Insomnia Caused by Serotonin Depletion is Due to Hypothermia
Murray, Nicholas M.; Buchanan, Gordon F.; Richerson, George B.
2015-01-01
Study Objective: Serotonin (5-hydroxytryptamine, 5-HT) neurons are now thought to promote wakefulness. Early experiments using the tryptophan hydroxylase inhibitor para-chlorophenylalanine (PCPA) had led to the opposite conclusion, that 5-HT causes sleep, but those studies were subsequently contradicted by electrophysiological and behavioral data. Here we tested the hypothesis that the difference in conclusions was due to failure of early PCPA experiments to control for the recently recognized role of 5-HT in thermoregulation. Design: Adult male C57BL/6N mice were treated with PCPA (800 mg/kg intraperitoneally for 5 d; n = 15) or saline (n = 15), and housed at 20°C (normal room temperature) or at 33°C (thermoneutral for mice) for 24 h. In a separate set of experiments, mice were exposed to 4°C for 4 h to characterize their ability to thermoregulate. Measurements and Results: PCPA treatment reduced brain 5-HT to less than 12% of that of controls. PCPA-treated mice housed at 20°C spent significantly more time awake than controls. However, core body temperature decreased from 36.5°C to 35.1°C. When housed at 33°C, body temperature remained normal, and total sleep duration, sleep architecture, and time in each vigilance state were the same as controls. When challenged with 4°C, PCPA-treated mice experienced a precipitous drop in body temperature, whereas control mice maintained a normal body temperature. Conclusions: These results indicate that early experiments using para-chlorophenylalanine that led to the conclusion that 5-hydroxytryptamine (5-HT) causes sleep were likely confounded by hypothermia. Temperature controls should be considered in experiments using 5-HT depletion. Citation: Murray NM, Buchanan GF, Richerson GB. Insomnia caused by serotonin depletion is due to hypothermia. SLEEP 2015;38(12):1985–1993. PMID:26194567
Insomnia Caused by Serotonin Depletion is Due to Hypothermia.
Murray, Nicholas M; Buchanan, Gordon F; Richerson, George B
2015-12-01
Serotonin (5-hydroxytryptamine, 5-HT) neurons are now thought to promote wakefulness. Early experiments using the tryptophan hydroxylase inhibitor para-chlorophenylalanine (PCPA) had led to the opposite conclusion, that 5-HT causes sleep, but those studies were subsequently contradicted by electrophysiological and behavioral data. Here we tested the hypothesis that the difference in conclusions was due to failure of early PCPA experiments to control for the recently recognized role of 5-HT in thermoregulation. Adult male C57BL/6N mice were treated with PCPA (800 mg/kg intraperitoneally for 5 d; n = 15) or saline (n = 15), and housed at 20 °C (normal room temperature) or at 33 °C (thermoneutral for mice) for 24 h. In a separate set of experiments, mice were exposed to 4 °C for 4 h to characterize their ability to thermoregulate. PCPA treatment reduced brain 5-HT to less than 12% of that of controls. PCPA-treated mice housed at 20 °C spent significantly more time awake than controls. However, core body temperature decreased from 36.5 °C to 35.1 °C. When housed at 33 °C, body temperature remained normal, and total sleep duration, sleep architecture, and time in each vigilance state were the same as controls. When challenged with 4 °C, PCPA-treated mice experienced a precipitous drop in body temperature, whereas control mice maintained a normal body temperature. These results indicate that early experiments using para-chlorophenylalanine that led to the conclusion that 5-hydroxytryptamine (5-HT) causes sleep were likely confounded by hypothermia. Temperature controls should be considered in experiments using 5-HT depletion. © 2015 Associated Professional Sleep Societies, LLC.
Sanchez-Encinales, Viviana; Cozar-Castellano, Irene; Garcia-Ocaña, Adolfo; Perdomo, Germán
2015-12-01
Hepatocyte growth factor (HGF) is a cytokine that increases glucose transport ex vivo in skeletal muscle. The aim of this work was to decipher the impact of whether conditional overexpression of HGF in vivo could improve glucose homeostasis and insulin sensitivity in mouse skeletal muscle. Following tetracyclin administration, muscle HGF levels were augmented threefold in transgenic mice (SK-HGF) compared to control mice without altering plasma HGF levels. In conditions of normal diet, SK-HGF mice showed no differences in body weight, plasma triglycerides, blood glucose, plasma insulin and glucose tolerance compared to control mice. Importantly, obese SK-HGF mice exhibited improved whole-body glucose tolerance independently of changes in body weight or plasma triglyceride levels compared to control mice. This effect on glucose homeostasis was associated with significantly higher (∼80%) levels of phosphorylated protein kinase B in muscles from SK-HGF mice compared to control mice. In conclusion, muscle expression of HGF counteracts obesity-mediated muscle insulin resistance and improves glucose tolerance in mice.
[Effect of hedgehog hydnum on the delay of fatigue in mice].
Lu, Y H; Xin, C L; Zhou, Y F; Liu, X W; Chi, J W; Chang, X
1996-02-01
Two groups of mice were fed with either hedgehog hydnum powder or extract for sixty days. For the assay of fatigue, the activity of serum lactate dehydrogenase, the serum urea nitrogen content, blood lactic acid, hepatic and muscular glycogen, and the physical stamina of the mice were determined. The activity of serum lactate dehydrogenase and the hepatic and muscular glycogen content in the experimental mice were evidently higher than that in the control mice (P < 0.05 or P < 0.01). After exercise, the increase in blood lactic acid and serum urea nitrogen in the experimental mice was significantly lower than that in the control mice (P < 0.05 or P < 0.01), but the rate of elimination of blood lactic acid in the experimental mice was significantly higher than that in the control mice (P < 0.05). In the physical stamina swimming, the experimental mice drowned after a longer period of time than the control mice (P < 0.05). In conclusion hedgehog hydnum had a significant effect on raising physical stamina and delaying fatigue in mice.
Hao, Zheng; Townsend, R. Leigh; Mumphrey, Michael B; Morrison, Christopher D; Münzberg, Heike; Berthoud, Hans-Rudolf
2018-01-01
Objective To compare the effects of murine models of vertical sleeve gastrectomy (VSG) and Roux-en-Y gastric bypass (RYGB) surgery on body weight, body composition, food intake, energy expenditure, and glycemic control. Background Weight regain and type-2 diabetes relapse has been reported in a significant proportion of VSG patients in some studies, but definitive conclusions regarding the long-term comparative effectiveness of VSG and RYGB are lacking both in humans and rodent models. Methods VSG, RYGB, and sham surgery was performed in high-fat diet-induced obese mice and the effects on body weight and glycemic control were observed for a period of 12 weeks. Results After the initial weight loss, VSG mice regained significant amounts of body weight and fat mass that were only marginally lower than in sham-operated mice. In contrast, RYGB produced sustained loss of body weight and fat mass up to 12 weeks, and drastically improved fasting insulin and HOMA-IR compared with sham-operated mice. Using weight-matched control groups we also found that the adaptive hypometabolic response to weight loss was blunted by both VSG and RYGB, and that despite large weight/fat regain, fasting insulin and HOMA-IR were markedly improved, but not reversed, in VSG mice. Conclusions VSG is less effective to lastingly suppress body weight and improve glycemic control compared with RYGB in mice. Given similar observations in many human studies, the run towards replacing RYGB with VSG is premature and should await carefully controlled randomized long term trials with VSG and RYGB. PMID:28386755
Chennupati, Ramesh; Meens, Merlijn J. P. M. T.; Marion, Vincent; Janssen, Ben J.; Lamers, Wouter H.; De Mey, Jo G. R.; Köhler, S. Eleonore
2014-01-01
Aim Argininosuccinate synthetase (ASS) is essential for recycling L-citrulline, the by-product of NO synthase (NOS), to the NOS substrate L-arginine. Here, we assessed whether disturbed arginine resynthesis modulates endothelium-dependent vasodilatation in normal and diabetic male mice. Methods and Results Endothelium-selective Ass-deficient mice (Assfl/fl/Tie2Cretg/− = Ass-KOTie2) were generated by crossing Assfl/fl mice ( = control) with Tie2Cre mice. Gene ablation in endothelial cells was confirmed by immunohistochemistry. Blood pressure (MAP) was recorded in 34-week-old male mice. Vasomotor responses were studied in isolated saphenous arteries of 12- and 34-week-old Ass-KOTie2 and control animals. At the age of 10 weeks, diabetes was induced in control and Ass-KOTie2 mice by streptozotocin injections. Vasomotor responses of diabetic animals were studied 10 weeks later. MAP was similar in control and Ass-KOTie2 mice. Depletion of circulating L-arginine by arginase 1 infusion or inhibition of NOS activity with L-NAME resulted in an increased MAP (10 and 30 mmHg, respectively) in control and Ass-KOTie2 mice. Optimal arterial diameter, contractile responses to phenylephrine, and relaxing responses to acetylcholine and sodium nitroprusside were similar in healthy control and Ass-KOTie2 mice. However, in diabetic Ass-KOTie2 mice, relaxation responses to acetylcholine and endothelium-derived NO (EDNO) were significantly reduced when compared to diabetic control mice. Conclusions Absence of endothelial citrulline recycling to arginine did not affect blood pressure and systemic arterial vasomotor responses in healthy mice. EDNO-mediated vasodilatation was significantly more impaired in diabetic Ass-KOTie2 than in control mice demonstrating that endothelial arginine recycling becomes a limiting endothelial function in diabetes. PMID:25033204
Obesity alters immune and metabolic profiles: new insight from obese-resistant mice on high fat diet
Boi, Shannon K.; Buchta, Claire M.; Pearson, Nicole A.; Francis, Meghan B.; Meyerholz, David K.; Grobe, Justin L.; Norian, Lyse A.
2016-01-01
Objective Diet-induced obesity has been shown to alter immune function in mice, but distinguishing the effects of obesity from changes in diet composition is complicated. We hypothesized that immunological differences would exist between diet-induced obese (DIO) and obese-resistant (OB-Res) mice fed the same high-fat diet (HFD). Methods BALB/c mice were fed either standard chow or HFD to generate lean or DIO and OB-Res mice, respectively. Resulting mice were analyzed for serum immunologic and metabolic profiles, and cellular immune parameters. Results BALB/c mice on HFD can be categorized as DIO or OB-Res, based on body weight versus lean controls. DIO mice are physiologically distinct from OB-Res mice, whose serum Insulin, Leptin, GIP, and Eotaxin concentrations remain similar to lean controls. DIO mice have increased macrophage+ crown-like structures in white adipose tissue, although macrophage percentages were unchanged from OB-Res and lean mice. DIO mice also have decreased splenic CD4+ T cells, elevated serum GM-CSF, and increased splenic CD11c+ dendritic cells, but impaired dendritic cell stimulatory capacity (p < 0.05 versus lean controls). These parameters were unaltered in OB-Res mice versus lean controls. Conclusions Diet-induced obesity results in alterations in immune and metabolic profiles that are distinct from effects caused by HFD alone. PMID:27515998
The role of mast cells in cutaneous wound healing in streptozotocin-induced diabetic mice.
Nishikori, Yoriko; Shiota, Naotaka; Okunishi, Hideki
2014-11-01
Mast cells (MCs) reside in cutaneous tissue, and an increment of MCs is suggested to induce vascular regression in the process of wound healing. To clarify participation of MCs in diabetic cutaneous wound healing, we created an excisional wound on diabetic mice 4 weeks after streptozotocin injections and subsequently investigated the healing processes for 49 days, comparing them with control mice. The rate of wound closure was not markedly different between the diabetic and control mice. In the proliferative phase at days 7 and 14, neovascularization in the wound was weaker in diabetic mice than in control mice. In the remodeling phase at day 21 and afterward, rapid vascular regression occurred in control mice; however, neovascularization was still observed in diabetic mice where the number of vessels in granulation tissues was relatively higher than in control mice. In the remodeling phase of the control mice, MCs within the wound began to increase rapidly and resulted in considerable accumulation, whereas the increment of MCs was delayed in diabetic mice. In addition, the number of fibroblast growth factor (FGF)- or vascular endothelial growth factor (VEGF)-immunopositive hypertrophic fibroblast-like spindle cells and c-Kit-positive/VEGFR2-positive/FcεRIα-negative endothelial progenitor cells (EPCs) were higher in diabetic wounds. In conclusion, neovascularization in the proliferative phase and vascular regression in the remodeling phase were impaired in diabetic mice. The delayed increment of MCs and sustained angiogenic stimuli by fibroblast-like spindle cells and EPCs may inhibit vascular regression in the remodeling phase and impair the wound-healing process in diabetic mice.
Immunization alters body odor.
Kimball, Bruce A; Opiekun, Maryanne; Yamazaki, Kunio; Beauchamp, Gary K
2014-04-10
Infections have been shown to alter body odor. Because immune activation accompanies both infection and immunization, we tested the hypothesis that classical immunization might similarly result in the alteration of body odors detectable by trained biosensor mice. Using a Y-maze, we trained biosensor mice to distinguish between urine odors from rabies-vaccinated (RV) and unvaccinated control mice. RV-trained mice generalized this training to mice immunized with the equine West Nile virus (WNV) vaccine compared with urine of corresponding controls. These results suggest that there are similarities between body odors of mice immunized with these two vaccines. This conclusion was reinforced when mice could not be trained to directly discriminate between urine odors of RV- versus WNV-treated mice. Next, we trained biosensor mice to discriminate the urine odors of mice treated with lipopolysaccharide (LPS; a general elicitor of innate immunological responses) from the urine of control mice. These LPS-trained biosensors could distinguish between the odors of LPS-treated mouse urine and RV-treated mouse urine. Finally, biosensor mice trained to distinguish between the odors of RV-treated mouse urine and control mouse urine did not generalize this training to discriminate between the odors of LPS-treated mouse urine and control mouse urine. From these experiments, we conclude that: (1) immunization alters urine odor in similar ways for RV and WNV immunizations; and (2) immune activation with LPS also alters urine odor but in ways different from those of RV and WNV. Published by Elsevier Inc.
Coexistence of Helicobacter pylori spiral and coccoid forms in experimental mice
Hua, Jiesong; Ho, Bow; Zheng, Pengyuan; Yeoh, Khay Guan; Ng, Han Chong; Lim, Seng Gee
1998-01-01
AIM: To infect mice with Helicobacter pylori and detect immune response against two form of H. pylori. METHODS: An isolate of H. pylori obtained from a patient with gastric cancer was used to infect mice. Fifty mice were divided into eight groups. Two groups served as negative control without any inoculation and internal negative control with 0.5 M NaHCO3 and brain heart infusion (HBI), respectively. Mice in each experimental group were first inoculated with 0.5 M NaHCO3 and then H. pylori suspension for 3 times at a 2-d interval. Mice from controls and infectious groups were sacrificed at a weekly interval postinfection. Gastric samples were trimmed, inoculated onto chocolate blood agar and then incujbated in microaerophilic atmosphere at 37¡æ for 14 d. Sera were examined for immunoglobulins against H. pylori spiral and coccoid antigens by ELISA. RESULTS: After inoculation H. pylori was isolated in one mouse from one week postinfection. No H. pylori was detected in control mice. However, urease test was positive in 50% (5/10) control mice, 70% (7/10) mice inoculated with NaHCO3 and BHI and 77% (23/30) mice infected with H. pylori. The systemic immune responses of the mice to H. pylori strain were determined by ELISA. The mice showed immune responses to both H. pylori spiral and coccoid antigens one week after infection with H. pylori. The peak mean absorbances of antibodies against spiral and coccoid forms were four weeks postinfection which showed 6 and 18 times higher than that of negative control group respectively (P < 0.01). CONCLUSION: Spiral and coccoid forms of H. pylori coexist in experimental mice studied. PMID:11819350
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okauchi, Seizo, E-mail: okauchi@med.kawasaki-m.ac.jp; Shimoda, Masashi; Obata, Atsushi
It is well known that Sodium-Glucose Co-transporter 2 (SGLT2) inhibitors, new hypoglycemic agents, improve glycemic control by increasing urine glucose excretion, but it remained unclear how they exert protective effects on pancreatic β-cells. In this study, we examined the effects of SGLT2 inhibitor luseogliflozin on β-cell function and mass using obese type 2 diabetic db/db mice. Ten-week-old male diabetic db/db mice were treated with luseogliflozin 0.0025% or 0.01% in chow (Luse 0.0025% or Luse 0.01%) or vehicle (control) for 4 weeks. Urinary glucose excretion was increased in Luse groups (0.0025% and 0.01%) compared to control mice 3 days after themore » intervention. Fasting blood glucose levels were significantly lower in mice treated with Luse compared to control mice. Fasting serum insulin concentrations were significantly higher in mice treated with Luse compared to control mice. Triglyceride levels tended to be lower in Luse groups compared to control mice. In immunohistochemical study using pancreas tissues, β-cell mass was larger in Luse groups compared to control group which was due to the increase of β-cell proliferation and decrease of β-cell apoptosis. Furthermore, in gene analysis using isolated islets, insulin 1, insulin 2, MafA, PDX-1 and GLUT2 gene expression levels were significantly higher in Luse groups compared to control group. In contrast, expression levels of fibrosis-related gene such as TGFβ, fibronectin, collagen I and collagen III were significantly lower in Luse groups. In conclusion, SGLT2 inhibitor luseogliflozin ameliorates glycemic control and thus exerts protective effects on pancreatic β-cell mass and function. - Highlights: • SGLT2 inhibitor luseogliflozin ameliorates glycemic control in db/db mice. • Luseogliflozin increases β-cell proliferation and decreases β-cell apoptosis. • Luseogliflozin preserves various β-cell-specific gene expression. • Luseogliflozin decreases various fibrosis-related factors in db/db mice.« less
Intermittent hypoxia exacerbates metabolic effects of diet-induced obesity.
Drager, Luciano F; Li, Jianguo; Reinke, Christian; Bevans-Fonti, Shannon; Jun, Jonathan C; Polotsky, Vsevolod Y
2011-11-01
Obesity causes insulin resistance (IR) and nonalcoholic fatty liver disease (NAFLD), but the relative contribution of sleep apnea is debatable. The main aim of this study is to evaluate the effects of chronic intermittent hypoxia (CIH), a hallmark of sleep apnea, on IR and NAFLD in lean mice and mice with diet-induced obesity (DIO). Mice (C57BL/6J), 6-8 weeks of age were fed a high fat (n = 18) or regular (n = 16) diet for 12 weeks and then exposed to CIH or control conditions (room air) for 4 weeks. At the end of the exposure, fasting (5 h) blood glucose, insulin, homeostasis model assessment (HOMA) index, liver enzymes, and intraperitoneal glucose tolerance test (1 g/kg) were measured. In DIO mice, body weight remained stable during CIH and did not differ from control conditions. Lean mice under CIH were significantly lighter than control mice by day 28 (P = 0.002). Compared to lean mice, DIO mice had higher fasting levels of blood glucose, plasma insulin, the HOMA index, and had glucose intolerance and hepatic steatosis at baseline. In lean mice, CIH slightly increased HOMA index (from 1.79 ± 0.13 in control to 2.41 ± 0.26 in CIH; P = 0.05), whereas glucose tolerance was not affected. In contrast, in DIO mice, CIH doubled HOMA index (from 10.1 ± 2.1 in control to 22.5 ± 3.6 in CIH; P < 0.01), and induced severe glucose intolerance. In DIO mice, CIH induced NAFLD, inflammation, and oxidative stress, which was not observed in lean mice. In conclusion, CIH exacerbates IR and induces steatohepatitis in DIO mice, suggesting that CIH may account for metabolic dysfunction in obesity.
Intermittent Hypoxia Exacerbates Metabolic Effects of Diet-Induced Obesity
Drager, Luciano F.; Li, Jianguo; Reinke, Christian; Bevans-Fonti, Shannon; Jun, Jonathan C.; Polotsky, Vsevolod Y.
2015-01-01
Obesity causes insulin resistance (IR) and nonalcoholic fatty liver disease (NAFLD), but the relative contribution of sleep apnea is debatable. The main aim of this study is to evaluate the effects of chronic intermittent hypoxia (CIH), a hallmark of sleep apnea, on IR and NAFLD in lean mice and mice with diet-induced obesity (DIO). Mice (C57BL/6J), 6–8 weeks of age were fed a high fat (n = 18) or regular (n = 16) diet for 12 weeks and then exposed to CIH or control conditions (room air) for 4 weeks. At the end of the exposure, fasting (5 h) blood glucose, insulin, homeostasis model assessment (HOMA) index, liver enzymes, and intraperitoneal glucose tolerance test (1 g/kg) were measured. In DIO mice, body weight remained stable during CIH and did not differ from control conditions. Lean mice under CIH were significantly lighter than control mice by day 28 (P = 0.002). Compared to lean mice, DIO mice had higher fasting levels of blood glucose, plasma insulin, the HOMA index, and had glucose intolerance and hepatic steatosis at baseline. In lean mice, CIH slightly increased HOMA index (from 1.79 ± 0.13 in control to 2.41 ± 0.26 in CIH; P = 0.05), whereas glucose tolerance was not affected. In contrast, in DIO mice, CIH doubled HOMA index (from 10.1 ± 2.1 in control to 22.5 ± 3.6 in CIH; P < 0.01), and induced severe glucose intolerance. In DIO mice, CIH induced NAFLD, inflammation, and oxidative stress, which was not observed in lean mice. In conclusion, CIH exacerbates IR and induces steatohepatitis in DIO mice, suggesting that CIH may account for metabolic dysfunction in obesity. PMID:21799478
Bassi, N; Luisetto, R; Del Prete, D; Ghirardello, A; Ceol, M; Rizzo, S; Iaccarino, L; Gatto, M; Valente, M L; Punzi, L; Doria, A
2012-02-01
Adjuvants, commonly used in vaccines, may be responsible for inducing autoimmunity and autoimmune diseases, both in humans and mice. The so-called 'ASIA' (Autoimmune/inflammatory Syndrome Induced by Adjuvants) syndrome has been recently described, which is caused by the exposure to a component reproducing the effect of adjuvants. The aim of our study was to evaluate the effect of injection of complete Freund's adjuvant (CFA) in NZB/NZWF1 mice, a lupus-prone murine model. We injected 10 NZB/NZWF1 mice with CFA/PBS and 10 with PBS, three times, 3 weeks apart, and followed-up until natural death. CFA-injected mice developed both anti-double-stranded DNA and proteinuria earlier and at higher levels than the control group. Proteinuria-free survival rate and survival rate were significantly lower in CFA-treated mice than in the control mice (p = 0.002 and p = 0.001, respectively). Histological analyses showed a more severe glomerulonephritis in CFA-injected mice compared with the control mice. In addition, lymphoid hyperplasia in spleen and lungs, myocarditis, and vasculitis were observed in the former, but not in the latter group. In conclusion, the injection of CFA in NZB/NZWF1 mice accelerated autoimmune manifestations resembling 'ASIA' syndrome in humans.
Pankaj, Pranay Punj
2015-01-01
Objectives: The present study evaluates the therapeutic efficacy of cell suspension of Spirulina platensis (SP) on estrous cycle, fetal development and embryopathy in alloxan (AXN) induced hyperglycemic mice. Materials and Methods: Diabetes was induced by intra-peritoneal administration of AXN. Mice with blood glucose level above 200 mg/dl were divided into Group I (control), Group II (diabetic control), Group III (diabetic control mice fed with SP), and Group IV (control mice fed with SP). Litter counts, estrous cycles, percent survival of litter, and gestation length were recorded. Results: In hyperglycemic mice, a significant (P < 0.05) increase in duration of diestrus (14.48%), estrus (84.21%), and metestrus (164.15%) with concomitant decrease in proestrus phase by 26.13% was recorded when compared with control. Reduction in litter count and survival of litter was 68.67% and 88.38%, respectively, whereas gestation length increased to 14.51% day in diabetic mice, but recovery in these parameters was observed (P < 0.05) when subjected to SP treatment. SP resulted in increased fertility rate from 77.5% to 82.5% and dropped off resorption of the fetus to 33.73% while the survival rate of offspring of diabetic mice went up to 88.89% from 83.61%. Conclusions: These findings suggest that SP is effective in improving the reproductive performance and easing teratogenic effects in diabetic mice and hence warrants further detailed dose-dependent studies to understand its mechanism of action. PMID:26285837
EXPRESSION OF INTERCELLULAR ADHESION MOLECULE-1 BY MYOFIBERS IN mdx MICE
TORRES-PALSA, MARIA J.; KOZIOL, MATTHEW V.; GOH, QINGNIAN; CICINELLI, PETER A.; PETERSON, JENNIFER M.; PIZZA, FRANCIS X.
2017-01-01
Introduction We investigated the extent to which intercellular adhesion molecule-1 (ICAM-1), a critical protein of the inflammatory response, is expressed in skeletal muscles of mdx mice (a murine model of Duchenne muscular dystrophy). Methods Muscles were collected from control and mdx mice at 2–24 weeks of age and analyzed for ICAM-1 expression by means of Western blot and immunofluorescence. Results Western blot revealed higher expression of ICAM-1 in mdx compared with control muscles through 24 weeks of age. In contrast to control muscles, ICAM-1 was expressed on the membrane of damaged, regenerating, and normal myofibers of mdx mice. CD11b+ myeloid cells also expressed ICAM-1 in mdx muscles, and CD11b+ cells were closely associated with the membrane of myofibers expressing ICAM-1. Conclusions These findings support a paradigm in which ICAM-1 and its localization to myofibers in muscles of mdx mice contributes to the dystrophic pathology. PMID:25728314
2013-01-01
Background Cyclosporin A (CsA), an immunosuppressive agent modifies the wound healing process through an influence on extracellular matrix metabolism. We have compared the effects of CsA on dermal fibroblasts from nude (FOXN1 deficient) mice, a genetic model of skin scarless healing, and from control (C57BL/6 J (B6) mice to evaluate metabolic pathways that appear to have important roles in the process of scarless healing/regeneration. Results High levels of matrix metalloproteinases (MMPs) and collagen III expression in dermal fibroblasts from nude (regenerative) mice were down-regulated by CsA treatment to the levels observed in dermal fibroblasts from B6 (non-regenerative) mice. In contrast, dermal fibroblasts from control mice respond to CsA treatment with a minor reduction of Mmps mRNA and 2.5-fold increase expression of collagen I mRNA. An in vitro migratory assay revealed that CsA treatment profoundly delayed the migratory behavior of dermal fibroblasts from both nude and control mice. Conclusion The data suggest that by alternation of the accumulation of extracellular matrix components CsA treatment stimulates the transition from a scarless to a scar healing. PMID:23547542
Dominguez, Jessica A.; Xie, Yan; Dunne, W. Michael; Yoseph, Benyam P.; Burd, Eileen M.; Coopersmith, Craig M.; Davidson, Nicholas O.
2012-01-01
Background The small intestine plays a crucial role in the pathophysiology of sepsis and has been referred to as the “motor” of the systemic inflammatory response. One proposed mechanism is that toxic gut-derived lipid factors, transported in mesenteric lymph, induce systemic injury and distant organ failure. However, the pathways involved are yet to be defined and the role of intestinal chylomicron assembly and secretion in transporting these lipid factors is unknown. Here we studied the outcome of sepsis in mice with conditional, intestine-specific deletion of microsomal triglyceride transfer protein (Mttp-IKO), which exhibit a block in chylomicron assembly together with lipid malabsorption. Methodology/Principal Findings Mttp-IKO mice and controls underwent intratracheal injection with either Pseudomonas aeruginosa or sterile saline. Mttp-IKO mice exhibited decreased seven-day mortality, with 0/20 (0%) dying compared to 5/17 (29%) control mice (p<0.05). This survival advantage in Mttp-IKO mice, however, was not associated with improvements in pulmonary bacterial clearance or neutrophil infiltration. Rather, Mttp-IKO mice exhibited protection against sepsis-associated decreases in villus length and intestinal proliferation and were also protected against increased intestinal apoptosis, both central features in control septic mice. Serum IL-6 levels, a major predictor of mortality in human and mouse models of sepsis, were elevated 8-fold in septic control mice but remained unaltered in septic Mttp-IKO mice. Serum high density lipoprotein (HDL) levels were reduced in septic control mice but were increased in septic Mttp-IKO mice. The decreased levels of HDL were associated with decreased hepatic expression of apolipoprotein A1 in septic control mice. Conclusions/Significance These studies suggest that strategies directed at blocking intestinal chylomicron secretion may attenuate the progression and improve the outcome of sepsis through effects mediated by metabolic and physiological adaptations in both intestinal and hepatic lipid flux. PMID:23145105
Adjei, Samuel; Afriyie, Daniel; Appiah-Danquah, Akua Bempomaa; Asia, Jonas; Asiedu, Bernice; Santa, Sheila; Doku, Derek
2015-01-01
Introduction Cardiovascular disease (CVD) accounts for 17.3 million deaths per year globally. In Ghana, CVD accounts for 22.2% of deaths. Croton membranaceus (CM) Mull. Arg. (Euphorbiaceae), a medicinal plant in Ghana is mainly used traditionally for the treatment of benign prostatic hyperplasia and measles. However, some hypoglycaemic and hypotensive effects have recently been reported but not scientifically examined. Aim The study aimed at establishing whether Croton membranaceus (CM) used for prostatitis had any effect on CVD markers. Materials and Methods In experiment 1, lipid profile changes were determined. Twenty four male Spontaneously Hypertensive Rats (SHR) were divided into 4 groups. Low (LD), intermediate (ID) and high dose (HD) groups received 25, 50 and 100 mg/kg b.wt. CM aqueous root extracts (CMARE) for 60 days, respectively, the controls received distilled water. In experiment 2, blood glucose levels (BGL) were determined. 21 db/db mice were divided into 3 groups of 7 mice each alongside db/+ mice (7) (negative control). Groups 1 and 2 received 250 mg/kg b.wt CMARE and metformin, respectively. Group 3 (positive control) and db/+ mice (negative control) received distilled water. Mice were monitored for 15 hours. Data collected were analysed using SPSS version 20. Results Hypotriglyceridaemic effect was observed (p=0.005). High Density Lipoprotein cholesterol (HDL) and Low Density Lipoprotein cholesterol (LDL) showed significant increases (p=0.013) and decreases (p=0.003), respectively. A significant CRP reduction was observed for ID and HD groups (p = 0.010, p = 0.011, respectively). BGL was reduced in Metformin and Croton groups (p=0.000; p= 0.006, respectively) after 3 hours. Conclusion In conclusion, CMARE has positive effects on some CVD biomarkers and a hypoglycaemic effect. PMID:26816938
Chao, Xiaojuan; Wang, Shaogui; Zhao, Katrina; Li, Yuan; Williams, Jessica A; Li, Tiangang; Chavan, Hemantkumar; Krishnamurthy, Partha; He, Xi C; Li, Linheng; Ballabio, Andrea; Ni, Hong-Min; Ding, Wen-Xing
2018-05-18
Defects in lysosome function and autophagy contribute to pathogenesis of alcoholic liver disease. We investigated the mechanisms by which alcohol consumption affects these processes, evaluating the functions transcription factor EB (TFEB), which regulates lysosomal biogenesis. We performed studies with GFP-LC3 mice, mice with liver-specific deletion of transcription factor EB (TFEB), mice with disruption of the transcription factor E3 gene (TFE3-knockout mice), mice with disruption of the Tefb and Tfe3 genes (TFEB, TFE3 double-knockout mice), and Tfeb flox/flox albumin cre-negative mice (controls). TFEB was overexpressed from adenoviral vectors or knocked down with small interfering RNAs in mouse livers. Mice were placed on diets of chronic ethanol feeding plus an acute binge to induce liver damage (ethanol diet); some mice were also given injections of torin1, an inhibitor of the kinase activity of the mechanistic target of rapamycin (mTOR). Liver tissues were collected and analyzed by immunohistochemistry, immunoblots, and quantitative real-time PCR to monitor lysosome biogenesis. We analyzed levels of TFEB in liver tissues from patients with alcoholic hepatitis and from healthy donors (controls) by immunohistochemistry. Liver tissues from mice on the ethanol diet had lower levels of total and nuclear TFEB, compared with control mice, and hepatocytes had reduced lysosome biogenesis and autophagy. Hepatocytes from mice on the ethanol diet had increased translocation of mTOR into lysosomes, resulting increased mTOR activation. Administration of torin1 increased liver levels of TFEB and reduced steatosis and liver injury induced by ethanol. Mice that overexpressed TFEB in liver developed less-severe ethanol-induced liver injury and had increased lysosomal biogenesis and mitochondrial bioenergetics compared to mice carrying a control vector. Mice with knockdown of TFEB, as well as TFEB, TFE3 double-knockout mice, developed more severe liver injury in response to the ethanol diet than control mice. Liver tissues from patients with alcohol-induced hepatitis had lower nuclear levels of TFEB than control tissues CONCLUSIONS: We found chronic ethanol feeding plus an acute binge to reduce hepatic expression of the transcription factor TFEB, which is required for lysosomal biogenesis and autophagy. Strategies to block mTOR activity or increase levels of TFEB might be developed to protect liver from ethanol-induced damage. Copyright © 2018 AGA Institute. Published by Elsevier Inc. All rights reserved.
Growth restriction, leptin, and the programming of adult behavior in mice.
Meyer, Lauritz R; Zhu, Vivian; Miller, Alise; Roghair, Robert D
2014-12-15
Prematurity and neonatal growth restriction (GR) are risk factors for autism and attention deficit hyperactivity disorder (ADHD). Leptin production is suppressed during periods of undernutrition, and we have shown that isolated neonatal leptin deficiency leads to adult hyperactivity while neonatal leptin supplementation normalizes the brain morphology of GR mice. We hypothesized that neonatal leptin would prevent the development of GR-associated behavioral abnormalities. From postnatal day 4-14, C57BL/6 mice were randomized to daily injections of saline or leptin (80ng/g), and GR was identified by a weanling weight below the tenth percentile. The behavioral phenotypes of GR and control mice were assessed beginning at 4 months. Within the tripartite chamber, GR mice had significantly impaired social interaction. Baseline escape times from the Barnes maze were faster for GR mice (65+/-6s vs 87+/-7s for controls, p<0.05), but GR mice exhibited regression in their escape times on days 2 and 3 (56% regressed vs 22% of control saline mice, p<0.05). Compared to controls, GR mice entered the open arms of the elevated plus maze more often and stayed there longer (72+/-10s vs 36+/-5s, p<0.01). Neonatal leptin supplementation normalized the behavior of GR mice across all behavioral assays. In conclusion, GR alters the social interactions, learning and activity of mice, and supplementation with the neurotrophic hormone leptin mitigates these effects. We speculate neonatal leptin deficiency may contribute to the adverse neurodevelopmental outcomes associated with postnatal growth restriction, and postnatal leptin therapy may be protective. Copyright © 2014 Elsevier B.V. All rights reserved.
[Oxidative damage effects induced by CdTe quantum dots in mice].
Xie, G Y; Chen, W; Wang, Q K; Cheng, X R; Xu, J N; Huang, P L
2017-07-20
Objective: To investigate Oxidative damage effects induced by CdTe Quantum Dots (QDs) in mice. Methods: 40 ICR mice were randomly divided into 5 groups: one control group (normal saline) ; four CdTe QDs (exposed by intravenous injection of 0.2 ml of CdTe QDs at the concentration of 0、0.5、5.0、50.0 and 500.0 nmol/ml respectively) . After 24 h, the mice were decapitated and the blood was collected for serum biochemically indexes、hematology indexes, the activities of SOD、GSH-Px and the concentration of MDA were all detected. Results: The results showed in the four CdTe QDs exposure groups, the level of CRE、PLT and the concentration of MDA were all significantly lower than those of the control group ( P <0.05 or P <0.01) ; the activities GSH - Px in 50.0 and 500.0 nmol/ml CdTe QDs group were significantly higher than those of control group ( P <0.01) . Conclusion: It was suggested that CdTe QDs at 0.5 nmol/ml could induce Oxidative damage effects in mice.
NASA Astrophysics Data System (ADS)
Hutahaean, Salomo; Tanjung, Masitta; Puspita Sari, Diah; Elfia Ningsih, Vevy
2018-03-01
Approximately eighty percent of deaths in diabetic patients result from atherosclerosis, which is related to hyperlipidemia tendencies in diabetes. In North Sumatra, the use of plant-based ingredients as diabetes therapy has long been recognized. One of the local species which traditionally used was the pirdot plant (Saurauia vulcani Korth.). In this paper, we report the antihyperglycemic and antihyperlipidemic effects of the extract of pirdot leaves in model mice. In experiment I, twenty - five alloxan-induced diabetic mice was divided randomly into five groups of 5 mice, namely: control diabetic mice; diabetic mice + metformin; and three groups diabetic mice + pirdot leaves extract of 100, 200, or 300 mg/kg BW respectively. All the treatments were given daily for 21 days by oral gavage. In experiment II, another twenty-five mice were divided randomly into five groups of 5 mice. The treatments were as follows: a control group that did not receive any treatment; hyperlipidemic control (received quail yolk diet) for 30 days; and three groups of hyperlipidemic mice + orally treated pirdot leaves extract at a dose of 100, 200, or 300 mg/kg BW respectively. The result showed the pirdot leaves extract has the potential as antihyperglycemic. The effects obtained are equivalent to the effects of antidiabetic drug metformin. On the other hand, the antihyperlipidemic effect was not conclusive, because the extract lowered total cholesterol significantly, but no significant effect on triglyceride, marked reduced LDL, but significantly decreased the HDL level.
Spaceflight Influences both Mucosal and Peripheral Cytokine Production in PTN-Tg and Wild Type Mice
Liu, Yi; Kalmokoff, Martin; Brooks, Stephen P. J.; Green-Johnson, Julia M.
2013-01-01
Spaceflight is associated with several health issues including diminished immune efficiency. Effects of long-term spaceflight on selected immune parameters of wild type (Wt) and transgenic mice over-expressing pleiotrophin under the human bone-specific osteocalcin promoter (PTN-Tg) were examined using the novel Mouse Drawer System (MDS) aboard the International Space Station (ISS) over a 91 day period. Effects of this long duration flight on PTN-Tg and Wt mice were determined in comparison to ground controls and vivarium-housed PTN-Tg and Wt mice. Levels of interleukin-2 (IL-2) and transforming growth factor-beta1 (TGF-β1) were measured in mucosal and systemic tissues of Wt and PTN-Tg mice. Colonic contents were also analyzed to assess potential effects on the gut microbiota, although no firm conclusions could be made due to constraints imposed by the MDS payload and the time of sampling. Spaceflight-associated differences were observed in colonic tissue and systemic lymph node levels of IL-2 and TGF-β1 relative to ground controls. Total colonic TGF-β1 levels were lower in Wt and PTN-Tg flight mice in comparison to ground controls. The Wt flight mouse had lower levels of IL-2 and TGF-β1 compared to the Wt ground control in both the inguinal and brachial lymph nodes, however this pattern was not consistently observed in PTN-Tg mice. Vivarium-housed Wt controls had higher levels of active TGF-β1 and IL-2 in inguinal lymph nodes relative to PTN-Tg mice. The results of this study suggest compartmentalized effects of spaceflight and on immune parameters in mice. PMID:23874826
Naresh, Nivedita K.; Chen, Xiao; Roy, Rene J.; Antkowiak, Patrick F.; Annex, Brian H.; Epstein, Frederick H.
2014-01-01
Background Gene-modified mice may be used to elucidate molecular mechanisms underlying abnormal myocardial blood flow (MBF). We sought to develop a quantitative myocardial perfusion imaging technique for mice and to test the hypothesis that myocardial perfusion reserve (MPR) is reduced in a mouse model of diet-induced obesity (DIO). Methods A dual-contrast saturation-recovery sequence with ky-t undersampling and a motion-compensated compressed sensing reconstruction algorithm was developed for first-pass MRI on a small-bore 7T system. Control mice were imaged at rest and with the vasodilators ATL313 and Regadenoson (n=6 each). In addition, we imaged mice fed a high-fat diet (HFD) for 24 weeks. Results In control mice, MBF was 5.7±0.8 ml/g/min at rest and it increased to 11.8±0.6 ml/g/min with ATL313 and to 10.4±0.3 ml/g/min with Regadenoson. In HFD mice we detected normal resting MBF (5.6±0.4 vs. 5.0±0.3 on control diet), low MBF at stress (7.7±0.4 vs. 10.4±0.3 on control diet, p<0.05), and reduced MPR (1.4±0.2 vs. 2.0±0.3 on control diet, p<0.05). Conclusions Accelerated dual-contrast first-pass MRI with motion-compensated compressed sensing provides spatiotemporal resolution suitable for measuring MBF in free-breathing mice, and detected reduced MPR in DIO mice. These techniques may be used to study molecular mechanisms that underlie abnormal myocardial perfusion. PMID:24760707
Dexmedetomidine ameliorates nocifensive behavior in humanized sickle cell mice
Calhoun, Gabriela; Wang, Li; Almeida, Luis E.F.; Kenyon, Nicholas; Afsar, Nina; Nouraie, Mehdi; Finkel, Julia C.; Quezado, Zenaide M.N.
2015-01-01
Patients with sickle cell disease (SCD) can have recurrent episodes of vaso-occlusive crises, which are associated with severe pain. While opioids are the mainstay of analgesic therapy, in some patients, increasing opioid use results in continued and increasing pain. Many believe that this phenomenon results from opioid-induced tolerance or hyperalgesia or that SCD pain involves non-opioid-responsive mechanisms. Dexmedetomidine, a specific α2-adrenoreceptor agonist, which has sedative and analgesic properties, reduces opioid requirements, and can facilitate opioid withdrawal in clinical settings. We hypothesized that dexmedetomidine would ameliorate the nociception phenotype of SCD mice. Townes and BERK SCD mice, strains known to have altered nociception phenotypes, were used in a crossover preclinical trial that measured nocifensive behavior before and after treatment with dexmedetomidine or vehicle. In a linear dose-effect relationship, over 60-min, dexmedetomidine, compared with vehicle, significantly increased hot plate latency in Townes and BERK mice (P≤0.006). In sickling, but not control mice, dexmedetomidine improved grip force, an indicator of muscle pain (P=0.002). As expected, dexmedetomidine had a sedative effect in sickling and control mice as it decreased wakefulness scores compared with vehicle (all P<0.001). Interestingly, the effects of dexmedetomidine on hot plate latency and wakefulness scores were different in sickling and control mice, i.e., dexmedetomidine-related increases in hotplate latency and decreases in wakefulness scores were significantly smaller in Townes sickling compared to control mice. In conclusion, these findings of beneficial effects of dexmedetomidine on the nociception phenotype in SCD mice might support the conduct of studies of dexmedetomidine in SCD patients. PMID:25724786
Elks, Carrie M.; Terrebonne, Jennifer D.; Ingram, Donald K.; Stephens, Jacqueline M.
2014-01-01
Objective Metabolic syndrome (MetS) risk increases significantly during menopause and remains elevated post-menopause. Several botanicals, including blueberries (BB), have been shown to delay MetS progression, but few studies have been conducted in postmenopausal animal models. Here, we examined the effects of BB supplementation on obese postmenopausal mice using a chemically-induced menopause model. Design and Methods After induction of menopause, mice were fed a high-fat diet or the same diet supplemented with 4% BB powder for 12 weeks. Body weight and body composition were measured, and mice were subjected to glucose and insulin tolerance tests. Serum triglycerides and adiponectin were measured, and liver histology and hepatic gene expression were assessed. Results: Menopausal and BB-supplemented mice had significantly higher body weights and fat mass than control mice, while menopausal mice had impaired glucose tolerance and higher serum triglycerides when compared with control and BB-supplemented mice. Menopausal mice also had hepatic steatosis that was prevented by BB supplementation and correlated with expression of genes involved in hepatic fatty acid oxidation. Conclusions We conclude that BB supplementation prevents the glucose intolerance and hepatic steatosis that occur in obese postmenopausal mice, and that these effects are independent of body weight. PMID:25611327
Study on acute toxicity of compound coggygria oral liquid
NASA Astrophysics Data System (ADS)
Su, Feng; Wen, Zhonghua; Sun, Jianhua; Hao, Shaojun; Xie, Guoqi; Li, Xianyu; Zhang, Zhengchen
2018-04-01
To observe the effect of compound oral liquid on acute toxicity of mice cotinus coggygria. Forty mice were randomly divided into two groups: compound Cotinus coggygria oral solution group and blank control group, 20 rats in each group, half male and half female. The mice fasted for 12 hours. Coggygria oral liquid concentrated solution. In the blank control group, normal saline was administered at the maximum volume of 0.4ml/10 g. The mice were given normal diet for 4 consecutive times in 1st, each time at intervals of 6 hours. On the day of administration, the mice in each group were observed continuously after administration and after administration. Observe continuously for 3 hours, observe every hour thereafter. Fast on the 13th day 12 hours, weigh the mice on the 14th day, then kill the mice, dissect the mice. During the observation period of 14 days after administration, there was no death in mice. The activity of mice decreased slightly after initial administration, decreased after the second and third administration, and generally returned to normal after 2h of administration. No abnormalities of heart, liver, spleen, lung, kidney, stomach, brain and so on were observed. Conclusion: the oral toxicity of compound Cotinus coggygria is very small. In 1st, the mice did not die, and the cumulative maximum tolerance dose was 320ml/kg per day, which was 320 times of the clinical dosage.
Chaoui, Asmaa; Faid, Mohamed; Belahsen, Rekia
2006-01-01
This study aimed to evaluate the effect of a diet prepared with traditional sourdough (TS) on iron status. Levels of blood hemoglobin (Hb), Hematocrite (Ht), serum ferritin and serum iron as well as excreted iron were determined in three groups of mice fed with: TS bread (TS group), baking yeast bread (BY group) or bread with no starters (control group), respectively. The results show that the levels of Hb, Ht, ferritin and iron were significantly higher in the TS compared to the BY and control groups. Also a significant decrease in the excreted iron levels was observed in the mice fed with TS compared to the others dietary groups. In conclusion, the study results indicate an improvement of iron status indicators in mice when they were fed sourdough bread as compared to baking yeast bread and bread with no starters.
Syed, Raisa; Shibata, Noreene M.; Kharbanda, Kusum K.; Su, Ruijun J.; Olson, Kristin; Yokoyama, Amy; Rutledge, John C.; Chmiel, Kenneth J.; Kim, Kyoungmi; Halsted, Charles H.
2016-01-01
Abstract Background: Previous studies indicated that nonpurified and purified commercially available control murine diets have different metabolic effects with potential consequences on hepatic methionine metabolism and liver histology. Methods: We compared the metabolic and histological effects of commercial nonpurified (13% calories from fat; 57% calories from carbohydrates with 38 grams/kg of sucrose) and purified control diets (12% calories from fat; 69% calories from carbohydrates with ∼500 grams/kg of sucrose) with or without choline supplementation administered to C3H mice with normal lipid and methionine metabolism. Diets were started 2 weeks before mating, continued through pregnancy and lactation, and continued in offspring until 24 weeks of age when we collected plasma and liver tissue to study methionine and lipid metabolism. Results: Compared to mice fed nonpurified diets, the liver/body weight ratio was significantly higher in mice fed either purified diet, which was associated with hepatic steatosis and inflammation. Plasma alanine aminotransferase levels were higher in mice receiving the purified diets. The hepatic S-adenosylmethionine (SAM)/S-adenosylhomocysteine (SAH) ratio was higher in female mice fed purified compared to nonpurified diet (4.6 ± 2 vs. 2.8 ± 1.9; P < 0.05). Choline supplementation was associated with improvement of some parameters of lipid and methionine metabolism in mice fed purified diets. Conclusions: Standard nonpurified and purified diets have significantly different effects on development of steatosis in control mice. These findings can help in development of animal models of fatty liver and in choosing appropriate laboratory control diets for control animals. PMID:26881897
Oxidative costs of reproduction: Oxidative stress in mice fed standard and low antioxidant diets.
Vaanholt, L M; Milne, A; Zheng, Y; Hambly, C; Mitchell, S E; Valencak, T G; Allison, D B; Speakman, J R
2016-02-01
Lactation is one of the most energetically expensive behaviours, and trade-offs may exist between the energy devoted to it and somatic maintenance, including protection against oxidative damage. However, conflicting data exist for the effects of reproduction on oxidative stress. In the wild, a positive relationship is often observed, but in laboratory studies oxidative damage is often lower in lactating than in non-breeding animals. We hypothesised that this discrepancy may exist because during lactation food intake increases many-fold resulting in a large increase in the intake of dietary antioxidants which are typically high in laboratory rodent chow where they are added as a preservative. We supplied lactating and non-breeding control mice with either a standard or low antioxidant diet and studied how this affected the activity of endogenous antioxidants (catalase, superoxide dismutase; SOD, and glutathione peroxidise; GPx) and oxidative damage to proteins (protein carbonyls, PC) in liver and brain tissue. The low antioxidant diet did not significantly affect activities of antioxidant enzymes in brain or liver, and generally did not result in increased protein damage, except in livers of control mice on low antioxidant diet. Catalase activity, but not GPx or SOD, was decreased in both control and lactating mice on the low antioxidant diet. Lactating mice had significantly reduced oxidative damage to both liver and brain compared to control mice, independent of the diet they were given. In conclusion, antioxidant content of the diet did not affect oxidative stress in control or reproductive mice, and cannot explain the previously observed reduction in oxidative stress in lactating mammals studied in the laboratory. The reduced oxidative stress in the livers of lactating mice even under low antioxidant diet treatment was consistent with the 'shielding' hypothesis. Copyright © 2015 Elsevier Inc. All rights reserved.
Yu, Lei-Min; Zhao, Ke-Jia; Wang, Shuang-Shuang; Wang, Xi; Lu, Bin
2018-01-01
AIM To study the role of microbial metabolites in the modulation of biochemical and physiological processes in irritable bowel syndrome (IBS). METHODS In the current study, using a metabolomic approach, we analyzed the key metabolites differentially excreted in the feces of control mice and mice with IBS, with or without Clostridium butyricum (C. butyricum) treatment. C57BL/6 mice were divided into control, IBS, and IBS + C. butyricum groups. In the IBS and IBS + C. butyricum groups, the mice were subjected to water avoidance stress (WAS) for 1 h/d for ten days. Gas chromatography/mass spectrometry (GC-MS) together with multivariate analysis was employed to compare the fecal samples between groups. RESULTS WAS exposure established an appropriate model of IBS in mice, with symptoms of visceral hyperalgesia and diarrhea. The differences in the metabolite profiles between the control group and IBS group significantly changed with the progression of IBS (days 0, 5, 10, and 17). A total of 14 differentially excreted metabolites were identified between the control and IBS groups, and phenylethylamine was a major metabolite induced by stress. In addition, phenylalanine metabolism was found to be the most relevant metabolic pathway. Between the IBS group and IBS + C. butyricum group, 10 differentially excreted metabolites were identified. Among these, pantothenate and coenzyme A (CoA) biosynthesis metabolites, as well as steroid hormone biosynthesis metabolites were identified as significantly relevant metabolic pathways. CONCLUSION The metabolic profile of IBS mice is significantly altered compared to control mice. Supplementation with C. butyricum to IBS mice may provide a considerable benefit by modulating host metabolism. PMID:29491683
Sugimura, Tetsu; Jounai, Kenta; Ohshio, Konomi; Suzuki, Hiroaki; Kirisako, Takayoshi; Sugihara, Yoshihiko; Fujiwara, Daisuke
2018-05-01
The decline in immune function caused by aging increases the risk of infectious diseases, tumorigeneses and chronic inflammation, resulting in accelerating senescence. We previously reported a lactic acid bacteria, Lactococcus lactis strain Plasma (synonym of Lactococcus lactis subsp. lactis JCM 5805, Lc-Plasma), that stimulates plasmacytoid dendritic cells (pDCs), which play a crucial role in phylaxis from viral infection. In this study, we investigated the anti-aging effects of long-term oral administration of Lc-Plasma in a senescence-accelerated mouse strain, SAMP6. Mice given Lc-Plasma showed a significant improvement in survival rate at 82 weeks and a decreased senescence score as compared with control mice throughout this study. Anatomic analysis at 82 weeks revealed that the frequency of altered hepatocellular foci was significantly lower, and the incidence of other pathological findings in the liver and lungs tended to be lower in Lc-Plasma mice than in control mice. Transcription level of the IL-1β gene in lungs also tended to be lower in Lc-Plasma mice. Furthermore, the thinning of skin and age-related decrease in muscle mass were also significantly suppressed in the Lc-Plasma group as compared with the control group. Consistent with these phenotypic features, pDCs activity was significantly higher in Lc-Plasma mice than in control mice. In conclusion, long-term administration of Lc-Plasma can decelerate senescence and prolong lifespan via maintenance of the immune system due to activation of pDCs. Copyright © 2018 Elsevier B.V. All rights reserved.
Srivastava, Sanjay K; Xiao, Dong; Lew, Karen L; Hershberger, Pamela; Kokkinakis, Demetrius M; Johnson, Candace S; Trump, Donald L; Singh, Shivendra V
2003-10-01
We have shown previously that allyl isothiocyanate (AITC), a constituent of cruciferous vegetables, significantly inhibits survival of PC-3 and LNCaP human prostate cancer cells in culture, whereas proliferation of a normal prostate epithelial cell line is minimally affected by AITC even at concentrations that are highly cytotoxic to the prostate cancer cells. The present studies were designed to test the hypothesis that AITC administration may retard growth of human prostate cancer xenografts in vivo. Bolus i.p. injection of 10 micromol AITC, three times per week (Monday, Wednesday and Friday) beginning the day of tumor cell implantation, significantly inhibited the growth of PC-3 xenograft (P < 0.05 by two-way ANOVA). For example, 26 days after tumor cell implantation, the average tumor volume in control mice (1025 +/- 205 mm3) was approximately 1.7-fold higher compared with AITC-treated mice. Histological analysis of tumors excised at the termination of the experiment revealed a statistically significant increase in number of apoptotic bodies with a concomitant decrease in cells undergoing mitosis in the tumors of AITC-treated mice compared with that of control mice. Western blot analysis indicated an approximately 70% reduction in the levels of anti-apoptotic protein Bcl-2 in the tumor lysate of AITC-treated mice compared with that of control mice. Moreover, the tumors from AITC-treated mice, but not control mice, exhibited cleavage of BID, which is known to promote apoptosis. Statistically significant reduction in the expression of several proteins that regulate G2/M progression, including cyclin B1, cell division cycle (Cdc)25B and Cdc25C (44, 45 and 90% reduction, respectively, compared with control), was also observed in the tumors of AITC-treated mice relative to control tumors. In conclusion, the results of the present study indicate that AITC administration inhibits growth of PC-3 xenografts in vivo by inducing apoptosis and reducing mitotic activity.
Genistein treatment increases bone mass in obese, hyperglycemic mice
Michelin, Richard M; Al-Nakkash, Layla; Broderick, Tom L; Plochocki, Jeffrey H
2016-01-01
Background Obesity and type 2 diabetes mellitus are associated with elevated risk of limb bone fracture. Incidences of these conditions are on the rise worldwide. Genistein, a phytoestrogen, has been shown by several studies to demonstrate bone-protective properties and may improve bone health in obese type 2 diabetics. Methods In this study, we test the effects of genistein treatment on limb bone and growth plate cartilage histomorphometry in obese, hyperglycemic ob/ob mice. Six-week-old ob/ob mice were divided into control and genistein-treated groups. Genistein-treated mice were fed a diet containing 600 mg genistein/kg for a period of 4 weeks. Cross-sectional geometric and histomorphometric analyses were conducted on tibias. Results Genistein-treated mice remained obese and hyperglycemic. However, histomorphometric comparisons show that genistein-treated mice have greater tibial midshaft diameters and ratios of cortical bone to total tissue area than the controls. Genistein-treated mice also exhibit decreased growth plate thickness of the proximal tibia. Conclusion Our results indicate that genistein treatment affects bone of the tibial midshaft in the ob/ob mouse, independent of improvements in the hyperglycemic state and body weight. PMID:27042131
Paul, David S.; Walton, Felecia S.; Saunders, R. Jesse
2011-01-01
Background: Type 2 diabetes is characterized by glucose intolerance and insulin resistance. Obesity is the leading cause of type 2 diabetes. Growing evidence suggests that chronic exposure to inorganic arsenic (iAs) also produces symptoms consistent with diabetes. Thus, iAs exposure may further increase the risk of diabetes in obese individuals. Objectives: Our goal was to characterize diabetogenic effects of iAs exposure and high-fat diet (HFD) in weaned C57BL/6 mice. Methods: Mice were fed HFD or low-fat diet (LFD) while exposed to iAs in drinking water (25 or 50 ppm As) for 20 weeks; control HFD and LFD mice drank deionized water. Body mass and adiposity were monitored throughout the study. We measured glucose and insulin levels in fasting blood and in blood collected during oral glucose tolerance tests (OGTT) to evaluate the diabetogenic effects of the treatment. Results: Control mice fed HFD accumulated more fat, had higher fasting blood glucose, and were more insulin resistant than were control LFD mice. However, these diabetes indicators decreased with iAs intake in a dose-dependent manner. OGTT showed impaired glucose tolerance for both control and iAs-treated HFD mice compared with respective LFD mice. Notably, glucose intolerance was more pronounced in HFD mice treated with iAs despite a significant decrease in adiposity, fasting blood glucose, and insulin resistance. Conclusions: Our data suggest that iAs exposure acts synergistically with HFD-induced obesity in producing glucose intolerance. However, mechanisms of the diabetogenic effects of iAs exposure may differ from the mechanisms associated with the obesity-induced type 2 diabetes. PMID:21592922
Sendler, Matthias; Beyer, Georg; Mahajan, Ujjwal M.; Kauschke, Vivien; Maertin, Sandrina; Schurmann, Claudia; Homuth, Georg; Völker, Uwe; Völzke, Henry; Halangk, Walter; Wartmann, Thomas; Weiss, Frank-Ulrich; Hegyi, Peter; Lerch, Markus M.; Mayerle, Julia
2015-01-01
Background & Aims Little is known about the pathogenic mechanisms of chronic pancreatitis. We investigated the roles of complement component 5 (C5) in pancreatic fibrogenesis in mice and patients. Methods Chronic pancreatitis was induced by ligation of the midpancreatic duct, followed by a single supramaximal intraperitoneal injection of cerulein, in C57Bl6 (control) and C5-deficient mice. Some mice were given injections of 2 different antagonists of the receptor for C5a over 21 days. In a separate model, mice were given injections of cerulein for 10 weeks to induce chronic pancreatitis. Direct effects of C5 were studied in cultured primary cells. We performed genotype analysis for the single-nucleotide polymorphisms rs 17611 and rs 2300929 in C5 in patients with pancreatitis and healthy individuals (controls). Blood cells from 976 subjects were analyzed by transcriptional profiling. Results During the initial phase of pancreatitis, levels of pancreatic damage were similar between C5-deficient and control mice. During later stages of pancreatitis, C5-deficient mice and mice given injections of C5a-receptor antagonists developed significantly less pancreatic fibrosis than control mice. Primary pancreatic stellate cells were activated in vitro by C5a. There were no differences in the rs 2300929 SNP between subjects with or without pancreatitis, but the minor allele rs17611 was associated with a significant increase in levels of C5 in whole blood. Conclusions In mice, loss of C5 or injection of a C5a-receptor antagonist significantly reduced the level of fibrosis of chronic pancreatitis, but this was not a consequence of milder disease in early stages of pancreatitis. C5 might be a therapeutic target for chronic pancreatitis. PMID:26001927
Bertholdt, Lærke; Gudiksen, Anders; Schwartz, Camilla L; Knudsen, Jakob G; Pilegaard, Henriette
2017-04-01
The liver is essential in maintaining and regulating glucose homeostasis during prolonged exercise. IL-6 has been shown to be secreted from skeletal muscle during exercise and has been suggested to signal to the liver. Therefore, the aim of this study was to investigate the role of skeletal muscle IL-6 on hepatic glucose regulation and substrate choice during prolonged exercise. Skeletal muscle-specific IL-6 knockout (IL-6 MKO) mice (age, 12-14 wk) and littermate lox/lox (Control) mice were either rested (Rest) or completed a single bout of exercise for 10, 60, or 120 min, and the liver was quickly obtained. Hepatic IL-6 mRNA was higher at 60 min of exercise, and hepatic signal transducer and activator of transcription 3 was higher at 120 min of exercise than at rest in both genotypes. Hepatic glycogen was higher in IL-6 MKO mice than control mice at rest, but decreased similarly during exercise in the two genotypes, and hepatic glucose content was lower in IL-6 MKO than control mice at 120 min of exercise. Hepatic phosphoenolpyruvate carboxykinase mRNA and protein increased in both genotypes at 120 min of exercise, whereas hepatic glucose 6 phosphatase protein remained unchanged. Furthermore, IL-6 MKO mice had higher hepatic pyruvate dehydrogenase (PDH) Ser232 and PDH Ser300 phosphorylation than control mice at rest. In conclusion, hepatic gluconeogenic capacity in mice is increased during prolonged exercise independent of muscle IL-6. Furthermore, Skeletal muscle IL-6 influences hepatic substrate regulation at rest and hepatic glucose metabolism during prolonged exercise, seemingly independent of IL-6 signaling in the liver. Copyright © 2017 the American Physiological Society.
Intermittent Moderate Energy Restriction Improves Weight Loss Efficiency in Diet-Induced Obese Mice
Seimon, Radhika V.; Shi, Yan-Chuan; Slack, Katy; Lee, Kailun; Fernando, Hamish A.; Nguyen, Amy D.; Zhang, Lei; Lin, Shu; Enriquez, Ronaldo F.; Lau, Jackie
2016-01-01
Background Intermittent severe energy restriction is popular for weight management. To investigate whether intermittent moderate energy restriction may improve this approach by enhancing weight loss efficiency, we conducted a study in mice, where energy intake can be controlled. Methods Male C57/Bl6 mice that had been rendered obese by an ad libitum diet high in fat and sugar for 22 weeks were then fed one of two energy-restricted normal chow diets for a 12-week weight loss phase. The continuous diet (CD) provided 82% of the energy intake of age-matched ad libitum chow-fed controls. The intermittent diet (ID) provided cycles of 82% of control intake for 5–6 consecutive days, and ad libitum intake for 1–3 days. Weight loss efficiency during this phase was calculated as (total weight change) ÷ [(total energy intake of mice on CD or ID)–(total average energy intake of controls)]. Subsets of mice then underwent a 3-week weight regain phase involving ad libitum re-feeding. Results Mice on the ID showed transient hyperphagia relative to controls during each 1–3-day ad libitum feeding period, and overall ate significantly more than CD mice (91.1±1.0 versus 82.2±0.5% of control intake respectively, n = 10, P<0.05). There were no significant differences between CD and ID groups at the end of the weight loss or weight regain phases with respect to body weight, fat mass, circulating glucose or insulin concentrations, or the insulin resistance index. Weight loss efficiency was significantly greater with ID than with CD (0.042±0.007 versus 0.018±0.001 g/kJ, n = 10, P<0.01). Mice on the CD exhibited significantly greater hypothalamic mRNA expression of proopiomelanocortin (POMC) relative to ID and control mice, with no differences in neuropeptide Y or agouti-related peptide mRNA expression between energy-restricted groups. Conclusion Intermittent moderate energy restriction may offer an advantage over continuous moderate energy restriction, because it induces significantly greater weight loss relative to energy deficit in mice. PMID:26784324
Diet-induced obesity accelerates acute lymphoblastic leukemia progression in two murine models.
Yun, Jason P; Behan, James W; Heisterkamp, Nora; Butturini, Anna; Klemm, Lars; Ji, Lingyun; Groffen, John; Müschen, Markus; Mittelman, Steven D
2010-10-01
Obesity is associated with an increased incidence of many cancers, including leukemia, although it is unknown whether leukemia incidence is increased directly by obesity or rather by associated genetic, lifestyle, health, or socioeconomic factors. We developed animal models of obesity and leukemia to test whether obesity could directly accelerate acute lymphoblastic leukemia (ALL) using BCR/ABL transgenic and AKR/J mice weaned onto a high-fat diet. Mice were observed until development of progressive ALL. Although obese and control BCR/ABL mice had similar median survival, older obese mice had accelerated ALL onset, implying a time-dependent effect of obesity on ALL. Obese AKR mice developed ALL significantly earlier than controls. The effect of obesity was not explained by WBC count, thymus/spleen weight, or ALL phenotype. However, obese AKR mice had higher leptin, insulin, and interleukin-6 levels than controls, and these obesity-related hormones all have potential roles in leukemia pathogenesis. In conclusion, obesity directly accelerates presentation of ALL, likely by increasing the risk of an early event in leukemogenesis. This is the first study to show that obesity can directly accelerate the progression of ALL. Thus, the observed associations between obesity and leukemia incidence are likely to be directly related to biological effects of obesity. ©2010 AACR.
Bacterial magnetic particles improve testes-mediated transgene efficiency in mice.
Wang, Chao; Sun, Guanghong; Wang, Ye; Kong, Nana; Chi, Yafei; Yang, Leilei; Xin, Qiliang; Teng, Zhen; Wang, Xu; Wen, Yujun; Li, Ying; Xia, Guoliang
2017-11-01
Nano-scaled materials have been proved to be ideal DNA carriers for transgene. Bacterial magnetic particles (BMPs) help to reduce the toxicity of polyethylenimine (PEI), an efficient gene-transferring agent, and assist tissue transgene ex vivo. Here, the effectiveness of the BMP-PEI complex-conjugated foreign DNAs (BPDs) in promoting testes-mediated gene transfer (TMGT) in mouse was compared with that of liposome-conjugated foreign DNAs. The results proved that through testes injection, the clusters of BPDs successfully reached the cytoplasm and the nuclear of spermatogenesis cell, and expressed in testes of transgene founder mice. Additionally, the ratio of founder mice obtained from BPDs (88%) is about 3 times higher than the control (25%) (p < 0.05). Interestingly, the motility of sperms recovered from epididymis of the founder mice from BPD group were significantly improved, as compared with the control (p < 0.01). Based on classic breeding, the ratio of transgene mice within the first filial was significantly higher in BPDs compared with the control (73.8% versus 11.6%, p < 0.05). TMGT in this study did not produce visible histological changes in the testis. In conclusion, nano-scaled BPDs could be an alternative strategy for efficiently producing transgene mice in vivo.
Radiation Therapy Induces Macrophages to Suppress Immune Responses Against Pancreatic Tumors in Mice
Seifert, Lena; Werba, Gregor; Tiwari, Shaun; Ly, Nancy Ngoc Giao; Nguy, Susanna; Alothman, Sara; Alqunaibit, Dalia; Avanzi, Antonina; Daley, Donnele; Barilla, Rocky; Tippens, Daniel; Torres-Hernandez, Alejandro; Hundeyin, Mautin; Mani, Vishnu R.; Hajdu, Cristina; Pellicciotta, Ilenia; Oh, Philmo; Du, Kevin; Miller, George
2016-01-01
Background & Aims The role of radiation therapy in the treatment of patients with pancreatic ductal adenocarcinoma (PDA) is controversial. Randomized controlled trials investigating the efficacy of radiation therapy in patients with locally advanced unresectable PDA have reported mixed results, with effects ranging from modest benefit to worse outcome, compared with control therapies. We investigated whether radiation causes inflammatory cells to acquire an immune-suppressive phenotype that limits the therapeutic effects of radiation on invasive PDAs and accelerates progression of pre-invasive foci. Methods We investigated the effects of radiation in p48Cre;LSL-KrasG12D (KC) and p48Cre;LSLKrasG12D;LSL-Trp53R172H (KPC) mice, as well as in C57BL/6 mice with orthotopic tumors grown from FC1242 cells derived from KPC mice. Some mice were given neutralizing antibodies against macrophage colony stimulating factor 1 (CSF1 or MCSF) or F4/80. Pancreata were exposed to doses of radiation ranging from 2–12 Gy and analyzed by flow cytometry. Results Pancreata of KC mice exposed to radiation had a higher frequency of advanced pancreatic intraepithelial lesions and more foci of invasive cancer than pancreata of unexposed mice (controls); radiation reduced survival time by more than 6 months. A greater proportion of macrophages from invasive and pre-invasive pancreatic tumors had an immune-suppressive, M2-like phenotype, compared with control mice. Pancreata from mice exposed to radiation had fewer CD8+ T cells than controls and greater numbers of CD4+ T cells of T-helper 2 and T-regulatory cell phenotypes. Adoptive transfer of T cells from irradiated PDA to tumors of control mice accelerated tumor growth. Radiation induced production of MCSF by PDA cells. An antibody against MCSF prevented radiation from altering the phenotype of macrophages in tumors, increasing the anti-tumor T-cell response and slowing tumor growth. Conclusions Radiation exposure causes macrophages in PDAs of mice to acquire an immune-suppressive phenotype and reduce T-cell mediated anti-tumor responses. Agents that block MCSF prevent this effect, allowing radiation to have increased efficacy in slowing tumor growth. PMID:26946344
Systemic metabolite changes in wild-type C57BL/6 mice fed black raspberries
Pan, Pan; Skaer, Chad W.; Wang, Hsin-Tzu; Kreiser, Michael A.; Stirdivant, Steven M.; Oshima, Kiyoko; Huang, Yi-Wen; Young, Matthew R.; Wang, Li-Shu
2017-01-01
Introduction Freeze-dried black raspberries (BRBs) elicit chemopreventive effects against colorectal cancer in humans and in rodents. The study objective was to investigate potential BRB-caused metabolite changes using wild-type (WT) C57BL/6 mice. Methods and results WT mice were fed either control diet or control diet supplemented with 5% BRBs for 8 weeks. A non-targeted metabolomic analysis was conducted on colonic mucosa, liver, and fecal specimens collected from both diet groups. BRBs significantly changed the levels of 41 colonic mucosa metabolites, 40 liver metabolites and 34 fecal metabolites compared to control diet-fed mice. BRBs reduced 34 lipid metabolites in colonic mucosa and increased levels of amino acids in liver. One metabolite, 3-[3-(sulfooxy) phenyl] propanoic acid, might be a useful biomarker of BRB consumption. In addition, BRB powder was found to contain 30-fold higher levels of linolenate compared to control diets. Consistently, multiple omega-3 polyunsaturated fatty acids (ω-3 PUFAs), including stearidonate, docosapentaenoate (ω-3 DPA), eicosapentaenoate (EPA) and docosahexaenoate (DHA), were significantly elevated in livers of BRB-fed mice. Conclusion The data from the current study suggest that BRBs produce systemic metabolite changes in multiple tissue matrices, supporting our hypothesis that BRBs may serve as both a chemopreventive agent and a beneficial dietary supplement. PMID:28094560
Effect of Ezetimibe on Insulin Secretion in db/db Diabetic Mice
Zhong, Yong; Wang, Jun; Gu, Ping; Shao, Jiaqing; Lu, Bin; Jiang, Shisen
2012-01-01
Objective. To investigate the effect of ezetimibe on the insulin secretion in db/db mice. Methods. The db/db diabetic mice aged 8 weeks were randomly assigned into 2 groups and intragastrically treated with ezetimibe or placebo for 6 weeks. The age matched db/m mice served as controls. At the end of experiment, glucose tolerance test was performed and then the pancreas was collected for immunohistochemistry. In addition, in vitro perfusion of pancreatic islets was employed for the detection of insulin secretion in the first phase. Results. In the ezetimibe group, the fasting blood glucose was markedly reduced, and the total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) were significantly lowered when compared with those in the control group (P < 0.05). At 120 min after glucose tolerance test, the area under curve in the ezetimibe group was significantly smaller than that in the control group (P < 0.05), but the AUCINS0−30 was markedly higher. In vitro perfusion of pancreatic islets revealed the first phase insulin secretion was improved. In addition, the insulin expression in the pancreas in the ezetimibe group was significantly increased as compared to the control group. Conclusion. Ezetimibe can improve glucose tolerance, recover the first phase insulin secretion, and protect the function of β cells in mice. PMID:23118741
NASA Astrophysics Data System (ADS)
Mu'nisa, A.; Asmawati, A.; Farida, A.; FA, Fressy; Erni
2018-01-01
The purpose of this study was to determine the effect of powdered leaves of breadfruit (Arthocarpus altilis) on oil is mandated origin of the Polman glucose and cholesterol levels in mice (Mus musculus). This study comprised 4 treatments and each treatment consisted of 5 replicates, ie groups of mice were fed a standard (negative control); 2 groups: group of mice fed with standard and cholesterol feed (positive control); Group 3 that mice fed with standard and Selayar oil; and group 4: group of mice fed with standard and Mandar oil that has been given powdered leaves of breadfruit. Measurement of glucose and blood cholesterol levels in mice done 3 times ie 2 weeks after the adaptation period (phase 1), 2 weeks after administration of the oil (phase 2) and 2 weeks after feeding cholesterol (stage 3). Based on the analysis of data both cholesterol and glucose levels showed that in a group of 4 decreased glucose and cholesterol levels in stage 2 but at stage 3 an increase in the group of mice given only the oil while in the group of mice given the oil and powdered leaves of breadfruit indicate glucose levels and normal cholesterol. The conclusion of this study show that the addition of powdered leaves of breadfruit into cooking oil Mandar influential in glucose levels and normalize blood cholesterol levels in mice.
