Sample records for control interface bonding

  1. Microshear bond strength of resin composite to teeth affected by molar hypomineralization using 2 adhesive systems.

    PubMed

    William, Vanessa; Burrow, Michael F; Palamara, Joseph E A; Messer, Louise B

    2006-01-01

    When restoring hypomineralized first permanent molars, placement of cavo-surface margins can be difficult to ascertain due to uncertainty of the bonding capability of the tooth surface. The purpose of this study was to investigate the adhesion of resin composite bonded to control and hypomineralized enamel with an all-etch single-bottle adhesive or self-etching primer adhesive. Specimens of control enamel (N=44) and hypomineralized enamel (N=45) had a 0.975-mm diameter composite rod (Filtek Supreme Universal Restorative) bonded with either 3M ESPE Single Bond or Clearfil SE Bond following manufacturers' instructions. Specimens were stressed in shear at 1 mm/min to failure (microshear bond strength). Etched enamel surfaces and enamel-adhesive interfaces were examined under scanning electron microscopy. The microshear bond strength (MPa) of resin composite bonded to hypomineralized enamel was significantly lower than for control enamel (3M ESPE Single Bond=7.08 +/- 4.90 vs 16.27 +/- 10.04; Clearfil SE Bond=10.39 +/- 7.56 vs 19.63 +/- 7.42; P=.001). Fractures were predominantly adhesive in control enamel and cohesive in hypomineralized enamel. Scotchbond etchant produced deep interprismatic and intercrystal porosity in control enamel and shallow etch patterns with minimal intercrystal porosity in hypomineralized enamel. Control enamel appeared almost unaffected by SE Primer; hypomineralized enamel showed shallow etching. The hypomineralized enamel-adhesive interface was porous with cracks in the enamel. The control enamel-adhesive interface displayed a hybrid layer of even thickness. The microshear bond strength of resin composite bonded to hypomineralized enamel was significantly lower than for control enamel. This was supported by differences seen in etch patterns and at the enamel-adhesive interface.

  2. Fatigue of the Resin-Enamel Bonded Interface and the Mechanisms of Failure

    PubMed Central

    Yahyazadehfar, Mobin; Mutluay, Mustafa Murat; Majd, Hessam; Ryou, Heonjune; Arola, Dwayne

    2013-01-01

    The durability of adhesive bonds to enamel and dentin and the mechanisms of degradation caused by cyclic loading are important to the survival of composite restorations. In this study a novel method of evaluation was used to determine the strength of resin-enamel bonded interfaces under both static and cyclic loading, and to identify the mechanisms of failure. Specimens with twin interfaces of enamel bonded to commercial resin composite were loaded in monotonic and cyclic 4-point flexure to failure within a hydrated environment. Results for the resin-enamel interface were compared with those for the resin composite (control) and values reported for resin-dentin adhesive bonds. Under both modes of loading the strength of the resin-enamel interface was significantly (p≤0.0001) lower than that of the resin composite and the resin-dentin bonded interface. Fatigue failure of the interface occurred predominately by fracture of enamel, adjacent to the interface, and not due to adhesive failures. In the absence of water aging or acid production of biofilms, the durability of adhesive bonds to enamel is lower than that achieved in dentin bonding. PMID:23571321

  3. Nanomechanical properties of biochemically modified dentin bonded interfaces

    PubMed Central

    dos Santos, Paulo H; Karol, Sachin; Bedran-Russo, Ana Karina B

    2014-01-01

    Summary The effect of biomodification of dentin matrices using collagen cross-linkers, glutaraldehyde (GD) and grape seed extract (GSE), on the reduced modulus of elasticity (Er) and nanohardness (H) of the hybrid layer and underlying dentin was investigated at the dentin-resin bonded interface. The coronal dentin of nine molars were exposed and divided into groups: 5% GD, 6.5% GSE and control. Control samples were etched, bonded with Adper Single Bond Plus and Premise composite. GD and GSE were applied for 1 hour prior to bonding procedures. After 24 hours, samples were sectioned, and resin-dentin beams were either kept in distilled water or exposed to collagenase treatment for 24 hours. Nano-indentations were performed at the hybrid layer and underlying dentin. GD and GSE treatment increased the Er and H of resin-dentin interface structures when compared to the control group (p < 0.05), particularly the hybrid layer, and may be a promising novel approach to strengthen the dentin-resin bonded interface structures when using these adhesive system and resin-based composite. PMID:21058972

  4. Effect of Mucoprotein on the Bond Strength of Resin Composite to Human Dentin

    PubMed Central

    Pinzon, Lilliam M; Powers, John M; O'Keefe, Kathy; Dusevish, Vladimir; Spencer, Paulette; Marshall, Grayson W

    2010-01-01

    The purpose of this study was to test the bond strength and analyze the morphology of the dentin-adhesive interface of two etch and rinse and two self-etch adhesive systems with two kinds of artificial saliva (with and without 450 mg/L mucin) contamination under different conditions of decontaminating the interface. Bonded specimens were sectioned perpendicularly to the bonded surface in 1-mm thick slabs. These 1-mm thick slabs were remounted in acrylic blocks and sectioned in sticks perpendicular to the bonding interfaces with a 1-mm2 area. Nine specimens from each condition were tested after 24 hours on a testing machine (Instron) at a speed of 0.5 mm/min for a total of 360 specimens. Means and standard deviations of bond strength (MPa) were calculated. ANOVA showed significant differences as well as Fisher's PLSD intervals (p<0.05). Different groups results ranges: Control group 34-60 MPa, saliva without mucin 0-52 MPa, and saliva with mucin 0-57 MPa. Failure sites were mixed, adhesive failure was common for the low bond strength results. P&BNT with ideal conditions and following the manufacturer's instructions (control) had the highest bond strengths and the dentin-adhesive interface exhibited an ideal morphology of a etch and rinse system. SEM gave complementary visual evidence of the effect in the dentin/adhesive interface structure with some contaminated conditions compared to their respective control groups. This in-vitro artificial saliva model with and without mucin showed that an organic component of saliva could increase or decrease the bond strength depending on the specific bonding agent and decontamination procedure. PMID:14505182

  5. Structure and strength at the bonding interface of a titanium-segmented polyurethane composite through 3-(trimethoxysilyl) propyl methacrylate for artificial organs.

    PubMed

    Sakamoto, Harumi; Doi, Hisashi; Kobayashi, Equo; Yoneyama, Takayuki; Suzuki, Yoshiaki; Hanawa, Takao

    2007-07-01

    The objective of this study was to investigate the structure and strength at the bonding interface of a titanium (Ti)-segmented polyurethane (SPU) composite through (3-trimethoxysilyl) propyl methacrylate (gamma-MPS) for artificial organs. The effects of the thickness of the gamma-MPS layer on the shear bonding strength between Ti and SPU were investigated. Ti disks were immersed in various concentrations of gamma-MPS solutions for several immersion times. The depth profiles of elements and the thickness of the gamma-MPS layer were determined by glow discharge optical emission spectroscopy and ellipsometry, respectively. The bonding stress at the Ti/gamma-MPS/SPU interface was evaluated with a shear bonding test. Furthermore, the fractured surface of a Ti-SPU composite was observed by optical microscopy and characterized using X-ray photoelectron spectroscopy. Consequently, the thickness of the gamma-MPS layer was controlled by the concentration of the gamma-MPS solution and immersion time. The shear bonding stress at the interface increased with the increase of the thickness of the gamma-MPS layer. Therefore, the control of the thickness of the gamma-MPS layer is significant to increase the shear bonding stress at the Ti/gamma-MPS/SPU interface. These results are significant to create composites for artificial organs consisting of other metals and polymers. Copyright 2007 Wiley Periodicals, Inc.

  6. Improving Erosion Resistance of Plasma-Sprayed Ceramic Coatings by Elevating the Deposition Temperature Based on the Critical Bonding Temperature

    NASA Astrophysics Data System (ADS)

    Yao, Shu-Wei; Yang, Guan-Jun; Li, Cheng-Xin; Li, Chang-Jiu

    2018-01-01

    Interlamellar bonding within plasma-sprayed coatings is one of the most important factors dominating the properties and performance of coatings. The interface bonding between lamellae significantly influences the erosion behavior of plasma-sprayed ceramic coatings. In this study, TiO2 and Al2O3 coatings with different microstructures were deposited at different deposition temperatures based on the critical bonding temperature concept. The erosion behavior of ceramic coatings was investigated. It was revealed that the coatings prepared at room temperature exhibit a typical lamellar structure with numerous unbonded interfaces, whereas the coatings deposited at the temperature above the critical bonding temperature present a dense structure with well-bonded interfaces. The erosion rate decreases sharply with the improvement of interlamellar bonding when the deposition temperature increases to the critical bonding temperature. In addition, the erosion mechanisms of ceramic coatings were examined. The unbonded interfaces in the conventional coatings act as pre-cracks accelerating the erosion of coatings. Thus, controlling interlamellar bonding formation based on the critical bonding temperature is an effective approach to improve the erosion resistance of plasma-sprayed ceramic coatings.

  7. Anti-proteolytic capacity and bonding durability of proanthocyanidin-biomodified demineralized dentin matrix

    PubMed Central

    Liu, Rui-Rui; Fang, Ming; Zhang, Ling; Tang, Cheng-Fang; Dou, Qi; Chen, Ji-Hua

    2014-01-01

    Our previous studies showed that biomodification of demineralized dentin collagen with proanthocyanidin (PA) for a clinically practical duration improves the mechanical properties of the dentin matrix and the immediate resin–dentin bond strength. The present study sought to evaluate the ability of PA biomodification to reduce collagenase-induced biodegradation of demineralized dentin matrix and dentin/adhesive interfaces in a clinically relevant manner. The effects of collagenolytic and gelatinolytic activity on PA-biomodified demineralized dentin matrix were analysed by hydroxyproline assay and gelatin zymography. Then, resin-/dentin-bonded specimens were prepared and challenged with bacterial collagenases. Dentin treated with 2% chlorhexidine and untreated dentin were used as a positive and negative control, respectively. Collagen biodegradation, the microtensile bond strengths of bonded specimens and the micromorphologies of the fractured interfaces were assessed. The results revealed that both collagenolytic and gelatinolytic activity on demineralized dentin were notably inhibited in the PA-biomodified groups, irrespective of PA concentration and biomodification duration. When challenged with exogenous collagenases, PA-biomodified bonded specimens exhibited significantly less biodegradation and maintained higher bond strengths than the untreated control. These results suggest that PA biomodification was effective at inhibiting proteolytic activity on demineralized dentin matrix and at stabilizing the adhesive/dentin interface against enzymatic degradation, is a new concept that has the potential to improve bonding durability. PMID:24810807

  8. Is chlorhexidine-methacrylate as effective as chlorhexidine digluconate in preserving resin dentin interfaces?

    PubMed

    Abu Nawareg, Manar; Elkassas, Dina; Zidan, Ahmed; Abuelenain, Dalia; Abu Haimed, Tariq; Hassan, Ali H; Chiba, Ayaka; Bock, Thorsten; Agee, Kelli; Pashley, David H

    2016-02-01

    The aim of the current study was to evaluate the effect of 2% CHX and 2% CHX-methacrylate compared to the resin-dentin bonds created by a two-step etch-and-rinse adhesive system after 24h, 6min and 12min. Microtensile bond strengths and interfacial nanoleakage within resin-dentin interfaces created by Adper Single Bond 2, with or without CHX or CHX-methacrylate pre-treatment for 30s on acid-etched dentin surfaces, were evaluated after 24h, 6min and 12min of storage in distilled water at 37°C. Twelve months of storage resulted in a significant decrease in microtensile bond strength in the control group, and significant increases in silver nanoleakage. In contrast, Single Bond 2+CHX, and to a greater extent CHX-methacrylate, significantly reduced the rate of deterioration of resin-dentin interfaces over the 12min water storage period, in terms of bond strength. Similar to Single Bond 2+CHX, Single Bond+CHX-methacrylates reduced the degradation of resin-bonded interfaces over a 12 month storage period. Thus it can be concluded that Single Bond 2+CHX-methacrylate may be important to improve durability of bonded interfaces and therefore, prolong the life span of adhesive restorations. Although CHX primers have been shown to enhance the durability of etch-and-rinse adhesives, that protection is lost after 2h. The use of CHX-methacrylate should last much longer since it may copolymerize with adhesive monomers, unlike CHX. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Nylon and teflon scribe effect on NBR to Chemlok 233 and NBR to NBR bond interfaces

    NASA Technical Reports Server (NTRS)

    Jensen, S. K.

    1990-01-01

    A study was requested by Manufacturing Engineering to determine what effects marking with nylon (6/6) and Teflon scribes may have on subsequent bonding. Witness panel bond specimens were fabricated by the development lab to test both acrylonitrile butadiene rubber (NBR) to Chemlok and NBR to NBR after controlled exposure. The nylon rod used as a scribe tool demonstrates virtually no bond deterioration when used to scribe lines on either the Chemlok to NBR surfaces or the NBR to NBR interface. Lab test results indicate that the nylon rod-exposed samples produce tensile and peel values very similar to the control samples and the Teflon exposed samples produce tensile and peel values much lower than the control samples. Visual observation of the failure surfaces of the tested samples shows that Teflon scribing produces an obvious contamination to the surface and the nylon produces no effect. Photographs of test samples are provided. It is concluded that Teflon stock used as a scribe tool on a Chemlok 233 to NBR surface or an NBR to NBR surface has a detrimental effect on the bond integrity on either of these bond interfaces. Therefore, it is recommended that the nylon rod continue to be used where a scribe line is required in the redesigned solid rocket motor segment insulation layup operations. The use of Teflon scribes should not be considered.

  10. Recrystallization characteristics and interfacial oxides on the compression bonding interface

    NASA Astrophysics Data System (ADS)

    Xie, Bijun; Sun, Mingyue; Xu, Bin; Li, Dianzhong

    2018-05-01

    Up to now, the mechanism of interface bonding is still not fully understood. This work presents interfacial characteristics of 316LN stainless steel bonding joint after cold compression bonding with subsequent annealing. EBSD analysis shows that fine recrystallization grains preferentially appear near the bonding interface and grow towards both sides of the interface. Transmission electron microscopy reveals that initial cold compression bonding disintegrates the native oxide scales and brings pristine metal from both sides of the interface come into intimate contact, while the broken oxide particles are remained at the original interface. The results indicate that partial bonding can be achieved by cold compression bonding with post-annealing treatment and recrystallization firstly occurs along the bonding interface. However, the interfacial oxides impede the recrystallization grains step over the interface and hinder the complete healing of the bonding interface.

  11. Interface bonding of SA508-3 steel under deformation and high temperature diffusion

    NASA Astrophysics Data System (ADS)

    Xu, Bin; Shao, Chunjuan; Sun, Mingyue

    2018-05-01

    There are mainly two parameters affecting high temperature interface bonding: deformation and diffusion. To study these two parameters, interface bonding of SA508-3 bainitic steel at 1100°C are simulated by gleeble3500 thermal simulator. The results show that interface of SA508-3 steel can be bonded under deformation and high temperature. For a specimen pressed at 1100°C without further high temperature diffusion, a reduction ratio of 30% can make the interface begun to bond, but the interface is still part of the grain boundary and small grains exist near the interface. When reduction ratio reaches 50%, the interface can be completely bonded and the microstructure near the interface is the same as that of the base material. When deformation is small, long time diffusion can also help the interface bonding. The results show that when the diffusion time is long enough, the interface under small deformation can also be bonded. For a specimen holding for 24h at 1100°C, only 13% reduction ratio is enough for interface bonding.

  12. Interface bonding of shotcrete reinforced brick masonry assemblages, volume 1

    NASA Astrophysics Data System (ADS)

    Robinson, D. W.; Kahn, L. F.

    1982-09-01

    Nine 9 sq ft. shotcrete reinforced brick masonry assemblages and one 9 sq ft brick masonry control specimen were tested under a single reversed cycle diagonal compression load similar to the ASTM E519-74 testing procedures. The interface surface conditions, between the brick and shotcrete were varied. The surfaces of the single sythe of old brick were either dry, wet, or epoxy coated before application of the 3-inch reinforced shotcrete layer. Ultimate load capacities of the specimens were similar, however, specimens with epoxy-enhanced interfaces were the most ductile; the dry brick specimens showed interface bond failure immediately after the ultimate inplane load was attained.

  13. [A study on the bond interface between low-fusing dental porcelain and pure titanium].

    PubMed

    Mo, A; Cen, Y; Liao, Y; Wang, J; Shi, X

    2001-09-01

    To evaluate the bond interface between low fusing dental porcelain and pure titanium by observing the topography and detecting the ionic diffusion in the interface area. The low fusing-porcelain La-porcelain produced by the authors or Vita Titankeramik porcelain was fused to the surfaces of pure titanium. The topography of the interface between pure titanium and porcelain, and the structure of experimental materials were observed with SEM. The state of ionic diffusion in the interface area was investigated with EPMA. Excellent permeation and diffusion of La-porcelain were observed on the surfaces of pure titanium. The diffusion of ions of stannum and silicon was discovered in the interface area. The microstructure of La-porcelain to pure titanium bond interface was finer than that of Vita Titankeramik porcelain. Excellent bond can be produced in the interface between La-porcelain and pure titanium. The bonding mechanism may involve mechanical bond and chemical bond. The ionic diffusion of stannum plays an important role in the bonding of porcelain to pure titanium.

  14. Residual interface tensile strength of ceramic bonded to dentin after cyclic loading and aging.

    PubMed

    Hernandez, Alfredo I; Roongruangphol, Thasanai; Katsube, Noriko; Seghi, Robert R

    2008-03-01

    To guard against the potential risk of cusp fracture, esthetic onlay restorations have been advocated for teeth with large restorations. The influence of the adhesive resin cement is believed to play a role in strengthening these restorations. The durability of this tooth/adhesive/ceramic interface is critical to ensure clinical longevity. The purpose of this study was to assess the effects of cyclic loading and environmental aging on the residual interface strength of a ceramic bonded to dentin structure. Eighteen simple trilayer specimens were fabricated, consisting of a 1.5-mm-thick ceramic plate (ProCAD) bonded to a flattened human molar tooth with exposed coronal dentin. The ceramic plates were bonded using resin cement (Nexus 2) and manufacturer-recommended bonding techniques. The specimens were divided into 3 equal groups and were stored in water at 37 degrees C for 10 weeks as a control group (CT), 9 months as an aging group (AG), or placed in water at 37 degrees C while being subjected to 10 million vertical loading cycles between 20 N to 200 N, as a fatigue group (FG). After the specimens were subjected to the experimental conditions, they were sectioned perpendicular to the flat ceramic surface into 1 x 1-mm sticks. The mean residual interface microtensile bond (MTB) strength was determined for each specimen using only those sticks which contained ceramic bonded to dentin. The MTB strength data were analyzed using Weibull analysis methods to determine differences between groups. All subsequent failed specimen surfaces were evaluated under a stereomicroscope at x10 magnification to determine the apparent failure modes. Some specimens were selected from each failure mode category for surface evaluation under a scanning electron microscope (SEM). The characteristic Weibull means for the 3 groups were CT, 19.2, FG, 14.7, and AG, 11.7. The bond strength of group CT was significantly greater than both AG (P=.007) and FG (P=.014). Light microscopic categorization of the failure modes suggests that adhesive failure at the ceramic/cement interface was the most common (65%) for all 3 groups. SEM evaluation of failed surfaces of select specimens from each group could not distinguish any interface appearance differences. For indirect adhesive-retained ceramic restorations, both cyclic masticatory loading and hydrolytic degradation may contribute to a weakening of the interface bond. The ceramic/resin interface may be more susceptible to these changes over the time frame of this investigation than the dentin/resin interface.

  15. Corrosion Control at Graphite/Epoxy-Aluminum and Titanium Interfaces

    DTIC Science & Technology

    1974-07-01

    Exfoliation Salt Spray Showing Corrosion on Back Side of Bond Interface (2x) 18 19 20 23 24 27 31 31 32 32 33 33 34 35 ; vll...25 29 Vlll ’-■"■’"-’—’—’"■ •■■’■■: UtaMMUitaittikHMalMiiakii T= zsm ~ ■ - ■- • ’■ ■ -■■■ ■: ---"• SUMMARY Graphlte/epoxy...joint specimen. Cure M 35 psl and 3a0*F for GO minutes. Apply 0,2-0.4 ml ol BH127 adhesive primer to the bond intiiface areas. Bond 4 mil 1100

  16. Measurement and Control of In-plane Surface Chemistry at the Silicon/Silicon Dioxide Interface

    NASA Astrophysics Data System (ADS)

    Gokce, Bilal

    In-plane directional control of surface chemistry during interface formation can lead to new opportunities regarding device structures and applications. Control of this type requires techniques that can probe and hence provide feedback on the chemical reactivity of bonds not only in specific directions but also in real time. In this thesis work, I demonstrate both control and measurement of the oxidation of H-terminated Si(111). The nonlinear optical tool of Second-Harmonic-Generation (SHG) is used to show that Si oxidation in air is a two-stage process where the H of the "up" bonds of the outermost Si layer is replaced by OH, followed by O insertion into the "back" bonds. Detailed information about both stages is revealed by investigating the effect of uniaxial strain and carrier concentration on this chemical reaction. It is shown that even small amounts of strain manipulate the reaction kinetics of surface bonds significantly, with tensile strain enhancing oxidation and compressive strain retarding it. This dramatic change suggests a strain-driven charge transfer mechanism between Si--H up bonds and Si--Si back bonds in the outer layer of Si atoms. Data on differently doped samples reveal that high concentrations of electrons increase the chemical reactivity of the outer-layer Si--Si back bonds relative to the Si--H up bonds while high concentrations of holes cause a greater increase in the reactivity of the Si--H up bonds than that of the Si--Si back bonds. However, the thicknesses of the natural oxides of all samples follow the same path and stabilize near 1 nm at room temperature, regardless of the chemical kinetics of the different bonds, as determined by spectroscopic ellipsometry. Real-time measurement during SHG experiments is achieved by analyzing SHG anisotropy data with the anisotropic bond-charge model of nonlinear optics where peaks in the SHG spectrum are correlated with the near alignment of bonds to the direction of the excitation field.

  17. Hydrogen release at metal-oxide interfaces: A first principle study of hydrogenated Al/SiO2 interfaces

    NASA Astrophysics Data System (ADS)

    Huang, Jianqiu; Tea, Eric; Li, Guanchen; Hin, Celine

    2017-06-01

    The Anode Hydrogen Release (AHR) mechanism at interfaces is responsible for the generation of defects, that traps charge carriers and can induce dielectric breakdown in Metal-Oxide-Semiconductor Field Effect Transistors. The AHR has been extensively studied at Si/SiO2 interfaces but its characteristics at metal-silica interfaces remain unclear. In this study, we performed Density Functional Theory (DFT) calculations to study the hydrogen release mechanism at the typical Al/SiO2 metal-oxide interface. We found that interstitial hydrogen atoms can break interfacial Alsbnd Si bonds, passivating a Si sp3 orbital. Interstitial hydrogen atoms can also break interfacial Alsbnd O bonds, or be adsorbed at the interface on aluminum, forming stable Alsbnd Hsbnd Al bridges. We showed that hydrogenated Osbnd H, Sisbnd H and Alsbnd H bonds at the Al/SiO2 interfaces are polarized. The resulting bond dipole weakens the Osbnd H and Sisbnd H bonds, but strengthens the Alsbnd H bond under the application of a positive bias at the metal gate. Our calculations indicate that Alsbnd H bonds and Osbnd H bonds are more important than Sisbnd H bonds for the hydrogen release process.

  18. Fracture toughness of dentin/resin-composite adhesive interfaces.

    PubMed

    Tam, L E; Pilliar, R M

    1993-05-01

    The reliability and validity of tensile and shear bond strength determinations of dentin-bonded interfaces have been questioned. The fracture toughness value (KIC) reflects the ability of a material to resist crack initiation and unstable propagation. When applied to an adhesive interface, it should account for both interfacial bond strength and inherent defects at or near the interface, and should therefore be more appropriate for characterization of interface fracture resistance. This study introduced a fracture toughness test for the assessment of dentin/resin-composite bonded interfaces. The miniature short-rod specimen geometry was used for fracture toughness testing. Each specimen contained a tooth slice, sectioned from a bovine incisor, to form the bonded interface. The fracture toughness of an enamel-bonded interface was assessed in addition to the dentin-bonded interfaces. Tensile bond strength specimens were also prepared from the dentin surfaces of the cut bovine incisors. A minimum of ten specimens was fabricated for each group of materials tested. After the specimens were aged for 24 h in distilled water at 37 degrees C, the specimens were loaded to failure in an Instron universal testing machine. There were significant differences (p < 0.05) between the dental adhesives tested. Generally, both the fracture toughness and tensile bond strength measurements were highest for AllBond 2, intermediate for 3M MultiPurpose, and lowest for Scotchbond 2. Scanning electron microscopy of the fractured specimen halves confirmed that crack propagation occurred along the bond interface during the fracture toughness test. It was therefore concluded that the mini-short-rod fracture toughness test provided a valid method for characterization of the fracture resistance of the dentin-resin composite interface.

  19. A feasible method to eliminate nanoleakage in dentin hybrid layers.

    PubMed

    Chen, Ji-Hua; Liu, Yan; Niu, Li-Na; Lu, Shuai; Tay, Franklin R; Gao, Yu

    2014-10-01

    To determine whether high-pressure air blowing during adhesive application affects the infiltration of resin comonomers and nanoleakage manifestation in the resin/dentin interface under simulated pulpal pressure. Thirty mid-coronal dentin surfaces were bonded with an etch-and-rinse adhesive (Adper Single Bond 2) under simulated pulpal pressure. In the control group, the adhesive was thinned by ordinary air blowing with a pressure of 0.2 MPa, while in the experimental group, a high-pressure air blowing technique (pressure: 0.4 MPa) was used. All other procedures followed the manufacturer's instructions. Resin tag formation and nanoleakage in the bonding interface were evaluated with scanning electron microscopy (SEM) and transmission electron microscopy (TEM). When adhesive was thinned with high pressure air blowing, longer and more homogeneous resin tags were formed. The bonding interface demonstrated good overall morphology and integrity. Almost perfect infiltration of resin and no obvious nanoleakage were observed. Thinning of adhesive with high-pressure air blowing provides a clinically feasible adjunctive procedure for better resin infiltration.

  20. Interfacial Bonding Energy on the Interface between ZChSnSb/Sn Alloy Layer and Steel Body at Microscale.

    PubMed

    Wang, Jianmei; Xia, Quanzhi; Ma, Yang; Meng, Fanning; Liang, Yinan; Li, Zhixiong

    2017-09-25

    To investigate the performance of bonding on the interface between ZChSnSb/Sn and steel body, the interfacial bonding energy on the interface of a ZChSnSb/Sn alloy layer and the steel body with or without Sn as an intermediate layer was calculated under the same loadcase using the molecular dynamics simulation software Materials Studio by ACCELRYS, and the interfacial bonding energy under different Babbitt thicknesses was compared. The results show that the bonding energy of the interface with Sn as an intermediate layer is 10% larger than that of the interface without a Sn layer. The interfacial bonding performances of Babbitt and the steel body with Sn as an intermediate layer are better than those of an interface without a Sn layer. When the thickness of the Babbitt layer of bushing is 17.143 Å, the interfacial bonding energy reaches the maximum, and the interfacial bonding performance is optimum. These findings illustrate the bonding mechanism of the interfacial structure from the molecular level so as to ensure the good bonding properties of the interface, which provides a reference for the improvement of the bush manufacturing process from the microscopic point of view.

  1. [Effects of laser welding on bond of porcelain fused cast pure titanium].

    PubMed

    Zhu, Juan-fang; He, Hui-ming; Gao, Bo; Wang, Zhong-yi

    2006-04-01

    To investigate the influence of the laser welding on bond of porcelain fused to cast pure titanium. Twenty cast titanium plates were divided into two groups: laser welded group and control group. The low-fusing porcelain was fused to the laser welded cast pure titanium plates at fusion zone. The bond strength of the porcelain to laser welded cast pure titanium was measured by the three-point bending test. The interface of titanium and porcelain was investigated by scanning electron microscopy (SEM) and energy depressive X-ray detector (EDX). The non-welded titanium plates were used as comparison. No significant difference of the bond strength was found between laser-welded samples [(46.85 +/- 0.76) MPa] and the controls [(41.71 +/- 0.55) MPa] (P > 0.05). The SEM displayed the interface presented similar irregularities with a predominance. The titanium diffused to low-fusing porcelain, while silicon and aluminum diffused to titanium basement. Laser welding does not affect low-fusing porcelain fused to pure titanium.

  2. Bonding thermoplastic polymers

    DOEpatents

    Wallow, Thomas I [Fremont, CA; Hunter, Marion C [Livermore, CA; Krafcik, Karen Lee [Livermore, CA; Morales, Alfredo M [Livermore, CA; Simmons, Blake A [San Francisco, CA; Domeier, Linda A [Danville, CA

    2008-06-24

    We demonstrate a new method for joining patterned thermoplastic parts into layered structures. The method takes advantage of case-II permeant diffusion to generate dimensionally controlled, activated bonding layers at the surfaces being joined. It is capable of producing bonds characterized by cohesive failure while preserving the fidelity of patterned features in the bonding surfaces. This approach is uniquely suited to production of microfluidic multilayer structures, as it allows the bond-forming interface between plastic parts to be precisely manipulated at micrometer length scales. The bond enhancing procedure is easily integrated in standard process flows and requires no specialized equipment.

  3. Room temperature bonding and debonding of polyimide film and glass substrate based on surface activate bonding method

    NASA Astrophysics Data System (ADS)

    Takeuchi, Kai; Fujino, Masahisa; Matsumoto, Yoshiie; Suga, Tadatomo

    2018-02-01

    The temporary bonding of polyimide (PI) films and glass substrates is a key technology for realizing flexible devices with thin-film transistors (TFTs). In this paper, we report the surface activated bonding (SAB) method using Si intermediate layers and its bonding and debonding mechanisms after heating. The bonding interface composed of Si and Fe shows a higher bond strength than the interface of only Si, while the bond strengths of both interfaces decrease with post bonding heating. It is also clarified by composition analysis on the debonded surfaces and cross-sectional observation of the bonding interface that the bond strength depends on the toughness of the intermediated layers and PI. The SAB method using Si intermediate layers is found to be applicable to the bonding and debonding of PI and glass.

  4. ON THE DURABILITY OF RESIN-DENTIN BONDS: IDENTIFYING THE WEAKEST LINKS

    PubMed Central

    Zhang, Zihou; Beitzel, Dylan; Mutluay, Mustafa; Tay, Franklin R.; Pashley, David H.; Arola, Dwayne

    2015-01-01

    Fatigue of resin-dentin adhesive bonds is critical to the longevity of resin composite restorations. Objectives The objectives were to characterize the fatigue and fatigue crack growth resistance of resin-dentin bonds achieved using two different commercial adhesives and to identify apparent “weak-links”. Methods Bonded interface specimens were prepared using Adper Single Bond Plus (SB) or Adper Scotchbond Multi-Purpose (SBMP) adhesives and 3M Z100 resin composite according to the manufacturers instructions. The stress-life fatigue behavior was evaluated using the twin bonded interface approach and the fatigue crack growth resistance was examined using bonded interface Compact Tension (CT) specimens. Fatigue properties of the interfaces were compared to those of the resin-adhesive, resin composite and coronal dentin. Results The fatigue strength of the SBMP interface was significantly greater than that achieved by SB (p≤0.01). Both bonded interfaces exhibited significantly lower fatigue strength than that of the Z100 and dentin. Regarding the fatigue crack growth resistance, the stress intensity threshold (ΔKth) of the SB interface was significantly greater (p≤0.01) than that of the SBMP, whereas the ΔKth of the interfaces was more than twice that of the parent adhesives. Significance Collagen fibril reinforcement of the resin adhesive is essential to the fatigue crack growth resistance of resin-dentin bonds. Resin tags that are not well hybridized into the surrounding intertubular dentin and/or poor collagen integrity are detrimental to the bonded interface durability. PMID:26169318

  5. Measurement and control of in-plane surface chemistry during the oxidation of H-terminated (111) Si

    PubMed Central

    Gokce, Bilal; Adles, Eric J.; Aspnes, David E.; Gundogdu, Kenan

    2010-01-01

    In-plane directional control of surface chemistry during interface formation can lead to new opportunities regarding device structures and applications. Control of this type requires techniques that can probe and hence provide feedback on the chemical reactivity of bonds not only in specific directions but also in real time. Here, we demonstrate both control and measurement of the oxidation of H-terminated (111) Si. Control is achieved by externally applying uniaxial strain, and measurement by second-harmonic generation (SHG) together with the anisotropic-bond model of nonlinear optics. In this system anisotropy results because bonds in the strain direction oxidize faster than those perpendicular to it, leading in addition to transient structural changes that can also be detected at the bond level by SHG. PMID:20876145

  6. Interfacial Bonding Energy on the Interface between ZChSnSb/Sn Alloy Layer and Steel Body at Microscale

    PubMed Central

    Xia, Quanzhi; Ma, Yang; Meng, Fanning; Liang, Yinan; Li, Zhixiong

    2017-01-01

    To investigate the performance of bonding on the interface between ZChSnSb/Sn and steel body, the interfacial bonding energy on the interface of a ZChSnSb/Sn alloy layer and the steel body with or without Sn as an intermediate layer was calculated under the same loadcase using the molecular dynamics simulation software Materials Studio by ACCELRYS, and the interfacial bonding energy under different Babbitt thicknesses was compared. The results show that the bonding energy of the interface with Sn as an intermediate layer is 10% larger than that of the interface without a Sn layer. The interfacial bonding performances of Babbitt and the steel body with Sn as an intermediate layer are better than those of an interface without a Sn layer. When the thickness of the Babbitt layer of bushing is 17.143 Å, the interfacial bonding energy reaches the maximum, and the interfacial bonding performance is optimum. These findings illustrate the bonding mechanism of the interfacial structure from the molecular level so as to ensure the good bonding properties of the interface, which provides a reference for the improvement of the bush manufacturing process from the microscopic point of view. PMID:28946690

  7. Five-year Effects of Chlorhexidine on the In Vitro Durability of Resin/Dentin Interfaces.

    PubMed

    Loguercio, Alessandro D; Hass, Viviane; Gutierrez, Mario Felipe; Luque-Martinez, Issis Virginia; Szezs, Anna; Stanislawczuk, Rodrigo; Bandeca, Matheus Coelho; Reis, Alessandra

    2016-01-01

    To evaluate the effect of an acid containing 2% chlorhexidine (Ac/CHX) or a 2% CHX aqueous solution (Aq/CHX) on the immediate and 5-year bonding properties of resin/dentin interfaces produced by two adhesives. The presence of CHX in these interfaces was also evaluated under micro-Raman spectroscopy. Forty-two molars were ground to expose a flat dentin surface. In the control group, the surfaces were etched with conventional phosphoric acid, and Prime&Bond NT (PB) and Adper Single Bond 2 (SB) were applied. In Ac/CHX, an acid containing 2% CHX was applied after adhesive application. In the Aq/CHX group, an aqueous solution of 2% CHX was applied for 60 s after etching. After placing the restoration, specimens were prepared and tested using the microtensile bond strength test (μTBS, 0.5 mm/min) immediately or after 5 years. For nanoleakage (NL), specimens at each period were immersed in silver nitrate solution and examined by EDX-SEM. In addition, specimens at each period underwent examination for CHX using micro-Raman spectroscopy. Data were submitted to appropriate statistical analysis (a=0.05). After 5 years, NL was more pronounced in the control than in the Ac/CHX or Aq/CHX (p<0.001). Significant reductions in the μTBS were observed for all groups; however, they were more pronounced for the control (p<0.001). CHX was still present in the hybrid layers Ac/CHX or Aq/CHX groups after 5 years. The use of a 2% chlorhexidine-containing acid or the application of an aqueous CHX primer may increase the long-term stability of resin/dentin interfaces.

  8. Exhibition of veiled features in diffusion bonding of titanium alloy and stainless steel via copper

    NASA Astrophysics Data System (ADS)

    Thirunavukarasu, Gopinath; Kundu, Sukumar; Laha, Tapas; Roy, Deb; Chatterjee, Subrata

    2017-11-01

    An investigation was carried out to know the extent of influence of bonding-time on the interface structure and mechanical properties of diffusion bonding (DB) of TiA|Cu|SS. DB of Ti6Al4V (TiA) and 304 stainless steel (SS) using pure copper (Cu) of 200-μm thickness were processed in vacuum using 4-MPa bonding-pressure at 1123 K from 15 to 120 min in steps of 15 min. Preparation of DB was not possible when bonding-time was less than 60 min as the bonding at Cu|SS interface was unsuccessful in spite of effective bonding at TiA|Cu interface; however, successful DB were produced when the bonding-time was 60 min and beyond. DB processed for 60 and 75 min (classified as shorter bonding-time interval) showed distinctive characteristics (structural, mechanical, and fractural) as compared to the DB processed for 90, 105, and 120 min (classified as longer bonding-time interval). DB processed for 60 and 75 min exhibited layer-wise Cu-Ti-based intermetallics at TiA|Cu interface, whereas Cu|SS interface was completely free from reaction products. The layer-wise structure of Cu-Ti-based intermetallics were not observed at TiA|Cu interface in the DB processed for longer bonding-time; however, the Cu|SS interface had layer-wise ternary intermetallic compounds (T1, T2, and T3) of Cu-Fe-Ti-based along with σ phase depending upon the bonding-time chosen. Diffusivity of Ti-atoms in Cu-layer (DTi in Cu-layer) was much greater than the diffusivity of Fe-atoms in Cu-layer (DFe in Cu-layer). Ti-atoms reached Cu|SS interface but Fe-atoms were unable to reach TiA|Cu interface. It was observed that DB fractured at Cu|SS interface when processed for shorter bonding-time interval, whereas the DB processed for longer bonding-time interval fractured apparently at the middle of Cu-foil region predominantly due to the existence of brittle Cu-Fe-Ti-based intermetallics.

  9. Interfacial elastic relaxation during the ejection of bi-layered tablets.

    PubMed

    Anuar, M S; Briscoe, B J

    2010-03-15

    The predilection of a bi-layered tablet to fail in the interface region after its initial formation in the compaction process reduces its practicality as a choice for controlled release solid drug delivery system. Hence, a fundamental appreciation of the governing mechanism that causes the weakening of the interfacial bonds within the bi-layered tablet is crucial in order to improve the overall bi-layered tablet mechanical integrity. This work has shown that the occurrence of the elastic relaxation in the interface region during the ejection stage of the compaction process decreases with the increase in the bi-layered tablet interface strength. This is believed to be due to the increase in the plastic bonding in the interface region. The tablet diametrical elastic relaxation affects the tablet height elastic relaxation, where the impediment of the tablet height expansion is observed when the interface region experiences a diametrical expansion. 2009 Elsevier B.V. All rights reserved.

  10. Behavior of oxide film at the interface between particles in sintered Al powders by pulse electric-current sintering

    NASA Astrophysics Data System (ADS)

    Xie, Guoqiang; Ohashi, Osamu; Song, Minghui; Furuya, Kazuo; Noda, Tetsuji

    2003-03-01

    The microstructure of the bonding interfaces between particles in aluminum (Al) powder sintered specimens by the pulse electric-current sintering (PECS) process was observed, using conventional transmission electron microscopy (CTEM) and high-resolution transmission electron microscopy (HRTEM). The behavior of oxide film at the interface between Al particles and its effect on properties of the sintered specimens were investigated. The results showed there were two kinds of bonding interfaces in the sintered specimens, namely, the direct metal/metal bonding and the metal/oxide film layer/metal bonding interface. By increasing the fraction of the direct metal/metal bonding interfaces, the tensile strength of the sintered specimens increased, and the electrical resistivity decreased. By increasing the loading pressure at higher sintering temperatures or increasing the sintering temperature under loading pressure, the breakdown of oxide film was promoted. The broken oxide film debris was dispersed in aluminum metal near the bonding interfaces between particles.

  11. Paucity of Nanolayering in Resin-Dentin Interfaces of MDP-based Adhesives

    PubMed Central

    Tian, F.; Zhou, L.; Zhang, Z.; Niu, L.; Zhang, L.; Chen, C.; Zhou, J.; Yang, H.; Wang, X.; Fu, B.; Huang, C.; Pashley, D.H.; Tay, F.R.

    2015-01-01

    Self-assembled nanolayering structures have been reported in resin-dentin interfaces created by adhesives that contain 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP). These structures have been hypothesized to contribute to bond durability. The objective of the present study was to determine the extent of nanolayering in resin-dentin interfaces after application of commercialized 10-MDP-containing self-etch and universal adhesives to human dentin. Seven commercialized adhesives were examined: Adhese Universal (Ivoclar-Vivadent), All-Bond Universal (Bisco, Inc.), Clearfil SE Bond 2, Clearfil S3 Bond Plus, Clearfil Universal Bond (all from Kuraray Noritake Dental Inc.), G-Premio Bond (GC Corp.), and Scotchbond Universal (3M ESPE). Each adhesive was applied in the self-etch mode on midcoronal dentin according to the respective manufacturer’s instructions. Bonded specimens (n = 6) were covered with flowable resin composite, processed for transmission electron microscopy, and examined at 30 random sites without staining. Thin-film glancing angle X-ray diffraction (XRD) was used to detect the characteristic peaks exhibited by nanolayering (n = 4). The control consisted of 15%wt, 10%wt, and 5%wt 10-MDP (DM Healthcare Products, Inc.) dissolved in a mixed solvent (ethanol and water weight ratio 9:8, with photoinitiators). Experimental primers were applied to dentin for 20 s, covered with hydrophobic resin layer, and examined in the same manner. Profuse nanolayering with highly ordered periodicity (~3.7 nm wide) was observed adjacent to partially dissolved apatite crystallites in dentin treated with the 15% 10-MDP primer. Three peaks in the 2θ range of 2.40° (3.68 nm), 4.78° (1.85 nm), and 7.18° (1.23 nm) were identified from thin-film XRD. Reduction in the extent of nanolayering was observed in the 10% and 5% 10-MDP experimental primer-dentin interface along with lower intensity XRD peaks. Nanolayering and characteristic XRD peaks were rarely observed in specimens prepared from the commercialized adhesives. The sparsity of nanolayering in resin-dentin interfaces created by commercialized adhesives challenges its clinical effectiveness as a mechanism for improving bond longevity in dentin bonding. PMID:26701351

  12. Paucity of Nanolayering in Resin-Dentin Interfaces of MDP-based Adhesives.

    PubMed

    Tian, F; Zhou, L; Zhang, Z; Niu, L; Zhang, L; Chen, C; Zhou, J; Yang, H; Wang, X; Fu, B; Huang, C; Pashley, D H; Tay, F R

    2016-04-01

    Self-assembled nanolayering structures have been reported in resin-dentin interfaces created by adhesives that contain 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP). These structures have been hypothesized to contribute to bond durability. The objective of the present study was to determine the extent of nanolayering in resin-dentin interfaces after application of commercialized 10-MDP-containing self-etch and universal adhesives to human dentin. Seven commercialized adhesives were examined: Adhese Universal (Ivoclar-Vivadent), All-Bond Universal (Bisco, Inc.), Clearfil SE Bond 2, Clearfil S3 Bond Plus, Clearfil Universal Bond (all from Kuraray Noritake Dental Inc.), G-Premio Bond (GC Corp.), and Scotchbond Universal (3M ESPE). Each adhesive was applied in the self-etch mode on midcoronal dentin according to the respective manufacturer's instructions. Bonded specimens (n = 6) were covered with flowable resin composite, processed for transmission electron microscopy, and examined at 30 random sites without staining. Thin-film glancing angle X-ray diffraction (XRD) was used to detect the characteristic peaks exhibited by nanolayering (n = 4). The control consisted of 15%wt, 10%wt, and 5%wt 10-MDP (DM Healthcare Products, Inc.) dissolved in a mixed solvent (ethanol and water weight ratio 9:8, with photoinitiators). Experimental primers were applied to dentin for 20 s, covered with hydrophobic resin layer, and examined in the same manner. Profuse nanolayering with highly ordered periodicity (~3.7 nm wide) was observed adjacent to partially dissolved apatite crystallites in dentin treated with the 15% 10-MDP primer. Three peaks in the 2θ range of 2.40° (3.68 nm), 4.78° (1.85 nm), and 7.18° (1.23 nm) were identified from thin-film XRD. Reduction in the extent of nanolayering was observed in the 10% and 5% 10-MDP experimental primer-dentin interface along with lower intensity XRD peaks. Nanolayering and characteristic XRD peaks were rarely observed in specimens prepared from the commercialized adhesives. The sparsity of nanolayering in resin-dentin interfaces created by commercialized adhesives challenges its clinical effectiveness as a mechanism for improving bond longevity in dentin bonding. © International & American Associations for Dental Research 2015.

  13. Current-Assisted Diffusion Bonding of Extruded Ti-22Al-25Nb Alloy by Spark Plasma Sintering: Interfacial Microstructure and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Yang, Jianlei; Wang, Guofeng; Jiao, Xueyan; Gu, Yibin; Liu, Qing; Li, You

    2018-05-01

    Spark plasma sintering (SPS) technology was used to current-assisted bond extruded Ti-22Al-25Nb alloy. The effects of bonding temperature (920-980 °C) and bonding time (10-30 min) on the microstructure evolution and shear strength of this alloy were investigated systematically. The temperature distribution in the specimen during the current-assisted bonding process was also analyzed by numerical simulation. It is noted that the highest temperature was obtained at the bonding interface. As the bonding temperature and bonding time increased, the voids in the interface shrank increasingly until they vanished. A complete metallurgical bonding interface could be produced at 960 °C/20 min/10 MPa, exhibiting the highest shear strength of 269.3 MPa. In addition, the shear strength of the bonded specimen depended on its interfacial microstructure. With increased bonding temperature, the fracture mode transformed from the intergranular fracture at the bonding interface to the cleavage fracture in the substrate.

  14. Modulation of surface flatness and van der Waals bonding of two-dimensional materials to reduce contact resistance.

    NASA Astrophysics Data System (ADS)

    Yue, Dewu; Yoo, Won Jong

    Despite that the novel quantum mechanical properties of two-dimension (2D) materials are well explored theoretically, their electronic performance is limited by the contact resistance of the metallic interface and therefore their inherent novel properties are rarely realized experimentally. In this study, we demonstrate that we can largely reduce the contact resistance induced between metal and 2D materials, by controlling the surface condition of 2D materials, eg. surface flatness and van der Waals bonding. To induce the number of more effective carrier conducting modes, we engineer the surface roughness and dangling bonds of the 2D interface in contact with metal. As a result, electrical contact resistance of the metal interface is significantly reduced and carrier mobility in the device level is enhanced correspondingly. This work was supported by the Global Research Laboratory and Global Frontier R&D Programs at the Center for Hybrid Interface Materials, both funded by the Ministry of Science, ICT & Future Planning via the National Research Foundation of Korea (NRF).

  15. [Effect of three aging challenges on the bonding stability of resin-dentin interface using an etch-and-rinse adhesive].

    PubMed

    Xu, Shuai; Zhang, Ling; Li, Fang; Zhou, Wei; Chen, Yujiang; Chen, Jihua

    2014-06-01

    To systematically investigate the aging effect of thermocycling, water storage and bacteria aggression on the stability of resin-dentin bonds. Forty molars were sectioned perpendicularly to the axis of the teeth to expose the middle-coronal dentin surfaces. The dentin surfaces were then treated with Single Bond 2 and made a core build-up. According to random digits table, the bonding specimens were divided into four groups (n = 10) as follows: immediate control group, aging group with thermocycling for 5 000 times, aging group with artificial saliva storage for 6 months and aging group with bacteria aggression for 14 days. The specimens in each group were then subjected to microtensile bond strengths (µTBS) testing and nanoleakage evaluation respectively. After aging treatments, the three aging groups showed significantly lower µTBS than the immediate control group [(44.24 ± 12.75) MPa, P < 0.05]. The immediate control group also showed the lowest value of nanoleakage. The µTBS of aging group with bacteria aggression [(25.53 ± 7.39) MPa] was significantly lower than those of the other aging groups with artificial saliva storage[(29.72 ± 6.51) MPa] and thermocycling [(31.92 ± 11.87) MPa, P < 0.05]. There were no differences in the nanoleakage values among the three aging groups (P > 0.05). All the aging treatments with artificial saliva storage, thermocycling and bacteria aggression could accelerate the degradation of bonding interfaces between an etch-and-rinse adhesive and dentin. Bacteria aggression showed the most impairing effect on the stability of resin-dentin bonds.

  16. Modified low-temperture direct bonding method for vacuum microelectronics application

    NASA Astrophysics Data System (ADS)

    Ju, Byeong-Kwon; Lee, Duck-Jung; Choi, Woo-Beom; Lee, Yun-Hi; Jang, Jin; Lee, Kwang-Bae; Oh, Myung-Hwan

    1997-06-01

    This paper presents the process and experimental results for the improved silicon-to-glass bonding using silicon direct bonding (SDB) followed by anodic bonding. The initial bonding between glass and silicon was caused by the hydrophilic surfaces of silicon-glass ensemble using SDB method. Then the initially bonded specimen had to be strongly bonded by anodic bonding process. The effects of the bonding process parameters on the interface energy were investigated as functions of the bonding temperature and voltage. We found that the specimen which was bonded using SDB process followed by anodic bonding process had higher interface energy than one using anodic bonding process only. The main factor contributing to the higher interface energy in the glass-to-silicon assemble bonded by SDB followed by anodic bonding was investigated by secondary ion mass spectroscopy analysis.

  17. Optimizing dentin bond durability: control of collagen degradation by matrix metalloproteinases and cysteine cathepsins

    PubMed Central

    Tjäderhane, Leo; Nascimento, Fabio D.; Breschi, Lorenzo; Mazzoni, Annalisa; Tersariol, Ivarne L.S.; Geraldeli, Saulo; Tezvergil-Mutluay, Arzu; Carrilho, Marcela R.; Carvalho, Ricardo M.; Tay, Franklin R.; Pashley, David H.

    2012-01-01

    Objectives Contemporary adhesives lose their bond strength to dentin regardless of the bonding system used. This loss relates to the hydrolysis of collagen matrix of the hybrid layers. The preservation of the collagen matrix integrity is a key issue in the attempts to improve the dentin bonding durability. Methods Dentin contains collagenolytic enzymes, matrix metalloproteinases (MMPs) and cysteine cathepsins, which are responsible for the hydrolytic degradation of collagen matrix in the bonded interface. Results The identities, roles and function of collagenolytic enzymes in mineralized dentin has been gathered only within last 15 years, but they have already been demonstrated to have an important role in dental hard tissue pathologies, including the degradation of the hybrid layer. Identifying responsible enzymes facilitates the development of new, more efficient methods to improve the stability of dentin-adhesive bond and durability of bond strength. Significance Understanding the nature and role of proteolytic degradation of dentin-adhesive interfaces has improved immensely and has practically grown to a scientific field of its own within only 10 years, holding excellent promise that stable resin-dentin bonds will be routinely available in a daily clinical setting already in a near future. PMID:22901826

  18. Carbon Nanotube Bonding Strength Enhancement Using Metal "Wicking" Process

    NASA Technical Reports Server (NTRS)

    Lamb, James L.; Dickie, Matthew R.; Kowalczyk, Robert S.; Liao, Anna; Bronikowski, Michael J.

    2012-01-01

    Carbon nanotubes grown from a surface typically have poor bonding strength at the interface. A process has been developed for adding a metal coat to the surface of carbon nano tubes (CNTs) through a wicking process, which could lead to an enhanced bonding strength at the interface. This process involves merging CNTs with indium as a bump-bonding enhancement. Classical capillary theory would not normally allow materials that do not wet carbon or graphite to be drawn into the spacings by capillary action because the contact angle is greater than 90 degrees. However, capillary action can be induced through JPL's ability to fabricate oriented CNT bundles to desired spacings, and through the use of deposition techniques and temperature to control the size and mobility of the liquid metal streams and associated reservoirs. A reflow and plasma cleaning process has also been developed and demonstrated to remove indium oxide, and to obtain smooth coatings on the CNT bundles.

  19. An Investigation of Bonding Mechanisms at the Interface of a Prosthetic Material.

    DTIC Science & Technology

    1977-12-01

    II. CONTROLLING OFFICE NAME AND ADDRESS Command — IkThUM eEROFP AGE S Washington, D. C. 20314 144 _______________________ I...which can influence the precipitation of hydroxyapatite in bone. Variable rates of ion release have been achieved by varying (1) Ca/P ratio, (2) the...conducted to establish parameters controlling the bonding of the glass and glass—ceramic materials with bone. These studies have demonstrated that the

  20. Lattice structures and electronic properties of MO/MoSe2 interface from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Tang, Fu-Ling; Xue, Hong-Tao; Lu, Wen-Jiang; Liu, Jiang-Fei; Huang, Min

    2015-02-01

    Using first-principles plane-wave calculations within density functional theory, we theoretically studied the atomic structure, bonding energy and electronic properties of the perfect Mo (110)/MoSe2 (100) interface with a lattice mismatch less than 4.2%. Compared with the perfect structure, the interface is somewhat relaxed, and its atomic positions and bond lengths change slightly. The calculated interface bonding energy is about -1.2 J/m2, indicating that this interface is very stable. The MoSe2 layer on the interface has some interface states near the Fermi level, the interface states are mainly caused by Mo 4d orbitals, while the Se atom almost have no contribution. On the interface, Mo-5s and Se-4p orbitals hybridize at about -6.5 to -5.0 eV, and Mo-4d and Se-4p orbitals hybridize at about -5.0 to -1.0 eV. These hybridizations greatly improve the bonding ability of Mo and Se atom in the interface. By Bader charge analysis, we find electron redistribution near the interface which promotes the bonding of the Mo and MoSe2 layer.

  1. Designing an in-situ ultrasonic nondestructive evaluation system for ultrasonic additive manufacturing

    NASA Astrophysics Data System (ADS)

    Nadimpalli, Venkata K.; Nagy, Peter B.

    2018-04-01

    Ultrasonic Additive Manufacturing (UAM) is a solid-state layer by layer manufacturing process that utilizes vibration induced plastic deformation to form a metallurgical bond between a thin layer and an existing base structure. Due to the vibration based bonding mechanism, the quality of components at each layer depends on the geometry of the structure. In-situ monitoring during and between UAM manufacturing steps offers the potential for closed-loop control to optimize process parameters and to repair existing defects. One interface that is most prone to delamination is the base/build interface and often UAM component height and quality are limited by failure at the base/build interface. Low manufacturing temperatures and favorable orientation of typical interface defects in UAM make ultrasonic NDE an attractive candidate for online monitoring. Two approaches for in-situ NDE are discussed and the design of the monitoring system optimized so that the quality of UAM components is not affected by the addition of the NDE setup. Preliminary results from in-situ ultrasonic NDE indicate the potential to be utilized for online qualification, closed-loop control and offline certification of UAM components.

  2. Research on low-temperature anodic bonding using induction heating

    NASA Astrophysics Data System (ADS)

    Chen, Mingxiang; Yi, Xinjian; Yuan, Liulin; Liu, Sheng

    2006-04-01

    This paper presents a new low temperature silicon-glass anodic bonding process using induction heating. Anodic bonding between silicon and glass (Pyrex 7740) has been achieved at temperature below 300 °C and almost bubble-free interfaces have been obtained. A 1KW 400KHz power supply is used to induce heat in graphite susceptors (simultaneously as the high-voltage electrodes of anodic bonding), which conduct heat to the bonding pair and permanently join the pair in 5 minutes. The results of pull tests indicate a bonding strength of above 5.0MPa for induction heating, which is greater than the strength for resistive heating at the same temperature. The fracture mainly occurs across the interface or inside the glass other than in the interface when the bonding temperature is over 200 °C Finally, the interfaces are examined and analyzed by scanning electron microscopy (SEM) and the bonding mechanisms are discussed.

  3. Dynamic covalent chemistry of bisimines at the solid/liquid interface monitored by scanning tunnelling microscopy.

    PubMed

    Ciesielski, Artur; El Garah, Mohamed; Haar, Sébastien; Kovaříček, Petr; Lehn, Jean-Marie; Samorì, Paolo

    2014-11-01

    Dynamic covalent chemistry relies on the formation of reversible covalent bonds under thermodynamic control to generate dynamic combinatorial libraries. It provides access to numerous types of complex functional architectures, and thereby targets several technologically relevant applications, such as in drug discovery, (bio)sensing and dynamic materials. In liquid media it was proved that by taking advantage of the reversible nature of the bond formation it is possible to combine the error-correction capacity of supramolecular chemistry with the robustness of covalent bonding to generate adaptive systems. Here we show that double imine formation between 4-(hexadecyloxy)benzaldehyde and different α,ω-diamines as well as reversible bistransimination reactions can be achieved at the solid/liquid interface, as monitored on the submolecular scale by in situ scanning tunnelling microscopy imaging. Our modular approach enables the structurally controlled reversible incorporation of various molecular components to form sophisticated covalent architectures, which opens up perspectives towards responsive multicomponent two-dimensional materials and devices.

  4. Accurate characterization and understanding of interface trap density trends between atomic layer deposited dielectrics and AlGaN/GaN with bonding constraint theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramanan, Narayanan; Lee, Bongmook; Misra, Veena, E-mail: vmisra@ncsu.edu

    2015-06-15

    Many dielectrics have been proposed for the gate stack or passivation of AlGaN/GaN based metal oxide semiconductor heterojunction field effect transistors, to reduce gate leakage and current collapse, both for power and RF applications. Atomic Layer Deposition (ALD) is preferred for dielectric deposition as it provides uniform, conformal, and high quality films with precise monolayer control of film thickness. Identification of the optimum ALD dielectric for the gate stack or passivation requires a critical investigation of traps created at the dielectric/AlGaN interface. In this work, a pulsed-IV traps characterization method has been used for accurate characterization of interface traps withmore » a variety of ALD dielectrics. High-k dielectrics (HfO{sub 2}, HfAlO, and Al{sub 2}O{sub 3}) are found to host a high density of interface traps with AlGaN. In contrast, ALD SiO{sub 2} shows the lowest interface trap density (<2 × 10{sup 12 }cm{sup −2}) after annealing above 600 °C in N{sub 2} for 60 s. The trend in observed trap densities is subsequently explained with bonding constraint theory, which predicts a high density of interface traps due to a higher coordination state and bond strain in high-k dielectrics.« less

  5. Effects of different artificial ageing methods on the degradation of adhesive-dentine interfaces.

    PubMed

    Deng, Donglai; Yang, Hongye; Guo, Jingmei; Chen, Xiaohui; Zhang, Weiping; Huang, Cui

    2014-12-01

    To compare the effects of four commonly used artificial ageing methods (water storage, thermocycling, NaOCl storage and pH cycling) on the degradation of adhesive-dentine interfaces. Fifty molars were sectioned parallel to the occlusal plane, polished and randomly divided into two adhesive groups: An etch-and-rinse adhesive Adper SingleBond 2 and a self-etch adhesive G-Bond. After the composite built up, the specimens from each adhesive group were sectioned into beams, which were then assigned to one of the following groups: Group 1 (control), 24h of water storage; Group 2, 6 months of water storage; Group 3, 10,000 runs of thermocycling; Group 4, 1h of 10% NaOCl storage; and Group 5, 15 runs of pH cycling. The microtensile bond strengths were then tested. The failure modes were classified with a stereomicroscope and representative interface was analyzed with a field-emission scanning electron microscopy (FESEM). Nanoleakage expression was evaluated through FESEM in the backscattered mode. The four artificial ageing methods decreased the bonding strength to nearly 50% and increased the nanoleakage expression of both adhesive systems compared with the control treatment. Adhesive failures were the predominant fracture modes in all groups. However, differences in detailed morphology were observed among the different groups. Water storage, thermocycling, NaOCl storage and pH cycling could obtain similar degradation effectiveness through appropriate parameter selection. Each in vitro artificial ageing method had its own mechanisms, characteristics and application scope for degrading the adhesive-dentin interfaces. Water storage is simple, low-cost but time-consuming; thermocycling lacks of a standard agreement; NaOCl storage is time-saving but mainly degrades the organic phase; pH cycling can resemble cariogenic condition but needs further studies. Researchers focusing on bonding durability studies should be deliberate in selecting an appropriate ageing model based on the differences of test material, purpose and time. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. [Effect of Al₂O₃ sandblasting on the bond strength between 3mol% yttrium-stabilized tetragonal zirconium polycrystal zirconia framework and veneering porcelain].

    PubMed

    Qiang, Zeng; Ning, Li; Yanan, Zhou; Jiazhen, Yan; Wenbo, Liu

    2015-12-01

    The effect of sandblasting on the bond strength between 3mol% yttrium-stabilized tetragonal zirconium polycrystal (3Y-TZP) zirconia framework and veneering porcelain was evaluated. A total of 21 specimens [(25 ± 1) mm x (3 ± 0.1) mmx (0.5 ± 0.05) mm] were prepared according to ISO 9693. The specimens were then randomly divided into 3 groups. Sandblasting was performed on 2 meshes of Al₂O₃ particles: group A with mesh 110 and group B with mesh 80. Group C, which was not sandblasted, was the control group. The surface roughness of the zirconia framework, as well as the bond strength between 3Y-TZP zirconia framework and veneering porcelain, was measured. The interface microstructure was observed by scanning electron microscope (SEM), and elemental distribution was detected by energy dispersive spectroscopy (EDS). Surface roughness values were (1.272 ± 0.149) μm for group A, (0.622 ± 0.113) μm for group B, and (0.221 ± 0.065) μm for group C. Statistical significance were found among groups (P < 0.05). The bond strength values were (28.21 ± 1.52) MPa for group A, (27.71 ± 1.27) MPa for group B, and (24.87 ± 3.84) MPa for group C. Statistical significance was found between group A and group C (P < 0.05), whereas the other groups had no statistical significance (P > 0.05). Interface adhesion failure was the primary performance. SEM images showed the close interface bonding, and EDS showed that the interface had no obvious element penetration. Al₂O₃ sandblasting can slightly enhance the bond strength between zirconia framework and veneering porcelain.

  7. Smear layer-deproteinizing improves bonding of one-step self-etch adhesives to dentin.

    PubMed

    Thanatvarakorn, Ornnicha; Prasansuttiporn, Taweesak; Thittaweerat, Suppason; Foxton, Richard M; Ichinose, Shizuko; Tagami, Junji; Hosaka, Keiichi; Nakajima, Masatoshi

    2018-03-01

    Smear layer deproteinizing was proved to reduce the organic phase of smear layer covered on dentin surface. It was shown to eliminate hybridized smear layer and nanoleakage expression in resin-dentin bonding interface of two-step self-etch adhesive. This study aimed to investigate those effects on various one-step self-etch adhesives. Four different one-step self-etch adhesives were used in this study; SE One (SE), Scotchbond™ Universal (SU), BeautiBond Multi (BB), and Bond Force (BF). Flat human dentin surfaces with standardized smear layer were prepared. Smear layer deproteinizing was carried out by the application of 50ppm hypochlorous acid (HOCl) on dentin surface for 15s followed by Accel ® (p-toluenesulfinic acid salt) for 5s prior to adhesive application. No surface pretreatment was used as control. Microtensile bond strength (μTBS) and nanoleakage under TEM observation were investigated. The data were analyzed by two-way ANOVA and Tukey's post-hoc test and t-test at the significant level of 0.05. Smear layer deproteinizing significantly improved μTBS of SE, SU, and BB (p<0.001). Hybridized smear layer observed in control groups of SE, BB, and BF, and reticular nanoleakage presented throughout the hybridized complex in control groups of BB and BF were eliminated upon the smear layer deproteinizing. Smear layer deproteinizing by HOCl and Accel ® application could enhance the quality of dentin for bonding to one-step self-etch adhesives, resulting in the improving μTBS, eliminating hybridized smear layer and preventing reticular nanoleakage formation in resin-dentin bonding interface. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  8. Thermodynamics of inversion-domain boundaries in aluminum nitride: Interplay between interface energy and electric dipole potential energy

    NASA Astrophysics Data System (ADS)

    Zhang, J. Y.; Xie, Y. P.; Guo, H. B.; Chen, Y. G.

    2018-05-01

    Aluminum nitride (AlN) has a polar crystal structure that is susceptible to electric dipolar interactions. The inversion domains in AlN, similar to those in GaN and other wurtzite-structure materials, decrease the energy associated with the electric dipolar interactions at the expense of inversion-domain boundaries, whose interface energy has not been quantified. We study the atomic structures of six different inversion-domain boundaries in AlN, and compare their interface energies from density functional theory calculations. The low-energy interfaces have atomic structures with similar bonding geometry as those in the bulk phase, while the high-energy interfaces contain N-N wrong bonds. We calculate the formation energy of an inversion domain using the interface energy and dipoles' electric-field energy, and find that the distribution of the inversion domains is an important parameter for the microstructures of AlN films. Using this thermodynamic model, it is possible to control the polarity and microstructure of AlN films by tuning the distribution of an inversion-domain nucleus and by selecting the low-energy synthesis methods.

  9. Joining Dental Ceramic Layers With Glass

    PubMed Central

    Saied, MA; Lloyd, IK; Haller, WK; Lawn, BR

    2011-01-01

    Objective Test the hypothesis that glass-bonding of free-form veneer and core ceramic layers can produce robust interfaces, chemically durable and aesthetic in appearance and, above all, resistant to delamination. Methods Layers of independently produced porcelains (NobelRondo™ Press porcelain, Nobel BioCare AB and Sagkura Interaction porcelain, Elephant Dental) and matching alumina or zirconia core ceramics (Procera alumina, Nobel BioCare AB, BioZyram yttria stabilized tetragonal zirconia polycrystal, Cyrtina Dental) were joined with designed glasses, tailored to match thermal expansion coefficients of the components and free of toxic elements. Scanning electron microprobe analysis was used to characterize the chemistry of the joined interfaces, specifically to confirm interdiffusion of ions. Vickers indentations were used to drive controlled corner cracks into the glass interlayers to evaluate the toughness of the interfaces. Results The glass-bonded interfaces were found to have robust integrity relative to interfaces fused without glass, or those fused with a resin-based adhesive. Significance The structural integrity of the interfaces between porcelain veneers and alumina or zirconia cores is a critical factor in the longevity of all-ceramic dental crowns and fixed dental prostheses. PMID:21802131

  10. Bond strength and interface energy between Pd membranes and TiAl supports

    NASA Astrophysics Data System (ADS)

    Gong, H. R.; He, Y. H.; Huang, B. Y.

    2008-09-01

    Intermetallic TiAl alloy is proposed as a promising support for Pd membranes. First principles calculations reveal that coherent Pd/TiAl interfaces possess high values of bond strengths. Calculations also show that Ti-terminated (100) Pd/(100) TiAl and (110) Pd/(110) TiAl interfaces are energetically favorable with negative interface energies of about -3.1 J/m2, and that the bond strengths of Pd-Ti are bigger than those of Pd-Al. In addition, densities of states calculations suggest that a stronger chemical bonding is formed in the Pd/TiAl interface than corresponding Pd or TiAl bulks, which agrees well with similar experimental observations in literature.

  11. Direct bonding of gallium nitride to silicon carbide: Physical, and electrical characterization

    NASA Astrophysics Data System (ADS)

    Lee, Jaeseob

    The direct bonding method is applied to the GaN/SiC system, and the processing conditions for successful direct bonding are clarified. Direct bonding of GaN/SiC is achieved at 900°C. The direct bonding of GaN to Si-face SiC is very dependent on the choice of chemical treatments, but the bonding of GaN to C-face SiC is less dependent on surface preparation. If a native oxide is present when the bonded interface is prepared, the current through the interface is decreased, which is attributed to an energy barrier due to the presence of charged interface states. TEM images indicate 10nm spaced dislocations at the interface for the GaN/SiC (Si-face), and ˜6nm for the GaN/SiC (C-face), which form to accommodate the lattice mismatch (3.4%) and twist (1˜2°) and tilt misfit (0.2° for Si-face SiC and 3° for C-face SiC). In some regions (˜30%) an amorphous oxide layer forms at the interface, which is attributed to inadequate surface preparation prior to bonding. The strain of the GaN film with a Ga/C interface was ˜0.1%, tensile strain, and that of GaN with a Ga/Si interface was ˜0.2%, tensile strain. Our analysis indicates that the GaN/SiC thermal misfit dominates the strain of the GaN after bonding. The electrical characteristics of n-p GaN/SiC heterojunctions display diode ideality factors, saturation currents, energy barrier heights, and band offsets of 1.5 +/- 0.1, 10-13 A/cm 2, 0.75 +/- 0.10 eV, and DeltaEC = 0.87 +/- 0.10 eV for the Ga/Si interface and 1.2 +/- 0.1, 10 -16 A/cm2, 0.56 +/- 0.10 eV, and Delta EC = 0.46 +/- 0.10 eV for the Ga/C interface.

  12. Ultrathin silicon oxynitride layer on GaN for dangling-bond-free GaN/insulator interface.

    PubMed

    Nishio, Kengo; Yayama, Tomoe; Miyazaki, Takehide; Taoka, Noriyuki; Shimizu, Mitsuaki

    2018-01-23

    Despite the scientific and technological importance of removing interface dangling bonds, even an ideal model of a dangling-bond-free interface between GaN and an insulator has not been known. The formation of an atomically thin ordered buffer layer between crystalline GaN and amorphous SiO 2 would be a key to synthesize a dangling-bond-free GaN/SiO 2 interface. Here, we predict that a silicon oxynitride (Si 4 O 5 N 3 ) layer can epitaxially grow on a GaN(0001) surface without creating dangling bonds at the interface. Our ab initio calculations show that the GaN/Si 4 O 5 N 3 structure is more stable than silicon-oxide-terminated GaN(0001) surfaces. The electronic properties of the GaN/Si 4 O 5 N 3 structure can be tuned by modifying the chemical components near the interface. We also propose a possible approach to experimentally synthesize the GaN/Si 4 O 5 N 3 structure.

  13. Effect of radiotherapy, adhesive systems and doxycycline on the bond strength of the dentin-composite interface.

    PubMed

    Freitas Soares, Eveline; Zago Naves, Lucas; Bertolazzo Correr, Américo; Costa, Ana Rosa; Consani, Simonides; Soares, Carlos José; Garcia-Godoy, Franklin; Correr-Sobrinho, Lourenço

    2016-12-01

    To investigate the effect of radiotherapy, doxycycline and adhesive systems on the microtensile bond strength (μTBS) of the dentin-composite interface. 60 human third molars were sectioned to expose middle dentin surface and distributed according to: (1) adhesive system (Adper Scotchbond MP and Clearfil SE Bond) applied, (2) application or not of doxycycline, and (3) submission to 60 Gy total radiation (2 Gy daily doses, 5 days/week for 6 weeks) before restoration procedure (RtRes); after restoration procedure (ResRt) or not submitted to radiotherapy (Control group). Specimens were tested for μTBS and mode of failure were evaluated under optical microscopy. The bonding interface was evaluated with a scanning electron microscope (SEM). Data was submitted to three-way ANOVA and Tukey's test (α= 0.05). There was no significant difference between the μTBS (MPa) of Adper Scotchbond MP (25.5±11.1) and Clearfil SE (27.6±9.1). Control (30.5±10.9) and ResRt (29.2±10.4) presented μTBS significantly higher than RtRes (23.1±7.2). Doxycycline (21.7±7.6) significantly reduced μTBS compared to groups without doxycycline application (33.6±8.6). Dentin cohesive failure mode was predominant for RtRes and mixed failure mode for ResRt. Mixed and adhesive failures were frequently observed in control groups. SEM showed adhesive penetration in dentin tubules in all groups, regardless of the radiotherapy and the application of doxycycline. The radiotherapy before composite restoration procedure decreased the μTBS. No statistical difference was observed between the adhesive systems. The doxycycline reduced μTBS regardless of the other conditions. Composite restoration procedure should be done before radiotherapy, regardless of the adhesive system used.

  14. [The bonding mechanisms of base metals for metal-ceramic crown microstructure analysis of bonding agent and gold bond between porcelain and base metals].

    PubMed

    Wang, C C; Hsu, C S

    1996-06-01

    The use of base metal alloys for porcelain fused to a metal crown and bridges has increased recently because of lower price, high hardness, high tensile strength and high elastic modulus. The addition of beryllium to base metal alloys increased fluidity and improved casting fitness. Beryllium also controlled surface oxidation and bonding strength. The bonding agent and gold bonding agent also affected the bonding strength between porcelain and metal alloys. Four commercially available ceramic base alloys were studied (two alloys contained beryllium element, another two did not). The purpose of this investigation was to study the microstructure between porcelain matrix, bonding agent and alloy matrix interfaces. A scanning electron micro-probe analyzer and energy dispersive X-ray spectroscopy (EDXS) were used to study the distribution of elements (Ni, Cr, Mo, Cu, O, Si, Sn, Al) in four base alloys. The following results were obtained: 1. The thickness of the oxidized layer of Rexillium III alloy and Unitbond alloy (contained beryllium) was thinner than Unibond alloy and Wiron 88 alloy (no beryllium). 2. The thickness of the oxidized layer of alloys in air (10 minutes and 30 minutes) was thinner in Unitbond (2.45 microns and 3.80 microns) and thicker in Wiron 88 (4.39 microns and 5.96 microns). 3. The thickness of the oxidized layer occurring for a duration of ten minutes (in vaccum) showed that the Rexillium III alloy was the thinnest (1.93 microns), and Wiron 88 alloy was the thickest (2.30 microns). But in thirty minutes (vacuum), Unitbond alloy was the thinnest (3.37 microns), and Wiron 88 alloy was the thickest (5.51 microns). 4. The intensity of Cr elements was increased obviously near the interface between Unitbond alloy, Wiron 88 alloy (no beryllium) and oxidized layer, but the intensity of Ni and Mo elements was slightly increased. The intensity of Cr element was not increased markedly between Rexillium III alloy, Unitbond alloy (beryllium) and oxidized layer. 5. A white-grayish oxidized layer appeared at the metal-ceramic interfaces but the thickness of oxidized layer was not obviously different. 6. The use of bonding agent at metal-ceramic interface leads to the deposition of many Sn elements at about 40 microns range within the porcelain surface. 7. Second interaction phases at the porcelain layer appeared when gold bonding agent was used, and a 50-100 microns microleakage occurred at the metal-ceramic interface.

  15. Bone bonding in bioactive glass ceramics combined with a new synthesized agent TAK-778.

    PubMed

    Kato, H; Neo, M; Tamura, J; Nakamura, T

    2001-11-01

    We studied the stimulatory effects of TAK-778, a new synthetic 3-benzothiepin derivative that promotes osteoblast differentiation, in the bonding of bone to bioactive glass ceramic implants in rabbit tibiae. Smooth-surfaced, rectangular plates (15 x 10 x 2 mm) made of apatite-wollastonite-containing glass ceramic were implanted bilaterally into the proximal metaphyses of rabbit tibiae. Sustained-release microcapsules containing TAK-778 were packed into the medullary cavity in one limb and untreated microcapsules were packed into the contralateral limb to serve as a paired control. At 4, 8, and 16 weeks after implantation, bonding at the bone/implant interfaces was evaluated using a detaching test and histological examination of undecalcified specimens. The tensile failure load increased during weeks 4 to 16 in both groups; the tensile failure load in the TAK-778-treated group was significantly greater than that in the control group at each interval after implantation. Histologically, the TAK-778-treated specimens showed greater active new bone formation mainly in the medullary cavity and more extensive bonding between the implant and bone than the untreated specimens. The results of this study suggest that adding the bone formation-promoting TAK-778 to bioactive glass ceramic implants may significantly accelerate bone apposition to the implants and improve the bonding process at the interface. This would help to establish earlier and stronger bonding of orthopedic ceramic implants to the surrounding bone tissue. Copyright 2001 John Wiley & Sons, Inc.

  16. Can Whitening Strips interfere with the Bond Strength of Composite Resins?

    PubMed

    Firoozmand, Leily Macedo; Reis, Washington Luís Machado dos; Vieira, Mercêdes Aroucha; Nunes, Adriana Gomes; Tavarez, Rudys Rodolfo de Jesus; Tonetto, Mateus Rodrigues; Bramante, Fausto Silva; Bhandi, Shilpa H; Roma, Regina Vieira de Oliveira; Bandeca, Matheus Coelho

    2015-04-01

    The aim of this study was to investigate in vitro the bond strength of composite resins on enamel previously treated with whitening strips. A total of 48 bovine incisors were allocated to four experimental groups (n = 12 each): G1 (WSC)- treated with 9.5% hydrogen peroxide whitening strips (3D White Whitestrips® Advanced Vivid/CREST); G2 (WSO)-treated with 10% hydrogen peroxide whitening strips (3D WhiteTM/Oral B); G3 (WG)-treated with 7.5% hydrogen peroxide gel with fluorine, calcium and potassium nitrate (White Class®/FGM); and G4 (C)-control not subjected to bleaching treatment. The specimens were subjected to bleaching over 2 weeks following the manufacturers' instructions. Following the elaboration of the composite resin test specimens, the samples were stored in artificial saliva and subsequently subjected to the micro-shear test using the universal testing machine (EMIC®). The bond strength values were analyzed by one-way ANOVA and Tukey's statistical test (5%). Significant differences were observed among the investigated groups (p < 0.05). The G3-WG exhibited greater values compared with the control group and the groups treated with strips, G1-WSC and G2-WSO. Analysis of the bond interface revealed that a large fraction of the failures occurred at the enamel-resin interface. The bond strength decreased following 14 days of treatment with bleaching strips, whereas the whitening gel with 7.5% hydrogen peroxide, calcium and fluorine increased the bond strength.

  17. Effect of the Cold-Sprayed Aluminum Coating-Substrate Interface Morphology on Bond Strength for Aircraft Repair Application

    NASA Astrophysics Data System (ADS)

    Blochet, Quentin; Delloro, Francesco; N'Guyen, Franck; Jeulin, Dominique; Borit, François; Jeandin, Michel

    2017-04-01

    This article is dealing with the effects of surface preparation of the substrate on aluminum cold-sprayed coating bond strength. Different sets of AA2024-T3 specimens have been coated with pure Al 1050 feedstock powder, using a conventional cold spray coating technique. The sets were grit-blasted (GB) before coating. The study focuses on substrate surface topography evolution before coating and coating-substrate interface morphology after coating. To study coating adhesion by LASAT® technique for each set, specimens with and without preceding GB treatment were tested in load-controlled conditions. Then, several techniques were used to evaluate the effects of substrate surface treatment on the final coating mechanical properties. Irregularities induced by the GB treatment modify significantly the interface morphology. Results showed that particle anchoring was improved dramatically by the presence of craters. The substrate surface was characterized by numerous anchors. Numerical simulation results exhibited the increasing deformation of particle onto the grit-blasted surface. In addition, results showed a strong relationship between the coating-substrate bond strength on the deposited material and surface preparation.

  18. Laser-Based Surface Modification of Microstructure for Carbon Fiber-Reinforced Plastics

    NASA Astrophysics Data System (ADS)

    Yang, Wenfeng; Sun, Ting; Cao, Yu; Li, Shaolong; Liu, Chang; Tang, Qingru

    2018-05-01

    Bonding repair is a powerful feature of carbon fiber-reinforced plastics (CFRP). Based on the theory of interface bonding, the interface adhesion strength and reliability of the CFRP structure will be directly affected by the microscopic features of the CFRP surface, including the microstructure, physical, and chemical characteristics. In this paper, laser-based surface modification was compared to Peel-ply, grinding, and polishing to comparatively evaluate the surface microstructure of CFRP. The surface microstructure, morphology, fiber damage, height and space parameters were investigated by scanning electron microscopy (SEM) and laser confocal microscopy (LCM). Relative to the conventional grinding process, laser modification of the CFRP surface can result in more uniform resin removal and better processing control and repeatability. This decreases the adverse impact of surface fiber fractures and secondary damage. The surface properties were significantly optimized, which has been reflected such things as the obvious improvement of surface roughness, microstructure uniformity, and actual area. The improved surface microstructure based on laser modification is more conducive to interface bonding of CFRP structure repair. This can enhance the interfacial adhesion strength and reliability of repair.

  19. Effect of antioxidants on the dentin interface bond stability of adhesives exposed to hydrolytic degradation.

    PubMed

    Gotti, Valéria B; Feitosa, Victor P; Sauro, Salvatore; Correr-Sobrinho, Lourenço; Leal, Fernanda B; Stansbury, Jeffrey W; Correr, Américo B

    2015-02-01

    This study assessed the effect of antioxidants vitamin C (Vit. C), vitamin E (Vit. E) and quercetin (Querc) on the dentin bonding performance, degree of conversion, and rate of polymerization of three commercial adhesive systems (Adper Single Bond 2 [SB], Clearfil SE Bond [CSE], Adper Easy Bond [EB]). Human premolars were restored using antioxidant-doped adhesives. The samples were stored for 24 h in distilled water or 6 months under simulated pulpal pressure. Teeth were cut into sticks and the microtensile bond strength (μTBS) to dentin was tested in a universal testing machine. Qualitative nanoleakage analysis was performed from a central stick of each restored tooth. Degree of conversion and rate of polymerization of adhesive systems were evaluated in triplicate using real-time FT-IR. Although the inclusion of the antioxidants negatively affected the μTBS over 24 h, the antioxidant-doped adhesives maintained (SB-Vit. C, SB-Vit. E, CSE-Vit. C, EB-Querc) or increased (SB-Querc, CSE-Vit. E, CSE-Querc, EB-Vit. E, and EB-Vit. C) their μTBS during 6 months of storage. Only the μTBS of Adper Single Bond 2 dropped significantly after 6 months among the control groups. Slight changes in the nanoleakage pattern after aging were observed in all groups, except for the EB-control group, which showed a noteworthy increase in nanoleakage after 6 months, and for EB-Vit. C, which presented a remarkable decrease. A lower degree of conversion was obtained with all antioxidants in SB and EB, except for the EB-Vit. E group. Similar degrees of conversion were attained in control and experimental groups for CSE. The rate of polymerization was reduced in antioxidant-doped adhesives. The performance of antioxidants changed according to the adhesive system to which they were added, and antioxidant-doped adhesives appear to have a positive effect on the adhesive interface durability, since their bond strength obtained after 24 h was maintained or increased over time.

  20. Effects of different preparation procedures during tooth whitening on enamel bonding.

    PubMed

    Wilson, Dustin; Xu, Changqi; Hong, Liang; Wang, Yong

    2009-04-01

    The objective of this study was to assess effects of some clinically related preparation procedures during tooth whitening on enamel bonding properties. Sixty-two extracted human teeth were cleaned and divided into four groups. Forty-two of the teeth were left with their natural surface intact while 20 teeth were polished to form a flat surface. Half of the tooth served as the experimental side and received one of the two whitening products: Opalescence (10% carbamide peroxide) and Crest Whitestrips (6.5% hydrogen peroxide), for 2 weeks. Post-bleaching intervals included: 1 day, 1 week, and 2 weeks. On these days, tooth (10 mm x 1.5 mm x 1.5 mm) sections were evaluated using Raman spectroscopy, scanning electron microscopy and tensile bond strength tests. T-test, ANOVA test, and mixed model regression analysis were used to assess the differences. No significant difference existed between natural surface and polished surface teeth for all groups at both Day One and Week Two (P > 0.05). On Day One, both treated groups had significant lower bond strength than the control group (P = 0.002). After 2 weeks, no significant difference existed between any group (P = 0.381). SEM indicated that resin-enamel interfaces in bleached enamel exhibited more defects in granular formations when compared to the control. Raman results indicated a lower degree of polymerization (DP) of adhesive at the interface for treated teeth surfaces. In summary, pre-bleaching surface treatments such as polish or non-polish, had no effect on bond strength. Bleaching significantly decreased bond strength initially, but after 2 weeks, bleaching had no significant effect on bond strength. Storage time had significant effect on Opalescence treated enamel, but not on control and Whitestrip treated enamel. The decrease of bond strength may be related to interfacial defects and low DP due to oxygen release after bleaching.

  1. Mechanics of wafer bonding: Effect of clamping

    NASA Astrophysics Data System (ADS)

    Turner, K. T.; Thouless, M. D.; Spearing, S. M.

    2004-01-01

    A mechanics-based model is developed to examine the effects of clamping during wafer bonding processes. The model provides closed-form expressions that relate the initial geometry and elastic properties of the wafers to the final shape of the bonded pair and the strain energy release rate at the interface for two different clamping configurations. The results demonstrate that the curvature of bonded pairs may be controlled through the use of specific clamping arrangements during the bonding process. Furthermore, it is demonstrated that the strain energy release rate depends on the clamping configuration and that using applied loads usually leads to an undesirable increase in the strain energy release rate. The results are discussed in detail and implications for process development and bonding tool design are highlighted.

