distribution hardware. Knowledge-based software provides a robust method of control for highly complex space-based power systems that conventional methods do not allow. The project consists of three elements: the Autonomous Power Expert System (APEX) for fault diagnosis and control, the Autonomous Intelligent Power Scheduler (AIPS) to determine system configuration, and power hardware (Brassboard) to simulate a space based power system. The operation of the Autonomous Power System as a whole is described and the responsibilities of the three elements - APEX, AIPS, and Brassboard - are characterized. A discussion of the methodologies used in each element is provided. Future plans are discussed for the growth of the Autonomous Power System.
Evaluation of the intelligent cruise control system : volume 1 : study results
DOT National Transportation Integrated Search
1999-10-01
The Intelligent Cruise Control (ICC) system evaluation was based on an ICC Field Operational Test (FOT) performed in Michigan. The FOT involved 108 volunteers recruited to drive ten ICC-equipped Chrysler Concordes. Testing was initiated in July 1996 ...
Trusted Autonomy for Space Flight Systems
NASA Technical Reports Server (NTRS)
Freed, Michael; Bonasso, Pete; Ingham, Mitch; Kortenkamp, David; Perix, John
2005-01-01
NASA has long supported research on intelligent control technologies that could allow space systems to operate autonomously or with reduced human supervision. Proposed uses range from automated control of entire space vehicles to mobile robots that assist or substitute for astronauts to vehicle systems such as life support that interact with other systems in complex ways and require constant vigilance. The potential for pervasive use of such technology to extend the kinds of missions that are possible in practice is well understood, as is its potential to radically improve the robustness, safety and productivity of diverse mission systems. Despite its acknowledged potential, intelligent control capabilities are rarely used in space flight systems. Perhaps the most famous example of intelligent control on a spacecraft is the Remote Agent system flown on the Deep Space One mission (1998 - 2001). However, even in this case, the role of the intelligent control element, originally intended to have full control of the spacecraft for the duration of the mission, was reduced to having partial control for a two-week non-critical period. Even this level of mission acceptance was exceptional. In most cases, mission managers consider intelligent control systems an unacceptable source of risk and elect not to fly them. Overall, the technology is not trusted. From the standpoint of those who need to decide whether to incorporate this technology, lack of trust is easy to understand. Intelligent high-level control means allowing software io make decisions that are too complex for conventional software. The decision-making behavior of these systems is often hard to understand and inspect, and thus hard to evaluate. Moreover, such software is typically designed and implemented either as a research product or custom-built for a particular mission. In the former case, software quality is unlikely to be adequate for flight qualification and the functionality provided by the system is likely driven largely by the need to publish innovative work. In the latter case, the mission represents the first use of the system, a risky proposition even for relatively simple software.
Research and development of intelligent controller for high-grade sanitary ware
NASA Astrophysics Data System (ADS)
Bao, Kongjun; Shen, Qingping
2013-03-01
With the social and economic development and people's living standards improve, more and more emphasis on modern society, people improve the quality of family life, the use of intelligent controller applications in high-grade sanitary ware physiotherapy students. Analysis of high-grade sanitary ware physiotherapy common functions pointed out in the production and use of the possible risks, proposed implementation of the system hardware and matching, given the system software implementation process. High-grade sanitary ware physiotherapy intelligent controller not only to achieve elegant and beautiful, simple, physical therapy, water power, deodorant, multi-function, intelligent control, to meet the consumers, the high-end sanitary ware market, strong demand, Accelerate the enterprise product Upgrade and improve the competitiveness of enterprises.
NASA Technical Reports Server (NTRS)
Zeigler, Bernard P.
1989-01-01
It is shown how systems can be advantageously represented as discrete-event models by using DEVS (discrete-event system specification), a set-theoretic formalism. Such DEVS models provide a basis for the design of event-based logic control. In this control paradigm, the controller expects to receive confirming sensor responses to its control commands within definite time windows determined by its DEVS model of the system under control. The event-based contral paradigm is applied in advanced robotic and intelligent automation, showing how classical process control can be readily interfaced with rule-based symbolic reasoning systems.
Maze learning by a hybrid brain-computer system
NASA Astrophysics Data System (ADS)
Wu, Zhaohui; Zheng, Nenggan; Zhang, Shaowu; Zheng, Xiaoxiang; Gao, Liqiang; Su, Lijuan
2016-09-01
The combination of biological and artificial intelligence is particularly driven by two major strands of research: one involves the control of mechanical, usually prosthetic, devices by conscious biological subjects, whereas the other involves the control of animal behaviour by stimulating nervous systems electrically or optically. However, to our knowledge, no study has demonstrated that spatial learning in a computer-based system can affect the learning and decision making behaviour of the biological component, namely a rat, when these two types of intelligence are wired together to form a new intelligent entity. Here, we show how rule operations conducted by computing components contribute to a novel hybrid brain-computer system, i.e., ratbots, exhibit superior learning abilities in a maze learning task, even when their vision and whisker sensation were blocked. We anticipate that our study will encourage other researchers to investigate combinations of various rule operations and other artificial intelligence algorithms with the learning and memory processes of organic brains to develop more powerful cyborg intelligence systems. Our results potentially have profound implications for a variety of applications in intelligent systems and neural rehabilitation.
Maze learning by a hybrid brain-computer system.
Wu, Zhaohui; Zheng, Nenggan; Zhang, Shaowu; Zheng, Xiaoxiang; Gao, Liqiang; Su, Lijuan
2016-09-13
The combination of biological and artificial intelligence is particularly driven by two major strands of research: one involves the control of mechanical, usually prosthetic, devices by conscious biological subjects, whereas the other involves the control of animal behaviour by stimulating nervous systems electrically or optically. However, to our knowledge, no study has demonstrated that spatial learning in a computer-based system can affect the learning and decision making behaviour of the biological component, namely a rat, when these two types of intelligence are wired together to form a new intelligent entity. Here, we show how rule operations conducted by computing components contribute to a novel hybrid brain-computer system, i.e., ratbots, exhibit superior learning abilities in a maze learning task, even when their vision and whisker sensation were blocked. We anticipate that our study will encourage other researchers to investigate combinations of various rule operations and other artificial intelligence algorithms with the learning and memory processes of organic brains to develop more powerful cyborg intelligence systems. Our results potentially have profound implications for a variety of applications in intelligent systems and neural rehabilitation.
Maze learning by a hybrid brain-computer system
Wu, Zhaohui; Zheng, Nenggan; Zhang, Shaowu; Zheng, Xiaoxiang; Gao, Liqiang; Su, Lijuan
2016-01-01
The combination of biological and artificial intelligence is particularly driven by two major strands of research: one involves the control of mechanical, usually prosthetic, devices by conscious biological subjects, whereas the other involves the control of animal behaviour by stimulating nervous systems electrically or optically. However, to our knowledge, no study has demonstrated that spatial learning in a computer-based system can affect the learning and decision making behaviour of the biological component, namely a rat, when these two types of intelligence are wired together to form a new intelligent entity. Here, we show how rule operations conducted by computing components contribute to a novel hybrid brain-computer system, i.e., ratbots, exhibit superior learning abilities in a maze learning task, even when their vision and whisker sensation were blocked. We anticipate that our study will encourage other researchers to investigate combinations of various rule operations and other artificial intelligence algorithms with the learning and memory processes of organic brains to develop more powerful cyborg intelligence systems. Our results potentially have profound implications for a variety of applications in intelligent systems and neural rehabilitation. PMID:27619326
Lai, Jinxing; Qiu, Junling; Chen, Jianxun; Wang, Yaqiong; Fan, Haobo
2014-01-01
Because of the particularity of the environment in the tunnel, the rational tunnel illumination system should be developed, so as to optimize the tunnel environment. Considering the high cost of traditional tunnel illumination system with high-pressure sodium (HPS) lamps as well as the effect of a single light source on tunnel entrance, the energy-saving illumination system with HPS lamps and LEDs combined illumination in road tunnel, which could make full use of these two kinds of lamps, was proposed. The wireless intelligent control system based on HPS lamps and LEDs combined illumination and microcontrol unit (MCU) Si1000 wireless communication technology was designed. And the remote monitoring, wireless communication, and PWM dimming module of this system were designed emphatically. Intensity detector and vehicle flow detector can be configured in wireless intelligent control system, which gather the information to the master control unit, and then the information is sent to the monitoring center through the Ethernet. The control strategies are got by the monitoring center according to the calculated results, and the control unit wirelessly sends parameters to lamps, which adjust the luminance of each segment of the tunnel and realize the wireless intelligent control of combined illumination in road tunnel. PMID:25587266
F-15 837 IFCS Intelligent Flight Control System Project
NASA Technical Reports Server (NTRS)
Bosworth, John T.
2007-01-01
This viewgraph presentation reviews the use of Intelligent Flight Control System (IFCS) for the F-15. The goals of the project are: (1) Demonstrate Revolutionary Control Approaches that can Efficiently Optimize Aircraft Performance in both Normal and Failure Conditions (2) Advance Neural Network-Based Flight Control Technology for New Aerospace Systems Designs. The motivation for the development are to reduce the chance and skill required for survival.
Implementation method of multi-terminal DC control system
NASA Astrophysics Data System (ADS)
Yi, Liu; Hao-Ran, Huang; Jun-Wen, Zhou; Hong-Guang, Guo; Yu-Yong, Zhou
2018-04-01
Currently the multi-terminal DC system (MTDC) has more stations. Each station needs operators to monitor and control the device. It needs much more operation and maintenance, low efficiency and small reliability; for the most important reason, multi-terminal DC system has complex control mode. If one of the stations has some problem, the control of the whole system should have problems. According to research of the characteristics of multi-terminal DC (VSC-MTDC) systems, this paper presents a strong implementation of the multi-terminal DC Supervisory Control and Data Acquisition (SCADA) system. This system is intelligent, can be networking, integration and intelligent. A master control system is added in each station to communication with the other stations to send current and DC voltage value to pole control system for each station. Based on the practical application and information feedback in the China South Power Grid research center VSC-MTDC project, this system is higher efficiency and save the cost on the maintenance of convertor station to improve the intelligent level and comprehensive effect. And because of the master control system, a multi-terminal system hierarchy coordination control strategy is formed, this make the control and protection system more efficiency and reliability.
Flight Test Implementation of a Second Generation Intelligent Flight Control System
NASA Technical Reports Server (NTRS)
Williams-Hayes, Peggy S.
2005-01-01
The NASA F-15 Intelligent Flight Control System project team has developed a series of flight control concepts designed to demonstrate the benefits of a neural network-based adaptive controller. The objective of the team was to develop and flight-test control systems that use neural network technology, to optimize the performance of the aircraft under nominal conditions, and to stabilize the aircraft under failure conditions. Failure conditions include locked or failed control surfaces as well as unforeseen damage that might occur to the aircraft in flight. The Intelligent Flight Control System team is currently in the process of implementing a second generation control scheme, collectively known as Generation 2 or Gen 2, for flight testing on the NASA F-15 aircraft. This report describes the Gen 2 system as implemented by the team for flight test evaluation. Simulation results are shown which describe the experiment to be performed in flight and highlight the ways in which the Gen 2 system meets the defined objectives.
Intelligent Flight Control System and Aeronautics Research at NASA Dryden
NASA Technical Reports Server (NTRS)
Brown, Nelson A.
2009-01-01
This video presentation reviews the F-15 Intelligent Flight Control System and contains clips of flight tests and aircraft performance in the areas of target tracking, takeoff and differential stabilators. Video of the APG milestone flight 1g formation is included.
A survey of fuzzy logic monitoring and control utilisation in medicine.
Mahfouf, M; Abbod, M F; Linkens, D A
2001-01-01
Intelligent systems have appeared in many technical areas, such as consumer electronics, robotics and industrial control systems. Many of these intelligent systems are based on fuzzy control strategies which describe complex systems mathematical models in terms of linguistic rules. Since the 1980s new techniques have appeared from which fuzzy logic has been applied extensively in medical systems. The justification for such intelligent systems driven solutions is that biological systems are so complex that the development of computerised systems within such environments is not always a straightforward exercise. In practice, a precise model may not exist for biological systems or it may be too difficult to model. In most cases fuzzy logic is considered to be an ideal tool as human minds work from approximate data, extract meaningful information and produce crisp solutions. This paper surveys the utilisation of fuzzy logic control and monitoring in medical sciences with an analysis of its possible future penetration.
Machine intelligence and autonomy for aerospace systems
NASA Technical Reports Server (NTRS)
Heer, Ewald (Editor); Lum, Henry (Editor)
1988-01-01
The present volume discusses progress toward intelligent robot systems in aerospace applications, NASA Space Program automation and robotics efforts, the supervisory control of telerobotics in space, machine intelligence and crew/vehicle interfaces, expert-system terms and building tools, and knowledge-acquisition for autonomous systems. Also discussed are methods for validation of knowledge-based systems, a design methodology for knowledge-based management systems, knowledge-based simulation for aerospace systems, knowledge-based diagnosis, planning and scheduling methods in AI, the treatment of uncertainty in AI, vision-sensing techniques in aerospace applications, image-understanding techniques, tactile sensing for robots, distributed sensor integration, and the control of articulated and deformable space structures.
The role of automation and artificial intelligence
NASA Astrophysics Data System (ADS)
Schappell, R. T.
1983-07-01
Consideration is given to emerging technologies that are not currently in common use, yet will be mature enough for implementation in a space station. Artificial intelligence (AI) will permit more autonomous operation and improve the man-machine interfaces. Technology goals include the development of expert systems, a natural language query system, automated planning systems, and AI image understanding systems. Intelligent robots and teleoperators will be needed, together with improved sensory systems for the robotics, housekeeping, vehicle control, and spacecraft housekeeping systems. Finally, NASA is developing the ROBSIM computer program to evaluate level of automation, perform parametric studies and error analyses, optimize trajectories and control systems, and assess AI technology.
This study assessed the enhanced energy production which is possible when variable-speed wind turbines are electronically controlled by an intelligent controller for efficiency optimization and performance improvement. The control system consists of three fuzzy- logic controllers...
An intelligent control system for failure detection and controller reconfiguration
NASA Technical Reports Server (NTRS)
Biswas, Saroj K.
1994-01-01
We present an architecture of an intelligent restructurable control system to automatically detect failure of system components, assess its impact on system performance and safety, and reconfigure the controller for performance recovery. Fault detection is based on neural network associative memories and pattern classifiers, and is implemented using a multilayer feedforward network. Details of the fault detection network along with simulation results on health monitoring of a dc motor have been presented. Conceptual developments for fault assessment using an expert system and controller reconfiguration using a neural network are outlined.
An application of artificial intelligence theory to reconfigurable flight control
NASA Technical Reports Server (NTRS)
Handelman, David A.
1987-01-01
Artificial intelligence techniques were used along with statistical hpyothesis testing and modern control theory, to help the pilot cope with the issues of information, knowledge, and capability in the event of a failure. An intelligent flight control system is being developed which utilizes knowledge of cause and effect relationships between all aircraft components. It will screen the information available to the pilots, supplement his knowledge, and most importantly, utilize the remaining flight capability of the aircraft following a failure. The list of failure types the control system will accommodate includes sensor failures, actuator failures, and structural failures.
An Intelligent Propulsion Control Architecture to Enable More Autonomous Vehicle Operation
NASA Technical Reports Server (NTRS)
Litt, Jonathan S.; Sowers, T. Shane; Simon, Donald L.; Owen, A. Karl; Rinehart, Aidan W.; Chicatelli, Amy K.; Acheson, Michael J.; Hueschen, Richard M.; Spiers, Christopher W.
2018-01-01
This paper describes an intelligent propulsion control architecture that coordinates with the flight control to reduce the amount of pilot intervention required to operate the vehicle. Objectives of the architecture include the ability to: automatically recognize the aircraft operating state and flight phase; configure engine control to optimize performance with knowledge of engine condition and capability; enhance aircraft performance by coordinating propulsion control with flight control; and recognize off-nominal propulsion situations and to respond to them autonomously. The hierarchical intelligent propulsion system control can be decomposed into a propulsion system level and an individual engine level. The architecture is designed to be flexible to accommodate evolving requirements, adapt to technology improvements, and maintain safety.
Adaptive Distributed Intelligent Control Architecture for Future Propulsion Systems (Preprint)
2007-04-01
weight will be reduced by replacing heavy harness assemblies and FADECs , with distributed processing elements interconnected. This paper reviews...Digital Electronic Controls ( FADECs ), with distributed processing elements interconnected through a serial bus. Efficient data flow throughout the...because intelligence is embedded in components while overall control is maintained in the FADEC . The need for Distributed Control Systems in
A computer architecture for intelligent machines
NASA Technical Reports Server (NTRS)
Lefebvre, D. R.; Saridis, G. N.
1991-01-01
The Theory of Intelligent Machines proposes a hierarchical organization for the functions of an autonomous robot based on the Principle of Increasing Precision With Decreasing Intelligence. An analytic formulation of this theory using information-theoretic measures of uncertainty for each level of the intelligent machine has been developed in recent years. A computer architecture that implements the lower two levels of the intelligent machine is presented. The architecture supports an event-driven programming paradigm that is independent of the underlying computer architecture and operating system. Details of Execution Level controllers for motion and vision systems are addressed, as well as the Petri net transducer software used to implement Coordination Level functions. Extensions to UNIX and VxWorks operating systems which enable the development of a heterogeneous, distributed application are described. A case study illustrates how this computer architecture integrates real-time and higher-level control of manipulator and vision systems.
Intelligent Control Systems Research
NASA Technical Reports Server (NTRS)
Loparo, Kenneth A.
1994-01-01
Results of a three phase research program into intelligent control systems are presented. The first phase looked at implementing the lowest or direct level of a hierarchical control scheme using a reinforcement learning approach assuming no a priori information about the system under control. The second phase involved the design of an adaptive/optimizing level of the hierarchy and its interaction with the direct control level. The third and final phase of the research was aimed at combining the results of the previous phases with some a priori information about the controlled system.
Integrated human-machine intelligence in space systems
NASA Technical Reports Server (NTRS)
Boy, Guy A.
1992-01-01
The integration of human and machine intelligence in space systems is outlined with respect to the contributions of artificial intelligence. The current state-of-the-art in intelligent assistant systems (IASs) is reviewed, and the requirements of some real-world applications of the technologies are discussed. A concept of integrated human-machine intelligence is examined in the contexts of: (1) interactive systems that tolerate human errors; (2) systems for the relief of workloads; and (3) interactive systems for solving problems in abnormal situations. Key issues in the development of IASs include the compatibility of the systems with astronauts in terms of inputs/outputs, processing, real-time AI, and knowledge-based system validation. Real-world applications are suggested such as the diagnosis, planning, and control of enginnered systems.
A Probabilistic System Analysis of Intelligent Propulsion System Technologies
NASA Technical Reports Server (NTRS)
Tong, Michael T.
2007-01-01
NASA s Intelligent Propulsion System Technology (Propulsion 21) project focuses on developing adaptive technologies that will enable commercial gas turbine engines to produce fewer emissions and less noise while increasing reliability. It features adaptive technologies that have included active tip-clearance control for turbine and compressor, active combustion control, turbine aero-thermal and flow control, and enabling technologies such as sensors which are reliable at high operating temperatures and are minimally intrusive. A probabilistic system analysis is performed to evaluate the impact of these technologies on aircraft CO2 (directly proportional to fuel burn) and LTO (landing and takeoff) NO(x) reductions. A 300-passenger aircraft, with two 396-kN thrust (85,000-pound) engines is chosen for the study. The results show that NASA s Intelligent Propulsion System technologies have the potential to significantly reduce the CO2 and NO(x) emissions. The results are used to support informed decisionmaking on the development of the intelligent propulsion system technology portfolio for CO2 and NO(x) reductions.
DOT National Transportation Integrated Search
1997-01-01
Intelligent transportation systems (ITS) are systems that utilize advanced technologies, including computer, communications and process control technologies, to improve the efficiency and safety of the transportation system. These systems encompass a...
OFMTutor: An operator function model intelligent tutoring system
NASA Technical Reports Server (NTRS)
Jones, Patricia M.
1989-01-01
The design, implementation, and evaluation of an Operator Function Model intelligent tutoring system (OFMTutor) is presented. OFMTutor is intended to provide intelligent tutoring in the context of complex dynamic systems for which an operator function model (OFM) can be constructed. The human operator's role in such complex, dynamic, and highly automated systems is that of a supervisory controller whose primary responsibilities are routine monitoring and fine-tuning of system parameters and occasional compensation for system abnormalities. The automated systems must support the human operator. One potentially useful form of support is the use of intelligent tutoring systems to teach the operator about the system and how to function within that system. Previous research on intelligent tutoring systems (ITS) is considered. The proposed design for OFMTutor is presented, and an experimental evaluation is described.
Intelligent Propulsion System Foundation Technology: Summary of Research
NASA Technical Reports Server (NTRS)
2008-01-01
The purpose of this cooperative agreement was to develop a foundation of intelligent propulsion technologies for NASA and industry that will have an impact on safety, noise, emissions, and cost. These intelligent engine technologies included sensors, electronics, communications, control logic, actuators, smart materials and structures, and system studies. Furthermore, this cooperative agreement helped prepare future graduates to develop the revolutionary intelligent propulsion technologies that will be needed to ensure pre-eminence of the U.S. aerospace industry. This Propulsion 21 - Phase 11 program consisted of four primary research areas and associated work elements at Ohio universities: 1.0 Turbine Engine Prognostics, 2.0 Active Controls for Emissions and Noise Reduction, 3.0 Active Structural Controls and Performance, and 4.0 System Studies and Integration. Phase l, which was conducted during the period August 1, 2003, through September 30, 2004, has been reported separately.
Intelligent Control for Drag Reduction on the X-48B Vehicle
NASA Technical Reports Server (NTRS)
Griffin, Brian Joseph; Brown, Nelson Andrew; Yoo, Seung Yeun
2011-01-01
This paper focuses on the development of an intelligent control technology for in-flight drag reduction. The system is integrated with and demonstrated on the full X-48B nonlinear simulation. The intelligent control system utilizes a peak-seeking control method implemented with a time-varying Kalman filter. Performance functional coordinate and magnitude measurements, or independent and dependent parameters respectively, are used by the Kalman filter to provide the system with gradient estimates of the designed performance function which is used to drive the system toward a local minimum in a steepestdescent approach. To ensure ease of integration and algorithm performance, a single-input single-output approach was chosen. The framework, specific implementation considerations, simulation results, and flight feasibility issues related to this platform are discussed.
Intelligent mobility research for robotic locomotion in complex terrain
NASA Astrophysics Data System (ADS)
Trentini, Michael; Beckman, Blake; Digney, Bruce; Vincent, Isabelle; Ricard, Benoit
2006-05-01
The objective of the Autonomous Intelligent Systems Section of Defence R&D Canada - Suffield is best described by its mission statement, which is "to augment soldiers and combat systems by developing and demonstrating practical, cost effective, autonomous intelligent systems capable of completing military missions in complex operating environments." The mobility requirement for ground-based mobile systems operating in urban settings must increase significantly if robotic technology is to augment human efforts in these roles and environments. The intelligence required for autonomous systems to operate in complex environments demands advances in many fields of robotics. This has resulted in large bodies of research in areas of perception, world representation, and navigation, but the problem of locomotion in complex terrain has largely been ignored. In order to achieve its objective, the Autonomous Intelligent Systems Section is pursuing research that explores the use of intelligent mobility algorithms designed to improve robot mobility. Intelligent mobility uses sensing, control, and learning algorithms to extract measured variables from the world, control vehicle dynamics, and learn by experience. These algorithms seek to exploit available world representations of the environment and the inherent dexterity of the robot to allow the vehicle to interact with its surroundings and produce locomotion in complex terrain. The primary focus of the paper is to present the intelligent mobility research within the framework of the research methodology, plan and direction defined at Defence R&D Canada - Suffield. It discusses the progress and future direction of intelligent mobility research and presents the research tools, topics, and plans to address this critical research gap. This research will create effective intelligence to improve the mobility of ground-based mobile systems operating in urban settings to assist the Canadian Forces in their future urban operations.
1987-12-01
Application Programs Intelligent Disk Database Controller Manangement System Operating System Host .1’ I% Figure 2. Intelligent Disk Controller Application...8217. /- - • Database Control -% Manangement System Disk Data Controller Application Programs Operating Host I"" Figure 5. Processor-Per- Head data. Therefore, the...However. these ad- ditional properties have been proven in classical set and relation theory [75]. These additional properties are described here
Intelligent aircraft/airspace systems
NASA Technical Reports Server (NTRS)
Wangermann, John P.
1995-01-01
Projections of future air traffic predict at least a doubling of the number of revenue passenger miles flown by the year 2025. To meet this demand, an Intelligent Aircraft/Airspace System (IAAS) has been proposed. The IAAS operates on the basis of principled negotiation between intelligent agents. The aircraft/airspace system today consists of many agents, such as airlines, control facilities, and aircraft. All the agents are becoming increasingly capable as technology develops. These capabilities should be exploited to create an Intelligent Aircraft/Airspace System (IAAS) that would meet the predicted traffic levels of 2005.
Developing Realistic Behaviors in Adversarial Agents for Air Combat Simulation
1993-12-01
34Building Symbolic Primitives with Continuous Control Rou- tines." Proceedings of the 1st International Conference on Aritificial Intelligence Planning...shortcoming is the minimal Air Force participation in this field. 1-1 Some of the artificial intelligence (AI) personnel at the Air Force Institute of... intelligent system that operates in a moderately complex or unpredictable environment must be reactive. In being reactive the intelligent system must
The Air Pollution Technology Branch (APTB) of NRMRL's Air Pollution Prevention and Control Division in Research Triangle Park, NC, has conducted several research projects for evaluating the use of artificial intelligence (AI) to improve the control of pollution control systems an...
Design of a robotic vehicle with self-contained intelligent wheels
NASA Astrophysics Data System (ADS)
Poulson, Eric A.; Jacob, John S.; Gunderson, Robert W.; Abbott, Ben A.
1998-08-01
The Center for Intelligent Systems has developed a small robotic vehicle named the Advanced Rover Chassis 3 (ARC 3) with six identical intelligent wheel units attached to a payload via a passive linkage suspension system. All wheels are steerable, so the ARC 3 can move in any direction while rotating at any rate allowed by the terrain and motors. Each intelligent wheel unit contains a drive motor, steering motor, batteries, and computer. All wheel units are identical, so manufacturing, programing, and spare replacement are greatly simplified. The intelligent wheel concept would allow the number and placement of wheels on the vehicle to be changed with no changes to the control system, except to list the position of all the wheels relative to the vehicle center. The task of controlling the ARC 3 is distributed between one master computer and the wheel computers. Tasks such as controlling the steering motors and calculating the speed of each wheel relative to the vehicle speed in a corner are dependent on the location of a wheel relative to the vehicle center and ar processed by the wheel computers. Conflicts between the wheels are eliminated by computing the vehicle velocity control in the master computer. Various approaches to this distributed control problem, and various low level control methods, have been explored.
Development of an intelligent diagnostic system for reusable rocket engine control
NASA Technical Reports Server (NTRS)
Anex, R. P.; Russell, J. R.; Guo, T.-H.
1991-01-01
A description of an intelligent diagnostic system for the Space Shuttle Main Engines (SSME) is presented. This system is suitable for incorporation in an intelligent controller which implements accommodating closed-loop control to extend engine life and maximize available performance. The diagnostic system architecture is a modular, hierarchical, blackboard system which is particularly well suited for real-time implementation of a system which must be repeatedly updated and extended. The diagnostic problem is formulated as a hierarchical classification problem in which the failure hypotheses are represented in terms of predefined data patterns. The diagnostic expert system incorporates techniques for priority-based diagnostics, the combination of analytical and heuristic knowledge for diagnosis, integration of different AI systems, and the implementation of hierarchical distributed systems. A prototype reusable rocket engine diagnostic system (ReREDS) has been implemented. The prototype user interface and diagnostic performance using SSME test data are described.
DOT National Transportation Integrated Search
2008-12-01
This report describes the development of a commercial prototype intelligent herbicide application system : (IHAS). The improved design incorporates a parallel add-on type fluid handling system to allow existing : variable-rate herbicide injecti...
2016-09-01
other associated grants. 15. SUBJECT TERMS SUNY Poly, STEM, Artificial Intelligence , Command and Control 16. SECURITY CLASSIFICATION OF: 17...neuromorphic system has the potential to be widely used in a high-efficiency artificial intelligence system. Simulation results have indicated that the...novel multiresolution fusion and advanced fusion performance evaluation tool for an Artificial Intelligence based natural language annotation engine for
NASA Technical Reports Server (NTRS)
Chu, R. W.; Mitchell, C. M.; Govindaraj, T.
1989-01-01
This paper discusses the motivation and goals of a research project which addresses the problems and issues of operator training in complex engineering sytems. The research proposes a tutor/aid paradigm for the design of an intelligent tutoring system (ITS) that evolves from a tutor to an operator's assistant for supervisory control of complex dynamic systems. Characteristics of an intelligent tutoring/aiding system are identified with respect to the representation of domain knowledge, the tutor's pedagogical structure, and the student knowledge representation. The research represents a first step in the design of an intelligent complex dynamic systems.
Tactical assessment in a squad of intelligent bots
NASA Astrophysics Data System (ADS)
Gołuński, Marcel; Wasiewicz, Piotr
2010-09-01
In this paper we explore the problem of communication and coordination in a team of intelligent game bots (aka embodied agents). It presents a tactical decision making system controlling the behavior of an autonomous bot followed by the concept of a team tactical decision making system controlling the team of intelligent bots. The algorithms to be introduced have been implemented in the Java language by means of Pogamut 2 framework, interfacing the bot logic with Unreal Tournament 2004 virtual environment.
An Intelligent Catheter System Robotic Controlled Catheter System
Negoro, M.; Tanimoto, M.; Arai, F.; Fukuda, T.; Fukasaku, K.; Takahashi, I.; Miyachi, S.
2001-01-01
Summary We have developed a novel catheter system, an intelligent catheter system, which is able to control a catheter by an externally-placed controller. This system has made from master-slave mechanism and has following three components; 1) a joy stick as a master (for operators) 2)a catheter controller as a slave (for a patient),3)a micro force sensor as a sensing device. This catheter tele-guiding system has abilities to perform intravascular procedures from the distant places. It may help to reduce the radiation exposures to the operators and also to help train young doctors. PMID:20663387
ERIC Educational Resources Information Center
Vassileva, Julita
1990-01-01
Discusses the structure of intelligent tutoring systems (ITSs) and describes the development of a new structure for ITSs that is not domain dependent and is more readily adaptable by individual teachers. Pedagogical rules that help decide how much student control versus how much teacher control is present in the system are discussed. (14…
Intelligent Tracking Control for a Class of Uncertain High-Order Nonlinear Systems.
Zhao, Xudong; Shi, Peng; Zheng, Xiaolong; Zhang, Jianhua
2016-09-01
This brief is concerned with the problem of intelligent tracking control for a class of high-order nonlinear systems with completely unknown nonlinearities. An intelligent adaptive control algorithm is presented by combining the adaptive backstepping technique with the neural networks' approximation ability. It is shown that the practical output tracking performance of the system is achieved using the proposed state-feedback controller under two mild assumptions. In particular, by introducing a parameter in the derivations, the tracking error between the time-varying target signal and the output can be reduced via tuning the controller design parameters. Moreover, in order to solve the problem of overparameterization, which is a common issue in adaptive control design, a controller with one adaptive law is also designed. Finally, simulation results are given to show the effectiveness of the theoretical approaches and the potential of the proposed new design techniques.
A system for intelligent teleoperation research
NASA Technical Reports Server (NTRS)
Orlando, N. E.
1983-01-01
The Automation Technology Branch of NASA Langley Research Center is developing a research capability in the field of artificial intelligence, particularly as applicable in teleoperator/robotics development for remote space operations. As a testbed for experimentation in these areas, a system concept has been developed and is being implemented. This system termed DAISIE (Distributed Artificially Intelligent System for Interacting with the Environment), interfaces the key processes of perception, reasoning, and manipulation by linking hardware sensors and manipulators to a modular artificial intelligence (AI) software system in a hierarchical control structure. Verification experiments have been performed: one experiment used a blocksworld database and planner embedded in the DAISIE system to intelligently manipulate a simple physical environment; the other experiment implemented a joint-space collision avoidance algorithm. Continued system development is planned.
NASA Astrophysics Data System (ADS)
Kelley, Troy D.; Avery, Eric
2010-04-01
This paper will detail the progress on the development of the Symbolic and Subsymbolic Robotics Intelligence Control System (SS-RICS). The system is a goal oriented production system, based loosely on the cognitive architecture, the Adaptive Control of Thought-Rational (ACT-R) some additions and changes. We have found that in order to simulate complex cognition on a robot, many aspects of cognition (long term memory (LTM), perception) needed to be in place before any generalized intelligent behavior can be produced. In working with ACT-R, we found that it was a good instantiation of working memory, but that we needed to add other aspects of cognition including LTM and perception to have a complete cognitive system. Our progress to date will be noted and the challenges that remain will be addressed.
First CLIPS Conference Proceedings, volume 2
NASA Technical Reports Server (NTRS)
1990-01-01
The topics of volume 2 of First CLIPS Conference are associated with following applications: quality control; intelligent data bases and networks; Space Station Freedom; Space Shuttle and satellite; user interface; artificial neural systems and fuzzy logic; parallel and distributed processing; enchancements to CLIPS; aerospace; simulation and defense; advisory systems and tutors; and intelligent control.
NASA Technical Reports Server (NTRS)
Dufrene, Warren R., Jr.
2004-01-01
This paper describes the development of a planned approach for Autonomous operation of an Unmanned Aerial Vehicle (UAV). A Hybrid approach will seek to provide Knowledge Generation thru the application of Artificial Intelligence (AI) and Intelligent Agents (IA) for UAV control. The application of many different types of AI techniques for flight will be explored during this research effort. The research concentration will be directed to the application of different AI methods within the UAV arena. By evaluating AI approaches, which will include Expert Systems, Neural Networks, Intelligent Agents, Fuzzy Logic, and Complex Adaptive Systems, a new insight may be gained into the benefits of AI techniques applied to achieving true autonomous operation of these systems thus providing new intellectual merit to this research field. The major area of discussion will be limited to the UAV. The systems of interest include small aircraft, insects, and miniature aircraft. Although flight systems will be explored, the benefits should apply to many Unmanned Vehicles such as: Rovers, Ocean Explorers, Robots, and autonomous operation systems. The flight system will be broken down into control agents that will represent the intelligent agent approach used in AI. After the completion of a successful approach, a framework of applying a Security Overseer will be added in an attempt to address errors, emergencies, failures, damage, or over dynamic environment. The chosen control problem was the landing phase of UAV operation. The initial results from simulation in FlightGear are presented.
Intelligent Systems for Power Management and Distribution
NASA Technical Reports Server (NTRS)
Button, Robert M.
2002-01-01
The motivation behind an advanced technology program to develop intelligent power management and distribution (PMAD) systems is described. The program concentrates on developing digital control and distributed processing algorithms for PMAD components and systems to improve their size, weight, efficiency, and reliability. Specific areas of research in developing intelligent DC-DC converters and distributed switchgear are described. Results from recent development efforts are presented along with expected future benefits to the overall PMAD system performance.
Artificial intelligence in a mission operations and satellite test environment
NASA Technical Reports Server (NTRS)
Busse, Carl
1988-01-01
A Generic Mission Operations System using Expert System technology to demonstrate the potential of Artificial Intelligence (AI) automated monitor and control functions in a Mission Operations and Satellite Test environment will be developed at the National Aeronautics and Space Administration (NASA) Jet Propulsion Laboratory (JPL). Expert system techniques in a real time operation environment are being studied and applied to science and engineering data processing. Advanced decommutation schemes and intelligent display technology will be examined to develop imaginative improvements in rapid interpretation and distribution of information. The Generic Payload Operations Control Center (GPOCC) will demonstrate improved data handling accuracy, flexibility, and responsiveness in a complex mission environment. The ultimate goal is to automate repetitious mission operations, instrument, and satellite test functions by the applications of expert system technology and artificial intelligence resources and to enhance the level of man-machine sophistication.
Design and implementation of green intelligent lights based on the ZigBee
NASA Astrophysics Data System (ADS)
Gan, Yong; Jia, Chunli; Zou, Dongyao; Yang, Jiajia; Guo, Qianqian
2013-03-01
By analysis of the low degree of intelligence of the traditional lighting control methods, the paper uses the singlechip microcomputer for the control core, and uses a pyroelectric infrared technology to detect the existence of the human body, light sensors to sense the light intensity; the interface uses infrared sensor module, photosensitive sensor module, relay module to transmit the signal, which based on ZigBee wireless network. The main function of the design is to realize that the lighting can intelligently adjust the brightness according to the indoor light intensity when people in door, and it can turn off the light when people left. The circuit and program design of this system is flexible, and the system achieves the effect of intelligent energy saving control.
Applications of artificial intelligence V; Proceedings of the Meeting, Orlando, FL, May 18-20, 1987
NASA Technical Reports Server (NTRS)
Gilmore, John F. (Editor)
1987-01-01
The papers contained in this volume focus on current trends in applications of artificial intelligence. Topics discussed include expert systems, image understanding, artificial intelligence tools, knowledge-based systems, heuristic systems, manufacturing applications, and image analysis. Papers are presented on expert system issues in automated, autonomous space vehicle rendezvous; traditional versus rule-based programming techniques; applications to the control of optional flight information; methodology for evaluating knowledge-based systems; and real-time advisory system for airborne early warning.
Artificial Intelligence and Spacecraft Power Systems
NASA Technical Reports Server (NTRS)
Dugel-Whitehead, Norma R.
1997-01-01
This talk will present the work which has been done at NASA Marshall Space Flight Center involving the use of Artificial Intelligence to control the power system in a spacecraft. The presentation will include a brief history of power system automation, and some basic definitions of the types of artificial intelligence which have been investigated at MSFC for power system automation. A video tape of one of our autonomous power systems using co-operating expert systems, and advanced hardware will be presented.
Distributed intelligence for supervisory control
NASA Technical Reports Server (NTRS)
Wolfe, W. J.; Raney, S. D.
1987-01-01
Supervisory control systems must deal with various types of intelligence distributed throughout the layers of control. Typical layers are real-time servo control, off-line planning and reasoning subsystems and finally, the human operator. Design methodologies must account for the fact that the majority of the intelligence will reside with the human operator. Hierarchical decompositions and feedback loops as conceptual building blocks that provide a common ground for man-machine interaction are discussed. Examples of types of parallelism and parallel implementation on several classes of computer architecture are also discussed.
Effectiveness of Intelligent Tutoring Systems: A Meta-Analytic Review
ERIC Educational Resources Information Center
Kulik, James A.; Fletcher, J. D.
2016-01-01
This review describes a meta-analysis of findings from 50 controlled evaluations of intelligent computer tutoring systems. The median effect of intelligent tutoring in the 50 evaluations was to raise test scores 0.66 standard deviations over conventional levels, or from the 50th to the 75th percentile. However, the amount of improvement found in…
NASA Technical Reports Server (NTRS)
Chen, Alexander Y.
1990-01-01
Scientific research associates advanced robotic system (SRAARS) is an intelligent robotic system which has autonomous learning capability in geometric reasoning. The system is equipped with one global intelligence center (GIC) and eight local intelligence centers (LICs). It controls mainly sixteen links with fourteen active joints, which constitute two articulated arms, an extensible lower body, a vision system with two CCD cameras and a mobile base. The on-board knowledge-based system supports the learning controller with model representations of both the robot and the working environment. By consecutive verifying and planning procedures, hypothesis-and-test routines and learning-by-analogy paradigm, the system would autonomously build up its own understanding of the relationship between itself (i.e., the robot) and the focused environment for the purposes of collision avoidance, motion analysis and object manipulation. The intelligence of SRAARS presents a valuable technical advantage to implement robotic systems for space exploration and space station operations.
Intelligent Energy Systems As a Modern Basis For Improving Energy Efficiency
NASA Astrophysics Data System (ADS)
Vidyaev, Igor G.; Ivashutenko, Alexandr S.; Samburskaya, Maria A.
2017-01-01
This work presents data on the share of energy costs in the cost structure for different countries. The information is provided on reducing the use of energy resources by means of introducing the intelligent control systems in the industrial enterprises. The structure and the use of such intelligent systems in the energy industry are under our consideration. It is shown that the constructing an intelligent system should be the strategic direction for the development of the distribution grid complex implying the four main areas for improvement: intellectualization of the equipment, management, communication and automation.
NASA Astrophysics Data System (ADS)
Hasbullah Mohd Isa, Wan; Taha, Zahari; Mohd Khairuddin, Ismail; Majeed, Anwar P. P. Abdul; Fikri Muhammad, Khairul; Abdo Hashem, Mohammed; Mahmud, Jamaluddin; Mohamed, Zulkifli
2016-02-01
This paper presents the modelling and control of a two degree of freedom upper extremity exoskeleton by means of an intelligent active force control (AFC) mechanism. The Newton-Euler formulation was used in deriving the dynamic modelling of both the anthropometry based human upper extremity as well as the exoskeleton that consists of the upper arm and the forearm. A proportional-derivative (PD) architecture is employed in this study to investigate its efficacy performing joint-space control objectives. An intelligent AFC algorithm is also incorporated into the PD to investigate the effectiveness of this hybrid system in compensating disturbances. The Mamdani Fuzzy based rule is employed to approximate the estimated inertial properties of the system to ensure the AFC loop responds efficiently. It is found that the IAFC-PD performed well against the disturbances introduced into the system as compared to the conventional PD control architecture in performing the desired trajectory tracking.
Role and interest of new technologies in data processing for space control centers
NASA Astrophysics Data System (ADS)
Denier, Jean-Paul; Caspar, Raoul; Borillo, Mario; Soubie, Jean-Luc
1990-10-01
The ways in which a multidisplinary approach will improve space control centers is discussed. Electronic documentation, ergonomics of human computer interfaces, natural language, intelligent tutoring systems and artificial intelligence systems are considered and applied in the study of the Hermes flight control center. It is concluded that such technologies are best integrated into a classical operational environment rather than taking a revolutionary approach which would involve a global modification of the system.
Hybrid supervisory control using recurrent fuzzy neural network for tracking periodic inputs.
Lin, F J; Wai, R J; Hong, C M
2001-01-01
A hybrid supervisory control system using a recurrent fuzzy neural network (RFNN) is proposed to control the mover of a permanent magnet linear synchronous motor (PMLSM) servo drive for the tracking of periodic reference inputs. First, the field-oriented mechanism is applied to formulate the dynamic equation of the PMLSM. Then, a hybrid supervisory control system, which combines a supervisory control system and an intelligent control system, is proposed to control the mover of the PMLSM for periodic motion. The supervisory control law is designed based on the uncertainty bounds of the controlled system to stabilize the system states around a predefined bound region. Since the supervisory control law will induce excessive and chattering control effort, the intelligent control system is introduced to smooth and reduce the control effort when the system states are inside the predefined bound region. In the intelligent control system, the RFNN control is the main tracking controller which is used to mimic a idea control law and a compensated control is proposed to compensate the difference between the idea control law and the RFNN control. The RFNN has the merits of fuzzy inference, dynamic mapping and fast convergence speed, In addition, an online parameter training methodology, which is derived using the Lyapunov stability theorem and the gradient descent method, is proposed to increase the learning capability of the RFNN. The proposed hybrid supervisory control system using RFNN can track various periodic reference inputs effectively with robust control performance.
Application of Artificial Intelligence Techniques in Uninhabited Aerial Vehicle Flight
NASA Technical Reports Server (NTRS)
Dufrene, Warren R., Jr.
2004-01-01
This paper describes the development of an application of Artificial Intelligence (AI) for Unmanned Aerial Vehicle (UAV) control. The project was done as part of the requirements for a class in AI at NOVA Southeastearn University and a beginning project at NASA Wallops Flight Facility for a resilient, robust, and intelligent UAV flight control system. A method is outlined which allows a base level application for applying an Artificial Intelligence method, Fuzzy Logic, to aspects of Control Logic for UAV flight. One element of UAV flight, automated altitude hold, has been implemented and preliminary results displayed.