Hao, Zheng; Townsend, R Leigh; Mumphrey, Michael B; Morrison, Christopher D; Münzberg, Heike; Berthoud, Hans-Rudolf
2017-09-01
Weight regain and type-2 diabetes relapse has been reported in a significant proportion of vertical sleeve gastrectomy (VSG) patients in some studies, but definitive conclusions regarding the long-term comparative effectiveness of VSG and Roux-en-Y gastric bypass (RYGB) surgery are lacking both in humans and rodent models. This study's objective was to compare the effects of murine models of VSG and RYGB surgery on body weight, body composition, food intake, energy expenditure, and glycemic control. VSG, RYGB, and sham surgery was performed in high-fat diet-induced obese mice, and the effects on body weight and glycemic control were observed for a period of 12 weeks. After the initial weight loss, VSG mice regained significant amounts of body weight and fat mass that were only marginally lower than in sham-operated mice. In contrast, RYGB produced sustained loss of body weight and fat mass up to 12 weeks and drastically improved fasting insulin and HOMA-IR compared with sham-operated mice. Using weight-matched control groups, we also found that the adaptive hypometabolic response to weight loss was blunted by both VSG and RYGB, and that despite large weight/fat regain, fasting insulin and HOMA-IR were markedly improved, but not reversed, in VSG mice. VSG is less effective to lastingly suppress body weight and improve glycemic control compared with RYGB in mice. Given similar observations in many human studies, the run towards replacing RYGB with VSG is premature and should await carefully controlled randomized long-term trials with VSG and RYGB.
Evaluation of the Hypoglycemic Effect of Composite Rice Flour in Diabetic Mice.
Ding, Zhigang; Gao, Hongmei; Du, Chuanlai; Zheng, Yimei; Guo, Yuanxin; Pan, Dongmei
2016-03-01
To study the hypoglycemic effect of composite rice flour, the diabetic mouse model was established through the intraperitoneal injection of alloxan saline (twice, 200 mg/kg bw). The mice were randomly divided into 4 groups: negative control, positive control, metformin medication group, and composite rice flour feed group. After 21 days, the fasting blood glucose levels were determined by glucose oxidase method and followed with a glucose tolerance test. The results show that the body weight growth rate of mice in the rice flour group was significantly higher than that of the medication group (P < 0.01). Comparing with the positive control group, the fasting blood glucose levels of medication group and rice flour group were significantly lower, and the glucose tolerance was significantly increased in rice flour group (P < 0.01). In conclusion, the composite rice flour has obvious hypoglycemic and protective effect for diabetic mouse model.
Orexin Neurons Are Necessary for the Circadian Control of REM Sleep
Kantor, Sandor; Mochizuki, Takatoshi; Janisiewicz, Agnieszka M.; Clark, Erika; Nishino, Seiji; Scammell, Thomas E.
2009-01-01
Study Objectives: The orexin-producing neurons are hypothesized to be essential for the circadian control of sleep/wake behavior, but it remains unknown whether these rhythms are mediated by the orexin peptides or by other signaling molecules released by these neurons such as glutamate or dynorphin. To determine the roles of these neurotransmitters, we examined the circadian rhythms of sleep/wake behavior in mice lacking the orexin neurons (ataxin-3 [Atx] mice) and mice lacking just the orexin neuropeptides (orexin knockout [KO] mice). Design: We instrumented mice for recordings of sleep-wake behavior, locomotor activity (LMA), and body temperature (Tb) and recorded behavior after 6 days in constant darkness. Results: The amplitude of the rapid eye movement (REM) sleep rhythm was substantially reduced in Atx mice but preserved in orexin KO mice. This blunted rhythm in Atx mice was caused by an increase in the amount of REM sleep during the subjective night (active period) due to more transitions into REM sleep and longer REM sleep episodes. In contrast, the circadian variations of Tb, LMA, Wake, non-REM sleep, and cataplexy were normal, suggesting that the circadian timekeeping system and other output pathways are intact in both Atx and KO mice. Conclusions: These results indicate that the orexin neurons are necessary for the circadian suppression of REM sleep. Blunting of the REM sleep rhythm in Atx mice but not in orexin KO mice suggests that other signaling molecules such as dynorphin or glutamate may act in concert with orexins to suppress REM sleep during the active period. Citation: Kantor S; Mochizuki T; Janisiewicz AM; Clark E; Nishino S; Scammell TE. Orexin neurons are necessary for the circadian control of REM sleep. SLEEP 2009;32(9):1127-1134. PMID:19750917
A Possible Link between Food and Mood: Dietary Impact on Gut Microbiota and Behavior in BALB/c Mice
Pyndt Jørgensen, Bettina; Hansen, Julie Torpe; Krych, Lukasz; Larsen, Christian; Klein, Anders Bue; Nielsen, Dennis Sandris; Josefsen, Knud; Hansen, Axel Kornerup; Sørensen, Dorte Bratbo
2014-01-01
Major depressive disorder is a debilitating disease in the Western World. A western diet high in saturated fat and refined sugar seems to play an important part in disease development. Therefore, this study is aimed at investigating whether saturated fat or sucrose predisposes mice to develop behavioral symptoms which can be interpreted as depression-like, and the possible influence of the gut microbiota (GM) in this. Fourty-two mice were randomly assigned to one of three experimental diets, a high-fat, a high-sucrose or a control diet for thirteen weeks. Mice on high-fat diet gained more weight (p = 0.00009), displayed significantly less burrowing behavior than the control mice (p = 0.034), and showed decreased memory in the Morris water maze test compared to mice on high-sucrose diet (p = 0.031). Mice on high-sucrose diet burrowed less goal-oriented, showed greater latency to first bout of immobility in the forced swim test when compared to control mice (p = 0.039) and high-fat fed mice (p = 0.013), and displayed less anxiety than mice on high-fat diet in the triple test (p = 0.009). Behavioral changes were accompanied by a significant change in GM composition of mice fed a high-fat diet, while no difference between diet groups was observed for sucrose preferences, LPS, cholesterol, HbA1c, BDNF and the cytokines IL-1α, IL-1β, IL-6, IL-10, IL-12(p70), IL-17 and TNF-α. A series of correlations was found between GM, behavior, BDNF and inflammatory mediators. In conclusion, the study shows that dietary fat and sucrose affect behavior, sometimes in opposite directions, and suggests a possible association between GM and behavior. PMID:25133574
A possible link between food and mood: dietary impact on gut microbiota and behavior in BALB/c mice.
Pyndt Jørgensen, Bettina; Hansen, Julie Torpe; Krych, Lukasz; Larsen, Christian; Klein, Anders Bue; Nielsen, Dennis Sandris; Josefsen, Knud; Hansen, Axel Kornerup; Sørensen, Dorte Bratbo
2014-01-01
Major depressive disorder is a debilitating disease in the Western World. A western diet high in saturated fat and refined sugar seems to play an important part in disease development. Therefore, this study is aimed at investigating whether saturated fat or sucrose predisposes mice to develop behavioral symptoms which can be interpreted as depression-like, and the possible influence of the gut microbiota (GM) in this. Fourty-two mice were randomly assigned to one of three experimental diets, a high-fat, a high-sucrose or a control diet for thirteen weeks. Mice on high-fat diet gained more weight (p = 0.00009), displayed significantly less burrowing behavior than the control mice (p = 0.034), and showed decreased memory in the Morris water maze test compared to mice on high-sucrose diet (p = 0.031). Mice on high-sucrose diet burrowed less goal-oriented, showed greater latency to first bout of immobility in the forced swim test when compared to control mice (p = 0.039) and high-fat fed mice (p = 0.013), and displayed less anxiety than mice on high-fat diet in the triple test (p = 0.009). Behavioral changes were accompanied by a significant change in GM composition of mice fed a high-fat diet, while no difference between diet groups was observed for sucrose preferences, LPS, cholesterol, HbA1c, BDNF and the cytokines IL-1α, IL-1β, IL-6, IL-10, IL-12(p70), IL-17 and TNF-α. A series of correlations was found between GM, behavior, BDNF and inflammatory mediators. In conclusion, the study shows that dietary fat and sucrose affect behavior, sometimes in opposite directions, and suggests a possible association between GM and behavior.
OM-101 Decreases the Fibrotic Response Associated with Proliferative Vitreoretinopathy
Dvashi, Zeev; Ben-Yaakov, Keren; Weinberg, Tamir; Greenwald, Yoel
2017-01-01
Purpose This study aimed to investigate the effect of OM-101 on the fibrotic response occurring in proliferative vitreoretinopathy (PVR) in an animal model. Methods Antifibrotic effect of OM-101 was investigated in vivo. As control, eight weeks old c57black mice underwent intravitreal injection with Hepes (group A) or dispase (0.3 units), to induce retinal detachment (RD) and PVR. The dispase-injected mice were randomly divided into two groups B and C (N = 25 mice); in group C, the eyes were treated with intravitreal injection of OM-101 (3 μl), and group B with PBS, as a control. After additional five days, mice were injected with the same initial treatment. Three days later, mice were euthanized, and the eyes were enucleated and processed for histological analysis. Results Intravitreal injection of dispase caused RD in 64% of the mice in group B, and 93% of those mice had PVR. Only 32% of mice treated with OM-101 and dispase (group C) developed RD, and only 25% of those developed PVR. Conclusions OM-101 was found effective in reducing the incidence of RD and PVR maintaining the normal architecture of the retina. This study suggests that OM-101 is a potentially effective and safe drug for the treatment of PVR patients. PMID:29109865
Effects of electromagnetic pulse on bone metabolism of mice in vivo.
Li, Kang-Chu; Ma, Shi-Rong; Ding, Gui-Rong; Guo, Yao; Guo, Guo-Zhen
2009-12-01
To study the effects of electromagnetic pulse (EMP) on bone metabolism of mice in vivo. Twenty-four male BALB/c mice were divided into a control group and 2 experimental groups (n=8). The whole-body of mice in experimental groups were exposed to 50 kV/m and 400kV/m EMP, 400 pulses daily for 7 consecutive days at 2 seconds intervals. Alkaline phosphotase (ALP) activity, serum calcium concentration and osteocalcin level and trabecular bone volume (BV/TV, %) were measured immediately after EMP exposure by biochemical, ELISA and morphological methods. The ALP activity, serum calcium concentration and osteocalcin level and BV/TV in experimental groups remained unchanged after EMP exposure. Conclusion Under our experimental conditions, EMP exposure cannot affect bone metabolism of mice in vivo.
Study on acute toxicity of anti-vertigo granule on mice
NASA Astrophysics Data System (ADS)
Wen, Zhonghua; Hao, Shaojun; Xie, Guoqi; Li, Jun; Su, Feng; Liu, Xiaobin; Wang, Xidong; Zhang, Zhengchen
2018-04-01
To observe the effect of anti - glare particles on acute toxicity of mice. Methods: 40 male and female mice weighing 18 - 21 g were randomly divided into anti - glare granule group and normal saline control group. The maximum volume of anti - glare particles (0.94 g/ml) was administered before the experiment. Results: the oral toxicity of the suspension was very small. The maximal concentration of mice was given at the maximum volume of gastric perfusion, and it was given three times in 1st. The cumulative maximum tolerance dose was 112.8g/kg per day. The dose was 226 times of clinical dosage and no death was found in mice. Conclusion: the toxicity of Kangxuan granules is very small and it can be considered safe in clinical use.
Drack, Arlene V.; Dumitrescu, Alina V.; Bhattarai, Sajag; Gratie, Daniel; Stone, Edwin M.; Mullins, Robert
2012-01-01
Purpose. To evaluate and compare the protective effect of tauroursodeoxycholic acid (TUDCA) on photoreceptor degeneration in different models of retinal degeneration (RD) in mice. Methods. BbsM390R/M390R mice were injected subcutaneously twice a week, from P40 to P120, and rd10 mice were injected every 3 days from P6 to P38 with TUDCA or vehicle (0.15 M NaHCO3). Rd1 and rd16 mice were injected daily from P6 to P30 with TUDCA or vehicle. Retinal structure and function were determined at multiple time points by electroretinography (ERG), optical coherence tomography (OCT), and histology. Results. The amplitude of ERG b-waves was significantly higher in TUDCA-treated Bbs1 and rd10 animals than in controls. Retinal thickness on OCT was slightly greater in treated Bbs1 animals than in the controls. Histologically, outer segments were preserved, and the outer nuclear layer was significantly thicker in the treated Bbs1 and rd10 mice than in the controls. Bbs1M390R/M390R mice developed less obesity than the control Bbs1M390R/M390R while receiving TUDCA. The Rd1 and rd16 mice showed no improvement with TUDCA treatment, and the rd1 mice did not have normal weight gain during treatment. Conclusions. TUDCA treatment preserved ERG b-waves and the outer nuclear layer in Bbs1M390R/M390R mice, and prevented obesity assessed at P120. TUDCA treatment preserved ERG b-waves and the outer nuclear layer in the rd10 mice to P30. TUDCA is a prime candidate for treatment of humans with retinal degeneration, especially those with Bardet-Biedl syndrome, whom it may help not only with the vision loss, but with the debilitating obesity as well. PMID:22110077
Joo, Young-Eun; Karrasch, Thomas; Mühlbauer, Marcus; Allard, Brigitte; Narula, Acharan; Herfarth, Hans H.; Jobin, Christian
2009-01-01
Background The impact of tomato lycopene extract (TLE) on intestinal inflammation is currently unknown. We investigated the effect of TLE on lipopolysaccharide (LPS)-induced innate signaling and experimental colitis. Methodology/Principal Findings Mice were fed a diet containing 0.5 and 2% TLE or isoflavone free control (AIN-76). The therapeutic efficacy of TLE diet was assessed using dextran sulfate sodium (DSS) exposed mice and IL-10−/−;NF-κBEGFP mice, representing an acute and spontaneous chronic colitis model respectively. A mini-endoscope was used to determine the extent of macroscopic mucosal lesions. Murine splenocytes and intestinal epithelial cells were used to determine the in vitro impact of TLE on LPS-induced NF-κB signaling. In vitro, TLE blocked LPS-induced IκBα degradation, RelA translocation, NF-κB transcriptional activity and MIP-2 mRNA accumulation in IEC-18 cells. Moreover, LPS-induced IL-12p40 gene expression was dose-dependently inhibited in TLE-treated splenocytes. Interestingly, DSS-induced acute colitis worsened in TLE-fed NF-κBEGFP mice compared to control diet as measured by weight loss, colonoscopic analysis and histological scores. In contrast, TLE-fed IL-10−/−;NF-κBEGFP mice displayed decreased colonic EGFP expression compared to control diet. IL-6, TNFα, and MCP-1 mRNA expression were increased in the colon of TLE-fed, DSS-exposed NF-κBEGFP mice compared to the control diet. Additionally, caspase-3 activation and TUNEL positive cells were enhanced in TLE diet-fed, DSS-exposed mice as compared to DSS control mice. Conclusions/ Significance These results indicate that TLE prevents LPS-induced proinflammatory gene expression by blocking of NF-κB signaling, but aggravates DSS-induced colitis by enhancing epithelial cell apoptosis. PMID:19234608
de Carlos, Samanta Portão; Dias, Alexandre Simões; Forgiarini, Luiz Alberto; Patricio, Patrícia Damiani; Graciano, Thaise; Nesi, Renata Tiscoski; Valença, Samuel; Chiappa, Adriana Meira Guntzel; Cipriano, Gerson; de Souza, Claudio Teodoro; Chiappa, Gaspar Rogério da Silva
2014-01-01
OBJECTIVE: To evaluate oxidative damage (lipid oxidation, protein oxidation, thiobarbituric acid-reactive substances [TBARS], and carbonylation) and inflammation (expression of phosphorylated AMP-activated protein kinase and mammalian target of rapamycin [p-AMPK and p-mTOR, respectively]) in the lung parenchyma and diaphragm muscles of male C57BL-6 mice exposed to cigarette smoke (CS) for 7, 15, 30, 45, or 60 days. METHODS: Thirty-six male C57BL-6 mice were divided into six groups (n = 6/group): a control group; and five groups exposed to CS for 7, 15, 30, 45, and 60 days, respectively. RESULTS: Compared with control mice, CS-exposed mice presented lower body weights at 30 days. In CS-exposed mice (compared with control mice), the greatest differences (increases) in TBARS levels were observed on day 7 in diaphragm-muscle, compared with day 45 in lung tissue; the greatest differences (increases) in carbonyl levels were observed on day 7 in both tissue types; and sulfhydryl levels were lower, in both tissue types, at all time points. In lung tissue and diaphragm muscle, p-AMPK expression exhibited behavior similar to that of TBARS. Expression of p-mTOR was higher than the control value on days 7 and 15 in lung tissue, as it was on day 45 in diaphragm muscle. CONCLUSION: Our data demonstrate that CS exposure produces oxidative damage, not only in lung tissue but also (primarily) in muscle tissue, having an additional effect on respiratory muscle, as is frequently observed in smokers with COPD. PMID:25210964
Ding, Shengli; Blue, Randal E.; Morgan, Douglas R.; Lund, Pauline K.
2015-01-01
Background Activatable near-infrared fluorescent (NIRF) probes have been used for ex vivo and in vivo detection of intestinal tumors in animal models. We hypothesized that NIRF probes activatable by cathepsins or MMPs will detect and quantify dextran sulphate sodium (DSS) induced acute colonic inflammation in wild type (WT) mice or chronic colitis in IL-10 null mice ex vivo or in vivo. Methods WT mice given DSS, water controls and IL-10 null mice with chronic colitis were administered probes by retro-orbital injection. FMT2500 LX system imaged fresh and fixed intestine ex vivo and mice in vivo. Inflammation detected by probes was verified by histology and colitis scoring. NIRF signal intensity was quantified using 2D region of interest (ROI) ex vivo or 3D ROI-analysis in vivo. Results Ex vivo, seven probes tested yielded significant higher NIRF signals in colon of DSS treated mice versus controls. A subset of probes was tested in IL-10 null mice and yielded strong ex vivo signals. Ex vivo fluorescence signal with 680 series probes was preserved after formalin fixation. In DSS and IL-10 null models, ex vivo NIRF signal strongly and significantly correlated with colitis scores. In vivo, ProSense680, CatK680FAST and MMPsense680 yielded significantly higher NIRF signals in DSS treated mice than controls but background was high in controls. Conclusion Both cathepsin or MMP-activated NIRF-probes can detect and quantify colonic inflammation ex vivo. ProSense680 yielded the strongest signals in DSS colitis ex vivo and in vivo, but background remains a problem for in vivo quantification of colitis. PMID:24374874
Eosinophil-mediated signalling attenuates inflammatory responses in experimental colitis
Masterson, Joanne C; McNamee, Eóin N; Fillon, Sophie A; Hosford, Lindsay; Harris, Rachel; Fernando, Shahan D; Jedlicka, Paul; Iwamoto, Ryo; Jacobsen, Elizabeth; Protheroe, Cheryl; Eltzschig, Holger K; Colgan, Sean P; Arita, Makoto; Lee, James J; Furuta, Glenn T
2015-01-01
Objective Eosinophils reside in the colonic mucosa and increase significantly during disease. Although a number of studies have suggested that eosinophils contribute to the pathogenesis of GI inflammation, the expanding scope of eosinophil-mediated activities indicate that they also regulate local immune responses and modulate tissue inflammation. We sought to define the impact of eosinophils that respond to acute phases of colitis in mice. Design Acute colitis was induced in mice by administration of dextran sulfate sodium, 2,4,6-trinitrobenzenesulfonic acid or oxazolone to C57BL/6J (control) or eosinophil deficient (PHIL) mice. Eosinophils were also depleted from mice using antibodies against interleukin (IL)-5 or by grafting bone marrow from PHIL mice into control mice. Colon tissues were collected and analysed by immunohistochemistry, flow cytometry and reverse transcription PCR; lipids were analysed by mass spectroscopy. Results Eosinophil-deficient mice developed significantly more severe colitis, and their colon tissues contained a greater number of neutrophils, than controls. This compensatory increase in neutrophils was accompanied by increased levels of the chemokines CXCL1 and CXCL2, which attract neutrophils. Lipidomic analyses of colonic tissue from eosinophil-deficient mice identified a deficiency in the docosahexaenoic acid-derived anti-inflammatory mediator 10, 17- dihydroxydocosahexaenoic acid (diHDoHE), namely protectin D1 (PD1). Administration of an exogenous PD1-isomer (10S, 17S-DiHDoHE) reduced the severity of colitis in eosinophil-deficient mice. The PD1-isomer also attenuated neutrophil infiltration and reduced levels of tumour necrosis factor-α, IL-1β, IL-6 and inducible NO-synthase in colons of mice. Finally, in vitro assays identified a direct inhibitory effect of PD1-isomer on neutrophil transepithelial migration. Conclusions Eosinophils exert a protective effect in acute mouse colitis, via production of anti-inflammatory lipid mediators. PMID:25209655
Tenascin-C Deficiency in Apo E−/− Mouse Increases Eotaxin Levels: Implications for Atherosclerosis
Wang, Lai; Shah, Prediman K.; Wang, Wei; Song, Lei; Yang, Mingjie; Sharifi, Behrooz G.
2013-01-01
Aim To investigate the potential role of inflammatory cytokines in apo E−/− mouse in response to deletion of Tenascin-C (TNC) gene. Methods and results We used antibody array and ELISA to compare the profile of circulating inflammatory cytokines in apo E−/− mice and apo E−/− TNC−/− double knockout mice. In addition, tissue culture studies were performed to investigate the activity of cells from each mouse genotype in vitro. Cytokine array analysis and subsequent ELISA showed that circulating eotaxin levels were selectively and markedly increased in response to TNC gene deletion in apo E−/− mice. In addition, considerable variation was noted in the circulating level of eotaxin among the control apo E−/− mouse group. Inbreeding of apo E−/− mice with high or low levels of plasma eotaxin showed that the level of eotaxin per se determines the extent of atherosclerosis in this mouse genotype. While endothelial cells from apo E−/− mice had low level of eotaxin expression, cells derived from apo E−/−TNC−/− mice expressed a high level of eotaxin. Transient transfection of eotaxin promoter-reporter constructs revealed that eotaxin expression is regulated at the transcriptional level by TNC. Histochemical analysis of aortic sections revealed the massive accumulation of mast cells in the adventitia of double KO mice lesions whereas no such accumulation was detected in the control group. Plasma from the apo E−/−TNC−/− mice markedly stimulated mast cell migration whereas plasma from the apo E−/− mice had no such effect. Conclusion These observations support the emerging hypothesis that TNC expression controls eotaxin level in apo E−/− mice and that this chemokine plays a key role in the development of atherosclerosis. PMID:23433402
Acute toxicity assessment of choline by inhalation, intraperitoneal and oral routes in Balb/c mice.
Mehta, Amit Kumar; Arora, Naveen; Gaur, Shailendra Nath; Singh, Bhanu Pratap
2009-08-01
Studies suggest that choline has potential to be used as a dietary supplement and a drug for immune inflammatory diseases like asthma and rhinitis. But there are apprehensions regarding adverse effects of choline when given orally in high doses. To address this knowledge gap, toxicity assessment of choline chloride was carried out by intranasal (i.n.), oral and intraperitoneal (i.p.) routes in Balb/c mice for 28days. Body weight, food and water consumption of mice were recorded daily. Hematology and clinical chemistry were assessed to check hepatocellular functions and morphological alterations of the cells. Splenocyte counts were analysed for evaluating cellular immunity. Liver function test was performed by assaying different enzyme systems in serum such as, urea, blood urea nitrogen (BUN), creatinine, alanine aminotransferase (ALT), and aspartate aminotransferase (AST). Body weight, food and water consumption did not differ between mice treated with choline and the saline control group. Hematologic and biochemical variables were not affected with any increase in serum toxicity marker enzymes indicating normal liver functioning. Choline administration did not affect total cholesterol and high density lipoprotein levels as compared to their respective controls. Urea and blood urea nitrogen levels in choline treated mice were not different than controls. Creatinine level was, however, higher than control in i.p. treatment group, but other parameters were normal. In conclusion, the repeated consumption of choline chloride via i.n. and oral or i.p. routes did not cause toxicity in mice in the toxicological endpoints examined.
Castro, Ibraim C.; Oliveira, Bruna B.; Slowikowski, Jacek J.; Coutinho, Bruna P.; Siqueira, Francisco Júlio W.S.; Costa, Lourrany B.; Sevilleja, Jesus Emmanuel; Almeida, Camila A.; Lima, Aldo A.M.; Warren, Cirle A.; Oriá, Reinaldo B.; Guerrant, Richard L.
2011-01-01
Objective This study investigated the role of L-arginine supplementation to undernourished and Cryptosporidium parvum-infected suckling mice. Methods The following regimens were initiated on the 4th day of life and given subcutaneously daily: either 200mM of L-arginine or PBS for the C. parvum-infected controls. L-arginine-treated mice were grouped to receive either 20mM of NG-nitroarginine-methyl-ester (L-NAME) or PBS. Infected mice received orally 106 excysted-C. parvum oocysts on day 6 and were euthanized on day 14th at the infection peak. Results L-arginine improved weight gain compared to the untreated infected controls. L-NAME profoundly impaired body weight gain as compared to all other groups. Cryptosporidiosis was associated with ileal crypt hyperplasia, villus blunting, and inflammation. L-arginine improved mucosal histology following infection. L-NAME abrogated these arginine-induced improvements. Infected control mice showed an intense arginase expression, which was even greater with L-NAME. L-arginine reduced parasite burden, an effect that was reversed by L-NAME. C. parvum infection increased urine NO3-/NO2- concentration when compared to uninfected controls, which was increased by L-arginine supplementation, an effect that was also reversed by L-NAME. Conclusion These findings show a protective role of L-arginine during C. parvum infection in undernourished mice with involvement of arginase I and nitric oxide synthase enzymatic actions. PMID:22261576
[Influence of n-hexane on vascular endothelial active substances in brain tissue in mice].
Lin, L; Zhang, Z Q; Zhang, C Z
2017-01-20
Objective: To investigate the influence of n - hexane on vascular endothelial active substances in brain tissue in mice and its significance. Methods: A total of 48 healthy Kunming mice were randomly divided into high - dose exposure group, middle - dose exposure group, low - dose exposure group, and control group, with 12 mice in each group. All groups except the control group were exposed to n - hexane via static inhalation (0.035 g/L, 0.018 g/L, and 0.009 g/L for the high - , middle - , and low - dose exposure groups, respectively) 4 hours a day for 21 days. the mice in the control groups were not exposed to n - hexane. After the exposure, the lev-els of endothelin - 1 (ET - 1) , nitric oxide (NO) , and angiotensin II (Ang II) in brain tissue were measured in all groups. Results: There were significant differences in the levels of ET - 1, NO, and Ang II between the three ex-posure groups and the control group ( P <0.05). Compared with the control group, the high - and middle - dose expo-sure group had significant increases in the levels of ET - 1 and Ang II and the high - dose exposure group had a sig-nificant reduction in the level of NO ( P <0.05 or P <0.01). Conclusion: n - Hexane can affect the vascular endothe-lial active substances in brain tissue in mice, and the changes and imbalance in vascular endothelial active sub-stances may be one of the reasons for central nervous system impairment caused by n - hexane.
Kramer, Edgar R.
2015-01-01
Background & Aims The brain dopaminergic (DA) system is involved in fine tuning many behaviors and several human diseases are associated with pathological alterations of the DA system such as Parkinson’s disease (PD) and drug addiction. Because of its complex network integration, detailed analyses of physiological and pathophysiological conditions are only possible in a whole organism with a sophisticated tool box for visualization and functional modification. Methods & Results Here, we have generated transgenic mice expressing the tetracycline-regulated transactivator (tTA) or the reverse tetracycline-regulated transactivator (rtTA) under control of the tyrosine hydroxylase (TH) promoter, TH-tTA (tet-OFF) and TH-rtTA (tet-ON) mice, to visualize and genetically modify DA neurons. We show their tight regulation and efficient use to overexpress proteins under the control of tet-responsive elements or to delete genes of interest with tet-responsive Cre. In combination with mice encoding tet-responsive luciferase, we visualized the DA system in living mice progressively over time. Conclusion These experiments establish TH-tTA and TH-rtTA mice as a powerful tool to generate and monitor mouse models for DA system diseases. PMID:26291828
2012-01-01
Background Sickle cell disease (SCD) is associated with both acute vaso-occlusive painful events as well as chronic pain syndromes, including heightened sensitivity to touch. We have previously shown that mice with severe SCD (HbSS mice; express 100% human sickle hemoglobin in red blood cells; RBCs) have sensitized nociceptors, which contribute to increased mechanical sensitivity. Yet, the hypersensitivity in these neural populations alone may not fully explain the mechanical allodynia phenotype in mouse and humans. Findings Using the Light Touch Behavioral Assay, we found HbSS mice exhibited increased responses to repeated application of both innocuous punctate and dynamic force compared to control HbAA mice (100% normal human hemoglobin). HbSS mice exhibited a 2-fold increase in percent response to a 0.7mN von Frey monofilament when compared to control HbAA mice. Moreover, HbSS mice exhibited a 1.7-fold increase in percent response to the dynamic light touch “puffed” cotton swab stimulus. We further investigated the mechanisms that drive this behavioral phenotype by focusing on the cutaneous sensory neurons that primarily transduce innocuous, light touch. Low threshold cutaneous afferents from HbSS mice exhibited sensitization to mechanical stimuli that manifested as an increase in the number of evoked action potentials to suprathreshold force. Rapidly adapting (RA) Aβ and Aδ D-hair fibers showed the greatest sensitization, each with a 75% increase in suprathreshold firing compared to controls. Slowly adapting (SA) Aβ afferents had a 25% increase in suprathreshold firing compared to HbAA controls. Conclusions These novel findings demonstrate mice with severe SCD exhibit mechanical allodynia to both punctate and dynamic light touch and suggest that this behavioral phenotype may be mediated in part by the sensitization of light touch cutaneous afferent fibers to suprathreshold force. These findings indicate that Aβ fibers can be sensitized to mechanical force and should potentially be examined for sensitization in other tissue injury and disease models. PMID:22963123
Jungbauer, Stefan; Buehler, Philipp Karl; Neubauer, Jacqueline; Haas, Cordula; Heitzmann, Dirk; Tegtmeier, Ines; Sterner, Christina; Barhanin, Jacques; Georgieff, Michael; Warth, Richard; Thomas, Jörg
2017-11-01
TASK-1 potassium channels have been implicated in central and peripheral chemoreception; however, the precise contribution of TASK-1 for the control of respiration is still under debate. Here, we investigated the respiration of unrestrained adult and neonatal TASK-1 knockout mice (TASK-1 -/- ) using a plethysmographic device. Respiration in adult female TASK-1 -/- mice under control (21% O 2 ), hypoxia and hypercapnia was unaffected. Under acute hypoxia male TASK-1 -/- mice exhibited a reduced increase of the respiratory frequency (f R ) compared to wildtypes. However, the tidal volume (V T ) of male TASK-1 -/- mice was strongly enhanced. The volatile anesthetic isoflurane induced in male TASK-1 -/- and male wild type mice (TASK-1 +/+ ) a similar respiratory depression. Neonatal TASK-1 -/- mice demonstrated a 30-40% decrease of the minute volume, caused by a reduction of the f R under control condition (21% O 2 ). Under hypoxia, neonatal TASK-1 -/- mice more frequently stopped breathing (apnea>3s) suggesting an increased hypoxia-sensitivity. As reported before, this increased hypoxia sensitivity had no influence on the survival rate of neonatal TASK-1 -/- mice. In adult and neonatal mice, TASK-1 gene deletion induced a significant prolongation of the relaxation time (R T ), which is a parameter for expiration kinetics. Additionally, screening for mutations in the human TASK-1 gene in 155 cases of sudden infant death syndrome (SIDS) was inconclusive. In conclusion, these data are suggestive for an increased hypoxia-sensitivity of neonatal TASK-1 -/- mice, however, without causing an increase in neonatal lethality. In adult female TASK-1 -/- mice respiration was unaffected, whereas adult male TASK-1 -/- mice showed a modified breathing pattern. These results are suggestive for sex-specific mechanisms for compensating the inactivation of TASK-1 in mice. Copyright © 2016 Elsevier B.V. All rights reserved.
Planer, David; Metzger, Shulamit; Zcharia, Eyal; Wexler, Isaiah D.; Vlodavsky, Israel; Chajek-Shaul, Tova
2011-01-01
Background Heparanase modulates the level of heparan sulfate proteoglycans (HSPGs) which have an important role in multiple cellular processes. Recent studies indicate that HSPGs have an important function in hepatic lipoprotein handling and processes involving removal of lipoprotein particles. Principal Findings To determine the effects of decreased HSPGs chain length on lipoprotein metabolism and atherosclerosis, transgenic mice over-expressing the human heparanase gene were studied. Hepatic lipid uptake in hpa-Tg mice were evaluated by giving transgenic mice oral fat loads and labeled retinol. Sections of aorta from mice over-expressing heparanase (hpa-Tg) and controls (C57/BL6) fed an atherogenic diet were examined for evidence of atherosclerosis. Heparanase over-expression results in reduced hepatic clearance of postprandial lipoproteins and higher levels of fasting and postprandial serum triglycerides. Heparanase over-expression also induces formation of fatty streaks in the aorta. The mean lesion cross-sectional area in heparanase over-expressing mice was almost 6 times higher when compared to control mice (23,984 µm2±5,922 vs. 4,189 µm2±1,130, p<0.001). Conclusions Over-expression of heparanase demonstrates the importance of HSPGs for the uptake of intestinal derived lipoproteins and its role in the formation of fatty streaks. PMID:21483695
Impact of taurine depletion on glucose control and insulin secretion in mice.
Ito, Takashi; Yoshikawa, Natsumi; Ito, Hiromi; Schaffer, Stephen W
2015-09-01
Taurine, an endogenous sulfur-containing amino acid, is found in millimolar concentrations in mammalian tissue, and its tissue content is altered by diet, disease and aging. The effectiveness of taurine administration against obesity and its related diseases, including type 2 diabetes, has been well documented. However, the impact of taurine depletion on glucose metabolism and fat deposition has not been elucidated. In this study, we investigated the effect of taurine depletion (in the taurine transporter (TauT) knockout mouse model) on blood glucose control and high fat diet-induced obesity. TauT-knockout (TauTKO) mice exhibited lower body weight and abdominal fat mass when maintained on normal chow than wild-type (WT) mice. Blood glucose disposal after an intraperitoneal glucose injection was faster in TauTKO mice than in WT mice despite lower serum insulin levels. Islet beta-cells (insulin positive area) were also decreased in TauTKO mice compared to WT mice. Meanwhile, overnutrition by high fat (60% fat)-diet could lead to obesity in TauTKO mice despite lower body weight under normal chow diet condition, indicating nutrition in normal diet is not enough for TauTKO mice to maintain body weight comparable to WT mice. In conclusion, taurine depletion causes enhanced glucose disposal despite lowering insulin levels and lower body weight, implying deterioration in tissue energy metabolism. Copyright © 2015 The Authors. Production and hosting by Elsevier B.V. All rights reserved.
Cathepsin B is not the processing enzyme for mouse prorenin.
Mercure, Chantal; Lacombe, Marie-Josée; Khazaie, Khashayarsha; Reudelhuber, Timothy L
2010-05-01
Renin, an aspartyl protease that catalyzes the rate-limiting step in the renin-angiotensin system (RAS), is proteolytically activated by a second protease [referred to as the prorenin processing enzyme (PPE)] before its secretion from the juxtaglomerular cells of the kidney. Although several enzymes are capable of activating renin in vitro, the leading candidate for the PPE in the kidney is cathepsin B (CTSB) due to is colocalization with the renin precursor (prorenin) in juxtaglomerular cell granules and because of its site-selective activation of human prorenin both in vitro and in transfected tissue culture cell models. To verify the role of CTSB in prorenin processing in vivo, we tested the ability of CTSB-deficient (CTSB-/-) mice to generate active renin. CTSB-/- mice do not exhibit any overt symptoms (renal malformation, preweaning mortality) typical of an RAS deficiency and have normal levels of circulating active renin, which, like those in control animals, rise more than 15-fold in response to pharmacologic inhibition of the RAS. The mature renin enzyme detected in kidney lysates of CTSB-/- mice migrates at the same apparent molecular weight as that in control mice, and the processing to active renin is not affected by chloroquine treatment of the animals. Finally, the distribution and morphology of renin-producing cells in the kidney is normal in CTSB-/- mice. In conclusion, CTSB-deficient mice exhibit no differences compared with controls in their ability to generate active renin, and our results do not support CTSB as the PPE in mice.
NASA Technical Reports Server (NTRS)
Belay, Tesfaye; Aviles, Hernan; Vance, Monique; Fountain, Kimberly; Sonnenfeld, Gerald
2002-01-01
BACKGROUND: It has been well documented in several studies that many immunologic parameters are altered in experimental animals and human subjects who have flown in space. However, it is not fully known whether these immunologic changes could result in increased susceptibility to infection. Hindlimb (antiorthostatic) unloading of rodents has been used successfully to simulate some of the effects of spaceflight on physiologic systems. OBJECTIVE: The objective of this study was to determine the effect of hindlimb unloading on the outcome of Klebsiella pneumoniae infection in mice. METHODS: Hindlimb-unloaded, hindlimb-restrained, and control mice were intraperitoneally infected with one 50% lethal dose of K pneumoniae 2 days after suspension. Mortality and bacterial load in several organs were compared among the groups. RESULTS: Unloaded mice showed significantly increased mortality and reduced mean time to death compared with that seen in the control groups. Kinetics of bacterial growth with smaller infective doses revealed that control mice were able to clear bacteria from the organs after 30 hours. In contrast, unloaded mice had continued bacterial growth at the same time point. CONCLUSION: The results of this study suggest that hindlimb unloading might enhance the dissemination of K pneumoniae, leading to increased mortality. The complex physiologic changes observed during hindlimb unloading, including stress, have a key role in the pathophysiology of this infection.
Iguchi, Mitsuko; Kakinuma, Yoshihiko; Kurabayashi, Atsushi; Sato, Takayuki; Shuin, Taro; Hong, Seung-Beom; Schmidt, Laura S.; Furihata, Mutsuo
2009-01-01
Background/Aims The von Hippel-Lindau (pVHL) protein functions as an E3 ubiquitin ligase, controlling the stability of hypoxia inducible factor (HIF). Pre-induction of HIF-1α before pathological insult activates a self-defense mechanism and suppresses further aggravation of organ or cellular injury by ischemia. We investigated whether acute inactivation of the VHL gene might play a role in the response of mice to ischemic renal injury. Methods We generated tamoxifen-inducible conditional VHL knockout (VHL-KO) mice to inactivate the VHL gene in an acute manner during renal ischemia-reperfusion injury (IRI) induced by bilateral clamping of kidney arteries. Renal IRI is characterized by renal dysfunction and tubular damage. Results After the procedure of IRI, blood urea nitrogen (BUN) and creatinine (CRN) levels in control mice were significantly higher (BUN, 138.10±13.03 mg/dL; CRN, 0.72±0.16 mg/dL) than in VHL-KO mice (BUN, 52.12±6.61 mg/dL; CRN, 0.24±0.04 mg/dL; BUN: p<0.05; CRN: p<0.05). Histologically, tubular injury scores were higher in control mice than in VHL-KO mice (p<0.05). Conclusion We suggest that the acute inactivation of the VHL gene contributes to protective effects of ischemic preconditioning in renal tubules of the mouse. PMID:18957870
Gutierrez-Orozco, Fabiola; Thomas-Ahner, Jennifer M.; Berman-Booty, Lisa D.; Galley, Jeffrey D.; Chitchumroonchokchai, Chureeporn; Mace, Thomas; Suksamrarn, Sunit; Bailey, Michael T.; Clinton, Steven K.; Lesinski, Gregory B.; Failla, Mark L.
2014-01-01
Scope Ulcerative colitis (UC) is a chronic inflammatory disease of the colon. α-Mangostin (α-MG), the most abundant xanthone in mangosteen fruit, exerts anti-inflammatory and antibacterial activities in vitro. We evaluated the impact of dietary α-MG on murine experimental colitis and on the gut microbiota of healthy mice. Methods and results Colitis was induced in C57BL/6J mice by administration of dextran sulfate sodium (DSS). Mice were fed control diet or diet with α-MG (0.1%). α-MG exacerbated the pathology of DSS-induced colitis. Mice fed diet with α-MG had greater colonic inflammation and injury, as well as greater infiltration of CD3+ and F4/80+ cells, and colonic myeloperoxidase, than controls. Serum levels of granulocyte colony-stimulating factor, IL-6, and serum amyloid A were also greater in α-MG-fed animals than in controls. The colonic and cecal microbiota of healthy mice fed α-MG but no DSS shifted to an increased abundance of Proteobacteria and decreased abundance of Firmicutes and Bacteroidetes, a profile similar to that found in human UC. Conclusion α-MG exacerbated colonic pathology during DSS-induced colitis. These effects may be associated with an induction of intestinal dysbiosis by α-MG. Our results suggest that the use of α-MG-containing supplements by patients with UC may have unintentional risk. PMID:24668769
Wu, Yibo; Lv, Zhuo; Yang, Yang; Dong, Guoying; Yu, Yang; Cui, Yiqiang; Tong, Man; Wang, Liu; Zhou, Zuomin; Zhu, Hui; Zhou, Qi; Sha, Jiahao
2014-05-01
Blastomere biopsy is used in preimplantation genetic diagnosis; however, the long-term implications on the offspring are poorly characterized. We previously reported a high risk of memory defects in adult biopsied mice. Here, we assessed nervous function of aged biopsied mice and further investigated the mechanism of neural impairment after biopsy. We found that aged biopsied mice had poorer spatial learning ability, increased neuron degeneration, and altered expression of proteins involved in neural degeneration or dysfunction in the brain compared to aged control mice. Furthermore, the MeDIP assay indicated a genome-wide low methylation in the brains of adult biopsied mice when compared to the controls, and most of the genes containing differentially methylated loci in promoter regions were associated with neural disorders. When we further compared the genomic DNA methylation profiles of 7.5-days postconception (dpc) embryos between the biopsy and control group, we found the whole genome low methylation in the biopsied group, suggesting that blastomere biopsy was an obstacle to de novo methylation during early embryo development. Further analysis on mRNA profiles of 4.5-dpc embryos indicated that reduced expression of de novo methylation genes in biopsied embryos may impact de novo methylation. In conclusion, we demonstrate an abnormal neural development and function in mice generated after blastomere biopsy. The impaired epigenetic reprogramming during early embryo development may be the latent mechanism contributing to the impairment of the nervous system in the biopsied mice, which results in a hypomethylation status in their brains.
Farman, H H; Windahl, S H; Westberg, L; Isaksson, H; Egecioglu, E; Schele, E; Ryberg, H; Jansson, J O; Tuukkanen, J; Koskela, A; Xie, S K; Hahner, L; Zehr, J; Clegg, D J; Lagerquist, M K; Ohlsson, C
2016-08-01
Estrogens are important regulators of bone mass and their effects are mainly mediated via estrogen receptor (ER)α. Central ERα exerts an inhibitory role on bone mass. ERα is highly expressed in the arcuate (ARC) and the ventromedial (VMN) nuclei in the hypothalamus. To test whether ERα in proopiomelanocortin (POMC) neurons, located in ARC, is involved in the regulation of bone mass, we used mice lacking ERα expression specifically in POMC neurons (POMC-ERα(-/-)). Female POMC-ERα(-/-) and control mice were ovariectomized (OVX) and treated with vehicle or estradiol (0.5 μg/d) for 6 weeks. As expected, estradiol treatment increased the cortical bone thickness in femur, the cortical bone mechanical strength in tibia and the trabecular bone volume fraction in both femur and vertebrae in OVX control mice. Importantly, the estrogenic responses were substantially increased in OVX POMC-ERα(-/-) mice compared with the estrogenic responses in OVX control mice for cortical bone thickness (+126 ± 34%, P < .01) and mechanical strength (+193 ± 38%, P < .01). To test whether ERα in VMN is involved in the regulation of bone mass, ERα was silenced using an adeno-associated viral vector. Silencing of ERα in hypothalamic VMN resulted in unchanged bone mass. In conclusion, mice lacking ERα in POMC neurons display enhanced estrogenic response on cortical bone mass and mechanical strength. We propose that the balance between inhibitory effects of central ERα activity in hypothalamic POMC neurons in ARC and stimulatory peripheral ERα-mediated effects in bone determines cortical bone mass in female mice.
Mori, Takashi; Tan, Jun; Arendash, Gary W.; Koyama, Naoki; Nojima, Yoshiko; Town, Terrence
2009-01-01
Background and Purpose We have previously demonstrated that augmented and prolonged activation of astrocytes detrimentally influences both the subacute and chronic phases of cerebral ischemia. Furthermore, we have suggested that the astrocyte-derived protein S100B may be important in these pathogenic events. However, the causal relationship between S100B and exacerbation of brain damage in vivo remains to be elucidated. Methods Using transgenic mice overexpressing human S100B (Tg huS100B mice), we examined whether S100B plays a cardinal role in aggravation of brain damage after permanent middle cerebral artery occlusion (pMCAO). Results Tg huS100B mice had significantly larger infarct volumes and worse neurological deficits at any time point examined after pMCAO as compared with CD-1 background strain-matched control mice. Infarct volumes in Tg huS100B mice were significantly increased from 1 to 3 and 5 days after pMCAO (delayed infarct expansion), whereas those in control mice were not significantly altered. S100, glial fibrillary acidic protein, and Iba1 burdens in the periinfarct area were significantly increased through to 7 days after pMCAO in Tg huS100B mice, whereas those in control mice reached a plateau at 3 days after pMCAO. Conclusions These results provide genetic evidence that overexpression of human S100B acts to exacerbate brain damage and periinfarct reactive gliosis (astrocytosis and microgliosis) during the subacute phase of pMCAO. PMID:18451356
Scharf, Valery F; Farese, James P; Coomer, Alastair R; Milner, Rowan J; Taylor, David P; Salute, Marc E; Chang, Myron N; Neal, Dan; Siemann, Dietmar W
2013-05-01
Objective-To investigate the effects of bevacizumab, a human monoclonal antibody against vascular endothelial growth factor, on the angiogenesis and growth of canine osteosarcoma cells xenografted in mice. Animals-27 athymic nude mice. Procedures-To each mouse, highly metastasizing parent osteosarcoma cells of canine origin were injected into the left gastrocnemius muscle. Each mouse was then randomly allocated to 1 of 3 treatment groups: high-dose bevacizumab (4 mg/kg, IP), low-dose bevacizumab (2 mg/kg, IP), or control (no treatment). Tumor growth (the number of days required for the tumor to grow from 8 to 13 mm), vasculature, histomorphology, necrosis, and pulmonary metastasis were evaluated. Results-Mice in the high-dose bevacizumab group had significantly delayed tumor growth (mean ± SD, 13.4 ± 3.8 days; range, 9 to 21 days), compared with that for mice in the low-dose bevacizumab group (mean ± SD, 9.4 ± 1.5 days; range, 7 to 11 days) or control group (mean ± SD, 7. 2 ± 1.5 days; range, 4 to 9 days). Mice in the low-dose bevacizumab group also had significantly delayed tumor growth, compared with that for mice in the control group. Conclusions and Clinical Relevance-Results indicated that bevacizumab inhibited growth of canine osteosarcoma cells xenografted in mice, which suggested that vascular endothelial growth factor inhibitors may be clinically useful for the treatment of osteosarcoma in dogs. Impact for Human Medicine-Canine osteosarcoma is used as a research model for human osteosarcoma; therefore, bevacizumab may be clinically beneficial for the treatment of osteosarcoma in humans.
Body Weight Reducing Effect of Oral Boric Acid Intake
Aysan, Erhan; Sahin, Fikrettin; Telci, Dilek; Yalvac, Mehmet Emir; Emre, Sinem Hocaoglu; Karaca, Cetin; Muslumanoglu, Mahmut
2011-01-01
Background: Boric acid is widely used in biology, but its body weight reducing effect is not researched. Methods: Twenty mice were divided into two equal groups. Control group mice drank standard tap water, but study group mice drank 0.28mg/250ml boric acid added tap water over five days. Total body weight changes, major organ histopathology, blood biochemistry, urine and feces analyses were compared. Results: Study group mice lost body weight mean 28.1% but in control group no weight loss and also weight gained mean 0.09% (p<0.001). Total drinking water and urine outputs were not statistically different. Cholesterol, LDL, AST, ALT, LDH, amylase and urobilinogen levels were statistically significantly high in the study group. Other variables were not statistically different. No histopathologic differences were detected in evaluations of all resected major organs. Conclusion: Low dose oral boric acid intake cause serious body weight reduction. Blood and urine analyses support high glucose, lipid and middle protein catabolisms, but the mechanism is unclear. PMID:22135611
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chajekshaul, T.; Hayek, T.; Walsh, A.
1991-08-01
Transgenic mice carrying the human apolipoprotein (apo) A-I gene (HuAITg mice) were used to examine the effects of overexpression of the human gene on high density lipoprotein (HDL) particle size distribution and metabolism. On a chow diet, control mice had HDL cholesterol and apo A-I levels of 49 {plus minus} 2 and 137 {plus minus} 12 mg/dl of plasma, respectively. HuAITg mice had HDL cholesterol, human apo A-I, and mouse apo A-I levels of 88 {plus minus} 2, 255 {plus minus} 19, and 16 {plus minus} 2 mg/dl, respectively. Nondenaturing gradient gel electrophoresis revealed control mouse plasma HDL to bemore » primarily monodisperse with a particle diameter of 10.2 nm, whereas HuAITg mouse plasma HDL was polydisperse with particles of diameter 11.4, 10.2, and 8.7 nm, which correspond in size to human HDL1, HDL2, and HDL3, respectively. In vivo turnover studies of HDL labeled with (3H)cholesteryl linoleyl ether and 125I-apo A-I were performed. In control animals, the fractional catabolic rate (FCR) for HDL cholesteryl ester was significantly more than the apo A-I FCR. In the HuAITg mice, the HDL cholesteryl ester FCR was the same as the apo A-I FCR. There were no significant differences between control and HuAITg animals in the sites of tissue removal of HDL cholesteryl ester, with the liver extracting most of the injected radioactivity. Control and HuAITg animals had comparable liver and intestinal cholesterol synthesis and LDL FCR. In conclusion, HuAITg mice have principally human and not mouse apo A-I in their plasma. This apparently causes a change in HDL particle size distribution in the transgenic mice to one resembling the human pattern. The replacement of mouse by human apo A-I also apparently causes the loss of the selective uptake pathway of HDL cholesteryl esters present in control mice.« less
Zhang, Rui; Zhang, Jingzhu; Fang, Lingduo; Li, Xi; Zhao, Yue; Shi, Wanying; An, Li
2014-08-18
Alzheimer's disease (AD) is a common neurodegenerative disease in elderly individuals, and effective therapies are unavailable. This study was designed to investigate the neuroprotective effects of sulforaphane (an activator of NF-E2-related factor 2) on mice with AD-like lesions induced by combined administration of aluminum and D-galactose. Step-down-type passive avoidance tests showed sulforaphane ameliorated cognitive impairment in AD-like mice. Immunohistochemistry results indicated sulforaphane attenuated cholinergic neuron loss in the medial septal and hippocampal CA1 regions in AD-like mice. However, spectrophotometry revealed no significant difference in acetylcholine level or the activity of choline acetyltransferase or acetylcholinesterase in the cerebral cortex among groups of control and AD-like mice with and without sulforaphane treatment. Sulforaphane significantly increased the numbers of 5-bromo-2'-deoxyuridine-positive neurons in the subventricular and subgranular zones in AD-like mice which were significantly augmented compared with controls. Atomic absorption spectrometry revealed significantly lower aluminum levels in the brains of sulforaphane-treated AD-like mice than in those that did not receive sulforaphane treatment. In conclusion, sulforaphane ameliorates neurobehavioral deficits by reducing cholinergic neuron loss in the brains of AD-like mice, and the mechanism may be associated with neurogenesis and aluminum load reduction. These findings suggest that phytochemical sulforaphane has potential application in AD therapeutics.
Brouwers, Olaf; Janssen, Ben J. A.; Derks, Wouter J. A.; Brouns, Agnieszka E.; Munts, Chantal; Schalkwijk, Casper G.; van der Vusse, Ger J.; van Nieuwenhoven, Frans A.
2014-01-01
Background Type 2 diabetes is frequently associated with co-morbidities, including hypertension. Here we investigated if hypertension is a critical factor in myocardial remodeling and the development of cardiac dysfunction in type 2 diabetic db/db mice. Methods Thereto, 14-wks-old male db/db mice and non-diabetic db/+ mice received vehicle or angiotensin II (AngII) for 4 wks to induce mild hypertension (n = 9–10 per group). Left ventricular (LV) function was assessed by serial echocardiography and during a dobutamine stress test. LV tissue was subjected to molecular and (immuno)histochemical analysis to assess effects on hypertrophy, fibrosis and inflammation. Results Vehicle-treated diabetic mice neither displayed marked myocardial structural remodeling nor cardiac dysfunction. AngII-treatment did not affect body weight and fasting glucose levels, and induced a comparable increase in blood pressure in diabetic and control mice. Nonetheless, AngII-induced LV hypertrophy was significantly more pronounced in diabetic than in control mice as assessed by LV mass (increase +51% and +34%, respectively, p<0.01) and cardiomyocyte size (+53% and +31%, p<0.001). This was associated with enhanced LV mRNA expression of markers of hypertrophy and fibrosis and reduced activation of AMP-activated protein kinase (AMPK), while accumulation of Advanced Glycation End products (AGEs) and the expression levels of markers of inflammation were not altered. Moreover, AngII-treatment reduced LV fractional shortening and contractility in diabetic mice, but not in control mice. Conclusions Collectively, the present findings indicate that type 2 diabetes in its early stage is not yet associated with adverse cardiac structural changes, but already renders the heart more susceptible to hypertension-induced hypertrophic remodeling. PMID:24416343
Kabir, Zeeba D; Katzman, Aaron C; Kosofsky, Barry E
2013-01-01
Prenatal cocaine exposure has been shown to alter cognitive processes of exposed individuals, presumed to be a result of long-lasting molecular alterations in the brain. In adult prenatal cocaine exposed (PCOC) mice we have identified a deficit in recall of fear extinction, a behavior that is dependent on the medial prefrontal cortex (mPFC) and the hippocampus. While we observed no change in the constitutive expression of brain derived neurotrophic factor (BDNF) protein and mRNA in the mPFC and hippocampus of adult PCOC mice, we observed blunted BDNF signaling in the mPFC of adult PCOC mice after fear extinction compared to the control animals. Specifically, during the consolidation phase of the extinction memory, we observed a decrease in BDNF protein and it's phospho-TrkB receptor expression. Interestingly, at this same time point there was a significant increase in total Bdnf mRNA levels in the mPFC of PCOC mice as compared with controls. In the Bdnf gene, we identified decreased constitutive binding of the transcription factors, MeCP2 and P-CREB at the promoters of Bdnf exons I and IV in the mPFC of PCOC mice, that unlike control mice remained unchanged when measured during the behavior. Finally, bilateral infusion of recombinant BDNF protein into the infralimbic subdivision of the mPFC during the consolidation phase of the extinction memory rescued the behavioral deficit in PCOC mice. In conclusion, these findings extend our knowledge of the neurobiologic impact of prenatal cocaine exposure on the mPFC of mice, which may lead to improved clinical recognition and treatment of exposed individuals.
Wang, Rui; Feng, Xia; Zhu, Kai; Zhao, Xin; Suo, Huayi
2016-05-01
The aim of the present study was to evaluate the preventive effects of banana peel polyphenols (BPPs) against hepatic injury. Mice were divide into normal, control, 100 mg/kg and 200 mg/kg banana peel polyphenol and silymarin groups. All the mice except normal mice were induced with hepatic damage using CCl 4 . The serum and tissue levels of mice were determined by a kit and the tissues were further examined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis. BPPs reduced the serum levels of aspartate aminotransferase, alanine aminotransferase and lactate dehydrogenase in a CCl 4 -induced mouse model of hepatic injury. Furthermore, BPPs reduced the levels of malondialdehyde and triglyceride, while increasing glutathione levels in the serum and liver tissues of mice. In addition, the effects of 200 mg/kg treatment were more evident, and these effects were comparable to those of the drug silymarin. Serum levels of the cytokines, interleukin (IL)-6, IL-12, tumor necrosis factor (TNF)-α and interferon-γ, were reduced in the mice treated with BPPs compared with injury control group mice, and these levels were comparable to those of the normal and silymarin-treated groups. Histopathological examination indicated that BPPs were able to reduce the extent of CCl 4 -induced liver tissue injury and protect the liver cells. Furthermore, the mRNA and protein expression levels of the inflammation-associated factors cyclooxygenase-2, nitric oxide synthase, TNF-α and IL-1β were reduced in mice treated with BPPs compared with the control group mice. Mice that received 200 mg/kg BPP exhibited reduced expression levels of these factors compared with mice that received 100 mg/kg BPP. In conclusion, the results of the present study suggested that BPPs exert a good preventive effect against hepatic injury.
Leite, Hércules Ribeiro; Oliveira-Lima, Onésia Cristina de; Pereira, Luciana de Melo; Oliveira, Vinícius Elias de Moura; Prado, Vania Ferreira; Prado, Marco Antônio Máximo; Pereira, Grace Schenatto; Massensini, André Ricardo
2016-10-01
In addition to the well-known functions as a neurotransmitter, acetylcholine (ACh) can modulate of the immune system. Nonetheless, how endogenous ACh release inflammatory responses is still not clear. To address this question, we took advantage of an animal model with a decreased ACh release due a reduction (knockdown) in vesicular acetylcholine transporter (VAChT) expression (VAChT-KD(HOM)). These animals were challenged with lipopolysaccharide (LPS). Afterwards, we evaluated sickness behavior and quantified systemic and cerebral inflammation as well as neuronal activation in the dorsal vagal complex (DVC). VAChT-KD(HOM) mice that were injected with LPS (10mg/kg) showed increased mortality rate as compared to control mice. In line with this result, a low dose of LPS (0.1mg/kg) increased the levels of pro-inflammatory (TNF-α, IL-1β, and IL-6) and anti-inflammatory (IL-10) cytokines in the spleen and brain of VAChT-KD(HOM) mice in comparison with controls. Similarly, serum levels of TNF-α and IL-6 were increased in VAChT-KD(HOM) mice. This excessive cytokine production was completely prevented by administration of a nicotinic receptor agonist (0.4mg/kg) prior to the LPS injection. Three hours after the LPS injection, c-Fos expression increased in the DVC region of VAChT-KD(HOM) mice compared to controls. In addition, VAChT-KD(HOM) mice showed behavioral changes such as lowered locomotor and exploratory activity and reduced social interaction after the LPS challenge, when compared to control mice. Taken together, our results show that the decreased ability to release ACh exacerbates systemic and cerebral inflammation and promotes neural activation and behavioral changes induced by LPS. In conclusion, our findings support the notion that activity of cholinergic pathways, which can be modulated by VAChT expression, controls inflammatory and neural responses to LPS challenge. Copyright © 2016 Elsevier Inc. All rights reserved.
Cathelicidin Signaling via the Toll-Like Receptor Protects Against Colitis in Mice
Koon, Hon Wai; Shih, David Quan; Chen, Jeremy; Bakirtzi, Kyriaki; Hing, Tressia C; Law, Ivy; Ho, Samantha; Ichikawa, Ryan; Zhao, Dezheng; Xu, Hua; Gallo, Richard; Dempsey, Paul; Cheng, Genhong; Targan, Stephan R; Pothoulakis, Charalabos
2011-01-01
Background & Aims Cathelicidin (encoded by Camp) is an anti-microbial peptide in the innate immune system. We examined whether macrophages express cathelicidin in colons of mice with experimental colitis and patients with inflammatory bowel disease; we investigated its signaling mechanisms. Methods Quantitative, real-time, reverse transcription PCR, bacterial 16S PCR, immunofluorescence, and small interfering (si)RNA analyses were performed. Colitis was induced in mice using sodium dextran sulfate (DSS); levels of cathelicidin were measured in human primary monocytes. Results Expression of cathelicidin increased in the inflamed colonic mucosa of mice with DSS-induced colitis, compared with controls. Cathelicidin expression localized to mucosal macrophages in inflamed colon tissues of patients and mice. Exposure of human primary monocytes to E coli DNA induced expression of Camp mRNA, which required signaling by ERK; expression was reduced by siRNAs against toll-like receptor (TLR)9 and MyD88. Intracolonic administration of bacterial DNA to wild-type mice induced expression of cathelicidin in colons of control mice and mice with DSS-induced colitis. Colon expression of cathelicidin was significantly reduced in TLR9 −/− mice with DSS-induced colitis. Compared with wild-type mice, Camp −/− mice developed a more severe form of DSS-induced colitis, particularly after intracolonic administration of E coli DNA. Expression of cathelicidin from bone marrow-derived immune cells regulated DSS induction of colitis in transplantation studies in mice. Conclusions Cathelicidin protects against colitis induction in mice. Increased expression of cathelicidin in monocytes and experimental models of colitis involves activation of TLR9–ERK signaling by bacterial DNA. This pathway might be involved in pathogenesis of ulcerative colitis. PMID:21762664
Laube, Beth L.; Afshar-Mohajer, Nima; Koehler, Kirsten; Chen, Gang; Lazarus, Philip; Collaco, Joseph M.; McGrath-Morrow, Sharon A.
2017-01-01
Objective To determine the effect of an acute (1 week) and chronic (3 weeks) exposure to E-cigarette (E-cig) emissions on mucociliary clearance (MCC) in murine lungs. Methods C57BL/6 male mice (age 10.5 ±2.4 weeks) were exposed for 20min/day to E-cigarette aerosol generated by a Joyetech 510-T® E-cig containing either 0% nicotine (N)/propylene glycol (PG) for 1 week (n = 6), or 3 weeks (n = 9), or 2.4% N/PG for one week (n = 6), or 3 weeks (n = 9), followed by measurement of MCC. Control mice (n = 15) were not exposed to PG alone, or N/PG. MCC was assessed by gamma camera following aspiration of 99mtechnetium aerosol and was expressed as the amount of radioactivity removed from both lungs over 6 hours (MCC6hrs). Venous blood was assayed for cotinine levels in control mice and in mice exposed for 3-weeks to PG alone and N/PG. Results MCC6hrs in control mice and in mice acutely exposed to PG alone and N/PG was similar, averaging (±1 standard deviation) 8.6±5.2%, 7.5±2.8% and 11.2±5.9%, respectively. In contrast, chronic exposure to PG alone stimulated MCC6hrs (17.2 ±8.0)% and this stimulation was significantly blunted following chronic exposure to N/PG (8.7 ±4.6)% (p < .05). Serum cotinine levels were <0.5ng/ml in control mice and in mice exposed to PG alone, whereas, N/PG exposed mice averaged 14.6 ± 12.0 ng/ml. Conclusions In this murine model, a chronic, daily, 20 min-exposure to N/PG, but not an acute exposure, slowed MCC, compared to exposure to PG alone and led to systemic absorption of nicotine. PMID:28651446
Expression of FLT4 in hypoxia-induced neovascular models in vitro and in vivo
Liu, Jiao-Lian; Xia, Xiao-Bo; Xu, Hui-Zhuo
2011-01-01
AIM To investigate the expression of FLT4 in retina with oxygen induced retinopathy (OIR) and in brain endothelial cell lines (bEnd3) under hypoxia conditions in mice. METHODS Fifty-two one-week-old C57BL/6J mice were divided into control group and hypoxia group. The mice of hypoxia group were exposed to 75% oxygen for 5 days and then returned to the room air to induce retinal neovascularization. Mice in control group were raised in the environment of room air at the same time. The expressions of FLT4 mRNA and protein were checked with RT-PCR and Western Blot analysis at postnatal day 14, 17 and 21 ( P14, P17 and P21) respectively. 125mmol/L CoCl2 were added to the culture medium of bEnd3 cell, proteins were extracted in 12, 24, 48 and 72 hours and FLT4 levels were examined by Western Blot analysis. RESULTS The mRNA and protein level of FLT4 expressed in P14 and P17 OIR mice retina statistically up-regulated as compared with those in control group, but there was no statistical difference between OIR group and control group at P21. FLT4 levels increased significantly in 12, 24 and 48 hours hypoxia intervened bEnd3 cells, its levels in 72 hours increased mildly but showed no significance. CONCLUSION FLT4 levels increase in OIR mice retinas and bEnd3 cells in hypoxia. It may play an important role in endothelial cells proliferation in hypoxia and retinal neovascularization in OIR mice. PMID:22553602
NASA Technical Reports Server (NTRS)
Ding, B.; Price, R. L.; Goldsmith, E. C.; Borg, T. K.; Yan, X.; Douglas, P. S.; Weinberg, E. O.; Bartunek, J.; Thielen, T.; Didenko, V. V.;
2000-01-01
BACKGROUND: To determine potential mechanisms of the transition from hypertrophy to very early failure, we examined apoptosis in a model of ascending aortic stenosis (AS) in male FVB/n mice. METHODS AND RESULTS: Compared with age-matched controls, 4-week and 7-week AS animals (n=12 to 16 per group) had increased ratios of left ventricular weight to body weight (4.7+/-0.7 versus 3.1+/-0.2 and 5. 7+/-0.4 versus 2.7+/-0.1 mg/g, respectively, P<0.05) with similar body weights. Myocyte width was also increased in 4-week and 7-week AS mice compared with controls (19.0+/-0.8 and 25.2+/-1.8 versus 14. 1+/-0.5 microm, respectively, P<0.01). By 7 weeks, AS myocytes displayed branching with distinct differences in intercalated disk size and staining for beta(1)-integrin on both cell surface and adjacent extracellular matrix. In vivo left ventricular systolic developed pressure per gram as well as endocardial fractional shortening were similar in 4-week AS and controls but depressed in 7-week AS mice. Myocyte apoptosis estimated by in situ nick end-labeling (TUNEL) was extremely rare in 4-week AS and control mice; however, a low prevalence of TUNEL-positive myocytes and DNA laddering were detected in 7-week AS mice. The specificity of TUNEL labeling was confirmed by in situ ligation of hairpin oligonucleotides. CONCLUSIONS: Our findings indicate that myocyte apoptosis develops during the transition from hypertrophy to early failure in mice with chronic biomechanical stress and support the hypothesis that the disruption of normal myocyte anchorage to adjacent extracellular matrix and cells, a process called anoikis, may signal apoptosis.
Hsia, Chien-Hsun; Wang, Cheng-Hsin; Kuo, Yi-Wen; Ho, Ying-Jui; Chen, Hsiao-Ling
2012-06-01
Subcutaneous (s.c.) D-galactose (DG) treatment has been shown to facilitate the development of biomarkers for Alzheimer's disease in C57BL/6J mice. The aim of the present study was to determine whether this treatment in young BALB/cJ mice, another mouse strain, enhanced oxidative stress to similar extents shown in older mice, and to further determine the effects of fructo-oligosaccharide (FO), a prebiotic fibre and vitamin E (antioxidant control) on the DG-induced oxidative damage of lipids, proteins and mitochondrial DNA, and erythrocyte antioxidant enzyme activities. Mice (12 weeks of age, n 40) were divided into four groups: vehicle (s.c. saline)+control (modified rodent chow); DG (s.c. 1·2 g/kg body weight)+control; DG+FO (5 %, w/w); DG+vitamin E (α-tocopherol, 0·2 %). Then, the animals were killed after 52 d of treatment. Another natural ageing (NA) group without any injection was killed at 47 weeks of age, which served as an aged control. The results indicated that the DG treatment enhanced malonaldehyde dimethyl acetal (MDA) levels in the plasma, liver and cerebral cortex, and protein carbonyl levels in the liver and hippocampus to similar levels shown in the NA group. FO, similar to α-tocopherol, systemically normalised DG-induced elevations in the levels of MDA in the plasma, liver and cerebral cortex, protein carbonyls in the liver and hippocampus, hepatic mitochondrial 8-oxo-deoxyguanosine and erythrocyte superoxide dismutase activity. In conclusion, the s.c. DG treatment in younger BALB/cJ mice resembled the oxidative status in older mice. FO supplementation systemically prevented DG-induced oxidative stress, probably through its fermentation products and prebiotic effect.
Aging and alcohol interact to alter hepatic DNA hydroxymethylation
Tammen, Stephanie A.; Dolnikowski, Gregory G.; Ausman, Lynne M.; Liu, Zhenhua; Sauer, Julia; SimonettaFriso; Choi, Sang-Woon
2014-01-01
Background Aging and chronic alcohol consumption are both modifiers of DNA methylation but it is not yet known whether chronic alcohol consumption also alters DNA hydroxymethylation, a newly discovered epigenetic mark produced by oxidation of methylcytosine. Furthermore, it has not been tested whether aging and alcohol interact to modify this epigenetic phenomenon, thereby having an independent effect on gene expression. Methods Old (18 months) and young (4 months) male C57BL/6 mice were pair-fed either a Lieber-DeCarli liquid diet with alcohol (18% of energy) or an isocaloricLieber-DeCarli control diet for 5 weeks. Global DNA hydroxymethylation and DNA methylation were analyzed from hepatic DNA using a new LC/MS-MS method. Hepatic mRNA expression of the Tet enzymes and Cyp2e1 were measured via qRTPCR. Results In young mice, mild chronic alcohol exposure significantly reduced global DNA hydroxymethylation compared with control mice (0.22%±0.01% vs 0.29±0.06%, p = 0.004). Alcohol did not significantly alter hydroxymethylcytosine levels in old mice. Old mice fed the control diet showed decreased global DNA hydroxymethylation compared with young mice fed the control diet (0.24±0.02% vs 0.29±0.06%, p = 0.04). This model suggests an interaction between aging and alcohol in determining DNA hydroxymethylation (pinteraction = 0.009). Expression of Tet2 and Tet3 enzymes was decreased in the old mice relative to the young (p < 0.005). Conclusions The observation that alcohol alters DNA hydroxymethylation indicates a new epigenetic effect of alcohol. This is the first study demonstrating the interactive effects of chronic alcohol consumption and aging on DNA hydroxymethylation. PMID:25070523
Long-Term Simulated Microgravity Causes Cardiac RyR2 Phosphorylation and Arrhythmias in Mice
Respress, Jonathan L.; Gershovich, Pavel M.; Wang, Tiannan; Reynolds, Julia O.; Skapura, Darlene G.; Sutton, Jeffrey P.; Miyake, Christina Y.; Wehrens, Xander H.T.
2014-01-01
Background Long-term exposure to microgravity during space flight may lead to cardiac remodeling and rhythm disturbances. In mice, hindlimb unloading (HU) mimics the effects of microgravity and stimulates physiological adaptations, including cardiovascular deconditioning. Recent studies have demonstrated an important role played by changes in intracellular Ca handling in the pathogenesis of heart failure and arrhythmia. In this study, we tested the hypothesis that cardiac remodeling following HU in mice involves abnormal intracellular Ca regulation through the cardiac ryanodine receptor (RyR2). Methods and Results Mice were subjected to HU by tail suspension for 28 to 56 days in order to induce cardiac remodeling (n=15). Control mice (n=19) were treated equally, with the exception of tail suspension. Echocardiography revealed cardiac enlargement and depressed contractility starting at 28 days post-HU versus control. Moreover, mice were more susceptible to pacing-induced ventricular arrhythmias after HU. Ventricular myocytes isolated from HU mice exhibited an increased frequency of spontaneous sarcoplasmic reticulum (SR) Ca release events and enhanced SR Ca leak via RyR2. Western blotting revealed increased RyR2 phosphorylation at S2814, and increased CaMKII auto-phosphorylation at T287, suggesting that CaMKII activation of RyR2 might underlie enhanced SR Ca release in HU mice. Conclusion These data suggest that abnormal intracellular Ca handling, likely due to increased CaMKII phosphorylation of RyR2, plays a role in cardiac remodeling following simulated microgravity in mice. PMID:25227892
Attakpa, E S; Sangaré, M M; Béhanzin, G J; Ategbo, J-M; Seri, B; Khan, N A
2017-01-01
We investigated the antidiabetic effect of Moringa olifeira Lam. in a diet-induced obesity (DIO) mouse model. Six mice were randomly selected as normal controls. Moringa olifeira Lam. leaf extract at a dose of 200, 400 or 600 mg/kg body weight, glibenclamide (Glib) at the dose of 10 mg/kg (positive control) and distilled water at 10 ml/kg (control group) were administered orally by gastric intubation, and each group consisted of six mice. Insulinsensitive tissues (liver, skeletal muscle) were collected to investigate antidiabetic effects and examine the plant's molecular mechanisms. Moringa olifeira Lam. leaf extract prevented weight gain. It also reduced blood glucose in DIO mice. Glib and Moringa olifeira Lam. leaf extract, 400 mg/kg, treatments restored insulin levels towards normal values (P < 0.05 versus diabetic control group). Western immunoblot analysis of different tissues, collected at the end of the study, demonstrated that Moringa olifeira Lam. stimulated activation of the insulin-dependent Akt pathway and increased the protein content of Glut 4 in skeletal muscle. The improvement of hepatic steatosis observed in DIO-treated mice was associated with a decrease in the hepatic content of SREBP-1, a transcription factor involved in de novo lipogenesis. The hepatic PPARα protein content in the plant extract- treated mice remained significantly higher than those of the control group (P < 0.05). In conclusion, this study provides the first evidence for direct action of Moringa olifeira Lam. on pancreatic β-cells, enhancing glucose-stimulated insulin secretion. This correlated with hypoglycaemic effects in diabetic mice associated with restored levels of plasma insulin.