  2. Microstructural and Mechanical Properties of Hot Roll Bonded Titanium Alloy/Low Carbon Steel Plate

    NASA Astrophysics Data System (ADS)

    Yu, Chao; Qi, Zi-chen; Yu, Hui; Xu, Cheng; Xiao, Hong

    2018-03-01

    In this paper, a titanium alloy and low carbon steel were bonded via hot rolling in a vacuum, and the effect of roll bonding temperature and reduction ratio on the microstructural and mechanical properties of the plate was studied. When the bonding temperature was between 850 and 1050 °C, the shear strength of the interface increased with an increasing reduction ratio from 18 to 70%. At a bonding temperature of 950 °C and at a rolling reduction ratio of 70%, the best bonding strength was obtained, and a shear fracture occurred on the low carbon steel matrix. At 1050 °C, brittle compounds, i.e., TiC, FeTi, and Fe2Ti, formed at the interface, which decreased the bonding strength. The large reduction ratio can break up compounds at the interface and extrude fresh metal for bonding, thereby increasing the bonding strength.

  3. Effect of postoperative peroxide bleaching on the marginal seal of composite restorations bonded with self-etch adhesives.

    PubMed

    Roubickova, A; Dudek, M; Comba, L; Housova, D; Bradna, P

    2013-01-01

    The aim of this study was to determine the effect of peroxide bleaching on the marginal seal of composite restorations bonded with several adhesive systems. Combined cylindrical Class V cavities located half in enamel and half in dentin were prepared on the buccal and lingual surfaces of human molars. The cavities were bonded with the self-etch adhesives Clearfil SE-Bond (CLF), Adper Prompt (ADP), and iBond (IBO) and an etch-and-rinse adhesive Gluma Comfort Bond (GLU) and restored with a microhybrid composite Charisma. Experimental groups were treated 25 times for eight hours per day with a peroxide bleaching gel Opalescence PF 20, while the control groups were stored in distilled water for two months and then subjected to a microleakage test using a dye penetration method. Scanning electron microscopy was used to investigate the etching and penetration abilities of the adhesives and morphology of debonded restoration-enamel interfaces after the microleakage tests. Statistical analyses were performed using nonparametric Kruskal-Wallis, Mann-Whitney, and Wilcoxon tests at p=0.05. The microleakage of all GLU groups was low and not significantly affected by peroxide bleaching. Low microleakage was recorded for CLF control groups, but after bleaching, a small but significant increase in microleakage at the enamel margin indicated its sensitivity to peroxide bleaching. For ADP and IBO control groups, the microleakage at the enamel margins was significantly higher than for GLU and CLF and exceeded that at the dentin margins. Bleaching did not induce any significant changes in the microleakage. Electron microscopy analysis indicated that in our experimental setup, decreased adhesion and mechanical resistance of the ADP- and IBO-enamel interfaces could be more important than the chemical degradation effects induced by the peroxide bleaching gel.

  4. [Effects of magnetron sputtered ZrN on the bonding strength of titanium porcelain].

    PubMed

    Zhou, Shu; Zhang, Wen-yan; Guang, Han-bing; Xia, Yang; Zhang, Fei-min

    2009-04-01

    To investigate the effect of magnetron sputtered ZrN on the bonding strength between a low-fusing porcelain (Ti/Vita titankeramik system) and commercially pure cast titanium. Sixteen specimens were randomly assigned to test group and control group (n=8). The control group received no surface treated. Magnetron sputtered ZrN film was deposited on the surface of specimens in the test group. Then the sixteen titanium-porcelain specimens were prepared in a rectangular shape and went through three-point bending test on a universal test machine. The bond strength of Ti/porcelain was recorded. The phase composition of the specimens was analyzed using X-ray diffraction (XRD). The interface at titanium and porcelain and the titanium surface after debonding were observed with a scanning electron microscopy (SEM) and analyzed using energy depressive spectrum (EDS). New phase of ZrN was found with XRD in the test group. Statistical analysis showed higher bond strength following ZrN surface treatment in the test group [(45.991+/-0.648) MPa] than that in the control group [(29.483+/-1.007) MPa] (P=0.000). Bonded ceramic could be observed in test group, the amount of bonded ceramic was more than that in the control group. No obvious bonded ceramic in control group was found. Magnetron sputtered ZrN can improve bond strength of Ti/Vita titankeramik system significantly.

  5. Effect of UV irradiation on the shear bond strength of titanium with segmented polyurethane through gamma-mercapto propyl trimethoxysilane.

    PubMed

    Sakamoto, Harumi; Hirohashi, Yohei; Doi, Hisashi; Tsutsumi, Yusuke; Suzuki, Yoshiaki; Noda, Kazuhiko; Hanawa, Takao

    2008-01-01

    The objective of this study was to investigate the effect of UV irradiation on shear bond strength between a titanium (Ti) and a segmented polyurethane (SPU) composite through gamma-mercapto propyl trimethoxysilane (gamma-MPS). To this end, the shear bond strength of Ti/SPU interface of Ti-SPU composite under varying conditions of ultraviolet ray (UV) irradiation was evaluated by a shear bond test. The glass transition temperatures of SPU with and without UV irradiation were also determined using differential scanning calorimetry. It was found that the shear bond strength of Ti/SPU interface increased with UV irradiation. However, excessive UV irradiation decreased the shear bond strength of Ti/SPU interface. Glass transition temperature was found to increase during 40-60 seconds of UV irradiation. In terms of durability after immersion in water at 37 degrees C for 30 days, shear bond strength was found to improve with UV irradiation. In conclusion, UV irradiation to a Ti-SPU composite was clearly one of the means to improve the shear bond strength of Ti/SPU interface.

  6. Interfacial characterization of Al-Al thermocompression bonds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malik, N., E-mail: nishantmalik1987@gmail.com; SINTEF ICT, Department of Microsystems and Nanotechnology, P.O. Box 124 Blindern, N-0314 Oslo; Carvalho, P. A.

    2016-05-28

    Interfaces formed by Al-Al thermocompression bonding were studied by the transmission electron microscopy. Si wafer pairs having patterned bonding frames were bonded using Al films deposited on Si or SiO{sub 2} as intermediate bonding media. A bond force of 36 or 60 kN at bonding temperatures ranging from 400–550 °C was applied for a duration of 60 min. Differences in the bonded interfaces of 200 μm wide sealing frames were investigated. It was observed that the interface had voids for bonding with 36 kN at 400 °C for Al deposited both on Si and on SiO{sub 2}. However, the dicing yield was 33% for Al onmore » Si and 98% for Al on SiO{sub 2}, attesting for the higher quality of the latter bonds. Both a bond force of 60 kN applied at 400 °C and a bond force of 36 kN applied at 550 °C resulted in completely bonded frames with dicing yields of, respectively, 100% and 96%. A high density of long dislocations in the Al grains was observed for the 60 kN case, while the higher temperature resulted in grain boundary rotation away from the original Al-Al interface towards more stable configurations. Possible bonding mechanisms and reasons for the large difference in bonding quality of the Al films deposited on Si or SiO{sub 2} are discussed.« less

  7. GROUT-CONCRETE INTERFACE BOND PERFORMANCE: EFFECT OF INTERFACE MOISTURE ON THE TENSILE BOND STRENGTH AND GROUT MICROSTRUCTURE.

    PubMed

    De la Varga, I; Muñoz, J F; Bentz, D P; Spragg, R P; Stutzman, P E; Graybeal, B A

    2018-05-01

    Bond between two cementitious materials is crucial in applications such as repairs, overlays, and connections of prefabricated bridge elements (PBEs), to name just a few. It is the latter that has special interest to the authors of this paper. After performing a dimensional stability study on grout-like materials commonly used as connections between PBEs, it was observed that the so-called 'non-shrink' cementitious grouts showed a considerable amount of early-age shrinkage. This might have negative effects on the integrity of the structure, due not only to the grout material's early degradation, but also to a possible loss of bond between the grout and the prefabricated concrete element. Many factors affect the bond strength between two cementitious materials (e.g., grout-concrete), the presence of moisture at the existing concrete substrate surface being one of them. In this regard, pre-moistening the concrete substrate surface prior to the application of the grout material is sometimes recommended for bond enhancement. This topic has been the focus of numerous research studies in the past; however, there is still controversy among practitioners on the real benefits that this practice might provide. This paper evaluates the tensile bond performance of two non-shrink cementitious grouts applied to the exposed aggregate surface of a concrete substrate, and how the supply of moisture at the grout-concrete interface affects the bond strength. "Pull-off" bond results show increased tensile bond strength when the concrete surface is pre-moistened. Reasons to explain the observed increased bond strength are given after a careful microstructural analysis of the grout-concrete interface. Interfaces where sufficient moisture is provided to the concrete substrate such that moisture movement from the grout is prevented show reduced porosity and increased hydration on the grout side of the interface, which is thought to directly contribute to the increased tensile bond strength.

  8. Effects of Mechanical and Chemical Pretreatments of Zirconia or Fiber Posts on Resin Cement Bonding

    PubMed Central

    Li, Rui; Zhou, Hui; Wei, Wei; Wang, Chen; Sun, Ying Chun; Gao, Ping

    2015-01-01

    The bonding strength between resin cement and posts is important for post and core restorations. An important method of improving the bonding strength is the use of various surface pretreatments of the post. In this study, the surfaces of zirconia (fiber) posts were treated by mechanical and/or chemical methods such as sandblasting and silanization. The bonding strength between the zirconia (fiber) post and the resin cement was measured by a push-out method after thermocycling based on the adhesion to Panavia F 2.0 resin cement. The zirconia and fiber posts exhibited different bonding strengths after sandblasting and/or silanization because of the different strengths and chemical structures. The zirconia post showed a high bonding strength of up to 17.1 MPa after a combined treatment of sandblasting and silanization because of the rough surface and covalent bonds at the interface. This effect was also enhanced by using 1,2-bis(trimethoxysilyl)ethane for the formation of a flexible layer at the interface. In contrast, a high bonding strength of 13.9 MPa was obtained for the fiber post treated by silane agents because the sandblasting treatment resulted in damage to the fiber post, as observed by scanning electron microscopy. The results indicated that the improvement in the bonding strength between the post and the resin cement could be controlled by different chemical and/or mechanical treatments. Enhanced bonding strength depended on covalent bonding and the surface roughness. A zirconia post with high bonding strength could potentially be used for the restoration of teeth in the future. PMID:26066349

  9. Optical fingerprints of solid-liquid interfaces: a joint ATR-IR and first principles investigation

    NASA Astrophysics Data System (ADS)

    Yang, L.; Niu, F.; Tecklenburg, S.; Pander, M.; Nayak, S.; Erbe, A.; Wippermann, S.; Gygi, F.; Galli, G.

    Despite the importance of understanding the structural and bonding properties of solid-liquid interfaces for a wide range of (photo-)electrochemical applications, there are presently no experimental techniques available to directly probe the microscopic structure of solid-liquid interfaces. To develop robust strategies to interpret experiments and validate theory, we carried out attenuated total internal reflection (ATR-IR) spectroscopy measurements and ab initio molecular dynamics (AIMD) simulations of the vibrational properties of interfaces between liquid water and well-controlled prototypical semiconductor substrates. We show the Ge(100)/H2O interface to feature a reversible potential-dependent surface phase transition between Ge-H and Ge-OH termination. The Si(100)/H2O interface is proposed as a model system for corrosion and oxidation processes. We performed AIMD calculations under finite electric fields, revealing different pathways for initial oxidation. These pathways are predicted to exhibit unique spectral signatures. A significant increase in surface specificity can be achieved utilizing an angle-dependent ATR-IR experiment, which allows to detect such signatures at the interfacial layer and consequently changes in the hydrogen bond network. Funding from DOE-BES Grant No. DE-SS0008939 and the Deutsche Forschungsgemeinschaft (RESOLV, EXC 1069) are gratefully acknowledged.

  10. LED Die-Bonded on the Ag/Cu Substrate by a Sn-BiZn-Sn Bonding System

    NASA Astrophysics Data System (ADS)

    Tang, Y. K.; Hsu, Y. C.; Lin, E. J.; Hu, Y. J.; Liu, C. Y.

    2016-12-01

    In this study, light emitting diode (LED) chips were die-bonded on a Ag/Cu substrate by a Sn-BixZn-Sn bonding system. A high die-bonding strength is successfully achieved by using a Sn-BixZn-Sn ternary system. At the bonding interface, there is observed a Bi-segregation phenomenon. This Bi-segregation phenomenon solves the problems of the brittle layer-type Bi at the joint interface. Our shear test results show that the bonding interface with Bi-segregation enhances the shear strength of the LED die-bonding joints. The Bi-0.3Zn and Bi-0.5Zn die-bonding cases have the best shear strength among all die-bonding systems. In addition, we investigate the atomic depth profile of the deposited Bi-xZn layer by evaporating Bi-xZn E-gun alloy sources. The initial Zn content of the deposited Bi-Zn alloy layers are much higher than the average Zn content in the deposited Bi-Zn layers.

  11. Advanced Photonic Sensors Enabled by Semiconductor Bonding

    DTIC Science & Technology

    2010-05-31

    a dry scroll backing pump to maintain the high differential pressure between the UV gun and the sample/analysis chamber. We also replaced the...semiconductor materials in an ultra-high vacuum (UHV) environment where the properties of the interface can be controlled with atomic-level precision. Such...year research program, we designed and constructed a unique system capable of fusion bonding two wafers in an ultra-high vacuum environment. This system

  12. Experimental etch-and-rinse adhesives doped with bioactive calcium silicate-based micro-fillers to generate therapeutic resin-dentin interfaces.

    PubMed

    Profeta, A C; Mannocci, F; Foxton, R; Watson, T F; Feitosa, V P; De Carlo, B; Mongiorgi, R; Valdré, G; Sauro, S

    2013-07-01

    This study aimed at evaluating the therapeutic bioactive effects on the bond strength of three experimental bonding agents containing modified Portland cement-based micro-fillers applied to acid-etched dentin and submitted to aging in simulated body fluid solution (SBS). Confocal laser (CLSM) and scanning electron microscopy (SEM) were also performed. A type-I ordinary Portland cement was tailored using different compounds such as sodium-calcium-aluminum-magnesium silicate hydroxide (HOPC), aluminum-magnesium-carbonate hydroxide hydrates (HCPMM) and titanium oxide (HPCTO) to create three bioactive micro-fillers. A resin blend mainly constituted by Bis-GMA, PMDM and HEMA was used as control (RES-Ctr) or mixed with each micro-filler to create three experimental bonding agents: (i) Res-HOPC, (ii) Res-HCPMM and (iii) Res-HPCTO. The bonding agents were applied onto 37% H3PO4-etched dentin and light-cured for 30s. After build-ups, they were prepared for micro-tensile bond strength (μTBS) and tested after 24h or 6 months of SBS storage. SEM analysis was performed after de-bonding, while CLSM was used to evaluate the ultra-morphology/nanoleakage and the mineral deposition at the resin-dentin interface. High μTBS values were achieved in all groups after 24h. Only Res-HOPC and Res-HCPMM showed stable μTBS after SBS storage (6 months). All the resin-dentin interfaces created using the bonding agents containing the bioactive micro-fillers tested in this study showed an evident reduction of nanoleakage and mineral deposition after SBS storage. Resin bonding systems containing specifically tailored Portland cement micro-fillers may promote a therapeutic mineral deposition within the hybrid layer and increase the durability of the resin-dentin bond. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  13. Influence of the processing route of porcelain/Ti-6Al-4V interfaces on shear bond strength.

    PubMed

    Toptan, Fatih; Alves, Alexandra C; Henriques, Bruno; Souza, Júlio C M; Coelho, Rui; Silva, Filipe S; Rocha, Luís A; Ariza, Edith

    2013-04-01

    This study aims at evaluating the two-fold effect of initial surface conditions and dental porcelain-to-Ti-6Al-4V alloy joining processing route on the shear bond strength. Porcelain-to-Ti-6Al-4V samples were processed by conventional furnace firing (porcelain-fused-to-metal) and hot pressing. Prior to the processing, Ti-6Al-4V cylinders were prepared by three different surface treatments: polishing, alumina or silica blasting. Within the firing process, polished and alumina blasted samples were subjected to two different cooling rates: air cooling and a slower cooling rate (65°C/min). Metal/porcelain bond strength was evaluated by shear bond test. The data were analyzed using one-way ANOVA followed by Tuckey's test (p<0.05). Before and after shear bond tests, metallic surfaces and metal/ceramic interfaces were examined by Field Emission Gun Scanning Electron Microscope (FEG-SEM) equipped with Energy Dispersive X-Ray Spectroscopy (EDS). Shear bond strength values of the porcelain-to-Ti-6Al-4V alloy interfaces ranged from 27.1±8.9MPa for porcelain fused to polished samples up to 134.0±43.4MPa for porcelain fused to alumina blasted samples. According to the statistical analysis, no significant difference were found on the shear bond strength values for different cooling rates. Processing method was statistically significant only for the polished samples, and airborne particle abrasion was statistically significant only for the fired samples. The type of the blasting material did not cause a statistically significant difference on the shear bond strength values. Shear bond strength of dental porcelain to Ti-6Al-4V alloys can be significantly improved from controlled conditions of surface treatments and processing methods. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Modeling of Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Ferguson, B. L.; Petrus, G. J.; Krauss, T. M.

    1992-01-01

    The project examined the effectiveness of studying the creep behavior of thermal barrier coating system through the use of a general purpose, large strain finite element program, NIKE2D. Constitutive models implemented in this code were applied to simulate thermal-elastic and creep behavior. Four separate ceramic-bond coat interface geometries were examined in combination with a variety of constitutive models and material properties. The reason for focusing attention on the ceramic-bond coat interface is that prior studies have shown that cracking occurs in the ceramic near interface features which act as stress concentration points. The model conditions examined include: (1) two bond coat coefficient of thermal expansion curves; (2) the creep coefficient and creep exponent of the bond coat for steady state creep; (3) the interface geometry; and (4) the material model employed to represent the bond coat, ceramic, and superalloy base.

  15. Modeling material interfaces with hybrid adhesion method

    DOE PAGES

    Brown, Nicholas Taylor; Qu, Jianmin; Martinez, Enrique

    2017-01-27

    A molecular dynamics simulation approach is presented to approximate layered material structures using discrete interatomic potentials through classical mechanics and the underlying principles of quantum mechanics. This method isolates the energetic contributions of the system into two pure material layers and an interfacial region used to simulate the adhesive properties of the diffused interface. The strength relationship of the adhesion contribution is calculated through small-scale separation calculations and applied to the molecular surfaces through an inter-layer bond criterion. By segregating the contributions into three regions and accounting for the interfacial excess energies through the adhesive surface bonds, it is possiblemore » to model each material with an independent potential while maintaining an acceptable level of accuracy in the calculation of mechanical properties. This method is intended for the atomistic study of the delamination mechanics, typically observed in thin-film applications. Therefore, the work presented in this paper focuses on mechanical tensile behaviors, with observations in the elastic modulus and the delamination failure mode. To introduce the hybrid adhesion method, we apply the approach to an ideal bulk copper sample, where an interface is created by disassociating the force potential in the middle of the structure. Various mechanical behaviors are compared to a standard EAM control model to demonstrate the adequacy of this approach in a simple setting. In addition, we demonstrate the robustness of this approach by applying it on (1) a Cu-Cu 2O interface with interactions between two atom types, and (2) an Al-Cu interface with two dissimilar FCC lattices. These additional examples are verified against EAM and COMB control models to demonstrate the accurate simulation of failure through delamination, and the formation and propagation of dislocations under loads. Finally, the results conclude that by modeling the energy contributions of an interface using hybrid adhesion bonds, we can provide an accurate approximation method for studies of large-scale mechanical properties, as well as the representation of various delamination phenomena at the atomic scale.« less

  16. Large enhancement of Blocking temperature by control of interfacial structures in Pt/NiFe/IrMn/MgO/Pt multilayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xi; Wang, Shouguo, E-mail: sgwang@ustb.edu.cn; Han, Gang

    2015-09-15

    The Blocking temperature (T{sub B}) of Pt/NiFe/IrMn/MgO/Pt multilayers was greatly enhanced from far below room temperature (RT) to above RT by inserting 1 nm thick Mg layer at IrMn/MgO interface. Furthermore, the exchange bias field (H{sub eb}) was increased as well by the control of interfacial structures. The evidence for a significant fraction of Mn-O bonding at IrMn/MgO interface without Mg insertion layer was provided by X-ray photoelectron spectroscopy. The bonding between Mn and O can decrease the antiferromagnetism of IrMn film, leading to lower value of T{sub B} in Pt/NiFe/IrMn/MgO/Pt multilayers. Ultrathin Mg film inserted at IrMn/MgO interface actingmore » as an oxygen sinking layer can suppress the oxidation reactions between Mn and O and reduce the formation of Mn-O bonding greatly. The oxidation suppression results in the recovery of the antiferromagnetism of IrMn film, which can enhance T{sub B} and H{sub eb}. Furthermore, the high resolution transmission electron microscopy demonstrates that the Mg insertion layer can efficiently promote a high-quality MgO (200) texture. This study will enhance the understanding of physics in antiferromagnet-based spintronic devices.« less

  17. First-Principles Study on the Tensile Properties and Failure Mechanism of the CoSb3/Ti Interface

    NASA Astrophysics Data System (ADS)

    She, Wuchang; Liu, Qiwen; Mei, Hai; Zhai, Pengcheng; Li, Jun; Liu, Lisheng

    2018-06-01

    The mechanical properties of the CoSb3/Ti interface play a critical role in the application of thermoelectric devices. To understand the failure mechanism of the CoSb3(001)/Ti(01 \\bar{1} 0) interface, we investigated its response during tensile deformations by first-principles calculations. By comparison with the result between the perfect interface and the interface after atomic migration, we find that the atomic migration at the interface has an obvious influence on the mechanical properties. The tensile tests indicate the ideal tensile stress of the CoSb3/Ti interface after atomic migration decreases by about 8.1% as compared to that of the perfect one. The failure mechanism of the perfect CoSb3/Ti interface is different from that of the migrated CoSb3/Ti interface. For the perfect CoSb3/Ti interface, the breakage of the Co-Sb bond leads to the failure of the system. For the CoSb3/Ti interface after atomic migration, the breakage of the Sb-Sb bond leads to the failure of the system. This is mainly because the new ionic Ti-Sb bonds make the electrons redistributed and weaken the stiffness of the Co-Sb bonds.

  18. Hydration of protein–RNA recognition sites

    PubMed Central

    Barik, Amita; Bahadur, Ranjit Prasad

    2014-01-01

    We investigate the role of water molecules in 89 protein–RNA complexes taken from the Protein Data Bank. Those with tRNA and single-stranded RNA are less hydrated than with duplex or ribosomal proteins. Protein–RNA interfaces are hydrated less than protein–DNA interfaces, but more than protein–protein interfaces. Majority of the waters at protein–RNA interfaces makes multiple H-bonds; however, a fraction do not make any. Those making H-bonds have preferences for the polar groups of RNA than its partner protein. The spatial distribution of waters makes interfaces with ribosomal proteins and single-stranded RNA relatively ‘dry’ than interfaces with tRNA and duplex RNA. In contrast to protein–DNA interfaces, mainly due to the presence of the 2′OH, the ribose in protein–RNA interfaces is hydrated more than the phosphate or the bases. The minor groove in protein–RNA interfaces is hydrated more than the major groove, while in protein–DNA interfaces it is reverse. The strands make the highest number of water-mediated H-bonds per unit interface area followed by the helices and the non-regular structures. The preserved waters at protein–RNA interfaces make higher number of H-bonds than the other waters. Preserved waters contribute toward the affinity in protein–RNA recognition and should be carefully treated while engineering protein–RNA interfaces. PMID:25114050

  19. Effects of different electrolytes for micro-arc oxidation on the bond strength between titanium and porcelain.

    PubMed

    Yuan, Xiaohui; Tan, Fei; Xu, Haitao; Zhang, Shaojun; Qu, Fuzhen; Liu, Jie

    2017-07-01

    The aim of this study is to investigate the effects of different electrolytes on the titanium-porcelain bond strength after micro-arc oxidation (MAO) treatment. Three electrolytes at the same concentration were used as MAO reaction solutions: Na 2 SiO 3 , KF, and MgSiF 6 . Blasting treatment was chosen as a control. After MAO treatment in each electrolyte, the titanium-porcelain bond strengths were measured by the three-point bending test, as described in ISO 9693. The morphologies and elemental compositions of the MAO coating on the titanium substrate were evaluated by scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS). The interface between the titanium and porcelain was also observed by SEM and EDS. The MAO coatings created in different electrolytes exhibited completely different morphologies and compositions. The bond strengths of the Na 2 SiO 3 and MgSiF 6 groups were significantly higher than those of the other groups (p<0.05). Additionally, the titanium-porcelain interfaces were compact in the former two groups, whereas pores and cracks were visible at the interfaces in the other groups. These results indicate that MAO treatment with an appropriate electrolyte could be an effective method to increase the titanium-porcelain bonding strength. According to ISO 9693, titanium-porcelain restorations subjected to MAO treatment with an appropriate electrolyte could be appropriate for clinical use. Copyright © 2016 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  20. Hydrolytic degradation of the resin-dentine interface induced by the simulated pulpal pressure, direct and indirect water ageing.

    PubMed

    Feitosa, Victor P; Leme, Ariene A; Sauro, Salvatore; Correr-Sobrinho, Lourenço; Watson, Timothy F; Sinhoreti, Mário A; Correr, Américo B

    2012-12-01

    The aim of this study was to compare the hydrolytic effects induced by simulated pulpal pressure, direct or indirect water exposure within the resin-dentine interfaces created with three "simplified" resin bonding systems (RBSs). A two-step/self-etching (CSE: Clearfil SE Bond), one-step/self-etching (S3: Clearfil S3) and etch-and-rinse/self-priming (SB: Single-bond 2) adhesives were applied onto dentine and submitted to three different prolonged (6 or 12 months) ageing strategies: (i) Simulated Pulpal Pressure (SPP); (ii) Indirect Water Exposure (IWE: intact bonded-teeth); (iii) Direct Water Exposure (DWE: resin-dentine sticks). Control and aged specimens were submitted to microtensile bond strength (μTBS) and nanoleakage evaluation. Water sorption (WS) survey was also performed on resin disks. Results were analysed with two-way ANOVA and Tukey's test (p < 0.05). The μTBS of CS3 and SB dropped significantly (p < 0.05) after 6 months of SPP and DWE. CSE showed a significant μTBS reduction only after 12 months of DWE (p = 0.038). IWE promoted no statistical change in μTBS (p > 0.05) and no evident change in nanoleakage. Conversely, SPP induced a clear formation of "water-trees" in CS3 and SB. WS outcomes were CS3 > SB = CSE. The hydrolytic degradation of resin-dentine interfaces depend upon the type of the in vitro ageing strategy employed in the experimental design. Direct water exposure remains the quickest method to age the resin-dentine bonds. However, the use of SPP may better simulate the in vivo scenario. However, the application of a separate hydrophobic solvent-free adhesive layer may reduce the hydrolytic degradation and increase the longevity of resin-dentine interfaces created with simplified adhesives. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Clinical acceptability of two self-etch adhesive resins for the bonding of orthodontic brackets to enamel.

    PubMed

    Schnebel, Bradley; Mateer, Scott; Maganzini, Anthony Louis; Freeman, Katherine

    2012-12-01

    To determine whether two self-adhesive resin cements, Clearfil SA and RelyX, can be used to successfully bond orthodontic brackets to enamel. Seventy extracted premolars were custom mounted, cleaned and randomly divided into three groups. In group 1 (control), orthodontic brackets were bonded to 25 premolars using the Transbond Plus and Transbond XT two step adhesive systerm adhesive. In group 2, brackets were bonded to 25 premolars using Clearfil SA. In group 3, brackets were bonded to 20 premolars using RelyX. The brackets were debonded using a universal testing machine and shear bond strengths recorded. After debonding, each tooth was examined under 20× magnification to evaluate the residual adhesive remaining. An ANOVA with Duncan's Multiple Range Test was used to determine whether there were significant differences in shear bond strength between the groups. A Kruskal-Wallis Test and a Bonferroni multiple comparison procedure were used to compare the bond failure modes (adhesive remnant index scores) between the groups. The mean shear bond strengths for the brackets bonded using Clearfil SA and RelyX were 5·930±1·840 and 3·334±1·953 MPa, respectively. Both were significantly lower than that for the brackets bonded using Transbond (7·875±3·611 MPa). Both self-etch adhesive resin cement groups showed a greater incidence of bracket failure at the enamel/adhesive interface while the Transbond group showed a higher incidence at the bracket/adhesive interface. The shear bond strengths of the self-etch adhesive resin cements may be inadequate to successfully bond orthodontic brackets to enamel.

  2. High-efficient photo-electron transport channel in SiC constructed by depositing cocatalysts selectively on specific surface sites for visible-light H{sub 2} production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Da; Peng, Yuan; Wang, Qi

    2016-04-18

    Control cocatalyst location on a metal-free semiconductor to promote surface charge transfer for decreasing the electron-hole recombination is crucial for enhancing solar energy conversion. Based on the findings that some metals have an affinity for bonding with the specific atoms of polar semiconductors at a heterostructure interface, we herein control Pt deposition selectively on the Si sites of a micro-SiC photocatalyst surface via in-situ photo-depositing. The Pt-Si bond forming on the interface constructs an excellent channel, which is responsible for accelerating photo-electron transfer from SiC to Pt and then reducing water under visible-light. The hydrogen production is enhanced by twomore » orders of magnitude higher than that of bare SiC, and 2.5 times higher than that of random-depositing nano-Pt with the same loading amount.« less

  3. Protein-protein interfaces are vdW dominant with selective H-bonds and (or) electrostatics towards broad functional specificity.

    PubMed

    Nilofer, Christina; Sukhwal, Anshul; Mohanapriya, Arumugam; Kangueane, Pandjassarame

    2017-01-01

    Several catalysis, cellular regulation, immune function, cell wall assembly, transport, signaling and inhibition occur through Protein- Protein Interactions (PPI). This is possible with the formation of specific yet stable protein-protein interfaces. Therefore, it is of interest to understand its molecular principles using structural data in relation to known function. Several interface features have been documented using known X-ray structures of protein complexes since 1975. This has improved our understanding of the interface using structural features such as interface area, binding energy, hydrophobicity, relative hydrophobicity, salt bridges and hydrogen bonds. The strength of binding between two proteins is dependent on interface size (number of residues at the interface) and thus its corresponding interface area. It is known that large interfaces have high binding energy (sum of (van der Waals) vdW, H-bonds, electrostatics). However, the selective role played by each of these energy components and more especially that of vdW is not explicitly known. Therefore, it is important to document their individual role in known protein-protein structural complexes. It is of interest to relate interface size with vdW, H-bonds and electrostatic interactions at the interfaces of protein structural complexes with known function using statistical and multiple linear regression analysis methods to identify the prominent force. We used the manually curated non-redundant dataset of 278 hetero-dimeric protein structural complexes grouped using known functions by Sowmya et al. (2015) to gain additional insight to this phenomenon using a robust inter-atomic non-covalent interaction analyzing tool PPCheck (Anshul and Sowdhamini, 2015). This dataset consists of obligatory (enzymes, regulator, biological assembly), immune and nonobligatory (enzyme and regulator inhibitors) complexes. Results show that the total binding energy is more for large interfaces. However, this is not true for its individual energy factors. Analysis shows that vdW energies contribute to about 75% ± 11% on average among all complexes and it also increases with interface size (r2 ranging from 0.67 to 0.89 with p<0.01) at 95% confidence limit irrespective of molecular function. Thus, vdW is both dominant and proportional at the interface independent of molecular function. Nevertheless, H bond energy contributes to 15% ± 6.5% on average in these complexes. It also moderately increases with interface size (r2 ranging from 0.43 to 0.61 with p<0.01) only among obligatory and immune complexes. Moreover, there is about 11.3% ± 8.7% contribution by electrostatic energy. It increases with interface size specifically among non-obligatory regulator-inhibitors (r2 = 0.44). It is implied that both H-bonds and electrostatics are neither dominant nor proportional at the interface. Nonetheless, their presence cannot be ignored in binding. Therefore, H-bonds and (or) electrostatic energy having specific role for improved stability in complexes is implied. Thus, vdW is common at the interface stabilized further with selective H-bonds and (or) electrostatic interactions at an atomic level in almost all complexes. Comparison of this observation with residue level analysis of the interface is compelling. The role by H-bonds (14.83% ± 6.5% and r2 = 0.61 with p<0.01) among obligatory and electrostatic energy (8.8% ± 4.77% and r2 = 0.63 with p <0.01) among non-obligatory complexes within interfaces (class A) having more non-polar residues than surface is influencing our inference. However, interfaces (class B) having less non-polar residues than surface show 1.5 fold more electrostatic energy on average. The interpretation of the interface using inter-atomic (vdW, H-bonds, electrostatic) interactions combined with inter-residue predominance (class A and class B) in relation to known function is the key to reveal its molecular principles with new challenges.

  4. Trimethylamine N-oxide (TMAO) and tert-butyl alcohol (TBA) at hydrophobic interfaces: insights from molecular dynamics simulations.

    PubMed

    Fiore, Andrew; Venkateshwaran, Vasudevan; Garde, Shekhar

    2013-06-25

    TMAO, a potent osmolyte, and TBA, a denaturant, have similar molecular architecture but somewhat different chemistry. We employ extensive molecular dynamics simulations to quantify their behavior at vapor-water and octane-water interfaces. We show that interfacial structure-density and orientation-and their dependence on solution concentration are markedly different for the two molecules. TMAO molecules are moderately surface active and adopt orientations with their N-O vector approximately parallel to the aqueous interface. That is, not all methyl groups of TMAO at the interface point away from the water phase. In contrast, TBA molecules act as molecular amphiphiles, are highly surface active, and, at low concentrations, adopt orientations with their methyl groups pointing away and the C-O vector pointing directly into water. The behavior of TMAO at aqueous interfaces is only weakly dependent on its solution concentration, whereas that of TBA depends strongly on concentration. We show that this concentration dependence arises from their different hydrogen bonding capabilities-TMAO can only accept hydrogen bonds from water, whereas TBA can accept (donate) hydrogen bonds from (to) water or other TBA molecules. The ability to self-associate, particularly visible in TBA molecules in the interfacial layer, allows them to sample a broad range of orientations at higher concentrations. In light of the role of TMAO and TBA in biomolecular stability, our results provide a reference with which to compare their behavior near biological interfaces. Also, given the ubiquity of aqueous interfaces in biology, chemistry, and technology, our results may be useful in the design of interfacially active small molecules with the aim to control their orientations and interactions.

  5. Single-Crystal Material on Non-Single-Crystalline Substrate

    DTIC Science & Technology

    1999-02-01

    point frit or solder glass can be deposited on a surface and bonded to a second surface using pressure and temperature. A sodium silicate material...interface. A metal or silicide at the bonding interface may be advantageous fQr electrical current conduction across the interface. 10 Applications...substrate, or a silicide or metal to aid bonding and vertical electrical current conduction. In some cases, it is difficult to polish the non- single

  6. Investigation of Interface Bonding Mechanism of an Explosively Welded Tri-Metal Titanium/Aluminum/Magnesium Plate by Nanoindentation

    NASA Astrophysics Data System (ADS)

    Zhang, T. T.; Wang, W. X.; Zhou, J.; Cao, X. Q.; Yan, Z. F.; Wei, Y.; Zhang, W.

    2018-04-01

    A tri-metal titanium/aluminum/magnesium (Ti/Al/Mg) cladding plate, with an aluminum alloy interlayer plate, was fabricated for the first time by explosive welding. Nanoindentation tests and associated microstructure analysis were conducted to investigate the interface bonding mechanisms of the Ti/Al/Mg cladding plate. A periodic wavy bonding interface (with an amplitude of approximately 30 μm and a wavelength of approximately 160 μm) without a molten zone was formed between the Ti and Al plates. The bonding interface between the Al and the Mg demonstrated a similar wavy shape, but the wave at this location was much larger with an amplitude of approximately 390 μm and a wavelength of approximately 1580 μm, and some localized melted zones also existed at this location. The formation of the wavy interface was found to result from a severe deformation at the interface, which was caused by the strong impact or collision. The nanoindentation tests showed that the material hardness decreased with increasing distance from the bonding interface. Material hardness at a location was found to be correlated with the degree of plastic deformation at that site. A larger plastic deformation was correlated with an increase in hardness.

  7. Cohesive zone modelling of wafer bonding and fracture: effect of patterning and toughness variations

    NASA Astrophysics Data System (ADS)

    Kubair, D. V.; Spearing, S. M.

    2006-03-01

    Direct wafer bonding has increasingly become popular in the manufacture of microelectromechanical systems and semiconductor microelectronics components. The success of the bonding process is controlled by variables such as wafer flatness and surface preparation. In order to understand the effects of these variables, spontaneous planar crack propagation simulations were performed using the spectral scheme in conjunction with a cohesive zone model. The fracture-toughness on the bond interface is varied to simulate the effect of surface roughness (nanotopography) and patterning. Our analysis indicated that the energetics of crack propagation is sensitive to the local surface property variations. The patterned wafers are tougher (well bonded) than the unpatterned ones of the same average fracture-toughness.

  8. Reduction-oxidation Enabled Glass-ceramics to Stainless Steel Bonding Part II interfacial bonding analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Steve Xunhu

    2015-09-01

    Among glass-ceramic compositions modified with a variety of oxidants (AgO, FeO, NiO, PbO, SnO, CuO, CoO, MoO 3 and WO 3) only CuO and CoO doped glass-ceramics showed existence of bonding oxides through reduction-oxidation (redox) at the GC-SS interface. The CuO-modified glass-ceramics demonstrate the formation of a continuous layer of strong bonding Cr 2O 3 at the interface in low partial oxygen (PO 2) atmosphere. However, in a local reducing atmosphere, the CuO is preferentially reduced at the surface of glass-ceramic rather than the GC-SS interface for redox. The CoO-modified glass-ceramics demonstrate improved GC-SS bonding. But the low mobility ofmore » Co ++ ions in the GC limited the amount of CoO that can diffuse to and participate in redox at the interface.« less

  9. Controlling the Sn-C bonds content in SnO2@CNTs composite to form in situ pulverized structure for enhanced electrochemical kinetics.

    PubMed

    Cheng, Yayi; Huang, Jianfeng; Qi, Hui; Cao, Liyun; Luo, Xiaomin; Li, Jiayin; Xu, Zhanwei; Yang, Jun

    2017-12-07

    The Sn-C bonding content between the SnO 2 and CNTs interface was controlled by the hydrothermal method and subsequent heat treatment. Electrochemical analysis found that the SnO 2 @CNTs with high Sn-C bonding content exhibited much higher capacity contribution from alloying and conversion reaction compared with the low content of Sn-C bonding even after 200 cycles. The high Sn-C bonding content enabled the SnO 2 nanoparticles to stabilize on the CNTs surface, realizing an in situ pulverization process of SnO 2 . The in situ pulverized structure was beneficial to maintain the close electrochemical contact of the working electrode during the long-term cycling and provide ultrafast transfer paths for lithium ions and electrons, which promoted the alloying and conversion reaction kinetics greatly. Therefore, the SnO 2 @CNTs composite with high Sn-C bonding content displayed highly reversible alloying and conversion reaction. It is believed that the composite could be used as a reference for design chemically bonded metal oxide/carbon composite anode materials in lithium-ion batteries.

  10. The impact of interface bonding efficiency on high-burnup spent nuclear fuel dynamic performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Hao; Wang, Jy-An John; Wang, Hong

    Finite element analysis (FEA) was used to investigate the impact of interfacial bonding efficiency at pellet-pellet and pellet-clad interfaces of high-burnup (HBU) spent nuclear fuel (SNF) on system dynamic performance. Bending moments M were applied to FEA model to evaluate the system responses. From bending curvature, κ, flexural rigidity EI can be estimated as EI = M/κ. The FEA simulation results were benchmarked with experimental results from cyclic integrated reversal bending fatigue test (CIRFT) of HBR fuel rods. The consequence of interface debonding between fuel pellets and cladding is a redistribution of the loads carried by the fuel pellets tomore » the clad, which results in a reduction in composite rod system flexural rigidity. Furthermore, the interface bonding efficiency at the pellet-pellet and pellet-clad interfaces can significantly dictate the SNF system dynamic performance. With the consideration of interface bonding efficiency, the HBU SNF fuel property was estimated with CIRFT test data.« less

  11. The impact of interface bonding efficiency on high-burnup spent nuclear fuel dynamic performance

    DOE PAGES

    Jiang, Hao; Wang, Jy-An John; Wang, Hong

    2016-09-26

    Finite element analysis (FEA) was used to investigate the impact of interfacial bonding efficiency at pellet-pellet and pellet-clad interfaces of high-burnup (HBU) spent nuclear fuel (SNF) on system dynamic performance. Bending moments M were applied to FEA model to evaluate the system responses. From bending curvature, κ, flexural rigidity EI can be estimated as EI = M/κ. The FEA simulation results were benchmarked with experimental results from cyclic integrated reversal bending fatigue test (CIRFT) of HBR fuel rods. The consequence of interface debonding between fuel pellets and cladding is a redistribution of the loads carried by the fuel pellets tomore » the clad, which results in a reduction in composite rod system flexural rigidity. Furthermore, the interface bonding efficiency at the pellet-pellet and pellet-clad interfaces can significantly dictate the SNF system dynamic performance. With the consideration of interface bonding efficiency, the HBU SNF fuel property was estimated with CIRFT test data.« less

  12. A comparison of successful and failed protein interface designs highlights the challenges of designing buried hydrogen bonds

    PubMed Central

    Stranges, P Benjamin; Kuhlman, Brian

    2013-01-01

    The accurate design of new protein–protein interactions is a longstanding goal of computational protein design. However, most computationally designed interfaces fail to form experimentally. This investigation compares five previously described successful de novo interface designs with 158 failures. Both sets of proteins were designed with the molecular modeling program Rosetta. Designs were considered a success if a high-resolution crystal structure of the complex closely matched the design model and the equilibrium dissociation constant for binding was less than 10 μM. The successes and failures represent a wide variety of interface types and design goals including heterodimers, homodimers, peptide-protein interactions, one-sided designs (i.e., where only one of the proteins was mutated) and two-sided designs. The most striking feature of the successful designs is that they have fewer polar atoms at their interfaces than many of the failed designs. Designs that attempted to create extensive sets of interface-spanning hydrogen bonds resulted in no detectable binding. In contrast, polar atoms make up more than 40% of the interface area of many natural dimers, and native interfaces often contain extensive hydrogen bonding networks. These results suggest that Rosetta may not be accurately balancing hydrogen bonding and electrostatic energies against desolvation penalties and that design processes may not include sufficient sampling to identify side chains in preordered conformations that can fully satisfy the hydrogen bonding potential of the interface. PMID:23139141

  13. A comparison of successful and failed protein interface designs highlights the challenges of designing buried hydrogen bonds.

    PubMed

    Stranges, P Benjamin; Kuhlman, Brian

    2013-01-01

    The accurate design of new protein-protein interactions is a longstanding goal of computational protein design. However, most computationally designed interfaces fail to form experimentally. This investigation compares five previously described successful de novo interface designs with 158 failures. Both sets of proteins were designed with the molecular modeling program Rosetta. Designs were considered a success if a high-resolution crystal structure of the complex closely matched the design model and the equilibrium dissociation constant for binding was less than 10 μM. The successes and failures represent a wide variety of interface types and design goals including heterodimers, homodimers, peptide-protein interactions, one-sided designs (i.e., where only one of the proteins was mutated) and two-sided designs. The most striking feature of the successful designs is that they have fewer polar atoms at their interfaces than many of the failed designs. Designs that attempted to create extensive sets of interface-spanning hydrogen bonds resulted in no detectable binding. In contrast, polar atoms make up more than 40% of the interface area of many natural dimers, and native interfaces often contain extensive hydrogen bonding networks. These results suggest that Rosetta may not be accurately balancing hydrogen bonding and electrostatic energies against desolvation penalties and that design processes may not include sufficient sampling to identify side chains in preordered conformations that can fully satisfy the hydrogen bonding potential of the interface. Copyright © 2012 The Protein Society.

  14. Copper diffusion and mechanical toughness at Cu-silica interfaces glued with polyelectrolyte nanolayers

    NASA Astrophysics Data System (ADS)

    Gandhi, D. D.; Singh, A. P.; Lane, M.; Eizenberg, M.; Ramanath, G.

    2007-04-01

    We demonstrate the use of polyallylamine hydrochloride (PAH)-polystyrene sulfonate (PSS) nanolayers to block Cu transport into silica. Cu/PSS-PAH/SiO2 structures show fourfold enhancement in device failure times during bias thermal annealing at 200 °C at an applied electric field of 2 MV/cm, when compared with structures with pristine Cu-SiO2 interfaces. Although the bonding at both Cu-PSS and PAH-SiO2 interfaces are strong, the interfacial toughness measured by the four-point bend tests is ˜2 Jm-2. Spectroscopic analysis of fracture surfaces reveals that weak electrostatic bonding at the PSS-PAH interface is responsible for the low toughness. Similar behavior is observed for Cu-SiO2 interfaces modified with other polyelectrolyte bilayers that inhibit Cu diffusion. Thus, while strong bonding at Cu-barrier and barrier-dielectric interfaces may be sufficient for blocking copper transport across polyelectrolyte bilayers, strong interlayer molecular bonding is a necessary condition for interface toughening. These findings are of importance for harnessing MNLs for use in future device wiring applications.

  15. [Effects of different concentrations of MgSiF(6) as electrolyte for micro-arc oxidation on the bond strength between titanium and porcelain].

    PubMed

    Yuan, M J; Zhang, S J; Liu, J; Tan, F

    2018-02-09

    Objective: To investigate the effects of different concentrations of MgSiF(6) as electrolyte on the bond strength between titanium and porcelain after micro-arc oxidation (MAO) treatment and screen the suitable concentration of MgSiF(6) that can improve the bond strength between titanium and porcelain. Methods: Four different concentrations of MgSiF(6) (10, 20, 30, 40 g/L) were chosen as MAO reaction solutions. Sandblasting treatment was selected as a control group. After porcelain was fused to each specimen, titanium-porcelain bond strengths were evaluated by the three-point bending test according to ISO 9693. Scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS) were adopted to evaluate the morphologies and elemental compositions of both the MAO coatings and the interfaces of the titanium-porcelain restoration. Results: The surface of titanium specimen in the control group was sharp and rough, while specimens in both 10 g/L group and 20 g/L group were porous and homogeneous. However, the pores found on the specimens in the latter group were larger in diameter (approximately 1.0-2.0 μm) than those on the former one (0.2-0.5 μm). The bond strengths of the control group and the experimental groups (10, 20, 30, 40 g/L MgSiF(6)) were (27.08±3.16), (38.18±2.65), (44.75±2.21), (36.44±2.04), (31.04±2.59) MPa, respectively. All the experimental groups showed higher bond strengths than the control group did ( P< 0.05), and the bond strength of 20 g/L MgSiF(6) group was significantly higher than those of the other groups ( P< 0.05). Besides, the interfaces between titanium and porcelain were tight and compact in the 20 g/L group, while different amounts of pores and cracks were visible in the other groups. Additionally, after the three-point bending test, few residual porcelains could be observed on the surfaces of specimens in the control group. Conclusions: MAO treatment with 20 g/L MgSiF(6) on titanium can improve bonding strength between titanium and porcelain.

  16. Interfacial crystalline structures in injection over-molded polypropylene and bond strength.

    PubMed

    Yan, Bowen; Wu, Hong; Jiang, Genjie; Guo, Shaoyun; Huang, Jian

    2010-11-01

    This paper describes interfacial crystalline structures found in injection overmolded polypropylene components and the relationship of these structures to bond strength between the components. The combined effects of the development of hierarchical gradient structures and the particular thermomechanical environment near the interface on the interfacial crystalline structures were investigated in detail by PLM, SEM, DSC, WAXD, and infrared dichroism spectroscopy. The experimental results showed that during molding there was competitive formation of interfacial crystalline structures consisted of "shish-kebab" layer (SKL) and a transcrystalline layers (TCL). Variation in shear stress (controlled by injection pressure and injection speed) plays an important role in the formation of the SKL. The formation of TCL is influenced by the thermal environment, namely melt temperature and mold temperature. Increasing within certain limits, interfacial temperature and the thermal gradient near the interface promotes β-iPP growth. The relationship between interfacial crystalline structures and interfacial bond strength was established by lap shear measurement. The interfacial bond strength is improved by enhancing the formation of TCL, but reduced if SKL predominates.

  17. [Influence of carbodiimide-ethanol solution surface treatment on dentin microtensile bond strength].

    PubMed

    Zhang, Yi; Liu, Yu-hua; Zhou, Yong-sheng; Chung, Kwok-hung

    2015-10-18

    To evaluate the microtensile bond strength changes and patterns of fractures of the bonding interface after dentine surface treatment with carbodiimide-ethanol solution. 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) dissolved in ethanol was diluted into different concentrations of 2, 1, 0.3, 0.1 and 0.01 mol/L EDC-ethanol solutions. Twenty-eight caries-free extracted human third molars were ground metallurgically to prepare flat occlusal mid-coronal dentin surfaces and etched with 35% (mass fraction) phosphoric acid gel. Then they were treated with EDC-ethanol solution for 60 s before the bonding procedure and randomly divided into five experimental groups corresponding to the tested EDC-ethanol concentrations. The ethanol treated and no pre-treated surfaces were used as controls. Single Bond 2 adhesive was applied and resin composite disk was stacked on the treated dentine surface. The teeth with resin composite disks were stored in water at room temperature for 24 h and then sectioned longitudinally to produce stick specimens for microtensile bond strength test. Fracture patterns were observed with a stereomicroscope. The dentin surfaces pre-treated with 2 mol/L [(22.17±13.31) MPa] and 1 mol/L [(45.31±17.80) MPa] EDC-ethanol solutions resulted in statistically significant lower bond strength value (P<0.05). Increasing numbers of fracture pattern at the resin-dentin interface were also found in this two groups with percentages of 81.2% and 41.3% respectively. No significant difference was observed in the groups with 0.3, 0.1, 0.01 mol/L EDC surface treatment (P>0.05). No significant difference of immediate bond strengths was found in the 0.3, 0.1, 0.01 mol/L groups compared with the control group. EDC-ethanol solution surface treatment with concentrations of 2 mol/L and 1 mol/L resulted in decreasing of the bonding strength.

  18. Improvement of enamel bond strengths for conventional and resin-modified glass ionomers: acid-etching vs. conditioning*

    PubMed Central

    Zhang, Ling; Tang, Tian; Zhang, Zhen-liang; Liang, Bing; Wang, Xiao-miao; Fu, Bai-ping

    2013-01-01

    Objective: This study deals with the effect of phosphoric acid etching and conditioning on enamel micro-tensile bond strengths (μTBSs) of conventional and resin-modified glass ionomer cements (GICs/RMGICs). Methods: Forty-eight bovine incisors were prepared into rectangular blocks. Highly-polished labial enamel surfaces were either acid-etched, conditioned with liquids of cements, or not further treated (control). Subsequently, two matching pre-treated enamel surfaces were cemented together with one of four cements [two GICs: Fuji I (GC), Ketac Cem Easymix (3M ESPE); two RMGICs: Fuji Plus (GC), RelyX Luting (3M ESPE)] in preparation for μTBS tests. Pre-treated enamel surfaces and cement-enamel interfaces were analyzed by scanning electron microscopy (SEM). Results: Phosphoric acid etching significantly increased the enamel μTBS of GICs/RMGICs. Conditioning with the liquids of the cements produced significantly weaker or equivalent enamel μTBS compared to the control. Regardless of etching, RMGICs yielded stronger enamel μTBS than GICs. A visible hybrid layer was found at certain enamel-cement interfaces of the etched enamels. Conclusions: Phosphoric acid etching significantly increased the enamel μTBSs of GICs/RMGICs. Phosphoric acid etching should be recommended to etch the enamel margins before the cementation of the prostheses such as inlays and onlays, using GICs/RMGICs to improve the bond strengths. RMGICs provided stronger enamel bond strength than GICs and conditioning did not increase enamel bond strength. PMID:24190447

  19. Molecular architecture of protein-RNA recognition sites.

    PubMed

    Barik, Amita; C, Nithin; Pilla, Smita P; Bahadur, Ranjit Prasad

    2015-01-01

    The molecular architecture of protein-RNA interfaces are analyzed using a non-redundant dataset of 152 protein-RNA complexes. We find that an average protein-RNA interface is smaller than an average protein-DNA interface but larger than an average protein-protein interface. Among the different classes of protein-RNA complexes, interfaces with tRNA are the largest, while the interfaces with the single-stranded RNA are the smallest. Significantly, RNA contributes more to the interface area than its partner protein. Moreover, unlike protein-protein interfaces where the side chain contributes less to the interface area compared to the main chain, the main chain and side chain contributions flipped in protein-RNA interfaces. We find that the protein surface in contact with the RNA in protein-RNA complexes is better packed than that in contact with the DNA in protein-DNA complexes, but loosely packed than that in contact with the protein in protein-protein complexes. Shape complementarity and electrostatic potential are the two major factors that determine the specificity of the protein-RNA interaction. We find that the H-bond density at the protein-RNA interfaces is similar with that of protein-DNA interfaces but higher than the protein-protein interfaces. Unlike protein-DNA interfaces where the deoxyribose has little role in intermolecular H-bonds, due to the presence of an oxygen atom at the 2' position, the ribose in RNA plays significant role in protein-RNA H-bonds. We find that besides H-bonds, salt bridges and stacking interactions also play significant role in stabilizing protein-nucleic acids interfaces; however, their contribution at the protein-protein interfaces is insignificant.

  20. A Novel Multiscale Design of Interfaces for Polymeric Composites and Bonded Joints using Additive Manufacturing

    DTIC Science & Technology

    2016-09-13

    AFRL-AFOSR-VA-TR-2016-0317 A Novel Multiscale Design of Interfaces for Polymeric Composites and Bonded Joints using Additive Manufacturing Pavana...Composites and Bonded Joints using Additive Manufacturing AWARD NO.: FA9550-15-1-0216 AGENCY NAME: The Air Force Office of Scientific Research (AFOSR), Ar...20 3 Additive Manufacturing for Bonded Composite Joints 21 3.1 Introduction

  1. Modeling single molecule junction mechanics as a probe of interface bonding

    NASA Astrophysics Data System (ADS)

    Hybertsen, Mark S.

    2017-03-01

    Using the atomic force microscope based break junction approach, applicable to metal point contacts and single molecule junctions, measurements can be repeated thousands of times resulting in rich data sets characterizing the properties of an ensemble of nanoscale junction structures. This paper focuses on the relationship between the measured force extension characteristics including bond rupture and the properties of the interface bonds in the junction. A set of exemplary model junction structures has been analyzed using density functional theory based calculations to simulate the adiabatic potential surface that governs the junction elongation. The junction structures include representative molecules that bond to the electrodes through amine, methylsulfide, and pyridine links. The force extension characteristics are shown to be most effectively analyzed in a scaled form with maximum sustainable force and the distance between the force zero and force maximum as scale factors. Widely used, two parameter models for chemical bond potential energy versus bond length are found to be nearly identical in scaled form. Furthermore, they fit well to the present calculations of N-Au and S-Au donor-acceptor bonds, provided no other degrees of freedom are allowed to relax. Examination of the reduced problem of a single interface, but including relaxation of atoms proximal to the interface bond, shows that a single-bond potential form renormalized by an effective harmonic potential in series fits well to the calculated results. This allows relatively accurate extraction of the interface bond energy. Analysis of full junction models shows cooperative effects that go beyond the mechanical series inclusion of the second bond in the junction, the spectator bond that does not rupture. Calculations for a series of diaminoalkanes as a function of molecule length indicate that the most important cooperative effect is due to the interactions between the dipoles induced by the donor-acceptor bond formation at the junction interfaces. The force extension characteristic of longer molecules such as diaminooctane, where the dipole interaction effects drop to a negligible level, accurately fit to the renormalized single-bond potential form. The results suggest that measured force extension characteristics for single molecule junctions could be analyzed with a modified potential form that accounts for the energy stored in deformable mechanical components in series.

  2. Modeling single molecule junction mechanics as a probe of interface bonding

    DOE PAGES

    Hybertsen, Mark S.

    2017-03-07

    Using the atomic force microscope based break junction approach, applicable to metal point contacts and single molecule junctions, measurements can be repeated thousands of times resulting in rich data sets characterizing the properties of an ensemble of nanoscale junction structures. This paper focuses on the relationship between the measured force extension characteristics including bond rupture and the properties of the interface bonds in the junction. We analyzed a set of exemplary model junction structures using density functional theory based calculations to simulate the adiabatic potential surface that governs the junction elongation. The junction structures include representative molecules that bond tomore » the electrodes through amine, methylsulfide, and pyridine links. The force extension characteristics are shown to be most effectively analyzed in a scaled form with maximum sustainable force and the distance between the force zero and force maximum as scale factors. Widely used, two parameter models for chemical bond potential energy versus bond length are found to be nearly identical in scaled form. Furthermore, they fit well to the present calculations of N–Au and S–Au donor-acceptor bonds, provided no other degrees of freedom are allowed to relax. Examination of the reduced problem of a single interface, but including relaxation of atoms proximal to the interface bond, shows that a single-bond potential form renormalized by an effective harmonic potential in series fits well to the calculated results. This, then, allows relatively accurate extraction of the interface bond energy. Analysis of full junction models shows cooperative effects that go beyond the mechanical series inclusion of the second bond in the junction, the spectator bond that does not rupture. Calculations for a series of diaminoalkanes as a function of molecule length indicate that the most important cooperative effect is due to the interactions between the dipoles induced by the donor-acceptor bond formation at the junction interfaces. The force extension characteristic of longer molecules such as diaminooctane, where the dipole interaction effects drop to a negligible level, accurately fit to the renormalized single-bond potential form. Our results suggest that measured force extension characteristics for single molecule junctions could be analyzed with a modified potential form that accounts for the energy stored in deformable mechanical components in series.« less

  3. Modeling single molecule junction mechanics as a probe of interface bonding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hybertsen, Mark S.

    Using the atomic force microscope based break junction approach, applicable to metal point contacts and single molecule junctions, measurements can be repeated thousands of times resulting in rich data sets characterizing the properties of an ensemble of nanoscale junction structures. This paper focuses on the relationship between the measured force extension characteristics including bond rupture and the properties of the interface bonds in the junction. We analyzed a set of exemplary model junction structures using density functional theory based calculations to simulate the adiabatic potential surface that governs the junction elongation. The junction structures include representative molecules that bond tomore » the electrodes through amine, methylsulfide, and pyridine links. The force extension characteristics are shown to be most effectively analyzed in a scaled form with maximum sustainable force and the distance between the force zero and force maximum as scale factors. Widely used, two parameter models for chemical bond potential energy versus bond length are found to be nearly identical in scaled form. Furthermore, they fit well to the present calculations of N–Au and S–Au donor-acceptor bonds, provided no other degrees of freedom are allowed to relax. Examination of the reduced problem of a single interface, but including relaxation of atoms proximal to the interface bond, shows that a single-bond potential form renormalized by an effective harmonic potential in series fits well to the calculated results. This, then, allows relatively accurate extraction of the interface bond energy. Analysis of full junction models shows cooperative effects that go beyond the mechanical series inclusion of the second bond in the junction, the spectator bond that does not rupture. Calculations for a series of diaminoalkanes as a function of molecule length indicate that the most important cooperative effect is due to the interactions between the dipoles induced by the donor-acceptor bond formation at the junction interfaces. The force extension characteristic of longer molecules such as diaminooctane, where the dipole interaction effects drop to a negligible level, accurately fit to the renormalized single-bond potential form. Our results suggest that measured force extension characteristics for single molecule junctions could be analyzed with a modified potential form that accounts for the energy stored in deformable mechanical components in series.« less

  4. [Effect of silicon coating on bonding strength of ceramics and titanium].

    PubMed

    Zhou, Shu; Wang, Yu; Zhang, Fei-Min; Guang, Han-Bing

    2009-06-01

    This study investigated the effect of silicon coating (SiO2) by solution-gelatin (Sol-Gel) technology on bonding strength of titanium and ceramics. Sixteen pure titanium specimens with the size of 25 mm x 3 mm x 0.5 mm were divided into two groups (n=8), test group was silicon coated by Sol-Gel technology, the other one was control group. The middle area of the samples were veneered with Vita Titankeramik system, the phase composition of two specimens were characterized by X-ray diffraction (XRD). The bonding strength of titanium/porcelain was evaluated using three-point bending test. The interface of titanium and porcelain and fractured titanium surface were investigated by scanning electron microscope (SEM) with energy depressive spectrum (EDS). Contents of surface silicon increased after modification with silicon coated by Sol-Gel technology. The mean bonding strength of test group and control group were (37.768 +/- 0.777) MPa and (29.483 +/- 1.007) MPa. There was a statistically significant difference (P=0.000) between them. The bonded ceramic boundary of test group was wider than control group. Silicon coating by Sol-Gel technology was significant in improving bonding strength of titanium/Vita Titankeramik system.

  5. Study on the mechanism of Si-glass-Si two step anodic bonding process

    NASA Astrophysics Data System (ADS)

    Hu, Lifang; Wang, Hao; Xue, Yongzhi; Shi, Fangrong; Chen, Shaoping

    2018-04-01

    Si-glass-Si was successfully bonded together through a two-step anodic bonding process. The bonding current in each step of the two-step bonding process was investigated, and found to be quite different. The first bonding current decreased quickly to a relatively small value, but for the second bonding step, there were two current peaks; the current first decreased, then increased, and then decreased again. The second current peak occurred earlier with higher temperature and voltage. The two-step anodic bonding process was investigated in terms of bonding current. SEM and EDS tests were conducted to investigate the interfacial structure of the Si-glass-Si samples. The two bonding interfaces were almost the same, but after an etching process, transitional layers could be found in the bonding interface and a deeper trench with a thickness of ~1.5 µm could be found in the second bonding interface. Atomic force microscopy mapping results indicated that sodium precipitated from the back of the glass, which makes the roughness of the surface become coarse. Tensile tests indicated that the fracture occurred at the glass substrate and that the bonding strength increased with the increment of bonding temperature and voltage with the maximum strength of 6.4 MPa.

  6. An innovative approach for investigating the ceramic bracket-enamel interface - optical coherence tomography and confocal microscopy

    NASA Astrophysics Data System (ADS)

    Romînu, Roxana Otilia; Sinescu, Cosmin; Romînu, Mihai; Negrutiu, Meda; Laissue, Philippe; Mihali, Sorin; Cuc, Lavinia; Hughes, Michael; Bradu, Adrian; Podoleanu, Adrian

    2008-09-01

    Bonding has become a routine procedure in several dental specialties - from prosthodontics to conservative dentistry and even orthodontics. In many of these fields it is important to be able to investigate the bonded interfaces to assess their quality. All currently employed investigative methods are invasive, meaning that samples are destroyed in the testing procedure and cannot be used again. We have investigated the interface between human enamel and bonded ceramic brackets non-invasively, introducing a combination of new investigative methods - optical coherence tomography (OCT) and confocal microscopy (CM). Brackets were conventionally bonded on conditioned buccal surfaces of teeth The bonding was assessed using these methods. Three dimensional reconstructions of the detected material defects were developed using manual and semi-automatic segmentation. The results clearly prove that OCT and CM are useful in orthodontic bonding investigations.

  7. Performance and Reliability of Bonded Interfaces for High-Temperature Packaging (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devoto, D.

    2014-11-01

    The thermal performance and reliability of sintered-silver is being evaluated for power electronics packaging applications. This will be experimentally accomplished by the synthesis of large-area bonded interfaces between metalized substrates that will be subsequently subjected to thermal cycles. A finite element model of crack initiation and propagation in these bonded interfaces will allow for the interpretation of degradation rates by a crack-velocity (V)-stress intensity factor (K) analysis. The experiment is outlined, and the modeling approach is discussed.

  8. Studies by Near Edge X-ray Absorption Spectroscopies of Bonding Dynamics at the Graphene/Guanine Interface - A Proposal for High Mobility, Organic Graphene Field Effect Transistors

    DTIC Science & Technology

    2015-07-01

    AFRL-AFOSR-UK-TR-2015-0034 Studies by Near Edge X-ray Absorption Spectroscopies of Bonding Dynamics at the Graphene /Guanine...Interface – A Proposal for High Mobility, Organic Graphene Field Effect Transistors Eva Campo BANGOR UNIVERSITY COLLEGE ROAD BANGOR...April 2015 4. TITLE AND SUBTITLE Studies by Near Edge X-ray Absorption Spectroscopies of Bonding Dynamics at the Graphene /Guanine Interface - A

  9. Electrical properties of Si-Si interfaces obtained by room temperature covalent wafer bonding

    NASA Astrophysics Data System (ADS)

    Jung, A.; Zhang, Y.; Arroyo Rojas Dasilva, Y.; Isa, F.; von Känel, H.

    2018-02-01

    We study covalent bonds between p-doped Si wafers (resistivity ˜10 Ω cm) fabricated on a recently developed 200 mm high-vacuum system. Oxide- and void free interfaces were obtained by argon (Ar) or neon (Ne) sputtering prior to wafer bonding at room temperature. The influence of the sputter induced amorphous Si layer at the bonding interface on the electrical behavior is accessed with temperature-dependent current-voltage measurements. In as-bonded structures, charge transport is impeded by a potential barrier of 0.7 V at the interface with thermionic emission being the dominant charge transport mechanism. Current-voltage characteristics are found to be asymmetric which can tentatively be attributed to electric dipole formation at the interface as a result of the time delay between the surface preparation of the two bonding partners. Electron beam induced current measurements confirm the corresponding asymmetric double Schottky barrier like band-alignment. Moreover, we demonstrate that defect annihilation at a low temperature of 400 °C increases the electrical conductivity by up to three orders of magnitude despite the lack of recrystallization of the amorphous layer. This effect is found to be more pronounced for Ne sputtered surfaces which is attributed to the lighter atomic mass compared to Ar, inducing weaker lattice distortions during the sputtering.

  10. Microstructure and mechanical properties of diffusion bonded W/steel joint using V/Ni composite interlayer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, W.S.; Cai, Q.S., E-mail: cai2009pm@163.com; Ma, Y.Z.

    2013-12-15

    Diffusion bonding between W and steel using V/Ni composite interlayer was carried out in vacuum at 1050 °C and 10 MPa for 1 h. The microstructural examination and mechanical property evaluation of the joints show that the bonding of W to steel was successful. No intermetallic compound was observed at the steel/Ni and V/W interfaces for the joints bonded. The electron probe microanalysis and X-ray diffraction analysis revealed that Ni{sub 3}V, Ni{sub 2}V, Ni{sub 2}V{sub 3} and NiV{sub 3} were formed at the Ni/V interface. The tensile strength of about 362 MPa was obtained for as-bonded W/steel joint and themore » failure occurred at W near the V/W interface. The nano-indentation test across the joining interfaces demonstrated the effect of solid solution strengthening and intermetallic compound formation in the diffusion zone. - Highlights: • Diffusion bonding of W to steel was realized using V/Ni composite interlayer. • The interfacial microstructure of the joint was clarified. • Several V–Ni intermetallic compounds were formed in the interface region. • The application of V/Ni composite interlayer improved the joining quality.« less

  11. A new polymer nanocomposite repair material for restoring wellbore seal integrity

    DOE PAGES

    Genedy, Moneeb; Kandil, Usama F.; Matteo, Edward N.; ...

    2017-03-01

    Seal integrity of functional oil wells and abandoned wellbores used for CO 2 subsequent storage has become of significant interest with the oil and gas leaks worldwide. This is attributed to the fact that wellbores intersecting geographical formations contain potential leakage pathways. One of the critical leakage pathways is the cement-shale interface. In this study, we examine the efficiency of a new polymer nanocomposite repair material that can be injected for sealing micro annulus in wellbores. The bond strength and microstructure of the interface of Type G oil well cement (reference), microfine cement, Novolac epoxy incorporating Neat, 0.25%, 0.5%, andmore » 1.0% Aluminum Nanoparticles (ANPs) with shale is investigated. Interfacial bond strength testing shows that injected microfine cement repair has considerably low bond strength, while ANPs-epoxy nanocomposites have a bond strength that is an order of magnitude higher than cement. Microscopic investigations of the interface show that micro annulus interfacial cracks with widths up to 40 μm were observed at the cement-shale interface while these cracks were absent at the cement-epoxy-shale interface. Finally, Fourier Transform Infrared and Dynamic mechanical analysis measurements showed that ANPs improve interfacial bond by limiting epoxy crosslinking, and therefore allowing epoxy to form robust bonds with cement and shale.« less

  12. 3D printed, bio-inspired prototypes and analytical models for structured suture interfaces with geometrically-tuned deformation and failure behavior

    NASA Astrophysics Data System (ADS)

    Lin, Erica; Li, Yaning; Ortiz, Christine; Boyce, Mary C.

    2014-12-01

    Geometrically structured interfaces in nature possess enhanced, and often surprising, mechanical properties, and provide inspiration for materials design. This paper investigates the mechanics of deformation and failure mechanisms of suture interface designs through analytical models and experiments on 3D printed polymer physical prototypes. Suture waveforms with generalized trapezoidal geometries (trapezoidal, rectangular, anti-trapezoidal, and triangular) are studied and characterized by several important geometric parameters: the presence or absence of a bonded tip region, the tip angle, and the geometry. It is shown that a wide range (in some cases as great as an order of magnitude) in stiffness, strength, and toughness is achievable dependent on tip bonding, tip angle, and geometry. Suture interfaces with a bonded tip region exhibit a higher initial stiffness due to the greater load bearing by the skeletal teeth, a double peak in the stress-strain curve corresponding to the failure of the bonded tip and the failure of the slanted interface region or tooth, respectively, and an additional failure and toughening mechanism due to the failure of the bonded tip. Anti-trapezoidal geometries promote the greatest amplification of properties for suture interfaces with a bonded tip due the large tip interface area. The tip angle and geometry govern the stress distributions in the teeth and the ratio of normal to shear stresses in the interfacial layers, which together determine the failure mechanism of the interface and/or the teeth. Rectangular suture interfaces fail by simple shearing of the interfaces. Trapezoidal and triangular suture interfaces fail by a combination of shear and tensile normal stresses in the interface, leading to plastic deformation, cavitation events, and subsequent stretching of interface ligaments with mostly elastic deformation in the teeth. Anti-trapezoidal suture interfaces with small tip angles have high stress concentrations in the teeth and fail catastrophically by tooth failure, whereas larger tip angles exhibit a shear failure of the interfaces. Therefore, larger tip angles and trapezoidal or triangular geometries promote graceful failure, and smaller tip angles and anti-trapezoidal geometries promote more brittle-like failure. This dependence is reminiscent of biological systems, which exhibit a range of failure behaviors with limited materials and varied geometry. Triangular geometries uniquely exhibit uniform stress distributions in its teeth and promote the greatest amplification of mechanical properties. In both the bonded and unbonded cases, the predictions from the presented analytical models and experimental results on 3D printed prototypes show excellent agreement. This validates the analytical models and allows for the models to be used as a tool for the design of new materials and interfaces with tailored mechanical behavior.

  13. Low-temperature wafer direct bonding of silicon and quartz glass by a two-step wet chemical surface cleaning

    NASA Astrophysics Data System (ADS)

    Wang, Chenxi; Xu, Jikai; Zeng, Xiaorun; Tian, Yanhong; Wang, Chunqing; Suga, Tadatomo

    2018-02-01

    We demonstrate a facile bonding process for combining silicon and quartz glass wafers by a two-step wet chemical surface cleaning. After a post-annealing at 200 °C, strong bonding interfaces with no defects or microcracks were obtained. On the basis of the detailed surface and bonding interface characterizations, the bonding mechanism was explored and discussed. The amino groups terminated on the cleaned surfaces might contribute to the bonding strength enhancement during the annealing. This cost-effective bonding process has great potentials for silicon- and glass-based heterogeneous integrations without requiring a vacuum system.

  14. The effect of surface and interface on Neel transition temperature of low-dimensional antiferromagnetic materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Wen; Zhou, Zhaofeng, E-mail: zfzhou@xtu.edu.cn; Zhong, Yuan

    2015-11-15

    Incorporating the bond order-length-strength (BOLS) notion with the Ising premise, we have modeled the size dependence of the Neel transition temperature (T{sub N}) of antiferromagnetic nanomaterials. Reproduction of the size trends reveals that surface atomic undercoordination induces bond contraction, and interfacial hetero-coordination induces bond nature alteration. Both surface and interface of nanomaterials modulate the T{sub N} by adjusting the atomic cohesive energy. The T{sub N} is related to the atomic cohesive/exchange energy that is lowered by the coordination number (CN) imperfection of the undercoordinated atoms near the surface and altered by the changed bond nature of epitaxial interface. A numericalmore » match between predictions and measurements reveals that the T{sub N} of antiferromagnetic nanomaterials declines with reduced size and increases with both the strengthening of heterogeneous bond and the increase of the bond number.« less

  15. Selenium Interlayer for High-Efficiency Multijunction Solar Cell

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A (Inventor)

    2015-01-01

    A multi junction solar cell is provided and includes multiple semiconducting layers and an interface layer disposed between the multiple semiconducting layers. The interface layer is made from an interface bonding material that has a refractive index such that a ratio of a refractive index of each of the multiple semiconducting layers to the refractive index of the interface bonding material is less than or equal to 1.5.

  16. Selenium Interlayer for High-Efficiency Multijunction Solar Cell

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A. (Inventor)

    2016-01-01

    A multi-junction solar cell is provided and includes multiple semiconducting layers and an interface layer disposed between the multiple semiconducting layers. The interface layer is made from an interface bonding material that has a refractive index such that a ratio of a refractive index of each of the multiple semiconducting layers to the refractive index of the interface bonding material is less than or equal to 1.5.

  17. Detailed study of SiOxNy:H/Si interface properties for high quality surface passivation of crystalline silicon

    NASA Astrophysics Data System (ADS)

    Dong, Peng; Lei, Dong; Yu, Xuegong; Huang, Chunlai; Li, Mo; Dai, Gang; Zhang, Jian; Yang, Deren

    2018-01-01

    In this work, we present a detailed study on the interface and passivation properties of the hydrogenated silicon oxynitride (SiOxNy:H) on the crystalline silicon (c-Si) and their correlations with the film composition. The SiOxNy:H films were synthesized by plasma enhanced chemical vapor deposition (PECVD) at various N2O flow rates, which results in different film composition, in particular the different H-related bonds, such as Sisbnd H and Nsbnd H bonds. Fourier transform infrared spectroscopy measurements show that the concentration of Nsbnd H bonds increases with the N2O flows from 0 to 30 sccm, while drops below the detection limit at N2O flows above 30 sccm. This changing trend of Nsbnd H bonds correlates well with the evolution of carrier lifetime of silicon substrate passivated by SiOxNy:H film, indicating the crucial role of Nsbnd H bonds in surface passivation. It is inferred that during the film deposition and forming gas anneal (FGA) a considerable amount of hydrogen atoms are liberated from the weak type of Nsbnd H bonds rather than Sisbnd H bonds, and then passivate the dangling bonds at the interface, thus resulting in the significant reduction of interface state density and the improved passivation quality. In detail, the interface state density is reduced from ∼5 × 1012 to ∼2 × 1012 cm-2 eV-1 after the FGA, as derived from the high frequency capacitance-voltage (Csbnd V) measurements.

  18. Investigation on Bond-Slip Behavior of Z-Pin Interfaces in X-Cor® Sandwich Structures Using Z-Pin Pull-Out Test

    NASA Astrophysics Data System (ADS)

    Shan, Hangying; Xiao, Jun; Chu, Qiyi

    2018-05-01

    The Z-Pin interfacial bond properties play an important role in the structural performance of X-Cor® sandwich structures. This paper presents an experimental investigation on bond-slip behavior of Z-Pin interfaces using Z-Pin pull-out test. Based on the experimental data the whole Z-Pin pull-out process consists of three stages: initial bonding, debonding and frictional sliding. Comparative experimental study on the influence of design parameters on bond-slip behavior of Z-Pin interfaces has also been performed. Numerical analyses were conducted with the ABAQUS finite element (FE) program to simulate the Z-Pins bond-slip response of the pull-out test. The Z-Pins interfacial bond-slip behavior was implemented using nonlinear spring elements characterized with the constitutive relation from experimental results. Numerical results were validated by comparison with experimental data, and reasonably good agreement was achieved between experimental and analytical pull-out force-slip curves.

  19. Sulfur passivation techniques for III-V wafer bonding

    NASA Astrophysics Data System (ADS)

    Jackson, Michael James

    The use of direct wafer bonding in a multijunction III-V solar cell structure requires the formation of a low resistance bonded interface with minimal thermal treatment. A wafer bonded interface behaves as two independent surfaces in close proximity, hence a major source of resistance is Fermi level pinning common in III-V surfaces. This study demonstrates the use of sulfur passivation in III-V wafer bonding to reduce the energy barrier at the interface. Two different sulfur passivation processes are addressed. A dry sulfur passivation method that utilizes elemental sulfur vapor activated by ultraviolet light in vacuum is compared with aqueous sulfide and native oxide etch treatments. Through the addition of a sulfur desorption step in vacuum, the UV-S treatment achieves bondable surfaces free of particles contamination or surface roughening. X-ray photoelectron spectroscopy measurements of the sulfur treated GaAs surfaces find lower levels of oxide and the appearance of sulfide species. After 4 hrs of air exposure, the UV-S treated GaAs actually showed an increase in the amount of sulfide bonded to the semiconductor, resulting in less oxidation compared to the aqueous sulfide treatment. Large area bonding is achieved for sulfur treated GaAs / GaAs and InP / InP with bulk fracture strength achieved after annealing at 400 °C and 300 °C respectively, without large compressive forces. The electrical conductivity across a sulfur treated 400 °C bonded n-GaAs/n-GaAs interface significantly increased with a short anneal (1-2 minutes) at elevated temperatures (50--600 °C). Interfaces treated with the NH4OH oxide etch, on the other hand, exhibited only mild improvement in accordance with previously published studies in this area. TEM and STEM images revealed similar interfacial microstructure changes with annealing for both sulfur treated and NH4OH interfaces, whereby some areas have direct semiconductor-semiconductor contact without any interfacial layer. Fitting the observed temperature dependence of zero bias conductance using a model for tunneling through a grain boundary reveals that the addition of sulfur at the interface lowered the interfacial energy barrier by 0.2 eV. The interface resistance for these sulfur-treated structures is less than 0.03 O·cm 2 at room temperature. These results emphasize that sulfur passivation techniques reduce interface states that otherwise limit the implementation of wafer bonding for high efficiency solar cells and other devices.

  20. Micropolarity and Hydrogen-Bond Donor Ability of Environmentally Friendly Anionic Reverse Micelles Explored by UV/Vis Absorption of a Molecular Probe and FTIR Spectroscopy.

    PubMed

    Girardi, Valeria R; Silber, Juana J; Falcone, Ruben Darío; Correa, N Mariano

    2018-03-19

    In the present work we show how two biocompatible solvents, methyl laurate (ML) and isopropyl myristate (IPM), can be used as a less toxic alternative to replace the nonpolar component in a sodium 1,4-bis-2-ethylhexylsulfosuccinate (AOT) reverse micelles (RMs) formulation. In this sense, the micropolarity and the hydrogen-bond ability of the interface were monitored through the use of the solvatochromism of a molecular probe (1-methyl-8-oxyquinolinium betaine, QB) and Fourier transform infrared spectroscopy (FTIR). Our results demonstrate that the micropolarity sensed by QB in ML RMs is lower than in IPM RMs. Additionally, the water molecules form stronger H-bond interactions with the polar head of AOT in ML than in IPM. By FTIR was revealed that more water molecules interact with the interface in ML/AOT RMs. On the other hand, for AOT RMs generated in IPM, the weaker water-surfactant interaction allows the water molecules to establish hydrogen bonds with each other trending to bulk water more easily than in ML RMs, a consequence of the dissimilar penetration of nonpolar solvents into the interfacial region. The penetration process is strongly controlled by the polarity and viscosity of the external solvents. All of these results allow us to characterize these biocompatible systems, providing information about interfacial properties and how they can be altered by changing the external solvent. The ability of the nontoxic solvent to penetrate or not into the AOT interface produces a new interface with attractive properties. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Mini-interfacial fracture toughness as a new validated enamel-bonding effectiveness test.

    PubMed

    Pongprueksa, Pong; De Munck, Jan; Barreto, Bruno C; Karunratanakul, Kavin; Van Meerbeek, Bart

    2016-09-01

    Today׳s most commonly applied bonding effectiveness tests are criticized for their high variability and low reliability, the latter in particular with regard to measuring the actual strength of the adhesive interface. in continuation of previous research conducted at dentin, we hereby aimed to validate the novel mini-interfacial fracture toughness (mini-iFT) test on its applicability to assess bonding effectiveness of contemporary adhesives when bonded to enamel. The 3-step etch&rinse (E&R) adhesive OptiBond FL (Kerr), the 2-step self-etch (SE) adhesive Clearfil SE Bond (Kuraray Noritake) and the two multi-mode adhesives Clearfil S(3) Bond Plus (Kuraray Noritake) and Scotchbond Universal (3M ESPE), both used following a 2-step E&R and 1-step SE mode, were applied to clinically relevant, flattened enamel surfaces. A composite (Filtek Z100; 3M ESPE) build-up was made in layers. After 1-week water storage at 37°C, all specimens were sectioned perpendicular to the interface to obtain rectangular sticks. A mini-iFT notch was prepared at the adhesive-enamel interface using a thin diamond blade under water cooling. Finally, the specimens were loaded in a 4-point bending test until failure. the mini-iFT onto human enamel was significantly higher for the adhesives applied in E&R mode versus those applied in SE mode. The lowest mini-iFT was found for the adhesives applied following a 1-step SE approach. SEM fracture analysis revealed that all fractures originated at the adhesive-enamel interface and that the induced crack propagated preferentially along this interface. mini-iFT appeared a valid alternative method to assess the mechanical properties of adhesive-enamel interfaces. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Hydrogen bonded structure, polarity, molecular motion and frequency fluctuations at liquid-vapor interface of a water-methanol mixture: an ab initio molecular dynamics study.

    PubMed

    Choudhuri, Jyoti Roy; Chandra, Amalendu

    2014-10-07

    We have performed ab initio molecular dynamics simulations of a liquid-vapor interfacial system consisting of a mixture of water and methanol molecules. Detailed results are obtained for the structural and dynamical properties of the bulk and interfacial regions of the mixture. Among structural properties, we have looked at the inhomogeneous density profiles of water and methanol molecules, hydrogen bond distributions and also the orientational profiles of bulk and interfacial molecules. The methanol molecules are found to have a higher propensity to be at the interface than water molecules. It is found that the interfacial molecules show preference for specific orientations so as to form water-methanol hydrogen bonds at the interface with the hydrophobic methyl group pointing towards the vapor side. It is also found that for both types of molecules, the dipole moment decreases at the interface. It is also found that the local electric field of water influences the dipole moment of methanol molecules. Among the dynamical properties, we have calculated the diffusion, orientational relaxation, hydrogen bond dynamics, and vibrational frequency fluctuations in bulk and interfacial regions. It is found that the diffusion and orientation relaxation of the interfacial molecules are faster than those of the bulk. However, the hydrogen bond lifetimes are longer at the interface which can be correlated with the time scales found from the decay of frequency time correlations. The slower hydrogen bond dynamics for the interfacial molecules with respect to bulk can be attributed to diminished cooperative effects at the interface due to reduced density and number of hydrogen bonds.

  3. Chemical Bonding Technology: Direct Investigation of Interfacial Bonds

    NASA Technical Reports Server (NTRS)

    Koenig, J. L.; Boerio, F. J.; Plueddemann, E. P.; Miller, J.; Willis, P. B.; Cuddihy, E. F.

    1986-01-01

    This is the third Flat-Plate Solar Array (FSA) Project document reporting on chemical bonding technology for terrestrial photovoltaic (PV) modules. The impetus for this work originated in the late 1970s when PV modules employing silicone encapsulation materials were undergoing delamination during outdoor exposure. At that time, manufacturers were not employing adhesion promoters and, hence, module interfaces in common with the silicone materials were only in physical contact and therefore easily prone to separation if, for example, water were to penetrate to the interfaces. Delamination with silicone materials virtually vanished when adhesion promoters, recommended by silicone manufacturers, were used. The activities related to the direct investigation of chemically bonded interfaces are described.