Application of Artificial Intelligence Techniques in Uninhabitated Aerial Vehicle Flight
NASA Technical Reports Server (NTRS)
Dufrene, Warren R., Jr.
2003-01-01
This paper describes the development of an application of Artificial Intelligence (AI) for Unmanned Aerial Vehicle (UAV) control. The project was done as part of the requirements for a class in AI at NOVA southeastern University and a beginning project at NASA Wallops Flight Facility for a resilient, robust, and intelligent UAV flight control system. A method is outlined which allows a base level application for applying an Artificial Intelligence method, Fuzzy Logic, to aspects of Control Logic for UAV flight. One element of UAV flight, automated altitude hold, has been implemented and preliminary results displayed.
1984-12-01
system. The reconstruction process is Simply data fusion after allA data are in. After reconstruction, artifcial intelligence (Al) techniques may be...14. CATE OF fhPM~TVW MWtvt Ogv It PAWE COMN Interim __100 -_ TO December 1984 24 MILD ON" s-o Artificial intelligence Command control Data fusion...RD-Ai5O 867 RESEARCH NEEDS FOR ARTIFICIAL INTELLIGENCE APPLICATIONS i/i IN SUPPORT OF C3 (..(U) NAVAL OCEAN SVSTEIIS CENTER SAN DIEGO CA R R DILLARD
Identification Of Cells With A Compact Microscope Imaging System With Intelligent Controls
NASA Technical Reports Server (NTRS)
McDowell, Mark (Inventor)
2006-01-01
A Microscope Imaging System (CMIS) with intelligent controls is disclosed that provides techniques for scanning, identifying, detecting and tracking mic?oscopic changes in selected characteristics or features of various surfaces including, but not limited to, cells, spheres, and manufactured products subject to difficult-to-see imperfections. The practice of the present invention provides applications that include colloidal hard spheres experiments, biological cell detection for patch clamping, cell movement and tracking, as well as defect identification in products, such as semiconductor devices, where surface damage can be significant, but difficult to detect. The CMIS system is a machine vision system, which combines intelligent image processing with remote control capabilities and provides the ability to autofocus on a microscope sample, automatically scan an image, and perform machine vision analysis on multiple samples simultaneously.
Tracking of Cells with a Compact Microscope Imaging System with Intelligent Controls
NASA Technical Reports Server (NTRS)
McDowell, Mark (Inventor)
2007-01-01
A Microscope Imaging System (CMIS) with intelligent controls is disclosed that provides techniques for scanning, identifying, detecting and tracking microscopic changes in selected characteristics or features of various surfaces including, but not limited to, cells, spheres, and manufactured products subject to difficult-to-see imperfections. The practice of the present invention provides applications that include colloidal hard spheres experiments, biological cell detection for patch clamping, cell movement and tracking, as well as defect identification in products, such as semiconductor devices, where surface damage can be significant, but difficult to detect. The CMIS system is a machine vision system, which combines intelligent image processing with remote control capabilities and provides the ability to autofocus on a microscope sample, automatically scan an image, and perform machine vision analysis on multiple samples simultaneously
Tracking of cells with a compact microscope imaging system with intelligent controls
NASA Technical Reports Server (NTRS)
McDowell, Mark (Inventor)
2007-01-01
A Microscope Imaging System (CMIS) with intelligent controls is disclosed that provides techniques for scanning, identifying, detecting and tracking microscopic changes in selected characteristics or features of various surfaces including, but not limited to, cells, spheres, and manufactured products subject to difficult-to-see imperfections. The practice of the present invention provides applications that include colloidal hard spheres experiments, biological cell detection for patch clamping, cell movement and tracking, as well as defect identification in products, such as semiconductor devices, where surface damage can be significant, but difficult to detect. The CMIS system is a machine vision system, which combines intelligent image processing with remote control capabilities and provides the ability to auto-focus on a microscope sample, automatically scan an image, and perform machine vision analysis on multiple samples simultaneously.
Operation of a Cartesian Robotic System in a Compact Microscope with Intelligent Controls
NASA Technical Reports Server (NTRS)
McDowell, Mark (Inventor)
2006-01-01
A Microscope Imaging System (CMIS) with intelligent controls is disclosed that provides techniques for scanning, identifying, detecting and tracking microscopic changes in selected characteristics or features of various surfaces including, but not limited to, cells, spheres, and manufactured products subject to difficult-to-see imperfections. The practice of the present invention provides applications that include colloidal hard spheres experiments, biological cell detection for patch clamping, cell movement and tracking, as well as defect identification in products, such as semiconductor devices, where surface damage can be significant, but difficult to detect. The CMIS system is a machine vision system, which combines intelligent image processing with remote control capabilities and provides the ability to autofocus on a microscope sample, automatically scan an image, and perform machine vision analysis on multiple samples simultaneously.
Devices development and techniques research for space life sciences
NASA Astrophysics Data System (ADS)
Zhang, A.; Liu, B.; Zheng, C.
The development process and the status quo of the devices and techniques for space life science in China and the main research results in this field achieved by Shanghai Institute of Technical Physics SITP CAS are reviewed concisely in this paper On the base of analyzing the requirements of devices and techniques for supporting space life science experiments and researches one designment idea of developing different intelligent modules with professional function standard interface and easy to be integrated into system is put forward and the realization method of the experiment system with intelligent distributed control based on the field bus are discussed in three hierarchies Typical sensing or control function cells with certain self-determination control data management and communication abilities are designed and developed which are called Intelligent Agents Digital hardware network system which are consisted of the distributed Agents as the intelligent node is constructed with the normative opening field bus technology The multitask and real-time control application softwares are developed in the embedded RTOS circumstance which is implanted into the system hardware and space life science experiment system platform with characteristic of multitasks multi-courses professional and instant integration will be constructed
Traffic flow forecasting for intelligent transportation systems.
DOT National Transportation Integrated Search
1995-01-01
The capability to forecast traffic volume in an operational setting has been identified as a critical need for intelligent transportation systems (ITS). In particular, traffic volume forecasts will directly support proactive traffic control and accur...
Poza-Lujan, Jose-Luis; Posadas-Yagüe, Juan-Luis; Simó-Ten, José-Enrique; Simarro, Raúl; Benet, Ginés
2015-02-25
This paper is part of a study of intelligent architectures for distributed control and communications systems. The study focuses on optimizing control systems by evaluating the performance of middleware through quality of service (QoS) parameters and the optimization of control using Quality of Control (QoC) parameters. The main aim of this work is to study, design, develop, and evaluate a distributed control architecture based on the Data-Distribution Service for Real-Time Systems (DDS) communication standard as proposed by the Object Management Group (OMG). As a result of the study, an architecture called Frame-Sensor-Adapter to Control (FSACtrl) has been developed. FSACtrl provides a model to implement an intelligent distributed Event-Based Control (EBC) system with support to measure QoS and QoC parameters. The novelty consists of using, simultaneously, the measured QoS and QoC parameters to make decisions about the control action with a new method called Event Based Quality Integral Cycle. To validate the architecture, the first five Braitenberg vehicles have been implemented using the FSACtrl architecture. The experimental outcomes, demonstrate the convenience of using jointly QoS and QoC parameters in distributed control systems.
Poza-Lujan, Jose-Luis; Posadas-Yagüe, Juan-Luis; Simó-Ten, José-Enrique; Simarro, Raúl; Benet, Ginés
2015-01-01
This paper is part of a study of intelligent architectures for distributed control and communications systems. The study focuses on optimizing control systems by evaluating the performance of middleware through quality of service (QoS) parameters and the optimization of control using Quality of Control (QoC) parameters. The main aim of this work is to study, design, develop, and evaluate a distributed control architecture based on the Data-Distribution Service for Real-Time Systems (DDS) communication standard as proposed by the Object Management Group (OMG). As a result of the study, an architecture called Frame-Sensor-Adapter to Control (FSACtrl) has been developed. FSACtrl provides a model to implement an intelligent distributed Event-Based Control (EBC) system with support to measure QoS and QoC parameters. The novelty consists of using, simultaneously, the measured QoS and QoC parameters to make decisions about the control action with a new method called Event Based Quality Integral Cycle. To validate the architecture, the first five Braitenberg vehicles have been implemented using the FSACtrl architecture. The experimental outcomes, demonstrate the convenience of using jointly QoS and QoC parameters in distributed control systems. PMID:25723145
DOT National Transportation Integrated Search
2009-08-31
With Intelligent Transportation Systems (ITS), engineers and system integrators blend emerging : detection/surveillance, communications, and computer technologies with transportation management and : control concepts to improve the safety and mobilit...
Coupling artificial intelligence and numerical computation for engineering design (Invited paper)
NASA Astrophysics Data System (ADS)
Tong, S. S.
1986-01-01
The possibility of combining artificial intelligence (AI) systems and numerical computation methods for engineering designs is considered. Attention is given to three possible areas of application involving fan design, controlled vortex design of turbine stage blade angles, and preliminary design of turbine cascade profiles. Among the AI techniques discussed are: knowledge-based systems; intelligent search; and pattern recognition systems. The potential cost and performance advantages of an AI-based design-generation system are discussed in detail.
Control approaches for intelligent material systems -- What can we learn from nature?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robertshaw, H.H.
1994-12-31
Three natural systems (human thermoregulation, enzyme-catalyzed biochemical reactions, and rivers) are examined with the intent of finding commonalties in control among these systems which may offer inspiration or guidance to the task of controlling the behavior of Intelligent Material Systems. It is observed that these natural systems act in ways not seen in technological control systems. The observations of a lack of (feedback) control, the predominance of regulation, the extremely local nature of the apparent goals, the storage of information in form (in structure), and non-numerical processing, produce a strong impression of coupled open-loop processes amidst seeming chaos almost passivelymore » producing what the author calls natural system control.« less
Hybrid intelligent monironing systems for thermal power plant trips
NASA Astrophysics Data System (ADS)
Barsoum, Nader; Ismail, Firas Basim
2012-11-01
Steam boiler is one of the main equipment in thermal power plants. If the steam boiler trips it may lead to entire shutdown of the plant, which is economically burdensome. Early boiler trips monitoring is crucial to maintain normal and safe operational conditions. In the present work two artificial intelligent monitoring systems specialized in boiler trips have been proposed and coded within the MATLAB environment. The training and validation of the two systems has been performed using real operational data captured from the plant control system of selected power plant. An integrated plant data preparation framework for seven boiler trips with related operational variables has been proposed for IMSs data analysis. The first IMS represents the use of pure Artificial Neural Network system for boiler trip detection. All seven boiler trips under consideration have been detected by IMSs before or at the same time of the plant control system. The second IMS represents the use of Genetic Algorithms and Artificial Neural Networks as a hybrid intelligent system. A slightly lower root mean square error was observed in the second system which reveals that the hybrid intelligent system performed better than the pure neural network system. Also, the optimal selection of the most influencing variables performed successfully by the hybrid intelligent system.
Intelligent open-architecture controller using knowledge server
NASA Astrophysics Data System (ADS)
Nacsa, Janos; Kovacs, George L.; Haidegger, Geza
2001-12-01
In an ideal scenario of intelligent machine tools [22] the human mechanist was almost replaced by the controller. During the last decade many efforts have been made to get closer to this ideal scenario, but the way of information processing within the CNC did not change too much. The paper summarizes the requirements of an intelligent CNC evaluating the different research efforts done in this field using different artificial intelligence (AI) methods. The need for open CNC architecture was emerging at many places around the world. The second part of the paper introduces and shortly compares these efforts. In the third part a low cost concept for intelligent and open systems named Knowledge Server for Controllers (KSC) is introduced. It allows more devices to solve their intelligent processing needs using the same server that is capable to process intelligent data. In the final part the KSC concept is used in an open CNC environment to build up some elements of an intelligent CNC. The preliminary results of the implementation are also introduced.
On the use of multi-agent systems for the monitoring of industrial systems
NASA Astrophysics Data System (ADS)
Rezki, Nafissa; Kazar, Okba; Mouss, Leila Hayet; Kahloul, Laid; Rezki, Djamil
2016-03-01
The objective of the current paper is to present an intelligent system for complex process monitoring, based on artificial intelligence technologies. This system aims to realize with success all the complex process monitoring tasks that are: detection, diagnosis, identification and reconfiguration. For this purpose, the development of a multi-agent system that combines multiple intelligences such as: multivariate control charts, neural networks, Bayesian networks and expert systems has became a necessity. The proposed system is evaluated in the monitoring of the complex process Tennessee Eastman process.
Intelligent control of robotic arm/hand systems for the NASA EVA retriever using neural networks
NASA Technical Reports Server (NTRS)
Mclauchlan, Robert A.
1989-01-01
Adaptive/general learning algorithms using varying neural network models are considered for the intelligent control of robotic arm plus dextrous hand/manipulator systems. Results are summarized and discussed for the use of the Barto/Sutton/Anderson neuronlike, unsupervised learning controller as applied to the stabilization of an inverted pendulum on a cart system. Recommendations are made for the application of the controller and a kinematic analysis for trajectory planning to simple object retrieval (chase/approach and capture/grasp) scenarios in two dimensions.
Design and realization of intelligent tourism service system based on voice interaction
NASA Astrophysics Data System (ADS)
Hu, Lei-di; Long, Yi; Qian, Cheng-yang; Zhang, Ling; Lv, Guo-nian
2008-10-01
Voice technology is one of the important contents to improve the intelligence and humanization of tourism service system. Combining voice technology, the paper concentrates on application needs and the composition of system to present an overall intelligent tourism service system's framework consisting of presentation layer, Web services layer, and tourism application service layer. On the basis, the paper further elaborated the implementation of the system and its key technologies, including intelligent voice interactive technology, seamless integration technology of multiple data sources, location-perception-based guides' services technology, and tourism safety control technology. Finally, according to the situation of Nanjing tourism, a prototype of Tourism Services System is realized.
Chiang, Mao-Hsiung
2010-01-01
This study aims to develop a X-Y dual-axial intelligent servo pneumatic-piezoelectric hybrid actuator for position control with high response, large stroke (250 mm, 200 mm) and nanometer accuracy (20 nm). In each axis, the rodless pneumatic actuator serves to position in coarse stroke and the piezoelectric actuator compensates in fine stroke. Thus, the overall control systems of the single axis become a dual-input single-output (DISO) system. Although the rodless pneumatic actuator has relatively larger friction force, it has the advantage of mechanism for multi-axial development. Thus, the X-Y dual-axial positioning system is developed based on the servo pneumatic-piezoelectric hybrid actuator. In addition, the decoupling self-organizing fuzzy sliding mode control is developed as the intelligent control strategies. Finally, the proposed novel intelligent X-Y dual-axial servo pneumatic-piezoelectric hybrid actuators are implemented and verified experimentally.
Chiang, Mao-Hsiung
2010-01-01
This study aims to develop a X-Y dual-axial intelligent servo pneumatic-piezoelectric hybrid actuator for position control with high response, large stroke (250 mm, 200 mm) and nanometer accuracy (20 nm). In each axis, the rodless pneumatic actuator serves to position in coarse stroke and the piezoelectric actuator compensates in fine stroke. Thus, the overall control systems of the single axis become a dual-input single-output (DISO) system. Although the rodless pneumatic actuator has relatively larger friction force, it has the advantage of mechanism for multi-axial development. Thus, the X-Y dual-axial positioning system is developed based on the servo pneumatic-piezoelectric hybrid actuator. In addition, the decoupling self-organizing fuzzy sliding mode control is developed as the intelligent control strategies. Finally, the proposed novel intelligent X-Y dual-axial servo pneumatic-piezoelectric hybrid actuators are implemented and verified experimentally. PMID:22319266
U.S. Army Workshop on Exploring Enterprise, System of Systems, System, and Software Architectures
2009-03-01
state of a net-centric intelligence /surveillance/reconnaissance (ISR) capability featuring DCGS by the middle of the next decade.5 In some situations...boundaries. The DoDAF has a relatively long history. It started as a Command, Control, Communications, Computers, Surveillance and Intelligence ...Army have needed to perform tasks such as: col- lect and analyze intelligence information; maneuver the force; target and provide fire support; conduct
Communications and Intelligent Systems Division Overview
NASA Technical Reports Server (NTRS)
Emerson, Dawn
2017-01-01
Provides expertise, and plans, conducts and directs research and engineering development in the competency fields of advanced communications and intelligent systems technologies for applications in current and future aeronautics and space systems.Advances communication systems engineering, development and analysis needed for Glenn Research Center's leadership in communications and intelligent systems technology. Focus areas include advanced high frequency devices, components, and antennas; optical communications, health monitoring and instrumentation; digital signal processing for communications and navigation, and cognitive radios; network architectures, protocols, standards and network-based applications; intelligent controls, dynamics and diagnostics; and smart micro- and nano-sensors and harsh environment electronics. Research and discipline engineering allow for the creation of innovative concepts and designs for aerospace communication systems with reduced size and weight, increased functionality and intelligence. Performs proof-of-concept studies and analyses to assess the impact of the new technologies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
El Hariri, Mohamad; Faddel, Samy; Mohammed, Osama
Decentralized and hierarchical microgrid control strategies have lain the groundwork for shaping the future smart grid. Such control approaches require the cooperation between microgrid operators in control centers, intelligent microcontrollers, and remote terminal units via secure and reliable communication networks. In order to enhance the security and complement the work of network intrusion detection systems, this paper presents an artificially intelligent physical model-checking that detects tampered-with circuit breaker switching control commands whether, due to a cyber-attack or human error. In this technique, distributed agents, which are monitoring sectionalized areas of a given microgrid, will be trained and continuously adapted tomore » verify that incoming control commands do not violate the physical system operational standards and do not put the microgrid in an insecure state. The potential of this approach has been tested by deploying agents that monitor circuit breakers status commands on a 14-bus IEEE benchmark system. The results showed the accuracy of the proposed framework in characterizing the power system and successfully detecting malicious and/or erroneous control commands.« less
IQARIS : a tool for the intelligent querying, analysis, and retrieval from information systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hummel, J. R.; Silver, R. B.
Information glut is one of the primary characteristics of the electronic age. Managing such large volumes of information (e.g., keeping track of the types, where they are, their relationships, who controls them, etc.) can be done efficiently with an intelligent, user-oriented information management system. The purpose of this paper is to describe a concept for managing information resources based on an intelligent information technology system developed by the Argonne National Laboratory for managing digital libraries. The Argonne system, Intelligent Query (IQ), enables users to query digital libraries and view the holdings that match the query from different perspectives.
Applications of Intelligent Technology to Power System Supervisory Control and Protection Systems
NASA Astrophysics Data System (ADS)
Nagata, Takeshi
Power system supervisory control and protection systems provide utilities with capabilities that are key to a planning business function, i.e., delivering power in a reliable and safe manner. A quality system solution is central to effective operation of a utility's most critical and costly generation, transmission, and distribution assets. The challenging issues for these systems today are not the same as they were few years ago. Today, there is much more placed on integration, use of new IT technologies, and access to information for more purposes. This article presents the topics of intelligent technology to the power system supervisory control and protection systems.
Man-Robot Symbiosis: A Framework For Cooperative Intelligence And Control
NASA Astrophysics Data System (ADS)
Parker, Lynne E.; Pin, Francois G.
1988-10-01
The man-robot symbiosis concept has the fundamental objective of bridging the gap between fully human-controlled and fully autonomous systems to achieve true man-robot cooperative control and intelligence. Such a system would allow improved speed, accuracy, and efficiency of task execution, while retaining the man in the loop for innovative reasoning and decision-making. The symbiont would have capabilities for supervised and unsupervised learning, allowing an increase of expertise in a wide task domain. This paper describes a robotic system architecture facilitating the symbiotic integration of teleoperative and automated modes of task execution. The architecture reflects a unique blend of many disciplines of artificial intelligence into a working system, including job or mission planning, dynamic task allocation, man-robot communication, automated monitoring, and machine learning. These disciplines are embodied in five major components of the symbiotic framework: the Job Planner, the Dynamic Task Allocator, the Presenter/Interpreter, the Automated Monitor, and the Learning System.
A development framework for artificial intelligence based distributed operations support systems
NASA Technical Reports Server (NTRS)
Adler, Richard M.; Cottman, Bruce H.
1990-01-01
Advanced automation is required to reduce costly human operations support requirements for complex space-based and ground control systems. Existing knowledge based technologies have been used successfully to automate individual operations tasks. Considerably less progress has been made in integrating and coordinating multiple operations applications for unified intelligent support systems. To fill this gap, SOCIAL, a tool set for developing Distributed Artificial Intelligence (DAI) systems is being constructed. SOCIAL consists of three primary language based components defining: models of interprocess communication across heterogeneous platforms; models for interprocess coordination, concurrency control, and fault management; and for accessing heterogeneous information resources. DAI applications subsystems, either new or existing, will access these distributed services non-intrusively, via high-level message-based protocols. SOCIAL will reduce the complexity of distributed communications, control, and integration, enabling developers to concentrate on the design and functionality of the target DAI system itself.
From pilot's associate to satellite controller's associate
NASA Technical Reports Server (NTRS)
Neyland, David L.; Lizza, Carl; Merkel, Philip A.
1992-01-01
Associate technology is an emerging engineering discipline wherein intelligent automation can significantly augment the performance of man-machine systems. An associate system is one that monitors operator activity and adapts its operational behavior accordingly. Associate technology is most effectively applied when mapped into management of the human-machine interface and display-control loop in typical manned systems. This paper addresses the potential for application of associate technology into the arena of intelligent command and control of satellite systems, from diagnosis of onboard and onground of satellite systems fault conditions, to execution of nominal satellite control functions. Rather than specifying a specific solution, this paper draws parallels between the Pilot's Associate concept and the domain of satellite control.
Intelligent Propulsion System Foundation Technology: Summary of Research
NASA Technical Reports Server (NTRS)
Williams, James C.
2004-01-01
The purpose of this cooperative agreement was to develop a foundation of intelligent propulsion technologies for NASA and industry that will have an impact on safety, noise, emissions and cost. These intelligent engine technologies included sensors, electronics, communications, control logic, actuators, and smart materials and structures. Furthermore this cooperative agreement helped prepare future graduates to develop the revolutionary intelligent propulsion technologies that will be needed to ensure pre-eminence of the U.S. aerospace industry. The program consisted of three primary research areas (and associated work elements at Ohio universities): 1.0 Turbine Engine Prognostics, 2.0 Active Controls for Emissions and Noise Reduction, and 3.0 Active Structural Controls.
EXODUS: Integrating intelligent systems for launch operations support
NASA Technical Reports Server (NTRS)
Adler, Richard M.; Cottman, Bruce H.
1991-01-01
Kennedy Space Center (KSC) is developing knowledge-based systems to automate critical operations functions for the space shuttle fleet. Intelligent systems will monitor vehicle and ground support subsystems for anomalies, assist in isolating and managing faults, and plan and schedule shuttle operations activities. These applications are being developed independently of one another, using different representation schemes, reasoning and control models, and hardware platforms. KSC has recently initiated the EXODUS project to integrate these stand alone applications into a unified, coordinated intelligent operations support system. EXODUS will be constructed using SOCIAL, a tool for developing distributed intelligent systems. EXODUS, SOCIAL, and initial prototyping efforts using SOCIAL to integrate and coordinate selected EXODUS applications are described.
Intelligent Chemistry Management System (ICMS)--A new approach to steam generator chemistry control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barto, R.J.; Farrell, D.M.; Noto, F.A.
1986-04-01
The Intelligent Chemistry Management System (ICMS) is a new tool which assists in steam generator chemistry control. Utilizing diagnostic capabilities, the ICMS will provide utility and industrial boiler operators, system chemists, and plant engineers with a tool for monitoring, diagnosing, and controlling steam generator system chemistry. By reducing the number of forced outages through early identification of potentially detrimental conditions, suggestion of possible causes, and execution of corrective actions, improvements in unit availability and reliability will result. The system monitors water and steam quality at a number of critical locations in the plant.
Dynamical Systems and Motion Vision.
1988-04-01
TASK Artificial Inteligence Laboratory AREA I WORK UNIT NUMBERS 545 Technology Square . Cambridge, MA 02139 C\\ II. CONTROLLING OFFICE NAME ANO0 ADDRESS...INSTITUTE OF TECHNOLOGY ARTIFICIAL INTELLIGENCE LABORATORY A.I.Memo No. 1037 April, 1988 Dynamical Systems and Motion Vision Joachim Heel Abstract: In this... Artificial Intelligence L3 Laboratory of the Massachusetts Institute of Technology. Support for the Laboratory’s [1 Artificial Intelligence Research is
The Need for Intelligent Control of Space Power Systems
NASA Technical Reports Server (NTRS)
May, Ryan David; Soeder, James F.; Beach, Raymond F.; McNelis, Nancy B.
2013-01-01
As manned spacecraft venture farther from Earth, the need for reliable, autonomous control of vehicle subsystems becomes critical. This is particularly true for the electrical power system which is critical to every other system. Autonomy can not be achieved by simple scripting techniques due to the communication latency times and the difficulty associated with failures (or combinations of failures) that need to be handled in as graceful a manner as possible to ensure system availability. Therefore an intelligent control system must be developed that can respond to disturbances and failures in a robust manner and ensure that critical system loads are served and all system constraints are respected.
Research and design of intelligent distributed traffic signal light control system based on CAN bus
NASA Astrophysics Data System (ADS)
Chen, Yu
2007-12-01
Intelligent distributed traffic signal light control system was designed based on technologies of infrared, CAN bus, single chip microprocessor (SCM), etc. The traffic flow signal is processed with the core of SCM AT89C51. At the same time, the SCM controls the CAN bus controller SJA1000/transceiver PCA82C250 to build a CAN bus communication system to transmit data. Moreover, up PC realizes to connect and communicate with SCM through USBCAN chip PDIUSBD12. The distributed traffic signal light control system with three control styles of Vehicle flux, remote and PC is designed. This paper introduces the system composition method and parts of hardware/software design in detail.
EEG Control of a Virtual Helicopter in 3-Dimensional Space Using Intelligent Control Strategies
Royer, Audrey S.; Doud, Alexander J.; Rose, Minn L.
2011-01-01
Films like Firefox, Surrogates, and Avatar have explored the possibilities of using brain-computer interfaces (BCIs) to control machines and replacement bodies with only thought. Real world BCIs have made great progress toward that end. Invasive BCIs have enabled monkeys to fully explore 3-dimensional (3D) space using neuroprosthetics. However, non-invasive BCIs have not been able to demonstrate such mastery of 3D space. Here, we report our work, which demonstrates that human subjects can use a non-invasive BCI to fly a virtual helicopter to any point in a 3D world. Through use of intelligent control strategies, we have facilitated the realization of controlled flight in 3D space. We accomplished this through a reductionist approach that assigns subject-specific control signals to the crucial components of 3D flight. Subject control of the helicopter was comparable when using either the BCI or a keyboard. By using intelligent control strategies, the strengths of both the user and the BCI system were leveraged and accentuated. Intelligent control strategies in BCI systems such as those presented here may prove to be the foundation for complex BCIs capable of doing more than we ever imagined. PMID:20876032
EEG control of a virtual helicopter in 3-dimensional space using intelligent control strategies.
Royer, Audrey S; Doud, Alexander J; Rose, Minn L; He, Bin
2010-12-01
Films like Firefox, Surrogates, and Avatar have explored the possibilities of using brain-computer interfaces (BCIs) to control machines and replacement bodies with only thought. Real world BCIs have made great progress toward that end. Invasive BCIs have enabled monkeys to fully explore 3-D space using neuroprosthetics. However, noninvasive BCIs have not been able to demonstrate such mastery of 3-D space. Here, we report our work, which demonstrates that human subjects can use a noninvasive BCI to fly a virtual helicopter to any point in a 3-D world. Through use of intelligent control strategies, we have facilitated the realization of controlled flight in 3-D space. We accomplished this through a reductionist approach that assigns subject-specific control signals to the crucial components of 3-D flight. Subject control of the helicopter was comparable when using either the BCI or a keyboard. By using intelligent control strategies, the strengths of both the user and the BCI system were leveraged and accentuated. Intelligent control strategies in BCI systems such as those presented here may prove to be the foundation for complex BCIs capable of doing more than we ever imagined.
Arranging computer architectures to create higher-performance controllers
NASA Technical Reports Server (NTRS)
Jacklin, Stephen A.
1988-01-01
Techniques for integrating microprocessors, array processors, and other intelligent devices in control systems are reviewed, with an emphasis on the (re)arrangement of components to form distributed or parallel processing systems. Consideration is given to the selection of the host microprocessor, increasing the power and/or memory capacity of the host, multitasking software for the host, array processors to reduce computation time, the allocation of real-time and non-real-time events to different computer subsystems, intelligent devices to share the computational burden for real-time events, and intelligent interfaces to increase communication speeds. The case of a helicopter vibration-suppression and stabilization controller is analyzed as an example, and significant improvements in computation and throughput rates are demonstrated.
Design of automatic curtain controlled by wireless based on single chip 51 microcomputer
NASA Astrophysics Data System (ADS)
Han, Dafeng; Chen, Xiaoning
2017-08-01
In order to realize the wireless control of the domestic intelligent curtains, a set of wireless intelligent curtain control system based on 51 single chip microcomputer have been designed in this paper. The intelligent curtain can work in the manual mode, automatic mode and sleep mode and can be carried out by the button and mobile phone APP mode loop switch. Through the photosensitive resistance module and human pyroelectric infrared sensor to collect the indoor light value and the data whether there is the person in the room, and then after single chip processing, the motor drive module is controlled to realize the positive inversion of the asynchronous motor, the intelligent opening and closing of the curtain have been realized. The operation of the motor can be stopped under the action of the switch and the curtain opening and closing and timing switch can be controlled through the keys and mobile phone APP. The optical fiber intensity, working mode, curtain state and system time are displayed by LCD1602. The system has a high reliability and security under practical testing and with the popularity and development of smart home, the design has broad market prospects.
Driving the brain towards creativity and intelligence: A network control theory analysis.
Kenett, Yoed N; Medaglia, John D; Beaty, Roger E; Chen, Qunlin; Betzel, Richard F; Thompson-Schill, Sharon L; Qiu, Jiang
2018-01-04
High-level cognitive constructs, such as creativity and intelligence, entail complex and multiple processes, including cognitive control processes. Recent neurocognitive research on these constructs highlight the importance of dynamic interaction across neural network systems and the role of cognitive control processes in guiding such a dynamic interaction. How can we quantitatively examine the extent and ways in which cognitive control contributes to creativity and intelligence? To address this question, we apply a computational network control theory (NCT) approach to structural brain imaging data acquired via diffusion tensor imaging in a large sample of participants, to examine how NCT relates to individual differences in distinct measures of creative ability and intelligence. Recent application of this theory at the neural level is built on a model of brain dynamics, which mathematically models patterns of inter-region activity propagated along the structure of an underlying network. The strength of this approach is its ability to characterize the potential role of each brain region in regulating whole-brain network function based on its anatomical fingerprint and a simplified model of node dynamics. We find that intelligence is related to the ability to "drive" the brain system into easy to reach neural states by the right inferior parietal lobe and lower integration abilities in the left retrosplenial cortex. We also find that creativity is related to the ability to "drive" the brain system into difficult to reach states by the right dorsolateral prefrontal cortex (inferior frontal junction) and higher integration abilities in sensorimotor areas. Furthermore, we found that different facets of creativity-fluency, flexibility, and originality-relate to generally similar but not identical network controllability processes. We relate our findings to general theories on intelligence and creativity. Copyright © 2018 Elsevier Ltd. All rights reserved.
Intelligent Control Wheelchair Using a New Visual Joystick.
Rabhi, Yassine; Mrabet, Makrem; Fnaiech, Farhat
2018-01-01
A new control system of a hand gesture-controlled wheelchair (EWC) is proposed. This smart control device is suitable for a large number of patients who cannot manipulate a standard joystick wheelchair. The movement control system uses a camera fixed on the wheelchair. The patient's hand movements are recognized using a visual recognition algorithm and artificial intelligence software; the derived corresponding signals are thus used to control the EWC in real time. One of the main features of this control technique is that it allows the patient to drive the wheelchair with a variable speed similar to that of a standard joystick. The designed device "hand gesture-controlled wheelchair" is performed at low cost and has been tested on real patients and exhibits good results. Before testing the proposed control device, we have created a three-dimensional environment simulator to test its performances with extreme security. These tests were performed on real patients with diverse hand pathologies in Mohamed Kassab National Institute of Orthopedics, Physical and Functional Rehabilitation Hospital of Tunis, and the validity of this intelligent control system had been proved.
Intelligent Control Wheelchair Using a New Visual Joystick
Mrabet, Makrem; Fnaiech, Farhat
2018-01-01
A new control system of a hand gesture-controlled wheelchair (EWC) is proposed. This smart control device is suitable for a large number of patients who cannot manipulate a standard joystick wheelchair. The movement control system uses a camera fixed on the wheelchair. The patient's hand movements are recognized using a visual recognition algorithm and artificial intelligence software; the derived corresponding signals are thus used to control the EWC in real time. One of the main features of this control technique is that it allows the patient to drive the wheelchair with a variable speed similar to that of a standard joystick. The designed device “hand gesture-controlled wheelchair” is performed at low cost and has been tested on real patients and exhibits good results. Before testing the proposed control device, we have created a three-dimensional environment simulator to test its performances with extreme security. These tests were performed on real patients with diverse hand pathologies in Mohamed Kassab National Institute of Orthopedics, Physical and Functional Rehabilitation Hospital of Tunis, and the validity of this intelligent control system had been proved. PMID:29599953
Autonomous intelligent military robots: Army ants, killer bees, and cybernetic soldiers
NASA Astrophysics Data System (ADS)
Finkelstein, Robert
The rationale for developing autonomous intelligent robots in the military is to render conventional warfare systems ineffective and indefensible. The Desert Storm operation demonstrated the effectiveness of such systems as unmanned air and ground vehicles and indicated the future possibilities of robotic technology. Robotic military vehicles would have the advantages of expendability, low cost, lower complexity compared to manned systems, survivability, maneuverability, and a capability to share in instantaneous communication and distributed processing of combat information. Basic characteristics of intelligent systems and hierarchical control systems with sensor inputs are described. Genetic algorithms are seen as a means of achieving appropriate levels of intelligence in a robotic system. Potential impacts of robotic technology in the military are outlined.
Robust algebraic image enhancement for intelligent control systems
NASA Technical Reports Server (NTRS)
Lerner, Bao-Ting; Morrelli, Michael
1993-01-01
Robust vision capability for intelligent control systems has been an elusive goal in image processing. The computationally intensive techniques a necessary for conventional image processing make real-time applications, such as object tracking and collision avoidance difficult. In order to endow an intelligent control system with the needed vision robustness, an adequate image enhancement subsystem capable of compensating for the wide variety of real-world degradations, must exist between the image capturing and the object recognition subsystems. This enhancement stage must be adaptive and must operate with consistency in the presence of both statistical and shape-based noise. To deal with this problem, we have developed an innovative algebraic approach which provides a sound mathematical framework for image representation and manipulation. Our image model provides a natural platform from which to pursue dynamic scene analysis, and its incorporation into a vision system would serve as the front-end to an intelligent control system. We have developed a unique polynomial representation of gray level imagery and applied this representation to develop polynomial operators on complex gray level scenes. This approach is highly advantageous since polynomials can be manipulated very easily, and are readily understood, thus providing a very convenient environment for image processing. Our model presents a highly structured and compact algebraic representation of grey-level images which can be viewed as fuzzy sets.
Intelligent Tires Based on Measurement of Tire Deformation
NASA Astrophysics Data System (ADS)
Matsuzaki, Ryosuke; Todoroki, Akira
From a traffic safety point-of-view, there is an urgent need for intelligent tires as a warning system for road conditions, for optimized braking control on poor road surfaces and as a tire fault detection system. Intelligent tires, equipped with sensors for monitoring applied strain, are effective in improving reliability and control systems such as anti-lock braking systems (ABSs). In previous studies, we developed a direct tire deformation or strain measurement system with sufficiently low stiffness and high elongation for practical use, and a wireless communication system between tires and vehicle that operates without a battery. The present study investigates the application of strain data for an optimized braking control and road condition warning system. The relationships between strain sensor outputs and tire mechanical parameters, including braking torque, effective radius and contact patch length, are calculated using finite element analysis. Finally, we suggested the possibility of optimized braking control and road condition warning systems. Optimized braking control can be achieved by keeping the slip ratio constant. The road condition warning would be actuated if the recorded friction coefficient at a certain slip ratio is lower than a ‘safe’ reference value.
Intelligent tires for improved tire safety using wireless strain measurement
NASA Astrophysics Data System (ADS)
Matsuzaki, Ryosuke; Todoroki, Akira
2008-03-01
From a traffic safety point-of-view, there is an urgent need for intelligent tires as a warning system for road conditions, for optimized braking control on poor road surfaces and as a tire fault detection system. Intelligent tires, equipped with sensors for monitoring applied strain, are effective in improving reliability and control systems such as anti-lock braking systems (ABSs). In previous studies, we developed a direct tire deformation or strain measurement system with sufficiently low stiffness and high elongation for practical use, and a wireless communication system between tires and vehicle that operates without a battery. The present study investigates the application of strain data for an optimized braking control and road condition warning system. The relationships between strain sensor outputs and tire mechanical parameters, including braking torque, effective radius and contact patch length, are calculated using finite element analysis. Finally, we suggested the possibility of optimized braking control and road condition warning systems. Optimized braking control can be achieved by keeping the slip ratio constant. The road condition warning would be actuated if the recorded friction coefficient at a certain slip ratio is lower than a 'safe' reference value.
Research on application of modern household design and intellective household system
NASA Astrophysics Data System (ADS)
Zhang, Kaisheng; Zeng, Yuan; Fan, Junli
2009-07-01
People spend most of their lives indoors. To build a comfortable human environment, is always a dream for humankind. From ancient to now, the development of architecture imprints the progress of human civilization. However, for today's architecture, steel and concrete are only the surface. Intelligent technology will create its spirit and offer the soul. Nowadays, there's new meaning for the connotation of household design. This paper mainly discusses Design of Home Intelligent Electronic Assistant System Based on Embedded Module of S3C2410. Conerning the aspects of Home Security System, Automatic Meter Reading System, Automatic Control System for Electrical appliances, and Data Intelligence Communication System, it compactly describes the system's constitution diagram and hardware module, thus making better use of Home Intelligent Electronic Assistant System Based on Embedded Module.
Study on Intelligent Multi-concentrates Feeding System for Dairy Cow
NASA Astrophysics Data System (ADS)
Yan, Yinfa; Wang, Ranran; Song, Zhanhua; Yan, Shitao; Li, Fa-De
To implement precision feeding for dairy cow, an intelligent multi-concentrates feeding system was developed. The system consists of two parts, one is precision ingredients control subsystem, the other is multi-concentrates discharge subsystem. The former controls the latter with 4 stepper motors. The precision ingredients control subsystem was designed based on Samsung S3C2440 ARM9 microprocessor and WinCE5.0 embedded operating system. The feeding system identifies the dairy cow with passive transponder using RFID (Radio frequency identification) reader. According to the differences of based diet intake and individual dairy cow milk yield, the system can automatically and quantificationally discharge 4 kinds of different concentrates on the basis of the cow identification ID. The intelligent multi-concentrates feeding system for dairy cow has been designed and implemented. According to the experiment results, the concentrate feeding error is less than 5%, the cow inditification delay time is less than 0.5s and the cow inditification error rate is less than 0.01%.
Intelligence Control System for Landfills Based on Wireless Sensor Network
NASA Astrophysics Data System (ADS)
Zhang, Qian; Huang, Chuan; Gong, Jian
2018-06-01
This paper put forward an intelligence system for controlling the landfill gas in landfills to make the landfill gas (LFG) exhaust controllably and actively. The system, which is assigned by the wireless sensor network, were developed and supervised by remote applications in workshop instead of manual work. An automatic valve control depending on the sensor units embedded is installed in tube, the air pressure and concentration of LFG are detected to decide the level of the valve switch. The paper also proposed a modified algorithm to solve transmission problem, so that the system can keep a high efficiency and long service life.
Intelligent optical fiber sensor system for measurement of gas concentration
NASA Astrophysics Data System (ADS)
Pan, Jingming; Yin, Zongmin
1991-08-01
A measuring, controlling, and alarming system for the concentration of a gas or transparent liquid is described. In this system, a Fabry-Perot etalon with an optical fiber is used as the sensor, a charge-coupled device (CCD) is used as the photoelectric converter, and a single- chip microcomputer 8031 along with an interface circuit is used to measure the interference ring signal. The system has such features as real-time and on-line operation, continuous dynamic handling, and intelligent control.
Intelligent lead: a novel HRI sensor for guide robots.
Cho, Keum-Bae; Lee, Beom-Hee
2012-01-01
This paper addresses the introduction of a new Human Robot Interaction (HRI) sensor for guide robots. Guide robots for geriatric patients or the visually impaired should follow user's control command, keeping a certain desired distance allowing the user to work freely. Therefore, it is necessary to acquire control commands and a user's position on a real-time basis. We suggest a new sensor fusion system to achieve this objective and we will call this sensor the "intelligent lead". The objective of the intelligent lead is to acquire a stable distance from the user to the robot, speed-control volume and turn-control volume, even when the robot platform with the intelligent lead is shaken on uneven ground. In this paper we explain a precise Extended Kalman Filter (EKF) procedure for this. The intelligent lead physically consists of a Kinect sensor, the serial linkage attached with eight rotary encoders, and an IMU (Inertial Measurement Unit) and their measurements are fused by the EKF. A mobile robot was designed to test the performance of the proposed sensor system. After installing the intelligent lead in the mobile robot, several tests are conducted to verify that the mobile robot with the intelligent lead is capable of achieving its goal points while maintaining the appropriate distance between the robot and the user. The results show that we can use the intelligent lead proposed in this paper as a new HRI sensor joined a joystick and a distance measure in the mobile environments such as the robot and the user are moving at the same time.
A conceptual framework for intelligent real-time information processing
NASA Technical Reports Server (NTRS)
Schudy, Robert
1987-01-01
By combining artificial intelligence concepts with the human information processing model of Rasmussen, a conceptual framework was developed for real time artificial intelligence systems which provides a foundation for system organization, control and validation. The approach is based on the description of system processing terms of an abstraction hierarchy of states of knowledge. The states of knowledge are organized along one dimension which corresponds to the extent to which the concepts are expressed in terms of the system inouts or in terms of the system response. Thus organized, the useful states form a generally triangular shape with the sensors and effectors forming the lower two vertices and the full evaluated set of courses of action the apex. Within the triangle boundaries are numerous processing paths which shortcut the detailed processing, by connecting incomplete levels of analysis to partially defined responses. Shortcuts at different levels of abstraction include reflexes, sensory motor control, rule based behavior, and satisficing. This approach was used in the design of a real time tactical decision aiding system, and in defining an intelligent aiding system for transport pilots.
Design of the intelligent smoke alarm system based on photoelectric smoke
NASA Astrophysics Data System (ADS)
Ma, Jiangfei; Yang, Xiufang; Wang, Peipei
2017-02-01
This paper designed a kind of intelligent smoke alarm system based on photoelectric smoke detector and temperature, The system takes AT89C51 MCU as the core of hardware control and Labview as the host computer monitoring center.The sensor system acquires temperature signals and smoke signals, the MCU control A/D by Sampling and converting the output analog signals , and then the two signals will be uploaded to the host computer through the serial communication. To achieve real-time monitoring of smoke and temperature in the environment, LabVIEW monitoring platform need to hold, process, analysis and display these samping signals. The intelligent smoke alarm system is suitable for large scale shopping malls and other public places, which can greatly reduce the false alarm rate of fire, The experimental results show that the system runs well and can alarm when the setting threshold is reached,and the threshold parameters can be adjusted according to the actual conditions of the field. The system is easy to operate, simple in structure, intelligent, low cost, and with strong practical value.