Inducible targeting of CNS astrocytes in Aldh1l1-CreERT2 BAC transgenic mice
Winchenbach, Jan; Düking, Tim; Berghoff, Stefan A.; Stumpf, Sina K.; Hülsmann, Swen; Nave, Klaus-Armin; Saher, Gesine
2016-01-01
Background: Studying astrocytes in higher brain functions has been hampered by the lack of genetic tools for the efficient expression of inducible Cre recombinase throughout the CNS, including the neocortex. Methods: Therefore, we generated BAC transgenic mice, in which CreERT2 is expressed under control of the Aldh1l1 regulatory region. Results: When crossbred to Cre reporter mice, adult Aldh1l1-CreERT2 mice show efficient gene targeting in astrocytes. No such Cre-mediated recombination was detectable in CNS neurons, oligodendrocytes, and microglia. As expected, Aldh1l1-CreERT2 expression was evident in several peripheral organs, including liver and kidney. Conclusions: Taken together, Aldh1l1-CreERT2 mice are a useful tool for studying astrocytes in neurovascular coupling, brain metabolism, synaptic plasticity and other aspects of neuron-glia interactions. PMID:28149504
Inducible targeting of CNS astrocytes in Aldh1l1-CreERT2 BAC transgenic mice.
Winchenbach, Jan; Düking, Tim; Berghoff, Stefan A; Stumpf, Sina K; Hülsmann, Swen; Nave, Klaus-Armin; Saher, Gesine
2016-01-01
Background: Studying astrocytes in higher brain functions has been hampered by the lack of genetic tools for the efficient expression of inducible Cre recombinase throughout the CNS, including the neocortex. Methods: Therefore, we generated BAC transgenic mice, in which CreERT2 is expressed under control of the Aldh1l1 regulatory region. Results: When crossbred to Cre reporter mice, adult Aldh1l1-CreERT2 mice show efficient gene targeting in astrocytes. No such Cre-mediated recombination was detectable in CNS neurons, oligodendrocytes, and microglia. As expected, Aldh1l1-CreERT2 expression was evident in several peripheral organs, including liver and kidney. Conclusions: Taken together, Aldh1l1-CreERT2 mice are a useful tool for studying astrocytes in neurovascular coupling, brain metabolism, synaptic plasticity and other aspects of neuron-glia interactions.
Increased postischemic brain injury in mice deficient in uracil-DNA glycosylase
Endres, Matthias; Biniszkiewicz, Detlev; Sobol, Robert W.; Harms, Christoph; Ahmadi, Michael; Lipski, Andreas; Katchanov, Juri; Mergenthaler, Philipp; Dirnagl, Ulrich; Wilson, Samuel H.; Meisel, Andreas; Jaenisch, Rudolf
2004-01-01
Uracil-DNA glycosylase (UNG) is involved in base excision repair of aberrant uracil residues in nuclear and mitochondrial DNA. Ung knockout mice generated by gene targeting are viable, fertile, and phenotypically normal and have regular mutation rates. However, when exposed to a nitric oxide donor, Ung–/– fibroblasts show an increase in the uracil/cytosine ratio in the genome and augmented cell death. After combined oxygen-glucose deprivation, Ung–/– primary cortical neurons have increased vulnerability to cell death, which is associated with early mitochondrial dysfunction. In vivo, UNG expression and activity are low in brains of naive WT mice but increase significantly after reversible middle cerebral artery occlusion and reperfusion. Moreover, major increases in infarct size are observed in Ung–/– mice compared with littermate control mice. In conclusion, our results provide compelling evidence that UNG is of major importance for tissue repair after brain ischemia. PMID:15199406
Zhou, June; Martin, Roy J; Tulley, Richard T; Raggio, Anne M; Shen, Li; Lissy, Elizabeth; McCutcheon, Kathleen; Keenan, Michael J
2009-01-01
Resistant starch (RS) is a fermentable fiber that decreases dietary energy density and results in fermentation in the lower gut. The current studies examined the effect of RS on body fat loss in mice. In a 12 week study (study 1), the effect of two different types of RS on body fat was compared with two control diets (0% RS) in C57Bl/6J mice: regular control diet or the control diet that had equal energy density as the RS diet (EC). All testing diets had 7% (wt/wt) dietary fat. In a 16 week study (study 2), the effect of RS on body fat was compared with EC in C57BL/6J mice and two obese mouse models (NONcNZO10/LtJ or Non/ShiLtJ). All mice were fed control (0% RS) or 30% RS diet for 6 weeks with 7% dietary fat. On the 7th week, the dietary fat was increased to 11% for half of the mice, and remained the same for the rest. Body weight, body fat, energy intake, energy expenditure, and oral glucose tolerance were measured during the study. At the end of the studies, the pH of cecal contents was measured as an indicator of RS fermentation. Results: Compared with EC, dietary RS decreased body fat and improved glucose tolerance in C57BL/6J mice, but not in obese mice. For other metabolic characteristics measured, the alterations by RS diet were similar for all three types of mice. The difference in dietary fat did not interfere with these results. The pH of cecal contents in RS fed mice was decreased for C57BL/6J mice but not for obese mice, implying the impaired RS fermentation in obese mice. Conclusion: 1) decreased body fat by RS is not simply due to dietary energy dilution in C57Bl/6J mice, and 2) along with their inability to ferment RS; RS fed obese mice did not lose body fat. Thus, colonic fermentation of RS might play an important role in the effect of RS on fat loss. PMID:19739641
Chronic consumption of distilled sugarcane spirit induces anxiolytic-like effects in mice
Sena, Maria Clécia P; Nunes, Fabíola C; Stiebbe Salvadori, Mirian G S; Carvalho, Cleyton Charles D; Morais, Liana Clébia S L; Braga, Valdir A
2011-01-01
OBJECTIVE: Chronic ethanol consumption is a major public health problem throughout the world. We investigated the anxiolytic-like effects and the possible ever injury induced by the chronic consumption of ethanol or sugarcane spirit in mice. METHOD: Adult mice were exposed to a two-bottle free-choice paradigm for 6 weeks. The mice in Group A (n = 16) had access to sugarcane spirit + distilled water, the mice in Group B (n = 15) had access to ethanol + distilled water, and the mice in Group C (control, n = 14) had access to distilled water + distilled water. The ethanol content in the beverages offered to Groups A and B was 2% for the first week, 5% for the second week and 10% for the remaining four weeks. At the end of the experimental period, the mice were evaluated using the elevated-plus maze and the hole-board test to assess their anxiety-related behaviors. We also determined the serum aspartate aminotransferase and alanine aminotransferase levels. RESULTS: In the elevated-plus maze, the time spent in the open arms was increased in the mice exposed to chronic ethanol (32 ± 8 vs. 7 ± 2 s, n = 9) or sugarcane spirit (36 ± 9 vs. 7 ± 2 s, n = 9) compared to the controls. In the hole-board test, the mice exposed to ethanol or sugarcane spirit displayed increases in their head-dipping frequency (16 ± 1 for the control group, 27 ± 2 for the ethanol group, and 31 ± 3 for the sugarcane-spirit group; n = 9 for each group). In addition, the mice exposed to sugarcane spirit displayed an increase in the aspartate aminotransferase / alanine aminotransferase ratio compared to the ethanol group (1.29 ± 0.17 for the control group and 2.67 ± 0.17 for the sugarcane spirit group; n = 8 for each group). CONCLUSION: The chronic consumption of sugarcane-spirit produces liver injury and anxiolytic-like effects and the possible liver injury in mice. PMID:21789394
Memory Deficit Recovery after Chronic Vanadium Exposure in Mice
Folarin, Oluwabusayo; Olopade, Funmilayo; Onwuka, Silas; Olopade, James
2016-01-01
Vanadium is a transitional metal with an ability to generate reactive oxygen species in the biological system. This work was designed to assess memory deficits in mice chronically exposed to vanadium. A total of 132 male BALB/c mice (4 weeks old) were used for the experiment and were divided into three major groups of vanadium treated, matched controls, and animals exposed to vanadium for three months and thereafter vanadium was withdrawn. Animals were tested using Morris water maze and forelimb grip test at 3, 6, 9, and 12 months of age. The results showed that animals across the groups showed no difference in learning but had significant loss in memory abilities after 3 months of vanadium exposure and this trend continued in all vanadium-exposed groups relative to the controls. Animals exposed to vanadium for three months recovered significantly only 9 months after vanadium withdrawal. There was no significant difference in latency to fall in the forelimb grip test between vanadium-exposed groups and the controls in all age groups. In conclusion, we have shown that chronic administration of vanadium in mice leads to memory deficit which is reversible but only after a long period of vanadium withdrawal. PMID:26962395
Memory Deficit Recovery after Chronic Vanadium Exposure in Mice.
Folarin, Oluwabusayo; Olopade, Funmilayo; Onwuka, Silas; Olopade, James
2016-01-01
Vanadium is a transitional metal with an ability to generate reactive oxygen species in the biological system. This work was designed to assess memory deficits in mice chronically exposed to vanadium. A total of 132 male BALB/c mice (4 weeks old) were used for the experiment and were divided into three major groups of vanadium treated, matched controls, and animals exposed to vanadium for three months and thereafter vanadium was withdrawn. Animals were tested using Morris water maze and forelimb grip test at 3, 6, 9, and 12 months of age. The results showed that animals across the groups showed no difference in learning but had significant loss in memory abilities after 3 months of vanadium exposure and this trend continued in all vanadium-exposed groups relative to the controls. Animals exposed to vanadium for three months recovered significantly only 9 months after vanadium withdrawal. There was no significant difference in latency to fall in the forelimb grip test between vanadium-exposed groups and the controls in all age groups. In conclusion, we have shown that chronic administration of vanadium in mice leads to memory deficit which is reversible but only after a long period of vanadium withdrawal.
Ziegler, Karin A; Ahles, Andrea; Wille, Timo; Kerler, Julia; Ramanujam, Deepak; Engelhardt, Stefan
2018-01-01
Abstract Aims Cardiac inflammation has been suggested to be regulated by the sympathetic nervous system (SNS). However, due to the lack of methodology to surgically eliminate the myocardial SNS in mice, neuronal control of cardiac inflammation remains ill-defined. Here, we report a procedure for local cardiac sympathetic denervation in mice and tested its effect in a mouse model of heart failure post-myocardial infarction. Methods and results Upon preparation of the carotid bifurcation, the right and the left superior cervical ganglia were localized and their pre- and postganglionic branches dissected before removal of the ganglion. Ganglionectomy led to an almost entire loss of myocardial sympathetic innervation in the left ventricular anterior wall. When applied at the time of myocardial infarction (MI), cardiac sympathetic denervation did not affect acute myocardial damage and infarct size. In contrast, cardiac sympathetic denervation significantly attenuated chronic consequences of MI, including myocardial inflammation, myocyte hypertrophy, and overall cardiac dysfunction. Conclusion These data suggest a critical role for local sympathetic control of cardiac inflammation. Our model of myocardial sympathetic denervation in mice should prove useful to further dissect the molecular mechanisms underlying cardiac neural control. PMID:29186414
An, Dong; Chen, Wei; Yu, De-Qin; Wang, Shi-Wei; Yu, Wei-Zhi; Xu, Hong; Wang, Dong-Mei; Zhao, Dan; Sun, Yi-Ping; Wu, Jun-Cheng; Tang, Yi-Yuan; Yin, Sheng-Ming
2017-05-01
Both Kunming (KM) mice and BALB/c mice have been widely used as rodent models to investigate stress-associated mental diseases. However, little is known about the different behaviors of KM mice and BALB/c mice after social isolation, particularly cognitive and aggressive behaviors. In this study, the behaviors of KM and BALB/c mice isolated for 2, 4 and 8 weeks and age-matched controls were evaluated using object recognition, object location and resident-intruder tests. The recovery of behavioral deficits by re-socialization was also examined for the isolated mice in adolescence. Our study showed that isolation for 2, 4 and 8 weeks led to cognitive deficits and increased aggressiveness for both KM and BALB/c mice. An important finding is that re-socialization could completely recover spatial/non-spatial cognitive deficits resulted from social isolation for both KM and BALB/c mice. In addition, age only impacted aggressiveness of KM mice. Moreover, isolation duration showed different impacts on cognitive and aggressive behaviors for both KM and BALB/c mice. Furthermore, BALB/c mice showed weak spatial/non-spatial memory and low aggressiveness when they were at the same age and isolation duration, compared to KM mice. In conclusion, KM mice and BALB/c mice behaved characteristically under physiology and isolation conditions. © 2016 Japanese Society of Animal Science.
Therapeutic Effect of Dendrobium candidum on Lupus Nephritis in Mice
Wang, Qiang; Sun, Peng; Wang, Rui; Zhao, Xin
2017-01-01
Context: Dendrobium candidum (D. candimum) widely is a functional drug. The curative effect of D. candidum on lupus nephritis has been studied in vivo. Materials and Method: The DBA/2 and B6D2F1 mice were used for this in vivo experiment. The 50% effective dose (ED50) was used to check the effective concentration for this study. Then the SCr, BUN, TC, TG, IL-6, IL-12, TNF-α, and IFN-γ levels were determined by kits. The output of urine protein was determined by means of Coomassie Brilliant Blue, and the auto-antibody dsDNA was determined with titer plate technology and indirect immunofluorescence. The NF-κB, IκB-α, TGF ‘β1, Fas, and FasL expressions were measured by RT-PCR and western blot assay. The component analysis of D. candidum was determined by nuclear magnetic resonance. Results: Based on the ED50 result at 329 mg/kg, 200 and 400 mg/kg doses were chosen for this study. SCr, BUN, TC and TG levels of 400 mg/kg D. candidum mice were lower than control mice, TP and ALB levels were higher than control mice. The control and 400 mg/kg treated mice tested positive for dsDNA at the end of sixth and tenth week after the experiment began. The glomerular number of 400 mg/kg treated mice was more than control group. Treatment with 400 mg/kg D. candidum reduced IL-6, IL-12, TNF-α and IFN-γcytokine levels as compared to control mice. D. candidum decreased NF-κb, TGF ‘β1, Fas, FasL and increased IκB-α expressions in kidney tissue. There were 11 compounds in dry D. candidum, these compounds might make the curative effects of lupus nephritis. Conclusion: D. candidum showed a potential curative effect on lupus nephritis. It could be used as a health medicine on lupus nephritis. SUMMARY D. candidum reduced the SCr, BUN, TC, TG serum levels and raised the TP, ALB levels compared to control group.The glomerular number of D. candidum treated mice was more than control group.D. candidum treated mice showed lower IL-6, IL-12, TNF-α and IFN-γ cytokine levels than control mice.D. candidum decreased NF-κb, TGF-β1, Fas, FasL and increased IκB-α expressions in kidney tissue. Abbreviations used: LN: Lupus nephritis, SLE: systemic lupus erythematosus, D. candidum: Dendrobium candidum; IL-6: interleukin-6, IL-12: interleukin-12, TNF-α: tumor necrosis factor alpha, IFN-γ: Interferon-gamma, SCr: serum creatinine, BUN: blood urea nitrogen, TC: total cholesterol, TG: triglyceride, TP: total protein, ALB: albumin. PMID:28216896
Visual Cone Arrestin 4 Contributes to Visual Function and Cone Health
Deming, Janise D.; Pak, Joseph S.; Brown, Bruce M.; Kim, Moon K.; Aung, Moe H.; Eom, Yun Sung; Shin, Jung-a; Lee, Eun-Jin; Pardue, Machelle T.; Craft, Cheryl Mae
2015-01-01
Purpose Visual arrestins (ARR) play a critical role in shutoff of rod and cone phototransduction. When electrophysiological responses are measured for a single mouse cone photoreceptor, ARR1 expression can substitute for ARR4 in cone pigment desensitization; however, each arrestin may also contribute its own, unique role to modulate other cellular functions. Methods A combination of ERG, optokinetic tracking, immunohistochemistry, and immunoblot analysis was used to investigate the retinal phenotypes of Arr4 null mice (Arr4−/−) compared with age-matched control, wild-type mice. Results When 2-month-old Arr4−/− mice were compared with wild-type mice, they had diminished visual acuity and contrast sensitivity, yet enhanced ERG flicker response and higher photopic ERG b-wave amplitudes. In contrast, in older Arr4−/− mice, all ERG amplitudes were significantly reduced in magnitude compared with age-matched controls. Furthermore, in older Arr4−/− mice, the total cone numbers decreased and cone opsin protein immunoreactive expression levels were significantly reduced, while overall photoreceptor outer nuclear layer thickness was unchanged. Conclusions Our study demonstrates that Arr4−/− mice display distinct phenotypic differences when compared to controls, suggesting that ARR4 modulates essential functions in high acuity vision and downstream cellular signaling pathways that are not fulfilled or substituted by the coexpression of ARR1, despite its high expression levels in all mouse cones. Without normal ARR4 expression levels, cones slowly degenerate with increasing age, making this a new model to study age-related cone dystrophy. PMID:26284544
Cardiac Gene Expression Knockdown Using Small Inhibitory RNA-Loaded Microbubbles and Ultrasound.
Kopechek, Jonathan A; Carson, Andrew R; McTiernan, Charles F; Chen, Xucai; Klein, Edwin C; Villanueva, Flordeliza S
2016-01-01
RNA interference has potential therapeutic value for cardiac disease, but targeted delivery of interfering RNA is a challenge. Custom designed microbubbles, in conjunction with ultrasound, can deliver small inhibitory RNA to target tissues in vivo. The efficacy of cardiac RNA interference using a microbubble-ultrasound theranostic platform has not been demonstrated in vivo. Therefore, our objective was to test the hypothesis that custom designed microbubbles and ultrasound can mediate effective delivery of small inhibitory RNA to the heart. Microbubble and ultrasound mediated cardiac RNA interference was tested in transgenic mice displaying cardiac-restricted luciferase expression. Luciferase expression was assayed in select tissues of untreated mice (n = 14). Mice received intravenous infusion of cationic microbubbles bearing small inhibitory RNA directed against luciferase (n = 9) or control RNA (n = 8) during intermittent cardiac-directed ultrasound at mechanical index of 1.6. Simultaneous echocardiography in a separate group of mice (n = 3) confirmed microbubble destruction and replenishment during treatment. Three days post treatment, cardiac luciferase messenger RNA and protein levels were significantly lower in ultrasound-treated mice receiving microbubbles loaded with small inhibitory RNA directed against luciferase compared to mice receiving microbubbles bearing control RNA (23±7% and 33±7% of control mice, p<0.01 and p = 0.03, respectively). Passive cavitation detection focused on the heart confirmed that insonification resulted in inertial cavitation. In conclusion, small inhibitory RNA-loaded microbubbles and ultrasound directed at the heart significantly reduced the expression of a reporter gene. Ultrasound-targeted destruction of RNA-loaded microbubbles may be an effective image-guided strategy for therapeutic RNA interference in cardiac disease.
Shin, Soo Hyun; Park, Sang Hyun; Kim, Seung Won; Kim, Minsun; Kim, Daehong
2018-05-01
Purpose To investigate whether high-intensity focused ultrasound (HIFU)-induced macrophage infiltration could be longitudinally monitored with fluorine 19 ( 19 F) magnetic resonance (MR) imaging in a quantitative manner. Materials and Methods BALB/c mice were subcutaneously inoculated with 4T1 cells and were separated into three groups: untreated mice (control, n = 9), HIFU-treated mice (HIFU, n = 9), and HIFU- and clodronate-treated mice (HIFU+Clod, n = 9). Immediately after HIFU treatment, all mice were intravenously given perfluorocarbon (PFC) emulsion. MR imaging examinations were performed 2, 4, 7, 10, and 14 days after HIFU treatment. Two-way repeated measures analysis of variance was used to analyze the changes in 19 F signal over time and differences between groups. Histologic examinations were performed to confirm in vivo data. Results Fluorine 19 signals were detected at the rims of tumors and the peripheries of ablated lesions. Mean 19 F signal in tumors was significantly higher in HIFU-treated mice than in control mice up to day 4 (0.82 ± 0.26 vs 0.42 ± 0.17, P < .001). Fluorine 19 signals were higher in the HIFU+Clod group than in the control group from day 4 (0.82 ± 0.23, P < .001) to day 14 (0.55 ± 0.16 vs 0.28 ± 0.06, P < .05). Histologic examination revealed macrophage infiltration around ablated lesions. Immunofluorescence staining confirmed PFC labeling of macrophages. Conclusion Fluorine 19 MR imaging can longitudinally capture and quantify HIFU-induced macrophage infiltration in preclinical tumor models. © RSNA, 2018 Online supplemental material is available for this article.
The histamine H3 receptor inverse agonist pitolisant reduces body weight in obese mice.
Kotańska, Magdalena; Kuder, Kamil J; Szczepańska, Katarzyna; Sapa, Jacek; Kieć-Kononowicz, Katarzyna
2018-05-25
The pharmacological profile of pitolisant, a histamine H 3 receptor antagonist/inverse agonist, indicates that this compound might reduce body weight and metabolic disturbances. Therefore, we studied the influence of pitolisant on body weight, water and sucrose intake as well as metabolic disturbances in the high-fat and high-sugar diet-induced obesity model in mice. To induce obesity, male CD-1 mice were fed a high-fat diet consisting of 40% fat blend for 14 weeks, water and 30% sucrose solution available ad libitum. Glucose tolerance test was performed at the beginning of week 15. Insulin tolerance was tested the day after. At the end of study, plasma levels of triglycerides and cholesterol were determined. Pitolisant at dose of 10 mg/kg bw (ip) was administrated during 14 days, starting from the beginning of week 13. Metformin at dose of 100 mg/kg bw (ip) was used as reference drug. Mice fed with high-fat diet and sucrose solution showed more weight gain throughout the 12-week period of inducing obesity. Animals fed with high-fat diet and treated with pitolisant (for the next 14 days) showed significantly less weight gain than mice from the control group consuming a high-fat feed. In the group treated with pitolisant, glucose levels were significantly lower than glucose levels of control obese mice after glucose load. The plasma triglyceride levels in pitolisant-treated mice were significantly lower compared with those in control obese group. In conclusion, pitolisant has a favorable influence of body weight and improves glucose tolerance and the lipid profile in obese mice.
DeLorey, Timothy M.; Sahbaie, Peyman; Hashemi, Ezzat; Homanics, Gregg E.; Clark, J. David
2009-01-01
Objective GABAA receptors play an important regulatory role in the developmental events leading to the formation of complex neuronal networks and to the behaviors they govern. The primary aim of this study was to assess whether gabrb3 gene deficient (gabrb3-/-) mice exhibit abnormal social behavior, a core deficit associated with autism spectrum disorder. Methods Social and exploratory behaviors along with non-selective attention were assessed in gabrb3-/-, littermates (gabrb3+/+) and progenitor strains, C57BL/6J and 129/SvJ. In addition, semi-quantitative assessments of the size of cerebellar vermal lobules were performed on gabrb3+/+ and gabrb3-/- mice. Results Relative to controls, gabrb3-/- mice exhibited significant deficits in activities related to social behavior including sociability, social novelty and nesting. In addition, gabrb3-/- mice also exhibited differences in exploratory behavior compared to controls, as well as reductions in the frequency and duration of rearing episodes, suggested as being an index of non-selective attention. Gabrb3-/- mice also displayed significant hypoplasia of the cerebellar vermis compared to gabrb3+/+ mice. Conclusions The observed behavioral deficits, especially regarding social behaviors, strengthens the face validity of the gabrb3 gene deficient mouse as being a model of autism spectrum disorder. PMID:17983671
IL-6-Type Cytokine Signaling in Adipocytes Induces Intestinal GLP-1 Secretion.
Wueest, Stephan; Laesser, Céline I; Böni-Schnetzler, Marianne; Item, Flurin; Lucchini, Fabrizio C; Borsigova, Marcela; Müller, Werner; Donath, Marc Y; Konrad, Daniel
2018-01-01
We recently showed that interleukin (IL)-6-type cytokine signaling in adipocytes induces free fatty acid release from visceral adipocytes, thereby promoting obesity-induced hepatic insulin resistance and steatosis. In addition, IL-6-type cytokines may increase the release of leptin from adipocytes and by those means induce glucagon-like peptide 1 (GLP-1) secretion. We thus hypothesized that IL-6-type cytokine signaling in adipocytes may regulate insulin secretion. To this end, mice with adipocyte-specific knockout of gp130, the signal transducer protein of IL-6, were fed a high-fat diet for 12 weeks. Compared with control littermates, knockout mice showed impaired glucose tolerance and circulating leptin, GLP-1, and insulin levels were reduced. In line, leptin release from isolated adipocytes was reduced, and intestinal proprotein convertase subtilisin/kexin type 1 ( Pcsk1 ) expression, the gene encoding PC1/3, which controls GLP-1 production, was decreased in knockout mice. Importantly, treatment with the GLP-1 receptor antagonist exendin 9-39 abolished the observed difference in glucose tolerance between control and knockout mice. Ex vivo, supernatant collected from isolated adipocytes of gp130 knockout mice blunted Pcsk1 expression and GLP-1 release from GLUTag cells. In contrast, glucose- and GLP-1-stimulated insulin secretion was not affected in islets of knockout mice. In conclusion, adipocyte-specific IL-6 signaling induces intestinal GLP-1 release to enhance insulin secretion, thereby counteracting insulin resistance in obesity. © 2017 by the American Diabetes Association.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waksman, Ron; Pakala, Rajbabu; Burnett, Mary S.
Introduction: Inflammatory and immunological responses of vascular cells are known to play significant roles in atherosclerotic plaque development. Rapamycin with antiinflammatory, immunosuppressive and antiproliferative properties has been shown to reduce neointima formation when coated on stents. This study is designed to test the potential of oral rapamycin to inhibit atherosclerotic plaque development. Methods: Eight-week-old apoE knock-out mice were fed with 0.25% cholesterol supplemented diet (control diet), control diet containing 50 {mu}g/kg rapamycin (low-dose rapamycin) or 100 {mu}g/kg rapamycin (high-dose rapamycin) for 4 or 8 weeks. Subsets of mice from each group (n=10) were weighed and euthanized. Whole blood rapamycin levelsmore » were determined using HPLC-MS/MS, and histological analyses of atherosclerotic lesions in the aortic root were performed. Results: Mice fed with high-dose rapamycin did not gain weight (18.5{+-}1.5 vs. 20.6{+-}0.9 g, P=.01). Blood levels of rapamycin 117{+-}7 pg/ml were detected in the blood of mice fed with high-dose rapamycin for 8 weeks. The plaque area in mice fed with high dose oral rapamycin is significantly less as compared to control (0.168{+-}0.008 vs. 0.326{+-}0.013 mm{sup 2}, P=.001 at 4 weeks; 0.234{+-}0.013 vs. 0.447{+-}0.011 mm{sup 2}, P=.001 at 8 weeks). Lumen area was inversely proportional to the plaque area. Conclusions: The results indicate that oral rapamycin is effective in attenuating the progression of atherosclerotic plaque in the mice.« less
Sabina, E P; Rasool, M
2008-01-01
In the present study, we have investigated the efficacy of Indian ayurvedic herbal formulation Triphala on monosodium urate crystal-induced inflammation in mice; an experimental model for gouty arthritis and compared it with that of the non-steroidal anti-inflammatory drug, Indomethacin. The anti-arthritic effect of Triphala was evaluated by measuring changes in the paw volume, lysosomal enzyme activities, lipid peroxidation, anti-oxidant status and inflammatory mediator TNF-alpha in control and monosodium urate crystal-induced mice. The levels of beta-glucuronidase and lactate dehydrogenase were also measured in monosodium urate crystal-incubated polymorphonuclear leucocytes (PMNL). Triphala treatment (1 gm/kg/b.w. orally) significantly inhibited the paw volume and the levels of lysosomal enzymes, lipid peroxidation and inflammatory mediator tumour necrosis factor-alpha; however the anti-oxidant status was found to be increased in plasma, liver and spleen of monosodium urate crystal-induced mice when compared to control mice. In addition, beta-glucuronidase and lactate dehydrogenase level were reduced in Triphala (100 microg/ml) treated monosodium urate crystal-incubated polymorphonuclear leucocytes. In conclusion, the results obtained clearly indicated that Triphala exerted a strong anti-inflammatory effect against gouty arthritis.
Wang, H; Gao, J H; Liu, Z Y; Yue, H; Gao, Y C; Xue, Z; Zhang, Z Z; Zhou, Y S
2016-08-20
Objective: To investigate skin sensitization of 3, 4-bis (4'-aminofurazano-3') furoxan (DATF) in mice using 5-bromo-2'-deoxyuridine enzyme-linked immunosorbent assay (BrdU-ELISA) . Methods: A total of 30 specific pathogen-free BALB/C mice were randomly divided into high-, medium-, and low-dose DATF groups, positive control group, and solvent control group, with six mice in each group. The mice in the high-, medium-, and low-dose DATF groups were treated with 50%, 25%, and 10% (0.5, 0.25, and 0.10 g/ml) DATF solution, those in the positive control group were treated with 1% 2, 4-dinitrochlorobenzol (DNCB) , and those in the solvent control group were treated with acetone/olive oil (4∶1) . After treatment, retroauricular lymph nodes were collected and cell suspension was prepared. ELISA was used to measure the level of cell proliferation after the addition of 5-bromo-2'-deoxyuridine (BrdU) , and the BrdU labeling index (LI) and test substance concentration at a stimulation index (SI) of 1.6 (EC 1.6 ) were calculated. Results: There were no significant differences in auricular thickness between groups ( P >0.05) , and DAFT did not have skin irritation. Compared with the solvent control group, the high-dose DATF group and the positive control group showed significant increases in the weight of lymph nodes ( P <0.05) . Compared with the solvent control group, all the other groups showed significant increases in BrdU LI ( P <0.01) . The low-, medium-, and high-dose DATF groups had SIs of 6.1, 8.8, and 12.1, respectively, and the EC 1.6 of DATF was 2.2%, which suggested that DATF had strong sensitization. Conclusion: DATF has strong skin sensitization in mice, with reference to the guideline of Organization for Economic Co-operation and Development Item No. 442B (OECD TG 442B) .
Guo, Wen; Wong, Siu; Li, Michelle; Liang, Wentao; Liesa, Marc; Serra, Carlo; Jasuja, Ravi; Bartke, Andrzej; Kirkland, James L.; Shirihai, Orian; Bhasin, Shalender
2012-01-01
Testosterone supplementation increases muscle mass in older men but has not been shown to consistently improve physical function and activity. It has been hypothesized that physical exercise is required to induce the adaptations necessary for translation of testosterone-induced muscle mass gain into functional improvements. However, the effects of testosterone plus low intensity physical exercise training (T/PT) on functional performance and bioenergetics are unknown. In this pilot study, we tested the hypothesis that combined administration of T/PT would improve functional performance and bioenergetics in male mice late in life more than low-intensity physical training alone. 28-month old male mice were randomized to receive T/PT or vehicle plus physical training (V/PT) for 2 months. Compare to V/PT control, administration of T/PT was associated with improvements in muscle mass, grip strength, spontaneous physical movements, and respiratory activity. These changes were correlated with increased mitochondrial DNA copy number and expression of markers for mitochondrial biogenesis. Mice receiving T/PT also displayed increased expression of key elements for mitochondrial quality control, including markers for mitochondrial fission-and-fusion and mitophagy. Concurrently, mice receiving T/PT also displayed increased expression of markers for reduced tissue oxidative damage and improved muscle quality. Conclusion: Testosterone administered with low-intensity physical training improves grip strength, spontaneous movements, and respiratory activity. These functional improvements were associated with increased muscle mitochondrial biogenesis and improved mitochondrial quality control. PMID:23240002
Evaluation of cutaneous wound healing activity of Malva sylvestris aqueous extract in BALB/c mice
Afshar, Mohammad; Ravarian, Behdad; Zardast, Mahmoud; Moallem, Seyed Adel; Fard, Mohammad Hasanpour; Valavi, Masoomeh
2015-01-01
Objective(s): The aim of this study was to evaluate the effects of Malva sylvestris aqueous extract on cutaneous wound healing in BALB/c mice. Materials and Methods: Twenty seven male BALB/c mice (2.5 months of age) were used. A cut wound (superficial fascia depth) was made locally. The mice were then divided into three groups: the first, second and third groups received topical administration of M. sylvestris 1% aqueous extract, silver sulfadiazine topical cream and cold cream (positive and negative control groups), respectively. On days 4, 7 and 10 excisional biopsies were performed and wound healing was evaluated histopathologically. The data were analyzed by the ANOVA and Tukey statistical tests. Results: On days 4 and 7, the numbers of inflammatory cells in the silver sulfadiazine and M. sylvestris-treated groups were significantly lower than the control group and keratinization at the edges of the wound in both groups was significantly higher than the control group. On the tenth day of the study, the Malva-treated mice showed better healing features and less fibrosis and scar formation, and also fewer hair follicles were damaged in this group. On the tenth day of the study, the numbers of inflammatory cells in M. sylvestris and silver sulfadiazine-treated groups were significantly lower than the control group. Conclusion: The present study supports the beneficial effects of M. sylvestris on the wound healing process and suggests a potential clinical application. PMID:26221487
Charab, Mohamad A; Abouzeinab, Noura S; Moustafa, Mohamed E
2016-12-01
Waterpipe smoking is common in the Middle East populations and results in health problems. In this study, we investigated the effects of exposure of mice to waterpipe smoke on oxidative stress in lungs and liver and the effects of selenium administration before smoke exposure on the oxidative stress. Twenty-four mice were divided equally into four groups: (i) the control mice received no exposure or treatment; (ii) mice exposed to waterpipe smoke; (iii) mice received intraperitoneal injection of 0.59 μg selenium/kg body weight as sodium selenite 15 min before the exposure to waterpipe smoke; and (iv) mice received intraperitoneal injection of 1.78 μg selenium/kg body weight as sodium selenite 15 min before the exposure to waterpipe smoke. Mice were exposed to waterpipe smoke every other day for four times within 8 successive days. Malondialdehyde and nitric oxide levels were significantly higher in the lungs and liver, while the activities of superoxide dismutase, glutathione peroxidase-1, and catalase were significantly lower in the waterpipe smoke group when compared to control mice. Treating mice with 1.78 μg selenium/kg body weight significantly restored the normal levels of these parameters. Histological examinations of lungs and liver confirmed the protective actions of selenium against the effects of exposure to waterpipe smoke. In conclusion, exposure of mice to waterpipe smoke-induced oxidative stress in lungs and liver. Administration of low level of selenium, 1.78 μg selenium/kg body weight as sodium selenite, exerted protective effects against oxidative stress induced by exposure to waterpipe smoke.
Sarker, Rim Sabrina Jahan; Ahsan, Nazmul; Hossain, Khaled; Ghosh, Paritosh Kumar; Ahsan, Chowdhury Rafiqul; Akhand, Anwarul Azim
2012-01-01
Background In this study, we evaluated the protective effects of water Hyacinth Root Powder (HRP) on arsenic-mediated toxic effects in mice. Methods Swiss albino mice, used in this study, were divided into four different groups (for each group n=5). The control group was supplied with normal feed and water, Arsenic group (As-group) was supplied with normal feed plus arsenic (sodium arsenite)-containing water, and arsenic+hyacinth group (As+Hy group) was supplied with feed supplemented with HRP plus arsenic water. The remaining Hy-group was supplied with feed supplemented with HRP plus normal water. Results Oral administration of arsenic reduced the normal growth of the mice as evidenced by weight loss. Interestingly, tip of the tails of these mice developed wound that caused gradual reduction of the tail length. Supplementation of HRP in feed significantly prevented mice growth retardation and tail wounding in As+Hy group mice. However, the growth pattern in Hy-group mice was observed to be almost similar to that of the control group indicating that HRP itself has no toxic or negative effect in mice. Ingested arsenic also distorted the shape of the blood cells and elevated the serum enzymes such as lactate dehydrogenase (LDH), alkaline phosphatase (ALP) and serum glutamic pyruvic transaminase (SGPT). Importantly, elevation of these enzymes and distortion of blood cell shape were partially reduced in mice belong to As+Hy group, indicating HRP-mediated reduction of arsenic toxicity. Conclusion Therefore, the preventive effect of hyacinth root on arsenic-poisoned mice suggested the future application of hyacinth to reduce arsenic toxicity in animal and human. PMID:23407303
Stewart, Ian; Seawright, Alan A; Schluter, Philip J; Shaw, Glen R
2006-01-01
Background Freshwater cyanobacteria are common inhabitants of recreational waterbodies throughout the world; some cyanobacteria can dominate the phytoplankton and form blooms, many of which are toxic. Numerous reports in the literature describe pruritic skin rashes after recreational or occupational exposure to cyanobacteria, but there has been little research conducted on the cutaneous effects of cyanobacteria. Using the mouse ear swelling test (MEST), we sought to determine whether three toxin-producing cyanobacteria isolates and the purified cyanotoxin cylindrospermopsin produced delayed-contact hypersensitivity reactions. Methods Between 8 and 10 female Balb/c mice in each experiment had test material applied to depilated abdominal skin during the induction phase and 10 or 11 control mice had vehicle only applied to abdominal skin. For challenge (day 10) and rechallenge (day 17), test material was applied to a randomly-allocated test ear; vehicle was applied to the other ear as a control. Ear thickness in anaesthetised mice was measured with a micrometer gauge at 24 and 48 hours after challenge and rechallenge. Ear swelling greater than 20% in one or more test mice is considered a positive response. Histopathology examination of ear tissues was conducted by independent examiners. Results Purified cylindrospermopsin (2 of 9 test mice vs. 0 of 5 control mice; p = 0.51) and the cylindrospermopsin-producing cyanobacterium C. raciborskii (8 of 10 test mice vs. 0 of 10 control mice; p = 0.001) were both shown to produce hypersensitivity reactions. Irritant reactions were seen on abdominal skin at induction. Two other toxic cyanobacteria (Microcystis aeruginosa and Anabaena circinalis) did not generate any responses using this model. Histopathology examinations to determine positive and negative reactions in ear tissues showed excellent agreement beyond chance between both examiners (κ = 0.83). Conclusion The irritant properties and cutaneous sensitising potential of cylindrospermopsin indicate that these toxicological endpoints should be considered by public health advisors and reservoir managers when setting guidelines for recreational exposure to cyanobacteria. PMID:16573840
Ding, Xiaoyan; Yang, Zi; Han, Yiwei; Yu, Huan
2014-01-01
Background Long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) expression is decreased in placenta of some cases of preeclampsia (PE) which may result in free fatty acid (FFA) increased. High FFA level will induce oxidative stress, so abnormal long-chain fatty acid-oxidation may participate in the pathogenesis of PE through oxidative stress pathway. Methods PE-like groups were ApoC3 transgenic mice with abnormal fatty acid metabolism, classical PE-like models with injection of Nw-nitro-L-arginine-methyl ester (L-NA) or lipopolysaccharide (LPS) and the antiphospholipid syndrome (APS) mouse model with β2GPI injection (ApoC3+NS, ApoC3+L-NA, L-NA, LPS and β2GPI groups). The control group was wild-type mice with normal saline injection. Except for β2GPI mice, the other mice were subdivided into pre-implantation (Pre) and mid-pregnancy (Mid) subgroups by injection time. Results All PE-like groups showed hypertension and proteinuria except ApoC3+NS mice only showed hypertension. Serum FFA levels increased significantly except in LPS group compared to controls (P<0.05). LCHAD mRNA and protein expression in the liver and placenta was significantly higher for ApoC3+NS, ApoC3+L-NA and β2GPI mice and lower for L-NA mice than controls (P<0.05) but did not differ between LPS mice and controls. P47phox mRNA and protein expression in the liver significantly increased in all PE-like groups except LPS group, while P47phox expression in the placenta only significantly increased in L-NA and β2GPI groups. Conclusions Abnormal long-chain fatty acid-oxidation may play a different role in different PE-like models and in some cases participate in the pathogenesis of PE through oxidative stress pathway. PMID:25302499
Lubiprostone ameliorates the cystic fibrosis mouse intestinal phenotype
2010-01-01
Background Cystic fibrosis (CF) is caused by mutations in the CFTR gene that impair the function of CFTR, a cAMP-regulated anion channel. In the small intestine loss of CFTR function creates a dehydrated, acidic luminal environment which is believed to cause an accumulation of mucus, a phenotype characteristic of CF. CF mice have small intestinal bacterial overgrowth, an altered innate immune response, and impaired intestinal transit. We investigated whether lubiprostone, which can activate the CLC2 Cl- channel, would improve the intestinal phenotype in CF mice. Methods Cftrtm1UNC (CF) and wildtype (WT) littermate mice on the C57BL/6J background were used. Lubiprostone (10 μg/kg-day) was administered by gavage for two weeks. Mucus accumulation was estimated from crypt lumen widths in periodic acid-Schiff base, Alcian blue stained sections. Luminal bacterial load was measured by qPCR for the bacterial 16S gene. Gastric emptying and small intestinal transit in fasted mice were assessed using gavaged rhodamine dextran. Gene expression was evaluated by Affymetrix Mouse430 2.0 microarray and qRT-PCR. Results Crypt width in control CF mice was 700% that of WT mice (P < 0.001). Lubiprostone did not affect WT crypt width but, unexpectedly, increased CF crypt width 22% (P = 0.001). Lubiprostone increased bacterial load in WT mice to 490% of WT control levels (P = 0.008). Conversely, lubiprostone decreased bacterial overgrowth in CF mice by 60% (P = 0.005). Lubiprostone increased gastric emptying at 20 min postgavage in both WT (P < 0.001) and CF mice (P < 0.001). Lubiprostone enhanced small intestinal transit in WT mice (P = 0.024) but not in CF mice (P = 0.377). Among other innate immune markers, expression of mast cell genes was elevated 4-to 40-fold in the CF intestine as compared to WT, and lubiprostone treatment of CF mice decreased expression to WT control levels. Conclusions These results indicate that lubiprostone has some benefits for the CF intestinal phenotype, especially on bacterial overgrowth and the innate immune response. The unexpected observation of increased mucus accumulation in the crypts of lubiprostone-treated CF mice suggests the possibility that lubiprostone increases mucus secretion. PMID:20843337
Yang, Linghui; Wellman, Laurie L.; Ambrozewicz, Marta A.; Sanford, Larry D.
2011-01-01
Study Objectives: Predictability and controllability are important factors in the persisting effects of stress. We trained mice with signaled, escapable shock (SES) and with signaled, inescapable shock (SIS) to determine whether shock predictability can be a significant factor in the effects of stress on sleep. Design: Male BALB/cJ mice were implanted with transmitters for recording EEG, activity, and temperature via telemetry. After recovery from surgery, baseline sleep recordings were obtained for 2 days. The mice were then randomly assigned to SES (n = 9) and yoked SIS (n = 9) conditions. The mice were presented cues (90 dB, 2 kHz tones) that started 5.0 sec prior to and co-terminated with footshocks (0.5 mA; 5.0 sec maximum duration). SES mice always received shock but could terminate it by moving to the non-occupied chamber in a shuttlebox. SIS mice received identical tones and shocks, but could not alter shock duration. Twenty cue-shock pairings (1.0-min interstimulus intervals) were presented on 2 days (ST1 and ST2). Seven days after ST2, SES and SIS mice, in their home cages, were presented with cues identical to those presented during ST1 and ST2. Setting: NA. Patients or Participants: NA. Interventions: NA. Measurements and Results: On each training and test day, EEG, activity and temperature were recorded for 20 hours. Freezing was scored in response to the cue alone. Compared to SIS mice, SES mice showed significantly increased REM after ST1 and ST2. Compared to SES mice, SIS mice showed significantly increased NREM after ST1 and ST2. Both groups showed reduced REM in response to cue presentation alone. Both groups showed similar stress-induced increases in temperature and freezing in response to the cue alone. Conclusions: These findings indicate that predictability (modeled by signaled shock) can play a significant role in the effects of stress on sleep. Citation: Yang L; Wellman LL; Ambrozewicz MA; Sanford LD. Effects of stressor predictability and controllability on sleep, temperature, and fear behavior in mice. SLEEP 2011;34(6):759-771. PMID:21629364
Akillioglu, Kubra; Binokay, Secil; Kocahan, Sayad
2012-07-15
N-methyl-D-aspartate (NMDA) receptors play an important role in brain maturation and developmental processes. In our study, we evaluated the effects of neonatal NMDA receptor blockade on exploratory locomotion and anxiety-like behaviors of adult BALB/c and C57BL/6 mice. In this study, NMDA receptor hypofunction was induced 7-10 days after birth using MK-801 in BALB/c and C57BL/6 mice (0.25mg/kg twice a day for 4 days via intraperitoneal injection). The open-field (OF) and elevated plus maze (EPM) tests were used to evaluate exploratory locomotion and anxiety-like behaviors. In the OF, BALB/c mice spent less time in the center of the field (p<0.05) and had less vertical locomotor activity (p<0.01) compared to C57BL/6 mice. In BALB/c mice, MK-801 caused a decrease in vertical and horizontal locomotor activity in the OF test, compared to the control group (p<0.05). In C57BL/6 mice, MK-801 treatment increased horizontal locomotor activity and decreased time spent in the center in the OF test (p<0.05). In the EPM, the number of open-arm entries, the percentage of open-arm time (p<0.01) and total arm entries (p<0.05) were lower in BALB/c mice compared to C57BL/6 mice. In BALB/c mice, MK-801 caused an increase in the percentage of open-arm time compared to the control group (p<0.05). In C57BL/6 mice, MK-801 caused a decrease in the percentage of open-arm time compared to the control group (p<0.05). MK-801 decreased exploratory and anxiety-like behaviors in BALB/c mice. In contrast, MK-801 increased exploratory and anxiety-like behaviors in C57BL/6 mice. In conclusion, hereditary factors may play an important role in neonatal NMDA receptor blockade-induced responses. Copyright © 2012 Elsevier B.V. All rights reserved.
Chen, Qiang; Cui, Xiao-Xu; Liang, Pei-Fen; Dou, Jin-Xia; Liu, Zi-Yan; Sun, Wen-Wen
2016-01-01
Objective: To compare the effects and safety of immunotherapy using different methods to load DC-CIK cells for MDA-MB-231 breast cancer stem cells. Methods: A breast cancer model was established in BALB/c nude mice using breast cancer stem cells. All mice were randomly divided into six groups, and each group had three nude mice: the blank control group, the DC-CIK group (group D), the MDA-MB-231 CSC whole-cell lysate DC-CIK group (group L-D), the MDA-MB-231 CSC RNA DC-CIK group (group R-D), the THP DC-CIK group (group T-D) and group THP. Nude mice in groups D, L-D, R-D and T-D were injected with CSCs; 4 days later, the mice were inoculated with 1 × 106 DC-CIK cells via the tail vein. This injection was repeated 2 times a week for three weeks. The mice in groups THP and T-D were injected with a 5 mg/Kg dose of THP chemotherapeutic agents via the tail vein the day before DC-CIK injection, which was repeated one time a week for three weeks. Nude mice in the blank control group were injected with normal saline. The weights and sizes of the tumors were measured after the mice were euthanized. The expression of c-Myc, a key proto-oncogene associated with the Akt signaling pathway, was detected with RT-PCR. Results: The tumor growth rates in each group were as follows: group L-D < group R-D < group D < group T-D < blank control group < group THP. The nude mice in groups L-D, R-D and D were normal, active and had a healthy appetite. The mice in groups T-D and THP were lethargic, less active and showed loss of appetite, and their caudal vein was easy to stimulate. The mice in the blank control group were sacrificed during the third week or when their tumors developed ulceration. Compared with the blank control group, c-Myc gene expression was reduced in the tumors of the five experimental groups. Conclusion: The results showed that DC-CIK cells stimulated by different methods were highly effect against MDA-MB-231 breast cancer stem cells in nude mice in all groups, especially in group L-D. DC-CIK immunotherapy may provide a new strategy for the clinical treatment of breast cancer. PMID:27508015
Mechanism of body weight reducing effect of oral boric Acid intake.
Aysan, Erhan; Sahin, Fikrettin; Telci, Dilek; Erdem, Merve; Muslumanoglu, Mahmut; Yardımcı, Erkan; Bektasoglu, Huseyin
2013-01-01
Objective. The effect of oral boric acid intake on reducing body weight has been previously demonstrated although the mechanism has been unclear. This research study reveals the mechanism. Subjects. Twelve mice were used, in groups of six each in the control and study groups. For five days, control group mice drank standard tap water while during the same time period the study group mice drank tap water which contains 0.28 mg/250 mL boric acid. After a 5-day period, gene expression levels for uncoupling proteins (UCPs) in the white adipose tissue (WAT), brown adipose tissue (BAT), and skeletal muscle tissue (SMT) and total body weight changes were analyzed. Results. Real time PCR analysis revealed no significant change in UCP3 expressions, but UCP2 in WAT (P: 0.0317), BAT (P: 0.014), and SMT (P: 0.0159) and UCP1 in BAT (P: 0.026) were overexpressed in the boric acid group. In addition, mice in the boric acid group lost body weight (mean 28.1%) while mice in the control group experienced no weight loss but a slight weight gain (mean 0.09%, P < 0.001). Conclusion. Oral boric acid intake causes overexpression of thermogenic proteins in the adipose and skeletal muscle tissues. Increasing thermogenesis through UCP protein pathway results in the accelerated lipolysis and body weight loss.
Jaccob, Ausama Ayoob
2015-01-01
Aim: Since there is an increasing need for gastric ulcer therapies with optimum benefit-risk profile. This study was conducted to investigate gastro-protective effects of N-acetylcysteine (NAC) against ethanol-induced gastric ulcer models in mice. Materials and Methods: A total of 41 mice were allocated into six groups consisted of 7 mice each. Groups 1 (normal control) and 2 (ulcer control) received distilled water at a dose of 10 ml/kg, groups 3, 4 and 5 were given NAC at doses 100, 300 and 500 mg/kg, respectively, and the 6th group received ranitidine (50 mg/kg). All drugs administered orally once daily for 7 days, on the 8th day absolute ethanol (7 ml/kg) was administrated orally to all mice to induce the acute ulcer except normal control group. Then 3 h after, all animals were sacrificed then consequently the stomachs were excised for examination. Results: NAC administration at the tested doses showed a dose-related potent gastro-protective effect with significant increase in curative ratio, PH of gastric juice and mucus content viscosity seen with the highest dose of NAC and it is comparable with that observed in ranitidine group. Conclusion: The present findings demonstrate that, oral NAC shows significant gastro-protective effects comparable to ranitidine confirmed by anti-secretory, cytoprotective, histological and biochemical data, but the molecular mechanisms behind such protection are complex. PMID:26401392
RECOVERY OF ROD PHOTORESPONSES IN ABCR-DEFICIENT MICE
Pawar, Ambarish S.; Qtaishat, Nasser M.; Little, Deborah M.; Pepperberg, David R.
2010-01-01
Purpose ABCR protein in the rod outer segment is thought to facilitate movement of the all-trans retinal photoproduct of rhodopsin bleaching out of the disk lumen. We investigated the extent to which ABCR deficiency affects post-bleach recovery of the rod photoresponse in ABCR-deficient (abcr−/−) mice. Methods Electroretinographic (ERG) a-wave responses were recorded from abcr−/− mice and two control strains. Using a bright probe flash, we examined the course of rod recovery following fractional rhodopsin bleaches of ~10−6, ~3×10−5, ~0.03 and ~0.30–0.40. Results Dark-adapted abcr−/− mice and controls exhibited similar normalized near-peak amplitudes of the paired-flash-ERG-derived, weak-flash response. Response recovery following ~10−6 bleaching exhibited an average exponential time constant of 319, 171 and 213 ms, respectively, in the abcr−/− and the two control strains. Recovery time constants determined for ~3×10−5 bleaching did not differ significantly among strains. However, those determined for the ~0.03 bleach indicated significantly faster recovery in abcr−/− (2.34 ± 0.74 min) than in the controls (5.36 ± 2.20 min, and 5.92 ± 2.44 min). Following ~0.30–0.40 bleaching, the initial recovery in the abcr−/− was on average faster than in controls. Conclusions By comparison with controls, abcr−/− mice exhibit faster rod recovery following a bleach of ~0.03. The data suggest that ABCR in normal rods may directly or indirectly prolong all-trans retinal clearance from the disk lumen over a significant bleaching range, and that the essential function of ABCR may be to promote the clearance of residual amounts of all-trans retinal that remain in the disks long after bleaching. PMID:18263807
Cimetidine attenuates vinorelbine-induced phlebitis in mice by militating E-selectin expression.
Wang, Zhuo; Ma, Lijuan; Wang, Xuebin; Cai, Heping; Huang, Jin; Liu, Jiyong; Hu, Jinhong; Su, Dingfeng
2014-08-01
We investigated E-selectin expression in mice and rabbits with vinorelbine-induced phlebitis and the effect of cimetidine. To find the relationship between E-selectin expression and vinorelbine-induced phlebitis. Mouse and rabbit model of vinorelbine-induced phlebitis was established by intravenous infusion of vinorelbine. Pathological observation, molecular-biological determination of E-selectin and protein function of it was evaluated. Grossly, we observed swelling, edema and cord-like vessel changes in mice receiving vinorelbine but only mild edema in mice pretreated with cimetidine. Pathological scoring yielded a total score of 37 for vinorelbine-treated mice and 17 for mice pretreated with cimetidine (P < 0.05). ELISA revealed that rabbits treated with vinorelbine had markedly higher serum contents of E-selectin than normal saline (NS) controls (vinorelbine 1.534 ± 0.449 vs. NS 0.746 ± 0.170 ng/mL, P < 0.05), which was markedly attenuated by cimetidine (cimetidine 0.717 ± 0.468 vs. vinorelbine 1.534 ± 0.449 ng/mL, P < 0.05). Rose Bengal staining assays showed that vinorelbine markedly increased the adhesion rate of neutrophils for endothelial cells (vinorelbine 38.70 ± 8.34% vs. controls 8.93 ± 4.85%, P < 0.01), which, however, was significantly suppressed by cimetidine (9.93 ± 5.91%, P < 0.01 vs. vinorelbine). In E-selectin knockout mice, we found no apparent difference in tail swelling in mice receiving vinorelbine or cimetidine and vinorelbine. In conclusion, cimetidine attenuates vinorelbine-induced phlebitis in mice probably by suppressing increased expression of E-selectin.
Leonis, Mike A; Toney-Earley, Kenya; Degen, Sandra J F; Waltz, Susan E
2002-11-01
The targeted deletion of the cytoplasmic domain of the Ron receptor tyrosine kinase (TK) in mice leads to exaggerated responses to injury in several murine models of inflammation as well as increased lethality in response to endotoxin (lipopolysaccharide [LPS]). Using a well-characterized model of LPS-induced acute liver failure (ALF) in galactosamine (GalN)-sensitized mice, we show that Ron TK(-/-) mice display marked protection compared with control Ron TK(+/+) mice. Whereas control mice have profound elevation of serum aminotransferase levels (a marker of hepatocyte injury) and hemorrhagic necrosis of the liver, in dramatic contrast, Ron TK(-/-) mice have mild elevation of aminotransferase levels and relatively normal liver histology. These findings are associated with a reduction in the number of liver cells undergoing apoptosis in Ron TK(-/-) mice. Paradoxically, treatment of Ron TK(-/-) mice with LPS/GalN leads to markedly elevated (3.5-fold) serum levels of tumor necrosis factor (TNF) alpha, a key inflammatory mediator in this liver injury model, as well as reduced amounts of interleukin (IL) 10 (a suppressor of TNF-alpha production) and interferon (IFN)-gamma (a TNF-alpha sensitizer). These results show that ablation of the TK activity of the Ron receptor leads to protection from the development of hepatocellular apoptosis in response to treatment with LPS/GalN, even in the presence of excessive levels of serum TNF-alpha. In conclusion, our studies show that the Ron receptor TK plays a critical role in modulating the response of the liver to endotoxin.
Jiang, Jing; Liu, Gang; Shi, Suhua; Li, Zhigang
2016-01-01
Objectives . To compare musical electroacupuncture and electroacupuncture in a mouse model of Alzheimer's disease. Methods . In this study, 7.5-month-old male senescence-accelerated mouse prone 8 (SAMP8) mice were used as an Alzheimer's disease animal model. In the normal control paradigm, 7.5-month-old male SAMR1 mice were used as the blank control group (N group). After 15 days of treatment, using Morris water maze test, micro-PET, and immunohistochemistry, the differences among the musical electroacupuncture (MEA), electroacupuncture (EA), Alzheimer's disease (AD), and normal (N) groups were assessed. Results . The Morris water maze test, micro-PET, and immunohistochemistry revealed that MEA and EA therapies could improve spatial learning and memory ability, glucose metabolism level in the brain, and A β amyloid content in the frontal lobe, compared with the AD group ( P < 0.05). Moreover, MEA therapy performed better than EA treatment in decreasing amyloid-beta levels in the frontal lobe of mice with AD. Conclusion . MEA therapy may be superior to EA in treating Alzheimer's disease as demonstrated in SAMP8 mice.
Jiang, Jing; Liu, Gang
2016-01-01
Objectives. To compare musical electroacupuncture and electroacupuncture in a mouse model of Alzheimer's disease. Methods. In this study, 7.5-month-old male senescence-accelerated mouse prone 8 (SAMP8) mice were used as an Alzheimer's disease animal model. In the normal control paradigm, 7.5-month-old male SAMR1 mice were used as the blank control group (N group). After 15 days of treatment, using Morris water maze test, micro-PET, and immunohistochemistry, the differences among the musical electroacupuncture (MEA), electroacupuncture (EA), Alzheimer's disease (AD), and normal (N) groups were assessed. Results. The Morris water maze test, micro-PET, and immunohistochemistry revealed that MEA and EA therapies could improve spatial learning and memory ability, glucose metabolism level in the brain, and Aβ amyloid content in the frontal lobe, compared with the AD group (P < 0.05). Moreover, MEA therapy performed better than EA treatment in decreasing amyloid-beta levels in the frontal lobe of mice with AD. Conclusion. MEA therapy may be superior to EA in treating Alzheimer's disease as demonstrated in SAMP8 mice. PMID:27974974
Wang, Haiying; Wei, Shuyue; Xue, Xinxin; You, Yuntian; Ma, Qiang
2016-01-01
This study aims to discuss adipose stem cells’ (ASCs) antagonism in glycosylation of D-galactose-induced skin aging of nude mice and its skin recovery function; the study also aims to explore a new mechanism of anti-aging to provide clinical anti-aging therapy with new thoughts and methods. We selected 40 healthy specific pathogen-free (SPF) nude mice and divided them randomly into four groups which were: blank control group; D-galactose + phosphate buffer saline (PBS) group; D-galactose + ASCs treatment group; and D-galactose + aminoguanidine (AG) group. Results showed that the superoxide dismutase (SOD) level of mice in the D-galactose-induced model group (87.15 ± 4.95 U/g) decreased significantly compared with that of control group (146.21 ± 4.76 U/g), while malonaldehyde (MDA) level of mice in D-galactose induced model group (11.12 ± 2.08 nmol/mg) increased significantly compared with that of control group (5.46 ± 2.05 nmol/mg) (P <0.05); thus D-galactose induced sub-acutely aging mice models were duplicated successfully. Results also indicated that transplantation of ASCs could reverse expression of aging-related biomarkers such as MDA, SOD, and advanced glycosylation end products (AGEs); hematoxylin and eosin (HE) staining showed that thickness of the dermis layer as well as the collagen content of mice in the D-galactose-induced model group increased significantly after ASC transplantation compared with that of control group. In addition, immunohistochemical assay showed that expression quantity of CD31 and vascular endothelial growth factor (VEGF) of mice in the D-galactose-induced model group increased significantly after ASC transplantation compared with that of control group. In conclusion, ASCs can trace cell distribution successfully through bioluminescence, and they survive for a short time in the skin after transplantation, which provides a basis for the application of ASC transplantation in clinical practices. Moreover, ASCs can control glycosylation level of D-galactose-induced skin aging of nude mice, reverse expression of aging-related biomarkers as well as restrain formation of advanced glycation end products, which are similar to the effects of AG inhibitors of advanced glycation end products. Thus, ASCs can prevent glycosylation-induced skin aging as well as recover functions of skin. PMID:26916459
Wang, Haiying; Wei, Shuyue; Xue, Xinxin; You, Yuntian; Ma, Qiang
2016-09-01
This study aims to discuss adipose stem cells' (ASCs) antagonism in glycosylation of D-galactose-induced skin aging of nude mice and its skin recovery function; the study also aims to explore a new mechanism of anti-aging to provide clinical anti-aging therapy with new thoughts and methods. We selected 40 healthy specific pathogen-free (SPF) nude mice and divided them randomly into four groups which were: blank control group; D-galactose + phosphate buffer saline (PBS) group; D-galactose + ASCs treatment group; and D-galactose + aminoguanidine (AG) group. Results showed that the superoxide dismutase (SOD) level of mice in the D-galactose-induced model group (87.15 ± 4.95 U/g) decreased significantly compared with that of control group (146.21 ± 4.76 U/g), while malonaldehyde (MDA) level of mice in D-galactose induced model group (11.12 ± 2.08 nmol/mg) increased significantly compared with that of control group (5.46 ± 2.05 nmol/mg) (P <0.05); thus D-galactose induced sub-acutely aging mice models were duplicated successfully. Results also indicated that transplantation of ASCs could reverse expression of aging-related biomarkers such as MDA, SOD, and advanced glycosylation end products (AGEs); hematoxylin and eosin (HE) staining showed that thickness of the dermis layer as well as the collagen content of mice in the D-galactose-induced model group increased significantly after ASC transplantation compared with that of control group. In addition, immunohistochemical assay showed that expression quantity of CD31 and vascular endothelial growth factor (VEGF) of mice in the D-galactose-induced model group increased significantly after ASC transplantation compared with that of control group. In conclusion, ASCs can trace cell distribution successfully through bioluminescence, and they survive for a short time in the skin after transplantation, which provides a basis for the application of ASC transplantation in clinical practices. Moreover, ASCs can control glycosylation level of D-galactose-induced skin aging of nude mice, reverse expression of aging-related biomarkers as well as restrain formation of advanced glycation end products, which are similar to the effects of AG inhibitors of advanced glycation end products. Thus, ASCs can prevent glycosylation-induced skin aging as well as recover functions of skin. © The Author(s) 2016.
Renal and Glycemic Effects of High-Dose Chromium Picolinate in db/db Mice: Assessment of DNA Damage
Mozaffari, Mahmood S.; Baban, Babak; Abdelsayed, Rafik; Liu, Jun Yao; Wimborne, Hereward; Rodriguez, Nancy; Abebe, Worku
2011-01-01
This study examined renal and glycemic effects of chromium picolinate (Cr(pic)3) supplementation in the context of its purported potential for DNA damage. In preventional protocol, male obese diabetic db/db mice were fed diets either lacking or containing 5, 10 or 100 mg/kg chromium as Cr(pic)3 from 6 to 24 weeks of age; male lean nondiabetic db/m mice served as controls. Untreated db/db mice displayed increased plasma glucose and insulin, hemoglobin A1c, renal tissue advanced glycation end (AGE) products, albuminuria, glomerular mesangial expansion, urinary 8-hydroxydeoxyguanosine (8-OHdG, an index of oxidative DNA damage) and renal tissue immunostaining for γH2AX (a marker of double-strand DNA breaks) compared to db/m controls. Creatinine clearance was lower while blood pressure was similar between untreated db/db mice and their db/m controls. High Cr(pic)3 intake (i.e., 100 mg/kg diet) mildly improved glycemic status and albuminuria without affecting blood pressure or creatinine clearance. Treatment with Cr(pic)3 did not increase DNA damage despite marked renal accumulation of chromium. In interventional protocol, effects of diets containing 0, 100 and 250 mg/kg supplemental chromium, from 12 to 24 weeks of age, were examined in db/db mice. The results generally revealed similar effects to those of the 100 mg/kg diet of the preventional protocol. In conclusion, the severely hyperglycemic db/db mouse displays renal structural and functional abnormalities in association with DNA damage. High-dose Cr(pic)3 treatment mildly improves glycemic control and it causes moderate reduction in albuminuria, without affecting histopathological appearance of the kidney and increasing the risk for DNA damage. PMID:21959055
Renal and glycemic effects of high-dose chromium picolinate in db/db mice: assessment of DNA damage.
Mozaffari, Mahmood S; Baban, Babak; Abdelsayed, Rafik; Liu, Jun Yao; Wimborne, Hereward; Rodriguez, Nancy; Abebe, Worku
2012-08-01
This study examined renal and glycemic effects of chromium picolinate [Cr(pic)3] supplementation in the context of its purported potential for DNA damage. In preventional protocol, male obese diabetic db/db mice were fed diets either lacking or containing 5, 10 or 100 mg/kg chromium as Cr(pic)3 from 6 to 24 weeks of age; male lean nondiabetic db/m mice served as controls. Untreated db/db mice displayed increased plasma glucose and insulin, hemoglobin A1c, renal tissue advanced glycation end products, albuminuria, glomerular mesangial expansion, urinary 8-hydroxydeoxyguanosine (an index of oxidative DNA damage) and renal tissue immunostaining for γH2AX (a marker of double-strand DNA breaks) compared to db/m controls. Creatinine clearance was lower in untreated db/db mice than their db/m controls, while blood pressure was similar. High Cr(pic)3 intake (i.e., 100-mg/kg diet) mildly improved glycemic status and albuminuria without affecting blood pressure or creatinine clearance. Treatment with Cr(pic)3 did not increase DNA damage despite marked renal accumulation of chromium. In interventional protocol, effects of diets containing 0, 100 and 250 mg/kg supplemental chromium, from 12 to 24 weeks of age, were examined in db/db mice. The results generally revealed similar effects to those of the 100-mg/kg diet of the preventional protocol. In conclusion, the severely hyperglycemic db/db mouse displays renal structural and functional abnormalities in association with DNA damage. High-dose Cr(pic)3 treatment mildly improves glycemic control, and it causes moderate reduction in albuminuria, without affecting the histopathological appearance of the kidney and increasing the risk for DNA damage. Copyright © 2012 Elsevier Inc. All rights reserved.
Staffel, Janina; Valletta, Daniela; Federlein, Anna; Ehm, Katharina; Volkmann, Regine; Füchsl, Andrea M.; Witzgall, Ralph; Kuhn, Michaela
2017-01-01
The cardiac natriuretic peptides (NPs), atrial NP and B-type NP, regulate fluid homeostasis and arterial BP through renal actions involving increased GFR and vascular and tubular effects. Guanylyl cyclase-A (GC-A), the transmembrane cGMP-producing receptor shared by these peptides, is expressed in different renal cell types, including podocytes, where its function is unclear. To study the effects of NPs on podocytes, we generated mice with a podocyte-specific knockout of GC-A (Podo-GC-A KO). Despite the marked reduction of GC-A mRNA in GC-A KO podocytes to 1% of the control level, Podo-GC-A KO mice and control littermates did not differ in BP, GFR, or natriuresis under baseline conditions. Moreover, infusion of synthetic NPs similarly increased the GFR and renal perfusion in both genotypes. Administration of the mineralocorticoid deoxycorticosterone-acetate (DOCA) in combination with high salt intake induced arterial hypertension of similar magnitude in Podo-GC-A KO mice and controls. However, only Podo-GC-A KO mice developed massive albuminuria (controls: 35-fold; KO: 5400-fold versus baseline), hypoalbuminemia, reduced GFR, and marked glomerular damage. Furthermore, DOCA treatment led to decreased expression of the slit diaphragm-associated proteins podocin, nephrin, and synaptopodin and to enhanced transient receptor potential canonical 6 (TRPC6) channel expression and ATP-induced calcium influx in podocytes of Podo-GC-A KO mice. Concomitant treatment of Podo-GC-A KO mice with the TRPC channel blocker SKF96365 markedly ameliorated albuminuria and glomerular damage in response to DOCA. In conclusion, the physiologic effects of NPs on GFR and natriuresis do not involve podocytes. However, NP/GC-A/cGMP signaling protects podocyte integrity under pathologic conditions, most likely by suppression of TRPC channels. PMID:27153922
Kandasamy, A D; Sung, M M; Boisvenue, J J; Barr, A J; Dyck, J R B
2012-01-01
Background and Design: Adiponectin is an adipokine secreted primarily from adipose tissue that can influence circulating plasma glucose and lipid levels through multiple mechanisms involving a variety of organs. In humans, reduced plasma adiponectin levels induced by obesity are associated with insulin resistance and type 2 diabetes, suggesting that low adiponectin levels may contribute the pathogenesis of obesity-related insulin resistance. Methods and Results: The objective of the present study was to investigate whether gene therapy designed to elevate circulating adiponectin levels is a viable strategy for ameliorating insulin resistance in mice fed a high-fat, high-sucrose (HFHS) diet. Electroporation-mediated gene transfer of mouse adiponectin plasmid DNA into gastrocnemius muscle resulted in elevated serum levels of globular and high-molecular weight adiponectin compared with control mice treated with empty plasmid. In comparison to HFHS-fed mice receiving empty plasmid, mice receiving adiponectin gene therapy displayed significantly decreased weight gain following 13 weeks of HFHS diet associated with reduced fat accumulation, and exhibited increased oxygen consumption and locomotor activity as measured by indirect calorimetry, suggesting increased energy expenditure in these mice. Consistent with improved whole-body metabolism, mice receiving adiponectin gene therapy also had lower blood glucose and insulin levels, improved glucose tolerance and reduced hepatic gluconeogenesis compared with control mice. Furthermore, immunoblot analysis of livers from mice receiving adiponectin gene therapy showed an increase in insulin-stimulated phosphorylation of insulin signaling proteins. Conclusion: Based on these data, we conclude that adiponectin gene therapy ameliorates the metabolic abnormalities caused by feeding mice a HFHS diet and may be a potential therapeutic strategy to improve obesity-mediated impairments in insulin sensitivity. PMID:23446660
Reuter, Brian K.; Pastorelli, Luca; Brogi, Marco; Garg, Rekha R.; McBride, James A.; Rowlett, Robert M.; Arrieta, Marie C.; Wang, Xiao-Ming; Keller, Erik J.; Feldman, Sanford H.; Mize, James R.; Cominelli, Fabio; Meddings, Jonathan B.; Pizarro, Theresa T.
2011-01-01
Background & Aims Crohn’s disease (CD) can develop in any region of the gastrointestinal tract, including the stomach. The etiology and pathogenesis of Crohn’s gastritis are poorly understood, treatment approaches are limited, and there are not many suitable animal models for study. We characterized the features and mechanisms of chronic gastritis in SAMP1/YitFc (SAMP) mice, a spontaneous model of CD-like ileitis, along with possible therapeutic approaches. Methods Stomachs from specific pathogen-free and germ-free SAMP and AKR mice (controls) were evaluated histologically; the presence of Helicobacter spp. was tested in fecal pellets by PCR analysis. In vivo gastric permeability was quantified by fractional excretion of sucrose and epithelial tight junction protein expression was measured by quantitative reverse transcription PCR analysis. The effects of a proton pump inhibitor (PPI) or corticosteroids were measured and the ability of pathogenic immune cells to mediate gastritis was assessed in adoptive transfer experiments. Results SAMP mice developed Helicobacter-negative gastritis, characterized by aggregates of mononuclear cells, diffuse accumulation of neutrophils, and disruption of epithelial architecture; SAMP mice also had increased in gastric permeability compared with controls, without alterations in expression of tight junction proteins. The gastritis and associated permeability defect observed in SAMP mice were independent of bacterial colonization and reduced by administration of corticosteroids but not a PPI. CD4+ T cells isolated from draining mesenteric lymph nodes of SAMP mice were sufficient to induce gastritis in recipient SCID mice. Conclusions In SAMP mice, gastritis develops spontaneously and has many features of CD-like ileitis. These mice are a useful model to study Helicobacter-negative, immune-mediated Crohn’s gastritis. PMID:21704001
Neonatal Iron Supplementation Induces Striatal Atrophy in Female YAC128 Huntington’s Disease Mice
Berggren, Kiersten L.; Lu, Zhen; Fox, Julia A.; Dudenhoeffer, Megan; Agrawal, Sonal; Fox, Jonathan H.
2016-01-01
Background: Dysregulation of iron homeostasis is implicated in the pathogenesis of Huntington’s disease. We have previously shown that increased iron intake in R6/2 HD neonatal mice, but not adult R6/2 HD mice potentiates disease outcomes at 12-weeks of age corresponding to advanced HD [Redox Biol. 2015;4 : 363–74]. However, whether these findings extend to other HD models is unknown. In particular, it is unclear if increased neonatal iron intake can promote neurodegeneration in mouse HD models where disease onset is delayed to mid-adult life. Objective: To determine if increased dietary iron intake in neonatal and adult life-stages potentiates HD in the slowly progressive YAC128 HD mouse model. Methods: Female neonatal mice were supplemented daily from days 10–17 with 120μg/g body weight of carbonyl iron. Adult mice were provided diets containing low (50 ppm), medium (150 ppm) and high (500 ppm) iron concentrations from 2-months of age. HD progression was determined using behavioral, brain morphometric and biochemical approaches. Results: Neonatal-iron supplemented YAC128 HD mice had significantly lower striatal volumes and striatal neuronal cell body volumes as compared to control HD mice at 1-year of age. Neonatal-iron supplementation of HD mice had no effect on rota-rod motor endurance and brain iron or glutathione status. Adult iron intake level had no effect on HD progression. YAC128 HD mice had altered peripheral responses to iron intake compared to iron-matched wild-type controls. Conclusions: Female YAC128 HD mice supplemented with nutritionally-relevant levels of iron as neonates demonstrate increased striatal degeneration 1-year later. PMID:27079948
Cardiac Gene Expression Knockdown Using Small Inhibitory RNA-Loaded Microbubbles and Ultrasound
McTiernan, Charles F.; Chen, Xucai; Klein, Edwin C.; Villanueva, Flordeliza S.