  4. Unanticipated C=C bonds in covalent monolayers on silicon revealed by NEXAFS.

    PubMed

    Lee, Michael V; Lee, Jonathan R I; Brehmer, Daniel E; Linford, Matthew R; Willey, Trevor M

    2010-02-02

    Interfaces are crucial to material properties. In the case of covalent organic monolayers on silicon, molecular structure at the interface controls the self-assembly of the monolayers, which in turn influences the optical properties and electrical transport. These properties intrinsically affect their application in biology, tribology, optics, and electronics. We use near-edge X-ray absorption fine structure spectroscopy to show that the most basic covalent monolayers formed from 1-alkenes on silicon retain a double bond in one-fifth to two-fifths of the resultant molecules. Unsaturation in the predominantly saturated monolayers will perturb the regular order and affect the dependent properties. The presence of unsaturation in monolayers produced by two different methods also prompts the re-evaluation of other radical-based mechanisms for forming covalent monolayers on silicon.

  5. BONDING ALUMINUM METALS

    DOEpatents

    Noland, R.A.; Walker, D.E.

    1961-06-13

    A process is given for bonding aluminum to aluminum. Silicon powder is applied to at least one of the two surfaces of the two elements to be bonded, the two elements are assembled and rubbed against each other at room temperature whereby any oxide film is ruptured by the silicon crystals in the interface; thereafter heat and pressure are applied whereby an aluminum-silicon alloy is formed, squeezed out from the interface together with any oxide film, and the elements are bonded.

  6. Statics and dynamics of free and hydrogen-bonded OH groups at the air/water interface.

    PubMed

    Vila Verde, Ana; Bolhuis, Peter G; Campen, R Kramer

    2012-08-09

    We use classical atomistic molecular dynamics simulations of two water models (SPC/E and TIP4P/2005) to investigate the orientation and reorientation dynamics of two subpopulations of OH groups belonging to water molecules at the air/water interface at 300 K: those OH groups that donate a hydrogen bond (called "bonded") and those that do not (called "free"). Free interfacial OH groups reorient in two distinct regimes: a fast regime from 0 to 1 ps and a slow regime thereafter. Qualitatively similar behavior was reported by others for free OH groups near extended hydrophobic surfaces. In contrast, the net reorientation of bonded OH groups occurs at a rate similar to that of bulk water. This similarity in reorientation rate results from compensation of two effects: decreasing frequency of hydrogen-bond breaking/formation (i.e., hydrogen-bond exchange) and faster rotation of intact hydrogen bonds. Both changes result from the decrease in density at the air/water interface relative to the bulk. Interestingly, because of the presence of capillary waves, the slowdown of hydrogen-bond exchange is significantly smaller than that reported for water near extended hydrophobic surfaces, but it is almost identical to that reported for water near small hydrophobic solutes. In this sense water at the air/water interface has characteristics of water of hydration of both small and extended hydrophobic solutes.

  7. First-Principle Investigation on the Bonding Mechanism of the Silicon Particles on the Copper Foil in Cold Spraying

    NASA Astrophysics Data System (ADS)

    Song, Jun; Liu, Juanfang; Chen, Qinghua

    For lithium-ion batteries, the composite silicon-based electrodes can prevent from losing electrical contact and hence retain the capacity over many cycles. To uncover the adhesion mechanism on the interface formed by the copper foil and the thin silicon coatings during the cold gas dynamic spraying (CGDS) at the microscopic level, the first-principle calculations are performed to investigate the interface properties between them. The ideal work of adhesion, fracture toughness and the interface electronic properties are analyzed. It is found that all the atoms on the interface have vertical displacements, and covalent and ionic bonds are formed between the interfacial Cu and Si atoms which increases the bonding strength. However, the ideal work of adhesion on the interface is lower than one of the Cu bulk and Si bulk, so that fracture would be easier to take place on the interface.

  8. Reduction of the potential energy barrier and resistance at wafer-bonded n-GaAs/n-GaAs interfaces by sulfur passivation

    NASA Astrophysics Data System (ADS)

    Jackson, Michael J.; Jackson, Biyun L.; Goorsky, Mark S.

    2011-11-01

    Sulfur passivation and subsequent wafer-bonding treatments are demonstrated for III-V semiconductor applications using GaAs-GaAs direct wafer-bonded structures. Two different sulfur passivation processes are addressed. A dry sulfur passivation method that utilizes elemental sulfur vapor activated by ultraviolet light in vacuum is compared with aqueous sulfide and native-oxide-etch treatments. The electrical conductivity across a sulfur-treated 400 - °C-bonded n-GaAs/n-GaAs interface significantly increased with a short anneal (1-2 min) at elevated temperatures (500-600 °C). Interfaces treated with the NH4OH oxide etch, on the other hand, exhibited only mild improvement in accordance with previously published studies in this area. TEM and STEM images revealed similar interfacial microstructure changes with annealing for both sulfur-treated and NH4OH interfaces, whereby some areas have direct semiconductor-semiconductor contact without any interfacial layer. Fitting the observed temperature dependence of zero-bias conductance using a model for tunneling through a grain boundary reveals that the addition of sulfur at the interface lowered the interfacial energy barrier by 0.2 eV. The interface resistance for these sulfur-treated structures is 0.03 Ω.cm at room temperature. These results emphasize that sulfur-passivation techniques reduce interface states that otherwise limit the implementation of wafer bonding for high-efficiency solar cells and other devices.

  9. Effect of saliva decontamination procedures on shear bond strength of a one-step adhesive system.

    PubMed

    Ülker, E; Bilgin, S; Kahvecioğlu, F; Erkan, A I

    2017-09-01

    To evaluate the effect of different saliva decontamination procedures on the shear bond strength of a one-step universal adhesive system (Single Bond™ Universal Adhesive, 3M ESPE, St. Paul, MN, USA). The occlusal surfaces of 75 human third molars were ground to expose dentin. The teeth were divided into the following groups: Group 1 (control group): Single Bond™ Universal Adhesive was applied to the prepared tooth according to the manufacturer's recommendations and light cured; no contamination procedure was performed. Group 2: Bonding, light curing, saliva contamination, and dry. Group 3: Bonding, light curing, saliva contamination, rinse, and dry. Group 4: After the procedure performed in Group 2, reapplication of bonding. Group 5: After the procedure performed in Group 3, reapplication of bonding. Then, composite resins were applied with cylindrical-shaped plastic matrixes and light cured. For shear bond testing, a notch-shaped force transducer apparatus was applied to each specimen at the interface between the tooth and composite until failure occurred. The data were statistically analyzed using one-way ANOVA. One-way ANOVA revealed significant differences in shear bond strength between the control group and experimental Groups 2 and 4 (P < 0.05). No significant difference was found for experimental Groups 3 and 5 when compared to the control group (P > 0.05). The present in vitro study showed that water rinsing is necessary if cured adhesive resin is contaminated with saliva to ensure adequate bond strength.

  10. Application of Bionic Design to FRP T-Joints

    NASA Astrophysics Data System (ADS)

    Luo, Guang-Min; Kuo, Chia-Hung

    2017-09-01

    We applied the concepts of bionics to enhance the mechanical strength of fiberglass reinforced plastic T-joints. The failure modes of the designed arthrosis-like and gum-like joints were determined using three-point bending tests and numerical simulations and compared with those of normal T-joints bonded using structural adhesives. In the simulation, we used cohesive elements to simulate the adhesive interface of the structural adhesive. The experimental and simulation results show that the arthrosis-like joint can effectively delay the failure progress and enhance the bonding strength of T-joints, thus confirming that an appropriate bionic design can effectively control the bonding properties of structural adhesives.

  11. Tack coat optimization for HMA overlays laboratory testing.

    DOT National Transportation Integrated Search

    2008-09-01

    Interface bonding between hot-mix asphalt (HMA) overlays and Portland cement concrete (PCC) pavements can be one of the most : significant factors affecting overlay service life. Various factors may affect the bonding condition at the interface, incl...

  12. Micron-scale channel formation by the release and bond-back of pre-stressed thin films: A finite element analysis

    NASA Astrophysics Data System (ADS)

    Annabattula, R. K.; Huck, W. T. S.; Onck, P. R.

    2010-04-01

    Buckling of thin films on a rigid substrate during use or fabrication is a well-known but unwanted phenomenon. However, this phenomenon can also be exploited to generate well-controlled patterns at the micro and nano-scale. These patterned surfaces find various technological applications such as optical gratings or micro/nano-fluidic channels. In this article, we present a numerical model that accounts for the buckling-up of pre-strained thin films by a reduction of the interface toughness and the subsequent bond-back. Channels are formed whose dimensions can be controlled by tuning the film dimensions, film thickness and stiffness, the eigenstrain in the film and the cohesive interface energy between the film and the substrate. We will show how the buckling-up and draping back processes can be captured in terms of a limited set of dimensionless parameters, providing quantitative insight on how these parameters should be tuned to generate a specified channel geometry.

  13. The interface of SrTiO3 and H2O from density functional theory molecular dynamics

    PubMed Central

    Spijker, P.; Foster, A. S.

    2016-01-01

    We use dispersion-corrected density functional theory molecular dynamics simulations to predict the ionic, electronic and vibrational properties of the SrTiO3/H2O solid–liquid interface. Approximately 50% of surface oxygens on the planar SrO termination are hydroxylated at all studied levels of water coverage, the corresponding number being 15% for the planar TiO2 termination and 5% on the stepped TiO2-terminated surface. The lateral ordering of the hydration structure is largely controlled by covalent-like surface cation to H2O bonding and surface corrugation. We find a featureless electronic density of states in and around the band gap energy region at the solid–liquid interface. The vibrational spectrum indicates redshifting of the O–H stretching band due to surface-to-liquid hydrogen bonding and blueshifting due to high-frequency stretching vibrations of OH fragments within the liquid, as well as strong suppression of the OH stretching band on the stepped surface. We find highly varying rates of proton transfer above different SrTiO3 surfaces, owing to differences in hydrogen bond strength and the degree of dissociation of incident water. Trends in proton dynamics and the mode of H2O adsorption among studied surfaces can be explained by the differential ionicity of the Ti–O and Sr–O bonds in the SrTiO3 crystal. PMID:27713660

  14. A first-principles study of As doping at a disordered Si-SiO2 interface.

    PubMed

    Corsetti, Fabiano; Mostofi, Arash A

    2014-02-05

    Understanding the interaction between dopants and semiconductor-oxide interfaces is an increasingly important concern in the drive to further miniaturize modern transistors. To this end, using a combination of first-principles density-functional theory and a continuous random network Monte Carlo method, we investigate electrically active arsenic donors at the interface between silicon and its oxide. Using a realistic model of the disordered interface, we find that a small percentage (on the order of ∼10%) of the atomic sites in the first few monolayers on the silicon side of the interface are energetically favourable for segregation, and that this is controlled by the local bonding and local strain of the defect centre. We also find that there is a long-range quantum confinement effect due to the interface, which results in an energy barrier for dopant segregation, but that this barrier is small in comparison to the effect of the local environment. Finally, we consider the extent to which the energetics of segregation can be controlled by the application of strain to the interface.

  15. Enhancing integration of articular cartilage grafts via photochemical bonding.

    PubMed

    Arvayo, Alberto L; Wong, Ivan J; Dragoo, Jason L; Levenston, Marc E

    2018-03-25

    The integration of osteochondral grafts to native articular cartilage is critical as the lack of graft integration may lead to continued tissue degradation, poor load transfer and inadequate nutrient transport. Photochemical bonding promotes graft integration by activating a photosensitizer at the interface via a light source and avoids negative effects associated with other bonding techniques. We hypothesized that the bond strength depends on photosensitizer type and concentration in addition to light exposure. Photochemical bonding was evaluated using methylene blue (MB), a cationic phenothiazine photosensitizer, and two phthalocyanine photosensitizers, Al(III) phthalocyanine chloride tetrasulfonic acid (CASPc) and aluminum phthalocyanine chloride (AlPc). Exposure was altered by varying irradiation time for a fixed irradiance or by varying irradiance with a fixed irradiation time. MB was ineffective at producing bonding at the range of concentrations tested while CASPc produced a peak twofold bond strength increase over controls. AlPc produced substantial bonding at all concentrations with a peak 3.9-fold bond strength increase over controls. Parametric tests revealed that bond strength depended primarily on the total energy delivered to the bonding site rather than the rate of light delivery or light irradiance. Bond strength persisted for 1 week of in-vitro culture, which warrants further exploration for clinical applications. These studies indicate that photochemical bonding is a viable strategy for enhancing articular cartilage graft integration. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  16. Long-term TEM analysis of the nanoleakage patterns in resin-dentin interfaces produced by different bonding strategies.

    PubMed

    Reis, Andre F; Giannini, Marcelo; Pereira, Patricia N R

    2007-09-01

    The aim of this study was to evaluate the ability of etch-and-rinse and self-etching adhesive systems to prevent time- and water-induced nanoleakage in resin-dentin interfaces over a 6-month storage period. Five commercial adhesives were tested, which comprise three different strategies of bonding resins to tooth hard tissues: one single-step self-etching adhesive (One-up Bond F (OB), Tokuyama); two two-step self-etching primers (Clearfil SE Bond (SE) and an antibacterial fluoride-containing system, Clearfil Protect Bond (CP), Kuraray Inc.); two two-step etch-and-rinse adhesives (Single Bond (SB), 3M ESPE and Prime&Bond NT (PB), Dentsply). Restored teeth were sectioned into 0.9 mm thick slabs and stored in water or mineral oil for 24 h, 3 or 6 months. A silver tracer solution was used to reveal nanometer-sized water-filled spaces and changes that occurred over time within resin-dentin interfaces. Characterization of interfaces was performed with the TEM. The two two-step self-etching primers showed little silver uptake during the 6-month experiment. Etch-and-rinse adhesives exhibited silver deposits predominantly within the hybrid layer (HL), which significantly increased for SB after water-storage. The one-step self-etching adhesive OB presented massive silver accumulation within the HL and water-trees protruding into the adhesive layer, which increased in size and quantity after water-storage. After storage in oil, reduced silver deposition was observed at the interfaces for all groups. Different levels of water-induced nanoleakage were observed for the different bonding strategies. The two-step self-etching primers, especially the antibacterial fluoride-containing system CP, showed the least nanoleakage after 6 months of storage in water.

  17. Dentin-Composite Bond Strength Measurement Using the Brazilian Disk Test

    PubMed Central

    Carrera, Carola A.; Chen, Yung-Chung; Li, Yuping; Rudney, Joel; Aparicio, Conrado; Fok, Alex

    2016-01-01

    Objectives This study presents a variant of the Brazilian disk test (BDT) for assessing the bond strength between composite resins and dentin. Methods Dentin-composite disks (φ 5 mm × 2 mm) were prepared using either Z100 or Z250 (3M ESPE) in combination with one of three adhesives, Adper Easy Bond (EB), Adper Scotchbond Multi-Purpose (MP) and Adper Single Bond (SB), and tested under diametral compression. Acoustic emission (AE) and digital image correlation (DIC) were used to monitor debonding of the composite from the dentin ring. A finite element (FE) model was created to calculate the bond strengths using the failure loads. Fracture modes were examined by scanning electron microscopy (SEM). Results Most specimens fractured along the dentin-resin composite interface. DIC and AE confirmed interfacial debonding immediately before fracture of the dentin ring. Results showed that the mean bond strength with EB (14.9±1.9 MPa) was significantly higher than with MP (13.2±2.4 MPa) or SB (12.9±3.0 MPa) (p<0.05); no significant difference was found between MP and SB (p>0.05). Z100 (14.5±2.3 MPa) showed higher bond strength than Z250 (12.7±2.5 MPa) (p<0.05). Majority of specimens (91.3%) showed an adhesive failure mode. EB failed mostly at the dentin-adhesive interface, whereas MP at the composite-adhesive interface; specimens with SB failed at the composite-adhesive interface and cohesively in the adhesive. Conclusions The BDT variant showed to be a suitable alternative for measuring the bond strength between dentin and composite, with zero premature failure, reduced variability in the measurements, and consistent failure at the dentin-composite interface. PMID:27395367

  18. Nanoleakage in Hybrid Layer and Acid-Base Resistant Zone at the Adhesive/Dentin Interface.

    PubMed

    Nikaido, Toru; Nurrohman, Hamid; Takagaki, Tomohiro; Sadr, Alireza; Ichinose, Shizuko; Tagami, Junji

    2015-10-01

    The aim of interfacial nanoleakage evaluation is to gain a better understanding of degradation of the adhesive-dentin interface. The acid-base resistant zone (ABRZ) is recognized at the bonded interface under the hybrid layer (HL) in self-etch adhesive systems after an acid-base challenge. The purpose of this study was to evaluate nanoleakage in HL and ABRZ using three self-etch adhesives; Clearfil SE Bond (SEB), Clearfil SE One (SEO), and G-Bond Plus (GBP). One of the three adhesives was applied on the ground dentin surface and light cured. The specimens were longitudinally divided into two halves. One half remained as the control group. The others were immersed in ammoniacal silver nitrate solution, followed by photo developing solution under fluorescent light. Following this, the specimens were subjected to acid-base challenges with an artificial demineralization solution (pH4.5) and sodium hypochlorite, and prepared in accordance with common procedures for transmission electron microscopy (TEM) examination. The TEM images revealed silver depositions in HL and ABRZ due to nanoleakage in all the adhesives; however, the extent of nanoleakage was material dependent. Funnel-shaped erosion beneath the ABRZ was observed only in the all-in-one adhesive systems; SEO and GBP, but not in the two-step self-etch adhesive system; SEB.

  19. Unravelling the Chemical Influence of Water on the PMMA/Aluminum Oxide Hybrid Interface In Situ

    DOE PAGES

    Pletincx, Sven; Marcoen, Kristof; Trotochaud, Lena; ...

    2017-10-17

    Understanding the stability of chemical interactions at the polymer/metal oxide interface under humid conditions is vital to understand the long-term durability of hybrid systems. Therefore, the interface of ultrathin PMMA films on native aluminum oxide, deposited by reactive adsorption, was studied. The characterization of the interface of the coated substrates was performed using ambient pressure X-ray photoelectron spectroscopy (APXPS), Fourier transform infrared spectroscopy in the Kretschmann geometry (ATR-FTIR Kretschmann) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). The formation of hydrogen bonds and carboxylate ionic bonds at the interface are observed. The formed ionic bond is stable up to 5 Torrmore » water vapour pressure as shown by APXPS. However, when the coated samples are exposed to an excess of aqueous electrolyte, an increase in the amount of carboxylate bonds at the interface, as a result of hydrolysis of the methoxy group, is observed by ATR-FTIR Kretschmann. In conclusion, these observations, supported by ToF-SIMS spectra, lead to the proposal of an adsorption mechanism of PMMA on aluminum oxide, which shows the formation of methanol at the interface and the effect of water molecules on the different interfacial interactions.« less

  20. Diffusion Bonding of Microduplex Stainless Steel and Ti Alloy with and without Interlayer: Interface Microstructure and Strength Properties

    NASA Astrophysics Data System (ADS)

    Kundu, S.; Sam, S.; Mishra, B.; Chatterjee, S.

    2014-01-01

    The interface microstructure and strength properties of solid state diffusion bonding of microduplex stainless steel (MDSS) to Ti alloy (TiA) with and without a Ni alloy (NiA) intermediate material were investigated at 1173 K (900 °C) for 0.9 to 5.4 ks in steps of 0.9 ks in vacuum. The effects of bonding time on the microstructure of the bonded joint have been analyzed by light optical microscopy and scanning electron microscopy in the backscattered mode. In the direct bonded joints of MDSS and TiA, the layer-wise σ phase and the λ + FeTi phase mixture were observed at the bond interface when the joint was processed for 2.7 ks and above holding times. However, when NiA was used as an intermediate material, the results indicated that TiNi3, TiNi, and Ti2Ni are formed at the NiA-TiA interface, and the irregular shaped particles of Fe22Mo20Ni45Ti13 have been observed within the TiNi3 intermetallic layer. The stainless steel-NiA interface is free from intermetallics and the layer of austenitic phase was observed at the stainless steel side. A maximum tensile strength of ~520 MPa, shear strength of ~405 MPa, and impact toughness of ~18 J were obtained for the directly bonded joint when processed for 2.7 ks. However, when nickel base alloy was used as an intermediate material in the same materials, the bond tensile and shear strengths increase to ~640 and ~479 MPa, respectively, and the impact toughness to ~21 J when bonding was processed for 4.5 ks. Fracture surface observations in scanning electron microscopy using energy dispersive spectroscopy demonstrate that in MDSS-TiA joints, failure takes place through the FeTi + λ phase when bonding was processed for 2.7 ks; however, failure takes place through σ phase for the diffusion joints processed for 3.6 ks and above processing times. However, in MDSS-NiA-TiA joints, the fracture takes place through NiTi2 layer at the NiA-TiA interface for all bonding times.

  1. Direct observation and control of hydrogen-bond dynamics using low-temperature scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Kumagai, Takashi

    2015-08-01

    Hydrogen(H)-bond dynamics are involved in many elementary processes in chemistry and biology. Because of its fundamental importance, a variety of experimental and theoretical approaches have been employed to study the dynamics in gas, liquid, solid phases, and their interfaces. This review describes the recent progress of direct observation and control of H-bond dynamics in several model systems on a metal surface by using low-temperature scanning tunneling microscopy (STM). General aspects of H-bond dynamics and the experimental methods are briefly described in chapter 1 and 2. In the subsequent four chapters, I present direct observation of an H-bond exchange reaction within a single water dimer (chapter 3), a symmetric H bond (chapter 4) and H-atom relay reactions (chapter 5) within water-hydroxyl complexes, and an intramolecular H-atom transfer reaction (tautomerization) within a single porphycene molecule (chapter 6). These results provide novel microscopic insights into H-bond dynamics at the single-molecule level, and highlight significant impact on the process from quantum effects, namely tunneling and zero-point vibration, resulting from the small mass of H atom. Additionally, local environmental effect on H-bond dynamics is also examined by using atom/molecule manipulation with the STM.

  2. Structural stability of characteristic interface for NiTi/Nb Nanowire: First-Principle study

    NASA Astrophysics Data System (ADS)

    Li, G. F.; Zheng, H. Z.; Shu, X. Y.; Peng, P.

    2016-01-01

    Compared with some other conventional interface models, the interface of NiTi(211)/Nb(220) in NiTiNb metal nanocomposite had been simulated and analyzed carefully. Results show that only several interface models, i.e., NiTi(100)/Nb(100)(Ni⃡Nb), NiTi(110)/Nb(110) and NiTi(211)/Nb(220), can be formed accordingly with their negative formation enthalpy. Therein the cohesive energy Δ E and Griffith rupture work W of NiTi(211)/Nb(220) interface model are the lowest among them. Density of states shows that there exists only one electronic bonding peak for NiTi(211)/Nb(220) interface model at -2.5 eV. Electron density difference of NiTi(211)/ Nb(220) shows that the Nb-Nb, Nb-Ti and Nb-Ni bonding characters seem like so peaceful as a fabric twisting every atom, which is different from conventional metallic bonding performance. Such appearance can be deduced that the metallic bonding between Nb-Nb, Nb-Ti and Nb-Ni in NiTi(211)/Nb(220) may be affected by its nanostructure called nanometer size effect. Thus, our findings open an avenue for detailed and comprehensive studies of nanocomposite.

  3. 2D-HB-Network at the air-water interface: A structural and dynamical characterization by means of ab initio and classical molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Pezzotti, Simone; Serva, Alessandra; Gaigeot, Marie-Pierre

    2018-05-01

    Following our previous work where the existence of a special 2-Dimensional H-Bond (2D-HB)-Network was revealed at the air-water interface [S. Pezzotti et al., J. Phys. Chem. Lett. 8, 3133 (2017)], we provide here a full structural and dynamical characterization of this specific arrangement by means of both Density Functional Theory based and Force Field based molecular dynamics simulations. We show in particular that water at the interface with air reconstructs to maximize H-Bonds formed between interfacial molecules, which leads to the formation of an extended and non-interrupted 2-Dimensional H-Bond structure involving on average ˜90% of water molecules at the interface. We also show that the existence of such an extended structure, composed of H-Bonds all oriented parallel to the surface, constrains the reorientional dynamics of water that is hence slower at the interface than in the bulk. The structure and dynamics of the 2D-HB-Network provide new elements to possibly rationalize several specific properties of the air-water interface, such as water surface tension, anisotropic reorientation of interfacial water under an external field, and proton hopping.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pletincx, Sven; Marcoen, Kristof; Trotochaud, Lena

    Understanding the stability of chemical interactions at the polymer/metal oxide interface under humid conditions is vital to understand the long-term durability of hybrid systems. Therefore, the interface of ultrathin PMMA films on native aluminum oxide, deposited by reactive adsorption, was studied. The characterization of the interface of the coated substrates was performed using ambient pressure X-ray photoelectron spectroscopy (APXPS), Fourier transform infrared spectroscopy in the Kretschmann geometry (ATR-FTIR Kretschmann) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). The formation of hydrogen bonds and carboxylate ionic bonds at the interface are observed. The formed ionic bond is stable up to 5 Torrmore » water vapour pressure as shown by APXPS. However, when the coated samples are exposed to an excess of aqueous electrolyte, an increase in the amount of carboxylate bonds at the interface, as a result of hydrolysis of the methoxy group, is observed by ATR-FTIR Kretschmann. In conclusion, these observations, supported by ToF-SIMS spectra, lead to the proposal of an adsorption mechanism of PMMA on aluminum oxide, which shows the formation of methanol at the interface and the effect of water molecules on the different interfacial interactions.« less

  5. In vitro evaluation of an alternative method to bond molar tubes

    PubMed Central

    PINZAN-VERCELINO, Célia Regina Maio; PINZAN, Arnaldo; GURGEL, Júlio de Araújo; BRAMANTE, Fausto Silva; PINZAN, Luciana Maio

    2011-01-01

    Despite the advances in bonding materials, many clinicians today still prefer to place bands on molar teeth. Molar bonding procedures need improvement to be widely accepted clinically. Objective The purpose of this study was to evaluate the shear bond strength when an additional adhesive layer was applied on the occlusal tooth/tube interface to provide reinforcement to molar tubes. Material and methods Sixty third molars were selected and allocated to the 3 groups: group 1 received a conventional direct bond followed by the application of an additional layer of adhesive on the occlusal tooth/tube interface, group 2 received a conventional direct bond, and group 3 received a conventional direct bond and an additional cure time of 10 s. The specimens were debonded in a universal testing machine. The results were analyzed statistically by ANOVA and Tukey’s test (α=0.05). Results Group 1 had a significantly higher (p<0.05) shear bond strength compared to groups 2 and 3. No difference was detected between groups 2 and 3 (p>0.05). Conclusions The present in vitro findings indicate that the application of an additional layer of adhesive on the tooth/tube interface increased the shear bond strength of the bonded molar tubes. PMID:21437468

  6. Factors affecting the cement-post interface.

    PubMed

    Zicari, F; De Munck, J; Scotti, R; Naert, I; Van Meerbeek, B

    2012-03-01

    To evaluate the effect of different factors on the push-out bond strength of glass fiber posts luted in simulated (standard) root canals using different composite cements. Three types of glass-fiber root-canal posts with a different matrix, namely an epoxy resin (RelyX post, 3M ESPE), a proprietary composite resin (FRC-Plus post, Ivoclar-Vivadent), and a methacrylate resin (GC post, GC), and three types of composite cements, namely an etch-and-rinse Bis-GMA-based (Variolink II, Ivoclar-Vivadent), a self-etch 10-MDP-based (Clearfil Esthetic Cement, Kuraray) and a self-adhesive (RelyX Unicem, 3M ESPE) cement, were tested. Posts were either left untreated (control), were treated with silane, or coated with silicated alumina particles (Cojet system, 3M ESPE). Posts were inserted up to 9-mm depth into composite CAD-CAM blocks (Paradigm, 3M ESPE) in order to solely test the strength of the cement-post interface, while excluding interference of the cement-dentin interface. After 1-week storage at 37 °C, three sections (coronal, middle, apical) of 2-mm thickness were subjected to a push-out bond-strength test. All three variables, namely the type of post, the composite cement and the post-surface pre-treatment, were found to significantly affect the push-out bond strength (p<0.001). Regarding the type of post, a significantly lower push-out bond strength was recorded for the FRC-Plus post (Ivoclar-Vivadent); regarding the composite cement, a significantly higher push-out bond strength was recorded for the self-adhesive cement Unicem (3M ESPE); and regarding the post-surface treatment, a significantly higher push-out bond strength was recorded when the post-surface was beforehand subjected to a Cojet (3M ESPE) combined sandblasting/silicatization surface pre-treatment. Many interactions between these three variables were found to be significant as well (p<0.001). Finally, the push-out bond strength was found to significantly reduce with depth from coronal to apical. Laboratory testing revealed that different variables like the type of post, the composite cement and the post-surface pre-treatment may influence the cement-post interface, making clear guidelines for routine clinical practice hard to define. Further long-term durability testing may help to clarify, and should therefore be encouraged. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  7. IR spectroscopy of protonation in benzene-water nanoclusters: hydronium, zundel, and eigen at a hydrophobic interface.

    PubMed

    Cheng, Timothy C; Bandyopadhyay, Biswajit; Mosley, Jonathan D; Duncan, Michael A

    2012-08-08

    The structure of ions in water at a hydrophobic interface influences important processes throughout chemistry and biology. However, experiments to measure these structures are limited by the distribution of configurations present and the inability to selectively probe the interfacial region. Here, protonated nanoclusters containing benzene and water are produced in the gas phase, size-selected, and investigated with infrared laser spectroscopy. Proton stretch, free OH, and hydrogen-bonding vibrations uniquely define protonation sites and hydrogen-bonding networks. The structures consist of protonated water clusters binding to the hydrophobic interface of neutral benzene via one or more π-hydrogen bonds. Comparison to the spectra of isolated hydronium, zundel, or eigen ions reveals the inductive effects and local ordering induced by the interface. The structures and interactions revealed here represent key features expected for aqueous hydrophobic interfaces.

  8. Ions-modified nanoparticles affect functional remineralization and energy dissipation through the resin-dentin interface.

    PubMed

    Toledano, Manuel; Osorio, Raquel; Osorio, Estrella; Medina-Castillo, Antonio Luis; Toledano-Osorio, Manuel; Aguilera, Fátima S

    2017-04-01

    The aim of this study was to evaluate changes in the mechanical and chemical behavior, and bonding ability at dentin interfaces infiltrated with polymeric nanoparticlesstandard deviations and modes of failure are (NPs) prior to resin application. Dentin surfaces were treated with 37% phosphoric acid followed by application of an ethanol suspension of NPs, Zn-NPs or Ca-NPs followed by the application of an adhesive, Single Bond (SB). Bonded interfaces were stored for 24h, submitted to microtensile bond strength test, and evaluated by scanning electron microscopy. After 24h and 21 d of storage, the whole resin-dentin interface adhesive was evaluated using a Nano-DMA. Complex modulus, storage modulus and tan delta (δ) were assessed. AFM imaging and Raman analysis were performed. Bond strength was not affected by NPs infiltration. After 21 d of storage, tan δ generally decreased at Zn-NPs/resin-dentin interface, and augmented when Ca-NPs or non-doped NPs were used. When both Zn-NPs and Ca-NPs were employed, the storage modulus and complex modulus decreased, though both moduli increased at the adhesive and at peritubular dentin after Zn-NPs infiltration. The phosphate and the carbonate peaks, and carbonate substitution, augmented more at interfaces promoted with Ca-NPs than with Zn-NPs after 21 d of storage, but crystallinity did not differ at created interfaces with both ions-doped NPs. Crosslinking of collagen and the secondary structure of collagen improved with Zn-NPs resin-dentin infiltration. Ca-NPs-resin dentin infiltration produced a favorable dissipation of energy with minimal stress concentration trough the crystalline remineralized resin-dentin interface, causing minor damage at this structure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Design of Fit-for-Purpose Cement to Restore Cement-Caprock Seal Integrity

    NASA Astrophysics Data System (ADS)

    Provost, R.

    2015-12-01

    This project aims to study critical research needs in the area of rock-cement interfaces, with a special focus on crosscutting applications in the Wellbore Integrity Pillar of the SubTER initiative. This study will focus on design and test fit-for-purpose cement formulations. The goals of this project are as follows: 1) perform preliminary study of dispersing nanomaterial admixtures in Ordinary Portland Cement (OPC) mixes, 2) characterize the cement-rock interface, and 3) identify potential high-performance cement additives that can improve sorption behavior, chemical durability, bond strength, and interfacial fracture toughness, as appropriate to specific subsurface operational needs. The work presented here focuses on a study of cement-shale interfaces to better understand failure mechanisms, with particular attention to measuring bond strength at the cement-shale interface. Both experimental testing and computational modeling were conducted to determine the mechanical behavior at the interface representing the interaction of cement and shale of a typical wellbore environment. Cohesive zone elements are used in the finite element method to computationally simulate the interface of the cement and rock materials with varying properties. Understanding the bond strength and mechanical performance of the cement-formation interface is critical to wellbore applications such as sequestration, oil and gas production and exploration and nuclear waste disposal. Improved shear bond strength is an indication of the capability of the interface to ensure zonal isolation and prevent zonal communication, two crucial goals in preserving wellbore integrity. Understanding shear bond strength development and interface mechanics will provide an idea as to how the cement-formation interface can be altered under environmental changes (temperature, pressure, chemical degradation, etc.) so that the previously described objectives can be achieved. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND #: SAND2015-6523 A

  10. Crack growth in bonded elastic half planes

    NASA Technical Reports Server (NTRS)

    Goree, J. G.

    1975-01-01

    Two solutions were developed for the two dimensional problem of bonded linearly elastic half-planes. For each solution, numerical results are presented for the stress intensity factors, strain energy release rate, stresses, and displacements. The behavior predicted by the studies was investigated experimentally using polymers for the material pairs. Close agreement was found for the critical stress intensity factor at fracture for the perpendicular crack near the interface. Fracture along the interface proved to be inconclusive due to difficulties in obtaining a brittle bond. Some interesting and predictable behavior regarding the potential for the crack to cross the interface was observed and is discussed.

  11. Microstructure and Properties of 5083 Al/1060 Al/AZ31 Composite Plate Fabricated by Explosive Welding

    NASA Astrophysics Data System (ADS)

    Yang, Suyuan; Bao, Jiawei

    2018-03-01

    A 5083 Al/1060 Al/AZ31 composite plate was fabricated by explosive welding. The microstructure and properties of the composite plate were investigated after explosive welding. The results showed that all bonding interfaces were wavy interfaces. With an increasing distance from the detonation point, the wavelength and the amplitude also increased. The EDS results indicated that a 5-μm diffusion layer was observed at the 1060 Al/AZ31 layer, including the Mg2Al3 phase. Adiabatic shear bands and twin structures were observed in AZ31. The shear bond strength of the 5083 Al/1060 Al interface was 60 MPa, and the shear bond strength of the 1060 Al/AZ31 interface was 84 MPa.

  12. Bond strength with various etching times on young permanent teeth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, W.N.; Lu, T.C.

    1991-07-01

    Tensile bond strengths of an orthodontic resin cement were compared for 15-, 30-, 60-, 90-, or 120-second etching times, with a 37% phosphoric acid solution on the enamel surfaces of young permanent teeth. Fifty extracted premolars from 9- to 16-year-old children were used for testing. An orthodontic composite resin was used to bond the bracket directly onto the buccal surface of the enamel. The tensile bond strengths were tested with an Instron machine. Bond failure interfaces between bracket bases and teeth surfaces were examined with a scanning electron microscope and calculated with mapping of energy-dispersive x-ray spectrometry. The results ofmore » tensile bond strength for 15-, 30-, 60-, or 90-second etching times were not statistically different. For the 120-second etching time, the decrease was significant. Of the bond failures, 43%-49% occurred between bracket and resin interface, 12% to 24% within the resin itself, 32%-40% between resin and tooth interface, and 0% to 4% contained enamel fragments. There was no statistical difference in percentage of bond failure interface distribution between bracket base and resin, resin and enamel, or the enamel detachment. Cohesive failure within the resin itself at the 120-second etching time was less than at other etching times, with a statistical significance. To achieve good retention, to decrease enamel loss, and to reduce moisture contamination in the clinic, as well as to save chairside time, a 15-second etching time is suggested for teenage orthodontic patients.« less

  13. Effect of potentially chromogenic beverages on shear bond strength of acrylic denture teeth to heat-polymerized denture base resins

    PubMed Central

    Neppelenbroek, Karin Hermana; Urban, Vanessa Migliorini; de Oliveira, Denise Gusmão; Porto, Vinícius Carvalho; Almilhatti, Hercules Jorge; Campanha, Nara Hellen

    2016-01-01

    Background: Detachment of denture acrylic resin artificial teeth from denture base resin is one of the most common problems presented by denture wearers. Purpose: This study investigated the shear bond strength (SBS) and fracture type of bonding interface of two commercial acrylic teeth (Vipi Dent Plus e Biolux) to two denture base resins (Vipi Cril e Lucitone 550) after immersion in potentially chromogenic beverages (coffee, cola soft drink, and red wine) or control solution (distilled water). Materials and Methods: Maxillary central incisor acrylic teeth were placed at 45° to denture base resin and submitted to short polymerization cycle according to manufacturers. Specimens were divided according to the combination tooth/resin/solution (n = 8) and submitted to bond strength tests in a universal testing machine MTS-810 (0.5 mm/min). Subsequently, fracture area was analyzed by stereomicroscope at a magnification of ×10 and categorized into adhesive, cohesive, or mixed failure. Results: The bond strength of teeth/denture base resins interface was not significantly affected by tested solutions (P > 0.087), except for Biolux teeth immersed in coffee (P < 0.01). In all conditions, the Vipi Dent Plus teeth showed higher bond strength to Lucitone and Vipi Cril resins when compared to Biolux teeth (P < 0.003). All specimens’ failure modes were cohesive. Conclusions: The SBS of acrylic teeth to denture base resins was not generally influenced by immersion in the tested staining beverages. PMID:27621547

  14. Erosive cola-based drinks affect the bonding to enamel surface: an in vitro study.

    PubMed

    Casas-Apayco, Leslie Caroll; Dreibi, Vanessa Manzini; Hipólito, Ana Carolina; Graeff, Márcia Sirlene Zardin; Rios, Daniela; Magalhães, Ana Carolina; Buzalaf, Marília Afonso Rabelo; Wang, Linda

    2014-01-01

    This study aimed to assess the impact of in vitro erosion provoked by different cola-based drinks (Coke types), associated or not with toothbrushing, to bonding to enamel. Fifty-six [Corrected] bovine enamel specimens were prepared and randomly assigned into seven groups (N=8): C- Control (neither eroded nor abraded), ERO-RC: 3x/1-minute immersion in Regular Coke (RC), ERO-LC: 3x/1-minute immersion in Light Coke (LC), ERO-ZC: 3x/1-minute immersion in Zero Coke (ZC) and three other eroded groups, subsequently abraded for 1-minute toothbrushing (EROAB-RC, EROAB-LC and EROAB-ZC, respectively). After challenges, they were stored overnight in artificial saliva for a total of 24 hours and restored with Adper Single Bond 2/Filtek Z350. Buildup coronal surfaces were cut in 1 mm2 -specimens and subjected to a microtensile test. Data were statistically analyzed by two-way ANOVA/Bonferroni tests (α=0.05). Failure modes were assessed by optical microscopy (X40). The Interface of the restorations were observed using Confocal Laser Scanning Microscopy (CLSM). All tested cola-based drinks significantly reduced the bond strength, which was also observed in the analyses of interfaces. Toothbrushing did not have any impact on the bond strength. CLSM showed that except for Zero Coke, all eroded specimens resulted in irregular hybrid layer formation. All cola-based drinks reduced the bond strength. Different patterns of hybrid layers were obtained revealing their impact, except for ZC.

  15. Interfacial characterization of SLM parts in multi-material processing: Metallurgical diffusion between 316L stainless steel and C18400 copper alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Z.H., E-mail: AZHLIU@ntu.edu.sg; Zhang, D.Q., E-mail: ZHANGDQ@ntu.edu.sg; Sing, S.L., E-mail: SING0011@e.ntu.edu.sg

    2014-08-15

    Multi-material processing in selective laser melting using a novel approach, by the separation of two different materials within a single dispensing coating system was investigated. 316L stainless steel and UNS C18400 Cu alloy multi-material samples were produced using selective laser melting and their interfacial characteristics were analyzed using focused ion beam, scanning electron microscopy, energy dispersive spectroscopy and electron back scattered diffraction techniques. A substantial amount of Fe and Cu element diffusion was observed at the bond interface suggesting good metallurgical bonding. Quantitative evidence of good bonding at the interface was also obtained from the tensile tests where the fracturemore » was initiated at the copper region. Nevertheless, the tensile strength of steel/Cu SLM parts was evaluated to be 310 ± 18 MPa and the variation in microhardness values was found to be gradual along the bonding interface from the steel region (256 ± 7 HV{sub 0.1}) to the copper region (72 ± 3 HV{sub 0.1}). - Highlights: • Multi-material processing was successfully implemented and demonstrated in SLM. • Bi-metallic laminates of steel/Cu were successfully produced with the SLM process. • A substantial amount of Fe and Cu diffusion was observed at the bond interface. • Good metallurgical bonding was obtained at the interface of the steel/Cu laminates. • Highly refined microstructure was obtained due to rapid solidification in SLM.« less

  16. Atomic structure and potential energy of β-Si3N4/diamond interface in the process of detachment: A first-principles study

    NASA Astrophysics Data System (ADS)

    Chen, Naichao; Chen, Yingchao; Ai, Jun; Li, Cheng; He, Ping; Ren, Jianxing; Zhu, Quanjun

    2018-03-01

    Peeling is regarded as a main technique barrier for the application of coating. Many factors affects the peeling of coating. Among them, the interfacial properties between coating and substrate plays a vital role. In this work, the β-Si3N4/diamond interface is conducted as the sample to study the changes in atomic structure and potential energy in the process of detachment by the first-principles calculations. The β-Si3N4/diamond (2 × 2) crystal unit is used as the calculated model. The detachment is simulated by moving up β-Si3N4 far from diamond by the 0.1 Å of each step. The results show that in the beginning of detachment, the bonds in the interface keep a constant length, rather than extension like spring. When the distance between β-Si3N4 and diamond reaches a certain distance, the interfacial bonds would suddenly break, and the elongated β-Si3N4 resumes its original statues indicating that the interface between two surfaces may exist a threshold value to control the peeling. When the external force is less than this threshold value, the peeling of coating would not occur. However, once the external force is greater than this one, the peeling would immediately present. The interface presents the brittle failure in the process of detachment, which is in good agreement with the experimental observation. Meanwhile, the different physical properties between van der Waals and quantum effects lead to the transient status in the process of detachment, where although the interfacial bonds are broken, the adhesive strength is still strong due to its low negative adsorption energy.

  17. Relationship between water status in dentin and interfacial morphology in all-in-one adhesives.

    PubMed

    Yoshida, Eiji; Uno, Sigeru; Nodasaka, Yoshinobu; Kaga, Msayuki; Hirano, Susumu

    2007-05-01

    All-in-one adhesive systems have been recently developed to simplify bonding procedures. The adhesives containing acidic resin monomers generate a relatively thin bonding zone between dentin and composite. This zone may be left acidic and permeable when polymerization is poor. In this study, the effect of water contained in dentin on the quality of the bonding interface was morphologically investigated for all-in-one adhesives. Intact coronal dentin (hydrated dentin), desiccated coronal dentin (dehydrated dentin), caries-affected dentin (CAD) and resin composites were used for adherends to assess the effects of water contained in dentin on the ultra-structures of bonding interfaces created with two all-in-one adhesives and a resin composite. The bonding interfaces were observed under TEM without demineralization. Voids of various sizes were found at the bottom of the adhesive resin layers along the bonding interface of hydrated dentin, while dehydrated dentin, CAD and resin composites did not generate voids. The results showed that the voids were possibly formed by water that had penetrated from the underlying dentin. When the adherend contains little water, the formation of voids will not occur. It was verified that a phenomenon of void formation would not occur in a clinical situation in which caries-affected dentin is mainly subjected to adhesive practices.

  18. Development of non-bonded interaction parameters between graphene and water using particle swarm optimization.

    PubMed

    Bejagam, Karteek K; Singh, Samrendra; Deshmukh, Sanket A

    2018-05-05

    New Lennard-Jones parameters have been developed to describe the interactions between atomistic model of graphene, represented by REBO potential, and five commonly used all-atom water models, namely SPC, SPC/E, SPC/Fw, SPC/Fd, and TIP3P/Fs by employing particle swarm optimization (PSO) method. These new parameters were optimized to reproduce the macroscopic contact angle of water on a graphene sheet. The calculated line tension was in the order of 10 -11 J/m for the droplets of all water models. Our molecular dynamics simulations indicate the preferential orientation of water molecules near graphene-water interface with one OH bond pointing toward the graphene surface. Detailed analysis of simulation trajectories reveals the presence of water molecules with ≤∼1, ∼2, and ∼4 hydrogen bonds at the surface of air-water interface, graphene-water interface, and bulk region of the water droplet, respectively. Presence of water molecules with ≤∼1 and ∼2 hydrogen bonds suggest the existence of water clusters of different sizes at these interfaces. The trends observed in the libration, bending, and stretching bands of the vibrational spectra are closely associated with these structural features of water. The inhomogeneity in hydrogen bond network of water at the air-water and graphene-water interface is manifested by broadening of the peaks in the libration band for water present at these interfaces. The stretching band for the molecules in water droplet shows a blue shift as compared to the pure bulk water, which conjecture the presence of weaker hydrogen bond network in a droplet. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  19. Discrete particle modeling and micromechanical characterization of bilayer tablet compaction.

    PubMed

    Yohannes, B; Gonzalez, M; Abebe, A; Sprockel, O; Nikfar, F; Kiang, S; Cuitiño, A M

    2017-08-30

    A mechanistic particle scale model is proposed for bilayer tablet compaction. Making bilayer tablets involves the application of first layer compaction pressure on the first layer powder and a second layer compaction pressure on entire powder bed. The bonding formed between the first layer and the second layer particles is crucial for the mechanical strength of the bilayer tablet. The bonding and the contact forces between particles of the first layer and second layer are affected by the deformation and rearrangement of particles due to the compaction pressures. Our model takes into consideration the elastic and plastic deformations of the first layer particles due to the first layer compaction pressure, in addition to the mechanical and physical properties of the particles. Using this model, bilayer tablets with layers of the same material and different materials, which are commonly used pharmaceutical powders, are tested. The simulations show that the strength of the layer interface becomes weaker than the strength of the two layers as the first layer compaction pressure is increased. The reduction of strength at the layer interface is related to reduction of the first layer surface roughness. The reduced roughness decreases the available bonding area and hence reduces the mechanical strength at the interface. In addition, the simulations show that at higher first layer compaction pressure the bonding area is significantly less than the total contact area at the layer interface. At the interface itself, there is a non-monotonic relationship between the bonding area and first layer force. The bonding area at the interface first increases and then decreases as the first layer pressure is increased. These results are in agreement with findings of previous experimental studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Characteristics of Organic-Metal Interaction: A Perspective from Bonding Distance to Orbital Delocalization

    NASA Astrophysics Data System (ADS)

    Kera, Satoshi; Hosokai, Takuya; Duhm, Steffen

    2018-06-01

    Understanding the mechanisms of energy-level alignment and charge transfer at the interface is one of the key issues in realizing organic electronics. However, the relation between the interface structure and the electronic structure is still not resolved in sufficient detail. An important character of materials used in organic electronics is the electronic localization of organic molecules at interfaces. To elucidate the impact of the molecular orbital distribution on the electronic structure, detailed structural information is required, particularly the vertical bonding distance at the interface, which is a signature of the interaction strength. We describe the recent progress in experimental studies on the impact of the molecule-metal interaction on the electronic structure of organic-metal interfaces by using various photoelectron spectroscopies, and review the results, focusing on the X-ray standing wave technique, to demonstrate the evaluation of the vertical bonding distance.

  1. Bond strength of orthodontic light-cured resin-modified glass ionomer cement.

    PubMed

    Cheng, Hsiang Yu; Chen, Chien Hsiu; Li, Chuan Li; Tsai, Hung Huey; Chou, Ta Hsiung; Wang, Wei Nan

    2011-04-01

    The purpose of this study was to compare the bond strengths and debonded interfaces achieved with light-cured resin-modified glass ionomer cement (RMGIC) and conventional light-cured composite resin. In addition, the effects of acid etching and water contamination were examined. One hundred human premolars were randomly divided into five equal groups. The mini Dyna-lock upper premolar bracket was selected for testing. The first four groups were treated with light-cured RMGIC with or without 15 per cent phosphoric acid-etching treatment and with or without water contamination preceding bracket bonding. The control samples were treated with the conventional light-cured Transbond composite resin under acid etching and without water contamination. Subsequently, the brackets were debonded by tensile force using an Instron machine. The modified adhesive remnant index (ARI) scores were assigned to the bracket base of the debonded interfaces using a scanning electron microscope. The bond strength and modified ARI scores were determined and analysed statistically by one-way analysis of variance and chi-square test. Under all four conditions, the bond strength of the light-cure RMGIC was equal to or higher than that of the conventional composite resin. The highest bond strength was achieved when using RMGIC with acid etching but without water contamination. The modified ARI scores were 2 for Fuji Ortho LC and 3 for Transbond. No enamel detachment was found in any group. Fifteen per cent phosphoric acid etching without moistening the enamel of Fuji Ortho LC provided the more favourable bond strength. Enamel surfaces, with or without water contamination and with or without acid etching, had the same or a greater bond strength than Transbond.

  2. General theories and features of interfacial thermal transport

    NASA Astrophysics Data System (ADS)

    Zhou, Hangbo; Zhang, Gang

    2018-03-01

    A clear understanding and proper control of interfacial thermal transport is important in nanoscale device. In this review, we first discuss the theoretical methods to handle the interfacial thermal transport problem, such as the macroscopic model, molecular dynamics, lattice dynamics and modern quantum transport theories. Then we discuss various effects that can significantly affect the interfacial thermal transport, such as the formation of chemical bonds at interface, defects and interface roughness, strain and substrates, atomic species and mass ratios, structural orientations. Then importantly, we analyze the role of inelastic scatterings at the interface, and discuss its application in thermal rectifications. Finally, the challenges and promising directions are discussed.

  3. Effects of blood contamination on resin-resin bond strength.

    PubMed

    Eiriksson, Sigurdur O; Pereira, Patricia N R; Swift, Edward J; Heymann, Harald O; Sigurdsson, Asgeir

    2004-02-01

    Incremental placement and curing of resin composites has been recommended. However, this requires longer operating time, and therefore, increased risk of contamination. The purpose of this study was to evaluate the effects of blood contamination on microtensile bond strengths (microTBS) between resin interfaces and to determine the best decontamination method to re-establish the original resin-resin bond strength. The top surfaces of 64, 4-mm composite blocks (Z-250, Renew, APX, Pertac II) were untreated as the control, or were treated as follows: blood applied and dried on the surface (Treatment 1), blood applied, rinsed, dried (Treatment 2), blood applied, rinsed, and an adhesive applied (Single Bond, One-Step, Clearfil SE, Prompt L-Pop) (Treatment 3). Fresh composite was applied and light-cured in 2-mm increments. After 24 h storage in water, the specimens were sectioned into 0.7-mm thick slabs, trimmed to a cross-sectional area of 1 mm(2), and loaded to failure at a crosshead speed of 1 mm/min using an Instron universal testing machine. Data were analyzed using two-way ANOVA and Fisher's PLSD test (p<0.05). Control values ranged from 45.1 MPa for Pertac II to 71.5 MPa for APX. Untreated blood contamination resulted in resin-resin bond strengths of only 1.0-13.1 MPa. Rinsing raised bond strengths to over 40 MPa for each material. Use of an adhesive further increased bond strengths except for Pertac II. Rinsing blood from contaminated surfaces increases the resin-resin bond strength significantly and the application of an appropriate adhesive increases the bond strength to control levels.

  4. Low-temperature direct copper-to-copper bonding enabled by creep on (111) surfaces of nanotwinned Cu

    PubMed Central

    Liu, Chien-Min; Lin, Han-Wen; Huang, Yi-Sa; Chu, Yi-Cheng; Chen, Chih; Lyu, Dian-Rong; Chen, Kuan-Neng; Tu, King-Ning

    2015-01-01

    Direct Cu-to-Cu bonding was achieved at temperatures of 150–250 °C using a compressive stress of 100 psi (0.69 MPa) held for 10–60 min at 10−3 torr. The key controlling parameter for direct bonding is rapid surface diffusion on (111) surface of Cu. Instead of using (111) oriented single crystal of Cu, oriented (111) texture of extremely high degree, exceeding 90%, was fabricated using the oriented nano-twin Cu. The bonded interface between two (111) surfaces forms a twist-type grain boundary. If the grain boundary has a low angle, it has a hexagonal network of screw dislocations. Such network image was obtained by plan-view transmission electron microscopy. A simple kinetic model of surface creep is presented; and the calculated and measured time of bonding is in reasonable agreement. PMID:25962757

  5. Effect of Bonding Temperature on Interfacial Reaction and Mechanical Properties of Diffusion-Bonded Joint Between Ti-6Al-4V and 304 Stainless Steel Using Nickel as an Intermediate Material

    NASA Astrophysics Data System (ADS)

    Thirunavukarasu, Gopinath; Kundu, Sukumar; Mishra, Brajendra; Chatterjee, Subrata

    2014-04-01

    An investigation was carried out on the solid-state diffusion bonding between Ti-6Al-4V (TiA) and 304 stainless steel (SS) using pure nickel (Ni) of 200- μm thickness as an intermediate material prepared in vacuum in the temperature range from 973 K to 1073 K (700 °C to 800 °C) in steps of 298 K (25 °C) using uniaxial compressive pressure of 3 MPa and 60 minutes as bonding time. Scanning electron microscopy images, in backscattered electron mode, had revealed existence of layerwise Ti-Ni-based intermetallics such as either Ni3Ti or both Ni3Ti and NiTi at titanium alloy-nickel (TiA/Ni) interface, whereas nickel-stainless steel (Ni/SS) diffusion zone was free from intermetallic phases for all joints processed. Chemical composition of the reaction layers was determined in atomic percentage by energy dispersive spectroscopy and confirmed by X-ray diffraction study. Room-temperature properties of the bonded joints were characterized using microhardness evaluation and tensile testing. The maximum hardness value of ~800 HV was observed at TiA/Ni interface for the bond processed at 1073 K (800 °C). The hardness value at Ni/SS interface for all the bonds was found to be ~330 HV. Maximum tensile strength of ~206 MPa along with ~2.9 pct ductility was obtained for the joint processed at 1023 K (750 °C). It was observed from the activation study that the diffusion rate at TiA/Ni interface is lesser than that at the Ni/SS interface. From microhardness profile, fractured surfaces and fracture path, it was demonstrated that failure of the joints was initiated and propagated apparently at the TiA/Ni interface near Ni3Ti intermetallic phase.

  6. Probabilistic analysis of the influence of the bonding degree of the stem-cement interface in the performance of cemented hip prostheses.

    PubMed

    Pérez, M A; Grasa, J; García-Aznar, J M; Bea, J A; Doblaré, M

    2006-01-01

    The long-term behavior of the stem-cement interface is one of the most frequent topics of discussion in the design of cemented total hip replacements, especially with regards to the process of damage accumulation in the cement layer. This effect is analyzed here comparing two different situations of the interface: completely bonded and debonded with friction. This comparative analysis is performed using a probabilistic computational approach that considers the variability and uncertainty of determinant factors that directly compromise the damage accumulation in the cement mantle. This stochastic technique is based on the combination of probabilistic finite elements (PFEM) and a cumulative damage approach known as B-model. Three random variables were considered: muscle and joint contact forces at the hip (both for walking and stair climbing), cement damage and fatigue properties of the cement. The results predicted that the regions with higher failure probability in the bulk cement are completely different depending on the stem-cement interface characteristics. In a bonded interface, critical sites appeared at the distal and medial parts of the cement, while for debonded interfaces, the critical regions were found distally and proximally. In bonded interfaces, the failure probability was higher than in debonded ones. The same conclusion may be established for stair climbing in comparison with walking activity.

  7. pH-dependence of single-protein adsorption and diffusion at a liquid chromatographic interface.

    PubMed

    Kisley, Lydia; Poongavanam, Mohan-Vivekanandan; Kourentzi, Katerina; Willson, Richard C; Landes, Christy F

    2016-02-01

    pH is a common mobile phase variable used to control protein separations due to the tunable nature of amino acid and adsorbent charge. Like other column variables such as column density and ligand loading density, pH is usually optimized empirically. Single-molecule spectroscopy extracts molecular-scale data to provide a framework for mechanistic optimization of pH. The adsorption and diffusion of a model globular protein, α-lactalbumin, was studied by single-molecule microscopy at a silica-aqueous interface analogous to aqueous normal phase and hydrophilic interaction chromatography and capillary electrophoresis interfaces at varied pH. Electrostatic repulsion resulting in free diffusion was observed at pH above the isoelectric point of the protein. In contrast, at low pH strong adsorption and surface diffusion with either no (D ∼ 0.01 μm(2) /s) or translational (D ∼ 0.3 μm(2) /s) motion was observed where the protein likely interacted with the surface through electrostatic, hydrophobic, and hydrogen bonding forces. The fraction of proteins immobilized could be increased by lowering the pH. These results show that retention of proteins at the silica interface cannot be viewed solely as an adsorption/desorption process and that the type of surface diffusion, which ultimately leads to ensemble chromatographic separations, can be controlled by tuning long-range electrostatic and short-range hydrophobic and hydrogen bonding forces with pH. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Investigation of displacement, strain and stress in single step transversely isotropic elastic bonded joint

    NASA Astrophysics Data System (ADS)

    Apu, Md. Jakaria; Islam, Md. Shahidul

    2016-07-01

    Bi-material joint is often used in many advanced materials and structures. Determination of the bonding strength at the interface is very difficult because of the presence of the stress singularity. In this paper, the displacement and stress fields of a transversely isotropic bi-material joint around an interface edge are determined. Autodesk Simulation Mechanical 2015 is used to carry out the numerical computations. Stress and displacement fields demonstrate that the values near the edge of joint where the stress singularity occurs are larger than that at the inner portion. From the numerical results, it is suggested that de-bonding of the interface may occur at the interface edge of the joint due to the higher stress concentration at the free edge.

  9. Influence of chlorhexidine on dentin adhesive interface micromorphology and nanoleakage expression of resin cements.

    PubMed

    Stape, Thiago Henrique Scarabello; Menezes, Murilo De Sousa; Barreto, Bruno De Castro Ferreira; Naves, Lucas Zago; Aguiar, Flávio Henrique Baggio; Quagliatto, Paulo Sérgio; Martins, Luís Roberto Marcondes

    2013-08-01

    This study focused on adhesive interface morphologic characterization and nanoleakage expression of resin cements bonded to human dentin pretreated with 1% chlorhexidine (CHX). Thirty-two non-carious human third molars were ground flat to expose superficial dentin. Resin composite blocks were luted to the exposed dentin using one conventional (RelyX ARC) and one self-adhesive resin cement (RelyX U100), with/without CHX pretreatment. Four groups (n = 8) were obtained: control groups (ARC and U100); experimental groups (ARC/CHX and U100/CHX) were pretreated with 1% CHX prior to the luting process. After storage in water for 24 h, the bonded teeth were sectioned into 0.9 × 0.9 mm(2) sticks producing a minimum of 12 sticks per tooth. Four sticks from each tooth were prepared for hybrid layer evaluation by scanning electron microscope analysis. The remaining sticks were immersed in silver nitrate for 24 h for either nanoleakage evaluation along the bonded interfaces or after rupture. Nanoleakage samples were carbon coated and examined using backscattered electron mode. Well-established hybrid layers were observed in the groups luted with RelyX ARC. Nanoleakage evaluation revealed increase nanoleakage in groups treated with CHX for both resin cements. Group U100/CHX exhibited the most pronouncing nanoleakage expression along with porous zones adjacent to the CHX pretreated dentin. The results suggest a possible incompatibility between CHX and RelyX U100 that raises the concern that the use of CHX with self-adhesive cements may adversely affect resin-dentin bond. Copyright © 2013 Wiley Periodicals, Inc.

  10. Rational design of an orthogonal noncovalent interaction system at the MUPP1 PDZ11 complex interface with CaMKIIα-derived peptides in human fertilization.

    PubMed

    Zhang, Yi-Le; Han, Zhao-Feng

    2017-09-26

    The recognition and association between the Ca 2+ /calmodulin-activated protein kinase II-α (CaMKIIα) and the multi-PDZ domain protein 1 (MUPP1) plays an important role in the sperm acrosome reaction and human fertilization. Previously, we have demonstrated that the MUPP1 PDZ11 domain is the primary binding partner of the CaMKIIα C-terminal tail, which can be targeted by a rationally designed sia peptide with nanomolar affinity. Here, we further introduced an orthogonal noncovalent interaction (ONI) system between a native hydrogen bond and a designed halogen bond across the complex interface of the PDZ11 domain with the sia [Asn-1Phe] peptide mutant, where the halogen bond was formed by substituting the o-hydrogen atom of the benzene ring of the peptide Phe-1 residue with a halogen atom (F, Cl, Br or I). Molecular dynamics simulations and high-level theoretical calculations suggested that bromine (Br) is a good compromise between the halogen-bonding strength and steric hindrance effect due to introduction of a bulkier halogen atom into the tightly packed complex interface. Fluorescence spectroscopy assays revealed that the resulting o-Br-substituted peptide (K d = 18 nM) exhibited an ∼7.6-fold affinity increase relative to its native counterpart (K d = 137 nM). In contrast, the p-Br-substituted peptide, a negative control that is unable to establish the ONI according to structure-based analysis, has decreased affinity (K d = 210 nM) upon halogenation.

  11. Role of large-scale slip in mode II fracture of bimaterial interface produced by diffusion bonding

    NASA Astrophysics Data System (ADS)

    Fox, M. R.; Ghosh, A. K.

    2001-08-01

    Bimaterial interfaces present in diffusion-bonded (and in-situ) composites are often not flat interfaces. The unevenness of the interface can result not only from interface reaction products but also from long-range waviness associated with the surfaces of the component phases bonded together. Experimental studies aimed at determining interface mechanical properties generally ignore the departure in the local stress due to waviness and assume a theoretically flat interface. Furthermore, the commonly used testing methods involving superimposed tension often renders the interface so extremely brittle that if microplastic effects were present it becomes impossible to perceive them. This article examines the role of waviness of the interface and microplastic effects on crack initiation. To do this, a test was selected that provides significant stability against crack growth by superimposing compressive stresses. Mode II interface fracture was studied for NiAl/Mo model laminates using a recently developed asymmetrically loaded shear (ALS) interface shear test. The ALS test may be viewed as opposite of the laminate bend test. In the bend test, shear at the interface is created via tension on one surface of the bend, while in the ALS test, shear is created by compression on one side of the interface relative to the other. Normal to the interface, near the crack tip, an initially compressive state is replaced by slight tension due to Poisson’s expansion of the unbonded part of the compressed beam.

  12. Strength evaluation of butt joint by stress intensity factor of small edge crack near interface edge

    NASA Astrophysics Data System (ADS)

    Sato, T.; Oda, K.; Tsutsumi, N.

    2018-06-01

    Failure of the bonded dissimilar materials generally initiates near the interface, or just from the interface edge due to the stress singularity at the interface edge. In this study, the stress intensity factor of an edge crack close to the interface between the dissimilar materials is analyzed. The small edge crack is strongly dominated by the singular stress field near the interface edge. The analysis of stress intensity factor of small edge crack near the interface in bi-material and butt joint plates is carried out by changing the length and the location of the crack and the region dominated by the interface edge is examined. It is found that the dimensionless stress intensity factor of small crack, normalized by the singular stress at the crack tip point in the bonded plate without the crack, is equal to 1.12, independent of the material combination and adhesive layer thickness, when the relative crack length with respect to the crack location is less than 0.01. The adhesive strength of the bonded plate with various adhesive layer thicknesses can be expressed as the constant critical stress intensity factor of the small edge crack.

  13. Evaluation of Various Tack Coat Materials Using Interface Shear Device and Recommendations on a Simplified Device

    DOT National Transportation Integrated Search

    2017-12-01

    The performance of pavement interface bonds affects the integrity of pavement structures. In current practice, tack coats are used to ensure sufficient bonding between asphalt concrete (AC) layers as well as AC and concrete or aggregate base layers. ...

  14. Hydration dynamics of a lipid membrane: Hydrogen bond networks and lipid-lipid associations

    NASA Astrophysics Data System (ADS)

    Srivastava, Abhinav; Debnath, Ananya

    2018-03-01

    Dynamics of hydration layers of a dimyristoylphosphatidylcholine (DMPC) bilayer are investigated using an all atom molecular dynamics simulation. Based upon the geometric criteria, continuously residing interface water molecules which form hydrogen bonds solely among themselves and then concertedly hydrogen bonded to carbonyl, phosphate, and glycerol head groups of DMPC are identified. The interface water hydrogen bonded to lipids shows slower relaxation rates for translational and rotational dynamics compared to that of the bulk water and is found to follow sub-diffusive and non-diffusive behaviors, respectively. The mean square displacements and the reorientational auto-correlation functions are slowest for the interfacial waters hydrogen bonded to the carbonyl oxygen since these are buried deep in the hydrophobic core among all interfacial water studied. The intermittent hydrogen bond auto-correlation functions are calculated, which allows breaking and reformations of the hydrogen bonds. The auto-correlation functions for interfacial hydrogen bonded networks develop humps during a transition from cage-like motion to eventual power law behavior of t-3/2. The asymptotic t-3/2 behavior indicates translational diffusion dictated dynamics during hydrogen bond breaking and formation irrespective of the nature of the chemical confinement. Employing reactive flux correlation analysis, the forward rate constant of hydrogen bond breaking and formation is calculated which is used to obtain Gibbs energy of activation of the hydrogen bond breaking. The relaxation rates of the networks buried in the hydrophobic core are slower than the networks near the lipid-water interface which is again slower than bulk due to the higher Gibbs energy of activation. Since hydrogen bond breakage follows a translational diffusion dictated mechanism, chemically confined hydrogen bond networks need an activation energy to diffuse through water depleted hydrophobic environments. Our calculations reveal that the slow relaxation rates of interfacial waters in the vicinity of lipids are originated from the chemical confinement of concerted hydrogen bond networks. The analysis suggests that the networks in the hydration layer of membranes dynamically facilitate the water mediated lipid-lipid associations which can provide insights on the thermodynamic stability of soft interfaces relevant to biological systems in the future.

  15. Study of Direct-Contact HfO2/Si Interfaces

    PubMed Central

    Miyata, Noriyuki

    2012-01-01

    Controlling monolayer Si oxide at the HfO2/Si interface is a challenging issue in scaling the equivalent oxide thickness of HfO2/Si gate stack structures. A concept that the author proposes to control the Si oxide interface by using ultra-high vacuum electron-beam HfO2 deposition is described in this review paper, which enables the so-called direct-contact HfO2/Si structures to be prepared. The electrical characteristics of the HfO2/Si metal-oxide-semiconductor capacitors are reviewed, which suggest a sufficiently low interface state density for the operation of metal-oxide-semiconductor field-effect-transistors (MOSFETs) but reveal the formation of an unexpected strong interface dipole. Kelvin probe measurements of the HfO2/Si structures provide obvious evidence for the formation of dipoles at the HfO2/Si interfaces. The author proposes that one-monolayer Si-O bonds at the HfO2/Si interface naturally lead to a large potential difference, mainly due to the large dielectric constant of the HfO2. Dipole scattering is demonstrated to not be a major concern in the channel mobility of MOSFETs. PMID:28817060

  16. Transverse flexural tests as a tool for assessing damage to PMR-15 composites from isothermal aging in air at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Bowles, Kenneth J.

    1992-01-01

    To date, the effect of thermo-oxidative aging on unidirectional composite mechanical properties has been monitored by the measurement of interlaminar shear strength (ILSS) and either three or four point longitudinal flexural strength (LFS) of the composites being tested. Both results are affected by the fiber-to-matrix bonding, the former being dependent on the shear resistance of the interface and the latter on the degree of load sharing by the fibers through the fiber/matrix interface. Recently, fiber/matrix interfacial bond strengths have been monitored using a transverse flexural strength (TFS) test method. This test method was used to evaluate the effect of fiber surface treatment on the fiber/matrix bond. The interface bonding was varied in these tests using Hercules A-fibers with three-types of surfaces that produce bonds of poor, better, and good quality. The TFS was found not only to be sensitive to the bonding, but also to the aging time of unidirectional A-fiber/PMR-15 composites. This relationship reflects the mechanism by which the PMR-15 degrades during thermal aging.

  17. Interfacial structure, bonding and composition of InAs and GaSb thin films determined using coherent Bragg rod analysis.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cionca, C.; Walko, D. A.; Yacoby, Y.

    2007-01-01

    We have used Bragg rod x-ray diffraction combined with a direct method of phase retrieval to extract atomic resolution electron-density maps of a complementary series of heteroepitaxial III-V semiconductor samples. From the three-dimensional electron-density maps we derive the monolayer spacings, the chemical compositions, and the characteristics of the bonding for all atomic planes in the film and across the film-substrate interface. InAs films grown on GaSb(001) under two different As conditions (using dimer or tetramer forms) both showed conformal roughness and mixed GaAs/InSb interfacial bonding character. The As tetramer conditions favored InSb bonding at the interface while, in the casemore » of the dimer, the percentages corresponding to GaAs and InSb bonding were equal within the experimental error. The GaSb film grown on InAs(001) displayed significant In and As interdiffusion and had a relatively large fraction of GaAs-like bonds at the interface.« less

  18. Stability of the Al/TiB2 interface and doping effects of Mg/Si

    NASA Astrophysics Data System (ADS)

    Deng, Chao; Xu, Ben; Wu, Ping; Li, Qiulin

    2017-12-01

    The Al/TiB2 interface is of significant importance in controlling the mechanical properties of Al-B4C composites and tuning the heterogeneous nucleation of Al/Si alloys in industry. Its stability and bonding conditions are critical for both purposes. In this paper, the interfacial energies were investigated by first-principles calculations, and the results support the reported grain refinement mechanisms in Al/Si alloys. Moreover, to improve the mechanical properties of the interface, Mg and Si were doped at the interface, and our simulations show that the two interfaces will both weaken after doping Mg/Si, thus the formation of TiB2 is inhibited. As a result, the processability of the Al-B4C composites may be improved. Our results provide a theoretical basis and guidance for practical applications.

  19. Effect of Bonding Time on Interfacial Reaction and Mechanical Properties of Diffusion-Bonded Joint Between Ti-6Al-4V and 304 Stainless Steel Using Nickel as an Intermediate Material

    NASA Astrophysics Data System (ADS)

    Thirunavukarasu, Gopinath; Kundu, Sukumar; Mishra, Brajendra; Chatterjee, Subrata

    2014-04-01

    In the current study, solid-state diffusion bonding between Ti-6Al-4V (TiA) and 304 stainless steel (SS) using pure nickel (Ni) of 200- μm thickness as an intermediate material was carried out in vacuum. Uniaxial compressive pressure and temperature were kept at 4 MPa and 1023 K (750 °C), respectively, and the bonding time was varied from 30 to 120 minutes in steps of 15 minutes. Scanning electron microscopy images, in backscattered electron mode, revealed the layerwise Ti-Ni-based intermetallics like either Ni3Ti or both Ni3Ti and NiTi at titanium alloy-nickel (TiA/Ni) interface, whereas nickel-stainless steel (Ni/SS) interface was free from intermetallic phases for all the joints. Chemical composition of the reaction layers was determined by energy dispersive spectroscopy (SEM-EDS) and confirmed by X-ray diffraction study. Maximum tensile strength of ~382 MPa along with ~3.7 pct ductility was observed for the joints processed for 60 minutes. It was found that the extent of diffusion zone at Ni/SS interface was greater than that of TiA/Ni interface. From the microhardness profile, fractured surfaces, and fracture path, it was demonstrated that the failure of the joints was initiated and propagated apparently at TiA/Ni interface near Ni3Ti intermetallic for bonding time less than 90 minutes, and through Ni for bonding time 90 minutes and greater.

  20. Method for bonding a transmission line to a downhole tool

    DOEpatents

    Hall, David R.; Fox, Joe

    2007-11-06

    An apparatus for bonding a transmission line to the central bore of a downhole tool includes a pre-formed interface for bonding a transmission line to the inside diameter of a downhole tool. The pre-formed interface includes a first surface that substantially conforms to the outside contour of a transmission line and a second surface that substantially conforms to the inside diameter of a downhole tool. In another aspect of the invention, a method for bonding a transmission line to the inside diameter of a downhole tool includes positioning a transmission line near the inside wall of a downhole tool and placing a mold near the transmission line and the inside wall. The method further includes injecting a bonding material into the mold and curing the bonding material such that the bonding material bonds the transmission line to the inside wall.

  1. Performance and Reliability of Bonded Interfaces for High-Temperature Packaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeVoto, Douglas

    2016-06-08

    This is a technical review of the DOE VTO EDT project EDT063, Performance and Reliability of Bonded Interfaces for High-Temperature Packaging. A procedure for analyzing the reliability of sintered-silver through experimental thermal cycling and crack propagation modeling has been outlined and results have been presented.

  2. Mechanism of vibrational energy dissipation of free OH groups at the air-water interface.

    PubMed

    Hsieh, Cho-Shuen; Campen, R Kramer; Okuno, Masanari; Backus, Ellen H G; Nagata, Yuki; Bonn, Mischa

    2013-11-19

    Interfaces of liquid water play a critical role in a wide variety of processes that occur in biology, a variety of technologies, and the environment. Many macroscopic observations clarify that the properties of liquid water interfaces significantly differ from those of the bulk liquid. In addition to interfacial molecular structure, knowledge of the rates and mechanisms of the relaxation of excess vibrational energy is indispensable to fully understand physical and chemical processes of water and aqueous solutions, such as chemical reaction rates and pathways, proton transfer, and hydrogen bond dynamics. Here we elucidate the rate and mechanism of vibrational energy dissipation of water molecules at the air-water interface using femtosecond two-color IR-pump/vibrational sum-frequency probe spectroscopy. Vibrational relaxation of nonhydrogen-bonded OH groups occurs at a subpicosecond timescale in a manner fundamentally different from hydrogen-bonded OH groups in bulk, through two competing mechanisms: intramolecular energy transfer and ultrafast reorientational motion that leads to free OH groups becoming hydrogen bonded. Both pathways effectively lead to the transfer of the excited vibrational modes from free to hydrogen-bonded OH groups, from which relaxation readily occurs. Of the overall relaxation rate of interfacial free OH groups at the air-H2O interface, two-thirds are accounted for by intramolecular energy transfer, whereas the remaining one-third is dominated by the reorientational motion. These findings not only shed light on vibrational energy dynamics of interfacial water, but also contribute to our understanding of the impact of structural and vibrational dynamics on the vibrational sum-frequency line shapes of aqueous interfaces.

  3. Mechanism of vibrational energy dissipation of free OH groups at the air–water interface

    PubMed Central

    Hsieh, Cho-Shuen; Campen, R. Kramer; Okuno, Masanari; Backus, Ellen H. G.; Nagata, Yuki; Bonn, Mischa

    2013-01-01

    Interfaces of liquid water play a critical role in a wide variety of processes that occur in biology, a variety of technologies, and the environment. Many macroscopic observations clarify that the properties of liquid water interfaces significantly differ from those of the bulk liquid. In addition to interfacial molecular structure, knowledge of the rates and mechanisms of the relaxation of excess vibrational energy is indispensable to fully understand physical and chemical processes of water and aqueous solutions, such as chemical reaction rates and pathways, proton transfer, and hydrogen bond dynamics. Here we elucidate the rate and mechanism of vibrational energy dissipation of water molecules at the air–water interface using femtosecond two-color IR-pump/vibrational sum-frequency probe spectroscopy. Vibrational relaxation of nonhydrogen-bonded OH groups occurs at a subpicosecond timescale in a manner fundamentally different from hydrogen-bonded OH groups in bulk, through two competing mechanisms: intramolecular energy transfer and ultrafast reorientational motion that leads to free OH groups becoming hydrogen bonded. Both pathways effectively lead to the transfer of the excited vibrational modes from free to hydrogen-bonded OH groups, from which relaxation readily occurs. Of the overall relaxation rate of interfacial free OH groups at the air–H2O interface, two-thirds are accounted for by intramolecular energy transfer, whereas the remaining one-third is dominated by the reorientational motion. These findings not only shed light on vibrational energy dynamics of interfacial water, but also contribute to our understanding of the impact of structural and vibrational dynamics on the vibrational sum-frequency line shapes of aqueous interfaces. PMID:24191016

  4. Aqueous heterogeneity at the air/water interface revealed by 2D-HD-SFG spectroscopy.

    PubMed

    Hsieh, Cho-Shuen; Okuno, Masanari; Hunger, Johannes; Backus, Ellen H G; Nagata, Yuki; Bonn, Mischa

    2014-07-28

    Water molecules interact strongly with each other through hydrogen bonds. This efficient intermolecular coupling causes strong delocalization of molecular vibrations in bulk water. We study intermolecular coupling at the air/water interface and find intermolecular coupling 1) to be significantly reduced and 2) to vary strongly for different water molecules at the interface--whereas in bulk water the coupling is homogeneous. For strongly hydrogen-bonded OH groups, coupling is roughly half of that of bulk water, due to the lower density in the near-surface region. For weakly hydrogen-bonded OH groups that absorb around 3500 cm(-1), which are assigned to the outermost, yet hydrogen-bonded OH groups pointing towards the liquid, coupling is further reduced by an additional factor of 2. Remarkably, despite the reduced structural constraints imposed by the interfacial hydrogen-bond environment, the structural relaxation is slow and the intermolecular coupling of these water molecules is weak. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Work function tuning at Au-HfO{sub 2} interfaces using organophosphonate monolayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwan, Matthew; Cardinal, Thomas; Ramanath, Ganpati, E-mail: Ramanath@rpi.edu

    2016-05-09

    We show that introducing organophosphonate nanomolecular monolayers (NMLs) at Au-HfO{sub 2} interfaces shift the effective work function by 0.2 eV ≥ ΔΦ{sub eff} ≥ −0.6 eV, due to NML body and bonding dipoles. Electron spectroscopy of NML-Au, NML-HfO{sub 2,} and Au-NML-HfO{sub 2} structures indicate that the Au-NML bond strength is the major factor. Au-NML covalent bonding yields ΔΦ{sub eff} ∼ − 0.2 eV, while weak bonding yields ΔΦ{sub eff} ∼ 0.6 eV. In contrast, NMLs on HfO{sub 2} decrease Φ{sub eff} by ∼0.4 eV due to competing contributions from NML-HfO{sub 2} bonding strength and NML orientation. These findings are relevant for nanomolecularly tailoring the electronic properties of metal–ceramic interfaces for applications.

  6. Diffusion bonding between W and EUROFER97 using V interlayer

    NASA Astrophysics Data System (ADS)

    Basuki, Widodo Widjaja; Aktaa, Jarir

    2012-10-01

    Diffusion bonding is selected to join W to EUROFER97 for the manufacturing of some components in the fusion technology. A direct bonding does not seem feasible due to the high interfacial residual stress induced by the large mismatch of the coefficient of thermal expansions of both materials to be bonded. To reduce the residual stress, a V plate with a thickness of 1 mm was introduced as an interlayer. The diffusion bonding was conducted at 1050 °C for 1 h. The uniaxial applied compression stress was calculated considering the 5% allowable creep deformation on the EUROFER97's side. Investigations on bonded specimens showed defect free interfaces. Microstructure alterations were detected just at the EUROFER97/V interface. A very hard layer assumed to be a σ phase with a thickness of about 4 μm was found on the EUROFER97's side along the bond interface. A 6 μm carbide layer containing V2C with also a high hardness value was identified on the V interlayer's side. The impact toughness of the bonded specimens was low, however comparable to that of tungsten especially if the specimens were tested at RT. Tensile test at 550 °C showed a relatively high tensile strength of bonded specimens, which achieved about 50% of the tensile strength of EUROFER97.

  7. Improving the electrical contact at a Pt/TiO2 nanowire interface by selective application of focused femtosecond laser irradiation

    NASA Astrophysics Data System (ADS)

    Xing, Songling; Lin, Luchan; Zou, Guisheng; Liu, Lei; Peng, Peng; Wu, Aiping; Duley, Walter W.; Zhou, Y. Norman

    2017-10-01

    In this paper, we show that tightly focused femtosecond laser irradiation is effective in improving nanojoining of an oxide nanowire (NW) (TiO2) to a metal electrode (Pt), and how this process can be used to modify contact states. Enhanced chemical bondings are created due to localized plasmonically enhanced optical absorption at the Pt/TiO2 interface as confirmed by finite element simulations of the localized field distribution during irradiation. Nano Auger electron spectroscopy shows that the resulting heterojunction is depleted in oxygen, suggesting that a TiO2-x layer is formed between the Pt electrode and the TiO2 NW. The presence of this redox layer at the metal/oxide interface plays an important role in decreasing the Schottky barrier height and in facilitating chemical bonding. After laser irradiation at the cathode for 10 s at a fluence of 5.02 mJ cm-2, the Pt/TiO2 NW/Pt structure displays different electrical properties under forward and reverse bias voltage, respectively. The creation of this asymmetric electrical characteristic shows the way in which modification of the electronic interface by laser engineering can replace the electroforming process in resistive switching devices and how it can be used to control contact states in a metal/oxide interface.

  8. Improving the electrical contact at a Pt/TiO2 nanowire interface by selective application of focused femtosecond laser irradiation.

    PubMed

    Xing, Songling; Lin, Luchan; Zou, Guisheng; Liu, Lei; Peng, Peng; Wu, Aiping; Duley, Walter W; Zhou, Y Norman

    2017-10-06

    In this paper, we show that tightly focused femtosecond laser irradiation is effective in improving nanojoining of an oxide nanowire (NW) (TiO 2 ) to a metal electrode (Pt), and how this process can be used to modify contact states. Enhanced chemical bondings are created due to localized plasmonically enhanced optical absorption at the Pt/TiO 2 interface as confirmed by finite element simulations of the localized field distribution during irradiation. Nano Auger electron spectroscopy shows that the resulting heterojunction is depleted in oxygen, suggesting that a TiO 2-x layer is formed between the Pt electrode and the TiO 2 NW. The presence of this redox layer at the metal/oxide interface plays an important role in decreasing the Schottky barrier height and in facilitating chemical bonding. After laser irradiation at the cathode for 10 s at a fluence of 5.02 mJ cm -2 , the Pt/TiO 2 NW/Pt structure displays different electrical properties under forward and reverse bias voltage, respectively. The creation of this asymmetric electrical characteristic shows the way in which modification of the electronic interface by laser engineering can replace the electroforming process in resistive switching devices and how it can be used to control contact states in a metal/oxide interface.

  9. Potential role of surface wettability on the long-term stability of dentin bonds after surface biomodification

    PubMed Central

    Leme, Ariene A.; Vidal, Cristina M. P.; Hassan, Lina Saleh; Bedran-Russo, Ana K.

    2015-01-01

    Degradation of the adhesive interface contributes to the failure of resin composite restorations. The hydrophilicity of the dentin matrix during and after bonding procedures may result in an adhesive interface that is more prone to degradation over time. This study assessed the effect of chemical modification of dentin matrix on the wettability and the long-term reduced modulus of elasticity (Er) of the adhesive interfaces. Human molars were divided into groups according to the priming solutions: distilled water (control), 6.5% Proanthocyanidin-rich grape seed extract (PACs), 5.75% 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride/1.4% n-hydroxysuccinimide (EDC/NHS) and 5% Glutaraldehyde (GA). The water-surface contact angle was verified before and after chemical modification of the dentin matrix. The demineralized dentin surface was treated with the priming solutions and restored with One Step Plus (OS) and Single Bond Plus (SB) and resin composite. The Er of the adhesive, hybrid layer and underlying dentin was evaluated after 24 h and 30 months in artificial saliva. The dentin hydrophilicity significantly decreased after application of the priming solutions. Aging significantly decreased the Er in the hybrid layer and underlying dentin of control groups. The Er of GA groups remained stable over time at the hybrid layer and underlying dentin. Significant higher Er was observed for PACs and EDC/NHS groups at the hybrid layer after 24 h. The decreased hydrophilicity of the modified dentin matrix likely influence the immediate mechanical properties of the hybrid layer. Dentin biomodification prevented substantial aging at the hybrid layer and underlying dentin after 30 months storage. PMID:25869721

  10. Spectacular Rate Enhancement of the Diels-Alder Reaction at the Ionic Liquid/n-Hexane Interface.

    PubMed

    Beniwal, Vijay; Manna, Arpan; Kumar, Anil

    2016-07-04

    The use of the ionic liquid/n-hexane interface as a new class of reaction medium for the Diels-Alder reaction gives large rate enhancements of the order of 10(6) to 10(8) times and high stereoselectivity, as compared to homogeneous media. The rate enhancement is attributed to the H-bonding abilities and polarities of the ionic liquids, whereas the hydrophobicity of ionic liquids was considered to be the factor in controlling stereoselectivity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Bonding effectiveness and interfacial characterization of a nano-filled resin-modified glass-ionomer.