ERIC Educational Resources Information Center
Mitchell, Christine M.; Govindaraj, T.
1990-01-01
Discusses the use of intelligent tutoring systems as opposed to traditional on-the-job training for training operators of complex dynamic systems and describes the computer architecture for a system for operators of a NASA (National Aeronautics and Space Administration) satellite control system. An experimental evaluation with college students is…
1994-06-28
developing Unmanned Aerial Vehicles, not for military use, but for civilian use3, such as remote news coverage and remote tourism by broadcasting live...Interoperability, and Integration of (’ommand, (Control, (’ ommunications , Computers, and Intelligence Systems. CJCS Instruction no. 6212.01, Washington, D.C.: U.S
Intelligent interface design and evaluation
NASA Technical Reports Server (NTRS)
Greitzer, Frank L.
1988-01-01
Intelligent interface concepts and systematic approaches to assessing their functionality are discussed. Four general features of intelligent interfaces are described: interaction efficiency, subtask automation, context sensitivity, and use of an appropriate design metaphor. Three evaluation methods are discussed: Functional Analysis, Part-Task Evaluation, and Operational Testing. Design and evaluation concepts are illustrated with examples from a prototype expert system interface for environmental control and life support systems for manned space platforms.
DOT National Transportation Integrated Search
2000-12-01
In this document, a group of authors looks back on the ten years of the national intelligent transportation systems program and examines which ITS technology applications have been successful, which have not been successful, and what are the underlyi...
A Human Factors Analysis of Proactive Support in Human-Robot Teaming
2015-09-28
teammate is remotely controlling a robot while working with an intelligent robot teammate ‘Mary’. Our main result shows that the subjects generally...IEEE/RSJ Intl. Conference on Intelligent Robots and Systems Conference Date: September 28, 2015 A Human Factors Analysis of Proactive Support in Human...human teammate is remotely controlling a robot while working with an intelligent robot teammate ‘Mary’. Our main result shows that the subjects
Intelligent sensor-model automated control of PMR-15 autoclave processing
NASA Technical Reports Server (NTRS)
Hart, S.; Kranbuehl, D.; Loos, A.; Hinds, B.; Koury, J.
1992-01-01
An intelligent sensor model system has been built and used for automated control of the PMR-15 cure process in the autoclave. The system uses frequency-dependent FM sensing (FDEMS), the Loos processing model, and the Air Force QPAL intelligent software shell. The Loos model is used to predict and optimize the cure process including the time-temperature dependence of the extent of reaction, flow, and part consolidation. The FDEMS sensing system in turn monitors, in situ, the removal of solvent, changes in the viscosity, reaction advancement and cure completion in the mold continuously throughout the processing cycle. The sensor information is compared with the optimum processing conditions from the model. The QPAL composite cure control system allows comparison of the sensor monitoring with the model predictions to be broken down into a series of discrete steps and provides a language for making decisions on what to do next regarding time-temperature and pressure.
Sensor Needs for Control and Health Management of Intelligent Aircraft Engines
NASA Technical Reports Server (NTRS)
Simon, Donald L.; Gang, Sanjay; Hunter, Gary W.; Guo, Ten-Huei; Semega, Kenneth J.
2004-01-01
NASA and the U.S. Department of Defense are conducting programs which support the future vision of "intelligent" aircraft engines for enhancing the affordability, performance, operability, safety, and reliability of aircraft propulsion systems. Intelligent engines will have advanced control and health management capabilities enabling these engines to be self-diagnostic, self-prognostic, and adaptive to optimize performance based upon the current condition of the engine or the current mission of the vehicle. Sensors are a critical technology necessary to enable the intelligent engine vision as they are relied upon to accurately collect the data required for engine control and health management. This paper reviews the anticipated sensor requirements to support the future vision of intelligent engines from a control and health management perspective. Propulsion control and health management technologies are discussed in the broad areas of active component controls, propulsion health management and distributed controls. In each of these three areas individual technologies will be described, input parameters necessary for control feedback or health management will be discussed, and sensor performance specifications for measuring these parameters will be summarized.
Colom, Roberto; Solomon, Jeffrey; Krueger, Frank; Forbes, Chad; Grafman, Jordan
2012-01-01
Although cognitive neuroscience has made remarkable progress in understanding the involvement of the prefrontal cortex in executive control, the broader functional networks that support high-level cognition and give rise to general intelligence remain to be well characterized. Here, we investigated the neural substrates of the general factor of intelligence (g) and executive function in 182 patients with focal brain damage using voxel-based lesion–symptom mapping. The Wechsler Adult Intelligence Scale and Delis–Kaplan Executive Function System were used to derive measures of g and executive function, respectively. Impaired performance on these measures was associated with damage to a distributed network of left lateralized brain areas, including regions of frontal and parietal cortex and white matter association tracts, which bind these areas into a coordinated system. The observed findings support an integrative framework for understanding the architecture of general intelligence and executive function, supporting their reliance upon a shared fronto-parietal network for the integration and control of cognitive representations and making specific recommendations for the application of the Wechsler Adult Intelligence Scale and Delis–Kaplan Executive Function System to the study of high-level cognition in health and disease. PMID:22396393
Use of artificial intelligence in supervisory control
NASA Technical Reports Server (NTRS)
Cohen, Aaron; Erickson, Jon D.
1989-01-01
Viewgraphs describing the design and testing of an intelligent decision support system called OFMspert are presented. In this expert system, knowledge about the human operator is represented through an operator/system model referred to as the OFM (Operator Function Model). OFMspert uses the blackboard model of problem solving to maintain a dynamic representation of operator goals, plans, tasks, and actions given previous operator actions and current system state. Results of an experiment to assess OFMspert's intent inferencing capability are outlined. Finally, the overall design philosophy for an intelligent tutoring system (OFMTutor) for operators of complex dynamic systems is summarized.
Enhancing the stabilization of aircraft pitch motion control via intelligent and classical method
NASA Astrophysics Data System (ADS)
Lukman, H.; Munawwarah, S.; Azizan, A.; Yakub, F.; Zaki, S. A.; Rasid, Z. A.
2017-12-01
The pitching movement of an aircraft is very important to ensure passengers are intrinsically safe and the aircraft achieve its maximum stability. The equations governing the motion of an aircraft are a complex set of six nonlinear coupled differential equations. Under certain assumptions, it can be decoupled and linearized into longitudinal and lateral equations. Pitch control is a longitudinal problem and thus, only the longitudinal dynamics equations are involved in this system. It is a third order nonlinear system, which is linearized about the operating point. The system is also inherently unstable due to the presence of a free integrator. Because of this, a feedback controller is added in order to solve this problem and enhance the system performance. This study uses two approaches in designing controller: a conventional controller and an intelligent controller. The pitch control scheme consists of proportional, integral and derivatives (PID) for conventional controller and fuzzy logic control (FLC) for intelligent controller. Throughout the paper, the performance of the presented controllers are investigated and compared based on the common criteria of step response. Simulation results have been obtained and analysed by using Matlab and Simulink software. The study shows that FLC controller has higher ability to control and stabilize the aircraft's pitch angle as compared to PID controller.
Technicians for Intelligent Buildings. Final Report.
ERIC Educational Resources Information Center
Prescott, Carolyn; Thomson, Ron
"Intelligent building" is a term that has been coined in recent years to describe buildings in which computer technology is intensely applied in two areas of building operations: control systems and shared tenant services. This two-part study provides an overview of the intelligent building industry and reports on issues related to the…
Alamaniotis, Miltiadis; Agarwal, Vivek
2014-04-01
Anticipatory control systems are a class of systems whose decisions are based on predictions for the future state of the system under monitoring. Anticipation denotes intelligence and is an inherent property of humans that make decisions by projecting in future. Likewise, artificially intelligent systems equipped with predictive functions may be utilized for anticipating future states of complex systems, and therefore facilitate automated control decisions. Anticipatory control of complex energy systems is paramount to their normal and safe operation. In this paper a new intelligent methodology integrating fuzzy inference with support vector regression is introduced. Our proposed methodology implements an anticipatorymore » system aiming at controlling energy systems in a robust way. Initially a set of support vector regressors is adopted for making predictions over critical system parameters. Furthermore, the predicted values are fed into a two stage fuzzy inference system that makes decisions regarding the state of the energy system. The inference system integrates the individual predictions into a single one at its first stage, and outputs a decision together with a certainty factor computed at its second stage. The certainty factor is an index of the significance of the decision. The proposed anticipatory control system is tested on a real world set of data obtained from a complex energy system, describing the degradation of a turbine. Results exhibit the robustness of the proposed system in controlling complex energy systems.« less
Study on virtual instrument developing system based on intelligent virtual control
NASA Astrophysics Data System (ADS)
Tang, Baoping; Cheng, Fabin; Qin, Shuren
2005-01-01
The paper introduces a non-programming developing system of a virtual instument (VI), i.e., a virtual measurement instrument developing system (VMIDS) based on intelligent virtual control (IVC). The background of the IVC-based VMIDS is described briefly, and the hierarchical message bus (HMB)-based software architecture of VMIDS is discussed in detail. The three parts and functions of VMIDS are introduced, and the process of non-programming developing VI is further described.
Intelligent Engine Systems: Thermal Management and Advanced Cooling
NASA Technical Reports Server (NTRS)
Bergholz, Robert
2008-01-01
The objective of the Advanced Turbine Cooling and Thermal Management program is to develop intelligent control and distribution methods for turbine cooling, while achieving a reduction in total cooling flow and assuring acceptable turbine component safety and reliability. The program also will develop embedded sensor technologies and cooling system models for real-time engine diagnostics and health management. Both active and passive control strategies will be investigated that include the capability of intelligent modulation of flow quantities, pressures, and temperatures both within the supply system and at the turbine component level. Thermal management system concepts were studied, with a goal of reducing HPT blade cooling air supply temperature. An assessment will be made of the use of this air by the active clearance control system as well. Turbine component cooling designs incorporating advanced, high-effectiveness cooling features, will be evaluated. Turbine cooling flow control concepts will be studied at the cooling system level and the component level. Specific cooling features or sub-elements of an advanced HPT blade cooling design will be downselected for core fabrication and casting demonstrations.
A proposal of an architecture for the coordination level of intelligent machines
NASA Technical Reports Server (NTRS)
Beard, Randall; Farah, Jeff; Lima, Pedro
1993-01-01
The issue of obtaining a practical, structured, and detailed description of an architecture for the Coordination Level of Center for Intelligent Robotic Systems for Sapce Exploration (CIRSSE) Testbed Intelligent Controller is addressed. Previous theoretical and implementation works were the departure point for the discussion. The document is organized as follows: after this introductory section, section 2 summarizes the overall view of the Intelligent Machine (IM) as a control system, proposing a performance measure on which to base its design. Section 3 addresses with some detail implementation issues. An hierarchic petri-net with feedback-based learning capabilities is proposed. Finally, section 4 is an attempt to address the feedback problem. Feedback is used for two functions: error recovery and reinforcement learning of the correct translations for the petri-net transitions.
Adaptive Critic Nonlinear Robust Control: A Survey.
Wang, Ding; He, Haibo; Liu, Derong
2017-10-01
Adaptive dynamic programming (ADP) and reinforcement learning are quite relevant to each other when performing intelligent optimization. They are both regarded as promising methods involving important components of evaluation and improvement, at the background of information technology, such as artificial intelligence, big data, and deep learning. Although great progresses have been achieved and surveyed when addressing nonlinear optimal control problems, the research on robustness of ADP-based control strategies under uncertain environment has not been fully summarized. Hence, this survey reviews the recent main results of adaptive-critic-based robust control design of continuous-time nonlinear systems. The ADP-based nonlinear optimal regulation is reviewed, followed by robust stabilization of nonlinear systems with matched uncertainties, guaranteed cost control design of unmatched plants, and decentralized stabilization of interconnected systems. Additionally, further comprehensive discussions are presented, including event-based robust control design, improvement of the critic learning rule, nonlinear H ∞ control design, and several notes on future perspectives. By applying the ADP-based optimal and robust control methods to a practical power system and an overhead crane plant, two typical examples are provided to verify the effectiveness of theoretical results. Overall, this survey is beneficial to promote the development of adaptive critic control methods with robustness guarantee and the construction of higher level intelligent systems.
Agents Control in Intelligent Learning Systems: The Case of Reactive Characteristics
ERIC Educational Resources Information Center
Laureano-Cruces, Ana Lilia; Ramirez-Rodriguez, Javier; de Arriaga, Fernando; Escarela-Perez, Rafael
2006-01-01
Intelligent learning systems (ILSs) have evolved in the last few years basically because of influences received from multi-agent architectures (MAs). Conflict resolution among agents has been a very important problem for multi-agent systems, with specific features in the case of ILSs. The literature shows that ILSs with cognitive or pedagogical…
Execution environment for intelligent real-time control systems
NASA Technical Reports Server (NTRS)
Sztipanovits, Janos
1987-01-01
Modern telerobot control technology requires the integration of symbolic and non-symbolic programming techniques, different models of parallel computations, and various programming paradigms. The Multigraph Architecture, which has been developed for the implementation of intelligent real-time control systems is described. The layered architecture includes specific computational models, integrated execution environment and various high-level tools. A special feature of the architecture is the tight coupling between the symbolic and non-symbolic computations. It supports not only a data interface, but also the integration of the control structures in a parallel computing environment.
Gomaa Haroun, A H; Li, Yin-Ya
2017-11-01
In the fast developing world nowadays, load frequency control (LFC) is considered to be a most significant role for providing the power supply with good quality in the power system. To deliver a reliable power, LFC system requires highly competent and intelligent control technique. Hence, in this article, a novel hybrid fuzzy logic intelligent proportional-integral-derivative (FLiPID) controller has been proposed for LFC of interconnected multi-area power systems. A four-area interconnected thermal power system incorporated with physical constraints and boiler dynamics is considered and the adjustable parameters of the FLiPID controller are optimized using particle swarm optimization (PSO) scheme employing an integral square error (ISE) criterion. The proposed method has been established to enhance the power system performances as well as to reduce the oscillations of uncertainties due to variations in the system parameters and load perturbations. The supremacy of the suggested method is demonstrated by comparing the simulation results with some recently reported heuristic methods such as fuzzy logic proportional-integral (FLPI) and intelligent proportional-integral-derivative (PID) controllers for the same electrical power system. the investigations showed that the FLiPID controller provides a better dynamic performance and outperform compared to the other approaches in terms of the settling time, and minimum undershoots of the frequency as well as tie-line power flow deviations following a perturbation, in addition to perform appropriate settlement of integral absolute error (IAE). Finally, the sensitivity analysis of the plant is inspected by varying the system parameters and operating load conditions from their nominal values. It is observed that the suggested controller based optimization algorithm is robust and perform satisfactorily with the variations in operating load condition, system parameters and load pattern. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Vehicle-based vision sensors for intelligent highway systems
NASA Astrophysics Data System (ADS)
Masaki, Ichiro
1989-09-01
This paper describes a vision system, based on ASIC (Application Specific Integrated Circuit) approach, for vehicle guidance on highways. After reviewing related work in the fields of intelligent vehicles, stereo vision, and ASIC-based approaches, the paper focuses on a stereo vision system for intelligent cruise control. The system measures the distance to the vehicle in front using trinocular triangulation. An application specific processor architecture was developed to offer low mass-production cost, real-time operation, low power consumption, and small physical size. The system was installed in the trunk of a car and evaluated successfully on highways.
Proceedings of the Workshop on software tools for distributed intelligent control systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herget, C.J.
1990-09-01
The Workshop on Software Tools for Distributed Intelligent Control Systems was organized by Lawrence Livermore National Laboratory for the United States Army Headquarters Training and Doctrine Command and the Defense Advanced Research Projects Agency. The goals of the workshop were to the identify the current state of the art in tools which support control systems engineering design and implementation, identify research issues associated with writing software tools which would provide a design environment to assist engineers in multidisciplinary control design and implementation, formulate a potential investment strategy to resolve the research issues and develop public domain code which can formmore » the core of more powerful engineering design tools, and recommend test cases to focus the software development process and test associated performance metrics. Recognizing that the development of software tools for distributed intelligent control systems will require a multidisciplinary effort, experts in systems engineering, control systems engineering, and compute science were invited to participate in the workshop. In particular, experts who could address the following topics were selected: operating systems, engineering data representation and manipulation, emerging standards for manufacturing data, mathematical foundations, coupling of symbolic and numerical computation, user interface, system identification, system representation at different levels of abstraction, system specification, system design, verification and validation, automatic code generation, and integration of modular, reusable code.« less
Intelligent control of a smart walker and its performance evaluation.
Grondin, Simon L; Li, Qingguo
2013-06-01
Recent technological advances have allowed the development of force-dependent, intelligently controlled smart walkers that are able to provide users with enhanced mobility, support and gait assistance. The purpose of this study was to develop an intelligent rule-based controller for a smart walker to achieve a smooth interaction between the user and the walker. This study developed a rule-based mapping between the interaction force, measured by a load cell attached to the walker handle, and the acceleration of the walker. Ten young, healthy subjects were used to evaluate the performance of the proposed controller compared to a well-known admittance-based control system. There were no significant differences between the two control systems concerning their user experience, velocity profiles or average cost of transportation. However, the admittance-based control system required a 1.2N lower average interaction force to maintain the 1m/s target speed (p = 0.002). Metabolic data also indicated that smart walker-assisted gait could considerably reduce the metabolic demand of walking with a four-legged walker.
A Blackboard-Based Dynamic Instructional Planner. ONR Final Report.
ERIC Educational Resources Information Center
Murray, William R.
Dynamic instructional planning was explored as a control mechanism for intelligent tutoring systems through the development of the Blackboard Instructional Planner--a blackboard software-based dynamic planner for computerized intelligent tutoring systems. The planner, designed to be generic to tutors teaching troubleshooting for complex physical…
DOT National Transportation Integrated Search
2015-11-01
The field of Intelligent Transportation Systems (ITS) has : witnessed significantly increased activity in recent years, : with the application of modern control, communications, : and information technologies to vehicles and roadway : infrastructure....
NASA Technical Reports Server (NTRS)
Shaver, Charles; Williamson, Michael
1986-01-01
The NASA Ames Research Center sponsors a research program for the investigation of Intelligent Flight Control Actuation systems. The use of artificial intelligence techniques in conjunction with algorithmic techniques for autonomous, decentralized fault management of flight-control actuation systems is explored under this program. The design, development, and operation of the interface for laboratory investigation of this program is documented. The interface, architecturally based on the Intel 8751 microcontroller, is an interrupt-driven system designed to receive a digital message from an ultrareliable fault-tolerant control system (UFTCS). The interface links the UFTCS to an electronic servo-control unit, which controls a set of hydraulic actuators. It was necessary to build a UFTCS emulator (also based on the Intel 8751) to provide signal sources for testing the equipment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Yixiong; Hu, Bingtao; Hao, He
With the development of communication and control technology, intelligent transportation systems have received increasing attention from both industry and academia. Intelligent transportation systems are supported by the Internet of Things, Cyber-Physical System, Artificial Intelligence, Cloud Computing and many other technologies, which supply fundamental information for connected and automated vehicles. Although plenty of studies have provided different formulations for intelligent transportation systems, many of them depend on Master Control Center. However, a centralized control mode requires a huge amount of data transmission and high level of hardware configuration and may cause communication delay and privacy leak. Some distributed architectures have beenmore » proposed to overcome the above problems but systematized technologies to collect and exchange information, process large amounts of data, model the dynamics of vehicles, and safely control the connected and automated vehicles are not explored in detail. In this paper, we proposed a novel distributed cyber-physical system for connected and automated vehicles in which every vehicle is modeled as a double-integrator using edge computing to analyze information collected from its nearest neighbors. The vehicles are supposed to travel along a desired trajectory and to maintain a rigid formation geometry. Related methodologies for the proposed system are illustrated and experiments are conducted showing that the performance of the connected and automated vehicles matches very well with analytic predictions. Some design guidelines and open questions are provided for the future study.« less
Feng, Yixiong; Hu, Bingtao; Hao, He; ...
2018-02-14
With the development of communication and control technology, intelligent transportation systems have received increasing attention from both industry and academia. Intelligent transportation systems are supported by the Internet of Things, Cyber-Physical System, Artificial Intelligence, Cloud Computing and many other technologies, which supply fundamental information for connected and automated vehicles. Although plenty of studies have provided different formulations for intelligent transportation systems, many of them depend on Master Control Center. However, a centralized control mode requires a huge amount of data transmission and high level of hardware configuration and may cause communication delay and privacy leak. Some distributed architectures have beenmore » proposed to overcome the above problems but systematized technologies to collect and exchange information, process large amounts of data, model the dynamics of vehicles, and safely control the connected and automated vehicles are not explored in detail. In this paper, we proposed a novel distributed cyber-physical system for connected and automated vehicles in which every vehicle is modeled as a double-integrator using edge computing to analyze information collected from its nearest neighbors. The vehicles are supposed to travel along a desired trajectory and to maintain a rigid formation geometry. Related methodologies for the proposed system are illustrated and experiments are conducted showing that the performance of the connected and automated vehicles matches very well with analytic predictions. Some design guidelines and open questions are provided for the future study.« less
Working Memory and Fluid Intelligence in Young Children
ERIC Educational Resources Information Center
Engel de Abreu, Pascale M. J.; Conway, Andrew R. A.; Gathercole, Susan E.
2010-01-01
The present study investigates how working memory and fluid intelligence are related in young children and how these links develop over time. The major aim is to determine which aspect of the working memory system--short-term storage or cognitive control--drives the relationship with fluid intelligence. A sample of 119 children was followed from…
The design of liquid drip speed monitoring device system based on MCU
NASA Astrophysics Data System (ADS)
Zheng, Shiyong; Li, Zhao; Li, Biqing
2017-08-01
This page proposed an intelligent transfusion control and monitoring system which designed by using AT89S52 micro controller as the core, using the keyboard and photoelectric sensor as the input module, digital tube and motor as the output module. The keyboard is independent and photoelectric sensor can offer reliable detection for liquid drop speed and the transfusion bottle page. When the liquid amount is less than the warning value, the system sounded the alarm, you can remove the alert by hand movement. With the advantages of speed controllable and input pulse power can be maintained of the motor, the system can control the bottle through the upper and lower slow-moving liquid drip to control the speed of intelligent purpose.
Architectures for intelligent machines
NASA Technical Reports Server (NTRS)
Saridis, George N.
1991-01-01
The theory of intelligent machines has been recently reformulated to incorporate new architectures that are using neural and Petri nets. The analytic functions of an intelligent machine are implemented by intelligent controls, using entropy as a measure. The resulting hierarchical control structure is based on the principle of increasing precision with decreasing intelligence. Each of the three levels of the intelligent control is using different architectures, in order to satisfy the requirements of the principle: the organization level is moduled after a Boltzmann machine for abstract reasoning, task planning and decision making; the coordination level is composed of a number of Petri net transducers supervised, for command exchange, by a dispatcher, which also serves as an interface to the organization level; the execution level, include the sensory, planning for navigation and control hardware which interacts one-to-one with the appropriate coordinators, while a VME bus provides a channel for database exchange among the several devices. This system is currently implemented on a robotic transporter, designed for space construction at the CIRSSE laboratories at the Rensselaer Polytechnic Institute. The progress of its development is reported.
NASA Technical Reports Server (NTRS)
Birch, J. N.; Getzin, N.
1971-01-01
Analog and digital voice coding techniques for application to an L-band satellite-basedair traffic control (ATC) system for over ocean deployment are examined. In addition to performance, the techniques are compared on the basis of cost, size, weight, power consumption, availability, reliability, and multiplexing features. Candidate systems are chosen on the bases of minimum required RF bandwidth and received carrier-to-noise density ratios. A detailed survey of automated and nonautomated intelligibility testing methods and devices is presented and comparisons given. Subjective evaluation of speech system by preference tests is considered. Conclusion and recommendations are developed regarding the selection of the voice system. Likewise, conclusions and recommendations are developed for the appropriate use of intelligibility tests, speech quality measurements, and preference tests with the framework of the proposed ATC system.
Distributed control systems with incomplete and uncertain information
NASA Astrophysics Data System (ADS)
Tang, Jingpeng
Scientific and engineering advances in wireless communication, sensors, propulsion, and other areas are rapidly making it possible to develop unmanned air vehicles (UAVs) with sophisticated capabilities. UAVs have come to the forefront as tools for airborne reconnaissance to search for, detect, and destroy enemy targets in relatively complex environments. They potentially reduce risk to human life, are cost effective, and are superior to manned aircraft for certain types of missions. It is desirable for UAVs to have a high level of intelligent autonomy to carry out mission tasks with little external supervision and control. This raises important issues involving tradeoffs between centralized control and the associated potential to optimize mission plans, and decentralized control with great robustness and the potential to adapt to changing conditions. UAV capabilities have been extended several ways through armament (e.g., Hellfire missiles on Predator UAVs), increased endurance and altitude (e.g., Global Hawk), and greater autonomy. Some known barriers to full-scale implementation of UAVs are increased communication and control requirements as well as increased platform and system complexity. One of the key problems is how UAV systems can handle incomplete and uncertain information in dynamic environments. Especially when the system is composed of heterogeneous and distributed UAVs, the overall system complexity is increased under such conditions. Presented through the use of published papers, this dissertation lays the groundwork for the study of methodologies for handling incomplete and uncertain information for distributed control systems. An agent-based simulation framework is built to investigate mathematical approaches (optimization) and emergent intelligence approaches. The first paper provides a mathematical approach for systems of UAVs to handle incomplete and uncertain information. The second paper describes an emergent intelligence approach for UAVs, again in handling incomplete and uncertain information. The third paper combines mathematical and emergent intelligence approaches.
NASA Technical Reports Server (NTRS)
Rodriguez, Guillermo (Editor)
1990-01-01
Various papers on intelligent control and adaptive systems are presented. Individual topics addressed include: control architecture for a Mars walking vehicle, representation for error detection and recovery in robot task plans, real-time operating system for robots, execution monitoring of a mobile robot system, statistical mechanics models for motion and force planning, global kinematics for manipulator planning and control, exploration of unknown mechanical assemblies through manipulation, low-level representations for robot vision, harmonic functions for robot path construction, simulation of dual behavior of an autonomous system. Also discussed are: control framework for hand-arm coordination, neural network approach to multivehicle navigation, electronic neural networks for global optimization, neural network for L1 norm linear regression, planning for assembly with robot hands, neural networks in dynamical systems, control design with iterative learning, improved fuzzy process control of spacecraft autonomous rendezvous using a genetic algorithm.
HPT Clearance Control: Intelligent Engine Systems-Phase 1
NASA Technical Reports Server (NTRS)
2005-01-01
The following work has been completed to satisfy the Phase I Deliverables for the "HPT Clearance Control" project under NASA GRC's "Intelligent Engine Systems" program: (1) Need for the development of an advanced HPT ACC system has been very clearly laid out, (2) Several existing and potential clearance control systems have been reviewed, (3) A scorecard has been developed to document the system, performance (fuel burn, range, payload, etc.), thermal, and mechanical characteristics of the existing clearance control systems, (4) Engine size and flight cycle selection for the advanced HPT ACC system has been reviewed with "large engine"/"long range mission" combination showing the most benefit, (5) A scoring criteria has been developed to tie together performance parameters for an objective, data driven comparison of competing systems, and (6) The existing HPT ACC systems have been scored based on this scoring system.
Design and control of active vision based mechanisms for intelligent robots
NASA Technical Reports Server (NTRS)
Wu, Liwei; Marefat, Michael M.
1994-01-01
In this paper, we propose a design of an active vision system for intelligent robot application purposes. The system has the degrees of freedom of pan, tilt, vergence, camera height adjustment, and baseline adjustment with a hierarchical control system structure. Based on this vision system, we discuss two problems involved in the binocular gaze stabilization process: fixation point selection and vergence disparity extraction. A hierarchical approach to determining point of fixation from potential gaze targets using evaluation function representing human visual behavior to outside stimuli is suggested. We also characterize different visual tasks in two cameras for vergence control purposes, and a phase-based method based on binarized images to extract vergence disparity for vergence control is presented. A control algorithm for vergence control is discussed.
NASA Technical Reports Server (NTRS)
Erickson, Jon D. (Editor)
1992-01-01
The present volume on cooperative intelligent robotics in space discusses sensing and perception, Space Station Freedom robotics, cooperative human/intelligent robot teams, and intelligent space robotics. Attention is given to space robotics reasoning and control, ground-based space applications, intelligent space robotics architectures, free-flying orbital space robotics, and cooperative intelligent robotics in space exploration. Topics addressed include proportional proximity sensing for telerobots using coherent lasar radar, ground operation of the mobile servicing system on Space Station Freedom, teleprogramming a cooperative space robotic workcell for space stations, and knowledge-based task planning for the special-purpose dextrous manipulator. Also discussed are dimensions of complexity in learning from interactive instruction, an overview of the dynamic predictive architecture for robotic assistants, recent developments at the Goddard engineering testbed, and parallel fault-tolerant robot control.
Intelligent tutoring systems for space applications
NASA Technical Reports Server (NTRS)
Luckhardt-Redfield, Carol A.
1990-01-01
Artificial Intelligence has been used in many space applications. Intelligent tutoring systems (ITSs) have only recently been developed for assisting training of space operations and skills. An ITS at Southwest Research Institute is described as an example of an ITS application for space operations, specifically, training console operations at mission control. A distinction is made between critical skills and knowledge versus routine skills. Other ITSs for space are also discussed and future training requirements and potential ITS solutions are described.
NASA Astrophysics Data System (ADS)
Al-Ghobari, Hussein M.; Mohammad, Fawzi S.
2011-12-01
Intelligent irrigation technologies have been developed in recent years to apply irrigation to turf and landscape plants. These technologies are an evapotranspiration (ET)-based irrigation controller, which calculates ET for local microclimate. Then, the controller creates a program for loading and communicating automatically with drip or sprinkler system controllers. The main objective of this study was to evaluate the effectiveness of the new ET sensors in ability to irrigate agricultural crops and to conserve water use for crop in arid climatic conditions. This paper presents the case for water conservation using intelligent irrigation system (IIS) application technology. The IIS for automating irrigation scheduling was implemented and tested with sprinkle and drip irrigation systems to irrigate wheat and tomato crops. Another irrigation scheduling system was also installed and operated as another treatment, which is based on weather data that retrieved from an automatic weather station. This irrigation control system was running in parallel to the former system (IIS) to be control experiments for comparison purposes. However, this article discusses the implementation of IIS, its installation, testing and calibration of various components. The experiments conducted for one growing season 2009-2010 and the results were represented and discussed herein. Data from all plots were analyzed, which were including soil water status, water consumption, and crop yield. The initial results indicate that up to 25% water saving by intelligent irrigation compared to control method, while maintaining competing yield. Results show that the crop evapotranspiration values for control experiments were higher than that of ET-System in consistent trend during whole growth season. The analysis points out that the values of the two treatments were somewhat close to each other's only in the initial development stages. Generally, the ET-System, with some modification was precise in controlling irrigation water and has been proven to be a good mean to determine the water requirements for crops and to schedule irrigation automatically.
An intelligent CNC machine control system architecture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, D.J.; Loucks, C.S.
1996-10-01
Intelligent, agile manufacturing relies on automated programming of digitally controlled processes. Currently, processes such as Computer Numerically Controlled (CNC) machining are difficult to automate because of highly restrictive controllers and poor software environments. It is also difficult to utilize sensors and process models for adaptive control, or to integrate machining processes with other tasks within a factory floor setting. As part of a Laboratory Directed Research and Development (LDRD) program, a CNC machine control system architecture based on object-oriented design and graphical programming has been developed to address some of these problems and to demonstrate automated agile machining applications usingmore » platform-independent software.« less
Fuzzy control of burnout of multilayer ceramic actuators
NASA Astrophysics Data System (ADS)
Ling, Alice V.; Voss, David; Christodoulou, Leo
1996-08-01
To improve the yield and repeatability of the burnout process of multilayer ceramic actuators (MCAs), an intelligent processing of materials (IPM-based) control system has been developed for the manufacture of MCAs. IPM involves the active (ultimately adaptive) control of a material process using empirical or analytical models and in situ sensing of critical process states (part features and process parameters) to modify the processing conditions in real time to achieve predefined product goals. Thus, the three enabling technologies for the IPM burnout control system are process modeling, in situ sensing and intelligent control. This paper presents the design of an IPM-based control strategy for the burnout process of MCAs.
Intelligent resources for satellite ground control operations
NASA Technical Reports Server (NTRS)
Jones, Patricia M.
1994-01-01
This paper describes a cooperative approach to the design of intelligent automation and describes the Mission Operations Cooperative Assistant for NASA Goddard flight operations. The cooperative problem solving approach is being explored currently in the context of providing support for human operator teams and also in the definition of future advanced automation in ground control systems.
Utilization of artificial intelligence techniques for the Space Station power system
NASA Technical Reports Server (NTRS)
Evatt, Thomas C.; Gholdston, Edward W.
1988-01-01
Due to the complexity of the Space Station Electrical Power System (EPS) as currently envisioned, artificial intelligence/expert system techniques are being investigated to automate operations, maintenance, and diagnostic functions. A study was conducted to investigate this technology as it applies to failure detection, isolation, and reconfiguration (FDIR) and health monitoring of power system components and of the total system. Control system utilization of expert systems for load scheduling and shedding operations was also researched. A discussion of the utilization of artificial intelligence/expert systems for Initial Operating Capability (IOC) for the Space Station effort is presented along with future plans at Rocketdyne for the utilization of this technology for enhanced Space Station power capability.
Intelligent Luminance Control of Lighting Systems Based on Imaging Sensor Feedback
Liu, Haoting; Zhou, Qianxiang; Yang, Jin; Jiang, Ting; Liu, Zhizhen; Li, Jie
2017-01-01
An imaging sensor-based intelligent Light Emitting Diode (LED) lighting system for desk use is proposed. In contrast to the traditional intelligent lighting system, such as the photosensitive resistance sensor-based or the infrared sensor-based system, the imaging sensor can realize a finer perception of the environmental light; thus it can guide a more precise lighting control. Before this system works, first lots of typical imaging lighting data of the desk application are accumulated. Second, a series of subjective and objective Lighting Effect Evaluation Metrics (LEEMs) are defined and assessed for these datasets above. Then the cluster benchmarks of these objective LEEMs can be obtained. Third, both a single LEEM-based control and a multiple LEEMs-based control are developed to realize a kind of optimal luminance tuning. When this system works, first it captures the lighting image using a wearable camera. Then it computes the objective LEEMs of the captured image and compares them with the cluster benchmarks of the objective LEEMs. Finally, the single LEEM-based or the multiple LEEMs-based control can be implemented to get a kind of optimal lighting effect. Many experiment results have shown the proposed system can tune the LED lamp automatically according to environment luminance changes. PMID:28208781
Intelligent Luminance Control of Lighting Systems Based on Imaging Sensor Feedback.
Liu, Haoting; Zhou, Qianxiang; Yang, Jin; Jiang, Ting; Liu, Zhizhen; Li, Jie
2017-02-09
An imaging sensor-based intelligent Light Emitting Diode (LED) lighting system for desk use is proposed. In contrast to the traditional intelligent lighting system, such as the photosensitive resistance sensor-based or the infrared sensor-based system, the imaging sensor can realize a finer perception of the environmental light; thus it can guide a more precise lighting control. Before this system works, first lots of typical imaging lighting data of the desk application are accumulated. Second, a series of subjective and objective Lighting Effect Evaluation Metrics (LEEMs) are defined and assessed for these datasets above. Then the cluster benchmarks of these objective LEEMs can be obtained. Third, both a single LEEM-based control and a multiple LEEMs-based control are developed to realize a kind of optimal luminance tuning. When this system works, first it captures the lighting image using a wearable camera. Then it computes the objective LEEMs of the captured image and compares them with the cluster benchmarks of the objective LEEMs. Finally, the single LEEM-based or the multiple LEEMs-based control can be implemented to get a kind of optimal lighting effect. Many experiment results have shown the proposed system can tune the LED lamp automatically according to environment luminance changes.
The NASA F-15 Intelligent Flight Control Systems: Generation II
NASA Technical Reports Server (NTRS)
Buschbacher, Mark; Bosworth, John
2006-01-01
The Second Generation (Gen II) control system for the F-15 Intelligent Flight Control System (IFCS) program implements direct adaptive neural networks to demonstrate robust tolerance to faults and failures. The direct adaptive tracking controller integrates learning neural networks (NNs) with a dynamic inversion control law. The term direct adaptive is used because the error between the reference model and the aircraft response is being compensated or directly adapted to minimize error without regard to knowing the cause of the error. No parameter estimation is needed for this direct adaptive control system. In the Gen II design, the feedback errors are regulated with a proportional-plus-integral (PI) compensator. This basic compensator is augmented with an online NN that changes the system gains via an error-based adaptation law to improve aircraft performance at all times, including normal flight, system failures, mispredicted behavior, or changes in behavior resulting from damage.
Demonstrating artificial intelligence for space systems - Integration and project management issues
NASA Technical Reports Server (NTRS)
Hack, Edmund C.; Difilippo, Denise M.
1990-01-01
As part of its Systems Autonomy Demonstration Project (SADP), NASA has recently demonstrated the Thermal Expert System (TEXSYS). Advanced real-time expert system and human interface technology was successfully developed and integrated with conventional controllers of prototype space hardware to provide intelligent fault detection, isolation, and recovery capability. Many specialized skills were required, and responsibility for the various phases of the project therefore spanned multiple NASA centers, internal departments and contractor organizations. The test environment required communication among many types of hardware and software as well as between many people. The integration, testing, and configuration management tools and methodologies which were applied to the TEXSYS project to assure its safe and successful completion are detailed. The project demonstrated that artificial intelligence technology, including model-based reasoning, is capable of the monitoring and control of a large, complex system in real time.
Instructional Strategies for Videodisc Courseware: The McGraw Hill Disc.
ERIC Educational Resources Information Center
Bunderson, C. Victor
1979-01-01
Describes instructional strategies available for videodisc courseware in terms of the amount of processing intelligence available and locus of sequencing control. The consumer videodisc is compared and contrasted to intelligent videodisc systems. (JEG)
Intelligent Vehicle Initiative Forum : proceedings
DOT National Transportation Integrated Search
1997-08-05
This event, jointly sponsored by ITS Americas Advanced Vehicle Control and Safety Systems (AVCSS) and Safety and Human Factors (S&HF) Committees, was designed to review and discuss the U.S. Department of Transportations Intelligent Vehicle Init...
Full-Scale Flight Research Testbeds: Adaptive and Intelligent Control
NASA Technical Reports Server (NTRS)
Pahle, Joe W.
2008-01-01
This viewgraph presentation describes the adaptive and intelligent control methods used for aircraft survival. The contents include: 1) Motivation for Adaptive Control; 2) Integrated Resilient Aircraft Control Project; 3) Full-scale Flight Assets in Use for IRAC; 4) NASA NF-15B Tail Number 837; 5) Gen II Direct Adaptive Control Architecture; 6) Limited Authority System; and 7) 837 Flight Experiments. A simulated destabilization failure analysis along with experience and lessons learned are also presented.
NASA Astrophysics Data System (ADS)
Prakash, S.; Sinha, S. K.
2015-09-01
In this research work, two areas hydro-thermal power system connected through tie-lines is considered. The perturbation of frequencies at the areas and resulting tie line power flows arise due to unpredictable load variations that cause mismatch between the generated and demanded powers. Due to rising and falling power demand, the real and reactive power balance is harmed; hence frequency and voltage get deviated from nominal value. This necessitates designing of an accurate and fast controller to maintain the system parameters at nominal value. The main purpose of system generation control is to balance the system generation against the load and losses so that the desired frequency and power interchange between neighboring systems are maintained. The intelligent controllers like fuzzy logic, artificial neural network (ANN) and hybrid fuzzy neural network approaches are used for automatic generation control for the two area interconnected power systems. Area 1 consists of thermal reheat power plant whereas area 2 consists of hydro power plant with electric governor. Performance evaluation is carried out by using intelligent (ANFIS, ANN and fuzzy) control and conventional PI and PID control approaches. To enhance the performance of controller sliding surface i.e. variable structure control is included. The model of interconnected power system has been developed with all five types of said controllers and simulated using MATLAB/SIMULINK package. The performance of the intelligent controllers has been compared with the conventional PI and PID controllers for the interconnected power system. A comparison of ANFIS, ANN, Fuzzy and PI, PID based approaches shows the superiority of proposed ANFIS over ANN, fuzzy and PI, PID. Thus the hybrid fuzzy neural network controller has better dynamic response i.e., quick in operation, reduced error magnitude and minimized frequency transients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, J.R.; Netrologic, Inc., San Diego, CA)
1988-01-01
Topics presented include integrating neural networks and expert systems, neural networks and signal processing, machine learning, cognition and avionics applications, artificial intelligence and man-machine interface issues, real time expert systems, artificial intelligence, and engineering applications. Also considered are advanced problem solving techniques, combinational optimization for scheduling and resource control, data fusion/sensor fusion, back propagation with momentum, shared weights and recurrency, automatic target recognition, cybernetics, optical neural networks.
Sensors-network and its application in the intelligent storage security
NASA Astrophysics Data System (ADS)
Zhang, Qingying; Nicolescu, Mihai; Jiang, Xia; Zhang, Ying; Yue, Weihong; Xiao, Weihong
2004-11-01
Intelligent storage systems run on different advanced technologies, such as linear layout, business intelligence and data mining. Security, the basic desire of the storage system, has been focused on with the indraught of multimedia communication technology and sensors" network. Along with the developing of science and the social demands, multifarious alarming system has been designed and improved to be intelligentized, modularized and have network connections. It is of great moment to make the storage, and further more, the logistics system more and more efficient and perfect with modern science and technology. Diversified information on the spot should be caught by different kinds of sensors. Those signals are treated and communicated to the control center to give the further actions. For fire-proofing, broad-spectrum gas sensors, fume sensors, flame sensors and temperature sensors are used to catch the information in their own ways. Once the fire is taken somewhere, the sensors work by the fume, temperature, and flame as well as gas immediately. Meanwhile the intelligent control system starts. It passes the tidings to the center unit. At the same time, it sets those movable walls on to work quickly to obstruct the fire"s spreading. While for guarding the warehouse against theft, cut-off sensors, body sensors, photoelectric sensors, microwave sensors and closed-circuit television as well as electronic clocks are available to monitor the warehouse reasonably. All of those sensors work in a net way. The intelligent control system is made with a digital circuit instead of traditional switch one. This system can work in a better way in many cases. Its reliability is high and the cost is low.
Intelligent redundant actuation system requirements and preliminary system design
NASA Technical Reports Server (NTRS)
Defeo, P.; Geiger, L. J.; Harris, J.
1985-01-01
Several redundant actuation system configurations were designed and demonstrated to satisfy the stringent operational requirements of advanced flight control systems. However, this has been accomplished largely through brute force hardware redundancy, resulting in significantly increased computational requirements on the flight control computers which perform the failure analysis and reconfiguration management. Modern technology now provides powerful, low-cost microprocessors which are effective in performing failure isolation and configuration management at the local actuator level. One such concept, called an Intelligent Redundant Actuation System (IRAS), significantly reduces the flight control computer requirements and performs the local tasks more comprehensively than previously feasible. The requirements and preliminary design of an experimental laboratory system capable of demonstrating the concept and sufficiently flexible to explore a variety of configurations are discussed.
Ground vehicle control at NIST: From teleoperation to autonomy
NASA Technical Reports Server (NTRS)
Murphy, Karl N.; Juberts, Maris; Legowik, Steven A.; Nashman, Marilyn; Schneiderman, Henry; Scott, Harry A.; Szabo, Sandor
1994-01-01
NIST is applying their Real-time Control System (RCS) methodology for control of ground vehicles for both the U.S. Army Researh Lab, as part of the DOD's Unmanned Ground Vehicles program, and for the Department of Transportation's Intelligent Vehicle/Highway Systems (IVHS) program. The actuated vehicle, a military HMMWV, has motors for steering, brake, throttle, etc. and sensors for the dashboard gauges. For military operations, the vehicle has two modes of operation: a teleoperation mode--where an operator remotely controls the vehicle over an RF communications network; and a semi-autonomous mode called retro-traverse--where the control system uses an inertial navigation system to steer the vehicle along a prerecorded path. For the IVHS work, intelligent vision processing elements replace the human teleoperator to achieve autonomous, visually guided road following.