2016-01-01
RNA interference has potential therapeutic value for cardiac disease, but targeted delivery of interfering RNA is a challenge. Custom designed microbubbles, in conjunction with ultrasound, can deliver small inhibitory RNA to target tissues in vivo. The efficacy of cardiac RNA interference using a microbubble-ultrasound theranostic platform has not been demonstrated in vivo. Therefore, our objective was to test the hypothesis that custom designed microbubbles and ultrasound can mediate effective delivery of small inhibitory RNA to the heart. Microbubble and ultrasound mediated cardiac RNA interference was tested in transgenic mice displaying cardiac-restricted luciferase expression. Luciferase expression was assayed in select tissues of untreated mice (n = 14). Mice received intravenous infusion of cationic microbubbles bearing small inhibitory RNA directed against luciferase (n = 9) or control RNA (n = 8) during intermittent cardiac-directed ultrasound at mechanical index of 1.6. Simultaneous echocardiography in a separate group of mice (n = 3) confirmed microbubble destruction and replenishment during treatment. Three days post treatment, cardiac luciferase messenger RNA and protein levels were significantly lower in ultrasound-treated mice receiving microbubbles loaded with small inhibitory RNA directed against luciferase compared to mice receiving microbubbles bearing control RNA (23±7% and 33±7% of control mice, p<0.01 and p = 0.03, respectively). Passive cavitation detection focused on the heart confirmed that insonification resulted in inertial cavitation. In conclusion, small inhibitory RNA-loaded microbubbles and ultrasound directed at the heart significantly reduced the expression of a reporter gene. Ultrasound-targeted destruction of RNA-loaded microbubbles may be an effective image-guided strategy for therapeutic RNA interference in cardiac disease. PMID:27471848
2014-01-01
Background Treatment of trypanosomosis is currently facing a number of problems including toxicity of trypanocidal drugs and development of resistance by the parasites. These limitations have prompted the search for alternative active substances (such as of natural origin). The purpose of the study was to investigate the effect of extracts of Moringa stenopetala and Artemisia absinthium on Trypanosoma congolense in mice. Methods Swiss white male mice aged 8–12 weeks were divided into six experimental groups of six animals. Water and methanol extracts of the two plants were prepared. T. congolense was isolated from cattle at Ghibe valley (Ethiopia). All experimental mice received approximately 1 x 105 trypanosomes in 0.2 ml of blood. Plant extracts were given orally to four groups (2 plant species and two extraction methods) at 400 mg/kg body weight for seven consecutive days. One group remained as distilled water treated control and the other as diminzene aceturate treated control. The effect of the extracts on levels of parasitaemia, body weight, packed cell volume (PCV) and mice survival was monitored for 25 days. Results All treatments have significantly reduced parasitaemia and helped improve body weight, PCV and survival of mice compared to the water-treated control (P < 0.01 in all cases). These effects were comparable to that with diminazene aceturate. No significant difference was observed in the reduction of parasitaemia between plant extract treatment groups. However, mice with extracts of A. absinthium had significantly higher body weight than those with extracts of M. stenopetala (P < 0.05). Conclusions The two plants have antitrypanosomal potential against T. congolense by reducing the levels of parasitaemia, maintaining good PCV and body weight, and prolonging the lives of infected animals. PMID:24962241
Razzoli, Maria; Sanghez, Valentina; Bartolomucci, Alessandro
2015-01-01
Background: Eating disorders are associated with physical morbidity and appear to have causal factors like stressful life events and negative affect. Binge-eating disorder (BED) is characterized by eating in a discrete period of time a larger than normal amount of food, a sense of lack of control over eating, and marked distress. There are still unmet needs for the identification of mechanisms regulating excessive eating, which is in part due to the lack of appropriate animal models. We developed a naturalistic murine model of subordination stress-induced hyperphagia associated with the development of obesity. Here, we tested the hypotheses that the eating responses of subordinate mice recapitulate the BED and that limiting hyperphagia could prevent stress-associated metabolic changes. Methods: Adult male mice were exposed to a model of chronic subordination stress (CSS) associated with the automated acquisition of food intake and we performed a detailed meal pattern analysis. Additionally, using a pair-feeding protocol we tested the hypothesis that the manifestation of obesity and the metabolic syndrome could be prevented by limiting hyperphagia. Results: The architecture of feeding of subordinate mice was disrupted during the stress protocol due to disproportionate amount of food ingested at higher rate and with shorter satiety ratio than control mice. Subordinate mice hyperphagia was further exacerbated in response to either hunger or to the acute application of a social defeat. Notably, the obese phenotype but not the fasting hyperglycemia of subordinate mice was abrogated by preventing hyperphagia in a pair-feeding paradigm. Conclusion: Overall, these results support the validity of our CSS to model BED allowing for the determination of the underlying molecular mechanisms and the generation of testable predictions for innovative therapies, based on the understanding of the regulation and the control of food intake. PMID:25621284
Aftab, Muhammad Nazar; Akram, Irum Naz; Khosa, Tafheem; Zahra, Syeda Qandeel; Bashir, Irum; Ashiq, Muhammad Naeem; Iqbal, Furhan
2018-05-21
Lanthanum Zirconate nanoparticles (NPs) are used in blades of gas turbine engines to thermally insulate them and to protect them against hot and corrosive gas streams. However, the information regarding their biocompatibility is limited. The present study was aimed to report the effect of Lanthanum Zirconate NPs on selected aspects of behavior, serum biochemistry, complete blood count and antioxidant parameters from vital organs of albino mice in a gender specific manner. Albino mice, seven weeks old, were orally treated with 75 mg/ml solvent/Kg body weight of Lanthanum Zirconate nanoparticles for consecutive 22 days. Saline treated control groups were maintained in parallel. It was observed that rearing frequency was significantly decreased (P = 0.01) in NPs treated male mice. Complete blood count analysis indicated that NPs treated female mice had significantly reduced white blood cells (P = 0.05) and lymphocytes count (P = 0.03). NPs treated male had significantly reduced serum cholesterol levels (P = 0.05) than control group. It was observed that Superoxide dismutase concentrations in liver (P = 0.025) and kidney (P = 0.008), Malondialdehyde concentrations in liver (P = 0.044) of female and Malondialdehyde concentrations in kidney (P < 0.001) and brain (P < 0.001) and catalase concentrations in liver (P = 0.05) of NPs treated male mice were significantly higher than their respective control groups.. In conclusion, we are reporting that oral supplementation with 75 mg/ml solvent/Kg body weight of Lanthanum Zirconate nanoparticles can affect the behavior, leukocyte count, serum cholesterol and antioxidant metabolites from vital organs of albino mice in a gender specific manner.
Nguyen, Cathy; Cone, Frances E.; Nguyen, Thao D.; Coudrillier, Baptiste; Pease, Mary E.; Steinhart, Matthew R.; Oglesby, Ericka N.; Jefferys, Joan L.; Quigley, Harry A.
2013-01-01
Purpose. To study anatomical changes and mechanical behavior of the sclera in mice with experimental glaucoma by comparing CD1 to B6 mice. Methods. Chronic experimental glaucoma for 6 weeks was produced in 2- to 4-month-old CD1 (43 eyes) and B6 mice (42 eyes) using polystyrene bead injection into the anterior chamber with 126 control CD1 and 128 control B6 eyes. Intraocular pressure (IOP) measurements were made with the TonoLab at baseline and after bead injection. Axial length and scleral thickness were measured after sacrifice in the CD1 and B6 animals and compared to length data from 78 eyes of DBA/2J mice. Inflation testing of posterior sclera was conducted, and circumferential and meridional strain components were determined from the displacement response. Results. Experimental glaucoma led to increases in axial length and width by comparison to fellow eyes (6% in CD1 and 10% in B6; all P < 0.03). While the peripapillary sclera became thinner in both mouse types with glaucoma, the remainder of the sclera uniformly thinned in CD1, but thickened in B6. Peripapillary sclera in CD1 controls had significantly greater temporal meridional strain than B6 and had differences in the ratios of meridional to effective circumferential strain from B6 mice. In both CD1 and B6 mice, exposure to chronic IOP elevation resulted in stiffer pressure–strain responses for both the effective circumferential and meridional strains (multivariable regression model, P = 0.01–0.03). Conclusions. Longer eyes, greater scleral strain in some directions at baseline, and generalized scleral thinning after glaucoma were characteristic of CD1 mice that have greater tendency to retinal ganglion cell damage than B6 mice. Increased scleral stiffness after glaucoma exposure in mice mimics findings in monkey and human glaucoma eyes. PMID:23404116
Veasey, Sigrid C.; Lear, Jessica; Zhu, Yan; Grinspan, Judith B.; Hare, Dominic J.; Wang, SiHe; Bunch, Dustin; Doble, Philip A.; Robinson, Stephen R.
2013-01-01
Study Objectives: Exposure to the variable oxygenation patterns in obstructive sleep apnea (OSA) causes oxidative stress within the brain. We hypothesized that this stress is associated with increased levels of redox-active metals and white matter injury. Design: Participants were randomly allocated to a control or experimental group (single independent variable). Setting: University animal house. Participants: Adult male C57BL/6J mice. Interventions: To model OSA, mice were exposed to long-term intermittent hypoxia (LTIH) for 10 hours/day for 8 weeks or sham intermittent hypoxia (SIH). Measurements and Results: Laser ablation-inductively coupled plasma-mass spectrometry was used to quantitatively map the distribution of the trace elements cobalt, copper, iron, and zinc in forebrain sections. Control mice contained 62 ± 7 ng cobalt/g wet weight, whereas LTIH mice contained 5600 ± 600 ng cobalt/g wet weight (P < 0.0001). Other elements were unchanged between conditions. Cobalt was concentrated within white matter regions of the brain, including the corpus callosum. Compared to that of control mice, the corpus callosum of LTIH mice had significantly more endoplasmic reticulum stress, fewer myelin-associated proteins, disorganized myelin sheaths, and more degenerated axon profiles. Because cobalt is an essential component of vitamin B12, serum methylmalonic acid (MMA) levels were measured. LTIH mice had low MMA levels (P < 0.0001), indicative of increased B12 activity. Conclusions: Long-term intermittent hypoxia increases brain cobalt, predominantly in the white matter. The increased cobalt is associated with endoplasmic reticulum stress, myelin loss, and axonal injury. Low plasma methylmalonic acid levels are associated with white matter injury in long-term intermittent hypoxia and possibly in obstructive sleep apnea. Citation: Veasey SC; Lear J; Zhu Y; Grinspan JB; Hare DJ; Wang S; Bunch D; Doble PA; Robinson SR. Long-term intermittent hypoxia elevates cobalt levels in the brain and injures white matter in adult mice. SLEEP 2013;36(10):1471-1481. PMID:24082306
de Castro, Cynthia Aparecida; Natali, Antonio José; Cardoso, Luciana Marques; Ferreira-Machado, Alessandra Barbosa; Novello, Alexandre Azevedo; da Silva, Karina Ana; Tafuri, Natalia Filard; da Matta, Sergio Luis Pinto; Pedrosa, Maria Lucia; Peluzio, Maria do Carmo Gouveia
2014-08-14
The pulp of jussara açaí (Euterpe edulis Martius) fruit is rich in anthocyanins that exert antioxidant and anti-inflammatory effects similar to those exerted by aerobic exercise. In the present study, we investigated the effects of jussara açaí fruit pulp consumption, either alone or in combination with aerobic exercise, on the hepatic oxidative and inflammatory status of ApoE-deficient (ApoE - / - ) mice. Male mice were divided into four groups (control (C), control plus açaí, exercise plus açaí (EXA) and exercise (EX)) and fed the AIN-93M diet or the AIN-93M diet formulated to contain 2 % freeze-dried açaí pulp. Mice in the EX and EXA groups were subjected to a progressive running programme (5 d/week, 60 min/d, 16 m/min) for 12 weeks. Mice that were made to exercise exhibited reduced (40·85 %; P< 0·05) hepatic superoxide dismutase activity when compared with the C mice, independent of the açaí diet. Mice in the EX group exhibited a lower (42 %; P< 0·05) mRNA expression of monocyte chemotactic protein-1 in the liver compared with the C mice. Mice in the EXA and EX groups had lower percentages of hepatic lipid droplets (70 % and 56 %, respectively; P< 0·05) when compared with the C mice. Mice in the EX group had smaller (58 %; P< 0·05) area of lesions in the aorta when compared with the C mice. Serum lipid profile was not affected (P>0·05). In conclusion, aerobic exercise training rather than açaí fruit pulp consumption or a combination of both enhances the hepatic oxidative and inflammatory status of ApoE - / - mice.
Developing and Validating Trace Fear Conditioning Protocols in C57BL/6 Mice
Burman, Michael A; Simmons, Cassandra A; Hughes, Miles; Lei, Lei
2013-01-01
Background Classical fear conditioning is commonly used to study the biology of fear, anxiety and memory. Previous research demonstrated that delay conditioning requires a neural circuit involving the amygdala, but not usually the hippocampus. Trace and contextual fear conditioning require the amygdala and hippocampus. While these paradigms were developed primarily using rat models, they are increasingly being used in mice. New Method The current studies develop trace fear conditioning and control paradigms to allow for the assessment of trace and delay fear conditioning in C57BL/6N mice. Our initial protocol yielded clear delay and contextual conditioning. However, trace conditioning failed to differentiate from an unpaired group and was not hippocampus-dependent. These results suggested that the protocol needed to be modified to specifically accommodate trace conditioning the mice. In order to reduce unconditioned freezing and increase learning, the final protocol was developed by decreasing the intensity of the tone and by increasing the inter-trial interval. Results Our final protocol produced trace conditioned freezing that was significantly greater than that followed unpaired stimulus exposure and was disrupted by hippocampus lesions. Comparison with Existing Methods A review of the literature produced 90 articles using trace conditioning in mice. Few of those articles used any kind of behavioral control group, which is required to rule out non-associative factors causing fearful behavior. Fewer used unpaired groups involving tones and shocks within a session, which is the optimal control group. Conclusions Our final trace conditioning protocol can be used in future studies examining genetically modified C57BL/6N mice. PMID:24269252
Sivak, Olena; Darlington, Jerry; Gershkovich, Pavel; Constantinides, Panayiotis P; Wasan, Kishor M
2009-01-01
The aim of this work was to assess the effect of chronic administration of protonated nanostructured aluminosilicate (NSAS) on the plasma cholesterol levels and development of atherosclerotic lesions in Apolipoprotein (ApoE) deficient mice fed a high cholesterol and high fat diet. Apolipoprotein E (ApoE) deficient mice were divided into the following treatment groups: protonated NSAS 1.4% (w/w), untreated control and 2% (w/w) stigmastanol mixed with high-cholesterol/high-fat diet. Animals were treated for 12 weeks, blood samples were withdrawn every 4 weeks for determination of plasma cholesterol and triglyceride levels. At the end of the study the aortic roots were harvested for assessment of atherosclerotic lesions. NSAS at 1.4% (w/w) and stigmastanol at 2% (w/w) treatment groups showed significant decreases in plasma cholesterol concentrations at all time points relative to the control animals. The lesion sum area in 1.4% (w/w) NSAS and 2% (w/w) stigmastanol groups were significantly less from the control animals. In conclusion, in this study, the effectiveness of chronic administration of protonated NSAS material in the reduction of plasma cholesterol levels and decrease in development of atherosclerotic lesions was demonstrated in Apo-E deficient mice model. PMID:19638223
Sivak, Olena; Darlington, Jerry; Gershkovich, Pavel; Constantinides, Panayiotis P; Wasan, Kishor M
2009-07-28
The aim of this work was to assess the effect of chronic administration of protonated nanostructured aluminosilicate (NSAS) on the plasma cholesterol levels and development of atherosclerotic lesions in Apolipoprotein (ApoE) deficient mice fed a high cholesterol and high fat diet. Apolipoprotein E (ApoE) deficient mice were divided into the following treatment groups: protonated NSAS 1.4% (w/w), untreated control and 2% (w/w) stigmastanol mixed with high-cholesterol/high-fat diet. Animals were treated for 12 weeks, blood samples were withdrawn every 4 weeks for determination of plasma cholesterol and triglyceride levels. At the end of the study the aortic roots were harvested for assessment of atherosclerotic lesions. NSAS at 1.4% (w/w) and stigmastanol at 2% (w/w) treatment groups showed significant decreases in plasma cholesterol concentrations at all time points relative to the control animals. The lesion sum area in 1.4% (w/w) NSAS and 2% (w/w) stigmastanol groups were significantly less from the control animals. In conclusion, in this study, the effectiveness of chronic administration of protonated NSAS material in the reduction of plasma cholesterol levels and decrease in development of atherosclerotic lesions was demonstrated in Apo-E deficient mice model.
Doumouchtsis, Evangelos K; Tzani, Aspasia; Doulamis, Ilias P; Konstantopoulos, Panagiotis; Laskarina-Maria, Korou; Agrogiannis, Georgios; Agapitos, Emmanouil; Moschos, Marilita M; Kostakis, Alkiviadis; Perrea, Despina N
2017-09-22
Saffron is a spice that has been traditionally used as a regimen for a variety of diseases due to its potent antioxidant attributes. It is well documented that impaired systemic oxidative status is firmly associated with diverse adverse effects including retinal damage. The aim of this study was to investigate the role of saffron administration against the retinal damage in apoE -/- mice fed a high-fat diet, since they constitute a designated experimental model susceptible to oxidative stress. Twenty-one mice were allocated into three groups: Group A (control, n = 7 c57bl/6 mice) received standard chow diet; Group B (high-fat, n = 7 apoE -/- mice) received a high-fat diet; and Group C (high-fat and saffron, n = 7 apoE -/- mice) received a high-fat diet and saffron (25 mg/kg/d) through their drinking water. The duration of the study was 20 weeks. Lipidemic profile, glucose, C-reactive protein (CRP), and total oxidative capacity (PerOX) were measured in blood serum. Histological analysis of retina was also conducted. Administration of saffron resulted in enhanced glycemic control and preservation of retinal thickness when compared with apoE -/- mice fed a high-fat diet. The outcomes of the study suggest the potential protective role of saffron against retinal damage induced by oxidative stress. Nevertheless, verification of these results in humans is required before any definite conclusions can be drawn.
Comparison of Glomerular and Podocyte mRNA Profiles in Streptozotocin-Induced Diabetes
Fu, Jia; Wei, Chengguo; Lee, Kyung; Zhang, Weijia; He, Wu; Chuang, Peter
2016-01-01
Evaluating the mRNA profile of podocytes in the diabetic kidney may indicate genes involved in the pathogenesis of diabetic nephropathy. To determine if the podocyte-specific gene information contained in mRNA profiles of the whole glomerulus of the diabetic kidney accurately reflects gene expression in the isolated podocytes, we crossed Nos3−/− IRG mice with podocin-rtTA and TetON-Cre mice for enhanced green fluorescent protein labeling of podocytes before diabetic injury. Diabetes was induced by streptozotocin, and mRNA profiles of isolated glomeruli and sorted podocytes from diabetic and control mice were examined 10 weeks later. Expression of podocyte-specific markers in glomeruli was downregulated in diabetic mice compared with controls. However, expression of these markers was not altered in sorted podocytes from diabetic mice. When mRNA levels of glomeruli were corrected for podocyte number per glomerulus, the differences in podocyte marker expression disappeared. Analysis of the differentially expressed genes in diabetic mice also revealed distinct upregulated pathways in the glomeruli (mitochondrial function, oxidative stress) and in podocytes (actin organization). In conclusion, our data suggest reduced expression of podocyte markers in glomeruli is a secondary effect of reduced podocyte number, thus podocyte-specific gene expression detected in the whole glomerulus may not represent that in podocytes in the diabetic kidney. PMID:26264855
NASA Technical Reports Server (NTRS)
Aviles, Hernan; Belay, Tesfaye; Vance, Monique; Sonnenfeld, Gerald
2005-01-01
The rodent model of hindlimb unloading has been successfully used to simulate some of the effects of space flight conditions. Previous studies have indicated that mice exposed to hindlimb-unloading conditions have decreased resistance to infections compared to restrained and normally housed control mice. OBJECTIVE: The purpose of this study was to clarify the mechanisms involved in resistance to infection in this model by examining the effects of hindlimb unloading on the function of the immune system and its impact on the production of catecholamines. METHODS: Female Swiss Webster mice were hindlimb-unloaded during 48 h and the function of the immune system was assessed in spleen and peritoneal cells immediately after this period. In addition, the kinetics of catecholamine production was measured throughout the hindlimb-unloading period. RESULTS: The function of the immune system was significantly suppressed in the hindlimb-unloaded group compared to restrained and normally housed control mice. Levels of catecholamines were increased in the hindlimb-unloaded group and peaked at 12 h following the commencement of unloading. CONCLUSION: These results suggest that physiological responses of mice are altered early after hindlimb unloading and that catecholamines may play a critical role in the modulation of the immune system. These changes may affect the ability of mice to resist infections. Copyright (c) 2005 S. Karger AG, Basel.
Chen, Shuang; Lee, Young Ho; Crother, Timothy R.; Fishbein, Michael; Zhang, Wenxuan; Yilmaz, Atilla; Shimada, Kenichi; Schulte, Danica J; Lehman, Thomas J.A.; Shah, Prediman K.; Arditi, Moshe
2012-01-01
Objective To investigate if Lactobacillus casei cell wall extract (LCWE)-induced Kawasaki Disease (KD) accelerates atherosclerosis in hypercholesterolemic mice. Method and Resuslts Apoe−/− or Ldlr−/− mice were injected with LCWE (KD mice) or PBS, fed high fat diet for 8 weeks, and atherosclerotic lesions in aortic sinuses (AS), arch (AC) and whole aorta were assessed. KD mice had larger, more complex aortic lesions with abundant collagen, and both extracellular and intracellular lipid and foam cells, compared to lesions in control mice despite similar cholesterol levels. Both Apoe−/− KD and Ldlr−/− KD mice showed dramatic acceleration in atherosclerosis vs. controls, with increases in en face aortic atherosclerosis and plaque size in both the AS and AC plaques. Accelerated atherosclerosis was associated with increased circulating IL-12p40, IFN-γ, TNF-α, and increased macrophage, DC, and T cell recruitment in lesions. Furthermore, daily injections of the IL-1Ra, which inhibits LCWE induced KD vasculitis, prevented the acceleration of atherosclerosis. Conclusions Our results suggest an important pathophysiologic link between coronary arteritis/vasculitis in the KD mouse model and subsequent atherosclerotic acceleration, supporting the concept that a similar relation may also be present in KD patients. These results also suggest that KD in childhood may predispose to accelerated and early atherosclerosis as adults. PMID:22628430
Metabolite analysis distinguishes between mice with epidermolysis bullosa acquisita and healthy mice
2013-01-01
Background Epidermolysis bullosa acquisita (EBA) is a rare skin blistering disease with a prevalence of 0.2/ million people. EBA is characterized by autoantibodies against type VII collagen. Type VII collagen builds anchoring fibrils that are essential for the dermal-epidermal junction. The pathogenic relevance of antibodies against type VII collagen subdomains has been demonstrated both in vitro and in vivo. Despite the multitude of clinical and immunological data, no information on metabolic changes exists. Methods We used an animal model of EBA to obtain insights into metabolomic changes during EBA. Sera from mice with immunization-induced EBA and control mice were obtained and metabolites were isolated by filtration. Proton nuclear magnetic resonance (NMR) spectra were recorded and analyzed by principal component analysis (PCA), partial least squares discrimination analysis (PLS-DA) and random forest. Results The metabolic pattern of immunized mice and control mice could be clearly distinguished with PCA and PLS-DA. Metabolites that contribute to the discrimination could be identified via random forest. The observed changes in the metabolic pattern of EBA sera, i.e. increased levels of amino acid, point toward an increased energy demand in EBA. Conclusions Knowledge about metabolic changes due to EBA could help in future to assess the disease status during treatment. Confirming the metabolic changes in patients needs probably large cohorts. PMID:23800341
Fong, Pedro; Meng, Li-rong
2014-01-01
Background The aim of this study was to investigate the sensitivity to rapamycin of endometrial cancer cells with different phosphatase and tensin homologue (PTEN) expression to understand the mechanism of resistance to mammalian target of rapamycin (mTOR) inhibitors in the treatment of endometrial cancer. Material/Methods Twenty specific pathogen-free female BALB/c mice received transplants of either HEC-1A (PTEN-positive) or Ishikawa (PTEN-negative) cells. Mice in the treatment group were injected intraperitoneally once a week for 4 consecutive weeks. The control group was injected weekly with phosphate buffer saline (PBS) for 4 consecutive weeks. Tumor volume, tumor mass, growth curves, and inhibition rate were measured, after which the mice were killed. Results Both tumor growth rate and size were slower in the treatment group than in the control group for all mice that received transplants of either HEC-1A or Ishikawa cells. The tumor inhibition rates in the treatment group were 48.1% and 67.1% in mice transplanted with HEC-1A and Ishikawa cells, respectively. Conclusions The inhibitory effects of rapamycin were enhanced in PTEN-negative Ishikawa tumor cells compared with PTEN-positive HEC-1A cells, which could explain the reduced effect of rapalogues in some endometrial cancer patients and help to understand the mechanism of resistance to this drug. PMID:25266877
Luo, C; Yao, X; Li, J; He, B; Liu, Q; Ren, H; Liang, F; Li, M; Lin, H; Peng, J; Yuan, T F; Pei, Z; Su, H
2016-03-31
Subarachnoid hemorrhage (SAH) is a devastating disease with high mortality. The mechanisms underlying its pathological complications have not been fully identified. Here, we investigate the potential involvement of the glymphatic system in the neuropathology of SAH. We demonstrate that blood components rapidly enter the paravascular space following SAH and penetrate into the perivascular parenchyma throughout the brain, causing disastrous events such as cerebral vasospasm, delayed cerebral ischemia, microcirculation dysfunction and widespread perivascular neuroinflammation. Clearance of the paravascular pathway with tissue-type plasminogen activator ameliorates the behavioral deficits and alleviates histological injury of SAH. Interestingly, AQP4(-/-) mice showed no improvements in neurological deficits and neuroinflammation at day 7 after SAH compared with WT control mice. In conclusion, our study proves that the paravascular pathway dynamically mediates the pathological complications following acute SAH independently of glymphatic control.
Zhang, Zhong-Lin; Liu, Zhi-Su; Sun, Quan
2005-01-01
AIM: To investigate the effects of thalidomide on angiogenesis, tumor growth and metastasis of hepatocellular carcinoma in nude mice. METHODS: Twenty-four nude mice were randomly divided into therapy group and control group, 12 mice in each group. Thalidomide dissolved in 0.5% sodium carboxyl methyl cellulose (CMC) suspension was administered intraperitoneally once a day at the dose of 200 mg/kg in therapy group, and an equivalent volume of 0.5% CMC in control group. Mice were sacrificed on the 30th d, tumor size and weight and metastases in liver and lungs were measured. CD34 and VEGF mRNA in tumor tissue were detected by immunohistochemistry and semi-quantitative RT-PCR respectively and microvessel density (MVD) was counted. Serum concentrations of TNF-α and ALT and AFP were also tested. RESULTS: MVD and VEGF mRNA in therapy group were less than those in control group (31.08±16.23 vessels/HP vs 80.00±26.27 vessels/HP, 0.0538±0.0165 vs 0.7373±0.1297, respectively, P<0.05). No statistical difference was observed in tumor size and weight and metastases in liver and lungs. TNF-α was significantly lower in therapy group than in control group (28.64±4.64 ng/L vs 42.69±6.99 ng/L, P<0.05). No statistical difference in ALT and AFP was observed between groups. CONCLUSION: Thalidomide can significantly inhibit angiogenesis and metastasis of hepatocellular carcinoma. It also has inhibitory effects on circulating TNF-α. PMID:15633219
Langley, Erika A; Krykbaeva, Marina; Blusztajn, Jan Krzysztof; Mellott, Tiffany J
2015-02-01
Autism is a neurodevelopmental disorder with multiple genetic and environmental risk factors. Choline is a fundamental nutrient for brain development and high choline intake during prenatal and/or early postnatal periods is neuroprotective. We examined the effects of perinatal choline supplementation on social behavior, anxiety, and repetitive behaviors in the BTBR T+Itpr3tf/J (BTBR) mouse model of autism. The BTBR or the more "sociable" C57BL/6J (B6) strain females were fed a control or choline-supplemented diet from mating, throughout pregnancy and lactation. After weaning to a control diet, all offspring were evaluated at one or two ages [postnatal days 33-36 and 89-91] using open field (OF), elevated plus maze (EPM), marble burying (MB), and three-chamber social interaction tests. As expected, control-diet BTBR mice displayed higher OF locomotor activity, impaired social preference, and increased digging behavior during the MB test compared to control-diet B6 mice. Choline supplementation significantly decreased digging behavior, elevated the percentage of open arm entries and time spent in open arms in the EPM by BTBR mice, but had no effect on locomotion. Choline supplementation did not alter social interaction in B6 mice but remarkably improved impairments in social interaction in BTBR mice at both ages, indicating that the benefits of supplementation persist long after dietary choline returns to control levels. In conclusion, our results suggest that high choline intake during early development can prevent or dramatically reduce deficits in social behavior and anxiety in an autistic mouse model, revealing a novel strategy for the treatment/prevention of autism spectrum disorders. Copyright © 2014 Elsevier B.V. All rights reserved.
William, Basem M.; An, Wei; Feng, Dan; Nadeau, Scott; Mohapatra, Bhopal C; Storck, Matthew A.; Band, Vimla; Band, Hamid
2017-01-01
Objectives Mutations in Cbl or Cbl-b gene occur in 10% of MPD patients and are associated with poor prognosis. Hematopoietic Cbl/Cbl-b double knockout (DKO) leads to a disease in mice phenotypically similar to human MPDs. The aim of this study was to evaluate the anti-MPD activity of a clinical safe drug, Fasudil identified in an in vitro kinase inhibitor as an inhibitor of proliferation of DKO mouse hematopoietic stem/progenitor cells (HSPCs). Methods Fasudil exhibited relatively selective anti-proliferative activity against Cbl/Cbl-b DKO vs. control murine bone marrow HSPCs. We established a mouse model with uniform time of MPD onset by transplanting Cbl/Cbl-b DKO HSPCs into busulfan-conditioned NOD/SCID/gamma chain-deficient mice. Four weeks post-transplant, mice were treated with 100 mg/kg fasudil (13 mice) or water (control, 8 mice) daily by oral gavage, followed by blood cell count every two weeks. Results By two weeks of treatment, total white cell and monocyte counts were significantly lower in mice treated with fasudil. We observed a trend towards improved survival in fasudil-treated mice that didn’t reach statistical significance. Notably, prolonged survival beyond 27 weeks was observed in 2 fasudil-treated mice, nearly twice the 16-week average life-span in the Cbl/Cbl-b DKO MPD model. Conclusions Our results suggest a therapeutic potential for fasudil, a clinically-safe drug with promising results in vascular diseases, in the treatment of MPDs or other mutant Cbl-driven myeloid disorders. PMID:26177294
Deleterious effect of oltipraz on extrahepatic cholestasis in bile duct-ligated mice
Weerachayaphorn, Jittima; Luo, Yuhuan; Mennone, Albert; Soroka, Carol J.; Harry, Kathy; Boyer, James L.
2014-01-01
Background & Aims Oltipraz (4-methyl-5(pyrazinyl-2)-1-2-dithiole-3-thione), a promising cancer preventive agent, has an anti-oxidative activity and ability to enhance glutathione biosynthesis, phase II detoxification enzymes and multidrug resistance-associated protein-mediated efflux transporters. Oltipraz can protect against hepatotoxicity caused by carbon tetrachloride, acetaminophen and alpha-naphthylisothiocyanate. Whether oltipraz has hepato-protective effects on obstructive cholestasis is unknown. Methods We administered oltipraz to mice for 5 days prior to bile duct ligation (BDL) for 3 days. Liver histology, liver function markers, bile flow rates and hepatic expression of profibrogenic genes were evaluated. Results Mice pretreated with oltipraz prior to BDL demonstrated higher levels of serum aminotransferases and more severe liver damage than in control mice. Higher bile flow and glutathione secretion rates were observed in unoperated mice treated with oltipraz than in control mice, suggesting that liver necrosis in oltipraz-treated BDL mice may be related partially to increased bile-acid independent flow and biliary pressure. Oltipraz treatment in BDL mice enhanced -smooth muscle actin expression, consistent with activation of hepatic stellate cells and portal fibroblasts. Matrix metalloproteinases (MMP) 9 and 13 and tissue inhibitors of metalloproteinases (TIMP) 1 and 2 levels were increased in the oltipraz -treated BDL group, suggesting that the secondary phase of liver injury induced by oltipraz might be due to excessive MMP and TIMP secretions which induce remodeling of the extracellular matrix. Conclusions Oltipraz treatment exacerbates the severity of liver injury following BDL and should be avoided as therapy for extrahepatic cholestatic disorders due to bile duct obstruction. PMID:23978715
Lutz, Stefan Z.; Hennige, Anita M.; Feil, Susanne; Peter, Andreas; Gerling, Andrea; Machann, Jürgen; Kröber, Stefan M.; Rath, Michaela; Schürmann, Annette; Weigert, Cora; Häring, Hans-Ulrich; Feil, Robert
2011-01-01
OBJECTIVE The nitric oxide/cGMP/cGMP-dependent protein kinase type I (cGKI) signaling pathway regulates cell functions that play a pivotal role in the pathogenesis of type 2 diabetes. However, the impact of a dysfunction of this pathway for glucose metabolism in vivo is unknown. RESEARCH DESIGN AND METHODS The expression of cGKI in tissues relevant to insulin action was analyzed by immunohistochemistry. The metabolic consequences of a genetic deletion of cGKI were studied in mice that express cGKI selectively in smooth muscle but not in other cell types (cGKI-SM mice). RESULTS In wild-type mice, cGKI protein was detected in hepatic stellate cells, but not in hepatocytes, skeletal muscle, fat cells, or pancreatic β-cells. Compared with control animals, cGKI-SM mice had higher energy expenditure in the light phase associated with lower body weight and fat mass and increased insulin sensitivity. Mutant mice also showed higher fasting glucose levels, whereas insulin levels and intraperitoneal glucose tolerance test results were similar to those in control animals. Interleukin (IL)-6 signaling was strongly activated in the liver of cGKI-SM mice as demonstrated by increased levels of IL-6, phospho-signal transducer and activator of transcription 3 (Tyr 705), suppressor of cytokine signaling-3, and serum amyloid A2. Insulin-stimulated tyrosine phosphorylation of the insulin receptor in the liver was impaired in cGKI-SM mice. The fraction of Mac-2–positive macrophages in the liver was significantly higher in cGKI-SM mice than in control mice. In contrast with cGKI-SM mice, conditional knockout mice lacking cGKI only in the nervous system were normal with respect to body weight, energy expenditure, fasting glucose, IL-6, and insulin action in the liver. CONCLUSIONS Genetic deletion of cGKI in non-neuronal cells results in a complex metabolic phenotype, including liver inflammation and fasting hyperglycemia. Loss of cGKI in hepatic stellate cells may affect liver metabolism via a paracrine mechanism that involves enhanced macrophage infiltration and IL-6 signaling. PMID:21464444
TRAF3IP2 mediates atherosclerotic plaque development and vulnerability in ApoE−/− mice
Prasad, Sakamuri Siva Sankara Vara; Higashi, Yusuke; Sukhanov, Sergiy; Siddesha, Jalahalli M; Delafontaine, Patrice; Siebenlist, Ulrich; Chandrasekar, Bysani
2016-01-01
Background and aims Atherosclerosis is a major cause of heart attack and stroke. Inflammation plays a critical role in the development of atherosclerosis. Since the cytoplasmic adaptor molecule TRAF3IP2 (TRAF3-Interacting Protein 2) plays a causal role in various autoimmune and inflammatory diseases, we hypothesized that TRAF3IP2 mediates atherosclerotic plaque development. Methods TRAF3IP2/ApoE double knockout (DKO) mice were generated by crossing TRAF3IP2−/− and ApoE−/− mice. ApoE−/− mice served as controls. Both DKO and control mice were fed a high-fat diet for 12 weeks. Plasma lipids were measured by ELISA, atherosclerosis by en face analysis of aorta and plaque cross-section measurements at the aortic valve region, plaque necrotic core area, collagen and smooth muscle cell content by histomorphometry, and aortic gene expression by RT-qPCR. Results The plasma lipoprotein profile was not altered by TRAF3IP2 gene deletion in ApoE−/− mice. While total aortic plaque area was decreased in DKO female, but not male mice, the plaque necrotic area was significantly decreased in DKO mice of both genders. Plaque collagen and smooth muscle cell contents were increased significantly in both female and male DKO mice compared to respective controls. Aortic expression of proinflammatory cytokine (Tumor necrosis factor α, TNFα), chemokine (Chemokine (C-X-C motif) Ligand 1, CXCL1) and adhesion molecule (Vascular cell adhesion molecule 1, VCAM1; and Intercellular adhesion molecule 1, ICAM1) gene expression were decreased in both male and female DKO mice. In addition, the male DKO mice showed a markedly reduced expression of extracellular matrix (ECM)-related genes, including TIMP1 (Tissue inhibitor of metalloproteinase 1), RECK (Reversion-Inducing- Cysteine-Rich Protein with Kazal Motifs) and ADAM17 (A Disintegrin And Metalloproteinase 17). Conclusions TRAF3IP2 plays a causal role in atherosclerotic plaque development and vulnerability, possibly by inducing the expression of multiple proinflammatory mediators. TRAF3IP2 could be a potential therapeutic target in atherosclerotic vascular diseases. PMID:27237075
Shi, Ni; Clinton, Steven K.; Liu, Zhihua; Wang, Yongquan; Riedl, Kenneth M.; Schwartz, Steven J.; Zhang, Xiaoli; Pan, Zui; Chen, Tong
2015-01-01
Human and experimental colon carcinogenesis are enhanced by a pro-inflammatory microenvironment. Pharmacologically driven chemopreventive agents and dietary variables are hypothesized to have future roles in the prevention of colon cancer by targeting these processes. The current study was designed to determine the ability of dietary lyophilized strawberries to inhibit inflammation-promoted colon carcinogenesis in a preclinical animal model. Mice were given a single i.p. injection of azoxymethane (10 mg kg−1 body weight). One week after injection, mice were administered 2% (w/v) dextran sodium sulfate in drinking water for seven days and then an experimental diet containing chemically characterized lyophilized strawberries for the duration of the bioassay. Mice fed control diet, or experimental diet containing 2.5%, 5.0% or 10.0% strawberries displayed tumor incidence of 100%, 64%, 75% and 44%, respectively (p < 0.05). The mechanistic studies demonstrate that strawberries reduced expression of proinflammatory mediators, suppressed nitrosative stress and decreased phosphorylation of phosphatidylinositol 3-kinase, Akt, extracellular signal-regulated kinase and nuclear factor kappa B. In conclusion, strawberries target proinflammatory mediators and oncogenic signaling for the preventive efficacies against colon carcinogenesis in mice. This works supports future development of fully characterized and precisely controlled functional foods for testing in human clinical trials for this disease. PMID:25763529
Eid, Mohamed M.; El-Kowrany, Samy I.; Othman, Ahmad A.; Gendy, Dina I. El; Saied, Eman M.
2015-01-01
Toxocariasis is a soil-transmitted helminthozoonosis due to infection of humans by larvae of Toxocara canis. The disease could produce cognitive and behavioral disturbances especially in children. Meanwhile, in our modern era, the incidence of immunosuppression has been progressively increasing due to increased incidence of malignancy as well as increased use of immunosuppressive agents. The present study aimed at comparing some of the pathological and immunological alterations in the brain of normal and immunosuppressed mice experimentally infected with T. canis. Therefore, 180 Swiss albino mice were divided into 4 groups including normal (control) group, immunocompetent T. canis-infected group, immunosuppressed group (control), and immunosuppressed infected group. Infected mice were subjected to larval counts in the brain, and the brains from all mice were assessed for histopathological changes, astrogliosis, and IL-5 mRNA expression levels in brain tissues. The results showed that under immunosuppression, there were significant increase in brain larval counts, significant enhancement of reactive gliosis, and significant reduction in IL-5 mRNA expression. All these changes were maximal in the chronic stage of infection. In conclusion, the immunopathological alterations in the brains of infected animals were progressive over time, and were exaggerated under the effect of immunosuppression as did the intensity of cerebral infection. PMID:25748709
2012-01-01
Background Recent studies on humans and rodents have suggested that the timing of food intake plays an important role in circadian regulation and metabolic health. Consumption of high-fat foods during the inactive period or at the end of the awake period results in weight gain and metabolic syndrome in rodents. However, the distinct effects of breakfast size and the breakfast/dinner size ratio on metabolic health have not yet been fully examined in mice. Methods We examined whether the parameters of metabolic syndrome were differentially affected in mice that consumed a large meal at the beginning of the awake period (breakfast; one meal group) and a relatively smaller meal at end of the awake period (dinner; two meals group). The mice of each group were provided equal food volume per day. Results Mice on one meal exhibited an increase in body weight gain, hyperinsulinemia, hyperleptinemia, and a decrease of gene expression associated with β-oxidation in adipose tissue and liver compared with those on two meals. The circadian expression pattern of the Clock gene in mice on one meal was disturbed compared with those on two meals. Conclusions In conclusion, a bigger breakfast with a smaller dinner (two meals per day) but not breakfast only (one meal per day) helps control body weight and fat accumulation in mice on a high-fat meals schedule. The findings of this study suggest that dietary recommendations for weight reduction and/or maintenance should include information on the timing and quantity of dietary intake. PMID:22587351
Wang, Jie; Guo, Tao; Peng, Qi-Sheng; Yue, Shou-Wei; Wang, Shuang-Xi
2015-01-01
Berberine, as an alkaloid found in many Chinese herbs, improves vascular functions in patients with cardiovascular diseases. We determined the effects of berberine in hypertension and vascular ageing, and elucidated the underlying mechanisms. In isolated aortas, berberine dose-dependently elicited aortic relaxation. In cultured cells, berberine induced the relaxation of vascular smooth muscle cells (VSMCs). Overexpression of transient receptor potential vanilloid 4 (TRPV4) channel by genetic approaches abolished the berberine-induced reduction in intracellular Ca2+ concentration in VSMCs and attenuated berberine-elicited vessel dilation in mice aortas. In deoxycorticosterone acetate (DOCA)-induced hypertensive model, treatment of mice with berberine or RN-1734, a pharmacological inhibitor of TRPV4, significantly decreased systemic blood pressure (BP) in control mice or mice infected with an adenovirus vector. However, berberine-induced effects of lowering BP were reversed by overexpressing TRPV4 in mice by infecting with adenovirus. Furthermore, long-term administration of berberine decreased mean BP and pulse BP, increased artery response to vasodilator and reduced vascular collagen content in aged mice deficient in apolipoprotein E (Apoe-KO), but not in Apoe-KO old mice with lentivirus-mediated overexpression of TRPV4 channel. In conclusion, berberine induces direct vasorelaxation to lower BP and reduces vascular stiffness in aged mice through suppression of TRPV4. PMID:26177349
Kamel, Reem O A
2016-11-01
The present study tests the anti-inflammatory and anti-fibrotic effects of silymarin alone or combined with mefloquine on acute schistosomiasis by evaluating parasitological, histopathological, biochemical and immunological parameters. Male CDI Swiss mice were divided into seven groups, which included healthy controls, mice infected with Schistosoma mansoni or treated with silymarin (140 mg/kg body weight) or mefloquine (400 mg/kg body weight), or mice treated with a combination of both drugs and uninfected mice simply treated with mefloquine or silymarin alone. All mouse groups were sacrificed 8 weeks post-infection (pi) and/or post-treatment. Those infected mice treated with both silymarin and mefloquine showed a significant decrease (P < 0.001) in worm burden, immunoglobulins (IgG and IgM), liver function enzymes and granuloma diameter, with complete eradication of immature and mature eggs. In conclusion, treatment with silymarin combined with mefloquine in murine schistosomiasis was able to reduce granulomatous reactions and hepatic fibrosis. Hence, this combination is a new strategy to be studied as an efficient tool in the treatment of schistosomal liver fibrosis.
Kim, Suyeon; Soltani-Bejnood, Morvarid; Quignard-Boulange, Annie; ...
2006-01-01
Background . The adipose tissue renin-angiotensin system (RAS) contributes to regulation of fat mass and may also impact systemic functions such as blood pressure and metabolism. Methods and results . A panel of mouse models including mice lacking angiotensinogen, Agt ( Agt -KO), mice expressing Agt solely in adipose tissue (aP2- Agt/Agt -KO), and mice overexpressing Agt in adipose tissue (aP2- Agt ) was studied. Total body weight, epididymal fat pad weight, and circulating levels of leptin, insulin, and resistin were significantly decreased in Agt -KO mice, while plasma adiponectin levels were increased. aP2- Agt mice exhibited increased adiposity andmore » plasma leptin and insulin levels compared to wild type (WT) controls. Angiotensinogen and type I Ang II receptor protein levels were also elevated in kidney of aP2- Agt mice. Conclusion . These findings demonstrate that alterations in adipose RAS activity significantly impact both local and systemic physiology in a way that may contribute to the detrimental health effects of obesity.« less
van Dijk, Miriam; Dijk, Francina J.; Bunschoten, Annelies; van Dartel, Dorien A.M.; van Norren, Klaske; Walrand, Stephane; Jourdan, Marion; Verlaan, Sjors; Luiking, Yvette
2016-01-01
Antioxidant (AOX) deficiencies are commonly observed in older adults and oxidative stress has been suggested to contribute to sarcopenia. Here we investigate if 1) low levels of dietary antioxidants had a negative impact on parameters of muscle mass, function and quality, and 2) to study if nutritional interventions with AOX and/or leucine-enriched whey protein could improve these muscle parameters in aged mice. 18-months-old mice were fed a casein-based antioxidant-deficient (lowox) diet or a casein-based control-diet (CTRL) for 7 months. During the last 3 months, lowox-mice were subjected to either: a) continued lowox, b) supplementation with vitamin A/E, Selenium and Zinc (AOX), c) substitution of casein with leucine-enriched whey protein (PROT) or d) a combination of both AOX and PROT (TOTAL). After 7 months lowox-mice displayed lower muscle strength and more muscle fatigue compared to CTRL. Compared to lowox-mice, PROT-mice showed improved muscle power, grip strength and less muscle fatigue. AOX-mice showed improved oxidative status, less muscle fatigue, improved grip strength and mitochondrial dynamics compared to lowox-mice. The TOTAL-mice showed the combined effects of both interventions compared to lowox-mice. In conclusion, nutritional intervention with AOX and/or leucine-enriched whey protein can play a role in improving muscle health in a AOX-deficient mouse model. PMID:26943770
Wang, Chun; Lü, Gaoyou; Li, Yan; Zhao, Shidi; Huang, Li
2018-05-28
To investigate the relevance between spatial learning and memory impairment and the changes of inducible nitric oxide synthase (iNOS) activity, superoxide dismutase (SOD) activity and malondiadehyde (MDA) content in hippocampus from Type 1 diabetic mice. Methods: Sixty male mice were randomly assigned into a control group (NC group, 20 mice) and a Type 1 diabetic group (DM group, 40 mice). Type 1 diabetic mouse models were established by a large dose intraperitoneal injection of streptozotocin (100 mg/kg). The spatial learning and memory abilities of mice were assessed by Morris water maze (MWM) test. After MWM test, we chose 20 mice (diabetic encephalopathy mice) with the worst spatial learning and memory abilities from diabetic model group, and detected the iNOS activity, SOD activity and MDA content in hippocampus in both groups. Results: Compared with the NC group, the escape latency was significantly extended and platform crossings were significantly declined in diabetic mice (P<0.01). Furthermore, the activity of iNOS and the content of MDA were markedly increased, and the activity of SOD was significantly decreased in hippocampus of diabetic encephalopathy mice (P<0.01). Conclusion: The established Type 1 diabetic mice show symptoms of cognitive dysfunction, which might be related to the increase of oxidative stress in hippocampus.
Moravej, Ali; Geramizadeh, Bita; Azarpira, Negar; Zarnani, Amir-Hassan; Yaghobi, Ramin; Kalani, Mehdi; Khosravi, Maryam; Kouhpayeh, Amin; Karimi, Mohammad-Hossein
2017-02-01
Recently, mesenchymal stem cells (MSCs) have gained considerable interests as hopeful therapeutic cells in transplantation due to their immunoregulatory functions. But exact mechanisms underlying MSCs immunoregulatory function is not fully understood. Herein, in addition to investigate the ability of MSCs to prolong graft survival time, the effects of them on the expression of PD-L1 and IDO immunomodulatory molecules in splenocytes of skin graft recipient mice was clarified. To achieve this goal, full-thickness skins were transplanted from C57BL/6 to BALB/c mice. MSCs were isolated from bone marrow of BALB/c mice and injected to the recipient mice. Skin graft survival was monitored daily to determine graft rejection time. On days 2, 5 and 10 post skin transplantation, serum cytokine levels and expression of PD-L1 and IDO mRNA and protein in the splenocytes of recipient mice were evaluated. The results showed that administration of MSCs prolonged skin graft survival time from 11 to 14 days. On days 2 and 5 post transplantation, splenocytes PD-L1 expression and IL-10 serum level in MSCs treated mice were higher than those in the controls, while IL-2 and IFN-γ levels were lower. Rejection in MSCs treated mice was accompanied by an increase in IL-2 and IFN-γ, and decrease in PD-L1 expression and IL-10 level. No difference in the expression of IDO between MSCs treated mice and controls was observed. In conclusion, we found that one of the mechanisms underlying MSCs immunomodulatory function could be up-regulating PD-L1 expression. Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.
IL-13 is a central mediator of chemical-induced airway hyperreactivity in mice
Devos, Fien C.; Pollaris, Lore; Cremer, Jonathan; Seys, Sven; Hoshino, Tomoaki; Ceuppens, Jan; Talavera, Karel; Nemery, Benoit; Hoet, Peter H. M.
2017-01-01
Background While the importance of the Th2 cytokine IL-13 as a central mediator of airway hyperreactivity (AHR) has been described in allergic protein-induced asthma, this has never been investigated in chemical-induced asthma. Objective We examined the importance of IL-13 in a mouse model of chemical-induced AHR, using toluene-2,4-diisocyanate (TDI). Methods In a first set-up, wild type (WT) and IL-13 knockout (KO) C57Bl/6 mice were dermally treated on days 1 and 8 with 1% TDI or vehicle (acetone/olive oil) on both ears. On day 15, mice received an intranasal instillation with 0.1% TDI or vehicle. In a second set-up, WT mice sensitized with 1% TDI or vehicle, received i.v. either anti-IL-13 or control antibody prior to the intranasal challenge. Results TDI-sensitized and TDI-challenged WT mice showed AHR to methacholine, in contrast to TDI-sensitized and TDI-challenged IL-13 KO mice, which also showed lower levels of total serum IgE. TDI-sensitized and TDI-challenged IL-13 KO mice had lower numbers of T-cells in the auricular lymph nodes. TDI-treated WT mice, receiving anti-IL-13, showed no AHR, in contrast to those receiving control antibody, despite increased levels of IgE. Anti-IL-13 treatment in TDI-treated WT mice resulted in lower levels of serum IL-13, but did not induce changes in T- and B-cell numbers, and in the cytokine production profile. Conclusion and clinical relevance We conclude that IL-13 plays a critical role in the effector phase of chemical-induced, immune-mediated AHR. This implicates that anti-IL-13 treatment could have a beneficial effect in patients with this asthma phenotype. PMID:28704401
Effects of Subretinal Electrical Stimulation in Mer-KO Mice
Mocko, Julie A.; Kim, Moon; Faulkner, Amanda E.; Cao, Yang; Ciavatta, Vincent T.
2011-01-01
Purpose. Subretinal electrical stimulation (SES) from microphotodiode arrays protects photoreceptors in the RCS rat model of retinitis pigmentosa. The authors examined whether merkd mice, which share a Mertk mutation with RCS rats, showed similar neuroprotective effects from SES. Methods. Merkd mice were implanted with a microphotodiode array at postnatal day (P) 14. Weekly electroretinograms (ERGs) followed by retinal histology at week 4 were compared with those of age-matched controls. RT-PCR for fibroblast growth factor beta (Fgf2), ciliary nerve trophic factor (Cntf), glial-derived neurotrophic factor (Gdnf), insulin growth factor 1 (Igf1), and glial fibrillary acidic protein (Gfap) was performed on retinas at 1 week after surgery. Rates of degeneration using ERG parameters were compared between merkd mice and RCS rats from P28 to P42. Results. SES-treated merkd mice showed no differences in ERG a- and b-wave amplitudes or photoreceptor numbers compared with controls. However, the expression of Fgf2 and Cntf was greater (6.5 ± 1.9- and 2.5 ± 0.5-fold, respectively; P < 0.02) in SES-treated merkd retinas. Rates of degeneration were faster for dark-adapted maximal b-wave, log σ, and oscillatory potentials in merkd mice than in RCS rats. Conclusions. Although SES upregulated Fgf2 in merkd retinas, as reported previously for RCS retinas, this was not accompanied by neuroprotection of photoreceptors. Comparisons of ERG responses from merkd mice and RCS rats across different ages showed inner retinal dysfunction in merkd mice but not in RCS rats. This inner retinal dysfunction and the faster rate of degeneration in merkd mice may produce a retinal environment that is not responsive to neuroprotection from SES. PMID:21467171
Zahmatkesh, Ensieh; Najafi, Gholamreza; Nejati, Vahid; Heidari, Reza
2014-01-01
Objectives : The aim of the present study was to evaluate protective effect of royal jelly on sperm parameters, testosterone level, and malondialdehyde (MDA) production in mice. Materials and Methods: Thirty-two adult male NMRI mice weighing 30±2 g were used. All the animals were divided into 4 groups. Control group: received saline 0.1 ml/mouse/day orally for 30 days. Royal jelly group (RJ): received royal jelly at dose of 100 mg/kg daily for 30 days orally. Oxymetholone group: the received Oxymetholone (OX) at dose of 5 mg/kg daily for 30 days orally. Royal jelly+Oxymetholone group: received royal jelly at dose of 100 mg/kg/day orally concomitant with OX administration. Sperm count, sperm motility, viability, maturity, and DNA integrity were analyzed. Furthermore, serum testosterone and MDA concentrations were determined. Results: In Oxymetholone group, sperm count, motility as well as testosterone concentration reduced significantly (p<0.05), while significant (p<0.05) increases in immature sperm, sperm with DNA damaged, and MDA concentration were announced in Oxymetholone group in comparison with control group and Royal jelly+Oxymetholone group. RJ caused partially amelioration in all of the above- mentioned parameters in Royal Jelly+Oxymetholone group. Conclusion: In conclusion, RJ may be used in combination with OX to improve OX-induced oxidative stress and male infertility. PMID:25050300
Kim, Jin Yong; Yang, Soo Hyun; Kwon, Jihyun; Lee, Hyun Woo; Kim, Hyun
2017-03-30
The unpredictable and inescapable electric shock-induced "learned helplessness" paradigm has long been used to produce an animal model of depression to identify the molecules associated with depressive symptoms or to assess the efficacy of pharmacological treatments for depression. After exposure to unpredictable and inescapable shocks (uncontrollable stress), most of mice showed defect in escape behavior in active avoidance test (learned helplessness, LH), while others did not (non-learned helplessness, NLH). Here, we investigated whether mice with LH or NLH exhibited depressive symptoms, including anhedonia, anxiety, and despair. We found that compared with control naïve mice, both uncontrollable shocks-induced LH and NLH mice showed increased anhedonia- and anxiety- but not despair-like behaviors. Notably, mice subjected to uncontrollable shocks showed similar behaviors, irrespective of whether they also showed LH or NLH. Furthermore, since both LH and NLH mice showed only anhedonia- and anxiety- but not despair-like behaviors, this model may be generally inadequate for classic depression-like behavior assessment. In conclusion, uncontrollable electric shock induces depression-like behavior, irrespective of the state of helplessness. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geest, Rick van der, E-mail: r.van.der.geest@lacdr
Cholestatic liver disease is characterized by a disruption of bile flow, bile acid toxicity, liver injury, and hypercholesterolemia. Relatively high secretion of glucocorticoids by the adrenals has been observed under cholestatic conditions. Here we investigated a contribution of the rise in endogenous glucocorticoids to initial stage cholestasis pathology. Adrenalectomized or sham-operated control C57BL/6 mice were given an oral dose of alpha-naphthylisothiocyanate to induce cholestasis. Adrenalectomy effectively lowered plasma corticosterone levels (18 ± 5 ng/ml vs 472 ± 58 ng/ml; P < 0.001) and disrupted the metabolic and anti-inflammatory glucocorticoid function. Adrenal removal did not exacerbate the cholestasis extent. In contrast,more » the cholestasis-associated liver injury was markedly lower in adrenalectomized mice as compared to controls as evidenced by a 84%–93% decrease in liver necrosis and plasma alanine aminotransferase and bile acid levels (P < 0.001 for all). Gene expression analysis on livers from adrenalectomized mice suggested the absence of bile acid toxicity-associated farnesoid X receptor signaling in the context of a 44% (P < 0.01) and 82% (P < 0.001) reduction in sodium/bile acid cotransporter member 1 transcript level as compared to respectively control and non-diseased mice. Adrenalectomy reduced the expression of the cholesterol synthesis gene HMG-CoA reductase by 70% (P < 0.05), which translated into a 73% lower plasma total cholesterol level (P < 0.05). Treatment of C57BL/6 mice with the glucocorticoid receptor antagonist RU-486 recapitulated the protective effect of adrenalectomy on indices of liver injury and hypercholesterolemia. In conclusion, we have shown that endogenous glucocorticoids exacerbate the liver injury and hypercholesterolemia associated with acute cholestasis in mice. - Highlights: • Cholestasis is associated with increased plasma glucocorticoid levels in mice. • Adrenalectomy lowers cholestasis-associated liver injury and hypercholesterolemia. • GR antagonist RU-486 similarly improves the cholestasis phenotype. • Endogenous glucocorticoids promote re-uptake of circulating bile acids into liver.« less
Protein S is protective in pulmonary fibrosis.
Urawa, M; Kobayashi, T; D'Alessandro-Gabazza, C N; Fujimoto, H; Toda, M; Roeen, Z; Hinneh, J A; Yasuma, T; Takei, Y; Taguchi, O; Gabazza, E C
2016-08-01
Essentials Epithelial cell apoptosis is critical in the pathogenesis of idiopathic pulmonary fibrosis. Protein S, a circulating anticoagulant, inhibited apoptosis of lung epithelial cells. Overexpression of protein S in lung cells reduced bleomycin-induced pulmonary fibrosis. Intranasal therapy with exogenous protein S ameliorated bleomycin-induced pulmonary fibrosis. Background Pulmonary fibrosis is the terminal stage of interstitial lung diseases, some of them being incurable and of unknown etiology. Apoptosis plays a critical role in lung fibrogenesis. Protein S is a plasma anticoagulant with potent antiapoptotic activity. The role of protein S in pulmonary fibrosis is unknown. Objectives To evaluate the clinical relevance of protein S and its protective role in pulmonary fibrosis. Methods and Results The circulating level of protein S was measured in patients with pulmonary fibrosis and controls by the use of enzyme immunoassays. Pulmonary fibrosis was induced with bleomycin in transgenic mice overexpressing human protein S and wild-type mice, and exogenous protein S or vehicle was administered to wild-type mice; fibrosis was then compared in both models. Patients with pulmonary fibrosis had reduced circulating levels of protein S as compared with controls. Inflammatory changes, the levels of profibrotic cytokines, fibrosis score, hydroxyproline content in the lungs and oxygen desaturation were significantly reduced in protein S-transgenic mice as compared with wild-type mice. Wild-type mice treated with exogenous protein S showed significant decreases in the levels of inflammatory and profibrotic markers and fibrosis in the lungs as compared with untreated control mice. After bleomycin infusion, mice overexpressing human protein S showed significantly low caspase-3 activity, enhanced expression of antiapoptotic molecules and enhanced Akt and Axl kinase phosphorylation as compared with wild-type counterparts. Protein S also inhibited apoptosis of alveolar epithelial cells in vitro. Conclusions These observations suggest clinical relevance and a protective role of protein S in pulmonary fibrosis. © 2016 International Society on Thrombosis and Haemostasis.
The IDO-AhR Axis Controls Th17/Treg Immunity in a Pulmonary Model of Fungal Infection.
de Araújo, Eliseu Frank; Feriotti, Claudia; Galdino, Nayane Alves de Lima; Preite, Nycolas Willian; Calich, Vera Lúcia Garcia; Loures, Flávio Vieira
2017-01-01
In infectious diseases, the enzyme indoleamine 2,3 dioxygenase-1 (IDO1) that catalyzes the tryptophan (Trp) degradation along the kynurenines (Kyn) pathway has two main functions, the control of pathogen growth by reducing available Trp and immune regulation mediated by the Kyn-mediated expansion of regulatory T (Treg) cells via aryl hydrocarbon receptor (AhR). In pulmonary paracoccidioidomycosis (PCM) caused by the dimorphic fungus Paracoccidioides brasiliensis , IDO1 was shown to control the disease severity of both resistant and susceptible mice to the infection; however, only in resistant mice, IDO1 is induced by TGF-β signaling that confers a stable tolerogenic phenotype to dendritic cells (DCs). In addition, in pulmonary PCM, the tolerogenic function of plasmacytoid dendritic cells was linked to the IDO1 activity. To further evaluate the function of IDO1 in pulmonary PCM, IDO1-deficient (IDO1 -/- ) C57BL/6 mice were intratracheally infected with P. brasiliensis yeasts and the infection analyzed at three postinfection periods regarding several parameters of disease severity and immune response. The fungal loads and tissue pathology of IDO1 -/- mice were higher than their wild-type controls resulting in increased mortality rates. The evaluation of innate lymphoid cells showed an upregulated differentiation of the innate lymphoid cell 3 phenotype accompanied by a decreased expansion of ILC1 and NK cells in the lungs of infected IDO1 -/- mice. DCs from these mice expressed elevated levels of costimulatory molecules and cytokine IL-6 associated with reduced production of IL-12, TNF-α, IL-1β, TGF-β, and IL-10. This response was concomitant with a marked reduction in AhR production. The absence of IDO1 expression caused an increased influx of activated Th17 cells to the lungs with a simultaneous reduction in Th1 and Treg cells. Accordingly, the suppressive cytokines IL-10, TGF-β, IL-27, and IL-35 appeared in reduced levels in the lungs of IDO1 -/- mice. In conclusion, the immunological balance mediated by the axis IDO/AhR is fundamental to determine the balance between Th17/Treg cells and control the severity of pulmonary PCM.
Protective Effects of Apigenin Against Paraquat-Induced Acute Lung Injury in Mice.
Luan, Rui-Ling; Meng, Xiang-Xi; Jiang, Wei
2016-04-01
This study aimed to investigate the protective effects of apigenin against paraquat (PQ)-induced acute lung injury (ALI) in mice. Male Kunming mice were randomly divided into five groups: group 1 (control), group 2 (PQ), group 3 (PQ + apigenin 25 mg/kg), group 4 (PQ + apigenin 50 mg/kg), and group 5 (PQ + apigenin 100 mg/kg). The PQ + apigenin group received apigenin by gavage daily for consecutive 7 days, respectively, while the mice in control and PQ groups were given an equivalent volume of saline. We detected the lung wet/dry weight ratios and the histopathology of the lung. The levels of interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), malondialdehyde (MDA), myeloperoxidase (MPO), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) were determined using enzyme-linked immunosorbent assay (ELISA) kits. The activity of nuclear factor (NF)-κB was also determined. The results indicated that apigenin administration decreased biochemical parameters of inflammation and oxidative stress, and improved oxygenation and lung edema in a dose-dependent manner. These protective effects of apigenin were associated with inhibition of NF-κB. In conclusion, apigenin reduces PQ-induced ALI by inhibition of inflammation and oxidative stress.
Dang, Jianhong; Jin, Zhijun; Liu, Xiaojun; Hu, Dian; Wang, Zhifeng
2015-01-01
Objective: This study explored the potential of human cord blood mononuclear cell (HCMNC) transplantation as a treatment for premature ovarian failure (POF) in a nude mouse model. Methods: Female nude mice were randomly divided into three groups; a normal control group (n = 35), a POF group (POF plus vehicle, n = 35) and a POF plus cell transplantation group (HCMNCs were implanted into the ovaries, n = 35). HCMNCs were isolated by Ficoll density gradient centrifugation and labeled with BrdU. Four weeks after transplantation, the nude mice were sacrificed to determine serum levels of E2, FSH and LH as indicators of ovarian function, and the ovaries were examined both histologically and immunochemically. Results: The transplanted HCMNCs survived in the transplantation group and were detected by BrdU. In the transplantation group, serum levels of E2 significantly increased while serum levels of FSH and LH significantly decreased compared to the POF control group. Additionally, the transplantation group had a recovery in follicle number. Conclusion: HCMNCs can be successfully transplanted into the ovaries of nude mice and can improve ovarian function in POF. PMID:26064319
Latha, K.; Rammohan, B.; Sunanda, B. P. V.; Maheswari, M. S. Uma; Mohan, Surapaneni Krishna
2015-01-01
Objectives: To evaluate the anxiolytic effect of Coriandrum sativum (CS) aqueous extract in mice. To compare the antianxiety activity of CS against standard drug diazepam (3 mg/kg). Materials and Methods: After obtaining Institutional Animal Ethics Committee approval, Swiss albino mice (18–25 g) of either sex were randomly divided into five groups of six animals each. Dried powder of CS leaves was boiled with distilled water, cooled, filtered, placed on a hotplate for complete evaporation, finally weighed and stored. The control group, test group, and standard drugs group received saline, CS extract (50, 100, and 200 mg/kg), diazepam (3 mg/kg), respectively, by oral feeding. The antianxiety effect was assessed by elevated plus maze (EPM) in mice. Results: In EPM, it implied that CS 50 mg/kg (Group III), 100 mg/kg (Group IV), and 200 mg/kg (Group V) significantly (P < 0.001) increases the number of entries in open arms compared to control. The time spent in open arms also increased in all the doses of CS extract significantly. Conclusion: The current study demonstrates statistically significant dose-dependent antianxiety activity of CS leaves. PMID:26109787
Sawaki, Daigo; Hou, Lianguo; Tomida, Shota; Sun, Junqing; Zhan, Hong; Aizawa, Kenichi; Son, Bo-Kyung; Kariya, Taro; Takimoto, Eiki; Otsu, Kinya; Conway, Simon J.; Manabe, Ichiro; Komuro, Issei; Friedman, Scott L.; Nagai, Ryozo; Suzuki, Toru
2015-01-01
Aims Krüppel-like factors (KLFs) are a family of transcription factors which play important roles in the heart under pathological and developmental conditions. We previously identified and cloned Klf6 whose homozygous mutation in mice results in embryonic lethality suggesting a role in cardiovascular development. Effects of KLF6 on pathological regulation of the heart were investigated in the present study. Methods and results Mice heterozygous for Klf6 resulted in significantly diminished levels of cardiac fibrosis in response to angiotensin II infusion. Intriguingly, a similar phenotype was seen in cardiomyocyte-specific Klf6 knockout mice, but not in cardiac fibroblast-specific knockout mice. Microarray analysis revealed increased levels of the extracellular matrix factor, thrombospondin 4 (TSP4), in the Klf6-ablated heart. Mechanistically, KLF6 directly suppressed Tsp4 expression levels, and cardiac TSP4 regulated the activation of cardiac fibroblasts to regulate cardiac fibrosis. Conclusion Our present studies on the cardiac function of KLF6 show a new mechanism whereby cardiomyocytes regulate cardiac fibrosis through transcriptional control of the extracellular matrix factor, TSP4, which, in turn, modulates activation of cardiac fibroblasts. PMID:25987545
Kieffer, Dorothy A; Piccolo, Brian D; Marco, Maria L; Kim, Eun Bae; Goodson, Michael L; Keenan, Michael J; Dunn, Tamara N; Knudsen, Knud Erik Bach; Martin, Roy J; Adams, Sean H
2016-01-01
Background: High-amylose-maize resistant starch type 2 (HAMRS2) is a fermentable dietary fiber known to alter the gut milieu, including the gut microbiota, which may explain the reported effects of resistant starch to ameliorate obesity-associated metabolic dysfunction. Objective: Our working hypothesis was that HAMRS2-induced microbiome changes alter gut-derived signals (i.e., xenometabolites) reaching the liver via the portal circulation, in turn altering liver metabolism by regulating gene expression and other pathways. Methods: We used a multi-omics systems biology approach to characterize HAMRS2-driven shifts to the cecal microbiome, liver metabolome, and transcriptome, identifying correlates between microbial changes and liver metabolites under obesogenic conditions that, to our knowledge, have not previously been recognized. Five-week-old male C57BL/6J mice were fed an energy-dense 45% lard-based-fat diet for 10 wk supplemented with either 20% HAMRS2 by weight (n = 14) or rapidly digestible starch (control diet; n = 15). Results: Despite no differences in food intake, body weight, glucose tolerance, fasting plasma insulin, or liver triglycerides, the HAMRS2 mice showed a 15–58% reduction in all measured liver amino acids, except for Gln, compared with control mice. These metabolites were equivalent in the plasma of HAMRS2 mice compared with controls, and transcripts encoding key amino acid transporters were not different in the small intestine or liver, suggesting that HAMRS2 effects were not simply due to lower hepatocyte exposure to systemic amino acids. Instead, alterations in gut microbial metabolism could have affected host nitrogen and amino acid homeostasis: HAMRS2 mice showed a 62% increase (P < 0.0001) in 48-h fecal output and a 41% increase (P < 0.0001) in fecal nitrogen compared with control mice. Beyond amino acid metabolism, liver transcriptomics revealed pathways related to lipid and xenobiotic metabolism; and pathways related to cell proliferation, differentiation, and growth were affected by HAMRS2 feeding. Conclusion: Together, these differences indicate that HAMRS2 dramatically alters hepatic metabolism and gene expression concurrent with shifts in specific gut bacteria in C57BL/6J mice. PMID:27807042
Effects of Berberine Against Radiation-Induced Intestinal Injury in Mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Guanghui; Zhang Yaping; Tang Jinliang
2010-08-01
Purpose: Radiation-induced intestinal injury is a significant clinical problem in patients undergoing abdominal radiotherapy (RT). Berberine has been used as an antimicrobial, anti-inflammatory, and antimotility agent. The present study investigated the protective effect of berberine against radiation-induced intestinal injury. Methods and Materials: The mice were administrated berberine or distilled water. A total of 144 mice underwent 0, 3, 6, 12, or 16 Gy single session whole-abdominal RT and 16 mice underwent 3 Gy/fraction/d for four fractions of fractionated abdominal RT. Tumor necrosis factor-{alpha}, interleukin-10, diamine oxidase, intestinal fatty acid-binding protein, malonaldehyde, and apoptosis were assayed in the mice after RT.more » The body weight and food intake of the mice receiving fractionated RT were recorded. Another 72 mice who had undergone 12, 16, or 20 Gy abdominal RT were monitored for mortality every 12 h. Results: The body weight and food intake of the mice administered with distilled water decreased significantly compared with before RT. After the same dose of abdominal RT, tumor necrosis factor-{alpha}, diamine oxidase, intestinal fatty acid-binding protein in plasma and malonalhehyde and apoptosis of the intestine were significantly greater in the control group than in the mice administered berberine (p < .05-.01). In contrast, interleukin-10 in the mice with berberine treatment was significantly greater than in the control group (p < .01). A similar result was found in the fractionated RT experiment and at different points after 16 Gy abdominal RT (p < .05-.01). Berberine treatment significantly delayed the point of death after 20 Gy, but not 16 Gy, abdominal RT (p < .01). Conclusion: Treatment with berberine can delay mortality and attenuated intestinal injury in mice undergoing whole abdominal RT. These findings could provide a useful therapeutic strategy for radiation-induced intestinal injury.« less
Hypoestoxide inhibits tumor growth in the mouse CT26 colon tumor model
Ojo-Amaize, Emmanuel A; Cottam, Howard B; Oyemade, Olusola A; Okogun, Joseph I; Nchekwube, Emeka J
2007-01-01
AIM: To evaluate the effect of the natural diterpenoid, hypoestoxide (HE) on the growth of established colon cancer in mice. METHODS: The CT26.WT mouse colon carcinoma cell line was grown and expanded in vitro. Following the expansion, BALB/c mice were inoculated s.c. with viable tumor cells. After the tumors had established and developed to about 80-90 mm3, the mice were started on chemotherapy by oral administration of HE, 5-fluorouracil (5-FU) or combination. RESULTS: The antiangiogenic HE has previously been shown to inhibit the growth of melanoma in the B16F1 tumor model in C57BL/6 mice. Our results demonstrate that mean volume of tumors in mice treated with oral HE as a single agent or in combination with 5-FU, were significantly smaller (> 60%) than those in vehicle control mice (471.2 mm3 vs 1542.8 mm3, P < 0.01). The significant reductions in tumor burden resulted in pronounced mean survival times (MST) and increased life spans (ILS) in the treated mice. CONCLUSION: These results indicate that HE is an effective chemotherapeutic agent for colorectal cancer in mice and that HE may be used alone or in combination with 5-FU. PMID:17729410
Luo, C; Yao, X; Li, J; He, B; Liu, Q; Ren, H; Liang, F; Li, M; Lin, H; Peng, J; Yuan, T F; Pei, Z; Su, H
2016-01-01
Subarachnoid hemorrhage (SAH) is a devastating disease with high mortality. The mechanisms underlying its pathological complications have not been fully identified. Here, we investigate the potential involvement of the glymphatic system in the neuropathology of SAH. We demonstrate that blood components rapidly enter the paravascular space following SAH and penetrate into the perivascular parenchyma throughout the brain, causing disastrous events such as cerebral vasospasm, delayed cerebral ischemia, microcirculation dysfunction and widespread perivascular neuroinflammation. Clearance of the paravascular pathway with tissue-type plasminogen activator ameliorates the behavioral deficits and alleviates histological injury of SAH. Interestingly, AQP4−/− mice showed no improvements in neurological deficits and neuroinflammation at day 7 after SAH compared with WT control mice. In conclusion, our study proves that the paravascular pathway dynamically mediates the pathological complications following acute SAH independently of glymphatic control. PMID:27031957
Effect of High Sugar Intake on Glucose Transporter and Weight Regulating Hormones in Mice and Humans
Ritze, Yvonne; Bárdos, Gyöngyi; D’Haese, Jan G.; Ernst, Barbara; Thurnheer, Martin; Schultes, Bernd; Bischoff, Stephan C.