    PubMed

    Coutinho, E; Cardoso, M V; De Munck, J; Neves, A A; Van Landuyt, K L; Poitevin, A; Peumans, M; Lambrechts, P; Van Meerbeek, B

    2009-11-01

    Glass-ionomers (GIs) exhibit excellent clinical bonding effectiveness, but still have shortcomings such as polishability and general aesthetics. The aims of this study were (1) to determine the micro-tensile bond strength (microTBS) to enamel and dentin of a nano-filled resin-modified GI (nano-RMGI; Ketac N100, 3M-ESPE), and (2) to characterize its interfacial interaction with enamel and dentin using transmission electron microscopy (TEM). The nano-RMGI was used both with and without its primer, while a conventional RMGI restorative material (conv-RMGI; Fuji II LC, GC) and a packable conventional GI cement (conv-GI; Fuji IX GP, GC) were used as controls. After bonding to freshly extracted human third molars, microspecimens of the interfaces were machined into a cylindrical hourglass shape and tested to failure in tension. Non-demineralized TEM sections were prepared and examined from additional teeth. The microTBS to both enamel and dentin of nano-RMGI and conv-GI were not statistically different; the microTBS of non-primed nano-RMGI was significantly lower, while that of conv-RMGI was significantly higher than that of all other groups. TEM of nano-RMGI disclosed a tight interface at enamel and dentin without surface demineralization and hybrid-layer formation. A thin filler-free zone (<1 microm) was formed at dentin. A high filler loading and effective filler distribution were also evident, with localized areas exhibiting nano-filler clustering. The nano-RMGI bonded as effectively to enamel and dentin as conv-GI, but bonded less effectively than conv-RMGI. Its bonding mechanism should be attributed to micro-mechanical interlocking provided by the surface roughness, most likely combined with chemical interaction through its acrylic/itaconic acid copolymers.

  12. Effect of EDTA and phosphoric Acid pretreatment on the bonding effectiveness of self-etch adhesives to ground enamel.

    PubMed

    Ibrahim, Ihab M; Elkassas, Dina W; Yousry, Mai M

    2010-10-01

    This in vitro study determined the effect of enamel pretreatment with phosphoric acid and ethylenediaminetetraacetic acid (EDTA) on the bond strength of strong, intermediary strong, and mild self-etching adhesive systems. Ninety sound human premolars were used. Resin composite cylinders were bonded to flat ground enamel surfaces using three self-etching adhesive systems: strong Adper Prompt L-Pop (pH=0.9-1.0), intermediary strong AdheSE (pH=1.6-1.7), and mild Frog (pH=2). Adhesive systems were applied either according to manufacturer instructions (control) or after pretreatment with either phosphoric acid or EDTA (n=10). After 24 hours, shear bond strength was tested using a universal testing machine at a cross-head speed of 0.5 mm/minute. Ultra-morphological characterization of the surface topography and resin/enamel interfaces as well as representative fractured enamel specimens were examined using scanning electron microscopy (SEM). Neither surface pretreatment statistically increased the mean shear bond strength values of either the strong or the intermediary strong self-etching adhesive systems. However, phosphoric acid pretreatment significantly increased the mean shear bond strength values of the mild self-etching adhesive system. SEM examination of enamel surface topography showed that phosphoric acid pretreatment deepened the same etching pattern of the strong and intermediary strong adhesive systems but converted the irregular etching pattern of the mild self-etching adhesive system to a regular etching pattern. SEM examination of the resin/enamel interface revealed that deepening of the etching pattern was consistent with increase in the length of resin tags. EDTA pretreatment had a negligible effect on ultra-morphological features. Use of phosphoric acid pretreatment can be beneficial with mild self-etching adhesive systems for bonding to enamel.

  13. Effect of EDTA and Phosphoric Acid Pretreatment on the Bonding Effectiveness of Self-Etch Adhesives to Ground Enamel

    PubMed Central

    Ibrahim, Ihab M.; Elkassas, Dina W.; Yousry, Mai M.

    2010-01-01

    Objectives: This in vitro study determined the effect of enamel pretreatment with phosphoric acid and ethylenediaminetetraacetic acid (EDTA) on the bond strength of strong, intermediary strong, and mild self-etching adhesive systems. Methods: Ninety sound human premolars were used. Resin composite cylinders were bonded to flat ground enamel surfaces using three self-etching adhesive systems: strong Adper Prompt L-Pop (pH=0.9–1.0), intermediary strong AdheSE (pH=1.6–1.7), and mild Frog (pH=2). Adhesive systems were applied either according to manufacturer instructions (control) or after pretreatment with either phosphoric acid or EDTA (n=10). After 24 hours, shear bond strength was tested using a universal testing machine at a cross-head speed of 0.5 mm/minute. Ultra-morphological characterization of the surface topography and resin/enamel interfaces as well as representative fractured enamel specimens were examined using scanning electron microscopy (SEM). Results: Neither surface pretreatment statistically increased the mean shear bond strength values of either the strong or the intermediary strong self-etching adhesive systems. However, phosphoric acid pretreatment significantly increased the mean shear bond strength values of the mild self-etching adhesive system. SEM examination of enamel surface topography showed that phosphoric acid pretreatment deepened the same etching pattern of the strong and intermediary strong adhesive systems but converted the irregular etching pattern of the mild self-etching adhesive system to a regular etching pattern. SEM examination of the resin/enamel interface revealed that deepening of the etching pattern was consistent with increase in the length of resin tags. EDTA pretreatment had a negligible effect on ultra-morphological features. Conclusions: Use of phosphoric acid pretreatment can be beneficial with mild self-etching adhesive systems for bonding to enamel. PMID:20922162

  14. On the interfacial fracture resistance of resin-bonded zirconia and glass-infiltrated graded zirconia

    PubMed Central

    Chai, Herzl; Kaizer, Marina; Chughtai, Asima; Tong, Hui; Tanaka, Carina; Zhang, Yu

    2015-01-01

    Objective A major limiting factor for the widespread use of zirconia in prosthetic dentistry is its poor resin-cement bonding capabilities. We show that this deficiency can be overcome by infiltrating the zirconia cementation surface with glass. Current methods for assessing the fracture resistance of resin-ceramic bonds are marred by uneven stress distribution at the interface, which may result in erroneous interfacial fracture resistance values. We have applied a wedge-loaded double-cantilever-beam testing approach to accurately measure the interfacial fracture resistance of adhesively bonded zirconia-based restorative materials. Methods The interfacial fracture energy GC was determined for adhesively bonded zirconia, graded zirconia and feldspathic ceramic bars. The bonding surfaces were subjected to sandblasting or acid etching treatments. Baseline GC was measured for bonded specimens subjected to 7 days hydration at 37 °C. Long-term GC was determined for specimens exposed to 20,000 thermal cycles between 5 and 55 °C followed by 2-month aging at 37 °C in water. The test data were interpreted with the aid of a 2D finite element fracture analysis. Results The baseline and long-term GC for graded zirconia was 2–3 and 8 times that for zirconia, respectively. More significantly, both the baseline and long-term GC of graded zirconia were similar to those for feldspathic ceramic. Significance The interfacial fracture energy of feldspathic ceramic and graded zirconia was controlled by the fracture energy of the resin cement while that of zirconia by the interface. GC for the graded zirconia was as large as for feldspathic ceramic, making it an attractive material for use in dentistry. PMID:26365987

  15. Erosive cola-based drinks affect the bonding to enamel surface: an in vitro study

    PubMed Central

    CASAS-APAYCO, Leslie Caroll; DREIBI, Vanessa Manzini; HIPÓLITO, Ana Carolina; GRAEFF, Márcia Sirlene Zardin; RIOS, Daniela; MAGALHÃES, Ana Carolina; BUZALAF, Marília Afonso Rabelo; WANG, Linda

    2014-01-01

    Objective This study aimed to assess the impact of in vitro erosion provoked by different cola-based drinks (Coke types), associated or not with toothbrushing, to bonding to enamel. Material and Methods Fifty-six bovine enamel specimens were prepared and randomly assigned into seven groups (N=8): C- Control (neither eroded nor abraded), ERO-RC: 3x/1-minute immersion in Regular Coke (RC), ERO-LC: 3x/1-minute immersion in Light Coke (LC), ERO-ZC: 3x/1-minute immersion in Zero Coke (ZC) and three other eroded groups, subsequently abraded for 1-minute toothbrushing (EROAB-RC, EROAB-LC and EROAB-ZC, respectively). After challenges, they were stored overnight in artificial saliva for a total of 24 hours and restored with Adper Single Bond 2/Filtek Z350. Buildup coronal surfaces were cut in 1 mm2 -specimens and subjected to a microtensile test. Data were statistically analyzed by two-way ANOVA/Bonferroni tests (α=0.05). Failure modes were assessed by optical microscopy (X40). The interface of the restorations were observed using Confocal Laser Scanning Microscopy (CLSM). Results All tested cola-based drinks significantly reduced the bond strength, which was also observed in the analyses of interfaces. Toothbrushing did not have any impact on the bond strength. CLSM showed that except for Zero Coke, all eroded specimens resulted in irregular hybrid layer formation. Conclusions All cola-based drinks reduced the bond strength. Different patterns of hybrid layers were obtained revealing their impact, except for ZC. PMID:24918663

  16. Unveiling the Semicoherent Interface with Definite Orientation Relationships between Reinforcements and Matrix in Novel Al3BC/Al Composites.

    PubMed

    Zhao, Yongfeng; Qian, Zhao; Ma, Xia; Chen, Houwen; Gao, Tong; Wu, Yuying; Liu, Xiangfa

    2016-10-05

    High-strength lightweight Al-based composites are promising materials for a wide range of applications. To provide high performance, a strong bonding interface for effective load transfer from the matrix to the reinforcement is essential. In this work, the novel Al 3 BC reinforced Al composites have been in situ fabricated through a liquid-solid reaction method and the bonding interface between Al 3 BC and Al matrix has been unveiled. The HRTEM characterizations on the Al 3 BC/Al interface verify it to be a semicoherent bonding structure with definite orientation relationships: (0001) Al 3 BC //(11̅1) Al ;[112̅0] Al 3 BC //[011] Al . Periodic arrays of geometrical misfit dislocations are also observed along the interface at each (0001) Al 3 BC plane or every five (11̅1) Al planes. This kind of interface between the reinforcement and the matrix is strong enough for effective load transfer, which would lead to the evidently improved strength and stiffness of the introduced new Al 3 BC/Al composites.

  17. Controlling Hydrogel Mechanics via Bio-Inspired Polymer-Nanoparticle Bond Dynamics.

    PubMed

    Li, Qiaochu; Barrett, Devin G; Messersmith, Phillip B; Holten-Andersen, Niels

    2016-01-26

    Interactions between polymer molecules and inorganic nanoparticles can play a dominant role in nanocomposite material mechanics, yet control of such interfacial interaction dynamics remains a significant challenge particularly in water. This study presents insights on how to engineer hydrogel material mechanics via nanoparticle interface-controlled cross-link dynamics. Inspired by the adhesive chemistry in mussel threads, we have incorporated iron oxide nanoparticles (Fe3O4 NPs) into a catechol-modified polymer network to obtain hydrogels cross-linked via reversible metal-coordination bonds at Fe3O4 NP surfaces. Unique material mechanics result from the supra-molecular cross-link structure dynamics in the gels; in contrast to the previously reported fluid-like dynamics of transient catechol-Fe(3+) cross-links, the catechol-Fe3O4 NP structures provide solid-like yet reversible hydrogel mechanics. The structurally controlled hierarchical mechanics presented here suggest how to develop hydrogels with remote-controlled self-healing dynamics.

  18. The effect of weak interface on transverse properties of a ceramic matrix composite

    NASA Technical Reports Server (NTRS)

    Shimansky, R. A.; Hahn, H. T.; Salamon, N. J.

    1990-01-01

    Experimental studies conducted at NASA Lewis on SiC reaction-bonded Si3N4 composite system showed that transverse stiffness and strength were much lower than those predicted from existing analytical models based on good interfacial bonding. It was believed that weakened interfaces were responsible for the decrease in tranverse properties. To support this claim, a two-dimensional FEM analysis was performed for a transverse representative volume element. Specifically, the effect of fiber/matrix displacement compatibility at the interface was studied under both tensile and compressive transverse loadings. Interface debonding was represented using active gap elements connecting the fiber and matrix. The analyses show that the transverse tensile strength and stiffness are best predicted when a debonded interface is assumed for the composite. In fact, the measured properties can be predicted by simply replacing the fibers by voids. Thus, it is found that little or no interfacial bonding exists in the composite, and that an elastic analysis can predict the transverse stiffness and strength.

  19. Hybridization-controlled charge transfer and induced magnetism at correlated oxide interfaces

    PubMed Central

    Grisolia, M.N.; Arora, A.; Valencia, S.; Varela, M.; Abrudan, R.; Weschke, E.; Schierle, E.; Rault, J.E.; Rueff, J.-P.; Barthélémy, A.; Santamaria, J.; Bibes, M.

    2015-01-01

    At interfaces between conventional materials, band bending and alignment are classically controlled by differences in electrochemical potential. Applying this concept to oxides in which interfaces can be polar and cations may adopt a mixed valence has led to the discovery of novel two-dimensional states between simple band insulators such as LaAlO3 and SrTiO3. However, many oxides have a more complex electronic structure, with charge, orbital and/or spin orders arising from strong Coulomb interactions between transition metal and oxygen ions. Such electronic correlations offer a rich playground to engineer functional interfaces but their compatibility with the classical band alignment picture remains an open question. Here we show that beyond differences in electron affinities and polar effects, a key parameter determining charge transfer at correlated oxide interfaces is the energy required to alter the covalence of the metal-oxygen bond. Using the perovskite nickelate (RNiO3) family as a template, we probe charge reconstruction at interfaces with gadolinium titanate GdTiO3. X-ray absorption spectroscopy shows that the charge transfer is thwarted by hybridization effects tuned by the rare-earth (R) size. Charge transfer results in an induced ferromagnetic-like state in the nickelate, exemplifying the potential of correlated interfaces to design novel phases. Further, our work clarifies strategies to engineer two-dimensional systems through the control of both doping and covalence. PMID:27158255

  20. Hybridization-controlled charge transfer and induced magnetism at correlated oxide interfaces

    NASA Astrophysics Data System (ADS)

    Grisolia, M. N.; Varignon, J.; Sanchez-Santolino, G.; Arora, A.; Valencia, S.; Varela, M.; Abrudan, R.; Weschke, E.; Schierle, E.; Rault, J. E.; Rueff, J.-P.; Barthélémy, A.; Santamaria, J.; Bibes, M.

    2016-05-01

    At interfaces between conventional materials, band bending and alignment are classically controlled by differences in electrochemical potential. Applying this concept to oxides in which interfaces can be polar and cations may adopt a mixed valence has led to the discovery of novel two-dimensional states between simple band insulators such as LaAlO3 and SrTiO3. However, many oxides have a more complex electronic structure, with charge, orbital and/or spin orders arising from strong Coulomb interactions at and between transition metal and oxygen ions. Such electronic correlations offer a rich playground to engineer functional interfaces but their compatibility with the classical band alignment picture remains an open question. Here we show that beyond differences in electron affinities and polar effects, a key parameter determining charge transfer at correlated oxide interfaces is the energy required to alter the covalence of the metal-oxygen bond. Using the perovskite nickelate (RNiO3) family as a template, we probe charge reconstruction at interfaces with gadolinium titanate GdTiO3. X-ray absorption spectroscopy shows that the charge transfer is thwarted by hybridization effects tuned by the rare-earth (R) size. Charge transfer results in an induced ferromagnetic-like state in the nickelate, exemplifying the potential of correlated interfaces to design novel phases. Further, our work clarifies strategies to engineer two-dimensional systems through the control of both doping and covalence.

  1. Applications of the silicon wafer direct-bonding technique to electron devices

    NASA Astrophysics Data System (ADS)

    Furukawa, K.; Nakagawa, A.

    1990-01-01

    A silicon wafer direct-bonding (SDB) technique has been developed. A pair of bare silicon wafers, as well as an oxidized wafer pair, are bonded throughout the wafer surfaces without any bonding material. Conventional semiconductor device processes can be used for the bonded wafers, since the bonded interface is stable thermally, chemically, mechanically and electrically. Therefore, the SDB technique is very attractive, and has been applied to several kinds of electron devices. Bare silicon to bare silicon bonding is an alternative for epitaxial growth. A thick, high quality and high resistivity layer on a low resistivity substrate was obtained without autodoping. 1800 V insulated gate bipolar transistors were developed using these SDB wafers. No electrical resistance was observed at the bonded bare silicon interfaces. If oxidized wafers are bonded, the two wafers are electrically isolated, providing silicon on insulator (SOI) wafers. Dielectrically isolated photodiode arrays were fabricated on the SOI wafers and 500 V power IC's are now being developed.

  2. Performance and Reliability of Bonded Interfaces for High-Temperature Packaging; NREL (National Renewable Energy Laboratory)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeVoto, Douglas

    2015-06-10

    This is a technical review of the DOE VTO EDT project EDT063, Performance and Reliability of Bonded Interfaces for High-Temperature Packaging. A procedure for analyzing the reliability of sintered-silver through experimental thermal cycling and crack propagation modeling has been outlined and results have been presented.

  3. Self-assembled Nano-layering at the Adhesive interface.

    PubMed

    Yoshida, Y; Yoshihara, K; Nagaoka, N; Hayakawa, S; Torii, Y; Ogawa, T; Osaka, A; Meerbeek, B Van

    2012-04-01

    According to the 'Adhesion-Decalcification' concept, specific functional monomers within dental adhesives can ionically interact with hydroxyapatite (HAp). Such ionic bonding has been demonstrated for 10-methacryloyloxydecyl dihydrogen phosphate (MDP) to manifest in the form of self-assembled 'nano-layering'. However, it remained to be explored if such nano-layering also occurs on tooth tissue when commercial MDP-containing adhesives (Clearfil SE Bond, Kuraray; Scotchbond Universal, 3M ESPE) were applied following common clinical application protocols. We therefore characterized adhesive-dentin interfaces chemically, using x-ray diffraction (XRD) and energy-dispersive x-ray spectroscopy (EDS), and ultrastructurally, using (scanning) transmission electron microscopy (TEM/STEM). Both adhesives revealed nano-layering at the adhesive interface, not only within the hybrid layer but also, particularly for Clearfil SE Bond (Kuraray), extending into the adhesive layer. Since such self-assembled nano-layering of two 10-MDP molecules, joined by stable MDP-Ca salt formation, must make the adhesive interface more resistant to biodegradation, it may well explain the documented favorable clinical longevity of bonds produced by 10-MDP-based adhesives.

  4. [Effect of vacuum deposition technology on the metal-porcelain bond strength of a new type of CO-CR ceramic and framework dental alloy].

    PubMed

    Wu, Jun-ling; Chao, Yong-lie; Ji, Ping; Gao, Xu

    2007-10-01

    To investigate the effect of a new engineering technique of vacuum deposition-plasma magnetron reactive sputter deposition technique on the metal-porcelain bond strength of a new type of Co-Cr ceramic and framework dental alloy. Before porcelain painted on the specimens, the standardized metal strips made from DA9-4 dental alloy were coated with a thin Al2O3 ceramic film by plasma magnetron reactive sputter deposition technique. The conformation, structure and thickness of the ceramic film were analyzed. The specimens for three-point bending test made from DA9-4 alloy and VMK95 porcelain were used for metal-porcelain bond strength measurement, in the same time the interface of metal-porcelain and element distribution were also observed. The flexural bonding strength of metal-porcelain of sputtering group and control group were (180.55+/-16.45) MPa and (143.80+/-24.49) MPa. The flexural bonding strength of metal-porcelain of sputtering group was higher than control group significantly through statistical analysis (P<0.01). The plasma magnetron reactive sputter deposition technique has a positive effect in improving the bonding strength of DA9-4 dental alloy and ceramic.

  5. Shear bond strength of veneering porcelain to zirconia: Effect of surface treatment by CNC-milling and composite layer deposition on zirconia.

    PubMed

    Santos, R L P; Silva, F S; Nascimento, R M; Souza, J C M; Motta, F V; Carvalho, O; Henriques, B

    2016-07-01

    The purpose of this study was to evaluate the shear bond strength of veneering feldspathic porcelain to zirconia substrates modified by CNC-milling process or by coating zirconia with a composite interlayer. Four types of zirconia-porcelain interface configurations were tested: RZ - porcelain bonded to rough zirconia substrate (n=16); PZ - porcelain bonded to zirconia substrate with surface holes (n=16); RZI - application of a composite interlayer between the veneering porcelain and the rough zirconia substrate (n=16); PZI - application of a composite interlayer between the porcelain and the zirconia substrate treated by CNC-milling (n=16). The composite interlayer was composed of zirconia particles reinforced porcelain (30%, vol%). The mechanical properties of the ceramic composite have been determined. The shear bond strength test was performed at 0.5mm/min using a universal testing machine. The interfaces of fractured and untested specimens were examined by FEG-SEM/EDS. Data was analyzed with Shapiro-Wilk test to test the assumption of normality. The one-way ANOVA followed by Tukey HSD multiple comparison test was used to compare shear bond strength results (α=0.05). The shear bond strength of PZ (100±15MPa) and RZI (96±11MPa) specimens were higher than that recorded for RZ (control group) specimens (89±15MPa), although not significantly (p>0.05). The highest shear bond strength values were recorded for PZI specimens (138±19MPa), yielding a significant improvement of 55% relative to RZ specimens (p<0.05). This study shows that it is possible to highly enhance the zirconia-porcelain bond strength - even by ~55% - by combining surface holes in zirconia frameworks and the application of a proper ceramic composite interlayer. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Microstructure, Tensile Adhesion Strength and Thermal Shock Resistance of TBCs with Different Flame-Sprayed Bond Coat Materials Onto BMI Polyimide Matrix Composite

    NASA Astrophysics Data System (ADS)

    Abedi, H. R.; Salehi, M.; Shafyei, A.

    2017-10-01

    In this study, thermal barrier coatings (TBCs) composed of different bond coats (Zn, Al, Cu-8Al and Cu-6Sn) with mullite top coats were flame-sprayed and air-plasma-sprayed, respectively, onto bismaleimide matrix composites. These polyimide matrix composites are of interest to replace PMR-15, due to concerns about the toxicity of the MDA monomer from which PMR-15 is made. The results showed that pores and cracks appeared at the bond coat/substrate interface for the Al-bonded TBC because of its high thermal conductivity and diffusivity resulting in transferring of high heat flux and temperature to the polymeric substrate during top coat deposition. The other TBC systems due to the lower conductivity and diffusivity of bonding layers could decrease the adverse thermal effect on the polymer substrate during top coat deposition and exhibited adhesive bond coat/substrate interfaces. The tensile adhesion test showed that the adhesion strength of the coatings to the substrate is inversely proportional to the level of residual stress in the coatings. However, the adhesion strength of Al bond-coated sample decreased strongly after mullite top coat deposition due to thermal damage at the bond coat/substrate interface. TBC system with the Cu-6Sn bond coat exhibited the best thermal shock resistance, while Al-bonded TBC showed the lowest. It was inferred that thermal mismatch stresses and oxidation of the bond coats were the main factors causing failure in the thermal shock test.

  7. Effect of in vitro chewing and bruxism events on remineralization, at the resin-dentin interface.

    PubMed

    Toledano, Manuel; Cabello, Inmaculada; Aguilera, Fátima S; Osorio, Estrella; Osorio, Raquel

    2015-01-02

    The purpose of this study was to evaluate if different in vitro functional and parafunctional habits promote mineralization at the resin-dentin interface after bonding with three different adhesive approaches. Dentin surfaces were subjected to distinct treatments: demineralization by (1) 37% phosphoric acid (PA) followed by application of an etch-and-rinse dentin adhesive, Single Bond (SB) (PA+SB); (2) 0.5 M ethylenediaminetetraacetic acid (EDTA) followed by SB (EDTA+SB); (3) application of a self-etch dentin adhesive, Clearfil SE Bond (SEB). Different loading waveforms were applied: No cycling (I), cycled in sine (II) or square (III) waves, sustained loading hold for 24 h (IV) or sustained loading hold for 72 h (V). Remineralization at the bonded interfaces was assessed by AFM imaging/nano-indentation, Raman spectroscopy and Masson's trichrome staining. In general, in vitro chewing and parafunctional habits, promoted an increase of nano-mechanical properties at the resin-dentin interface. Raman spectroscopy through cluster analysis demonstrated an augmentation of the mineral-matrix ratio in loaded specimens. Trichrome staining reflected a narrow demineralized dentin matrix after loading in all groups except in PA+SB and EDTA+SB samples after sustained loading hold for 72 h, which exhibited a strong degree of mineralization. In vitro mechanical loading, produced during chewing and bruxism (square or hold 24 and 72 h waveforms), induced remineralization at the resin-dentin bonded interface. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Laser Engineered Net Shaping of Nickel-Based Superalloy Inconel 718 Powders onto AISI 4140 Alloy Steel Substrates: Interface Bond and Fracture Failure Mechanism

    PubMed Central

    Kim, Hoyeol; Cong, Weilong; Zhang, Hong-Chao; Liu, Zhichao

    2017-01-01

    As a prospective candidate material for surface coating and repair applications, nickel-based superalloy Inconel 718 (IN718) was deposited on American Iron and Steel Institute (AISI) 4140 alloy steel substrate by laser engineered net shaping (LENS) to investigate the compatibility between two dissimilar materials with a focus on interface bonding and fracture behavior of the hybrid specimens. The results show that the interface between the two dissimilar materials exhibits good metallurgical bonding. Through the tensile test, all the fractures occurred in the as-deposited IN718 section rather than the interface or the substrate, implying that the as-deposited interlayer bond strength is weaker than the interfacial bond strength. From the fractography using scanning electron microscopy (SEM) and energy disperse X-ray spectrometry (EDS), three major factors affecting the tensile fracture failure of the as-deposited part are (i) metallurgical defects such as incompletely melted powder particles, lack-of-fusion porosity, and micropores; (ii) elemental segregation and Laves phase, and (iii) oxide formation. The fracture failure mechanism is a combination of all these factors which are detrimental to the mechanical properties and structural integrity by causing premature fracture failure of the as-deposited IN718. PMID:28772702

  9. Chlorhexidine stabilizes the adhesive interface: a 2 year in vitro study

    PubMed Central

    Breschi, Lorenzo; Mazzoni, Annalisa; Nato, Fernando; Carrilho, Marcela; Visintini, Erika; Tjäderhane, Leo; Ruggeri, Alessandra; Tay, Franklin R; De Stefano Dorigo, Elettra; Pashley, David H

    2013-01-01

    Objectives This study evaluated the role of endogenous dentin MMPs in auto-degradation of collagen fibrils within adhesive-bonded interfaces. The null hypotheses tested were that adhesive blends or chlorhexidine digluconate (CHX) application does not modify dentin MMPs activity and that CHX used as therapeutic primer does not improve the stability of adhesive interfaces over time. Methods Zymograms of protein extracts from human dentin powder incubated with Adper Scotchbond 1XT (SB1XT) on untreated or 0.2–2% CHX treated dentin were obtained to assay dentin MMPs activity. Microtensile bond strength and interfacial nanoleakage expression of SB1XT bonded interfaces (with or without CHX pre-treatment for 30s on the etched surface) were analyzed immediately and after 2 yr of storage in artificial saliva at 37°C. Results Zymograms showed that application of SB1XT to human dentin powder increases MMP-2 activity, while CHX pre-treatment inhibited all dentin gelatinolytic activity, irrespective from the tested concentration. CHX significantly lowered the loss of bond strength and nanoleakage seen in acid-etched resin-bonded dentin artificially aged for 2 yr. Significance The study demonstrates the active role of SB1XT in dentin MMP-2 activation and the efficacy of CHX inhibition of MMPs even if used at low concentration (0.2%). PMID:20045177

  10. Laser Engineered Net Shaping of Nickel-Based Superalloy Inconel 718 Powders onto AISI 4140 Alloy Steel Substrates: Interface Bond and Fracture Failure Mechanism.

    PubMed

    Kim, Hoyeol; Cong, Weilong; Zhang, Hong-Chao; Liu, Zhichao

    2017-03-25

    As a prospective candidate material for surface coating and repair applications, nickel-based superalloy Inconel 718 (IN718) was deposited on American Iron and Steel Institute (AISI) 4140 alloy steel substrate by laser engineered net shaping (LENS) to investigate the compatibility between two dissimilar materials with a focus on interface bonding and fracture behavior of the hybrid specimens. The results show that the interface between the two dissimilar materials exhibits good metallurgical bonding. Through the tensile test, all the fractures occurred in the as-deposited IN718 section rather than the interface or the substrate, implying that the as-deposited interlayer bond strength is weaker than the interfacial bond strength. From the fractography using scanning electron microscopy (SEM) and energy disperse X-ray spectrometry (EDS), three major factors affecting the tensile fracture failure of the as-deposited part are (i) metallurgical defects such as incompletely melted powder particles, lack-of-fusion porosity, and micropores; (ii) elemental segregation and Laves phase, and (iii) oxide formation. The fracture failure mechanism is a combination of all these factors which are detrimental to the mechanical properties and structural integrity by causing premature fracture failure of the as-deposited IN718.

  11. Dicalcium phosphate (CaHPO4·2H2O) precipitation through ortho- or meta-phosphoric acid-etching: effects on the durability and nanoleakage/ultra-morphology of resin-dentine interfaces.

    PubMed

    Feitosa, Victor Pinheiro; Bazzocchi, Maria Giulia; Putignano, Angelo; Orsini, Giovanna; Luzi, Arlinda Luzi; Sinhoreti, Mário Alexandre Coelho; Watson, Timothy F; Sauro, Salvatore

    2013-11-01

    To compare the effects of two etching procedures using meta-phosphoric (MPA) or ortho-phosphoric acid (OPA) on dentine demineralisation, resin-dentine bonds durability and interface nanoleakage/ultra-morphology. Middle-dentine specimens were etched using 37% OPA (15s) or 40% MPA (60s) and submitted to infrared spectroscopy (FTIR) or ultra-morphology dye-assisted (calcium-staining) confocal microscopy (Ca-CLSM). A three-step etch-and-rinse adhesive was formulated, applied onto dentine and light-cured for 30s before composite build-up. After 24h, the dentine-bonded specimens were cut into 1mm(2) beams; half were immediately submitted to microtensile bond strength (μTBS) and half stored in DW for six months. The μTBS results were analysed with repeated-measures ANOVA and Tukey's test (p<0.05). Further teeth were bonded and prepared for interface nanoleakage/ultra-morphology confocal evaluation. FTIR and Ca-CLSM analyses showed dicalcium phosphate dihydrate (Brushite) precipitation in MPA-etched dentine and on the bottom (front of demineralisation) of the OPA-etched dentine. Statistical analysis showed similar μTBS for both etching procedures after 24h. The μTBS of specimens in OPA-group dropped significantly (p<0.05) after six month; the specimens in the MPA group showed no statistically difference (p>0.05). CLSM depicted no evident sign of nanoleakage within the resin-dentine interface of the MPA-treated specimens, while the specimens in OPA-group presented intense nanoleakage and interface degradation. The use of MPA (60s) as an alternative dentine conditioning agent in etch-and-rinse bonding procedures may be a suitable strategy to create more durable resin-dentine bonds. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Evaluation of metal-ceramic bond characteristics of three dental Co-Cr alloys prepared with different fabrication techniques.

    PubMed

    Wang, Hongmei; Feng, Qing; Li, Ning; Xu, Sheng

    2016-12-01

    Limited information is available regarding the metal-ceramic bond strength of dental Co-Cr alloys fabricated by casting (CAST), computer numerical control (CNC) milling, and selective laser melting (SLM). The purpose of this in vitro study was to evaluate the metal-ceramic bond characteristics of 3 dental Co-Cr alloys fabricated by casting, computer numerical control milling, and selective laser melting techniques using the 3-point bend test (International Organization for Standardization [ISO] standard 9693). Forty-five specimens (25×3×0.5 mm) made of dental Co-Cr alloys were prepared by CAST, CNC milling, and SLM techniques. The morphology of the oxidation surface of metal specimens was evaluated by scanning electron microscopy (SEM). After porcelain application, the interfacial characterization was evaluated by SEM equipped with energy-dispersive spectrometry (EDS) analysis, and the metal-ceramic bond strength was assessed with the 3-point bend test. Failure type and elemental composition on the debonding interface were assessed by SEM/EDS. The bond strength was statistically analyzed by 1-way ANOVA and Tukey honest significant difference test (α=.05). The oxidation surfaces of the CAST, CNC, and SLM groups were different. They were porous in the CAST group but compact and irregular in the CNC and SLM groups. The metal-ceramic interfaces of the SLM and CNC groups showed excellent combination compared with those of the CAST group. The bond strength was 37.7 ±6.5 MPa for CAST, 43.3 ±9.2 MPa for CNC, and 46.8 ±5.1 MPa for the SLM group. Statistically significant differences were found among the 3 groups tested (P=.028). The debonding surfaces of all specimens exhibited cohesive failure mode. The oxidation surface morphologies and thicknesses of dental Co-Cr alloys are dependent on the different fabrication techniques used. The bond strength of all 3 groups exceed the minimum acceptable value of 25 MPa recommended by ISO 9693; hence, dental Co-Cr alloy fabricated with the SLM techniques could be a promising alternative for metal ceramic restorations. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  13. Effect of quaternary ammonium and silver nanoparticle-containing adhesives on dentin bond strength and dental plaque microcosm biofilms

    PubMed Central

    Zhang, Ke; Melo, Mary Anne S.; Cheng, Lei; Weir, Michael D.; Bai, Yuxing; Xu, Hockin H. K.

    2012-01-01

    Objectives Antibacterial bonding agents are promising to hinder the residual and invading bacteria at the tooth-restoration interfaces. The objectives of this study were to develop an antibacterial bonding agent by incorporation of quaternary ammonium dimethacrylate (QADM) and nanoparticles of silver (NAg), and to investigate the effect of QADM-NAg adhesive and primer on dentin bond strength and plaque microcosm biofilm response for the first time. Methods Scotchbond Multi-Purpose adhesive and primer were used as control. Experimental adhesive and primer were made by adding QADM and NAg into control adhesive and primer. Human dentin shear bond strengths were measured (n = 10). A dental plaque microcosm biofilm model with human saliva as inoculum was used to investigate biofilm metabolic activity, colony-forming unit (CFU) counts, lactic acid production, and live/dead staining assay (n = 6). Results Adding QADM and NAg into adhesive and primer did not compromise the dentin shear bond strength which ranged from 30 to 35 MPa (p > 0.1). Scanning electron microscopy (SEM) examinations revealed numerous resin tags, which were similar for the control and the QADM and NAg groups. Adding QADM or NAg markedly reduced the biofilm viability, compared to adhesive control. QADM and NAg together in the adhesive had a much stronger antibacterial effect than using each agent alone (p < 0.05). Adding QADM and NAg in both adhesive and primer had the strongest antibacterial activity, reducing metabolic activity, CFU, and lactic acid by an order of magnitude, compared to control. Significance Without compromising dentin bond strength and resin tag formation, the QADM and NAg containing adhesive and primer achieved strong antibacterial effects against microcosm biofilms for the first time. QADM-NAg adhesive and primer are promising to combat residual bacteria in tooth cavity and invading bacteria at the margins, thereby to inhibit secondary caries. QADM and NAg incorporation may have a wide applicability to other dental bonding systems. PMID:22592165

  14. Effect of quaternary ammonium and silver nanoparticle-containing adhesives on dentin bond strength and dental plaque microcosm biofilms.

    PubMed

    Zhang, Ke; Melo, Mary Anne S; Cheng, Lei; Weir, Michael D; Bai, Yuxing; Xu, Hockin H K

    2012-08-01

    Antibacterial bonding agents are promising to hinder the residual and invading bacteria at the tooth-restoration interfaces. The objectives of this study were to develop an antibacterial bonding agent by incorporation of quaternary ammonium dimethacrylate (QADM) and nanoparticles of silver (NAg), and to investigate the effect of QADM-NAg adhesive and primer on dentin bond strength and plaque microcosm biofilm response for the first time. Scotchbond Multi-Purpose adhesive and primer were used as control. Experimental adhesive and primer were made by adding QADM and NAg into control adhesive and primer. Human dentin shear bond strengths were measured (n = 10). A dental plaque microcosm biofilm model with human saliva as inoculum was used to investigate biofilm metabolic activity, colony-forming unit (CFU) counts, lactic acid production, and live/dead staining assay (n = 6). Adding QADM and NAg into adhesive and primer did not compromise the dentin shear bond strength which ranged from 30 to 35MPa (p>0.1). Scanning electron microscopy (SEM) examinations revealed numerous resin tags, which were similar for the control and the QADM and NAg groups. Adding QADM or NAg markedly reduced the biofilm viability, compared to adhesive control. QADM and NAg together in the adhesive had a much stronger antibacterial effect than using each agent alone (p<0.05). Adding QADM and NAg in both adhesive and primer had the strongest antibacterial activity, reducing metabolic activity, CFU, and lactic acid by an order of magnitude, compared to control. Without compromising dentin bond strength and resin tag formation, the QADM and NAg containing adhesive and primer achieved strong antibacterial effects against microcosm biofilms for the first time. QADM-NAg adhesive and primer are promising to combat residual bacteria in tooth cavity and invading bacteria at the margins, thereby to inhibit secondary caries. QADM and NAg incorporation may have a wide applicability to other dental bonding systems. Copyright © 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  15. Asymmetrical bonding in cold spraying of dissimilar materials

    NASA Astrophysics Data System (ADS)

    Nikbakht, R.; Seyedein, S. H.; Kheirandish, S.; Assadi, H.; Jodoin, B.

    2018-06-01

    Characteristics of particle bonding, especially for dissimilar materials, remains a key question in cold spray deposition. There are limited reports in direct correlation to particle/substrate bonding and peripheral shear zones. Cold spraying experiments and numerical simulations are conducted to characterise and analyse the correlation between bonding and peripheral shear zones for asymmetric particle/substrate pairs of intermetallic-forming elements of nickel and titanium. The correlation between metallic bonding and highly strained areas is explored in view of the growth of the intermetallic phase at the particle/substrate interface during subsequent heat treatments. Characterisation of the as-sprayed samples reveal that for the Ni(particle)/Ti(substrate) pair, plastic deformation of the particle is dominating over substrate deformation. However, for the Ti(particle)/Ni(substrate) pair, it is observed that the substrate and particle deform to similar extents. Characterisation of the samples after a brief heat treatment at 700 °C indicate that intermetallic formation, and hence metallurgical bonding of the pairs is more likely to occur at the particle peripheries where the interface areas are highly strained, and rarely achieved at the particle base. Results also reveal that bonding extends from peripheries toward the central part of the interfaces with increasing the impact velocity. The kinetics of interfacial intermetallic formation at peripheral areas and its correlation to particle bonding is discussed in view of deformation-enhanced interdiffusion.

  16. The effect of enamel bleaching on the shear bond strengths of metal and ceramic brackets.

    PubMed

    Oztaş, E; Bağdelen, G; Kiliçoğlu, H; Ulukapi, H; Aydin, I

    2012-04-01

    The aim of this study was to evaluate the effects of bleaching and delayed bonding on the shear bond strengths of metal and ceramic brackets bonded with light and chemically cure composite resin to human enamel. One hundred and twenty extracted human premolar teeth were randomly divided into three groups of 40 each. The first two groups were bleached with 20 per cent carbamide peroxide (CP) at-home bleaching agent. No bleaching procedures were applied to the third group and served as control. The first two and control groups were divided into equal subgroups according to different adhesive-bracket combinations. Specimens in group 1 (n = 40) were bonded 24 hours after bleaching process was completed while the specimens in group 2 (n = 40) were bonded 14 days after. The specimens in all groups were debonded with a Universal testing machine while the modified adhesive remnant index was used to evaluate fracture properties. No statistically significant differences were found between the shear bond strengths of metal and ceramic brackets bonded to bleached enamel after 24 hours, 14 days, and unbleached enamel with light or chemical cure adhesives (P > 0.05). The mode of failure was mostly at the bracket/adhesive interface and cohesive failures within the resin were also observed. Our findings indicated that at-home bleaching agents that contain 20 per cent CP did not significantly affect the shear bond strength of metal and ceramic orthodontic brackets to enamel when bonding is performed 24 hours or 14 days after bleaching.

  17. Bonding and electronics of the MoTe2/Ge interface under strain

    NASA Astrophysics Data System (ADS)

    Szary, Maciej J.; Michalewicz, Marek T.; Radny, Marian W.

    2017-05-01

    Understanding the interface formation of a conventional semiconductor with a monolayer of transition-metal dichalcogenides provides a necessary platform for the anticipated applications of dichalcogenides in electronics and optoelectronics. We report here, based on the density functional theory, that under in-plane tensile strain, a 2H semiconducting phase of the molybdenum ditelluride (MoTe2) monolayer undergoes a semiconductor-to-metal transition and in this form bonds covalently to bilayers of Ge stacked in the [111] crystal direction. This gives rise to the stable bonding configuration of the MoTe2/Ge interface with the ±K valley metallic, electronic interface states exclusively of a Mo 4 d character. The atomically sharp Mo layer represents therefore an electrically active (conductive) subsurface δ -like two-dimensional profile that can exhibit a valley-Hall effect. Such system can develop into a key element of advanced semiconductor technology or a novel device concept.

  18. Effect of ZnSe/GaAs interface treatment in ZnSe quality control for optoelectronic device applications

    DOE PAGES

    Park, Kwangwook; Beaton, Daniel; Steirer, Kenneth X.; ...

    2017-01-27

    Here, we investigate the role of interface initiation conditions on the growth of ZnSe/GaAs heterovalent heterostructures. ZnSe epilayers were grown on a GaAs surface with various degrees of As-termination and the application of either a Zn or Se pre-treatment. Structural analysis revealed that Zn pre-treatment of an As-rich GaAs surface suppresses Ga 2Se 3 formation at the interface and promotes the growth of high crystal quality ZnSe. This is confirmed with low-temperature photoluminescence. However, moderation of Ga-Se bonding through a Se pre-treatment of an As-rich GaAs surface can prevent excessive intermixing at the interface and promote excitonic emission in themore » underlying GaAs layer. These results provide guidance on how best to prepare heterovalent interfaces for various applications.« less

  19. Effect of erosive challenges on deciduous teeth undergoing restorative procedures with different adhesive protocols - an in vitro study

    PubMed Central

    Assunção, Cristiane Meira; Goulart, Marcelo; Essvein, Tattiana Enrich; dos Santos, Nicole Marchioro; Erhardt, Maria Carolina Guilherme; Lussi, Adrian; Rodrigues, Jonas de Almeida

    2018-01-01

    ABSTRACT Objective To evaluate the effect of erosive challenges on the tooth- restoration interface of deciduous teeth treated with different adhesive protocols. Material and Methods Deciduous molars were cut mesiodistally, then embedded, abraded and polished (n=80). Samples were randomly divided according to the adhesive system used into: G1 (Adper Single Bond2®, etch-and-rinse), G2 (Universal Single Bond®, self-etching), G3 (OptibondFL®, etch-and-rinse with Fluoride) and G4 (BondForce®, self-etching with Fluoride). After standardized cavity preparation (2 mm diameter x 2 mm depth), adhesive systems were applied and samples were restored (composite resin Z350®). Half of the samples were exposed to erosive/abrasive cycles (n = 10, each adhesive group), and the other half (control group; n = 10) remained immersed in artificial saliva. For microleakage analysis, samples were submersed in methylene blue and analyzed at 40x magnifications. Cross-sectional microhardness (CSMH) was carried out (50 g/5 s) at 25 μm, 50 μm, and 100 μm from the eroded surface and at 25 μm, 75 μm, and 125 μm from the enamel bond interface. Results Regarding microleakage, 7.5% of the samples showed no dye infiltration, 30% showed dye infiltration only at the enamel interface, and 62.5% showed dye infiltration through the dentin-enamel junction, with no difference between groups (p≥0.05). No significant difference was observed in CSMH at different depths (two-way ANOVA, p≥0.05). Conclusions We did not observe significant changes in microleakage or CSMH after erosive/abrasive challenges in deciduous teeth treated with different adhesive protocols (etch-and-rinse and self-etching adhesives, with and without fluoride). PMID:29364339

  20. Effect of erosive challenges on deciduous teeth undergoing restorative procedures with different adhesive protocols - an in vitro study.

    PubMed

    Assunção, Cristiane Meira; Goulart, Marcelo; Essvein, Tattiana Enrich; Santos, Nicole Marchioro Dos; Erhardt, Maria Carolina Guilherme; Lussi, Adrian; Rodrigues, Jonas de Almeida

    2018-01-18

    To evaluate the effect of erosive challenges on the tooth- restoration interface of deciduous teeth treated with different adhesive protocols. Deciduous molars were cut mesiodistally, then embedded, abraded and polished (n=80). Samples were randomly divided according to the adhesive system used into: G1 (Adper Single Bond2®, etch-and-rinse), G2 (Universal Single Bond®, self-etching), G3 (OptibondFL®, etch-and-rinse with Fluoride) and G4 (BondForce®, self-etching with Fluoride). After standardized cavity preparation (2 mm diameter x 2 mm depth), adhesive systems were applied and samples were restored (composite resin Z350®). Half of the samples were exposed to erosive/abrasive cycles (n = 10, each adhesive group), and the other half (control group; n = 10) remained immersed in artificial saliva. For microleakage analysis, samples were submersed in methylene blue and analyzed at 40x magnifications. Cross-sectional microhardness (CSMH) was carried out (50 g/5 s) at 25 μm, 50 μm, and 100 μm from the eroded surface and at 25 μm, 75 μm, and 125 μm from the enamel bond interface. Regarding microleakage, 7.5% of the samples showed no dye infiltration, 30% showed dye infiltration only at the enamel interface, and 62.5% showed dye infiltration through the dentin-enamel junction, with no difference between groups (p≥0.05). No significant difference was observed in CSMH at different depths (two-way ANOVA, p≥0.05). We did not observe significant changes in microleakage or CSMH after erosive/abrasive challenges in deciduous teeth treated with different adhesive protocols (etch-and-rinse and self-etching adhesives, with and without fluoride).

  1. The effects of two soft drinks on bond strength, bracket microleakage, and adhesive remnant on intact and sealed enamel.

    PubMed

    Navarro, Raúl; Vicente, Ascensión; Ortiz, Antonio J; Bravo, Luis A

    2011-02-01

    The purpose of this study was to evaluate the effects of Coca-Cola and Schweppes Limón on bond strength, adhesive remnant, and microleakage beneath brackets. One hundred and twenty upper central incisor brackets were bonded to bovine incisors and divided into three groups: (1) Control, (2) Coca-Cola, and (3) Schweppes Limón. The teeth were submerged in the drinks three times a day for 15 minutes over a 15 day period. Shear bond strength (SBS) was measured with a universal testing machine, and adhesive remnant evaluated using image analysis equipment. Microleakage at the enamel-adhesive and adhesive-bracket interfaces was determined using methylene blue. One hundred and eight teeth were used for scanning electron microscopy to determine the effect of the drinks on intact and sealed enamel. SBS and adhesive remnant data were analysed using the Kruskal-Wallis test (P < 0.05) and microleakage using the Kruskal-Wallis and Mann-Whitney tests applying Bonferroni correction (P < 0.017). No significant differences were found in SBS and adhesive remnant between the groups (P > 0.05). Microleakage at the enamel-adhesive interface for groups 2 and 3 was significantly greater than for group 1 (P < 0.017). At the adhesive-bracket interface, microleakage was significantly greater in group 2 than in group 1 (P < 0.017) while microleakage in group 3 did not differ significantly from either group 1 or 2 (P < 0.017). The drinks produced enamel erosion, loss of adhesive and microleakage. Coca-Cola and Schweppes Limón did not affect the SBS of brackets or the adhesive remnant.

  2. Control activity of yeast geranylgeranyl diphosphate synthase from dimer interface through H-bonds and hydrophobic interaction.

    PubMed

    Chang, Chih-Kang; Teng, Kuo-Hsun; Lin, Sheng-Wei; Chang, Tao-Hsin; Liang, Po-Huang

    2013-04-23

    Previously we showed that yeast geranylgeranyl diphosphate synthase (GGPPS) becomes an inactive monomer when the first N-terminal helix involved in dimerization is deleted. This raises questions regarding why dimerization is required for GGPPS activity and which amino acids in the dimer interface are essential for dimerization-mediated activity. According to the GGPPS crystal structure, three amino acids (N101, N104, and Y105) located in the helix F of one subunit are near the active site of the other subunit. As presented here, when these residues were replaced individually with Ala caused insignificant activity changes, N101A/Y105A and N101A/N104A but not N104A/Y105A showed remarkably decreased k(cat) values (200-250-fold). The triple mutant N101A/N104A/Y105A displayed no detectable activity, although dimer was retained in these mutants. Because N101 and Y105 form H-bonds with H139 and R140 in the other subunit, respectively, we generated H139A/R140A double mutant and found it was inactive and became monomeric. Therefore, the multiple mutations apparently influence the integrity of the catalytic site due to the missing H-bonding network. Moreover, Met111, also on the highly conserved helix F, was necessary for dimer formation and enzyme activity. When Met111 was replaced with Glu, the negative-charged repulsion converted half of the dimer into a monomer. In conclusion, the H-bonds mainly through N101 for maintaining substrate binding stability and the hydrophobic interaction of M111 in dimer interface are essential for activity of yeast GGPPS.

  3. Suppression of interfacial voids formation during silane (SiH4)-based silicon oxide bonding with a thin silicon nitride capping layer

    NASA Astrophysics Data System (ADS)

    Lee, Kwang Hong; Bao, Shuyu; Wang, Yue; Fitzgerald, Eugene A.; Seng Tan, Chuan

    2018-01-01

    The material properties and bonding behavior of silane-based silicon oxide layers deposited by plasma-enhanced chemical vapor deposition were investigated. Fourier transform infrared spectroscopy was employed to determine the chemical composition of the silicon oxide films. The incorporation of hydroxyl (-OH) groups and moisture absorption demonstrates a strong correlation with the storage duration for both as-deposited and annealed silicon oxide films. It is observed that moisture absorption is prevalent in the silane-based silicon oxide film due to its porous nature. The incorporation of -OH groups and moisture absorption in the silicon oxide films increase with the storage time (even in clean-room environments) for both as-deposited and annealed silicon oxide films. Due to silanol condensation and silicon oxidation reactions that take place at the bonding interface and in the bulk silicon, hydrogen (a byproduct of these reactions) is released and diffused towards the bonding interface. The trapped hydrogen forms voids over time. Additionally, the absorbed moisture could evaporate during the post-bond annealing of the bonded wafer pair. As a consequence, defects, such as voids, form at the bonding interface. To address the problem, a thin silicon nitride capping film was deposited on the silicon oxide layer before bonding to serve as a diffusion barrier to prevent moisture absorption and incorporation of -OH groups from the ambient. This process results in defect-free bonded wafers.

  4. Bond strength evaluation in adhesive joints using NDE and DIC methods

    NASA Astrophysics Data System (ADS)

    Poudel, Anish

    Adhesive bonding of graphite epoxy composite laminates to itself or traditional metal alloys in modern aerospace and aircraft structural applications offers an excellent opportunity to use the most efficient and intelligent combination of materials available thus providing an attractive package for efficient structural designs. However, one of the major issues of adhesive bonding is the occasional formation of interfacial defects such as kissing or weak bonds in the bondline interface. Also, there are shortcomings of existing non-destructive evaluation (NDE) methods to non-destructively detect/characterize these interfacial defects and reliably predicting the bond shear strength. As a result, adhesive bonding technology is still not solely implemented in primary structures of an aircraft. Therefore, there is a greater demand for a novel NDE tool that can meet the existing aerospace requirement for adhesive bondline characterization. This research implemented a novel Acoustography ultrasonic imaging and digital image correlation (DIC) technique to detect and characterize interfacial defects in the bondline and determine bond shear strength in adhesively bonded composite-metal joints. Adhesively bonded Carbon Fiber Reinforced Plastic (CFRP) laminate and 2024-T3 Aluminum single lap shear panels subjected to various implanted kissing/weak bond defects were the primary focus of this study. Kissing/weak bonds were prepared by controlled surface contamination in the composite bonding surface and also by improperly mixing the adhesive constituent. SEM analyses were also conducted to understand the surface morphology of substrates and their interaction with the contaminants. Morphological changes were observed in the microscopic scale and the chemical analysis confirmed the stability of the contaminant at or very close to the interface. In addition, it was also demonstrated that contaminants migrated during the curing of the adhesive from CFRP substrate which caused a decrease of bond shear strength in single lap shear test samples. Through-transmission ultrasonics (TTU) Acoustography at 3.8 MHz showed promising results on the detectability of bondline defects in adhesively bonded CFRP-Al lap shear test samples. A correlation between Acoustography ultrasonic attenuation and average bond shear strength in CFRP-Al lap shear panels demonstrated that differential attenuation increased with the reduction of the bond shear strength. Similarly, optical DIC tests were conducted to identify and quantify kissing bond defects in CFRP-Al single lap shear joints. DIC results demonstrated changes in the normal strain (epsilonyy) contour map of the contaminated specimens at relatively lower load levels (15% ~ 30% of failure loads). Kissing bond regions were characterized by negative strains, and these were attributed to high compressive bending strains and the localized disbonding taking placed at the bondline interface as a result of the load application. It was also observed that contaminated samples suffered from more compressive strains (epsilonyy) compared to the baseline sample along the loading direction and they suffered from less compressive strains (epsilonxx) compared to the baseline sample perpendicular to the loading direction. This demonstrated the adverse effect of the kissing bond on the adhesive joint integrity. This was a very significant finding for the reason that hybrid ultrasonic DIC is being developed as a faster, more efficient, and more reliable NDE technique for determining bond quality and predicting bond shear strength in adhesively bonded structures.

  5. Optimized ultra-thin manganin alloy passivated fine-pitch damascene compatible bump-less Cu-Cu bonding at sub 200 °C for three-dimensional Integration applications

    NASA Astrophysics Data System (ADS)

    Panigrahi, Asisa Kumar; Hemanth Kumar, C.; Bonam, Satish; Ghosh, Tamal; Rama Krishna Vanjari, Siva; Govind Singh, Shiv

    2018-02-01

    Enhanced Cu diffusion, Cu surface passivation, and smooth surface at the bonding interface are the key essentials for high quality Cu-Cu bonding. Previously, we have demonstrated optimized 3 nm thin Manganin metal-alloy passivation from oxidation and also helps to reduce the surface roughness to about 0.8 nm which substantially led to high quality Cu-Cu bonding. In this paper, we demonstrated an ultra fine-pitch (<25 µm) Cu-Cu bonding using an optimized Manganin metal-alloy passivation. This engineered surface passivation approach led to high quality bonding at sub 200 °C temperature and 0.4 MPa. Very low specific contact resistance of 1.4 × 10-7 Ω cm2 and the defect free bonded interface is clear indication of high quality bonding for future multilayer integrations. Furthermore, electrical characterization of the bonded structure was performed under various robust conditions as per International Technology Roadmap for Semiconductors (ITRS Roadmap) in order to satisfy the stability of the bonded structure.

  6. Optimization of the etch-and-rinse technique: New perspectives to improve resin-dentin bonding and hybrid layer integrity by reducing residual water using dimethyl sulfoxide pretreatments.

    PubMed

    Stape, Thiago Henrique Scarabello; Tjäderhane, Leo; Abuna, Gabriel; Sinhoreti, Mário Alexandre Coelho; Martins, Luís Roberto Marcondes; Tezvergil-Mutluay, Arzu

    2018-04-13

    To determine whether bonding effectiveness and hybrid layer integrity on acid-etched dehydrated dentin would be comparable to the conventional wet-bonding technique through new dentin biomodification approaches using dimethyl sulfoxide (DMSO). Etched dentin surfaces from extracted sound molars were randomly bonded in wet or dry conditions (30s air drying) with DMSO/ethanol or DMSO/H 2 O as pretreatments using a simplified (Scotchbond Universal Adhesive, 3M ESPE: SU) and a multi-step (Adper Scotchbond Multi-Purpose, 3M ESPE: SBMP) etch-and-rinse adhesives. Untreated dentin surfaces served as control. Bonded teeth (n=8) were stored in distilled water for 24h and sectioned into resin-dentin beams (0.8mm 2 ) for microtensile bond strength test and quantitative interfacial nanoleakage analysis (n=8) under SEM. Additional teeth (n=2) were prepared for micropermeability assessment by CFLSM under simulated pulpar pressure (20cm H 2 O) using 5mM fluorescein as a tracer. Microtensile data was analyzed by 3-way ANOVA followed by Tukey Test and nanoleakage by Kruskal-Wallis and Dunn-Bonferroni multiple comparison test (α=0.05). While dry-bonding of SBMP produced significantly lower bond strengths than wet-bonding (p<0.05), DMSO/H 2 O and DMSO/ethanol produced significantly higher bond strengths for SBMP irrespective of dentin condition (p<0.05). SU presented significantly higher nanoleakage levels (p<0.05) and micropermeability than SBMP. Improvement in hybrid layer integrity occurred for SBMP and SU for both pretreatments, albeit most pronouncedly for DMSO/ethanol regardless of dentin moisture. DMSO pretreatments may be used as a new suitable strategy to improve bonding of water-based adhesives to demineralized air-dried dentin beyond conventional wet-bonding. Less porous resin-dentin interfaces with higher bond strengths on air-dried etched dentin were achieved; nonetheless, overall efficiency varied according to DMSO's co-solvent and adhesive type. DMSO pretreatments permit etched dentin to be air-dried before hybridization facilitating residual water removal and thus improving bonding effectiveness. This challenges the current paradigm of wet-bonding requirement for the etch-and-rinse approach creating new possibilities to enhance the clinical longevity of resin-dentin interfaces. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Inc. All rights reserved.

  7. Ultrasonic-assisted soldering of fine-grained 7034 aluminum alloy using Sn-Zn solders below 300°C.

    PubMed

    Guo, Weibing; Luan, Tianmin; He, Jingshan; Yan, Jiuchun

    2018-01-01

    The fine-grained Al alloys prefer to be soldered at as low as temperature to keep their mechanical properties. Solders of Sn-4Zn, Sn-9Zn, and Sn-20Zn alloys were used to solder fine-grained 7034 Al alloy pieces by ultrasonic-assisted soldering below 300°C in air. The joint using Sn-4Zn solder had the highest tensile strength of 201MPa and the fractures occurred in both β-Sn and Sn-Zn eutectic phases. Such joint was much stronger than the 1060 Al joint using Sn-4Zn solder, and its strength had approached the strength of 7034 Al joint using Zn-5Al solder. The strength of the joints using Sn-9Zn and Sn-20Zn solders dropped to∼160MPa due to the appearance of weak interfaces between η-Zn and eutectic phases in the bond layers. All the joints using Sn-Zn solders had very strong interfacial bonding, and alumina interlayers were identified at all the interfaces. Al dissolved in the bond layer reacted with the O rapidly to form alumina interlayers at the interfaces under the ultrasonic action. Zn segregated at the interface and formed strong bonds with both the Al terminated surface of alumina and the bond layer, resulting in strong interfacial bonding between Sn-Zn solders and Al alloys. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Effects of dual antibacterial agents MDPB and nano-silver in primer on microcosm biofilm, cytotoxicity and dentin bond properties

    PubMed Central

    Zhang, Ke; Cheng, Lei; Imazato, Satoshi; Antonucci, Joseph M.; Lin, Nancy J.; Lin-Gibson, Sheng; Bai, Yuxing; Xu, Hockin H. K.

    2013-01-01

    Objectives The objective of this study was to investigate the effects of dentin primer containing dual antibacterial agents, namely, 12-methacryloyloxydodecylpyridinium bromide (MDPB) and nanoparticles of silver (NAg), on dentin bond strength, dental plaque microcosm biofilm response, and fibroblast cytotoxicity for the first time. Methods Scotchbond Multi-Purpose (SBMP) was used as the parent bonding agent. Four primers were tested: SBMP primer control (referred to as “P”), P+5%MDPB, P+0.05%NAg, and P+5%MDPB+0.05%NAg. Dentin shear bond strengths were measured using extracted human teeth. Biofilms from the mixed saliva of 10 donors were cultured to investigate metabolic activity, colony-forming units (CFU), and lactic acid production. Human fibroblast cytotoxicity of the four primers was tested in vitro. Results Incorporating MDPB and NAg into primer did not reduce dentin bond strength compared to control (p>0.1). SEM revealed well-bonded adhesive-dentin interfaces with numerous resin tags. MDPB or NAg each greatly reduced biofilm viability and acid production, compared to control. Dual agents MDPB+NAg had a much stronger effect than either agent alone (p<0.05), increasing inhibition zone size and reducing metabolic activity, CFU and lactic acid by an order of magnitude, compared to control. There was no difference in cytotoxicity between commercial control and antibacterial primers (p>0.1). Conclusions The method of using dual agents MDPB+NAg in the primer yielded potent antibacterial properties. Hence, this method may be promising to combat residual bacteria in tooth cavity and invading bacteria at the margins. The dual agents MDPB+NAg may have wide applicability to other adhesives, composites, sealants and cements to inhibit biofilms and caries. PMID:23402889

  9. Parameters Identification of Interface Friction Model for Ceramic Matrix Composites Based on Stress-Strain Response

    NASA Astrophysics Data System (ADS)

    Han, Xiao; Gao, Xiguang; Song, Yingdong

    2017-10-01

    An approach to identify parameters of interface friction model for Ceramic Matrix composites based on stress-strain response was developed. The stress distribution of fibers in the interface slip region and intact region of the damaged composite was determined by adopting the interface friction model. The relation between maximum strain, secant moduli of hysteresis loop and interface shear stress, interface de-bonding stress was established respectively with the method of symbolic-graphic combination. By comparing the experimental strain, secant moduli of hysteresis loop with computation values, the interface shear stress and interface de-bonding stress corresponding to first cycle were identified. Substituting the identification of parameters into interface friction model, the stress-strain curves were predicted and the predicted results fit experiments well. Besides, the influence of number of data points on identifying the value of interface parameters was discussed. And the approach was compared with the method based on the area of hysteresis loop.

  10. Improved orthodontic bonding to silver amalgam. Part 2. Lathe-cut, admixed, and spherical amalgams with different intermediate resins.

    PubMed

    Büyükyilmaz, T; Zachrisson, B U

    1998-08-01

    Flat rectangular tabs (n = 270) prepared from spherical (Tytin), admixed (Dispersalloy) or lathe-cut amalgam (ANA 2000) were subjected to aluminum oxide sandblasting with either 50-mu or 90-mu abrasive powder. Mandibular incisor edgewise brackets were bonded to these tabs. An intermediate resin was used, either All-Bond 2 Primers A + B or a 4-META product--Amalgambond Plus (AP) or Reliance Metal Primer (RMP)--followed by Concise. All specimens were stored in water at 37 degrees C for 24 hours and thermocycled 1000 times from 5 degrees C to 55 degrees C and back before tensile bond strength testing. The bond strength of Concise to etched enamel of extracted, caries-free premolars was used as a control. Bond failure sites were classified using a modified adhesive remnant index (ARI) system. Results were expressed as mean bond strength with SD, and as a function relating the probability of bond failure to stress by means of Weibull analysis. Mean tensile bond strength in the experimental groups ranged from 2.9 to 11.0 MPa--significantly weaker than the control sample (16.0 MPa). Bond failure invariably occurred at the amalgam/adhesive interface. The strongest bonds were created to the spherical and lathe-cut amalgams (range 6.8 to 11.0 MPa). Bonds to the spherical amalgam were probably more reliable. The intermediate application of the 4-META resins AP and RMP generally created significantly stronger bonds to all three basic types of amalgam products than the bonds obtained with the All-Bond 2 primers. The effect of abrasive-particle size on bond strength to different amalgam surfaces was not usually significant (p > 0.05). The implications of these findings are discussed in relationship to clinical experience bonding orthodontic attachments to large amalgam restorations in posterior teeth.

  11. Adhesion of multimode adhesives to enamel and dentin after one year of water storage.

    PubMed

    Vermelho, Paulo Moreira; Reis, André Figueiredo; Ambrosano, Glaucia Maria Bovi; Giannini, Marcelo

    2017-06-01

    This study aimed to evaluate the ultramorphological characteristics of tooth-resin interfaces and the bond strength (BS) of multimode adhesive systems to enamel and dentin. Multimode adhesives (Scotchbond Universal (SBU) and All-Bond Universal) were tested in both self-etch and etch-and-rinse modes and compared to control groups (Optibond FL and Clearfil SE Bond (CSB)). Adhesives were applied to human molars and composite blocks were incrementally built up. Teeth were sectioned to obtain specimens for microtensile BS and TEM analysis. Specimens were tested after storage for either 24 h or 1 year. SEM analyses were performed to classify the failure pattern of beam specimens after BS testing. Etching increased the enamel BS of multimode adhesives; however, BS decreased after storage for 1 year. No significant differences in dentin BS were noted between multimode and control in either evaluation period. Storage for 1 year only reduced the dentin BS for SBU in self-etch mode. TEM analysis identified hybridization and interaction zones in dentin and enamel for all adhesives. Silver impregnation was detected on dentin-resin interfaces after storage of specimens for 1 year only with the SBU and CSB. Storage for 1 year reduced enamel BS when adhesives are applied on etched surface; however, BS of multimode adhesives did not differ from those of the control group. In dentin, no significant difference was noted between the multimode and control group adhesives, regardless of etching mode. In general, multimode adhesives showed similar behavior when compared to traditional adhesive techniques. Multimode adhesives are one-step self-etching adhesives that can also be used after enamel/dentin phosphoric acid etching, but each product may work better in specific conditions.

  12. Oxidation Control with Chromate Pretreatment of MCrAlY Unmelted Particle and Bond Coat in Thermal Barrier Systems

    NASA Astrophysics Data System (ADS)

    Yamano, Hideaki; Tani, Kazumi; Harada, Yoshio; Teratani, Takema

    2008-06-01

    MCrAlY alloy bond coat is widely used in thermal barrier coating (TBC) systems to protect substrates from high-temperature oxidizing environments. However, failure of the ceramic topcoat can occur due to a thermally grown oxide (TGO) that grows at the interface between the bond coat and the topcoat. In this study, the effect of chromate treatment was investigated. Prior to topcoat deposition, a thin film of Cr2O3 was formed on the bond coat surface. High-temperature oxidation tests were carried out, and the oxidation rates were determined by inspection of cross sections. Similar oxidation tests were carried out using MCrAlY powder material assumed to be unmelted particles. As a result, the chromate-treated bond coat showed outstanding oxidation resistance. Calculations that take into account the oxidation of particles in the topcoat indicated the generation of internal stress to cause local fracture of the topcoat.

  13. Thermal conductivity investigation of adhesive-free bond laser components

    NASA Astrophysics Data System (ADS)

    Li, Da; Hong, Pengda; Vedula, MahaLakshmi; Meissner, Helmuth E.

    2017-02-01

    An interferometric method has been developed and employed at Onyx Optics, Inc. to accurately measure the thermal conductivity of laser-active crystals as function of dopant concentration or inactive materials such as single crystals, optical ceramics and glasses relative to a standard of assumed to be known thermal conductivity [1]. This technique can also provide information on heat transfer resistance at the interface between two materials in close thermal contact. While the technique appears generally applicable to composites between optically homogeneous materials, we report on thermal conductivities and heat transfer coefficients of selected adhesive-free bond (AFB®) laser composites. Single crystal bars and AFB bonded crystal doublets with the combinations of various rare-earth (Nd3+, Yb3+, Er3+, and Tm3+ trivalent ion doped YAG, and un-doped YAG have been fabricated with the AFB technique. By loading the test sample in a vacuum cryostat, with a precisely controlled heat load at one end of the doublets, the temperature distribution inside the single crystal or the composite samples can been precisely mapped by measuring the optical path difference interferometrically, given the material's thermal-optical properties. No measurable heat transfer resistance can be identified for the AFB interfaces between low-concentration doped YAG and un-doped YAG. For the heavily doped RE3+:YAG, for example, 10% Yb:YAG, the thermal conductivity measured in our experiment is 8.3 W/m•K, using the thermal conductivity of undoped YAG reported in [1] as basis. The thermal transfer resistance of the AFB interface with un-doped YAG, if there is any at the AFB interface, could be less than 1.29×10-6 m2•K/W.

  14. Accelerated aging of adhesive-mediated fiber post-resin composite bonds: A modeling approach.

    PubMed

    Radovic, Ivana; Monticelli, Francesca; Papacchini, Federica; Magni, Elisa; Cury, Alvaro Hafiz; Vulicevic, Zoran R; Ferrari, Marco

    2007-08-01

    Although fiber posts luted in root canals are not directly exposed to oral fluids, water storage is considered as in vitro accelerated aging test for bonded interfaces. The aim of the study was to evaluate the influence of accelerated water aging on fiber post-resin composite adhesion. Forty fiber posts (DT Light Post, RTD) were randomly divided into two main groups, according to the surface treatment performed. Group I: XPBond adhesive (Dentsply Caulk); Group II: sandblasting (Rocatec-Pre, 3M ESPE) and XPBond. Dual-cured resin cement (Calibra, Dentsply Caulk) and flowable composite (X-Flow, Dentsply Caulk) were applied on the posts to produce cylindrical specimens. The bond strength at the interface between post and cement/composite was measured with the microtensile test according to the non-trimming technique. Half of the sticks were tested immediately for bond strength, while in the other half testing was performed after 1 month of water storage at 37 degrees C. Post-cement/composite interfaces were evaluated under SEM prior and after water aging. Statistical analysis was performed using the Kruskal-Wallis ANOVA followed by Dunn's multiple range test (p<0.05). Immediate bond strength was higher on sandblasted posts. After water aging the two post surface treatments resulted comparable in bond strength. Resin cement achieved higher bond strength to fiber posts than flowable composite. Water aging significantly reduced bond strength. Sandblasting followed by adhesive coating may improve immediate post-resin bond strength in comparison to adhesive alone. However, fiber post-resin bond strength mediated by hydrophilic adhesive tends to decrease after water aging.

  15. Effect of Storage Time on Bond Strength and Nanoleakage Expression of Universal Adhesives Bonded to Dentin and Etched Enamel.

    PubMed

    Makishi, P; André, C B; Ayres, Apa; Martins, A L; Giannini, M

    2016-01-01

    To investigate bond strength and nanoleakage expression of universal adhesives (UA) bonded to dentin and etched enamel. Extracted human third molars were sectioned and ground to obtain flat surfaces of dentin (n = 36) and enamel (n = 48). Dentin and etched enamel surfaces were bonded with one of two UAs, All-Bond Universal (ABU) or Scotchbond Universal (SBU); or a two-step self-etching adhesive, Clearfil SE Bond (CSEB). A hydrophobic bonding resin, Adper Scotchbond Multi-Purpose Bond (ASMP Bond) was applied only on etched enamel. Following each bonding procedure, resin composite blocks were built up incrementally. The specimens were sectioned and subjected to microtensile bond strength (MTBS) testing after 24 hours or one year water storage, or immersed into ammoniacal silver nitrate solution after aging with 10,000 thermocycles and observed using scanning electron microscopy. The percentage distribution of silver particles at the adhesive/tooth interface was calculated using digital image-analysis software. The MTBS (CSEB = SBU > ABU, for dentin; and CSEB > ABU = SBU = ASMP Bond, for etched enamel) differed significantly between the adhesives after 24 hours. After one year, MTBS values were reduced significantly within the same adhesive for both substrates (analysis of variance, Bonferroni post hoc, p<0.05), and no significant differences were found among the adhesives for etched enamel. Silver particles could be detected within the adhesive/dentin interface of all specimens tested. Kruskal-Wallis mean ranks for nanoleakage in ABU, SBU, and CSEB were 16.9, 18.5 and 11, respectively (p>0.05). In the short term, MTBS values were material and dental-substrate dependent. After aging, a decrease in bonding effectiveness was observed in all materials, with nanoleakage at the adhesive/dentin interface. The bonding of the UAs was equal or inferior to that of the conventional restorative systems when applied to either substrate and after either storage period.

  16. Application of x-ray nano-particulate markers for the visualization of intermediate layers and interfaces using scanning electron microscopy

    NASA Astrophysics Data System (ADS)

    Bessudnova, Nadezda O.; Bilenko, David I.; Zakharevich, Andrey M.

    2012-03-01

    In this study the methodology of biological sample preparation for dental research using SEM/EDX has been elaborated. (1)The original cutting equipment supplied with 3D user-controlled sample fixation and an adjustable cooling system has been designed and evaluated. (2) A new approach to the root dentine drying procedure has been developed to preserve structure peculiarities of root dentine. (3) A novel adhesive system with embedded X-Ray nanoparticulate markers has been designed. (4)The technique allowing for visualization of bonding resins, interfaces and intermediate layers between tooth hard tissues and restorative materials of endodontically treated teeth using the X-ray nano-particulate markers has been developed and approved. These methods and approaches were used to compare the objective depth of penetration of adhesive systems of different generations in root dentine. It has been shown that the depth of penetration in dentine is less for adhesive systems of generation VI in comparison with bonding resins of generation V, which is in agreement with theoretical evidence. The depth of penetration depends on the correlation between the direction of dentinal tubules, bonding resin delivery and gravity.

  17. Morphological Evaluation of the Adhesive/Enamel interfaces of Two-step Self-etching Adhesives and Multimode One-bottle Self-etching Adhesives.

    PubMed

    Sato, Takaaki; Takagaki, Tomohiro; Matsui, Naoko; Hamba, Hidenori; Sadr, Alireza; Nikaido, Toru; Tagami, Junji

    To evaluate the acid-base resistant zone (ABRZ) at the adhesive/enamel interface of self-etching adhesives with or without prior phosphoric acid etching. Four adhesives were used in 8 groups: Clearfil SE Bond (SEB), Optibond XTR (XTR), Scotchbond Universal Adhesive (SBU), and Clearfil BOND SE ONE (ONE) without prior phosphoric-acid etching, and each adhesive with phosphoric acid etching for 10 s (P-SEB, P-XTR, P-SBU and P-ONE, respectively). After application of self-etching adhesives on ground enamel surfaces of human teeth, a flowable composite was placed. For observation of the acid-base resistant zone (ABRZ), the bonded interface was exposed to demineralizing solution (pH 4.5) for 4.5 h, followed by 5% NaOCl with ultrasonication for 20 min. After the acid-base challenge, morphological attributes of the interface were observed using SEM. ABRZ formation was confirmed in all groups. The funnel-shaped erosion beneath the interface was present in SBU and ONE, where nearly 10 to 15 μm of enamel was dissolved. With phosphoric acid etching, the ABRZs were obviously thicker compared with no phosphoric acid etching. Enamel beneath the bonding interface was more susceptible to acid dissolution in SBU and ONE. In the case of the one-bottle self-etching adhesives and universal adhesives that intrinsically have higher pH values, enamel etching should be recommended to improve the interfacial quality.

  18. Demonstration of a focused ion-beam cross-sectioning technique for ultrastructural examination of resin-dentin interfaces.

    PubMed

    Van Meerbeek, B; Conn, L J; Duke, E S; Schraub, D; Ghafghaichi, F

    1995-03-01

    focused ion-beam (FIB) etching, commonly used as a cross-sectioning technique for failure analysis of semiconductor devices, has recently been applied to biological tissues to expose their ultrastructure for examination. It was the aim of this investigation to determine the practical utility of FIB to cross-section resin-dentin interfaces in order to morphologically evaluate the completeness of resin penetration into the exposed collagen scaffold at the resin-dentin bond interface. Two representative commercially available dentin adhesive systems were bonded to mid-coronal dentin. After appropriate fixation and dehydration of the resin-bonded dentin samples, a scanned focused ion-beam of a few tens of nano-meters in diameter was used to cross=section the resin-dentin interface. Examination of the interfacial ultrastructure was accomplished using a field-emission SEM. Results indicate possible artifact production at the cross-sectioned interface, hiding its actual ultrastructure, probably due to a heat-effect with possible recrystallization. Further studies of FIB are needed to optimize its usefulness for resin-dentin interface examinations and other biological tissue applications. Complete resin saturation of the demineralized dentin surface-layer has been claimed to be the key factor for a long-lasting resin-dentin bond. A "clean" artifact-free micro-cross-sectioning technique may provide indisputable ultra-structural information about the depth of resin penetration into the demineralized zone. Such a test would be useful in the development of dentin adhesive systems.

  19. Colossal super saturation of oxygen at the iron-aluminum interfaces fabricated using solid state welding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sridharan, Niyanth; Isheim, D.; Seidman, David N.

    Solid state joining is achieved in three steps, (i) interface asperity deformation, (ii) oxide dispersion, followed by (iii) atomic contact and bonding. Atomically clean metallic surfaces without an oxide layer bond spontaneously. Despite its importance the oxide dispersion mechanism is not well studied. In this work the first ever atom probe study of iron-aluminum solid state welds show that the oxygen concentration at the interface is 20 at.%. This is significantly lower than any equilibrium oxide concentration. Here, we therefore propose that the high-strain rate deformation at the interfaces renders the oxide unstable resulting in the observed concentration of oxygen.

  20. Colossal super saturation of oxygen at the iron-aluminum interfaces fabricated using solid state welding

    DOE PAGES

    Sridharan, Niyanth; Isheim, D.; Seidman, David N.; ...

    2016-12-14

    Solid state joining is achieved in three steps, (i) interface asperity deformation, (ii) oxide dispersion, followed by (iii) atomic contact and bonding. Atomically clean metallic surfaces without an oxide layer bond spontaneously. Despite its importance the oxide dispersion mechanism is not well studied. In this work the first ever atom probe study of iron-aluminum solid state welds show that the oxygen concentration at the interface is 20 at.%. This is significantly lower than any equilibrium oxide concentration. Here, we therefore propose that the high-strain rate deformation at the interfaces renders the oxide unstable resulting in the observed concentration of oxygen.

  1. Dentin bonding performance and interface observation of an MMA-based restorative material.

    PubMed

    Shinagawa, Junichi; Inoue, Go; Nikaido, Toru; Ikeda, Masaomi; Sadr, Alireza; Tagami, Junji

    2016-07-30

    The purpose of this study was to evaluate bonding performance and dentin interface acid resistance using a 4-META/MMA-TBB based restorative material (BF) compared to a conventional 4-META/MMA-TBB resin cement (SB), and the effect of sodium fluoride (NaF) addition to the materials. Dentin surfaces were treated with 10% citric acid-3% ferric chloride (10-3) or 4-META containing self-etching primer (TP), followed by application of BF or SB polymer powders with or without NaF, to evaluate microtensile bond strength (µTBS) in six experimental groups; 10-3/SB, 10-3/BF, TP/SB, TP/BF, TP/SB/NaF and TP/BF/NaF. SEM observation of the resin-dentin interface was performed after acid-base challenge to evaluate interfacial dentin resistance to acid attack. TP/BF showed highest µTBS, while NaF polymers decreased µTBS. TP/BF showed funnel-shaped erosion at the interface, however, NaF polymers improved acid resistance of interface. In conclusion, BF demonstrated high µTBSs and low acid-resistance at the interface. NaF addition enhanced acid resistance but decreased µTBS.

  2. Electrically detected crystal orientation dependent spin-Rabi beat oscillation of c-Si(111)/SiO2 interface states

    NASA Astrophysics Data System (ADS)

    Paik, Seoyoung; Lee, Sang-Yun; McCamey, Dane R.; Boehme, Christoph

    2011-12-01

    Electrically detected spin-Rabi beat oscillation of pairs of paramagnetic near interface states at the phosphorous doped (1016 cm-3) Si(111)/SiO2 interface is reported. Due to the g-factor anisotropy of the Pb center (a silicon surface dangling bond), one can tune intrapair Larmor frequency differences (Larmor separations) by orientation of the crystal with regard to an external magnetic field. Since Larmor separation governs the number of beating spin pairs, crystal orientation can control the beat current. This is used to identify spin states that are paired by mutual electronic transitions. The experiments confirm the presence of the previously reported 31P-Pb transition and provide direct experimental evidence of the previously hypothesized Pb-E' center (a near interface SiO2 bulk state) transition.

  3. Thermal conductance of metal–diamond interfaces at high pressure

    DOE PAGES

    Hohensee, Gregory T.; Wilson, R. B.; Cahill, David G.

    2015-03-06

    The thermal conductance of interfaces between metals and diamond, which has a comparatively high Debye temperature, is often greater than can be accounted for by two phonon-processes. The high pressures achievable in a diamond anvil cell can significantly extend the metal phonon density of states to higher frequencies, and can also suppress extrinsic effects by greatly stiffening interface bonding. Here we report time-domain thermoreflectance measurements of metal-diamond interface thermal conductance up to 50 GPa in the DAC for Pb, Au 0.95Pd 0.05, Pt, and Al films deposited on Type 1A natural [100] and Type 2A synthetic [110] diamond anvils. Inmore » all cases, the thermal conductances increase weakly or saturate to similar values at high pressure. Lastly, our results suggest that anharmonic conductance at metal-diamond interfaces is controlled by partial transmission processes, where a diamond phonon that inelastically scatters at the interface absorbs or emits a metal phonon.« less

  4. Controlling Interfacial Dynamics: Covalent Bonding versus Physical Adsorption in Polymer Nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holt, Adam P.; Bocharova, Vera; Cheng, Shiwang

    It is generally believed that the strength of the polymer nanoparticle interaction controls the modification of near-interface segmental mobility in polymer nanocomposites (PNCs). However, little is known about the effect of covalent bonding on the segmental dynamics and glass transition of matrix-free polymer-grafted nanoparticles (PGNs), especially when compared to PNCs. In this article, we directly compare the static and dynamic properties of poly(2-vinylpyridine)/silica-based nanocomposites with polymer chains either physically adsorbed (PNCs) or covalently bonded (PGNs) to identical silica nanoparticles (RNP = 12.5 nm) for three different molecular weight (MW) systems. Interestingly, when the MW of the matrix is as lowmore » as 6 kg/mol (RNP/Rg = 5.4) or as high as 140 kg/mol (RNP/Rg= 1.13), both small-angle X-ray scattering and broadband dielectric spectroscopy show similar static and dynamic properties for PNCs and PGNs. However, for the intermediate MW of 18 kg/mol (RNP/Rg = 3.16), the difference between physical adsorption and covalent bonding can be clearly identified in the static and dynamic properties of the interfacial layer. We ascribe the differences in the interfacial properties of PNCs and PGNs to changes in chain stretching, as quantified by self-consistent field theory calculations. These results demonstrate that the dynamic suppression at the interface is affected by the chain stretching; that is, it depends on the anisotropy of the segmental conformations, more so than the strength of the interaction, which suggests that the interfacial dynamics can be effectively tuned by the degree of stretching a parameter accessible from the MW or grafting density.« less

  5. Controlling Interfacial Dynamics: Covalent Bonding versus Physical Adsorption in Polymer Nanocomposites

    DOE PAGES

    Holt, Adam P.; Bocharova, Vera; Cheng, Shiwang; ...

    2016-06-23

    It is generally believed that the strength of the polymer nanoparticle interaction controls the modification of near-interface segmental mobility in polymer nanocomposites (PNCs). However, little is known about the effect of covalent bonding on the segmental dynamics and glass transition of matrix-free polymer-grafted nanoparticles (PGNs), especially when compared to PNCs. In this article, we directly compare the static and dynamic properties of poly(2-vinylpyridine)/silica-based nanocomposites with polymer chains either physically adsorbed (PNCs) or covalently bonded (PGNs) to identical silica nanoparticles (RNP = 12.5 nm) for three different molecular weight (MW) systems. Interestingly, when the MW of the matrix is as lowmore » as 6 kg/mol (RNP/Rg = 5.4) or as high as 140 kg/mol (RNP/Rg= 1.13), both small-angle X-ray scattering and broadband dielectric spectroscopy show similar static and dynamic properties for PNCs and PGNs. However, for the intermediate MW of 18 kg/mol (RNP/Rg = 3.16), the difference between physical adsorption and covalent bonding can be clearly identified in the static and dynamic properties of the interfacial layer. We ascribe the differences in the interfacial properties of PNCs and PGNs to changes in chain stretching, as quantified by self-consistent field theory calculations. These results demonstrate that the dynamic suppression at the interface is affected by the chain stretching; that is, it depends on the anisotropy of the segmental conformations, more so than the strength of the interaction, which suggests that the interfacial dynamics can be effectively tuned by the degree of stretching a parameter accessible from the MW or grafting density.« less

  6. Nondestructive Evaluation of Adhesive Bonds via Ultrasonic Phase Measurements

    NASA Technical Reports Server (NTRS)

    Haldren, Harold A.; Perey, Daniel F.; Yost, William T.; Cramer, K. Elliott; Gupta, Mool C.