Intelligent Energy Management System for PV-Battery-based Microgrids in Future DC Homes
NASA Astrophysics Data System (ADS)
Chauhan, R. K.; Rajpurohit, B. S.; Gonzalez-Longatt, F. M.; Singh, S. N.
2016-06-01
This paper presents a novel intelligent energy management system (IEMS) for a DC microgrid connected to the public utility (PU), photovoltaic (PV) and multi-battery bank (BB). The control objectives of the proposed IEMS system are: (i) to ensure the load sharing (according to the source capacity) among sources, (ii) to reduce the power loss (high efficient) in the system, and (iii) to enhance the system reliability and power quality. The proposed IEMS is novel because it follows the ideal characteristics of the battery (with some assumptions) for the power sharing and the selection of the closest source to minimize the power losses. The IEMS allows continuous and accurate monitoring with intelligent control of distribution system operations such as battery bank energy storage (BBES) system, PV system and customer utilization of electric power. The proposed IEMS gives the better operational performance for operating conditions in terms of load sharing, loss minimization, and reliability enhancement of the DC microgrid.
Intelligent Hybrid Vehicle Power Control. Part 2. Online Intelligent Energy Management
2012-06-30
IEC_HEV for vehicle energy optimization. IEC_HEV, the Figure 1. Power Split HEV configuration into VSC 5 online energy control is a component...in the Vehicle System Controller ( VSC ). The VSC for this configuration must manage the powertrain control in order to maintain a proper level of...charge in the battery. However, since two power sources are available to propel the vehicle, the VSC in this configuration has the additional
ASPIRE: An Authoring System and Deployment Environment for Constraint-Based Tutors
ERIC Educational Resources Information Center
Mitrovic, Antonija; Martin, Brent; Suraweera, Pramuditha; Zakharov, Konstantin; Milik, Nancy; Holland, Jay; McGuigan, Nicholas
2009-01-01
Over the last decade, the Intelligent Computer Tutoring Group (ICTG) has implemented many successful constraint-based Intelligent Tutoring Systems (ITSs) in a variety of instructional domains. Our tutors have proven their effectiveness not only in controlled lab studies but also in real classrooms, and some of them have been commercialized.…
On Decision-Making Among Multiple Rule-Bases in Fuzzy Control Systems
NASA Technical Reports Server (NTRS)
Tunstel, Edward; Jamshidi, Mo
1997-01-01
Intelligent control of complex multi-variable systems can be a challenge for single fuzzy rule-based controllers. This class of problems cam often be managed with less difficulty by distributing intelligent decision-making amongst a collection of rule-bases. Such an approach requires that a mechanism be chosen to ensure goal-oriented interaction between the multiple rule-bases. In this paper, a hierarchical rule-based approach is described. Decision-making mechanisms based on generalized concepts from single-rule-based fuzzy control are described. Finally, the effects of different aggregation operators on multi-rule-base decision-making are examined in a navigation control problem for mobile robots.
Autonomous vehicles: from paradigms to technology
NASA Astrophysics Data System (ADS)
Ionita, Silviu
2017-10-01
Mobility is a basic necessity of contemporary society and it is a key factor in global economic development. The basic requirements for the transport of people and goods are: safety and duration of travel, but also a number of additional criteria are very important: energy saving, pollution, passenger comfort. Due to advances in hardware and software, automation has penetrated massively in transport systems both on infrastructure and on vehicles, but man is still the key element in vehicle driving. However, the classic concept of ‘human-in-the-loop’ in terms of ‘hands on’ in driving the cars is competing aside from the self-driving startups working towards so-called ‘Level 4 autonomy’, which is defined as “a self-driving system that does not requires human intervention in most scenarios”. In this paper, a conceptual synthesis of the autonomous vehicle issue is made in connection with the artificial intelligence paradigm. It presents a classification of the tasks that take place during the driving of the vehicle and its modeling from the perspective of traditional control engineering and artificial intelligence. The issue of autonomous vehicle management is addressed on three levels: navigation, movement in traffic, respectively effective maneuver and vehicle dynamics control. Each level is then described in terms of specific tasks, such as: route selection, planning and reconfiguration, recognition of traffic signs and reaction to signaling and traffic events, as well as control of effective speed, distance and direction. The approach will lead to a better understanding of the way technology is moving when talking about autonomous cars, smart/intelligent cars or intelligent transport systems. Keywords: self-driving vehicle, artificial intelligence, deep learning, intelligent transport systems.
Traveling With Success, How Local Governments Use Intelligent Transportation Systems
DOT National Transportation Integrated Search
1995-01-01
ELECTRONIC TOLL COLLECTION AND TRAFFIC MANAGEMENT OR ETC/ETTM, ADVANCED TRAFFIC MANAGEMENT SYSTEMS OR ATMS, ADVANCED TRAVELER INFORMATION SYSTEMS OR ATIS, ELECTRONIC PAYMENTS SYSTEMS, TRAFFIC SIGNAL CONTROL/REAL-TIME ADAPTIVE CONTROL, TRANSIT MANAGEM...
Expert system decision support for low-cost launch vehicle operations
NASA Technical Reports Server (NTRS)
Szatkowski, G. P.; Levin, Barry E.
1991-01-01
Progress in assessing the feasibility, benefits, and risks associated with AI expert systems applied to low cost expendable launch vehicle systems is described. Part one identified potential application areas in vehicle operations and on-board functions, assessed measures of cost benefit, and identified key technologies to aid in the implementation of decision support systems in this environment. Part two of the program began the development of prototypes to demonstrate real-time vehicle checkout with controller and diagnostic/analysis intelligent systems and to gather true measures of cost savings vs. conventional software, verification and validation requirements, and maintainability improvement. The main objective of the expert advanced development projects was to provide a robust intelligent system for control/analysis that must be performed within a specified real-time window in order to meet the demands of the given application. The efforts to develop the two prototypes are described. Prime emphasis was on a controller expert system to show real-time performance in a cryogenic propellant loading application and safety validation implementation of this system experimentally, using commercial-off-the-shelf software tools and object oriented programming techniques. This smart ground support equipment prototype is based in C with imbedded expert system rules written in the CLIPS protocol. The relational database, ORACLE, provides non-real-time data support. The second demonstration develops the vehicle/ground intelligent automation concept, from phase one, to show cooperation between multiple expert systems. This automated test conductor (ATC) prototype utilizes a knowledge-bus approach for intelligent information processing by use of virtual sensors and blackboards to solve complex problems. It incorporates distributed processing of real-time data and object-oriented techniques for command, configuration control, and auto-code generation.
Data analysis and integration of environmental sensors to meet human needs
NASA Astrophysics Data System (ADS)
Santamaria, Amilcare Francesco; De Rango, Floriano; Barletta, Domenico; Falbo, Domenico; Imbrogno, Alessandro
2014-05-01
Nowadays one of the main task of technology is to make people's life simpler and easier. Ambient intelligence is an emerging discipline that brings intelligence to environments making them sensitive to us. This discipline has developed following the spread of sensors devices, sensor networks, pervasive computing and artificial intelligence. In this work, we attempt to enhance the Internet Of Things (loT) with intelligence and environments exploring various interactions between humans' beings and the environment they live in. In particular, the core of the system is composed of an automation system, which is made up with a domotic control unit and several sensors installed in the environment. The task of the sensors is to collect information from the environment and to send them to the control unit. Once the information is collected, the core combines them in order to infer the most accurate human needs. The knowledge of human needs and the current environment status compose the inputs of the intelligence block whose main goal is to find the right automations to satisfy human needs in a real time way. The system also provides a Speech Recognition service which allow users to interact with the system by their voice so human speech can be considered as additional input for smart automatisms.
Lane changing trajectory planning and tracking control for intelligent vehicle on curved road.
Wang, Lukun; Zhao, Xiaoying; Su, Hao; Tang, Gongyou
2016-01-01
This paper explores lane changing trajectory planning and tracking control for intelligent vehicle on curved road. A novel arcs trajectory is planned for the desired lane changing trajectory. A kinematic controller and a dynamics controller are designed to implement the trajectory tracking control. Firstly, the kinematic model and dynamics model of intelligent vehicle with non-holonomic constraint are established. Secondly, two constraints of lane changing on curved road in practice (LCCP) are proposed. Thirdly, two arcs with same curvature are constructed for the desired lane changing trajectory. According to the geometrical characteristics of arcs trajectory, equations of desired state can be calculated. Finally, the backstepping method is employed to design a kinematic trajectory tracking controller. Then the sliding-mode dynamics controller is designed to ensure that the motion of the intelligent vehicle can follow the desired velocity generated by kinematic controller. The stability of control system is proved by Lyapunov theory. Computer simulation demonstrates that the desired arcs trajectory and state curves with B-spline optimization can meet the requirements of LCCP constraints and the proposed control schemes can make tracking errors to converge uniformly.
NASA Astrophysics Data System (ADS)
Yuan, Yuan; Sun, Fuchun; Liu, Huaping
2016-07-01
This paper is concerned with the resilient control under denial-of-service attack launched by the intelligent attacker. The resilient control system is modelled as a multi-stage hierarchical game with a corresponding hierarchy of decisions made at cyber and physical layer, respectively. Specifically, the interaction in the cyber layer between different security agents is modelled as a static infinite Stackelberg game, while in the underlying physical layer the full-information H∞ minimax control with package drops is modelled as a different Stackelberg game. Both games are solved sequentially, which is consistent with the actual situations. Finally, the proposed method is applied to the load frequency control of the power system, which demonstrates its effectiveness.
A neural based intelligent flight control system for the NASA F-15 flight research aircraft
NASA Technical Reports Server (NTRS)
Urnes, James M.; Hoy, Stephen E.; Ladage, Robert N.; Stewart, James
1993-01-01
A flight control concept that can identify aircraft stability properties and continually optimize the aircraft flying qualities has been developed by McDonnell Aircraft Company under a contract with the NASA-Dryden Flight Research Facility. This flight concept, termed the Intelligent Flight Control System, utilizes Neural Network technology to identify the host aircraft stability and control properties during flight, and use this information to design on-line the control system feedback gains to provide continuous optimum flight response. This self-repairing capability can provide high performance flight maneuvering response throughout large flight envelopes, such as needed for the National Aerospace Plane. Moreover, achieving this response early in the vehicle's development schedule will save cost.
Tschentscher, Nadja; Mitchell, Daniel; Duncan, John
2017-05-03
Fluid intelligence has been associated with a distributed cognitive control or multiple-demand (MD) network, comprising regions of lateral frontal, insular, dorsomedial frontal, and parietal cortex. Human fluid intelligence is also intimately linked to task complexity, and the process of solving complex problems in a sequence of simpler, more focused parts. Here, a complex target detection task included multiple independent rules, applied one at a time in successive task epochs. Although only one rule was applied at a time, increasing task complexity (i.e., the number of rules) impaired performance in participants of lower fluid intelligence. Accompanying this loss of performance was reduced response to rule-critical events across the distributed MD network. The results link fluid intelligence and MD function to a process of attentional focus on the successive parts of complex behavior. SIGNIFICANCE STATEMENT Fluid intelligence is intimately linked to the ability to structure complex problems in a sequence of simpler, more focused parts. We examine the basis for this link in the functions of a distributed frontoparietal or multiple-demand (MD) network. With increased task complexity, participants of lower fluid intelligence showed reduced responses to task-critical events. Reduced responses in the MD system were accompanied by impaired behavioral performance. Low fluid intelligence is linked to poor foregrounding of task-critical information across a distributed MD system. Copyright © 2017 Tschentscher et al.
ERIC Educational Resources Information Center
Wijekumar, Kausalai; Meyer, Bonnie J. F.; Lei, Pui-Wa; Lin, Yu-Chu; Johnson, Lori A.; Spielvogel, James A.; Shurmatz, Kathryn M.; Ray, Melissa; Cook, Michael
2014-01-01
This article reports on a large scale randomized controlled trial to study the efficacy of a web-based intelligent tutoring system for the structure strategy designed to improve content area reading comprehension. The research was conducted with 128 fifth-grade classrooms within 12 school districts in rural and suburban settings. Classrooms within…
Intelligent Robotic Systems Study (IRSS), phase 4
NASA Technical Reports Server (NTRS)
1991-01-01
Under the Intelligent Robotics Systems Study (IRSS), a generalized robotic control architecture was developed for use with the ProtoFlight Manipulator Arm (PFMA). Based upon the NASREM system design concept, the controller built for the PFMA provides localized position based force control, teleoperation, and advanced path recording and playback capabilities. The PFMA has six computer controllable degrees of freedom (DOF) plus a 7th manually indexable DOF, making the manipulator a pseudo 7 DOF mechanism. Joints on the PFMA are driven via 7 pulse width modulated amplifiers. Digital control of the PFMA is implemented using a variety of single board computers. There were two major activities under the IRSS phase 4 study: (1) enhancement of the PFMA control system software functionality; and (2) evaluation of operating modes via a teleoperation performance study. These activities are described and results are given.
Intelligent interfaces for expert systems
NASA Technical Reports Server (NTRS)
Villarreal, James A.; Wang, Lui
1988-01-01
Vital to the success of an expert system is an interface to the user which performs intelligently. A generic intelligent interface is being developed for expert systems. This intelligent interface was developed around the in-house developed Expert System for the Flight Analysis System (ESFAS). The Flight Analysis System (FAS) is comprised of 84 configuration controlled FORTRAN subroutines that are used in the preflight analysis of the space shuttle. In order to use FAS proficiently, a person must be knowledgeable in the areas of flight mechanics, the procedures involved in deploying a certain payload, and an overall understanding of the FAS. ESFAS, still in its developmental stage, is taking into account much of this knowledge. The generic intelligent interface involves the integration of a speech recognizer and synthesizer, a preparser, and a natural language parser to ESFAS. The speech recognizer being used is capable of recognizing 1000 words of connected speech. The natural language parser is a commercial software package which uses caseframe instantiation in processing the streams of words from the speech recognizer or the keyboard. The systems configuration is described along with capabilities and drawbacks.
A new intelligent curtain control system based on 51 single chip microcomputer
NASA Astrophysics Data System (ADS)
Sun, Tuan; Wang, Yanhua; Wu, Mengmeng
2017-04-01
This paper uses 51 (single chip microcomputer) SCM as the operation and data processing center. According to the change of sunshine intensity and ambient temperature, a new type of intelligent curtain control system is designed by adopting photosensitive element and temperature sensor. In addition, the design also has a manual control mode. In the rain, when the light intensity is weak, the open position of the curtain can be set by the user. The system can maximize the user to provide user-friendly operation and comfortable living environment. The system can be applied to home or office environment, with a wide range of applications and simple operation and so on.
NASA Technical Reports Server (NTRS)
Savely, Robert T.; Loftin, R. Bowen
1990-01-01
Training is a major endeavor in all modern societies. Common training methods include training manuals, formal classes, procedural computer programs, simulations, and on-the-job training. NASA's training approach has focussed primarily on on-the-job training in a simulation environment for both crew and ground based personnel. NASA must explore new approaches to training for the 1990's and beyond. Specific autonomous training systems are described which are based on artificial intelligence technology for use by NASA astronauts, flight controllers, and ground based support personnel that show an alternative to current training systems. In addition to these specific systems, the evolution of a general architecture for autonomous intelligent training systems that integrates many of the features of traditional training programs with artificial intelligence techniques is presented. These Intelligent Computer Aided Training (ICAT) systems would provide much of the same experience that could be gained from the best on-the-job training.
Autonomous power system brassboard
NASA Technical Reports Server (NTRS)
Merolla, Anthony
1992-01-01
The Autonomous Power System (APS) brassboard is a 20 kHz power distribution system which has been developed at NASA Lewis Research Center, Cleveland, Ohio. The brassboard exists to provide a realistic hardware platform capable of testing artificially intelligent (AI) software. The brassboard's power circuit topology is based upon a Power Distribution Control Unit (PDCU), which is a subset of an advanced development 20 kHz electrical power system (EPS) testbed, originally designed for Space Station Freedom (SSF). The APS program is designed to demonstrate the application of intelligent software as a fault detection, isolation, and recovery methodology for space power systems. This report discusses both the hardware and software elements used to construct the present configuration of the brassboard. The brassboard power components are described. These include the solid-state switches (herein referred to as switchgear), transformers, sources, and loads. Closely linked to this power portion of the brassboard is the first level of embedded control. Hardware used to implement this control and its associated software is discussed. An Ada software program, developed by Lewis Research Center's Space Station Freedom Directorate for their 20 kHz testbed, is used to control the brassboard's switchgear, as well as monitor key brassboard parameters through sensors located within these switches. The Ada code is downloaded from a PC/AT, and is resident within the 8086 microprocessor-based embedded controllers. The PC/AT is also used for smart terminal emulation, capable of controlling the switchgear as well as displaying data from them. Intelligent control is provided through use of a T1 Explorer and the Autonomous Power Expert (APEX) LISP software. Real-time load scheduling is implemented through use of a 'C' program-based scheduling engine. The methods of communication between these computers and the brassboard are explored. In order to evaluate the features of both the brassboard hardware and intelligent controlling software, fault circuits have been developed and integrated as part of the brassboard. A description of these fault circuits and their function is included. The brassboard has become an extremely useful test facility, promoting artificial intelligence (AI) applications for power distribution systems. However, there are elements of the brassboard which could be enhanced, thus improving system performance. Modifications and enhancements to improve the brassboard's operation are discussed.
Software Architecture for Anti-Submarine Warfare Unmanned Surface Vehicles
2016-09-01
discussion about software systems that could be used to control these systems to make the jobs of the human operators easier. B. RESEARCH QUESTIONS... research study. To better understand the role of artificial intelligence in designing autonomous systems, S. Russell and P. Norvig jointly authored a...artificial intelligence, and autonomous systems. This serves as the framework for the real design challenge. 1. Protecting the Battle Group The United
Multimode marine engine room simulation system based on field bus technology
NASA Astrophysics Data System (ADS)
Zheng, Huayao; Deng, Linlin; Guo, Yi
2003-09-01
Developing multi mode MER (Marine Engine Room) Labs is the main work in Marine Simulation Center, which is the key lab of Communication Ministry of China. It includes FPP (Fixed Pitch Propeller) and CPP (Controllable Pitch Propeller) mode MER simulation systems, integrated electrical propulsion mode MER simulation system, physical mode MER lab, etc. FPP mode simulation system, which was oriented to large container ship, had been completed since 1999, and got second level of Shanghai Municipal Science and Technical Progress award. This paper mainly introduces the recent development and achievements of Marine Simulation Center. Based on the Lon Works field bus, the structure characteristics and control strategies of completely distributed intelligent control network are discussed. The experiment mode of multi-nodes field bus detection and control system is described. Besides, intelligent fault diagnosis technology about some mechatronics integration control systems explored is also involved.
Metagram Software - A New Perspective on the Art of Computation.
1981-10-01
numober) Computer Programming Information and Analysis Metagramming Philosophy Intelligence Information Systefs Abstraction & Metasystems Metagranmming...control would also serve well in the analysis of military and political intelligence, and in other areas where highly abstract methods of thought serve...needed in intelligence because several levels of abstraction are involved in a political or military system, because analysis entails a complex interplay
Air traffic management as principled negotiation between intelligent agents
NASA Technical Reports Server (NTRS)
Wangermann, J. P.
1994-01-01
The major challenge facing the world's aircraft/airspace system (AAS) today is the need to provide increased capacity, while reducing delays, increasing the efficiency of flight operations, and improving safety. Technologies are emerging that should improve the performance of the system, but which could also introduce uncertainty, disputes, and inefficiency if not properly implemented. The aim of our research is to apply techniques from intelligent control theory and decision-making theory to define an Intelligent Aircraft/Airspace System (IAAS) for the year 2025. The IAAS would make effective use of the technical capabilities of all parts of the system to meet the demand for increased capacity with improved performance.
Autonomous power expert system
NASA Technical Reports Server (NTRS)
Ringer, Mark J.; Quinn, Todd M.
1990-01-01
The goal of the Autonomous Power System (APS) program is to develop and apply intelligent problem solving and control technologies to the Space Station Freedom Electrical Power Systems (SSF/EPS). The objectives of the program are to establish artificial intelligence/expert system technology paths, to create knowledge based tools with advanced human-operator interfaces, and to integrate and interface knowledge-based and conventional control schemes. This program is being developed at the NASA-Lewis. The APS Brassboard represents a subset of a 20 KHz Space Station Power Management And Distribution (PMAD) testbed. A distributed control scheme is used to manage multiple levels of computers and switchgear. The brassboard is comprised of a set of intelligent switchgear used to effectively switch power from the sources to the loads. The Autonomous Power Expert System (APEX) portion of the APS program integrates a knowledge based fault diagnostic system, a power resource scheduler, and an interface to the APS Brassboard. The system includes knowledge bases for system diagnostics, fault detection and isolation, and recommended actions. The scheduler autonomously assigns start times to the attached loads based on temporal and power constraints. The scheduler is able to work in a near real time environment for both scheduling and dynamic replanning.
Autonomous power expert system
NASA Technical Reports Server (NTRS)
Ringer, Mark J.; Quinn, Todd M.
1990-01-01
The goal of the Autonomous Power System (APS) program is to develop and apply intelligent problem solving and control technologies to the Space Station Freedom Electrical Power Systems (SSF/EPS). The objectives of the program are to establish artificial intelligence/expert system technology paths, to create knowledge based tools with advanced human-operator interfaces, and to integrate and interface knowledge-based and conventional control schemes. This program is being developed at the NASA-Lewis. The APS Brassboard represents a subset of a 20 KHz Space Station Power Management And Distribution (PMAD) testbed. A distributed control scheme is used to manage multiple levels of computers and switchgear. The brassboard is comprised of a set of intelligent switchgear used to effectively switch power from the sources to the loads. The Autonomous Power Expert System (APEX) portion of the APS program integrates a knowledge based fault diagnostic system, a power resource scheduler, and an interface to the APS Brassboard. The system includes knowledge bases for system diagnostics, fault detection and isolation, and recommended actions. The scheduler autonomously assigns start times to the attached loads based on temporal and power constraints. The scheduler is able to work in a near real time environment for both scheduling an dynamic replanning.
Intelligent power management in a vehicular system with multiple power sources
NASA Astrophysics Data System (ADS)
Murphey, Yi L.; Chen, ZhiHang; Kiliaris, Leonidas; Masrur, M. Abul
This paper presents an optimal online power management strategy applied to a vehicular power system that contains multiple power sources and deals with largely fluctuated load requests. The optimal online power management strategy is developed using machine learning and fuzzy logic. A machine learning algorithm has been developed to learn the knowledge about minimizing power loss in a Multiple Power Sources and Loads (M_PS&LD) system. The algorithm exploits the fact that different power sources used to deliver a load request have different power losses under different vehicle states. The machine learning algorithm is developed to train an intelligent power controller, an online fuzzy power controller, FPC_MPS, that has the capability of finding combinations of power sources that minimize power losses while satisfying a given set of system and component constraints during a drive cycle. The FPC_MPS was implemented in two simulated systems, a power system of four power sources, and a vehicle system of three power sources. Experimental results show that the proposed machine learning approach combined with fuzzy control is a promising technology for intelligent vehicle power management in a M_PS&LD power system.
NASA Astrophysics Data System (ADS)
Alford, W. A.; Kawamura, Kazuhiko; Wilkes, Don M.
1997-12-01
This paper discusses the problem of integrating human intelligence and skills into an intelligent manufacturing system. Our center has jointed the Holonic Manufacturing Systems (HMS) Project, an international consortium dedicated to developing holonic systems technologies. One of our contributions to this effort is in Work Package 6: flexible human integration. This paper focuses on one activity, namely, human integration into motion guidance and coordination. Much research on intelligent systems focuses on creating totally autonomous agents. At the Center for Intelligent Systems (CIS), we design robots that interact directly with a human user. We focus on using the natural intelligence of the user to simplify the design of a robotic system. The problem is finding ways for the user to interact with the robot that are efficient and comfortable for the user. Manufacturing applications impose the additional constraint that the manufacturing process should not be disturbed; that is, frequent interacting with the user could degrade real-time performance. Our research in human-robot interaction is based on a concept called human directed local autonomy (HuDL). Under this paradigm, the intelligent agent selects and executes a behavior or skill, based upon directions from a human user. The user interacts with the robot via speech, gestures, or other media. Our control software is based on the intelligent machine architecture (IMA), an object-oriented architecture which facilitates cooperation and communication among intelligent agents. In this paper we describe our research testbed, a dual-arm humanoid robot and human user, and the use of this testbed for a human directed sorting task. We also discuss some proposed experiments for evaluating the integration of the human into the robot system. At the time of this writing, the experiments have not been completed.
DFB laser array driver circuit controlled by adjustable signal
NASA Astrophysics Data System (ADS)
Du, Weikang; Du, Yinchao; Guo, Yu; Li, Wei; Wang, Hao
2018-01-01
In order to achieve the intelligent controlling of DFB laser array, this paper presents the design of an intelligence and high precision numerical controlling electric circuit. The system takes MCU and FPGA as the main control chip, with compact, high-efficiency, no impact, switching protection characteristics. The output of the DFB laser array can be determined by an external adjustable signal. The system transforms the analog control model into a digital control model, which improves the performance of the driver. The system can monitor the temperature and current of DFB laser array in real time. The output precision of the current can reach ± 0.1mA, which ensures the stable and reliable operation of the DFB laser array. Such a driver can benefit the flexible usage of the DFB laser array.
NASA Technical Reports Server (NTRS)
Jethwa, Dipan; Selmic, Rastko R.; Figueroa, Fernando
2008-01-01
This paper presents a concept of feedback control for smart actuators that are compatible with smart sensors, communication protocols, and a hierarchical Integrated System Health Management (ISHM) architecture developed by NASA s Stennis Space Center. Smart sensors and actuators typically provide functionalities such as automatic configuration, system condition awareness and self-diagnosis. Spacecraft and rocket test facilities are in the early stages of adopting these concepts. The paper presents a concept combining the IEEE 1451-based ISHM architecture with a transducer health monitoring capability to enhance the control process. A control system testbed for intelligent actuator control, with on-board ISHM capabilities, has been developed and implemented. Overviews of the IEEE 1451 standard, the smart actuator architecture, and control based on this architecture are presented.
Greenhouse intelligent control system based on microcontroller
NASA Astrophysics Data System (ADS)
Zhang, Congwei
2018-04-01
As one of the hallmarks of agricultural modernization, intelligent greenhouse has the advantages of high yield, excellent quality, no pollution and continuous planting. Taking AT89S52 microcontroller as the main controller, the greenhouse intelligent control system uses soil moisture sensor, temperature and humidity sensors, light intensity sensor and CO2 concentration sensor to collect measurements and display them on the 12864 LCD screen real-time. Meantime, climate parameter values can be manually set online. The collected measured values are compared with the set standard values, and then the lighting, ventilation fans, warming lamps, water pumps and other facilities automatically start to adjust the climate such as light intensity, CO2 concentration, temperature, air humidity and soil moisture of the greenhouse parameter. So, the state of the environment in the greenhouse Stabilizes and the crop grows in a suitable environment.
NASA Technical Reports Server (NTRS)
1990-01-01
The present conference on artificial intelligence (AI), robotics, and automation in space encompasses robot systems, lunar and planetary robots, advanced processing, expert systems, knowledge bases, issues of operation and management, manipulator control, and on-orbit service. Specific issues addressed include fundamental research in AI at NASA, the FTS dexterous telerobot, a target-capture experiment by a free-flying robot, the NASA Planetary Rover Program, the Katydid system for compiling KEE applications to Ada, and speech recognition for robots. Also addressed are a knowledge base for real-time diagnosis, a pilot-in-the-loop simulation of an orbital docking maneuver, intelligent perturbation algorithms for space scheduling optimization, a fuzzy control method for a space manipulator system, hyperredundant manipulator applications, robotic servicing of EOS instruments, and a summary of astronaut inputs on automation and robotics for the Space Station Freedom.
Dorsolateral Prefrontal Contributions to Human Intelligence
Barbey, Aron K.; Colom, Roberto; Grafman, Jordan
2012-01-01
Although cognitive neuroscience has made remarkable progress in understanding the involvement of the prefrontal cortex in executive control functions for human intelligence, the necessity of the dorsolateral prefrontal cortex (dlPFC) for key competencies of general intelligence and executive function remains to be well established. Here we studied human brain lesion patients with dlPFC lesions to investigate whether this region is computationally necessary for performance on neuropsychological tests of general intelligence and executive function, administering the Wechsler Adult Intelligence Scale (WAIS) and subtests of the Delis Kaplan Executive Function System (D-KEFS) to three groups: dlPFC lesions (n = 19), non-dlPFC lesions (n = 152), and no brain lesions (n = 55). The key results indicate that: (1) patients with focal dlPFC damage exhibit lower scores, at the latent variable level, than controls in general intelligence (g) and executive function; (2) dlPFC patients demonstrate lower scores than controls in several executive measures; and (3) these latter differences are no longer significant when the pervasive influence of the general factor of intelligence (g) is statistically removed. The observed findings support a central role for the dlPFC in general intelligence and make specific recommendations for the interpretation and application of the WAIS and D-KEFS to the study of high-level cognition in health and disease. PMID:22634247
NASA Astrophysics Data System (ADS)
Zepf, Joachim; Rufa, Gerhard
1994-04-01
This paper focuses on the transient performance analysis of the congestion and flow control mechanisms in CCITT Signaling System No. 7 (SS7). Special attention is directed to the impacts of the introduction of intelligent services and new applications, e.g., Freephone, credit card services, user-to-user signaling, etc. In particular, we show that signaling traffic characteristics like signaling scenarios or signaling message length as well as end-to-end signaling capabilities have a significant influence on the congestion and flow control and, therefore, on the real-time signaling performance. One important result of our performance studies is that if, e.g., intelligent services are introduced, the SS7 congestion and flow control does not work correctly. To solve this problem, some reinvestigations into these mechanisms would be necessary. Therefore, some approaches, e.g., modification of the Signaling Connection Control Part (SCCP) congestion control, usage of the SCCP relay function, or a redesign of the MTP flow control procedures are discussed in order to guarantee the efficacy of the congestion and flow control mechanisms also in the future.
Autonomous Agents and Intelligent Assistants for Exploration Operations
NASA Technical Reports Server (NTRS)
Malin, Jane T.
2000-01-01
Human exploration of space will involve remote autonomous crew and systems in long missions. Data to earth will be delayed and limited. Earth control centers will not receive continuous real-time telemetry data, and there will be communication round trips of up to one hour. There will be reduced human monitoring on the planet and earth. When crews are present on the planet, they will be occupied with other activities, and system management will be a low priority task. Earth control centers will use multi-tasking "night shift" and on-call specialists. A new project at Johnson Space Center is developing software to support teamwork between distributed human and software agents in future interplanetary work environments. The Engineering and Mission Operations Directorates at Johnson Space Center (JSC) are combining laboratories and expertise to carry out this project, by establishing a testbed for hWl1an centered design, development and evaluation of intelligent autonomous and assistant systems. Intelligent autonomous systems for managing systems on planetary bases will commuicate their knowledge to support distributed multi-agent mixed-initiative operations. Intelligent assistant agents will respond to events by developing briefings and responses according to instructions from human agents on earth and in space.
Programming model for distributed intelligent systems
NASA Technical Reports Server (NTRS)
Sztipanovits, J.; Biegl, C.; Karsai, G.; Bogunovic, N.; Purves, B.; Williams, R.; Christiansen, T.
1988-01-01
A programming model and architecture which was developed for the design and implementation of complex, heterogeneous measurement and control systems is described. The Multigraph Architecture integrates artificial intelligence techniques with conventional software technologies, offers a unified framework for distributed and shared memory based parallel computational models and supports multiple programming paradigms. The system can be implemented on different hardware architectures and can be adapted to strongly different applications.
Adaptive Fuzzy Systems in Computational Intelligence
NASA Technical Reports Server (NTRS)
Berenji, Hamid R.
1996-01-01
In recent years, the interest in computational intelligence techniques, which currently includes neural networks, fuzzy systems, and evolutionary programming, has grown significantly and a number of their applications have been developed in the government and industry. In future, an essential element in these systems will be fuzzy systems that can learn from experience by using neural network in refining their performances. The GARIC architecture, introduced earlier, is an example of a fuzzy reinforcement learning system which has been applied in several control domains such as cart-pole balancing, simulation of to Space Shuttle orbital operations, and tether control. A number of examples from GARIC's applications in these domains will be demonstrated.
Sliding Mode Control (SMC) of Robot Manipulator via Intelligent Controllers
NASA Astrophysics Data System (ADS)
Kapoor, Neha; Ohri, Jyoti
2017-02-01
Inspite of so much research, key technical problem, naming chattering of conventional, simple and robust SMC is still a challenge to the researchers and hence limits its practical application. However, newly developed soft computing based techniques can provide solution. In order to have advantages of conventional and heuristic soft computing based control techniques, in this paper various commonly used intelligent techniques, neural network, fuzzy logic and adaptive neuro fuzzy inference system (ANFIS) have been combined with sliding mode controller (SMC). For validation, proposed hybrid control schemes have been implemented for tracking a predefined trajectory by robotic manipulator, incorporating structured and unstructured uncertainties in the system. After reviewing numerous papers, all the commonly occurring uncertainties like continuous disturbance, uniform random white noise, static friction like coulomb friction and viscous friction, dynamic friction like Dhal friction and LuGre friction have been inserted in the system. Various performance indices like norm of tracking error, chattering in control input, norm of input torque, disturbance rejection, chattering rejection have been used. Comparative results show that with almost eliminated chattering the intelligent SMC controllers are found to be more efficient over simple SMC. It has also been observed from results that ANFIS based controller has the best tracking performance with the reduced burden on the system. No paper in the literature has found to have all these structured and unstructured uncertainties together for motion control of robotic manipulator.
Autonomous control systems - Architecture and fundamental issues
NASA Technical Reports Server (NTRS)
Antsaklis, P. J.; Passino, K. M.; Wang, S. J.
1988-01-01
A hierarchical functional autonomous controller architecture is introduced. In particular, the architecture for the control of future space vehicles is described in detail; it is designed to ensure the autonomous operation of the control system and it allows interaction with the pilot and crew/ground station, and the systems on board the autonomous vehicle. The fundamental issues in autonomous control system modeling and analysis are discussed. It is proposed to utilize a hybrid approach to modeling and analysis of autonomous systems. This will incorporate conventional control methods based on differential equations and techniques for the analysis of systems described with a symbolic formalism. In this way, the theory of conventional control can be fully utilized. It is stressed that autonomy is the design requirement and intelligent control methods appear at present, to offer some of the necessary tools to achieve autonomy. A conventional approach may evolve and replace some or all of the `intelligent' functions. It is shown that in addition to conventional controllers, the autonomous control system incorporates planning, learning, and FDI (fault detection and identification).
TDAS: The Thermal Expert System (TEXSYS) data acquisition system
NASA Technical Reports Server (NTRS)
Hack, Edmund C.; Healey, Kathleen J.
1987-01-01
As part of the NASA Systems Autonomy Demonstration Project, a thermal expert system (TEXSYS) is being developed. TEXSYS combines a fast real time control system, a sophisticated human interface for the user and several distinct artificial intelligence techniques in one system. TEXSYS is to provide real time control, operations advice and fault detection, isolation and recovery capabilities for the space station Thermal Test Bed (TTB). TEXSYS will be integrated with the TTB and act as an intelligent assistant to thermal engineers conducting TTB tests and experiments. The results are presented from connecting the real time controller to the knowledge based system thereby creating an integrated system. Special attention will be paid to the problem of filtering and interpreting the raw, real time data and placing the important values into the knowledge base of the expert system.
F-15 IFCS Intelligent Flight Control System
NASA Technical Reports Server (NTRS)
Bosworth, John T.
2008-01-01
This viewgraph presentation gives a detailed description of the F-15 aircraft, flight tests, aircraft performance and overall advanced neural network based flight control technologies for aerospace systems designs.
An RFID-based intelligent vehicle speed controller using active traffic signals.
Pérez, Joshué; Seco, Fernando; Milanés, Vicente; Jiménez, Antonio; Díaz, Julio C; de Pedro, Teresa
2010-01-01
These days, mass-produced vehicles benefit from research on Intelligent Transportation System (ITS). One prime example of ITS is vehicle Cruise Control (CC), which allows it to maintain a pre-defined reference speed, to economize on fuel or energy consumption, to avoid speeding fines, or to focus all of the driver's attention on the steering of the vehicle. However, achieving efficient Cruise Control is not easy in roads or urban streets where sudden changes of the speed limit can happen, due to the presence of unexpected obstacles or maintenance work, causing, in inattentive drivers, traffic accidents. In this communication we present a new Infrastructure to Vehicles (I2V) communication and control system for intelligent speed control, which is based upon Radio Frequency Identification (RFID) technology for identification of traffic signals on the road, and high accuracy vehicle speed measurement with a Hall effect-based sensor. A fuzzy logic controller, based on sensor fusion of the information provided by the I2V infrastructure, allows the efficient adaptation of the speed of the vehicle to the circumstances of the road. The performance of the system is checked empirically, with promising results.
An RFID-Based Intelligent Vehicle Speed Controller Using Active Traffic Signals
Pérez, Joshué; Seco, Fernando; Milanés, Vicente; Jiménez, Antonio; Díaz, Julio C.; de Pedro, Teresa
2010-01-01
These days, mass-produced vehicles benefit from research on Intelligent Transportation System (ITS). One prime example of ITS is vehicle Cruise Control (CC), which allows it to maintain a pre-defined reference speed, to economize on fuel or energy consumption, to avoid speeding fines, or to focus all of the driver’s attention on the steering of the vehicle. However, achieving efficient Cruise Control is not easy in roads or urban streets where sudden changes of the speed limit can happen, due to the presence of unexpected obstacles or maintenance work, causing, in inattentive drivers, traffic accidents. In this communication we present a new Infrastructure to Vehicles (I2V) communication and control system for intelligent speed control, which is based upon Radio Frequency Identification (RFID) technology for identification of traffic signals on the road, and high accuracy vehicle speed measurement with a Hall effect-based sensor. A fuzzy logic controller, based on sensor fusion of the information provided by the I2V infrastructure, allows the efficient adaptation of the speed of the vehicle to the circumstances of the road. The performance of the system is checked empirically, with promising results. PMID:22219692
An Object-Oriented Graphical User Interface for a Reusable Rocket Engine Intelligent Control System
NASA Technical Reports Server (NTRS)
Litt, Jonathan S.; Musgrave, Jeffrey L.; Guo, Ten-Huei; Paxson, Daniel E.; Wong, Edmond; Saus, Joseph R.; Merrill, Walter C.
1994-01-01
An intelligent control system for reusable rocket engines under development at NASA Lewis Research Center requires a graphical user interface to allow observation of the closed-loop system in operation. The simulation testbed consists of a real-time engine simulation computer, a controls computer, and several auxiliary computers for diagnostics and coordination. The system is set up so that the simulation computer could be replaced by the real engine and the change would be transparent to the control system. Because of the hard real-time requirement of the control computer, putting a graphical user interface on it was not an option. Thus, a separate computer used strictly for the graphical user interface was warranted. An object-oriented LISP-based graphical user interface has been developed on a Texas Instruments Explorer 2+ to indicate the condition of the engine to the observer through plots, animation, interactive graphics, and text.
An intelligent FFR with a self-adjustable ventilation fan.
Zhou, Song; Li, Hui; Shen, Shengnan; Li, Siyu; Wang, Wei; Zhang, Xiaotie; Yang, James
2017-11-01
This article presents an intelligent Filtering Facepiece Respirator (FFR) with a self-adjustable ventilation fan for improved comfort. The ventilation fan with an intelligent control aims to reduce temperature, relative humidity, and CO 2 concentrations inside the facepiece. Compared with a previous version of the FFR, the advantage of this new FFR is the intelligent control of the fan's rotation speed based on the change in temperature and relative humidity in the FFR dead space. The design of the control system utilizes an 8-bit, ultra-low power STC15W404AS microcontroller (HongJin technology, Shenzhen, China), and adopts a high-precision AM2320 device (AoSong electronic, Guangzhou, China) as temperature and relative humidity sensor so that control of temperature and relative humidity is realized in real time within the FFR dead space. The ventilation fan is intelligently driven and runs on a rechargeable lithium battery with a power-save mode that provides a correspondingly longer operational time. Meanwhile, the design is simplistic. Two experiments were performed to determine the best location to place the fan.
A hierarchical distributed control model for coordinating intelligent systems
NASA Technical Reports Server (NTRS)
Adler, Richard M.
1991-01-01
A hierarchical distributed control (HDC) model for coordinating cooperative problem-solving among intelligent systems is described. The model was implemented using SOCIAL, an innovative object-oriented tool for integrating heterogeneous, distributed software systems. SOCIAL embeds applications in 'wrapper' objects called Agents, which supply predefined capabilities for distributed communication, control, data specification, and translation. The HDC model is realized in SOCIAL as a 'Manager'Agent that coordinates interactions among application Agents. The HDC Manager: indexes the capabilities of application Agents; routes request messages to suitable server Agents; and stores results in a commonly accessible 'Bulletin-Board'. This centralized control model is illustrated in a fault diagnosis application for launch operations support of the Space Shuttle fleet at NASA, Kennedy Space Center.
Application of Artificial Intelligence Techniques in Unmanned Aerial Vehicle Flight
NASA Technical Reports Server (NTRS)
Bauer, Frank H. (Technical Monitor); Dufrene, Warren R., Jr.
2003-01-01
This paper describes the development of an application of Artificial Intelligence for Unmanned Aerial Vehicle (UAV) control. The project was done as part of the requirements for a class in Artificial Intelligence (AI) at Nova southeastern University and as an adjunct to a project at NASA Goddard Space Flight Center's Wallops Flight Facility for a resilient, robust, and intelligent UAV flight control system. A method is outlined which allows a base level application for applying an AI method, Fuzzy Logic, to aspects of Control Logic for UAV flight. One element of UAV flight, automated altitude hold, has been implemented and preliminary results displayed. A low cost approach was taken using freeware, gnu, software, and demo programs. The focus of this research has been to outline some of the AI techniques used for UAV flight control and discuss some of the tools used to apply AI techniques. The intent is to succeed with the implementation of applying AI techniques to actually control different aspects of the flight of an UAV.
Design of an intelligent instrument for large direct-current measurement
NASA Astrophysics Data System (ADS)
Zhang, Rong; Zhang, Gang; Zhang, Zhipeng
2000-05-01
The principle and structure of an intelligent large direct current measurement is presented in this paper. It is of reflective type and detects signal by employing the high direct current sensor. The single-chip microcomputer of this system provides a powerful function of control and processing and greatly improves the extent of intelligence. The value can be displayed and printed automatically or manually.
Coordination in Distributed Intelligent Systems Applications
2009-12-13
working in the area of Distributed Artificial Intelligence (DAI) unanimously endorses the idea that coordination - a fundamental paradigm - represents a...using the distributed artificial intelligence paradigm. Section 4 discusses the healthcare applications. On the other hand, Section 5 describes...coordination mechanisms should be used is in the control of swarms of UA Vs (unmanned aerial vehicles). The UAVs are considered in this case as highly mobile
Launch vehicle operations cost reduction through artificial intelligence techniques
NASA Technical Reports Server (NTRS)
Davis, Tom C., Jr.