2014-01-01
Objective Sugar consumption has increased dramatically over the last decades in Western societies. Especially the intake of sugar-sweetened beverages seems to be a major risk for the development of obesity. Thus, we compared liquid versus solid high-sugar diets with regard to dietary intake, intestinal uptake and metabolic parameters in mice and partly in humans. Methods Five iso-caloric diets, enriched with liquid (in water 30% vol/vol) or solid (in diet 65% g/g) fructose or sucrose or a control diet were fed for eight weeks to C57bl/6 mice. Sugar, liquid and caloric intake, small intestinal sugar transporters (GLUT2/5) and weight regulating hormone mRNA expression, as well as hepatic fat accumulation were measured. In obese versus lean humans that underwent either bariatric surgery or small bowel resection, we analyzed small intestinal GLUT2, GLUT5, and cholecystokinin expression. Results In mice, the liquid high-sucrose diet caused an enhancement of total caloric intake compared to the solid high-sucrose diet and the control diet. In addition, the liquid high-sucrose diet increased expression of GLUT2, GLUT5, and cholecystokinin expression in the ileum (P<0.001). Enhanced liver triglyceride accumulation was observed in mice being fed the liquid high-sucrose or -fructose, and the solid high-sucrose diet compared to controls. In obese, GLUT2 and GLUT5 mRNA expression was enhanced in comparison to lean individuals. Conclusions We show that the form of sugar intake (liquid versus solid) is presumably more important than the type of sugar, with regard to feeding behavior, intestinal sugar uptake and liver fat accumulation in mice. Interestingly, in obese individuals, an intestinal sugar transporter modulation also occurred when compared to lean individuals. PMID:25010715
Regional Retinal Ganglion Cell Axon Loss in a Murine Glaucoma Model
Schaub, Julie A.; Kimball, Elizabeth C.; Steinhart, Matthew R.; Nguyen, Cathy; Pease, Mary E.; Oglesby, Ericka N.; Jefferys, Joan L.; Quigley, Harry A.
2017-01-01
Purpose To determine if retinal ganglion cell (RGC) axon loss in experimental mouse glaucoma is uniform in the optic nerve. Methods Experimental glaucoma was induced for 6 weeks with a microbead injection model in CD1 (n = 78) and C57BL/6 (B6, n = 68) mice. From epoxy-embedded sections of optic nerve 1 to 2 mm posterior to the globe, total nerve area and regional axon density (axons/1600 μm2) were measured in superior, inferior, nasal, and temporal zones. Results Control eyes of CD1 mice have higher axon density and more total RGCs than control B6 mice eyes. There were no significant differences in control regional axon density in all mice or by strain (all P > 0.2, mixed model). Exposure to elevated IOP caused loss of RGC in both strains. In CD1 mice, axon density declined without significant loss of nerve area, while B6 mice had less density loss, but greater decrease in nerve area. Axon density loss in glaucoma eyes was not significantly greater in any region in either mouse strain (both P > 0.2, mixed model). In moderately damaged CD1 glaucoma eyes, and CD1 eyes with the greatest IOP elevation exposure, density loss differed by region (P = 0.05, P = 0.03, mixed model) with the greatest loss in the temporal and superior regions, while in severely injured B6 nerves superior loss was greater than inferior loss (P = 0.01, mixed model, Bonferroni corrected). Conclusions There was selectively greater loss of superior and temporal optic nerve axons of RGCs in mouse glaucoma at certain stages of damage. Differences in nerve area change suggest non-RGC responses differ between mouse strains. PMID:28549091
Rocha, Eduardo M; Cotrim, Ana P; Zheng, Changyu; Riveros, Paola Perez; Baum, Bruce J; Chiorini, John A
2013-04-01
Therapeutic doses of radiation (RTx) causes dry eye syndrome (DES), dry mouth, and as in other sicca syndromes, they are incurable. The aims of this work are as follows: (a) to evaluate a mouse model of DES induced by clinically relevant doses of radiation, and (b) to evaluate the protective effect of erythropoietin (Epo) in preventing DES. C3H female mice were subjected to five sessions of RTx, with or without pre-RTx retroductal administration of the AdLTR2EF1a-hEPO (AdEpo) vector in the salivary glands (SG), and compared with naïve controls at Day 10 (10d) (8 Gy fractions) and 56 days (56d) (6 Gy fractions) after RTx treatment. Mice were tested for changes in lacrimal glands (LG), tear secretion (phenol red thread), weight, hematocrit (Hct), and markers of inflammation, as well as microvessels and oxidative damage. Tear secretion was reduced in both RTx groups, compared to controls, by 10d. This was also seen at 56d in RTx but not AdEpo+RTx group. Hct was significantly higher in all AdEpo+RTx mice at 10d and 56d. Corneal epithelium was significantly thinner at 10d in the RTx group compared with AdEpo+RTx or the control mice. There was a significant reduction at 10d in vascular endothelial growth factor (VEGF)-R2 in LG in the RTx group that was prevented in the AdEpo+RTx group. In conclusion, RTx is able to induce DES in mice. AdEpo administration protected corneal epithelia and resulted in some recovery of LG function, supporting the value of further studies using gene therapy for extraglandular diseases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palm, Stig; Baeck, Tom; Claesson, Ingela
Purpose: To investigate the potential use of astatine-211 ({sup 211}At)-labeled trastuzumab for the treatment of HER-2-positive, radioresistant ovarian carcinoma. Methods and Materials: Four-week-old nude mice were inoculated intraperitoneally with 5 . 10{sup 6} SKOV-3 cells in 0.4 mL saline on Day 0. The endpoint was the total tumor weight in each mouse on Day 63. Three experiments were performed in which the response to single-dose and fractionated treatment with unlabeled and {sup 211}At-labeled antibody was evaluated. Results: Experiment 1 showed, for the same total amount of trastuzumab, a dose-response relationship between {sup 211}At activity (0-400 kBq on Day 7) andmore » therapeutic efficacy (p = 0.001). The effect of varying the amount of unlabeled trastuzumab was studied in Experiment 2. All mice, except for the controls, received 400 kBq {sup 211}At-trastuzumab, and different groups received 5, 50, or 500 {mu}g trastuzumab on Day 7. The increase from 5 to 50 {mu}g trastuzumab reduced the tumors by 78% in weight. No tumors were present in mice given 500 {mu}g trastuzumab. In Experiment 3, the effect of a fractionated treatment regimen was studied. Mice that received 100 kBq {sup 211}At-trastuzumab on Days 7 and 8 had a 42% smaller tumor burden than did controls. Groups of mice injected with 200 + 100 kBq on Days 7 and 21 and mice injected with 100 kBq on Days 7, 8, and 21 both had 24% less tumor weight than the corresponding controls. Conclusion: The combination of 500 {mu}g trastuzumab and 400 kBq {sup 211}At-trastuzumab had the greatest effect, with complete eradication of the tumors in this nude mouse model.« less
Crawford, Robert S.; Albadawi, Hassan; Atkins, Marvin D.; Jones, John J.; Conrad, Mark F.; Austen, William G.; Fink, Mitchell P.; Watkins, Michael T.
2011-01-01
Introduction Experiments were designed to investigate the effects of ethyl pyruvate (EP) in a murine model of hind-limb ischemia-reperfusion (IR) injury. Methods C57BL6 mice underwent 90 minutes of unilateral ischemia followed by 24 hours of reperfusion using two treatment protocols. For the preischemic treatment (pre-I) protocol, mice (n = 6) were given 300 mg/kg EP before ischemia, followed by 150 mg/kg of EP just before reperfusion and at 6 hours and 12 hours after reperfusion. In a postischemic treatment (post-I) protocol, mice (n = 7) were treated with 300 mg/kg EP at the end of the ischemic period, then 15 minutes later, and 2 hours after reperfusion and 150 mg/kg of EP at 4 hours, 6 hours, 10 hours, 16 hours, and 22 hours after reperfusion. Controls mice for both protocols were treated with lactated Ringers alone at time intervals identical to EP. Skeletal muscle levels of adenosine triphosphate (ATP), interleukin-1β, keratinocyte chemoattractant protein, and thrombin antithrombin-3 complex were measured. Skeletal muscle architectural integrity was assessed microscopically. Results ATP levels were higher in mice treated with EP compared with controls under the both treatment protocols (p = 0.02). Interleukin-1β, keratinocyte chemoattractant protein, thrombin antithrombin-3 complex (p < 0.05), and the percentage of injured fibers (p < 0.0001) were significantly decreased in treated versus control mice under the both protocols. Conclusion Muscle fiber injury and markers of tissue thrombosis and inflammation were reduced, and ATP was preserved with EP in pre-I and post-I protocols. Further investigation of the efficacy of EP to modulate IR injury in a larger animal model of IR injury is warranted. PMID:21217488
Ward, Naomi L.; Phillips, Caleb D.; Nguyen, Deanna D.; Shanmugam, Nanda Kumar N.; Song, Yan; Hodin, Richard; Shi, Hai Ning; Cherayil, Bobby J.; Goldstein, Allan M.
2017-01-01
Background The interplay between host genetics, immunity, and microbiota is central to the pathogenesis of inflammatory bowel disease (IBD). Previous population-based studies suggested a link between antibiotic use and increased IBD risk, but the mechanisms are unknown. The purpose of this study was to determine the long-term effects of antibiotic administration on microbiota composition, innate immunity, and susceptibility to colitis, as well as the mechanism by which antibiotics alter host colitogenicity. Methods Wild-type mice were given broad-spectrum antibiotics or no antibiotics for two weeks, and subsequent immunophenotyping and 16S rRNA gene sequencing-based analysis of the fecal microbiome were performed six weeks later. In a separate experiment, control and antibiotic-treated mice were given seven days of DSS, six weeks after completing antibiotic treatment, and the severity of colitis scored histologically. Fecal transfer was performed from control or antibiotic-treated mice to recipient mice whose endogenous microbiota had been cleared with antibiotics, and the susceptibility of the recipients to DSS-induced colitis was analyzed. Naïve CD4+ T cells were transferred from control and antibiotic-treated mice to immunodeficient Rag-1-/- recipients and the severity of colitis compared. Results Antibiotics led to sustained dysbiosis and changes in T-cell subpopulations, including reductions in colonic lamina propria total T cells and CD4+ T cells. Antibiotics conferred protection against DSS colitis, and this effect was transferable by fecal transplant but not by naïve T cells. Conclusions Antibiotic exposure protects against colitis, and this effect is transferable with fecal microbiota from antibiotic-treated mice, supporting a protective effect of the microbial community. PMID:27607336
Elevated Steroid Hormone Production in the db/db Mouse Model of Obesity and Type 2 Diabetes.
Hofmann, Anja; Peitzsch, Mirko; Brunssen, Coy; Mittag, Jennifer; Jannasch, Annett; Frenzel, Annika; Brown, Nicholas; Weldon, Steven M; Eisenhofer, Graeme; Bornstein, Stefan R; Morawietz, Henning
2017-01-01
Obesity and type 2 diabetes have become a major public health problem worldwide. Steroid hormone dysfunction appears to be linked to development of obesity and type 2 diabetes and correction of steroid abnormalities may offer new approaches to therapy. We therefore analyzed plasma steroids in 15-16 week old obese and diabetic db/db mice using liquid chromatography-tandem mass spectrometry. Lean db/+ served as controls. Db/db mice developed obesity, hyperglycemia, hyperleptinemia, and hyperlipidemia. Hepatic triglyceride storage was increased and adiponectin and pancreatic insulin were lowered. Aldosterone, corticosterone, 11-deoxycorticosterone, and progesterone were respectively increased by 3.6-, 2.9-, 3.4, and 1.7-fold in db/db mice compared to controls. Ratios of aldosterone-to-progesterone and corticosterone-to-progesterone were respectively 2.0- and 1.5-fold higher in db/db mice. Genes associated with steroidogenesis were quantified in the adrenal glands and gonadal adipose tissues. In adrenals, Cyp11b2 , Cyp11b1 , Cyp21a1 , Hsd3b1 , Cyp11a1 , and StAR were all significantly increased in db/db mice compared with db/+ controls. In adipose tissue, no Cyp11b2 or Cyp11b1 transcripts were detected and no differences in Cyp21a1 , Hsd3b1 , Cyp11a1 , or StAR expression were found between db/+ and db/db mice. In conclusion, the present study showed an elevated steroid hormone production and adrenal steroidogenesis in the db/db model of obesity and type 2 diabetes. © Georg Thieme Verlag KG Stuttgart · New York.
Yao, Hang-Ping; Zhang, Li-Huang; Sun, Wen-Ji; Leng, Jian-Hang
2002-04-01
OBJECTIVE: To investigate the effects of IL-18 gene-modified fetal hepatocytes (AdmIL-18/MNL.CL2) intrasplenic transplantation on mouse immune function. METHODS: Forty mice were evenly divided into 4 groups of 10. Each group received an intrasplenic transplantation one of the following: AdmIL-18/BNL.CL2, Ad-LacZ/BNL.CL2 (virus control), BNL.CL2 (cell control) and PBS (blank control). After two weeks, the mice were sacrificed. Serum cytokine levels, Mpsi and splenic cell culture supernatant and liver tissue extracts supernatants were measured using ELISA. Hepatic cytokines mRNA expression were determined by RT-PCR. THe cytotoxicity of peritoneal Mpsi and NK activity of spienocytes were detected by LDH release assay. The proliferation of splenic lymphocytes was determined by MTT assay. RESULTS: The IL-18, IL-2,IFN-gamma, TNF-alpha levels of serum, Mpsi and splenocyte culture supernatant, liver tissue extracts supernatants in mice transplanted with AdmIL-18/BNL.CL2 were higher and the IL-4, IL-10 levels were lower compared to their levels in other 3 groups. The highest IL-18, IL-2, IFN-gamma, TNF-alpha and the lowest IL-4, IL-10 mRNA expressions in the liver were observed in mice transplanted with AdmIL-18/BNL.CL2. The mice transplanted with AdmIL-18/BNL.Cl2 showed significantly increases cytotoxicity of Mpsi, NK activity and splenic cell proliferation compared with the other 3 groups. CONCLUSION: AdmIL-18 can be effectively transfected into mice fetal heptocytes which subsequently IL-18. Intransplenic transplantation of IL-18 gene-modified fetal hepatocytes may augment mouse immune function and provide an useful basis for targeted gene therapy of liver disease.
Fernandez-García, Carlos-Ernesto; Tarin, Carlos; Roldan-Montero, Raquel; Martinez-Lopez, Diego; Torres-Fonseca, Monica; Lindhot, Jes S; Vega de Ceniga, Melina; Egido, Jesus; Lopez-Andres, Natalia; Blanco-Colio, Luis-Miguel; Martín-Ventura, Jose-Luis
2017-11-15
Abdominal aortic aneurysm (AAA) evolution is unpredictable and no specific treatment exists for AAA, except surgery to prevent aortic rupture. Galectin-3 has been previously associated with CVD, but its potential role in AAA has not been addressed. Galectin-3 levels were increased in the plasma of AAA patients ( n =225) compared with the control group ( n =100). In addition, galectin-3 concentrations were associated with the need for surgical repair, independently of potential confounding factors. Galectin-3 mRNA and protein expression were increased in human AAA samples compared with healthy aortas. Experimental AAA in mice was induced via aortic elastase perfusion. Mice were treated intravenously with the galectin-3 inhibitor modified citrus pectin (MCP, 10 mg/kg, every other day) or saline. Similar to humans, galectin-3 serum and aortic mRNA levels were also increased in elastase-induced AAA mice compared with control mice. Mice treated with MCP showed decreased aortic dilation, as well as elastin degradation, vascular smooth muscle cell (VSMC) loss, and macrophage content at day 14 postelastase perfusion compared with control mice. The underlying mechanism(s) of the protective effect of MCP was associated with a decrease in galectin-3 and cytokine (mainly CCL5) mRNA and protein expression. Interestingly, galectin-3 induced CCL5 expression by a mechanism involving STAT3 activation in VSMC. Accordingly, MCP treatment decreased STAT3 phosphorylation in elastase-induced AAA. In conclusion, increased galectin-3 levels are associated with AAA progression, while galectin-3 inhibition decreased experimental AAA development. Our data suggest the potential role of galectin-3 as a therapeutic target in AAA. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.
HIP/PAP accelerates liver regeneration and protects against acetaminophen injury in mice.
Lieu, Hanh-Tu; Batteux, Frédéric; Simon, Marie-Thérèse; Cortes, Alexandre; Nicco, Carole; Zavala, Flora; Pauloin, Alain; Tralhao, José Guilherme; Soubrane, Olivier; Weill, Bernard; Bréchot, Christian; Christa, Laurence
2005-09-01
Human hepatocarcinoma-intestine-pancreas/pancreatic-associated protein HIP/PAP is a secreted C-type lectin belonging to group VII, according to Drickamer's classification. HIP/PAP is overexpressed in liver carcinoma; however, its functional role remains unclear. In this study, we demonstrate that HIP/PAP is a paracrine hepatic growth factor promoting both proliferation and viability of liver cells in vivo. First, a low number of implanted hepatocytes deriving from HIP/PAP-transgenic mice (<1:1,000) was sufficient to stimulate overall recipient severe combined immunodeficiency liver regeneration after partial hepatectomy. After a single injection of HIP/PAP protein, the percentages of bromodeoxyuridine-positive nuclei and mitosis were statistically higher than after saline injection, indicating that HIP/PAP acts as a paracrine mitogenic growth factor for the liver. Comparison of the early events posthepatectomy in control and transgenic mice indicated that HIP/PAP accelerates the accumulation/degradation of nuclear phospho-signal transducer activator transcription factor 3 and tumor necrosis factor alpha level, thus reflecting that HIP/PAP accelerates liver regeneration. Second, we showed that 80% of the HIP/PAP-transgenic mice versus 25% of the control mice were protected against lethal acetaminophen-induced fulminate hepatitis. A single injection of recombinant HIP/PAP induced a similar cytoprotective effect, demonstrating the antiapoptotic effect of HIP/PAP. Comparison of Cu/Zn superoxide dismutase activity and glutathione reductase-like effects in control and transgenic liver mice indicated that HIP/PAP exerts an antioxidant activity and prevents reactive oxygen species-induced mitochondrial damage by acetaminophen overdose. In conclusion, the present data offer new insights into the biological functions of C-type lectins. In addition, HIP/PAP is a promising candidate for the prevention and treatment of liver failure.
Siczek, Krzysztof; Zatorski, Hubert; Pawlak, Wojciech; Fichna, Jakub
2015-01-01
In search for novel effective treatments in inflammatory bowel diseases, a new strategy employing glass beads coated with rhenium nanolayer has been developed and validated in the mouse model of 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis. Briefly, mice were randomly divided into 5 experimental groups: control (vehicle alone, Group 1); control treated with rhenium-coated glass beads (Group 2); TNBS (Group 3); TNBS treated with rhenium-coated glass beads (Group 4); and TNBS treated with uncoated glass beads (Group 5). Mice from Group 2, 4 and 5 were treated with respective beads (once daily, 5 beads / animal, i.c.) between D3-D6 post-TNBS/vehicle and evaluation of colonic damage was performed on D7, based on macroscopic scoring and clinical parameters. Severe colonic inflammation developed in post-TNBS mice (Group 3) [P <0.001 vs. control (Group 1) for macroscopic score], which was significantly attenuated by treatment with rhenium-coated glass beads (Group 4) [P <0.01 vs. TNBS (Group 3), for macroscopic score]. Neither rhenium-coated glass beads had any effect in control animals (Group 2), nor uncoated glass beads influenced TNBS-induced colitis (Group 5). In conclusion, a novel and attractive strategy for the treatment of colonic inflammation has been proposed; therapy with rhenium-coated glass beads already proved effective in the mouse model of TNBS-induced colitis, now requires further characterization in clinical conditions.
Obesity increases inflammation and impairs lymphatic function in a mouse model of lymphedema.
Savetsky, Ira L; Torrisi, Jeremy S; Cuzzone, Daniel A; Ghanta, Swapna; Albano, Nicholas J; Gardenier, Jason C; Joseph, Walter J; Mehrara, Babak J
2014-07-15
Although obesity is a major clinical risk factor for lymphedema, the mechanisms that regulate this effect remain unknown. Recent reports have demonstrated that obesity is associated with acquired lymphatic dysfunction. The purpose of this study was to determine how obesity-induced lymphatic dysfunction modulates the pathological effects of lymphatic injury in a mouse model. We used a diet-induced model of obesity in adult male C57BL/6J mice in which experimental animals were fed a high-fat diet and control animals were fed a normal chow diet for 8-10 wk. We then surgically ablated the superficial and deep lymphatics of the midportion of the tail. Six weeks postoperatively, we analyzed changes in lymphatic function, adipose deposition, inflammation, and fibrosis. We also compared responses to acute inflammatory stimuli in obese and lean mice. Compared with lean control mice, obese mice had baseline decreased lymphatic function. Lymphedema in obese mice further impaired lymphatic function and resulted in increased subcutaneous adipose deposition, increased CD45(+) and CD4(+) cell inflammation (P < 0.01), and increased fibrosis, but caused no change in the number of lymphatic vessels. Interestingly, obese mice had a significantly increased acute inflammatory reaction to croton oil application. In conclusion, obese mice have impaired lymphatic function at baseline that is amplified by lymphatic injury. This effect is associated with increased chronic inflammation, fibrosis, and adipose deposition. These findings suggest that obese patients are at higher risk for lymphedema due to impaired baseline lymphatic clearance and an increased propensity for inflammation in response to injury. Copyright © 2014 the American Physiological Society.
Murata, Koichiro; Morino, Katsutaro; Ida, Shogo; Ohashi, Natsuko; Lemecha, Mengistu; Park, Shi-Young; Ishikado, Atsushi; Kume, Shinji; Choi, Cheol Soo; Sekine, Osamu; Ugi, Satoshi; Maegawa, Hiroshi
2018-01-08
O-GlcNAcylation is a post-translational modification that is characterized by the addition of N-acetylglucosamine (GlcNAc) to proteins by O-GlcNAc transferase (Ogt). The degree of O-GlcNAcylation is thought to be associated with glucotoxicity and diabetic complications, because GlcNAc is produced by a branch of the glycolytic pathway. However, its role in skeletal muscle has not been fully elucidated. In this study, we created skeletal muscle-specific Ogt knockout (Ogt-MKO) mice and analyzed their glucose metabolism. During an intraperitoneal glucose tolerance test, blood glucose was slightly lower in Ogt-MKO mice than in control Ogt-flox mice. High fat diet-induced obesity and insulin resistance were reversed in Ogt-MKO mice. In addition, 12-month-old Ogt-MKO mice had lower adipose and body mass. A single bout of exercise significantly reduced blood glucose in Ogt-MKO mice, probably because of higher AMP-activated protein kinase α (AMPKα) protein expression. Furthermore, intraperitoneal injection of 5-aminoimidazole-4-carboxamide ribonucleotide, an AMPK activator, resulted in a more marked decrease in blood glucose levels in Ogt-MKO mice than in controls. Finally, Ogt knockdown by siRNA in C2C12 myotubes significantly increased protein expression of AMPKα, glucose uptake and oxidation. In conclusion, loss of O-GlcNAcylation facilitates glucose utilization in skeletal muscle, potentially through AMPK activation. The inhibition of O-GlcNAcylation in skeletal muscle may have an anti-diabetic effect, through an enhancement of glucose utilization during exercise. Copyright © 2017 Elsevier Inc. All rights reserved.
Effect of ketamine on exploratory behaviour in BALB/C and C57BL/6 mice.
Akillioglu, Kubra; Melik, Emine Babar; Melik, Enver; Boga, Ayper
2012-01-01
In this study, we evaluated the effect of ketamine on exploratory locomotion behaviours in the Balb/c and C57BL/6 strains of mice, which differ in their locomotion behaviours. Intraperitoneal administration of ketamine at three different doses (1, 5 or 10 mg/kg, 0.1 ml/10 gr body weight) was performed on adult male Balb/c and C57BL/6 mice. The same volume of saline was applied to the control group. The open-field and elevated plus maze apparatus were used to evaluate exploratory locomotion. In the open-field test, Balb/c mice less spend time in the centre of the field and was decreased locomotor activity compared to C57BL/6 mice (p<0.01). Ketamine treatment of Balb/c mice at 10 mg/kg dose caused an increase in locomotor activity and an increase in the amount of time spent in the centre in the open-field test, compared to the control group (p<0.05). In C57BL/6 mice, ketamine treatment (1 and 10 mg/kg) decreased locomotor activity (p<0.05). In C57BL/6 mice, the three different doses of ketamine application each caused a decrease in the frequency of centre crossing (p<0.001) and the spent time in the centre (p<0.05). In the elevated plus maze, the number of open-arm entries, the percentage of open-arm time and total arm entries were decreased in Balb/c mice compared to C57BL/6 mice (p<0.001). Ketamine treatment of Balb/c mice at 10 mg/kg dose caused an increase in the open-arm activity (p<0.001). Ketamine application (10 mg/kg) decreased the open-arm activity in C57BL/6 mice (p<0.05). A subanaesthetic dose of ketamine increased exploratory locomotion in Balb/c mice. In contrast, a subanaesthetic dose of ketamine decreased exploratory locomotion in C57BL/6 mice. In conclusion, hereditary factors may play an important role in ketamine-induced responses. Copyright © 2011 Elsevier Inc. All rights reserved.
Sawin, Emily A.; Stroup, Bridget M.; Murali, Sangita G.; O’Neill, Lucas M.; Ntambi, James M.
2016-01-01
Background Glycomacropeptide (GMP) is a 64-amino acid glycophosphopeptide released from κ-casein during cheesemaking that promotes satiety, reduces body fat, increases bone mass and infers prebiotic and anti-inflammatory effects. The impact of adiposity and gender on bone health is unclear. Objective To determine how feeding female mice diets providing 60% Fat Kcal (high-fat) or 13% Fat Kcal (control) with either GMP or casein as the protein source impacts: body composition, ex vivo fatty acid oxidation, bone (femoral) biomechanical performance, and the relationship between body composition and bone. Methods Weanling female C57Bl/6 mice were fed high-fat (60% Fat Kcal) or control diets (13% Fat Kcal) with GMP or casein from 3 to 32 weeks of age with assessment of body weight and food intake. Body composition was assessed by dual-energy X-ray absorptiometry (DXA). Fatty acid oxidation was measured in liver, muscle, and fat tissues using 14C-palmitate. Plasma concentrations of hormones and cytokines were determined. Bone biomechanical performance was assessed by the 3-point bending test. Results Female mice fed high-fat diets showed increased fatty acid oxidation capacity in both gastrocnemius muscle and brown adipose tissue compared to mice fed the control diets with a lower fat content. Despite increased fat mass in mice fed the high-fat diets, there was little evidence of glucose impairment or inflammation. Mice fed the high-fat diets had significantly greater total body bone mineral density (BMD), femoral BMD, and femoral cross-sectional area than mice fed the control diets. Femora of mice fed the high-fat diets had increased yield load and maximum load before fracture, consistent with greater bone strength, but reduced post-yield displacement or ductility, consistent with bone brittleness. Female mice fed a high-fat GMP diet displayed increased fat oxidation capacity in subcutaneous fat relative to mice fed the high-fat casein diet. Regardless of dietary fat content, GMP increased total body bone mineral content and femur length. The prebiotic properties of GMP may mediate the beneficial effects of GMP on bone. Conclusions Female mice adapt to high-fat feeding by increasing oxidative capacity in muscle tissue and to a lesser extent brown adipose tissue. High-fat feeding in female mice leads to development of a bone phenotype where femora show increased BMD and are stronger, yet more brittle. The increased brittleness of bone was associated with increased body fat content due to high-fat feeding. In summary, high-fat feeding in female mice increases mineralization of bone, but negatively impacts bone quality resulting in brittle bones. PMID:27695036
Electrophysiology and metabolism of caveolin-3 overexpressing mice
Schilling, Jan M.; Horikawa, Yousuke T.; Zemljic-Harpf, Alice E.; Vincent, Kevin P.; Tyan, Leonid; Yu, Judith K.; McCulloch, Andrew D.; Balijepalli, Ravi C.; Patel, Hemal H.; Roth, David M.
2017-01-01
Caveolin-3 (Cav-3) plays a critical role in organizing signaling molecules and ion channels involved in cardiac conduction and metabolism. Mutations in Cav-3 are implicated in cardiac conduction abnormalities and myopathies. Additionally, cardiac specific overexpression of Cav-3 (Cav-3 OE) is protective against ischemic and hypertensive injury suggesting a potential role for Cav-3 in basal cardiac electrophysiology and metabolism involved in stress adaptation. We hypothesized that overexpression of Cav-3 may alter baseline cardiac conduction and metabolism. We examined: 1) ECG telemetry recordings at baseline and during pharmacological interventions, 2) ion channels involved in cardiac conduction with immunoblotting and computational modeling, and 3) baseline metabolism in Cav-3 OE and transgene negative littermate control mice. Cav-3 OE mice had decreased heart rates, prolonged PR intervals, and shortened QTc intervals with no difference in activity compared to control mice. Dobutamine or propranolol did not cause significant changes between experimental groups in maximal (dobutamine) or minimal (propranolol) heart rate. Cav-3 OE mice had an overall lower chronotropic response to atropine. Expression of Kv1.4 and Kv4.3 channels, Nav1.5 channels and connexin 43 were increased in Cav-3 OE mice. A computational model integrating the immunoblotting results indicated shortened action potential duration in Cav-3 OE mice linking the change in channel expression to the observed electrophysiology phenotype. Metabolic profiling showed no gross differences in VO2, VCO2, respiratory exchange ratio, and heat generation, feeding or drinking. In conclusion, Cav-3 OE mice have changes in ECG intervals, heart rates, and cardiac ion channel expression. These findings give novel mechanistic insights into previously reported Cav-3 dependent cardioprotection. PMID:27023865
Hypotension Due to Kir6.1 Gain‐of‐Function in Vascular Smooth Muscle
Li, Anlong; Knutsen, Russell H.; Zhang, Haixia; Osei‐Owusu, Patrick; Moreno‐Dominguez, Alex; Harter, Theresa M.; Uchida, Keita; Remedi, Maria S.; Dietrich, Hans H.; Bernal‐Mizrachi, Carlos; Blumer, Kendall J.; Mecham, Robert P.; Koster, Joseph C.; Nichols, Colin G.
2013-01-01
Background KATP channels, assembled from pore‐forming (Kir6.1 or Kir6.2) and regulatory (SUR1 or SUR2) subunits, link metabolism to excitability. Loss of Kir6.2 results in hypoglycemia and hyperinsulinemia, whereas loss of Kir6.1 causes Prinzmetal angina–like symptoms in mice. Conversely, overactivity of Kir6.2 induces neonatal diabetes in mice and humans, but consequences of Kir6.1 overactivity are unknown. Methods and Results We generated transgenic mice expressing wild‐type (WT), ATP‐insensitive Kir6.1 [Gly343Asp] (GD), and ATP‐insensitive Kir6.1 [Gly343Asp,Gln53Arg] (GD‐QR) subunits, under Cre‐recombinase control. Expression was induced in smooth muscle cells by crossing with smooth muscle myosin heavy chain promoter–driven tamoxifen‐inducible Cre‐recombinase (SMMHC‐Cre‐ER) mice. Three weeks after tamoxifen induction, we assessed blood pressure in anesthetized and conscious animals, as well as contractility of mesenteric artery smooth muscle and KATP currents in isolated mesenteric artery myocytes. Both systolic and diastolic blood pressures were significantly reduced in GD and GD‐QR mice but normal in mice expressing the WT transgene and elevated in Kir6.1 knockout mice as well as in mice expressing dominant‐negative Kir6.1 [AAA] in smooth muscle. Contractile response of isolated GD‐QR mesenteric arteries was blunted relative to WT controls, but nitroprusside relaxation was unaffected. Basal KATP conductance and pinacidil‐activated conductance were elevated in GD but not in WT myocytes. Conclusions KATP overactivity in vascular muscle can lead directly to reduced vascular contractility and lower blood pressure. We predict that gain of vascular KATP function in humans would lead to a chronic vasodilatory phenotype, as indeed has recently been demonstrated in Cantu syndrome. PMID:23974906
The Role of Curcumin in Modulating Colonic Microbiota During Colitis and Colon Cancer Prevention
McFadden, Rita-Marie T.; Larmonier, Claire B.; Shehab, Kareem W.; Midura-Kiela, Monica; Ramalingam, Rajalakshmy; Harrison, Christy A.; Besselsen, David G.; Chase, John H.; Caporaso, J. Gregory; Jobin, Christian; Ghishan, Fayez K.; Kiela, Pawel R.
2015-01-01
Background Intestinal microbiota influences the progression of colitis-associated colorectal cancer (CAC). With diet being a key determinant of the gut microbial ecology, dietary interventions are an attractive avenue for the prevention of CAC. Curcumin is the most active constituent of the ground rhizome of the Curcuma Longa plant, which has been demonstrated to have anti-inflammatory, anti-oxidative and anti-proliferative properties. Methods Il10−/− mice on 129/SvEv background were used as a model of CAC. Starting at 10 weeks of age, WT or Il10−/− mice received six weekly i.p. injections of azoxymethane (AOM) or saline, and were started on either a control or curcumin-supplemented diet. Stools were collected every 4 weeks for microbial community analysis. Mice were sacrificed at 30 weeks of age. Results Curcumin-supplemented diet increased survival, decreased colon weight/length ratio, and at 0.5%, entirely eliminated tumor burden. Although colonic histology indicated improvement with curcumin, no effects of mucosal immune responses have been observed in PBS/Il10−/− mice, and limited effects were seen in AOM/Il10−/− mice. In WT and in Il10−/− mice, curcumin increased bacterial richness, prevented age-related decrease in alpha diversity, increased the relative abundance of Lactobacillales, and decreased Coriobacterales order. Taxonomic profile of AOM/Il10−/− mice receiving curcumin was more similar to those of wild-type mice than those fed control diet. Conclusions In AOM/Il10−/− model, curcumin reduced or eliminated colonic tumor burden with limited effects on mucosal immune responses. The beneficial effect of curcumin on tumorigenesis was associated with the maintenance of a more diverse colonic microbial ecology. PMID:26218141
NASA Astrophysics Data System (ADS)
Blottner, Dieter; Vico, Laurence; Jamon, D. Berckmansp L. Vicop Y. Liup R. Canceddap M.
Background: Environmental conditions likely affect physiology and behaviour of mice used for Life Sciences Research on Earth and in Space. Thus, mice habitats with sufficient statistical numbers should be developed for adequate life support and care and that should meet all nesces-sary ethical and scientific requirements needed to successfully perform animal experimentation in Space. Aim of study: We here analysed the effects of cage confinement on the weightbear-ing musculoskeletal system, behaviour and stress of wild-type mice (C57BL/6JRj, 30 g b.wt., total n = 24) housed for 25 days in a prototypical ground-based MSRM (modular science ref-erence module) in the frame of breadboard activities for a fully automated life support habitat called "Mice in Space" (MIS) at the Leuven University, Belgium. Results: Compared with control housing (individually ventilated cages, IVC-mice) the MIS mice revealed no significant changes in soleus muscle size and myofiber distribution (type I vs. II) and quality of bone (3-D microarchitecture and mineralisation of calvaria, spine and femur) determined by confocal and micro-computed tomography. Corticosterone metabolism measured non-invasively (faeces) monitored elevated adrenocortical activity at only start of the MIS cage confinement (day 1). Behavioural tests (i.e., grip strength, rotarod, L/D box, elevated plus-maze, open field, ag-gressiveness) performed subsequently revealed only minor changes in motor performance (MIS vs. controls). Conclusions: The MIS habitat will not, on its own, produce major effects that could confound interpretation of data induced by microgravity exposure on orbit as planned for future biosatellite programmes. Sponsors: ESA-ESTEC, Noordwijk, NL
Asare, George Awuku; Adjei, Samuel; Afriyie, Daniel; Appiah-Danquah, Akua Bempomaa; Asia, Jonas; Asiedu, Bernice; Santa, Sheila; Doku, Derek
2015-12-01
Cardiovascular disease (CVD) accounts for 17.3 million deaths per year globally. In Ghana, CVD accounts for 22.2% of deaths. Croton membranaceus (CM) Mull. Arg. (Euphorbiaceae), a medicinal plant in Ghana is mainly used traditionally for the treatment of benign prostatic hyperplasia and measles. However, some hypoglycaemic and hypotensive effects have recently been reported but not scientifically examined. The study aimed at establishing whether Croton membranaceus (CM) used for prostatitis had any effect on CVD markers. In experiment 1, lipid profile changes were determined. Twenty four male Spontaneously Hypertensive Rats (SHR) were divided into 4 groups. Low (LD), intermediate (ID) and high dose (HD) groups received 25, 50 and 100 mg/kg b.wt. CM aqueous root extracts (CMARE) for 60 days, respectively, the controls received distilled water. In experiment 2, blood glucose levels (BGL) were determined. 21 db/db mice were divided into 3 groups of 7 mice each alongside db/+ mice (7) (negative control). Groups 1 and 2 received 250 mg/kg b.wt CMARE and metformin, respectively. Group 3 (positive control) and db/+ mice (negative control) received distilled water. Mice were monitored for 15 hours. Data collected were analysed using SPSS version 20. Hypotriglyceridaemic effect was observed (p=0.005). High Density Lipoprotein cholesterol (HDL) and Low Density Lipoprotein cholesterol (LDL) showed significant increases (p=0.013) and decreases (p=0.003), respectively. A significant CRP reduction was observed for ID and HD groups (p = 0.010, p = 0.011, respectively). BGL was reduced in Metformin and Croton groups (p=0.000; p= 0.006, respectively) after 3 hours. In conclusion, CMARE has positive effects on some CVD biomarkers and a hypoglycaemic effect.
Emami, Niloufar Hedayati; Lafout, Farzaneh Mahmoudi; Mohammadghasemi, Fahimeh
2018-01-01
Objective(s): Melatonin, an important hormone secreted by the epiphysis, is a powerful anti-oxidant with a high potential to neutralize medical toxins. The goal of this study was to demonstrate the beneficial effect of melatonin on epididymal sperm and reproductive parameters in mice treated with acetylsalicylic acid (ASA). Materials and Methods: Male adult mice were divided into four treatment groups: control, ASA, melatonin, and ASA+melatonin. Mice were administered ASA (50 mg/kg, orally) and/or melatonin (10 mg/kg, intraperitoneally), or vehicle control, for 14 days. Sperm count, sperm motility, and sperm morphology were evaluated to assess fertility. A colorimetric assay was used to measure serum total antioxidant capacity (TAC). A sperm chromatin dispersion (SCD) test was used to assess sperm chromatin integrity. Sex hormone levels were measured by ELISA. Results: Compared to the control group, ASA treatment resulted in a significant decrease in sperm parameters (P<0.05), as well as a decrease in the integrity of sperm chromatin (P<0.01). ASA treatment also reduced serum testosterone and TAC levels (P<0.05). Co-administration of melatonin with ASA significantly improved epididymal sperm parameters and increased serum testosterone and TAC levels compared to the ASA-treated group. LH level was not different in the combined treatment group compared to control or ASA treatment. Conclusion: Short-term administration of ASA (50 mg/kg) has adverse effects on male reproductive function in mice. Co-administration of melatonin protects against ASA-induced impairment of male reproductive function by preventing the reduction in serum TAC and testosterone levels seen with ASA treatment alone. PMID:29456808
Tania, Navessa P.; Maarsingh, Harm; T. Bos, I. Sophie; Mattiotti, Andrea; Prakash, Stuti; Timens, Wim; Gunst, Quinn D.; Jimenez-Borreguero, Luis J.; Schmidt, Martina; van den Hoff, Maurice J.B.; Gosens, Reinoud
2017-01-01
Bone morphogenetic protein (BMP) signaling regulates vascular smooth muscle maturation, endothelial cell proliferation, and tube formation. The endogenous BMP antagonist Follistatin-like 1 (Fstl1) is highly expressed in pulmonary vascular endothelium of the developing mouse lung, suggesting a role in pulmonary vascular formation and vascular homeostasis. The aim of this study was to investigate the role of Fstl1 in the pulmonary vascular endothelium. To this aim, Fstl1 was conditionally deleted from endothelial and endothelial-derived cells using Tie2-cre driven Fstl1-KO mice (Fstl1-eKO mice). Endothelial-specific Fstl1 deletion was postnatally lethal, as ∼70% of Fstl1-eKO mice died at three weeks after birth. Deletion of Fstl1 from endothelium resulted in a reduction of right ventricular output at three weeks after birth compared with controls. This was associated with pulmonary vascular remodeling, as the percentage of actin-positive small pulmonary vessels was increased at three weeks in Fstl1-eKO mice compared with controls. Endothelial deletion of Fstl1 resulted in activation of Smad1/5/8 signaling and increased BMP/Smad-regulated gene expression of Jagged1, Endoglin, and Gata2 at one week after birth compared with controls. In addition, potent vasoconstrictor Endothelin-1, the expression of which is driven by Gata2, was increased in expression, both on the mRNA and protein levels, at one week after birth compared with controls. At three weeks, Jagged1 was reduced in the Fstl1-eKO mice whereas Endoglin and Endothelin-1 were unchanged. In conclusion, loss of endothelial Fstl1 in the lung is associated with elevated BMP-regulated genes, impaired small pulmonary vascular remodeling, and decreased right ventricular output. PMID:28680581
Tania, Navessa P; Maarsingh, Harm; T Bos, I Sophie; Mattiotti, Andrea; Prakash, Stuti; Timens, Wim; Gunst, Quinn D; Jimenez-Borreguero, Luis J; Schmidt, Martina; van den Hoff, Maurice J B; Gosens, Reinoud
2017-03-01
Bone morphogenetic protein (BMP) signaling regulates vascular smooth muscle maturation, endothelial cell proliferation, and tube formation. The endogenous BMP antagonist Follistatin-like 1 (Fstl1) is highly expressed in pulmonary vascular endothelium of the developing mouse lung, suggesting a role in pulmonary vascular formation and vascular homeostasis. The aim of this study was to investigate the role of Fstl1 in the pulmonary vascular endothelium. To this aim, Fstl1 was conditionally deleted from endothelial and endothelial-derived cells using Tie2-cre driven Fstl1 -KO mice ( Fstl1 -eKO mice). Endothelial-specific Fstl1 deletion was postnatally lethal, as ∼70% of Fstl1 -eKO mice died at three weeks after birth. Deletion of Fstl1 from endothelium resulted in a reduction of right ventricular output at three weeks after birth compared with controls. This was associated with pulmonary vascular remodeling, as the percentage of actin-positive small pulmonary vessels was increased at three weeks in Fstl1 -eKO mice compared with controls. Endothelial deletion of Fstl1 resulted in activation of Smad1/5/8 signaling and increased BMP/Smad-regulated gene expression of Jagged1, Endoglin, and Gata2 at one week after birth compared with controls. In addition, potent vasoconstrictor Endothelin-1, the expression of which is driven by Gata2, was increased in expression, both on the mRNA and protein levels, at one week after birth compared with controls. At three weeks, Jagged1 was reduced in the Fstl1 -eKO mice whereas Endoglin and Endothelin-1 were unchanged. In conclusion, loss of endothelial Fstl1 in the lung is associated with elevated BMP-regulated genes, impaired small pulmonary vascular remodeling, and decreased right ventricular output.
The Endocytic Adaptor Eps15 Controls Marginal Zone B Cell Numbers
Pozzi, Benedetta; Amodio, Stefania; Lucano, Caterina; Sciullo, Anna; Ronzoni, Simona; Castelletti, Daniela; Adler, Thure; Treise, Irina; Betsholtz, Ingrid Holmberg; Rathkolb, Birgit; Busch, Dirk H.; Wolf, Eckhard; Fuchs, Helmut; Gailus-Durner, Valérie; de Angelis, Martin Hrabě; Betsholtz, Christer; Casola, Stefano; Di Fiore, Pier Paolo; Offenhäuser, Nina
2012-01-01
Eps15 is an endocytic adaptor protein involved in clathrin and non-clathrin mediated endocytosis. In Caenorhabditis elegans and Drosophila melanogaster lack of Eps15 leads to defects in synaptic vesicle recycling and synapse formation. We generated Eps15-KO mice to investigate its function in mammals. Eps15-KO mice are born at the expected Mendelian ratio and are fertile. Using a large-scale phenotype screen covering more than 300 parameters correlated to human disease, we found that Eps15-KO mice did not show any sign of disease or neural deficits. Instead, altered blood parameters pointed to an immunological defect. By competitive bone marrow transplantation we demonstrated that Eps15-KO hematopoietic precursor cells were more efficient than the WT counterparts in repopulating B220+ bone marrow cells, CD19− thymocytes and splenic marginal zone (MZ) B cells. Eps15-KO mice showed a 2-fold increase in MZ B cell numbers when compared with controls. Using reverse bone marrow transplantation, we found that Eps15 regulates MZ B cell numbers in a cell autonomous manner. FACS analysis showed that although MZ B cells were increased in Eps15-KO mice, transitional and pre-MZ B cell numbers were unaffected. The increase in MZ B cell numbers in Eps15 KO mice was not dependent on altered BCR signaling or Notch activity. In conclusion, in mammals, the endocytic adaptor protein Eps15 is a regulator of B-cell lymphopoiesis. PMID:23226392
The mineralocorticoid receptor (MR) regulates ENaC but not NCC in mice with random MR deletion.
Czogalla, Jan; Vohra, Twinkle; Penton, David; Kirschmann, Moritz; Craigie, Eilidh; Loffing, Johannes
2016-05-01
Aldosterone binds to the mineralocorticoid receptor (MR) and increases renal Na(+) reabsorption via up-regulation of the epithelial Na(+) channel (ENaC) and the Na(+)-K(+)-ATPase in the collecting system (CS) and possibly also via the NaCl cotransporter (NCC) in the distal convoluted tubule (DCT). However, whether aldosterone directly regulates NCC via MR or indirectly through systemic alterations remains controversial. We used mice with deletion of MR in ∼20 % of renal tubule cells (MR/X mice), in which MR-positive (MR(wt)) and -negative (MR(ko)) cells can be studied side-by-side in the same physiological context. Adult MR/X mice showed similar mRNA and protein levels of renal ion transport proteins to control mice. In MR/X mice, no differences in NCC abundance and phosphorylation was seen between MR(wt) and MR(ko) cells and dietary Na(+) restriction up-regulated NCC to similar extent in both groups of cells. In contrast, MR(ko) cells in the CS did not show any detectable alpha-ENaC abundance or apical targeting of ENaC neither on control diet nor in response to dietary Na(+) restriction. Furthermore, Na(+)-K(+)-ATPase expression was unaffected in MR(ko) cells of the DCT, while it was lost in MR(ko) cells of the CS. In conclusion, MR is crucial for ENaC and Na(+)-K(+)-ATPase regulation in the CS, but is dispensable for NCC and Na(+)-K(+)-ATPase regulation in the DCT.
Bauwens, Matthias; Wimana, Lena; Keyaerts, Marleen; Peleman, Cindy; Lahoutte, Tony; Kersemans, Ken; Snykers, Sarah; Vinken, Mathieu; Mertens, John; Bossuyt, Axel
2010-04-01
Carrier-added [(123)I]-2-iodo-D-phenylalanine (CA [(123)I]-2-I-D-Phe) was previously found to have a preferential retention in tumors with a high tumor background contrast in animal models. A previous human dosimetry study demonstrated a favorable biodistribution and radiation burden in human subjects. The aim of this study was to investigate the potential of CA [(131)I]-2-I-D-Phe as an agent for radionuclide therapy. Sixty (60) nude athymic mice were inoculated subcutaneously with firefly luciferase-transduced R1M rhabdomyosarcoma cells. The mice in the therapy group were injected intravenously (i.v.) with 148 MBq [(131)I]-2-I-D-Phe (432 GBq/mmol) in kit solution. Controls were injected with kit solution without radioactivity, with physiological saline, or with 148 MBq [(131)I](-) in physiological saline. Tumor growth was quantified using bioluminescent imaging and caliper measurements. [(131)I]-2-I-D-Phe clearly reduced tumor growth in the treated mice compared with the control groups. A tumor growth-rate reduction of at least 33% was found for mice receiving a therapeutic dose. There were no serious adverse side-effects of the therapy. In conclusion, i.v. injection of CA 148 MBq [(131)I]-2-I-D-Phe specifically reduces tumor growth in athymic nude mice without relevant side-effects on the animals' health.
Boord, Jeffrey B.; Maeda, Kazuhisa; Makowski, Liza; Babaev, Vladimir R.; Fazio, Sergio; Linton, MacRae F.; Hotamisligil, Gökhan S.
2014-01-01
Objective The adipocyte fatty acid-binding protein, aP2, has important effects on insulin resistance, lipid metabolism, and atherosclerosis. Its expression in macrophages enhances early foam cell formation and atherosclerosis in vivo. This study was designed to determine whether aP2 deficiency has a similar effect in the setting of advanced atherosclerosis and severe hypercholesterolemia. Methods and Results Mice deficient in aP2 and apolipoprotein E (aP2−/−apoE−/− mice) and apolipoprotein E-deficient control mice (apoE−/− mice) were fed a Western diet for 14 weeks. No significant differences in fasting serum levels of cholesterol, triglycerides, or free fatty acids were found between groups for each sex. Compared with apoE−/− control mice, male and female aP2−/−apoE−/− mice had significant reductions in mean atherosclerotic lesion size in the proximal aorta, en face aorta, and innominate/right carotid artery. Feeding the Western diet in the apoE-deficient background did not cause a significant reduction in insulin sensitivity in vivo, as determined by steady-state serum glucose levels and insulin tolerance testing. Conclusions These data demonstrate an important role for aP2 expression in the advanced stages of atherosclerotic lesion formation. Thus, aP2 provides an important physiological link between different features of the metabolic syndrome and is a potential target for therapy of atherosclerosis. PMID:12377750
Arras, Margarete; Rettich, Andreas; Cinelli, Paolo; Kasermann, Hans P; Burki, Kurt
2007-01-01
Background Pain of mild to moderate grade is difficult to detect in laboratory mice because mice are prey animals that attempt to elude predators or man by hiding signs of weakness, injury or pain. In this study, we investigated the use of telemetry to identify indicators of mild-to-moderate post-laparotomy pain. Results Adult mice were subjected to laparotomy, either combined with pain treatment (carprofen or flunixin, 5 mg/kg s/c bid, for 1 day) or without pain relief. Controls received anesthesia and analgesics or vehicle only. Telemetrically measured locomotor activity was undisturbed in all animals, thus confirming that any pain experienced was of the intended mild level. No symptoms of pain were registered in any of the groups by scoring the animals' outer appearance or spontaneous and provoked behavior. In contrast, the group receiving no analgesic treatment after laparotomy demonstrated significant changes in telemetry electrocardiogram recordings: increased heart rate and decreased heart rate variability parameters pointed to sympathetic activation and pain lasting for 24 hours. In addition, core body temperature was elevated. Body weight and food intake were reduced for 3 and 2 days, respectively. Moreover, unstructured cage territory and destroyed nests appeared for 1–2 days in an increased number of animals in this group only. In controls these parameters were not affected. Conclusion In conclusion, real-time telemetric recordings of heart rate and heart rate variability were indicative of mild-to-moderate post-laparotomy pain and could define its duration in our mouse model. This level of pain cannot easily be detected by direct observation. PMID:17683523
Shin, Chang Yell; Jung, Mi Young; Lee, In Ki; Son, Miwon; Kim, Dong Sung; Lim, Joong In; Kim, Soon Hoe; Yoo, Moohi; Huh, Tae Lin; Sohn, Young Taek; Kim, Won Bae
2004-01-01
DA-11004 is a synthetic, potent NADP-dependent isocitrate dehydrogenase (IDPc) inhibitor where IC50 for IDPc is 1.49 microM. The purpose of this study was to evaluate the effects of DA-11004 on the high fat high sucrose (HF)-induced obesity in male C57BL/6J mice. After completing a 8-week period of experimentation, the mice were sacrificed 1 hr after the last DA-11004 treatment and their blood, liver, and adipose tissues (epididymal and retroperitoneal fat) were collected. There was a significant difference in the pattern of increasing body weight between the HF control and the DA-11004 group. In the DA-11004 (100 mg/kg) treated group the increase in body weight significantly declined and a content of epididymal fat and retroperitoneal fat was also significantly decreased as opposed to the HF control. DA-11004 (100 mg/ kg) inhibited the IDPc activity, and thus, NADPH levels in plasma and the levels of free fatty acid (FFA) or glucose in plasma were less than the levels of the HF control group. In conclusion, DA-11004 inhibited the fatty acid synthesis in adipose tissues via IDPc inhibition, and it decreased the plasma glucose levels and FFA in HF diet-induced obesity of C57BL/6J mice.
Bee Venom Promotes Hair Growth in Association with Inhibiting 5α-Reductase Expression.
Park, Seeun; Erdogan, Sedef; Hwang, Dahyun; Hwang, Seonwook; Han, Eun Hye; Lim, Young-Hee
2016-06-01
Alopecia is an important issue that can occur in people of all ages. Recent studies show that bee venom can be used to treat certain diseases including rheumatoid arthritis, neuralgia, and multiple sclerosis. In this study, we investigated the preventive effect of bee venom on alopecia, which was measured by applying bee venom (0.001, 0.005, 0.01%) or minoxidil (2%) as a positive control to the dorsal skin of female C57BL/6 mice for 19 d. Growth factors responsible for hair growth were analyzed by quantitative real-time PCR and Western blot analysis using mice skins and human dermal papilla cells (hDPCs). Bee venom promoted hair growth and inhibited transition from the anagen to catagen phase. In both anagen phase mice and dexamethasone-induced catagen phase mice, hair growth was increased dose dependently compared with controls. Bee venom inhibited the expression of SRD5A2, which encodes a type II 5α-reductase that plays a major role in the conversion of testosterone into dihydrotestosterone. Moreover, bee venom stimulated proliferation of hDPCs and several growth factors (insulin-like growth factor 1 receptor (IGF-1R), vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF)2 and 7) in bee venom-treated hDPCs dose dependently compared with the control group. In conclusion, bee venom is a potentially potent 5α-reductase inhibitor and hair growth promoter.
Sahni, Prateek V.; Zhang, Jimmy; Sosunov, Sergey; Galkin, Alexander; Niatsetskaya, Zoya; Starkov, Anatoly; Brookes, Paul S.; Ten, Vadim S.
2017-01-01
Background Reverse electron transport (RET) driven by the oxidation of succinate has been proposed as the mechanism of accelerated production of reactive oxygen species (ROS) in post-ischemic mitochondria. However, it remains unclear whether upon reperfusion, mitochondria preferentially oxidase succinate. Methods Neonatal mice were subjected to Rice-Vannucci model of hypoxicischemic brain injury (HI) followed by assessment of Krebs cycle metabolites, mitochondrial substrate preference, and H2O2 generation rate in the ischemic brain. Results While brain mitochondria from control mice exhibited a rotenonesensitive complex-I-dependent respiration, HI-brain mitochondria, at the initiation of reperfusion, demonstrated complex-II-dependent respiration, as rotenone minimally affected, but inhibition of complex-II ceased respiration. This was associated with a 30-fold increase of cerebral succinate concentration and significantly elevated H2O2 emission rate in HI-mice compared to controls. At sixty minutes of reperfusion, cerebral succinate content and the mitochondrial response to rotenone did not differ from that in controls. Conclusion These data are the first ex-vivo evidence, that at the initiation of reperfusion, brain mitochondria transiently shift their metabolism from complex-I-dependent oxidation of NADH toward complex II-linked oxidation of succinate. Our study provides a critical piece of support for existence of the RET-dependent mechanism of elevated ROS production in reperfusion. PMID:29211056
Sahni, Prateek V; Zhang, Jimmy; Sosunov, Sergey; Galkin, Alexander; Niatsetskaya, Zoya; Starkov, Anatoly; Brookes, Paul S; Ten, Vadim S
2018-02-01
BackgroundReverse electron transport (RET) driven by the oxidation of succinate has been proposed as the mechanism of accelerated production of reactive oxygen species (ROS) in post-ischemic mitochondria. However, it remains unclear whether upon reperfusion, mitochondria preferentially oxidase succinate.MethodsNeonatal mice were subjected to Rice-Vannucci model of hypoxic-ischemic brain injury (HI) followed by assessment of Krebs cycle metabolites, mitochondrial substrate preference, and H 2 O 2 generation rate in the ischemic brain.ResultsWhile brain mitochondria from control mice exhibited a rotenone-sensitive complex-I-dependent respiration, HI-brain mitochondria, at the initiation of reperfusion, demonstrated complex-II-dependent respiration, as rotenone minimally affected, but inhibition of complex-II ceased respiration. This was associated with a 30-fold increase of cerebral succinate concentration and significantly elevated H 2 O 2 emission rate in HI-mice compared to controls. At 60 min of reperfusion, cerebral succinate content and the mitochondrial response to rotenone did not differ from that in controls.ConclusionThese data are the first ex vivo evidence, that at the initiation of reperfusion, brain mitochondria transiently shift their metabolism from complex-I-dependent oxidation of NADH toward complex II-linked oxidation of succinate. Our study provides a critical piece of support for existence of the RET-dependent mechanism of elevated ROS production in reperfusion.
Fan, Zhiliang; Feng, Xiaojuan; Fan, Zhigang; Zhu, Xingyuan; Yin, Shaohua
2018-05-09
Epilepsy is a type of refractory neurologic disorder mental disease, which is associated with cognitive impairments and memory dysfunction. However, the potential mechanisms of epilepsy are not well understood. Previous evidence has identified the voltage gated potassium channel complex (VGKC) as a target in various cohorts of patients with epilepsy. In the present study, the efficacy of an antibody against VGKC (anti‑VGKC) for the treatment of epilepsy in mice was investigated. A mouse model of lithium‑pilocarpine temporal lobe epilepsy was established and anti‑VGKC treatment was administered for 30 days. Memory impairment, anxiety, visual attention, inhibitory control and neuronal loss were measured in the mouse model of lithium‑pilocarpine temporal lobe epilepsy. The results revealed that epileptic mice treated with anti‑VGKC were able to learn the task and presented attention impairment, even a tendency toward impulsivity and compulsivity. It was also exhibited that anti‑VGKC treatment decreased neuronal loss in structures classically associated with attentional performance in hippocampus. Mice who received Anti‑VGKC treatment had inhibited motor seizures and hippocampal damage as compared with control mice. In conclusion, these results indicated that anti‑VGKC treatment may present benefits for improvements of the condition of motor attention impairment and cognitive competence, which suggests that VGKC may be a potential target for the treatment of epilepsy.
Nakamura, Kentaro; Sasayama, Akina; Takahashi, Takeshi; Yamaji, Taketo
2015-01-01
Cancer cachexia is characterized by muscle wasting caused partly by systemic inflammation. We previously demonstrated an immune-modulating diet (IMD), an enteral diet enriched with immunonutrition and whey-hydrolyzed peptides, to have antiinflammatory effects in some experimental models. Here, we investigated whether the IMD in combination with chemotherapy could prevent cancer cachexia in colon 26 tumor-bearing mice. Forty tumor-bearing mice were randomized into 5 groups: tumor-bearing control (TB), low dose 5-fluorouracil (5-FU) and standard diet (LF/ST), low dose 5-FU and IMD (LF/IMD), high dose 5-FU and standard diet (HF/ST) and high dose 5-FU and IMD (HF/IMD). The ST and IMD mice received a standard diet or the IMD ad libitum for 21 days. Muscle mass in the IMD mice was significantly higher than that in the ST mice. The LF/IMD in addition to the HF/ST and HF/IMD mice preserved their body and carcass weights. Plasma prostaglandin E2 levels were significantly lower in the IMD mice than in the ST mice. A combined effect was also observed in plasma interleukin-6, glucose, and vascular endothelial growth factor levels. Tumor weight was not affected by different diets. In conclusion, the IMD in combination with chemotherapy prevented cancer cachexia without suppressing chemotherapeutic efficacy.
STIM1fl/fl Ksp-Cre Mouse has Impaired Renal Water Balance
Cebotaru, Liudmila; Cebotaru, Valeriu; Wang, Hua; Arend, Lois J.; Guggino, William B.
2016-01-01
Background/AIM STIM1 is as an essential component in store operated Ca2+entry. However give the paucity of information on the role of STIM1 in kidney, the aim was to study the function of STIM1 in the medulla of the kidney. Methods we crossed a Ksp-cre mouse with another mouse containing two loxP sites flanking Exon 6 of STIM1. The Ksp-cre mouse is based upon the Ksp-cadherin gene promoter which expresses cre recombinase in developing nephrons, collecting ducts (SD) and thick ascending limbs (TAL) of the loop of Henle. Results The offspring of these mice are viable without gross morphological changes, however, we noticed that the STIM1 Ksp-cre knockout mice produced more urine compared to control. To examine this more carefully, we fed mice low (LP) and high protein (HP) diets respectively. When mice were fed HP diet STIM1 ko mice had significantly increased urinary volume and lower specific gravity compared to wt mice. In STIM1 ko mice fed HP diet urine creatinine and urea were significantly lower compared to wt mice fed HP diet, however the fractional excretion was the same. Conclusion These data support the idea that STIM1 ko mice have impaired urinary concentrating ability when challenged with HP diet is most likely caused by impaired Ca2+-dependent signal transduction through the vasopressin receptor cascade. PMID:27336410
Matsui, Katsuomi; Kamijo-Ikemorif, Atsuko; Sugaya, Takeshi; Yasuda, Takashi; Kimura, Kenjiro
2011-01-01
Injection of aristolochic acid (AA) in mice causes AA-induced nephrotoxicity, in which oxidative stress contributes to development of tubulointerstitial damage (TID). Liver-type fatty acid binding protein (L-FABP) is expressed in human proximal tubules and has an endogenous antioxidative function. The renoprotection of renal L-FABP was examined in a model of AA-induced nephrotoxicity. Established human L-FABP (hL-FABP) transgenic (Tg) mice and wild-type (WT) mice were treated with AA for up to 5 days. Mice were sacrificed on days 1, 3, and 5 after the start of AA injection. Although mouse L-FABP was not expressed in proximal tubules of WT mice, hL-FABP was expressed in proximal tubules of Tg mice. The expression of renal hL-FABP was significantly increased in Tg mice administered AA (Tg-AA), compared with the control (saline-treated Tg mice). In WT-AA mice, there was high urinary excretion of Nε-(hexanoyl)-lysine, the production of heme oxygenase-1 and receptor for advanced glycation end products increased, and TID was provoked. In contrast, renal hL-FABP in Tg-AA mice suppressed production of Nε-(hexanoyl)lysine, heme oxygenase-1, and receptor for advanced glycation end products. Renal dysfunction was significantly milder in Tg-AA mice than in WT-AA mice. The degree of TID was significantly attenuated in Tg-AA mice, compared with WT-AA. In conclusion, renal hL-FABP reduced the oxidative stress in AA-induced nephrotoxicity and attenuated TID. PMID:21356355
Maroufi, Yahya; Ghaffarifar, Fatemeh; Dalimi, Abdolhosein; Sharifi, Zohreh
2014-01-01
Background: Cutaneous leishmaniasis is a health problem in the world. Lesions should be treated on cosmetically or functionally important sites, such as the face and hands. Cantharidin is a terpenoid compound produced naturally by beetles of Meloidae and Oedemeridae families. Objectives: The current study aimed to investigate the effect of cantharidin on Cutaneous Leishmaniasis (CL) lesions and IFN-γ and IL-4 patterns in infected BALB/c mice. Materials and Methods: Infected BALB/c mice were divided into five groups as: untreated (control group), eucerin-treated and 0.05%, 0.1% and 0.5% cantharidin-treated. Lesions diameter was measured by Vernier caliper every three days for four weeks. Cytokines levels were measured by enzyme-linked immunosorbent assay (ELISA) using U-CyTech kit. Results: The results indicated that treatment with cantharidin exacerbates lesions compared with the controls, except for 0.05% cantharidin dose that restrained lesion growth significantly. Interferon gamma level in cantharidin-treated groups was significantly less than that of the control group. But interlukin-4 level was similar among the groups. Conclusions: The current study results indicated that high doses of cantharidin exacerbates leishmaniasis lesion, but low dose of cantharidin inhibits lesion growth. PMID:25371808
Staffel, Janina; Valletta, Daniela; Federlein, Anna; Ehm, Katharina; Volkmann, Regine; Füchsl, Andrea M; Witzgall, Ralph; Kuhn, Michaela; Schweda, Frank
2017-01-01
The cardiac natriuretic peptides (NPs), atrial NP and B-type NP, regulate fluid homeostasis and arterial BP through renal actions involving increased GFR and vascular and tubular effects. Guanylyl cyclase-A (GC-A), the transmembrane cGMP-producing receptor shared by these peptides, is expressed in different renal cell types, including podocytes, where its function is unclear. To study the effects of NPs on podocytes, we generated mice with a podocyte-specific knockout of GC-A (Podo-GC-A KO). Despite the marked reduction of GC-A mRNA in GC-A KO podocytes to 1% of the control level, Podo-GC-A KO mice and control littermates did not differ in BP, GFR, or natriuresis under baseline conditions. Moreover, infusion of synthetic NPs similarly increased the GFR and renal perfusion in both genotypes. Administration of the mineralocorticoid deoxycorticosterone-acetate (DOCA) in combination with high salt intake induced arterial hypertension of similar magnitude in Podo-GC-A KO mice and controls. However, only Podo-GC-A KO mice developed massive albuminuria (controls: 35-fold; KO: 5400-fold versus baseline), hypoalbuminemia, reduced GFR, and marked glomerular damage. Furthermore, DOCA treatment led to decreased expression of the slit diaphragm-associated proteins podocin, nephrin, and synaptopodin and to enhanced transient receptor potential canonical 6 (TRPC6) channel expression and ATP-induced calcium influx in podocytes of Podo-GC-A KO mice. Concomitant treatment of Podo-GC-A KO mice with the TRPC channel blocker SKF96365 markedly ameliorated albuminuria and glomerular damage in response to DOCA. In conclusion, the physiologic effects of NPs on GFR and natriuresis do not involve podocytes. However, NP/GC-A/cGMP signaling protects podocyte integrity under pathologic conditions, most likely by suppression of TRPC channels. Copyright © 2016 by the American Society of Nephrology.
Lifetime Increased Cancer Risk in Mice Following Exposure to Clinical Proton Beam–Generated Neutrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerweck, Leo E., E-mail: lgerweck@mgh.harvard.edu; Huang, Peigen; Lu, Hsiao-Ming
2014-05-01
Purpose: To evaluate the life span and risk of cancer following whole-body exposure of mice to neutrons generated by a passively scattered clinical spread-out Bragg peak (SOBP) proton beam. Methods and Materials: Three hundred young adult female FVB/N mice, 152 test and 148 control, were entered into the experiment. Mice were placed in an annular cassette around a cylindrical phantom, which was positioned lateral to the mid-SOBP of a 165-MeV, clinical proton beam. The average distance from the edge of the mid-SOBP to the conscious active mice was 21.5 cm. The phantom was irradiated with once-daily fractions of 25 Gy,more » 4 days per week, for 6 weeks. The age at death and cause of death (ie, cancer and type vs noncancer causes) were assessed over the life span of the mice. Results: Exposure of mice to a dose of 600 Gy of proton beam–generated neutrons, reduced the median life span of the mice by 4.2% (Kaplan-Meier cumulative survival, P=.053). The relative risk of death from cancer in neutron exposed versus control mice was 1.40 for cancer of all types (P=.0006) and 1.22 for solid cancers (P=.09). For a typical 60 Gy dose of clinical protons, the observed 22% increased risk of solid cancer would be expected to decrease by a factor of 10. Conclusions: Exposure of mice to neutrons generated by a proton dose that exceeds a typical course of radiation therapy by a factor of 10, resulted in a statistically significant increase in the background incidence of leukemia and a marginally significant increase in solid cancer. The results indicate that the risk of out-of-field second solid cancers from SOBP proton-generated neutrons and typical treatment schedules, is 6 to 10 times less than is suggested by current neutron risk estimates.« less
Lifetime increased cancer risk in mice following exposure to clinical proton beam generated neutrons
Gerweck, Leo E.; Huang, Peigen; Lu, Hsiao-Ming; Paganetti, Harald; Zhou, Yenong
2014-01-01
Purpose To evaluate the lifespan and risk of cancer following whole-body exposure of mice to neutrons generated by a passively scattered clinical SOBP proton beam. Methods and Materials Three hundred young adult female FVB/N mice, 152 test and 148 control, were entered into the experiment. Mice were placed in an annular cassette around a cylindrical phantom, which was positioned lateral to the mid SOBP of a 165 MeV, clinical proton beam. The average distance from the edge of the mid SOBP to the conscious active mice was 21.5 cm. The phantom was irradiated with once daily fractions of 25 Gy, 4 days per week, for 6 weeks. The age at death and cause of death, i.e., cancer and type vs. non-cancer causes, were assessed over the lifespan of the mice. Results Exposure of mice to a dose of 600 Gy of proton beam generated neutrons, reduced the median lifespan of the mice by 4.2% (Kaplan-Meier cumulative survival, P = 0.053). The relative risk of death from cancer in neutron exposed vs. control mice was 1.40 for cancer of all types (P = 0.0006) and 1.22 for solid cancers (P = 0.09). For a typical 60 Gy dose of clinical protons, the observed 22% increased risk of solid cancer would be expected to decrease by a factor of 10. Conclusions Exposure of mice to neutrons generated by a proton dose which exceeds a typical course of radiotherapy by a factor of 10, resulted in a statistically significant increase in the background incidence of leukemia and a marginally significant increase in solid cancer. The results indicate that the risk of out-of-field 2nd solid cancers from SOBP proton generated neutrons and typical treatment schedules, is 6 - 10 times less than is suggested by current neutron risk estimates. PMID:24725699
Cathepsin L Inhibition Prevents Murine Autoimmune Diabetes via Suppression of CD8+ T Cell Activity
Yamada, Akiko; Ishimaru, Naozumi; Arakaki, Rieko; Katunuma, Nobuhiko; Hayashi, Yoshio
2010-01-01
Background Type 1 diabetes (T1D) is an autoimmune disease resulting from defects in central and peripheral tolerance and characterized by T cell-mediated destruction of islet β cells. To determine whether specific lysosomal proteases might influence the outcome of a T cell–mediated autoimmune response, we examined the functional significance of cathepsin inhibition on autoimmune T1D-prone non-obese diabetic (NOD) mice. Methods and Findings Here it was found that specific inhibition of cathepsin L affords strong protection from cyclophosphamide (CY)-induced insulitis and diabetes of NOD mice at the advanced stage of CD8+ T cell infiltration via inhibiting granzyme activity. It was discovered that cathepsin L inhibition prevents cytotoxic activity of CD8+ T cells in the pancreatic islets through controlling dipeptidyl peptidase I activity. Moreover, the gene targeting for cathepsin L with application of in vivo siRNA administration successfully prevented CY-induced diabetes of NOD mice. Finally, cathepsin L mRNA expression of peripheral CD8+ T cells from NOD mice developing spontaneous T1D was significantly increased compared with that from control mice. Conclusions Our results identified a novel function of cathepsin L as an enzyme whose activity is essential for the progression of CD8+ T cell-mediated autoimmune diabetes, and inhibition of cathepsin L as a powerful therapeutic strategy for autoimmune diabetes. PMID:20877570
Ren, Shu-Ting; Xu, Chang-Fu; Du, Yun-Xia; Gao, Xiao-Li; Sun, Ying; Jiang, Yi-Na
2012-07-01
The natural outcome of melamine-induced bladder stones (cystoliths) with bladder epithelial hyperplasia (BEH) after melamine withdrawn is unclear. Using an ideal dual-model system, three experiments were conducted in BALB/c mice. Each experiment included a control, model 1 and model 2 groups. The mice were fed a regular diet in controls or a 9373 ppm melamine diet in models, and the first day was designated as dosing day 1. The melamine diet was then replaced by the regular diet in the model 2 groups, and the first day was designated as post-dosing day 1. On dosing days 12, 35 and 49, the incidence of cystoliths and diffusely active BEH was 8/8 in the mice of three model 1 groups. On post-dosing days 1, 4 and 8, in the mice of three model 2 groups, the incidence of cystoliths was 2/8, 0/8 and 1/8, respectively, and the progressive regression of BEH was observed. In conclusion, both the stones and BEH have the natural property of rapid development and rapid regression, and melamine withdrawn plays a key role in the stone dissolution-discharge necessary for BEH regression. BEH may be reversible after the discharge of the stones. The conventionally conservative therapy is thus reasonable. Copyright © 2012 Elsevier Ltd. All rights reserved.