    2016-01-01

    The use of advanced composites utilizing adhesively bonded structures offers advantages in weight and cost for both the aerospace and automotive industries. Conventional nondestructive evaluation (NDE) has proved unable to reliably detect weak bonds or bond deterioration during service life conditions. A new nondestructive technique for quantitatively measuring adhesive bond strength is demonstrated. In this paper, an ultrasonic technique employing constant frequency pulsed phased-locked loop (CFPPLL) circuitry to monitor the phase response of a bonded structure from change in thermal stress is discussed. Theoretical research suggests that the thermal response of a bonded interface relates well with the quality of the adhesive bond. In particular, the effective stiffness of the adhesive-adherent interface may be extracted from the thermal phase response of the structure. The sensitivity of the CFPPLL instrument allows detection of bond pathologies that have been previously difficult-to-detect. Theoretical results with this ultrasonic technique on single epoxy lap joint (SLJ) specimens are presented and discussed. This technique has the potential to advance the use of adhesive bonds - and by association, advanced composite structures - by providing a reliable method to measure adhesive bond strength, thus permitting more complex, lightweight, and safe designs.

  7. Bonding performance of experimental bioactive/biomimetic self-etch adhesives doped with calcium-phosphate fillers and biomimetic analogs of phosphoproteins.

    PubMed

    Abuna, Gabriel; Feitosa, Victor P; Correr, Americo Bortolazzo; Cama, Giuseppe; Giannini, Marcelo; Sinhoreti, Mario A; Pashley, David H; Sauro, Salvatore

    2016-09-01

    This study examined the bonding performance and dentin remineralization potential of an experimental adhesive containing calcium-phosphate (Ca/P) micro-fillers, and self-etching primers doped with phosphoprotein biomimetic analogs (polyacrylic acid-(PAA) and/or sodium trimetaphosphate-(TMP)). Experimental self-etching primers doped with biomimetic analogs (PAA and/or TMP), and an adhesive containing Ca(2+), PO4(-3)-releasing micro-fillers (Ca/P) were formulated. Sound human dentin specimens were bonded and cut into sticks after aging (24h or 6 months) under simulated pulpal pressure (20cm H2O), and tested for microtensile bond strength (μTBS). Results were analyzed using two-way ANOVA and Tukey's test (p<0.05). Interfacial silver nanoleakage was assessed using SEM. Remineralization of EDTA-demineralized dentin was assessed through FTIR and TEM ultrastructural analysis. Application of the Ca/P-doped adhesive with or without dentin pre-treatments with the primer containing both biomimetic analogs (PAA and TMP) promoted stable μTBS over 6 months. Conversely, μTBS of the control primer and filler-free adhesive significantly decreased after 6 months. Nanoleakage decreased within the resin-dentin interfaces created using the Ca/P-doped adhesives. EDTA-demineralized dentin specimens treated the Ca/P-doped adhesive and the primer containing PAA and TMP showed phosphate uptake (FTIR analysis), as well as deposition of needle-like crystallites at intrafibrillar level (TEM analysis). The use of Ca/P-doped self-etching adhesives applied in combination with analogs of phosphoproteins provides durable resin-dentin bonds. This approach may represent a suitable bonding strategy for remineralization of intrafibrillar dentin collagen within the resin-dentin interface. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Atomic scale structure and chemistry of interfaces by Z-contrast imaging and electron energy loss spectroscopy in the stem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGibbon, M.M.; Browning, N.D.; Chisholm, M.F.

    The macroscopic properties of many materials are controlled by the structure and chemistry at grain boundaries. A basic understanding of the structure-property relationship requires a technique which probes both composition and chemical bonding on an atomic scale. High-resolution Z-contrast imaging in the scanning transmission electron microscope (STEM) forms an incoherent image in which changes in atomic structure and composition across an interface can be interpreted directly without the need for preconceived atomic structure models. Since the Z-contrast image is formed by electrons scattered through high angles, parallel detection electron energy loss spectroscopy (PEELS) can be used simultaneously to provide complementarymore » chemical information on an atomic scale. The fine structure in the PEEL spectra can be used to investigate the local electronic structure and the nature of the bonding across the interface. In this paper we use the complimentary techniques of high resolution Z-contrast imaging and PEELS to investigate the atomic structure and chemistry of a 25{degree} symmetric tilt boundary in a bicrystal of the electroceramic SrTiO{sub 3}.« less

  9. Interfacial characteristics of diamond/aluminum composites with high thermal conductivity fabricated by squeeze-casting method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Longtao, E-mail: longtaojiang@163.com; Wang, Pingping; Xiu, Ziyang

    2015-08-15

    In this work, aluminum matrix composites reinforced with diamond particles (diamond/aluminum composites) were fabricated by squeeze casting method. The material exhibited a thermal conductivity as high as 613 W / (m · K). The obtained composites were investigated by scanning electron microscope and transmission electron microscope in terms of the (100) and (111) facets of diamond particles. The diamond particles were observed to be homogeneously distributed in the aluminum matrix. The diamond{sub (111)}/Al interface was found to be devoid of reaction products. While at the diamond{sub (100)}/Al interface, large-sized aluminum carbides (Al{sub 4}C{sub 3}) with twin-crystal structure were identified. Themore » interfacial characteristics were believed to be responsible for the excellent thermal conductivity of the material. - Graphical abstract: Display Omitted - Highlights: • Squeeze casting method was introduced to fabricate diamond/Al composite. • Sound interfacial bonding with excellent thermal conductivity was produced. • Diamond{sub (111)}/ aluminum interface was firstly characterized by TEM/HRTEM. • Physical combination was the controlling bonding for diamond{sub (111)}/aluminum. • The growth mechanism of Al{sub 4}C{sub 3} was analyzed by crystallography theory.« less

  10. Microstructure Evolution and Failure Analysis of an Aluminum-Copper Cathode Conductive Head Produced by Explosive Welding

    NASA Astrophysics Data System (ADS)

    Wei, Yanni; Luo, Yongguang; Qu, Hongtao; Zou, Juntao; Liang, Shuhua

    2017-12-01

    In this paper, microstructure evolution and failure analysis of the aluminum-copper interface of cathode conductive heads during their use were studied. The interface morphologies, compositions, conductivity and mechanical properties were investigated and analyzed. Obvious corrosion was found on the surface of the contact interface, which was more prevalent on an Al matrix. The crack increased sharply in the local metallurgical bonding areas on the interface, with the compound volume having no significant change. The phase transformation occurred on the interface during use, which was investigated using the elemental composition and x-ray diffraction pattern. The microhardness near the interface increased accordingly. An obvious electrical conductivity decrease appeared on the Al/Cu interface of the cathode conductive head after use over a specific time interval. Therefore, the deterioration of the microstructures and corrosion are the primary factors that affect the electrical conductivity and effective bonding, which will lead to eventual failure.

  11. In Situ Characterization of the Initial Effect of Water on Molecular Interactions at the Interface of Organic/Inorganic Hybrid Systems

    PubMed Central

    Pletincx, Sven; Trotochaud, Lena; Fockaert, Laura-Lynn; Mol, Johannes M. C.; Head, Ashley R.; Karslıoğlu, Osman; Bluhm, Hendrik; Terryn, Herman; Hauffman, Tom

    2017-01-01

    Probing initial interactions at the interface of hybrid systems under humid conditions has the potential to reveal the local chemical environment at solid/solid interfaces under real-world, technologically relevant conditions. Here, we show that ambient pressure X-ray photoelectron spectroscopy (APXPS) with a conventional X-ray source can be used to study the effects of water exposure on the interaction of a nanometer-thin polyacrylic acid (PAA) layer with a native aluminum oxide surface. The formation of a carboxylate ionic bond at the interface is characterized both with APXPS and in situ attenuated total reflectance Fourier transform infrared spectroscopy in the Kretschmann geometry (ATR-FTIR Kretschmann). When water is dosed in the APXPS chamber up to 5 Torr (~28% relative humidity), an increase in the amount of ionic bonds at the interface is observed. To confirm our APXPS interpretation, complementary ATR-FTIR Kretschmann experiments on a similar model system, which is exposed to an aqueous electrolyte, are conducted. These spectra demonstrate that water leads to an increased wet adhesion through increased ionic bond formation. PMID:28327587

  12. Novel fabrication method for 3D microstructures using surface-activated bonding and its application to micro-mechanical parts

    NASA Astrophysics Data System (ADS)

    Yamada, Takayuki; Takahashi, Mutsuya; Ozawa, Takashi; Tawara, Satoshi; Goto, Takayuki

    2002-11-01

    The purpose of this work is to demonstrate that a novel fabrication method for 3-D microstructures (FORMULA) is applicable to fabrication of micro mechanical parts with a large flexibility. This method is a kind of layer manufacturing method of thin films for metallic or dielectric microstructures using surface-activated bonding (SAB). The bonding interfaces of thin films are investigated by transmission electron microscope (TEM). Voids were observed at the interfaces of both pure aluminum films and Al-Cu alloy films. The ratio of void on the Al-Cu/Al-Cu interface is much larger than that of Al/Al interface, although the films have the same surface roughness of 3nm in Ra (average roughness). And approximately 10nm-thick amorphous intermediate layers were found at the interfaces. Furthermore, we have fabricated a micro gear of 900μm in diameter and 200μm in height, which is about ten times as large as our previous test pieces. Overhung structures such as a bridge structure and a cantilever were also fabricated without supporting layers beneath them.

  13. Fabrication of power SDB SITH

    NASA Astrophysics Data System (ADS)

    Jiang, Yanfeng; Zhang, Changnian; Zhang, Xiaobo

    2005-02-01

    In this paper, a novel method for fabricating a static induction thyristor has been put forward, using silicon direct bonding instead of traditional epitaxy during the construction of a cathode. Thus, an obvious improvement of the breakdown value of gate-cathode junction has been observed and consequently the gate controllability on anode voltage has been enhanced. The bonded interface has been studied. Some adjustments in technology have been adopted to enhance the bonding quality. A way to guarantee the consistency of the breakdown voltage of gate junction with respect to the cathode has been advanced. Some measurements of I-V characteristic of SDB-SITH have been carried out and the practical result is also listed. A comparison between the SDB-SITH and epitaxial SITH has been made, mainly on I-V and the switching time.

  14. Stress intensity factors in two bonded elastic layers containing cracks perpendicular to and on the interface. Part 2: Solution and results

    NASA Technical Reports Server (NTRS)

    Lu, M. C.; Erdogan, F.

    1980-01-01

    The numerical method is given for solving the plane problem for two bonded infinite dissimilar elastic strips which contain cracks of various configurations. The problem is intended to approximate a composite beam or a plate having cracks perpendicular to and on the interface of the two layers.

  15. [Preliminary study of bonding strength between diatomite-based dental ceramic and veneering porcelains].

    PubMed

    Lu, Xiao-li; Gao, Mei-qin; Cheng, Yu-ye; Zhang, Fei-min

    2015-04-01

    In order to choose the best veneering porcelain for diatomite-based dental ceramic substrate, the bonding strength between diatomite-based dental ceramics and veneering porcelains was measured, and the microstructure and elements distribution of interface were analyzed. The coefficient of thermal expansion (CTE) of diatomite-based dental ceramics was detected by dilatometry. Three veneering porcelain materials were selected with the best CTE matching including alumina veneering porcelain (group A), titanium porcelain veneering porcelain (group B), and E-max veneering porcelain (group C). Shear bonding strength was detected. SEM and EDS were used to observe the interface microstructure and element distribution. Statistical analysis was performed using SPSS 17.0 software package. The CTE of diatomite-based dental ceramics at 25-500 degrees centigrade was 8.85×10-6K-1. The diatomite-based substrate ceramics combined best with group C. Shear bonding strength between group A and C and group B and C both showed significant differences(P<0.05). SEM and EDS showed that the interface of group C sintered tightly and elements permeated on both sides of the interface. The diatomite-based substrate ceramics combines better with E-max porcelain veneer.

  16. Enhanced van der Waals epitaxy via electron transfer enabled interfacial dative bond formation

    DOE PAGES

    Xie, Weiyu; Lu, Toh -Ming; Wang, Gwo -Ching; ...

    2017-11-14

    Enhanced van der Waals (vdW) epitaxy of semiconductors on a layered vdW substrate is identified as the formation of dative bonds. For example, despite that NbSe 2 is a vdW layeredmaterial, first-principles calculations reveal that the bond strength at a CdTe-NbSe 2 interface is five times as large as that of vdW interactions at a CdTe-graphene interface. Finally, the unconventional chemistry here is enabled by an effective net electron transfer from Cd dangling-bond states at a CdTe surface to metallic nonbonding NbSe 2 states, which is a necessary condition to activate the Cd for enhanced binding with Se.

  17. Enhanced van der Waals epitaxy via electron transfer enabled interfacial dative bond formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Weiyu; Lu, Toh -Ming; Wang, Gwo -Ching

    Enhanced van der Waals (vdW) epitaxy of semiconductors on a layered vdW substrate is identified as the formation of dative bonds. For example, despite that NbSe 2 is a vdW layeredmaterial, first-principles calculations reveal that the bond strength at a CdTe-NbSe 2 interface is five times as large as that of vdW interactions at a CdTe-graphene interface. Finally, the unconventional chemistry here is enabled by an effective net electron transfer from Cd dangling-bond states at a CdTe surface to metallic nonbonding NbSe 2 states, which is a necessary condition to activate the Cd for enhanced binding with Se.

  18. Zirconia-based dental crown to support a removable partial denture: a three-dimensional finite element analysis using contact elements and micro-CT data.

    PubMed

    Rocha, Eduardo Passos; Anchieta, Rodolfo Bruniera; de Almeida, Erika Oliveira; Freitas, Amilcar Chagas; Martini, Ana Paula; Sotto-Maior, Bruno Sales; Luersen, Marco Antonio; Ko, Ching Chang

    2015-01-01

    Veneer fracture is the most common complication in zirconia-based restorations. The aim of this study was to evaluate the mechanical behavior of a zirconia-based crown in a lower canine tooth supporting removable partial denture (RPD) prosthesis, varying the bond quality of the veneer/coping interface. Microtomography (μCT) data of an extracted left lower canine were used to build the finite element model (M) varying the core material (gold core - MAu; zirconia core - MZi) and the quality of the veneer/core interface (complete bonded - MZi; incomplete bonded - MZi-NL). The incomplete bonding condition was only applied for zirconia coping by using contact elements (Target/Contact) with 0.3 frictional coefficients. Stress fields were obtained using Ansys Workbench 10.0. The loading condition (L = 1 N) was vertically applied at the base of the RPD prosthesis metallic support towards the dental apex. Maximum principal (σmax) and von Mises equivalent (σvM) stresses were obtained. The σmax (MPa) for the bonded condition was similar between gold and zirconia cores (MAu, 0.42; MZi, 0.40). The incomplete bonded condition (MZi-NL) raised σmax in the veneer up to 800% (3.23 MPa) in contrast to the bonded condition. The peak of σvM increased up to 270% in the MZi-NL. The incomplete bond condition increasing the stress in the veneer/zirconia interface.

  19. Hardness and elasticity of caries-affected and sound primary tooth dentin bonded with 4-META one-step self-etch adhesives

    PubMed Central

    Hosoya, Yumiko; Tay, Franklin R.; Miyakoshi, Shoichi; Pashley, David H.

    2013-01-01

    Purpose This study evaluated the quality of the interface of sound and carious primary tooth dentin bonded with two 4-META one-step self-etch adhesives. Methods Twelve sound and twelve carious primary molars were bonded with AQ Bond Plus (AQBP; Sun Medical) or Hybrid Bond (HB; Sun Medical) and restored with Clearfil Protect Liner F (Kuraray Medical Inc.). After 24 hours of water immersion, the teeth were sectioned and polished. Resin-dentin interfaces were measured with a nano-indentation tester and hardness and Young’s modulus were calculated. Data were analyzed using one-way or two-ways ANOVA and Fisher’s PLSD test with α=0.05. Resin-dentin interfaces were also observed with SEM and TEM. Ammoniacal silver nitrate was used as a tracer for TEM observation. Results Hardness and Young’s modulus of the interfacial dentin were significantly lower than the underlying intact dentin except for the carious-AQBP group. However, there was no significant difference of hardness and Young's moduli of the interfacial dentin among all groups. TEM revealed extensive interfacial nanoleakage in sound dentin bonded with either AQBP or HB. For the carious teeth, nanoleakage was absent in the hybrid layers bonded with the two adhesives. However, extensive silver deposits were identified from the subsurface, porous caries-affected dentin. PMID:18795517

  20. Interfacial Microstructure and Mechanical Strength of 93W/Ta Diffusion-Bonded Joints with Ni Interlayer

    NASA Astrophysics Data System (ADS)

    Luo, Guoqiang; Zhang, Jian; Li, Meijuan; Wei, Qinqin; Shen, Qiang; Zhang, Lianmeng

    2013-02-01

    93W alloy and Ta metal were successfully diffusion bonded using a Ni interlayer. Ni4W was found at the W-Ni interface, and Ni3Ta and Ni2Ta were formed at the Ni-Ta interface. The shear strength of the joints increases with increasing holding time, reaching a value of 202 MPa for a joint prepared using a 90-minute holding time at 1103 K (830 °C) and 20 MPa. The fracture of this joint occurred within the Ni/Ta interface.

  1. Reducing composite restoration polymerization shrinkage stress through resin modified glass-ionomer based adhesives.

    PubMed

    Naoum, S J; Mutzelburg, P R; Shumack, T G; Thode, Djg; Martin, F E; Ellakwa, A E

    2015-12-01

    The aim of this study was to determine whether employing resin modified glass-ionomer based adhesives can reduce polymerization contraction stress generated at the interface of restorative composite adhesive systems. Five resin based adhesives (G Bond, Optibond-All-in-One, Optibond-Solo, Optibond-XTR and Scotchbond-Universal) and two resin modified glass-ionomer based adhesives (Riva Bond-LC, Fuji Bond-LC) were analysed. Each adhesive was applied to bond restorative composite Filtek-Z250 to opposing acrylic rods secured within a universal testing machine. Stress developed at the interface of each adhesive-restorative composite system (n = 5) was calculated at 5-minute intervals over 6 hours. The resin based adhesive-restorative composite systems (RBA-RCS) demonstrated similar interface stress profiles over 6 hours; initial rapid contraction stress development (0-300 seconds) followed by continued contraction stress development ≤0.02MPa/s (300 seconds - 6 hours). The interface stress profile of the resin modified glass-ionomer based adhesive-restorative composite systems (RMGIBA-RCS) differed substantially to the RBA-RCS in several ways. Firstly, during 0-300 seconds the rate of contraction stress development at the interface of the RMGIBA-RCS was significantly (p < 0.05) lower than at the interface of the RBA-RCS. Secondly, at 300 seconds and 6 hours the interface contraction stress magnitude of the RMGIBA-RCS was significantly (p < 0.05) lower than the stress of all assessed RBA-RCS. Thirdly, from 300 seconds to 6 hours both the magnitude and rate of interface stress of the RMGIBA-RCS continued to decline over the 6 hours from the 300 seconds peak. The use of resin modified glass-ionomer based adhesives can significantly reduce the magnitude and rate of polymerization contraction stress developed at the interface of adhesive-restorative composite systems. © 2015 Australian Dental Association.

  2. [Effect of niobium nitride on the bonding strength of titanium porcelain by magnetron sputtering].

    PubMed

    Wang, Shu-shu; Zhang, La-bao; Guang, Han-bing; Zhou, Shu; Zhang, Fei-min

    2010-05-01

    To investigate the effect of magnetron sputtered niobium nitride (NbN) on the bonding strength of commercially pure cast titanium (Ti) and low-fusing porcelain (Ti/Vita titankeramik system). Sixty Ti specimens were randomly divided into four groups, group T1, T2, T3 and T4. All specimens of group T1 and T2 were first treated with 120 microm blasted Al2O3 particles, and then only specimens of group T2 were treated with magnetron sputtered NbN film. All specimens of group T3 and T4 were first treated with magnetron sputtered NbN film and then only specimens of group T4 were treated with 120 microm blasted Al2O3 particles. The composition of the deposits were analyzed by X-ray diffraction (XRD). A universal testing machine was used to perform the three-point bending test to evaluate the bonding strength of Ti and porcelain. The microstructure of NbN, the interface of Ti-porcelain and the fractured Ti surface were observed with scanning electron microscopy (SEM) and energy depressive spectrum (EDS), and the results were compared. The XRD results showed that the NbN deposits were cubic crystalline phases. The bonding strength of Ti and porcelain in T1 to T4 group were (27.2+/-0.8), (43.1+/-0.6), (31.4+/-1.0) and (44.9+/-0.6) MPa. These results were analyzed by one-way analysis of variance and differences between groups were compared using least significant difference test. Significant inter-group differences were found among all groups (P<0.05). The results of SEM showed that with treatment of Al2O3 or NbN, alone, pre-cracks were found in the interface of Ti-porcelain, while samples treated with both Al2O3 and NbN had better bond. EDS of Ti-porcelain interface showed oxidation occurred in T1, T2 and T3, but was well controlled in T4. Magnetron sputtered NbN can prevent Ti from being oxidized, and can improve the bonding strength of Ti/Vita titankeramik system. Al2O3 blast can also improve the bonding strength of Ti/Vita titankeramik system.

  3. Effect of resin coating on adhesion and microleakage of computer-aided design/computer-aided manufacturing fabricated all-ceramic crowns after occlusal loading: a laboratory study.

    PubMed

    Kitayama, Shuzo; Pilecki, Peter; Nasser, Nasser A; Bravis, Theodora; Wilson, Ron F; Nikaido, Toru; Tagami, Junji; Watson, Timothy F; Foxton, Richard M

    2009-08-01

    This study investigated the effect of resin coating and occlusal loading on adhesion and microleakage of all-ceramic crowns. Molars were prepared for an all-ceramic crown and were divided into two groups: non-coated (control) and resin-coated with Clearfil Tri-S Bond. Crowns were fabricated using CEREC 3 and cemented using Clearfil Esthetic Cement. After 24 h of storage in water, the restored teeth in each group were divided into two subgroups: unloaded, or loaded while stored in water. Mechanical loading was achieved with an axial force of 80 N at 2.5 cycles s(-1) for 250,000 cycles. After immersion in Rhodamine B, the specimens were sectioned and processed for microleakage evaluation by confocal microscopy, which was followed by further sectioning for microtensile bond testing. Loading had no significant effect on microleakage in either the resin-coated or non-resin-coated groups. Resin coating did not reduce the microleakage at the dentine interface but increased the microleakage at the enamel interface. All the beams fractured during slicing when non-coated and loaded. The bond strengths of non-coated and unloaded, resin-coated and unloaded, and resin-coated and loaded groups were 15.82 +/- 4.22, 15.17 +/- 5.24, and 12.97 +/- 5.82 MPa, respectively. Resin coating with Clearfil Tri-S Bond improved the bonding of resin cement to dentine for loaded specimens. However, it was not effective in reducing the microleakage, regardless of whether it was loaded or unloaded.

  4. A unified bond theory, probabilistic meso-scale modeling, and experimental validation of deformed steel rebar in normal strength concrete

    NASA Astrophysics Data System (ADS)

    Wu, Chenglin

    Bond between deformed rebar and concrete is affected by rebar deformation pattern, concrete properties, concrete confinement, and rebar-concrete interfacial properties. Two distinct groups of bond models were traditionally developed based on the dominant effects of concrete splitting and near-interface shear-off failures. Their accuracy highly depended upon the test data sets selected in analysis and calibration. In this study, a unified bond model is proposed and developed based on an analogy to the indentation problem around the rib front of deformed rebar. This mechanics-based model can take into account the combined effect of concrete splitting and interface shear-off failures, resulting in average bond strengths for all practical scenarios. To understand the fracture process associated with bond failure, a probabilistic meso-scale model of concrete is proposed and its sensitivity to interface and confinement strengths are investigated. Both the mechanical and finite element models are validated with the available test data sets and are superior to existing models in prediction of average bond strength (< 6% error) and crack spacing (< 6% error). The validated bond model is applied to derive various interrelations among concrete crushing, concrete splitting, interfacial behavior, and the rib spacing-to-height ratio of deformed rebar. It can accurately predict the transition of failure modes from concrete splitting to rebar pullout and predict the effect of rebar surface characteristics as the rib spacing-to-height ratio increases. Based on the unified theory, a global bond model is proposed and developed by introducing bond-slip laws, and validated with testing of concrete beams with spliced reinforcement, achieving a load capacity prediction error of less than 26%. The optimal rebar parameters and concrete cover in structural designs can be derived from this study.

  5. Metal/silicon Interfaces and Their Oxidation Behavior - Photoemission Spectroscopy Analysis.

    NASA Astrophysics Data System (ADS)

    Yeh, Jyh-Jye

    Synchrotron radiation photoemission spectroscopy was used to study Ni/Si and Au/Si interface properties on the atomic scale at room temperature, after high temperature annealing and after oxygen exposures. Room temperature studies of metal/Si interfaces provide background for an understanding of the interface structure after elevated temperature annealing. Oxidation studies of Si surfaces covered with metal overlayers yield insight about the effect of metal atoms in the Si oxidation mechanisms and are useful in the identification of subtle differences in bonding relations between atoms at the metal/Si interfaces. Core level and valence band spectra with variable surface sensitivities were used to study the interactions between metal, Si, and oxygen for metal coverages and oxide thickness in the monolayer region. Interface morphology at the initial stage of metal/Si interface formation and after oxidation was modeled on the basis of the evolutions of metal and Si signals at different probing depths in the photoemission experiment. Both Ni/Si and Au/Si interfaces formed at room temperature have a diffusive region at the interface. This is composed of a layer of metal-Si alloy, formed by Si outdiffusion into the metal overlayer, above a layer of interstitial metal atoms in the Si substrate. Different atomic structures of these two regions at Ni/Si interface can account for the two different growth orientations of epitaxial Ni disilicides on the Si(111) surface after thermal annealing. Annealing the Au/Si interface at high temperature depletes all the Au atoms except for one monolayer of Au on the Si(111) surface. These phenomena are attributed to differences in the metal-Si chemical bonding relations associated with specific atomic structures. After oxygen exposures, both the Ni disilicide surface and Au covered Si surfaces (with different coverages and surface orderings) show silicon in higher oxidation states, in comparison to oxidized silicon on a clean surface. Preferential Si dioxide growth on the Au/Si surface is related to the strong distortion of the Si lattice when Au-Si bonds are formed. In comparison, a monolayer of Ni on a Si surface, with its weaker Ni-Si bond, does not enhance oxide formation.

  6. Liquid phase diffusion bonding of A1070 by using metal formate coated Zn sheet

    NASA Astrophysics Data System (ADS)

    Ozawa, K.; Koyama, S.; shohji, I.

    2017-05-01

    Aluminium alloy have high strength and easily recycle due to its low melting point. Therefore, aluminium is widely used in the manufacturing of cars and electronic devices. In recent years, the most common way for bonding aluminium alloy is brazing and friction stir welding. However, brazing requires positional accuracy and results in the formation of voids by the flax residue. Moreover, aluminium is an excellent heat radiating and electricity conducting material; therefore, it is difficult to bond together using other bonding methods. Because of these limitations, liquid phase diffusion bonding is considered to the suitable method for bonding aluminium at low temperature and low bonding pressure. In this study, the effect of metal formate coating processing of zinc surface on the bond strength of the liquid phase diffusion bonded interface of A1070 has been investigated by SEM observation of the interfacial microstructures and fractured surfaces after tensile test. Liquid phase diffusion bonding was carried out under a nitrogen gas atmosphere at a bonding temperature of 673 K and 713 K and a bonding load of 6 MPa (bonding time: 15 min). As a result of the metal formate coating processing, a joint having the ultimate tensile strength of the base aluminium was provided. It is hypothesized that this is because metallic zinc is generated as a result of thermal decomposition of formate in the bonded interface at lower bonding temperatures.

  7. Interface toughness of a zirconia-veneer system and the effect of a liner application.

    PubMed

    Wang, Gaoqi; Zhang, Song; Bian, Cuirong; Kong, Hui

    2014-09-01

    Chipping of veneering porcelain and delamination of a zirconia-veneer interface are 2 common clinical failure modes for zirconia-based restorations and may be partially due to weak interface bonding. The effect of liner on the bond strength of the interface has not been clearly identified. The purpose of the research was to evaluate the interface toughness between the zirconia core and veneering porcelain by means of a fracture mechanics test and to assess the effect of liner on the bond strength of the interface. Thirty bilayered beam-shape specimens were prepared and divided into 2 groups according to liner application. The specimens in each group were subdivided into 3 subgroups in accordance with 3 different veneer thicknesses. A fracture mechanics test was used on each specimen, and the energy release rate, G, and phase angle, ψ, were calculated according to the experimental results. A video microscope was used to monitor the crack propagation, and a scanning electron microscope was used to identify the fracture mode after testing. Two-way ANOVA and the Tukey honestly significant difference test were performed to analyze the experimental data (α=.05) . At each phase angle, the interfaces without a liner had higher mean G values than the interfaces with a liner. Both of the interfaces showed mixed failure mode with thin layers of a veneer or a liner that remained on the zirconia surfaces. Liner application before veneering reduced the interface toughness between zirconia and veneer. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  8. Stress Intensity of Delamination in a Sintered-Silver Interconnection: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeVoto, D. J.; Paret, P. P.; Wereszczak, A. A.

    2014-08-01

    In automotive power electronics packages, conventional thermal interface materials such as greases, gels, and phase-change materials pose bottlenecks to heat removal and are also associated with reliability concerns. The industry trend is toward high thermal performance bonded interfaces for large-area attachments. However, because of coefficient of thermal expansion mismatches between materials/layers and resultant thermomechanical stresses, adhesive and cohesive fractures could occur, posing a reliability problem. These defects manifest themselves in increased thermal resistance. This research aims to investigate and improve the thermal performance and reliability of sintered-silver for power electronics packaging applications. This has been experimentally accomplished by the synthesismore » of large-area bonded interfaces between metalized substrates and copper base plates that have subsequently been subjected to thermal cycles. A finite element model of crack initiation and propagation in these bonded interfaces will allow for the interpretation of degradation rates by a crack-velocity (V)-stress intensity factor (K) analysis. A description of the experiment and the modeling approach are discussed.« less

  9. Tribological characteristics of gold films deposited on metals by ion plating and vapor deposition

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Spalvins, T.; Buckley, D. H.

    1984-01-01

    The graded interface between an ion-plated film and a substrate is discussed as well as the friction and wear properties of ion-plated gold. X-ray photoelectron spectroscopy (XPS) depth profiling and microhardness depth profiling were used to investigate the interface. The friction and wear properties of ion-plated and vapor-deposited gold films were studied both in an ultra high vacuum system to maximize adhesion and in oil to minimize adhesion. The results indicate that the solubility of gold on the substrate material controls the depth of the graded interface. Thermal diffusion and chemical diffusion mechanisms are thought to be involved in the formation of the gold-nickel interface. In iron-gold graded interfaces the gold was primarily dispersed in the iron and thus formed a physically bonded interface. The hardness of the gold film was influenced by its depth and was also related to the composition gradient between the gold and the substrate. The graded nickel-gold interface exhibited the highest hardness because of an alloy hardening effect. The effects of film thickness on adhesion and friction were established.

  10. Tribological characteristics of gold films deposited on metals by ion plating and vapor deposition

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Spalvins, T.; Buckley, D. H.

    1986-01-01

    The graded interface between an ion-plated film and a substrate is discussed as well as the friction and wear properties of ion-plated gold. X-ray photoelectron spectroscopy (XPS) depth profiling and microhardness depth profiling were used to investigate the interface. The friction and wear properties of ion-plated and vapor-deposited gold films were studied both in an ultra high vacuum system to maximize adhesion and in oil to minimize adhesion. The results indicate that the solubility of gold on the substrate material controls the depth of the graded interface. Thermal diffusion and chemical diffusion mechanisms are thought to be involved in the formation of the gold-nickel interface. In iron-gold graded interfaces the gold was primarily dispersed in the iron and thus formed a physically bonded interface. The hardness of the gold film was influenced by its depth and was also related to the composition gradient between the gold and the substrate. The graded nickel-gold interface exhibited the highest hardness because of an alloy hardening effect. The effects of film thickness on adhesion and friction were established.

  11. Influence of Thermal Cycles Number on Bond Strength of Metallic Brackets to Ceramic.

    PubMed

    Jurubeba, José Eliú Pereira; Costa, Ana Rosa; Correr-Sobrinho, Lourenço; Tubel, Carlos Alberto Malanconi; Correr, Américo Bortolazzo; Vedovello, Silvia Amélia; Crepaldi, Marcus Vinicius; Vedovello, Mário

    2017-01-01

    The aim of this study was to evaluate the effect of different number of thermal cycles on the shear bond strength (SBS) of metallic orthodontic brackets bonded to feldspathic ceramic by a composite resin. Twenty-five ceramic cylinders were etched with 10% hydrofluoric acid for 60 s and received two layers of silane. Brackets were bonded to the cylinders using Transbond XT and assigned to 5 groups (n=5): Group 1 - Control group (without thermal cycling); Group 2 - 500 thermal cycles; Group 3 - 5,000 thermal cycles; Group 4 - 7,000 thermal cycles and Group 5 - 10,000 thermal cycles. Light-activation was carried out by Radii Plus LED. SBS testing was carried out after 24 h of storage in deionized water and thermal cycling (5/55 oC and 30 s dwell time). Five brackets were bonded to each cylinder, totalizing 25 brackets for each group. Data were submitted to one-way ANOVA and Tukey's test (α=0.05). The Adhesive Remnant Index (ARI) was evaluated at 8× magnification. The SBS (MPa) of control group (9.3±0.8), 500 (9.0±0.7) and 5,000 (8.4±0.9) thermal cycles were significantly higher than those after 7,000 (6.8±0.6) and 10,000 (4.9±1.0) thermal cycles (p<0.05). The ARI showed a predominance of Scores 0 (adhesive failure) prevailed in all groups, as shown by the ARI, with increased scores 1 and 2 (mixed failures) for control group and 500 thermal cycles. In conclusion, thermal fatigue may compromise the bonding integration between metallic brackets and ceramic restorations. For in vitro testing, use of at least 7,000 cycles is advised to result in significant fatigue on the bonding interface.

  12. Effects of silica coating and silane surface conditioning on the bond strength of metal and ceramic brackets to enamel.

    PubMed

    Atsü, Saadet Sağlam; Gelgör, Ibrahim Erhan; Sahin, Volkan

    2006-09-01

    To evaluate the effect of tribochemical silica coating and silane surface conditioning on the bond strength of metal and ceramic brackets bonded to enamel surfaces with light-cured composite resin. Twenty metal and 20 ceramic brackets were divided into four groups (n = 10 for each group). The specimens were randomly assigned to one of the following treatment conditions of the metal and ceramic brackets' surface: (1) tribochemical silica coating combined with silane and (2) no treatment. Brackets were bonded to the enamel surface on the labial and lingual sides of human maxillary premolars (20 total) with a light-polymerized resin composite. All specimens were stored in water for 1 week at 37 degrees C and then thermocycled (5000 cycles, 5 degrees C to 55 degrees C, 30 seconds). The shear bond strength values were measured on a universal testing machine. Student's t-test was used to compare the data (alpha = 0.05). The types of failures were observed using a stereomicroscope. Metal and ceramic brackets treated with silica coating with silanization had significantly greater bond strength values (metal brackets: 14.2 +/- 1.7 MPa, P < .01; ceramic brackets: 25.9 +/- 4.4 MPa, P < .0001) than the control groups (metal brackets: 11.9 +/- 1.3 MPa; ceramic brackets: 15.6 +/- 4.2 MPa). Treated specimens of metal and ceramic exhibited cohesive failures in resin and adhesive failures at the enamel-adhesive interface, whereas control specimens showed mixed types of failures. Silica coating with aluminum trioxide particles coated with silica followed by silanization gave higher bond strengths in both metal and ceramic brackets than in the control group.

  13. Reliable four-point flexion test and model for die-to-wafer direct bonding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tabata, T., E-mail: toshiyuki.tabata@cea.fr; Sanchez, L.; Fournel, F.

    2015-07-07

    For many years, wafer-to-wafer (W2W) direct bonding has been very developed particularly in terms of bonding energy measurement and bonding mechanism comprehension. Nowadays, die-to-wafer (D2W) direct bonding has gained significant attention, for instance, in photonics and microelectro-mechanics, which supposes controlled and reliable fabrication processes. So, whatever the stuck materials may be, it is not obvious whether bonded D2W structures have the same bonding strength as bonded W2W ones, because of possible edge effects of dies. For that reason, it has been strongly required to develop a bonding energy measurement technique which is suitable for D2W structures. In this paper, bothmore » D2W- and W2W-type standard SiO{sub 2}-to-SiO{sub 2} direct bonding samples are fabricated from the same full-wafer bonding. Modifications of the four-point flexion test (4PT) technique and applications for measuring D2W direct bonding energies are reported. Thus, the comparison between the modified 4PT and the double-cantilever beam techniques is drawn, also considering possible impacts of the conditions of measures such as the water stress corrosion at the debonding interface and the friction error at the loading contact points. Finally, reliability of a modified technique and a new model established for measuring D2W direct bonding energies is demonstrated.« less

  14. Tensile and bending fatigue of the adhesive interface to dentin.

    PubMed

    Belli, Renan; Baratieri, Luiz Narciso; Braem, Marc; Petschelt, Anselm; Lohbauer, Ulrich

    2010-12-01

    The aim of this study was to evaluate the fatigue limits of the dentin-composite interfaces established either with an etch-and-rinse or an one-step self-etch adhesive systems under tensile and bending configurations. Flat specimens (1.2 mm×5 mm×35 mm) were prepared using a plexiglass mold where dentin sections from human third molars were bonded to a resin composite, exhibiting the interface centrally located. Syntac Classic and G-Bond were used as adhesives and applied according to the manufacturer's instructions. The fluorochrome Rhodamine B was added to the adhesives to allow for fractographic evaluation. Tensile strength was measured in an universal testing machine and the bending strength (n=15) in a Flex machine (Flex, University of Antwerp, Belgium), respectively. Tensile (TFL) and bending fatigue limits (BFL) (n=25) were determined under wet conditions for 10(4) cycles following a staircase approach. Interface morphology and fracture mechanisms were observed using light, confocal laser scanning and scanning electron microscopy. Statistical analysis was performed using three-way ANOVA (mod LSD test, p<0.05). Tensile and bending characteristic strengths at 63.2% failure probability for Syntac were 23.8 MPa and 71.5 MPa, and 24.7 MPa and 72.3 MPa for G-Bond, respectively. Regarding the applied methods, no significant differences were detected between adhesives. However, fatigue limits for G-Bond (TFL=5.9 MPa; BFL=36.2 MPa) were significantly reduced when compared to Syntac (TFL=12.6 MPa; BFL=49.7 MPa). Fracture modes of Syntac were generally of adhesive nature, between the adhesive resin and dentin, while G-Bond showed fracture planes involving the adhesive-dentin interface and the adhesive resin. Cyclic loading under tensile and bending configurations led to a significant strength degradation, with a more pronounced fatigue limit decrease for G-Bond. The greater decrease in fracture strength was observed in the tensile configuration. Copyright © 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  15. Hydrogen bonding at the water surface revealed by isotopic dilution spectroscopy.

    PubMed

    Stiopkin, Igor V; Weeraman, Champika; Pieniazek, Piotr A; Shalhout, Fadel Y; Skinner, James L; Benderskii, Alexander V

    2011-06-08

    The air-water interface is perhaps the most common liquid interface. It covers more than 70 per cent of the Earth's surface and strongly affects atmospheric, aerosol and environmental chemistry. The air-water interface has also attracted much interest as a model system that allows rigorous tests of theory, with one fundamental question being just how thin it is. Theoretical studies have suggested a surprisingly short 'healing length' of about 3 ångströms (1 Å = 0.1 nm), with the bulk-phase properties of water recovered within the top few monolayers. However, direct experimental evidence has been elusive owing to the difficulty of depth-profiling the liquid surface on the ångström scale. Most physical, chemical and biological properties of water, such as viscosity, solvation, wetting and the hydrophobic effect, are determined by its hydrogen-bond network. This can be probed by observing the lineshape of the OH-stretch mode, the frequency shift of which is related to the hydrogen-bond strength. Here we report a combined experimental and theoretical study of the air-water interface using surface-selective heterodyne-detected vibrational sum frequency spectroscopy to focus on the 'free OD' transition found only in the topmost water layer. By using deuterated water and isotopic dilution to reveal the vibrational coupling mechanism, we find that the free OD stretch is affected only by intramolecular coupling to the stretching of the other OD group on the same molecule. The other OD stretch frequency indicates the strength of one of the first hydrogen bonds encountered at the surface; this is the donor hydrogen bond of the water molecule straddling the interface, which we find to be only slightly weaker than bulk-phase water hydrogen bonds. We infer from this observation a remarkably fast onset of bulk-phase behaviour on crossing from the air into the water phase.

  16. Chemical Ni-C Bonding in Ni-Carbon Nanotube Composite by a Microwave Welding Method and Its Induced High-Frequency Radar Frequency Electromagnetic Wave Absorption.

    PubMed

    Sha, Linna; Gao, Peng; Wu, Tingting; Chen, Yujin

    2017-11-22

    In this work, a microwave welding method has been used for the construction of chemical Ni-C bonding at the interface between carbon nanotubes (CNTs) and metal Ni to provide a different surface electron distribution, which determined the electromagnetic (EM) wave absorption properties based on a surface plasmon resonance mechanism. Through a serial of detailed examinations, such as X-ray diffraction, scanning electron microscopy, transmission electron microscopy, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, and Raman spectrum, the as-expected chemical Ni-C bonding between CNTs and metal Ni has been confirmed. And the Brunauer-Emmett-Teller and surface zeta potential measurements uncovered the great evolution of structure and electronic density compared with CNTs, metal Ni, and Ni-CNT composite without Ni-C bonding. Correspondingly, except the EM absorption due to CNTs and metal Ni in the composite, another wide and strong EM absorption band ranging from 10 to 18 GHz was found, which was induced by the Ni-C bonded interface. With a thinner thickness and more exposed Ni-C interfaces, the Ni-CNT composite displayed less reflection loss.

  17. Hydrated proton and hydroxide charge transfer at the liquid/vapor interface of water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soniat, Marielle; Rick, Steven W., E-mail: srick@uno.edu; Kumar, Revati

    2015-07-28

    The role of the solvated excess proton and hydroxide ions in interfacial properties is an interesting scientific question with applications in a variety of aqueous behaviors. The role that charge transfer (CT) plays in interfacial behavior is also an unsettled question. Quantum calculations are carried out on clusters of water with an excess proton or a missing proton (hydroxide) to determine their CT. The quantum results are applied to analysis of multi-state empirical valence bond trajectories. The polyatomic nature of the solvated excess proton and hydroxide ion results in directionally dependent CT, depending on whether a water molecule is amore » hydrogen bond donor or acceptor in relation to the ion. With polyatomic molecules, CT also depends on the intramolecular bond distances in addition to intermolecular distances. The hydrated proton and hydroxide affect water’s liquid/vapor interface in a manner similar to monatomic ions, in that they induce a hydrogen-bonding imbalance at the surface, which results in charged surface waters. This hydrogen bond imbalance, and thus the charged waters at the surface, persists until the ion is at least 10 Å away from the interface.« less

  18. High sensitivity of tunneling spin polarization to chemical bonding of transition metal ferromagnetic alloys at interface with insulating barrier

    NASA Astrophysics Data System (ADS)

    Yang, See-Hun; Yang, Hyunsoo; Kaiser, Christian; Parkin, Stuart

    2006-03-01

    We report that the tunneling spin polarization (TSP) is found to be strongly influenced by the amount of oxygen used in the deposition of the tunnel barrier itself that chemical bonding at the interface between Al2O3 and ferromagnetic Co and Co-Pt alloys. For reactive sputter (RS) deposition of alumina using an argon-oxygen gas mixture with a low concentration of oxygen (˜0.1 mTorr), much lower TSP values are found than when the alumina barrier is formed by post-plasma oxidation (PO) with ˜100mTorr oxygen of Al layers. X-ray absorption spectroscopy (XAS) has been used to characterize the chemical bonding at the Co or Co-Pt/Al2O3 interface. These studies show that Co-O bonds are much more formed for the barrier fromed by PO of Al than for that formed by RS deposition. We attribute the changes in TSP to changes in the relative tunneling probabilities from Co and Pt which are strongly influenced by oxygen bond formation.^1 ^1C. Kaiser, S. van Dijken, S.-H. Yang, H. Yang, and S. S. P. Parkin, Phys. Rev. Lett. 94, 247203 (2005).

  19. Composite Laser Ceramics by Advanced Bonding Technology

    PubMed Central

    Kamimura, Tomosumi; Honda, Sawao

    2018-01-01

    Composites obtained by bonding materials with the same crystal structure and different chemical compositions can create new functions that do not exist in conventional concepts. We have succeeded in bonding polycrystalline YAG and Nd:YAG ceramics without any interstices at the bonding interface, and the bonding state of this composite was at the atomic level, similar to the grain boundary structure in ceramics. The mechanical strength of the bonded composite reached 278 MPa, which was not less than the strength of each host material (269 and 255 MPa). Thermal conductivity of the composite was 12.3 W/mK (theoretical value) which is intermediate between the thermal conductivities of YAG and Nd:YAG (14.1 and 10.2 W/mK, respectively). Light scattering cannot be detected at the bonding interface of the ceramic composite by laser tomography. Since the scattering coefficients of the monolithic material and the composite material formed by bonding up to 15 layers of the same materials were both 0.10%/cm, there was no occurrence of light scattering due to the bonding. In addition, it was not detected that the optical distortion and non-uniformity of the refractive index variation were caused by the bonding. An excitation light source (LD = 808 nm) was collimated to 200 μm and irradiated into a commercial 1% Nd:YAG single crystal, but fracture damage occurred at a low damage threshold of 80 kW/cm2. On the other hand, the same test was conducted on the bonded interface of 1% Nd:YAG-YAG composite ceramics fabricated in this study, but it was not damaged until the excitation density reached 127 kW/cm2. 0.6% Nd:YAG-YAG composite ceramics showed high damage resistance (up to 223 kW/cm2). It was concluded that composites formed by bonding polycrystalline ceramics are ideal in terms of thermo-mechanical and optical properties. PMID:29425152

  20. Adhesive phase separation at the dentin interface under wet bonding conditions.

    PubMed

    Spencer, Paulette; Wang, Yong

    2002-12-05

    Under in vivo conditions, there is little control over the amount of water left on the tooth and, thus, there is the danger of leaving the dentin surface so wet that the bonding resin undergoes physical separation into hydrophobic and hydrophilic-rich phases. The purpose of this study was to investigate phase separation in 2,2-bis[4(2-hydroxy-3-methacryloyloxy-propyloxy)-phenyl] propane (BisGMA)-based adhesive using molecular microanalysis and to examine the effect of phase separation on the structural characteristics of the hybrid layer. Model BisGMA/HEMA (hydroxyethl methacrylate) mixtures with/without ethanol and commercial BisGMA-based adhesive (Single Bond) were combined with water at concentrations from 0 to 50 vol%. Macrophase separation in the BisGMA/HEMA/water mixtures was detected using cloud point measurements. In parallel with these measurements, the BisGMA/HEMA and adhesive/water mixtures were cast as films and polymerized. Molecular structure was recorded from the distinct features in the phase-separated adhesive using confocal Raman microspectroscopy (CRM). Human dentin specimens treated with Single Bond were analyzed with scanning electron microscopy (SEM) and CRM mapping across the dentin/adhesive interface. The model BisGMA/HEMA mixtures with ethanol and the commercial BisGMA-based adhesive experienced phase separation at approximately 25 vol% water. Raman spectra collected from the phase-separated adhesive indicated that the composition of the particles and surrounding matrix material was primarily BisGMA and HEMA, respectively. Based on SEM analysis, there was substantial porosity at the adhesive interface with dentin. Micro-Raman spectral analysis of the dentin/adhesive interface indicates that the contribution from the BisGMA component decreases by nearly 50% within the first micrometer. The morphologic results in corroboration with the spectroscopic data suggest that as a result of adhesive phase separation the hybrid layer is not an impervious 3-dimensional collagen/polymer network but a porous web characterized by hydrophobic BisGMA-rich particles distributed in a hydrophilic HEMA-rich matrix. Copyright 2002 Wiley Periodicals, Inc.

  1. Water at silica/liquid water interfaces investigated by DFT-MD simulations

    NASA Astrophysics Data System (ADS)

    Gaigeot, Marie-Pierre

    This talk is dedicated to probing the microscopic structural organization of water at silica/liquid water interfaces including electrolytes by first principles DFT-based molecular dynamics simulations (DFT-MD). We will present our very recent DFT-MD simulations of electrolytic (KCl, NaCl, NaI) silica/liquid water interfaces in order to unravel the intertwined structural properties of water and electrolytes at the crystalline quartz/liquid water and amorphous silica/liquid water interfaces. DFT-MD simulations provide direct knowledge of the structural organization of water and the H-Bond network formed between the water molecules within the different water layers above the silica surface. One can furthermore extract vibrational signatures of the water molecules within the interfacial layers from the DFT-MD simulations, especially non-linear SFG (Sum Frequency generation) signatures that are active at solid/liquid interfaces. The strength of the simulated spectra is that a detailed analysis of the signatures in terms of the water/water H-Bond networks formed within the interfacial water layers and in terms of the water/silica or water/electrolytes H-Bond networks can be given. Comparisons of SFG spectra between quartz/water/electrolytes and amorphous silica/water/electrolytes interfaces allow us to definitely conclude on how the structural arrangements of liquid water at these electrolytic interfaces modulate the final spectroscopic signatures. Invited speaker.

  2. First principles study of α2-Ti3Al(0 0 0 1) surface and γ-TiAl(1 1 1)/α2-Ti3Al(0 0 0 1) interfaces

    NASA Astrophysics Data System (ADS)

    Wang, Lu; Shang, Jia-Xiang; Wang, Fu-He; Zhang, Yue

    2013-07-01

    The α2-Ti3Al(0 0 0 1) surface and γ-TiAl(1 1 1)/α2-Ti3Al(0 0 0 1) interfaces with six orientation relationships are studied by using the first-principle density functional theory. The calculated results indicate that the Ti3Al(0 0 0 1) surface has a higher surface energy (1.964 J/m2) and larger surface relaxations, compared with the γ-TiAl(1 1 1) surface. For the γ-TiAl(1 1 1)/α2-Ti3Al(0 0 0 1) interface structures, the work of separation along Ti3Al(0 0 0 1) cleavage plane is larger than that along TiAl(1 1 1) plane. In the interface region, the bonding strengths between Ti3Al layers and between TiAl layers are smaller than those along Ti3Al(0 0 0 1) plane and TiAl(1 1 1) plane in the bulk materials, respectively. The heterogeneous interface would be the weak link in the material, and the bonding strength of interface depends on the weaker one of the two phases. The bonding characteristics of interface are analyzed by the electron local function.

  3. Investigation on the Interface Morphologies of Explosive Welding of Inconel 625 to Steel A516 Plates

    NASA Astrophysics Data System (ADS)

    Mousavi, S. A. A. Akbari; Zareie, H. R.

    2011-01-01

    The purpose of this study is to produce composite plates by explosive cladding process. This is a process in which the controlled energy of explosives is used to create a metallic bond between two similar or dissimilar materials. The welding conditions were tailored through parallel geometry route with different operational parameters. In this investigation, a two-pronged study was adopted to establish the conditions required for producing successful solid state welding: (a) Analytical calculations to determine the weldability domain or welding window; (b) Metallurgical investigations of explosive welding experiments carried out under different explosive ratios to produce both wavy and straight interfaces. The analytical calculations confirm the experimental results. Optical microscopy studies show that a transition from a smooth to wavy interface occurs with an increase in explosive ratio. SEM studies show that the interface was outlined by characteristic sharp transition between two materials.

  4. Interface morphology and mechanical properties of Al-Cu-Al laminated composites fabricated by explosive welding and subsequent rolling process

    NASA Astrophysics Data System (ADS)

    Hoseini-Athar, M. M.; Tolaminejad, B.

    2016-07-01

    Explosive welding is a well-known solid state method for joining similar and dissimilar materials. In the present study, tri-layered Al-Cu-Al laminated composites with different interface morphologies were fabricated by explosive welding and subsequent rolling. Effects of explosive ratio and rolling thickness reduction on the morphology of interface and mechanical properties were evaluated through optical/scanning electron microscopy, micro-hardness, tensile and tensile-shear tests. Results showed that by increasing the thickness reduction, bonding strength of specimens including straight and wavy interfaces increases. However, bonding strength of the specimens with melted layer interface decreases up to a threshold thickness reduction, then rapidly increases by raising the reduction. Hardness Values of welded specimens were higher than those of original material especially near the interface and a more uniform hardness profile was obtained after rolling process.

  5. Tailoring Heterovalent Interface Formation with Light

    DOE PAGES

    Park, Kwangwook; Alberi, Kirstin

    2017-08-17

    Integrating different semiconductor materials into an epitaxial device structure offers additional degrees of freedom to select for optimal material properties in each layer. However, interface between materials with different valences (i.e. III-V, II-VI and IV semiconductors) can be difficult to form with high quality. Using ZnSe/GaAs as a model system, we explore the use of UV illumination during heterovalent interface growth by molecular beam epitaxy as a way to modify the interface properties. We find that UV illumination alters the mixture of chemical bonds at the interface, permitting the formation of Ga-Se bonds that help to passivate the underlying GaAsmore » layer. Illumination also helps to reduce defects in the ZnSe epilayer. Furthermore, these results suggest that moderate UV illumination during growth may be used as a way to improve the optical properties of both the GaAs and ZnSe layers on either side of the interface.« less

  6. The latent fingerprint in mass transport of polycrystalline materials

    NASA Astrophysics Data System (ADS)

    Thirunavukarasu, Gopinath; Kundu, Sukumar; Chatterjee, Subrata

    2016-02-01

    Herein, a systematic investigation was carried out to reach a rational understanding and to provide information concerning the possible causes for a significant influence of pressure variation in the underlying processes of mass transport in polycrystalline materials. The authors focused their research in solid-state diffusion, a part of the subject "Mass Transport in Solids". Theories on diffusion are the subject by itself which exists as a latent fingerprint in every text of higher learning in interdisciplinary science. In this research, authors prepared sandwich samples of titanium alloy and stainless steel using nickel as an intermediate metal. The samples were processed at three different levels of bonding pressure (3, 4 and 5 MPa) while bonding temperature and bonding time was maintained at 750 °C and 1 h, respectively, throughout the experiments. It was observed that the net flux of atomic diffusion of nickel atoms into Ti-alloy at TiA/Ni interface increased by ~63 % with the rise in the bonding pressure from 3 to 4 MPa, but decreased by ~40 % with the rise in the bonding pressure from 4 to 5 MPa. At the same time, the net flux of atomic diffusion of nickel atoms into stainless steel at Ni/SS interface increased by ~19 % with the rise in the bonding pressure from 3 to 4 MPa, but increased by ~17 % with the rise in the bonding pressure from 4 to 5 MPa. Here authors showed that the pressure variations have different effects at the TiA/Ni interface and Ni/SS interface, and tried to explain the explicit mechanisms operating behind them. In general for sandwich samples processed irrespective of bonding pressure chosen, the net flux of Ni-atoms diffused into SS is greater than that of the net flux of Ni-atoms diffused in Ti-alloy matrix by four orders of magnitude. The calculated diffusivity of Ni-atoms into Ti-alloy reaches its highest value of ~5.083 × 10-19 m2/s for the sandwich sample processed using 4-MPa bonding-pressure, whereas the diffusivity of Ni-atoms into SS reaches its peak value of ~1.615 × 10-14 m2/s for the sample bonded using 5-MPa bonding-pressure.

  7. Laser Shockwave Technique For Characterization Of Nuclear Fuel Plate Interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James A. Smith; Barry H. Rabin; Mathieu Perton

    2012-07-01

    The US National Nuclear Security Agency is tasked with minimizing the worldwide use of high-enriched uranium. One aspect of that effort is the conversion of research reactors to monolithic fuel plates of low-enriched uranium. The manufacturing process includes hot isostatic press bonding of an aluminum cladding to the fuel foil. The Laser Shockwave Technique (LST) is here evaluated for characterizing the interface strength of fuel plates using depleted Uranium/Mo foils. LST is a non-contact method that uses lasers for the generation and detection of large amplitude acoustic waves and is therefore well adapted to the quality assurance of this process.more » Preliminary results show a clear signature of well-bonded and debonded interfaces and the method is able to classify/rank the bond strength of fuel plates prepared under different HIP conditions.« less

  8. Laser shockwave technique for characterization of nuclear fuel plate interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perton, M.; Levesque, D.; Monchalin, J.-P.

    2013-01-25

    The US National Nuclear Security Agency is tasked with minimizing the worldwide use of high-enriched uranium. One aspect of that effort is the conversion of research reactors to monolithic fuel plates of low-enriched uranium. The manufacturing process includes hot isostatic press bonding of an aluminum cladding to the fuel foil. The Laser Shockwave Technique (LST) is here evaluated for characterizing the interface strength of fuel plates using depleted Uranium/Mo foils. LST is a non-contact method that uses lasers for the generation and detection of large amplitude acoustic waves and is therefore well adapted to the quality assurance of this process.more » Preliminary results show a clear signature of well-bonded and debonded interfaces and the method is able to classify/rank the bond strength of fuel plates prepared under different HIP conditions.« less

  9. The effect of dentine pre-treatment using bioglass and/or polyacrylic acid on the interfacial characteristics of resin-modified glass ionomer cements.

    PubMed

    Sauro, Salvatore; Watson, Timothy; Moscardó, Agustin Pascual; Luzi, Arlinda; Feitosa, Victor Pinheiro; Banerjee, Avijit

    2018-06-01

    To evaluate the effect of load-cycle aging and/or 6 months artificial saliva (AS) storage on bond durability and interfacial ultramorphology of resin-modified glass ionomer cement (RMGIC) applied onto dentine air-abraded using Bioglass 45S5 (BAG) with/without polyacrylic acid (PAA) conditioning. RMGIC (Ionolux, VOCO) was applied onto human dentine specimens prepared with silicon-carbide abrasive paper or air-abraded with BAG with or without the use of PAA conditioning. Half of bonded-teeth were submitted to load cycling (150,000 cycles) and half immersed in deionised water for 24 h. They were cut into matchsticks and submitted immediately to microtensile bond strength (μTBS) testing or 6 months in AS immersion and subsequently μTBS tested. Results were analysed statistically by two-way ANOVA and Student-Newman-Keuls test (α = 0.05). Fractographic analysis was performed using FE-SEM, while further RMGIC-bonded specimens were surveyed for interfacial ultramorphology characterisation (dye-assisted nanoleakage) using confocal microscopy. RMGIC applied onto dentine air-abraded with BAG regardless PAA showed no significant μTBS reduction after 6 months of AS storage and/or load cycling (p > 0.05). RMGIC-dentine interface showed no sign of degradation/nanoleakage after both aging regimens. Conversely, interfaces created in PAA-conditioned SiC-abraded specimens showed significant reduction in μTBS (p < 0.05) after 6 months of storage and/or load cycling with evident porosities within bonding interface. Dentine pre-treatment using BAG air-abrasion might be a suitable strategy to enhance the bonding performance and durability of RMGIC applied to dentine. The use of PAA conditioner in smear layer-covered dentine may increase the risk of degradation at the bonding interface. A combined dentine pre-treatment using bioglass followed by PAA may increase the bond strength and maintain it stable over time. Conversely, the use of PAA conditioning alone may offer no significant contribute to the immediate and prolonged bonding performance. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Electronic structure and bonding of intergranular glassy films in polycrystalline Si3 N4 : Ab initio studies and classical molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Rulis, P.; Chen, J.; Ouyang, L.; Ching, W.-Y.; Su, X.; Garofalini, S. H.

    2005-06-01

    The electronic structure and bonding of a realistic model of an intergranular glassy film (IGF) was studied with multiple computational methods. The model has a Si-O-N glassy region sandwiched between crystalline basal planes of β-Si3N4 and contains a total of 798 atoms. It was constructed with periodic boundary conditions via classical molecular dynamics (MD) techniques using an accurate multibody atomic potential. The model was then further relaxed by the VASP (Vienna ab initio simulation package) program. It is shown that the VASP-relaxed structure reduces the total energy from the MD-relaxed structure by only 47.38eV , validating the accuracy of the multiatom potential used. The calculated electronic structure shows the IGF model to be an insulator with a sizable gap of almost 3eV . Quasidefectlike states can be identified near the band edges arising from the more strained Si-N and Si-O bonds at the interface. Calculation of the Mulliken effective charge and bond order values indicates that the bonds in the glassy region and at the interface can be enhanced and weakened by distortions in the bond length and bond angle. The states at the top of the valence band are derived mostly from the crystalline part of the Si-N bonding while the states at the bottom of the conduction band are dominated by the Si-O bonding in the glassy region. Calculation of the electrostatic potential across the interface shows an average band offset of about 1.5eV between the crystalline β-Si3N4 and the glassy Si-O-N region which could be related to the space charge model for IGF.

  11. Transverse ductility of metal matrix composites

    NASA Technical Reports Server (NTRS)

    Gunawardena, S. R.; Jansson, S.; Leckie, F. A.

    1991-01-01

    The role of the fiber matrix interface bond on the transverse ductility of continuous fiber reinforced composites has been investigated. Two specific systems have been considered: an Aluminum alloy matrix reinforced by Alumina fibers, characterized by a strong interface and a Titanium alloy reinforced by coated Silicon Carbide fibers, characterized by a weak interface. A micro-mechanical study indicates that the bond condition has a significant effect on the state of stress in the matrix which in turn dictates the available matrix ductility. The micro-mechanical predictions are in good agreement with the experimental results for the two systems.

  12. Adhesive/Dentin Interface: The Weak Link in the Composite Restoration

    PubMed Central

    Spencer, Paulette; Ye, Qiang; Park, Jonggu; Topp, Elizabeth M.; Misra, Anil; Marangos, Orestes; Wang, Yong; Bohaty, Brenda S.; Singh, Viraj; Sene, Fabio; Eslick, John; Camarda, Kyle; Katz, J. Lawrence

    2010-01-01

    Results from clinical studies suggest that more than half of the 166 million dental restorations that were placed in the United States in 2005 were replacements for failed restorations. This emphasis on replacement therapy is expected to grow as dentists use composite as opposed to dental amalgam to restore moderate to large posterior lesions. Composite restorations have higher failure rates, more recurrent caries, and increased frequency of replacement as compared to amalgam. Penetration of bacterial enzymes, oral fluids, and bacteria into the crevices between the tooth and composite undermines the restoration and leads to recurrent decay and premature failure. Under in vivo conditions the bond formed at the adhesive/dentin interface can be the first defense against these noxious, damaging substances. The intent of this article is to review structural aspects of the clinical substrate that impact bond formation at the adhesive/dentin interface; to examine physico-chemical factors that affect the integrity and durability of the adhesive/dentin interfacial bond; and to explore how these factors act synergistically with mechanical forces to undermine the composite restoration. The article will examine the various avenues that have been pursued to address these problems and it will explore how alterations in material chemistry could address the detrimental impact of physico-chemical stresses on the bond formed at the adhesive/dentin interface. PMID:20195761

  13. In Situ Characterization of the Initial Effect of Water on Molecular Interactions at the Interface of Organic/Inorganic Hybrid Systems

    DOE PAGES

    Pletincx, Sven; Trotochaud, Lena; Fockaert, Laura-Lynn; ...

    2017-03-22

    Probing initial interactions at the interface of hybrid systems under humid conditions has the potential to reveal the local chemical environment at solid/solid interfaces under real-world, technologically relevant conditions. Here in this paper, we show that ambient pressure X-ray photoelectron spectroscopy (APXPS) with a conventional X-ray source can be used to study the effects of water exposure on the interaction of a nanometer-thin polyacrylic acid (PAA) layer with a native aluminum oxide surface. The formation of a carboxylate ionic bond at the interface is characterized both with APXPS and in situ attenuated total reflectance Fourier transform infrared spectroscopy in themore » Kretschmann geometry (ATR-FTIR Kretschmann). When water is dosed in the APXPS chamber up to 5 Torr (~28% relative humidity), an increase in the amount of ionic bonds at the interface is observed. To confirm our APXPS interpretation, complementary ATR-FTIR Kretschmann experiments on a similar model system, which is exposed to an aqueous electrolyte, are conducted. These spectra demonstrate that water leads to an increased wet adhesion through increased ionic bond formation.« less

  14. Theoretical vibrational sum-frequency generation spectroscopy of water near lipid and surfactant monolayer interfaces. II. Two-dimensional spectra.

    PubMed

    Roy, S; Gruenbaum, S M; Skinner, J L

    2014-12-14

    The structural stability and function of biomolecules is strongly influenced by the dynamics and hydrogen bonding of interfacial water. Understanding and characterizing the dynamics of these water molecules require a surface-sensitive technique such as two-dimensional vibrational sum-frequency generation (2DSFG) spectroscopy. We have combined theoretical 2DSFG calculations with molecular dynamics simulations in order to investigate the dynamics of water near different lipid and surfactant monolayer surfaces. We show that 2DSFG can distinguish the dynamics of interfacial water as a function of the lipid charge and headgroup chemistry. The dynamics of water is slow compared to the bulk near water-zwitterionic and water-anionic interfaces due to conformational constraints on interfacial water imposed by strong phosphate-water hydrogen bonding. The dynamics of water is somewhat faster near water-cationic lipid interfaces as no such constraint is present. Using hydrogen bonding and rotational correlation functions, we characterize the dynamics of water as a function of the distance from the interface between water and zwitterionic lipids. We find that there is a transition from bulk-like to interface-like dynamics approximately 7 Å away from a zwitterionic phosphatidylcholine monolayer surface.

  15. Cellulose-hemicellulose interaction in wood secondary cell-wall

    NASA Astrophysics Data System (ADS)

    Zhang, Ning; Li, Shi; Xiong, Liming; Hong, Yu; Chen, Youping

    2015-12-01

    The wood cell wall features a tough and relatively rigid fiber reinforced composite structure. It acts as a pressure vessel, offering protection against mechanical stress. Cellulose microfibrils, hemicellulose and amorphous lignin are the three major components of wood. The structure of secondary cell wall could be imagined as the same as reinforced concrete, in which cellulose microfibrils acts as reinforcing steel bar and hemicellulose-lignin matrices act as the concrete. Therefore, the interface between cellulose and hemicellulose/lignin plays a significant role in determine the mechanical behavior of wood secondary cell wall. To this end, we present a molecular dynamics (MD) simulation study attempting to quantify the strength of the interface between cellulose microfibrils and hemicellulose. Since hemicellulose binds with adjacent cellulose microfibrils in various patterns, the atomistic models of hemicellulose-cellulose composites with three typical binding modes, i.e. bridge, loop and random binding modes are constructed. The effect of the shape of hemicellulose chain on the strength of hemicellulose-cellulose composites under shear loadings is investigated. The contact area as well as hydrogen bonds between cellulose and hemicellulose, together with the covalent bonds in backbone of hemicellulose chain are found to be the controlling parameters which determine the strength of the interfaces in the composite system. For the bridge binding model, the effect of shear loading direction on the strength of the cellulose material is also studied. The obtained results suggest that the shear strength of wood-inspired engineering composites can be optimized through maximizing the formations of the contributing hydrogen bonds between cellulose and hemicellulose.

  16. A Novel Fabrication Method of Bi₂Te₃-Based Thermoelectric Modules by Indium Electroplating and Thermocompression Bonding.

    PubMed

    Yoon, Jongchan; Bae, Sung Hwa; Sohn, Ho-Sang; Son, Injoon; Kim, Kyung Tae; Ju, Young-Wan

    2018-09-01

    In this study, we devised a method to bond thermoelectric elements directly to copper electrodes by plating indium with a relatively low melting point. A coating of indium, ~30 μm in thickness, was fabricated by electroplating the surface of a Bi2Te3-based thermoelectric element with a nickel diffusion barrier layer. They were then subjected to direct thermocompression bonding at 453 K on a hotplate for 10 min at a pressure of 1.1 kPa. Scanning electron microscopy images confirmed that a uniform bond was formed at the copper electrode/thermoelectric element interface, and the melted/solidified indium layer was defect free. Thus, the proposed novel method of fabricating a thermoelectric module by electroplating indium on the surface of the thermoelectric element and directly bonding with the copper electrode can be used to obtain a uniformly bonded interface even at a relatively low temperature without the use of solder pastes.

  17. [Differential study of the bonding characterization of dental porcelain to Ni-Cr alloys].

    PubMed

    Wei, Fang; Zhan, De-song; Wang, Yan-yan

    2008-10-01

    To study the bonding capability when Ni-Cr porcelain alloy was added with Ti, compound rare earth metals and removed the element of Be. Ni-Cr-Ti porcelain alloys manufactured by Institute of Metal Research of Chinese Academy of Sciences were tested. The test alloys were divided into three groups according to whether containing Be and compound rare earth metals or not. And HI BOND Ni-Cr base-metal alloy was chosen as control. The metal-ceramic specimens were prepared for shear test, scanning electron microscope (SEM) and energy spectrum analysis. The shear bond strength of the four groups were analyzed. No significant difference were observed among them (P > 0.05). No crackle was found and they were contacted tightly between the porcelain and metal. The composition and contents of the four groups' interfaces were closed. The shear bond strength of the self-made Ni-Cr-Ti porcelain alloys all can satisfy the clinical requirements. Experimental groups containing Ti, compound rare earth metals and removing the element of Be can be used as better recommendation for clinical practice.

  18. In vitro evaluation of benzalkonium chloride in the preservation of adhesive interfaces.

    PubMed

    Sabatini, C; Kim, J H; Ortiz Alias, P

    2014-01-01

    Inhibition of endogenous dentin matrix metalloproteinases (MMPs) by benzalkonium chloride (BAC) decreases collagen solubilization and may help improve resin-dentin bond stability. This study evaluated the resin-dentin bond stability of experimental adhesive blends containing BAC and the stability of dentin matrices by assessing the mass loss and collagen solubilization from dentin beams pretreated with BAC. Twenty-five healthy molars were used for the bond strength evaluation of a two-step etch-and-rinse adhesive (Adper Single Bond Plus, SB) modified with BAC or not. The following groups were tested: 1) SB with no inhibitor (control); 2) topical 2.0% chlorhexidine + SB; 3) 1.0% BAC etchant + SB; 4) 0.5% BAC-SB; and 5) 1.0% BAC-SB. Microtensile bond strength (μTBS) and failure mode distribution under standard error of the mean were evaluated after 24 hours and six months of storage in artificial saliva (AS). A two-way analysis of variance and Tukey test with a significance level of p<0.05 was used for data analysis. In addition, 30 completely demineralized dentin beams from human molars were either dipped in deionized water (DW, control) or dipped in 0.5% and 1.0% BAC for 60 seconds, and then incubated in AS. Collagen solubilization was assessed by evaluating the dry mass loss and quantifying the amount of hydroxyproline (HYP) released from hydrolyzed specimens after four weeks of incubation. The control group demonstrated lower μTBS than some of the experimental groups containing BAC at 24 hours and six months (p<0.05). When BAC was incorporated into the adhesive blend in concentrations of 0.5% and 1.0%, no reduction in dentin bond strength was observed after six months (p<0.05). Less mass loss and HYP release was seen for dentin matrices pretreated with BAC relative to the control pretreated with DW (p<0.05). This in vitro study demonstrates that BAC contributes to the preservation of resin-dentin bonds by reducing collagen degradation.

  19. Interfaces between strongly correlated oxides: controlling charge transfer and induced magnetism by hybridization

    NASA Astrophysics Data System (ADS)

    Bibes, Manuel

    At interfaces between conventional materials, band bending and alignment are controlled by differences in electrochemical potential. Applying this concept to oxides in which interfaces can be polar and cations may adopt a mixed valence has led to the discovery of novel two-dimensional states between simple band insulators such as LaAlO3 and SrTiO3. However, many oxides have a more complex electronic structure, with charge, orbital and/or spin orders arising from correlations between transition metal and oxygen ions. Strong correlations thus offer a rich playground to engineer functional interfaces but their compatibility with the classical band alignment picture remains an open question. In this talk we will show that beyond differences in electron affinities and polar effects, a key parameter determining charge transfer at correlated oxide interfaces is the energy required to alter the covalence of the metal-oxygen bond. Using the perovskite nickelate (RNiO3) family as a template, we have probed charge reconstruction at interfaces with gadolinium titanate GdTiO3 using soft X-ray absorption spectroscopy and hard X-ray photoemission spectroscopy. We show that the charge transfer is thwarted by hybridization effects tuned by the rare-earth (R) size. Charge transfer results in an induced ferromagnetic-like state in the nickelate (observed by XMCD), exemplifying the potential of correlated interfaces to design novel phases. Further, our work clarifies strategies to engineer two-dimensional systems through the control of both doping and covalence. Work supported by ERC CoG MINT #615759.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samavatian, Majid, E-mail: m.samavatian@srbiau.ac.ir; Halvaee, Ayoub; Amadeh, Ahmad Ali

    Joining mechanism of Ti/Al dissimilar alloys was studied during liquid state diffusion bonding process using Cu/Sn/Cu interlayer at 510 °C under vacuum of 7.5 × 10{sup −5} Torr for various bonding times. The microstructure and compositional changes in the joint zone were analyzed by scanning electron microscopy equipped with energy dispersive spectroscopy and X-ray diffraction. Microhardness and shear strength tests were also applied to study the mechanical properties of the joints. It was found that with an increase in bonding time, the elements of interlayer diffused into the parent metals and formed various intermetallic compounds at the interface. Diffusion processmore » led to the isothermal solidification and the bonding evolution in the joint zone. The results from mechanical tests showed that microhardness and shear strength values have a straight relation with bonding time so that the maximum shear strength of joint was obtained for a bond made with 60 min bonding time. - Highlights: • Liquid state diffusion bonding of Al2024 to Ti–6Al–4V was performed successfully. • Diffusion of the elements caused the formation of various intermetallics at the interface. • Microhardness and shear strength values have a straight relation with bonding time. • The maximum shear strength reached to 36 MPa in 60 min bonding time.« less

  1. Effect of Airborne Particle Abrasion on Microtensile Bond Strength of Total-Etch Adhesives to Human Dentin

    PubMed Central

    Piccioni, Chiara; Di Carlo, Stefano; Capogreco, Mario

    2017-01-01

    Aim of this study was to investigate a specific airborne particle abrasion pretreatment on dentin and its effects on microtensile bond strengths of four commercial total-etch adhesives. Midcoronal occlusal dentin of extracted human molars was used. Teeth were randomly assigned to 4 groups according to the adhesive system used: OptiBond FL (FL), OptiBond Solo Plus (SO), Prime & Bond (PB), and Riva Bond LC (RB). Specimens from each group were further divided into two subgroups: control specimens were treated with adhesive procedures; abraded specimens were pretreated with airborne particle abrasion using 50 μm Al2O3 before adhesion. After bonding procedures, composite crowns were incrementally built up. Specimens were sectioned perpendicular to adhesive interface to produce multiple beams, which were tested under tension until failure. Data were statistically analysed. Failure mode analysis was performed. Overall comparison showed significant increase in bond strength (p < 0.001) between abraded and no-abraded specimens, independently of brand. Intrabrand comparison showed statistical increase when abraded specimens were tested compared to no-abraded ones, with the exception of PB that did not show such difference. Distribution of failure mode was relatively uniform among all subgroups. Surface treatment by airborne particle abrasion with Al2O3 particles can increase the bond strength of total-etch adhesives. PMID:29392128

  2. [Bonding interfaces of three kinds of cements and root canal dentin: a scanning electron microscope observation].

    PubMed

    Chen, Lei; Lei, Hui-yun; Xu, Guo-fu; Liang, Xiao-peng; Li, Ji-jia

    2010-04-01

    To compare the bonding properties of three kinds of cements by observing the bonding inteffaces of cements and root canal dentin. 15 extracted mandibular premolars were divided into 3 groups, and were cemented by Rely X luting, Panavia F and Paracore 5 mL, respectively. Each tooth was sectioned into two parts and the dentin-cement interfaces at the coronal, middle and apical parts of the fiber post were oberved by scanning electron microscope (SEM). The length of hybrid layer was also recorded. Hybrid layer was not clearly found in group one, which could be seen on the dentin-cement interfaces of group two and three. Resin tags and lateral adhesives were also observed in group three. From the apical to the coronal part, microgaps seemed gradually smaller in group one, while the hybrid layer became thicker in both group two and three. The total-etch resin cement bounds tightly with dentin, and owns a more superior bonding property than self-etch resin cement and resin modified glass ionomer cement.

  3. Film bonded fuel cell interface configuration

    DOEpatents

    Kaufman, Arthur; Terry, Peter L.

    1985-01-01

    An improved interface configuration for use between adjacent elements of a fuel cell stack. The interface is impervious to gas and liquid and provides resistance to corrosion by the electrolyte of the fuel cell. A multi-layer arrangement for the interface provides bridging electrical contact with a hot-pressed resin filling the void space.

  4. Process for making film-bonded fuel cell interfaces

    DOEpatents

    Kaufman, Arthur; Terry, Peter L.

    1990-07-03

    An improved interface configuration for use between adjacent elements of a fuel cell stack. The interface is impervious to gas and liquid and provides resistance to corrosion by the electrolyte of the fuel cell. A multi-layer arrangement for the interface provides bridging electrical contact with a hot-pressed resin filling the void space.

  5. Protection of MOS capacitors during anodic bonding

    NASA Astrophysics Data System (ADS)

    Schjølberg-Henriksen, K.; Plaza, J. A.; Rafí, J. M.; Esteve, J.; Campabadal, F.; Santander, J.; Jensen, G. U.; Hanneborg, A.

    2002-07-01

    We have investigated the electrical damage by anodic bonding on CMOS-quality gate oxide and methods to prevent this damage. n-type and p-type MOS capacitors were characterized by quasi-static and high-frequency CV-curves before and after anodic bonding. Capacitors that were bonded to a Pyrex wafer with 10 μm deep cavities enclosing the capacitors exhibited increased leakage current and interface trap density after bonding. Two different methods were successful in protecting the capacitors from such damage. Our first approach was to increase the cavity depth from 10 μm to 50 μm, thus reducing the electric field across the gate oxide during bonding from approximately 2 × 105 V cm-1 to 4 × 104 V cm-1. The second protection method was to coat the inside of a 10 μm deep Pyrex glass cavity with aluminium, forming a Faraday cage that removed the electric field across the cavity during anodic bonding. Both methods resulted in capacitors with decreased interface trap density and unchanged leakage current after bonding. No change in effective oxide charge or mobile ion contamination was observed on any of the capacitors in the study.

  6. Enhanced thermal stability of RuO2/polyimide interface for flexible device applications

    NASA Astrophysics Data System (ADS)

    Music, Denis; Schmidt, Paul; Chang, Keke

    2017-09-01

    We have studied the thermal stability of RuO2/polyimide (Kapton) interface using experimental and theoretical methods. Based on calorimetric and spectroscopic analyses, this inorganic-organic system does not exhibit any enthalpic peaks as well as all bonds in RuO2 and Kapton are preserved up to 500 °C. In addition, large-scale density functional theory based molecular dynamics, carried out in the same temperature range, validates the electronic structure and points out that numerous Ru-C and a few Ru-O covalent/ionic bonds form across the RuO2/Kapton interface. This indicates strong adhesion, but there is no evidence of Kapton degradation upon thermal excitation. Furthermore, RuO2 does not exhibit any interfacial bonds with N and H in Kapton, providing additional evidence for the thermal stability notion. It is suggested that the RuO2/Kapton interface is stable due to aromatic architecture of Kapton. This enhanced thermal stability renders Kapton an appropriate polymeric substrate for RuO2 containing systems in various applications, especially for flexible microelectronic and energy devices.

  7. Traction-separation laws and stick-slip shear phenomenon of interfaces between cellulose nanocrystals

    NASA Astrophysics Data System (ADS)

    Sinko, Robert; Keten, Sinan

    2015-05-01

    Cellulose nanocrystals (CNCs) are one of nature's most abundant structural material building blocks and possess outstanding mechanical properties including a tensile modulus comparable to Kevlar. It remains challenging to upscale these properties in CNC neat films and nanocomposites due to the difficulty of characterizing interfacial bonding between CNCs that governs stress transfer under deformation. Here we present new analyses based on atomistic simulations of shear and tensile failure of the interfaces between Iβ CNCs, providing new insight into factors governing the mechanical behavior of hierarchical nanocellulose materials. We compare the two most relevant crystal interfaces and find that hydrogen bonded surfaces have greater tensile strength compared to the surfaces governed by weaker interactions. On the contrary, shearing simulations reveal that friction between the atomic interfaces depends not only on surface energy but also the energy landscape along the shear direction. While being a weaker interface, the intersheet plane exhibits greater energy barriers to shear. The molecular roughness of this interface, characterized by a greater energy barrier, exhibits stick-slip deformation behavior as opposed to a more continuous sliding and rebonding mechanism observed for the interfaces with hydrogen bonds. Analytical models to describe the energy landscapes are developed using energy scaling relations for van der Waals surfaces in combination with a modification of the Prandtl-Tomlinson model for atomic friction. Our simulations pave the way for tailoring hierarchical CNC materials by taking a similar approach to techniques employed for describing metals, where mechanical properties can be tuned through a deeper understanding of grain boundary physics and nanoscale interfaces.

  8. High reliability bond program using small diameter aluminum wire

    NASA Technical Reports Server (NTRS)

    Macha, M.; Thiel, R. A.

    1975-01-01

    The program was undertaken to characterize the performance of small diameter aluminum wire ultrasonically bonded to conductors commonly encountered in hybrid assemblies, and to recommend guidelines for improving this performance. Wire, 25.4, 38.1 and 50.8 um (1, 1.5 and 2 mil), was used with bonding metallization consisting of thick film gold, thin film gold and aluminum as well as conventional aluminum pads on semiconductor chips. The chief tool for evaluating the performance was the double bond pull test in conjunction with a 72 hour - 150 C heat soak and -65 C to +150 C thermal cycling. In practice the thermal cycling was found to have relatively little effect compared to the heat soak. Pull strength will decrease after heat soak as a result of annealing of the aluminum wire; when bonded to thick film gold, the pull strength decreased by about 50% (weakening of the bond interface was the major cause of the reduction). Bonds to thin film gold lost about 30 - 40% of their initial pull strenth; weakening of the wire itself at the bond heel was the predominant cause. Bonds to aluminum substrate metallization lost only about 22%. Bonds between thick and thin film gold substrate metallization and semiconductor chips substantiated the previous conclusions but also showed that in about 20 to 25% of the cases, bond interface failure occurred at the semiconductor chip.

  9. Effect of dentin biomodifiers on the immediate and long-term bond strengths of a simplified etch and rinse adhesive to dentin.

    PubMed

    Singh, Payal; Nagpal, Rajni; Singh, Udai Pratap

    2017-08-01

    This in vitro study evaluated the effect of dentin biomodifiers on the immediate and long-term bond strengths of a simplified etch and rinse adhesive to dentin. Flat coronal dentin surfaces were prepared in 120 extracted human molars. Teeth were randomly divided into 5 groups ( n = 24) according to 5 different surface pre-treatments: No pre-treatment (control); 1M carbodiimide (EDC); 0.1% epigallocatechin-3-gallate (EGCG); 2% minocycline (MI); 10% sodium ascorbate (SA). After surface pre-treatment, adhesive (Adper Single Bond 2 [SB], 3M ESPE) was applied. Composite was applied into transparent plastic tubes (2.5 mm in diameter), which was placed over the bonded dentin surface. From each group, 10 samples were subjected to shear bond strength (SBS) evaluation at 24 hours (immediate) and remaining 10 samples were tested after 6 months (delayed). Additionally, 4 samples per group were subjected to scanning electron microscopic analysis for observation of resin-dentin interface. The data were statistically analysed with Shaperio‑Wilk W test, 2-way analysis of variance (ANOVA), and post hoc Tukey's test. At 24 hours, SBS of all surface pre-treatment groups were comparable with the control group, with significant differences found between EDC and SA groups only ( p = 0.009). After 6 months storage, EDC, EGCG, and MI pre-treatments preserved the resin-dentin bond strength with no significant fall. Dentin pre-treatment with all the dentin biomodifiers except SA resulted in significant preservation of resin-dentin bond over 6 months storage period, without negatively affecting the immediate bond strength of the etch and rinse adhesive tested.

  10. 3D micro-crack propagation simulation at enamel/adhesive interface using FE submodeling and element death techniques.