1988-01-01
NASA's Kennedy Space Center has attempted to develop AI methods in order to reduce the cost of launch vehicle ground operations as well as to improve the reliability and safety of such operations. Attention is presently given to cost savings estimates for systems involving launch vehicle firing-room software and hardware real-time diagnostics, as well as the nature of configuration control and the real-time autonomous diagnostics of launch-processing systems by these means. Intelligent launch decisions and intelligent weather forecasting are additional applications of AI being considered.
Intelligent monitoring and diagnosis systems for the Space Station Freedom ECLSS
NASA Technical Reports Server (NTRS)
Dewberry, Brandon S.; Carnes, James R.
1991-01-01
Specific activities in NASA's environmental control and life support system (ECLSS) advanced automation project that is designed to minimize the crew and ground manpower needed for operations are discussed. Various analyses and the development of intelligent software for the initial and evolutionary Space Station Freedom (SSF) ECLSS are described. The following are also discussed: (1) intelligent monitoring and diagnostics applications under development for the ECLSS domain; (2) integration into the MSFC ECLSS hardware testbed; and (3) an evolutionary path from the baseline ECLSS automation to the more advanced ECLSS automation processes.
Leveraging Intelligent Vehicle Technologies to Maximize Fuel Economy (Presentation)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonder, J.
2011-11-01
Advancements in vehicle electronics, along with communication and sensing technologies, have led to a growing number of intelligent vehicle applications. Example systems include those for advanced driver information, route planning and prediction, driver assistance, and crash avoidance. The National Renewable Energy Laboratory is exploring ways to leverage intelligent vehicle systems to achieve fuel savings. This presentation discusses several potential applications, such as providing intelligent feedback to drivers on specific ways to improve their driving efficiency, and using information about upcoming driving to optimize electrified vehicle control strategies for maximum energy efficiency and battery life. The talk also covers the potentialmore » of Advanced Driver Assistance Systems (ADAS) and related technologies to deliver significant fuel savings in addition to providing safety and convenience benefits.« less
[Control of intelligent car based on electroencephalogram and neurofeedback].
Li, Song; Xiong, Xin; Fu, Yunfa
2018-02-01
To improve the performance of brain-controlled intelligent car based on motor imagery (MI), a method based on neurofeedback (NF) with electroencephalogram (EEG) for controlling intelligent car is proposed. A mental strategy of MI in which the energy column diagram of EEG features related to the mental activity is presented to subjects with visual feedback in real time to train them to quickly master the skills of MI and regulate their EEG activity, and combination of multi-features fusion of MI and multi-classifiers decision were used to control the intelligent car online. The average, maximum and minimum accuracy of identifying instructions achieved by the trained group (trained by the designed feedback system before the experiment) were 85.71%, 90.47% and 76.19%, respectively and the corresponding accuracy achieved by the control group (untrained) were 73.32%, 80.95% and 66.67%, respectively. For the trained group, the average, longest and shortest time consuming were 92 s, 101 s, and 85 s, respectively, while for the control group the corresponding time were 115.7 s, 120 s, and 110 s, respectively. According to the results described above, it is expected that this study may provide a new idea for the follow-up development of brain-controlled intelligent robot by the neurofeedback with EEG related to MI.
Adaptive neural network/expert system that learns fault diagnosis for different structures
NASA Astrophysics Data System (ADS)
Simon, Solomon H.
1992-08-01
Corporations need better real-time monitoring and control systems to improve productivity by watching quality and increasing production flexibility. The innovative technology to achieve this goal is evolving in the form artificial intelligence and neural networks applied to sensor processing, fusion, and interpretation. By using these advanced Al techniques, we can leverage existing systems and add value to conventional techniques. Neural networks and knowledge-based expert systems can be combined into intelligent sensor systems which provide real-time monitoring, control, evaluation, and fault diagnosis for production systems. Neural network-based intelligent sensor systems are more reliable because they can provide continuous, non-destructive monitoring and inspection. Use of neural networks can result in sensor fusion and the ability to model highly, non-linear systems. Improved models can provide a foundation for more accurate performance parameters and predictions. We discuss a research software/hardware prototype which integrates neural networks, expert systems, and sensor technologies and which can adapt across a variety of structures to perform fault diagnosis. The flexibility and adaptability of the prototype in learning two structures is presented. Potential applications are discussed.
NASA Astrophysics Data System (ADS)
Miao, Man-Xiang
2007-12-01
By using the photo-voltage characteristics of pyroelectric infrared detector to fulfill signal acquisition, the detecting signal is processed with the core of a single chip microprocessor AT89C51. AT89C51 controls the CAN bus controller SJA1000/transceiver 82C250 to structure CAN bus communication system to transmit data through serial interface MAX232 connected with PC. The intelligent lightening system of urban and rural road traffic was carried out. In this paper, its construction and part's methods of hardware and software design were introduced in detail.
A prototype knowledge-based simulation support system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hill, T.R.; Roberts, S.D.
1987-04-01
As a preliminary step toward the goal of an intelligent automated system for simulation modeling support, we explore the feasibility of the overall concept by generating and testing a prototypical framework. A prototype knowledge-based computer system was developed to support a senior level course in industrial engineering so that the overall feasibility of an expert simulation support system could be studied in a controlled and observable setting. The system behavior mimics the diagnostic (intelligent) process performed by the course instructor and teaching assistants, finding logical errors in INSIGHT simulation models and recommending appropriate corrective measures. The system was programmed inmore » a non-procedural language (PROLOG) and designed to run interactively with students working on course homework and projects. The knowledge-based structure supports intelligent behavior, providing its users with access to an evolving accumulation of expert diagnostic knowledge. The non-procedural approach facilitates the maintenance of the system and helps merge the roles of expert and knowledge engineer by allowing new knowledge to be easily incorporated without regard to the existing flow of control. The background, features and design of the system are describe and preliminary results are reported. Initial success is judged to demonstrate the utility of the reported approach and support the ultimate goal of an intelligent modeling system which can support simulation modelers outside the classroom environment. Finally, future extensions are suggested.« less
An intelligent agent for optimal river-reservoir system management
NASA Astrophysics Data System (ADS)
Rieker, Jeffrey D.; Labadie, John W.
2012-09-01
A generalized software package is presented for developing an intelligent agent for stochastic optimization of complex river-reservoir system management and operations. Reinforcement learning is an approach to artificial intelligence for developing a decision-making agent that learns the best operational policies without the need for explicit probabilistic models of hydrologic system behavior. The agent learns these strategies experientially in a Markov decision process through observational interaction with the environment and simulation of the river-reservoir system using well-calibrated models. The graphical user interface for the reinforcement learning process controller includes numerous learning method options and dynamic displays for visualizing the adaptive behavior of the agent. As a case study, the generalized reinforcement learning software is applied to developing an intelligent agent for optimal management of water stored in the Truckee river-reservoir system of California and Nevada for the purpose of streamflow augmentation for water quality enhancement. The intelligent agent successfully learns long-term reservoir operational policies that specifically focus on mitigating water temperature extremes during persistent drought periods that jeopardize the survival of threatened and endangered fish species.
Hypermedia and intelligent tutoring applications in a mission operations environment
NASA Technical Reports Server (NTRS)
Ames, Troy; Baker, Clifford
1990-01-01
Hypermedia, hypertext and Intelligent Tutoring System (ITS) applications to support all phases of mission operations are investigated. The application of hypermedia and ITS technology to improve system performance and safety in supervisory control is described - with an emphasis on modeling operator's intentions in the form of goals, plans, tasks, and actions. Review of hypermedia and ITS technology is presented as may be applied to the tutoring of command and control languages. Hypertext based ITS is developed to train flight operation teams and System Test and Operation Language (STOL). Specific hypermedia and ITS application areas are highlighted, including: computer aided instruction of flight operation teams (STOL ITS) and control center software development tools (CHIMES and STOL Certification Tool).
Simulation of intelligent object behavior in a virtual reality system
NASA Astrophysics Data System (ADS)
Mironov, Sergey F.
1998-01-01
This article presents a technique for computer control of a power boat movement in real-time marine trainers or arcade games. The author developed and successfully implemented a general technique allowing intellectual navigation of computer controlled moving objects that proved to be appropriate for real-time applications. This technique covers significant part of necessary behavioral tasks that appear in such titles. At the same time the technique forms a part of a more general system that involves control of less complicated characters of another nature. The system being an open one can be easily used by an action or arcade programming to improve the overall quality of characters artificial intelligence style.
On the design of a postprocessor for a search for extraterrestrial intelligence /SETI/ system
NASA Technical Reports Server (NTRS)
Healy, T. J.; Seeger, C. L.; Stull, M. A.
1979-01-01
The design of an on-line postprocessor for a search for extraterrestrial intelligence (SETI) system is described. Signal processing tasks of the postprocessor include: (1) analysis of power level, phase coherence, and state of polarization of single-channel signals in a search for significant signals; (2) grouping or aggregation of adjacent channel data, time averaging of data; and (3) the detection of drifting and modulated signals. Control functions include multichannel spectrum analyzer frequency and clock control, system calibration and selfdiagnostic, control of data flow to and from short-term and long-term (archival) memories, and operation of detection subsystems, such as a visual display and a tunable receiver.
The role of soft computing in intelligent machines.
de Silva, Clarence W
2003-08-15
An intelligent machine relies on computational intelligence in generating its intelligent behaviour. This requires a knowledge system in which representation and processing of knowledge are central functions. Approximation is a 'soft' concept, and the capability to approximate for the purposes of comparison, pattern recognition, reasoning, and decision making is a manifestation of intelligence. This paper examines the use of soft computing in intelligent machines. Soft computing is an important branch of computational intelligence, where fuzzy logic, probability theory, neural networks, and genetic algorithms are synergistically used to mimic the reasoning and decision making of a human. This paper explores several important characteristics and capabilities of machines that exhibit intelligent behaviour. Approaches that are useful in the development of an intelligent machine are introduced. The paper presents a general structure for an intelligent machine, giving particular emphasis to its primary components, such as sensors, actuators, controllers, and the communication backbone, and their interaction. The role of soft computing within the overall system is discussed. Common techniques and approaches that will be useful in the development of an intelligent machine are introduced, and the main steps in the development of an intelligent machine for practical use are given. An industrial machine, which employs the concepts of soft computing in its operation, is presented, and one aspect of intelligent tuning, which is incorporated into the machine, is illustrated.
Hybrid Modeling for Testing Intelligent Software for Lunar-Mars Closed Life Support
NASA Technical Reports Server (NTRS)
Malin, Jane T.; Nicholson, Leonard S. (Technical Monitor)
1999-01-01
Intelligent software is being developed for closed life support systems with biological components, for human exploration of the Moon and Mars. The intelligent software functions include planning/scheduling, reactive discrete control and sequencing, management of continuous control, and fault detection, diagnosis, and management of failures and errors. Four types of modeling information have been essential to system modeling and simulation to develop and test the software and to provide operational model-based what-if analyses: discrete component operational and failure modes; continuous dynamic performance within component modes, modeled qualitatively or quantitatively; configuration of flows and power among components in the system; and operations activities and scenarios. CONFIG, a multi-purpose discrete event simulation tool that integrates all four types of models for use throughout the engineering and operations life cycle, has been used to model components and systems involved in the production and transfer of oxygen and carbon dioxide in a plant-growth chamber and between that chamber and a habitation chamber with physicochemical systems for gas processing.
NASA Astrophysics Data System (ADS)
Theisen, Bernard L.
2005-10-01
The Intelligent Ground Vehicle Competition (IGVC) is one of three, unmanned systems, student competitions that were founded by the Association for Unmanned Vehicle Systems International (AUVSI) in the 1990s. The IGVC is a multidisciplinary exercise in product realization that challenges college engineering student teams to integrate advanced control theory, machine vision, vehicular electronics, and mobile platform fundamentals to design and build an unmanned system. Teams from around the world focus on developing a suite of dual-use technologies to equip ground vehicles of the future with intelligent driving capabilities. Over the past 13 years, the competition has challenged undergraduate, graduate and Ph.D. students with real world applications in intelligent transportation systems, the military and manufacturing automation. To date, teams from over 50 universities and colleges have participated. This paper describes some of the applications of the technologies required by this competition and discusses the educational benefits. The primary goal of the IGVC is to advance engineering education in intelligent vehicles and related technologies. The employment and professional networking opportunities created for students and industrial sponsors through a series of technical events over the three-day competition are highlighted. Finally, an assessment of the competition based on participant feedback is presented.
A general-purpose development environment for intelligent computer-aided training systems
NASA Technical Reports Server (NTRS)
Savely, Robert T.
1990-01-01
Space station training will be a major task, requiring the creation of large numbers of simulation-based training systems for crew, flight controllers, and ground-based support personnel. Given the long duration of space station missions and the large number of activities supported by the space station, the extension of space shuttle training methods to space station training may prove to be impractical. The application of artificial intelligence technology to simulation training can provide the ability to deliver individualized training to large numbers of personnel in a distributed workstation environment. The principal objective of this project is the creation of a software development environment which can be used to build intelligent training systems for procedural tasks associated with the operation of the space station. Current NASA Johnson Space Center projects and joint projects with other NASA operational centers will result in specific training systems for existing space shuttle crew, ground support personnel, and flight controller tasks. Concurrently with the creation of these systems, a general-purpose development environment for intelligent computer-aided training systems will be built. Such an environment would permit the rapid production, delivery, and evolution of training systems for space station crew, flight controllers, and other support personnel. The widespread use of such systems will serve to preserve task and training expertise, support the training of many personnel in a distributed manner, and ensure the uniformity and verifiability of training experiences. As a result, significant reductions in training costs can be realized while safety and the probability of mission success can be enhanced.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 28 Judicial Administration 1 2011-07-01 2011-07-01 false Background. 23.2 Section 23.2 Judicial Administration DEPARTMENT OF JUSTICE CRIMINAL INTELLIGENCE SYSTEMS OPERATING POLICIES § 23.2 Background. It is... of intelligence data necessary to support control of serious criminal activity may represent...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 28 Judicial Administration 1 2014-07-01 2014-07-01 false Background. 23.2 Section 23.2 Judicial Administration DEPARTMENT OF JUSTICE CRIMINAL INTELLIGENCE SYSTEMS OPERATING POLICIES § 23.2 Background. It is... of intelligence data necessary to support control of serious criminal activity may represent...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 28 Judicial Administration 1 2013-07-01 2013-07-01 false Background. 23.2 Section 23.2 Judicial Administration DEPARTMENT OF JUSTICE CRIMINAL INTELLIGENCE SYSTEMS OPERATING POLICIES § 23.2 Background. It is... of intelligence data necessary to support control of serious criminal activity may represent...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 28 Judicial Administration 1 2010-07-01 2010-07-01 false Background. 23.2 Section 23.2 Judicial Administration DEPARTMENT OF JUSTICE CRIMINAL INTELLIGENCE SYSTEMS OPERATING POLICIES § 23.2 Background. It is... of intelligence data necessary to support control of serious criminal activity may represent...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 28 Judicial Administration 1 2012-07-01 2012-07-01 false Background. 23.2 Section 23.2 Judicial Administration DEPARTMENT OF JUSTICE CRIMINAL INTELLIGENCE SYSTEMS OPERATING POLICIES § 23.2 Background. It is... of intelligence data necessary to support control of serious criminal activity may represent...
Using the network to achieve energy efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giglio, M.
1995-12-01
Novell, the third largest software company in the world, has developed Netware Embedded Systems Technology (NEST). NEST will take the network deeper into non-traditional computing environments and will imbed networking into more intelligent devices. Ultimately, this will lead to energy efficiencies in the office. NEST can make point-of-sale terminals, alarm systems, televisions, traffic controls, printers, lights, fax machines, copiers, HVAC controls, PBX machines, etc., either intelligent or more intelligent than they are currently. The mission statement for this particular group is to integrate over 30 million new intelligent devices into the workplace and the home with Novell networks by 1997.more » Computing trends have progressed from mainframes in the 1960s to keys, security systems, and airplanes in the year 2000. In fact, the new Boeing 777 has NEST in it, and it also has network servers on board. NEST enables the embedded network with the ability to put intelligence into devices. This gives one more control of the devices from wherever one is. For example, the pharmaceutical industry could use NEST to coordinate what the consumer is buying, what is in the warehouse, what the manufacturing plant is tooled for, and so on. Through NEST technology, the pharmaceutical industry now uses a camera that takes pictures of the pills. It can see whether an {open_quotes}overdose{close_quotes} or {open_quotes}underdose{close_quotes} of a particular type of pill is being manufactured. The plant can be shut down and corrections made immediately.« less
Embedded intelligent adaptive PI controller for an electromechanical system.
El-Nagar, Ahmad M
2016-09-01
In this study, an intelligent adaptive controller approach using the interval type-2 fuzzy neural network (IT2FNN) is presented. The proposed controller consists of a lower level proportional - integral (PI) controller, which is the main controller and an upper level IT2FNN which tuning on-line the parameters of a PI controller. The proposed adaptive PI controller based on IT2FNN (API-IT2FNN) is implemented practically using the Arduino DUE kit for controlling the speed of a nonlinear DC motor-generator system. The parameters of the IT2FNN are tuned on-line using back-propagation algorithm. The Lyapunov theorem is used to derive the stability and convergence of the IT2FNN. The obtained experimental results, which are compared with other controllers, demonstrate that the proposed API-IT2FNN is able to improve the system response over a wide range of system uncertainties. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Design of intelligent vehicle control system based on single chip microcomputer
NASA Astrophysics Data System (ADS)
Zhang, Congwei
2018-06-01
The smart car microprocessor uses the KL25ZV128VLK4 in the Freescale series of single-chip microcomputers. The image sampling sensor uses the CMOS digital camera OV7725. The obtained track data is processed by the corresponding algorithm to obtain track sideline information. At the same time, the pulse width modulation control (PWM) is used to control the motor and servo movements, and based on the digital incremental PID algorithm, the motor speed control and servo steering control are realized. In the project design, IAR Embedded Workbench IDE is used as the software development platform to program and debug the micro-control module, camera image processing module, hardware power distribution module, motor drive and servo control module, and then complete the design of the intelligent car control system.
Conference on Intelligent Robotics in Field, Factory, Service, and Space (CIRFFSS 1994), volume 1
NASA Technical Reports Server (NTRS)
Erickson, Jon D. (Editor)
1994-01-01
The AIAA/NASA Conference on Intelligent Robotics in Field, Factory, Service, and Space (CIRFFSS '94) was originally proposed because of the strong belief that America's problems of global economic competitiveness and job creation and preservation can partly be solved by the use of intelligent robotics, which are also required for human space exploration missions. Individual sessions addressed nuclear industry, agile manufacturing, security/building monitoring, on-orbit applications, vision and sensing technologies, situated control and low-level control, robotic systems architecture, environmental restoration and waste management, robotic remanufacturing, and healthcare applications.
Innovative applications of artificial intelligence
NASA Astrophysics Data System (ADS)
Schorr, Herbert; Rappaport, Alain
Papers concerning applications of artificial intelligence are presented, covering applications in aerospace technology, banking and finance, biotechnology, emergency services, law, media planning, music, the military, operations management, personnel management, retail packaging, and manufacturing assembly and design. Specific topics include Space Shuttle telemetry monitoring, an intelligent training system for Space Shuttle flight controllers, an expert system for the diagnostics of manufacturing equipment, a logistics management system, a cooling systems design assistant, and a knowledge-based integrated circuit design critic. Additional topics include a hydraulic circuit design assistant, the use of a connector assembly specification expert system to harness detailed assembly process knowledge, a mixed initiative approach to airlift planning, naval battle management decision aids, an inventory simulation tool, a peptide synthesis expert system, and a system for planning the discharging and loading of container ships.
Two examples of intelligent systems based on smart materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unsworth, J.
1994-12-31
Two intelligent systems are described which are based on smart materials. The operation of the systems also rely on conventional well known technologies such as electronics, signal conditioning, signal processing, microprocessors and engineering design. However without the smart materials the development and integration into the intelligent systems would not have been possible. System 1 is a partial discharge monitor for on-line continuous checking of the condition of electrical power transformers. The ultrasonic and radio frequency detectors in this system rely on special piezoelectric composite integrated with a compact annular metal ring. Partial discharges set up ultrasonic and radio frequency signalsmore » which are received by the integrated detectors. The signals are amplified, conditioned, signal processed, the time interval between the two signals measured and the level of partial discharge activity averaged and assessed for numerous pairs and alarms triggered on remote control panels if the level is dangerous. The system has the capability of initiating automatic shutdown of the transformer once it is linked into the control computers of the electrical power authority. System 2 is called a Security Cradle and is an intelligent 3D shield designed to use the properties of electro active polymers to prevent hardware hackers from stealing valuable of sensitive information from memory devices (e.g., EPROMS) housed in computer or microprocessor installations.« less
The twelfth annual Intelligent Ground Vehicle Competition: team approaches to intelligent vehicles
NASA Astrophysics Data System (ADS)
Theisen, Bernard L.; Maslach, Daniel
2004-10-01
The Intelligent Ground Vehicle Competition (IGVC) is one of three, unmanned systems, student competitions that were founded by the Association for Unmanned Vehicle Systems International (AUVSI) in the 1990s. The IGVC is a multidisciplinary exercise in product realization that challenges college engineering student teams to integrate advanced control theory, machine vision, vehicular electronics, and mobile platform fundamentals to design and build an unmanned system. Both U.S. and international teams focus on developing a suite of dual-use technologies to equip ground vehicles of the future with intelligent driving capabilities. Over the past 12 years, the competition has challenged undergraduate, graduate and Ph.D. students with real world applications in intelligent transportation systems, the military and manufacturing automation. To date, teams from over 43 universities and colleges have participated. This paper describes some of the applications of the technologies required by this competition and discusses the educational benefits. The primary goal of the IGVC is to advance engineering education in intelligent vehicles and related technologies. The employment and professional networking opportunities created for students and industrial sponsors through a series of technical events over the three-day competition are highlighted. Finally, an assessment of the competition based on participant feedback is presented.
Morris, J A
1999-08-01
A model is proposed in which information from the environment is analysed by complex biological decision-making systems which are highly redundant. A correct response is intelligent behaviour which preserves health; incorrect responses lead to disease. Mutations in genes which code for the redundant systems will accumulate in the genome and impair decision-making. The number of mutant genes will depend upon a balance between the new mutation rate per generation and systems of elimination based on synergistic interaction in redundant systems. This leads to a polygenic pattern of inheritance for intelligence and the common diseases. The model also gives a simple explanation for some of the hitherto puzzling aspects of work on the genetic basis of intelligence including the recorded rise in IQ this century. There is a prediction that health, intelligence and socio-economic position will be correlated generating a health differential in the social hierarchy. Furthermore, highly competitive societies will place those least able to cope in the harshest environment and this will impair health overall. The model points to a need for population monitoring of somatic mutation in order to preserve the health and intelligence of future generations.
An Innovative Multi-Agent Search-and-Rescue Path Planning Approach
2015-03-09
search problems from search theory and artificial intelligence /distributed robotic control, and pursuit-evasion problem perspectives may be found in...Dissanayake, “Probabilistic search for a moving target in an indoor environment”, In Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, 2006, pp...3393-3398. [7] H. Lau, and G. Dissanayake, “Optimal search for multiple targets in a built environment”, In Proc. IEEE/RSJ Int. Conf. Intelligent
NASA Astrophysics Data System (ADS)
Büker, Engin
2015-05-01
The defence technologies which have been developing and changing rapidly, today make it difficult to be able to foresee the next environment and spectrum of warfare. When said change and development is looked in specific to the naval operations, it can be said that the possible battlefield and scenarios to be developed in the near and middle terms (5-20 years) are more clarified with compare to other force components. Network Centric Naval Warfare Concept that was developed for the floating, diving and flying fleet platforms which serves away from its own mainland for miles, will keep its significance in the future. Accordingly, Network Centric Intelligence structure completely integrating with the command and control systems will have relatively more importance. This study will firstly try to figure out the transition from the traditional intelligence cycle that is still used in conventional war to Network Centric Intelligence Production Process. In the last part, the use of this new approach on the base of UAV that is alternative to satellite based command control and data transfer systems in the joint operations in narrow seas will be examined, a model suggestion for the use of operative and strategic UAVs which are assured within the scope of the NATO AGS2 for this aim will be brought.
Wearable computer for mobile augmented-reality-based controlling of an intelligent robot
NASA Astrophysics Data System (ADS)
Turunen, Tuukka; Roening, Juha; Ahola, Sami; Pyssysalo, Tino
2000-10-01
An intelligent robot can be utilized to perform tasks that are either hazardous or unpleasant for humans. Such tasks include working in disaster areas or conditions that are, for example, too hot. An intelligent robot can work on its own to some extent, but in some cases the aid of humans will be needed. This requires means for controlling the robot from somewhere else, i.e. teleoperation. Mobile augmented reality can be utilized as a user interface to the environment, as it enhances the user's perception of the situation compared to other interfacing methods and allows the user to perform other tasks while controlling the intelligent robot. Augmented reality is a method that combines virtual objects into the user's perception of the real world. As computer technology evolves, it is possible to build very small devices that have sufficient capabilities for augmented reality applications. We have evaluated the existing wearable computers and mobile augmented reality systems to build a prototype of a future mobile terminal- the CyPhone. A wearable computer with sufficient system resources for applications, wireless communication media with sufficient throughput and enough interfaces for peripherals has been built at the University of Oulu. It is self-sustained in energy, with enough operating time for the applications to be useful, and uses accurate positioning systems.
NASA Technical Reports Server (NTRS)
Aucoin, B. M.; Heller, R. P.
1990-01-01
An intelligent remote power controller (RPC) based on microcomputer technology can implement advanced functions for the accurate and secure detection of all types of faults on a spaceborne electrical distribution system. The intelligent RPC will implement conventional protection functions such as overcurrent, under-voltage, and ground fault protection. Advanced functions for the detection of soft faults, which cannot presently be detected, can also be implemented. Adaptive overcurrent protection changes overcurrent settings based on connected load. Incipient and high-impedance fault detection provides early detection of arcing conditions to prevent fires, and to clear and reconfigure circuits before soft faults progress to a hard-fault condition. Power electronics techniques can be used to implement fault current limiting to prevent voltage dips during hard faults. It is concluded that these techniques will enhance the overall safety and reliability of the distribution system.
NASA Astrophysics Data System (ADS)
Deng, Lujuan; Xie, Songhe; Cui, Jiantao; Liu, Tao
2006-11-01
It is the essential goal of intelligent greenhouse environment optimal control to enhance income of cropper and energy save. There were some characteristics such as uncertainty, imprecision, nonlinear, strong coupling, bigger inertia and different time scale in greenhouse environment control system. So greenhouse environment optimal control was not easy and especially model-based optimal control method was more difficult. So the optimal control problem of plant environment in intelligent greenhouse was researched. Hierarchical greenhouse environment control system was constructed. In the first level data measuring was carried out and executive machine was controlled. Optimal setting points of climate controlled variable in greenhouse was calculated and chosen in the second level. Market analysis and planning were completed in third level. The problem of the optimal setting point was discussed in this paper. Firstly the model of plant canopy photosynthesis responses and the model of greenhouse climate model were constructed. Afterwards according to experience of the planting expert, in daytime the optimal goals were decided according to the most maximal photosynthesis rate principle. In nighttime on plant better growth conditions the optimal goals were decided by energy saving principle. Whereafter environment optimal control setting points were computed by GA. Compared the optimal result and recording data in real system, the method is reasonable and can achieve energy saving and the maximal photosynthesis rate in intelligent greenhouse
Genetic Fuzzy Trees for Intelligent Control of Unmanned Combat Aerial Vehicles
NASA Astrophysics Data System (ADS)
Ernest, Nicholas D.
Fuzzy Logic Control is a powerful tool that has found great success in a variety of applications. This technique relies less on complex mathematics and more "expert knowledge" of a system to bring about high-performance, resilient, and efficient control through linguistic classification of inputs and outputs and if-then rules. Genetic Fuzzy Systems (GFSs) remove the need of this expert knowledge and instead rely on a Genetic Algorithm (GA) and have similarly found great success. However, the combination of these methods suffer severely from scalability; the number of rules required to control the system increases exponentially with the number of states the inputs and outputs can take. Therefor GFSs have thus far not been applicable to complex, artificial intelligence type problems. The novel Genetic Fuzzy Tree (GFT) method breaks down complex problems hierarchically, makes sub-decisions when possible, and thus greatly reduces the burden on the GA. This development significantly changes the field of possible applications for GFSs. Within this study, this is demonstrated through applying this technique to a difficult air combat problem. Looking forward to an autonomous Unmanned Combat Aerial Vehicle (UCAV) in the 2030 time-frame, it becomes apparent that the mission, flight, and ground controls will utilize the emerging paradigm of Intelligent Systems (IS); namely, the ability to learn, adapt, exhibit robustness in uncertain situations, make sense of the data collected in real-time and extrapolate when faced with scenarios significantly different from those used in training. LETHA (Learning Enhanced Tactical Handling Algorithm) was created to develop intelligent controllers for these advanced unmanned craft as the first GFT. A simulation space referred to as HADES (Hoplological Autonomous Defend and Engage Simulation) was created in which LETHA can train the UCAVs. Equipped with advanced sensors, a limited supply of Self-Defense Missiles (SDMs), and a recharging Laser Weapon System (LWS), these UCAVs can navigate a mission space, counter enemy threats, cope with losses in communications, and destroy mission-critical targets. Monte Carlo simulations of the resulting controllers were tested in mission scenarios that are distinct from the training scenarios to determine the training effectiveness in new environments and the presence of deep learning. Despite an incredibly large solution space, LETHA has demonstrated remarkable effectiveness in training intelligent controllers for the UCAV squadron and shown robustness to drastically changing states, uncertainty, and limited information while maintaining extreme levels of computational efficiency.
A threat intelligence framework for access control security in the oil industry
NASA Astrophysics Data System (ADS)
Alaskandrani, Faisal T.
The research investigates the problem raised by the rapid development in the technology industry giving security concerns in facilities built by the energy industry containing diverse platforms. The difficulty of continuous updates to network security architecture and assessment gave rise to the need to use threat intelligence frameworks to better assess and address networks security issues. Focusing on access control security to the ICS and SCADA systems that is being utilized to carry out mission critical and life threatening operations. The research evaluates different threat intelligence frameworks that can be implemented in the industry seeking the most suitable and applicable one that address the issue and provide more security measures. The validity of the result is limited to the same environment that was researched as well as the technologies being utilized. The research concludes that it is possible to utilize a Threat Intelligence framework to prioritize security in Access Control Measures in the Oil Industry.
[A novel biologic electricity signal measurement based on neuron chip].
Lei, Yinsheng; Wang, Mingshi; Sun, Tongjing; Zhu, Qiang; Qin, Ran
2006-06-01
Neuron chip is a multiprocessor with three pipeline CPU; its communication protocol and control processor are integrated in effect to carry out the function of communication, control, attemper, I/O, etc. A novel biologic electronic signal measurement network system is composed of intelligent measurement nodes with neuron chip at the core. In this study, the electronic signals such as ECG, EEG, EMG and BOS can be synthetically measured by those intelligent nodes, and some valuable diagnostic messages are found. Wavelet transform is employed in this system to analyze various biologic electronic signals due to its strong time-frequency ability of decomposing signal local character. Better effect is gained. This paper introduces the hardware structure of network and intelligent measurement node, the measurement theory and the signal figure of data acquisition and processing.
Distributed Control with Collective Intelligence
NASA Technical Reports Server (NTRS)
Wolpert, David H.; Wheeler, Kevin R.; Tumer, Kagan
1998-01-01
We consider systems of interacting reinforcement learning (RL) algorithms that do not work at cross purposes , in that their collective behavior maximizes a global utility function. We call such systems COllective INtelligences (COINs). We present the theory of designing COINs. Then we present experiments validating that theory in the context of two distributed control problems: We show that COINs perform near-optimally in a difficult variant of Arthur's bar problem [Arthur] (and in particular avoid the tragedy of the commons for that problem), and we also illustrate optimal performance in the master-slave problem.
Design of on-board parallel computer on nano-satellite
NASA Astrophysics Data System (ADS)
You, Zheng; Tian, Hexiang; Yu, Shijie; Meng, Li
2007-11-01
This paper provides one scheme of the on-board parallel computer system designed for the Nano-satellite. Based on the development request that the Nano-satellite should have a small volume, low weight, low power cost, and intelligence, this scheme gets rid of the traditional one-computer system and dual-computer system with endeavor to improve the dependability, capability and intelligence simultaneously. According to the method of integration design, it employs the parallel computer system with shared memory as the main structure, connects the telemetric system, attitude control system, and the payload system by the intelligent bus, designs the management which can deal with the static tasks and dynamic task-scheduling, protect and recover the on-site status and so forth in light of the parallel algorithms, and establishes the fault diagnosis, restoration and system restructure mechanism. It accomplishes an on-board parallel computer system with high dependability, capability and intelligence, a flexible management on hardware resources, an excellent software system, and a high ability in extension, which satisfies with the conception and the tendency of the integration electronic design sufficiently.
Keller, M David; Ziriax, John M; Barns, William; Sheffield, Benjamin; Brungart, Douglas; Thomas, Tony; Jaeger, Bobby; Yankaskas, Kurt
2017-06-01
Noise, hearing loss, and electronic signal distortion, which are common problems in military environments, can impair speech intelligibility and thereby jeopardize mission success. The current study investigated the impact that impaired communication has on operational performance in a command and control environment by parametrically degrading speech intelligibility in a simulated shipborne Combat Information Center. Experienced U.S. Navy personnel served as the study participants and were required to monitor information from multiple sources and respond appropriately to communications initiated by investigators playing the roles of other personnel involved in a realistic Naval scenario. In each block of the scenario, an adaptive intelligibility modification system employing automatic gain control was used to adjust the signal-to-noise ratio to achieve one of four speech intelligibility levels on a Modified Rhyme Test: No Loss, 80%, 60%, or 40%. Objective and subjective measures of operational performance suggested that performance systematically degraded with decreasing speech intelligibility, with the largest drop occurring between 80% and 60%. These results confirm the importance of noise reduction, good communication design, and effective hearing conservation programs to maximize the operational effectiveness of military personnel. Published by Elsevier B.V.
Intelligent systems installed in building of research centre for research purposes
NASA Astrophysics Data System (ADS)
Matusov, Jozef; Mokry, Marian; Kolkova, Zuzana; Sedivy, Stefan
2016-06-01
The attractiveness of intelligent buildings is nowadays directly connected with higher level of comfort and also the economic mode of consumption energy for heating, cooling and the total consumption of electricity for electric devices. The technologies of intelligent buildings compared with conventional solutions allow dynamic optimization in real time and make it easy for operational message. The basic division of functionality in horizontal direction is possible divide in to two areas such as Economical sophisticated residential care about the comfort of people in the building and Security features. The paper deals with description of intelligent systems which has a building of Research Centre. The building has installed the latest technology for utilization of renewable energy and also latest systems of controlling and driving all devices which contribute for economy operation by achieving the highest thermal comfort and overall safety.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zepf, J.; Rufa, G.
1994-04-01
This paper focuses on the transient performance analysis of the congestion and flow control mechanisms in CCITT Signaling System No. 7 (SS7). Special attention is directed to the impacts of the introduction of intelligent services and new applications, e.g., Freephone, credit card services, user-to-user signaling, etc. In particular, we show that signaling traffic characteristics like signaling scenarios or signaling message length as well as end-to-end signaling capabilities have a significant influence on the congestion and flow control and, therefore, on the real-time signaling performance. One important result of our performance studies is that if, e.g., intelligent services are introduced, themore » SS7 congestion and flow control does not work correctly. To solve this problem, some reinvestigations into these mechanisms would be necessary. Therefore, some approaches, e.g., modification of the Signaling Connection Control Part (SCCP) congestion control, usage of the SCCP relay function, or a redesign of the MTP flow control procedures are discussed in order to guarantee the efficacy of the congestion and flow control mechanisms also in the future. 16 refs.« less
2nd & 3rd Generation Vehicle Subsystems
NASA Technical Reports Server (NTRS)
2000-01-01
This paper contains viewgraph presentation on the "2nd & 3rd Generation Vehicle Subsystems" project. The objective behind this project is to design, develop and test advanced avionics, power systems, power control and distribution components and subsystems for insertion into a highly reliable and low-cost system for a Reusable Launch Vehicles (RLV). The project is divided into two sections: 3rd Generation Vehicle Subsystems and 2nd Generation Vehicle Subsystems. The following topics are discussed under the first section, 3rd Generation Vehicle Subsystems: supporting the NASA RLV program; high-performance guidance & control adaptation for future RLVs; Evolvable Hardware (EHW) for 3rd generation avionics description; Scaleable, Fault-tolerant Intelligent Network or X(trans)ducers (SFINIX); advance electric actuation devices and subsystem technology; hybrid power sources and regeneration technology for electric actuators; and intelligent internal thermal control. Topics discussed in the 2nd Generation Vehicle Subsystems program include: design, development and test of a robust, low-maintenance avionics with no active cooling requirements and autonomous rendezvous and docking systems; design and development of a low maintenance, high reliability, intelligent power systems (fuel cells and battery); and design of a low cost, low maintenance high horsepower actuation systems (actuators).
An intelligent system with EMG-based joint angle estimation for telemanipulation.
Suryanarayanan, S; Reddy, N P; Gupta, V
1996-01-01
Bio-control of telemanipulators is being researched as an alternate control strategy. This study investigates the use of surface EMG from the biceps to predict joint angle during flexion of the arm that can be used to control an anthropomorphic telemanipulator. An intelligent system based on neural networks and fuzzy logic has been developed to use the processed surface EMG signal and predict the joint angle. The system has been tested on various angles of flexion-extension of the arm and at several speeds of flexion-extension. Preliminary results show the RMS error between the predicted angle and the actual angle to be less than 3% during training and less than 15% during testing. The technique of direct bio-control using EMG has the potential as an interface for telemanipulation applications.
Distributed intelligent control and status networking
NASA Technical Reports Server (NTRS)
Fortin, Andre; Patel, Manoj
1993-01-01
Over the past two years, the Network Control Systems Branch (Code 532) has been investigating control and status networking technologies. These emerging technologies use distributed processing over a network to accomplish a particular custom task. These networks consist of small intelligent 'nodes' that perform simple tasks. Containing simple, inexpensive hardware and software, these nodes can be easily developed and maintained. Once networked, the nodes can perform a complex operation without a central host. This type of system provides an alternative to more complex control and status systems which require a central computer. This paper will provide some background and discuss some applications of this technology. It will also demonstrate the suitability of one particular technology for the Space Network (SN) and discuss the prototyping activities of Code 532 utilizing this technology.
NASA Technical Reports Server (NTRS)
Zeller, Mary V.; Lei, Jih-Fen
2002-01-01
The Instrumentation and Controls Division is responsible for planning, conducting and directing basic and applied research on advanced instrumentation and controls technologies for aerospace propulsion and power applications. The Division's advanced research in harsh environment sensors, high temperature high power electronics, MEMS (microelectromechanical systems), nanotechnology, high data rate optical instrumentation, active and intelligent controls, and health monitoring and management will enable self-feeling, self-thinking, self-reconfiguring and self-healing Aerospace Propulsion Systems. These research areas address Agency challenges to deliver aerospace systems with reduced size and weight, and increased functionality and intelligence for future NASA missions in advanced aeronautics, economical space transportation, and pioneering space exploration. The Division also actively supports educational and technology transfer activities aimed at benefiting all humankind.
Intelligent tutoring in the spacecraft command/control environment
NASA Technical Reports Server (NTRS)
Truszkowski, Walter F.
1988-01-01
The spacecraft command/control environment is becoming increasingly complex. As we enter the era of Space Station and the era of more highly automated systems, it is evident that the critical roles played by operations personnel in supervising the many required control center system components is becoming more cognitively demanding. In addition, the changing and emerging roles in the operations picture have far-reaching effects on the achievement of mission objectives. Thus highly trained and competent operations personnel are mandatory for success. Keeping pace with these developments has been computer-aided instruction utilizing various artificial intelligence technologies. The impacts of this growing capability on the stringent requirements for efficient and effective control center operations personnel is an area of much concentrated study. Some of the research and development of automated tutoring systems for the spacecraft command/control environment is addressed.
Hybrid neuro-heuristic methodology for simulation and control of dynamic systems over time interval.
Woźniak, Marcin; Połap, Dawid
2017-09-01
Simulation and positioning are very important aspects of computer aided engineering. To process these two, we can apply traditional methods or intelligent techniques. The difference between them is in the way they process information. In the first case, to simulate an object in a particular state of action, we need to perform an entire process to read values of parameters. It is not very convenient for objects for which simulation takes a long time, i.e. when mathematical calculations are complicated. In the second case, an intelligent solution can efficiently help on devoted way of simulation, which enables us to simulate the object only in a situation that is necessary for a development process. We would like to present research results on developed intelligent simulation and control model of electric drive engine vehicle. For a dedicated simulation method based on intelligent computation, where evolutionary strategy is simulating the states of the dynamic model, an intelligent system based on devoted neural network is introduced to control co-working modules while motion is in time interval. Presented experimental results show implemented solution in situation when a vehicle transports things over area with many obstacles, what provokes sudden changes in stability that may lead to destruction of load. Therefore, applied neural network controller prevents the load from destruction by positioning characteristics like pressure, acceleration, and stiffness voltage to absorb the adverse changes of the ground. Copyright © 2017 Elsevier Ltd. All rights reserved.
Human Centered Autonomous and Assistant Systems Testbed for Exploration Operations
NASA Technical Reports Server (NTRS)
Malin, Jane T.; Mount, Frances; Carreon, Patricia; Torney, Susan E.
2001-01-01
The Engineering and Mission Operations Directorates at NASA Johnson Space Center are combining laboratories and expertise to establish the Human Centered Autonomous and Assistant Systems Testbed for Exploration Operations. This is a testbed for human centered design, development and evaluation of intelligent autonomous and assistant systems that will be needed for human exploration and development of space. This project will improve human-centered analysis, design and evaluation methods for developing intelligent software. This software will support human-machine cognitive and collaborative activities in future interplanetary work environments where distributed computer and human agents cooperate. We are developing and evaluating prototype intelligent systems for distributed multi-agent mixed-initiative operations. The primary target domain is control of life support systems in a planetary base. Technical approaches will be evaluated for use during extended manned tests in the target domain, the Bioregenerative Advanced Life Support Systems Test Complex (BIO-Plex). A spinoff target domain is the International Space Station (ISS) Mission Control Center (MCC). Prodl}cts of this project include human-centered intelligent software technology, innovative human interface designs, and human-centered software development processes, methods and products. The testbed uses adjustable autonomy software and life support systems simulation models from the Adjustable Autonomy Testbed, to represent operations on the remote planet. Ground operations prototypes and concepts will be evaluated in the Exploration Planning and Operations Center (ExPOC) and Jupiter Facility.
Research and development of service robot platform based on artificial psychology
NASA Astrophysics Data System (ADS)
Zhang, Xueyuan; Wang, Zhiliang; Wang, Fenhua; Nagai, Masatake
2007-12-01
Some related works about the control architecture of robot system are briefly summarized. According to the discussions above, this paper proposes control architecture of service robot based on artificial psychology. In this control architecture, the robot can obtain the cognition of environment through sensors, and then be handled with intelligent model, affective model and learning model, and finally express the reaction to the outside stimulation through its behavior. For better understanding the architecture, hierarchical structure is also discussed. The control system of robot can be divided into five layers, namely physical layer, drives layer, information-processing and behavior-programming layer, application layer and system inspection and control layer. This paper shows how to achieve system integration from hardware modules, software interface and fault diagnosis. Embedded system GENE-8310 is selected as the PC platform of robot APROS-I, and its primary memory media is CF card. The arms and body of the robot are constituted by 13 motors and some connecting fittings. Besides, the robot has a robot head with emotional facial expression, and the head has 13 DOFs. The emotional and intelligent model is one of the most important parts in human-machine interaction. In order to better simulate human emotion, an emotional interaction model for robot is proposed according to the theory of need levels of Maslom and mood information of Siminov. This architecture has already been used in our intelligent service robot.