Crocin Improves Damage Induced by Nicotine on A Number of Reproductive Parameters in Male Mice
Salahshoor, Mohammad Reza; Khazaei, Mozafar; Jalili, Cyrus; Keivan, Mona
2016-01-01
Background Crocin, a carotenoid isolated from Crocus sativus L. (saffron), is a pharmacologically active component of saffron. Nicotine consumption can decrease fertility in males through induction of oxidative stress and DNA damage. The aim of this study is to determine the effects of crocin on reproductive parameter damages in male mice exposed to nicotine. Materials and Methods In this experimental study, we divided 48 mice into 8 groups (n=6 per group): control (normal saline), nicotine (2.5 mg/kg), crocin (12.5, 25 and 50 mg/kg) and crocin (12.5, 25 and 50 mg/kg)+nicotine (2.5 mg/kg). Mice received once daily intraperitoneal injections of crocin, nicotine and crocin+nicotine for 4 weeks. Sperm parameters (count, motility, and viability), testis weight, seminiferous tube diameters, testosterone, and serum nitric oxide levels were analyzed and compared. Results Nicotine administration significantly decreased testosterone level; sperm count, viability, and motility; testis weight and seminiferous tubule diameters compared to the control group (P<0.05). However, increasing the dose of crocin in the crocin and crocin+nicotine groups significantly boosted sperm motility and viability; seminiferous tubule diameters; testis weight; and testosterone levels in all groups compared to the nicotine group (P<0.05). Conclusion Crocin improves nicotine-induced adverse effects on reproductive parameters in male mice. PMID:27123203
Cranberry extract attenuates hepatic inflammation in high fat-fed obese mice
Glisan, Shannon L.; Ryan, Caroline; Neilson, Andrew P.; Lambert, Joshua D.
2016-01-01
Cranberry (Vaccinium macrocarpon) consumption has been associated with health beneficial effects. Non-alcoholic fatty liver disease (NAFLD) is a co-morbidity of obesity. In the present study, we investigated the effect of a polyphenol-rich cranberry extract (CBE) on hepatic inflammation in high fat-fed obese C57BL/6J mice. Following dietary treatment with 0.8% CBE for 10 weeks, we observed no change in body weight or visceral fat mass in CBE supplemented mice compared to high fat-fed control mice. We did observe a significant decrease in plasma alanine aminotransferase (31%) and histological severity of NAFLD (33% decrease in area of involvement, 29% decrease in lipid droplet size) compared to high fat-fed controls. Hepatic protein levels of tumor necrosis factor alpha and C-C chemokine ligand 2 were reduced by 28% and 19%, respectively, following CBE supplementation. CBE significantly decreased hepatic mRNA levels of toll-like receptor 4 (TLR4, 63%) and nuclear factorκ B (NFκB, 24%), as well as a number of genes related to the nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 inflammasome. In conclusion, CBE reduced NAFLD and hepatic inflammation in high fat-fed obese C57BL/6J mice. These effects appear to be related to mitigation of TLR4-NFκB related signaling, however further studies into the underlying mechanisms of these hepatoprotective effects are needed. PMID:27619543
Transient micro-elastography: A novel non-invasive approach to measure liver stiffness in mice
Bastard, Cécile; Bosisio, Matteo R; Chabert, Michèle; Kalopissis, Athina D; Mahrouf-Yorgov, Meriem; Gilgenkrantz, Hélène; Mueller, Sebastian; Sandrin, Laurent
2011-01-01
AIM: To develop and validate a transient micro-elastography device to measure liver stiffness (LS) in mice. METHODS: A novel transient micro-elastography (TME) device, dedicated to LS measurements in mice with a range of measurement from 1-170 kPa, was developed using an optimized vibration frequency of 300 Hz and a 2 mm piston. The novel probe was validated in a classical fibrosis model (CCl4) and in a transgenic murine model of systemic amyloidosis. RESULTS: TME could be successfully performed in control mice below the xiphoid cartilage, with a mean LS of 4.4 ± 1.3 kPa, a mean success rate of 88%, and an excellent intra-observer agreement (0.98). Treatment with CCl4 over seven weeks drastically increased LS as compared to controls (18.2 ± 3.7 kPa vs 3.6 ± 1.2 kPa). Moreover, fibrosis stage was highly correlated with LS (Spearman coefficient = 0.88, P < 0.01). In the amyloidosis model, much higher LS values were obtained, reaching maximum values of > 150 kPa. LS significantly correlated with the amyloidosis index (0.93, P < 0.0001) and the plasma concentration of mutant hapoA-II (0.62, P < 0.005). CONCLUSION: Here, we have established the first non-invasive approach to measure LS in mice, and have successfully validated it in two murine models of high LS. PMID:21448348
Solana, José Carlos; Ramírez, Laura; Corvo, Laura; de Oliveira, Camila Indiani; Barral-Netto, Manoel; Requena, José María
2017-01-01
Background The immunization with genetically attenuated Leishmania cell lines has been associated to the induction of memory and effector T cell responses against Leishmania able to control subsequent challenges. A Leishmania infantum null mutant for the HSP70-II genes has been described, possessing a non-virulent phenotype. Methodology/Principal findings The L. infantum attenuated parasites (LiΔHSP70-II) were inoculated in BALB/c (intravenously and subcutaneously) and C57BL/6 (subcutaneously) mice. An asymptomatic infection was generated and parasites diminished progressively to become undetectable in most of the analyzed organs. However, inoculation resulted in the long-term induction of parasite specific IFN-γ responses able to control the disease caused by a challenge of L. major infective promastigotes. BALB/c susceptible mice showed very low lesion development and a drastic decrease in parasite burdens in the lymph nodes draining the site of infection and internal organs. C57BL/6 mice did not show clinical manifestation of disease, correlated to the rapid migration of Leishmania specific IFN-γ producing T cells to the site of infection. Conclusion/Significance Inoculation of the LiΔHSP70-II attenuated line activates mammalian immune system for inducing moderate pro-inflammatory responses. These responses are able to confer long-term protection in mice against the infection of L. major virulent parasites. PMID:28558043
Hu, Frances Y.; Hanna, George M.; Han, Wei; Mardini, Feras; Thomas, Steven A.; Wyner, Abraham J.; Kelz, Max B.
2012-01-01
BACKGROUND Multiple lines of evidence suggest that the adrenergic system can modulate sensitivity to anesthetic-induced immobility and anesthetic-induced hypnosis as well. However, several considerations prevent the conclusion that the endogenous adrenergic ligands norepinephrine and epinephrine alter anesthetic sensitivity. METHODS Using dopamine β-hydroxylase (Dbh−/−) mice genetically engineered to lack the adrenergic ligands and their siblings with normal adrenergic levels, we test the contribution of the adrenergic ligands upon volatile anesthetic induction and emergence. Moreover, we investigate the effects of intravenous dexmedetomidine in adrenergic-deficient mice and their siblings using both righting reflex and processed electroencephalographic measures of anesthetic hypnosis. RESULTS We demonstrate that the loss of norepinephrine and epinephrine and not other neuromodulators copackaged in adrenergic neurons is sufficient to cause hypersensitivity to induction of volatile anesthesia. However, the most profound effect of adrenergic deficiency is retarding emergence from anesthesia, which takes two to three times as long in Dbh−/− mice for sevoflurane, isoflurane, and halothane. Having shown that Dbh−/− mice are hypersensitive to volatile anesthetics, we further demonstrate that their hypnotic hypersensitivity persists at multiple doses of dexmedetomidine. Dbh−/− mice exhibit up to 67% shorter latencies to loss of righting reflex and up to 545% longer durations of dexmedetomidine-induced general anesthesia. Central rescue of adrenergic signaling restores control-like dexmedetomidine sensitivity. A novel continuous electroencephalographic analysis illustrates that the longer duration of dexmedetomidine-induced hypnosis is not due to a motor confound, but occurs because of impaired anesthetic emergence. CONCLUSIONS Adrenergic signaling is essential for normal emergence from general anesthesia. Dexmedetomidine-induced general anesthesia does not depend upon inhibition of adrenergic neurotransmission. PMID:23042227
Tucker, Laura B.; Burke, John F.; Fu, Amanda H.
2017-01-01
Abstract Psychiatric symptoms such as anxiety and depression are frequent and persistent complaints following traumatic brain injury (TBI). Modeling these symptoms in animal models of TBI affords the opportunity to determine mechanisms underlying behavioral pathologies and to test potential therapeutic agents. However, testing these symptoms in animal models of TBI has yielded inconsistent results. The goal of the current study was to employ a battery of tests to measure multiple anxiety- and depressive-like symptoms following TBI in C57BL/6J mice, and to determine if male and female mice are differentially affected by the injury. Following controlled cortical impact (CCI) at a parietal location, neither male nor female mice showed depressive-like symptoms as measured by the Porsolt forced-swim test and sucrose preference test. Conclusions regarding anxiety-like behaviors were dependent upon the assay employed; CCI-induced thigmotaxis in the open field suggested an anxiogenic effect of the injury; however, results from the elevated zero maze, light-dark box, and marble-burying tests indicated that CCI reduced anxiety-like behaviors. Fewer anxiety-like behaviors were also associated with the female sex. Increased levels of activity were also measured in female mice and injured mice in these tests, and conclusions regarding anxiety should be taken with caution when experimental manipulations induce changes in baseline activity. These results underscore the irreconcilability of results from studies attempting to model TBI-induced neuropsychiatric symptoms. Changes in injury models or better attempts to replicate the clinical syndrome may improve the translational applicability of rodent models of TBI-induced anxiety and depression. PMID:27149139
Narayanan, Sampath; Grünler, Jacob; Sunkari, Vivekananda Gupta; Calissendorff, Freja S.; Ansurudeen, Ishrath; Illies, Christopher; Svensson, Johan; Jansson, John-Olov; Ohlsson, Claes; Brismar, Kerstin; Catrina, Sergiu-Bogdan
2018-01-01
Objective IGF-I is a growth factor, which is expressed in virtually all tissues. The circulating IGF-I is however derived mainly from the liver. IGF-I promotes wound healing and its levels are decreased in wounds with low regenerative potential such as diabetic wounds. However, the contribution of circulating IGF-I to wound healing is unknown. Here we investigated the role of systemic IGF-I on wound healing rate in mice with deficiency of liver-derived IGF-I (LI-IGF-I-/- mice) during normal (normoglycemic) and impaired wound healing (diabetes). Methods LI-IGF-I-/- mice with complete inactivation of the IGF-I gene in the hepatocytes were generated using the Cre/loxP recombination system. This resulted in a 75% reduction of circulating IGF-I. Diabetes was induced with streptozocin in both LI-IGF-I-/- and control mice. Wounds were made on the dorsum of the mice, and the wound healing rate and histology were evaluated. Serum IGF-I and GH were measured by RIA and ELISA respectively. The expression of IGF-I, IGF-II and the IGF-I receptor in the skin were evaluated by qRT-PCR. The local IGF-I protein expression in different cell types of the wounds during wound healing process was analyzed using immunohistochemistry. Results The wound healing rate was similar in LI-IGF-I-/- mice to that in controls. Diabetes significantly delayed the wound healing rate in both LI-IGF-I-/- and control mice. However, no significant difference was observed between diabetic animals with normal or reduced hepatic IGF-I production. The gene expression of IGF-I, IGF-II and IGF-I receptor in skin was not different between any group of animals tested. Local IGF-I levels in the wounds were similar between of LI-IGF-I-/- and WT mice although a transient reduction of IGF-I expression in leukocytes in the wounds of LI-IGF-I-/- was observed seven days post wounding. Conclusion Deficiency in the liver-derived IGF-I does not affect wound healing in mice, neither in normoglycemic conditions nor in diabetes. PMID:29534073
Oaks, Zachary; Winans, Thomas; Caza, Tiffany; Fernandez, David; Liu, Yuxin; Landas, Steve K.; Banki, Katalin
2016-01-01
Objective Antiphospholipid antibodies (aPL) constitute a diagnostic criterion of systemic lupus erythematosus (SLE), and aPL have been functionally linked to liver disease in patients with SLE. Since the mechanistic target of rapamycin (mTOR) is a regulator of oxidative stress, a pathophysiologic process that contributes to the development of aPL, this study was undertaken in a mouse model of SLE to examine the involvement of liver mitochondria in lupus pathogenesis. Methods Mitochondria were isolated from lupus‐prone MRL/lpr, C57BL/6.lpr, and MRL mice, age‐matched autoimmunity‐resistant C57BL/6 mice as negative controls, and transaldolase‐deficient mice, a strain that exhibits oxidative stress in the liver. Electron transport chain (ETC) activity was assessed using measurements of oxygen consumption. ETC proteins, which are regulators of mitochondrial homeostasis, and the mTOR complexes mTORC1 and mTORC2 were examined by Western blotting. Anticardiolipin (aCL) and anti–β2‐glycoprotein I (anti‐β2GPI) autoantibodies were measured by enzyme‐linked immunosorbent assay in mice treated with rapamycin or mice treated with a solvent control. Results Mitochondrial oxygen consumption was increased in the livers of 4‐week‐old, disease‐free MRL/lpr mice relative to age‐matched controls. Levels of the mitophagy initiator dynamin‐related protein 1 (Drp1) were depleted while the activity of mTORC1 was increased in MRL/lpr mice. In turn, mTORC2 activity was decreased in MRL and MRL/lpr mice. In addition, levels of aCL and anti‐β2GPI were elevated preceding the development of nephritis in 4‐week‐old MRL, C57BL/6.lpr, and MRL/lpr mice. Transaldolase‐deficient mice showed increased oxygen consumption, depletion of Drp1, activation of mTORC1, and elevated expression of NADH:ubiquinone oxidoreductase core subunit S3 (NDUFS3), a pro‐oxidant subunit of ETC complex I, as well as increased production of aCL and anti‐β2GPI autoantibodies. Treatment with rapamycin selectively blocked mTORC1 activation, NDUFS3 expression, and aPL production both in transaldolase‐deficient mice and in lupus‐prone mice. Conclusion In lupus‐prone mice, mTORC1‐dependent mitochondrial dysfunction contributes to the generation of aPL, suggesting that such mechanisms may represent a treatment target in patients with SLE. PMID:27332042
Vasudeva, Vidya; Tenkanidiyoor, Yogish Somayaji; Peter, Alex John; Shetty, Jayaram; Lakshman, Srikant Patil; Fernandes, Ronald; Patali, Krishna Ananthapura
2018-01-01
Background: Lutein, a carotenoid compound, has previously been studied for its antioxidant and medicinal properties as well as the moderate protection it confers against gamma radiation. This study aimed at evaluating the effects of lutein against radiation-induced hematological and biochemical changes in mice. Methods: The optimized dose of the compound was orally administered for 15 days, and the mice were irradiated (6 Gy) on day 15 after the administration of the compound. The groups were divided (6 mice in each group) into normal control, radiation control, gallic acid control, 10% DMSO control, lutein control, and irradiated groups pretreated with gallic acid, 10% DMSO, and lutein. Gallic acid was used to maintain a standard since it is a proven radioprotector. Within 24 hours post irradiation, the animals were anesthetized and sacrificed. The hematological, biochemical, and antioxidant changes were determined using suitable methods. Data were analyzed by the Kaplan–Meier curve (log-rank test) and ANOVA (the Tukey test). The independent t test was used to compare the independent groups. SPSS (ver. 16) was employed. Results: Maximum survival was observed with a dose of 250 mg/kg b.wt lutein. The total leukocyte count and the percentage lymphocyte count exhibited a significant decline in the irradiated groups pretreated with gallic acid and lutein in comparison to their controls, whereas the percentage granulocyte count showed a significant rise. Antioxidant activity had markedly declined in the irradiated groups, indicating oxidative stress. Lutein pretreatment reduced the damage and maintained the antioxidant system. Conclusion: The present study suggests a protective role for lutein in palliating radiation-induced oxidative changes and maintaining the antioxidant system in vivo. PMID:29398751
Transgenic Mouse Model for Reducing Oxidative Damage in Bone
NASA Technical Reports Server (NTRS)
Schreurs, Ann-Sofie; Torres, S.; Truong, T.; Moyer, E. L.; Kumar, A.; Tahimic, Candice C. G.; Alwood, J. S.; Limoli, C. L.; Globus, R. K.
2016-01-01
Bone loss can occur due to many challenges such age, radiation, microgravity, and Reactive Oxygen Species (ROS) play a critical role in bone resorption by osteoclasts (Bartell et al. 2014). We hypothesize that suppression of excess ROS in skeletal cells, both osteoblasts and osteoclasts, regulates skeletal growth and remodeling. To test our hypothesis, we used transgenic mCAT mice which overexpress the human anti-oxidant catalase gene targeted to the mitochondria, the main site for endogenous ROS production. mCAT mice have a longer life-span than wildtype controls and have been used to study various age-related disorders. To stimulate remodeling, 16 week old mCAT mice or wildtype mice were exposed to treatment (hindlimb-unloading and total body-irradiation) or sham treatment conditions (control). Tissues were harvested 2 weeks later for skeletal analysis (microcomputed tomography), biochemical analysis (gene expression and oxidative damage measurements), and ex vivo bone marrow derived cell culture (osteoblastogenesis and osteoclastogenesis). mCAT mice expressed the transgene and displayed elevated catalase activity in skeletal tissue and marrow-derived osteoblasts and osteoclasts grown ex vivo. In addition, when challenged with treatment, bone tissues from wildtype mice showed elevated levels of malondialdehyde (MDA), indicating oxidative damage) whereas mCAT mice did not. Correlation analysis revealed that increased catalase activity significantly correlated with decreased MDA levels and that increased oxidative damage correlated with decreased percent bone volume (BVTV). In addition, ex-vivo cultured osteoblast colony growth correlated with catalase activity in the osteoblasts. Thus, we showed that these transgenic mice can be used as a model to study the relationship between markers of oxidative damage and skeletal properties. mCAT mice displayed reduced BVTV and trabecular number relative to wildtype mice, as well as increased structural model index in the cancellous tibia. Treatment caused bone loss in wildtype mice, as expected. Treatment also caused deficits in microarchitecture of mCAT mice, although less severe than wildtype mice in some parameters (percent bone volume, structural model index and cortical area). In conclusion, our results indicate that endogenous ROS signaling in both osteoblast and osteoclast lineage cells contributes to skeletal growth and remodeling, and quenching oxidative damage could play a role in bone loss prevention.
Saxon, Leanne K.; Jackson, Brendan F.; Sugiyama, Toshihiro; Lanyon, Lance E.; Price, Joanna S.
2011-01-01
Introduction To investigate the role of the low-density lipoprotein receptor-related protein 5 (Lrp5) in bones' responses to loading, we analysed changes in multiple measures of bone architecture in tibias subjected to loading or disuse in male and female mice with the Lrp5 loss of function mutation (Lrp5−/−) or heterozygous for the Lrp5 G171V High Bone Mass (HBM) mutation (Lrp5HBM+). Materials and methods The right tibias of these 17 week old male and female mice and their Wild Type (WT) littermates were subjected to short periods of loading three days a week for two weeks. Each tibia was loaded for 40 cycles, to produce peak strains at the midshaft within the low, medium or high physiological range (~ 1500, 2400 and 3000 microstrain, respectively). In similar groups of mice the right sciatic nerve was severed causing disuse of the right tibia for 3 weeks. Data from microCT of loaded, neurectomised and contra-lateral control tibias were analysed to quantify changes in the cortical and cancellous regions of the bone in the absence of functional strains and in response to graded strains in addition to those derived from function. Results and conclusion Male WT+/+ controls showed significant strain:response curves for cortical area and trabecular thickness, but Lrp5−/− mice showed no detectable strain:response in those same outcomes. Female mice of either WT+/+ or Lrp5−/− genotype did not show significant strain:response curves for cortical or trabecular parameters, the one exception being Tb.Th in Lrp5−/− mice. Since female WT+/+ mice did not respond to loading in a significant dose:responsive manner, the similar lack of responsiveness of the Lrp5−/− females could not be ascribed to their Lrp5 status. Cortical bone loss associated with disuse showed no differences between Lrp5−/− mice and WT+/+ controls, but in cancellous bone of both male and females of these mice, there was a greater loss than in WT+/+ controls. In contrast, the tibias of male and female mice heterozygous for the Lrp5 G171V HBM mutation showed greater osteogenic responsiveness to loading and less bone loss associated with disuse than their WTHBM− controls. These data indicate that the presence of the Lrp5 G171V HBM mutation is associated with an increased osteogenic response to loading but support only a marginal gender-related role for normal Lrp5 function in this loading-related response. PMID:21419885
Organ, Chelsea L.; Otsuka, Hiroyuki; Bhushan, Shashi; Wang, Zeneng; Bradley, Jessica; Trivedi, Rishi; Polhemus, David J.; Tang, W. H. Wilson; Wu, Yuping; Hazen, Stanley L.; Lefer, David J.
2015-01-01
Background Trimethylamine N-oxide (TMAO), a gut microbe dependent metabolite of dietary choline and other trimethylamine containing nutrients, is both elevated in the circulation of patients suffering from heart failure (HF) and heralds worse overall prognosis. In animal studies, dietary choline or TMAO significantly accelerate atherosclerotic lesion development in ApoE deficient mice, and reduction in TMAO levels inhibits atherosclerosis development in the LDL receptor knockout mouse. Methods and Results C57BL6/J mice were fed either a control diet, a diet containing choline (1.2%) or a diet containing TMAO (0.12%) starting 3 weeks prior to surgical TAC. Mice were studied for 12 weeks following TAC. Cardiac function and left ventricular structure were monitored at 3-week intervals using echocardiography. Twelve weeks post-TAC myocardial tissues were collected to evaluate cardiac and vascular fibrosis, and blood samples were evaluated for cardiac BNP, choline, and TMAO levels. Pulmonary edema, cardiac enlargement, and left ventricular ejection fraction (LVEF) were significantly (p < 0.05, each) worse in mice fed either TMAO or choline supplemented diets compared to the control diet. In addition, myocardial fibrosis was also significantly greater (p < 0.01, each) in the TMAO and choline groups relative to controls. Conclusions Heart failure severity is significantly enhanced in mice fed diets supplemented in either choline or the gut microbe-dependent metabolite TMAO. The present results suggest that further studies are warranted examining whether gut microbiota and the dietary choline -> TMAO pathway contribute to increased heart failure susceptibility. PMID:26699388
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoving, Saske; Heeneman, Sylvia; Gijbels, Marion J.J.
2008-07-01
Purpose: Increased risk of atherosclerosis and stroke has been demonstrated in patients receiving radiotherapy for Hodgkin's lymphoma and head-and-neck cancer. We previously showed that 14 Gy to the carotid arteries of hypercholesterolemic ApoE{sup -/-} mice resulted in accelerated development of macrophage-rich, inflammatory atherosclerotic lesions. Here we investigate whether clinically relevant fractionated irradiation schedules and lower single doses also predispose to an inflammatory plaque phenotype. Methods and Materials: ApoE{sup -/-} mice were given 8 or 14 Gy, or 20 x 2.0 Gy in 4 weeks to the neck, and the carotid arteries were subsequently examinated for presence of atherosclerotic lesions, plaquemore » size, and phenotype. Results: At 4 weeks, early atherosclerotic lesions were found in 44% of the mice after single doses of 14 Gy but not in age-matched controls. At 22 to 30 weeks after irradiation there was a twofold increase in the mean number of carotid lesions (8-14 Gy and 20 x 2.0 Gy) and total plaque burden (single doses only), compared with age-matched controls. The majority of lesions seen at 30 to 34 weeks after fractionated irradiation or 14-Gy single doses were granulocyte rich (100% and 63%, respectively), with thrombotic features (90% and 88%), whereas these phenotypes were much less common in age-matched controls or after a single dose of 8 Gy. Conclusions: We showed that fractionated irradiation accelerated the development of atherosclerosis in ApoE{sup -/-} mice and predisposed to the formation of an inflammatory, thrombotic plaque phenotype.« less
Hoogland, Inge C.M.; Wieske, Luuk; Weber, Nina C.; Verhamme, Camiel; Schultz, Marcus J.; van Schaik, Ivo N.; Horn, Janneke
2015-01-01
ABSTRACT Introduction: There are few reports of in vivo muscle strength measurements in animal models of ICU‐acquired weakness (ICU‐AW). In this study we investigated whether the Escherichia coli (E. coli) septic peritonitis mouse model may serve as an ICU‐AW model using in vivo strength measurements and myosin/actin assays, and whether development of ICU‐AW is age‐dependent in this model. Methods: Young and old mice were injected intraperitoneally with E. coli and treated with ceftriaxone. Forelimb grip strength was measured at multiple time points, and the myosin/actin ratio in muscle was determined. Results: E. coli administration was not associated with grip strength decrease, neither in young nor in old mice. In old mice, the myosin/actin ratio was lower in E. coli mice at t = 48 h and higher at t = 72 h compared with controls. Conclusions: This E. coli septic peritonitis mouse model did not induce decreased grip strength. In its current form, it seems unsuitable as a model for ICU‐AW. Muscle Nerve 53: 127–133, 2016 PMID:26015329
Social interaction-induced activation of RNA splicing in the amygdala of microbiome-deficient mice.
Stilling, Roman M; Moloney, Gerard M; Ryan, Feargal J; Hoban, Alan E; Bastiaanssen, Thomaz Fs; Shanahan, Fergus; Clarke, Gerard; Claesson, Marcus J; Dinan, Timothy G; Cryan, John F
2018-05-29
Social behaviour is regulated by activity of host-associated microbiota across multiple species. However, the molecular mechanisms mediating this relationship remain elusive. We therefore determined the dynamic, stimulus-dependent transcriptional regulation of germ-free (GF) and GF mice colonised post weaning (exGF) in the amygdala, a brain region critically involved in regulating social interaction. In GF mice the dynamic response seen in controls was attenuated and replaced by a marked increase in expression of splicing factors and alternative exon usage in GF mice upon stimulation, which was even more pronounced in exGF mice. In conclusion, we demonstrate a molecular basis for how the host microbiome is crucial for a normal behavioural response during social interaction. Our data further suggest that social behaviour is correlated with the gene-expression response in the amygdala, established during neurodevelopment as a result of host-microbe interactions. Our findings may help toward understanding neurodevelopmental events leading to social behaviour dysregulation, such as those found in autism spectrum disorders (ASDs). © 2018, Stilling et al.
Ptak, K; Hunt, S P; Monteau, R
2000-07-01
Neurokinin-1 receptors (NK1) are present within the respiratory medullary network and in the phrenic nucleus, which controls the diaphragm. We compared the efficacy of substance P (SP) at inducing changes in respiratory frequency or the amplitude of the respiratory motor output between NK1 knockout (NK1-/-) and wild-type mice, using the in vitro brainstem-spinal cord preparation. The in vitro respiratory frequency, as well as the variability of the rhythm and the amplitude of the motor output were similar in both lines. In wild-type mice, application of exogenous SP induced either an increase in respiratory frequency (superfusion of the medulla) or an increase of the inspiratory motor output, as defined by the integral of C4 cervical ventral root activity (superfusion of the spinal cord). These two effects were not apparent in NK1-/- mice. In conclusion, NK1 receptors mediate the respiratory responses to SP but the lack of NK1 receptors in newborn NK1-/- mice does not change the respiratory activity.
Glucagon Receptor Knockout Prevents Insulin-Deficient Type 1 Diabetes in Mice
Lee, Young; Wang, May-Yun; Du, Xiu Quan; Charron, Maureen J.; Unger, Roger H.
2011-01-01
OBJECTIVE To determine the role of glucagon action in the metabolic phenotype of untreated insulin deficiency. RESEARCH DESIGN AND METHODS We compared pertinent clinical and metabolic parameters in glucagon receptor-null (Gcgr−/−) mice and wild-type (Gcgr+/+) controls after equivalent destruction of β-cells. We used a double dose of streptozotocin to maximize β-cell destruction. RESULTS Gcgr+/+ mice became hyperglycemic (>500 mg/dL), hyperketonemic, polyuric, and cachectic and had to be killed after 6 weeks. Despite comparable β-cell destruction in Gcgr−/− mice, none of the foregoing clinical or laboratory manifestations of diabetes appeared. There was marked α-cell hyperplasia and hyperglucagonemia (∼1,200 pg/mL), but hepatic phosphorylated cAMP response element binding protein and phosphoenolpyruvate carboxykinase mRNA were profoundly reduced compared with Gcgr+/+ mice with diabetes—evidence that glucagon action had been effectively blocked. Fasting glucose levels and oral and intraperitoneal glucose tolerance tests were normal. Both fasting and nonfasting free fatty acid levels and nonfasting β-hydroxy butyrate levels were lower. CONCLUSIONS We conclude that blocking glucagon action prevents the deadly metabolic and clinical derangements of type 1 diabetic mice. PMID:21270251
DREAM regulates BDNF-dependent spinal sensitization
2010-01-01
Background The transcriptional repressor DREAM (downstream regulatory element antagonist modulator) controls the expression of prodynorphin and has been involved in the modulation of endogenous responses to pain. To investigate the role of DREAM in central mechanisms of pain sensitization, we used a line of transgenic mice (L1) overexpressing a Ca2+- and cAMP-insensitive DREAM mutant in spinal cord and dorsal root ganglia. Results L1 DREAM transgenic mice showed reduced expression in the spinal cord of several genes related to pain, including prodynorphin and BDNF (brain-derived neurotrophic factor) and a state of basal hyperalgesia without change in A-type currents. Peripheral inflammation produced enhancement of spinal reflexes and increased expression of BDNF in wild type but not in DREAM transgenic mice. The enhancement of the spinal reflexes was reproduced in vitro by persistent electrical stimulation of C-fibers in wild type but not in transgenic mice. Exposure to exogenous BDNF produced a long-term enhancement of dorsal root-ventral root responses in transgenic mice. Conclusions Our results indicate that endogenous BDNF is involved in spinal sensitization following inflammation and that blockade of BDNF induction in DREAM transgenic mice underlies the failure to develop spinal sensitization. PMID:21167062
Xiao, Zhijie; He, Liqun; Takemoto, Minoru; Jalanko, Hannu; Chan, Guy C.; Storm, Daniel R.; Betsholtz, Christer; Tryggvason, Karl; Patrakka, Jaakko
2011-01-01
Background/Aims The organization of actin cytoskeleton in podocyte foot processes plays a critical role in the maintenance of the glomerular filtration barrier. The cAMP pathway is an important regulator of the actin network assembly in cells. However, the role of the cAMP pathway in podocytes is not well understood. Type 1 adenylate cyclase (Adcy1), previously thought to be specific for neuronal tissue, is a member of the family of enzymes that catalyses the formation of cAMP. In this study, we characterized the expression and role of Adcy1 in the kidney. Methods Expression of Adcy1 was studied by RT-PCR, Northern blotting and in situ hybridization. The role of Adcy1 in podocytes was investigated by analyzing Adcy1 knockout mice (Adcy1–/–). Results and Conclusion: Adcy1 is expressed in the kidney specifically by podocytes. In the kidney, Adcy1 does not have a critical role in normal physiological functioning as kidney histology and function are normal in Adcy1–/– mice. However, albumin overload resulted in severe albuminuria in Adcy1–/– mice, whereas wild-type control mice showed only mild albumin leakage to urine. In conclusion, we have identified Adcy1 as a novel podocyte signaling protein that seems to have a role in compensatory physiological processes in the glomerulus. PMID:21196775
DOE Office of Scientific and Technical Information (OSTI.GOV)
Furukawa, Kiyoshi; Sato, Toru; Katsuno, Tatsuro, E-mail: katsuno@faculty.chiba-u.jp
2011-02-25
Research highlights: {yields} Smad3{sup -/-} mice showed an increased number of proliferating epithelial cells in colonic crypts. {yields} Proliferating epithelial cells showed activated Wnt/{beta}-catenin pathway. {yields} Smad3{sup -/-} mice also showed intermingling of proliferating cells with differentiated cells. {yields} Loss of EphB receptor expression was observed in the colonic crypts of Smad3{sup -/-} mice. {yields} Loss of EphB receptor expression is likely responsible for cell intermingling. -- Abstract: Deficiency of Smad3, an intracellular mediator of TGF-{beta}, was shown to significantly accelerate re-epithelialization of the colonic mucosa. This study was performed to investigate the molecular mechanisms by which Smad3 controls colonicmore » epithelial cell proliferation and crypt formation. Smad3{sup ex8/ex8} C57BL/6 mice were used in this study and wild-type littermates served as controls. The number of proliferating cells in the isolated colonic epithelium of Smad3{sup -/-} mice was significantly increased compared to that in wild-type littermates. Protein levels of the cell cycle inhibitors p21 and p27 were significantly decreased, while that of c-Myc was increased in the isolated colonic epithelium from Smad3{sup -/-} mice. In the colonic tissue of wild-type mice, cell proliferation was restricted to the bottom of the crypts in accordance with nuclear {beta}-catenin staining, whereas proliferating cells were located throughout the crypts in Smad3{sup -/-} mice in accordance with nuclear {beta}-catenin staining, suggesting that Smad3 is essential for locating proliferating cells at the bottom of the colonic crypts. Notably, in Smad3{sup -/-} mice, there was loss of EphB2 and EphB3 receptor protein expression, critical regulators of proliferating cell positioning, while EphB receptor protein expression was confirmed at the bottom of the colonic crypts in wild-type mice. These observations indicated that disturbance of the EphB/ephrin B system brings about mispositioning of proliferating cells in the colonic crypts of Smad3{sup -/-} mice. In conclusion, Smad3 is essential for controlling number and positioning of proliferating cells in the colonic crypts and contributes to formation of a 'proliferative zone' at the bottom of colonic crypts in the normal colon.« less
Zhu, Shuang; Park, Soyoung; Lim, Yeseo; Shin, Sunhye
2016-01-01
BACKGROUND/OBJECTIVES Consumption of pine nut oil (PNO) was shown to reduce weight gain and attenuate hepatic steatosis in mice fed a high-fat diet (HFD). The aim of this study was to examine the effects of PNO on both intestinal and hepatic lipid metabolism in mice fed control or HFD. MATERIALS/METHODS Five-week-old C57BL/6 mice were fed control diets containing 10% energy fat from either Soybean Oil (SBO) or PNO, or HFD containing 15% energy fat from lard and 30% energy fat from SBO or PNO for 12 weeks. Expression of genes related to intestinal fatty acid (FA) uptake and channeling (Cd36, Fatp4, Acsl5, Acbp), intestinal chylomicron synthesis (Mtp, ApoB48, ApoA4), hepatic lipid uptake and channeling (Lrp1, Fatp5, Acsl1, Acbp), hepatic triacylglycerol (TAG) lipolysis and FA oxidation (Atgl, Cpt1a, Acadl, Ehhadh, Acaa1), as well as very low-density lipoprotein (VLDL) assembly (ApoB100) were determined by real-time PCR. RESULTS In intestine, significantly lower Cd36 mRNA expression (P < 0.05) and a tendency of lower ApoA4 mRNA levels (P = 0.07) was observed in PNO-fed mice, indicating that PNO consumption may decrease intestinal FA uptake and chylomicron assembly. PNO consumption tended to result in higher hepatic mRNA levels of Atgl (P = 0.08) and Cpt1a (P = 0.05). Significantly higher hepatic mRNA levels of Acadl and ApoB100 were detected in mice fed PNO diet (P < 0.05). These results suggest that PNO could increase hepatic TAG metabolism; mitochondrial fatty acid oxidation and VLDL assembly. CONCLUSIONS PNO replacement in the diet might function in prevention of excessive lipid uptake by intestine and improve hepatic lipid metabolism in both control diet and HFD fed mice. PMID:27698954
de Cuba, Marília Beatriz; Ribeiro Machado, Marcus Paulo; Farnesi, Thais Soares; Alves, Angelica Cristina; Martins, Livia Alves; de Oliveira, Lucas Felipe; Capitelli, Caroline Santos; Leite, Camila Ferreira; Vinícius Silva, Marcos; Machado, Juliana Reis; Kappel, Henrique Borges; Sales de Campos, Helioswilton; Paiva, Luciano; da Silva Gomes, Natália Lins; Guimarães Faleiros, Ana Carolina; Britto, Constança Felicia de Paoli de Carvalho; Savino, Wilson; Moreira, Otacílio Cruz; Rodrigues Jr., Virmondes; Montano, Nicola; Lages-Silva, Eliane; Ramirez, Luis Eduardo; Dias da Silva, Valdo Jose
2014-01-01
The aim of the present study was to assess the effects of an anticholinesterase agent, pyridostigmine bromide (Pyrido), on experimental chronic Chagas heart disease in mice. To this end, male C57BL/6J mice noninfected (control:Con) or chronically infected (5 months) with Trypanosoma cruzi (chagasic:Chg) were treated or not (NT) with Pyrido for one month. At the end of this period, electrocardiogram (ECG); cardiac autonomic function; heart histopathology; serum cytokines; and the presence of blood and tissue parasites by means of immunohistochemistry and PCR were assessed. In NT-Chg mice, significant changes in the electrocardiographic, autonomic, and cardiac histopathological profiles were observed confirming a chronic inflammatory response. Treatment with Pyrido in Chagasic mice caused a significant reduction of myocardial inflammatory infiltration, fibrosis, and hypertrophy, which was accompanied by a decrease in serum levels of IFNγ with no change in IL-10 levels, suggesting a shift of immune response toward an anti-inflammatory profile. Lower nondifferent numbers of parasite DNA copies were observed in both treated and nontreated chagasic mice. In conclusion, our findings confirm the marked neuroimmunomodulatory role played by the parasympathetic autonomic nervous system in the evolution of the inflammatory-immune response to T. cruzi during experimental chronic Chagas heart disease in mice. PMID:25221388
de Cuba, Marília Beatriz; Machado, Marcus Paulo Ribeiro; Farnesi, Thais Soares; Alves, Angelica Cristina; Martins, Livia Alves; de Oliveira, Lucas Felipe; Capitelli, Caroline Santos; Leite, Camila Ferreira; Silva, Marcos Vinícius; Machado, Juliana Reis; Kappel, Henrique Borges; de Campos, Helioswilton Sales; Paiva, Luciano; Gomes, Natália Lins da Silva; Faleiros, Ana Carolina Guimarães; Britto, Constança Felicia de Paoli de Carvalho; Savino, Wilson; Moreira, Otacílio Cruz; Rodrigues, Virmondes; Montano, Nicola; Lages-Silva, Eliane; Ramirez, Luis Eduardo; da Silva, Valdo Jose Dias
2014-01-01
The aim of the present study was to assess the effects of an anticholinesterase agent, pyridostigmine bromide (Pyrido), on experimental chronic Chagas heart disease in mice. To this end, male C57BL/6J mice noninfected (control:Con) or chronically infected (5 months) with Trypanosoma cruzi (chagasic:Chg) were treated or not (NT) with Pyrido for one month. At the end of this period, electrocardiogram (ECG); cardiac autonomic function; heart histopathology; serum cytokines; and the presence of blood and tissue parasites by means of immunohistochemistry and PCR were assessed. In NT-Chg mice, significant changes in the electrocardiographic, autonomic, and cardiac histopathological profiles were observed confirming a chronic inflammatory response. Treatment with Pyrido in Chagasic mice caused a significant reduction of myocardial inflammatory infiltration, fibrosis, and hypertrophy, which was accompanied by a decrease in serum levels of IFNγ with no change in IL-10 levels, suggesting a shift of immune response toward an anti-inflammatory profile. Lower nondifferent numbers of parasite DNA copies were observed in both treated and nontreated chagasic mice. In conclusion, our findings confirm the marked neuroimmunomodulatory role played by the parasympathetic autonomic nervous system in the evolution of the inflammatory-immune response to T. cruzi during experimental chronic Chagas heart disease in mice.
Mast Cells Regulate Wound Healing in Diabetes
Tellechea, Ana; Leal, Ermelindo C.; Kafanas, Antonios; Auster, Michael E.; Kuchibhotla, Sarada; Ostrovsky, Yana; Tecilazich, Francesco; Baltzis, Dimitrios; Zheng, Yongjun; Carvalho, Eugénia; Zabolotny, Janice M.; Weng, Zuyi; Petra, Anastasia; Patel, Arti; Panagiotidou, Smaro; Pradhan-Nabzdyk, Leena; Theoharides, Theoharis C.
2016-01-01
Diabetic foot ulceration is a severe complication of diabetes that lacks effective treatment. Mast cells (MCs) contribute to wound healing, but their role in diabetes skin complications is poorly understood. Here we show that the number of degranulated MCs is increased in unwounded forearm and foot skin of patients with diabetes and in unwounded dorsal skin of diabetic mice (P < 0.05). Conversely, postwounding MC degranulation increases in nondiabetic mice, but not in diabetic mice. Pretreatment with the MC degranulation inhibitor disodium cromoglycate rescues diabetes-associated wound-healing impairment in mice and shifts macrophages to the regenerative M2 phenotype (P < 0.05). Nevertheless, nondiabetic and diabetic mice deficient in MCs have delayed wound healing compared with their wild-type (WT) controls, implying that some MC mediator is needed for proper healing. MCs are a major source of vascular endothelial growth factor (VEGF) in mouse skin, but the level of VEGF is reduced in diabetic mouse skin, and its release from human MCs is reduced in hyperglycemic conditions. Topical treatment with the MC trigger substance P does not affect wound healing in MC-deficient mice, but improves it in WT mice. In conclusion, the presence of nondegranulated MCs in unwounded skin is required for proper wound healing, and therapies inhibiting MC degranulation could improve wound healing in diabetes. PMID:27207516
Nagashima, Shuichi; Yagyu, Hiroaki; Tozawa, Ryuichi; Tazoe, Fumiko; Takahashi, Manabu; Kitamine, Tetsuya; Yamamuro, Daisuke; Sakai, Kent; Sekiya, Motohiro; Okazaki, Hiroaki; Osuga, Jun-ichi; Honda, Akira; Ishibashi, Shun
2015-01-01
Squalene synthase (SS) catalyzes the biosynthesis of squalene, the first specific intermediate in the cholesterol biosynthetic pathway. To test the feasibility of lowering plasma cholesterol by inhibiting hepatic SS, we generated mice in which SS is specifically knocked out in the liver (L-SSKO) using Cre-loxP technology. Hepatic SS activity of L-SSKO mice was reduced by >90%. In addition, cholesterol biosynthesis in the liver slices was almost eliminated. Although the hepatic squalene contents were markedly reduced in L-SSKO mice, the hepatic contents of cholesterol and its precursors distal to squalene were indistinguishable from those of control mice, indicating the presence of sufficient centripetal flow of cholesterol and/or its precursors from the extrahepatic tissues. L-SSKO mice showed a transient liver dysfunction with moderate hepatomegaly presumably secondary to increased farnesol production. In a fed state, the plasma total cholesterol and triglyceride were significantly reduced in L-SSKO mice, primarily owing to reduced hepatic VLDL secretion. In a fasted state, the hypolipidemic effect was lost. mRNA expression of liver X receptor α target genes was reduced, while that of sterol-regulatory element binding protein 2 target genes was increased. In conclusion, liver-specific ablation of SS inhibits hepatic cholesterol biosynthesis and induces hypolipidemia without increasing significant mortality. PMID:25755092
Ohnishi, Mutsuko; Kato, Shigeko; Razzaque, M. Shawkat
2013-01-01
Objective The adverse effects of metabolic disorders in obesity have been extensively studied; however, the pathologic effects of hyperphosphatemia or phosphate toxicity in obesity have not been studied in similar depth and detail, chiefly because such an association is thought to be uncommon. Studies have established that the incidence of obesity-associated nephropathy is increasing. Because hyperphosphatemia is a major consequence of renal impairment, this study determines the in vivo effects of hyperphosphatemia in obesity. Methods and results We genetically induced hyperphosphatemia in leptin-deficient obese (ob/ob) mice by generating ob/ob and klotho double knockout [ob/ob-klotho−/−] mice. As a control, we made ob/ob mice with hypophosphatemia by generating ob/ob and 1-alpha hydroxylase double knockout [ob/ob-1α(OH)ase−/−] mice. Compared to the wild-type mice, all three obese background mice, namely ob/ob, ob/ob-klotho−/−, and ob/ob-1α(OH)ase−/− mice developed hypercholesterolemia. In addition, the hyperphosphatemic, ob/ob-klotho−/− genetic background induced generalized tissue atrophy and widespread soft-tissue and vascular calcifications, which led to a shorter lifespan; no such changes were observed in the hypophosphatemic, ob/ob-1α(OH)ase−/− mice. Significantly, in contrast to the reduced survival of the ob/ob-klotho−/− mice, lowering serum phosphate levels in ob/ob-1α(OH)ase−/− mice showed no such compromised survival, despite both mice being hypercholesterolemic. Conclusion These genetic manipulation studies suggest phosphate toxicity is an important risk factor in obesity that can adversely affect survival. PMID:22037453
Cholecystokinin knockout mice are resistant to high-fat diet-induced obesity
Lo, Chun-Min; King, Alexandra; Samuelson, Linda C; Kindel, Tammy Lyn; Rider, Therese; Jandacek, Ronald J; Raybould, Helen E; Woods, Stephen C; Tso, Patrick
2011-01-01
Background & Aims Cholecystokinin (CCK) is a satiation peptide released during meals in response to lipid intake; it regulates pancreatic digestive enzymes that are required for absorption of nutrients. We proposed that mice with a disruption in the CCK gene (CCK-KO mice) that were fed a diet of 20% butter fat would have altered fat metabolism. Methods We used quantitative magnetic resonance imaging to determine body composition and monitored food intake of CCK-KO mice using an automated measurement system. Intestinal fat absorption and energy expenditure were determined using a noninvasive assessment of intestinal fat absorption and an open circuit calorimeter, respectively. Results After consuming a high-fat diet for 10 weeks, CCK-KO mice had reduced body weight gain and body fat mass and enlarged adipocytes, despite the same level of food intake as wild-type mice. CCK-KO mice also had defects in fat absorption, especially of long-chain saturated fatty acids, but pancreatic triglyceride lipase (PTL) did not appear to have a role in the fat malabsorption. Energy expenditure was higher in CCK-KO than wild-type mice and CCK-KO mice had greater oxidation of carbohydrates while on the high-fat diet. Plasma leptin levels in the CCK-KO mice fed the high-fat diet were markedly lower than in wild-type mice, although levels of insulin, gastric-inhibitory polypeptide, and glucagon-like peptide-1 were normal. Conclusion CCK is involved in regulating the metabolic rate and is important for lipid absorption and control of body weight in mice placed on a high-fat diet. PMID:20117110
Zhu, XinWang; Zhang, CongXiao; Fan, QiuLing; Liu, XiaoDan; Yang, Gang; Jiang, Yi; Wang, LiNing
2016-10-22
BACKGROUND Diabetic nephropathy (DN) is the most lethal diabetic microvascular complication; it is a major cause of renal failure, and an increasingly globally prominent healthcare problem. MATERIAL AND METHODS To identify susceptible microRNAs for the pathogenesis of DN and the targets of losartan treatment, microRNA arrays were employed to survey the glomerular microRNA expression profiles of KKAy mice treated with or without losartan. KKAy mice were assigned to either a losartan-treated group or a non-treatment group, with C57BL/6 mice used as a normal control. Twelve weeks after treatment, glomeruli from the mice were isolated. MicroRNA expression profiles were analyzed using microRNA arrays. Real-time PCR was used to confirm the results. RESULTS Losartan treatment improved albuminuria and the pathological lesions of KKAy mice. The expression of 10 microRNAs was higher, and the expression of 12 microRNAs was lower in the glomeruli of the KKAy untreated mice than that of the CL57BL/6 mice. The expression of 4 microRNAs was down-regulated in the glomeruli of the KKAy losartan-treated mice compared to that of the untreated mice. The expression of miRNA-503 and miRNA-181d was apparently higher in the glomeruli of the KKAy untreated mice, and was inhibited by losartan treatment. CONCLUSIONS The over-expression of miR-503 and miR-181d in glomeruli of KKAy mice may be responsible for the pathogenesis of DN and are potential therapeutic targets for DN.
Autoimmune abnormality affects ovulation and oocyte-pick-up in MRL/MpJ-Fas lpr/lpr mice.
Hosotani, M; Ichii, O; Nakamura, T; Kanazawa, S O; Elewa, Y Hosny Ali; Kon, Y
2018-01-01
Ovulation and oocyte-pick-up are essential processes in fertilization. Herein, we found associations between autoimmune disease and the aforementioned processes in mice. At three and six months, along with the evaluation of autoimmune disease indices, the ovary, mesosalpinx, and oviducts were histologically examined in C57BL/6, MRL/MpJ, and MRL/MpJ-Fas lpr/lpr mice as healthy control, mild and severe models of autoimmune disease, respectively. In superovulated mice, the number of "oocyte cumulus complexes" found in the ampulla was macroscopically counted, and that of "ovulated oocytes" was histologically evaluated, as indicated by ruptured follicles or corpora hemorrhagica in ovaries. Finally, the oocyte-pick-up rate was calculated. In MRL/MpJ-Fas lpr/lpr mice, the oocyte-pick-up rate decreased with disease-related deterioration, unlike in other mouse strains. Further, more ovulated oocytes were found in MRL/MpJ mice than in C57BL/6 mice, and this number significantly decreased with aging in MRL/MpJ-Fas lpr/lpr mice. Numerous T-cells infiltrated into the infundibulum or a part of the mesosalpinx in aged MRL/MpJ-Fas lpr/lpr mice, and their infundibulum showed swelling and fewer ciliated epithelial cells compared to that of C57BL/6 mice. In conclusion, the progression of severe autoimmune disease affected the oocyte-pick-up process through histopathological changes in the infundibulum. These results provide important insights into female infertility associated with autoimmune disease.
In Vivo Imaging of Influenza Virus Infection in Immunized Mice
Czakó, Rita; Vogel, Leatrice; Lamirande, Elaine W.; Bock, Kevin W.; Moore, Ian N.; Ellebedy, Ali H.; Ahmed, Rafi
2017-01-01
ABSTRACT Immunization is the cornerstone of seasonal influenza control and represents an important component of pandemic preparedness strategies. Using a bioluminescent reporter virus, we demonstrate the application of noninvasive in vivo imaging system (IVIS) technology to evaluate the preclinical efficacy of candidate vaccines and immunotherapy in a mouse model of influenza. Sequential imaging revealed distinct spatiotemporal kinetics of bioluminescence in groups of mice passively or actively immunized by various strategies that accelerated the clearance of the challenge virus at different rates and by distinct mechanisms. Imaging findings were consistent with conclusions derived from virus titers in the lungs and, notably, were more informative than conventional efficacy endpoints in some cases. Our findings demonstrate the reliability of IVIS as a qualitative approach to support preclinical evaluation of candidate medical countermeasures for influenza in mice. PMID:28559489
Wadsworth, Jonathan D F; Joiner, Susan; Linehan, Jacqueline M; Balkema-Buschmann, Anne; Spiropoulos, John; Simmons, Marion M; Griffiths, Peter C; Groschup, Martin H; Hope, James; Brandner, Sebastian; Asante, Emmanuel A; Collinge, John
2013-11-01
Public and animal health controls to limit human exposure to animal prions are focused on bovine spongiform encephalopathy (BSE), but other prion strains in ruminants may also have zoonotic potential. One example is atypical/Nor98 scrapie, which evaded statutory diagnostic methods worldwide until the early 2000s. To investigate whether sheep infected with scrapie prions could be another source of infection, we inoculated transgenic mice that overexpressed human prion protein with brain tissue from sheep with natural field cases of classical and atypical scrapie, sheep with experimental BSE, and cattle with BSE. We found that these mice were susceptible to BSE prions, but disease did not develop after prolonged postinoculation periods when mice were inoculated with classical or atypical scrapie prions. These data are consistent with the conclusion that prion disease is less likely to develop in humans after exposure to naturally occurring prions of sheep than after exposure to epizootic BSE prions of ruminants.
Ebisawa, Makoto; Tsukahara, Takamitsu; Fudou, Ryosuke; Ohta, Yasuhiro; Tokura, Mitsunori; Onishi, Norimasa; Fujieda, Takeshi
2017-05-01
Fermentation by Corynebacterium glutamicum is used by various industries to produce L-Glutamate, and the heat-killed cell preparation of this bacterium (HCCG) is a by-product of the fermentation process. In present study, we evaluated the immunostimulating and survival effects against enterohemorrhagic Escherichia coli (STEC) infection of HCCG. HCCG significantly stimulated in vitro IgA and interleukin-12 p70 production in murine Peyer's patch cells and peritoneal macrophages, respectively. Oral administration of 10 mg/kg body weight (BW) of HCCG for seven consecutive days stimulated IgA concentration in murine cecal digesta. Mice were orally administered HCCG for 17 consecutive days (d0-d17), and challenged with STEC on d4 to d6. Survival of mice tended to improve by 100 mg/kg BW of HCCG administration compared with those in control group. In conclusion, HCCG supplementation was found to prevent STEC infection in mice, and thus it may have the potential to stimulate the immune status of mammals.
Joiner, Susan; Linehan, Jacqueline M.; Balkema-Buschmann, Anne; Spiropoulos, John; Simmons, Marion M.; Griffiths, Peter C.; Groschup, Martin H.; Hope, James; Brandner, Sebastian; Asante, Emmanuel A.; Collinge, John
2013-01-01
Public and animal health controls to limit human exposure to animal prions are focused on bovine spongiform encephalopathy (BSE), but other prion strains in ruminants may also have zoonotic potential. One example is atypical/Nor98 scrapie, which evaded statutory diagnostic methods worldwide until the early 2000s. To investigate whether sheep infected with scrapie prions could be another source of infection, we inoculated transgenic mice that overexpressed human prion protein with brain tissue from sheep with natural field cases of classical and atypical scrapie, sheep with experimental BSE, and cattle with BSE. We found that these mice were susceptible to BSE prions, but disease did not develop after prolonged postinoculation periods when mice were inoculated with classical or atypical scrapie prions. These data are consistent with the conclusion that prion disease is less likely to develop in humans after exposure to naturally occurring prions of sheep than after exposure to epizootic BSE prions of ruminants. PMID:24188521
Iwata, S; Nomoto, M; Fukuda, T
1996-10-01
The effect of nipradilol, a nonselective beta-adrenergic receptor blocker with nitroglycerin-like vasodilating activity, on oxotremorine-induced tremor was studied in mice. General tremor in mice was elicited by 0.5 mg/kg oxotremorine. The tremor was quantified using a capacitance transducer, then analyzed by a signal processor. The strength of the tremor was expressed in "points". The point values of the tremor (mean +/- SE) in control mice for 5 mg/kg (+/-)-propranolol, 2.5 mg/kg arotinolol, 0.5 mg/kg nipradilol, 1.0 mg/kg nipradilol and 2.5 mg/kg nipradilol were 87 +/- 16, 42 +/- 6, 38 +/- 6, 99 +/- 28, 28 +/- 6 and 31 +/- 7, respectively. The strength of the tremor was reduced by all beta-blockers. Although 1.0 mg/kg nipradilol significantly reduced the tremor, further inhibition of the tremor was not obtained with dosages up to 2.5 mg/kg of the drug. In conclusion, nipradilol was effective for suppressing oxotremorine-induced tremor, as were other beta-blockers.
Antitumor and immunomodulatory effects of weikangfu granule compound in tumor-bearing mice
Nie, Xiaohua; Shi, Baojun; Ding, Yuting; Tao, Wenyi
2006-01-01
Background: Weikangfu granule compound (WKC) is a drug preparation based on a clinical prescription drug, Weikangfu-tang, which has been found to have therapeutic effects on gastric cancer. WKC comprises 7 components, including polysaccharides, saponin, flavonoids, and essential oil. Objective: The purpose of this study was to assess the antitumor and immunomodulatory effects of WKC in a tumor-bearing rodent model. Methods: Male and female Kuming mice weighing ∼20 g were subcutaneously implanted with sarcoma 180 (S180) tumor cells and randomly assigned to 1 of 5 treatment groups: oral WKC 175, 350, or 525 mg/kg·d, isotonic saline (negative control), or intraperitoneal cyclophosphamide 25 mg/kg·d (positive control). All treatments were administered daily for 10 days. After euthanization on day 11, the mice, tumors, and spleens were weighed. Lymphocyte proliferation and cytotoxic T lymphocyte (CTL) activity were determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide cellular viability assay method. Macrophage phagocytosis was identified using a yeast test. Results: Fifty mice were included in the study (10 mice were assigned to each group). The tumors of the mice administered WKC 175, 350, and 525 mg/kg·d were significantly regressed, as determined using MICs, compared with those in the negative-control group (P<0.05, P<0.01, and P<0.01, respectively), and the inhibitory rates were 30.43%, 46.72%, and 54.35%, respectively. Compared with those in the negative-control group, CTL activities and lymphocyte proliferations in the presence of concanavalin A were significantly greater in the WKC-treated groups at all doses (CTL activities: P<0.05, P<0.01, and P<0.01, respectively; lymphocyte proliferations: P<0.05, P<0.01, and P<0.01, respectively). In the groups receiving WKC 175, 350, and 525 mg/kg·d, the phagocytic rates were 1.5- to 2.0-fold those in the negative-control group (P<0.05, P<0.01, and P<0.01, respectively). In the groups receiving WKC 175, 350, and 525 mg/kg·d, the phagocytic indexes were 3.7- to 5.0-fold those in the negative-control group (all, P<0.01). In contrast, lymphocyte proliferation in the positive-control group was significantly less compared with that in the negative-control group (P<0.01), but no significant differences were found in CTL activities or macrophage phagocytosis between these 2 groups. Conclusion: The results of this study in a rodent model suggest that WKC exhibited antitumor and immunomodulatory activities in S180-bearing mice, and that WKC improved nonspecific and specific immune functions in mice, such as lymphocyte proliferation, CTL activity, and macrophage phagocytosis. PMID:24678090
Neuroprotectin D1 Attenuates Laser-induced Choroidal Neovascularization in Mouse
Sheets, Kristopher G.; Zhou, Yongdong; Ertel, Monica K.; Knott, Eric J.; Regan, Cornelius E.; Elison, Jasmine R.; Gordon, William C.; Gjorstrup, Per
2010-01-01
Purpose To examine the effects of neuroprotectin D1 (NPD1), a stereospecific derivative of docosahexaenoic acid, on choroidal neovascularization (CNV) in a laser-induced mouse model. Specifically, this was assessed by clinically grading laser-induced lesions, measuring leakage area, and volumetrically quantifying vascular endothelial cell proliferation. Methods C57Bl/6 mice were treated with vehicle control or NPD1, and choroidal neovascularization was induced by laser rupture of Bruch's membrane; treatment was administered throughout the first week of recovery. One and two weeks after CNV induction, fundus fluorescein angiography was performed. Angiograms were clinically graded to assess leakage severity, while leakage area was measured by image analysis of angiograms. Proliferation of vascular endothelial cells was evaluated volumetrically by three-dimensional laser confocal immunofluorescent microscopy of cytoskeletal, nuclear, and endothelial cell markers. Results At seven days after CNV induction, NPD1-treated mice had 60% fewer clinically relevant lesions than controls, dropping to 80% fewer by 14 days. NPD1 mice exhibited 25% smaller leakage area than controls at 7 days and 44% smaller area at 14 days. Volumetric immunofluorescence revealed 46% less vascular endothelial cell volume in 7-day NPD1-treated mice than in 7-day controls, and by 14 days NPD1 treatment was 68% lower than controls. Furthermore, comparison of 7- and 14-day volumes of NPD1-treated mice revealed a 50% reduction at 14 days. Conclusions NPD1 significantly inhibits choroidal neovascularization. There are at least two possible mechanisms that could explain the neuroprotective action of NPD1. Ultimately, nuclear factor-κB could be inhibited with a reduction in cyclooxygenase-2 (COX-2) to reduce vascular endothelial growth factor (VEGF) expression, and/or activation of the resolution phase of the inflammatory response/survival pathways could be upregulated. Moreover, NPD1 continues to be effective after treatment is concluded, suggesting sustained protection and highlighting the potential applicability of this lipid mediator in preventing or ameliorating endothelial cell growth in pathoangiogenesis. PMID:20216940
Epigallocatechin Gallate Has a Neurorescue Effect in a Mouse Model of Parkinson Disease.
Xu, Qi; Langley, Monica; Kanthasamy, Anumantha G; Reddy, Manju B
2017-10-01
Background: Parkinson disease (PD) is a neurodegenerative disorder that has been associated with many factors, including oxidative stress, inflammation, and iron accumulation. The antioxidant, anti-inflammatory, and iron-chelating properties of epigallocatechin gallate (EGCG), a major polyphenol in green tea, may offer protection against PD. Objective: We sought to determine the neurorescue effects of EGCG and the role of iron in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD. Methods: We evaluated the neurorescue effect of EGCG (25 mg/kg, 7 d, oral administration) against MPTP-induced (20 mg/kg, 3 d, intraperitoneal injection) neurodegeneration in C57 male black mice. Thirty mice weighing ∼25 g were divided into 3 groups: control, MPTP, and MPTP + EGCG. The neurorescue effect of EGCG was assessed with the use of motor behavior tests, neurotransmitter analysis, oxidative stress indicators, and iron-related protein expression. Results: Compared with the control group, MPTP treatment shortened the mice's latency to fall from the rotarod by 16% ( P < 0.05), decreased the striatal dopamine concentration by 58% ( P < 0.001) and dihydroxyphenylacetic acid by 35% ( P < 0.05), and increased serum protein carbonyls by 71% ( P = 0.07). However, EGCG rescued MPTP-induced neurotoxicity by increasing the rotational latency by 17% ( P < 0.05) to a value similar to the control group. Striatal dopamine concentrations were 40% higher in the MPTP + EGCG group than in the MPTP group ( P < 0.05), but the values were significantly lower than in the control group. Compared with the MPTP and control groups, mice in the MPTP + EGCG group had higher substantia nigra ferroportin expression (44% and 35%, respectively) ( P < 0.05) but not hepcidin and divalent metal transporter 1 expression. Conclusion: Overall, our study demonstrated that EGCG regulated the iron-export protein ferroportin in substantia nigra, reduced oxidative stress, and exerted a neurorescue effect against MPTP-induced functional and neurochemical deficits in mice. © 2017 American Society for Nutrition.
Arnold-Schrauf, Catharina; Dudek, Markus; Dielmann, Anastasia; Pace, Luigia; Swallow, Maxine; Kruse, Friederike; Kühl, Anja A; Holzmann, Bernhard; Berod, Luciana; Sparwasser, Tim
2014-02-27
Listeria monocytogenes (LM), a facultative intracellular Gram-positive pathogen, can cause life-threatening infections in humans. In mice, the signaling cascade downstream of the myeloid differentiation factor 88 (MyD88) is essential for proper innate immune activation against LM, as MyD88-deficient mice succumb early to infection. Here, we show that MyD88 signaling in dendritic cells (DCs) is sufficient to mediate the protective innate response, including the production of proinflammatory cytokines, neutrophil infiltration, bacterial clearance, and full protection from lethal infection. We also demonstrate that MyD88 signaling by DCs controls the infection rates of CD8α(+) cDCs and thus limits the spread of LM to the T cell areas. Furthermore, in mice expressing MyD88 in DCs, inflammatory monocytes, which are required for bacterial clearance, are activated independently of intrinsic MyD88 signaling. In conclusion, CD11c(+) conventional DCs critically integrate pathogen-derived signals via MyD88 signaling during early infection with LM in vivo. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Hall, Lindsay J; Clare, Simon; Dougan, Gordon
2012-01-01
NK cells were found to be recruited in a temporally controlled manner to the nasal-associated lymphoid tissue and the cervical lymph nodes of mice following intranasal immunisation with Ag85B-ESAT6 antigen from Mycobacterium tuberculosis mixed with Escherichia coli heat-labile toxin as adjuvant. These NK cells were activated and they secreted a diverse range of cytokines and other immunmodulators. Using antibody depletion targeting anti-asialo GM1, we found evidence for altered trafficking, impaired activation and cytokine secretion of dendritic cells, macrophages and neutrophils in immunised NK cell depleted mice compared to control animals. Analysis of antigen-specific immune responses revealed an attenuated antibody and cytokine response in immunised NK cell depleted animals. Systemic administration of rIL-6 but not rIFN-γ significantly restored immune responses in mice depleted of NK cells. In conclusion, cytokine production, particularly IL-6, via NK cells and NK cell activated immune populations, plays an important role in the establishment of local innate immune responses and the consequent development of adaptive immunity after mucosal immunisation. PMID:20220095
Role of lipocalin 2 in intraventricular haemoglobin-induced brain injury
Shishido, Hajime; Toyota, Yasunori; Hua, Ya; Keep, Richard F; Xi, Guohua
2016-01-01
Objective Our recent studies have shown that blood components, including haemoglobin and iron, contribute to hydrocephalus development and brain injury after intraventricular haemorrhage (IVH). The current study investigated the role of lipocalin 2 (LCN2), a protein involved in iron handling, in the ventricular dilation and neuroinflammation caused by brain injury in a mouse model of IVH. Design Female wild-type (WT) C57BL/6 mice and LCN2-deficient (LCN2−/−) mice had an intraventricular injection of haemoglobin, and control mice received an equivalent amount of saline. MRI was performed presurgery and postsurgery to measure ventricular volume and the brains were used for either immunohistochemistry or western blot. Results Ventricular dilation was observed in WT mice at 24 h after haemoglobin (25 mg/mL, 20 µL) injection (12.5±2.4 vs 8.6±1.5 mm3 in the control, p<0.01). Western blotting showed that LCN2 was significantly upregulated in the periventricular area (p<0.01). LCN2 was mainly expressed in astrocytes, whereas the LCN2 receptor was detected in astrocytes, microglia/macrophages and neurons. Haemoglobin-induced ventricle dilation and glia activation were less in LCN2−/− mice (p<0.01). Injection of high-dose haemoglobin (50 mg/mL) resulted in lower mortality in LCN2−/− mice (27% vs 86% in WT; p<0.05). Conclusions Intraventricular haemoglobin caused LCN2 upregulation and ventricular dilation. Haemoglobin resulted in lower mortality and less ventricular dilation in LCN2−/− mice. These results suggest that LCN2 has a role in haemoglobin-induced brain injury and may be a therapeutic target for IVH. PMID:28959462
Banks, William A; Farr, Susan A; Morley, John E; Wolf, Kathy M; Geylis, Valeria; Steinitz, Michael
2007-08-01
Amyloid beta protein (Abeta) levels are elevated in the brain of Alzheimer's disease patients. Anti-Abeta antibodies can reverse the histologic and cognitive impairments in mice which overexpress Abeta. Passive immunization appears safer than vaccination and treatment of patients will likely require human rather than xenogenic antibodies. Effective treatment will likely require antibody to cross the blood-brain barrier (BBB). Unfortunately, antibodies typically cross the BBB very poorly and accumulate less well in brain than even albumin, a substance nearly totally excluded from the brain. We compared the ability of two anti-Abeta human monoclonal IgM antibodies, L11.3 and HyL5, to cross the BBB of young CD-1 mice to that of young and aged SAMP8 mice. The SAMP8 mouse has a spontaneous mutation that induces an age-related, Abeta-dependent cognitive deficit. There was preferential uptake of intravenously administered L11.3 in comparison to HyL5, albumin, and a control human monoclonal IgM (RF), especially by hippocampus and olfactory bulb in aged SAMP8 mice. Injection of L11.3 into the brains of aged SAMP8 mice reversed both learning and memory impairments in aged SAMP8 mice, whereas IgG and IgM controls were ineffective. Pharmacokinetic analysis predicted that an intravenous dose 1000 times higher than the brain injection dose would reverse cognitive impairments. This predicted intravenous dose reversed the impairment in learning, but not memory, in aged SAMP8 mice. In conclusion, an IgM antibody was produced that crosses the BBB to reverse cognitive impairment in a murine model of Alzheimer's disease.
Päivärinta, Essi; Niku, Mikael; Maukonen, Johanna; Storvik, Markus; Heiman-Lindh, Anu; Saarela, Maria; Pajari, Anne-Maria; Mutanen, Marja
2016-11-01
We showed previously that ellagitannin-rich cloudberries and anthocyanin-rich bilberries reduce the number of intestinal adenomas in multiple intestinal neoplasia/+ (Apc Min ) mice. We also found that cloudberries decreased the size of adenomas, whereas bilberries increased it. Here we hypothesized that the difference in adenoma growth could be explained by dissimilar effects of the berries on intestinal immune responses and gut microbiota, potentially driven by the distinct polyphenol compositions of the 2 berries. Our objectives were to investigate lymphocyte subtypes and the predominant cecal bacterial diversity in mice fed with bilberries and cloudberries, and to analyze global gene expression profiles in the intestinal mucosa. Immunostainings of CD3 + T lymphocytes, FoxP3 + regulatory T lymphocytes, and CD45R + B lymphocytes revealed a smaller ratio of intraepithelial to all mucosal CD3 + T lymphocytes in the cloudberry-fed mice compared with controls, suggesting an attenuation of inflammation. Bilberry feeding induced no changes in the density of any of the lymphocyte subtypes. The predominant bacterial diversity in cecal contents, analyzed using polymerase chain reaction-denaturating gradient gel electrophoresis, was higher in the bilberry group than in the control or cloudberry groups. The microbial profiles of cloudberry-fed mice clustered together and were associated with small adenoma size. Pathway analyses of gene expression data showed that cloudberry down-regulated and bilberry up-regulated the expression of energy metabolism-related genes in the intestinal mucosa. In conclusion, attenuation of intestinal inflammation, changes in microbial profiles, and down-regulation of mucosal energy metabolism may account for the smaller adenoma size in cloudberry-fed mice in comparison to bilberry-fed mice. Copyright © 2016 Elsevier Inc. All rights reserved.
Danner, Rebecca; Chaudhari, Snehal N.; Rosenberger, John; Surls, Jacqueline; Richie, Thomas L.; Brumeanu, Teodor-Doru; Casares, Sofia
2011-01-01
Background Humanized mice able to reconstitute a surrogate human immune system (HIS) can be used for studies on human immunology and may provide a predictive preclinical model for human vaccines prior to clinical trials. However, current humanized mouse models show sub-optimal human T cell reconstitution and limited ability to support immunoglobulin class switching by human B cells. This limitation has been attributed to the lack of expression of Human Leukocyte Antigens (HLA) molecules in mouse lymphoid organs. Recently, humanized mice expressing HLA class I molecules have been generated but showed little improvement in human T cell reconstitution and function of T and B cells. Methods We have generated NOD.Rag1KO.IL2RγcKO mice expressing HLA class II (HLA-DR4) molecules under the I-Ed promoter that were infused as adults with HLA-DR-matched human hematopoietic stem cells (HSC). Littermates lacking expression of HLA-DR4 molecules were used as control. Results HSC-infused HLA-DR4.NOD.Rag1KO.IL-2RγcKO mice developed a very high reconstitution rate (>90%) with long-lived and functional human T and B cells. Unlike previous humanized mouse models reported in the literature and our control mice, the HLA-DR4 expressing mice reconstituted serum levels (natural antibodies) of human IgM, IgG (all four subclasses), IgA, and IgE comparable to humans, and elicited high titers of specific human IgG antibodies upon tetanus toxoid vaccination. Conclusions Our study demonstrates the critical role of HLA class II molecules for development of functional human T cells able to support immunoglobulin class switching and efficiently respond to vaccination. PMID:21611197
Ichikawa, Shoji; Austin, Anthony M; Gray, Amie K; Allen, Matthew R; Econs, Michael J
2011-12-01
Mutations in the GALNT3 gene cause tumoral calcinosis characterized by ectopic calcifications due to persistent hyperphosphatemia. We recently developed Galnt3 knockout mice in a mixed background, which had hyperphosphatemia with increased bone mineral density (BMD) and infertility in males. To test the effect of dietary phosphate intake on their phenotype, Galnt3 knockout mice were generated in the C57BL/6J strain and fed various phosphate diets: 0.1% (low), 0.3% (low normal), 0.6% (normal), and 1.65% (high). Sera were analyzed for calcium, phosphorus, alkaline phosphatase, creatinine, blood urine nitrogen, 1,25-dihydroxyvitamin D, osteocalcin, tartrate-resistant acid phosphatase 5b, and fibroblast growth factor 23 (Fgf23). Femurs were evaluated by dual-energy x-ray absorptiometry, dynamic histomorphometry, and/or microcomputed tomography. Galnt3 knockout mice in C57BL/6J had the same biochemical phenotype observed in our previous study: hyperphosphatemia, inappropriately normal 1,25-dihydroxyvitamin D level, decreased alkaline phosphatase activity, and low intact Fgf23 concentration but high Fgf23 fragments. Skeletal analyses of their femurs revealed significantly high BMD with increased cortical bone area and trabecular bone volume. On all four phosphate diets, Galnt3 knockout mice had consistently higher phosphorus levels and lower alkaline phosphatase and intact Fgf23 concentrations than littermate controls. The low-phosphate diet normalized serum phosphorus, alkaline phosphatase, and areal BMD but failed to correct male infertility in Galnt3 knockout mice. The high-phosphate diet did not increase serum phosphorus concentration in either mutant or control mice due to a compensatory increase in circulating intact Fgf23 levels. In conclusion, dietary phosphate restriction normalizes biochemical and skeletal phenotypes of Galnt3 knockout mice and, thus, can be an effective therapy for tumoral calcinosis.