    PubMed

    Liu, Heng-Liang; Lin, Chun-Li; Sun, Ming-Tsung; Chang, Yen-Hsiang

    2010-06-01

    This study investigates micro-crack propagation at the enamel/adhesive interface using finite element (FE) submodeling and element death techniques. A three-dimensional (3D) FE macro-model of the enamel/adhesive/ceramic subjected to shear bond testing was generated and analyzed. A 3D micro-model with interfacial bonding structure was constructed at the upper enamel/adhesive interface where the stress concentration was found from the macro-model results. The morphology of this interfacial bonding structure (i.e., resin tag) was assigned based on resin tag geometry and enamel rod arrangement from a scanning electron microscopy micrograph. The boundary conditions for the micro-model were determined from the macro-model results. A custom iterative code combined with the element death technique was used to calculate the micro-crack propagation. Parallel experiments were performed to validate this FE simulation. The stress concentration within the adhesive occurred mainly at the upper corner near the enamel/adhesive interface and the resin tag base. A simulated fracture path was found at the resin tag base along the enamel/adhesive interface. A morphological observation of the fracture patterns obtained from in vitro testing corresponded with the simulation results. This study shows that the FE submodeling and element death techniques could be used to simulate the 3D micro-stress pattern and the crack propagation noted at the enamel/adhesive interface.

  11. Aminosilanization nanoadhesive layer for nanoelectric circuits with porous ultralow dielectric film.

    PubMed

    Zhao, Zhongkai; He, Yongyong; Yang, Haifang; Qu, Xinping; Lu, Xinchun; Luo, Jianbin

    2013-07-10

    An ultrathin layer is investigated for its potential application of replacing conventional diffusion barriers and promoting interface adhesion for nanoelectric circuits with porous ultralow dielectrics. The porous ultralow dielectric (k ≈ 2.5) substrate is silanized by 3-aminopropyltrimethoxysilane (APTMS) to form the nanoadhesive layer by performing oxygen plasma modification and tailoring the silanization conditions appropriately. The high primary amine content is obtained in favor of strong interaction between amino groups and copper. And the results of leakage current measurements of metal-oxide-semiconductor capacitor structure demonstrate that the aminosilanization nanoadhesive layer can block copper diffusion effectively and guarantee the performance of devices. Furthermore, the results of four-point bending tests indicate that the nanoadhesive layer with monolayer structure can provide the satisfactory interface toughness up to 6.7 ± 0.5 J/m(2) for Cu/ultralow-k interface. Additionally, an annealing-enhanced interface toughness effect occurs because of the formation of Cu-N bonding and siloxane bridges below 500 °C. However, the interface is weakened on account of the oxidization of amines and copper as well as the breaking of Cu-N bonding above 500 °C. It is also found that APTMS nanoadhesive layer with multilayer structure provides relatively low interface toughness compared with monolayer structure, which is mainly correlated to the breaking of interlayer hydrogen bonding.

  12. An XPS study on the chemical bond structure at the interface between SiO{sub x}N{sub y} and N doped polyethylene terephthalate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding Wanyu; Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Ministry of Education, Dalian University of Technology, Dalian 116024; Li Li

    2013-03-14

    The super-thin silicon oxynitride (SiO{sub x}N{sub y}) films were deposited onto the N doped polyethylene terephthalate (PET) surface. Varying the N doping parameters, the different chemical bond structures were obtained at the interface between the SiO{sub x}N{sub y} film and the PET surface. X-ray photoelectron spectra results showed that at the initial stage of SiO{sub x}N{sub y} film growth, the C=N bonds could be broken and C-N-Si crosslink bonds could be formed at the interface of SiO{sub x}N{sub y}/PET, which C=N bonds could be formed onto the PET surface during the N doping process. At these positions, the SiO{sub x}N{submore » y} film could be crosslinked well onto the PET surface. Meanwhile, the doped N could crosslink the [SiO{sub 4}] and [SiN{sub 4}] tetrahedrons, which could easily form the dense layer structure at the initial stage of SiO{sub x}N{sub y} film growth, instead of the ring and/or chain structures of [SiO{sub 4}] tetrahedrons crosslinked by O. Finally, from the point of applying SiO{sub x}N{sub y}/PET complex as the substrate, the present work reveals a simple way to crosslink them, as well as the crosslink model and physicochemical mechanism happened at the interface of complex.« less

  13. Mechanical aspects of degree of cement bonding and implant wedge effect.

    PubMed

    Yoon, Yong-San; Oxland, Thomas R; Hodgson, Antony J; Duncan, Clive P; Masri, Bassam A; Choi, Donok

    2008-11-01

    The degree of bonding between the femoral stem and cement in total hip replacement remains controversial. Our objective was to determine the wedge effect by debonding and stem taper angle on the structural behavior of axisymmetric stem-cement-bone cylinder models. Stainless steel tapered plugs with a rough (i.e. bonded) or smooth (i.e. debonded) surface finish were used to emulate the femoral stem. Three different stem taper angles (5 degrees , 7.5 degrees , 10 degrees ) were used for the debonded constructs. Non-tapered and tapered (7.5 degrees ) aluminum cylindrical shells were used to emulate the diaphyseal and metaphyseal segments of the femur. The cement-aluminum cylinder interface was designed to have a shear strength that simulated bone-cement interfaces ( approximately 8MPa). The test involved applying axial compression at a rate of 0.02mm/s until failure. Six specimens were tested for each combination of the variables. Finite element analysis was used to enhance the understanding of the wedge effect. The debonded stems sustained about twice as much load as the bonded stem, regardless of taper angle. The metaphyseal model carried 35-50% greater loads than the diaphyseal models and the stem taper produced significant differences. Based on the finite element analysis, failure was most probably by shear at the cement-bone interface. Our results in this simplified model suggest that smooth (i.e. debonded) stems have greater failure loads and will incur less slippage or shear failure at the cement-bone interface than rough (i.e. bonded) stems.

  14. Relationship between thin-film bond strength as measured by a scratch test, and indentation hardness for bonding agents.

    PubMed

    Kusakabe, Shusuke; Rawls, H Ralph; Hotta, Masato

    2016-03-01

    To evaluate thin-film bond strength between a bonding agent and human dentin, using a scratch test, and the characteristics and accuracy of measurement. One-step bonding agents (BeautiBond; Bond Force; Adper Easy Bond; Clearfil tri-S Bond) and two-step bonding agents (Cleafil SE Bond; FL-Bond II) were investigated in this study. Flat dentin surfaces were prepared for extracted human molars. The dentin surfaces were ground and bonding agents were applied and light cured. The thin-film bond strength test of the specimens was evaluated by the critical load at which the coated bonding agent failed and dentin appeared. The scratch mark sections were then observed under a scanning electron microscope. Indentation hardness was evaluated by the variation in depth under an applied load of 10gf. Data were compared by one-way ANOVA with the Scheffé's post hoc multiple comparison test (p<0.05). In addition, thin-film bond strength and indentation hardness were analyzed using analysis of correlation and covariance. The thin-film bond strength of two-step bonding agents were found to be significantly higher than that of one-step bonding agents with small standard deviations. Scratch marks consistently showed adhesive failure in the vicinity of the bonding agent/dentin interface. The indentation hardness showed a trend that two-step bonding agents have greater hardness than one-step bonding agents. A moderately significant correlation (r(2)=0.31) was found between thin-film bond strength and indentation hardness. Thin-film bond strength test is a valid and reliable means of evaluating bond strength in the vicinity of the adhesive interface and is more accurate than other methods currently in use. Further, the thin-film bond strength is influenced by the hardness of the cued bonding agent. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  15. Self-Healing of Unentangled Polymer Networks with Reversible Bonds

    PubMed Central

    Stukalin, Evgeny B.; Cai, Li-Heng; Kumar, N. Arun; Leibler, Ludwik; Rubinstein, Michael

    2013-01-01

    Self-healing polymeric materials are systems that after damage can revert to their original state with full or partial recovery of mechanical strength. Using scaling theory we study a simple model of autonomic self-healing of unentangled polymer networks. In this model one of the two end monomers of each polymer chain is fixed in space mimicking dangling chains attachment to a polymer network, while the sticky monomer at the other end of each chain can form pairwise reversible bond with the sticky end of another chain. We study the reaction kinetics of reversible bonds in this simple model and analyze the different stages in the self-repair process. The formation of bridges and the recovery of the material strength across the fractured interface during the healing period occur appreciably faster after shorter waiting time, during which the fractured surfaces are kept apart. We observe the slowest formation of bridges for self-adhesion after bringing into contact two bare surfaces with equilibrium (very low) density of open stickers in comparison with self-healing. The primary role of anomalous diffusion in material self-repair for short waiting times is established, while at long waiting times the recovery of bonds across fractured interface is due to hopping diffusion of stickers between different bonded partners. Acceleration in bridge formation for self-healing compared to self-adhesion is due to excess non-equilibrium concentration of open stickers. Full recovery of reversible bonds across fractured interface (formation of bridges) occurs after appreciably longer time than the equilibration time of the concentration of reversible bonds in the bulk. PMID:24347684

  16. Design and verification of halogen-bonding system at the complex interface of human fertilization-related MUP PDZ5 domain with CAMK's C-terminal peptide.

    PubMed

    Wang, Juan; Guo, Yunjie; Zhang, Xue

    2018-02-01

    Calmodulin-dependent protein kinase (CAMK) is physiologically activated in fertilized human oocytes and is involved in the Ca 2+ response pathways that link the fertilization calmodulin signal to meiosis resumption and cortical granule exocytosis. The kinase has an unstructured C-terminal tail that can be recognized and bound by the PDZ5 domain of its cognate partner, the multi-PDZ domain protein (MUP). In the current study, we reported a rational biomolecular design of halogen-bonding system at the complex interface of CAMK's C-terminal peptide with MUP PDZ5 domain by using high-level computational approaches. Four organic halogens were employed as atom probes to explore the structural geometry and energetic property of designed halogen bonds in the PDZ5-peptide complex. It was found that the heavier halogen elements such as bromine Br and iodine I can confer stronger halogen bond but would cause bad atomic contacts and overlaps at the complex interface, while fluorine F cannot form effective halogen bond in the complex. In addition, the halogen substitution at different positions of peptide's aromatic ring would result in distinct effects on the halogen-bonding system. The computational findings were then verified by using fluorescence analysis; it is indicated that the halogen type and substitution position play critical role in the interaction strength of halogen bonds, and thus the PDZ5-peptide binding affinity can be improved considerably by optimizing their combination. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Fracture of coherent interfaces between an fcc metal matrix and the Cr23C6 carbide precipitate from first principles

    NASA Astrophysics Data System (ADS)

    Barbé, Elric; Fu, Chu-Chun; Sauzay, Maxime

    2018-02-01

    It is known that microcrack initiation in metallic alloys containing second-phase particles may be caused by either an interfacial or an intraprecipitate fracture. So far, the dependence of these features on properties of the precipitate and the interface is not clearly known. The present study aims to determine the key properties of carbide-metal interfaces controlling the energy and critical stress of fracture, based on density functional theory (DFT) calculations. We address coherent interfaces between a fcc iron or nickel matrix and a frequently observed carbide, the M23C6 , for which a simplified chemical composition Cr23C6 is assumed. The interfacial properties such as the formation and Griffith energies, and the effective Young's modulus are analyzed as functions of the magnetic state of the metal lattice, including the paramagnetic phase of iron. Interestingly, a simpler antiferromagnetic phase is found to exhibit similar interfacial mechanical behavior to the paramagnetic phase. A linear dependence is determined between the surface (and interface) energy and the variation of the number of chemical bonds weighted by the respective bond strength, which can be used to predict the relative formation energy for the surface and interface with various chemical terminations. Finally, the critical stresses of both intraprecipitate and interfacial fractures due to a tensile loading are estimated via the universal binding energy relation (UBER) model, parametrized on the DFT data. The validity of this model is verified in the case of intraprecipitate fracture, against results from DFT tensile test simulations. In agreement with experimental evidences, we predict a much stronger tendency for an interfacial fracture for this carbide. In addition, the calculated interfacial critical stresses are fully compatible with available experimental data in steels, where the interfacial carbide-matrix fracture is only observed at incoherent interfaces.

  18. Surface instability of an imperfectly bonded thin elastic film under surface van der Waals forces

    NASA Astrophysics Data System (ADS)

    Wang, Xu; Jing, Rong

    2017-02-01

    This paper studies surface instability of a thin elastic film imperfectly bonded to a rigid substrate interacting with a rigid contactor through van der Waals forces under plane strain conditions. The film-substrate interface is modeled as a linear spring with vanishing thickness described in terms of the normal and tangential interface parameters. Depending on the ratio of the two imperfect interface parameters, the critical value of the Poisson's ratio for the occurrence of surface wrinkling in the absence of surface energy can be greater than, equal to, or smaller than 0.25, which is the critical Poisson's ratio for a perfect film-substrate interface. The critical surface energy for the inhibition of the surface wrinkling is also obtained. Finally, we propose a very simple and effective method to study the surface instability of a multilayered elastic film with imperfect interfaces interacting with a rigid contactor or with another multilayered elastic film (or a multilayered simply supported plate) with imperfect interfaces.

  19. Film bonded fuel cell interface configuration

    DOEpatents

    Kaufman, Arthur; Terry, Peter L.

    1989-01-01

    The present invention relates to improved elements for use in fuel cell stacks, and more particularly, to a stack having a corrosion-resistant, electrally conductive, fluid-impervious interface member therein.

  20. The mechanical design of hybrid graphene/boron nitride nanotransistors: Geometry and interface effects

    NASA Astrophysics Data System (ADS)

    Einalipour Eshkalak, Kasra; Sadeghzadeh, Sadegh; Jalaly, Maisam

    2018-02-01

    From electronic point of view, graphene resembles a metal or semi-metal and boron nitride is a dielectric material (band gap = 5.9 eV). Hybridization of these two materials opens band gap of the graphene which has expansive applications in field-effect graphene transistors. In this paper, the effect of the interface structure on the mechanical properties of a hybrid graphene/boron nitride was studied. Young's modulus, fracture strain and tensile strength of the models were simulated. Three likely types (hexagonal, octagonal and decagonal) were found for the interface of hybrid sheet after relaxation. Although Csbnd B bonds at the interface were indicated to result in more promising electrical properties, nitrogen atoms are better choice for bonding to carbon for mechanical applications.

  1. Differential segregation in a cell-cell contact interface: the dynamics of the immunological synapse.

    PubMed Central

    Burroughs, Nigel John; Wülfing, Christoph

    2002-01-01

    Receptor-ligand couples in the cell-cell contact interface between a T cell and an antigen-presenting cell form distinct geometric patterns and undergo spatial rearrangement within the contact interface. Spatial segregation of the antigen and adhesion receptors occurs within seconds of contact, central aggregation of the antigen receptor then occurring over 1-5 min. This structure, called the immunological synapse, is becoming a paradigm for localized signaling. However, the mechanisms driving its formation, in particular spatial segregation, are currently not understood. With a reaction diffusion model incorporating thermodynamics, elasticity, and reaction kinetics, we examine the hypothesis that differing bond lengths (extracellular domain size) is the driving force behind molecular segregation. We derive two key conditions necessary for segregation: a thermodynamic criterion on the effective bond elasticity and a requirement for the seeding/nucleation of domains. Domains have a minimum length scale and will only spontaneously coalesce/aggregate if the contact area is small or the membrane relaxation distance large. Otherwise, differential attachment of receptors to the cytoskeleton is required for central aggregation. Our analysis indicates that differential bond lengths have a significant effect on synapse dynamics, i.e., there is a significant contribution to the free energy of the interaction, suggesting that segregation by differential bond length is important in cell-cell contact interfaces and the immunological synapse. PMID:12324401

  2. Three-dimensional finite element analysis of the shear bond test.

    PubMed

    DeHoff, P H; Anusavice, K J; Wang, Z

    1995-03-01

    The purpose of this study was to use finite element analyses to model the planar shear bond test and to evaluate the effects of modulus values, bonding agent thickness, and loading conditions on the stress distribution in the dentin adjacent to the bonding agent-dentin interface. All calculations were performed with the ANSYS finite element program. The planar shear bond test was modeled as a cylinder of resin-based composite bonded to a cylindrical dentin substrate. The effects of material, geometry and loading variables were determined primarily by use of a three-dimensional structural element. Several runs were also made using an axisymmetric element with harmonic loading and a plane strain element to determine whether two-dimensional analyses yield valid results. Stress calculations using three-dimensional finite element analyses confirmed the presence of large stress concentration effects for all stress components at the bonding agent-dentin interface near the application of the load. The maximum vertical shear stress generally occurs approximately 0.3 mm below the loading site and then decreases sharply in all directions. The stresses reach relatively uniform conditions within about 0.5 mm of the loading site and then increase again as the lower region of the interface is approached. Calculations using various loading conditions indicated that a wire-loop method of loading leads to smaller stress concentration effects, but a shear bond strength determined by dividing a failure load by the cross-sectional area grossly underestimates the true interfacial bond strength. Most dental researchers are using tensile and shear bond tests to predict the effects of process and material variables on the clinical performance of bonding systems but no evidence has yet shown that bond strength is relevant to clinical performance. A critical factor in assessing the usefulness of bond tests is a thorough understanding of the stress states that cause failure in the bond test and then to assess whether these stress states also exist in the clinical situation. Finite element analyses can help to answer this question but much additional work is needed to identify the failure modes in service and to relate these failures to particular loading conditions. The present study represents only a first step in understanding the stress states in the planar shear bond test.

  3. Hysteresis heating based induction bonding of composite materials

    NASA Astrophysics Data System (ADS)

    Suwanwatana, Witchuda

    The viability of using magnetic particulate susceptor materials for induction heating during bonding of polymer matrix composites is well established in this work. The unique ability to offer localized heating, geometric flexibility, and self-controlled temperature is the major advantage of this technique. Hysteresis heating is tailored through careful design of the microstructure of nickel particulate polymer films (Ni/PSU). An excellent heating rate can be attained in the frequency range of 1 to 10 MHz for particle volume fraction below percolation of 0.26. The diameter of nickel particle should be kept between 65 nm to 10 mum to ensure multi-domain heating, Curie temperature control, negligible shielding effect, minimum eddy current, and slight particle oxidation. The hysteresis heating behavior of the Ni/PSU films is found to be volumetric in nature and proportional to the cube of applied magnetic field. On the other hand, heat generation is inversely proportional to the size of the multi-domain particles. The frequency effect; however, provide maximum heat generation at the domain wall resonance frequency. Curie temperature control is observed when sufficiently high magnetic fields (˜138 Oe) are applied. The master curves of AC heat generation in Ni/PSU films are established and show a strong particle size effect. Hysteresis fusion bonding of glass/polyphenylene sulfide thermoplastic composites using a magnetic film as the thermoplastic adhesive shows that the bond strength of hysteresis-welded materials is comparable to that of autoclave-welded materials while offering an order of magnitude reduction in cycle time. The relative contribution of the intimate contact and healing mechanisms to the fusion bonding process indicates that hysteresis bonding is controlled by intimate contact. The macroscopic failure modes vary from mostly adhesive composite/film (low bond strength) to a combination of adhesive composite/film, cohesive film, cohesive composite and mostly cohesive composite (high bond strength). Inspection of the microscopic failure at the nickel particle/polymer interface in the film indicates quasi-brittle failure mode. The amount of adhesive failure increases with decreasing particle size and increasing particle volume fraction. The XPS peaks confirm nickel oxide in the form of NiO on the failure surface of particle/polymer debonding of hysteresis susceptor film.

  4. Investigation of Thermal Interface Materials Using Phase-Sensitive Transient Thermoreflectance Technique: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, X.; King, C.; DeVoto, D.

    2014-08-01

    With increasing power density in electronics packages/modules, thermal resistances at multiple interfaces are a bottleneck to efficient heat removal from the package. In this work, the performance of thermal interface materials such as grease, thermoplastic adhesives and diffusion-bonded interfaces are characterized using the phase-sensitive transient thermoreflectance technique. A multi-layer heat conduction model was constructed and theoretical solutions were derived to obtain the relation between phase lag and the thermal/physical properties. This technique enables simultaneous extraction of the contact resistance and bulk thermal conductivity of the TIMs. With the measurements, the bulk thermal conductivity of Dow TC-5022 thermal grease (70 tomore » 75 um bondline thickness) was 3 to 5 W/(m-K) and the contact resistance was 5 to 10 mm2-K/W. For the Btech thermoplastic material (45 to 80 μm bondline thickness), the bulk thermal conductivity was 20 to 50 W/(m-K) and the contact resistance was 2 to 5 mm2-K/W. Measurements were also conducted to quantify the thermal performance of diffusion-bonded interface for power electronics applications. Results with the diffusion-bonded sample showed that the interfacial thermal resistance is more than one order of magnitude lower than those of traditional TIMs, suggesting potential pathways to efficient thermal management.« less

  5. Shear bond strength comparison between conventional porcelain fused to metal and new functionally graded dental restorations after thermal-mechanical cycling.

    PubMed

    Henriques, B; Gonçalves, S; Soares, D; Silva, F S

    2012-09-01

    The aim of this study was to evaluate the effect of thermo-mechanical cycling on the metal-ceramic bond strength of conventional porcelain fused to metal restorations (PFM) and new functionally graded metal-ceramic dental restorations (FGMR). Two types of specimens were produced: PFM and FGMR specimens. PFM specimens were produced by conventional PFM technique. FGMR specimens were hot pressed and prepared with a metal/ceramic composite interlayer (50 M, vol%) at the metal-ceramic interface. They were manufactured and standardized in cylindrical format and then submitted to thermal (3000, 6000 and 12,000 cycles; between 5 °C and 60 °C; dwell time: 30s) and mechanical (25,000, 50,000 and 100,000 cycles under a load of 50 N; 1.6 Hz) cycling. The shear bond strength tests were performed in a universal testing machine (crosshead speed: 0.5mm/min), using a special device to concentrate the tension at the metal-ceramic interface and the load was applied until fracture. The metal-ceramic interfaces were examined with SEM/EDS prior to and after shear tests. The Young's modulus and hardness were measured across the interfaces of both types of specimens using nanoindentation tests. Data was analyzed with Shapiro-Wilk test to test the assumption of normality. The 2-way ANOVA was used to compare shear bond strength results (p<0.05). FGMR specimens showed significantly (p<0.001) higher shear bond strength results than PFM specimens, irrespective of fatigue conditions. Fatigue conditions significantly (p<0.05) affected the shear bond strength results. The analysis of surface fracture revealed adhesive fracture type for PFM specimens and mixed fracture type for FGMR specimens. Nanoindentation tests showed differences in mechanical properties measured across the metal-ceramic interface for the two types of specimens, namely Young's Modulus and hardness. This study showed significantly better performance of the new functionally graded restorations relative to conventional PFM restorations, under fatigue testing conditions and for the materials tested. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Process optimization for diffusion bonding of tungsten with EUROFER97 using a vanadium interlayer

    NASA Astrophysics Data System (ADS)

    Basuki, Widodo Widjaja; Aktaa, Jarir

    2015-04-01

    Solid-state diffusion bonding is a selected joining technology to bond divertor components consisting of tungsten and EUROFER97 for application in fusion power plants. Due to the large mismatch in their coefficient of thermal expansions, which leads to serious thermally induced residual stresses after bonding, a thin vanadium plate is introduced as an interlayer. However, the diffusion of carbon originated from EUROFER97 in the vanadium interlayer during the bonding process can form a vanadium carbide layer, which has detrimental influences on the mechanical properties of the joint. For optimal bonding results, the thickness of this layer and the residual stresses has to be decreased sufficiently without a significant reduction of material transport especially at the vanadium/tungsten interface, which can be achieved by varying the diffusion bonding temperature and duration. The investigation results show that at a sufficiently low bonding temperature of 700 °C and a bonding duration of 4 h, the joint reaches a reasonable high ductility and toughness especially at elevated test temperature of 550 °C with elongation to fracture of 20% and mean absorbed Charpy impact energy of 2 J (using miniaturized Charpy impact specimens). The strength of the bonded materials is about 332 MPa at RT and 291 MPa at 550 °C. Furthermore, a low bonding temperature of 700 °C can also help to avoid the grain coarsening and the alteration of the grain structure especially of the EUROFER97 close to the bond interface.

  7. Fibre-Reinforced Adhesive for Structure Anchoring

    NASA Astrophysics Data System (ADS)

    Barnat, J.; Bajer, M.

    2015-11-01

    The topic of this paper is the glue-concrete interface of bonded anchors loaded by tension force. The paper is closely focused on bond strength experiments using high strength concrete up to class C50/60 or higher together with pure epoxy resin and fibre-reinforced resin. The goal of this research is to find the limits of the effective use of such glue types in high performance concrete, and also to verify the most commonly used design methods for bonded anchors. The presented research includes experimental analysis of the glue-concrete interface and the influence of its parameters on anchor behaviour. The presented analysis shows some problems of the 'separated failure modes' approach and also presents experimentally verified bond strength values obtained for the currently most widespread glue types. Results of fibre reinforced epoxy resin are also presented in this paper.

  8. Atomic insight into tribochemical wear mechanism of silicon at the Si/SiO2 interface in aqueous environment: Molecular dynamics simulations using ReaxFF reactive force field

    NASA Astrophysics Data System (ADS)

    Wen, Jialin; Ma, Tianbao; Zhang, Weiwei; Psofogiannakis, George; van Duin, Adri C. T.; Chen, Lei; Qian, Linmao; Hu, Yuanzhong; Lu, Xinchun

    2016-12-01

    In this work, the atomic mechanism of tribochemical wear of silicon at the Si/SiO2 interface in aqueous environment was investigated using ReaxFF molecular dynamics (MD) simulations. Two types of Si atom removal pathways were detected in the wear process. The first is caused by the destruction of stretched Si-O-Si bonds on the Si substrate surface and is assisted by the attachment of H atoms on the bridging oxygen atoms of the bonds. The other is caused by the rupture of Si-Si bonds in the stretched Si-Si-O-Si bond chains at the interface. Both pathways effectively remove Si atoms from the silicon surface via interfacial Si-O-Si bridge bonds. Our simulations also demonstrate that higher pressures applied to the silica phase can cause more Si atoms to be removed due to the formation of increased numbers of interfacial Si-O-Si bridge bonds. Besides, water plays a dual role in the wear mechanism, by oxidizing the Si substrate surface as well as by preventing the close contact of the surfaces. This work shows that the removal of Si atoms from the substrate is a result of both chemical reaction and mechanical effects and contributes to the understanding of tribochemical wear behavior in the microelectromechanical systems (MEMS) and Si chemical mechanical polishing (CMP) process.

  9. Water dynamics at neutral and ionic interfaces

    PubMed Central

    Fenn, Emily E.; Wong, Daryl B.; Fayer, M. D.

    2009-01-01

    The orientational dynamics of water at a neutral surfactant reverse micelle interface are measured with ultrafast infrared spectroscopy of the hydroxyl stretch, and the results are compared to orientational relaxation of water interacting with an ionic interface. The comparison provides insights into the influence of a neutral vs. ionic interface on hydrogen bond dynamics. Measurements are made and analyzed for large nonionic surfactant Igepal CO-520reverse micelles (water nanopool with a 9-nm diameter). The results are compared with those from a previous study of reverse micelles of the same size formed with the ionic surfactant Aerosol-OT (AOT). The results demonstrate that the orientational relaxation times for interfacial water molecules in the two types of reverse micelles are very similar (13 ps for Igepal and 18 ps for AOT) and are significantly slower than that of bulk water (2.6 ps). The comparison of water orientational relaxation at neutral and ionic interfaces shows that the presence of an interface plays the dominant role in determining the hydrogen bond dynamics, whereas the chemical nature of the interface plays a secondary role. PMID:19706895

  10. Diffusion bonding of Ti-48Ni-2Mn-2Nb (at.%)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Godfrey, S.P.; Strangwood, M.; Threadgill, P.L.

    The diffusion bonding behavior of Ti-48at. % Al-2at. % Mn-2at. %Nb has been studied as a function of temperature (in the range 1,200--1,350C), time (15--45 minutes) and starting microstructure (lamellar, duplex and near {gamma}) at constant bonding pressure of 10 MPa. It was found, that under the above conditions, small twin related {gamma} grains, approximately 10-20 {mu}m in size, nucleated at the original interface and grew into the matrix forming a double necklace grain structure. Particles of {alpha}{sub 2} were observed around the interface, the formation of {alpha}{sub 2} particles was believed to be related to oxygen partitioning and stabilizationmore » effects from dissolved oxide films during the bonding process. Evidence for this mechanism was obtained from parallel electron energy loss spectroscopy (PEELS), which identified oxygen partitioning in the (X2) particles. For the fully lamellar structure bonded at 1,250 C for 45 minutes the failure strength of the bond was found to be 250 MPa, approximately 50 MPa lower than the failure strength of the base material.« less

  11. Experimental analysis of two-layered dissimilar metals by roll bonding

    NASA Astrophysics Data System (ADS)

    Zhao, Guanghui; Li, Yugui; Li, Juan; Huang, Qingxue; Ma, Lifeng

    2018-02-01

    Rolling reduction and base layers thickness have important implications for rolling compounding. A two-layered 304 stainless steel/Q345R low alloyed steel was roll bonded. The roll bonding was performed at the three thickness reductions of 25%, 40% and 55% with base layers of various thicknesses (Q345R). The microstructures of the composite were investigated by the ultra-deep microscope (OM) and scanning electron microscope (SEM) and Transmission electron microscope (TEM). Simultaneously, the mechanical properties of the composite were experimentally measured and the tensile fracture surfaces were observed by SEM. The interfaces were successfully bonded without any cracking or voids, which indicated a good fabrication of the 304/Q345R composite. The rolling reduction rate and thinning increase of the substrate contributed to the bonding effects appearance of the roll bonded sheet. The Cr and Ni enriched diffusion layer was formed by the interface elements diffusion. The Cr and Ni diffusion led to the formation of ˜10 μm wide Cr and Ni layers on the carbon steel side.

  12. Atomic scale structure and chemistry of interfaces by Z-contrast imaging and electron energy loss spectroscopy in the STEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGibbon, M.M.; Browning, N.D.; Chisholm, M.F.

    The macroscopic properties of many materials are controlled by the structure and chemistry at the grain boundaries. A basic understanding of the structure-property relationship requires a technique which probes both composition and chemical bonding on an atomic scale. The high-resolution Z-contrast imaging technique in the scanning transmission electron microscope (STEM) forms an incoherent image in which changes in atomic structure and composition can be interpreted intuitively. This direct image allows the electron probe to be positioned over individual atomic columns for parallel detection electron energy loss spectroscopy (PEELS) at a spatial resolution approaching 0.22nm. The bonding information which can bemore » obtained from the fine structure within the PEELS edges can then be used in conjunction with the Z-contrast images to determine the structure at the grain boundary. In this paper we present 3 examples of correlations between the structural, chemical and electronic properties at materials interfaces in metal-semiconductor systems, superconducting and ferroelectric materials.« less

  13. Neutrally Charged Gas/Liquid Interface by a Catanionic Langmuir Monolayer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaknin, David; Bu, Wei

    Surface-sensitive synchrotron X-ray scattering and spectroscopic experiments were performed to explore the characteristics of Langmuir monolayers of oppositely charged mixed amphiphiles. A premixed (molar 1:1 stearic acid/stearylamine) solution was spread as a monolayer at the gas/liquid interface on pure water and on mono- and divalent salt solutions, revealing that the negatively charged carboxyl groups and positively charged amine groups are miscible into one another and tend to bond together to form a nearly neutral surface. Similar control experiments on pure stearic acid (SA) and stearylamine (ST) were also conducted for comparison. Due to the strong bonding, hexagonal structures in smallmore » domains with acyl-chains normal to the liquid surface are formed at zero surface pressures, that is, at molecular areas much larger than those of the densely packed acyl chains. In-plane X-ray diffraction indicates that the catanionic surface is highly ordered and modifies the structure of the water surface and thus can serve as a model system for interactions of an amino acid template with solutes.« less

  14. In vitro evaluation of microleakage under orthodontic brackets bonded with different adhesive systems.

    PubMed

    Atash, Ramin; Fneiche, Ali; Cetik, Sibel; Bahrami, Babak; Balon-Perin, Alain; Orellana, Maria; Glineur, Régine

    2017-01-01

    Adhesives systems have a drawback when utilized for bonding orthodontic brackets: they shrink during photopolymerization creating microleakage. The aim of this study was to assess the stability of different orthodontic adhesives around brackets and enamel. Sixty noncarious mandibular premolars extracted for orthodontic reasons were randomly divided into six groups of adhesives used for bonding brackets to dental enamel: NeoBond ® Light Cure Adhesive Kit, Transbond™ Plus Self-Etching, Victory V-Slot APC PLUS ® + Transbond™ MIP, Rely-A-Bond ® Kit, Light Cure Orthodontic Adhesive Kit (OptiBond ® ), and Transbond™ MIP. Following bonding, all teeth underwent 2500 cycles of thermal cycling in baths ranging from 5°C to 55°C before being immersed in 2% methylene blue for 24 h. All samples were examined under a binocular microscope to assess the degree of microleakage at the "bracket-adhesive" and "adhesive-enamel" interfaces in the gingival and occlusal regions of the bracket. A significant difference was found at the "occlusal bracket-adhesive" interface. The highest microleakage values were found in the occlusal region, although no significant. Microleakage was observed in all groups. Group 2 had the highest microleakage values whereas Group 6 had the lowest values.

  15. Life Testing of Yb14MnSb11 for High Performance Thermoelectric Couples

    NASA Technical Reports Server (NTRS)

    Paik, Jong-Ah; Brandon, Erik; Caillat, Thierry; Ewell, Richard; Fleurial, Jean-Pierre

    2011-01-01

    The goal of this study is to verify the long term stability of Yb14MnSb11 for high performance thermoelectric (TE) couples. Three main requirements need to be satisfied to ensure the long term stability of thermoelectric couples: 1) stable thermoelectric properties, 2) stable bonding interfaces, and 3) adequate sublimation suppression. The efficiency of the couple is primarily based on the thermoelectric properties of the materials selected for the couple. Therefore, these TE properties should exhibit minimal degradation during the operating period of the thermoelectric couples. The stability of the bonding is quantified by low contact resistances of the couple interfaces. In order to ensure high efficiency, the contact resistances of the bonding interfaces should be negligible. Sublimation suppression is important because the majority of thermoelectric materials used for power generation have peak figures of merit at temperatures where sublimation rates are high. Controlling sublimation is also essential to preserve the efficiency of the couple. During the course of this research, three different life tests were performed with Yb14MnSb11 coupons. TE properties of Yb14MnSb11 exhibited no degradation after 6 months of aging at 1273K, and the electrical contact resistance between a thin metallization layer and the Yb14MnSb11 remained negligible after 1500hr aging at 1273K. A sublimation suppression layer for Yb14MnSb11 was developed and demonstrated for more than 18 months with coupon testing at 1273K. These life test data indicate that thermoelectric elements based on Yb14MnSb11 are a promising technology for use in future high performance thermoelectric power generating couples.

  16. Effects of chlorhexidine-containing adhesives on the durability of resin-dentine interfaces.

    PubMed

    Stanislawczuk, Rodrigo; Pereira, Fabiane; Muñoz, Miguel Angel; Luque, Issis; Farago, Paulo Vitor; Reis, Alessandra; Loguercio, Alessandro D

    2014-01-01

    This study evaluated the effect of addition of diacetate CHX in different concentrations into two simplified etch-and-rinse (ER) adhesive systems (XP Bond [XP] and Ambar {AM}) on the ultimate tensile strength (UTS), degree of conversion (DC), 60-day cumulative water sorption (WS), solubility (SO) and CHX release (CR) as well as the immediate (IM) and 1-year (1Y) resin-dentine bond strength (μTBS) and nanoleakage (NL). Ten experimental adhesive systems were formulated according to the addition of CHX diacetate (0 [control], 0.01, 0.05, 0.1 and 0.2%) in the two ER. For UTS and DC, specimens were constructed and tested after 24h. For WS, SO and CR, after specimens build-up, they were stored in water and the properties measured after 60 days. The occlusal enamel of fifty molars was removed and the adhesives were applied in dentine surface after 37% phosphoric acid etching. After composite resin build-ups, specimens were longitudinally sectioned to obtain resin-dentine bonded sticks (0.8mm(2)). Specimens were tested in tension at 0.5mm/min in the IM or 1Y. For NL, 2 bonded sticks from each tooth were prepared and analyzed under SEM. The data were submitted to appropriate statistical analysis (α=0.05). The addition of CHX did not influence UTS, DC, WS and SO (p<0.05). Higher CR was observed in adhesives with higher concentration of CHX (p<0.05). After 1Y, significant reductions of μTBS and increases of NL were observed in the control groups (p<0.05). Reductions of μTBS and increase of NL over time were not observed (AM) for CHX-containing adhesives or it was less pronounced than the control (XP) regardless of the CHX concentration. The addition of CHX diacetate in concentrations until 0.2% in the simplified ER adhesive systems may be an alternative to increase the long-term stability of resin-dentine interfaces, without jeopardizing the adhesives' mechanical properties evaluated. Copyright © 2013. Published by Elsevier Ltd.

  17. Effect of electronic structure of the diamond surface on the strength of the diamond-metal interface

    NASA Technical Reports Server (NTRS)

    Pepper, S. V.

    1981-01-01

    A diamond surface undergoes a transformation in its electronic structure by a vacuum anneal at approximately 900 C. The polished surface has no electronic states in the band gap, whereas the annealed surface has both occupied and unoccupied states in the and gap and exhibits some electrical conductivity. The effect of this transformation on the strength of the diamond metal interface was investigated by measuring the static friction force of an atomically clean meta sphere on a diamond flat in ultrahigh vacuum. It was found that low friction (weak bonding) is associated with the diamond surface devoid of gap states whereas high friction (strong bonding) is associated with the diamond surface with gap states. Exposure of the annealed surface to excited hydrogen also leads to weak bonding. The interfacial bond is discussed in terms of interaction of the metal conduction band electrons with the band gap states on the diamond surface. Effects of surface electrical conductivity on the interfacial bond are also be considered.

  18. Molecular Simulations of The Formation of Gold-Molecule-Gold Junctions

    NASA Astrophysics Data System (ADS)

    Wang, Huachuan

    2013-03-01

    We perform classical molecular simulations by combining grand canonical Monte Carlo (GCMC) sampling with molecular dynamics (MD) simulation to explore the dynamic gold nanojunctions in a Alkenedithiol (ADT) solvent. With the aid of a simple driving-spring model, which can reasonably represent the long-range elasticity of the gold electrode, the spring forces are obtained during the dynamic stretching procedure. A specific multi-time-scale double reversible reference system propagator (double-RESPA) algorithm has been designed for the metal-organic complex in MD simulations to identify the detailed metal-molecule bonding geometry at metal-molecule-metal interface. We investigate the variations of bonding sites of ADT molecules on gold nanojunctions at Au (111) surface at a constant chemical potential. Simulation results show that an Au-ADT-Au interface is formed on Au nanojunctions, bond-breaking intersection is at 1-1 bond of the monatomic chain of the cross-section, instead of at the Au-S bond. Breaking force is around 1.5 nN. These are consistent with the experimental measurements.

  19. Probing the organic-mineral interface at the molecular level in model biominerals.

    PubMed

    Metzler, Rebecca A; Kim, Il Won; Delak, Katya; Evans, John Spencer; Zhou, Dong; Beniash, Elia; Wilt, Fred; Abrecht, Mike; Chiou, Jau-Wern; Guo, Jinghua; Coppersmith, Susan N; Gilbert, P U P A

    2008-03-18

    It is widely known that macromolecules, such as proteins, can control the nucleation and growth of inorganic solids in biomineralizing organisms. However, what is not known are the complementary molecular interactions, organization, and rearrangements that occur when proteins interact with inorganic solids during the formation of biominerals. The organic-mineral interface (OMI) is expected to be the site for these phenomena, and is therefore extraordinarily interesting to investigate. In this report, we employ X-ray absorption near edge (XANES) spectromicroscopy to investigate the electronic structure of both calcium carbonate mineral crystals and polypeptides, and detect changing bonds at the OMI during crystal growth in the presence of polypeptides. We acquired XANES spectra from calcium carbonate crystals grown in the presence of three mollusk nacre-associated polypeptides (AP7N, AP24N, n16N) and in the presence of a sea urchin spicule matrix protein, LSM34. All these model biominerals gave similar results, including the disruption of CO bonds in calcite and enhancement of the peaks associated with C-H bonds and C-O bonds in peptides, indicating ordering of the amino acid side chains in the mineral-associated polypeptides and carboxylate binding. This is the first evidence of the mutual effect of calcite on peptide chain and peptide chain on calcite during biomineralization. We also show that these changes do not occur when Asp and Glu are replaced in the n16N sequence with Asn and Gln, respectively, demonstrating that carboxyl groups in Asp and Glu do participate in polypeptide-mineral molecular associations.

  20. An investigation on the deicing of helicopter blades using shear horizontal guided waves

    NASA Astrophysics Data System (ADS)

    Ramanathan, Srinivasan

    Despite all the advances that have made air travel safer than ever, the accumulation of ice on airplane and rotorcraft wings continues to be one of aviation's most challenging problems. Hence the presence of a reliable and efficient deicing or anti-icing system is imperative for their safe operation. The current method used to deice helicopter blades is similar to that available in automobile rear windows. These electro-thermal systems consist of heating coils that run along the span or chord of the rotor-blade. A current source connected via a slip ring configuration heats the coils, which in turn melt the ice on the surface. Due to their enormous power consumption, electro-thermal systems are generally configured to deice one foot of one blade at a time. This makes it hazardous to fly the helicopters under severe icing conditions. Even with the energy saving deicing procedure the electrical power required substantially exceeds the normal helicopter electrical system capacity, necessitating a large secondary electrical system with redundant, dual alternator features. The electro-thermal system for the Bell 412 helicopter weighed 162 lbs and required 26 kW of power for 2 blades! Various types of deicing systems were compared in chapter 1 and electromechanical systems were found to be the most energy efficient and practical for in-flight conditions. A novel approach of breaking the ice-substrate bonds by exceeding their adhesive strength using guided shear horizontal waves was chosen as the deicing mechanism. A comparison of the different electro-mechanical actuation systems pointed towards monolithic shear mode piezoelectric actuators as the choice that would satisfy the energy and dimensional requirements. A survey of literature on the mechanics of ice adhesion, in chapter 2, led to the selection of 1.42MPa as the target adhesive bond strength for the refrigerated icealuminum interface. The static adhesive strength of naturally occurring forms of ice such as rime ice and glaze ice to aluminum (0.12MPa and 0.4MPa respectively) is much lower than that of the refrigerated ice-aluminum adhesive strength (1.42MPa). Therefore, selecting the static adhesive strength of the refrigerated ice-aluminum interface as the bond strength to overcome would enable the system to deice rotor-blades under natural icing conditions. Equivalent circuit analysis was applied to the actuator, aluminum plate and ice layer system to determine an expression for the shear stress at the ice aluminum interface per unit excitation voltage supplied to the actuator and the corresponding electrical power consumed. All the parameters that affected the stress at the ice-aluminum interface were identified from the equivalent circuit model of the system. The parameters were split into control (can be actively changed by user) parameters and material (no user control over the variation of these parameter due to temperature and electric field) parameters. A statistical approach (Design of Experiments) was used to determine the control parameter settings that resulted in the maximum shear stress at the ice aluminum interface per unit actuator excitation voltage. A material parameter design of experiments was carried out to determine the effect of the deviation in the variable parameters on the stress at the ice-aluminum interface and actuator power consumption. A simplified approach to calculate the shear piezoelectric actuator losses under high excitation fields was presented. The experimental results indicated that the adhesive shear strength of the ice-aluminum bond under high frequency dynamic loads is much lower that its static adhesive strength. This was proved by the fact that the ice-aluminum interface bonds were broken at stress values of 0.73MPa as opposed to the target 1.42Mpa. This can be attributed to inherently stochastic nature of ice and the fact that the ice-aluminum bond fails at a much lower stress under dynamic loading as opposed to static loading. The shear mode actuator has a projected power consumption of 0.6kW for the twin bladed Bell 412 (assuming 6 actuators per foot per blade each consuming 50W) if deiced by station as opposed to 26kW for a corresponding electro-thermal system. The shear mode actuator has a projected power consumption of 3.6kW if both blades are deiced simultaneously over the desired length (1/3 rd span from the root) as required in severe icing conditions. The piezoelectric shear mode actuation system (estimated weight of 50 lbs with the actuators themselves accounting for less than 1 lb.) has the potential of delivering this performance while being 70% lighter than a comparable electro-thermal system (weight of 162 lbs). (Abstract shortened by UMI.)

  1. Effect of metal conditioner on bonding of porcelain to cobalt-chromium alloy

    PubMed Central

    Kajihara, Yutaro; Takenouchi, Yoshihisa; Tanaka, Takuo; Suzuki, Shiro; Minami, Hiroyuki

    2016-01-01

    PURPOSE The purpose of this study was to evaluate the efficacy of two different metal conditioners for non-precious metal alloys for the bonding of porcelain to a cobalt-chromium (Co-Cr) alloy. MATERIALS AND METHODS Disk-shaped specimens (2.5×10.0 mm) were cast with Co-Cr alloy and used as adherend materials. The bonding surfaces were polished with a 600-grid silicon carbide paper and airborne-particle abraded using 110 µm alumina particles. Bonding specimens were fabricated by applying and firing either of the metal conditioners on the airborne-particle abraded surface, followed by firing porcelain into 5 mm in diameter and 3 mm in height. Specimens without metal conditioner were also fabricated. Shear bond strength for each group (n=8) were measured and compared (α=.05). Sectional view of bonding interface was observed by SEM. EDS analysis was performed to determine the chemical elements of metal conditioners and to determine the failure modes after shear test. RESULTS There were significant differences among three groups, and two metal conditioner-applied groups showed significantly higher values compared to the non-metal conditioner group. The SEM observation of the sectional view at bonding interface revealed loose contact at porcelain-alloy surface for non-metal conditioner group, however, close contact at both alloy-metal conditioner and metal conditioner-porcelain interfaces for both metal conditioner-applied groups. All the specimens showed mixed failures. EDS analysis showed that one metal conditioner was Si-based material, and another was Ti-based material. Si-based metal conditioner showed higher bond strengths compared to the Ti-based metal conditioner, but exhibited more porous failure surface failure. CONCLUSION Based on the results of this study, it can be stated that the application of metal conditioner is recommended for the bonding of porcelain to cobalt-chromium alloys. PMID:26949481

  2. Comparison of shear bond strength of self-etch and self-adhesive cements bonded to lithium disilicate, enamel and dentin.

    PubMed

    Naranjo, Jennifer; Ali, Mohsin; Belles, Donald

    2015-11-01

    Comparison of shear bond strength of self-etch and self-adhesive cements bonded to lithium disilicate, enamel and dentin. With several self-adhesive resin cements currently available, there is confusion about which product and technique is optimal for bonding ceramic restorations to teeth. The objective of this study was to compare the shear bond strength of lithium disilicate cemented to enamel and dentin using 5 adhesive cements. 100 lithium disilicate rods were pretreated with 5% hydrofluoric acid, silane, and cemented to 50 enamel and 50 dentin surfaces using five test cements: Variolink II (etch-and-rinse) control group, Clearfil Esthetic (two step self-etch), RelyX Unicem, SpeedCEM, and BifixSE (self-adhesive). All specimens were stored (37 degrees C, 100% humidity) for 24 hours before testing their shear bond strength using a universal testing machine (Instron). Debonded surfaces were observed under a low-power microscope to assess the location and type of failure. The highest bond strength for both enamel and dentin were recorded for Variolink II, 15.1MPa and 20.4MPa respectively, and the lowest were recorded for BifixSE, 0.6MPa and 0.9MPa respectively. Generally, higher bond strengths were found for dentin (7.4MPa) than enamel (5.3MPa). Tukey's post hoc test showed no significant difference between Clearfil Esthetic and SpeedCem (p = 0.059), Unicem and SpeedCem (p = 0.88), and Unicem and BifixSE (p = 0.092). All cements bonded better to lithium disilicate than to enamel or dentin, as all bond failures occurred at the tooth/adhesive interface except for Variolink II. Bond strengths recorded for self-adhesive cements were very low compared to the control "etch and rinse" and self-etch systems. Further improvements are apparently needed in self-adhesive cements for them to replace multistep adhesive systems. The use of conventional etch and rinse cements such as Veriolink II should be preferred for cementing all ceramic restorations over self-adhesive cements until the bond strengths are improved.

  3. Thermal convection in a cylindrical enclosure

    NASA Astrophysics Data System (ADS)

    Shukla, K. N.

    2005-02-01

    The paper highlights the onset of convection in a fluid layer partially filled in an axisymmetric container. The equilibrium of the fluid is disturbed with the deformation of the interface due to residual acceleration. The general problem of deformable interface involves a dimensionless parameter, the Bond number. An analytical expression for the natural frequencies of the deformable surface is derived in terms of the Bond number, which determines the time period required for the stable location of the fluid for the propellant management of the spacecraft.

  4. Vibrational spectroscopy of water at interfaces

    PubMed Central

    Skinner, J. L.; Pieniazek, P. A.; Gruenbaum, S. M.

    2011-01-01

    Conspectus Recent experimental advances in vibrational spectroscopy, such as ultrafast pulses and heterodyne detection, have made it possible to probe the structure and dynamics of bulk and interfacial water in unprecedented detail. We consider three aqueous interfaces: the water liquid/vapor interface, the interface between water and the surfactant headgroups of reverse micelles, and the interface between water and the lipid headgroups of aligned multi-bilayers. In the first case, sum-frequency spectroscopy is used to probe the interface, while in the second and third cases, the confined water pools are sufficiently small that techniques of bulk spectroscopy such as FTIR, pump-probe, 2DIR, etc. can be used to probe the interfacial water. In this review, we discuss our attempts to model these three systems and interpret the existing experiments. In particular, for the water liquid/vapor interface we find that three-body interactions are essential for reproducing the experimental sum-frequency spectrum, and presumably for the structure of the interface as well. The observed spectrum is interpreted as arising from overlapping and cancelling positive and negative contributions from molecules in different hydrogen-bonding environments. For the reverse micelles, our theoretical models confirm that the experimentally observed blue shift of the water OD stretch (for dilute HOD in H2O) arises from weaker hydrogen bonding to sulfonate oxygens. We interpret the observed slow-down in water rotational dynamics as arising from curvature-induced frustration. For the water confined between lipid bilayers, our theoretical models confirm that the experimentally observed red shift of the water OD stretch arises from stronger hydrogen bonding to phosphate oxygens. We develop a model for heterogeneous vibrational lifetime distributions, and implement the model to calculate isotropic and anisotropic pump-probe decays, and compare with experiment. PMID:22032305

  5. Effect of nano-SiO{sub 2} particles and curing time on development of fiber-matrix bond properties and microstructure of ultra-high strength concrete

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Zemei; Department of Civil, Architectural and Environmental Engineering, Missouri University of Science and Technology, Rolla 65409, MO; Khayat, Kamal Henri, E-mail: khayatk@mst.edu

    Bond properties between fibers and cementitious matrix have significant effect on the mechanical behavior of composite materials. In this study, the development of steel fiber-matrix interfacial bond properties in ultra-high strength concrete (UHSC) proportioned with nano-SiO{sub 2} varying between 0 and 2%, by mass of cementitious materials, was investigated. A statistical model relating either bond strength or pullout energy to curing time and nano-SiO{sub 2} content was proposed by using the response surface methodology. Mercury intrusion porosimetry (MIP) and backscatter scanning electron microscopy (BSEM) were used to characterize the microstructure of the matrix and the fiber-matrix interface, respectively. Micro-hardness aroundmore » the embedded fiber and hydration products of the matrix were evaluated as well. Test results indicated that the optimal nano-SiO{sub 2} dosage was 1% in terms of the bond properties and the microstructure. The proposed quadratic model efficiently predicted the bond strength and pullout energy with consideration of curing time and nano-SiO{sub 2} content. The improvement in bond properties associated with nano-silica was correlated with denser matrix and/or interface and stronger bond and greater strength of hydration products based on microstructural analysis.« less

  6. Interface bonding in silicon oxide nanocontacts: interaction potentials and force measurements.

    PubMed

    Wierez-Kien, M; Craciun, A D; Pinon, A V; Roux, S Le; Gallani, J L; Rastei, M V

    2018-04-01

    The interface bonding between two silicon-oxide nanoscale surfaces has been studied as a function of atomic nature and size of contacting asperities. The binding forces obtained using various interaction potentials are compared with experimental force curves measured in vacuum with an atomic force microscope. In the limit of small nanocontacts (typically <10 3 nm 2 ) measured with sensitive probes the bonding is found to be influenced by thermal-induced fluctuations. Using interface interactions described by Morse, embedded atom model, or Lennard-Jones potential within reaction rate theory, we investigate three bonding types of covalent and van der Waals nature. The comparison of numerical and experimental results reveals that a Lennard-Jones-like potential originating from van der Waals interactions captures the binding characteristics of dry silicon oxide nanocontacts, and likely of other nanoscale materials adsorbed on silicon oxide surfaces. The analyses reveal the importance of the dispersive surface energy and of the effective contact area which is altered by stretching speeds. The mean unbinding force is found to decrease as the contact spends time in the attractive regime. This contact weakening is featured by a negative aging coefficient which broadens and shifts the thermal-induced force distribution at low stretching speeds.

  7. Interface bonding in silicon oxide nanocontacts: interaction potentials and force measurements

    NASA Astrophysics Data System (ADS)

    Wierez-Kien, M.; Craciun, A. D.; Pinon, A. V.; Le Roux, S.; Gallani, J. L.; Rastei, M. V.

    2018-04-01

    The interface bonding between two silicon-oxide nanoscale surfaces has been studied as a function of atomic nature and size of contacting asperities. The binding forces obtained using various interaction potentials are compared with experimental force curves measured in vacuum with an atomic force microscope. In the limit of small nanocontacts (typically <103 nm2) measured with sensitive probes the bonding is found to be influenced by thermal-induced fluctuations. Using interface interactions described by Morse, embedded atom model, or Lennard-Jones potential within reaction rate theory, we investigate three bonding types of covalent and van der Waals nature. The comparison of numerical and experimental results reveals that a Lennard-Jones-like potential originating from van der Waals interactions captures the binding characteristics of dry silicon oxide nanocontacts, and likely of other nanoscale materials adsorbed on silicon oxide surfaces. The analyses reveal the importance of the dispersive surface energy and of the effective contact area which is altered by stretching speeds. The mean unbinding force is found to decrease as the contact spends time in the attractive regime. This contact weakening is featured by a negative aging coefficient which broadens and shifts the thermal-induced force distribution at low stretching speeds.

  8. Microstructure of Reaction Zone Formed During Diffusion Bonding of TiAl with Ni/Al Multilayer

    NASA Astrophysics Data System (ADS)

    Simões, Sónia; Viana, Filomena; Koçak, Mustafa; Ramos, A. Sofia; Vieira, M. Teresa; Vieira, Manuel F.

    2012-05-01

    In this article, the characterization of the interfacial structure of diffusion bonding a TiAl alloy is presented. The joining surfaces were modified by Ni/Al reactive multilayer deposition as an alternative approach to conventional diffusion bonding. TiAl substrates were coated with alternated Ni and Al nanolayers. The nanolayers were deposited by dc magnetron sputtering with 14 nm of period (bilayer thickness). Joining experiments were performed at 900 °C for 30 and 60 min with a pressure of 5 MPa. Cross sections of the joints were prepared for characterization of their interfaces by scanning electron microscopy (SEM), transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM), high resolution TEM (HRTEM), energy dispersive x-ray spectroscopy (EDS), and electron backscatter diffraction (EBSD). Several intermetallic compounds form at the interface, assuring the bonding of the TiAl. The interface can be divided into three distinct zones: zone 1 exhibits elongated nanograins, very small equiaxed grains are observed in zone 2, while zone 3 has larger equiaxed grains. EBSD analysis reveals that zone 1 corresponds to the intermetallic Al2NiTi and AlNiTi, and zones 2 and 3 to NiAl.

  9. The dopamine D2 receptor dimer and its interaction with homobivalent antagonists: homology modeling, docking and molecular dynamics.

    PubMed

    Kaczor, Agnieszka A; Jörg, Manuela; Capuano, Ben

    2016-09-01

    In order to apply structure-based drug design techniques to G protein-coupled receptor complexes, it is essential to model their 3D structure and to identify regions that are suitable for selective drug binding. For this purpose, we have developed and tested a multi-component protocol to model the inactive conformation of the dopamine D2 receptor dimer, suitable for interaction with homobivalent antagonists. Our approach was based on protein-protein docking, applying the Rosetta software to obtain populations of dimers as present in membranes with all the main possible interfaces. Consensus scoring based on the values and frequencies of best interfaces regarding four scoring parameters, Rosetta interface score, interface area, free energy of binding and energy of hydrogen bond interactions indicated that the best scored dimer model possesses a TM4-TM5-TM7-TM1 interface, which is in agreement with experimental data. This model was used to study interactions of the previously published dopamine D2 receptor homobivalent antagonists based on clozapine,1,4-disubstituted aromatic piperidines/piperazines and arylamidoalkyl substituted phenylpiperazine pharmacophores. It was found that the homobivalent antagonists stabilize the receptor-inactive conformation by maintaining the ionic lock interaction, and change the dimer interface by disrupting a set of hydrogen bonds and maintaining water- and ligand-mediated hydrogen bonds in the extracellular and intracellular part of the interface. Graphical Abstract Structure of the final model of the dopamine D2 receptor homodimer, indicating the distancebetween Tyr37 and Tyr 5.42 in the apo form (left) and in the complex with the ligand (right).

  10. Study program for encapsulation materials interface for low-cost solar array

    NASA Technical Reports Server (NTRS)

    Kaelble, D. H.; Mansfeld, F. B.; Kendig, M.; Leung, C.

    1981-01-01

    The service integrity of the bonded interface in solar cell modules used in solar arrays is addressed. The development of AC impedance as a nondestructive evaluation (NDE) methodology for solar arrays is reported along with development of corrosion models and materials selection criteria for corrosion resistant interfaces.

  11. Atomic and electronic structure of Lomer dislocations at CdTe bicrystal interface

    PubMed Central

    Sun, Ce; Paulauskas, Tadas; Sen, Fatih G.; Lian, Guoda; Wang, Jinguo; Buurma, Christopher; Chan, Maria K. Y.; Klie, Robert F.; Kim, Moon J.

    2016-01-01

    Extended defects are of considerable importance in determining the electronic properties of semiconductors, especially in photovoltaics (PVs), due to their effects on electron-hole recombination. We employ model systems to study the effects of dislocations in CdTe by constructing grain boundaries using wafer bonding. Atomic-resolution scanning transmission electron microscopy (STEM) of a [1–10]/(110) 4.8° tilt grain boundary reveals that the interface is composed of three distinct types of Lomer dislocations. Geometrical phase analysis is used to map strain fields, while STEM and density functional theory (DFT) modeling determine the atomic structure at the interface. The electronic structure of the dislocation cores calculated using DFT shows significant mid-gap states and different charge-channeling tendencies. Cl-doping is shown to reduce the midgap states, while maintaining the charge separation effects. This report offers novel avenues for exploring grain boundary effects in CdTe-based solar cells by fabricating controlled bicrystal interfaces and systematic atomic-scale analysis. PMID:27255415

  12. Atomic and electronic structure of Lomer dislocations at CdTe bicrystal interface

    DOE PAGES

    Sun, Ce; Paulauskas, Tadas; Sen, Fatih G.; ...

    2016-06-03

    Extended defects are of considerable importance in determining the electronic properties of semiconductors, especially in photovoltaics (PVs), due to their effects on electron-hole recombination. We employ model systems to study the effects of dislocations in CdTe by constructing grain boundaries using wafer bonding. Atomic-resolution scanning transmission electron microscopy (STEM) of a [1–10]/ (110) 4.8° tilt grain boundary reveals that the interface is composed of three distinct types of Lomer dislocations. Geometrical phase analysis is used to map strain fields, while STEM and density functional theory (DFT) modeling determine the atomic structure at the interface. The electronic structure of the dislocationmore » cores calculated using DFT shows significant mid-gap states and different charge-channeling tendencies. Cl-doping is shown to reduce the midgap states, while maintaining the charge separation effects. In conclusion, this report offers novel avenues for exploring grain boundary effects in CdTe-based solar cells by fabricating controlled bicrystal interfaces and systematic atomic-scale analysis.« less

  13. Interface passivation and trap reduction via hydrogen fluoride for molybdenum disulfide on silicon oxide back-gate transistors

    NASA Astrophysics Data System (ADS)

    Hu, Yaoqiao; San Yip, Pak; Tang, Chak Wah; Lau, Kei May; Li, Qiang

    2018-04-01

    Layered semiconductor molybdenum disulfide (MoS2) has recently emerged as a promising material for flexible electronic and optoelectronic devices because of its finite bandgap and high degree of gate control. Here, we report a hydrogen fluoride (HF) passivation technique for improving the carrier mobility and interface quality of chemical vapor deposited monolayer MoS2 on a SiO2/Si substrate. After passivation, the fabricated MoS2 back-gate transistors demonstrate a more than double improvement in average electron mobility, a reduced gate hysteresis gap of 3 V, and a low interface trapped charge density of ˜5.8 × 1011 cm-2. The improvements are attributed to the satisfied interface dangling bonds, thus a reduction of interface trap states and trapped charges. Surface x-ray photoelectron spectroscopy analysis and first-principles simulation were performed to verify the HF passivation effect. The results here highlight the necessity of a MoS2/dielectric passivation strategy and provides a viable route for enhancing the performance of MoS2 nano-electronic devices.

  14. Weakly bound water structure, bond valence saturation and water dynamics at the goethite (100) surface/aqueous interface: ab initio dynamical simulations

    DOE PAGES

    Chen, Ying; Bylaska, Eric J.; Weare, John H.

    2017-03-31

    Many important geochemical and biogeochemical reactions occur in the mineral/formation water interface of the highly abundant mineral, goethite (α-Fe(OOH). Ab-initio molecular dynamics (AIMD) simulations of the goethite α-FeOOH (100) surface and the structure, water bond formation and dynamics of water molecules in the mineral/aqueous interface are presented. Here, several exchange correlation functionals were employed (PBE96, PBE96+Grimme, and PBE0) in the simulations of a (3 x 2) goethite surface with 65 absorbed water molecules in a 3D-periodic supercell (a=30 Å, FeOOH slab ~12 Å thick, solvation layer ~18 Å thick).

  15. Weakly bound water structure, bond valence saturation and water dynamics at the goethite (100) surface/aqueous interface: ab initio dynamical simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Ying; Bylaska, Eric J.; Weare, John H.

    Many important geochemical and biogeochemical reactions occur in the mineral/formation water interface of the highly abundant mineral, goethite (α-Fe(OOH). Ab-initio molecular dynamics (AIMD) simulations of the goethite α-FeOOH (100) surface and the structure, water bond formation and dynamics of water molecules in the mineral/aqueous interface are presented. Here, several exchange correlation functionals were employed (PBE96, PBE96+Grimme, and PBE0) in the simulations of a (3 x 2) goethite surface with 65 absorbed water molecules in a 3D-periodic supercell (a=30 Å, FeOOH slab ~12 Å thick, solvation layer ~18 Å thick).

  16. Surface separation investigation of ultrafast pulsed laser welding

    NASA Astrophysics Data System (ADS)

    Chen, Jianyong; Carter, Richard M.; Thomson, Robert R.; Hand, Duncan P.

    2016-03-01

    Techniques for joining materials, especially optical materials such as glass to structural materials such as metals, or to other optical materials, while maintaining their surface and optical properties are essential for a wide range of industrial applications. Adhesive bonding is commonly used but leads to many issues including optical surface contamination and outgassing. It is possible to generate welds using an ultra-short pulsed laser process, whereby two flat material surfaces are brought into close contact and the laser is focused through the optical material onto the interface. Highly localised melting and rapid resolidification form a strong bond between the two surfaces whilst avoiding significant heating of the surrounding material, which is important for joining materials with different thermal expansion coefficients. Previous reports on ultrafast laser welding have identified a requirement for the surface separation gap to be less than 500nm in order to avoid cracking or ablation at the interface. We have investigated techniques for increasing this gap (to reduce weld fit-up problems), and tested by bonding two surfaces with a weld-controlled gap. These gaps were generated either by a series of etched grooves on the surface of one of the substrates, or by using a cylindrical lens as a substrate. By careful optimisation of parameters such as laser power, process speed and focal position, we were able to demonstrate successful welding with a gap of up to 3μm.

  17. Micromorphological characterization of adhesive interface of sound dentin and total-etch and self-etch adhesives.

    PubMed

    Drobac, Milan; Stojanac, Igor; Ramić, Bojana; Premović, Milica; Petrović, Ljubomir

    2015-01-01

    The ultimate goal in restorative dentistry has always been to achieve strong and permanent bond between the dental tissues and filling materials. It is not easy to achieve this task because the bonding process is different for enamel and dentin-dentin is more humid and more organic than enamel. It is moisture and organic nature of dentin that make this hard tissue very complex to achieve adhesive bond. One of the first and most widely used tools for examining the adhesive bond between hard dental tissues and composite restorative materials is scanning electron microscopy. The aim of this study was scanning electron microscopy analyzes the interfacial micro morphology of total-etch and self-etch adhesives. Micro morphological characteristics of interface between total-etch adhesive (Prime & Bond NT) in combination with the corresponding composite (Ceram X Mono) were compared with those of self-etching adhesive (AdheSE One) in, combination with the corresponding composite (Tetric EvoCeram). The specimens were observed under 1000 x magnification of scanning electron microscopy (JEOL, JSM-6460 Low Vacuum). Measurement of the thickness of the hybrid layer of the examined com posite systems was performed with the software of the device used (NIH Image Analyser). Micromorphological analysis of interface showed that the hybrid layer in sound dentin was well formed, its average thickness being 2.68 microm, with a large number of resin tags and a large amount of lateral branches for specimens with a composite system Prime & Bond NT-Ceram X Mono. However, the specimens' with composite systems Adhese One-Tetric EvoCeram did not show the presence of hybrid layer and the resin tags were poorly represented. The results of this study suggest that total-etch adhesives bond better with sound dentin than self-etch adhesive.

  18. Effect of Minocycline on the Durability of Dentin Bonding Produced with Etch-and-Rinse Adhesives.

    PubMed

    Loguercio, A D; Stanislawczuk, R; Malaquias, P; Gutierrez, M F; Bauer, J; Reis, A

    2016-01-01

    To evaluate the effect of minocycline and chlorhexidine pretreatment of acid-etched dentin on the longevity of resin-dentin bond strength (μTBS) and nanoleakage of two-step etch-and-rinse adhesives. Before application of Prime & Bond NT and Adper Single Bond 2 in occlusal dentin, the dentin surfaces were treated with 37% phosphoric acid, rinsed, air-dried, and rewetted with water (control group), 2% minocycline, or 2% chlorexidine digluconate. Composite buildups were constructed incrementally, and specimens were longitudinally sectioned to obtain bonded sticks (0.8 mm 2 ) to be tested in tension (0.5 mm/min) immediately or after 24 months of water storage. For nanoleakage, two specimens of each tooth/period were immersed in the silver nitrate solution, photo-developed, and polished with SiC paper for analysis under energy-dispersive X-ray spectroscopy/scanning electron microscopy. Reductions of the μTBS and increases in the nanoleakage were observed for both adhesives when the rewetting procedure was performed with water. Stable bonds were observed for the 2% minocycline and 2% chlorexidine digluconate groups after 24 months. The use of 2% minocycline as pretreatment of acid-etched dentin is one alternative to retard the degradation of resin-dentin interfaces over a 24-month period as well as 2% chlorexidine digluconate.

  19. A Novel Technique for the Connection of Ceramic and Titanium Implant Components Using Glass Solder Bonding

    PubMed Central

    Mick, Enrico; Tinschert, Joachim; Mitrovic, Aurica; Bader, Rainer

    2015-01-01

    Both titanium and ceramic materials provide specific advantages in dental implant technology. However, some problems, like hypersensitivity reactions, corrosion and mechanical failure, have been reported. Therefore, the combining of both materials to take advantage of their pros, while eliminating their respective cons, would be desirable. Hence, we introduced a new technique to bond titanium and ceramic materials by means of a silica-based glass ceramic solder. Cylindrical compound samples (Ø10 mm × 56 mm) made of alumina toughened zirconia (ATZ), as well as titanium grade 5, were bonded by glass solder on their end faces. As a control, a two-component adhesive glue was utilized. The samples were investigated without further treatment, after 30 and 90 days of storage in distilled water at room temperature, and after aging. All samples were subjected to quasi-static four-point-bending tests. We found that the glass solder bonding provided significantly higher bending strength than adhesive glue bonding. In contrast to the glued samples, the bending strength of the soldered samples remained unaltered by the storage and aging treatments. Scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX) analyses confirmed the presence of a stable solder-ceramic interface. Therefore, the glass solder technique represents a promising method for optimizing dental and orthopedic implant bondings. PMID:28793440

  20. Appendix for the Final Technical Report - DE FE0009284

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duguid, Andrew

    2017-05-29

    Carbon capture utilization storage (CCUS) is a potential technology to store anthropogenic emissions for CO 2. Utilization often refers to CO 2-enhanced oil recovery (CO 2-EOR). An important factor in the success of CO 2 storage in saline formations or CO 2-EOR reservoirs is ensuring that the storage occurs safely and is long-term. Assessment of well integrity has become more important for CCS and CO 2-EOR as it has become apparent that wells represent the most likely migration pathway for CO 2 to leave a CCS storage unit or a CO 2-EOR reservoir. Although wells represent a migration pathway theymore » are also the best vehicle for employing technology monitoring CO 2 injection and storage. This contradiction of being a potential migration path and key monitoring technology leads to a need to understand how monitoring wells may be similar or different in comparison to other types of wells with respect to migration risk. The maturation and completion US Department of Energy sponsored research projects presents an opportunity to assess the integrity of monitoring wells that have been exposed to injected CO 2. This paper discusses an integrity assessment of two monitoring wells in an operating CO 2-EOR flood in Mississippi, USA. The CFU31F-2 and CFU31F-3 monitoring wells were constructed to test monitoring technologies in and above a commercial CO 2-EOR project. The materials selected and the design of the well were optimized for monitoring. Carbonation in CFU31-F2 was seen as high as 7900 ft, above what was considered top of cement based on the logs. Time-lapse comparison of cement bond amplitude data and acoustic impedance maps show a deterioration of signal that implies a deterioration of cement bond or cement along much of the cemented annulus in the long-string section. Analysis of sidewall cores using XRD and LA-ICP-MS validated the log interpretation by confirming the degradation of cement (carbonation) along the casing-cement interface. The ultrasonic image maps also clearly identify the control lines and monitoring technology attached to the outside of the of the long-string casing on each well studied. The control lines appear as microdebonded or fluid filled vertical features implying that they could act as leakage pathways. The sidewall core through the control line at 10380 ft confirms that CO 2 is migrating along the control line with heavily carbonated cement at the control line interface. LA-ICP-MS and XRD on formation interface of the sidewall cores collected in both wells indicates that CO 2 is also moving of the cement-formation interface. LA-ICP-MS and XRD indicate that the amount carbonation in the center of the cores was less than the carbonation at the interfaces. Indicating that CO 2 is reaching the center of the cores by diffusing in from the interfaces and not migrating up from the reservoir though the porous matrix of the cement. This agrees with Duguid et al. [5] and Carey et al. [1] who have found that the interfaces in the well are more conductive than the porous network of the cement. Both the materials used to construct the well and the decision to attach monitoring technology to the outside of the well may have contributed to the migration of CO 2 along the interfaces. Careful consideration should be given to material selection to ensure that it does not degrade when in contact with the fluids in the reservoir and overlying strata. The addition of the control line on the outside of the casing complicated the cement placement and likely caused no cement to bond to the casing adjacent to the control line leading out of the reservoir. Further study of other wells with external lines should be conducted to see of the results of the construction of CFU31-F2 and -F3 is normal or an exception.« less

  1. Fabrication of Al/Mg/Al Composites via Accumulative Roll Bonding and Their Mechanical Properties

    PubMed Central

    Nie, Jinfeng; Liu, Mingxing; Wang, Fang; Zhao, Yonghao; Li, Yusheng; Cao, Yang; Zhu, Yuntian

    2016-01-01

    Al(1060)/Mg(AZ31)/Al(1060) multilayered composite was successfully produced using an accumulative roll bonding (ARB) process for up to four cycles at an elevated temperature (400 °C). The microstructure evolution of the composites and the bonding characteristics at the interfaces between Al and Mg layers with increasing ARB cycles were characterized through optical microscopy, field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). It was found that the grains of Al and Mg layers were significantly refined and Al3Mg2 and Al12 Mg17 intermetallic compound layers formed at the Al/Mg bonding interfaces. The strength increased gradually and the ultimate tensile strength (UTS) reached a maximum value of about 240 MPa at the third pass. Furthermore, the strengthening mechanism of the composite was analyzed based on the fracture morphologies. PMID:28774072

  2. Key Durability Issues with Mullite-Based Environmental Barrier Coatings for Si-Based Ceramics

    NASA Technical Reports Server (NTRS)

    Lee, Kang N.

    1999-01-01

    Plasma-sprayed mullite (3Al2O3 central dot 2SiO2) and mullite/yttria-stabilized-zirconia (YSZ) dual layer coatings have been developed to protect silicon-based ceramics from environmental attack. Mullite-based coating systems show excellent durability in air. However, in combustion environments, corrosive species such as molten salt or water vapor penetrate through cracks in the coating and attack the Si-based ceramics along the interface, Thus modification of the coating system for enhanced crack-resistance is necessary for long-term durability in combustion environments. Other key durability issues include interfacial contamination and coating/substrate bonding. Interfacial contamination leads to enhanced oxidation and interfacial pore formation, while weak coating/substrate bonding leads to rapid attack of the interface by corrosive species, both of which can cause premature failure of the coating. Interfacial contamination can be minimized by limiting impurities in coating and substrate materials. The interface may be modified to improve the coating/substrate bond.

  3. Key Durability Issues with Mullite-Based Environmental Barrier Coatings for Si-Based Ceramics

    NASA Technical Reports Server (NTRS)

    Lee, Kang N.

    2000-01-01

    Plasma-sprayed mullite (3Al2O3.2SiO2) and mullite/yttria-stabilized-zirconia (YSZ) dual layer coatings have been developed to protect silicon -based ceramics from environmental attack. Mullite-based coating systems show excellent durability in air. However, in combustion environments, corrosive species such as molten salt or water vapor penetrate through cracks in the coating and attack the Si-based ceramics along the interface. Thus the modification of the coating system for enhanced crack-resistance is necessary for long-term durability in combustion environments. Other key durability issues include interfacial contamination and coating/substrate bonding. Interfacial contamination leads to enhanced oxidation and interfacial pore formation, while a weak coating/substrate bonding leads to rapid attack of the interface by corrosive species, both of which can cause a premature failure of the coating. Interfacial contamination can be minimized by limiting impurities in coating and substrate materials. The interface may be modified to improve the coating/substrate bond.

  4. Direct Evidence of Intrinsic Blue Fluorescence from Oligomeric Interfaces of Human Serum Albumin.

    PubMed

    Bhattacharya, Arpan; Bhowmik, Soumitra; Singh, Amit K; Kodgire, Prashant; Das, Apurba K; Mukherjee, Tushar Kanti

    2017-10-10

    The molecular origin behind the concentration-dependent intrinsic blue fluorescence of human serum albumin (HSA) is not known yet. This unusual blue fluorescence is believed to be a characteristic feature of amyloid-like fibrils of protein/peptide and originates due to the delocalization of peptide bond electrons through the extended hydrogen bond networks of cross-β-sheet structure. Herein, by combining the results of spectroscopy, size exclusion chromatography, native gel electrophoresis, and confocal microscopy, we have shown that the intrinsic blue fluorescence of HSA exclusively originates from oligomeric interfaces devoid of any amyloid-like fibrillar structure. Our study suggests that this low energy fluorescence band is not due to any particular residue/sequence, but rather it is a common feature of self-assembled peptide bonds. The present findings of intrinsic blue fluorescence from oligomeric interfaces pave the way for future applications of this unique visual phenomenon for early stage detection of various protein aggregation related human diseases.

  5. The Role of Water in Mediating Interfacial Adhesion and Shear Strength in Graphene Oxide.

    PubMed

    Soler-Crespo, Rafael A; Gao, Wei; Mao, Lily; Nguyen, Hoang T; Roenbeck, Michael R; Paci, Jeffrey T; Huang, Jiaxing; Nguyen, SonBinh T; Espinosa, Horacio D

    2018-06-12

    Graphene oxide (GO), whose highly tunable surface chemistry enables the formation of strong interfacial hydrogen-bond networks, has garnered increasing interest in the design of devices that operate in the presence of water. For instance, previous studies have suggested that controlling GO's surface chemistry leads to enhancements in interfacial shear strength, allowing engineers to manage deformation pathways and control failure mechanisms. However, these previous reports have not explored the role of ambient humidity and only offer extensive chemical modifications to GO's surface as the main pathway to control GO's interfacial properties. Herein, through atomic force microscopy experiments on GO-GO interfaces, the adhesion energy and interfacial shear strength of GO were measured as a function of ambient humidity. Experimental evidence shows that adhesion energy and interfacial shear strength can be improved by a factor of 2-3 when GO is exposed to moderate (∼30% water weight) water content. Furthermore, complementary molecular dynamics simulations uncovered the mechanisms by which these nanomaterial interfaces achieve their properties. They reveal that the strengthening mechanism arises from the formation of strongly interacting hydrogen-bond networks, driven by the chemistry of the GO basal plane and intercalated water molecules between two GO surfaces. In summary, the methodology and findings here reported provide pathways to simultaneously optimize GO's interfacial and in-plane mechanical properties, by tailoring the chemistry of GO and accounting for water content, in engineering applications such as sensors, filtration membranes, wearable electronics, and structural materials.

  6. Metal-composite adhesion based on diazonium chemistry.

    PubMed

    Oweis, Yara; Alageel, Omar; Kozak, Paige; Abdallah, Mohamed-Nur; Retrouvey, Jean-Marc; Cerruti, Marta; Tamimi, Faleh

    2017-11-01

    Composite resins do not adhere well to dental alloys. This weak bond can result in failure at the composite-metal interface in fixed dental prostheses and orthodontic brackets. The aim of this study was to develop a new adhesive, based on diazonium chemistry, to facilitate chemical bonding between dental alloys and composite resin. Samples of two types of dental alloys, stainless steel and cobalt chromium were primed with a diazonium layer in order to create a surface coating favorable for composite adhesion. Untreated metal samples served as controls. The surface chemical composition of the treated and untreated samples was analyzed by X-ray photoelectron spectroscopy (XPS) and the tensile strength of the bond with composite resin was measured. The diazonium adhesive was also tested for shear bond strength between stainless steel orthodontic brackets and teeth. XPS confirmed the presence of a diazonium coating on the treated metals. The coating significantly increased the tensile and shear bond strengths by three and four folds respectively between the treated alloys and composite resin. diazonium chemistry can be used to develop composite adhesives for dental alloys. Diazonium adhesion can effectively achieve a strong chemical bond between dental alloys and composite resin. This technology can be used for composite repair of fractured crowns, for crown cementation with resin based cements, and for bracket bonding. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  7. Effects of water-aging for 6 months on the durability of a novel antimicrobial and protein-repellent dental bonding agent.

    PubMed

    Zhang, Ning; Zhang, Ke; Weir, Michael D; Xu, David J; Reynolds, Mark A; Bai, Yuxing; Xu, Hockin H K

    2018-06-21

    Biofilms at the tooth-restoration bonded interface can produce acids and cause recurrent caries. Recurrent caries is a primary reason for restoration failures. The objectives of this study were to synthesize a novel bioactive dental bonding agent containing dimethylaminohexadecyl methacrylate (DMAHDM) and 2-methacryloyloxyethyl phosphorylcholine (MPC) to inhibit biofilm formation at the tooth-restoration margin and to investigate the effects of water-aging for 6 months on the dentin bond strength and protein-repellent and antibacterial durability. A protein-repellent agent (MPC) and antibacterial agent (DMAHDM) were added to a Scotchbond multi-purpose (SBMP) primer and adhesive. Specimens were stored in water at 37 °C for 1, 30, 90, or 180 days (d). At the end of each time period, the dentin bond strength and protein-repellent and antibacterial properties were evaluated. Protein attachment onto resin specimens was measured by the micro-bicinchoninic acid approach. A dental plaque microcosm biofilm model was used to test the biofilm response. The SBMP + MPC + DMAHDM group showed no decline in dentin bond strength after water-aging for 6 months, which was significantly higher than that of the control (P < 0.05). The SBMP + MPC + DMAHDM group had protein adhesion that was only 1/20 of that of the SBMP control (P < 0.05). Incorporation of MPC and DMAHDM into SBMP provided a synergistic effect on biofilm reduction. The antibacterial effect and resistance to protein adsorption exhibited no decrease from 1 to 180 d (P > 0.1). In conclusion, a bonding agent with MPC and DMAHDM achieved a durable dentin bond strength and long-term resistance to proteins and oral bacteria. The novel dental bonding agent is promising for applications in preventive and restorative dentistry to reduce biofilm formation at the tooth-restoration margin.

  8. Concentration-dependent multiple chirality transition in halogen-bond-driven 2D self-assembly process

    NASA Astrophysics Data System (ADS)

    Miao, Xinrui; Li, Jinxing; Zha, Bao; Miao, Kai; Dong, Meiqiu; Wu, Juntian; Deng, Wenli

    2018-03-01

    The concentration-dependent self-assembly of iodine substituted thienophenanthrene derivative (5,10-DITD) is investigated at the 1-octanic acid/graphite interface using scanning tunneling microscopy. Three kinds of chiral arrangement and transition of 2D molecular assembly mainly driven by halogen bonding is clearly revealed. At high concentration the molecules self-assembled into a honeycomb-like chiral network. Except for the interchain van der Waals forces, this pattern is stabilized by intermolecular continuous Cdbnd O⋯I⋯S halogen bonds in each zigzag line. At moderate concentration, a chiral kite-like nanoarchitecture are observed, in which the Cdbnd O⋯I⋯S and I⋯Odbnd C halogen bonds, along with the molecule-solvent Cdbnd O⋯I⋯H halogen bonds are the dominated forces to determine the structural formation. At low concentration, the molecules form a chiral cyclic network resulting from the solvent coadsorption mainly by molecule-molecule Cdbnd O⋯I⋯S halogen bonds and molecule-solvent Cdbnd O⋯I⋯H halogen bonds. The density of molecular packing becomes lower with the decreasing of the solution concentration. The solution-concentration dependent self-assembly of thienophenanthrene derivative with iodine and ester chain moieties reveals that the type of intermolecular halogen bond and the number of the co-adsorbing 1-octanic acids by molecule-solvent Cdbnd O⋯I⋯H halogen bonds determine the formation and transformation of chirality. This research emphasizes the role of different types of halogen (I) bonds in the controllable supramolecular structures and provides an approach for the fabrication of chirality.

  9. Determination of Stress Intensity Factor Distributions for "Interface" Cracks in Incompressible, Dissimilar Materials

    NASA Technical Reports Server (NTRS)

    Smith, C. W.

    1997-01-01

    The present study was undertaken in order to develop test methods and procedures for measuring the variation of the stress intensity factor through the thickness in bimaterial specimens containing cracks within and parallel to the bond line using the frozen stress photoelastic method. Since stress freezing materials are incompressible above critical temperature, and since thick plates are to be employed which tend to produce a state of plane strain near the crack tip, the interface near tip fracture equations reduce to the classic form for homogeneous materials. Moreover, zero thickness interfaces do not exist when materials are bonded together. It was decided early on that it would be important to insure a uniform straight and accurate crack tip region through the thickness of the body to reduce scatter in the SIF distribution through the thickness. It was also observed that rubberlike materials which were desired to be modeled exhibited significant tip blunting prior to crack extension and that some blunting of the tip would provide a more realistic model. It should be noted that, in normal stress freezing photoelastic work, it is considered good practice to avoid utilizing data near bond lines in photoelastic models due to the bond line stresses which inevitably develop when two parts are bonded together. Thus, the present study involves certain exploratory aspects in deviating from standard practice in stress freezing work. With the above ideas in mind, several different test methods were investigated and are described in the following sections and appendices. The geometry selected for the program was a thick, edge cracked specimen containing a bond line.