Intelligent fuzzy controller for event-driven real time systems
NASA Technical Reports Server (NTRS)
Grantner, Janos; Patyra, Marek; Stachowicz, Marian S.
1992-01-01
Most of the known linguistic models are essentially static, that is, time is not a parameter in describing the behavior of the object's model. In this paper we show a model for synchronous finite state machines based on fuzzy logic. Such finite state machines can be used to build both event-driven, time-varying, rule-based systems and the control unit section of a fuzzy logic computer. The architecture of a pipelined intelligent fuzzy controller is presented, and the linguistic model is represented by an overall fuzzy relation stored in a single rule memory. A VLSI integrated circuit implementation of the fuzzy controller is suggested. At a clock rate of 30 MHz, the controller can perform 3 MFLIPS on multi-dimensional fuzzy data.
DOT National Transportation Integrated Search
1996-08-01
KEYWORDS: : TRAFFIC SIGNAL CONTROL/REAL-TIME ADAPTIVE CONTROL, ADVANCED TRAFFIC MANAGEMENT SYSTEMS OR ATMS : THIS DOCUMENT PRESENTS THE METHODS, ASSUMPTIONS AND PROCEDURES USED TO COLLECT THE BASELINE INFORMATION. THE DOCUMENTATION OF SYSTEMS ...
Implementation of an Intelligent Control System
1992-05-01
there- fore implemented in a portable equipment rack. The controls computer consists of a microcomputer running a real time operating system , interface...circuit boards are mounted in an industry standard Multibus I chassis. The microcomputer runs the iRMX real time operating system . This operating system
Virtual reality for intelligent and interactive operating, training, and visualization systems
NASA Astrophysics Data System (ADS)
Freund, Eckhard; Rossmann, Juergen; Schluse, Michael
2000-10-01
Virtual Reality Methods allow a new and intuitive way of communication between man and machine. The basic idea of Virtual Reality (VR) is the generation of artificial computer simulated worlds, which the user not only can look at but also can interact with actively using data glove and data helmet. The main emphasis for the use of such techniques at the IRF is the development of a new generation of operator interfaces for the control of robots and other automation components and for intelligent training systems for complex tasks. The basic idea of the methods developed at the IRF for the realization of Projective Virtual Reality is to let the user work in the virtual world as he would act in reality. The user actions are recognized by the Virtual reality System and by means of new and intelligent control software projected onto the automation components like robots which afterwards perform the necessary actions in reality to execute the users task. In this operation mode the user no longer has to be a robot expert to generate tasks for robots or to program them, because intelligent control software recognizes the users intention and generated automatically the commands for nearly every automation component. Now, Virtual Reality Methods are ideally suited for universal man-machine-interfaces for the control and supervision of a big class of automation components, interactive training and visualization systems. The Virtual Reality System of the IRF-COSIMIR/VR- forms the basis for different projects starting with the control of space automation systems in the projects CIROS, VITAL and GETEX, the realization of a comprehensive development tool for the International Space Station and last but not least with the realistic simulation fire extinguishing, forest machines and excavators which will be presented in the final paper in addition to the key ideas of this Virtual Reality System.
Design and Implementation of a Smart Home System Using Multisensor Data Fusion Technology.
Hsu, Yu-Liang; Chou, Po-Huan; Chang, Hsing-Cheng; Lin, Shyan-Lung; Yang, Shih-Chin; Su, Heng-Yi; Chang, Chih-Chien; Cheng, Yuan-Sheng; Kuo, Yu-Chen
2017-07-15
This paper aims to develop a multisensor data fusion technology-based smart home system by integrating wearable intelligent technology, artificial intelligence, and sensor fusion technology. We have developed the following three systems to create an intelligent smart home environment: (1) a wearable motion sensing device to be placed on residents' wrists and its corresponding 3D gesture recognition algorithm to implement a convenient automated household appliance control system; (2) a wearable motion sensing device mounted on a resident's feet and its indoor positioning algorithm to realize an effective indoor pedestrian navigation system for smart energy management; (3) a multisensor circuit module and an intelligent fire detection and alarm algorithm to realize a home safety and fire detection system. In addition, an intelligent monitoring interface is developed to provide in real-time information about the smart home system, such as environmental temperatures, CO concentrations, communicative environmental alarms, household appliance status, human motion signals, and the results of gesture recognition and indoor positioning. Furthermore, an experimental testbed for validating the effectiveness and feasibility of the smart home system was built and verified experimentally. The results showed that the 3D gesture recognition algorithm could achieve recognition rates for automated household appliance control of 92.0%, 94.8%, 95.3%, and 87.7% by the 2-fold cross-validation, 5-fold cross-validation, 10-fold cross-validation, and leave-one-subject-out cross-validation strategies. For indoor positioning and smart energy management, the distance accuracy and positioning accuracy were around 0.22% and 3.36% of the total traveled distance in the indoor environment. For home safety and fire detection, the classification rate achieved 98.81% accuracy for determining the conditions of the indoor living environment.
Design and Implementation of a Smart Home System Using Multisensor Data Fusion Technology
Chou, Po-Huan; Chang, Hsing-Cheng; Lin, Shyan-Lung; Yang, Shih-Chin; Su, Heng-Yi; Chang, Chih-Chien; Cheng, Yuan-Sheng; Kuo, Yu-Chen
2017-01-01
This paper aims to develop a multisensor data fusion technology-based smart home system by integrating wearable intelligent technology, artificial intelligence, and sensor fusion technology. We have developed the following three systems to create an intelligent smart home environment: (1) a wearable motion sensing device to be placed on residents’ wrists and its corresponding 3D gesture recognition algorithm to implement a convenient automated household appliance control system; (2) a wearable motion sensing device mounted on a resident’s feet and its indoor positioning algorithm to realize an effective indoor pedestrian navigation system for smart energy management; (3) a multisensor circuit module and an intelligent fire detection and alarm algorithm to realize a home safety and fire detection system. In addition, an intelligent monitoring interface is developed to provide in real-time information about the smart home system, such as environmental temperatures, CO concentrations, communicative environmental alarms, household appliance status, human motion signals, and the results of gesture recognition and indoor positioning. Furthermore, an experimental testbed for validating the effectiveness and feasibility of the smart home system was built and verified experimentally. The results showed that the 3D gesture recognition algorithm could achieve recognition rates for automated household appliance control of 92.0%, 94.8%, 95.3%, and 87.7% by the 2-fold cross-validation, 5-fold cross-validation, 10-fold cross-validation, and leave-one-subject-out cross-validation strategies. For indoor positioning and smart energy management, the distance accuracy and positioning accuracy were around 0.22% and 3.36% of the total traveled distance in the indoor environment. For home safety and fire detection, the classification rate achieved 98.81% accuracy for determining the conditions of the indoor living environment. PMID:28714884
Multistep Methods for Integrating the Solar System
1988-07-01
Technical Report 1055 [Multistep Methods for Integrating the Solar System 0 Panayotis A. Skordos’ MIT Artificial Intelligence Laboratory DTIC S D g8...RMA ELEENT. PROECT. TASK Artific ial Inteligence Laboratory ARE1A G WORK UNIT NUMBERS 545 Technology Square Cambridge, MA 02139 IL. CONTROLLING...describes research done at the Artificial Intelligence Laboratory of the Massachusetts Institute of Technology, supported by the Advanced Research Projects
NASA Astrophysics Data System (ADS)
Boyd, Alexander B.; Crutchfield, James P.
2016-05-01
We introduce a deterministic chaotic system—the Szilard map—that encapsulates the measurement, control, and erasure protocol by which Maxwellian demons extract work from a heat reservoir. Implementing the demon's control function in a dynamical embodiment, our construction symmetrizes the demon and the thermodynamic system, allowing one to explore their functionality and recover the fundamental trade-off between the thermodynamic costs of dissipation due to measurement and those due to erasure. The map's degree of chaos—captured by the Kolmogorov-Sinai entropy—is the rate of energy extraction from the heat bath. Moreover, an engine's statistical complexity quantifies the minimum necessary system memory for it to function. In this way, dynamical instability in the control protocol plays an essential and constructive role in intelligent thermodynamic systems.
Wisdom Appliance Control System
NASA Astrophysics Data System (ADS)
Hendrick; Jheng, Jyun-Teng; Tsai, Chen-Chai; Liou, Jia-Wei; Wang, Zhi-Hao; Jong, Gwo-Jia
2017-07-01
Intelligent appliances wisdom involves security, home care, convenient and energy saving, but the home automation system is still one of the core unit, and also using micro-processing electronics technology to centralized and control the home electrical products and systems, such as: lighting, television, fan, air conditioning, stereo, it composed of front-controller systems and back-controller panels, user using front-controller to control command, and then through the back-controller to powered the device.
Linear quadratic servo control of a reusable rocket engine
NASA Technical Reports Server (NTRS)
Musgrave, Jeffrey L.
1991-01-01
A design method for a servo compensator is developed in the frequency domain using singular values. The method is applied to a reusable rocket engine. An intelligent control system for reusable rocket engines was proposed which includes a diagnostic system, a control system, and an intelligent coordinator which determines engine control strategies based on the identified failure modes. The method provides a means of generating various linear multivariable controllers capable of meeting performance and robustness specifications and accommodating failure modes identified by the diagnostic system. Command following with set point control is necessary for engine operation. A Kalman filter reconstructs the state while loop transfer recovery recovers the required degree of robustness while maintaining satisfactory rejection of sensor noise from the command error. The approach is applied to the design of a controller for a rocket engine satisfying performance constraints in the frequency domain. Simulation results demonstrate the performance of the linear design on a nonlinear engine model over all power levels during mainstage operation.
DOT National Transportation Integrated Search
2000-09-01
Intelligent transportation systems (ITS) include large numbers of traffic sensors that collect enormous quantities of data. The data provided by ITS is necessary for advanced forms of control, however basic forms of control, primarily time-of-day (TO...
When intelligence is in control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bellman, K.L.
Each time a discipline redefines itself, I look at it as a sign of growth, because often such redefinition means that there is new theory, new methods, or new {open_quotes}disciples{close_quote} from other disciplines who are stretching, enlarging, and deepening the field. Such is the case with semiotics. Deeply entwined with the concepts of {open_quotes}intelligent systems{close_quotes}, {open_quotes}intelligent control{close_quotes}, and complex systems theory, semiotics struggles to develop representations, notations (systems of representations), and models (functionally-oriented sets of related representations) to study systems that may or may not be usefully described as employing representations, notations, and models themselves. That last, of course, ismore » the main problem that semiotics faces. Semiotics, like psychology, philosophy, or any other self-referential discipline, is burdened by the eye attempting to study the eye or the mind studying the mind, or more to the point here, the modeler studying the modeling acts of others.« less
Next generation control system for reflexive aerostructures
NASA Astrophysics Data System (ADS)
Maddux, Michael R.; Meents, Elizabeth P.; Barnell, Thomas J.; Cable, Kristin M.; Hemmelgarn, Christopher; Margraf, Thomas W.; Havens, Ernie
2010-04-01
Cornerstone Research Group Inc. (CRG) has developed and demonstrated a composite structural solution called reflexive composites for aerospace applications featuring CRG's healable shape memory polymer (SMP) matrix. In reflexive composites, an integrated structural health monitoring (SHM) system autonomously monitors the structural health of composite aerospace structures, while integrated intelligent controls monitor data from the SHM system to characterize damage and initiate healing when damage is detected. Development of next generation intelligent controls for reflexive composites were initiated for the purpose of integrating prognostic health monitoring capabilities into the reflexive composite structural solution. Initial efforts involved data generation through physical inspections and mechanical testing. Compression after impact (CAI) testing was conducted on composite-reinforced shape memory polymer samples to induce damage and investigate the effectiveness of matrix healing on mechanical performance. Non-destructive evaluation (NDE) techniques were employed to observe and characterize material damage. Restoration of mechanical performance was demonstrated through healing, while NDE data showed location and size of damage and verified mitigation of damage post-healing. Data generated was used in the development of next generation reflexive controls software. Data output from the intelligent controls could serve as input to Integrated Vehicle Health Management (IVHM) systems and Integrated Resilient Aircraft Controls (IRAC). Reflexive composite technology has the ability to reduce maintenance required on composite structures through healing, offering potential to significantly extend service life of aerospace vehicles and reduce operating and lifecycle costs.
NASA Technical Reports Server (NTRS)
Rossomando, Philip J.
1992-01-01
A description is given of UNICORN, a prototype system developed for the purpose of investigating artificial intelligence (AI) concepts supporting spacecraft autonomy. UNICORN employs thematic reasoning, of the type first described by Rodger Schank of Northwestern University, to allow the context-sensitive control of multiple intelligent agents within a blackboard based environment. In its domain of application, UNICORN demonstrates the ability to reason teleologically with focused knowledge. Also presented are some of the lessons learned as a result of this effort. These lessons apply to any effort wherein system level autonomy is the objective.
Multispectral Image Processing for Plants
NASA Technical Reports Server (NTRS)
Miles, Gaines E.
1991-01-01
The development of a machine vision system to monitor plant growth and health is one of three essential steps towards establishing an intelligent system capable of accurately assessing the state of a controlled ecological life support system for long-term space travel. Besides a network of sensors, simulators are needed to predict plant features, and artificial intelligence algorithms are needed to determine the state of a plant based life support system. Multispectral machine vision and image processing can be used to sense plant features, including health and nutritional status.
Acting to gain information: Real-time reasoning meets real-time perception
NASA Technical Reports Server (NTRS)
Rosenschein, Stan
1994-01-01
Recent advances in intelligent reactive systems suggest new approaches to the problem of deriving task-relevant information from perceptual systems in real time. The author will describe work in progress aimed at coupling intelligent control mechanisms to real-time perception systems, with special emphasis on frame rate visual measurement systems. A model for integrated reasoning and perception will be discussed, and recent progress in applying these ideas to problems of sensor utilization for efficient recognition and tracking will be described.
NASA Technical Reports Server (NTRS)
Broderick, Ron
1997-01-01
The ultimate goal of this report was to integrate the powerful tools of artificial intelligence into the traditional process of software development. To maintain the US aerospace competitive advantage, traditional aerospace and software engineers need to more easily incorporate the technology of artificial intelligence into the advanced aerospace systems being designed today. The future goal was to transition artificial intelligence from an emerging technology to a standard technology that is considered early in the life cycle process to develop state-of-the-art aircraft automation systems. This report addressed the future goal in two ways. First, it provided a matrix that identified typical aircraft automation applications conducive to various artificial intelligence methods. The purpose of this matrix was to provide top-level guidance to managers contemplating the possible use of artificial intelligence in the development of aircraft automation. Second, the report provided a methodology to formally evaluate neural networks as part of the traditional process of software development. The matrix was developed by organizing the discipline of artificial intelligence into the following six methods: logical, object representation-based, distributed, uncertainty management, temporal and neurocomputing. Next, a study of existing aircraft automation applications that have been conducive to artificial intelligence implementation resulted in the following five categories: pilot-vehicle interface, system status and diagnosis, situation assessment, automatic flight planning, and aircraft flight control. The resulting matrix provided management guidance to understand artificial intelligence as it applied to aircraft automation. The approach taken to develop a methodology to formally evaluate neural networks as part of the software engineering life cycle was to start with the existing software quality assurance standards and to change these standards to include neural network development. The changes were to include evaluation tools that can be applied to neural networks at each phase of the software engineering life cycle. The result was a formal evaluation approach to increase the product quality of systems that use neural networks for their implementation.
OFMspert: An architecture for an operator's associate that evolves to an intelligent tutor
NASA Technical Reports Server (NTRS)
Mitchell, Christine M.
1991-01-01
With the emergence of new technology for both human-computer interaction and knowledge-based systems, a range of opportunities exist which enhance the effectiveness and efficiency of controllers of high-risk engineering systems. The design of an architecture for an operator's associate is described. This associate is a stand-alone model-based system designed to interact with operators of complex dynamic systems, such as airplanes, manned space systems, and satellite ground control systems in ways comparable to that of a human assistant. The operator function model expert system (OFMspert) architecture and the design and empirical validation of OFMspert's understanding component are described. The design and validation of OFMspert's interactive and control components are also described. A description of current work in which OFMspert provides the foundation in the development of an intelligent tutor that evolves to an assistant, as operator expertise evolves from novice to expert, is provided.
Joint U.S./Japan Conference on Adaptive Structures, 1st, Maui, HI, Nov. 13-15, 1990, Proceedings
NASA Technical Reports Server (NTRS)
Wada, Ben K. (Editor); Fanson, James L. (Editor); Miura, Koryo (Editor)
1991-01-01
The present volume of adaptive structures discusses the development of control laws for an orbiting tethered antenna/reflector system test scale model, the sizing of active piezoelectric struts for vibration suppression on a space-based interferometer, the control design of a space station mobile transporter with multiple constraints, and optimum configuration control of an intelligent truss structure. Attention is given to the formulation of full state feedback for infinite order structural systems, robustness issues in the design of smart structures, passive piezoelectric vibration damping, shape control experiments with a functional model for large optical reflectors, and a mathematical basis for the design optimization of adaptive trusses in precision control. Topics addressed include approaches to the optimal adaptive geometries of intelligent truss structures, the design of an automated manufacturing system for tubular smart structures, the Sandia structural control experiments, and the zero-gravity dynamics of space structures in parabolic aircraft flight.
Identification and control of a multizone crystal growth furnace
NASA Technical Reports Server (NTRS)
Batur, C.; Sharpless, R. B.; Duval, W. M. B.; Rosenthal, B. N.; Singh, N. B.
1992-01-01
This paper presents an intelligent adaptive control system for the control of a solid-liquid interface of a crystal while it is growing via directional solidification inside a multizone transparent furnace. The task of the process controller is to establish a user-specified axial temperature profile and to maintain a desirable interface shape. Both single-input-single-output and multi-input-multi-output adaptive pole placement algorithms have been used to control the temperature. Also described is an intelligent measurement system to assess the shape of the crystal while it is growing. A color video imaging system observes the crystal in real time and determines the position and the shape of the interface. This information is used to evaluate the crystal growth rate, and to analyze the effects of translational velocity and temperature profiles on the shape of the interface. Creation of this knowledge base is the first step to incorporate image processing into furnace control.
Joint U.S./Japan Conference on Adaptive Structures, 1st, Maui, HI, Nov. 13-15, 1990, Proceedings
NASA Astrophysics Data System (ADS)
Wada, Ben K.; Fanson, James L.; Miura, Koryo
1991-11-01
The present volume of adaptive structures discusses the development of control laws for an orbiting tethered antenna/reflector system test scale model, the sizing of active piezoelectric struts for vibration suppression on a space-based interferometer, the control design of a space station mobile transporter with multiple constraints, and optimum configuration control of an intelligent truss structure. Attention is given to the formulation of full state feedback for infinite order structural systems, robustness issues in the design of smart structures, passive piezoelectric vibration damping, shape control experiments with a functional model for large optical reflectors, and a mathematical basis for the design optimization of adaptive trusses in precision control. Topics addressed include approaches to the optimal adaptive geometries of intelligent truss structures, the design of an automated manufacturing system for tubular smart structures, the Sandia structural control experiments, and the zero-gravity dynamics of space structures in parabolic aircraft flight.
2016-05-31
control, communications, computers, intelligence , surveillance, and reconnaissance) systems. China’s naval modernization effort also includes...developments involving China, 1 2015 and 2009 reports on China’s navy from the Office of Naval Intelligence (ONI), 2 published reference sources such as...Naval Intelligence , The PLA Navy, New Capabilities and Missions for the 21st Century, undated but released in April 2015, 47 pp., and The People’s
Adjustment of gripping force by optical systems
NASA Astrophysics Data System (ADS)
Jalba, C. K.; Barz, C.
2018-01-01
With increasing automation, robotics also requires ever more intelligent solutions in the handling of various tasks. In this context, many grippers must also be re-designed. For this, they must always be adapted for different requirements. The equipment of the gripper systems with sensors should help to make the gripping process more intelligent. In order to achieve such objectives, optical systems can also be used. This work analyzes how the gripping force can be adjusted by means of an optical recognition. The result of this work is the creation of a connection between optical recognition, tolerances, gripping force and real-time control. In this way, algorithms can be created, with the aid of which robot grippers as well as other gripping systems become more intelligent.
DOT National Transportation Integrated Search
2015-05-01
The research team developed a comprehensive Benefit/Cost (B/C) analysis framework to evaluate existing and anticipated : intelligent transportation system (ITS) strategies, particularly, adaptive traffic control systems and ramp metering systems, : i...
NASA Technical Reports Server (NTRS)
Myers, William; Winter, Steve
2006-01-01
The General Electric Reliable and Affordable Controls effort under the NASA Advanced Subsonic Technology (AST) Program has designed, fabricated, and tested advanced controls hardware and software to reduce emissions and improve engine safety and reliability. The original effort consisted of four elements: 1) a Hydraulic Multiplexer; 2) Active Combustor Control; 3) a Variable Displacement Vane Pump (VDVP); and 4) Intelligent Engine Control. The VDVP and Intelligent Engine Control elements were cancelled due to funding constraints and are reported here only to the state they progressed. The Hydraulic Multiplexing element developed and tested a prototype which improves reliability by combining the functionality of up to 16 solenoids and servo-valves into one component with a single electrically powered force motor. The Active Combustor Control element developed intelligent staging and control strategies for low emission combustors. This included development and tests of a Controlled Pressure Fuel Nozzle for fuel sequencing, a Fuel Multiplexer for individual fuel cup metering, and model-based control logic. Both the Hydraulic Multiplexer and Controlled Pressure Fuel Nozzle system were cleared for engine test. The Fuel Multiplexer was cleared for combustor rig test which must be followed by an engine test to achieve full maturation.
A Survey of Intelligent Control and Health Management Technologies for Aircraft Propulsion Systems
NASA Technical Reports Server (NTRS)
Litt, Jonathan S.; Simon, Donald L.; Garg, Sanjay; Guo, Ten-Heui; Mercer, Carolyn; Behbahani, Alireza; Bajwa, Anupa; Jensen, Daniel T.
2005-01-01
Intelligent Control and Health Management technology for aircraft propulsion systems is much more developed in the laboratory than in practice. With a renewed emphasis on reducing engine life cycle costs, improving fuel efficiency, increasing durability and life, etc., driven by various government programs, there is a strong push to move these technologies out of the laboratory and onto the engine. This paper describes the existing state of engine control and on-board health management, and surveys some specific technologies under development that will enable an aircraft propulsion system to operate in an intelligent way--defined as self-diagnostic, self-prognostic, self-optimizing, and mission adaptable. These technologies offer the potential for creating extremely safe, highly reliable systems. The technologies will help to enable a level of performance that far exceeds that of today s propulsion systems in terms of reduction of harmful emissions, maximization of fuel efficiency, and minimization of noise, while improving system affordability and safety. Technologies that are discussed include various aspects of propulsion control, diagnostics, prognostics, and their integration. The paper focuses on the improvements that can be achieved through innovative software and algorithms. It concentrates on those areas that do not require significant advances in sensors and actuators to make them achievable, while acknowledging the additional benefit that can be realized when those technologies become available. The paper also discusses issues associated with the introduction of some of the technologies.
Research on Intelligent Control System of DC SQUID Magnetometer Parameters for Multi-channel System
NASA Astrophysics Data System (ADS)
Chen, Hua; Yang, Kang; Lu, Li; Kong, Xiangyan; Wang, Hai; Wu, Jun; Wang, Yongliang
2018-07-01
In a multi-channel SQUID measurement system, adjusting device parameters to optimal condition for all channels is time-consuming. In this paper, an intelligent control system is presented to determine the optimal working point of devices which is automatic and more efficient comparing to the manual one. An optimal working point searching algorithm is introduced as the core component of the control system. In this algorithm, the bias voltage V_bias is step scanned to obtain the maximal value of the peak-to-peak current value I_pp of the SQUID magnetometer modulation curve. We choose this point as the optimal one. Using the above control system, more than 30 weakly damped SQUID magnetometers with area of 5 × 5 mm^2 or 10 × 10 mm^2 are adjusted and a 36-channel magnetocardiography system perfectly worked in a magnetically shielded room. The average white flux noise is 15 {μ Φ }_0/Hz^{1/2}.
Research on Intelligent Control System of DC SQUID Magnetometer Parameters for Multi-channel System
NASA Astrophysics Data System (ADS)
Chen, Hua; Yang, Kang; Lu, Li; Kong, Xiangyan; Wang, Hai; Wu, Jun; Wang, Yongliang
2018-03-01
In a multi-channel SQUID measurement system, adjusting device parameters to optimal condition for all channels is time-consuming. In this paper, an intelligent control system is presented to determine the optimal working point of devices which is automatic and more efficient comparing to the manual one. An optimal working point searching algorithm is introduced as the core component of the control system. In this algorithm, the bias voltage V_bias is step scanned to obtain the maximal value of the peak-to-peak current value I_pp of the SQUID magnetometer modulation curve. We choose this point as the optimal one. Using the above control system, more than 30 weakly damped SQUID magnetometers with area of 5 × 5 mm^2 or 10 × 10 mm^2 are adjusted and a 36-channel magnetocardiography system perfectly worked in a magnetically shielded room. The average white flux noise is 15 μΦ_0/Hz^{1/2}.
A Boltzmann machine for the organization of intelligent machines
NASA Technical Reports Server (NTRS)
Moed, Michael C.; Saridis, George N.
1989-01-01
In the present technological society, there is a major need to build machines that would execute intelligent tasks operating in uncertain environments with minimum interaction with a human operator. Although some designers have built smart robots, utilizing heuristic ideas, there is no systematic approach to design such machines in an engineering manner. Recently, cross-disciplinary research from the fields of computers, systems AI and information theory has served to set the foundations of the emerging area of the design of intelligent machines. Since 1977 Saridis has been developing an approach, defined as Hierarchical Intelligent Control, designed to organize, coordinate and execute anthropomorphic tasks by a machine with minimum interaction with a human operator. This approach utilizes analytical (probabilistic) models to describe and control the various functions of the intelligent machine structured by the intuitively defined principle of Increasing Precision with Decreasing Intelligence (IPDI) (Saridis 1979). This principle, even though resembles the managerial structure of organizational systems (Levis 1988), has been derived on an analytic basis by Saridis (1988). The purpose is to derive analytically a Boltzmann machine suitable for optimal connection of nodes in a neural net (Fahlman, Hinton, Sejnowski, 1985). Then this machine will serve to search for the optimal design of the organization level of an intelligent machine. In order to accomplish this, some mathematical theory of the intelligent machines will be first outlined. Then some definitions of the variables associated with the principle, like machine intelligence, machine knowledge, and precision will be made (Saridis, Valavanis 1988). Then a procedure to establish the Boltzmann machine on an analytic basis will be presented and illustrated by an example in designing the organization level of an Intelligent Machine. A new search technique, the Modified Genetic Algorithm, is presented and proved to converge to the minimum of a cost function. Finally, simulations will show the effectiveness of a variety of search techniques for the intelligent machine.
The foundations of plant intelligence.
Trewavas, Anthony
2017-06-06
Intelligence is defined for wild plants and its role in fitness identified. Intelligent behaviour exhibited by single cells and systems similarity between the interactome and connectome indicates neural systems are not necessary for intelligent capabilities. Plants sense and respond to many environmental signals that are assessed to competitively optimize acquisition of patchily distributed resources. Situations of choice engender motivational states in goal-directed plant behaviour; consequent intelligent decisions enable efficient gain of energy over expenditure. Comparison of swarm intelligence and plant behaviour indicates the origins of plant intelligence lie in complex communication and is exemplified by cambial control of branch function. Error correction in behaviours indicates both awareness and intention as does the ability to count to five. Volatile organic compounds are used as signals in numerous plant interactions. Being complex in composition and often species and individual specific, they may represent the plant language and account for self and alien recognition between individual plants. Game theory has been used to understand competitive and cooperative interactions between plants and microbes. Some unexpected cooperative behaviour between individuals and potential aliens has emerged. Behaviour profiting from experience, another simple definition of intelligence, requires both learning and memory and is indicated in the priming of herbivory, disease and abiotic stresses.
The foundations of plant intelligence
2017-01-01
Intelligence is defined for wild plants and its role in fitness identified. Intelligent behaviour exhibited by single cells and systems similarity between the interactome and connectome indicates neural systems are not necessary for intelligent capabilities. Plants sense and respond to many environmental signals that are assessed to competitively optimize acquisition of patchily distributed resources. Situations of choice engender motivational states in goal-directed plant behaviour; consequent intelligent decisions enable efficient gain of energy over expenditure. Comparison of swarm intelligence and plant behaviour indicates the origins of plant intelligence lie in complex communication and is exemplified by cambial control of branch function. Error correction in behaviours indicates both awareness and intention as does the ability to count to five. Volatile organic compounds are used as signals in numerous plant interactions. Being complex in composition and often species and individual specific, they may represent the plant language and account for self and alien recognition between individual plants. Game theory has been used to understand competitive and cooperative interactions between plants and microbes. Some unexpected cooperative behaviour between individuals and potential aliens has emerged. Behaviour profiting from experience, another simple definition of intelligence, requires both learning and memory and is indicated in the priming of herbivory, disease and abiotic stresses. PMID:28479977
Application Research of Quality Control Technology of Asphalt Pavement based on GPS Intelligent
NASA Astrophysics Data System (ADS)
Wang, Min; Gao, Bo; Shang, Fei; Wang, Tao
2017-10-01
Due to the difficulty of steel deck pavement asphalt layer compaction caused by the effect of the flexible supporting system (orthotropic steel deck plate), it is usually hard and difficult to control for the site compactness to reach the design goal. The intelligent compaction technology is based on GPS control technology and real-time acquisition of actual compaction tracks, and then forms a cloud maps of compaction times, which guide the roller operator to do the compaction in accordance with the design requirement to ensure the deck compaction technology and compaction quality. From the actual construction situation of actual bridge and checked data, the intelligent compaction technology is significant in guaranteeing the steel deck asphalt pavement compactness and quality stability.
Metrics of a Paradigm for Intelligent Control
NASA Technical Reports Server (NTRS)
Hexmoor, Henry
1999-01-01
We present metrics for quantifying organizational structures of complex control systems intended for controlling long-lived robotic or other autonomous applications commonly found in space applications. Such advanced control systems are often called integration platforms or agent architectures. Reported metrics span concerns about time, resources, software engineering, and complexities in the world.
Cao, Wujing; Yu, Hongliu; Zhao, Weiliang; Li, Jin; Wei, Xiaodong
2018-01-01
Prosthetic knee is the most important component of lower limb prosthesis. Speed adaptive for prosthetic knee during swing flexion is the key method to realize physiological gait. This study aims to discuss the target of physiological gait, propose a speed adaptive control method during swing flexion and research the damping adjustment law of intelligent hydraulic prosthetic knee. According to the physiological gait trials of healthy people, the control target during swing flexion is defined. A new prosthetic knee with fuzzy logical control during swing flexion is designed to realize the damping adjustment automatically. The function simulation and evaluation system of intelligent knee prosthesis is provided. Speed adaptive control test of the intelligent prosthetic knee in different velocities are researched. The maximum swing flexion of the knee angle is set between sixty degree and seventy degree as the target of physiological gait. Preliminary experimental results demonstrate that the prosthetic knee with fuzzy logical control is able to realize physiological gait under different speeds. The faster the walking, the bigger the valve closure percentage of the hydraulic prosthetic knee. The proposed fuzzy logical control strategy and intelligent hydraulic prosthetic knee are effective for the amputee to achieve physiological gait.
DSB Task Force on Cyber Supply Chain
2017-02-06
27 3.4 Cybersecurity for Commercial and Open Source Components...Communications and Intelligence ASD(L&MR): Assistant Secretary of Defense for Logistics and Materiel Readiness ASD(R&E): Assistant Secretary of Defense...system BSIMM: Building Security in Maturity Model C4ISR: command, control, communications, computers, intelligence , surveillance and
Development of an evolutionary simulator and an overall control system for intelligent wheelchair
NASA Astrophysics Data System (ADS)
Imai, Makoto; Kawato, Koji; Hamagami, Tomoki; Hirata, Hironori
The goal of this research is to develop an intelligent wheelchair (IWC) system which aids an indoor safe mobility for elderly and disabled people with a new conceptual architecture which realizes autonomy, cooperativeness, and a collaboration behavior. In order to develop the IWC system in real environment, we need design-tools and flexible architecture. In particular, as more significant ones, this paper describes two key techniques which are an evolutionary simulation and an overall control mechanism. The evolutionary simulation technique corrects the error between the virtual environment in a simulator and real one in during the learning of an IWC agent, and coevolves with the agent. The overall control mechanism is implemented with subsumption architecture which is employed in an autonomous robot controller. By using these techniques in both simulations and experiments, we confirm that our IWC system acquires autonomy, cooperativeness, and a collaboration behavior efficiently.
Yue, Xiao; Wang, Huiju; Jin, Dawei; Li, Mingqiang; Jiang, Wei
2016-10-01
Healthcare data are a valuable source of healthcare intelligence. Sharing of healthcare data is one essential step to make healthcare system smarter and improve the quality of healthcare service. Healthcare data, one personal asset of patient, should be owned and controlled by patient, instead of being scattered in different healthcare systems, which prevents data sharing and puts patient privacy at risks. Blockchain is demonstrated in the financial field that trusted, auditable computing is possible using a decentralized network of peers accompanied by a public ledger. In this paper, we proposed an App (called Healthcare Data Gateway (HGD)) architecture based on blockchain to enable patient to own, control and share their own data easily and securely without violating privacy, which provides a new potential way to improve the intelligence of healthcare systems while keeping patient data private. Our proposed purpose-centric access model ensures patient own and control their healthcare data; simple unified Indicator-Centric Schema (ICS) makes it possible to organize all kinds of personal healthcare data practically and easily. We also point out that MPC (Secure Multi-Party Computing) is one promising solution to enable untrusted third-party to conduct computation over patient data without violating privacy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Avery, L.W.; Hunt, S.T.; Savage, S.F.
1992-04-01
The United State Marine Corps (USMC) is continuing the development and fielding of the Marine Corps Tactical Command and Control System (MTACCS), a system which exists in varying states of development, fielding, or modernization. MTACCS is currently composed of the following components: Tactical Combat Operations System (TCO) for ground command and control (C2), Intelligence Analysis System (IAS) with a Genser terminal connected to a TCO workstation for intelligence C2, Marine Integrated Personnel System (MIPS) and a TCO workstation using the Marine Combat Personnel System (MCPERS) software for personnel C2, Marine Integrated Logistics System (MILOGS) which is composed of the Landingmore » Force Asset Distribution System (LFADS), the Marine Air-Ground Task Force (MAGTF) II, and a TCO terminal using the Marine Combat Logistics System (MCLOG) for logistics C2, Marine Corps Fire Support System (MCFSS) for fire support C2, and Advanced Tactical Air Command Central (ATACC) and the Improved Direct Air Support Central for aviation C2.« less
Hannen, Jennifer C; Crews, John H; Buckner, Gregory D
2012-08-01
This paper introduces an indirect intelligent sliding mode controller (IISMC) for shape memory alloy (SMA) actuators, specifically a flexible beam deflected by a single offset SMA tendon. The controller manipulates applied voltage, which alters SMA tendon temperature to track reference bending angles. A hysteretic recurrent neural network (HRNN) captures the nonlinear, hysteretic relationship between SMA temperature and bending angle. The variable structure control strategy provides robustness to model uncertainties and parameter variations, while effectively compensating for system nonlinearities, achieving superior tracking compared to an optimized PI controller.
Device Access Abstractions for Resilient Information Architecture Platform for Smart Grid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dubey, Abhishek; Karsai, Gabor; Volgyesi, Peter
An open application platform distributes the intelligence and control capability to local endpoints (or nodes) reducing total network traffic, improving speed of local actions by avoiding latency, and improving reliability by reducing dependencies on numerous devices and communication interfaces. The platform must be multi-tasking and able to host multiple applications running simultaneously. Given such a system, the core functions of power grid control systems include grid state determination, low level control, fault intelligence and reconfiguration, outage intelligence, power quality measurement, remote asset monitoring, configuration management, power and energy management (including local distributed energy resources, such as wind, solar and energymore » storage) can be eventually distributed. However, making this move requires extensive regression testing of systems to prove out new technologies, such as phasor measurement units (PMU). Additionally, as the complexity of the systems increase with the inclusion of new functionality (especially at the distribution and consumer levels), hidden coupling issues becomes a challenge with possible N-way interactions known and not known by device and application developers. Therefore, it is very important to provide core abstractions that ensure uniform operational semantics across such interactions. Here in this paper, we describe the pattern for abstracting device interactions we have developed for the RIAPS platform in the context of a microgrid control application we have developed.« less
Device Access Abstractions for Resilient Information Architecture Platform for Smart Grid
Dubey, Abhishek; Karsai, Gabor; Volgyesi, Peter; ...
2018-06-12
An open application platform distributes the intelligence and control capability to local endpoints (or nodes) reducing total network traffic, improving speed of local actions by avoiding latency, and improving reliability by reducing dependencies on numerous devices and communication interfaces. The platform must be multi-tasking and able to host multiple applications running simultaneously. Given such a system, the core functions of power grid control systems include grid state determination, low level control, fault intelligence and reconfiguration, outage intelligence, power quality measurement, remote asset monitoring, configuration management, power and energy management (including local distributed energy resources, such as wind, solar and energymore » storage) can be eventually distributed. However, making this move requires extensive regression testing of systems to prove out new technologies, such as phasor measurement units (PMU). Additionally, as the complexity of the systems increase with the inclusion of new functionality (especially at the distribution and consumer levels), hidden coupling issues becomes a challenge with possible N-way interactions known and not known by device and application developers. Therefore, it is very important to provide core abstractions that ensure uniform operational semantics across such interactions. Here in this paper, we describe the pattern for abstracting device interactions we have developed for the RIAPS platform in the context of a microgrid control application we have developed.« less
Design and Control of Large Collections of Learning Agents
NASA Technical Reports Server (NTRS)
Agogino, Adrian
2001-01-01
The intelligent control of multiple autonomous agents is an important yet difficult task. Previous methods used to address this problem have proved to be either too brittle, too hard to use, or not scalable to large systems. The 'Collective Intelligence' project at NASA/Ames provides an elegant, machine-learning approach to address these problems. This approach mathematically defines some essential properties that a reward system should have to promote coordinated behavior among reinforcement learners. This work has focused on creating additional key properties and algorithms within the mathematics of the Collective Intelligence framework. One of the additions will allow agents to learn more quickly, in a more coordinated manner. The other will let agents learn with less knowledge of their environment. These additions will allow the framework to be applied more easily, to a much larger domain of multi-agent problems.
NASA Astrophysics Data System (ADS)
Chen, Xiangqun; Huang, Rui; Shen, Liman; chen, Hao; Xiong, Dezhi; Xiao, Xiangqi; Liu, Mouhai; Xu, Renheng
2018-03-01
In this paper, the semi-active RFID watt-hour meter is applied to automatic test lines and intelligent warehouse management, from the transmission system, test system and auxiliary system, monitoring system, realize the scheduling of watt-hour meter, binding, control and data exchange, and other functions, make its more accurate positioning, high efficiency of management, update the data quickly, all the information at a glance. Effectively improve the quality, efficiency and automation of verification, and realize more efficient data management and warehouse management.
Embedded expert system for space shuttle main engine maintenance
NASA Technical Reports Server (NTRS)
Pooley, J.; Thompson, W.; Homsley, T.; Teoh, W.; Jones, J.; Lewallen, P.
1987-01-01
The SPARTA Embedded Expert System (SEES) is an intelligent health monitoring system that directs analysis by placing confidence factors on possible engine status and then recommends a course of action to an engineer or engine controller. The technique can prevent catastropic failures or costly rocket engine down time because of false alarms. Further, the SEES has potential as an on-board flight monitor for reusable rocket engine systems. The SEES methodology synergistically integrates vibration analysis, pattern recognition and communications theory techniques with an artificial intelligence technique - the Embedded Expert System (EES).
Intelligent Engine Systems: HPT Clearance Control
NASA Technical Reports Server (NTRS)
2008-01-01
The Advanced Thermally Actuated Clearance Control System underwent several studies. Improved flow path isolation quantified what can be gained by making the HPT case nearly adiabatic. The best method of heat transfer was established, and finally two different borrowed air cooling circuits were evaluated to be used for the HPT Active Clearance Control System.
Design for interaction between humans and intelligent systems during real-time fault management
NASA Technical Reports Server (NTRS)
Malin, Jane T.; Schreckenghost, Debra L.; Thronesbery, Carroll G.
1992-01-01
Initial results are reported to provide guidance and assistance for designers of intelligent systems and their human interfaces. The objective is to achieve more effective human-computer interaction (HCI) for real time fault management support systems. Studies of the development of intelligent fault management systems within NASA have resulted in a new perspective of the user. If the user is viewed as one of the subsystems in a heterogeneous, distributed system, system design becomes the design of a flexible architecture for accomplishing system tasks with both human and computer agents. HCI requirements and design should be distinguished from user interface (displays and controls) requirements and design. Effective HCI design for multi-agent systems requires explicit identification of activities and information that support coordination and communication between agents. The effects are characterized of HCI design on overall system design and approaches are identified to addressing HCI requirements in system design. The results include definition of (1) guidance based on information level requirements analysis of HCI, (2) high level requirements for a design methodology that integrates the HCI perspective into system design, and (3) requirements for embedding HCI design tools into intelligent system development environments.
Towards using musculoskeletal models for intelligent control of physically assistive robots.
Carmichael, Marc G; Liu, Dikai
2011-01-01
With the increasing number of robots being developed to physically assist humans in tasks such as rehabilitation and assistive living, more intelligent and personalized control systems are desired. In this paper we propose the use of a musculoskeletal model to estimate the strength of the user, from which information can be utilized to improve control schemes in which robots physically assist humans. An optimization model is developed utilizing a musculoskeletal model to estimate human strength in a specified dynamic state. Results of this optimization as well as methods of using it to observe muscle-based weaknesses in task space are presented. Lastly potential methods and problems in incorporating this model into a robot control system are discussed.
Further Structural Intelligence for Sensors Cluster Technology in Manufacturing
Mekid, Samir
2006-01-01
With the ever increasing complex sensing and actuating tasks in manufacturing plants, intelligent sensors cluster in hybrid networks becomes a rapidly expanding area. They play a dominant role in many fields from macro and micro scale. Global object control and the ability to self organize into fault-tolerant and scalable systems are expected for high level applications. In this paper, new structural concepts of intelligent sensors and networks with new intelligent agents are presented. Embedding new functionalities to dynamically manage cooperative agents for autonomous machines are interesting key enabling technologies most required in manufacturing for zero defects production.
Context-Based Filtering for Assisted Brain-Actuated Wheelchair Driving
Vanacker, Gerolf; Millán, José del R.; Lew, Eileen; Ferrez, Pierre W.; Moles, Ferran Galán; Philips, Johan; Van Brussel, Hendrik; Nuttin, Marnix
2007-01-01
Controlling a robotic device by using human brain signals is an interesting and challenging task. The device may be complicated to control and the nonstationary nature of the brain signals provides for a rather unstable input. With the use of intelligent processing algorithms adapted to the task at hand, however, the performance can be increased. This paper introduces a shared control system that helps the subject in driving an intelligent wheelchair with a noninvasive brain interface. The subject's steering intentions are estimated from electroencephalogram (EEG) signals and passed through to the shared control system before being sent to the wheelchair motors. Experimental results show a possibility for significant improvement in the overall driving performance when using the shared control system compared to driving without it. These results have been obtained with 2 healthy subjects during their first day of training with the brain-actuated wheelchair. PMID:18354739
NASA Technical Reports Server (NTRS)
Albus, James S.
1996-01-01
The Real-time Control System (RCS) developed at NIST and elsewhere over the past two decades defines a reference model architecture for design and analysis of complex intelligent control systems. The RCS architecture consists of a hierarchically layered set of functional processing modules connected by a network of communication pathways. The primary distinguishing feature of the layers is the bandwidth of the control loops. The characteristic bandwidth of each level is determined by the spatial and temporal integration window of filters, the temporal frequency of signals and events, the spatial frequency of patterns, and the planning horizon and granularity of the planners that operate at each level. At each level, tasks are decomposed into sequential subtasks, to be performed by cooperating sets of subordinate agents. At each level, signals from sensors are filtered and correlated with spatial and temporal features that are relevant to the control function being implemented at that level.