Austin, Anthony M.; Gray, Amie K.; Allen, Matthew R.; Econs, Michael J.
2011-01-01
Mutations in the GALNT3 gene cause tumoral calcinosis characterized by ectopic calcifications due to persistent hyperphosphatemia. We recently developed Galnt3 knockout mice in a mixed background, which had hyperphosphatemia with increased bone mineral density (BMD) and infertility in males. To test the effect of dietary phosphate intake on their phenotype, Galnt3 knockout mice were generated in the C57BL/6J strain and fed various phosphate diets: 0.1% (low), 0.3% (low normal), 0.6% (normal), and 1.65% (high). Sera were analyzed for calcium, phosphorus, alkaline phosphatase, creatinine, blood urine nitrogen, 1,25-dihydroxyvitamin D, osteocalcin, tartrate-resistant acid phosphatase 5b, and fibroblast growth factor 23 (Fgf23). Femurs were evaluated by dual-energy x-ray absorptiometry, dynamic histomorphometry, and/or microcomputed tomography. Galnt3 knockout mice in C57BL/6J had the same biochemical phenotype observed in our previous study: hyperphosphatemia, inappropriately normal 1,25-dihydroxyvitamin D level, decreased alkaline phosphatase activity, and low intact Fgf23 concentration but high Fgf23 fragments. Skeletal analyses of their femurs revealed significantly high BMD with increased cortical bone area and trabecular bone volume. On all four phosphate diets, Galnt3 knockout mice had consistently higher phosphorus levels and lower alkaline phosphatase and intact Fgf23 concentrations than littermate controls. The low-phosphate diet normalized serum phosphorus, alkaline phosphatase, and areal BMD but failed to correct male infertility in Galnt3 knockout mice. The high-phosphate diet did not increase serum phosphorus concentration in either mutant or control mice due to a compensatory increase in circulating intact Fgf23 levels. In conclusion, dietary phosphate restriction normalizes biochemical and skeletal phenotypes of Galnt3 knockout mice and, thus, can be an effective therapy for tumoral calcinosis. PMID:22009723
Arnold, W. David; Duque, Sandra; Iyer, Chitra C.; Zaworski, Phillip; McGovern, Vicki L.; Taylor, Shannon J.; von Herrmann, Katharine M.; Kobayashi, Dione T.; Chen, Karen S.; Kolb, Stephen J.; Paushkin, Sergey V.; Burghes, Arthur H. M.
2016-01-01
Introduction and Objective Spinal muscular atrophy (SMA) is an autosomal recessive motor neuron disorder. SMA is caused by homozygous loss of the SMN1 gene and retention of the SMN2 gene resulting in reduced levels of full length SMN protein that are insufficient for motor neuron function. Various treatments that restore levels of SMN are currently in clinical trials and biomarkers are needed to determine the response to treatment. Here, we sought to investigate in SMA mice a set of plasma analytes, previously identified in patients with SMA to correlate with motor function. The goal was to determine whether levels of plasma markers were altered in the SMNΔ7 mouse model of SMA and whether postnatal SMN restoration resulted in normalization of the biomarkers. Methods SMNΔ7 and control mice were treated with antisense oligonucleotides (ASO) targeting ISS-N1 to increase SMN protein from SMN2 or scramble ASO (sham treatment) via intracerebroventricular injection on postnatal day 1 (P1). Brain, spinal cord, quadriceps muscle, and liver were analyzed for SMN protein levels at P12 and P90. Ten plasma biomarkers (a subset of biomarkers in the SMA-MAP panel available for analysis in mice) were analyzed in plasma obtained at P12, P30, and P90. Results Of the eight plasma biomarkers assessed, 5 were significantly changed in sham treated SMNΔ7 mice compared to control mice and were normalized in SMNΔ7 mice treated with ASO. Conclusion This study defines a subset of the SMA-MAP plasma biomarker panel that is abnormal in the most commonly used mouse model of SMA. Furthermore, some of these markers are responsive to postnatal SMN restoration. These findings support continued clinical development of these potential prognostic and pharmacodynamic biomarkers. PMID:27907033
IL-30 (IL27p28) alleviates sepsis via modulation of cytokine profiles produced by NKT cells
Yan, Jun; Mitra, Abhisek; Hu, Jiemiao; Cutrera, Jeffery J; Xia, Xueqing; Doetschman, Thomas; Gagea, Mihai; Mishra, Lopa; Li, Shulin
2016-01-01
Background & Aims Sepsis is an acute systemic inflammatory response to infection associated with high patient mortality (28-40%). We hypothesized that interleukin (IL)-30, a novel cytokine protecting mice against liver injury resulted from inflammation, would generate a protective effect against systemic inflammation and sepsis-induced death. Methods Sepsis was induced by lipopolysaccharide (LPS) or cecal ligation and puncture (CLP). The inhibitory effects of IL-30 on septic inflammation and associated therapeutic effects were determined in wild-type, IL-30 (p28)−/−, IL10−/−, and CD1d−/− mice. Results Mice treated with pIL30 gene therapy or recombinant IL-30 protein (rIL30) were protected from LPS-induced septic shock or CLP-induced polymicrobial sepsis and showed markedly less liver damage and lymphocyte apoptosis than control septic mice. The resulting reduction in mortality was mediated through attenuation of the systemic pro-inflammatory response and augmentation of bacterial clearance. Mice lacking IL-30 were more sensitive to LPS-induced sepsis. Natural killer–like T cells (NKT) produced much higher levels of IL-10 and lower levels of interferon–gamma and tumor necrosis factor–alpha in IL-30–treated septic mice than in control septic mice. Likewise, deficiency in IL-10 or NKT cells abolished the protective role of IL-30 against sepsis. Furthermore, IL-30 induced IL-10 production in purified and LPS-stimulated NKT cells. Blocking IL-6R or gp130 inhibited IL-30 mediated IL-10 production. Conclusions IL-30 is important in modulating production of NKT cytokines and subsequent NKT cell–mediated immune regulation of other cells. Therefore, IL-30 has a role in prevention and treatment of sepsis via modulation of cytokine production by NKT. PMID:26767500
Feng, Feng; Zhang, Haoling; Zhu, Zhaoqin; Li, Cong; Shi, Yuxin; Zhang, Zhiyong
2014-09-01
Here, we aimed to assess the feasibility of anti-ESAT-6 monoclonal antibody (mAb) coupling with IR783 and rhodamine fluorescent probe in the detection of ESAT-6 expression in tuberculosis tissue of mice using near-infrared fluorescence imaging. IR783 and rhodamine were conjugated to the anti-ESAT-6 mAb or IgG. Mice in the experimental group were injected with fluorescence-labeled mAb probe, and mice in the control group were injected with fluorescence-labeled non-specific IgG antibody. Twenty-four hours later, the lung tissue of mice was examined using ex vivo near-infrared fluorescence imaging. In addition, the contrast-to-noise ratio (CNR) was calculated by measuring the signal intensities of the pulmonary lesions, normal lung tissue and background noise. The frozen lung tissue section was examined under fluorescence microscopy and compared with hemoxylin and eosin (HE) staining. The ex vivo near-infrared fluorescence imaging showed that the fluorescence signal in the lung tuberculosis lesions in the experimental group was significantly enhanced, whereas there was only a weak fluorescence signal or even no fluorescence signal in the control group. CNR values were 64.40 ± 7.02 (n = 6) and 8.75 ± 3.87 (n = 6), respectively (t = 17.01, p < 0.001). The fluorescence accumulation distribution detected under fluorescence microscopy was consistent with HE staining of the tuberculosis region. In conclusion, anti-ESAT-6 mAb fluorescent probe could target and be applied in specific ex vivo imaging of mice tuberculosis, and may be of further use in tuberculosis in living mice. Copyright © 2013 John Wiley & Sons, Ltd.
In Vivo Near-Infrared Imaging of Fibrin Deposition in Thromboembolic Stroke in Mice
Zhang, Yi; Fan, Shufeng; Yao, Yuyu; Ding, Jie; Wang, Yu; Zhao, Zhen; Liao, Lei; Li, Peicheng; Zang, Fengchao; Teng, Gao-Jun
2012-01-01
Objectives Thrombus and secondary thrombosis plays a key role in stroke. Recent molecular imaging provides in vivo imaging of activated factor XIII (FXIIIa), an important mediator of thrombosis or fibrinolytic resistance. The present study was to investigate the fibrin deposition in a thromboembolic stroke mice model by FXIIIa–targeted near-infrared fluorescence (NIRF) imaging. Materials and Methods The experimental protocol was approved by our institutional animal use committee. Seventy-six C57B/6J mice were subjected to thromboembolic middle cerebral artery occlusion or sham operation. Mice were either intravenously injected with the FXIIIa-targeted probe or control probe. In vivo and ex vivo NIRF imaging were performed thereafter. Probe distribution was assessed with fluorescence microscopy by spectral imaging and quantification system. MR scans were performed to measure lesion volumes in vivo, which were correlated with histology after animal euthanasia. Results In vivo significant higher fluorescence intensity over the ischemia-affected hemisphere, compared to the contralateral side, was detected in mice that received FXIIIa-targeted probe, but not in the controlled mice. Significantly NIRF signals showed time-dependent processes from 8 to 96 hours after injection of FXIIIa-targeted probes. Ex vivo NIRF image showed an intense fluorescence within the ischemic territory only in mice injected with FXIIIa-targeted probe. The fluorescence microscopy demonstrated distribution of FXIIIa-targeted probe in the ischemic region and nearby micro-vessels, and FXIIIa-targeted probe signals showed good overlap with immune-fluorescent fibrin staining images. There was a significant correlation between total targeted signal from in vivo or ex vivo NIRF images and lesion volume. Conclusion Non-invasive detection of fibrin deposition in ischemic mouse brain using NIRF imaging is feasible and this technique may provide an in vivo experimental tool in studying the role of fibrin in stroke. PMID:22272319
Powolny, Anna A.; Bommareddy, Ajay; Hahm, Eun-Ryeong; Normolle, Daniel P.; Beumer, Jan H.; Nelson, Joel B.
2011-01-01
Background This study was undertaken to determine the chemopreventative efficacy of phenethyl isothiocyanate (PEITC), a bioactive constituent of many edible cruciferous vegetables, in a mouse model of prostate cancer, and to identify potential biomarker(s) associated with PEITC response. Methods The chemopreventative activity of dietary PEITC was investigated in Transgenic Adenocarcinoma of Mouse Prostate mice that were fed a control diet or one containing 3 μmol PEITC/g (n = 21 mice per group) for 19 weeks. Dorsolateral prostate tissue sections were stained with hematoxylin and eosin for histopathologic evaluations and subjected to immunohistochemistry for analysis of cell proliferation (Ki-67 expression), autophagy (p62 and LC3 protein expression), and E-cadherin expression. Autophagosomes were visualized by transmission electron microscopy. Apoptotic bodies were detected by terminal deoxynucleotidyl transferase–mediated dUTP nick-end labeling. Plasma proteomics was performed by two-dimensional gel electrophoresis followed by mass spectrometry to identify potential biomarkers of PEITC activity. All statistical tests were two-sided. Results Administration of PEITC (3 μmol/g diet) decreased incidence (PEITC diet vs control diet, mean = 21.65 vs 57.58%, difference = −35.93%, 95% confidence interval = −45.48% to −13.10%, P = .04) as well as burden (affected area) (PEITC diet vs control diet, mean = 18.53% vs 45.01%, difference = −26.48%, 95% confidence interval = −49.78% to −3.19%, P = .02) of poorly differentiated tumors in the dorsolateral prostate of transgenic mice compared with control mice, with no toxic effects. PEITC-mediated inhibition of prostate carcinogenesis was associated with induction of autophagy and overexpression of E-cadherin in the dorsolateral prostate. However, PEITC treatment was not associated with a decrease in cellular proliferation, apoptosis induction, or inhibition of neoangiogenesis. Plasma proteomics revealed distinct changes in the expression of several proteins (eg, suppression of clusterin protein) in the PEITC-treated mice compared with control mice. Conclusions In this transgenic model, dietary PEITC suppressed prostate cancer progression by induction of autophagic cell death. Potential biomarkers to assess the response to PEITC treatment in plasma were identified. PMID:21330634
Wu, Kefeng; Gao, Xiang; Shi, Baoyan; Chen, Shiyu; Zhou, Xin; Li, Zhidong; Gan, Yuhong; Cui, Liao; Kang, Jing Xuan; Li, Wende; Huang, Ren
2016-10-01
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that accompanied by memory deficits and neuropsychiatric dysfunction. Omega-3 polyunsaturated fatty acids (n-3 PUFAs) have seemly therapeutic potential in AD, but the benefit of n-3 PUFAs is still in debates. Here, we employed a transgenic mice carry fat-1 gene to encode n-3 desaturase from Caenorhabditis elegans, which increase endogenous n-3 PUFAs by converting n-6 PUFAs to n-3 PUFAs crossed with amyloid precursor protein (APP) Tg mice to evaluate the protective effects of endogenous n-3 PUFAs on cognitive and behavioral deficits of APP Tg mice. We fed APP, APP/fat-1 and fat-1 mice with n-6 PUFAs rich diet. Brain tissues were collected at 3, 9 and 12 months for fatty acid and gene expression analysis, histology and protein assays. Morris Water Maze Test, open field test and elevated plus maze test were performed to measure the behavior capability. From the results, the expression of fat-1 transgene increased cortical n-3: n-6 PUFAs ratio and n-3 PUFAs concentrations, and sensorimotor dysfunction and cognitive deficits in AD were significantly less severe in APP/fat-1 mice with endogenous n-3 PUFAs than in APP mice controls. The protection against disturbance of spontaneous motor activity and cognitive deficits in AD was strongly correlated with increased n-3: n-6 PUFAs ratio and endogenous n-3 PUFAs, reduced APP generation, inhibited amyloid β peptide aggregation, suppressed nuclear factor-kappa B and astroglia activation, and reduced death of neurons in the cortex of APP/fat-1 mice compared with APP mice controls. In conclusion, our study demonstrates that an available medication with the maintenance of enriched n-3 PUFAs in the brain could slow down cognitive decline and prevent neuropsychological disorder in AD. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
Two genetic loci control syllable sequences of ultrasonic courtship vocalizations in inbred mice
2011-01-01
Background The ultrasonic vocalizations (USV) of courting male mice are known to possess a phonetic structure with a complex combination of several syllables. The genetic mechanisms underlying the syllable sequence organization were investigated. Results This study compared syllable sequence organization in two inbred strains of mice, 129S4/SvJae (129) and C57BL6J (B6), and demonstrated that they possessed two mutually exclusive phenotypes. The 129S4/SvJae (129) strain frequently exhibited a "chevron-wave" USV pattern, which was characterized by the repetition of chevron-type syllables. The C57BL/6J strain produced a "staccato" USV pattern, which was characterized by the repetition of short-type syllables. An F1 strain obtained by crossing the 129S4/SvJae and C57BL/6J strains produced only the staccato phenotype. The chevron-wave and staccato phenotypes reappeared in the F2 generations, following the Mendelian law of independent assortment. Conclusions These results suggest that two genetic loci control the organization of syllable sequences. These loci were occupied by the staccato and chevron-wave alleles in the B6 and 129 mouse strains, respectively. Recombination of these alleles might lead to the diversity of USV patterns produced by mice. PMID:22018021
Cui, Chenxi; Li, Yanyan; Gao, Hang; Zhang, Hongyan; Han, Jiaojiao; Zhang, Dijun; Li, Ye; Zhou, Jun; Lu, Chenyang; Su, Xiurong
2017-01-01
Previous studies confirmed that dietary supplements of fish oil and krill oil can alleviate obesity in mice, but the underlying mechanism remains unclear. This study aims to discern whether oil treatment change the structure of the gut microbiota during the obesity alleviation. The ICR mice received high-fat diet (HFD) continuously for 12 weeks after two weeks of acclimatization with a standard chow diet, and the mice fed with a standard chow diet were used as the control. In the groups that received HFD with oil supplementation, the weight gains were attenuated and the liver index, total cholesterol, triglyceride and low-density lipoprotein cholesterol were reduced stepwise compared with the HFD group, and the overall structure of the gut microbiota, which was modulated in the HFD group, was shifted toward the structure found in the control group. Moreover, eighty-two altered operational taxonomic units responsive to oil treatment were identified and nineteen of them differing in one or more parameters associated with obesity. In conclusion, this study confirmed the effect of oil treatment on obesity alleviation, as well as on the microbiota structure alterations. We proposed that further researches are needed to elucidate the causal relationship between obesity alleviation and gut microbiota modulation.
Possible carcinogenic potential of dimethyl dimethoxy biphenyl dicarboxylate in experimental animals
Botros, Sanaa Sabet; El-Lakkany, Naglaa Mohamed; Hammam, Olfat Ali; Sabra, Abdel-Naser Abdel-Aal; Taha, Alaa Awad
2016-01-01
Dimethyl dimethoxy biphenyl dicarboxylate (DDB) has been extensively used in the treatment of liver diseases accounting for 1–6% of the global disease burden. Cell replication, DNA synthesis, and proliferation, providing significant information about behavior of cells were examined in mice exposed to subchronic administration with DDB. Conventional liver functions specifically gamma-glutamyltransferase (γ-GT), a marker expressing liver canceration was also investigated. Normal mice were allocated into two groups each of 10 mice. The 1st and 2nd groups were treated with DDB in a dose of 50 mg/kg/day, 5 days/week for 1 month and 3 months, respectively. Comparable groups of normal mice were left without treatment as controls. Compared to normal control group, animals receiving DDB for 3 months showed marked elevations of both alanine aminotransferase and γ-GT, significant inhibition in cytochrome P450, a significant increase in the mean ploidy and 4C with moderate to marked increase in S-phase populations and the number of proliferating cell nuclear antigen-positive cells. In conclusion, this is the first report on the potential relationship between the subchronic administration of DDB and the increase in the hepatocyte proliferation, cell replication and DNA synthesis that may raise an alarm regarding possible DDB insult on the biological behavior of cells. PMID:27144153
Expression Changes of Apoptotic Genes in Tissues from Mice Exposed to Nicotine
Jalili, Cyrus; Salahshoor, Mohammad Reza; Moradi, Mohammad Taher; Ahookhash, Maryam; Taghadosi, Mehdi; Sohrabi, Maryam
2017-01-01
Objective: Smoking is the leading preventable cause of various diseases such as lung cancer, chronic obstructive pulmonary disease and cardiovascular disease. Nicotine, one of the major toxic components of tobacco, contributes to the pathogenesis of different diseases. Methods: Given the controversy about nicotine toxicity, the present study was conducted to determine apoptotic effects of nicotine on the heart, kidney, lung and liver of male mice. Real-time PCR was performed to identify mRNA expression changes in apoptotic-related genes between nicotine treated and control mice. Result: In the heart and lung, nicotine caused significant decrease in P53, Bax and Caspase-3 mRNA expression levels compared to the control group. However, in the kidney and liver, the result was significant increase in Bax, Caspase-2, Caspase-3 and a significant decrease in P53 mRNA expression (p<0.01). DNA fragmentation assays indicated no fragmentation in the heart and lung, but in the kidney and liver of nicotine treated mice, isolated DNA was fragmented. Conclusion: Our study provided insight into the molecular mechanisms of nicotine anti-apoptotic effects on the heart and lung as well as pro-apoptotic effects on kidney and liver via a P53-independent pathway. PMID:28240526
Animal Study on Primary Dysmenorrhoea Treatment at Different Administration Times
Pu, Bao-Chan; Fang, Ling; Gao, Li-Na; Liu, Rui; Li, Ai-zhu
2015-01-01
The new methods of different administration times for the treatment of primary dysmenorrhea are more widely used clinically; however, no obvious mechanism has been reported. Therefore, an animal model which is closer to clinical evaluation is indispensable. A novel animal experiment with different administration times, based on the mice oestrous cycle, for primary dysmenorrhoea treatment was explored in this study. Mice were randomly divided into two parts (one-cycle and three-cycle part) and each part includes five groups (12 mice per group), namely, Jingqian Zhitong Fang (JQF) 6-day group, JQF last 3-day group, Yuanhu Zhitong tablet group, model control group, and normal control group. According to the one-way ANOVAs, results (writhing reaction, and PGF2α, PGE2, NO, and calcium ions analysis by ELISA) of the JQF cycle group were in accordance with those of JQF last 3-day group. Similarly, results of three-cycle continuous administration were consistent with those of one-cycle treatment. In conclusion, the consistency of the experimental results illustrated that the novel animal model based on mice oestrous cycle with different administration times is more reasonable and feasible and can be used to explore in-depth mechanism of drugs for the treatment of primary dysmenorrhoea in future. PMID:25705236
Roomi, M Waheed; Cha, John; Kalinovsky, Tatiana; Roomi, Nusrath; Niedzwiecki, Aleksandra; Rath, Matthias
2015-09-01
Cervical cancer is one of the most commonly diagnosed cancers and a significant cause of mortality in women worldwide. Although cervical cancer is fully treatable in the early stages, once it has metastasized, patient outcome is poor. The objective of the present study was to investigate the effect of dietary supplementation with a nutrient mixture (NM) containing lysine, ascorbic acid, proline, green tea extract and other micronutrients on the expression of extracellular matrix (ECM) proteins in HeLa cell xenografts in nude female mice. After housing for 1 week, female athymic nude mice between 5 and 6 weeks of age (n=12) were inoculated subcutaneously with 3×10 6 HeLa cells in phosphate-buffered saline and Matrigel and randomly divided into two groups. These were the control group, in which the mice were fed with regular mouse chow, and the NM group, in which the mice were fed with the regular diet supplemented with 0.5% NM (w/w). After 4 weeks, the tumors were excised and processed for histology. Tumor growth was evaluated and the tumors were stained for the ECM proteins collagen I, collagen IV, fibronectin, laminin, periodic acid-Schiff (PAS) and elastin. NM strongly inhibited (by 59%, P=0.001) the growth of HeLa xenografts in nude mice. Tumors from control mice exhibited little to no collagen I expression either internally or in the fibrous capsule, while tumors from the NM group expressed collagen I in the fibrous capsule and within the tumor. Tumors from the control group showed diffuse cytoplasmic and capsular collagen IV with abundant nucleated cells. NM treatment substantially increased collagen IV production and induced a dense fibrous network of collagen IV with chambers that surrounded live nucleated cells and large amounts of necrotic cell debris. Tumors from the mice fed with the NM exhibited a well-defined border of fibronectin in the capsule and intense areas of staining internally whereas control group tumors showed less overall fibronectin with sporadic internal staining and little in the fibrous capsule. Although laminin appeared abundantly in control and NM-treated tumors, the NM group tumors exhibited a chamber-like network of laminin internally. Tumors from the control group exhibited internal areas of intense PAS staining, whereas tumors from the NM-treated group exhibited a more uniform diffuse pattern of PAS staining. In conclusion, NM supplementation of HeLa xenograft-bearing female nude mice demonstrated a potent inhibition of tumor growth and enhancement of ECM proteins, suggesting the therapeutic value of this specific nutrient complex in the treatment of cervical cancer.
Givvimani, Srikanth; Munjal, Charu; Tyagi, Neetu; Sen, Utpal; Metreveli, Naira; Tyagi, Suresh C.
2012-01-01
Background We have previously reported the role of anti-angiogenic factors in inducing the transition from compensatory cardiac hypertrophy to heart failure and the significance of MMP-9 and TIMP-3 in promoting this process during pressure overload hemodynamic stress. Several studies reported the evidence of cardiac autophagy, involving removal of cellular organelles like mitochondria (mitophagy), peroxisomes etc., in the pathogenesis of heart failure. However, little is known regarding the therapeutic role of mitochondrial division inhibitor (Mdivi) in the pressure overload induced heart failure. We hypothesize that treatment with mitochondrial division inhibitor (Mdivi) inhibits abnormal mitophagy in a pressure overload heart and thus ameliorates heart failure condition. Materials and Methods To verify this, ascending aortic banding was done in wild type mice to create pressure overload induced heart failure and then treated with Mdivi and compared with vehicle treated controls. Results Expression of MMP-2, vascular endothelial growth factor, CD31, was increased, while expression of anti angiogenic factors like endostatin and angiostatin along with MMP-9, TIMP-3 was reduced in Mdivi treated AB 8 weeks mice compared to vehicle treated controls. Expression of mitophagy markers like LC3 and p62 was decreased in Mdivi treated mice compared to controls. Cardiac functional status assessed by echocardiography showed improvement and there is also a decrease in the deposition of fibrosis in Mdivi treated mice compared to controls. Conclusion Above results suggest that Mdivi inhibits the abnormal cardiac mitophagy response during sustained pressure overload stress and propose the novel therapeutic role of Mdivi in ameliorating heart failure. PMID:22479323
Yu, Xichun; Tesiram, Yasvir A; Towner, Rheal A; Abbott, Andrew; Patterson, Eugene; Huang, Shijun; Garrett, Marion W; Chandrasekaran, Suresh; Matsuzaki, Satoshi; Szweda, Luke I; Gordon, Brian E; Kem, David C
2007-01-01
Background Diabetes is associated with a cardiomyopathy that is independent of coronary artery disease or hypertension. In the present study we used in vivo magnetic resonance imaging (MRI) and echocardiographic techniques to examine and characterize early changes in myocardial function in a mouse model of type 1 diabetes. Methods Diabetes was induced in 8-week old C57BL/6 mice with two intraperitoneal injections of streptozotocin. The blood glucose levels were maintained at 19–25 mmol/l using intermittent low dosages of long acting insulin glargine. MRI and echocardiography were performed at 4 weeks of diabetes (age of 12 weeks) in diabetic mice and age-matched controls. Results After 4 weeks of hyperglycemia one marker of mitochondrial function, NADH oxidase activity, was decreased to 50% of control animals. MRI studies of diabetic mice at 4 weeks demonstrated significant deficits in myocardial morphology and functionality including: a decreased left ventricular (LV) wall thickness, an increased LV end-systolic diameter and volume, a diminished LV ejection fraction and cardiac output, a decreased LV circumferential shortening, and decreased LV peak ejection and filling rates. M-mode echocardiographic and Doppler flow studies of diabetic mice at 4 weeks showed a decreased wall thickening and increased E/A ratio, supporting both systolic and diastolic dysfunction. Conclusion Our study demonstrates that MRI interrogation can identify the onset of diabetic cardiomyopathy in mice with its impaired functional capacity and altered morphology. The MRI technique will lend itself to repetitive study of early changes in cardiac function in small animal models of diabetic cardiomyopathy. PMID:17309798
Sustained alterations of hypothalamic tanycytes during posttraumatic hypopituitarism in male mice.
Osterstock, Guillaume; El Yandouzi, Taoufik; Romanò, Nicola; Carmignac, Danielle; Langlet, Fanny; Coutry, Nathalie; Guillou, Anne; Schaeffer, Marie; Chauvet, Norbert; Vanacker, Charlotte; Galibert, Evelyne; Dehouck, Bénédicte; Robinson, Iain C A F; Prévot, Vincent; Mollard, Patrice; Plesnila, Nikolaus; Méry, Pierre-François
2014-05-01
Traumatic brain injury is a leading cause of hypopituitarism, which compromises patients' recovery, quality of life, and life span. To date, there are no means other than standardized animal studies to provide insights into the mechanisms of posttraumatic hypopituitarism. We have found that GH levels were impaired after inducing a controlled cortical impact (CCI) in mice. Furthermore, GHRH stimulation enhanced GH to lower level in injured than in control or sham mice. Because many characteristics were unchanged in the pituitary glands of CCI mice, we looked for changes at the hypothalamic level. Hypertrophied astrocytes were seen both within the arcuate nucleus and the median eminence, two pivotal structures of the GH axis, spatially remote to the injury site. In the arcuate nucleus, GHRH neurons were unaltered. In the median eminence, injured mice exhibited unexpected alterations. First, the distributions of claudin-1 and zonula occludens-1 between tanycytes were disorganized, suggesting tight junction disruptions. Second, endogenous IgG was increased in the vicinity of the third ventricle, suggesting abnormal barrier properties after CCI. Third, intracerebroventricular injection of a fluorescent-dextran derivative highly stained the hypothalamic parenchyma only after CCI, demonstrating an increased permeability of the third ventricle edges. This alteration of the third ventricle might jeopardize the communication between the hypothalamus and the pituitary gland. In conclusion, the phenotype of CCI mice had similarities to the posttraumatic hypopituitarism seen in humans with intact pituitary gland and pituitary stalk. It is the first report of a pathological status in which tanycyte dysfunctions appear as a major acquired syndrome.
Taran, M; Mohebali, M; Esmaeli, J
2010-01-01
Background: Recent circumstantial evidences are suggesting that an increasing number of Iranian patients with cutaneous leishmaniasis are unresponsive to meglumine antimoniate (Glucantime®). Pistacia atlantica is native plant in Iran (central, western, and eastern regions). Gum obtained Pistacia atlantica has been reported to possess considerable in vitro antimicrobial activity. In this study, we aimed to investigate antileishmanial activity of P. atlantica. Methods Male BALB/c mice were inoculated subcutaneously 2×106 L. major Promastigotes (MHROM/IR/75/ER) at the base of tail in 2007. Mice were randomly divided into 3 groups. in group 1 Glucantime® was administered to the BALB/c mice in regimen of 60 mg per kg of body weight for 28 days by intraperitoneal injections per day, in group 2 the gum of P. atlantica var. Kurdica were tested by rubbing of local lesions for 28 days, group 3 infected but non-treated. Comparisons of treated groups and untreated group were done by two-way analysis of variance (ANOVA) Results Topically rubbing administration of gum obtained P. atlantica var. kurdica daily for 28 days like Glucantime® decreased skin lesion size in the BALB/c mice infected with L. major compared with that in the control (P< 0.01). Treatment BALB/c mice with gum obtained P. atlantica var. kurdica and Glucantime® causes decrease number of parasitologicaly positive mice (P< 0.05). Conclusion Our results show that gum obtained P. atlantica var. kurdica can be used for controlling cutaneous leishmaniasis caused by L. major and inhibiting development of cutaneous leishmaniasis lesions. PMID:23112988
Perinatal DDT Exposure Induces Hypertension and Cardiac Hypertrophy in Adult Mice
La Merrill, Michele A.; Sethi, Sunjay; Benard, Ludovic; Moshier, Erin; Haraldsson, Borje; Buettner, Christoph
2016-01-01
Background: Dichlorodiphenyltrichloroethane (DDT) was used extensively to control malaria, typhus, body lice, and bubonic plague worldwide, until countries began restricting its use in the 1970s. However, the use of DDT to control vector-borne diseases continues in developing countries. Prenatal DDT exposure is associated with elevated blood pressure in humans. Objective: We hypothesized that perinatal DDT exposure causes hypertension in adult mice. Methods: DDT was administered to C57BL/6J dams from gestational day 11.5 to postnatal day 5. Blood pressure (BP) and myocardial wall thickness were measured in male and female adult offspring. Adult mice were treated with an angiotensin converting enzyme (ACE) inhibitor, captopril, to evaluate sensitivity to amelioration of DDT-associated hypertension by ACE inhibition. We further assessed the influence of DDT exposure on the expression of mRNAs that regulate BP through renal ion transport. Results: Adult mice perinatally exposed to DDT exhibited chronically increased systolic BP, increased myocardial wall thickness, and elevated expression of mRNAs of several renal ion transporters. Captopril completely reversed hypertension in mice perinatally exposed to DDT. Conclusions: These data demonstrate that perinatal exposure to DDT causes hypertension and cardiac hypertrophy in adult offspring. A key mechanism underpinning this hypertension is an overactivated renin angiotensin system because ACE inhibition reverses the hypertension induced by perinatal DDT exposure. Citation: La Merrill M, Sethi S, Benard L, Moshier E, Haraldsson B, Buettner C. 2016. Perinatal DDT exposure induces hypertension and cardiac hypertrophy in adult mice. Environ Health Perspect 124:1722–1727; http://dx.doi.org/10.1289/EHP164 PMID:27325568
Role of 5-HT3 Receptor on Food Intake in Fed and Fasted Mice
Li, Bingjin; Shao, Dongyuan; Luo, Yungang; Wang, Pu; Liu, Changhong; Zhang, Xingyi; Cui, Ranji
2015-01-01
Background Many studies have shown that 5-hydroxytryptamine (5-HT) receptor subtypes are involved in the regulation of feeding behavior. However, the relative contribution of 5-HT3 receptor remains unclear. The present study was aimed to investigate the role of 5-HT3 receptor in control of feeding behavior in fed and fasted mice. Methodology/Principal Findings Food intake and expression of c-Fos, tyrosine hydroxylase (TH), proopiomelanocortin (POMC) and 5-HT in the brain were examined after acute treatment with 5-HT3 receptor agonist SR-57227 alone or in combination with 5-HT3 receptor antagonist ondansetron. Food intake was significantly inhibited within 3 h after acute treatment with SR 57227 in fasted mice but not fed mice, and this inhibition was blocked by ondansetron. Immunohistochemical study revealed that fasting-induced c-Fos expression was further enhanced by SR 57227 in the brainstem and the hypothalamus, and this enhancement was also blocked by ondansetron. Furthermore, the fasting-induced downregulation of POMC expression in the hypothalamus and the TH expression in the brain stem was blocked by SR 57227 in the fasted mice, and this effect of SR 57227 was also antagonized by ondansetron. Conclusion/Significance Taken together, our findings suggest that the effect of SR 57227 on the control of feeding behavior in fasted mice may be, at least partially, related to the c-Fos expression in hypothalamus and brain stem, as well as POMC system in the hypothalamus and the TH system in the brain stem. PMID:25789930
Erlandsson, M C; Jonsson, C A; Islander, U; Ohlsson, C; Carlsten, H
2003-01-01
Oestrogen treatment down-regulates B lymphopoiesis in the bone marrow of mice. Meanwhile it up-regulates immunoglobulin production. To understand better the oestrogen action on bone marrow male mice lacking oestrogen receptor α (ERα; ERKO mice), lacking ERβ (BERKO mice), lacking both receptors (DERKO mice) or wild-type (wt) littermates were castrated and treated for 2·5 weeks with 30 μg/kg 17β-oestradiol (E2) or vehicle oil as controls. The B lymphopoiesis in the bone marrow was examined by flow cytometry and mature B-cell function was studied using an ELISPOT assay enumerating the B cells in bone marrow and spleen that were actively producing immunoglobulins. In wt mice the frequency of B-lymphopoietic (B220+) cells in the bone marrow decreased from 15% to 5% upon E2 treatment. In ERKO and BERKO mice significant reduction was seen but not of the same magnitude. In DERKO mice no reduction of B lymphopoiesis was seen. In addition, our results show that E2 mediated reduction of different steps in B lymphopoiesis require only ERα or both receptors. In wt and BERKO mice E2 treatment resulted in significantly increased levels of B cells actively producing immunoglobulin, while in ERKO and DERKO mice no such change was seen. Similar results were found in both bone marrow and spleen. In conclusion our results clearly show that both ERα and ERβ are required for complete down-regulation of B lymphopoiesis while only ERα is needed to up-regulate immunoglobulin production in both bone marrow and spleen. PMID:12603601
Chronic exposure to indoxacarb and pulmonary expression of toll-like receptor-9 in mice
Kaur, Sandeep; Mukhopadhyay, C. S.; Sethi, R. S.
2016-01-01
Aim: Chronic exposure to indoxacarb and pulmonary expression of toll-like receptor 9 (TLR-9) in mice. Materials and Methods: In this study, healthy male Swiss albino mice (n=30) aging 8-10 weeks were used to evaluate TLR-9 expression in lungs of mice following indoxacarb exposure with and without lipopolysaccharide (LPS). Indoxacarb was administered orally dissolved in groundnut oil at 4 and 2 mg/kg/day for 90 days. On day 91, five animals from each group were challenged with LPS/normal saline solution at 80 µg/animal. The lung tissues were processed for real time and immunohistochemical studies. Results: LPS resulted increase in fold change m-RNA expression level of TLR-9 as compare to control, while indoxacarb (4 mg/kg) alone and in combination with LPS resulted 16.21-fold change and 29.4-fold change increase in expression of TLR-9 m-RNA, respectively, as compared to control. Similarly, indoxacarb (2 mg/kg) alone or in combination with LPS also altered TLR-9 expression. Further at protein level control group showed minimal expression of TLR-9 in lungs as compare to other groups, however, LPS group showed intense positive staining in bronchial epithelium as well as in alveolar septal cells. Indoxacarb at both doses individually showed strong immuno-positive reaction as compare to control, however when combined with LPS resulted intense staining in airway epithelium as compare to control. Conclusion: Chronic oral administration of indoxacarb for 90 days (4 and 2 mg/kg) alters expression of TLR-9 at m-RNA and protein level and co-exposure with LPS exhibited synergistic effect. PMID:27956782
Toll-Like Receptor 4 Is a Regulator of Monocyte and Electroencephalographic Responses to Sleep Loss
Wisor, Jonathan P.; Clegern, William C.; Schmidt, Michelle A.
2011-01-01
Study Objectives: Sleep loss triggers changes in inflammatory signaling pathways in the brain and periphery. The mechanisms that underlie these changes are ill-defined. The Toll-like receptor 4 (TLR4) activates inflammatory signaling cascades in response to endogenous and pathogen-associated ligands known to be elevated in association with sleep loss. TLR4 is therefore a possible mediator of some of the inflammation-related effects of sleep loss. Here we describe the baseline electroencephalographic sleep phenotype and the biochemical and electroencephalographic responses to sleep loss in TLR4-deficient mice. Design, Measurements and Results: TLR4-deficient mice and wild type controls were subjected to electroencephalographic and electromyographic recordings during spontaneous sleep/wake cycles and during and after sleep restriction sessions of 3, 6, and 24-h duration, during which sleep was disrupted by an automated sleep restriction system. Relative to wild type control mice, TLR4-deficient mice exhibited an increase in the duration of the primary daily waking bout occurring at dark onset in a light/dark cycle. The amount of time spent in non-rapid eye movement sleep by TLR4-deficient mice was reduced in proportion to increased wakefulness in the hours immediately after dark onset. Subsequent to sleep restriction, EEG measures of increased sleep drive were attenuated in TLR4-deficient mice relative to wild-type mice. TLR4 was enriched 10-fold in brain cells positive for the cell surface marker CD11b (cells of the monocyte lineage) relative to CD11b-negative cells in wild type mouse brains. To assess whether this population was affected selectively by TLR4 knockout, flow cytometry was used to count F4/80- and CD45-positive cells in the brains of sleep deprived and time of day control mice. While wild-type mice exhibited a significant reduction in the number of CD11b-positive cells in the brain after 24-h sleep restriction, TLR4-deficient mice did not. Conclusion: These data demonstrate that innate immune signaling pathways active in the monocyte lineage, including presumably microglia, detect and mediate in part the cerebral reaction to sleep loss. Citation: Wisor JP; Clegern WC; Schmidt MA. Toll-like receptor 4 is a regulator of monocyte and electroencephalographic responses to sleep loss. SLEEP 2011;34(10):1335–1345. PMID:21966065
Nociceptive Neuropeptide Increases and Periorbital Allodynia in a Model of Traumatic Brain Injury
Elliott, Melanie B.; Oshinsky, Michael L.; Amenta, Peter S.; Awe, Olatilewa O.; Jallo, Jack I.
2014-01-01
Objective This study tests the hypothesis that injury to the somatosensory cortex is associated with periorbital allodynia and increases in nociceptive neuropeptides in the brainstem in a mouse model of controlled cortical impact (CCI) injury. Methods Male C57BL/6 mice received either CCI or craniotomy-only followed by weekly periorbital von Frey (mechanical) sensory testing for up to 28 days post-injury. Mice receiving an incision only and naïve mice were included as control groups. Changes in calcitonin gene-related peptide (CGRP) and substance P (SP) within the brainstem were determined using enzyme-linked immunosorbent assay and immunohistochemistry, respectively. Activation of ionized calcium-binding adaptor molecule-1–labeled macrophages/microglia and glial fibrillary acidic protein (GFAP)-positive astrocytes were evaluated using immunohistochemistry because of their potential involvement in nociceptor sensitization. Results Incision-only control mice showed no changes from baseline periorbital von Frey mechanical thresholds. CCI significantly reduced mean periorbital von Frey thresholds (periorbital allodynia) compared with baseline and craniotomy-only at each endpoint, analysis of variance P < .0001. Craniotomy significantly reduced periorbital threshold at 14 days but not 7, 21, or 28 days compared with baseline threshold, P < .01. CCI significantly increased SP immunoreactivity in the brainstem at 7 and 14 days but not 28 days compared with craniotomy-only and controls, P < .001. CGRP levels in brainstem tissues were significantly increased in CCI groups compared with controls (incision-only and naïve mice) or craniotomy-only mice at each endpoint examined, P < .0001. There was a significant correlation between CGRP and periorbital allodynia (P < .0001, r = −0.65) but not for SP (r = 0.20). CCI significantly increased the number of macrophage/microglia in the injured cortex at each endpoint up to 28 days, although cell numbers declined over weeks post-injury, P < .001. GFAP+ immunoreactivity was significantly increased at 7 but not 14 or 28 days after CCI, P < .001. Craniotomy resulted in transient periorbital allodynia accompanied by transient increases in SP, CGRP, and GFAP immunoreactivity compared with control mice. There was no increase in the number of macrophage/microglia cells compared with controls after craniotomy. Conclusion Injury to the somatosensory cortex results in persistent periorbital allodynia and increases in brainstem nociceptive neuropeptides. Findings suggest that persistent allodynia and increased neuropeptides are maintained by mechanisms other than activation of macrophage/microglia or astrocyte in the injured somatosensory cortex. PMID:22568499
Tuomela, Johanna M; Valta, Maija P; Väänänen, Kalervo; Härkönen, Pirkko L
2008-01-01
Background Metastatic prostate cancer is associated with a high morbidity and mortality but the spreading mechanisms are still poorly understood. The aminobisphosphonate alendronate, used to reduce bone loss, has also been shown to inhibit the invasion and migration of prostate cancer cells in vitro. We used a modified orthotopic PC-3 nude mouse tumor model of human prostate cancer to study whether alendronate affects prostate tumor growth and metastasis. Methods PC-3 cells (5 × 105) were implanted in the prostates of nude mice and the mice were treated with alendronate (0.5 mg/kg/day in PBS, s.c.) or vehicle for 4 weeks. After sacrifice, the sizes of tumor-bearing prostates were measured and the tumors and prostate-draining regional iliac and sacral lymph nodes were excised for studies on markers of proliferation, apoptosis, angiogenesis and lymphangiogenesis, using histomorphometry and immunohistochemistry. Results Tumor occurrence in the prostate was 73% in the alendronate-treated group and 81% in the control group. Mean tumor size (218 mm3, range: 96–485 mm3, n = 11) in the alendronate-treated mice was 41% of that in the control mice (513 mm3, range: 209–1350 mm3, n = 13) (p < 0.05). In the iliac and sacral lymph nodes of alendronate-treated mice, the proportion of metastatic area was only about 10% of that in control mice (p < 0.001). Immunohistochemical staining of tumor sections showed that alendronate treatment caused a marked decrease in the number of CD34-positive endothelial cells in tumors (p < 0.001) and an increase in that of ISEL positive apoptotic cells in tumors as well as in lymph node metastases (p < 0.05) compared with those in the vehicle-treated mice. The density of m-LYVE-1-stained lymphatic capillaries was not changed. Conclusion Our results demonstrate that alendronate treatment opposes growth of orthotopic PC-3 tumors and decreases tumor metastasis to prostate-draining lymph nodes. This effect could be at least partly explained by decreased angiogenesis and increased apoptosis. The results suggest that bisphosphonates have anti-tumoral and anti-invasive effects on primary prostate cancer. PMID:18371232
Reddel, C J; Allen, J D; Ehteda, A; Taylor, R; Chen, V M Y; Curnow, J L; Kritharides, L; Robertson, G
2017-03-01
Essentials Cancer cachexia and cancer-associated thrombosis have not previously been mechanistically linked. We assessed thrombin generation and coagulation parameters in cachectic C26 tumor-bearing mice. C26 mice are hypercoagulable, partially corrected by blocking tumor derived interleukin-6. Coagulability and anti-inflammatory interventions may be clinically important in cancer cachexia. Background Cancer cachexia and cancer-associated thrombosis are potentially fatal outcomes of advanced cancer, which have not previously been mechanistically linked. The colon 26 (C26) carcinoma is a well-established mouse model of complications of advanced cancer cachexia, partially dependent on high levels of interleukin-6 (IL-6) produced by the tumor. Objectives To assess if cancer cachexia altered the coagulation state and if this was attributable to tumor IL-6 production. Methods In male BALB/c*DBA2 (F1 hybrid) mice with a C26 tumor we used modified calibrated automated thrombogram and fibrin generation (based on overall hemostatic potential) assays to assess the functional coagulation state, and also examined fibrinogen, erythrocyte sedimentation rate (ESR), platelet count, tissue factor pathway inhibitor (TFPI) and hepatic expression of coagulation factors by microarray. C26 mice were compared with non-cachectic NC26, pair-fed and sham control mice. IL-6 expression in C26 cells was knocked down by lentiviral shRNA constructs. Results C26 mice with significant weight loss and highly elevated IL-6 had elevated thrombin generation, fibrinogen, ESR, platelets and TFPI compared with all control groups. Fibrin generation was elevated compared with pair-fed and sham controls but not compared with NC26 tumor mice. Hepatic expression of coagulation factors and fibrinolytic inhibitors was increased. Silencing IL-6 in the tumor significantly, but incompletely, attenuated the increased thrombin generation, fibrinogen and TFPI. Conclusions Cachectic C26 tumor-bearing mice are in a hypercoagulable state, which is partly attributable to IL-6 release by the tumor. The findings support the importance of the coagulation state in cancer cachexia and the clinical utility of anti-inflammatory interventions. © 2017 International Society on Thrombosis and Haemostasis.
Canalis, Ernesto; Zanotti, Stefano; Beamer, Wesley G; Economides, Aris N; Smerdel-Ramoya, Anna
2010-08-01
Connective tissue growth factor (CTGF), a member of the cysteine-rich 61 (Cyr 61), CTGF, nephroblastoma overexpressed (NOV) (CCN) family of proteins, is synthesized by osteoblasts, and its overexpression inhibits osteoblastogenesis and causes osteopenia. The global inactivation of Ctgf leads to defective endochondral bone formation and perinatal lethality; therefore, the consequences of Ctgf inactivation on the postnatal skeleton are not known. To study the function of CTGF, we generated Ctgf(+/LacZ) heterozygous null mice and tissue-specific null Ctgf mice by mating Ctgf conditional mice, where Ctgf is flanked by lox sequences with mice expressing the Cre recombinase under the control of the paired-related homeobox gene 1 (Prx1) enhancer (Prx1-Cre) or the osteocalcin promoter (Oc-Cre). Ctgf(+/LacZ) heterozygous mice exhibited transient osteopenia at 1 month of age secondary to decreased trabecular number. A similar osteopenic phenotype was observed in 1-month-old Ctgf conditional null male mice generated with Prx1-Cre, suggesting that the decreased trabecular number was secondary to impaired endochondral bone formation. In contrast, when the conditional deletion of Ctgf was achieved by Oc-Cre, an osteopenic phenotype was observed only in 6-month-old male mice. Osteoblast and osteoclast number, bone formation, and eroded surface were not affected in Ctgf heterozygous or conditional null mice. In conclusion, CTGF is necessary for normal skeletal development but to a lesser extent for postnatal skeletal homeostasis.
Lopez, Marcelo F.; Grahame, Nicholas J.; Becker, Howard C.
2010-01-01
Background Previous studies have shown that high alcohol consumption is associated with low withdrawal susceptiblility, while at the same time, other studies have shown that exposure to ethanol vapor increases alcohol drinking in rats and mice. In the present studies, we sought to shed light on this seeming contradiction by using mice selectively bred for High- (HAP) and Low- (LAP) Alcohol Preference, first, assessing these lines for differences in signs of ethanol withdrawal and second, for differences in the efficacy of intermittent alcohol vapor exposure on elevating subsequent ethanol intake. Methods Experiment 1 examined whether these lines of mice differed in ethanol withdrawal-induced CNS hyperexcitability and the development of sensitization to this effect following intermittent ethanol vapor exposure. Adult HAP and LAP lines (replicates 1 and 2), and the C3H/HeNcr inbred strain (included as a control genotype for comparison purposes) received intermittent exposure to ethanol vapor and were evaluated for ethanol withdrawal-induced seizures assessed by scoring handling-induced convulsions (HIC). Experiment 2 examined the influence of chronic intermittent ethanol exposure on voluntary ethanol drinking. Adult male and female HAP-2 and LAP-2 mice, along with male C57BL/6J (included as comparative controls) were trained to drink 10% ethanol using a limited access (2 hr/day) 2-bottle choice paradigm. After stable baseline daily intake was established, mice received chronic intermittent ethanol vapor exposure in inhalation chambers. Ethanol intake sessions resumed 72 hr after final ethanol (or air) exposure for 5 consecutive days. Results Following chronic ethanol treatment, LAP mice exhibited overall greater withdrawal seizure activity compared to HAP mice. In Experiment 2, chronic ethanol exposure/withdrawal resulted in a significant increase in ethanol intake in male C57BL/6J, and modestly elevated intake in HAP-2 male mice. Ethanol intake for male control mice did not change from baseline levels of intake. In contrast, HAP-2 females and LAP-2 mice of both sexes did not show changes in ethanol intake as a consequence of intermittent ethanol exposure. Conclusions Overall, these results indicate that the magnitude of ethanol withdrawal-related seizures is inversely related to inherited ethanol intake preference. Additionally, intermittent ethanol vapor exposure appears more likely to affect high-drinking mice (C57BL/6J and HAP-2) than low drinkers, even though these animals are less affected by ethanol withdrawal. PMID:21314693
Berberis vulgaris L. effects on oxidative stress and liver injury in lead-intoxicated mice.
Laamech, Jawhar; El-Hilaly, Jaouad; Fetoui, Hamadi; Chtourou, Yassine; Gouitaa, Hanane; Tahraoui, Adel; Lyoussi, Badiaa
2017-03-01
Background Berberis vulgaris L. (BV), commonly known as "Aghriss" in Moroccan pharmacopoeia, is used to cure liver disorders and other diseases. The present study aimed to investigate the protective effect of BV aqueous extract against lead-induced toxicity in mice liver. Methods Sixty IOPS mice were divided into six groups and were treated as follows: group 1 (normal control) received double distilled water; group 2 (toxic control) received lead acetate (5 mg/kg body weight/day) in double distilled water for 40 days; groups 3-6 received BV aqueous extract at doses of 25, 50, 100 and 150 mg/kg body weight , respectively, once daily for 30 days from 11 day after beginning of lead acetate exposure to the end of the experiment. Results Toxic control group showed a significant alteration of serum alanine-aminotransferase (ALT), aspartate-aminotransferase (AST), total cholesterol (TC), total bilirubin (TB), catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx) and reduced glutathione (GSH). Histological assessment of lead-intoxicated mice liver revealed alterations in hepatocytes and focal necrosis. BV treatment significantly prevented lead accumulation, increased ALT, AST, TC, and TB, inhibited lipid peroxidation and protein carbonyls(PCO) formation. Additionally, BV extract normalized the antioxidant enzymes (CAT, SOD and GPx), GSH and architecture of liver tissues. Conclusions BV aqueous extract exerts significant hepatoprotective effects against lead-induced oxidative stress and liver dysfunction. The BV effect may be mediated through the enhancement of antioxidant status, lead-chelating abilities and free radicals quenching.
Mattheij, Nadine J A; Braun, Attila; van Kruchten, Roger; Castoldi, Elisabetta; Pircher, Joachim; Baaten, Constance C F M J; Wülling, Manuela; Kuijpers, Marijke J E; Köhler, Ralf; Poole, Alastair W; Schreiber, Rainer; Vortkamp, Andrea; Collins, Peter W; Nieswandt, Bernhard; Kunzelmann, Karl; Cosemans, Judith M E M; Heemskerk, Johan W M
2016-02-01
Scott syndrome is a rare bleeding disorder, characterized by altered Ca(2+)-dependent platelet signaling with defective phosphatidylserine (PS) exposure and microparticle formation, and is linked to mutations in the ANO6 gene, encoding anoctamin (Ano)6. We investigated how the complex platelet phenotype of this syndrome is linked to defective expression of Anos or other ion channels. Mice were generated with heterozygous of homozygous deficiency in Ano6, Ano1, or Ca(2+)-dependent KCa3.1 Gardos channel. Platelets from these mice were extensively analyzed on molecular functions and compared with platelets from a patient with Scott syndrome. Deficiency in Ano1 or Gardos channel did not reduce platelet responses compared with control mice (P > 0.1). In 2 mouse strains, deficiency in Ano6 resulted in reduced viability with increased bleeding time to 28.6 min (control 6.4 min, P < 0.05). Platelets from the surviving Ano6-deficient mice resembled platelets from patients with Scott syndrome in: 1) normal collagen-induced aggregate formation (P > 0.05) with reduced PS exposure (-65 to 90%); 2) lowered Ca(2+)-dependent swelling (-80%) and membrane blebbing (-90%); 3) reduced calpain-dependent protein cleavage (-60%); and 4) moderately affected apoptosis-dependent PS exposure. In conclusion, mouse deficiency of Ano6 but not of other channels affects viability and phenocopies the complex changes in platelets from hemostatically impaired patients with Scott syndrome. © FASEB.
Zhou, Lili; Bryant, Camron D.; Loudon, Andrew; Palmer, Abraham A.; Vitaterna, Martha Hotz; Turek, Fred W.
2014-01-01
Study Objectives: Efforts to identify the genetic basis of mammalian sleep have included quantitative trait locus (QTL) mapping and gene targeting of known core circadian clock genes. We combined three different genetic approaches to identify and test a positional candidate sleep gene — the circadian gene casein kinase 1 epsilon (Csnk1e), which is located in a QTL we identified for rapid eye movement (REM) sleep on chromosome 15. Measurements and Results: Using electroencephalographic (EEG) and electromyographic (EMG) recordings, baseline sleep was examined in a 12-h light:12-h dark (LD 12:12) cycle in mice of seven genotypes, including Csnk1etau/tau and Csnk1e-/- mutant mice, Csnk1eB6.D2 and Csnk1eD2.B6 congenic mice, and their respective wild-type littermate control mice. Additionally, Csnk1etau/tau and wild-type mice were examined in constant darkness (DD). Csnk1etau/tau mutant mice and both Csnk1eB6.D2 and Csnk1eD2.B6 congenic mice showed significantly higher proportion of sleep time spent in REM sleep during the dark period than wild-type controls — the original phenotype for which the QTL on chromosome 15 was identified. This phenotype persisted in Csnk1etau/tau mice while under free-running DD conditions. Other sleep phenotypes observed in Csnk1etau/tau mice and congenics included a decreased number of bouts of nonrapid eye movement (NREM) sleep and an increased average NREM sleep bout duration. Conclusions: These results demonstrate a role for Csnk1e in regulating not only the timing of sleep, but also the REM sleep amount and NREM sleep architecture, and support Csnk1e as a causal gene in the sleep QTL on chromosome 15. Citation: Zhou L; Bryant CD; Loudon A; Palmer AA; Vitaterna MH; Turek FW. The circadian clock gene Csnk1e regulates rapid eye movement sleep amount, and nonrapid eye movement sleep architecture in mice. SLEEP 2014;37(4):785-793. PMID:24744456
2012-01-01
Background Obesity associates with low-grade inflammation and adipose tissue remodeling. Using sensitive high-throughput protein arrays we here investigated adipose tissue cytokine and angiogenesis-related protein profiles from obese and lean mice, and in particular, the influence of calorie restriction (CR). Methods Tissue samples from visceral fat were harvested from obese mice fed with a high-fat diet (60% of energy), lean controls receiving low-fat control diet as well as from obese and lean mice kept under CR (energy intake 70% of ad libitum intake) for 50 days. Protein profiles were analyzed using mouse cytokine and angiogenesis protein array kits. Results In obese and lean mice, CR was associated with 11.3% and 15.6% reductions in body weight, as well as with 4.0% and 4.6% reductions in body fat percentage, respectively. Obesity induced adipose tissue cytokine expressions, the most highly upregulated cytokines being IL-1ra, IL-2, IL-16, MCP-1, MIG, RANTES, C5a, sICAM-1 and TIMP-1. CR increased sICAM-1 and TIMP-1 expression both in obese and lean mice. Overall, CR showed distinct effects on cytokine expressions; in obese mice CR largely decreased but in lean mice increased adipose tissue cytokine expressions. Obesity was also associated with increased expressions of angiogenesis-related proteins, in particular, angiogenin, endoglin, endostatin, endothelin-1, IGFBP-3, leptin, MMP-3, PAI-1, TIMP-4, CXCL16, platelet factor 4, DPPIV and coagulation factor III. CR increased endoglin, endostatin and platelet factor 4 expressions, and decreased IGFBP-3, NOV, MMP-9, CXCL16 and osteopontin expressions both in obese and lean mice. Interestingly, in obese mice, CR decreased leptin and TIMP-4 expressions, whereas in lean mice their expressions were increased. CR decreased MMP-3 and PAI-1 only in obese mice, whereas CR decreased FGF acidic, FGF basic and coagulation factor III, and increased angiogenin and DPPIV expression only in lean mice. Conclusions CR exerts distinct effects on adipocyte cytokine and angiogenesis profiles in obese and lean mice. Our study also underscores the importance of angiogenesis-related proteins and cytokines in adipose tissue remodeling and development of obesity. PMID:22748184
Park, Soyoung; Lim, Yeseo; Shin, Sunhye
2013-01-01
Korean pine nut oil (PNO) has been reported to have favorable effects on lipid metabolism and appetite control. We investigated whether PNO consumption could influence weight gain, and whether the PNO-induced effect would result in an improvement of immune function in high-fat diet (HFD)-induced obese mice. C57BL/6 mice were fed control diets with 10% energy fat from either PNO or soybean oil (SBO), or HFDs with 45% energy fat from 10% PNO or SBO and 35% lard, 20% PNO or SBO and 25% lard, or 30% PNO or SBO and 15% lard for 12 weeks. The proliferative responses of splenocytes upon stimulation with concanavalin A (Con A) or lipopolysaccharide (LPS), Con A-stimulated production of interleukin (IL)-2 and interferon (IFN)-γ, and LPS-stimulated production of IL-6, IL-1β, and prostaglandin E2 (PGE2) by splenocytes were determined. Consumption of HFDs containing PNO resulted in significantly less weight gain (17% less, P < 0.001), and lower weight gain was mainly due to less white adipose tissue (18% less, P = 0.001). The reduction in weight gain did not result in the overall enhancement in splenocyte proliferation. Overall, PNO consumption resulted in a higher production of IL-1β (P = 0.04). Replacement of SBO with PNO had no effect on the production of IL-2, IFN-γ, IL-6, or PGE2 in mice fed with either the control diets or HFDs. In conclusion, consumption of PNO reduced weight gain in mice fed with HFD, but this effect did not result in the overall improvement in immune responses. PMID:24133613
Whitcomb, Tiffany; Sakurai, Keisuke; Brown, Bruce M.; Young, Joyce E.; Sheflin, Lowell; Dlugos, Cynthia; Craft, Cheryl M.; Kefalov, Vladimir J.
2010-01-01
Purpose. Photoreceptor rhodopsin kinase (Rk, G protein–dependent receptor kinase 1 [Grk1]) phosphorylates light-activated opsins and channels them into an inactive complex with visual arrestins. Grk1 deficiency leads to human retinopathy and heightened susceptibility to light-induced photoreceptor cell death in the mouse. The goal of this study was to determine whether excess Grk1 activity is protective against photoreceptor cell death. Methods. Grk1-overexpressing transgenic mice (Grk1+) were generated by using a bacterial artificial chromosome (BAC) construct containing mouse Grk1, along with its flanking sequences. Quantitative reverse transcription-PCR, immunoblot analysis, immunostaining, and activity assays were combined with electrophysiology and morphometric analysis, to evaluate Grk1 overexpression and its effect on physiologic and morphologic retinal integrity. Morphometry and nucleosome release assays measured differences in resistance to photoreceptor cell loss between control and transgenic mice exposed to intense light. Results. Compared with control animals, the Grk1+ transgenic line had approximately a threefold increase in Grk1 transcript and immunoreactive protein. Phosphorylated opsin immunochemical staining and in vitro phosphorylation assays confirmed proportionately higher Grk1 enzyme activity. Grk1+ mice retained normal rod function, normal retinal appearance, and lacked evidence of spontaneous apoptosis when reared in cyclic light. In intense light, Grk1+ mice showed photoreceptor damage, and their susceptibility was more pronounced than that of control mice with prolonged exposure times. Conclusions. Enhancing visual pigment deactivation does not appear to protect against apoptosis; however, excess flow of opsin into the deactivation pathway may actually increase susceptibility to stress-induced cell death similar to some forms of retinal degeneration. PMID:19834036
Marroquín-Segura, Rubén; Calvillo-Esparza, Ricardo; Mora-Guevara, José Luis Alfredo; Tovalín-Ahumada, José Horacio; Aguilar-Contreras, Abigail; Hernández-Abad, Vicente Jesús
2014-01-01
Background: The real mechanism for Thevetia peruviana poisoning remains unclear. Cholinergic activity is important for cardiac function regulation, however, the effect of T. peruviana on cholinergic activity is not well-known. Objective: To study the effect of the acute administration of an aqueous extract of the seed kernel of T. peruviana on the acetylcholine esterase (AChE) activity in CD1 mice as well its implications in the sub-chronic toxicity of the extract. Materials and Methods: A dose of 100 mg/kg of the extract was administered to CD1 mice and after 7 days, serum was obtained for ceruloplasmin (CP) quantitation and liver function tests. Another group of mice received a 50 mg/kg dose of the extract 3 times within 1 h time interval and AChE activity was determined for those animals. Heart tissue histological preparation was obtained from a group of mice that received a daily 50 mg/kg dose of the extract by a 30-days period. Results: CP levels for the treated group were higher than those for the control group (Student's t-test, P ≤ 0.001). AChE activity in the treated group was significantly higher than the control group (Tukey test, control vs. T. peruviana, P ≤ 0.001). Heart tissue histological preparations showed leukocyte infiltrates and necrotic areas, consistent with infarcts. Conclusion: The increased levels of AChE and the hearth tissue infiltrative lesions induced by the aqueous seed kernel extract of T. peruviana explains in part the poisoning caused by this plant, which can be related to an inflammatory process. PMID:24914300
Chronic acarbose treatment alleviates age-related behavioral and biochemical changes in SAMP8 mice.
Tong, Jing-Jing; Chen, Gui-Hai; Wang, Fang; Li, Xue-Wei; Cao, Lei; Sui, Xu; Tao, Fei; Yan, Wen-Wen; Wei, Zhao-Jun
2015-05-01
The administration of maintaining the homeostasis of insulin/insulin-like growth factor 1 (IGF-1) signaling and/or glucose metabolism may reverse brain aging. In the present study, we investigated the effect of acarbose, an inhibitor of α-glucosidase, on age-related behavioral and biochemical changes. The SAMP8 mice were randomly divided into old control group and acarbose-treatment group. The mice in the acarbose group were administered acarbose (20 mg/kg/d, dissolved in drinking water) orally from 3 to 9 months of age when a new group of 3-month-old mice was added as young controls. The results showed that the aged controls exhibited declines in sensorimotor ability, open field anxiety, spatial and non-spatial memory abilities, decreased serum insulin levels, increased IGF-1 receptor and synaptotagmin 1 (Syt1) levels and decreased insulin receptor, brain-derived neurotrophic factor (BDNF) and syntaxin 1 (Stx1) levels in the hippocampal layers. The age-related behavioral deficits correlated with the serological and histochemical data. Chronic acarbose treatment relieved these age-related changes, especially with respect to learning and memory abilities. This protective effect of acarbose on age-related behavioral impairments might be related to changes in the insulin system and the levels of BDNF, IGF-1R, and the pre-synaptic proteins Syt1 and Stx1. In conclusion, long-term treatment with acarbose ameliorated the behavioral deficits and biochemical changes in old SAMP8 mice and promoted successful aging. This study provides insight into the potential of acarbose for the treatment of brain aging. Copyright © 2015 Elsevier B.V. All rights reserved.
Sleep Related Changes in Blood Pressure in Hypocretin-Deficient Narcoleptic Mice
Bastianini, Stefano; Silvani, Alessandro; Berteotti, Chiara; Elghozi, Jean-Luc; Franzini, Carlo; Lenzi, Pierluigi; Lo, Martire Viviana; Zoccoli, Giovanna
2011-01-01
Study Objectives: Although blood pressure during sleep and the difference in blood pressure between sleep and wakefulness carry prognostic information, little is known on their central neural mechanisms. Hypothalamic neurons releasing hypocretin (orexin) peptides control wake-sleep behavior and autonomic functions and are lost in narcolepsy-cataplexy. We investigated whether chronic lack of hypocretin signaling alters blood pressure during sleep. Design: Comparison of blood pressure as a function of the wake-sleep behavior between 2 different hypocretin-deficient mouse models and control mice with the same genetic background. Setting: N/A. Subjects: Hypocretin-ataxin3 transgenic mice with genetic ablation of hypocretin neurons (TG, n = 12); hypocretin gene knock-out mice (KO, n = 8); congenic wild-type controls (WT, n = 10). Interventions: Instrumentation with electrodes for sleep recordings and a telemetric blood pressure transducer. Measurements and Results: Blood pressure was significantly higher in either TG or KO than in WT during non–rapid eye movement sleep (NREMS; 4 ± 2 and 7 ± 2 mm Hg, respectively) and rapid eye movement sleep (REMS; 11 ± 2 and 12 ± 3 mm Hg, respectively), whereas it did not differ significantly between groups during wakefulness. Accordingly, the decrease in blood pressure between either NREMS or REMS and wakefulness was significantly blunted in TG and KO with respect to WT. Conclusions: Chronic lack of hypocretin signaling may entail consequences on blood pressure that are potentially adverse and that vary widely among wake-sleep states. Citation: Bastianini S; Silvani A; Berteotti C; Elghozi JL; Franzini C; Lenzi P; Lo Martire V; Zoccoli G. Sleep related changes in blood pressure in hypocretin-deficient narcoleptic mice. SLEEP 2011;34(2):213-218. PMID:21286242
Reference genes for quantitative PCR in the adipose tissue of mice with metabolic disease.
Almeida-Oliveira, Fernanda; Leandro, João G B; Ausina, Priscila; Sola-Penna, Mauro; Majerowicz, David
2017-04-01
Obesity and diabetes are metabolic diseases and they are increasing in prevalence. The dynamics of gene expression associated with these diseases is fundamental to identifying genes involved in related biological processes. qPCR is a sensitive technique for mRNA quantification and the most commonly used method in gene-expression studies. However, the reliability of these results is directly influenced by data normalization. As reference genes are the major normalization method used, this work aims to identify reference genes for qPCR in adipose tissues of mice with type-I diabetes or obesity. We selected 12 genes that are commonly used as reference genes. The expression of these genes in the adipose tissues of mice was analyzed in the context of three different experimental protocols: 1) untreated animals; 2) high-fat-diet animals; and 3) streptozotocin-treated animals. Gene-expression stability was analyzed using four different algorithms. Our data indicate that TATA-binding protein is stably expressed across adipose tissues in control animals. This gene was also a useful reference when the brown adipose tissues of control and obese mice were analyzed. The mitochondrial ATP synthase F1 complex gene exhibits stable expression in subcutaneous and perigonadal adipose tissue from control and obese mice. Moreover, this gene is the best reference for qPCR normalization in adipose tissue from streptozotocin-treated animals. These results show that there is no perfect stable gene suited for use under all experimental conditions. In conclusion, the selection of appropriate genes is a prerequisite to ensure qPCR reliability and must be performed separately for different experimental protocols. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Ortiz, Maricelly Santiago; Forti, Kevin Muñoz; Suárez Martinez, Edu B.; Muñoz, Lenin Godoy; Husain, Kazim
2016-01-01
Paraquat (PQ) is a commonly used herbicide that induces oxidative stress via reactive oxygen species (ROS) generation. This study aimed to investigate the effects of the antioxidant N-acetylcysteine (NAC) against PQ-induced oxidative stress in mice. Male Balb/C mice (24) were randomly divided into 4 groups and treated for 3 weeks: 1) control (saline), 2) NAC (0.5% in diet), 3) PQ (20 mg/kg, IP) and 4) combination (PQ + NAC). Afterwards mice were sacrificed and oxidative stress markers were analyzed. Our data showed no significant change in serum antioxidant capacity. PQ enhanced lipid peroxidation (MDA) levels in liver tissue compared to control whereas NAC decreased MDA levels (p<0.05). NAC significantly increased MDA in brain tissue (p<0.05). PQ significantly depleted glutathione (GSH) levels in liver (p=0.001) and brain tissue (p<0.05) but non-significant GSH depletion in lung tissue. NAC counteracted PQ, showing a moderate increase GSH levels in liver and brain tissues. PQ significantly increased 8-oxodeoxyguanosine (8-OH-dG) levels (p<0.05) in liver tissue compared to control without a significant change in brain tissue. NAC treatment ameliorated PQ-induced oxidative DNA damage in the liver tissue. PQ significantly decreased the relative mtDNA amplification and increased the frequency of lesions in liver and brain tissue (p<0.0001), while NAC restored the DNA polymerase activity in liver tissue but not in brain tissue. In conclusion, PQ induced lipid peroxidation, oxidative nuclear DNA and mtDNA damage in liver tissues and depleted liver and brain GSH levels. NAC supplementation ameliorated the PQ-induced oxidative stress response in liver tissue of mice. PMID:27398384
Demirci, Emre; Ahmed, Rafay; Ocak, Meltem; ...
2017-01-10
Here, we investigated 2-(5-fluoro-pentyl)-2-methyl-malonic acid ( 18F-ML-10) positron emission tomography (PET) imaging of apoptosis posttherapy to determine optimal timing for predicting chemotherapy response in a mouse head/neck xenograft cancer model. BALB/c nude mice (4-8 weeks old) were implanted with UM-SCC-22B tumors. The treatment group received 2 doses of doxorubicin (10 mg/kg, days 0, 2). Small animal 18F-ML-10 PET/computed tomography was performed before and on days 1, 3, and 7 postchemotherapy. Using regions of interest around tumors, 18F-ML-10 uptake change was measured as %ID/g and uptake relative to liver. Terminal Uridine Nick-End Labeling (TUNEL) immunohistochemistry assay was performed using tumor samplesmore » of baseline and on days 1, 3, and 7 posttreatment. As a result, treated mice demonstrated increased 18F-ML-10 uptake compared to baseline and controls, and 10 of 13 mice showed tumor volume decreases. All control mice showed tumor volume increases. Tumor-to-liver (T/L) ratios from the control group mice did not show significant change from baseline ( P > .05); however, T/L ratios of the treatment group showed significant 18F-ML-10 uptake differences from baseline compared to days 3 and 7 posttreatment ( P < .05), but no significant difference at 1 day posttreatment. In conclusion, 2-(5-Fluoro-pentyl)-2-methyl-malonic acid PET imaging has the potential for early assessment of treatment-induced apoptosis. Timing and image analysis strategies may require optimization, depending on the type of tumor and cancer treatment.« less
Evaluating the dose effects of a longitudinal micro-CT study on pulmonary tissue in C57BL/6 mice
NASA Astrophysics Data System (ADS)
Detombe, Sarah A.; Dunmore-Buyze, Joy; Petrov, Ivailo E.; Drangova, Maria
2012-03-01
Background: Micro-computed tomography offers numerous advantages for small animal imaging, including the ability to monitor the same animals throughout a longitudinal study. However, concerns are often raised regarding the effects of x-ray dose accumulated over the course of the experiment. In this study, we scan C57BL/6 mice multiple times per week for six weeks, to determine the effect of the cumulative dose on pulmonary tissue at the end of the study. Methods/Results: C57BL/6 male mice were split into two groups (irradiated group=10, control group=10). The irradiated group was scanned (80kVp/50mA) each week for 6 weeks; the weekly scan session had three scans. This resulted in a weekly dose of 0.84 Gy, and a total study dose of 5.04 Gy. The control group was scanned on the final week. Scans from weeks 1 and 6 were reconstructed and analyzed: overall, there was no significant difference in lung volume or lung density between the control group and the irradiated group. Similarly, there were no significant differences between the week 1 and week 6 scans in the irradiated group. Histological samples taken from excised lung tissue also showed no evidence of inflammation or fibrosis in the irradiated group. Conclusion: This study demonstrates that a 5 Gy x-ray dose accumulated over six weeks during a longitudinal micro-CT study has no significant effects on the pulmonary tissue of C57BL/6 mice. As a result, the many advantages of micro- CT imaging, including rapid acquisition of high-resolution, isotropic images in free-breathing mice, can be taken advantage of in longitudinal studies without concern for negative dose-related effects.
Werner, David F.; Swihart, Andrew R.; Ferguson, Carolyn; Lariviere, William R.; Harrison, Neil L.; Homanics, Gregg E.