  10. Voltage-induced Interface Reconstruction and Electrical Instability of the Ferromagnet-Semiconductor Device.

    PubMed

    Chang, Shu-Jui; Chang, Po-Chun; Lin, Wen-Chin; Lo, Shao-Hua; Chang, Liang-Chun; Lee, Shang-Fan; Tseng, Yuan-Chieh

    2017-03-23

    Using x-ray magnetic spectroscopy with in-situ electrical characterizations, we investigated the effects of external voltage on the spin-electronic and transport properties at the interface of a Fe/ZnO device. Layer-, element-, and spin-resolved information of the device was obtained by cross-tuning of the x-ray mode and photon energy, when voltage was applied. At the early stage of the operation, the device exhibited a low-resistance state featuring robust Fe-O bonds. However, the Fe-O bonds were broken with increasing voltage. Breaking of the Fe-O bonds caused the formation of oxygen vacancies and resulted in a high-resistance state. Such interface reconstruction was coupled to a charge-transfer effect via Fe-O hybridization, which suppressed/enhanced the magnetization/coercivity of Fe electronically. Nevertheless, the interface became stabilized with the metallic phase if the device was continuously polarized. During this stage, the spin-polarization of Fe was enhanced whereas the coercivity was lowered by voltage, but changes of both characteristics were reversible. This stage is desirable for spintronic device applications, owing to a different voltage-induced electronic transition compared to the first stage. The study enabled a straightforward detection of the spin-electronic state at the ferromagnet-semiconductor interface in relation to the transport and reversal properties during operation process of the device.

  11. A 2-year in vitro evaluation of a chlorhexidine-containing acid on the durability of resin-dentin interfaces.

    PubMed

    Stanislawczuk, Rodrigo; Reis, Alessandra; Loguercio, Alessandro D

    2011-01-01

    This study evaluated the effect of 2% chlorhexidine-containing acid (Ac/CHX) and 2% chlorhexidine digluconate solution (CHX) on immediate (IM) and 2-year (2Y) resin-dentin bond strength (BS) and silver nitrate uptake (SNU) for two simplified etch-and-rinse adhesives. Forty-two caries-free extracted molars had a flat dentin surface exposed. In the control groups (groups 1), the surfaces were acid etched with conventional phosphoric acid and the adhesives Prime&Bond NT (PB) or Adper Single Bond 2 (SB) was applied after rinsing, drying and rewetting with water. In groups 2, Ac/CHX groups the adhesives were applied in a similar manner; however a 2% CHX-containing acid was previously applied. In groups 3, the adhesives were applied according to the control group; however the rewetting procedure was performed with an aqueous solution of 2% CHX for 60s. Composite build-ups were constructed incrementally and microtensile specimens (0.8mm(2)) were prepared for microtensile bond strength testing in the IM or 2Y periods at 0.5mm/min. For SNU, 2 bonded sticks from each tooth were coated with nail varnish, placed in the silver nitrate, polished down with SiC papers and analysed by EDX-SEM. The data from each adhesive was submitted to a two-way repeated measures ANOVA and Tukey's test (α=0.05). After 2Y, significant reductions of BS were observed for both adhesives in the control group (p<0.05). In Ac/CHX or CHX groups the BS remained stable for both systems. SNU was more evident in the control than in the experimental groups (p<0.05) both in IM and 2Y periods. The use of CHX in an aqueous solution or associated with the acid conditioner was effective to reduce the degradation of dentin bonds over a 2-year period. The addition of CHX digluconate in the acidic conditioner may be an excellent tool to increase the long-term stability of collagens fibrils within the hybrid layer against host-derived metalloproteinases without the need for additional steps for the bonding protocol. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. Properties at the interface of graphene and Ti2C MXene

    NASA Astrophysics Data System (ADS)

    Paul, Pallavi; Chakraborty, Poulami; Das, Tilak; Nafday, Dhani; Saha-Dasgupta, Tanusri

    2017-07-01

    Employing ab initio calculations, we characterize the interfaces formed between graphene, a much discussed two-dimensional material, and MXene, another two-dimensional material of recent interest. Our study considering the specific case of Ti2C , a member of the MXene family, shows the formation of chemical bonds between Ti atoms and C atoms of graphene. This results in reconstruction of the electronic structure at the interface, making the interface metallic, though graphene is a zero-gap semiconductor and Ti2C is an antiferromagnetic insulator in their respective native form. The optical and phonon properties of the interfaces are found to be strongly dependent on the stacking arrangement, driven by the nature of chemical-bond formation. Consideration of O-passivated Ti2C is found to weaken the interaction between graphene and Ti2C substantially, making it a physisorption process rather than chemisorption in the unpassivated situation. Our first-principles study is expected to motivate future experimental investigation.

  13. Embedded cluster metal-polymeric micro interface and process for producing the same

    DOEpatents

    Menezes, Marlon E.; Birnbaum, Howard K.; Robertson, Ian M.

    2002-01-29

    A micro interface between a polymeric layer and a metal layer includes isolated clusters of metal partially embedded in the polymeric layer. The exposed portion of the clusters is smaller than embedded portions, so that a cross section, taken parallel to the interface, of an exposed portion of an individual cluster is smaller than a cross section, taken parallel to the interface, of an embedded portion of the individual cluster. At least half, but not all of the height of a preferred spherical cluster is embedded. The metal layer is completed by a continuous layer of metal bonded to the exposed portions of the discontinuous clusters. The micro interface is formed by heating a polymeric layer to a temperature, near its glass transition temperature, sufficient to allow penetration of the layer by metal clusters, after isolated clusters have been deposited on the layer at lower temperatures. The layer is recooled after embedding, and a continuous metal layer is deposited upon the polymeric layer to bond with the discontinuous metal clusters.

  14. Soft x-ray spectroscopy of a complex heterojunction in high-efficiency thin-film photovoltaics: Intermixing and Zn speciation at the Zn(O,S)/Cu(In,Ga)Se 2 interface

    DOE PAGES

    Mezher, Michelle; Garris, Rebekah; Mansfield, Lorelle M.; ...

    2016-11-11

    In this study, the chemical structure of the Zn(O,S)/Cu(In,Ga)Se 2 interface in high-efficiency photovoltaic devices is investigated using X-ray photoelectron and Auger electron spectroscopy, as well as soft X-ray emission spectroscopy. We find that the Ga/(Ga+In) ratio at the absorber surface does not change with the formation of the Zn(O,S)/Cu(In,Ga)Se 2 interface. Furthermore, we find evidence for Zn in multiple bonding environments, including ZnS, ZnO, Zn(OH) 2, and ZnSe. We also observe dehydrogenation of the Zn(O,S) buffer layer after Ar+ ion treatment. Similar to high-efficiency CdS/Cu(In,Ga)Se 2 devices, intermixing occurs at the interface, with diffusion of Se into the buffer,more » and the formation of S—In and/or S—Ga bonds at or close to the interface.« less

  15. Cyclo-hexa-peptides at the water/cyclohexane interface: a molecular dynamics simulation.

    PubMed

    Cen, Min; Fan, Jian Fen; Liu, Dong Yan; Song, Xue Zeng; Liu, Jian; Zhou, Wei Qun; Xiao, He Ming

    2013-02-01

    Molecular dynamic (MD) simulations have been performed to study the behaviors of ten kinds of cyclo-hexa-peptides (CHPs) composed of amino acids with the diverse hydrophilic/hydrophobic side chains at the water/cyclohexane interface. All the CHPs take the "horse-saddle" conformations at the interface and the hydrophilicity/hydrophobicity of the side chains influences the backbones' structural deformations. The orientations and distributions of the CHPs at the interface and the differences of interaction energies (ΔΔE) between the CHPs and the two liquid phases have been determined. RDF analysis shows that the H-bonds were formed between the O(C) atoms of the CHPs' backbones and H(w) atoms of water molecules. N atoms of the CHPs' backbones formed the H-bonds or van der Waals interactions with the water solvent. It was found that there is a parallel relationship between ΔΔE and the lateral diffusion coefficients (D ( xy )) of the CHPs at the interface. The movements of water molecules close to the interface are confined to some extent, indicating that the dynamics of the CHPs and interfacial water molecules are strongly coupled.

  16. Effect of dimethyl sulfoxide wet-bonding technique on hybrid layer quality and dentin bond strength.

    PubMed

    Stape, Thiago Henrique Scarabello; Tjäderhane, Leo; Marques, Marcelo Rocha; Aguiar, Flávio Henrique Baggio; Martins, Luís Roberto Marcondes

    2015-06-01

    This study examined the effect of a dimethyl sulfoxide (DMSO) wet bonding technique on the resin infiltration depths at the bonded interface and dentin bond strength of different adhesive systems. Flat dentin surfaces of 48 human third molars were treated with 50% DMSO (experimental groups) or with distilled water (controls) before bonding using an etch-and-rinse (SBMP: Scotchbond Multi-Purpose, 3M ESPE) or a self-etch (Clearfil: Clearfil SE Bond, Kuraray) adhesive system. The restored crown segments (n=12/group) were stored in distilled water (24h) and sectioned for interfacial analysis of exposed collagen using Masson's Trichrome staining and for microtensile bond strength testing. The extent of exposed collagen was measured using light microscopy and a histometric analysis software. Failure modes were examined by SEM. Data was analyzed by two-way ANOVA followed by Tukey Test (α=0.05). The interaction of bonding protocol and adhesive system had significant effects on the extension of exposed collagen matrix (p<0.0001) and bond strength (p=0.0091). DMSO-wet bonding significantly reduced the extent of exposed collagen matrix for SBMP and Clearfil (p<0.05). Significant increase in dentin bond strength was observed on DMSO-treated specimens bonded with SBMP (p<0.05), while no differences were observed for Clearfil (p>0.05). DMSO-wet bonding was effective to improve the quality of resin-dentin bonds of the tested etch-and-rinse adhesives by reducing the extent of exposed collagen matrix at the base of the resin-dentin biopolymer. The improved penetration of adhesive monomers is reflected as an increase in the immediate bond strength when the DMSO-wet bonding technique is used with a water-based etch-and-rinse adhesive. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  17. Do we need primer for orthodontic bonding? A randomized controlled trial.

    PubMed

    Nandhra, Sarabjit Singh; Littlewood, Simon J; Houghton, Nadine; Luther, Friedy; Prabhu, Jagadish; Munyombwe, Theresa; Wood, Simon R

    2015-04-01

    To evaluate the clinical performance of APC™II Victory Series™ (3M Unitek) brackets in direct orthodontic bonding with and without the use of primer. A single-operator, two-centre prospective, non-inferiority randomized controlled clinical trial. The Orthodontic departments at the Leeds Dental Institute and St Luke's Hospital, Bradford, UK. Ethical approval was granted by Leeds (East) Research Ethics Committee on 18th of December 2009 (Reference 09/H1306/102). The protocol was not published prior to trial commencement. Ninety-two patients requiring orthodontic treatment with fixed appliances were randomly allocated to the control (bonded with primer) or test groups (bonded without primer). Patients were randomly allocated to either the control or experimental group. This was performed by preparing opaque numbered sealed envelopes in advance using a random numbers table generated by a computer by an independent third party . Once the envelopes were opened, blinding of the operator and the patient was no longer possible due to the nature of the intervention. Patients were approached for inclusion in the trial if they qualified for NHS orthodontic treatment requiring fixed appliances and had no previous orthodontic treatment. Number of bracket failures, time to bond-up appliances, and the adhesive remnant index (ARI) when bracket failure occurred, over a 12-month period Failure rate with primer was 11.1 per cent and without primer was 15.8 per cent. Bonding without primer was shown statistically to be non-inferior to bonding with primer odds ratio 0.95-2.25 (P = 0.08). Mean difference in bond-up time per bracket was 0.068 minutes (4 seconds), which was not statistically significant (P = 0.402). There was a statistically significant difference in the Adhesive Remnant Index - ARI 0 with primer 49.4 per cent, no primer 76.5 per cent, (P < 0.0001). As the study was only performed by one operator, the results can therefore only be truly be applied to their practice. Also this study was powered to ascertain if there was no difference between the 2 groups up to 5%, however orthodontists may consider a change in the bracket failure rate of 2% to be clinically significant. When bonding with APC™II Victory Series™ brackets without primer was shown statistically to be non-inferior to bonding with primer (P =0.08). There was no significant difference in bond-up times. Bond failure was more likely to happen at the composite-enamel interface when bonded without a primer. No conflict of interest for all authors. No funding sources were used. Study was not registered on external databases. © The Author 2014. Published by Oxford University Press on behalf of the European Orthodontic Society. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  18. Rapid bonding enhancement by auxiliary ultrasonic actuation for the fabrication of cyclic olefin copolymer (COC) microfluidic devices

    NASA Astrophysics Data System (ADS)

    Yu, H.; Tor, S. B.; Loh, N. H.

    2014-11-01

    Thermal compression bonding is a straightforward, inexpensive and widely used method for enclosing open microchannels in thermoplastic microfluidic devices. It is advantageous over adhesive, solvent and grafting bonding methods in retaining material homogeneity. However, the trade-off between high bond strength and low microchannel deformation is always a crucial consideration in thermal compression bonding. In this study, an effective method for improving bond strength while retaining the microchannel integrity with negligible distortion is proposed and analyzed. Longitudinal ultrasonic actuation was applied to the preheated cyclic olefin copolymer (COC) substrates to achieve accelerated and enhanced bonding with an ultrasonic welding system. Intimate contact between the bonding surfaces before the ultrasonic actuation was found to be an important prior condition. With improper contact, several bonding defects would occur, such as voids, localized spot melting and edge melting. Under auxiliary ultrasonic vibration, within 10 s, the bond strength developed at the bonding interface could be dramatically improved compared with those achieved without ultrasonic actuation. The enhanced bond strength obtained at a preheating temperature of 20 °C lower than its Tg could be comparable to the strength for pure thermal compression at 5 °C higher than its Tg. It is believed that the ultrasonic energy introduced could elevate the interfacial temperature and facilitate the interdiffusion of molecular chain segments at the interface, consequently resulting in rapidly enhanced bonding. Also, the microchannel distortion after ultrasonic actuation was found to be satisfactory—another important requirement. From dynamic mechanical analysis, the glass transition temperature of COC was found to increase with increasing frequency, and the temperature of the bulk polymer under ultrasonic actuation was still well under Tg; therefore the deformation is minor under ultrasonic actuation.

  19. Morphology, topography, and hardness of diffusion bonded sialon to AISI 420 at different bonding time

    NASA Astrophysics Data System (ADS)

    Ibrahim, Nor Nurulhuda Md.; Hussain, Patthi; Awang, Mokhtar

    2015-07-01

    Sialon and AISI 420 martensitic stainless steel were diffusion bonded in order to study the effect of bonding time on reaction layer's growth. Joining of these materials was conducted at 1200°C under a uniaxial pressure of 17 MPa in a vacuum ranging from 5.0 to 8.0×10-6 Torr with bonding time varied for 0.5, 2, and 3 h. Thicker reaction layer was formed in longer bonded sample since the elements from sialon could diffuse further into the steel. Sialon retained its microstructure but it was affected at the initial contact with the steel to form the new interface layer. Diffusion layer grew toward the steel and it was segregated with the parent steel as a result of the difference in properties between these regions. The segregation formed a stream-like structure and its depth decreased when the bonding time was increased. The microstructure of the steel transformed into large grain size with precipitates. Prolonging the bonding time produced more precipitates in the steel and reduced the steel thickness as well. Interdiffusions of elements occurred between the joined materials and the concentrations were decreasing toward the steel and vice versa. Silicon easily diffused into the steel because it possessed lower ionization potential compared to nitrogen. Formation of silicide and other compounds such as carbides were detected in the interface layer and steel grain boundary, respectively. These compounds were harmful due to silicide brittleness and precipitation of carbides in the grain boundary might cause intergranular corrosion cracking. Sialon retained its hardness but it dropped very low at the interface layer. The absence of crack at the joint in all samples could be contributed from the ductility characteristic of the reaction layer which compensated the residual stress that was formed upon the cooling process.

  20. Effect of moisture on the traction-separation behavior of cellulose nanocrystal interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinko, Robert; Keten, Sinan, E-mail: s-keten@northwestern.edu; Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Room A136, Evanston, Illinois 60208

    2014-12-15

    Interfaces and stress transfer between cellulose nanocrystals (CNCs) dictate the mechanical properties of hierarchical cellulose materials such as neat films and nanocomposites. An interesting question that remains is how the behavior of these interfaces changes due to environmental stimuli, most notably moisture. We present analyses on the traction-separation behavior between Iβ CNC elementary fibrils, providing insight into how the presence of a single atomic layer of water at these interfaces can drastically change the mechanical behavior. We find that molecular water at the interface between hydrophilic CNC surfaces has a negligible effect on the tensile separation adhesion energy. However, whenmore » water cannot hydrogen bond easily to the surface (i.e., hydrophobic surface), it tends to maintain hydrogen bonds with other water molecules across the interface and form a capillary bridge that serves to increase the energy required to separate the crystals. Under shear loading, water lowers the energy barriers to sliding by reducing the atomic friction and consequently the interlayer shear modulus between crystals. Our simulations indicate that these nanoscale interfaces and physical phenomena such as interfacial adhesion, interlayer shear properties, and stick-slip friction behavior can be drastically altered by the presence of water.« less

  1. Ultrastructural characterization of tooth-biomaterial interfaces prepared with broad and focused ion beams.

    PubMed

    Coutinho, E; Jarmar, T; Svahn, F; Neves, A A; Verlinden, B; Van Meerbeek, B; Engqvist, H

    2009-11-01

    Current available techniques for transmission electron microscopy (TEM) of tooth-biomaterial interfaces are mostly ineffective for brittle phases and impair integrated chemical and morphological characterization. The aims of this study were (1) to determine the applicability of new focused ion beam (FIB) and broad ion beam (BIB) techniques for TEM preparation of tooth-biomaterial interfaces; (2) to characterize the interfacial interaction with enamel and dentin of a conventional glass-ionomer (Chemfil Superior, DeTrey Dentsply, Germany), a 2-step self-etch (Clearfil SE, Kuraray, Japan) and a 3-step etch-and-rinse (OptiBond FL, Kerr, USA) adhesives; and (3) to characterize clinically relevant interfaces obtained from actual Class-I cavities. After bonding to freshly extracted human third molars, non-demineralized and non-stained sections were obtained using the FIB/BIB techniques and examined under TEM. The main structures generally disclosed in conventional ultramicrotomy samples were recognized in FIB/BIB-based ones. There were not any major differences between FIB and BIB concerning the resulting ultrastructural morphology. FIB/BIB-sections enabled to clearly resolve sub-micron hydroxyapatite crystals on top of hard tissues and the interface between matrix and filler in all materials, even at nano-scale. Some investigated interfaces disclosed areas with a distinct "fog" or "melted look", which is probably an artifact due to surface damage caused by the high-energy beam. Interfaces with enamel clearly disclosed the distinct "keyhole" shape of enamel rods sectioned at 90 degrees , delimited by a thin electron-lucent layer of inter-rod enamel. At regions where enamel crystals ran parallel with the interface, we observed a lack of interaction and some de-bonding along with interfacial void formation. The FIB/BIB methods are viable and reliable alternatives to conventional ultramicrotomy for preparation of thin sections of brittle and thus difficult to cut biomaterial-hard tissue interfaces. They disclose additional ultrastructural information about both substrates and are more suitable for advanced analytic procedures.

  2. Reinforcement of dentin in self-etch adhesive technology: a new concept.

    PubMed

    Waidyasekera, Kanchana; Nikaido, Toru; Weerasinghe, Dinesh S; Ichinose, Shizuko; Tagami, Junji

    2009-08-01

    Characterize the ultramorphology and secondary caries inhibition potential of different dentin adhesive systems in order to find a satisfactory explanation resist to recurrent caries. Human premolar dentin was treated with one of the two self-etching adhesive systems, Clearfil SE Bond, Clearfil Protect Bond or an acid-etching adhesive system, Single Bond. The bonded interface was exposed to an artificial demineralizing solution (pH 4.5) for 90 min and then 5% sodium hypochlorite for 20 min. Transmission electron microscopic observation was performed at the adhesive-dentin interface. The width of the reinforced zone was measured and data were analyzed with univariate analysis of variance under general linear model. In order to identify type of crystallites in the reinforced zone selected area electron diffraction was performed. An acid-base resistant zone (ABRZ) was found adjacent to the hybrid layer in the outer lesion front with only Clearfil SE Bond and Clearfil Protect Bond, while Single Bond was devoid of this protective zone. Crystallite arrangement and the ultramorphology were almost similar in the corresponding regions of Clearfil SE Bond and Clearfil Protect Bond. However, thickness of the ABRZ at the mid portion was 1159(+/-41.91)nm in Clearfil protect Bond, which was significantly thicker than that of Clearfil SE Bond (F=514.84, p<0.001). Selected area electron diffraction confirmed the crystallites in the zone as apatite. The self-etching adhesive systems created a new reinforced acid resistant dentin under the hybrid layer. Difference in the thickness of the zone expressed a different potential for demineralization inhibition.

  3. Thermal Fatigue Behavior of Air-Plasma Sprayed Thermal Barrier Coating with Bond Coat Species in Cyclic Thermal Exposure

    PubMed Central

    Lu, Zhe; Myoung, Sang-Won; Jung, Yeon-Gil; Balakrishnan, Govindasamy; Lee, Jeongseung; Paik, Ungyu

    2013-01-01

    The effects of the bond coat species on the delamination or fracture behavior in thermal barrier coatings (TBCs) was investigated using the yclic thermal fatigue and thermal-shock tests. The interface microstructures of each TBC showed a good condition without cracking or delamination after flame thermal fatigue (FTF) for 1429 cycles. The TBC with the bond coat prepared by the air-plasma spray (APS) method showed a good condition at the interface between the top and bond coats after cyclic furnace thermal fatigue (CFTF) for 1429 cycles, whereas the TBCs with the bond coats prepared by the high-velocity oxygen fuel (HVOF) and low-pressure plasma spray (LPPS) methods showed a partial cracking (and/or delamination) and a delamination after 780 cycles, respectively. The TBCs with the bond coats prepared by the APS, HVOF and LPPS methods were fully delaminated (>50%) after 159, 36, and 46 cycles, respectively, during the thermal-shock tests. The TGO thickness in the TBCs was strongly dependent on the both exposure time and temperature difference tested. The hardness values were found to be increased only after the CFTF, and the TBC with the bond coat prepared by the APS showed the highest adhesive strength before and after the FTF. PMID:28811441

  4. Spectrally- and Time-Resolved Sum Frequency Generation (STiR-SFG): a new tool for ultrafast hydrogen bond dynamics at interfaces.

    NASA Astrophysics Data System (ADS)

    Benderskii, Alexander; Bordenyuk, Andrey; Weeraman, Champika

    2006-03-01

    The recently developed spectrally- and time-resolved Sum Frequency Generation (STiR-SFG) is a surface-selective 3-wave mixing (IR+visible) spectroscopic technique capable of measuring ultrafast spectral evolution of vibrational coherences. A detailed description of this measurement will be presented, and a noniterative method or deconvolving the laser pulses will be introduced to obtain the molecular response function. STiR-SFG, combined with the frequency-domain SFG spectroscopy, was applied to study hydrogen bonding dynamics at aqueous interfaces (D2O/CaF2). Spectral dynamics of the OD-stretch on the 50-150 fs time scale provides real-time observation of ultrafast H-bond rearrangement. Tuning the IR wavelength to the blue or red side of the OD-stretch transition, we selectively monitor the dynamics of different sub-ensembles in the distribution of the H-bond structures. The blue-side excitation (weaker H-bonding) shows monotonic red-shift of the OD-frequency. In contrast, the red-side excitation (stronger H-bonding structures) produces a blue-shift and a recursion, which may indicate the presence of an underdamped intermolecular mode of interfacial water. Effect of electrolyte concentration on the H-bond dynamics will be discussed.

  5. Transient Liquid-Phase Diffusion Bonding of Aluminum Metal Matrix Composite Using a Mixed Cu-Ni Powder Interlayer

    NASA Astrophysics Data System (ADS)

    Maity, Joydeep; Pal, Tapan Kumar

    2012-07-01

    In the present study, the transient liquid-phase diffusion bonding of an aluminum metal matrix composite (6061-15 wt.% SiCp) has been investigated for the first time using a mixed Cu-Ni powder interlayer at 560 °C, 0.2 MPa, for different holding times up to 6 h. The microstructure of the isothermally solidified zone contains equilibrium precipitate CuAl2, metastable precipitate Al9Ni2 in the matrix of α-solid solution along with the reinforcement particles (SiC). On the other hand, the microstructure of the central bond zone consists of equilibrium phases such as NiAl3, Al7Cu4Ni and α-solid solution along with SiC particles (without any segregation) and the presence of microporosities. During shear test, the crack originates from microporosities and propagates along the interphase interfaces resulting in poor bond strength for lower holding times. As the bonding time increases, with continual diffusion, the structural heterogeneity is diminished, and the microporosities are eliminated at the central bond zone. Accordingly, after 6-h holding, the microstructure of the central bond zone mainly consists of NiAl3 without any visible microporosity. This provides a joint efficiency of 84% with failure primarily occurring through decohesion at the SiC particle/matrix interface.

  6. Solid Liquid Interdiffusion Bonding of (Pb, Sn)Te Thermoelectric Modules with Cu Electrodes Using a Thin-Film Sn Interlayer

    NASA Astrophysics Data System (ADS)

    Chuang, T. H.; Lin, H. J.; Chuang, C. H.; Yeh, W. T.; Hwang, J. D.; Chu, H. S.

    2014-12-01

    A (Pb, Sn)Te thermoelectric element plated with a Ni barrier layer and a Ag reaction layer has been joined with a Cu electrode coated with Ag and Sn thin films using a solid-liquid interdiffusion bonding method. This method allows the interfacial reaction between Ag and Sn such that Ag3Sn intermetallic compounds form at low temperature and are stable at high temperature. In this study, the bonding strength was about 6.6 MPa, and the specimens fractured along the interface between the (Pb, Sn)Te thermoelectric element and the Ni barrier layer. Pre-electroplating a film of Sn with a thickness of about 1 μm on the thermoelectric element and pre-heating at 250°C for 3 min ensures the adhesion between the thermoelectric material and the Ni barrier layer. The bonding strength is thus increased to a maximal value of 12.2 MPa, and most of the fractures occur inside the thermoelectric material. During the bonding process, not only the Ag3Sn intermetallics but also Cu6Sn5 forms at the Ag3Sn/Cu interface, which transforms into Cu3Sn with increases in the bonding temperature or bonding time.

  7. High voltage photo switch package module

    DOEpatents

    Sullivan, James S; Sanders, David M; Hawkins, Steven A; Sampayan, Stephen E

    2014-02-18

    A photo-conductive switch package module having a photo-conductive substrate or wafer with opposing electrode-interface surfaces, and at least one light-input surface. First metallic layers are formed on the electrode-interface surfaces, and one or more optical waveguides having input and output ends are bonded to the substrate so that the output end of each waveguide is bonded to a corresponding one of the light-input surfaces of the photo-conductive substrate. This forms a waveguide-substrate interface for coupling light into the photo-conductive wafer. A dielectric material such as epoxy is then used to encapsulate the photo-conductive substrate and optical waveguide so that only the metallic layers and the input end of the optical waveguide are exposed. Second metallic layers are then formed on the first metallic layers so that the waveguide-substrate interface is positioned under the second metallic layers.

  8. Modeling for Matrix Multicracking Evolution of Cross-ply Ceramic-Matrix Composites Using Energy Balance Approach

    NASA Astrophysics Data System (ADS)

    Longbiao, Li

    2015-12-01

    The matrix multicracking evolution of cross-ply ceramic-matrix composites (CMCs) has been investigated using energy balance approach. The multicracking of cross-ply CMCs was classified into five modes, i.e., (1) mode 1: transverse multicracking; (2) mode 2: transverse multicracking and matrix multicracking with perfect fiber/matrix interface bonding; (3) mode 3: transverse multicracking and matrix multicracking with fiber/matrix interface debonding; (4) mode 4: matrix multicracking with perfect fiber/matrix interface bonding; and (5) mode 5: matrix multicracking with fiber/matrix interface debonding. The stress distributions of four cracking modes, i.e., mode 1, mode 2, mode 3 and mode 5, are analysed using shear-lag model. The matrix multicracking evolution of mode 1, mode 2, mode 3 and mode 5, has been determined using energy balance approach. The effects of ply thickness and fiber volume fraction on matrix multicracking evolution of cross-ply CMCs have been investigated.

  9. Low-temperature formation of Ga-oxide/GaN interface with remote oxygen plasma and its interface properties

    NASA Astrophysics Data System (ADS)

    Yamamoto, Taishi; Taoka, Noriyuki; Ohta, Akio; Truyen, Nguyen Xuan; Yamada, Hisashi; Takahashi, Tokio; Ikeda, Mitsuhisa; Makihara, Katsunori; Shimizu, Mitsuaki; Miyazaki, Seiichi

    2018-06-01

    The Ga-oxide/GaN structures formed by remote oxygen plasma (ROP) exposure at various temperatures (T s) and times have been systematically investigated. X-ray photoelectron spectroscopy clarified the formation of Ga2O3 layers with close-to-stoichiometric composition and a slight N incorporation of ∼6 at. %. Also, we found that a high T s increases the intensity of a signal related to the N–O bond, which is located near the Ga-oxide/GaN interfaces. Total photoelectron yield spectroscopy (PYS) also revealed that the ROP exposure at T s of 300 °C produces fewer filled defect states in the bandgap of GaN than at 500 °C. This difference in the filled defect states could be attributable to the amount of N–O bonds at the interface.

  10. What determines the interfacial configuration of Nb/Al2O3 and Nb/MgO interface

    PubMed Central

    Du, J. L.; Fang, Y.; Fu, E. G.; Ding, X.; Yu, K. Y.; Wang, Y. G.; Wang, Y. Q.; Baldwin, J. K.; Wang, P. P.; Bai, Q.

    2016-01-01

    Nb films are deposited on single crystal Al2O3 (110) and MgO(111) substrates by e-beam evaporation technique. Structure of Nb films and orientation relationships (ORs) of Nb/Al2O3 and Nb/MgO interface are studied and compared by the combination of experiments and simulations. The experiments show that the Nb films obtain strong (110) texture, and the Nb film on Al2O3(110) substrate shows a higher crystalline quality than that on MgO(111) substrate. First principle calculations show that both the lattice mismatch and the strength of interface bonding play major roles in determining the crystalline perfection of Nb films and ORs between Nb films and single crystal ceramic substrates. The fundamental mechanisms for forming the interfacial configuration in terms of the lattice mismatch and the strength of interface bonding are discussed. PMID:27698458

  11. The Effect of High Concentration and Small Size of Nanodiamonds on the Strength of Interface and Fracture Properties in Epoxy Nanocomposite

    PubMed Central

    Haleem, Yasir A.; Song, Pin; Liu, Daobin; Wang, Changda; Gan, Wei; Saleem, Muhammad Farooq; Song, Li

    2016-01-01

    The concentration and small size of nanodiamonds (NDs) plays a crucial role in the mechanical performance of epoxy-based nanocomposites by modifying the interface strength. Herein, we systemically analyzed the relation between the high concentration and small size of ND and the fracture properties of its epoxy-based nanocomposites. It was observed that there is a two-fold increase in fracture toughness and a three-fold increase in fracture energy. Rationally, functionalized-NDs (F-NDs) showed a much better performance for the nanocomposite than pristine NDs (P-NDs) because of additional functional groups on its surface. The F-ND/epoxy nanocomposites exhibited rougher surface in contrast with the P-ND/epoxy, indicating the presence of a strong interface. We found that the interfaces in F-ND/epoxy nanocomposites at high concentrations of NDs overlap by making a web, which can efficiently hinder further crack propagation. In addition, the de-bonding in P-ND/epoxy nanocomposites occurred at the interface with the appearance of plastic voids or semi-naked particles, whereas the de-bonding for F-ND/epoxy nanocomposites happened within the epoxy molecular network instead of the interface. Because of the strong interface in F-ND/epoxy nanocomposites, at high concentrations the de-bonding within the epoxy molecular network may lead to subsequent cracks, parallel to the parent crack, via crack splitting which results in a fiber-like structure on the fracture surface. The plastic void growth, crack deflection and subsequent crack growth were correlated to higher values of fracture toughness and fracture energy in F-ND/epoxy nanocomposites. PMID:28773628

  12. Reorientation of the ‘free OH’ group in the top-most layer of air/water interface of sodium fluoride aqueous solution probed with sum-frequency generation vibrational spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Ran-Ran; Guo, Yuan; Wang, Hongfei

    2014-09-17

    Many experimental and theoretical studies have established the specific anion, as well as cation effects on the hydrogen-bond structures at the air/water interface of electrolyte solutions. However, the ion effects on the top-most layer of the air/water interface, which is signified by the non-hydrogen-bonded so-called ‘free O-H’ group, has not been discussed or studied. In this report, we present the measurement of changes of the orientational angle of the ‘free O-H’ group at the air/water interface of the sodium fluoride (NaF) solutions at different concentrations using the interface selective sum-frequency generation vibrational spectroscopy (SFG-VS) in the ssp and ppp polarizations.more » The polarization dependent SFG-VS results show that the average tilt angle of the ‘free O-H’ changes from about 35.3 degrees ± 0.5 degrees to 43.4 degrees ± 2.1degrees as the NaF concentration increase from 0 to 0.94M (nearly saturated). Such tilt angle change is around the axis of the other O-H group of the same water molecule at the top-most layer at the air/water interface that is hydrogen-bonded to the water molecules below the top-most layer. These results provide quantitative molecular details of the ion effects of the NaF salt on the structure of the water molecules at the top-most layer of the air/water interfacial, even though both the Na+ cation and the F- anion are believed to be among the most excluded ions from the air/water interface.« less

  13. The Effect of High Concentration and Small Size of Nanodiamonds on the Strength of Interface and Fracture Properties in Epoxy Nanocomposite.

    PubMed

    Haleem, Yasir A; Song, Pin; Liu, Daobin; Wang, Changda; Gan, Wei; Saleem, Muhammad Farooq; Song, Li

    2016-06-23

    The concentration and small size of nanodiamonds (NDs) plays a crucial role in the mechanical performance of epoxy-based nanocomposites by modifying the interface strength. Herein, we systemically analyzed the relation between the high concentration and small size of ND and the fracture properties of its epoxy-based nanocomposites. It was observed that there is a two-fold increase in fracture toughness and a three-fold increase in fracture energy. Rationally, functionalized-NDs (F-NDs) showed a much better performance for the nanocomposite than pristine NDs (P-NDs) because of additional functional groups on its surface. The F-ND/epoxy nanocomposites exhibited rougher surface in contrast with the P-ND/epoxy, indicating the presence of a strong interface. We found that the interfaces in F-ND/epoxy nanocomposites at high concentrations of NDs overlap by making a web, which can efficiently hinder further crack propagation. In addition, the de-bonding in P-ND/epoxy nanocomposites occurred at the interface with the appearance of plastic voids or semi-naked particles, whereas the de-bonding for F-ND/epoxy nanocomposites happened within the epoxy molecular network instead of the interface. Because of the strong interface in F-ND/epoxy nanocomposites, at high concentrations the de-bonding within the epoxy molecular network may lead to subsequent cracks, parallel to the parent crack, via crack splitting which results in a fiber-like structure on the fracture surface. The plastic void growth, crack deflection and subsequent crack growth were correlated to higher values of fracture toughness and fracture energy in F-ND/epoxy nanocomposites.

  14. Destructive and non-destructive evaluation of cu/cu diffusion bonding with interlayer aluminum

    NASA Astrophysics Data System (ADS)

    Santosh Kumar, A.; Mohan, T.; Kumar, S. Suresh; Ravisankar, B.

    2018-03-01

    The current study is established an inspection procedure for assessing quality of diffusion bonded joints using destructive and non-destructive method. Diffusion bonding of commercially pure copper with aluminium interlayer was carried out uniaxial load at 15MPa for different temperatures under holding time 60 min in vacuum atmosphere. The bond qualities were determined by destructive and non-destructive testing method (ultrasonic C- scan). The bond interface and bonded samples were analysed using optical and scanning electron microscopy (SEM). The element composition of the fractured and bonded area is determined using the Energy Dispersive Spectrometry (EDS). The bond quality obtained by both testing methods and its parameters are correlated. The optimized bonding parameter for best bonding characteristics for copper diffusion bonding with aluminum interlayer is reported.

  15. Sulfur at nickel-alumina interfaces - Molecular orbital theory

    NASA Technical Reports Server (NTRS)

    Hong, S. Y.; Anderson, Alfred B.; Smialek, James L.

    1990-01-01

    Previous studies on Al-Ni alloys containing sulfur as an impurity suggest that, when S is in the interface between a metal and an oxide scale, it weakens the chemical bonding between them. This paper investigates factors responsible for this effect, using a molecular orbital theory to predict sulfur structures and electronic properties on the Ni-Al2O3 interface. It is shown that, in absence of S, the basal plane of Al2O3 will bind strongly through the Al(3+) cation surface to Ni (111). When segregated S impurity is present on the Ni surface, there are too few interfacial AlS bonds to effect good adhesion, leading to an inhibition of the oxide scale adhesion in NiCrAl alloys.

  16. Two-scale modeling of joining of the aluminum alloys by a cohesive zone element technique

    NASA Astrophysics Data System (ADS)

    Zuo, Yinan; Wulfinghoff, Stephan; Reese, Stefanie

    2016-10-01

    The roll bonding of aluminum sheets is numerically investigated. In the first part of the paper, a cohesive zone element formulation in the framework of zero-thickness interface elements is developed. Based on a traction-separation law, this enables the modeling of bonding and debonding on both macroscale and microscale. Simulations on microscale are done to show the mechanism of bonding and the influence of different factors on the bonding strength.

  17. Evaluation of a conditioning method to improve core-veneer bond strength of zirconia restorations.

    PubMed

    Teng, Jili; Wang, Hang; Liao, Yunmao; Liang, Xing

    2012-06-01

    The high strength and fracture toughness of zirconia have supported its extensive application in esthetic dentistry. However, the fracturing of veneering porcelains remains one of the primary causes of failure. The purpose of this study was to evaluate, with shear bond strength testing, the effect of a simple and novel surface conditioning method on the core-veneer bond strength of a zirconia ceramic system. The shear bond strength of a zirconia core ceramic to the corresponding veneering porcelain was tested by the Schmitz-Schulmeyer method. Thirty zirconia core specimens (10 × 5 × 5 mm) were layered with a veneering porcelain (5 × 3 × 3 mm). Three different surface conditioning methods were evaluated: polishing with up to 1200 grit silicon carbide paper under water cooling, airborne-particle abrasion with 110 μm alumina particles, and modification with zirconia powder coating before sintering. A metal ceramic system was used as a control group. All specimens were subjected to shear force in a universal testing machine at a crosshead speed of 0.5 mm/min. The shear bond strength values were analyzed with 1-way ANOVA and Tukey's post hoc pairwise comparisons (α=.05). The fractured specimens were examined with a scanning electron microscope to observe the failure mode. The mean (SD) shear bond strength values in MPa were 47.02 (6.4) for modified zirconia, 36.66 (8.6) for polished zirconia, 39.14 (6.5) for airborne-particle-abraded zirconia, and 46.12 (7.1) for the control group. The mean bond strength of the control (P=.028) and modified zirconia groups (P=.014) was significantly higher than that of the polished zirconia group. The airborne-particle-abraded group was not significantly different from any other group. Scanning electron microscopy evaluation showed that cohesive fracture in the veneering porcelain was the predominant failure mode of modified zirconia, while the other groups principally fractured at the interface. Modifying the zirconia surface with powder coating could significantly increase the shear bond strength of zirconia to veneering porcelain. Copyright © 2012 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  18. Corrosion protected, multi-layer fuel cell interface

    DOEpatents

    Feigenbaum, Haim; Pudick, Sheldon; Wang, Chiu L.

    1986-01-01

    An improved interface configuration for use between adjacent elements of a fuel cell stack. The interface is impervious to gas and liquid and provides resistance to corrosion by the electrolyte of the fuel cell. The multi-layer configuration for the interface comprises a non-cupreous metal-coated metallic element to which is film-bonded a conductive layer by hot pressing a resin therebetween. The multi-layer arrangement provides bridging electrical contact.

  19. Reduction-oxidation Enabled Glass-ceramics to Stainless Steel Bonding Part I: screening of doping oxidants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Steve Xunhu

    Lithium silicate-based glass-ceramics with high coefficients of thermal expansion, designed to form matched hermetic seals in 304L stainless steel housing, show little evidence of interfacial chemical bonding, despite extensive inter-diffusion at the glass-ceramic-stainless steel (GC-SS) interface. A series of glass-ceramic compositions modified with a variety of oxidants, AgO, FeO, NiO, PbO, SnO, CuO, CoO, MoO 3 and WO 3, are examined for the feasibility of forming bonding oxides through reduction-oxidation (redox) at the GC-SS interface. The oxidants were selected according to their Gibbs free energy to allow for oxidation of Cr/Mn/Si from stainless steel, and yet to prevent a reductionmore » of P2O5 in the glass-ceramic where the P 2O 5 is to form Li 3PO 4 nuclei for growth of high expansion crystalline SiO 2 phases. Other than the CuO and CoO modified glass-ceramics, bonding from interfacial redox reactions were not achieved in the modified glass-ceramics, either because of poor wetting on the stainless steel or a reduction of the oxidants at the surface of glass-ceramic specimens rather than the GC-SS interface.« less

  20. Three-Dimensional Bioprinting of Oppositely Charged Hydrogels with Super Strong Interface Bonding.

    PubMed

    Li, Huijun; Tan, Yu Jun; Liu, Sijun; Li, Lin

    2018-04-04

    A novel strategy to improve the adhesion between printed layers of three-dimensional (3D) printed constructs is developed by exploiting the interaction between two oppositely charged hydrogels. Three anionic hydrogels [alginate, xanthan, and κ-carrageenan (Kca)] and three cationic hydrogels [chitosan, gelatin, and gelatin methacrylate (GelMA)] are chosen to find the optimal combination of two oppositely charged hydrogels for the best 3D printability with strong interface bonding. Rheological properties and printability of the hydrogels, as well as structural integrity of printed constructs in cell culture medium, are studied as functions of polymer concentration and the combination of hydrogels. Kca2 (2 wt % Kca hydrogel) and GelMA10 (10 wt % GelMA hydrogel) are found to be the best combination of oppositely charged hydrogels for 3D printing. The interfacial bonding between a Kca layer and a GelMA layer is proven to be significantly higher than that of the bilayered Kca or bilayered GelMA because of the formation of polyelectrolyte complexes between the oppositely charged hydrogels. A good cell viability of >96% is obtained for the 3D-bioprinted Kca-GelMA construct. This novel strategy has a great potential for 3D bioprinting of layered constructs with a strong interface bonding.

  1. Intermolecular network analysis of the liquid and vapor interfaces of pentane and water: microsolvation does not trend with interfacial properties.

    PubMed

    Ghadar, Yasaman; Clark, Aurora E

    2014-06-28

    Liquid:vapor and liquid:liquid interfaces exhibit complex organizational structure and dynamics at the molecular level. In the case of water and organic solvents, the hydrophobicity of the organic, its conformational flexibility, and compressibility, all influence interfacial properties. This work compares the interfacial tension, width, molecular conformations and orientations at the vapor and aqueous liquid interfaces of two solvents, n-pentane and neopentane, whose varying molecular shapes can lead to significantly different interfacial behavior. Particular emphasis has been dedicated toward understanding how the hydrogen bond network of water responds to the pentane relative to the vapor interface and the sensitivity of the network to the individual pentane isomer and system temperature. Interfacial microsolvation of the immiscible solvents has been examined using graph theoretical methods that quantify the structure and dynamics of microsolvated species (both H2O in C5H12 and C5H12 in H2O). At room temperature, interfacial water at the pentane phase boundary is found to have markedly different organization and dynamics than at the vapor interface (as indicated by the hydrogen bond distributions and hydrogen bond persistence in solution). While the mesoscale interfacial properties (e.g. interfacial tension) are sensitive to the specific pentane isomer, the distribution and persistence of microsolvated species at the interface is nearly identical for both systems, irrespective of temperature (between 273 K and 298 K). This has important implications for understanding how properties defined by the interfacial organization are related to the underlying solvation reactions that drive formation of the phase boundary.

  2. Molecular dynamics of reversible self-healing materials

    NASA Astrophysics Data System (ADS)

    Madden, Ian; Luijten, Erik

    Hydrolyzable polymers have numerous industrial applications as degradable materials. Recent experimental work by Cheng and co-workers has introduced the concept of hindered urea bond (HUB) chemistry to design self-healing systems. Important control parameters are the steric hindrance of the HUB structures, which is used to tune the hydrolytic degradation kinetics, and their density. We employ molecular dynamics simulations of polymeric interfaces to systematically explore the role of these properties in a coarse-grained model, and make direct comparison to experimental data. Our model provides direct insight into the self-healing process, permitting optimization of the control parameters.

  3. [Bonding properties of four different cements to glass fiber posts after different treatments].

    PubMed

    Li, Xiaojing; Zhao, Sanjun; Shen, Lijuan; Xu, Shuai; Sun, Jiaqi; Chen, Jihua

    2014-03-01

    To investigate the effect of four different cements on the bonding effectiveness of root canal dentine and fiber post before and after different treatments. A total of 216 freshly extracted sound single-root-canal mandibular premolars were randomly divided into four groups. After root canal treatment and post space preparation being conducted on the premolars, Fuji I, Fuji Cem, RelyX Unicem, RelyX ARC were used respectively to bond fiber posts and were marked with group A, B, C, and D. Microleakage, micromorphology of the bonded interfaces, and pull-out bond strength were evaluated in the immediate group, thermocycling group and thermomechanical loading group. In the immediate group, samples in group D showed the highest bond strength [(278 ± 26)N], followed by group C[ (219 ± 12) N], B[ (104 ± 23) N] and A[(73 ± 8) N]. Significant differences were found among all groups (P < 0.05) . A significant increase in bond strength was found in group A and B, whereas a decrease tendency was detected in group C and D after different treatments.Scanning electron microscope indicated that some little gaps were observed in group D after treatment, while a more intense bonding interface was found in group A and B. Microleakage scores in group A and B were lower than those in group C and D after aging treatments. Resin cement can achieve a better immediate bond strength, while resin-modified resin cement may acquire a better long-term retention.

  4. Effect of La2O3 addition on interface chemistry between 4YSZ top layer and Ni based alloy bond coat in thermal barrier coating by EB PVD.

    PubMed

    Park, Chan-Young; Yang, Young-Hwan; Kim, Seong-Won; Lee, Sung-Min; Kim, Hyung-Tae; Jang, Byung-Koog; Lim, Dae-Soon; Oh, Yoon-Suk

    2014-11-01

    The effect of a 5 mol% La2O3 addition on the forming behavior and compositional variation at interface between a 4 mol% Yttria (Y2O3) stabilized ZrO2 (4YSZ) top coat and bond coat (NiCrAlY) as a thermal barrier coating (TBC) has been investigated. Top coats were deposited by electron beam physical vapor deposition (EB PVD) onto a super alloy (Ni-Cr-Co-Al) substrate without pre-oxidation of the bond coat. Top coats are found to consist of dense columnar grains with a thin interdiffusion layer between metallic bond coats. In the as-received 4YSZ coating, a thin interdiffusion zone at the interface between the top and bond coats was found to consist of a Ni-Zr intermetallic compound with a reduced quantity of Y, Al or O elements. On the other hand, in the case of an interdiffusion area of 5 mol% La2O3-added 4YSZ coating, it was found that the complicated composition and structure with La-added YSZ and Ni-Al rich compounds separately. The thermal conductivity of 5 mol% La2O3-added 4YSZ coating (- 1.6 W/m x k at 1100 degrees C) was lower than a 4YSZ coating (- 3.2 W/m x k at 1100 degrees C) alone.

  5. [The effect of root canal re-wetting on push-out bond strength and durability of fiber post].

    PubMed

    Yao, Ke; Song, Jie-wen; Li, Yan

    2011-02-01

    To analyze the push-out bond strength of fiber post and the durability of interface between dentin and composite resin during over drying and re-wetting of root canal. Thirty-six extracted human maxillary central incisors were randomly divided into three groups: Group A for the process of over drying, Group B for re-wetting, Group C for control. All teeth were sliced into several thin discs with thickness of 1.0 mm for micro push-out test and scanning electron microscope(SEM) observation. Push-out shear strengths of fiber post immediately after bonding in group A, B and C were (5.97 ± 1.97), (7.67 ± 2.19) and (8.46 ± 2.35) MPa. Push-out strengths of fiber post two months after water storage were (2.08 ± 1.67), (2.99 ± 1.48) and (3.22 ± 1.43) MPa. There was significantly difference in push-out strength between Group A and Group B (P < 0.05). Significantly difference in push-out strength was also found between Group A and Group C. In the condition of immediate testing, there was also significantly difference between push-out strength of cervical slice and middle slice, and between cervical slice and apical slice (P < 0.05). The water storage time has significant effect on the push-out bond strength of fiber posts (P < 0.05). Inappropriate condensation air blowing operation can cause extracted teeth root canal dentin over dry. Dehydration can destroy the formation of general structure of interface between composite resin and dentin. The over dry dentin can be turned back to wetting stage by water pouring, which can help fiber-reinforced composite post regain its normal retention strength and original adhesive durability.

  6. Evaluation of asphalt pavement interface conditions for enhanced bond performance.

    DOT National Transportation Integrated Search

    2017-05-01

    This project describes a comprehensive modeling effort aimed at examining the potential impact of interface debonding on near-surface longitudinal cracking in the wheelpath of asphalt pavements. A critical zone defined by high shear stress coupled wi...

  7. Evaluation of asphalt pavement interface conditions for enhanced bond performance : [summary].

    DOT National Transportation Integrated Search

    2017-05-01

    In this project, University of Florida researchers conducted a comprehensive program of modeling to understand interface debonding and near-surface longitudinal cracking in the wheel path of asphalt pavements. : To understand the interaction of debon...

  8. Preparation and properties of calcium-silicate filled resins for dental restoration. Part II: Micro-mechanical behaviour to primed mineral-depleted dentine.

    PubMed

    Profeta, Andrea Corrado

    2014-11-01

    Evaluating microtensile bond strength (μTBS) and Knoop micro-hardness (KHN) of resin bonded-dentine interfaces created with two methacrylate-based systems either incorporating Bioglass 45S5 (3-E&RA/BG) or MTA (3-E&RA/WMTA). Solvated resins (50% ethanol/50% co-monomers) were used as primers while their neat counterparts were filled with the two calcium-silicate compounds. Application of neat resin adhesive with no filler served as control (3-E&RA). μTBS, KHN analysis and confocal tandem scanning microscopy (TSM) micropermeability were carried out after 24 h and 10 months of storage in phosphate buffer solution (DPBS). Scanning electron microscopy (SEM) was also performed after debonding. High μTBS values were achieved in all groups after 24 h of DPBS storage. On the contrary, solely the specimens created using 3-E&RA/BG and 3-E&RA/WMTA agents showed no significant reduction in terms of μTBS even after 10 months in DPBS; similarly, they did not restore the average superficial micro-hardness to the level of sound dentine, but maintained unchanged KHN values, and no statistical decrease was found following 10 months of DPBS storage. The only statistically significant changes occurred in the resin-dentine interfaces bonded with 3-E&RA that were subjected to a reduction of both μTBS and KHN values with ageing. In terms of micropermeability, adverse results were obtained with 3-E&RA while 3-E&RA/BG and 3-E&RA/WMTA demonstrated a beneficial effect after prolonged DPBS storage. Calcium-silicate filled composite resins performed better than a current etch-and-rinse adhesive and had a therapeutic/protective effect on the micro-mechanical properties of mineral-depleted resin-dentine interfaces. The incorporation of calcium-silicates into dental restorative and bonding agents can create more biomimetic (life-like) restorations. This will not only enable these materials to mimic the physical characteristics of the tooth structure, but will also stabilize and protect the remaining dental hard tissues.

  9. Ion adsorption at the rutile-water interface: linking molecular and macroscopic properties.

    PubMed

    Zhang, Z; Fenter, P; Cheng, L; Sturchio, N C; Bedzyk, M J; Predota, M; Bandura, A; Kubicki, J D; Lvov, S N; Cummings, P T; Chialvo, A A; Ridley, M K; Bénézeth, P; Anovitz, L; Palmer, D A; Machesky, M L; Wesolowski, D J

    2004-06-08

    A comprehensive picture of the interface between aqueous solutions and the (110) surface of rutile (alpha-TiO2) is being developed by combining molecular-scale and macroscopic approaches, including experimental measurements, quantum calculations, molecular simulations, and Gouy-Chapman-Stern models. In situ X-ray reflectivity and X-ray standing-wave measurements are used to define the atomic arrangement of adsorbed ions, the coordination of interfacial water molecules, and substrate surface termination and structure. Ab initio calculations and molecular dynamics simulations, validated through direct comparison with the X-ray results, are used to predict ion distributions not measured experimentally. Potentiometric titration and ion adsorption results for rutile powders having predominant (110) surface expression provide macroscopic constraints of electrical double layer (EDL) properties (e.g., proton release) which are evaluated by comparison with a three-layer EDL model including surface oxygen proton affinities calculated using ab initio bond lengths and partial charges. These results allow a direct correlation of the three-dimensional, crystallographically controlled arrangements of various species (H2O, Na+, Rb+, Ca2+, Sr2+, Zn2+, Y3+, Nd3+) with macroscopic observables (H+ release, metal uptake, zeta potential) and thermodynamic/electrostatic constraints. All cations are found to be adsorbed as "inner sphere" species bonded directly to surface oxygen atoms, while the specific binding geometries and reaction stoichiometries are dependent on ionic radius. Ternary surface complexes of sorbed cations with electrolyte anions are not observed. Finally, surface oxygen proton affinities computed using the MUSIC model are improved by incorporation of ab initio bond lengths and hydrogen bonding information derived from MD simulations. This multitechnique and multiscale approach demonstrates the compatibility of bond-valence models of surface oxygen proton affinities and Stern-based models of the EDL structure, with the actual molecular interfacial distributions observed experimentally, revealing new insight into EDL properties including specific binding sites and hydration states of sorbed ions, interfacial solvent properties (structure, diffusivity, dielectric constant), surface protonation and hydrolysis, and the effect of solution ionic strength.

  10. Electromagnetic bonding of plastics to aluminum

    NASA Technical Reports Server (NTRS)

    Sheppard, A. T.; Silbert, L.

    1980-01-01

    Electromagnetic curing is used to bond strain gage to aluminum tensile bar. Electromagnetic energy heats only plastic/metal interface by means of skin effect, preventing degradation of heat-treated aluminum. Process can be easily applied to other metals joined by high-temperature-curing plastic adhesives.

  11. Role of Interfaces in Elasticity and Failure of Clay-Organic Nanocomposites: Toughening upon Interface Weakening?

    PubMed

    Hantal, György; Brochard, Laurent; Pellenq, Roland J-M; Ulm, Franz-Joseph; Coasne, Benoit

    2017-10-24

    Synthetic organic-inorganic composites constitute a new class of engineering materials finding applications in an increasing range of fields. The interface between the constituting phases plays a pivotal role in the enhancement of mechanical properties. In exfoliated clay-organic nanocomposites, individual, high aspect ratio clay sheets are dispersed in the organic matrix providing large interfaces and hence efficient stress transfer. In this study, we aim at elucidating molecular-scale reinforcing mechanisms in a series of model clay-organic composite systems by means of reactive molecular simulations. In our models, two possible locations of failure initiation are present: one is the interlayer space of the clay platelet, and the other one is the clay-organic interface. We systematically modify the cohesiveness of the interface and assess how the failure mechanism changes when the different model composites are subjected to a tensile test. Besides a change in the failure mechanism, an increase in the released energy at the interface (meaning an increased overall toughness) are observed upon weakening the interface by bond removal. We propose a theoretical analysis of these results by considering a cohesive law that captures the effect of the interface on the composite mechanics. We suggest an atomistic interpretation of this cohesive law, in particular, how it relates to the degree of bonding at the interface. In a broader perspective, this work sheds light on the importance of the orthogonal behavior of interfaces to nanocomposites.

  12. Influence of phosphoproteins' biomimetic analogs on remineralization of mineral-depleted resin-dentin interfaces created with ion-releasing resin-based systems.

    PubMed

    Sauro, Salvatore; Osorio, Raquel; Watson, Timothy F; Toledano, Manuel

    2015-07-01

    The study aimed at evaluating the remineralization of acid-etched dentin pre-treated with primers containing biomimetic analogs and bonded using an ion-releasing light-curable resin-based material. An experimental etch-and-rinse adhesive system filled with Ca(2+), PO4(3-)-releasing Ca-Silicate micro-fillers was created along with two experimental primers containing biomimetic analogs such as sodium trimetaphosphate (TMP) and/or polyaspartic acid (PLA). Dentin specimens etched with 37% H3PO4 were pre-treated with two different aqueous primers containing the polyanionic biomimetic analogs or deionized water and subsequently bonded using the experimental resin-based materials. The specimens were sectioned and analyzed by AFM/nanoindentation to evaluate changes in the modulus of elasticity (Ei) across the resin-dentin interface at different AS storage periods (up to 90 days). Raman cluster analysis was also performed to evaluate the chemical changes along the interface. The phosphate uptake by the acid-etched dentin was evaluated using the ATR-FTIR. Additional resin-dentin specimens were tested for microtensile bond strength. SEM examination was performed after de-bonding, while confocal laser microscopy was used to evaluate the interfaces ultramorphology and micropermeability. Both biomimetic primers induced phosphate uptake by acid-etched dentin. Specimens created with the ion-releasing resin in combination with the pre-treatment primers containing either PLA and TMA showed the greatest recovery of the Ei of the hybrid layer, with no decrease in μTBS (p>0.05) after 3-month AS storage. The ion-releasing resin applied after use of the biomimetic primers showed the greatest reduction in micropermeability due to mineral precipitation; these results were confirmed using SEM. The use of the ion-releasing resin-based system applied to acid-etched dentin pre-treated with biomimetic primers containing analogs of phosphoproteins such as poly-l-aspartic acid and/or sodium trimetaphosphate provides a suitable bonding approach for biomimetic remineralization of resin-dentin interfaces. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  13. What Can Interfacial Water Molecules Tell Us About Solute Structure?

    NASA Astrophysics Data System (ADS)

    Willard, Adam

    The molecular structure of bulk liquid water reflects a molecular tendency to engage in tetrahedrally coordinated hydrogen bonding. At a solute interface waters preferred three-dimensional hydrogen bonding network must conform to a locally anisotropy interfacial environment. Interfacial water molecules adopt configurations that balance water-solute and water-water interactions. The arrangements of interfacial water molecules, therefore encode information about the effective solute-water interactions. This solute-specific information is difficult to extract, however, because interfacial structure also reflects waters collective response to an anisotropic hydrogen bonding environment. Here I present a methodology for characterizing the molecular-level structure of liquid water interface from simulation data. This method can be used to explore waters static and/or dynamic response to a wide range of chemically and topologically heterogeneous solutes such as proteins.

  14. An improved interfacial bonding model for material interface modeling

    PubMed Central

    Lin, Liqiang; Wang, Xiaodu; Zeng, Xiaowei

    2016-01-01

    An improved interfacial bonding model was proposed from potential function point of view to investigate interfacial interactions in polycrystalline materials. It characterizes both attractive and repulsive interfacial interactions and can be applied to model different material interfaces. The path dependence of work-of-separation study indicates that the transformation of separation work is smooth in normal and tangential direction and the proposed model guarantees the consistency of the cohesive constitutive model. The improved interfacial bonding model was verified through a simple compression test in a standard hexagonal structure. The error between analytical solutions and numerical results from the proposed model is reasonable in linear elastic region. Ultimately, we investigated the mechanical behavior of extrafibrillar matrix in bone and the simulation results agreed well with experimental observations of bone fracture. PMID:28584343

  15. Influence of interface ply orientation on fatigue damage of adhesively bonded composite joints

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.; Mall, S.

    1985-01-01

    An experimental study of cracked-lap-shear specimens was conducted to determine the influence of adherend stacking sequence on debond initiation and damage growth in a composite-to-composite bonded joint. Specimens consisted of quasi-isotropic graphite/epoxy adherends bonded together with either FM-300 or EC 3445 adhesives. The stacking sequence of the adherends was varied such that 0 deg, 45 deg, or 90 deg plies were present at the adherend-adhesive interfaces. Fatigue damage initiated in the adhesive layer in those specimens with 0 deg nd 45 deg interface plies. Damage initiated in the form of ply cracking in the strap adherend for the specimens with 90 deg interface plies. The fatigue-damage growth was in the form of delamination within the composite adherends for specimens with the 90 deg and 45 deg plies next to the adhesive, while debonding in the adhesive resulted for the specimens with 0 deg plies next to the adhesive. Those joints with the 0 deg and 45 deg plies next to either adhesive has essentially the same fatigue-damage-initiation stress levels. These stress levels were 13 and 71 percent higher, respectively, than those for specimens with 90 deg plies next to the EC 3445 and FM-300 adhesives.

  16. Influence of interface ply orientation on fatigue damage of adhesively bonded composite joints

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.; Mall, S.

    1986-01-01

    An experimental study of cracked-lap-shear specimens was conducted to determine the influence of adherend stacking sequence on debond initiation and damage growth in a composite-to-composite bonded joint. Specimens consisted of quasi-isotropic graphite/epoxy adherends bonded together with either FM-300 or EC 3445 adhesives. The stacking sequence of the adherends was varied such that 0 deg, 45 deg, or 90 deg plies were present at the adherend-adhesive interfaces. Fatigue damage initiated in the adhesive layer in those specimens with 0 deg and 45 deg interface plies. Damaage initiated in the form of ply cracking in the strap adherend for the specimens with 90 deg interface plies. The fatigue-damage growth was in the form of delamination within the composite adherends for specimens with the 90 deg and 45 deg plies next to the adhesive, while debonding in the adhesive resulted for the specimens with 0 deg plies next to the adhesive. Those joints with the 0 deg and 45 deg plies next to either adhesive has essentially the same fatigue-damage-initiation stress levels. These stress levels were 13 and 71 percent higher, respectively, than those for specimens with 90 deg plies next to the EC 3445 and FM-300 adhesives.

  17. Novel Bonding Technology for Hermetically Sealed Silicon Micropackage

    NASA Astrophysics Data System (ADS)

    Lee, Duck-Jung; Ju, Byeong-Kwon; Choi, Woo-Beom; Jeong, Jee-Won; Lee, Yun-Hi; Jang, Jin; Lee, Kwang-Bae; Oh, Myung-Hwan

    1999-01-01

    We performed glass-to-silicon bonding and fabricated a hermetically sealed silicon wafer using silicon direct bonding followed by anodic bonding (SDAB). The hydrophilized glass and silicon wafers in solution were dried and initially bonded in atmosphere as in the silicon direct bonding (SDB) process, but annealing at high temperature was not performed. Anodic bonding was subsequently carried out for the initially bonded specimens. Then the wafer pairs bonded by the SDAB method were different from those bonded by the anodic bonding process only. The effects of the bonding process on the bonded area and tensile strength were investigated as functions of bonding temperature and voltage. Using scanning electron microscopy (SEM), the cross-sectional view of the bonded interface region was observed. In order to investigate the migration of the sodium ions in the bonding process, the concentration of the bonded glass was compared with that of standard glass. The specimen bonded using the SDAB process had higher efficiency than that using the anodic bonding process only.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Seung Sae; Yu, Jung Ho; Lu, Di

    Long-range order and phase transitions in two-dimensional (2D) systems—such as magnetism, superconductivity, and crystallinity—have been important research topics for decades. The issue of 2D crystalline order has reemerged recently, with the development of exfoliated atomic crystals. Understanding the dimensional limit of crystalline phases, with different types of bonding and synthetic techniques, is at the foundation of low-dimensional materials design. We study ultrathin membranes of SrTiO 3, an archetypal perovskite oxide with isotropic (3D) bonding. Atomically controlled membranes are released after synthesis by dissolving an underlying epitaxial layer. Although all unreleased films are initially single-crystalline, the SrTiO 3 membrane lattice collapsesmore » below a critical thickness (5 unit cells). This crossover from algebraic to exponential decay of the crystalline coherence length is analogous to the 2D topological Berezinskii-Kosterlitz-Thouless (BKT) transition. Finally, the transition is likely driven by chemical bond breaking at the 2D layer-3D bulk interface, defining an effective dimensional phase boundary for coherent crystalline lattices.« less

  19. Interaction of Al with O2 exposed Mo2BC

    NASA Astrophysics Data System (ADS)

    Bolvardi, Hamid; Music, Denis; Schneider, Jochen M.

    2015-03-01

    A Mo2BC(0 4 0) surface was exposed to O2. The gas interaction was investigated using ab initio molecular dynamics and X-ray photoelectron spectroscopy (XPS) of air exposed surfaces. The calculations suggest that the most dominating physical mechanism is dissociative O2 adsorption whereby Mosbnd O, Osbnd Mosbnd O and Mo2sbnd Csbnd O bond formation is observed. To validate these results, Mo2BC thin films were synthesized utilizing high power pulsed magnetron sputtering and air exposed surfaces were probed by XPS. MoO2 and MoO3 bond formation is observed and is consistent with here obtained ab initio data. Additionally, the interfacial interactions of O2 exposed Mo2BC(0 4 0) surface with an Al nonamer is studied with ab initio molecular dynamics to describe on the atomic scale the interaction between this surface and Al to mimic the interface present during cold forming processes of Al based alloys. The Al nonamer was disrupted and Al forms chemical bonds with oxygen contained in the O2 exposed Mo2BC(0 4 0) surface. Based on the comparison of here calculated adsorption energy with literature data, Alsbnd Al bonds are shown to be significantly weaker than the Alsbnd O bonds formed across the interface. Hence, Alsbnd Al bond rupture is expected for a mechanically loaded interface. Therefore the adhesion of a residual Al on the native oxide layer is predicted. This is consistent with experimental observations. The data presented here may also be relevant for other oxygen containing surfaces in a contact with Al or Al based alloys for example during forming operations.

  20. Transition joints between Zircaloy-2 and stainless steel by diffusion bonding

    NASA Astrophysics Data System (ADS)

    Bhanumurthy, K.; Krishnan, J.; Kale, G. B.; Banerjee, S.

    1994-11-01

    The diffusion bonding between Zircaloy-2 and stainless steel (AISI 304L) using niobium, nickel and copper as intermediate layers has been investigated in the temperature range of 750 to 900°C. Bonding was carried out in a vacuum hot press, under compressive loading. Electron probe microanalysis and metallographic analysis showed a good metallurgical compatibility and also indicated the absence of discontunities, micropores and intermetallic compounds at various interfaces. The bond strength of the diffusion bonded assembly was found to be about 400 MPa for the couples bonded at 870°C for 2 h. The dimple structure on the fractured surface is indicative of the ductile mode of failure of the bonded assembly.

  1. Fabrication and characterization of resonant SOI micromechanical silicon sensors based on DRIE micromachining, freestanding release process and silicon direct bonding

    NASA Astrophysics Data System (ADS)

    Gigan, Olivier; Chen, Hua; Robert, Olivier; Renard, Stephane; Marty, Frederic

    2002-11-01

    This paper is dedicated to the fabrication and technological aspect of a silicon microresonator sensor. The entire project includes the fabrication processes, the system modelling/simulation, and the electronic interface. The mechanical model of such resonator is presented including description of frequency stability and Hysterises behaviour of the electrostatically driven resonator. Numeric model and FEM simulations are used to simulate the system dynamic behaviour. The complete fabrication process is based on standard microelectronics technology with specific MEMS technological steps. The key steps are described: micromachining on SOI by Deep Reactive Ion Etching (DRIE), specific release processes to prevent sticking (resist and HF-vapour release process) and collective vacuum encapsulation by Silicon Direct Bonding (SDB). The complete process has been validated and prototypes have been fabricated. The ASIC was designed to interface the sensor and to control the vibration amplitude. This electronic was simulated and designed to work up to 200°C and implemented in a standard 0.6μ CMOS technology. Characterizations of sensor prototypes are done both mechanically and electrostatically. These measurements showed good agreements with theory and FEM simulations.

  2. Nanoscale patterning of a self-assembled monolayer by modification of the molecule-substrate bond.

    PubMed

    Shen, Cai; Buck, Manfred

    2014-01-01

    The intercalation of Cu at the interface of a self-assembled monolayer (SAM) and a Au(111)/mica substrate by underpotential deposition (UPD) is studied as a means of high resolution patterning. A SAM of 2-(4'-methylbiphenyl-4-yl)ethanethiol (BP2) prepared in a structural phase that renders the Au substrate completely passive against Cu-UPD, is patterned by modification with the tip of a scanning tunneling microscope. The tip-induced defects act as nucleation sites for Cu-UPD. The lateral diffusion of the metal at the SAM-substrate interface and, thus, the pattern dimensions are controlled by the deposition time. Patterning down to the sub-20 nm range is demonstrated. The difference in strength between the S-Au and S-Cu bond is harnessed to develop the latent Cu-UPD image into a patterned binary SAM. Demonstrated by the exchange of BP2 by adamantanethiol (AdSH) this is accomplished by a sequence of reductive desorption of BP2 in Cu free areas followed by adsorption of AdSH. The appearance of Au adatom islands upon the thiol exchange suggests that the interfacial structures of BP2 and AdSH SAMs are different.

  3. Investigation of the behavior of asphalt tack coat interface layer.

    DOT National Transportation Integrated Search

    2005-08-04

    Asphalt tack coat is a light application of asphalt, usually asphalt diluted with water. It ensures a bond between the surface being paved and the overlying course by providing increased shear strength between two interfaces. Normally hot asphalt cem...

  4. Effect of various intermediate ceramic layers on the interfacial stability of zirconia core and veneering ceramics.

    PubMed

    Yoon, Hyung-In; Yeo, In-Sung; Yi, Yang-Jin; Kim, Sung-Hun; Lee, Jai-Bong; Han, Jung-Suk

    2015-01-01

    The purposes of this study were to evaluate the effects of intermediate ceramics on the adhesion between the zirconia core and veneer ceramics. The polished surfaces of fully sintered Y-TZP blocks received three different treatments: (1) connector (C), (2) liner (L) or (3) wash layer (W). All the treated zirconia blocks were veneered with either (a) fluorapatite glass-ceramic (E) or (b) feldspathic porcelain (V) and divided into four groups (CE, CV, LE and WV). For the control group, the testing surfaces of metal blocks were veneered with feldspathic porcelain (VM). A half of the samples in each group (n = 21) were exposed to thermocycling, while the other half of the specimens were stored at room temperature under dry conditions. All specimens were subjected to the shear test and the failed surfaces were microscopically examined. The elemental distribution at the zirconia core/veneer interface was analyzed. The specimens in Groups CE and CV exhibited significantly greater mean bond strength values than those in Groups LE and WV, respectively (p < 0.05). However, the mean bond strengths significantly decreased in the connector groups (CE and CV) after thermal cycling (p < 0.05). The elemental analysis suggested diffusion of ceramic substances into the zirconia surface. A glass-ceramic based connector is significantly more favorable to core/veneer adhesion than the other intermediate ceramics evaluated in the study. However, thermal cycling affected the bond strength at the core/veneer interface differently according to the intermediate ceramics.

  5. Effect of temperature on compact layer of Pt electrode in PEMFCs by first-principles molecular dynamics calculations

    NASA Astrophysics Data System (ADS)

    He, Yang; Chen, Changfeng; Yu, Haobo; Lu, Guiwu

    2017-01-01

    Formation of the double-layer electric field and capacitance of the water-metal interface is of significant interest in physicochemical processes. In this study, we perform first- principles molecular dynamics simulations on the water/Pt(111) interface to investigate the temperature dependence of the compact layer electric field and capacitance based on the calculated charge densities. On the Pt (111) surface, water molecules form ice-like structures that exhibit more disorder along the height direction with increasing temperature. The Osbnd H bonds of more water molecules point toward the Pt surface to form Ptsbnd H covalent bonds with increasing temperature, which weaken the corresponding Osbnd H bonds. In addition, our calculated capacitance at 300 K is 15.2 mF/cm2, which is in good agreement with the experimental results. As the temperature increases from 10 to 450 K, the field strength and capacitance of the compact layer on Pt (111) first increase and then decrease slightly, which is significant for understanding the water/Pt interface from atomic level.

  6. Influence of micro-oxidation on joints of C/C composites and GH3044 for large-size aerospace parts

    NASA Astrophysics Data System (ADS)

    Shi, Xiaohong; Jin, Xiuxiu; Yan, Ningning; Yang, Li

    2017-11-01

    To improve the bonding strength of carbon/carbon (C/C) composites and GH3044 nickel-based superalloy, the bonding interlayer with Ti/Ni/Cu/Ni multiple foils were prepared by a two-step technique involving micro-oxidation and partial transient liquid phase (PTLP) process. Interface characteristics and mechanical behavior of joints were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), laser scanning confocal microscope (LSCM) and energy X-ray dispersive spectrometer (EDS). Results show that a porous layer on C/C composites is formed by micro-oxidation for more than 2 min at 1073 K in air, which provides a diffusion path for liquid phase to infiltrate into C/C substrate and generate a wedge interlocking interface. After micro-oxidation for 4 min, the shear strength of joints reaches 32.09 ± 1.98 MPa what is 36.73% higher than that of joints without micro-oxidation (23.47 ± 1.15 MPa). The increase of shear strength remarkably depends on physical interlocking and chemical bonding at porous interface.

  7. Laser-bulge based ultrasonic bonding method for fabricating multilayer thermoplastic microfluidic devices

    NASA Astrophysics Data System (ADS)

    Liang, Chao; Liu, Chong; Liu, Ziyang; Meng, Fanjian; Li, Jingmin

    2017-11-01

    Ultrasonic bonding is a commonly-used method for fabrication of thermoplastic microfluidic devices. However, due to the existence of the energy director (a convex structure to concentrate the ultrasonic energy), it is difficult to control its molten polymer flow, which may result in a small gap between the bonding interface or microchannel clogging. In this paper, we present an approach to address these issues. Firstly, the microchannels were patterned onto the PMMA sheets using hot embossing with the wire electrical discharge machined molds. Then, a small bulge, which was formed at the edge of the laser-ablated groove (LG), was generated around the microchannel using a CO2 laser ablation system. By using the bulge to concentrate the ultrasonic energy, there was no need for fabricating the complicated and customized energy director. When the bulge was melted, it was able to flow into the LG which overcame the ‘gap’ and ‘clogging’ problems. Here, two types of two-layer microfluidic devices and a five-layer micromixer were fabricated to validate its performance. Our results showed that these thermoplastic microdevices can be successfully bonded by using this method. The liquid leakage was not observed in both the capillary-driven flowing test and the pressure-driven mixing experiments. It is a potential method for bonding the thermoplastic microfluidic devices.

  8. Strain engineering of van der Waals heterostructures.

    PubMed

    Vermeulen, Paul A; Mulder, Jefta; Momand, Jamo; Kooi, Bart J

    2018-01-18

    Modifying the strain state of solids allows control over a plethora of functional properties. The weak interlayer bonding in van der Waals (vdWaals) materials such as graphene, hBN, MoS 2 , and Bi 2 Te 3 might seem to exclude strain engineering, since strain would immediately relax at the vdWaals interfaces. Here we present direct observations of the contrary by showing growth of vdWaals heterostructures with persistent in-plane strains up to 5% and we show that strain relaxation follows a not yet reported process distinctly different from strain relaxation in three-dimensionally bonded (3D) materials. For this, 2D bonded Bi 2 Te 3 -Sb 2 Te 3 and 2D/3D bonded Bi 2 Te 3 -GeTe multilayered films are grown using Pulsed Laser Deposition (PLD) and their structure is monitored in situ using Reflective High Energy Electron Diffraction (RHEED) and post situ analysis is performed using Transmission Electron Microscopy (TEM). Strain relaxation is modeled and found to solely depend on the layer being grown and its initial strain. This insight demonstrates that strain engineering of 2D bonded heterostructures obeys different rules than hold for epitaxial 3D materials and opens the door to precise tuning of the strain state of the individual layers to optimize functional performance of vdWaals heterostructures.

  9. Push-off tests and strength evaluation of joints combining shrink fitting with bonding

    NASA Astrophysics Data System (ADS)

    Yoneno, Masahiro; Sawa, Toshiyuki; Shimotakahara, Ken; Motegi, Yoichi

    1997-03-01

    Shrink fitted joints have been used in mechanical structures. Recently, joints combining shrink fitting with anaerobic adhesives bonded between the shrink fitted surfaces have been appeared in order to increase the joint strength. In this paper, push-off test was carried out on strength of joints combining shrink fitting with bonding by material testing machine. In addition, the push-off strength of shrink fitting joints without an anaerobic adhesive was also measured. In the experiments, the effects of the shrinking allowance and the outer diameter of the rings on the joint strength are examined. The interface stress distribution in bonded shrink fitted joints subjected to a push-off load is analyzed using axisymmetrical theory of elasticity as a four-body contact problem. Using the interface stress distribution, a method for estimating joint strength is proposed. The experimental results are in a fairly good agreement with the numerical results. It is found that the strength of combination joints is greater than that of shrink fitted joints.

  10. Recrystallization texture in nickel heavily deformed by accumulative roll bonding

    NASA Astrophysics Data System (ADS)

    Mishin, O. V.; Zhang, Y. B.; Godfrey, A.

    2017-07-01

    The recrystallization behavior of Ni processed by accumulative roll bonding to a total accumulated von Mises strain of 4.8 has been examined, and analyzed with respect to heterogeneity in the deformation microstructure. The regions near the bonding interface are found to be more refined and contain particle deformation zones around fragments of the steel wire brush used to prepare the surface for bonding. Sample-scale gradients are also observed, manifested as differences between the subsurface, intermediate and central layers, where the distributions of texture components are different. These heterogeneities affect the progress of recrystallization. While the subsurface and near-interface regions typically contain lower frequencies of cube-oriented grains than anywhere else in the sample, a strong cube texture forms in the sample during recrystallization, attributed to both a high nucleation rate and fast growth rate of cube-oriented grains. The observations highlight the sensitivity of recrystallization to heterogeneity in the deformation microstructure and demonstrate the importance of characterizing this heterogeneity over several length scales.

  11. Direct Imaging and First Principles Studies of Si3N4/SiO2 Interface

    NASA Astrophysics Data System (ADS)

    Walkosz, Weronika; Klie, Robert; Ogut, Serdar; Mikijelj, Bilijana; Pennycook, Stephen; Idrobo, Juan C.

    2010-03-01

    It is well known that the composition of the integranular films (IGFs) in sintered polycrystalline silicon nitride (Si3N4) ceramics controls many of their physical and mechanical properties. A considerable effort has been made to characterize these films on the atomic scale using both experimental and theoretical methods. In this talk, we present results from a combined atomic-resolution Z-contrast and annular bright field imaging, electron energy-loss spectroscopy, as well as ab initio studies of the interface between β-Si3N4 (10-10) and SiO2 intergranular film. Our results show that O replaces N at the interface between the two materials in agreement with our theoretical calculations and that N is present in the SiO2 IGF. Moreover, they indicate the presence of atomic columns completing Si3N4 open rings, which have not been observed experimentally at the recently imaged Si3N4/rare-earth oxides interfaces, but have been predicted theoretically on bare Si3N4 surfaces. The structural and electronic variations at the Si3N4/SiO2 interface will be discussed in detail, focusing in particular on bonding characteristics.

  12. Pulse-echo NDT of adhesively bonded joints in automotive assemblies.

    PubMed

    Titov, Sergey A; Maev, Roman Gr; Bogachenkov, Alexey N

    2008-11-01

    A new method for the detection of void-disbonds at the interfaces of adhesively bonded joins is considered. Based on a simple plane wave model, the output waveform is presented as a sum of two responses associated with the reflection of the ultrasonic wave at the first metal-adhesive interface and the second metal-adhesive interface, respectively. The strong response produced by the wave reverberating in the first metal sheet is eliminated through comparison between the pulse-echo signal measured at the area under the test and reference waveform recorded for the bare first metal sheet outside of the joint. The developed decomposition algorithm has been applied to the study of steel and aluminum samples having various adhesive layer thicknesses in a range of 0.1-1mm.

  13. Dynamic delamination of patterned thin films

    NASA Astrophysics Data System (ADS)

    Kandula, Soma S. V.; Tran, Phuong; Geubelle, Philippe H.; Sottos, Nancy R.

    2008-12-01

    We investigate laser-induced dynamic delamination of a patterned thin film on a substrate. Controlled delamination results from our insertion of a weak adhesion region beneath the film. The inertial forces acting on the weakly bonded portion of the film lead to stable propagation of a crack along the film/substrate interface. Through a simple energy balance, we extract the critical energy for interfacial failure, a quantity that is difficult and sometimes impossible to characterize by more conventional methods for many thin film/substrate combinations.

  14. Conjugated block copolymers as model materials to examine charge transfer in donor-acceptor systems

    NASA Astrophysics Data System (ADS)

    Gomez, Enrique; Aplan, Melissa; Lee, Youngmin

    Weak intermolecular interactions and disorder at junctions of different organic materials limit the performance and stability of organic interfaces and hence the applicability of organic semiconductors to electronic devices. The lack of control of interfacial structure has also prevented studies of how driving forces promote charge photogeneration, leading to conflicting hypotheses in the organic photovoltaic literature. Our approach has focused on utilizing block copolymer architectures -where critical interfaces are controlled and stabilized by covalent bonds- to provide the hierarchical structure needed for high-performance organic electronics from self-assembled soft materials. For example, we have demonstrated control of donor-acceptor heterojunctions through microphase-separated conjugated block copolymers to achieve 3% power conversion efficiencies in non-fullerene photovoltaics. Furthermore, incorporating the donor-acceptor interface within the molecular structure facilitates studies of charge transfer processes. Conjugated block copolymers enable studies of the driving force needed for exciton dissociation to charge transfer states, which must be large to maximize charge photogeneration but must be minimized to prevent losses in photovoltage in solar cell devices. Our work has systematically varied the chemical structure, energetics, and dielectric constant to perturb charge transfer. As a consequence, we predict a minimum dielectric constant needed to minimize the driving force and therefore simultaneously maximize photocurrent and photovoltage in organic photovoltaic devices.

  15. Effect of van der Waals forces on thermal conductance at the interface of a single-wall carbon nanotube array and silicon

    NASA Astrophysics Data System (ADS)

    Feng, Ya; Zhu, Jie; Tang, Dawei

    2014-12-01

    Molecular dynamics simulations are performed to evaluate the effect of van der Waals forces among single-wall carbon nanotubes (SWNTs) on the interfacial thermal conductance between a SWNT array and silicon substrate. First, samples of SWNTs vertically aligned on silicon substrate are simulated, where both the number and arrangement of SWNTs are varied. Results reveal that the interfacial thermal conductance of a SWNT array/Si with van der Waals forces present is higher than when they are absent. To better understand how van der Waals forces affect heat transfer through the interface between SWNTs and silicon, further constructs of one SWNT surrounded by different numbers of other ones are studied, and the results show that the interfacial thermal conductance of the central SWNT increases with increasing van der Waals forces. Through analysis of the covalent bonds and vibrational density of states at the interface, we find that heat transfer across the interface is enhanced with a greater number of chemical bonds and that improved vibrational coupling of the two sides of the interface results in higher interfacial thermal conductance. Van der Waals forces stimulate heat transfer at the interface.

  16. Inspecting the microstructure of electrically active defects at the Ge/GeOx interface

    NASA Astrophysics Data System (ADS)

    Fanciulli, Marco; Baldovino, Silvia; Molle, Alessandro

    2012-02-01

    High mobility substrates are important key elements in the development of advanced devices targeting a vast range of functionalities. Among them, Ge showed promising properties promoting it as valid candidate to replace Si in CMOS technology. However, the electrical quality of the Ge/oxide interface is still a problematic issue, in particular for the observed inversion of the n-type Ge surface, attributed to the presence of dangling bonds inducing a severe band bending [1]. In this scenario, the identification of electrically active defects present at the Ge/oxide interface and the capability to passivate or anneal them becomes a mandatory issue aiming at an electrically optimized interface. We report on the application of highly sensitive electrically detected magnetic resonance (EDMR) techniques in the investigation of defects at the interface between Ge and GeO2 (or GeOx), including Ge dangling bonds and defects in the oxide [2]. In particular we will investigate how different surface orientations, e.g. the (001) against the (111) Ge surface, impacts the microstructure of the interface defects. [1] P. Tsipas and A. Dimoulas, Appl. Phys. Lett. 94, 012114 (2009) [2] S. Baldovino, A. Molle, and M. Fanciulli, Appl. Phys. Lett. 96, 222110 (2010)

  17. Cu-Sn Intermetallic Compound Joints for High-Temperature Power Electronics Applications

    NASA Astrophysics Data System (ADS)

    Lee, Byung-Suk; Yoon, Jeong-Won

    2018-01-01

    Cu-Sn solid-liquid interdiffusion (SLID) bonded joints were fabricated using a Sn-Cu solder paste and Cu for high-temperature power electronics applications. The interfacial reaction behaviors and the mechanical properties of Cu6Sn5 and Cu3Sn SLID-bonded joints were compared. The intermetallic compounds formed at the interfaces in the Cu-Sn SLID-bonded joints significantly affected the die shear strength of the joint. In terms of thermal and mechanical properties, the Cu3Sn SLID-bonded joint was superior to the conventional solder and the Cu6Sn5 SLID-bonded joints.