An intelligent control scheme for precise tip-motion control in atomic force microscopy.
Wang, Yanyan; Hu, Xiaodong; Xu, Linyan
2016-01-01
The paper proposes a new intelligent control method to precisely control the tip motion of the atomic force microscopy (AFM). The tip moves up and down at a high rate along the z direction during scanning, requiring the utilization of a rapid feedback controller. The standard proportional-integral (PI) feedback controller is commonly used in commercial AFMs to enable topography measurements. The controller's response performance is determined by the set of the proportional (P) parameter and the integral (I) parameter. However, the two parameters cannot be automatically altered simultaneously according to the scanning speed and the surface topography during continuors scanning, leading to an inaccurate measurement. Thus a new intelligent controller combining the fuzzy controller and the PI controller is put forward in the paper. The new controller automatically selects the most appropriate PI parameters to achieve a fast response rate on basis of the tracking errors. In the experimental setup, the new controller is realized with a digital signal process (DSP) system, implemented in a conventional AFM system. Experiments are carried out by comparing the new method with the standard PI controller. The results demonstrate that the new method is more robust and effective for the precise tip motion control, corresponding to the achievement of a highly qualified image by shortening the response time of the controller. © Wiley Periodicals, Inc.
Online Learning Flight Control for Intelligent Flight Control Systems (IFCS)
NASA Technical Reports Server (NTRS)
Niewoehner, Kevin R.; Carter, John (Technical Monitor)
2001-01-01
The research accomplishments for the cooperative agreement 'Online Learning Flight Control for Intelligent Flight Control Systems (IFCS)' include the following: (1) previous IFC program data collection and analysis; (2) IFC program support site (configured IFC systems support network, configured Tornado/VxWorks OS development system, made Configuration and Documentation Management Systems Internet accessible); (3) Airborne Research Test Systems (ARTS) II Hardware (developed hardware requirements specification, developing environmental testing requirements, hardware design, and hardware design development); (4) ARTS II software development laboratory unit (procurement of lab style hardware, configured lab style hardware, and designed interface module equivalent to ARTS II faceplate); (5) program support documentation (developed software development plan, configuration management plan, and software verification and validation plan); (6) LWR algorithm analysis (performed timing and profiling on algorithm); (7) pre-trained neural network analysis; (8) Dynamic Cell Structures (DCS) Neural Network Analysis (performing timing and profiling on algorithm); and (9) conducted technical interchange and quarterly meetings to define IFC research goals.
Voice intelligibility in satellite mobile communications
NASA Technical Reports Server (NTRS)
Wishna, S.
1973-01-01
An amplitude control technique is reported that equalizes low level phonemes in a satellite narrow band FM voice communication system over channels having low carrier to noise ratios. This method presents at the transmitter equal amplitude phonemes so that the low level phonemes, when they are transmitted over the noisey channel, are above the noise and contribute to output intelligibility. The amplitude control technique provides also for squelching of noise when speech is not being transmitted.
Adaptive Control of Visually Guided Grasping in Neural Networks
1990-03-12
D.P. Shankweiler, M. Studdert-Kennedy (1967) Perception of the speech code, Psychol. Rev. 74, 43 1. J. Piaget ( 1952 ), The Origins of Intelligence in...Coordination, IEEE Control Systems Magazine.V9:3 p.25-30 Piaget , J. ( 1952 ), The Origins of Intelligence in Children, translated by M.Cook, (International...University Press, New York. Piaget , J. (1954) The Construction of Reality in the Child, Translated by M. Cook , Ballentine Books, New York - 24-
System of experts for intelligent data management (SEIDAM)
NASA Technical Reports Server (NTRS)
Goodenough, David G.; Iisaka, Joji; Fung, KO
1993-01-01
A proposal to conduct research and development on a system of expert systems for intelligent data management (SEIDAM) is being developed. CCRS has much expertise in developing systems for integrating geographic information with space and aircraft remote sensing data and in managing large archives of remotely sensed data. SEIDAM will be composed of expert systems grouped in three levels. At the lowest level, the expert systems will manage and integrate data from diverse sources, taking account of symbolic representation differences and varying accuracies. Existing software can be controlled by these expert systems, without rewriting existing software into an Artificial Intelligence (AI) language. At the second level, SEIDAM will take the interpreted data (symbolic and numerical) and combine these with data models. at the top level, SEIDAM will respond to user goals for predictive outcomes given existing data. The SEIDAM Project will address the research areas of expert systems, data management, storage and retrieval, and user access and interfaces.
System of Experts for Intelligent Data Management (SEIDAM)
NASA Technical Reports Server (NTRS)
Goodenough, David G.; Iisaka, Joji; Fung, KO
1992-01-01
It is proposed to conduct research and development on a system of expert systems for intelligent data management (SEIDAM). CCRS has much expertise in developing systems for integrating geographic information with space and aircraft remote sensing data and in managing large archives of remotely sensed data. SEIDAM will be composed of expert systems grouped in three levels. At the lowest level, the expert systems will manage and integrate data from diverse sources, taking account of symbolic representation differences and varying accuracies. Existing software can be controlled by these expert systems, without rewriting existing software into an Artificial Intelligence (AI) language. At the second level, SEIDAM will take the interpreted data (symbolic and numerical) and combine these with data models. At the top level, SEIDAM will respond to user goals for predictive outcomes given existing data. The SEIDAM Project will address the research areas of expert systems, data management, storage and retrieval, and user access and interfaces.
NASA Technical Reports Server (NTRS)
Fayyad, Usama M. (Editor); Uthurusamy, Ramasamy (Editor)
1993-01-01
The present volume on applications of artificial intelligence with regard to knowledge-based systems in aerospace and industry discusses machine learning and clustering, expert systems and optimization techniques, monitoring and diagnosis, and automated design and expert systems. Attention is given to the integration of AI reasoning systems and hardware description languages, care-based reasoning, knowledge, retrieval, and training systems, and scheduling and planning. Topics addressed include the preprocessing of remotely sensed data for efficient analysis and classification, autonomous agents as air combat simulation adversaries, intelligent data presentation for real-time spacecraft monitoring, and an integrated reasoner for diagnosis in satellite control. Also discussed are a knowledge-based system for the design of heat exchangers, reuse of design information for model-based diagnosis, automatic compilation of expert systems, and a case-based approach to handling aircraft malfunctions.
A Demonstration of an Intelligent Control System for a Reusable Rocket Engine
1992-06-01
Research Center Cleveland, Ohio 44135 ABSTRACT DTIC QUALrI’ ’illE ,;TED 3 An Intelligent Control System for reusable rocket engines is under development at...through the ring seal may be written as rh,i,,g - 0.685 It Co d c~iiPexi g ( 3 )VRTIprt( where d. and cri6t now correspond to the shaft diameter and the ring...discharge coefficient of 0.9 for both seals and disk and shaft diameters of 6.0 and 2.0 inches respectively, equations I and 3 may be equated and the
DOT National Transportation Integrated Search
1995-08-01
KEYWORDS : RESEARCH AND DEVELOPMENT OR R&D, CRASH REDUCTION, FATALITIES REDUCTION, LATERAL GUIDANCE, LONGITUDINAL GUIDANCE, ADVANCED VEHICLE CONTROL & SAFETY SYSTEMS OR AVCSS, ADVANCED VEHICLE CONTROL SYSTEM OR AVCS, INTELLIGENT VEHICLE INITIATIV...
NASA Technical Reports Server (NTRS)
Seamster, Thomas L.; Eike, David R.; Ames, Troy J.
1990-01-01
This presentation concentrates on knowledge acquisition and its application to the development of an expert module and a user interface for an Intelligent Tutoring System (ITS). The Systems Test and Operations Language (STOL) ITS is being developed to assist NASA control center personnel in learning a command and control language as it is used in mission operations rooms. The objective of the tutor is to impart knowledge and skills that will permit the trainee to solve command and control problems in the same way that the STOL expert solves those problems. The STOL ITS will achieve this object by representing the solution space in such a way that the trainee can visualize the intermediate steps, and by having the expert module production rules parallel the STOL expert's knowledge structures.
Lessons learned in the development of the STOL intelligent tutoring system
NASA Technical Reports Server (NTRS)
Seamster, Thomas; Baker, Clifford; Ames, Troy
1991-01-01
Lessons learned during the development of the NASA Systems Test and Operations Language (STOL) Intelligent Tutoring System (ITS), being developed at NASA Goddard Space Flight Center are presented. The purpose of the intelligent tutor is to train STOL users by adapting tutoring based on inferred student strengths and weaknesses. This system has been under development for over one year and numerous lessons learned have emerged. These observations are presented in three sections, as follows. The first section addresses the methodology employed in the development of the STOL ITS and briefly presents the ITS architecture. The second presents lessons learned, in the areas of: intelligent tutor development; documentation and reporting; cost and schedule control; and tools and shells effectiveness. The third section presents recommendations which may be considered by other ITS developers, addressing: access, use and selection of subject matter experts; steps involved in ITS development; use of ITS interface design prototypes as part of knowledge engineering; and tools and shells effectiveness.
Intelligent Integrated Health Management for a System of Systems
NASA Technical Reports Server (NTRS)
Smith, Harvey; Schmalzel, John; Figueroa, Fernando
2008-01-01
An intelligent integrated health management system (IIHMS) incorporates major improvements over prior such systems. The particular IIHMS is implemented for any system defined as a hierarchical distributed network of intelligent elements (HDNIE), comprising primarily: (1) an architecture (Figure 1), (2) intelligent elements, (3) a conceptual framework and taxonomy (Figure 2), and (4) and ontology that defines standards and protocols. Some definitions of terms are prerequisite to a further brief description of this innovation: A system-of-systems (SoS) is an engineering system that comprises multiple subsystems (e.g., a system of multiple possibly interacting flow subsystems that include pumps, valves, tanks, ducts, sensors, and the like); 'Intelligent' is used here in the sense of artificial intelligence. An intelligent element may be physical or virtual, it is network enabled, and it is able to manage data, information, and knowledge (DIaK) focused on determining its condition in the context of the entire SoS; As used here, 'health' signifies the functionality and/or structural integrity of an engineering system, subsystem, or process (leading to determination of the health of components); 'Process' can signify either a physical process in the usual sense of the word or an element into which functionally related sensors are grouped; 'Element' can signify a component (e.g., an actuator, a valve), a process, a controller, an actuator, a subsystem, or a system; The term Integrated System Health Management (ISHM) is used to describe a capability that focuses on determining the condition (health) of every element in a complex system (detect anomalies, diagnose causes, prognosis of future anomalies), and provide data, information, and knowledge (DIaK) not just data to control systems for safe and effective operation. A major novel aspect of the present development is the concept of intelligent integration. The purpose of intelligent integration, as defined and implemented in the present IIHMS, is to enable automated analysis of physical phenomena in imitation of human reasoning, including the use of qualitative methods. Intelligent integration is said to occur in a system in which all elements are intelligent and can acquire, maintain, and share knowledge and information. In the HDNIE of the present IIHMS, an SoS is represented as being operationally organized in a hierarchical-distributed format. The elements of the SoS are considered to be intelligent in that they determine their own conditions within an integrated scheme that involves consideration of data, information, knowledge bases, and methods that reside in all elements of the system. The conceptual framework of the HDNIE and the methodologies of implementing it enable the flow of information and knowledge among the elements so as to make possible the determination of the condition of each element. The necessary information and knowledge is made available to each affected element at the desired time, satisfying a need to prevent information overload while providing context-sensitive information at the proper level of detail. Provision of high-quality data is a central goal in designing this or any IIHMS. In pursuit of this goal, functionally related sensors are logically assigned to groups denoted processes. An aggregate of processes is considered to form a system. Alternatively or in addition to what has been said thus far, the HDNIE of this IIHMS can be regarded as consisting of a framework containing object models that encapsulate all elements of the system, their individual and relational knowledge bases, generic methods and procedures based on models of the applicable physics, and communication processes (Figure 2). The framework enables implementation of a paradigm inspired by how expert operators monitor the health of systems with the help of (1) DIaK from various sources, (2) software tools that assist in rapid visualization of the condition of the system, (3) analical software tools that assist in reasoning about the condition, (4) sharing of information via network communication hardware and software, and (5) software tools that aid in making decisions to remedy unacceptable conditions or improve performance.
Management and control of self-replicating systems: A systems model
NASA Technical Reports Server (NTRS)
Vontiesenhausen, G.
1982-01-01
In 1980, a conceptual engineering approach to self-replicating systems was achieved. The design was based on von Newmann's kinematic version of self-replicating automata. The systems management and control and the organization of the control elements are reported. After developing the functional requirements of such a system, a hierarchy of three management and control levels is described. These are an autonomous, an external, and an intelligent management and control system. Systems recycling, systems specialization, and information replication are discussed.
Intelligent computer-aided training and tutoring
NASA Technical Reports Server (NTRS)
Loftin, R. Bowen; Savely, Robert T.
1991-01-01
Specific autonomous training systems based on artificial intelligence technology for use by NASA astronauts, flight controllers, and ground-based support personnel that demonstrate an alternative to current training systems are described. In addition to these specific systems, the evolution of a general architecture for autonomous intelligent training systems that integrates many of the features of traditional training programs with artificial intelligence techniques is presented. These Intelligent Computer-Aided Training (ICAT) systems would provide, for the trainee, much of the same experience that could be gained from the best on-the-job training. By integrating domain expertise with a knowledge of appropriate training methods, an ICAT session should duplicate, as closely as possible, the trainee undergoing on-the-job training in the task environment, benefitting from the full attention of a task expert who is also an expert trainer. Thus, the philosophy of the ICAT system is to emulate the behavior of an experienced individual devoting his full time and attention to the training of a novice - proposing challenging training scenarios, monitoring and evaluating the actions of the trainee, providing meaningful comments in response to trainee errors, responding to trainee requests for information, giving hints (if appropriate), and remembering the strengths and weaknesses displayed by the trainee so that appropriate future exercises can be designed.
Airborne net-centric multi-INT sensor control, display, fusion, and exploitation systems
NASA Astrophysics Data System (ADS)
Linne von Berg, Dale C.; Lee, John N.; Kruer, Melvin R.; Duncan, Michael D.; Olchowski, Fred M.; Allman, Eric; Howard, Grant
2004-08-01
The NRL Optical Sciences Division has initiated a multi-year effort to develop and demonstrate an airborne net-centric suite of multi-intelligence (multi-INT) sensors and exploitation systems for real-time target detection and targeting product dissemination. The goal of this Net-centric Multi-Intelligence Fusion Targeting Initiative (NCMIFTI) is to develop an airborne real-time intelligence gathering and targeting system that can be used to detect concealed, camouflaged, and mobile targets. The multi-INT sensor suite will include high-resolution visible/infrared (EO/IR) dual-band cameras, hyperspectral imaging (HSI) sensors in the visible-to-near infrared, short-wave and long-wave infrared (VNIR/SWIR/LWIR) bands, Synthetic Aperture Radar (SAR), electronics intelligence sensors (ELINT), and off-board networked sensors. Other sensors are also being considered for inclusion in the suite to address unique target detection needs. Integrating a suite of multi-INT sensors on a single platform should optimize real-time fusion of the on-board sensor streams, thereby improving the detection probability and reducing the false alarms that occur in reconnaissance systems that use single-sensor types on separate platforms, or that use independent target detection algorithms on multiple sensors. In addition to the integration and fusion of the multi-INT sensors, the effort is establishing an open-systems net-centric architecture that will provide a modular "plug and play" capability for additional sensors and system components and provide distributed connectivity to multiple sites for remote system control and exploitation.
NASA Technical Reports Server (NTRS)
Cardullo, Frank M.; Lewis, Harold W., III; Panfilov, Peter B.
2007-01-01
An extremely innovative approach has been presented, which is to have the surgeon operate through a simulator running in real-time enhanced with an intelligent controller component to enhance the safety and efficiency of a remotely conducted operation. The use of a simulator enables the surgeon to operate in a virtual environment free from the impediments of telecommunication delay. The simulator functions as a predictor and periodically the simulator state is corrected with truth data. Three major research areas must be explored in order to ensure achieving the objectives. They are: simulator as predictor, image processing, and intelligent control. Each is equally necessary for success of the project and each of these involves a significant intelligent component in it. These are diverse, interdisciplinary areas of investigation, thereby requiring a highly coordinated effort by all the members of our team, to ensure an integrated system. The following is a brief discussion of those areas. Simulator as a predictor: The delays encountered in remote robotic surgery will be greater than any encountered in human-machine systems analysis, with the possible exception of remote operations in space. Therefore, novel compensation techniques will be developed. Included will be the development of the real-time simulator, which is at the heart of our approach. The simulator will present real-time, stereoscopic images and artificial haptic stimuli to the surgeon. Image processing: Because of the delay and the possibility of insufficient bandwidth a high level of novel image processing is necessary. This image processing will include several innovative aspects, including image interpretation, video to graphical conversion, texture extraction, geometric processing, image compression and image generation at the surgeon station. Intelligent control: Since the approach we propose is in a sense predictor based, albeit a very sophisticated predictor, a controller, which not only optimizes end effector trajectory but also avoids error, is essential. We propose to investigate two different approaches to the controller design. One approach employs an optimal controller based on modern control theory; the other one involves soft computing techniques, i.e. fuzzy logic, neural networks, genetic algorithms and hybrids of these.
Intelligent model-based diagnostics for vehicle health management
NASA Astrophysics Data System (ADS)
Luo, Jianhui; Tu, Fang; Azam, Mohammad S.; Pattipati, Krishna R.; Willett, Peter K.; Qiao, Liu; Kawamoto, Masayuki
2003-08-01
The recent advances in sensor technology, remote communication and computational capabilities, and standardized hardware/software interfaces are creating a dramatic shift in the way the health of vehicles is monitored and managed. These advances facilitate remote monitoring, diagnosis and condition-based maintenance of automotive systems. With the increased sophistication of electronic control systems in vehicles, there is a concomitant increased difficulty in the identification of the malfunction phenomena. Consequently, the current rule-based diagnostic systems are difficult to develop, validate and maintain. New intelligent model-based diagnostic methodologies that exploit the advances in sensor, telecommunications, computing and software technologies are needed. In this paper, we will investigate hybrid model-based techniques that seamlessly employ quantitative (analytical) models and graph-based dependency models for intelligent diagnosis. Automotive engineers have found quantitative simulation (e.g. MATLAB/SIMULINK) to be a vital tool in the development of advanced control systems. The hybrid method exploits this capability to improve the diagnostic system's accuracy and consistency, utilizes existing validated knowledge on rule-based methods, enables remote diagnosis, and responds to the challenges of increased system complexity. The solution is generic and has the potential for application in a wide range of systems.
Conference on Space and Military Applications of Automation and Robotics
NASA Technical Reports Server (NTRS)
1988-01-01
Topics addressed include: robotics; deployment strategies; artificial intelligence; expert systems; sensors and image processing; robotic systems; guidance, navigation, and control; aerospace and missile system manufacturing; and telerobotics.
An intelligent training system for space shuttle flight controllers
NASA Technical Reports Server (NTRS)
Loftin, R. Bowen; Wang, Lui; Baffes, Paul; Hua, Grace
1988-01-01
An autonomous intelligent training system which integrates expert system technology with training/teaching methodologies is described. The system was designed to train Mission Control Center (MCC) Flight Dynamics Officers (FDOs) to deploy a certain type of satellite from the Space Shuttle. The Payload-assist module Deploys/Intelligent Computer-Aided Training (PD/ICAT) system consists of five components: a user interface, a domain expert, a training session manager, a trainee model, and a training scenario generator. The interface provides the trainee with information of the characteristics of the current training session and with on-line help. The domain expert (DeplEx for Deploy Expert) contains the rules and procedural knowledge needed by the FDO to carry out the satellite deploy. The DeplEx also contains mal-rules which permit the identification and diagnosis of common errors made by the trainee. The training session manager (TSM) examines the actions of the trainee and compares them with the actions of DeplEx in order to determine appropriate responses. A trainee model is developed for each individual using the system. The model includes a history of the trainee's interactions with the training system and provides evaluative data on the trainee's current skill level. A training scenario generator (TSG) designs appropriate training exercises for each trainee based on the trainee model and the training goals. All of the expert system components of PD/ICAT communicate via a common blackboard. The PD/ICAT is currently being tested. Ultimately, this project will serve as a vehicle for developing a general architecture for intelligent training systems together with a software environment for creating such systems.
An intelligent training system for space shuttle flight controllers
NASA Technical Reports Server (NTRS)
Loftin, R. Bowen; Wang, Lui; Baffles, Paul; Hua, Grace
1988-01-01
An autonomous intelligent training system which integrates expert system technology with training/teaching methodologies is described. The system was designed to train Mission Control Center (MCC) Flight Dynamics Officers (FDOs) to deploy a certain type of satellite from the Space Shuttle. The Payload-assist module Deploys/Intelligent Computer-Aided Training (PD/ICAT) system consists of five components: a user interface, a domain expert, a training session manager, a trainee model, and a training scenario generator. The interface provides the trainee with information of the characteristics of the current training session and with on-line help. The domain expert (Dep1Ex for Deploy Expert) contains the rules and procedural knowledge needed by the FDO to carry out the satellite deploy. The Dep1Ex also contains mal-rules which permit the identification and diagnosis of common errors made by the trainee. The training session manager (TSM) examines the actions of the trainee and compares them with the actions of Dep1Ex in order to determine appropriate responses. A trainee model is developed for each individual using the system. The model includes a history of the trainee's interactions with the training system and provides evaluative data on the trainee's current skill level. A training scenario generator (TSG) designs appropriate training exercises for each trainee based on the trainee model and the training goals. All of the expert system components of PD/ICAT communicate via a common blackboard. The PD/ICAT is currently being tested. Ultimately, this project will serve as a vehicle for developing a general architecture for intelligent training systems together with a software environment for creating such systems.
Integrated Planning for Telepresence With Time Delays
NASA Technical Reports Server (NTRS)
Johnston, Mark; Rabe, Kenneth
2009-01-01
A conceptual "intelligent assistant" and an artificial-intelligence computer program that implements the intelligent assistant have been developed to improve control exerted by a human supervisor over a robot that is so distant that communication between the human and the robot involves significant signal-propagation delays. The goal of the effort is not only to help the human supervisor monitor and control the state of the robot, but also to improve the efficiency of the robot by allowing the supervisor to "work ahead". The intelligent assistant is an integrated combination of an artificial-intelligence planner and a monitor of states of both the human supervisor and the remote robot. The novelty of the system lies in the way it uses the planner to reason about the states at both ends of the time delay. The purpose served by the assistant is to provide advice to the human supervisor about current and future activities, derived from a sequence of high-level goals to be achieved.
A Contest-Oriented Project for Learning Intelligent Mobile Robots
ERIC Educational Resources Information Center
Huang, Hsin-Hsiung; Su, Juing-Huei; Lee, Chyi-Shyong
2013-01-01
A contest-oriented project for undergraduate students to learn implementation skills and theories related to intelligent mobile robots is presented in this paper. The project, related to Micromouse, Robotrace (Robotrace is the title of Taiwanese and Japanese robot races), and line-maze contests was developed by the embedded control system research…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miltiadis Alamaniotis; Vivek Agarwal
This paper places itself in the realm of anticipatory systems and envisions monitoring and control methods being capable of making predictions over system critical parameters. Anticipatory systems allow intelligent control of complex systems by predicting their future state. In the current work, an intelligent model aimed at implementing anticipatory monitoring and control in energy industry is presented and tested. More particularly, a set of support vector regressors (SVRs) are trained using both historical and observed data. The trained SVRs are used to predict the future value of the system based on current operational system parameter. The predicted values are thenmore » inputted to a fuzzy logic based module where the values are fused to obtain a single value, i.e., final system output prediction. The methodology is tested on real turbine degradation datasets. The outcome of the approach presented in this paper highlights the superiority over single support vector regressors. In addition, it is shown that appropriate selection of fuzzy sets and fuzzy rules plays an important role in improving system performance.« less
NASA Astrophysics Data System (ADS)
Hamilton, Marvin J.; Sutton, Stewart A.
A prototype integrated environment, the Advanced Satellite Workstation (ASW), which was developed and delivered for evaluation and operator feedback in an operational satellite control center, is described. The current ASW hardware consists of a Sun Workstation and Macintosh II Workstation connected via an ethernet Network Hardware and Software, Laser Disk System, Optical Storage System, and Telemetry Data File Interface. The central objective of ASW is to provide an intelligent decision support and training environment for operator/analysis of complex systems such as satellites. Compared to the many recent workstation implementations that incorporate graphical telemetry displays and expert systems, ASW provides a considerably broader look at intelligent, integrated environments for decision support, based on the premise that the central features of such an environment are intelligent data access and integrated toolsets.
Autonomous power management and distribution
NASA Technical Reports Server (NTRS)
Dolce, Jim; Kish, Jim
1990-01-01
The goal of the Autonomous Power System program is to develop and apply intelligent problem solving and control to the Space Station Freedom's electric power testbed being developed at NASA's Lewis Research Center. Objectives are to establish artificial intelligence technology paths, craft knowledge-based tools and products for power systems, and integrate knowledge-based and conventional controllers. This program represents a joint effort between the Space Station and Office of Aeronautics and Space Technology to develop and demonstrate space electric power automation technology capable of: (1) detection and classification of system operating status, (2) diagnosis of failure causes, and (3) cooperative problem solving for power scheduling and failure recovery. Program details, status, and plans will be presented.
Bioinspired Intelligent Algorithm and Its Applications for Mobile Robot Control: A Survey.
Ni, Jianjun; Wu, Liuying; Fan, Xinnan; Yang, Simon X
2016-01-01
Bioinspired intelligent algorithm (BIA) is a kind of intelligent computing method, which is with a more lifelike biological working mechanism than other types. BIAs have made significant progress in both understanding of the neuroscience and biological systems and applying to various fields. Mobile robot control is one of the main application fields of BIAs which has attracted more and more attention, because mobile robots can be used widely and general artificial intelligent algorithms meet a development bottleneck in this field, such as complex computing and the dependence on high-precision sensors. This paper presents a survey of recent research in BIAs, which focuses on the research in the realization of various BIAs based on different working mechanisms and the applications for mobile robot control, to help in understanding BIAs comprehensively and clearly. The survey has four primary parts: a classification of BIAs from the biomimetic mechanism, a summary of several typical BIAs from different levels, an overview of current applications of BIAs in mobile robot control, and a description of some possible future directions for research.
Bioinspired Intelligent Algorithm and Its Applications for Mobile Robot Control: A Survey
Ni, Jianjun; Wu, Liuying; Fan, Xinnan; Yang, Simon X.
2016-01-01
Bioinspired intelligent algorithm (BIA) is a kind of intelligent computing method, which is with a more lifelike biological working mechanism than other types. BIAs have made significant progress in both understanding of the neuroscience and biological systems and applying to various fields. Mobile robot control is one of the main application fields of BIAs which has attracted more and more attention, because mobile robots can be used widely and general artificial intelligent algorithms meet a development bottleneck in this field, such as complex computing and the dependence on high-precision sensors. This paper presents a survey of recent research in BIAs, which focuses on the research in the realization of various BIAs based on different working mechanisms and the applications for mobile robot control, to help in understanding BIAs comprehensively and clearly. The survey has four primary parts: a classification of BIAs from the biomimetic mechanism, a summary of several typical BIAs from different levels, an overview of current applications of BIAs in mobile robot control, and a description of some possible future directions for research. PMID:26819582
Developing traffic signal control systems using the national ITS architecture
DOT National Transportation Integrated Search
1998-02-01
This is one of a series of documents providing support for deploying Intelligent Transportation Systems (ITS). This document focuses on traffic signal control, a component of ITS. It aims to provide practical help for the traffic engineering communit...
Developing Traffic Signal Control Systems using the National ITS Architecture
DOT National Transportation Integrated Search
1998-02-01
This is one of a series of documents providing support for deploying Intelligent Transportation Systems (ITS). This document focuses on traffic signal control, a component of ITS. It aims to provide practical help for the traffic engineering communit...
Predictive Eco-Cruise Control (ECC) system : model development, modeling and potential benefits.
DOT National Transportation Integrated Search
2013-02-01
The research develops a reference model of a predictive eco-cruise control (ECC) system that intelligently modulates vehicle speed within a pre-set speed range to minimize vehicle fuel consumption levels using roadway topographic information. The stu...
Pressure intelligent control strategy of Waste heat recovery system of converter vapors
NASA Astrophysics Data System (ADS)
Feng, Xugang; Wu, Zhiwei; Zhang, Jiayan; Qian, Hong
2013-01-01
The converter gas evaporative cooling system is mainly used for absorbing heat in the high temperature exhaust gas which produced by the oxygen blowing reaction. Vaporization cooling steam pressure control system of converter is a nonlinear, time-varying, lagging behind, close coupling of multivariable control object. This article based on the analysis of converter operation characteristics of evaporation cooling system, of vaporization in a production run of pipe pressure variation and disturbance factors.For the dynamic characteristics of the controlled objects,we have improved the conventional PID control scheme.In Oxygen blowing process, we make intelligent control by using fuzzy-PID cascade control method and adjusting the Lance,that it can realize the optimization of the boiler steam pressure control.By design simulation, results show that the design has a good control not only ensures drum steam pressure in the context of security, enabling efficient conversion of waste heat.And the converter of 1800 flue gas through pipes and cool and dust removal also can be cooled to about 800. Therefore the converter haze evaporative cooling system has achieved to the converter haze temperature decrease effect and enhanced to the coal gas returns-ratio.
The 21st annual intelligent ground vehicle competition: robotists for the future
NASA Astrophysics Data System (ADS)
Theisen, Bernard L.
2013-12-01
The Intelligent Ground Vehicle Competition (IGVC) is one of four, unmanned systems, student competitions that were founded by the Association for Unmanned Vehicle Systems International (AUVSI). The IGVC is a multidisciplinary exercise in product realization that challenges college engineering student teams to integrate advanced control theory, machine vision, vehicular electronics and mobile platform fundamentals to design and build an unmanned system. Teams from around the world focus on developing a suite of dual-use technologies to equip ground vehicles of the future with intelligent driving capabilities. Over the past 21 years, the competition has challenged undergraduate, graduate and Ph.D. students with real world applications in intelligent transportation systems, the military and manufacturing automation. To date, teams from over 80 universities and colleges have participated. This paper describes some of the applications of the technologies required by this competition and discusses the educational benefits. The primary goal of the IGVC is to advance engineering education in intelligent vehicles and related technologies. The employment and professional networking opportunities created for students and industrial sponsors through a series of technical events over the fourday competition are highlighted. Finally, an assessment of the competition based on participation is presented.
The 20th annual intelligent ground vehicle competition: building a generation of robotists
NASA Astrophysics Data System (ADS)
Theisen, Bernard L.; Kosinski, Andrew
2013-01-01
The Intelligent Ground Vehicle Competition (IGVC) is one of four, unmanned systems, student competitions that were founded by the Association for Unmanned Vehicle Systems International (AUVSI). The IGVC is a multidisciplinary exercise in product realization that challenges college engineering student teams to integrate advanced control theory, machine vision, vehicular electronics and mobile platform fundamentals to design and build an unmanned system. Teams from around the world focus on developing a suite of dual-use technologies to equip ground vehicles of the future with intelligent driving capabilities. Over the past 20 years, the competition has challenged undergraduate, graduate and Ph.D. students with real world applications in intelligent transportation systems, the military and manufacturing automation. To date, teams from over 80 universities and colleges have participated. This paper describes some of the applications of the technologies required by this competition and discusses the educational benefits. The primary goal of the IGVC is to advance engineering education in intelligent vehicles and related technologies. The employment and professional networking opportunities created for students and industrial sponsors through a series of technical events over the four-day competition are highlighted. Finally, an assessment of the competition based on participation is presented.
2013-05-01
representation of a centralized control system on a turbine engine. All actuators and sensors are point-to-point cabled to the controller ( FADEC ) which...electronics themselves. Figure 1: Centralized Control System Each function resides within the FADEC and uses Unique Point-to-Point Analog...distributed control system on the same turbine engine. The actuators and sensors interface to Smart Nodes which, in turn communicate to the FADEC via
Outline for a theory of intelligence
NASA Technical Reports Server (NTRS)
Albus, James S.
1991-01-01
Intelligence is defined as that which produces successful behavior. Intelligence is assumed to result from natural selection. A model is proposed that integrates knowledge from research in both natural and artificial systems. The model consists of a hierarchical system architecture wherein: (1) control bandwidth decreases about an order of magnitude at each higher level, (2) perceptual resolution of spatial and temporal patterns contracts about an order-of-magnitude at each higher level, (3) goals expand in scope and planning horizons expand in space and time about an order-of-magnitude at each higher level, and (4) models of the world and memories of events expand their range in space and time by about an order-of-magnitude at each higher level. At each level, functional modules perform behavior generation (task decomposition planning and execution), world modeling, sensory processing, and value judgment. Sensory feedback control loops are closed at every level.
Online intelligent controllers for an enzyme recovery plant: design methodology and performance.
Leite, M S; Fujiki, T L; Silva, F V; Fileti, A M F
2010-12-27
This paper focuses on the development of intelligent controllers for use in a process of enzyme recovery from pineapple rind. The proteolytic enzyme bromelain (EC 3.4.22.4) is precipitated with alcohol at low temperature in a fed-batch jacketed tank. Temperature control is crucial to avoid irreversible protein denaturation. Fuzzy or neural controllers offer a way of implementing solutions that cover dynamic and nonlinear processes. The design methodology and a comparative study on the performance of fuzzy-PI, neurofuzzy, and neural network intelligent controllers are presented. To tune the fuzzy PI Mamdani controller, various universes of discourse, rule bases, and membership function support sets were tested. A neurofuzzy inference system (ANFIS), based on Takagi-Sugeno rules, and a model predictive controller, based on neural modeling, were developed and tested as well. Using a Fieldbus network architecture, a coolant variable speed pump was driven by the controllers. The experimental results show the effectiveness of fuzzy controllers in comparison to the neural predictive control. The fuzzy PI controller exhibited a reduced error parameter (ITAE), lower power consumption, and better recovery of enzyme activity.
Online Intelligent Controllers for an Enzyme Recovery Plant: Design Methodology and Performance
Leite, M. S.; Fujiki, T. L.; Silva, F. V.; Fileti, A. M. F.
2010-01-01
This paper focuses on the development of intelligent controllers for use in a process of enzyme recovery from pineapple rind. The proteolytic enzyme bromelain (EC 3.4.22.4) is precipitated with alcohol at low temperature in a fed-batch jacketed tank. Temperature control is crucial to avoid irreversible protein denaturation. Fuzzy or neural controllers offer a way of implementing solutions that cover dynamic and nonlinear processes. The design methodology and a comparative study on the performance of fuzzy-PI, neurofuzzy, and neural network intelligent controllers are presented. To tune the fuzzy PI Mamdani controller, various universes of discourse, rule bases, and membership function support sets were tested. A neurofuzzy inference system (ANFIS), based on Takagi-Sugeno rules, and a model predictive controller, based on neural modeling, were developed and tested as well. Using a Fieldbus network architecture, a coolant variable speed pump was driven by the controllers. The experimental results show the effectiveness of fuzzy controllers in comparison to the neural predictive control. The fuzzy PI controller exhibited a reduced error parameter (ITAE), lower power consumption, and better recovery of enzyme activity. PMID:21234106
Developing freeway and incident management systems using the national ITS architecture
DOT National Transportation Integrated Search
1998-08-01
This is one of a series of documents providing support for deploying Intelligent Transportation Systems (ITS). This series addresses Traffic Signal Control Systems, Freeway and Incident Management Systems, Transit Management Systems, and Traveler Inf...
A reusable rocket engine intelligen control
NASA Technical Reports Server (NTRS)
Merrill, Walter C.; Lorenzo, Carl F.
1988-01-01
An intelligent control system for reusable space propulsion systems for future launch vehicles is described. The system description includes a framework for the design. The framework consists of an execution level with high-speed control and diagnostics, and a coordination level which marries expert system concepts with traditional control. A comparison is made between air breathing and rocket engine control concepts to assess the relative levels of development and to determine the applicability of air breathing control concepts to future reusable rocket engine systems.
FUZZY LOGIC BASED INTELLIGENT CONTROL OF A VARIABLE SPEED CAGE MACHINE WIND GENERATION SYSTEM
The paper describes a variable-speed wind generation system where fuzzy logic principles are used to optimize efficiency and enhance performance control. A squirrel cage induction generator feeds the power to a double-sided pulse width modulated converter system which either pump...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shapiro, S.C.; Woolf, B.
The Northeast Artificial Intelligence Consortium (NAIC) was created by the Air Force Systems Command, Rome Air Development Center, and the Office of Scientific Research. Its purpose is to conduct pertinent research in artificial intelligence and to perform activities ancillary to this research. This report describes progress that has been made in the fourth year of the existence of the NAIC on the technical research tasks undertaken at the member universities. The topics covered in general are: versatile expert system for equipment maintenance, distributed AI for communications system control, automatic photointerpretation, time-oriented problem solving, speech understanding systems, knowledge base maintenance, hardwaremore » architectures for very large systems, knowledge-based reasoning and planning, and a knowledge acquisition, assistance, and explanation system. The specific topic for this volume is the recognition of plans expressed in natural language, followed by their discussion and use.« less
A fault-tolerant intelligent robotic control system
NASA Technical Reports Server (NTRS)
Marzwell, Neville I.; Tso, Kam Sing
1993-01-01
This paper describes the concept, design, and features of a fault-tolerant intelligent robotic control system being developed for space and commercial applications that require high dependability. The comprehensive strategy integrates system level hardware/software fault tolerance with task level handling of uncertainties and unexpected events for robotic control. The underlying architecture for system level fault tolerance is the distributed recovery block which protects against application software, system software, hardware, and network failures. Task level fault tolerance provisions are implemented in a knowledge-based system which utilizes advanced automation techniques such as rule-based and model-based reasoning to monitor, diagnose, and recover from unexpected events. The two level design provides tolerance of two or more faults occurring serially at any level of command, control, sensing, or actuation. The potential benefits of such a fault tolerant robotic control system include: (1) a minimized potential for damage to humans, the work site, and the robot itself; (2) continuous operation with a minimum of uncommanded motion in the presence of failures; and (3) more reliable autonomous operation providing increased efficiency in the execution of robotic tasks and decreased demand on human operators for controlling and monitoring the robotic servicing routines.
NASA Astrophysics Data System (ADS)
Kelley, Troy D.; McGhee, S.
2013-05-01
This paper describes the ongoing development of a robotic control architecture that inspired by computational cognitive architectures from the discipline of cognitive psychology. The Symbolic and Sub-Symbolic Robotics Intelligence Control System (SS-RICS) combines symbolic and sub-symbolic representations of knowledge into a unified control architecture. The new architecture leverages previous work in cognitive architectures, specifically the development of the Adaptive Character of Thought-Rational (ACT-R) and Soar. This paper details current work on learning from episodes or events. The use of episodic memory as a learning mechanism has, until recently, been largely ignored by computational cognitive architectures. This paper details work on metric level episodic memory streams and methods for translating episodes into abstract schemas. The presentation will include research on learning through novelty and self generated feedback mechanisms for autonomous systems.
Strategic command, control, communications, and intelligence.
Zraket, C A
1984-06-22
Command, control, communications, and intelligence (C(3)l) for nuclear forces are essential elements in the deterrence of nuclear war. The present C(3)l) system has vulnerabilities associated with its reliability, survivability, and endurance under attack, thereby weakening deterrence by increasing the ambiguity in our capabilities. Development of a reliable and enduring C(3)l) system would reduce this ambiguity. Its reliable, positive control of nuclear forces would give the national leadership more time to assess situations, ensure discriminate retaliation, and improve our ability to manage crises in general. These capabilities could help to stop a war rapidly should one start. A reliable and enduring C(3)1) system will be needed for a long time to come, even if a freeze on strategic nuclear forces is accomplished or other arms control successes achieved. Indeed, C(3)l) may be the best source today of confidence-building measures to reduce tensions and the threat of nuclear catastrophe.
Lessons Learned and Flight Results from the F15 Intelligent Flight Control System Project
NASA Technical Reports Server (NTRS)
Bosworth, John
2006-01-01
A viewgraph presentation on the lessons learned and flight results from the F15 Intelligent Flight Control System (IFCS) project is shown. The topics include: 1) F-15 IFCS Project Goals; 2) Motivation; 3) IFCS Approach; 4) NASA F-15 #837 Aircraft Description; 5) Flight Envelope; 6) Limited Authority System; 7) NN Floating Limiter; 8) Flight Experiment; 9) Adaptation Goals; 10) Handling Qualities Performance Metric; 11) Project Phases; 12) Indirect Adaptive Control Architecture; 13) Indirect Adaptive Experience and Lessons Learned; 14) Gen II Direct Adaptive Control Architecture; 15) Current Status; 16) Effect of Canard Multiplier; 17) Simulated Canard Failure Stab Open Loop; 18) Canard Multiplier Effect Closed Loop Freq. Resp.; 19) Simulated Canard Failure Stab Open Loop with Adaptation; 20) Canard Multiplier Effect Closed Loop with Adaptation; 21) Gen 2 NN Wts from Simulation; 22) Direct Adaptive Experience and Lessons Learned; and 23) Conclusions
IMIS: An intelligence microscope imaging system
NASA Technical Reports Server (NTRS)
Caputo, Michael; Hunter, Norwood; Taylor, Gerald
1994-01-01
Until recently microscope users in space relied on traditional microscopy techniques that required manual operation of the microscope and recording of observations in the form of written notes, drawings, or photographs. This method was time consuming and required the return of film and drawings from space for analysis. No real-time data analysis was possible. Advances in digital and video technologies along with recent developments in article intelligence will allow future space microscopists to have a choice of three additional modes of microscopy: remote coaching, remote control, and automation. Remote coaching requires manual operations of the microscope with instructions given by two-way audio/video transmission during critical phases of the experiment. When using the remote mode of microscopy, the Principal Investigator controls the microscope from the ground. The automated mode employs artificial intelligence to control microscope functions and is the only mode that can be operated in the other three modes as well. The purpose of this presentation is to discuss the advantages and disadvantages of the four modes of of microscopy and how the IMIS, a proposed intelligent microscope imaging system, can be used as a model for developing and testing concepts, operating procedures, and equipment design of specifications required to provide a comprehensive microscopy/imaging capability onboard Space Station Freedom.
A Boltzmann machine for the organization of intelligent machines
NASA Technical Reports Server (NTRS)
Moed, Michael C.; Saridis, George N.
1990-01-01
A three-tier structure consisting of organization, coordination, and execution levels forms the architecture of an intelligent machine using the principle of increasing precision with decreasing intelligence from a hierarchically intelligent control. This system has been formulated as a probabilistic model, where uncertainty and imprecision can be expressed in terms of entropies. The optimal strategy for decision planning and task execution can be found by minimizing the total entropy in the system. The focus is on the design of the organization level as a Boltzmann machine. Since this level is responsible for planning the actions of the machine, the Boltzmann machine is reformulated to use entropy as the cost function to be minimized. Simulated annealing, expanding subinterval random search, and the genetic algorithm are presented as search techniques to efficiently find the desired action sequence and illustrated with numerical examples.
Intelligent sensor in control systems for objects with changing thermophysical properties
NASA Astrophysics Data System (ADS)
Belousov, O. A.; Muromtsev, D. Yu; Belyaev, M. P.
2018-04-01
The control of heat devices in a wide temperature range given thermophysical properties of an object is a topical issue. Optimal control systems of electric furnaces have to meet strict requirements in terms of accuracy of production procedures and efficiency of energy consumption. The fulfillment of these requirements is possible only if the dynamics model describing adequately the processes occurring in the furnaces is used to calculate the optimal control actions. One of the types of electric furnaces is the electric chamber furnace intended for heat treatment of various materials at temperatures from thousands of degrees Celsius and above. To solve the above-mentioned problem and to determine its place in the system of energy-efficient control of dynamic modes in the electric furnace, we propose the concept of an intelligent sensor and a method of synthesizing variables on sets of functioning states. The use of synthesis algorithms for optimal control in real time ensures the required accuracy when operating under different conditions and operating modes of the electric chamber furnace.
A Concept for Optimizing Behavioural Effectiveness & Efficiency
NASA Astrophysics Data System (ADS)
Barca, Jan Carlo; Rumantir, Grace; Li, Raymond
Both humans and machines exhibit strengths and weaknesses that can be enhanced by merging the two entities. This research aims to provide a broader understanding of how closer interactions between these two entities can facilitate more optimal goal-directed performance through the use of artificial extensions of the human body. Such extensions may assist us in adapting to and manipulating our environments in a more effective way than any system known today. To demonstrate this concept, we have developed a simulation where a semi interactive virtual spider can be navigated through an environment consisting of several obstacles and a virtual predator capable of killing the spider. The virtual spider can be navigated through the use of three different control systems that can be used to assist in optimising overall goal directed performance. The first two control systems use, an onscreen button interface and a touch sensor, respectively to facilitate human navigation of the spider. The third control system is an autonomous navigation system through the use of machine intelligence embedded in the spider. This system enables the spider to navigate and react to changes in its local environment. The results of this study indicate that machines should be allowed to override human control in order to maximise the benefits of collaboration between man and machine. This research further indicates that the development of strong machine intelligence, sensor systems that engage all human senses, extra sensory input systems, physical remote manipulators, multiple intelligent extensions of the human body, as well as a tighter symbiosis between man and machine, can support an upgrade of the human form.
NASA Technical Reports Server (NTRS)
Morris, Robert A.
1990-01-01
The emphasis is on defining a set of communicating processes for intelligent spacecraft secondary power distribution and control. The computer hardware and software implementation platform for this work is that of the ADEPTS project at the Johnson Space Center (JSC). The electrical power system design which was used as the basis for this research is that of Space Station Freedom, although the functionality of the processes defined here generalize to any permanent manned space power control application. First, the Space Station Electrical Power Subsystem (EPS) hardware to be monitored is described, followed by a set of scenarios describing typical monitor and control activity. Then, the parallel distributed problem solving approach to knowledge engineering is introduced. There follows a two-step presentation of the intelligent software design for secondary power control. The first step decomposes the problem of monitoring and control into three primary functions. Each of the primary functions is described in detail. Suggestions for refinements and embelishments in design specifications are given.
Interface For Fault-Tolerant Control System
NASA Technical Reports Server (NTRS)
Shaver, Charles; Williamson, Michael
1989-01-01
Interface unit and controller emulator developed for research on electronic helicopter-flight-control systems equipped with artificial intelligence. Interface unit interrupt-driven system designed to link microprocessor-based, quadruply-redundant, asynchronous, ultra-reliable, fault-tolerant control system (controller) with electronic servocontrol unit that controls set of hydraulic actuators. Receives digital feedforward messages from, and transmits digital feedback messages to, controller through differential signal lines or fiber-optic cables (thus far only differential signal lines have been used). Analog signals transmitted to and from servocontrol unit via coaxial cables.
ERPs evidence for the relationship between fluid intelligence and cognitive control.
Lu, Di; Zhang, Haoyun; Kang, Chunyan; Guo, Taomei
2016-04-13
The relationship between two components of cognitive control, that is, proactive control and reactive control, and fluid intelligence was investigated by measuring 75 participants' event-related potentials in the AX version of the continuous performance test. The results showed that the mean amplitudes of N2 associated with the two components of cognitive control are highly correlated with fluid intelligence. Specifically, a larger N2 was shown in participants with higher fluid intelligence scores. No significant correlation was found in the peak latencies of the N2 and fluid intelligence. These results enrich our understanding of the relationship between cognitive control and fluid intelligence by using the N2 component as an index and also indicate that cognitive control may be a component of intelligence.
NASA Astrophysics Data System (ADS)
Nieten, Joseph L.; Burke, Roger
1993-03-01
The system diagnostic builder (SDB) is an automated knowledge acquisition tool using state- of-the-art artificial intelligence (AI) technologies. The SDB uses an inductive machine learning technique to generate rules from data sets that are classified by a subject matter expert (SME). Thus, data is captured from the subject system, classified by an expert, and used to drive the rule generation process. These rule-bases are used to represent the observable behavior of the subject system, and to represent knowledge about this system. The rule-bases can be used in any knowledge based system which monitors or controls a physical system or simulation. The SDB has demonstrated the utility of using inductive machine learning technology to generate reliable knowledge bases. In fact, we have discovered that the knowledge captured by the SDB can be used in any number of applications. For example, the knowledge bases captured from the SMS can be used as black box simulations by intelligent computer aided training devices. We can also use the SDB to construct knowledge bases for the process control industry, such as chemical production, or oil and gas production. These knowledge bases can be used in automated advisory systems to ensure safety, productivity, and consistency.
NASA Technical Reports Server (NTRS)
Bosworth, John T.; Williams-Hayes, Peggy S.
2007-01-01
Adaptive flight control systems have the potential to be more resilient to extreme changes in airplane behavior. Extreme changes could be a result of a system failure or of damage to the airplane. A direct adaptive neural-network-based flight control system was developed for the National Aeronautics and Space Administration NF-15B Intelligent Flight Control System airplane and subjected to an inflight simulation of a failed (frozen) (unmovable) stabilator. Formation flight handling qualities evaluations were performed with and without neural network adaptation. The results of these flight tests are presented. Comparison with simulation predictions and analysis of the performance of the adaptation system are discussed. The performance of the adaptation system is assessed in terms of its ability to decouple the roll and pitch response and reestablish good onboard model tracking. Flight evaluation with the simulated stabilator failure and adaptation engaged showed that there was generally improvement in the pitch response; however, a tendency for roll pilot-induced oscillation was experienced. A detailed discussion of the cause of the mixed results is presented.
NASA Technical Reports Server (NTRS)
Bosworth, John T.; Williams-Hayes, Peggy S.
2010-01-01
Adaptive flight control systems have the potential to be more resilient to extreme changes in airplane behavior. Extreme changes could be a result of a system failure or of damage to the airplane. A direct adaptive neural-network-based flight control system was developed for the National Aeronautics and Space Administration NF-15B Intelligent Flight Control System airplane and subjected to an inflight simulation of a failed (frozen) (unmovable) stabilator. Formation flight handling qualities evaluations were performed with and without neural network adaptation. The results of these flight tests are presented. Comparison with simulation predictions and analysis of the performance of the adaptation system are discussed. The performance of the adaptation system is assessed in terms of its ability to decouple the roll and pitch response and reestablish good onboard model tracking. Flight evaluation with the simulated stabilator failure and adaptation engaged showed that there was generally improvement in the pitch response; however, a tendency for roll pilot-induced oscillation was experienced. A detailed discussion of the cause of the mixed results is presented.
Exodus - Distributed artificial intelligence for Shuttle firing rooms
NASA Technical Reports Server (NTRS)
Heard, Astrid E.
1990-01-01
This paper describes the Expert System for Operations Distributed Users (EXODUS), a knowledge-based artificial intelligence system developed for the four Firing Rooms at the Kennedy Space Center. EXODUS is used by the Shuttle engineers and test conductors to monitor and control the sequence of tasks required for processing and launching Shuttle vehicles. In this paper, attention is given to the goals and the design of EXODUS, the operational requirements, and the extensibility of the technology.
A knowledge-based system for controlling automobile traffic
NASA Technical Reports Server (NTRS)
Maravas, Alexander; Stengel, Robert F.
1994-01-01
Transportation network capacity variations arising from accidents, roadway maintenance activity, and special events as well as fluctuations in commuters' travel demands complicate traffic management. Artificial intelligence concepts and expert systems can be useful in framing policies for incident detection, congestion anticipation, and optimal traffic management. This paper examines the applicability of intelligent route guidance and control as decision aids for traffic management. Basic requirements for managing traffic are reviewed, concepts for studying traffic flow are introduced, and mathematical models for modeling traffic flow are examined. Measures for quantifying transportation network performance levels are chosen, and surveillance and control strategies are evaluated. It can be concluded that automated decision support holds great promise for aiding the efficient flow of automobile traffic over limited-access roadways, bridges, and tunnels.
Business Intelligence in Process Control
NASA Astrophysics Data System (ADS)
Kopčeková, Alena; Kopček, Michal; Tanuška, Pavol
2013-12-01
The Business Intelligence technology, which represents a strong tool not only for decision making support, but also has a big potential in other fields of application, is discussed in this paper. Necessary fundamental definitions are offered and explained to better understand the basic principles and the role of this technology for company management. Article is logically divided into five main parts. In the first part, there is the definition of the technology and the list of main advantages. In the second part, an overview of the system architecture with the brief description of separate building blocks is presented. Also, the hierarchical nature of the system architecture is shown. The technology life cycle consisting of four steps, which are mutually interconnected into a ring, is described in the third part. In the fourth part, analytical methods incorporated in the online analytical processing and data mining used within the business intelligence as well as the related data mining methodologies are summarised. Also, some typical applications of the above-mentioned particular methods are introduced. In the final part, a proposal of the knowledge discovery system for hierarchical process control is outlined. The focus of this paper is to provide a comprehensive view and to familiarize the reader with the Business Intelligence technology and its utilisation.
SCAILET: An intelligent assistant for satellite ground terminal operations
NASA Technical Reports Server (NTRS)
Shahidi, A. K.; Crapo, J. A.; Schlegelmilch, R. F.; Reinhart, R. C.; Petrik, E. J.; Walters, J. L.; Jones, R. E.
1993-01-01
NASA Lewis Research Center has applied artificial intelligence to an advanced ground terminal. This software application is being deployed as an experimenter interface to the link evaluation terminal (LET) and was named Space Communication Artificial Intelligence for the Link Evaluation Terminal (SCAILET). The high-burst-rate (HBR) LET provides 30-GHz-transmitting and 20-GHz-receiving, 220-Mbps capability for wide band communications technology experiments with the Advanced Communication Technology Satellite (ACTS). The HBR-LET terminal consists of seven major subsystems. A minicomputer controls and monitors these subsystems through an IEEE-488 or RS-232 protocol interface. Programming scripts (test procedures defined by design engineers) configure the HBR-LET and permit data acquisition. However, the scripts are difficult to use, require a steep learning curve, are cryptic, and are hard to maintain. This discourages experimenters from utilizing the full capabilities of the HBR-LET system. An intelligent assistant module was developed as part of the SCAILET software. The intelligent assistant addresses critical experimenter needs by solving and resolving problems that are encountered during the configuring of the HBR-LET system. The intelligent assistant is a graphical user interface with an expert system running in the background. In order to further assist and familiarize an experimenter, an on-line hypertext documentation module was developed and included in the SCAILET software.
NASA Technical Reports Server (NTRS)
Gupta, Pramod; Guenther, Kurt; Hodgkinson, John; Jacklin, Stephen; Richard, Michael; Schumann, Johann; Soares, Fola
2005-01-01
Modern exploration missions require modern control systems-control systems that can handle catastrophic changes in the system's behavior, compensate for slow deterioration in sustained operations, and support fast system ID. Adaptive controllers, based upon Neural Networks have these capabilities, but they can only be used safely if proper verification & validation (V&V) can be done. In this paper we present our V & V approach and simulation result within NASA's Intelligent Flight Control Systems (IFCS).
MIT Lincoln Laboratory 2011 Facts
2011-01-01
currently valid OMB control number. 1. REPORT DATE 2011 2. REPORT TYPE 3. DATES COVERED 00-00-2011 to 00-00-2011 4. TITLE AND SUBTITLE MIT Lincoln...primary mission areas—space control ; air and missile defense; communication systems; intelligence, surveillance, and reconnaissance systems; advanced...electronics; tactical systems; homeland protection and chemical and biological defense; cyber security; and air traffic control . Two of the
Space Station Freedom ECLSS: A step toward autonomous regenerative life support systems
NASA Technical Reports Server (NTRS)
Dewberry, Brandon S.
1990-01-01
The Environmental Control and Life Support System (ECLSS) is a Freedom Station distributed system with inherent applicability to extensive automation primarily due to its comparatively long control system latencies. These allow longer contemplation times in which to form a more intelligent control strategy and to prevent and diagnose faults. The regenerative nature of the Space Station Freedom ECLSS will contribute closed loop complexities never before encountered in life support systems. A study to determine ECLSS automation approaches has been completed. The ECLSS baseline software and system processes could be augmented with more advanced fault management and regenerative control systems for a more autonomous evolutionary system, as well as serving as a firm foundation for future regenerative life support systems. Emerging advanced software technology and tools can be successfully applied to fault management, but a fully automated life support system will require research and development of regenerative control systems and models. The baseline Environmental Control and Life Support System utilizes ground tests in development of batch chemical and microbial control processes. Long duration regenerative life support systems will require more active chemical and microbial feedback control systems which, in turn, will require advancements in regenerative life support models and tools. These models can be verified using ground and on orbit life support test and operational data, and used in the engineering analysis of proposed intelligent instrumentation feedback and flexible process control technologies for future autonomous regenerative life support systems, including the evolutionary Space Station Freedom ECLSS.
Army Airspace Command and Control (A2C2): Action Plan for Issue Resolution
1993-09-01
INFO Information INTEL Intelligence IPR In-Process Review IVIS Inter-Vehicular Information System JACC Joint Airspace Control Center JAOC Joint Air...base, centralized such as intelligence at Fort Huachuca and combat service support at Fort Lee , or a combination of both. It is no longer efficient to...Regiment (ATS) Ft. Bragg, NC 28307 ATTN: AFZF-ATS-C (LTC Ledbetter ) (919) 396-8899/7649 Bldg 87009, 16th Street Ft. Hood, TX 76544 Commander, 1st
Lai, Yeong-Lin; Chou, Yung-Hua; Chang, Li-Chih
2018-01-01
Collisions between emergency vehicles for emergency medical services (EMS) and public road users have been a serious problem, impacting on the safety of road users, emergency medical technicians (EMTs), and the patients on board. The aim of this study is to develop a novel intelligent emergency vehicle warning system for EMS applications. The intelligent emergency vehicle warning system is developed by Internet of Things (IoT), radio-frequency identification (RFID), and Wi-Fi technologies. The system consists of three major parts: a system trigger tag, an RFID system in an emergency vehicle, and an RFID system at an intersection. The RFID system either in an emergency vehicle or at an intersection contains a controller, an ultrahigh-frequency (UHF) RFID reader module, a Wi-Fi module, and a 2.4-GHz antenna. In addition, a UHF ID antenna is especially designed for the RFID system in an emergency vehicle. The IoT system provides real-time visual warning at an intersection and siren warning from an emergency vehicle in order to effectively inform road users about an emergency vehicle approaching. The developed intelligent IoT emergency vehicle warning system demonstrates the capabilities of real-time visual and siren warnings for EMS safety.
Propulsion Controls and Diagnostics Research at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Garg, Sanjay
2007-01-01
With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. Also the propulsion systems required to enable the National Aeronautics and Space Administration (NASA) Vision for Space Exploration in an affordable manner will need to have high reliability, safety and autonomous operation capability. The Controls and Dynamics Branch (CDB) at NASA Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced controls and health management technologies that will help meet these challenges through the concept of Intelligent Propulsion Systems. This paper describes the current activities of the CDB under the NASA Aeronautics Research and Exploration Systems Missions. The programmatic structure of the CDB activities is described along with a brief overview of each of the CDB tasks including research objectives, technical challenges, and recent accomplishments. These tasks include active control of propulsion system components, intelligent propulsion diagnostics and control for reliable fault identification and accommodation, distributed engine control, and investigations into unsteady propulsion systems.
NASA Astrophysics Data System (ADS)
Huang, Darong; Bai, Xing-Rong
Based on wavelet transform and neural network theory, a traffic-flow prediction model, which was used in optimal control of Intelligent Traffic system, is constructed. First of all, we have extracted the scale coefficient and wavelet coefficient from the online measured raw data of traffic flow via wavelet transform; Secondly, an Artificial Neural Network model of Traffic-flow Prediction was constructed and trained using the coefficient sequences as inputs and raw data as outputs; Simultaneous, we have designed the running principium of the optimal control system of traffic-flow Forecasting model, the network topological structure and the data transmitted model; Finally, a simulated example has shown that the technique is effectively and exactly. The theoretical results indicated that the wavelet neural network prediction model and algorithms have a broad prospect for practical application.
NASA Technical Reports Server (NTRS)
Defeo, P.; Chen, M.
1987-01-01
Means for evaluating data bus architectures and protocols for highly integrated flight control system applications are needed. Described are the criteria and plans to do this by using the NASA/Ames Intelligent Redundant Actuation System (IRAS) experimental set-up. Candidate bus architectures differ from one another in terms of: topology, access control, message transfer schemes, message characteristics, initialization. data flow control, transmission rates, fault tolerance, and time synchronization. The evaluation criteria are developed relative to these features. A preliminary, analytical evaluation of four candidate busses (MIL-STD-1553B, DATAC, Ethernet, and HSIS) is described. A bus must be exercised in a real-time environment to evaluate its dynamic characteristics. A plan for real-time evaluation of these four busses using a combination of hardware and simulation techniques is presented.
Development of an intelligent controller for power generators
NASA Astrophysics Data System (ADS)
Maxted, Clive; Waller, Winston
2005-01-01
This paper is a description of the development of an embedded controller for high power industrial diesel generators. The aim of the project was to replace the existing discrete logic design by an intelligent versatile and user configurable control system. A prototype embedded PC controlled system was developed, capable of fully replacing the existing system, with a colour TFT display and keypad. Features include fully automatic generator control as before with status and alarm display and monitoring of engine parameters, along with data logging, remote communications and a means of analysing data. The unit was tested on the bench and on diesel generators for the core controlling functionality to prove compliance with the specifications. The results of the testing proved the unit's suitability as a replacement for the existing system in its intended environment. The significance of this study is that a low cost replacement solution has been found for an industrial application by transferring modern technological knowledge to a small business. The company are now able to build on the design and take it into production, reducing servicing and production costs.
Sensor Technologies for Intelligent Transportation Systems
Guerrero-Ibáñez, Juan; Zeadally, Sherali
2018-01-01
Modern society faces serious problems with transportation systems, including but not limited to traffic congestion, safety, and pollution. Information communication technologies have gained increasing attention and importance in modern transportation systems. Automotive manufacturers are developing in-vehicle sensors and their applications in different areas including safety, traffic management, and infotainment. Government institutions are implementing roadside infrastructures such as cameras and sensors to collect data about environmental and traffic conditions. By seamlessly integrating vehicles and sensing devices, their sensing and communication capabilities can be leveraged to achieve smart and intelligent transportation systems. We discuss how sensor technology can be integrated with the transportation infrastructure to achieve a sustainable Intelligent Transportation System (ITS) and how safety, traffic control and infotainment applications can benefit from multiple sensors deployed in different elements of an ITS. Finally, we discuss some of the challenges that need to be addressed to enable a fully operational and cooperative ITS environment. PMID:29659524
Sensor Technologies for Intelligent Transportation Systems.
Guerrero-Ibáñez, Juan; Zeadally, Sherali; Contreras-Castillo, Juan
2018-04-16
Modern society faces serious problems with transportation systems, including but not limited to traffic congestion, safety, and pollution. Information communication technologies have gained increasing attention and importance in modern transportation systems. Automotive manufacturers are developing in-vehicle sensors and their applications in different areas including safety, traffic management, and infotainment. Government institutions are implementing roadside infrastructures such as cameras and sensors to collect data about environmental and traffic conditions. By seamlessly integrating vehicles and sensing devices, their sensing and communication capabilities can be leveraged to achieve smart and intelligent transportation systems. We discuss how sensor technology can be integrated with the transportation infrastructure to achieve a sustainable Intelligent Transportation System (ITS) and how safety, traffic control and infotainment applications can benefit from multiple sensors deployed in different elements of an ITS. Finally, we discuss some of the challenges that need to be addressed to enable a fully operational and cooperative ITS environment.
NASA Technical Reports Server (NTRS)
Govindaraj, T.; Mitchell, C. M.
1994-01-01
One of the goals of the National Aviation Safety/Automation program is to address the issue of human-centered automation in the cockpit. Human-centered automation is automation that, in the cockpit, enhances or assists the crew rather than replacing them. The Georgia Tech research program focused on this general theme, with emphasis on designing a computer-based pilot's assistant, intelligent (i.e, context-sensitive) displays, and an intelligent tutoring system for understanding and operating the autoflight system. In particular, the aids and displays were designed to enhance the crew's situational awareness of the current state of the automated flight systems and to assist the crew's situational awareness of the current state of the automated flight systems and to assist the crew in coordinating the autoflight system resources. The activities of this grant included: (1) an OFMspert to understand pilot navigation activities in a 727 class aircraft; (2) an extension of OFMspert to understand mode control in a glass cockpit, Georgia Tech Crew Activity Tracking System (GT-CATS); (3) the design of a training system to teach pilots about the vertical navigation portion of the flight management system -VNAV Tutor; and (4) a proof-of-concept display, using existing display technology, to facilitate mode awareness, particularly in situations in which controlled flight into terrain (CFIT) is a potential.
Intelligent control system based on ARM for lithography tool
NASA Astrophysics Data System (ADS)
Chen, Changlong; Tang, Xiaoping; Hu, Song; Wang, Nan
2014-08-01
The control system of traditional lithography tool is based on PC and MCU. The PC handles the complex algorithm, human-computer interaction, and communicates with MCU via serial port; The MCU controls motors and electromagnetic valves, etc. This mode has shortcomings like big volume, high power consumption, and wasting of PC resource. In this paper, an embedded intelligent control system of lithography tool, based on ARM, is provided. The control system used S5PV210 as processor, completing the functions of PC in traditional lithography tool, and provided a good human-computer interaction by using LCD and capacitive touch screen. Using Android4.0.3 as operating system, the equipment provided a cool and easy UI which made the control more user-friendly, and implemented remote control and debug, pushing video information of product by network programming. As a result, it's convenient for equipment vendor to provide technical support for users. Finally, compared with traditional lithography tool, this design reduced the PC part, making the hardware resources efficiently used and reducing the cost and volume. Introducing embedded OS and the concepts in "The Internet of things" into the design of lithography tool can be a development trend.
Grounding explanations in evolving, diagnostic situations
NASA Technical Reports Server (NTRS)
Johannesen, Leila J.; Cook, Richard I.; Woods, David D.
1994-01-01
Certain fields of practice involve the management and control of complex dynamic systems. These include flight deck operations in commercial aviation, control of space systems, anesthetic management during surgery or chemical or nuclear process control. Fault diagnosis of these dynamic systems generally must occur with the monitored process on-line and in conjunction with maintaining system integrity.This research seeks to understand in more detail what it means for an intelligent system to function cooperatively, or as a 'team player' in complex, dynamic environments. The approach taken was to study human practitioners engaged in the management of a complex, dynamic process: anesthesiologists during neurosurgical operations. The investigation focused on understanding how team members cooperate in management and fault diagnosis and comparing this interaction to the situation with an Artificial Intelligence(AI) system that provides diagnoses and explanations. Of particular concern was to study the ways in which practitioners support one another in keeping aware of relevant information concerning the state of the monitored process and of the problem solving process.
Intelligent Launch and Range Operations Virtual Test Bed (ILRO-VTB)
NASA Technical Reports Server (NTRS)
Bardina, Jorge; Rajkumar, T.
2003-01-01
Intelligent Launch and Range Operations Virtual Test Bed (ILRO-VTB) is a real-time web-based command and control, communication, and intelligent simulation environment of ground-vehicle, launch and range operation activities. ILRO-VTB consists of a variety of simulation models combined with commercial and indigenous software developments (NASA Ames). It creates a hybrid software/hardware environment suitable for testing various integrated control system components of launch and range. The dynamic interactions of the integrated simulated control systems are not well understood. Insight into such systems can only be achieved through simulation/emulation. For that reason, NASA has established a VTB where we can learn the actual control and dynamics of designs for future space programs, including testing and performance evaluation. The current implementation of the VTB simulates the operations of a sub-orbital vehicle of mission, control, ground-vehicle engineering, launch and range operations. The present development of the test bed simulates the operations of Space Shuttle Vehicle (SSV) at NASA Kennedy Space Center. The test bed supports a wide variety of shuttle missions with ancillary modeling capabilities like weather forecasting, lightning tracker, toxic gas dispersion model, debris dispersion model, telemetry, trajectory modeling, ground operations, payload models and etc. To achieve the simulations, all models are linked using Common Object Request Broker Architecture (CORBA). The test bed provides opportunities for government, universities, researchers and industries to do a real time of shuttle launch in cyber space.
Intelligent launch and range operations virtual testbed (ILRO-VTB)
NASA Astrophysics Data System (ADS)
Bardina, Jorge; Rajkumar, Thirumalainambi
2003-09-01
Intelligent Launch and Range Operations Virtual Test Bed (ILRO-VTB) is a real-time web-based command and control, communication, and intelligent simulation environment of ground-vehicle, launch and range operation activities. ILRO-VTB consists of a variety of simulation models combined with commercial and indigenous software developments (NASA Ames). It creates a hybrid software/hardware environment suitable for testing various integrated control system components of launch and range. The dynamic interactions of the integrated simulated control systems are not well understood. Insight into such systems can only be achieved through simulation/emulation. For that reason, NASA has established a VTB where we can learn the actual control and dynamics of designs for future space programs, including testing and performance evaluation. The current implementation of the VTB simulates the operations of a sub-orbital vehicle of mission, control, ground-vehicle engineering, launch and range operations. The present development of the test bed simulates the operations of Space Shuttle Vehicle (SSV) at NASA Kennedy Space Center. The test bed supports a wide variety of shuttle missions with ancillary modeling capabilities like weather forecasting, lightning tracker, toxic gas dispersion model, debris dispersion model, telemetry, trajectory modeling, ground operations, payload models and etc. To achieve the simulations, all models are linked using Common Object Request Broker Architecture (CORBA). The test bed provides opportunities for government, universities, researchers and industries to do a real time of shuttle launch in cyber space.
Intelligent Software for System Design and Documentation
NASA Technical Reports Server (NTRS)
2002-01-01
In an effort to develop a real-time, on-line database system that tracks documentation changes in NASA's propulsion test facilities, engineers at Stennis Space Center teamed with ECT International of Brookfield, WI, through the NASA Dual-Use Development Program to create the External Data Program and Hyperlink Add-on Modules for the promis*e software. Promis*e is ECT's top-of-the-line intelligent software for control system design and documentation. With promis*e the user can make use of the automated design process to quickly generate control system schematics, panel layouts, bills of material, wire lists, terminal plans and more. NASA and its testing contractors currently use promis*e to create the drawings and schematics at the E2 Cell 2 test stand located at Stennis Space Center.
NASA Technical Reports Server (NTRS)
Otaguro, W. S.; Kesler, L. O.; Land, K. C.; Rhoades, D. E.
1987-01-01
An intelligent tracker capable of robotic applications requiring guidance and control of platforms, robotic arms, and end effectors has been developed. This packaged system capable of supervised autonomous robotic functions is partitioned into a multiple processor/parallel processing configuration. The system currently interfaces to cameras but has the capability to also use three-dimensional inputs from scanning laser rangers. The inputs are fed into an image processing and tracking section where the camera inputs are conditioned for the multiple tracker algorithms. An executive section monitors the image processing and tracker outputs and performs all the control and decision processes. The present architecture of the system is presented with discussion of its evolutionary growth for space applications. An autonomous rendezvous demonstration of this system was performed last year. More realistic demonstrations in planning are discussed.
A development framework for distributed artificial intelligence
NASA Technical Reports Server (NTRS)
Adler, Richard M.; Cottman, Bruce H.
1989-01-01
The authors describe distributed artificial intelligence (DAI) applications in which multiple organizations of agents solve multiple domain problems. They then describe work in progress on a DAI system development environment, called SOCIAL, which consists of three primary language-based components. The Knowledge Object Language defines models of knowledge representation and reasoning. The metaCourier language supplies the underlying functionality for interprocess communication and control access across heterogeneous computing environments. The metaAgents language defines models for agent organization coordination, control, and resource management. Application agents and agent organizations will be constructed by combining metaAgents and metaCourier building blocks with task-specific functionality such as diagnostic or planning reasoning. This architecture hides implementation details of communications, control, and integration in distributed processing environments, enabling application developers to concentrate on the design and functionality of the intelligent agents and agent networks themselves.
NASA Astrophysics Data System (ADS)
Iakovleva, E. V.; Momot, B. A.
2017-10-01
The object of this study is to develop a power plant and an electric propulsion control system for autonomous remotely controlled vessels. The tasks of the study are as follows: to assess remotely controlled vessels usage reasonability, to define the requirements for this type of vessel navigation. In addition, the paper presents the analysis of technical diagnostics systems. The developed electric propulsion control systems for vessels should provide improved reliability and efficiency of the propulsion complex to ensure the profitability of remotely controlled vessels.
Development of a New Intelligent Joystick for People with Reduced Mobility.
Mrabet, Makrem; Rabhi, Yassine; Fnaiech, Farhat
2018-01-01
Despite the diversity of electric wheelchairs, many people with physical limitations and seniors have difficulty using their standard joystick. As a result, they cannot meet their needs or ensure safe travel. Recent assistive technologies can help to give them autonomy and independence. This work deals with the real-time implementation of an artificial intelligence device to overcome these problems. Following a review of the literature from previous work, we present the methodology and process for implementing our intelligent control system on an electric wheelchair. The system is based on a neural algorithm that overcomes problems with standard joystick maneuvers such as the inability to move correctly in one direction. However, this implies the need for an appropriate methodology to map the position of the joystick handle. Experiments on a real wheelchair are carried out with real patients of the Mohamed Kassab National Institute Orthopedic, Physical and Functional Rehabilitation Hospital of Tunis. The proposed intelligent system gives good results compared to the use of a standard joystick.
Development of a New Intelligent Joystick for People with Reduced Mobility
Mrabet, Makrem; Fnaiech, Farhat
2018-01-01
Despite the diversity of electric wheelchairs, many people with physical limitations and seniors have difficulty using their standard joystick. As a result, they cannot meet their needs or ensure safe travel. Recent assistive technologies can help to give them autonomy and independence. This work deals with the real-time implementation of an artificial intelligence device to overcome these problems. Following a review of the literature from previous work, we present the methodology and process for implementing our intelligent control system on an electric wheelchair. The system is based on a neural algorithm that overcomes problems with standard joystick maneuvers such as the inability to move correctly in one direction. However, this implies the need for an appropriate methodology to map the position of the joystick handle. Experiments on a real wheelchair are carried out with real patients of the Mohamed Kassab National Institute Orthopedic, Physical and Functional Rehabilitation Hospital of Tunis. The proposed intelligent system gives good results compared to the use of a standard joystick. PMID:29765462
A Novel Strain-Based Method to Estimate Tire Conditions Using Fuzzy Logic for Intelligent Tires.
Garcia-Pozuelo, Daniel; Olatunbosun, Oluremi; Yunta, Jorge; Yang, Xiaoguang; Diaz, Vicente
2017-02-10
The so-called intelligent tires are one of the most promising research fields for automotive engineers. These tires are equipped with sensors which provide information about vehicle dynamics. Up to now, the commercial intelligent tires only provide information about inflation pressure and their contribution to stability control systems is currently very limited. Nowadays one of the major problems for intelligent tire development is how to embed feasible and low cost sensors to obtain reliable information such as inflation pressure, vertical load or rolling speed. These parameters provide key information for vehicle dynamics characterization. In this paper, we propose a novel algorithm based on fuzzy logic to estimate the mentioned parameters by means of a single strain-based system. Experimental tests have been carried out in order to prove the suitability and durability of the proposed on-board strain sensor system, as well as its low cost advantages, and the accuracy of the obtained estimations by means of fuzzy logic.
A Novel Strain-Based Method to Estimate Tire Conditions Using Fuzzy Logic for Intelligent Tires
Garcia-Pozuelo, Daniel; Olatunbosun, Oluremi; Yunta, Jorge; Yang, Xiaoguang; Diaz, Vicente
2017-01-01
The so-called intelligent tires are one of the most promising research fields for automotive engineers. These tires are equipped with sensors which provide information about vehicle dynamics. Up to now, the commercial intelligent tires only provide information about inflation pressure and their contribution to stability control systems is currently very limited. Nowadays one of the major problems for intelligent tire development is how to embed feasible and low cost sensors to obtain reliable information such as inflation pressure, vertical load or rolling speed. These parameters provide key information for vehicle dynamics characterization. In this paper, we propose a novel algorithm based on fuzzy logic to estimate the mentioned parameters by means of a single strain-based system. Experimental tests have been carried out in order to prove the suitability and durability of the proposed on-board strain sensor system, as well as its low cost advantages, and the accuracy of the obtained estimations by means of fuzzy logic. PMID:28208631
2010-06-30
intelligence application package for theater battle management core system ( TBMCS ) functionality at wing and squadron levels. The automated four... TBMCS , Joint Surveillance and Target Attack Radar System (Ground Control Station), and Global Command and Control System, as well as with Allied FA...The TBMCS is a force level integrated air C2 system. TBMCS provides hardware, software, and communications interfaces to support the preparation
Millimeter wave radar for automobile crash avoidance systems
NASA Astrophysics Data System (ADS)
Huguenin, G. Richard
1994-08-01
Low cost, millimeter wave, forward looking radar sensors for applications in Autonomous Collision Warning and Autonomous Intelligent Cruise Control systems will be described. These safety related systems promise the largest payoff in preventing highway crashes.
Techniques and potential capabilities of multi-resolutional information (knowledge) processing
NASA Technical Reports Server (NTRS)
Meystel, A.
1989-01-01
A concept of nested hierarchical (multi-resolutional, pyramidal) information (knowledge) processing is introduced for a variety of systems including data and/or knowledge bases, vision, control, and manufacturing systems, industrial automated robots, and (self-programmed) autonomous intelligent machines. A set of practical recommendations is presented using a case study of a multiresolutional object representation. It is demonstrated here that any intelligent module transforms (sometimes, irreversibly) the knowledge it deals with, and this tranformation affects the subsequent computation processes, e.g., those of decision and control. Several types of knowledge transformation are reviewed. Definite conditions are analyzed, satisfaction of which is required for organization and processing of redundant information (knowledge) in the multi-resolutional systems. Providing a definite degree of redundancy is one of these conditions.
NASA/ARC proposed training in intelligent control
NASA Technical Reports Server (NTRS)
Berenji, Hamid R.
1990-01-01
Viewgraphs on NASA Ames Research Center proposed training in intelligent control was presented. Topics covered include: fuzzy logic control; neural networks in control; artificial intelligence in control; hybrid approaches; hands on experience; and fuzzy controllers.
NASA Technical Reports Server (NTRS)
Schoppers, Marcel
1994-01-01
The design of a flexible, real-time software architecture for trajectory planning and automatic control of redundant manipulators is described. Emphasis is placed on a technique of designing control systems that are both flexible and robust yet have good real-time performance. The solution presented involves an artificial intelligence algorithm that dynamically reprograms the real-time control system while planning system behavior.
Intelligence in Scientific Computing.
1993-12-31
simulation) a high-performance controller for a magnetic levitation system - the German Transrapid system. The new control system can stabilize maglev ...techniques. A paper by Feng Zhao and Richard Thornton about the maglev controller designed by his program was presented at the 31st IEEE conference on...Massachusetts Insti- tute of Technology, 1991. Also availible as MIT AITR 1385. Zhao, F. and Thornton, R. "Automatic Design of a Maglev Controller in
NASA Astrophysics Data System (ADS)
Krokhin, G.; Pestunov, A.; Arakelyan, E.; Mukhin, V.
2017-11-01
During the last decades, there can be noticed an increase of interest concerning various aspects of intellectual diagnostics and management in thermal power engineering according the hybrid principle. It is conditioned by the fact that conservative static methods does not allow to reflect the actual power installation state adequately. In order to improve the diagnostics quality, we use various fuzzy systems apparatus. In this paper, we introduce the intellectual system, called SKAIS, which is intended for quick and precise diagnostics of thermal power equipment. This system was developed as the result of the research carried out by specialists from National Research University “Moscow Power Engineering Institute” and Novosibirsk State University of Economics and Management. It drastically increases the level of intelligence of the automatic power plant control system.
Validating a UAV artificial intelligence control system using an autonomous test case generator
NASA Astrophysics Data System (ADS)
Straub, Jeremy; Huber, Justin
2013-05-01
The validation of safety-critical applications, such as autonomous UAV operations in an environment which may include human actors, is an ill posed problem. To confidence in the autonomous control technology, numerous scenarios must be considered. This paper expands upon previous work, related to autonomous testing of robotic control algorithms in a two dimensional plane, to evaluate the suitability of similar techniques for validating artificial intelligence control in three dimensions, where a minimum level of airspeed must be maintained. The results of human-conducted testing are compared to this automated testing, in terms of error detection, speed and testing cost.
Coleman, Jonathan R I; Bryois, Julien; Gaspar, Héléna A; Jansen, Philip R; Savage, Jeanne E; Skene, Nathan; Plomin, Robert; Muñoz-Manchado, Ana B; Linnarsson, Sten; Crawford, Greg; Hjerling-Leffler, Jens; Sullivan, Patrick F; Posthuma, Danielle; Breen, Gerome
2018-03-08
Variance in IQ is associated with a wide range of health outcomes, and 1% of the population are affected by intellectual disability. Despite a century of research, the fundamental neural underpinnings of intelligence remain unclear. We integrate results from genome-wide association studies (GWAS) of intelligence with brain tissue and single cell gene expression data to identify tissues and cell types associated with intelligence. GWAS data for IQ (N = 78,308) were meta-analyzed with a study comparing 1247 individuals with mean IQ ~170 to 8185 controls. Genes associated with intelligence implicate pyramidal neurons of the somatosensory cortex and CA1 region of the hippocampus, and midbrain embryonic GABAergic neurons. Tissue-specific analyses find the most significant enrichment for frontal cortex brain expressed genes. These results suggest specific neuronal cell types and genes may be involved in intelligence and provide new hypotheses for neuroscience experiments using model systems.
An intelligent multi-media human-computer dialogue system
NASA Technical Reports Server (NTRS)
Neal, J. G.; Bettinger, K. E.; Byoun, J. S.; Dobes, Z.; Thielman, C. Y.
1988-01-01
Sophisticated computer systems are being developed to assist in the human decision-making process for very complex tasks performed under stressful conditions. The human-computer interface is a critical factor in these systems. The human-computer interface should be simple and natural to use, require a minimal learning period, assist the user in accomplishing his task(s) with a minimum of distraction, present output in a form that best conveys information to the user, and reduce cognitive load for the user. In pursuit of this ideal, the Intelligent Multi-Media Interfaces project is devoted to the development of interface technology that integrates speech, natural language text, graphics, and pointing gestures for human-computer dialogues. The objective of the project is to develop interface technology that uses the media/modalities intelligently in a flexible, context-sensitive, and highly integrated manner modelled after the manner in which humans converse in simultaneous coordinated multiple modalities. As part of the project, a knowledge-based interface system, called CUBRICON (CUBRC Intelligent CONversationalist) is being developed as a research prototype. The application domain being used to drive the research is that of military tactical air control.
On an LAS-integrated soft PLC system based on WorldFIP fieldbus.
Liang, Geng; Li, Zhijun; Li, Wen; Bai, Yan
2012-01-01
Communication efficiency is lowered and real-time performance is not good enough in discrete control based on traditional WorldFIP field intelligent nodes in case that the scale of control in field is large. A soft PLC system based on WorldFIP fieldbus was designed and implemented. Link Activity Scheduler (LAS) was integrated into the system and field intelligent I/O modules acted as networked basic nodes. Discrete control logic was implemented with the LAS-integrated soft PLC system. The proposed system was composed of configuration and supervisory sub-systems and running sub-systems. The configuration and supervisory sub-system was implemented with a personal computer or an industrial personal computer; running subsystems were designed and implemented based on embedded hardware and software systems. Communication and schedule in the running subsystem was implemented with an embedded sub-module; discrete control and system self-diagnosis were implemented with another embedded sub-module. Structure of the proposed system was presented. Methodology for the design of the sub-systems was expounded. Experiments were carried out to evaluate the performance of the proposed system both in discrete and process control by investigating the effect of network data transmission delay induced by the soft PLC in WorldFIP network and CPU workload on resulting control performances. The experimental observations indicated that the proposed system is practically applicable. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.
Development of intelligent robots - Achievements and issues
NASA Astrophysics Data System (ADS)
Nitzan, D.
1985-03-01
A flexible, intelligent robot is regarded as a general purpose machine system that may include effectors, sensors, computers, and auxiliary equipment and, like a human, can perform a variety of tasks under unpredictable conditions. Development of intelligent robots is essential for increasing the growth rate of today's robot population in industry and elsewhere. Robotics research and development topics include manipulation, end effectors, mobility, sensing (noncontact and contact), adaptive control, robot programming languages, and manufacturing process planning. Past achievements and current issues related to each of these topics are described briefly.
Corps Communications for the Airland Battle
1985-04-01
intelligence , fire support. 111 wm mssemm vvw* m » ’■I.|J|.’■,■■*.■■.■ ■;■’!■». p i JL ■ .■.’.■, .■i». ■. ■ ■ ■. ■■ ■ ———-— im ^’ air de-fense...logistics support. The system must be flexible to support the pace of maneuver, it must have extensive range to support surveillance, intelligence and the...Command and Control, Intelligence , Fire Support, etc.) must be adjusted to correspond to the new mission. Communications assets must be allocated
NASA Astrophysics Data System (ADS)
Rahman, Ataur; Sharif, Sazzad; Mohiuddin, AKM; Faris Ismail, Ahmed; Izan, Sany Ihsan
2017-03-01
Continuously variable transmission (CVT) system transmits the engine /battery power to the car driving wheel smoothly and efficiently. Cars with CVT produces some noise and slow acceleration to meet the car power demand on initial start-ups and slow speed. The car noise is produced as a result of CVT adjustment the engine speed with the hydraulic pressure. The current CVT problems incurred due to the slow response of hydraulic pressure and CVT fluid viscosity due to the development of heat.The aim of this study is to develop electromagnetic actuated CVT (EMA-CVT) with intelligent switching controlling system (ICS). The experimental results of ¼ scale EMA shows that it make the acceleration time of the car in 3.5-5 sec which is 40% less than the hydraulic CVT in the market. The EMA develops the electromagnetic force in the ranged of 350 -1200 N for the supply current in the range of 10-15 amp. This study introduced fuzzy intelligent system (FIS) to predict the EMA system dynamic behaviour in order to identify the current control for the EMA actuation during operation of the CVT. It is expecting that the up scale EMA-CVT would reduce the 75% of vehicle power transmission loss by accelerating vehicle in 5 sec and save the IC engine power consumption about 20% which will makes the vehicle energy efficient (EEV) and reduction of green house gas reduction.
A new type of temperature and humidity detection-control system
NASA Astrophysics Data System (ADS)
Jiao, Lian-Bo; Lou, Shu-Hui
This paper introduces a new type of intelligent multichannel system for the detection and control of temperature and humidity. In this paper, the integration of the hardware with the software is discussed. Additionally, the function of the single-chip microcomputer (microcontroller) is described fully.
Investigation of air transportation technology at Princeton University, 1990-1991
NASA Technical Reports Server (NTRS)
Stengel, Robert F.
1991-01-01
The Air Transportation Technology Program at Princeton University is a program that emphasizes graduate and undergraduate student research. The program proceeded along six avenues during the past year: microburst hazards to aircraft, intelligent failure tolerant control, computer-aided heuristics for piloted flight, stochastic robustness of flight control systems, neural networks for flight control, and computer-aided control system design.