  18. Resin composite repair: Quantitative microleakage evaluation of resin-resin and resin-tooth interfaces with different surface treatments

    PubMed Central

    Celik, Cigdem; Cehreli, Sevi Burcak; Arhun, Neslihan

    2015-01-01

    Objective: The aim was to evaluate the effect of different adhesive systems and surface treatments on the integrity of resin-resin and resin-tooth interfaces after partial removal of preexisting resin composites using quantitative image analysis for microleakage testing protocol. Materials and Methods: A total of 80 human molar teeth were restored with either of the resin composites (Filtek Z250/GrandioSO) occlusally. The teeth were thermocycled (1000×). Mesial and distal 1/3 parts of the restorations were removed out leaving only middle part. One side of the cavity was finished with course diamond bur and the other was air-abraded with 50 μm Al2O3. They were randomly divided into four groups (n = 10) to receive: Group 1: Adper Single Bond 2; Group 2: All Bond 3; Group 3: ClearfilSE; Group 4: BeautiBond, before being repaired with the same resin composite (Filtek Z250). The specimens were re-thermocycled (1000×), sealed with nail varnish, stained with 0.5% basic fuchsin, sectioned mesiodistally and photographed digitally. The extent of dye penetration was measured by image analysis software (ImageJ) for both bur-finished and air-abraded surfaces at resin-tooth and resin-resin interfaces. The data were analyzed statistically. Results: BeautiBond exhibited the most microleakage at every site. Irrespective of adhesive and initial composite type, air-abrasion showed less microleakage except for BeautiBond. The type of initial repaired restorative material did not affect the microleakage. BeautiBond adhesive may not be preferred in resin composite repair in terms of microleakage prevention. Conclusions: Surface treatment with air-abrasion produced the lowest microleakage scores, independent of the adhesive systems and the pre-existing resin composite type. Pre-existing composite type does not affect the microleakage issue. All-in-one adhesive resin (BeautiBond) may not be preferred in resin composite repair in terms of microleakage prevention. PMID:25713491

  19. A biomechanical comparison of four different cementless press-fit stems used in revision surgery for total knee replacements.

    PubMed

    Zdero, Radovan; Saidi, Kevan; Mason, Stephanie A; Schemitsch, Emil H; Naudie, Douglas D R

    2012-11-01

    Few biomechanical studies exist on femoral cementless press-fit stems for revision total knee replacement (TKR) surgeries. The aim of this study was to compare the mechanical quality of the femur-stem interface for a series of commercially available press-fit stems, because this interface may be a 'weak link' which could fail earlier than the femur-TKR bond itself. Also, the femur-stem interface may become particularly critical if distal femur bone degeneration, which may necessitate or follow revision TKR, ever weakens the femur-TKR bond itself. The authors implanted five synthetic femurs each with a Sigma Short Stem (SSS), Sigma Long Stem (SLS), Genesis II Short Stem (GSS), or Genesis II Long Stem (GLS). Axial stiffness, lateral stiffness, 'offset load' torsional stiffness, and 'offset load' torsional strength were measured with a mechanical testing system using displacement control. Axial (range = 1047-1461 N/mm, p = 0.106), lateral (range = 415-462 N/mm, p = 0.297), and torsional (range = 115-139 N/mm, p > 0.055) stiffnesses were not different between groups. The SSS had higher torsional strength (863 N) than the other stems (range = 167-197 N, p < 0.001). Torsional failure occurred by femoral 'spin' around the stem's long axis. There was poor linear correlation between the femur-stem interface area versus axial stiffness (R = 0.38) and torsional stiffness (R = 0.38), and there was a moderate linear correlation versus torsional strength (R = 0.55). Yet, there was a high inverse linear correlation between interfacial surface area versus lateral stiffness (R = 0.79), although this did not result in a statistical difference between stem groups (p = 0.297). These press-fit stems provide equivalent stability, except that the SSS has greater torsional strength.

  20. Patterned cortical tension mediated by N-cadherin controls cell geometric order in the Drosophila eye

    PubMed Central

    Chan, Eunice HoYee; Chavadimane Shivakumar, Pruthvi; Clément, Raphaël; Laugier, Edith; Lenne, Pierre-François

    2017-01-01

    Adhesion molecules hold cells together but also couple cell membranes to a contractile actomyosin network, which limits the expansion of cell contacts. Despite their fundamental role in tissue morphogenesis and tissue homeostasis, how adhesion molecules control cell shapes and cell patterns in tissues remains unclear. Here we address this question in vivo using the Drosophila eye. We show that cone cell shapes depend little on adhesion bonds and mostly on contractile forces. However, N-cadherin has an indirect control on cell shape. At homotypic contacts, junctional N-cadherin bonds downregulate Myosin-II contractility. At heterotypic contacts with E-cadherin, unbound N-cadherin induces an asymmetric accumulation of Myosin-II, which leads to a highly contractile cell interface. Such differential regulation of contractility is essential for morphogenesis as loss of N-cadherin disrupts cell rearrangements. Our results establish a quantitative link between adhesion and contractility and reveal an unprecedented role of N-cadherin on cell shapes and cell arrangements. DOI: http://dx.doi.org/10.7554/eLife.22796.001 PMID:28537220

  1. Method of assembly of molecular-sized nets and scaffolding

    DOEpatents

    Michl, Josef; Magnera, Thomas F.; David, Donald E.; Harrison, Robin M.

    1999-01-01

    The present invention relates to methods and starting materials for forming molecular-sized grids or nets, or other structures based on such grids and nets, by creating molecular links between elementary molecular modules constrained to move in only two directions on an interface or surface by adhesion or bonding to that interface or surface. In the methods of this invention, monomers are employed as the building blocks of grids and more complex structures. Monomers are introduced onto and allowed to adhere or bond to an interface. The connector groups of adjacent adhered monomers are then polymerized with each other to form a regular grid in two dimensions above the interface. Modules that are not bound or adhered to the interface are removed prior to reaction of the connector groups to avoid undesired three-dimensional cross-linking and the formation of non-grid structures. Grids formed by the methods of this invention are useful in a variety of applications, including among others, for separations technology, as masks for forming regular surface structures (i.e., metal deposition) and as templates for three-dimensional molecular-sized structures.

  2. Charged groups at binding interfaces of the PsbO subunit of photosystem II: A combined bioinformatics and simulation study.

    PubMed

    Del Val, Coral; Bondar, Ana-Nicoleta

    2017-06-01

    PsbO is an extrinsic subunit of photosystem II engaged in complex binding interactions within photosystem II. At the interface between PsbO, D1 and D2 subunits of photosystem II, a cluster of charged and polar groups of PsbO is part of an extended hydrogen-bond network thought to participate in proton transfer. The precise role of specific amino acid residues at this complex binding interface remains a key open question. Here, we address this question by carrying out extensive bioinformatics analyses and molecular dynamics simulations of PsbO proteins with mutations at the binding interface. We find that PsbO proteins from cyanobacteria vs. plants have specific preferences for the number and composition of charged amino acid residues that may ensure that PsbO proteins avoid aggregation and expose long unstructured loops for binding to photosystem II. A cluster of conserved charged groups with dynamic hydrogen bonds provides PsbO with structural plasticity at the binding interface with photosystem II. Copyright © 2017. Published by Elsevier B.V.

  3. Interface conditions of two-shot molded parts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kisslinger, Thomas, E-mail: thomas.kisslinger@pccl.at; Bruckmoser, Katharina, E-mail: katharina.bruckmoser@unileoben.ac.at; Resch, Katharina, E-mail: katharina.resch@unileoben.ac.at

    2014-05-15

    The focus of this work is on interfaces of two-shot molded parts. It is well known that e.g. material combination, process parameters and contact area structures show significant effects on the bond strength of multi-component injection molded parts. To get information about the bond strength at various process parameter settings and material combinations a test mold with core back technology was used to produce two-component injection molded tensile test specimens. At the core back process the different materials are injected consecutively, so each component runs through the whole injection molding cycle (two-shot process). Due to this consecutive injection molding processes,more » a cold interface is generated. This is defined as overmolding of a second melt to a solidified polymer preform. Strong interest lies in the way the interface conditions change during the adhesion formation between the individual components. Hence the interface conditions were investigated by computed tomography and Raman spectroscopy. By analyzing these conditions the understanding of the adhesion development during the multi-component injection molding was improved.« less

  4. The effect of interface properties on nickel base alloy composites

    NASA Technical Reports Server (NTRS)

    Groves, M.; Grossman, T.; Senemeier, M.; Wright, K.

    1995-01-01

    This program was performed to assess the extent to which mechanical behavior models can predict the properties of sapphire fiber/nickel aluminide matrix composites and help guide their development by defining improved combinations of matrix and interface coating. The program consisted of four tasks: 1) selection of the matrices and interface coating constituents using a modeling-based approach; 2) fabrication of the selected materials; 3) testing and evaluation of the materials; and 4) evaluation of the behavior models to develop recommendations. Ni-50Al and Ni-20AI-30Fe (a/o) matrices were selected which gave brittle and ductile behavior, respectively, and an interface coating of PVD YSZ was selected which provided strong bonding to the sapphire fiber. Significant fiber damage and strength loss was observed in the composites which made straightforward comparison of properties with models difficult. Nevertheless, the models selected generally provided property predictions which agreed well with results when fiber degradation was incorporated. The presence of a strong interface bond was felt to be detrimental in the NiAI MMC system where low toughness and low strength were observed.

  5. Method of assembly of molecular-sized nets and scaffolding

    DOEpatents

    Michl, J.; Magnera, T.F.; David, D.E.; Harrison, R.M.

    1999-03-02

    The present invention relates to methods and starting materials for forming molecular-sized grids or nets, or other structures based on such grids and nets, by creating molecular links between elementary molecular modules constrained to move in only two directions on an interface or surface by adhesion or bonding to that interface or surface. In the methods of this invention, monomers are employed as the building blocks of grids and more complex structures. Monomers are introduced onto and allowed to adhere or bond to an interface. The connector groups of adjacent adhered monomers are then polymerized with each other to form a regular grid in two dimensions above the interface. Modules that are not bound or adhered to the interface are removed prior to reaction of the connector groups to avoid undesired three-dimensional cross-linking and the formation of non-grid structures. Grids formed by the methods of this invention are useful in a variety of applications, including among others, for separations technology, as masks for forming regular surface structures (i.e., metal deposition) and as templates for three-dimensional molecular-sized structures. 9 figs.

  6. Hydroxide-catalyzed bonding

    NASA Technical Reports Server (NTRS)

    Gwo, Dz-Hung (Inventor)

    2003-01-01

    A method of bonding substrates by hydroxide-catalyzed hydration/dehydration involves applying a bonding material to at least one surface to be bonded, and placing the at least one surface sufficiently close to another surface such that a bonding interface is formed between them. A bonding material of the invention comprises a source of hydroxide ions, and may optionally include a silicate component, a particulate filling material, and a property-modifying component. Bonding methods of the invention reliably and reproducibly provide bonds which are strong and precise, and which may be tailored according to a wide range of possible applications. Possible applications for bonding materials of the invention include: forming composite materials, coating substrates, forming laminate structures, assembly of precision optical components, and preparing objects of defined geometry and composition. Bonding materials and methods of preparing the same are also disclosed.

  7. Interface bonding of NiCrAlY coating on laser modified H13 tool steel surface

    NASA Astrophysics Data System (ADS)

    Reza, M. S.; Aqida, S. N.; Ismail, I.

    2016-06-01

    Bonding strength of thermal spray coatings depends on the interfacial adhesion between bond coat and substrate material. In this paper, NiCrAlY (Ni-164/211 Ni22 %Cr10 %Al1.0 %Y) coatings were developed on laser modified H13 tool steel surface using atmospheric plasma spray (APS). Different laser peak power, P p, and duty cycle, DC, were investigated in order to improve the mechanical properties of H13 tool steel surface. The APS spraying parameters setting for coatings were set constant. The coating microstructure near the interface was analyzed using IM7000 inverted optical microscope. Interface bonding of NiCrAlY was investigated by interfacial indentation test (IIT) method using MMT-X7 Matsuzawa Hardness Tester Machine with Vickers indenter. Diffusion of atoms along NiCrAlY coating, laser modified and substrate layers was investigated by energy-dispersive X-ray spectroscopy (EDXS) using Hitachi Tabletop Microscope TM3030 Plus. Based on IIT method results, average interfacial toughness, K avg, for reference sample was 2.15 MPa m1/2 compared to sample L1 range of K avg from 6.02 to 6.96 MPa m1/2 and sample L2 range of K avg from 2.47 to 3.46 MPa m1/2. Hence, according to K avg, sample L1 has the highest interface bonding and is being laser modified at lower laser peak power, P p, and higher duty cycle, DC, prior to coating. The EDXS analysis indicated the presence of Fe in the NiCrAlY coating layer and increased Ni and Cr composition in the laser modified layer. Atomic diffusion occurred in both coating and laser modified layers involved in Fe, Ni and Cr elements. These findings introduce enhancement of coating system by substrate surface modification to allow atomic diffusion.

  8. Stress intensity factors in bonded half planes containing inclined cracks and subjected to antiplane shear loading

    NASA Technical Reports Server (NTRS)

    Bassani, J. L.; Erdogan, F.

    1979-01-01

    The antiplane shear problem for two bonded dissimilar half planes containing a semi-infinite crack or two arbitrarily located collinear cracks is considered. For the semi-infinite crack the problem is solved for a concentrated wedge load and the stress intensity factor and the angular distribution of stresses are calculated. For finite cracks the problem is reduced to a pair of integral equations. Numerical results are obtained for cracks fully imbedded in a homogeneous medium, one crack tip touching the interface, and a crack crossing the interface for various crack angles.

  9. On the problem of stress singularities in bonded orthotropic materials

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Delale, F.

    1976-01-01

    The problem of stress singularities at the leading edge of a crack lying in the neighborhood of a bimaterial interface in bonded orthotropic materials is considered. The main objective is to study the effect of material orthotropy on the singular behavior of the stress state when the crack touches or intersects the interface. The results indicate that, due to the large number of material constants involved, in orthotropic materials, the power of stress singularity as well as the stress intensity factor can be considerably different than that found in the isotropic materials with the same stiffness ratio perpendicular to the crack.

  10. Stress intensity factors in bonded half planes containing inclined cracks and subjected to antiplane shear loading

    NASA Technical Reports Server (NTRS)

    Bassani, J. L.; Erdogan, F.

    1978-01-01

    The antiplane shear problem for two bonded dissimilar half planes containing a semi-infinite crack or two arbitrarily located collinear cracks was considered. For the semi-infinite crack the problem was solved for a concentrated wedge load and the stress intensity factor and the angular distribution of stresses were calculated. For finite cracks the problem was reduced to a pair of integral equations. Numerical results were obtained for cracks fully imbedded in a homogeneous medium, one crack tip touching the interface, and a crack crossing the interface for various crack angles.

  11. The Influence of the Coating Deposition Process on the Interdiffusion Behavior Between Nickel-Based Superalloys and MCrAlY Bond Coats

    NASA Astrophysics Data System (ADS)

    Elsaß, M.; Frommherz, M.; Oechsner, M.

    2018-02-01

    In this work, interdiffusion between two nickel-based superalloys and two MCrAlY bond coats is investigated. The MCrAlY bond coats were applied using two different spraying processes, high velocity oxygen fuel spraying (HVOF) and low-pressure plasma spraying. Of primary interest is the evolution of Kirkendall porosity, which can form at the interface between substrate and bond coat and depends largely on the chemical compositions of the coating and substrate. Experimental evidence further suggested that the formation of Kirkendall porosity depends on the coating deposition process. Formation of porosity at the interface causes a degradation of the bonding strength between substrate and coating. After coating deposition, the samples were annealed at 1050 °C for up to 2000 h. Microstructural and compositional analyses were performed to determine and evaluate the Kirkendall porosity. The results reveal a strong influence of both the coating deposition process and the chemical compositions. The amount of Kirkendall porosity formed, as well as the location of appearance, is largely influenced by the coating deposition process. In general, samples with bond coats applied by means of HVOF show accelerated element diffusion. It is hypothesized that recrystallization of the substrate material is a main root cause for these observations.

  12. Analysis of Plasma-Sprayed Thermal Barrier Coatings With Homogeneous and Heterogeneous Bond Coats Under Spatially Uniform Cyclic Thermal Loading

    NASA Technical Reports Server (NTRS)

    Arnold, Steven M.; Pindera, Marek-Jerzy; Aboudi, Jacob

    2003-01-01

    This report summarizes the results of a numerical investigation into the spallation mechanism in plasma-sprayed thermal barrier coatings observed under spatially-uniform cyclic thermal loading. The analysis focuses on the evolution of local stress and inelastic strain fields in the vicinity of the rough top/bond coat interface during thermal cycling, and how these fields are influenced by the presence of an oxide film and spatially uniform and graded distributions of alumina particles in the metallic bond coat aimed at reducing the top/bond coat thermal expansion mismatch. The impact of these factors on the potential growth of a local horizontal delamination at the rough interface's crest is included. The analysis is conducted using the Higher-Order Theory for Functionally Graded Materials with creep/relaxation constituent modeling capabilities. For two-phase bond coat microstructures, both the actual and homogenized properties are employed in the analysis. The results reveal the important contributions of both the normal and shear stress components to the delamination growth potential in the presence of an oxide film, and suggest mixed-mode crack propagation. The use of bond coats with uniform or graded microstructures is shown to increase the potential for delamination growth by increasing the magnitude of the crack-tip shear stress component.

  13. Evaluation of commercially supplied silver coated Teflon for spacecraft temperature control usage

    NASA Technical Reports Server (NTRS)

    Heaney, J. B.

    1974-01-01

    A series of tests are described which were performed to evaluate the acceptability of a commercially supplied silver backed teflon thermal control coating relative to teflon previously coated at GSFC. Optical measurements made on numerous samples indicate that the commercial material possesses an average solar absorptance of 0.085, an emittance of 0.76 and an average alpha/epsilon equal to 0.112, all of which are equivalent to the GSFC coated teflon. The emittance of the protective inconel backing was found to be 0.037. The coating is shown to have good adhesion at the Ag-teflon interface and exposure to UV irradiation uncovered no coating irregularities. Temperature cycling over the range -135 C to +200 C produced crazing in the evaporated Ag layer as expected but no delamination was observed. The suitability of Mystik no. 7366 and 3M no. 467 adhesives as bonding agents for the metallized polymer is demonstrated. Various problems associated with production reproducibility and selection of a proper bonding process are discussed.

  14. Longevity of bond strength of resin cements to root dentine after radiation therapy.

    PubMed

    Yamin, P A; Pereira, R D; Lopes, F C; Queiroz, A M; Oliveira, H F; Saquy, P C; Sousa-Neto, M D

    2018-05-04

    To evaluate the bond strength and adhesive interface between several resin cements and root dentine immediately and 6 months after radiotherapy. Sixty maxillary canines were selected and randomly assigned to two groups (n = 30): one group was not irradiated and the other one was subjected to a cumulative radiation dose of 60 Gy. The teeth were sectioned to obtain roots 16 mm long and the canals were prepared with the Reciproc system (R50) and filled using a lateral condensation technique with an epoxy resin sealer. Each group was divided into three subgroups (n = 10) according to the resin cement used for fibreglass fibre post cementation: RelyX-U200, Panavia-F2.0 and RelyX ARC. The posts were cemented in accordance with the manufacturer's recommendations. Three 1-mm-thick dentine slices were then obtained from each root third. The first two slices in the crown-apex direction of each third were selected for the push-out test. The failure mode after debonding was determined with a stereo microscope. The third slice from each root third was selected for scanning electron microscopy (SEM) analyses to examine the resin cement-dentine interface with 100, 1000, 2000 and 4000× magnification. Bond strength data were analysed by anova and Tukey's test (α = 0.05). Significantly lower bond strength (P < 0.0001) was obtained after irradiation compared to nonirradiated teeth. RelyX-U200 cemented fibre posts had the higher bond strength (15.17 ± 5.89) compared with RelyX ARC (P < 0.001) and Panavia-F2.0 (P < 0.001). The evaluation after 6 months revealed lower bond strength values compared to the immediate values (P < 0.001) for irradiated and nonirradiated teeth. Cohesive failures occurred in the irradiated dentine. SEM revealed fractures, microfractures and fewer collagen fibres in irradiated root dentine. RelyX-U200 and Panavia-F2.0 were associated with a juxtaposed interface of the cement with the radicular dentine in irradiated and nonirradiated teeth, and for RelyX ARC, hybrid layer formation and tags were observed in both irradiated and nonirradiated teeth. Radiation was associated with a decrease in the push-out bond strength and with lower resin cement/root dentine interface adaptation. Self-adhesive resin cement was a better alternative for fibre post cementation in teeth subjected to radiation therapy. The bond strength decreased after 6 months. © 2018 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  15. Durability of bonds and clinical success of adhesive restorations

    PubMed Central

    Carvalho, Ricardo M.; Manso, Adriana P.; Geraldeli, Saulo; Tay, Franklin R.; Pashley, David H.

    2013-01-01

    Resin-dentin bond strength durability testing has been extensively used to evaluate the effectiveness of adhesive systems and the applicability of new strategies to improve that property. Clinical effectiveness is determined by the survival rates of restorations placed in non-carious cervical lesions (NCCL). While there is evidence that the bond strength data generated in laboratory studies somehow correlates with the clinical outcome of NCCL restorations, it is questionable whether the knowledge of bonding mechanisms obtained from laboratory testing can be used to justify clinical performance of resin-dentin bonds. There are significant morphological and structural differences between the bonding substrate used in in vitro testing versus the substrate encountered in NCCL. These differences qualify NCCL as a hostile substrate for bonding, yielding bond strengths that are usually lower than those obtained in normal dentin. However, clinical survival time of NCCL restorations often surpass the durability of normal dentin tested in the laboratory. Likewise, clinical reports on the long-term survival rates of posterior composite restorations defy the relatively rapid rate of degradation of adhesive interfaces reported in laboratory studies. This article critically analyzes how the effectiveness of adhesive systems is currently measured, to identify gaps in knowledge where new research could be encouraged. The morphological and chemical analysis of bonded interfaces of resin composite restorations in teeth that had been in clinical service for many years, but were extracted for periodontal reasons, could be a useful tool to observe the ultrastructural characteristics of restorations that are regarded as clinically acceptable. This could help determine how much degradation is acceptable for clinical success. PMID:22192252

  16. H2O incorporation in the phosphorene/a-SiO2 interface: a first-principles study

    NASA Astrophysics Data System (ADS)

    Scopel, Wanderlã L.; Souza, Everson S.; Miwa, R. H.

    2017-02-01

    Based on first-principles calculations, we investigate (i) the energetic stability and electronic properties of single-layer phosphorene (SLP) adsorbed on an amorphous SiO2 surface (SLP/a-SiO2), and (ii) the further incorporation of water molecules at the phosphorene/a-SiO2 interface. In (i), we find that the phosphorene sheet binds to a-SiO2 through van der Waals interactions, even in the presence of oxygen vacancies on the surface. The SLP/a-SiO2 system presents a type-I band alignment, with the valence (conduction) band maximum (minimum) of the phosphorene lying within the energy gap of the a-SiO2 substrate. The structure and the surface-potential corrugations promote the formation of electron-rich and electron-poor regions on the phosphorene sheet and at the SLP/a-SiO2 interface. Such charge density puddles are strengthened by the presence of oxygen vacancies in a-SiO2. In (ii), because of the amorphous structure of the surface, we consider a number of plausible geometries for H2O embedded in the SLP/a-SiO2 interface. There is an energetic preference for the formation of hydroxyl (OH) groups on the a-SiO2 surface. Meanwhile, in the presence of oxygenated water or interstitial oxygen in the phosphorene sheet, we observe the formation of metastable OH bonded to the phosphorene, and the formation of energetically stable P-O-Si chemical bonds at the SLP/a-SiO2 interface. Further x-ray absorption spectra simulations are performed, which aim to provide additional structural/electronic information on the oxygen atoms forming hydroxyl groups or P-O-Si chemical bonds at the interface region.

  17. H2O incorporation in the phosphorene/a-SiO2 interface: a first-principles study.

    PubMed

    Scopel, Wanderlã L; Souza, Everson S; Miwa, R H

    2017-02-22

    Based on first-principles calculations, we investigate (i) the energetic stability and electronic properties of single-layer phosphorene (SLP) adsorbed on an amorphous SiO 2 surface (SLP/a-SiO 2 ), and (ii) the further incorporation of water molecules at the phosphorene/a-SiO 2 interface. In (i), we find that the phosphorene sheet binds to a-SiO 2 through van der Waals interactions, even in the presence of oxygen vacancies on the surface. The SLP/a-SiO 2 system presents a type-I band alignment, with the valence (conduction) band maximum (minimum) of the phosphorene lying within the energy gap of the a-SiO 2 substrate. The structure and the surface-potential corrugations promote the formation of electron-rich and electron-poor regions on the phosphorene sheet and at the SLP/a-SiO 2 interface. Such charge density puddles are strengthened by the presence of oxygen vacancies in a-SiO 2 . In (ii), because of the amorphous structure of the surface, we consider a number of plausible geometries for H 2 O embedded in the SLP/a-SiO 2 interface. There is an energetic preference for the formation of hydroxyl (OH) groups on the a-SiO 2 surface. Meanwhile, in the presence of oxygenated water or interstitial oxygen in the phosphorene sheet, we observe the formation of metastable OH bonded to the phosphorene, and the formation of energetically stable P-O-Si chemical bonds at the SLP/a-SiO 2 interface. Further x-ray absorption spectra simulations are performed, which aim to provide additional structural/electronic information on the oxygen atoms forming hydroxyl groups or P-O-Si chemical bonds at the interface region.

  18. Manipulating electronic and mechanical properties at metal-ceramic interfaces with a nanomolecular layer

    NASA Astrophysics Data System (ADS)

    Kwan, Matthew P.

    This work demonstrates that inserting nanomolecular layers (NMLs) can profoundly change and/or lead to novel electronic and mechanical properties of metal-ceramic interfaces. The first set of results demonstrate that organophosphonate NMLs up to 1.8 nm thick can alter metal work functions by +/- 0.6 eV. This work function change is a strong function of the NML terminal groups (methyl, mercaptan, carboxylic acid, or phosphonic acid), morphology (up right, lying down, or mixed orientation), and the nature of the bonding (covalent, polar, or Van der Waals) between NML and the adjacent layers. Additionally, while NML-ceramic bond type and strength can influence and counteract the effect of NML morphology, the metal-NML bond appears to be independent of the morphology of the NML underlayer. The second set of results demonstrate that inserting an organosilane NML at a metal-ceramic interface can lead to multifold fracture toughening under both static (stress corrosion) and cyclic loads (fatigue) tested in four-point bend. Nanolayer-induced interface strengthening during static loading activates metal plasticity above the metal yield strength, leading to two-fold fracture toughening. Metal plasticity-induced toughening increases as temperature is increased up to 85 °C due to decreasing yield stress. In the fatigue fracture tests I report for the first time a loading-frequency-dependent tripling in fracture toughening in the 75-300 Hz range upon inserting a mercapto-silane NML at the weakest interface of a ceramic-polymer-metal-ceramic stack. This unusual behavior arises from the NML strengthened interface enabling load transfer to- and plasticity in the polymer layer, while the fatigue toughening magnitude and frequency range are determined by polymer rheology.

  19. Solid-state Bonding of Superplastic Aluminum Alloy 7475 Sheet

    NASA Technical Reports Server (NTRS)

    Byun, T. D. S.; Vastava, R. B.

    1985-01-01

    Experimental works were carried out to study the feasibility of solid state bonding of superplastic aluminum 7475 sheet. Amount of deformation, bonding time, surface cleaning method and intermediate layer were the process parameters investigated. Other parameters, held constant by the superplastic forming condition which is required to obtain a concurrent solid state bonding, are bonding temperature, bonding pressure and atmosphere. Bond integrity was evaluated through metallographic examination, X-ray line scan analysis, SEM fractographic analysis and lap shear tests. The early results of the development program indicated that sound solid state bonding was accomplished for this high strength 7475 alloy with significant amounts of deformation. A thin intermediate layer of the soft 5052 aluminum alloy aided in achieving a solid state bonding by reducing the required amount of plastic deformation at the interface. Bond strength was substantially increased by a post bond heat treatment.

  20. Analysis of interface crack branching

    NASA Technical Reports Server (NTRS)

    Ballarini, R.; Mukai, D. J.; Miller, G. R.

    1989-01-01

    A solution is presented for the problem of a finite length crack branching off the interface between two bonded dissimilar isotropic materials. Results are presented in terms of the ratio of the energy release rate of a branched interface crack to the energy release rate of a straight interface crack with the same total length. It is found that this ratio reaches a maximum when the interface crack branches into the softer material. Longer branches tend to have smaller maximum energy release rate ratio angles indicating that all else being equal, a branch crack will tend to turn back parallel to the interface as it grows.

  1. Controlled supramolecular assembly of micelle-like gold nanoparticles in PS-b-P2VP diblock copolymers via hydrogen bonding.

    PubMed

    Jang, Se Gyu; Kramer, Edward J; Hawker, Craig J

    2011-10-26

    We report a facile strategy to synthesize amphiphilic gold (Au) nanoparticles functionalized with a multilayer, micelle-like structure consisting of a Au core, an inner hydroxylated polyisoprene (PIOH) layer, and an outer polystyrene shell (PS). Careful control of enthalpic interactions via a systematic variation of structural parameters, such as number of hydroxyl groups per ligand (N(OH)) and styrene repeating units (N(PS)) as well as areal chain density of ligands on the Au-core surface (Σ), enables precise control of the spatial distribution of these nanoparticles. This control was demonstrated in a lamellae-forming poly(styrene-b-2-vinylpyridine) (PS-b-P2VP) diblock copolymer matrix, where the favorable hydrogen-bonding interaction between hydroxyl groups in the PIOH inner shell and P2VP chains in the PS-b-P2VP diblock copolymer matrix, driving the nanoparticles to be segregated in P2VP domains, could be counter balanced by the enthalphic penalty of mixing of the PS outer brush with the P2VP domains. By varying N(OH), N(PS), and Σ, the nanoparticles could be positioned in the PS or P2VP domains or at the PS/P2VP interface. In addition, the effect of additives interfering with the hydrogen-bond formation between hydroxyl groups on Au nanoparticles and P2VP chains in a diblock copolymer matrix was investigated, and an interesting pea-pod-like segregation of Au nanoparticles in PS domains was observed.

  2. Microtensile bond strength of etch and rinse versus self-etch adhesive systems.

    PubMed

    Hamouda, Ibrahim M; Samra, Nagia R; Badawi, Manal F

    2011-04-01

    The aim of this study was to compare the microtensile bond strength of the etch and rinse adhesive versus one-component or two-component self-etch adhesives. Twelve intact human molar teeth were cleaned and the occlusal enamel of the teeth was removed. The exposed dentin surfaces were polished and rinsed, and the adhesives were applied. A microhybride composite resin was applied to form specimens of 4 mm height and 6 mm diameter. The specimens were sectioned perpendicular to the adhesive interface to produce dentin-resin composite sticks, with an adhesive area of approximately 1.4 mm(2). The sticks were subjected to tensile loading until failure occurred. The debonded areas were examined with a scanning electron microscope to determine the site of failure. The results showed that the microtensile bond strength of the etch and rinse adhesive was higher than that of one-component or two-component self-etch adhesives. The scanning electron microscope examination of the dentin surfaces revealed adhesive and mixed modes of failure. The adhesive mode of failure occurred at the adhesive/dentin interface, while the mixed mode of failure occurred partially in the composite and partially at the adhesive/dentin interface. It was concluded that the etch and rinse adhesive had higher microtensile bond strength when compared to that of the self-etch adhesives. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Influence of different etching modes on bond strength and fatigue strength to dentin using universal adhesive systems.

    PubMed

    Takamizawa, Toshiki; Barkmeier, Wayne W; Tsujimoto, Akimasa; Berry, Thomas P; Watanabe, Hedehiko; Erickson, Robert L; Latta, Mark A; Miyazaki, Masashi

    2016-02-01

    The purpose of this study was to determine the dentin bonding ability of three new universal adhesive systems under different etching modes using fatigue testing. Prime & Bond elect [PE] (DENTSPLY Caulk), Scotchbond Universal [SU] (3M ESPE), and All Bond Universal [AU] (Bisco) were used in this study. A conventional single-step self-etch adhesive, Clearfil Bond SE ONE [CS] (Kuraray Noritake Dental) was also included as a control. Shear bond strengths (SBS) and shear fatigue strength (SFS) to human dentin were obtained in the total-etch mode and self-etch modes. For each test condition, 15 specimens were prepared for the SBS and 30 specimens for SFS. SEM was used to examine representative de-bonded specimens, treated dentin surfaces and the resin/dentin interface for each test condition. Among the universal adhesives, PE in total-etch mode showed significantly higher SBS and SFS values than in self-etch mode. SU and AU did not show any significant difference in SBS and SFS between the total-etch mode and self-etch mode. However, the single-step self-etch adhesive CS showed significantly lower SBS and SFS values in the etch-and-rinse mode when compared to the self-etch mode. Examining the ratio of SFS/SBS, for PE and AU, the etch-and-rinse mode groups showed higher ratios than the self-etch mode groups. The influence of different etching modes on dentin bond quality of universal adhesives was dependent on the adhesive material. However, for the universal adhesives, using the total-etch mode did not have a negative impact on dentin bond quality. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  4. Adhesion and failure analysis of metal-polymer interface in flexible printed circuits boards

    NASA Astrophysics Data System (ADS)

    Park, Sanghee; Kim, Ye Chan; Choi, Kisuk; Chae, Heeyop; Suhr, Jonghwan; Nam, Jae-Do

    2017-12-01

    As device miniaturization in microelectronics is currently requested in the development of high performance device, which usually include highly-integrated metal-polyimide multilayer structures. A redistribution layer (RDL) process is currently emerging as one of the most advance fabrication techniques for on-chip interconnect and packaging. One of the major issues in this process is the poor adhesion of the metal-polyimide interfaces particularly in flexible circuit boards due to the flexibility and bendability of devices. In this study, low pressure O2 plasma treatment was investigated to improve the adhesion of metal-polyimide interfaces, using inductively coupled plasma (ICP) treatment. We identified that the adhesion of metal-polyimide interfaces was greatly improved by the surface roughness control providing 46.1 MPa of shear force in the ball shear test after O2 plasma treatment, compared 14.2 MPa without O2 plasma treatment. It was seemingly due to the fact that the adhesion in metal-polyimide interfaces was improved by a chemical conversion of C=O to C-O bonds and by a ring opening reaction of imide groups, which was confirmed with FT-IR analysis. In the finite element numerical analysis of metal-polyimide interfaces, the O2 plasma treated interface showed that the in-plane stress distribution and the vertical directional deformation agreed well with real failure modes in flexible circuits manufacturing.

  5. Influence of glass particle size of resin cements on bonding to glass ceramic: SEM and bond strength evaluation.

    PubMed

    Valentini, Fernanda; Moraes, Rafael R; Pereira-Cenci, Tatiana; Boscato, Noéli

    2014-05-01

    This study investigated the effect of the filler particle size (micron or submicron) of experimental resin cements on the microtensile bond strength to a glass-ceramic pretreated with hydrofluoric acid (HFA) etching or alumina airborne-particle abrasion (AA). Cements were obtained from a Bis-GMA/TEGDMA mixture filled with 60 mass% micron-sized (1 ± 0.2 µm) or submicron-sized (180 ± 30 µm) Ba-Si-Al glass particles. Ceramic blocks (PM9; VITA) were treated with 10% HFA for 60 s or AA for 15 s. Silane and adhesive were applied. Ceramic blocks were bonded to resin composite blocks (Z250; 3M ESPE) using one of the cements. Bonded specimens were sectioned into beams (n = 20/group) and subjected to microtensile bond strength tests. Data were analyzed using ANOVA and Student-Newman-Keuls' tests (5%). Failure modes were classified under magnification. Morphologies of the treated ceramic surfaces and bonded interfaces were evaluated by scanning electron microscopy. The HFA-submicron group had lower bond strengths than the other groups. All AA-submicron specimens debonded prematurely. Mixed failures were predominant for HFA groups, whereas interfacial failures predominated for AA groups. SEM revealed a honeycomb-like aspect in the HFA-treated ceramic, whereas the AA-treated groups showed an irregular retentive pattern. Continuity of cement infiltration along the bonded interface was more uniform for HFA-treated compared to AA-treated specimens. Cracks toward the bulk of the ceramic were observed in AA-treated specimens. Particle size significantly influenced the ceramic bond strength, whereas surface treatment had a minor effect. Copyright © 2014 Wiley Periodicals, Inc.

  6. The effect of dentine surface preparation and reduced application time of adhesive on bonding strength.

    PubMed

    Saikaew, Pipop; Chowdhury, A F M Almas; Fukuyama, Mai; Kakuda, Shinichi; Carvalho, Ricardo M; Sano, Hidehiko

    2016-04-01

    This study evaluated the effects of surface preparation and the application time of adhesives on the resin-dentine bond strengths with universal adhesives. Sixty molars were cut to exposed mid-coronal dentine and divided into 12 groups (n=5) based on three factors; (1) adhesive: G-Premio Bond (GP, GC Corp., Tokyo, Japan), Clearfil Universal Bond (CU, Kuraray Noritake Dental Inc., Okayama, Japan) and Scotchbond Universal Adhesive (SB, 3M ESPE, St. Paul, MN, USA); (2) smear layer preparation: SiC paper ground dentine or bur-cut dentine; (3) application time: shortened time or as manufacturer's instruction. Fifteen resin-dentine sticks per group were processed for microtensile bond strength test (μTBS) according to non-trimming technique (1mm(2)) after storage in distilled water (37 °C) for 24h. Data were analyzed by three-way ANOVA and Dunnett T3 tests (α=0.05). Fractured surfaces were observed under scanning electron microscope (SEM). Another 12 teeth were prepared and cut into slices for SEM examination of bonded interfaces. μTBS were higher when bonded to SiC-ground dentine according to manufacturer's instruction. Bonding to bur-cut dentine resulted in significantly lower μTBS (p<0.000). Shortening the application time resulted in significantly lower bond strength for CU on SiC and GP on bur-cut dentine. SEM of fractured surfaces revealed areas with a large amount of porosities at the adhesive resin interface. This was more pronounced when adhesives were bonded with a reduced application time and on bur cut dentine. The performance of universal adhesives can be compromised on bur cut dentine and when applied with a reduced application time. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Weakly bound water structure, bond valence saturation and water dynamics at the goethite (100) surface/aqueous interface: ab initio dynamical simulations.

    PubMed

    Chen, Ying; Bylaska, Eric J; Weare, John H

    2017-03-31

    Many important geochemical and biogeochemical reactions occur in the mineral/formation water interface of the highly abundant mineral, goethite [α-Fe(OOH)]. Ab initio molecular dynamics (AIMD) simulations of the goethite α-FeOOH (100) surface and the structure, water bond formation and dynamics of water molecules in the mineral/aqueous interface are presented. Several exchange correlation functionals were employed (PBE96, PBE96 + Grimme, and PBE0) in the simulations of a (3 × 2) goethite surface with 65 absorbed water molecules in a 3D-periodic supercell (a = 30 Å, FeOOH slab ~12 Å thick, solvation layer ~18 Å thick). The lowest energy goethite (100) surface termination model was determined to have an exposed surface Fe 3+ that was loosely capped by a water molecule and a shared hydroxide with a neighboring surface Fe 3+ . The water molecules capping surface Fe 3+ ions were found to be loosely bound at all DFT levels with and without Grimme corrections, indicative that each surface Fe 3+ was coordinated with only five neighbors. These long bonds were supported by bond valence theory calculations, which showed that the bond valence of the surface Fe 3+ was saturated and surface has a neutral charge. The polarization of the water layer adjacent to the surface was found to be small and affected only the nearest water. Analysis by density difference plots and localized Boys orbitals identified three types of water molecules: those loosely bound to the surface Fe 3+ , those hydrogen bonded to the surface hydroxyl, and bulk water with tetrahedral coordination. Boys orbital analysis showed that the spin down lone pair orbital of the weakly absorbed water interact more strongly with the spin up Fe 3+ ion. These weakly bound surface water molecules were found to rapidly exchange with the second water layer (~0.025 exchanges/ps) using a dissociative mechanism. Water molecules adjacent to the surface were found to only weakly interact with the surface and as a result were readily able to exchange with the bulk water. To account for the large surface Fe-OH 2 distances in the DFT calculations it was proposed that the surface Fe 3+ atoms, which already have their bond valence fully satisfied with only five neighbors, are under-coordinated with respect to the bulk coordination. Graphical abstract All first principle calculations, at all practically achievable levels, for the goethite 100 aqueous interface support a long bond and weak interaction between the exposed surface Fe 3+ and water molecules capping the surface. This result is supported by bond valence theory calculations and is indicative that each surface Fe 3+ is coordinated with only 5 neighbors.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sridharan, Niyanth; Gussev, Maxim; Seibert, Rachel

    Ultrasonic additive manufacturing (UAM) is a solid-state process, which uses ultrasonic vibrations at 20 kHz along with mechanized tape layering and intermittent milling operation, to build fully functional three-dimensional parts. In the literature, UAM builds made with low power (1.5 kW) exhibited poor tensile properties in Z-direction, i.e., normal to the interfaces. This reduction in properties is often attributed to the lack of bonding at faying interfaces. The generality of this conclusion is evaluated further in 6061 aluminum alloy builds made with very high power UAM (9 kW). Tensile deformation behavior along X and Z directions were evaluated with small-scalemore » in-situ mechanical testing equipped with high-resolution digital image correlation, as well as, multi-scale characterization of builds. Interestingly, even with complete metallurgical bonding across the interfaces without any discernable voids, poor Z-direction properties were observed. This reduction is correlated to coalescence of pre-existing shear bands at interfaces into micro voids, leading to strain localization and spontaneous failure on tensile loading.« less

  9. Second-Order Vibrational Lineshapes from the Air/Water Interface.

    PubMed

    Ohno, Paul E; Wang, Hong-Fei; Paesani, Francesco; Skinner, James L; Geiger, Franz M

    2018-05-10

    We explore by means of modeling how absorptive-dispersive mixing between the second- and third-order terms modifies the imaginary χ total (2) responses from air/water interfaces under conditions of varying charge densities and ionic strength. To do so, we use published Im(χ (2) ) and χ (3) spectra of the neat air/water interface that were obtained either from computations or experiments. We find that the χ total (2) spectral lineshapes corresponding to experimentally measured spectra contain significant contributions from both interfacial χ (2) and bulk χ (3) terms at interfacial charge densities equivalent to less than 0.005% of a monolayer of water molecules, especially in the 3100 to 3300 cm -1 frequency region. Additionally, the role of short-range static dipole potentials is examined under conditions mimicking brine. Our results indicate that surface potentials, if indeed present at the air/water interface, manifest themselves spectroscopically in the tightly bonded H-bond network observable in the 3200 cm -1 frequency range.

  10. [Interface compatibility between tooth-like yttria-stabilized tetragonal zirconia polycrystal by adding rare-earth oxide and Vita VM9 veneering porcelain].

    PubMed

    Gao, Yan; Zhang, Fu-qiang; He, Fan

    2011-10-01

    To evaluate the interface compatibility between tooth-like yttria-stabilized tetragonal zirconia polycrystal(Y-TZP) by adding rare-earth oxide and Vita VM9 veneering porcelain. Six kinds(S1,S2,S3,S4,S5,S6) of tooth-like yttria stabilized tetragonal zirconia polycrystal were made by introducing internal colorating technology to detect the thermal shock resistance and interface bonding strength with Vita VM9 Bsaedentin. Statistical analysis was performed using SAS6.12 software package. There was no gap between the layers via hot shocking test.The shear bonding strength between Y-TZP and VitaVM9 was higher and the value was (36.03±3.82) to (37.98±4.89) MPa. By adding rare-earth oxide to yttria-stabilized tetragonal zirconia polycrystal ,better compatibility between the layer (TZP and Vita VM9) can be formed which is of better interface integrate and available for clinical applications.

  11. The interfacial structure of water droplets in a hydrophobic liquid

    NASA Astrophysics Data System (ADS)

    Smolentsev, Nikolay; Smit, Wilbert J.; Bakker, Huib J.; Roke, Sylvie

    2017-05-01

    Nanoscopic and microscopic water droplets and ice crystals embedded in liquid hydrophobic surroundings are key components of aerosols, rocks, oil fields and the human body. The chemical properties of such droplets critically depend on the interfacial structure of the water droplet. Here we report the surface structure of 200 nm-sized water droplets in mixtures of hydrophobic oils and surfactants as obtained from vibrational sum frequency scattering measurements. The interface of a water droplet shows significantly stronger hydrogen bonds than the air/water or hexane/water interface and previously reported planar liquid hydrophobic/water interfaces at room temperature. The observed spectral difference is similar to that of a planar air/water surface at a temperature that is ~50 K lower. Supercooling the droplets to 263 K does not change the surface structure. Below the homogeneous ice nucleation temperature, a single vibrational mode is present with a similar mean hydrogen-bond strength as for a planar ice/air interface.

  12. Finite Element Modeling of Laminated Composite Plates with Locally Delaminated Interface Subjected to Impact Loading

    PubMed Central

    Abo Sabah, Saddam Hussein; Kueh, Ahmad Beng Hong

    2014-01-01

    This paper investigates the effects of localized interface progressive delamination on the behavior of two-layer laminated composite plates when subjected to low velocity impact loading for various fiber orientations. By means of finite element approach, the laminae stiffnesses are constructed independently from their interface, where a well-defined virtually zero-thickness interface element is discreetly adopted for delamination simulation. The present model has the advantage of simulating a localized interfacial condition at arbitrary locations, for various degeneration areas and intensities, under the influence of numerous boundary conditions since the interfacial description is expressed discretely. In comparison, the model shows good agreement with existing results from the literature when modeled in a perfectly bonded state. It is found that as the local delamination area increases, so does the magnitude of the maximum displacement history. Also, as top and bottom fiber orientations deviation increases, both central deflection and energy absorption increase although the relative maximum displacement correspondingly decreases when in contrast to the laminates perfectly bonded state. PMID:24696668

  13. Molecular statics simulation of CdTe grain boundary structures and energetics using a bond-order potential

    NASA Astrophysics Data System (ADS)

    Stechmann, Guillaume; Zaefferer, Stefan; Raabe, Dierk

    2018-06-01

    The structure and energetics of coincidence site lattice grain boundaries (GB) in CdTe are investigated by mean of molecular statics simulations, using the Cd–Zn–Te bond-order potential (second iteration) developed by Ward et al (2012 Phys. Rev. B 86 245203; 2013 J. Mol. Modelling 19 5469–77). The effects of misorientation (Σ value) and interface plane are treated separately, complying with the critical need for full five-parameter characterization of GB. In addition, stoichiometric shifts, occurring between the inner interfaces and their adjacent atomic layers, are also predicted, revealing the energetic preference of Te-rich boundaries, opening opportunities for crystallography-based intrinsic interface doping. Our results also suggest that the intuitive assumption that Σ3 boundaries with low-indexed planes are more energetically favorable is often unfounded, except for coherent twins developing on {111} boundary planes. Therefore, Σ5, 7 or 9 boundaries, with lower interface energy than that of twin boundaries lying on different facets, are frequently encountered.

  14. Finite element modeling of laminated composite plates with locally delaminated interface subjected to impact loading.

    PubMed

    Abo Sabah, Saddam Hussein; Kueh, Ahmad Beng Hong

    2014-01-01

    This paper investigates the effects of localized interface progressive delamination on the behavior of two-layer laminated composite plates when subjected to low velocity impact loading for various fiber orientations. By means of finite element approach, the laminae stiffnesses are constructed independently from their interface, where a well-defined virtually zero-thickness interface element is discreetly adopted for delamination simulation. The present model has the advantage of simulating a localized interfacial condition at arbitrary locations, for various degeneration areas and intensities, under the influence of numerous boundary conditions since the interfacial description is expressed discretely. In comparison, the model shows good agreement with existing results from the literature when modeled in a perfectly bonded state. It is found that as the local delamination area increases, so does the magnitude of the maximum displacement history. Also, as top and bottom fiber orientations deviation increases, both central deflection and energy absorption increase although the relative maximum displacement correspondingly decreases when in contrast to the laminates perfectly bonded state.

  15. Bending response of cross-ply laminated composite plates with diagonally perturbed localized interfacial degeneration.

    PubMed

    Kam, Chee Zhou; Kueh, Ahmad Beng Hong

    2013-01-01

    A laminated composite plate element with an interface description is developed using the finite element approach to investigate the bending performance of two-layer cross-ply laminated composite plates in presence of a diagonally perturbed localized interfacial degeneration between laminae. The stiffness of the laminate is expressed through the assembly of the stiffnesses of lamina sub-elements and interface element, the latter of which is formulated adopting the well-defined virtually zero-thickness concept. To account for the extent of both shear and axial weak bonding, a degeneration ratio is introduced in the interface formulation. The model has the advantage of simulating a localized weak bonding at arbitrary locations, with various degeneration areas and intensities, under the influence of numerous boundary conditions since the interfacial description is expressed discretely. Numerical results show that the bending behavior of laminate is significantly affected by the aforementioned parameters, the greatest effect of which is experienced by those with a localized total interface degeneration, representing the case of local delamination.

  16. Photochemical bonding of epithelial cell-seeded collagen lattice to rat muscle layer for esophageal tissue engineering: a pilot study

    NASA Astrophysics Data System (ADS)

    Chan, Barbara P.; Sato, M.; Vacanti, Joseph P.; Kochevar, Irene E.; Redmond, Robert W.

    2005-04-01

    Bilayered tube structures consist of epithelial cell-seeded collagen lattice and muscle layer have been fabricated for esophageal tissue engineering. Good adhesion between layers in order to facilitate cell infiltration and neovascularization in the collagen lattice is required. Previous efforts include using other bioglues such as fibrin glue and silicone tube as the physical support. However, the former is subjected to chances of transmitting blood-born infectious disease and is time consuming while the latter requires a second surgical procedure. The current project aimed to bond the cell-seeded collagen lattice to muscle layer using photochemical bonding, which has previously been demonstrated a rapid and non-thermal procedure in bonding collagenous tissues. Rat esophageal epithelial cells were seeded on collagen lattice and together with the latissimus dorsi muscle layer, were exposed to a photosensitizer rose Bengal at the bonding surface. An argon laser was used to irradiate the approximated layers. Bonding strength was measured during the peeling test of the collagen layer from the muscle layer. Post-bonding cell viability was assessed using a modified NADH-diaphorase microassay. A pilot in vivo study was conducted by directly bonding the cell-seeded collagen layer onto the muscle flap in rats and the structures were characterized histologically. Photochemical bonding was found to significantly increase the adherence at the bonding interface without compromising the cell viability. This indicates the feasibility of using the technique to fabricate multi-layered structures in the presence of living cells. The pilot animal study demonstrated integration of the collagen lattice with the muscle layer at the bonding interface although the subsequent surgical manipulation disturbed the integration at some region. This means that an additional procedure removing the tube could be avoided if the approximation and thus the bonding are optimized. Cell infiltration and neovascularization were also evident demonstrating that direct bonding of engineered tissue structures in particular those with low processability such as collagen lattice to the host tissue is feasible.

  17. Stress relaxation at a gelatin hydrogel-glass interface in direct shear sliding

    NASA Astrophysics Data System (ADS)

    Gupta, Vinit; Singh, Arun K.

    2018-01-01

    In this paper, we study experimentally the stress relaxation behavior of soft solids such as gelatin hydrogels on a smooth glass surface in direct shear sliding. It is observed experimentally that irrespective of pulling velocity, the sliding block relaxes to the same level of nonzero residual stress. However, residual stress increases with increasing gelatin concentration in the hydrogels. We have also validated a friction model for strong bond formation during steady relaxation in light of the experimental observations. Our theoretical analysis establishes that population of dangling chains at the sliding interface significantly affects the relaxation process. As a result, residual stress increases with increasing gelatin concentration or decreasing mesh size of the three-dimensional structures in the hydrogels. It is also found that the transition time, at which a weak bond converts to strong bond, increases with increasing mesh size of the hydrogels. Moreover, relaxation time constant of a strong bond decreases with increasing mesh size. However, activation length of a strong bond increases with mesh size. Finally, this study signifies the role of residual strength in frictional shear sliding and it is believed that these results should be useful to understand the role of residual stress in stick-slip instability.

  18. Kinetics of protein unfolding at interfaces

    NASA Astrophysics Data System (ADS)

    Yano, Yohko F.

    2012-12-01

    The conformation of protein molecules is determined by a balance of various forces, including van der Waals attraction, electrostatic interaction, hydrogen bonding, and conformational entropy. When protein molecules encounter an interface, they are often adsorbed on the interface. The conformation of an adsorbed protein molecule strongly depends on the interaction between the protein and the interface. Recent time-resolved investigations have revealed that protein conformation changes during the adsorption process due to the protein-protein interaction increasing with increasing interface coverage. External conditions also affect the protein conformation. This review considers recent dynamic observations of protein adsorption at various interfaces and their implications for the kinetics of protein unfolding at interfaces.

  19. Mechanical loading influences the viscoelastic performance of the resin-carious dentin complex.

    PubMed

    Toledano, Manuel; Osorio, Raquel; López-López, Modesto T; Aguilera, Fátima S; García-Godoy, Franklin; Toledano-Osorio, Manuel; Osorio, Estrella

    2017-04-04

    The aim of this study was to evaluate the changes in the mechanical behavior and bonding capability of Zn-doped resin-infiltrated caries-affected dentin interfaces. Dentin surfaces were treated with 37% phosphoric acid (PA) followed by application of a dentin adhesive, single bond (SB) (PA+SB) or by 0.5 M ethylenediaminetetraacetic acid (EDTA) followed by SB (EDTA+SB). ZnO microparticles of 10 wt. % or 2 wt. % ZnCl 2 was added into SB, resulting in the following groups: PA+SB, PA+SB-ZnO, PA+SB-ZnCl 2 , EDTA+SB, EDTA+SB-ZnO, EDTA+SB-ZnCl 2 . Bonded interfaces were stored for 24 h, and tested or submitted to mechanical loading. Microtensile bond strength was assessed. Debonded surfaces were evaluated by scanning electron microscopy and elemental analysis. The hybrid layer, bottom of the hybrid layer, and peritubular and intertubular dentin were evaluated using a nanoindenter. The load/displacement responses were used for the nanodynamic mechanical analysis III to estimate complex modulus, tan delta, loss modulus, and storage modulus. The modulus mapping was obtained by imposing a quasistatic force setpoint to which a sinusoidal force was superimposed. Atomic force microscopy imaging was performed. Load cycling decreased the tan delta at the PA+SB-ZnCl 2 and EDTA+SB-ZnO interfaces. Tan delta was also diminished at peritubular dentin when PA+SB-ZnO was used, hindering the dissipation of energy throughout these structures. Tan delta increased at the interface after using EDTA+SB-ZnCl 2 , lowering the energy for recoil or failure. After load cycling, loss moduli at the interface decreased when using ZnCl 2 as doping agent, increasing the risk of fracture; but when using ZnO, loss moduli was dissimilarly affected if dentin was EDTA-treated. The border between intertubular and peritubular dentin attained the highest discrepancy in values of viscoelastic properties, meaning a risk for cracking and breakdown of the resin-dentin interface. PA used on dentin provoked differences in complex and storage modulus values at the intertubular and peritubular structures, and these differences were higher than when EDTA was employed. In these cases, the long-term performance of the restorative interface will be impaired.

  20. Comparison of different bonding techniques for efficient strain transfer using piezoelectric actuators

    NASA Astrophysics Data System (ADS)

    Ziss, Dorian; Martín-Sánchez, Javier; Lettner, Thomas; Halilovic, Alma; Trevisi, Giovanna; Trotta, Rinaldo; Rastelli, Armando; Stangl, Julian

    2017-04-01

    In this paper, strain transfer efficiencies from a single crystalline piezoelectric lead magnesium niobate-lead titanate substrate to a GaAs semiconductor membrane bonded on top are investigated using state-of-the-art x-ray diffraction (XRD) techniques and finite-element-method (FEM) simulations. Two different bonding techniques are studied, namely, gold-thermo-compression and polymer-based SU8 bonding. Our results show a much higher strain-transfer for the "soft" SU8 bonding in comparison to the "hard" bonding via gold-thermo-compression. A comparison between the XRD results and FEM simulations allows us to explain this unexpected result with the presence of complex interface structures between the different layers.

  1. Comparison of different bonding techniques for efficient strain transfer using piezoelectric actuators

    PubMed Central

    Ziss, Dorian; Martín-Sánchez, Javier; Lettner, Thomas; Halilovic, Alma; Trevisi, Giovanna; Trotta, Rinaldo; Rastelli, Armando; Stangl, Julian

    2017-01-01

    In this paper, strain transfer efficiencies from a single crystalline piezoelectric lead magnesium niobate-lead titanate substrate to a GaAs semiconductor membrane bonded on top are investigated using state-of-the-art x-ray diffraction (XRD) techniques and finite-element-method (FEM) simulations. Two different bonding techniques are studied, namely, gold-thermo-compression and polymer-based SU8 bonding. Our results show a much higher strain-transfer for the “soft” SU8 bonding in comparison to the “hard” bonding via gold-thermo-compression. A comparison between the XRD results and FEM simulations allows us to explain this unexpected result with the presence of complex interface structures between the different layers. PMID:28522879

  2. Comparison of different bonding techniques for efficient strain transfer using piezoelectric actuators.

    PubMed

    Ziss, Dorian; Martín-Sánchez, Javier; Lettner, Thomas; Halilovic, Alma; Trevisi, Giovanna; Trotta, Rinaldo; Rastelli, Armando; Stangl, Julian

    2017-04-01

    In this paper, strain transfer efficiencies from a single crystalline piezoelectric lead magnesium niobate-lead titanate substrate to a GaAs semiconductor membrane bonded on top are investigated using state-of-the-art x-ray diffraction (XRD) techniques and finite-element-method (FEM) simulations. Two different bonding techniques are studied, namely, gold-thermo-compression and polymer-based SU8 bonding. Our results show a much higher strain-transfer for the "soft" SU8 bonding in comparison to the "hard" bonding via gold-thermo-compression. A comparison between the XRD results and FEM simulations allows us to explain this unexpected result with the presence of complex interface structures between the different layers.

  3. In vitro longevity of bonding properties of universal adhesives to dentin.

    PubMed

    Muñoz, M A; Luque-Martinez, I; Malaquias, P; Hass, V; Reis, A; Campanha, N H; Loguercio, A D

    2015-01-01

    To evaluate the immediate and 6-month resin-dentin bond strength (μTBS) and nanoleakage (NL) of universal adhesives that contain or do not contain methacryloyloxydecyl dihydrogen phosphate (MDP) and are used in the etch-and-rinse and self-etch strategies. Forty caries-free extracted third molars were divided into eight groups for μTBS (n=5). The groups were bonded with the Clearfil SE Bond (CSE) and Adper Single Bond 2 (SB) as controls; Peak Universal, self-etch (PkSe) and etch-and rinse (PkEr); Scotchbond Universal Adhesive, self-etch (ScSe) and etch-and-rinse (ScEr); and All Bond Universal, self-etch (AlSe) and etch-and-rinse (AlEr). After composite restorations, specimens were longitudinally sectioned to obtain resin-dentin bonded sticks (0.8 mm(2)). The μTBS of the specimens was tested immediately (IM) or after 6 months of water storage (6M) at 0.5 mm/min. Some sticks at each storage period were immersed in silver nitrate and photo developed, and the NL was evaluated with scanning electron microscopy. Data were analyzed with two-way repeated-measures analysis of variance and Tukey test (α=0.05). At the IM period, PkSe and PkEr showed μTBS similar to the control adhesives (p>0.05) but increased NL pattern and lower μTBS after 6M (p<0.05). ScSe and ScEr showed intermediary μTBS values at the IM period but remained stable after 6 months (p>0.05). AlSe showed the lowest μTBS (p<0.05), but μTBS and NL remained stable after 6M (p>0.05). AlEr showed higher IM μTBS but showed higher degradation after 6M (p<0.05). Universal adhesives that contain MDP showed higher and more stable μTBS with reduced NL at the interfaces after 6 months of water storage.

  4. Fracture toughness versus micro-tensile bond strength testing of adhesive-dentin interfaces.

    PubMed

    De Munck, Jan; Luehrs, Anne-Katrin; Poitevin, André; Van Ende, Annelies; Van Meerbeek, Bart

    2013-06-01

    To assess interfacial fracture toughness of different adhesive approaches and compare to a standard micro-tensile bond-strength (μTBS) test. Chevron-notched beam fracture toughness (CNB) was measured following a modified ISO 24370 standard. Composite bars with dimensions of 3.0×4.0×25 mm were prepared, with the adhesive-dentin interface in the middle. At the adhesive-dentin interface, a chevron notch was prepared using a 0.15 mm thin diamond blade mounted in a water-cooled diamond saw. Each specimen was loaded until failure in a 4-point bend test setup and the fracture toughness was calculated according to the ISO specifications. Similarly, adhesive-dentin micro-specimens (1.0×1.0×8-10 mm) were stressed in tensile until failure to determine the μTBS. A positive correlation (r(2)=0.64) was observed between CNB and μTBS, which however was only nearly statistically significant, mainly due to the dissimilar outcome of Scotchbond Universal (3M ESPE). While few μTBS specimens failed at the adhesive-dentin interface, almost all CNB specimens failed interfacially at the notch tip. Weibull moduli for interfacial fracture toughness were much higher than for μTBS (3.8-11.5 versus 2.7-4.8, respectively), especially relevant with regard to early failures. Although the ranking of the adhesives on their bonding effectiveness tested using CNB and μTBS corresponded well, the outcome of CNB appeared more reliable and less variable. Fracture toughness measurement is however more laborious and requires specific equipment. The μTBS nevertheless appeared to remain a valid method to assess bonding effectiveness in a versatile way. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  5. Characterization of the reaction products and precipitates at the interface of carbon fiber reinforced magnesium–gadolinium composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yaping; Jiang, Longtao, E-mail: longtaojiang@163.com; Chen, Guoqin

    2016-03-15

    In the present work, carbon fiber reinforced magnesium-gadolinium composite was fabricated by pressure infiltration method. The phase composition, micro-morphology, and crystal structure of reaction products and precipitates at the interface of the composite were investigated. Scanning electron microscopy and energy dispersive spectroscopy analysis revealed the segregation of gadolinium element at the interface between carbon fiber and matrix alloy. It was shown that block-shaped Gd4C5, GdC2 and nano-sized Gd2O3 were formed at the interface during the fabrication process due to the interfacial reaction. Furthermore, magnesium-gadolinium precipitates including needle-like Mg5Gd (or Mg24Gd5) and thin plate-shaped long period stacking-ordered phase, were also observedmore » at the interface and in the matrix near the interface. The interfacial microstructure and bonding mode were influenced by these interfacial products, which were beneficial for the improvement of the interfacial bonding strength. - Highlights: • Gadolinium element segregated on the surface of carbon fibers. • Block-shaped Gd{sub 4}C{sub 5} and GdC{sub 2} were formed at the interface via chemical reaction. • Gadolinium and oxygen reacted at the interface and formed nano-scaled Gd{sub 2}O{sub 3}. • The precipitates formed in the interface were identified to be Mg{sub 5}Gd (or Mg{sub 24}Gd{sub 5}) and plate-shaped long period stacking-ordered phase.« less

  6. Origin of the blueshift of water molecules at interfaces of hydrophilic cyclic compounds

    PubMed Central

    Tomobe, Katsufumi; Yamamoto, Eiji; Kojić, Dušan; Sato, Yohei; Yasui, Masato; Yasuoka, Kenji

    2017-01-01

    Water molecules at interfaces of materials exhibit enigmatic properties. A variety of spectroscopic studies have observed a high-frequency motion in these water molecules, represented by a blueshift, at both hydrophobic and hydrophilic interfaces. However, the molecular mechanism behind this blueshift has remained unclear. Using Raman spectroscopy and ab initio molecular dynamics simulations, we reveal the molecular mechanism of the blueshift of water molecules around six monosaccharide isomers. In the first hydration shell, we found weak hydrogen-bonded water molecules that cannot have a stable tetrahedral water network. In the water molecules, the vibrational state of the OH bond oriented toward the bulk solvent strongly contributes to the observed blueshift. Our work suggests that the blueshift in various solutions originates from the vibrational motions of these observed water molecules. PMID:29282448

  7. A robust molecular probe for Ångstrom-scale analytics in liquids

    PubMed Central

    Nirmalraj, Peter; Thompson, Damien; Dimitrakopoulos, Christos; Gotsmann, Bernd; Dumcenco, Dumitru; Kis, Andras; Riel, Heike

    2016-01-01

    Traditionally, nanomaterial profiling using a single-molecule-terminated scanning probe is performed at the vacuum–solid interface often at a few Kelvin, but is not a notion immediately associated with liquid–solid interface at room temperature. Here, using a scanning tunnelling probe functionalized with a single C60 molecule stabilized in a high-density liquid, we resolve low-dimensional surface defects, atomic interfaces and capture Ångstrom-level bond-length variations in single-layer graphene and MoS2. Atom-by-atom controllable imaging contrast is demonstrated at room temperature and the electronic structure of the C60–metal probe complex within the encompassing liquid molecules is clarified using density functional theory. Our findings demonstrates that operating a robust single-molecular probe is not restricted to ultra-high vacuum and cryogenic settings. Hence the scope of high-precision analytics can be extended towards resolving sub-molecular features of organic elements and gauging ambient compatibility of emerging layered materials with atomic-scale sensitivity under experimentally less stringent conditions. PMID:27516157

  8. Micro-shear bond strengths of adhesive resins to coronal dentin versus the floor of the pulp chamber.

    PubMed

    Toba, Shigemitsu; Veerapravati, Weeraporn; Shimada, Yasushi; Nikaido, Toru; Tagami, Junji

    2003-09-01

    To evaluate the micro-shear bond strengths to superficial coronal dentin and the floor of the pulp chamber using two dentin bonding systems and to compare the ultrastructure of the resin-dentin interface of the two regions. 30 non-carious molars were used to obtain 2 mm thick slabs of coronal dentin and dentin at the pulp chamber. The specimens in each region were divided into three sub-groups to be bonded as follows; Clearfil SE Bond was used according to the manufacturer's instructions, Single Bond was applied to either wet dentin (Blot dry Group) or air-dried dentin (Dry Group) after phosphoric acid etching. A resin composite cylinder 0.5 mm high and 0.75 mm in diameter formed using a vinyl tube was bonded to the dentin. Specimens were stored at 37 degrees C for 24 hours in water and then stressed in shear at a crosshead speed of 1 mm/minute. The data were analyzed with one-way ANOVA and Fisher's PLSD test at the 5% level of significance. In addition, the ultrastructure of cross-sectioned dentin surfaces, the conditioned dentin surface and the resin dentin interfaces were observed by SEM. The bond strengths of Clearfil SE Bond and the Single Bond Blot dry group were approximately 40 MPa in coronal dentin and 30 MPa in the dentin at the floor of the pulp chamber respectively. However, the bond strengths of Single Bond were significantly lower in the Dry condition (MPa) (P < 0.05). SEM observations revealed the thickness of the hybrid layer created by Clearfil SE Bond in coronal dentin and at the floor of the pulp chamber were less than 1.0 microm thick. For Single Bond, a 3-4 microm hybrid layer was created in coronal dentin, while a thinner hybrid layer was observed in the floor of the pulp chamber. Morphological and structural variations in dentin may have influenced the bond strengths of the bonding systems to the floor of the pulp chamber.

  9. Comparative evaluation of microleakage of lingual retainer wires bonded with three different lingual retainer composites: an in vitro study.

    PubMed

    Nimbalkar-Patil, Smita; Vaz, Anna; Patil, Pravinkumar G

    2014-11-01

    To evaluate microleakage when two types of retainer wires were bonded with two light cured and a self cured lingual retainer composites. Total 120 freshly extracted human mandibular incisor teeth were collected and separated into six subgroups of 20 teeth each. Two different wires, a 0.036 inch hard round stainless steel (HRSS) wire sandblasted at the ends and 0.0175 inch multistranded wire bonded onto the lingual surfaces of the incisors with three different types of composite resins of 3M company; Concise Orthodontic (self-cure), Transbond XT (light-cure) and Transbond LR (light-cure). Specimens were further sealed with a nail varnish, stained with 0.5% basic fuchsine for 24 hours, sectioned and examined under a stereomicroscope, and scored for microleakage for the enamel-composite and wire-composite interfaces. Statistical analysis was performed by Kruskal-Wallis and Mann-Whitney U-tests. For HRSS wire, at the enamel-composite interface, the microleakage was least with Transbond LR followed by Concise Orthodontic and greatest for Transbond XT (p<0.05). At the wire composite interface too, the microleakage was in order of Transbond LR

  10. Power Electronics Packaging Reliability | Transportation Research | NREL

    Science.gov Websites

    interface materials, are a key enabling technology for compact, lightweight, low-cost, and reliable power , reliability, and cost. High-temperature bonded interface materials are an important facilitating technology for compact, lightweight, low-cost, reliable power electronics packaging that fully utilizes the

  11. Density-functional theory molecular dynamics simulations of a-HfO2/Ge(100)(2 × 1) and a-ZrO2/Ge(100)(2 × 1) interface passivation.

    PubMed

    Chagarov, E A; Porter, L; Kummel, A C

    2016-02-28

    The structural properties of a-HfO2/Ge(2 × 1)-(001) and a-ZrO2/Ge(2 × 1)-(001) interfaces were investigated with and without a GeOx interface interlayer using density-functional theory (DFT) molecular dynamics (MD) simulations. Realistic a-HfO2 and a-ZrO2 samples were generated using a hybrid classical-DFT MD "melt-and-quench" approach and tested against experimental properties. The oxide/Ge stacks were annealed at 700 K, cooled to 0 K, and relaxed providing the system with enough freedom to form realistic interfaces. For each high-K/Ge stack type, two systems with single and double interfaces were investigated. All stacks were free of midgap states; however, stacks with a GeO(x) interlayer had band-edge states which decreased the band gaps by 0%-30%. These band-edge states were mainly produced by under-coordinated Ge atoms in GeO(x) layer or its vicinity due to deformation, intermixing, and bond-breaking. The DFT-MD simulations show that electronically passive interfaces can be formed either directly between high-K dielectrics and Ge or with a monolayer of GeO2 if the processing does not create or properly passivate under-coordinated Ge atoms and Ge's with significantly distorted bonding angles. Comparison to the charge states of the interfacial atoms from DFT to experimental x-ray photoelectron spectroscopy results shows that while most studies of gate oxide on Ge(001) have a GeO(x) interfacial layer, it is possible to form an oxide/Ge interface without a GeO(x) interfacial layer. Comparison to experiments is consistent with the dangling bonds in the suboxide being responsible for midgap state formation.

  12. Controllable load sharing for soft adhesive interfaces on three-dimensional surfaces.

    PubMed

    Song, Sukho; Drotlef, Dirk-Michael; Majidi, Carmel; Sitti, Metin

    2017-05-30

    For adhering to three-dimensional (3D) surfaces or objects, current adhesion systems are limited by a fundamental trade-off between 3D surface conformability and high adhesion strength. This limitation arises from the need for a soft, mechanically compliant interface, which enables conformability to nonflat and irregularly shaped surfaces but significantly reduces the interfacial fracture strength. In this work, we overcome this trade-off with an adhesion-based soft-gripping system that exhibits enhanced fracture strength without sacrificing conformability to nonplanar 3D surfaces. Composed of a gecko-inspired elastomeric microfibrillar adhesive membrane supported by a pressure-controlled deformable gripper body, the proposed soft-gripping system controls the bonding strength by changing its internal pressure and exploiting the mechanics of interfacial equal load sharing. The soft adhesion system can use up to ∼26% of the maximum adhesion of the fibrillar membrane, which is 14× higher than the adhering membrane without load sharing. Our proposed load-sharing method suggests a paradigm for soft adhesion-based gripping and transfer-printing systems that achieves area scaling similar to that of a natural gecko footpad.

  13. Controllable load sharing for soft adhesive interfaces on three-dimensional surfaces

    NASA Astrophysics Data System (ADS)

    Song, Sukho; Drotlef, Dirk-Michael; Majidi, Carmel; Sitti, Metin

    2017-05-01

    For adhering to three-dimensional (3D) surfaces or objects, current adhesion systems are limited by a fundamental trade-off between 3D surface conformability and high adhesion strength. This limitation arises from the need for a soft, mechanically compliant interface, which enables conformability to nonflat and irregularly shaped surfaces but significantly reduces the interfacial fracture strength. In this work, we overcome this trade-off with an adhesion-based soft-gripping system that exhibits enhanced fracture strength without sacrificing conformability to nonplanar 3D surfaces. Composed of a gecko-inspired elastomeric microfibrillar adhesive membrane supported by a pressure-controlled deformable gripper body, the proposed soft-gripping system controls the bonding strength by changing its internal pressure and exploiting the mechanics of interfacial equal load sharing. The soft adhesion system can use up to ˜26% of the maximum adhesion of the fibrillar membrane, which is 14× higher than the adhering membrane without load sharing. Our proposed load-sharing method suggests a paradigm for soft adhesion-based gripping and transfer-printing systems that achieves area scaling similar to that of a natural gecko footpad.

  14. Controllable load sharing for soft adhesive interfaces on three-dimensional surfaces

    PubMed Central

    Song, Sukho; Drotlef, Dirk-Michael; Majidi, Carmel; Sitti, Metin

    2017-01-01

    For adhering to three-dimensional (3D) surfaces or objects, current adhesion systems are limited by a fundamental trade-off between 3D surface conformability and high adhesion strength. This limitation arises from the need for a soft, mechanically compliant interface, which enables conformability to nonflat and irregularly shaped surfaces but significantly reduces the interfacial fracture strength. In this work, we overcome this trade-off with an adhesion-based soft-gripping system that exhibits enhanced fracture strength without sacrificing conformability to nonplanar 3D surfaces. Composed of a gecko-inspired elastomeric microfibrillar adhesive membrane supported by a pressure-controlled deformable gripper body, the proposed soft-gripping system controls the bonding strength by changing its internal pressure and exploiting the mechanics of interfacial equal load sharing. The soft adhesion system can use up to ∼26% of the maximum adhesion of the fibrillar membrane, which is 14× higher than the adhering membrane without load sharing. Our proposed load-sharing method suggests a paradigm for soft adhesion-based gripping and transfer-printing systems that achieves area scaling similar to that of a natural gecko footpad. PMID:28507143

  15. Adhesive Bonding of Titanium to Carbon-Carbon Composites for Heat Rejection Systems

    NASA Technical Reports Server (NTRS)

    Cerny, Jennifer; Morscher, Gregory

    2006-01-01

    High temperature adhesives with good thermal conductivity, mechanical performance, and long term durability are crucial for the assembly of heat rejection system components for space exploration missions. In the present study, commercially available adhesives were used to bond high conductivity carbon-carbon composites to titanium sheets. Bonded pieces were also exposed to high (530 to 600 Kelvin for 24 hours) and low (liquid nitrogen 77K for 15 minutes) temperatures to evaluate the integrity of the bonds. Results of the microstructural characterization and tensile shear strengths of bonded specimens will be reported. The effect of titanium surface roughness on the interface microstructure will also be discussed.

  16. Fluorine analysis of human dentin surrounding resin composite after fluoride application by μ-PIGE/PIXE analysis

    NASA Astrophysics Data System (ADS)

    Okuyama, Katsushi; Komatsu, Hisanori; Yamamoto, Hiroko; Pereira, Patricia N. R.; Bedran-Russo, Ana K.; Nomachi, Masaharu; Sato, Takahiro; Sano, Hidehiko

    2011-10-01

    The use of fluoride for the prevention of caries is based on the transformation of hydroxylapatite to fluoroapatite in the presence of fluoride ions, thereby strengthening tooth structure. Adhesion of dentin and resin composite (tooth-colored restoration material) requires a dentin bonding system, since resin composite is not able to adhere to dentin directly. Demineralization of dentin by acid etching is an important step in the dentin bonding system, however, demineralization also introduces weaknesses in tooth structure. If the demineralized dentin could be strengthened by the application of fluoride, then the dentin-resin composite bond strength might also improve. To test this hypothesis, the present study evaluated the influence of fluoride applications on the strength of the dentin-resin composite bond by (1) tensile strength testing analyses, (2) SEM analyses of tooth structure, and (3) detection of calcium (Ca) and fluorine (F) distribution patterns by micro proton-induced X-ray emission (μ-PIXE) and micro proton-induced gamma-ray emission (μ-PIGE) analyses conducted at the Takasaki Ion Accelerators for Advanced Radiation Application (TIARA) at the Takasaki Advanced Radiation Research Institute (TARRI). In this study, the dentin in extracted human molars was exposed by grinding and the dentin was etched with 35% phosphoric acid. Fluoride was applied at two concentrations, 0.022% (100 ppm F) and 2.21% (10,000 ppm F) NaF solution, for two time periods, 30 and 60 s, prior to bonding the resin composite with the treated dentin. Controls were prepared in the same manner, but without the fluoride application. Bond strength was measured with a micro-tensile testing unit, and the fluorine and calcium distributions at the interface between dentin and resin composite were detected by μ-PIGE and μ-PIXE analysis, respectively. Results indicate that the 10,000 ppm F applications resulted in higher bond strengths than observed in either the 100 ppm F applications or the control group. In addition, PIGE analyses showed high concentrations of fluorine in the hybrid bonding layer of the 10,000 ppm F samples, suggesting that the fluorine contributes to the strength of the dentin-resin composite bond. Detection of fluoroapatite within the hybrid bonding layer suggests that bond strength involves remineralization processes.

  17. Surface-Initiated Polymerization with Poly(n-hexylisocyanate) to Covalently Functionalize Silica Nanoparticles.

    PubMed

    Vatansever, Fatma; Hamblin, Michael R

    2017-02-01

    New methods are needed for covalent functionalization of nanoparticles-surface with organic polymer coronas to generate polymeric nanocomposite in a controlled manner. Here we report the use of a surface-initiated polymerization approach, mediated by titanium (IV) catalysis, to grow poly( n -hexylisocyanate) chains from silica surface. Two pathways were used to generate the interfacing in these nano-hybrids. In the first one, the nanoparticles was "seeded" with SiCl4, followed by reaction with 1,6-hexanediol to form hydroxyl groups attached directly to the surface via O-Si-O bonding. In the second pathway, the nanoparticles were initially exposed to a 9:1 mixture of trimethyl silyl chloride and chlorodimethyl octenyl silane which was then followed by hydroboration of the double bonds, to afford hydroxyl groups with a spatially controlled density and surface-attachment via O-Si-C bonding. These functionalized surfaces were then activated with the titanium tetrachloride catalyst. In our approach, thus surface tethered catalyst provided the sites for n -hexyl isocyanate monomer insertion, to "build up" the surface-grown polymer layers from the "bottom-up". A final end-capping, to seal off the chain ends, was done via acetyl chloride. Compounds were characterized by FT-IR, 1H-NMR, GC-MS, GPC, and thermogravimetric analyses.

  18. Surface-Initiated Polymerization with Poly(n-hexylisocyanate) to Covalently Functionalize Silica Nanoparticles

    PubMed Central

    Vatansever, Fatma; Hamblin, Michael R.

    2017-01-01

    New methods are needed for covalent functionalization of nanoparticles-surface with organic polymer coronas to generate polymeric nanocomposite in a controlled manner. Here we report the use of a surface-initiated polymerization approach, mediated by titanium (IV) catalysis, to grow poly(n-hexylisocyanate) chains from silica surface. Two pathways were used to generate the interfacing in these nano-hybrids. In the first one, the nanoparticles was “seeded” with SiCl4, followed by reaction with 1,6-hexanediol to form hydroxyl groups attached directly to the surface via O-Si-O bonding. In the second pathway, the nanoparticles were initially exposed to a 9:1 mixture of trimethyl silyl chloride and chlorodimethyl octenyl silane which was then followed by hydroboration of the double bonds, to afford hydroxyl groups with a spatially controlled density and surface-attachment via O-Si-C bonding. These functionalized surfaces were then activated with the titanium tetrachloride catalyst. In our approach, thus surface tethered catalyst provided the sites for n-hexyl isocyanate monomer insertion, to “build up” the surface-grown polymer layers from the “bottom-up”. A final end-capping, to seal off the chain ends, was done via acetyl chloride. Compounds were characterized by FT-IR, 1H-NMR, GC-MS, GPC, and thermogravimetric analyses. PMID:28989336

  19. Influence of Different Etching Modes on Bond Strength to Enamel using Universal Adhesive Systems.

    PubMed

    Diniz, Ana Cs; Bandeca, Matheus C; Pinheiro, Larissa M; Dos Santosh Almeida, Lauber J; Torres, Carlos Rg; Borges, Alvaro H; Pinto, Shelon Cs; Tonetto, Mateus R; De Jesus Tavarez, Rudys R; Firoozmand, Leily M

    2016-10-01

    The adhesive systems and the techniques currently used are designed to provide a more effective adhesion with reduction of the protocol application. The objective of this study was to evaluate the bond strength of universal adhesive systems on enamel in different etching modes (self-etch and total etch). The mesial and distal halves of 52 bovine incisors, healthy, freshly extracted, were used and divided into seven experimental groups (n = 13). The enamel was treated in accordance with the following experimental conditions: FUE-Universal System - Futurabond U (VOCO) with etching; FUWE - Futurabond U (VOCO) without etching; SB-Total Etch System - Single Bond 2 (3M); SBUE-Universal System - Single Bond Universal (3M ESPE) with etching; SBUWE - Single Bond Universal (3M ESPE) without etching; CLE-Self-etch System - Clearfil SE Bond (Kuraray) was applied with etching; CLWE - Clearfil SE Bond (Kuraray) without etching. The specimens were made using the composite spectrum TPH (Dentsply) and stored in distilled water (37 ± 1°C) for 1 month. The microshear test was performed using the universal testing machine EMIC DL 2000 with the crosshead speed of 0.5 mm/minute. The bond strength values were analyzed using statistical tests (Kruskal-Wallis test and Mann-Whitney test) with Bonferroni correction. There was no statistically significant difference between groups (p < 0.05), where FUE (36.83 ± 4.9 MPa) showed the highest bond strength values and SBUWE (18.40 ± 2.2 MPa) showed the lowest bond strength values. The analysis of adhesive interface revealed that most failures occurred between the interface composite resin and adhesive. The universal adhesive system used in dental enamel varies according to the trademark, and the previous enamel etching for universal systems and the self-etch both induced greater bond strength values. Selective enamel etching prior to the application of a universal adhesive system is a relevant strategy for better performance bonding.

  20. Bonding of universal adhesives to dentine--Old wine in new bottles?

    PubMed

    Chen, C; Niu, L-N; Xie, H; Zhang, Z-Y; Zhou, L-Q; Jiao, K; Chen, J-H; Pashley, D H; Tay, F R

    2015-05-01

    Multi-mode universal adhesives offer clinicians the choice of using the etch-and-rinse technique, selective enamel etch technique or self-etch technique to bond to tooth substrates. The present study examined the short-term in vitro performance of five universal adhesives bonded to human coronal dentine. Two hundred non-carious human third molars were assigned to five groups based on the type of the universal adhesives (Prime&Bond Elect, Scotchbond Universal, All-Bond Universal, Clearfil Universal Bond and Futurabond U). Two bonding modes (etch-and-rinse and self-etch) were employed for each adhesive group. Bonded specimens were stored in deionized water for 24h or underwent a 10,000-cycle thermocycling ageing process prior to testing (N=10). Microtensile bond testing (μTBS), transmission electron microscopy (TEM) of resin-dentine interfaces in non-thermocycled specimens and scanning electron microscopy (SEM) of tracer-infused water-rich zones within hybrid layers of thermocycled specimens were performed. Both adhesive type and testing condition (with/without thermocycling) have significant influences on μTBS. The use of each adhesive in either the etch-and-rinse or self-etch application mode did not result in significantly different μTBS to dentine. Hybrid layers created by these adhesives in the etch-and-rinse bonding mode and self-etch bonding mode were ∼5μm and ≤0.5μm thick respectively. Tracer-infused regions could be identified within the resin-dentine interface from all the specimens prepared. The increase in versatility of universal adhesives is not accompanied by technological advances for overcoming the challenges associated with previous generations of adhesives. Therapeutic adhesives with bio-protective and bio-promoting effects are still lacking in commercialized adhesives. Universal adhesives represent manufacturers' attempt to introduce versatility in product design via adaptation of a single-bottle self-etch adhesive for other application modes without compromising its bonding effectiveness. Published by Elsevier Ltd.

Top