2009-01-01
Background Although many people consume alcohol (ethanol), it remains unknown why some become addicted. Elucidating the molecular mechanisms of tolerance and physical dependence (withdrawal) may provide insight into alcohol addiction. While the exact molecular mechanisms of ethanol action are unclear, γ-aminobutyric acid type A receptors (GABAA-Rs) have been extensively implicated in ethanol action. The α1 GABAA-R subunit is associated with tolerance and physical dependence, but its exact role remains unknown. In this report, we tested the hypothesis that α1-GABAA-Rs mediate in part these effects of ethanol. Methods Ethanol-induced behavioral responses related to tolerance and physical dependence were investigated in knockin mice that have ethanol-insensitive α1 GABAA-Rs and wildtype controls. Acute functional tolerance (AFT) was assessed using the stationary dowel and loss of righting reflex assays. Chronic tolerance was assessed on the loss of righting reflex, fixed speed rotarod, hypothermia, and radiant tail flick assays following ten consecutive days of ethanol exposure. Withdrawal-related hyperexcitability was assessed by handling-induced convulsions following 3 cycles of ethanol vapor exposure/withdrawal. Immunoblots were used to assess α1 protein levels. Results Compared to controls, knockin mice displayed decreased AFT and chronic tolerance to ethanol-induced motor ataxia, and also displayed heightened ethanol-withdrawal hyperexcitability. No differences between wildtype and knockin mice were seen in other ethanol-induced behavioral measures. Following chronic exposure to ethanol, control mice displayed reductions in α1 protein levels, but knockins did not. Conclusions We conclude that α1-GABAA-Rs play a role in tolerance to ethanol-induced motor ataxia and withdrawal-related hyperexcitability. However, other aspects of behavioral tolerance and physical dependence do not rely on α1-containing GABAA-Rs. PMID:19032579
Michelotti, Gregory A; Tucker, Anikia; Swiderska-Syn, Marzena; Machado, Mariana Verdelho; Choi, Steve S; Kruger, Leandi; Soderblom, Erik; Thompson, J Will; Mayer-Salman, Meredith; Himburg, Heather A; Moylan, Cynthia A; Guy, Cynthia D; Garman, Katherine S; Premont, Richard T; Chute, John P; Diehl, Anna Mae
2016-01-01
Objective The ductular reaction (DR) involves mobilisation of reactive-appearing duct-like cells (RDC) along canals of Hering, and myofibroblastic (MF) differentiation of hepatic stellate cells (HSC) in the space of Disse. Perivascular cells in stem cell niches produce pleiotrophin (PTN) to inactivate the PTN receptor, protein tyrosine phosphatase receptor zeta-1 (PTPRZ1), thereby augmenting phosphoprotein-dependent signalling. We hypothesised that the DR is regulated by PTN/PTPRZ1 signalling. Design PTN-GFP, PTN-knockout (KO), PTPRZ1-KO, and wild type (WT) mice were examined before and after bile duct ligation (BDL) for PTN, PTPRZ1 and the DR. RDC and HSC from WT, PTN-KO, and PTPRZ1-KO mice were also treated with PTN to determine effects on downstream signaling phosphoproteins, gene expression, growth, and migration. Liver biopsies from patients with DRs were also interrogated. Results Although quiescent HSC and RDC lines expressed PTN and PTPRZ1 mRNAs, neither PTN nor PTPRZ1 protein was demonstrated in healthy liver. BDL induced PTN in MF-HSC and increased PTPRZ1 in MF-HSC and RDC. In WT mice, BDL triggered a DR characterised by periportal accumulation of collagen, RDC and MF-HSC. All aspects of this DR were increased in PTN-KO mice and suppressed in PTPRZ1-KO mice. In vitro studies revealed PTN-dependent accumulation of phosphoproteins that control cell-cell adhesion and migration, with resultant inhibition of cell migration. PTPRZ1-positive cells were prominent in the DRs of patients with ductal plate defects and adult cholestatic diseases. Conclusions PTN, and its receptor, PTPRZ1, regulate the DR to liver injury by controlling the migration of resident cells in adult liver progenitor niches. PMID:25596181
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demirci, Emre; Ahmed, Rafay; Ocak, Meltem
Here, we investigated 2-(5-fluoro-pentyl)-2-methyl-malonic acid ( 18F-ML-10) positron emission tomography (PET) imaging of apoptosis posttherapy to determine optimal timing for predicting chemotherapy response in a mouse head/neck xenograft cancer model. BALB/c nude mice (4-8 weeks old) were implanted with UM-SCC-22B tumors. The treatment group received 2 doses of doxorubicin (10 mg/kg, days 0, 2). Small animal 18F-ML-10 PET/computed tomography was performed before and on days 1, 3, and 7 postchemotherapy. Using regions of interest around tumors, 18F-ML-10 uptake change was measured as %ID/g and uptake relative to liver. Terminal Uridine Nick-End Labeling (TUNEL) immunohistochemistry assay was performed using tumor samplesmore » of baseline and on days 1, 3, and 7 posttreatment. As a result, treated mice demonstrated increased 18F-ML-10 uptake compared to baseline and controls, and 10 of 13 mice showed tumor volume decreases. All control mice showed tumor volume increases. Tumor-to-liver (T/L) ratios from the control group mice did not show significant change from baseline ( P > .05); however, T/L ratios of the treatment group showed significant 18F-ML-10 uptake differences from baseline compared to days 3 and 7 posttreatment ( P < .05), but no significant difference at 1 day posttreatment. In conclusion, 2-(5-Fluoro-pentyl)-2-methyl-malonic acid PET imaging has the potential for early assessment of treatment-induced apoptosis. Timing and image analysis strategies may require optimization, depending on the type of tumor and cancer treatment.« less
Den Hartigh, Laura J.; Omer, Mohamed; Goodspeed, Leela; Wang, Shari; Wietecha, Tomasz; O’Brien, Kevin D.; Han, Chang Yeop
2017-01-01
Objective Obesity is associated with insulin resistance and adipose tissue inflammation. Reactive oxygen species (ROS) increase in adipose tissue during the development of obesity. We previously showed that in response to excess nutrients like glucose and palmitate, adipocytes generated ROS via NADPH oxidase (NOX) 4, the major adipocyte isoform, instead of using mitochondrial oxidation. However, the role of NOX4-derived ROS in the development of whole body insulin resistance, adipocyte inflammation, and recruitment of macrophages to adipose tissue during the development of obesity is unknown. Approach and Results In this study, control C57BL/6 mice and mice in which NOX4 has been deleted specifically in adipocytes were fed a high fat, high sucrose (HFHS) diet. During the development of obesity in control mice, adipocyte NOX4 and PPP activity were transiently increased. Primary adipocytes differentiated form mice with adipocytes deficient in NOX4 showed resistance against high glucose or palmitate-induced adipocyte inflammation. Mice with adipocytes deficient in NOX4 showed a delayed onset of insulin resistance during the development of obesity, with an initial reduction in adipose tissue inflammation that normalized with prolonged HFHS feeding. Conclusions These findings imply that NOX4-derived ROS may play a role in the onset of insulin resistance and adipose tissue inflammation. As such, therapeutics targeting NOX4-mediated ROS production could be effective in preventing obesity-associated conditions such as insulin resistance. PMID:28062496
Papanicolaou, Kyriakos N.; Streicher, John M.; Ishikawa, Tomo-o; Herschman, Harvey; Wang, Yibin; Walsh, Kenneth
2010-01-01
Cyclooxygenase-1 and -2 are rate-limiting enzymes in the formation of a wide array of bioactive lipid mediators collectively known as prostanoids (prostaglandins, prostacyclins, thromboxanes). Evidence from clinical trials shows that selective inhibition of the second isoenzyme (cyclooxygenase-2, or Cox-2) is associated with increased risk for serious cardiovascular events and findings from animal-based studies have suggested protective roles of Cox-2 for the heart. To further characterize the function of Cox-2 in the heart, mice with loxP sites flanking exons 4 and 5 of Cox-2 were rendered knockout specifically in cardiac myocytes (Cox-2 CKO mice) via cre-mediated recombination. Baseline cardiac performance of CKO mice remained unchanged and closely resembled that of control mice. Furthermore, myocardial infarct size induced after in vivo ischemia/reperfusion (I/R) injury was comparable between CKO and control mice. In addition, cardiac hypertrophy and function four weeks after transverse aortic constriction (TAC) was found to be similar between the two groups. Assessment of Cox-2 expression in purified adult cardiac cells isolated after I/R and TAC suggests that the dominant source of Cox-2 is found in the non-myocyte fraction. In conclusion, our animal-based analyses together with the cell-based observations portray a limited role of cardiomyocyte-produced Cox-2 at baseline and in the context of ischemic or hemodynamic challenge. PMID:20399788
The Acute Toxicity Test of Methanolic Extract of Hyptis pectinata Poit on Liver Balb/c Mice
NASA Astrophysics Data System (ADS)
Suzery, M.; Cahyono, B.; Astuti, P.
2017-02-01
Plants from Lamiaceae family has almost entirely reported having physiological activities. One of them is Hyptis pectinata Poit plant. Research on the toxicity of Hyptis pectinata needs to be done to protect people from the possibility of its harmful effects. This study aim to know the acute toxicity effects of Hyptis pectinata extract (HPE) on liver of Balb/c mice. This research was a laboratory experimental study using the post test only controlled group design. Balb/c mice were randomly divided into 4 groups. K (control group), P1, P2 and P3 (treatment groups; given HPE 200mg/kgBW, 1000 mg/kgBW, and 5000 mg/kgBW, respectively). The extract was orally given with gastric tube on the first day and the mice were terminated at the 8th day then the livers were observed. The Kruskal-Wallis test for macroscopic morphological and volume of the liver showed there were no significant difference with p=0.406 and p=0.054. The highest liver histopathological score was in P3 group. The Kruskal-Wallis test showed significantly difference (p=0.000). Continued with Mann-Withney test that showed a significant difference in K-P1 (p=0.009), K-P2 (p=0.009), K-P3 (p=0.009), P1-P2 (p=0.028), and P1-P3 (p=0.009). In conclusion, the HPE is safe to use which has no complication with liver of mice.
Cranberry extract attenuates hepatic inflammation in high-fat-fed obese mice.
Glisan, Shannon L; Ryan, Caroline; Neilson, Andrew P; Lambert, Joshua D
2016-11-01
Cranberry (Vaccinium macrocarpon) consumption has been associated with health beneficial effects. Nonalcoholic fatty liver disease (NAFLD) is a comorbidity of obesity. In the present study, we investigated the effect of a polyphenol-rich cranberry extract (CBE) on hepatic inflammation in high fat (HF)-fed obese C57BL/6J mice. Following dietary treatment with 0.8% CBE for 10 weeks, we observed no change in body weight or visceral fat mass in CBE-supplemented mice compared to HF-fed control mice. We did observe a significant decrease in plasma alanine aminotransferase (31%) and histological severity of NAFLD (33% decrease in area of involvement, 29% decrease in lipid droplet size) compared to HF-fed controls. Hepatic protein levels of tumor necrosis factor α and C-C chemokine ligand 2 were reduced by 28% and 19%, respectively, following CBE supplementation. CBE significantly decreased hepatic mRNA levels of toll-like receptor 4 (TLR4, 63%) and nuclear factor κB (NFκB, 24%), as well as a number of genes related to the nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing 3 inflammasome. In conclusion, CBE reduced NAFLD and hepatic inflammation in HF-fed obese C57BL/6J mice. These effects appear to be related to mitigation of TLR4-NFκB related signaling; however, further studies into the underlying mechanisms of these hepatoprotective effects are needed. Copyright © 2016 Elsevier Inc. All rights reserved.
Silva, M J; Dias, A; Barreta, A; Nogueira, P J; Castelo-Branco, N A A; Boavida, M G
2002-01-01
Chronic exposure to low frequency (LF) noise and whole-body vibration (WBV) induces both physiological and psychological alterations in man. Recently, we have shown that long-term occupational exposure to LF noise and WBV produces genotoxic effects in man expressed as an increase in sister chromatid exchange (SCE) levels in lymphocytes. The objectives of the present study were to investigate whether the observed effect could be reproduced in a murine model and, if so, which of the agents, LF noise alone or in combination with WBV, would be instrumental in the SCE induction. SCEs were analyzed in spleen lymphocytes of mice exposed to LF noise alone and in combination with WBV for 300 and 600 hr. An effect at the cell cycle kinetics level was also investigated. The results revealed significant increases in the mean SCE number per cell and in the proportion of cells with high frequency of SCEs (HFCs) in lymphocytes of mice submitted to combined noise and WBV over controls. No significant differences were found between single noise-exposed and control mice. A cell cycle delay was observed exclusively in the noise and WBV exposure groups. In conclusion, we demonstrated that, as in exposed workers, prolonged exposure to the combination of LF noise and WBV determines an increase in SCE level in mice while LF noise alone is not effective in SCE induction. Copyright 2002 Wiley-Liss, Inc.
Khazim, Khaled; Gorin, Yves; Cavaglieri, Rita Cassia; Abboud, Hanna E.
2013-01-01
Podocyte injury, a major contributor to the pathogenesis of diabetic nephropathy, is caused at least in part by the excessive generation of reactive oxygen species (ROS). Overproduction of superoxide by the NADPH oxidase isoform Nox4 plays an important role in podocyte injury. The plant extract silymarin is attributed antioxidant and antiproteinuric effects in humans and in animal models of diabetic nephropathy. We investigated the effect of silybin, the active constituent of silymarin, in cultures of mouse podocytes and in the OVE26 mouse, a model of type 1 diabetes mellitus and diabetic nephropathy. Exposure of podocytes to high glucose (HG) increased 60% the intracellular superoxide production, 90% the NADPH oxidase activity, 100% the Nox4 expression, and 150% the number of apoptotic cells, effects that were completely blocked by 10 μM silybin. These in vitro observations were confirmed by similar in vivo findings. The kidney cortex of vehicle-treated control OVE26 mice displayed greater Nox4 expression and twice as much superoxide production than cortex of silybin-treated mice. The glomeruli of control OVE26 mice displayed 35% podocyte drop out that was not present in the silybin-treated mice. Finally, the OVE26 mice experienced 54% more pronounced albuminuria than the silybin-treated animals. In conclusion, this study demonstrates a protective effect of silybin against HG-induced podocyte injury and extends this finding to an animal model of diabetic nephropathy. PMID:23804455
Depletion of Gut Microbiota Protects against Renal Ischemia-Reperfusion Injury
Rampanelli, Elena; Stroo, Ingrid; Butter, Loes M.; Teske, Gwendoline J.; Claessen, Nike; Stokman, Geurt; Florquin, Sandrine; Leemans, Jaklien C.; Dessing, Mark C.
2017-01-01
An accumulating body of evidence shows that gut microbiota fulfill an important role in health and disease by modulating local and systemic immunity. The importance of the microbiome in the development of kidney disease, however, is largely unknown. To study this concept, we depleted gut microbiota with broad-spectrum antibiotics and performed renal ischemia-reperfusion (I/R) injury in mice. Depletion of the microbiota significantly attenuated renal damage, dysfunction, and remote organ injury and maintained tubular integrity after renal I/R injury. Gut flora–depleted mice expressed lower levels of F4/80 and chemokine receptors CX3CR1 and CCR2 in the F4/80+ renal resident macrophage population and bone marrow (BM) monocytes than did control mice. Additionally, compared with control BM monocytes, BM monocytes from gut flora–depleted mice had decreased migratory capacity toward CX3CL1 and CCL2 ligands. To study whether these effects were driven by depletion of the microbiota, we performed fecal transplants in antibiotic-treated mice and found that transplant of fecal material from an untreated mouse abolished the protective effect of microbiota depletion upon renal I/R injury. In conclusion, we show that depletion of gut microbiota profoundly protects against renal I/R injury by reducing maturation status of F4/80+ renal resident macrophages and BM monocytes. Therefore, dampening the inflammatory response by targeting microbiota-derived mediators might be a promising therapy against I/R injury. PMID:27927779
Hypothalamic stem cells control ageing speed partly through exosomal miRNAs.
Zhang, Yalin; Kim, Min Soo; Jia, Baosen; Yan, Jingqi; Zuniga-Hertz, Juan Pablo; Han, Cheng; Cai, Dongsheng
2017-08-03
It has been proposed that the hypothalamus helps to control ageing, but the mechanisms responsible remain unclear. Here we develop several mouse models in which hypothalamic stem/progenitor cells that co-express Sox2 and Bmi1 are ablated, as we observed that ageing in mice started with a substantial loss of these hypothalamic cells. Each mouse model consistently displayed acceleration of ageing-like physiological changes or a shortened lifespan. Conversely, ageing retardation and lifespan extension were achieved in mid-aged mice that were locally implanted with healthy hypothalamic stem/progenitor cells that had been genetically engineered to survive in the ageing-related hypothalamic inflammatory microenvironment. Mechanistically, hypothalamic stem/progenitor cells contributed greatly to exosomal microRNAs (miRNAs) in the cerebrospinal fluid, and these exosomal miRNAs declined during ageing, whereas central treatment with healthy hypothalamic stem/progenitor cell-secreted exosomes led to the slowing of ageing. In conclusion, ageing speed is substantially controlled by hypothalamic stem cells, partially through the release of exosomal miRNAs.
Liu, Chang; Tang, Xiaojun; Feng, Ruihai; Yao, Genhong; Chen, Weiwei; Li, Wenchao; Liang, Jun; Feng, Xuebing
2018-01-01
Objective To investigate the effects of umbilical cord mesenchymal stem cell (UC-MSC) transplantation on joint damage and osteoporosis in collagen-induced arthritis (CIA) mice and to explore the mechanisms by which UC-MSCs modulate the osteogenic differentiation. Methods CIA mice were divided into the following treated groups: UC-MSC transplantation group, antitumor necrosis factor- (TNF-) α group, and zoledronic acid (ZA) group. Microcomputed tomography (micro-CT) was used to analyze the bone morphology parameters. Osteogenic differentiation of treated CIA mice was determined. Bone marrow mesenchymal stem cells (BM-MSCs) from CIA mice were treated with TNF-α in vitro to explore their effects on osteogenesis. Results The arthritis score was significantly reduced in the UC-MSC transplantation and anti-TNF-α-treated CIA groups, compared with control mice (P < 0.001). Micro-CT showed that CIA mice developed osteoporosis at 12 weeks after immunization. The bone morphology parameters were partially improved in UC-MSC-treated CIA mice. Impaired osteogenic differentiation functions were indicated by decreased ALP activity (P < 0.001) and reduced mRNA and protein levels of osteogenic marker genes (P < 0.05) in CIA mice compared with DBA/1 mice. UC-MSC treatment significantly upregulated the impaired osteogenic differentiation ability in CIA mice. Meanwhile, the serum TNF-α level was decreased significantly in the UC-MSC group. The osteogenesis was reduced with the addition of TNF-α in vitro. Conclusion This study demonstrated that UC-MSC transplantation not only significantly improved the joint damage but also played a beneficial role in osteoporosis in CIA mice. Mechanistically, the improved osteogenic differentiation of CIA under UC-MSC treatment may be achieved by inhibition of TNF-α. PMID:29853911
Stafford, Alexandra M.; Anderson, Shawn M.; Shelton, Keith L.; Brunzell, Darlene H.
2015-01-01
Rationale Mouse models of EtOH self-administration are useful to identify genetic and biological underpinnings of alcohol use disorder. Objectives These experiments developed a novel method of oral operant EtOH self-administration in mice without explicitly paired cues, food/water restriction, or EtOH fading. Methods Following magazine and lever training for 0.2% saccharin (SAC), mice underwent 9 weekly overnight sessions with lever pressing maintained by dipper presentation of 0, 3, 10 or 15% EtOH in SAC or water vehicle. Ad libitum water was available from a bottle. Results Water vehicle mice ingested most fluid from the water bottle in contrast to SAC vehicle mice, which despite lever pressing demands, drank most of their fluid from the liquid dipper. Although EtOH in SAC vehicle mice showed concentration-dependent increases of g/kg EtOH intake, lever pressing decreased with increasing EtOH concentration and did not exceed that of SAC vehicle alone at any EtOH concentration. Mice reinforced with EtOH in water ingested less EtOH than mice reinforced with EtOH in SAC. EtOH in water mice, however, showed concentration-dependent increases in g/kg EtOH intake and lever presses. 15% EtOH in water mice showed significantly greater levels of lever pressing than water vehicle mice and a significant escalation of responding across weeks of exposure. Naltrexone pretreatment reduced EtOH self-administration and intake in these mice without altering responding in the vehicle control condition during the first hour of the session. Conclusions SAC facilitated EtOH intake but prevented observation of EtOH reinforcement. Water vehicle unmasked EtOH's reinforcing effects. PMID:26268145
Chronic high fat feeding attenuates load-induced hypertrophy in mice.
Sitnick, Mitchell; Bodine, Sue C; Rutledge, John C
2009-12-01
The incidence of obesity and obesity-related conditions, such as metabolic syndrome and insulin resistance, is on the increase. The effect of obesity on skeletal muscle function, especially the regulation of muscle mass, is poorly understood. In this study we investigated the effect of diet-induced obesity on the ability of skeletal muscle to respond to an imposed growth stimulus, such as increased load. Male C57BL/6 mice were randomized into two diet groups: a low fat, high carbohydrate diet (LFD) and a high fat, low carbohydrate diet (HFD) fed ad libitum for 14 weeks. Mice from each diet group were divided into two treatment groups: sedentary control or bilateral functional overload (FO) of the plantaris muscle. Mice were evaluated at 3, 7, 14 or 30 days following FO. By 14 days of FO, there was a 10% reduction (P < 0.05) in absolute growth of the plantaris in response to overload in HFD mice vs. LFD mice. By 30 days the attenuation in growth increased to 16% in HFD mice compared to LFD mice. Following FO, there was a reduction in the formation of polysomes in the HFD mice relative to the LFD mice, suggesting a decrease in protein translation. Further, activation of Akt and S6K1, in response to increased mechanical loading, was significantly attenuated in the HFD mice relative to the LFD mice. In conclusion, chronic high fat feeding impairs the ability of skeletal muscle to hypertrophy in response to increased mechanical load. This failure coincided with a failure to activate key members of the Akt/mTOR signalling pathway and increase protein translation.
Protein Expression Level of Skin Wrinkle-Related Factors in Hairless Mice Fed Hyaluronic Acid.
Yun, Min-Kyu; Lee, Sung-Jin; Song, Hye-Jin; Yu, Heui-Jong; Rha, Chan Su; Kim, Dae-Ok; Choe, Soo-Young; Sohn, Johann
2017-04-01
The aim of this study was to evaluate the wrinkle improving effect of hyaluronic acid intakes. Wrinkles were induced by exposing the skin of hairless mice to ultraviolet B (UVB) irradiation for 14 weeks. Hyaluronic acid was administered to the mice for 14 weeks including 4 weeks before experiments. Skin tissue was assayed by enzyme-linked immunosorbent assay to determine protein expression of wrinkle-related markers. The group supplemented with high concentrations of hyaluronic acid appeared significantly better than control group for collagen, matrix metalloproteinase 1, interleukin (IL)-1β, and IL-6 assay. Transforming growth factor-β1 (TGF-β1) and hyaluronic acid synthase 2 (HAS-2) were not shown to be significantly different. In conclusion, hyaluronic acid administration regulated expression levels of proteins associated with skin integrity, and improved the wrinkle level in skin subjected to UVB irradiation.
Yang, Qiuhong; Gong, Maogang; Cai, Shuang; Zhang, Ti; Douglas, Justin T; Chikan, Viktor; Davies, Neal M; Lee, Phil; Choi, In-Young; Ren, Shenqiang; Forrest, M Laird
2015-01-01
Background A biocompatible core/shell structured magnetic nanoparticles (MNPs) was developed to mediate simultaneous cancer therapy and imaging. Methods & results A 22-nm MNP was first synthesized via magnetically coupling hard (FePt) and soft (Fe3O4) materials to produce high relative energy transfer. Colloidal stability of the FePt@Fe3O4 MNPs was achieved through surface modification with silane-polyethylene glycol (PEG). Intravenous administration of PEG-MNPs into tumor-bearing mice resulted in a sustained particle accumulation in the tumor region, and the tumor burden of treated mice was a third that of the mice in control groups 2 weeks after a local hyperthermia treatment. In vivo magnetic resonance imaging exhibited enhanced T2 contrast in the tumor region. Conclusion This work has demonstrated the feasibility of cancer theranostics with PEG-MNPs. PMID:26606855
Thomas, Candice M; Yong, Qian Chen; Rosa, Rodolfo M; Seqqat, Rachid; Gopal, Shanthi; Casarini, Dulce E; Jones, W Keith; Gupta, Sudhiranjan; Baker, Kenneth M; Kumar, Rajesh
2014-10-01
Activation of NF-κB signaling in the heart may be protective or deleterious depending on the pathological context. In diabetes, the role of NF-κB in cardiac dysfunction has been investigated using pharmacological approaches that have a limitation of being nonspecific. Furthermore, the specific cellular pathways by which NF-κB modulates heart function in diabetes have not been identified. To address these questions, we used a transgenic mouse line expressing mutated IκB-α in the heart (3M mice), which prevented activation of canonical NF-κB signaling. Diabetes was developed by streptozotocin injections in wild-type (WT) and 3M mice. Diabetic WT mice developed systolic and diastolic cardiac dysfunction by the 12th week, as measured by echocardiography. In contrast, cardiac function was preserved in 3M mice up to 24 wk of diabetes. Diabetes induced an elevation in cardiac oxidative stress in diabetic WT mice but not 3M mice compared with nondiabetic control mice. In diabetic WT mice, an increase in the phospholamban/sarco(endo)plasmic reticulum Ca(2+)-ATPase 2 ratio and decrease in ryanodine receptor expression were observed, whereas diabetic 3M mice showed an opposite effect on these parameters of Ca(2+) handling. Significantly, renin-angiotensin system activity was suppressed in diabetic 3M mice compared with an increase in WT animals. In conclusion, these results demonstrate that inhibition of NF-κB signaling in the heart prevents diabetes-induced cardiac dysfunction through preserved Ca(2+) handling and inhibition of the cardiac renin-angiotensin system.
Thomas, Candice M.; Yong, Qian Chen; Rosa, Rodolfo M.; Seqqat, Rachid; Gopal, Shanthi; Casarini, Dulce E.; Jones, W. Keith; Gupta, Sudhiranjan; Baker, Kenneth M.
2014-01-01
Activation of NF-κB signaling in the heart may be protective or deleterious depending on the pathological context. In diabetes, the role of NF-κB in cardiac dysfunction has been investigated using pharmacological approaches that have a limitation of being nonspecific. Furthermore, the specific cellular pathways by which NF-κB modulates heart function in diabetes have not been identified. To address these questions, we used a transgenic mouse line expressing mutated IκB-α in the heart (3M mice), which prevented activation of canonical NF-κB signaling. Diabetes was developed by streptozotocin injections in wild-type (WT) and 3M mice. Diabetic WT mice developed systolic and diastolic cardiac dysfunction by the 12th week, as measured by echocardiography. In contrast, cardiac function was preserved in 3M mice up to 24 wk of diabetes. Diabetes induced an elevation in cardiac oxidative stress in diabetic WT mice but not 3M mice compared with nondiabetic control mice. In diabetic WT mice, an increase in the phospholamban/sarco(endo)plasmic reticulum Ca2+-ATPase 2 ratio and decrease in ryanodine receptor expression were observed, whereas diabetic 3M mice showed an opposite effect on these parameters of Ca2+ handling. Significantly, renin-angiotensin system activity was suppressed in diabetic 3M mice compared with an increase in WT animals. In conclusion, these results demonstrate that inhibition of NF-κB signaling in the heart prevents diabetes-induced cardiac dysfunction through preserved Ca2+ handling and inhibition of the cardiac renin-angiotensin system. PMID:25085967
Colitis and Colon Cancer in WASP-Deficient Mice Require Helicobacter Spp.
Nguyen, Deanna D.; Muthupalani, Suresh; Goettel, Jeremy A.; Eston, Michelle A.; Mobley, Melissa; Taylor, Nancy S.; McCabe, Amanda; Marin, Romela; Snapper, Scott B.; Fox, James G.
2014-01-01
Background Wiskott-Aldrich Syndrome protein (WASP)-deficient patients and mice are immunodeficient and can develop inflammatory bowel disease. The intestinal microbiome is critical to the development of colitis in most animal models, in which, Helicobacter spp. have been implicated in disease pathogenesis. We sought to determine the role of Helicobacter spp. in colitis development in WASP-deficient (WKO) mice. Methods Feces from WKO mice raised under specific pathogen free conditions were evaluated for the presence of Helicobacter spp., after which, a subset of mice were rederived in Helicobacter spp.-free conditions. Helicobacter spp.-free WKO animals were subsequently infected with Helicobacter bilis. Results Helicobacter spp. were detected in feces from WKO mice. After re-derivation in Helicobacter spp.-free conditions, WKO mice did not develop spontaneous colitis but were susceptible to radiation-induced colitis. Moreover, a T-cell transfer model of colitis dependent on WASP-deficient innate immune cells also required Helicobacter spp. colonization. Helicobacter bilis infection of rederived WKO mice led to typhlitis and colitis. Most notably, several H. bilis-infected animals developed dysplasia with 10% demonstrating colon carcinoma, which was not observed in uninfected controls. Conclusions Spontaneous and T-cell transfer, but not radiation-induced, colitis in WKO mice is dependent on the presence of Helicobacter spp. Furthermore, H. bilis infection is sufficient to induce typhlocolitis and colon cancer in Helicobacter spp.-free WKO mice. This animal model of a human immunodeficiency with chronic colitis and increased risk of colon cancer parallels what is seen in human colitis and implicates specific microbial constituents in promoting immune dysregulation in the intestinal mucosa. PMID:23820270
Sun, Rulin; Zhang, Santao; Lu, Xing; Hu, Wenjun; Lou, Ning; Zhao, Yan; Zhou, Jia; Zhang, Xiaoping; Yang, Hongmei
2016-12-01
Cancer-induced muscle wasting, which commonly occurs in cancer cachexia, is characterized by impaired quality of life and poor patient survival. To identify an appropriate treatment, research on the mechanism underlying muscle wasting is essential. Thus far, studies on muscle wasting using cancer cachectic models have generally focused on early cancer cachexia (ECC), before severe body weight loss occurs. In the present study, we established models of ECC and late cancer cachexia (LCC) and compared different stages of cancer cachexia using two cancer cachectic mouse models induced by colon-26 (C26) adenocarcinoma or Lewis lung carcinoma (LLC). In each model, tumor-bearing (TB) and control (CN) mice were injected with cancer cells and PBS, respectively. The TB and CN mice, which were euthanized on the 24th day or the 36th day after injection, were defined as the ECC and ECC-CN mice or the LCC and LCC-CN mice. In addition, the tissues were harvested and analyzed. We found that both the ECC and LCC mice developed cancer cachexia. The amounts of muscle loss differed between the ECC and LCC mice. Moreover, the expression of some molecules was altered in the muscles from the LCC mice but not in those from the ECC mice compared with their CN mice. In conclusion, the molecules with altered expression in the muscles from the ECC and LCC mice were not exactly the same. These findings may provide some clues for therapy which could prevent the muscle wasting in cancer cachexia from progression to the late stage.
Smith, Daniel L.; Robertson, Henry; Desmond, Renee; Nagy, Tim R.; Allison, David B.
2010-01-01
Objective The health and longevity effects of body weight reduction resulting from exercise and caloric restriction in rodents are well known, but less is known about whether similar effects occur with weight reduction from the use of a pharmaceutical agent such as sibutramine, a serotonin-norepinephrine reuptake inhibitor. Results & Conclusion Using data from a two-year toxicology study of sibutramine in CD rats and CD-1 mice, despite a dose-dependent reduction in food intake and body weight in rats compared to controls, and a body weight reduction in mice at the highest dose, there was no compelling evidence for reductions in mortality rate. PMID:21079617
Assessment of Traumatic Brain Injury by Increased 64Cu Uptake on 64CuCl2 PET/CT
Peng, Fangyu; Muzik, Otto; Gatson, Joshua; Kernie, Steven G.; Diaz-Arrastia, Ramon
2015-01-01
Copper is a nutritional trace element required for cell proliferation and wound repair. Methods To explore increased copper uptake as a biomarker for noninvasive assessment of traumatic brain injury (TBI), experimental TBI in C57BL/6 mice was induced by controlled cortical impact, and 64Cu uptake in the injured cortex was assessed with 64CuCl2 PET/CT. Results At 24 h after intravenous injection of the tracer, uptake was significantly higher in the injured cortex of TBI mice (1.15 ± 0.53 percentage injected dose per gram of tissue [%ID/g]) than in the uninjured cortex of mice without TBI (0.53 ± 0.07 %ID/g, P = 0.027) or the cortex of mice that received an intracortical injection of zymosan A (0.62 ± 0.22 %ID/g, P = 0.025). Furthermore, uptake in the traumatized cortex of untreated TBI mice (1.15 ± 0.53 %ID/g) did not significantly differ from that in minocycline-treated TBI mice (0.93 ± 0.30 %ID/g, P = 0.33). Conclusion Overall, the data suggest that increased 64Cu uptake in traumatized brain tissues holds potential as a new biomarker for noninvasive assessment of TBI with 64CuCl2 PET/CT. PMID:26112025
Low, Malcolm J.; Otero-Corchon, Veronica; Parlow, Albert F.; Ramirez, Jose L.; Kumar, Ujendra; Patel, Yogesh C.; Rubinstein, Marcelo
2001-01-01
Pulsatile growth hormone (GH) secretion differs between males and females and regulates the sex-specific expression of cytochrome P450s in liver. Sex steroids influence the secretory dynamics of GH, but the neuroendocrine mechanisms have not been conclusively established. Because periventricular hypothalamic somatostatin (SST) expression is greater in males than in females, we generated knockout (Smst–/–) mice to investigate whether SST peptides are necessary for sexually differentiated GH secretion and action. Despite marked increases in nadir and median plasma GH levels in both sexes of Smst–/– compared with Smst+/+ mice, the mutant mice had growth curves identical to their sibling controls and retained a normal sexual dimorphism in weight and length. In contrast, the liver of male Smst–/– mice was feminized, resulting in an identical profile of GH-regulated hepatic mRNAs between male and female mutants. Male Smst-/- mice show higher expression of two SST receptors in the hypothalamus and pituitary than do females. These data indicate that SST is required to masculinize the ultradian GH rhythm by suppressing interpulse GH levels. In the absence of SST, male and female mice exhibit similarly altered plasma GH profiles that eliminate sexually dimorphic liver function but do not affect dimorphic growth. PMID:11413165
Murine Norovirus Increases Atherosclerotic Lesion Size and Macrophages in Ldlr−/− Mice
Paik, Jisun; Fierce, Yvette; Mai, Phuong-Oanh; Phelps, Susan R; McDonald, Thomas; Treuting, Piper; Drivdahl, Rolf; Brabb, Thea; LeBoeuf, Renee; O'Brien, Kevin D
2011-01-01
Murine norovirus (MNV) is prevalent in rodent facilities in the United States. Because MNV has a tropism for macrophages and dendritic cells, we hypothesized that it may alter phenotypes of murine models of inflammatory diseases, such as obesity and atherosclerosis. We examined whether MNV infection influences phenotypes associated with diet-induced obesity and atherosclerosis by using Ldlr−/− mice. Male Ldlr−/− mice were maintained on either a diabetogenic or high-fat diet for 16 wk, inoculated with either MNV or vehicle, and monitored for changes in body weight, blood glucose, glucose tolerance, and insulin sensitivity. Influence of MNV on atherosclerosis was analyzed by determining aortic sinus lesion area. Under both dietary regimens, MNV-infected and control mice gained similar amounts of weight and developed similar degrees of insulin resistance. However, MNV infection was associated with significant increases in aortic sinus lesion area and macrophage content in Ldlr−/− mice fed a high-fat diet but not those fed a diabetogenic diet. In conclusion, MNV infection exacerbates atherosclerosis in Ldlr−/− mice fed a high-fat diet but does not influence obesity- and diabetes-related phenotypes. Increased lesion size was associated with increased macrophages, suggesting that MNV may influence macrophage activation or accumulation in the lesion area. PMID:22330248
Attenuation of Cocaine-Induced Locomotor Activity in Male and Female Mice by Active Immunization
Kosten, Therese A.; Shen, Xiaoyun Y.; Kinsey, Berma M.; Kosten, Thomas R.; Orson, Frank M.
2014-01-01
Background and objectives Immunotherapy for drug addiction is being investigated in several laboratories but most studies are conducted in animals of one sex. Yet, women show heightened immune responses and are more likely to develop autoimmune diseases than men. The purpose of this study was to compare the effects of an active anti-cocaine vaccine, succinyl-norcocaine conjugated to keyhole limpet hemocyanin, for its ability to elicit antibodies and alter cocaine-induced ambulatory activity in male versus female mice. Methods Male and female BALB/c mice were vaccinated (n=44) or served as non-vaccinated controls (n=34). Three weeks after initial vaccination, a booster was given. Ambulatory activity induced by cocaine (20 mg/kg) was assessed at 7-wk and plasma obtained at 8-wk to assess antibody levels. Results High antibody titers were produced in mice of both sexes. The vaccine reduced ambulatory activity cocaine-induced but this effect was greater in female compared to male mice. Discussion and conclusions The efficacy of this anti-cocaine vaccine is demonstrated in mice of both sexes but its functional consequences are greater in females than males. Scientific significance Results point to the importance of testing animals of both sexes in studies of immunotherapies for addiction. PMID:25251469
NASA Astrophysics Data System (ADS)
Das, Ishani; Padhi, Avinash; Mukherjee, Sitabja; Dash, Debi P.; Kar, Santosh; Sonawane, Avinash
2017-04-01
The activation of cell-mediated and humoral immune responses to Mycobacterium tuberculosis (Mtb) is critical for protection against the pathogen and nanoparticle-mediated delivery of antigens is a more potent way to induce different immune responses. Herein, we show that mice immunized with Mtb lipid-bound chitosan nanoparticles (NPs) induce secretion of prominent type-1 T-helper (Th-1) and type-2 T-helper (Th-2) cytokines in lymph node and spleen cells, and also induces significantly higher levels of IgG, IgG1, IgG2 and IgM in comparison to control mice. Furthermore, significantly enhanced γδ-T-cell activation was observed in lymph node cells isolated from mice immunized with Mtb lipid-coated chitosan NPs as compared to mice immunized with chitosan NPs alone or Mtb lipid liposomes. In comparison to CD8+ cells, significantly higher numbers of CD4+ cells were present in both the lymph node and spleen cells isolated from mice immunized with Mtb lipid-coated chitosan NPs. In conclusion, this study represents a promising new strategy for the efficient delivery of Mtb lipids using chitosan NPs to trigger an enhanced cell-mediated and antibody response against Mtb lipids.
Schank, Jesse R.; Liles, L. Cameron; Weinshenker, David
2008-01-01
Background Cocaine is a widely abused psychostimulant that has both rewarding and aversive properties. While the mechanisms underlying cocaine’s rewarding effects have been studied extensively, less attention has been paid to the unpleasant behavioral states induced by cocaine, such as anxiety. Methods In this study we evaluated the performance of dopamine β-hydroxylase knockout (Dbh −/−) mice, which lack norepinephrine (NE), in the elevated plus maze (EPM) to examine the contribution of noradrenergic signaling to cocaine-induced anxiety. Results We found that cocaine dose-dependently increased anxiety-like behavior in control (Dbh +/−) mice, as measured by a decrease in open arm exploration. Dbh −/− mice had normal baseline performance in the EPM, but were completely resistant to the anxiogenic effects of cocaine. Cocaine-induced anxiety was also attenuated in Dbh +/− mice following administration of disulfiram, a DBH inhibitor. In experiments using specific adrenergic antagonists, we found that pretreatment with the β-adrenergic receptor antagonist propranolol blocked cocaine-induced anxiety-like behavior in Dbh +/− and wild-type C57BL6/J mice, while the α1 antagonist prazosin and the α2 antagonist yohimbine had no effect. Conclusions These results indicate that noradrenergic signaling via β-adrenergic receptors is required for cocaine-induced anxiety in mice. PMID:18083142
Imaging B Cells in a Mouse Model of Multiple Sclerosis Using 64Cu-Rituximab PET.
James, Michelle L; Hoehne, Aileen; Mayer, Aaron T; Lechtenberg, Kendra; Moreno, Monica; Gowrishankar, Gayatri; Ilovich, Ohad; Natarajan, Arutselvan; Johnson, Emily M; Nguyen, Joujou; Quach, Lisa; Han, May; Buckwalter, Marion; Chandra, Sudeep; Gambhir, Sanjiv S
2017-11-01
B lymphocytes are a key pathologic feature of multiple sclerosis (MS) and are becoming an important therapeutic target for this condition. Currently, there is no approved technique to noninvasively visualize B cells in the central nervous system (CNS) to monitor MS disease progression and response to therapies. Here, we evaluated 64 Cu-rituximab, a radiolabeled antibody specifically targeting the human B cell marker CD20, for its ability to image B cells in a mouse model of MS using PET. Methods: To model CNS infiltration by B cells, experimental autoimmune encephalomyelitis (EAE) was induced in transgenic mice that express human CD20 on B cells. EAE mice were given subcutaneous injections of myelin oligodendrocyte glycoprotein fragment 1-125 emulsified in complete Freund adjuvant. Control mice received complete Freund adjuvant alone. PET imaging of EAE and control mice was performed 1, 4, and 19 h after 64 Cu-rituximab administration. Mice were perfused and sacrificed after the final PET scan, and radioactivity in dissected tissues was measured with a γ-counter. CNS tissues from these mice were immunostained to quantify B cells or were further analyzed via digital autoradiography. Results: Lumbar spinal cord PET signal was significantly higher in EAE mice than in controls at all evaluated time points (e.g., 1 h after injection: 5.44 ± 0.37 vs. 3.33 ± 0.20 percentage injected dose [%ID]/g, P < 0.05). 64 Cu-rituximab PET signal in brain regions ranged between 1.74 ± 0.11 and 2.93 ± 0.15 %ID/g for EAE mice, compared with 1.25 ± 0.08 and 2.24 ± 0.11 %ID/g for controls ( P < 0.05 for all regions except striatum and thalamus at 1 h after injection). Similarly, ex vivo biodistribution results revealed notably higher 64 Cu-rituximab uptake in the brain and spinal cord of huCD20tg EAE, and B220 immunostaining verified that increased 64 Cu-rituximab uptake in CNS tissues corresponded with elevated B cells. Conclusion: B cells can be detected in the CNS of EAE mice using 64 Cu-rituximab PET. Results from these studies warrant further investigation of 64 Cu-rituximab in EAE models and consideration of use in MS patients to evaluate its potential for detecting and monitoring B cells in the progression and treatment of this disease. These results represent an initial step toward generating a platform to evaluate B cell-targeted therapeutics en route to the clinic. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.
Slack channels expressed in sensory neurons control neuropathic pain in mice.
Lu, Ruirui; Bausch, Anne E; Kallenborn-Gerhardt, Wiebke; Stoetzer, Carsten; Debruin, Natasja; Ruth, Peter; Geisslinger, Gerd; Leffler, Andreas; Lukowski, Robert; Schmidtko, Achim
2015-01-21
Slack (Slo2.2) is a sodium-activated potassium channel that regulates neuronal firing activities and patterns. Previous studies identified Slack in sensory neurons, but its contribution to acute and chronic pain in vivo remains elusive. Here we generated global and sensory neuron-specific Slack mutant mice and analyzed their behavior in various animal models of pain. Global ablation of Slack led to increased hypersensitivity in models of neuropathic pain, whereas the behavior in models of inflammatory and acute nociceptive pain was normal. Neuropathic pain behaviors were also exaggerated after ablation of Slack selectively in sensory neurons. Notably, the Slack opener loxapine ameliorated persisting neuropathic pain behaviors. In conclusion, Slack selectively controls the sensory input in neuropathic pain states, suggesting that modulating its activity might represent a novel strategy for management of neuropathic pain. Copyright © 2015 the authors 0270-6474/15/351125-11$15.00/0.
Rubio, Julio; Caldas, Maria; Dávila, Sonia; Gasco, Manuel; Gonzales, Gustavo F
2006-01-01
Background Lepidium meyenii Walp. (Brassicaceae), known as Maca, is a Peruvian hypocotyl growing exclusively between 4000 and 4500 m altitude in the central Peruvian Andes, particularly in Junin plateau and is used traditionally to enhance fertility. Maca is a cultivated plant and different cultivars are described according to the color of the hypocotyls. Methods The study aimed to elucidate the effect of Yellow, Red and Black Maca on cognitive function and depression in ovariectomized (OVX) mice. In all experiments OVX mice were treated during 21 days and divided in four groups: control group, Yellow Maca, Red Maca and Black Maca. Latent learning was assessed using the water finding task and the antidepressant activity of the three varieties of Maca was evaluated using the forced swimming test. Animals were sacrificed at the end of each treatment and the uterus were excised and weighed. Results Black Maca was the variety that showed the best response in the water finding task, particularly in the trained mice. The three varieties were effective to reduce finding latency in non trained and trained mice (P < 0.05). In the force swimming test, all varieties assessed reduced the time of immobility and increased uterine weight in OVX mice. Conclusion Black Maca appeared to have more beneficial effects on latent learning in OVX mice; meanwhile, all varieties of Maca showed antidepressant activity. PMID:16796734
Meng, Fan-Tao; Zhao, Jun; Fang, Hui; Liu, Ya-Jing
2015-01-01
The apolipoprotein E (ApoE) ɛ4 allele (ApoE4) is an important genetic risk factor for the pathogenesis of Alzheimer's disease (AD). In addition to genetic factors, environmental factors such as stress may play a critical role in AD pathogenesis. This study was designed to investigate the anxiety-like behavioral and cognitive changes in different human glial fibrillary acidic protein (GFAP)-ApoE transgenic adult male mice under chronic stress conditions. On the open field test, anxiety-like behavior was increased in the non-stressed GFAP-ApoE4 transgenic mice relative to the corresponding GFAP-ApoE3 (ApoE ɛ3 allele) mice. Anxiety-like behavior was increased in the stressed GFAP-ApoE3 mice relative to non-stressed GFAP-ApoE3 mice, but was unexpectedly decreased in the stressed GFAP-ApoE4 mice relative to non-stressed GFAP-ApoE4 mice. On the novel object recognition task, both GFAP-ApoE4 and GFAP-ApoE3 mice exhibited long-term non-spatial memory impairment after chronic stress. Interestingly, short-term non-spatial memory impairment (based on the novel object recognition task) was observed only in the stressed GFAP-ApoE4 male mice relative to non-stressed GFAP-ApoE4 transgenic mice. In addition, short-term spatial memory impairment was observed in the stressed GFAP-ApoE3 transgenic male mice relative to non-stressed GFAP-ApoE3 transgenic male mice; however, short-term spatial memory performance of GFAP-ApoE4 transgenic male mice was not reduced compared to non-stressed control mice based on the Y-maze task. In conclusion, our findings suggested that chronic stress affects anxiety-like behavior and spatial and non-spatial memory in GFAP-ApoE transgenic mice in an ApoE isoform-dependent manner.
Lofgren, Jennifer L.; Whary, Mark T.; Ge, Zhongming; Muthupalani, Sureshkumar; Taylor, Nancy S.; Mobley, Melissa; Potter, Amanda; Varro, Andrea; Eibach, Daniel; Suerbaum, Sebastian; Wang, Timothy C.; Fox, James G.
2010-01-01
Background & Aims Transgenic, insulin–gastrin (INS–GAS) mice have high circulating levels of gastrin. On a FVB/N background, these mice develop spontaneous atrophic gastritis and gastrointestinal intraepithelial neoplasia (GIN) with 80% prevalence 6 months after Helicobacter pylori infection. GIN is associated with gastric atrophy and achlorhydria, predisposing mice to non-helicobacter microbiota overgrowth. We determined if germ-free INS–GAS mice spontaneously develop GIN and if H. pylori accelerates GIN in gnotobiotic INS–GAS mice. Methods We compared gastric lesions and levels of mRNA, serum inflammatory mediators, antibodies, and gastrin among germ-free and H. pylori-monoinfected INS-GAS mice. Microbiota composition of specific pathogen-free (SPF) INS-GAS mice was quantified by pyro-sequencing. Results Germ-free INS-GAS mice had mild hypergastrinemia but did not develop significant gastric lesions until they were 9 months old; they did not develop GIN through 13 months. H. pylori monoassociation caused progressive gastritis, epithelial defects, oxyntic gland atrophy, marked foveolar hyperplasia and dysplasia, and strong serum and tissue proinflammatory immune responses (particularly in male mice) between 5 and 11 months post infection (P<0.05, compared with germ-free controls). Only 2 of 26 female, whereas 8 of 18 male, H. pylori-infected INS-GAS mice developed low- to high-grade GIN by 11 months post infection. Stomachs of H. pylori-infected SPF male mice had significant reductions in Bacteroidetes and significant increases in Firmicutes. Conclusions Gastric lesions take 13 months longer to develop in germ-free INS–GAS mice than male SPF INS-GAS mice. H. pylori-monoassociation accelerated gastritis and GIN but caused less-severe gastric lesions and delayed onset of GIN compared to H. pylori-infected INS-GAS mice with complex gastric microbiota. Changes of gastric microbiota composition might promote GIN in the achlorhydric stomachs of SPF mice. PMID:20950613
2012-01-01
Background This study examined the effects of bovine colostrum on exercise –induced modulation of antioxidant parameters in skeletal muscle in mice. Adult male BALB/c mice were randomly divided into four groups (control, colostrum alone, exercise and exercise with colostrum) and each group had three subgroups (day 0, 21 and 42). Colostrum groups of mice were given a daily oral supplement of 50 mg/kg body weight of bovine colostrum and the exercise group of mice were made to exercise on the treadmill for 30 minutes per day. Total antioxidants, lipid hydroperoxides, xanthine oxidase and super oxide dismutase level was assayed from the homogenate of hind limb skeletal muscle. Results Exercise—induced a significant oxidative stress in skeletal muscles as evidenced by the elevated lipid hydroperoxides and xanthine oxidase levels. There was a significant decrease in skeletal muscle total antioxidants and superoxide dismutase levels. Daily colostrum supplement significantly reduced the lipid hydroperoxides and xanthine oxidase enzyme level and increased the total antioxidant levels in the leg muscle. Conclusion Thus, the findings of this study showed that daily bovine colostrum supplementation was beneficial to skeletal muscle to reduce the oxidant-induced damage during muscular exercise. PMID:23173926
2012-01-01
Background The amygdala plays an essential role in controlling emotional behaviors and has numerous connections to other brain regions. The functional role of the amygdala has been highlighted by various studies of stress-induced behavioral changes. Here we investigated gene expression changes in the amygdala in the chronic immobilization stress (CIS)-induced depression model. Results Eight genes were decreased in the amygdala of CIS mice, including genes for neurotrophic factors and extracellular matrix proteins. Among these, osteoglycin, fibromodulin, insulin-like growth factor 2 (Igf2), and insulin-like growth factor binding protein 2 (Igfbp2) were further analyzed for histological expression changes. The expression of osteoglycin and fibromodulin simultaneously decreased in the medial, basolateral, and central amygdala regions. However, Igf2 and Igfbp2 decreased specifically in the central nucleus of the amygdala. Interestingly, this decrease was found only in the amygdala of mice showing higher immobility, but not in mice displaying lower immobility, although the CIS regimen was the same for both groups. Conclusions These results suggest that the responsiveness of the amygdala may play a role in the sensitivity of CIS-induced behavioral changes in mice. PMID:22672618
Madeira, Mila Fernandes Moreira; Queiroz-Junior, Celso Martins; Costa, Graciela Mitre; Santos, Patrícia Campi; Silveira, Elcia Maria; Garlet, Gustavo Pompermaier; Cisalpino, Patrícia Silva; Teixeira, Mauro Martins; Silva, Tarcília Aparecida; Souza, Daniele da Glória
2012-02-01
Periodontal disease (PD) is a chronic inflammatory and alveolar bone destructive disease triggered by microorganisms from the oral biofilm. Oral inoculation of mice with the periodontopathogen Aggregatibacter actinomycetemcomitans (Aa) induces marked alveolar bone loss and local production of inflammatory mediators, including Macrophage Migration Inhibitory Factor (MIF). The role of MIF for alveolar bone resorption during PD is not known. In the present study, experimental PD was induced in BALB/c wild-type mice (WT) and MIF knockout mice (MIF⁻/⁻) through oral inoculation of Aa. Despite enhanced number of bacteria, MIF⁻/⁻ mice had reduced infiltration of TRAP-positive cells and reduced alveolar bone loss. This was associated with decreased neutrophil accumulation and increased levels of IL-10 in periodontal tissues. TNF-α production was similar in both groups. In vitro, LPS from Aa enhanced osteoclastic activity in a MIF-dependent manner. In conclusion, MIF has role in controlling bacterial growth in the context of PD but contributes more significantly to the progression of bone loss during PD by directly affecting differentiation and activity of osteoclasts. Copyright © 2011 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Zuercher, Adrian W.; Weiss, Marietta; Holvoet, Sébastien; Moser, Mireille; Moussu, Hélène; van Overtvelt, Laurence; Horiot, Stéphane; Moingeon, Philippe; Nutten, Sophie; Prioult, Guénolée; Singh, Anurag; Mercenier, Annick
2012-01-01
Objective. Utilizing a food allergy murine model, we have investigated the intrinsic antiallergic potential of the Lactococcus lactis NCC 2287 strain. Methods. BALB/c mice were sensitized at weekly intervals with ovalbumin (OVA) plus cholera toxin (CT) by the oral route for 7 weeks. In this model, an oral challenge with a high dose of OVA at the end of the sensitization period leads to clinical symptoms. Lactococcus lactis NCC 2287 was given to mice via the drinking water during sensitization (prevention phase) or after sensitization (management phase). Results. Lactococcus lactis NCC 2287 administration to sensitized mice strikingly reduced allergic manifestations in the management phase upon challenge, when compared to control mice. No preventive effect was observed with the strain. Lactococcus lactis NCC 2287 significantly decreased relative expression levels of the Th-2 cytokine, IL-13, and associated chemokines CCL11 (eotaxin-1) and CCL17 (TARC) in the ileum. No effect was observed in the jejunum. Conclusion/Significance. These results taken together designate Lactococcus lactis NCC 2287 as a candidate probiotic strain appropriate in the management of allergic symptoms. PMID:21961022
Zhao, Yue; Liu, Min; Chan, Xue Ying; Tan, Sue Yee; Subramaniam, Sharrada; Fan, Yong; Loh, Eva; Chang, Kenneth Tou En; Tan, Thiam Chye; Chen, Qingfeng
2017-11-02
Many immune parameters show circadian rhythms during the 24-hour day in mammals. The most striking circadian oscillation is the number of circulating immune cells that display an opposite rhythm between humans and mice. The physiological roles and mechanisms of circadian variations in mouse leukocytes are well studied, whereas for humans they remain unclear because of the lack of a proper model. In this study, we found that consistent with their natural host species, mouse and human circulating leukocytes exhibited opposite circadian oscillations in humanized mice. This cyclic pattern of trafficking correlated well with the diurnal expression levels of C-X-C chemokine receptor 4, which were controlled by the intracellular hypoxia-inducible factor 1α/aryl hydrocarbon receptor nuclear translocator-like heterodimer. Furthermore, we also discovered that p38 mitogen-activated protein kinases/mitogen-activated 2 had opposite effects between mice and humans in generating intracellular reactive oxygen species, which subsequently regulated HIF-1α expression. In conclusion, we propose humanized mice as a robust model for human circadian studies and reveal insights on a novel molecular clock network in the human circadian rhythm. © 2017 by The American Society of Hematology.
Wu, Bi; Shi, Yan; Gong, Xia; Yu, Lin; Chen, Qiuju; Wang, Jian; Sun, Zhaogui
2015-01-01
To evaluate multiple follicular development synchronization after estrogen stimulation in prepubertal mice, follicular responsiveness to gonadotropin superovulation, the prospective reproductive potential and ovarian polycystic ovary syndrome (PCOS)-like symptoms at adulthood, prepubertal mice were intraperitoneally injected with estrogen to establish an animal model with solvent as control. When synchronized tertiary follicles in ovaries, in vitro oocyte maturation and fertilization rates, blastocyst formation rate, developmental potential into offspring by embryo transfer, adult fertility and PCOS-like symptoms, and involved molecular mechanisms were focused, it was found that estrogen stimulation (10μg/gBW) leads to follicular development synchronization at the early tertiary stage in prepubertal mice; reproduction from oocytes to offspring could be realized by means of the artificial reproductive technology though the model mice lost their natural fertility when they were reared to adulthood; and typical symptoms of PCOS, except changes in inflammatory pathways, were not remained up to adulthood. So in conclusion, estrogen can lead to synchronization in follicular development in prepubertal mice, but does not affect reproductive outcome of oocytes, and no typical symptoms of PCOS remained at adulthood despite changes related to inflammation. PMID:26010950
Nrf2 deficiency improves glucose tolerance in mice fed a high-fat diet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yu-Kun Jennifer; Wu, Kai Connie; Liu, Jie
Nrf2, a master regulator of intracellular redox homeostasis, is indicated to participate in fatty acid metabolism in liver. However, its role in diet-induced obesity remains controversial. In the current study, genetically engineered Nrf2-null, wild-type (WT), and Nrf2-activated, Keap1-knockdown (K1-KD) mice were fed either a control or a high-fat Western diet (HFD) for 12 weeks. The results indicate that the absence or enhancement of Nrf2 activity did not prevent diet-induced obesity, had limited effects on lipid metabolism, but affected blood glucose homeostasis. Whereas the Nrf2-null mice were resistant to HFD-induced glucose intolerance, the Nrf2-activated K1-KD mice exhibited prolonged elevation of circulatingmore » glucose during a glucose tolerance test even on the control diet. Feeding a HFD did not activate the Nrf2 signaling pathway in mouse livers. Fibroblast growth factor 21 (Fgf21) is a liver-derived anti-diabetic hormone that exerts glucose- and lipid-lowering effects. Fgf21 mRNA and protein were both elevated in livers of Nrf2-null mice, and Fgf21 protein was lower in K1-KD mice than WT mice. The inverse correlation between Nrf2 activity and hepatic expression of Fgf21 might explain the improved glucose tolerance in Nrf2-null mice. Furthermore, a more oxidative cellular environment in Nrf2-null mice could affect insulin signaling in liver. For example, mRNA of insulin-like growth factor binding protein 1, a gene repressed by insulin in hepatocytes, was markedly elevated in livers of Nrf2-null mice. In conclusion, genetic alteration of Nrf2 does not prevent diet-induced obesity in mice, but deficiency of Nrf2 improves glucose homeostasis, possibly through its effects on Fgf21 and/or insulin signaling. -- Highlights: ► Nrf2 deficiency improves glucose tolerance in mice fed a high-fat diet. ► The anti-diabetic hormone, Fgf21, is highly expressed in livers of Nrf2-null mice. ► The absence of Nrf2 increases the insulin-regulated Igfbp-1 mRNA in liver. ► Nrf2 deficiency improves glucose tolerance by influencing Fgf21 and insulin signaling.« less
2014-01-01
Introduction The aim of this study was to investigate the effects of 131I gelatin microspheres (131I-GMS) on human breast cancer cells (MCF-7) in nude mice and the biodistribution of 131I-GMSs following intratumoral injections. Methods A total of 20 tumor-bearing mice were divided into a treatment group and control group and received intratumoral injections of 2.5 mci 131I-GMSs and nonradioactive GMSs, respectively. Tumor size was measured once per week. Another 16 mice received intratumoral injections of 0.4 mci 131I-GMSs and were subjected to single photon emission computed tomography (SPECT) scans and tissue radioactivity concentration measurements on day 1, 4, 8 and 16 postinjection. The 20 tumor-bearing mice received intratumoral injections of 0.4 mci [131I] sodium iodide solution and were subjected to SPECT scans and intratumoral radioactivity measurements at 1, 6, 24, 48 and 72 h postinjection. The tumors were collected for histological examination. Results The average tumor volume in the 131I-GMSs group on post-treatment day 21 decreased to 86.82 ± 63.6%, while it increased to 893.37 ± 158.12% in the control group (P < 0.01 vs. the 131I-GMSs group). 131I-GMSs provided much higher intratumoral retention of radioactivity, resulting in 19.93 ± 5.24% of the injected radioactivity after 16 days, whereas the control group retained only 1.83 ± 0.46% of the injected radioactivity within the tumors at 1 h postinjection. Conclusions 131I-GMSs suppressed the growth of MCF-7 in nude mice and provided sustained intratumoral radioactivity retention. The results suggest the potential of 131I-GMSs for clinical applications in radiotherapy for breast cancer. PMID:24958442
2013-01-01
Background Emerging studies have demonstrated that pretreatment with electroacupuncture (EA) induces significant tolerance to focal cerebral ischemia. The present study seeks to determine the involvement of monocyte chemotactic protein-induced protein 1 (MCPIP1), a recently identified novel modulator of inflammatory reactions, in the cerebral neuroprotection conferred by EA pretreatment in the animal model of focal cerebral ischemia and to elucidate the mechanisms of EA pretreatment-induced ischemic brain tolerance. Methods Twenty-four hours after the end of the last EA pretreatment, focal cerebral ischemia was induced by middle cerebral artery occlusion (MCAO) for 90 minutes in male C57BL/6 mice and MCPIP1 knockout mice. Transcription and expression of MCPIP1 gene was monitored by qRT-PCR, Western blot and immunohistochemistry. The neurobehavioral scores, infarction volumes, proinflammatory cytokines and leukocyte infiltration in brain and NF-κB signaling were evaluated after ischemia/reperfusion. Results MCPIP1 protein and mRNA levels significantly increased specifically in mouse brain undergoing EA pretreatment. EA pretreatment significantly attenuated the infarct volume, neurological deficits, upregulation of proinflammatory cytokines and leukocyte infiltration in the brain of wild-type mice after MCAO compared with that of the non-EA group. MCPIP1-deficient mice failed to evoke EA pretreatment-induced tolerance compared with that of the control MCPIP1 knockout group without EA treatment. Furthermore, the activation of NF-κB signaling was significantly reduced in EA-pretreated wild-type mice after MCAO compared to that of the non-EA control group and MCPIP1-deficient mice failed to confer the EA pretreatment-induced inhibition of NF-κB signaling after MCAO. Conclusions Our data demonstrated that MCPIP1 deficiency caused significant lack of EA pretreatment-induced cerebral protective effects after MCAO compared with the control group and that MCPIP1 is involved in EA pretreatment-induced delayed brain ischemia tolerance. PMID:23663236
Zhou, Yuanxiu; Wang, Zhouyu; Xia, Minghan; Zhuang, Siyi; Gong, Xiaobing; Pan, Jianwen; Li, Chuhua; Fan, Ruifang; Pang, Qihua; Lu, Shaoyou
2017-10-01
To investigate the neuron toxicities of low-dose exposure to bisphenol A (BPA) in children, mice were used as an animal model. We examined brain cell damage and the effects of learning and memory ability after BPA exposure in male mice (4 weeks of age) that were divided into four groups and chronically received different BPA treatments for 8 weeks. The comet assay and hippocampal neuron counting were used to detect the brain cell damage. The Y-maze test was applied to test alterations in learning and memory ability. Long term potentiation induction by BPA exposure was performed to study the potential mechanism of performance. The percentages of tail DNA, tail length and tail moment in brain cells increased with increasing BPA exposure concentrations. Significant differences in DNA damage were observed among the groups, including between the low-dose and control groups. In the Y-maze test, the other three groups qualified for the learned standard one day earlier than the high-exposed group. Furthermore, the ratio of qualified mice in the high-exposed group was always the lowest among the groups, indicating that high BPA treatment significantly altered the spatial memory performance of mice. Different BPA treatments exerted different effects on the neuron numbers of different regions in the hippocampus. In the CA1 region, the high-exposed group had a significant decrease in neuron numbers. A non-monotonic relationship was observed between the exposure concentrations and neuron quantity in the CA3 region. The hippocampal slices in the control and medium-exposed groups generated long-term potentiation after induction by theta burst stimulation, but the low-exposed group did not. A significant difference was observed between the control and low-exposed groups. In conclusion, chronic exposure to a low level of BPA had adverse effects on brain cells and altered the learning and memory ability of adolescent mice. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, Caroline, E-mail: caroline.chung@rmp.uhn.on.ca; Jalali, Shahrzad; Foltz, Warren
2013-03-01
Purpose: There is a growing need for noninvasive biomarkers to guide individualized spatiotemporal delivery of radiation therapy (RT) and antiangiogenic (AA) therapy for brain tumors. This study explored early biomarkers of response to RT and the AA agent sunitinib (SU), in a murine intracranial glioma model, using serial magnetic resonance imaging (MRI). Methods and Materials: Mice with MRI-visible tumors were stratified by tumor size into 4 therapy arms: control, RT, SU, and SU plus RT (SURT). Single-fraction conformal RT was delivered using MRI and on-line cone beam computed tomography (CT) guidance. Serial MR images (T2-weighted, diffusion, dynamic contrast-enhanced and gadolinium-enhancedmore » T1-weighted scans) were acquired biweekly to evaluate tumor volume, apparent diffusion coefficient (ADC), and tumor perfusion and permeability responses (K{sub trans}, K{sub ep}). Results: Mice in all treatment arms survived longer than those in control, with a median survival of 35 days for SURT (P<.0001) and 30 days for RT (P=.009) and SU (P=.01) mice vs 26 days for control mice. At Day 3, ADC rise was greater with RT than without (P=.002). Sunitinib treatment reduced tumor perfusion/permeability values with mean K{sub trans} reduction of 27.6% for SU (P=.04) and 26.3% for SURT (P=.04) mice and mean K{sub ep} reduction of 38.1% for SU (P=.01) and 27.3% for SURT (P=.02) mice. The magnitude of individual mouse ADC responses at Days 3 and 7 correlated with subsequent tumor growth rate R values of −0.878 (P=.002) and −0.80 (P=.01), respectively. Conclusions: Early quantitative changes in diffusion and perfusion MRI measures reflect treatment responses soon after starting therapy and thereby raise the potential for these imaging biomarkers to guide adaptive and potentially individualized therapy approaches in the future.« less
Prince, Esther; Lazare, Farrah B.; Treem, William R.; Xu, Jiliu; Iqbal, Jahangir; Pan, Xiaoyue; Josekutty, Joby; Walsh, Meghan; Anderson, Virginia; Hussain, M. Mahmood; Schwarz, Steven M.
2015-01-01
Objectives ω-3 Fatty acids (FAs), natural ligands for the peroxisome proliferator-activated receptor–α (PPAR-α), attenuate parenteral nutrition–associated liver disease (PNALD). However, the mechanisms underlying the protective role of ω-3 FAs are still unknown. The aim of this study was to determine the effects of ω-3 FAs on hepatic triglyceride (TG) accumulation in a murine model of PNALD and to investigate the role of PPAR-α and microsomal triglyceride transfer protein (MTP) in this experimental setting. Methods 129S1/SvImJ wild-type or 129S4/SvJaePparatm/Gonz/J PPAR-α knockout mice were fed chow and water (controls); oral, fat-free PN solution only (PN-O); PN-O plus intraperitoneal (IP) ω-6 FA-predominant supplements (PN–ω-6); or PN-O plus IP ω-3 FA (PN–ω-3). Control and PN-O groups received sham IP injections of 0.9% NaCl. Hepatic histology, TG and cholesterol, MTP activity, and PPAR-α messenger RNA were assessed after 19 days. Results In all experimental groups, PN feeding increased hepatic TG and MTP activity compared with controls. Both PN-O and PN–ω-6 groups accumulated significantly greater amounts of TG when compared with PN–ω-3 mice. Studies in PPAR-α null animals showed that PN feeding increases hepatic TG as in wild-type mice. PPAR-α null mice in the PN-O and PN–ω-6 groups demonstrated variable degrees of hepatic steatosis, whereas no evidence of hepatic fat accumulation was found after 19 days of oral PN plus IP ω-3 FAs. Conclusions PN induces TG accumulation (steatosis) in wild-type and PPAR-α null mice. In PN-fed wild-type and PPAR-α null mice given IP ω-3 FAs, reduced hepatic TG accumulation and absent steatosis are found. Prevention of steatosis by ω-3 FAs results from PPAR-α–independent pathways. PMID:23757305
Lepidium meyenii (Maca) increases litter size in normal adult female mice
Ruiz-Luna, Ana C; Salazar, Stephanie; Aspajo, Norma J; Rubio, Julio; Gasco, Manuel; Gonzales, Gustavo F
2005-01-01
Background Lepidium meyenii, known as Maca, grows exclusively in the Peruvian Andes over 4000 m altitude. It has been used traditionally to increase fertility. Previous scientific studies have demonstrated that Maca increases spermatogenesis and epididymal sperm count. The present study was aimed to investigate the effects of Maca on several fertility parameters of female mice at reproductive age. Methods Adult female Balb/C mice were divided at random into three main groups: i) Reproductive indexes group, ii) Implantation sites group and iii) Assessment of uterine weight in ovariectomized mice. Animals received an aqueous extract of lyophilized Yellow Maca (1 g/Kg BW) or vehicle orally as treatment. In the fertility indexes study, animals received the treatment before, during and after gestation. The fertility index, gestation index, post-natal viability index, weaning viability index and sex ratio were calculated. Sexual maturation was evaluated in the female pups by the vaginal opening (VO) day. In the implantation study, females were checked for implantation sites at gestation day 7 and the embryos were counted. In ovariectomized mice, the uterine weight was recorded at the end of treatment. Results Implantation sites were similar in mice treated with Maca and in controls. All reproductive indexes were similar in both groups of treatment. The number of pups per dam at birth and at postnatal day 4 was significantly higher in the group treated with Maca. VO day occurred earlier as litter size was smaller. Maca did not affect VO day. In ovariectomized mice, the treatment with Maca increased significantly the uterine weights in comparison to their respective control group. Conclusion Administration of aqueous extract of Yellow Maca to adult female mice increases the litter size. Moreover, this treatment increases the uterine weight in ovariectomized animals. Our study confirms for the first time some of the traditional uses of Maca to enhance female fertility. PMID:15869705
Pizza, Francis X; Peterson, Jennifer M; Baas, Joel H; Koh, Timothy J
2005-01-01
We tested the hypotheses that: (1) neutrophil accumulation after contraction-induced muscle injury is dependent on the β2 integrin CD18, (2) neutrophils contribute to muscle injury and oxidative damage after contraction-induced muscle injury, and (3) neutrophils aid the resolution of contraction-induced muscle injury. These hypotheses were tested by exposing extensor digitorum longus (EDL) muscles of mice deficient in CD18 (CD18−/−; Itgb2tm1Bay) and of wild type mice (C57BL/6) to in situ lengthening contractions and by quantifying markers of muscle inflammation, injury, oxidative damage and regeneration/repair. Neutrophil concentrations were significantly elevated in wild type mice at 6 h and 3 days post-lengthening contractions; however, neutrophils remained at control levels at these time points in CD18−/− mice. These data indicate that CD18 is required for neutrophil accumulation after contraction-induced muscle injury. Histological and functional (isometric force deficit) signs of muscle injury and total carbonyl content, a marker of oxidative damage, were significantly higher in wild type relative to CD18−/− mice 3 days after lengthening contractions. These data show that neutrophils exacerbate contraction-induced muscle injury. After statistically controlling for differences in the force deficit at 3 days, wild type mice also demonstrated a higher force deficit at 7 days, a lower percentage of myofibres expressing embryonic myosin heavy chain at 3 and 7 days, and a smaller cross sectional area of central nucleated myofibres at 14 days relative to CD18−/− mice. These observations suggest that neutrophils impair the restoration of muscle structure and function after injury. In conclusion, neutrophil accumulation after contraction-induced muscle injury is dependent on CD18. Furthermore, neutrophils appear to contribute to muscle injury and impair some of the events associated with the resolution of contraction-induced muscle injury. PMID:15550464
Targeting Th17-IL-17 pathway in prevention of micro-invasive prostate cancer in a mouse model
Zhang, Qiuyang; Liu, Sen; Ge, Dongxia; Cunningham, David M.; Huang, Feng; Ma, Lin; Burris, Thomas P.; You, Zongbing
2017-01-01
Background Chronic inflammation has been associated with the development and progression of human cancers including prostate cancer. The exact role of the inflammatory Th17-IL-17 pathway in prostate cancer remains unknown. In this study, we aimed to determine the importance of Th17 cells and IL-17 in a Pten-null prostate cancer mouse model. Methods The Pten-null mice were treated by Th17 inhibitor SR1001 or anti-mouse IL-17 monoclonal antibody from 6 weeks of age up to 12 weeks of age. For SR1001 treatment, the mice were injected i.p. twice a day with vehicle or SR1001, which was dissolved in a dimethylsulfoxide (DMSO) solution. All mice were euthanized for necropsy at 12 weeks of age. For IL-17 antibody treatment, the mice were injected i.v. once every two weeks with control IgG or rat anti-mouse IL-17 monoclonal antibody, which was dissolved in PBS. The injection time points were at 6, 8, and 10-week-old. All mice were analyzed for the prostate phenotypes at 12 weeks of age. Results We found that either SR1001 or anti-IL-17 antibody treatment decreased the formation of micro-invasive prostate cancer in Pten-null mice. The SR1001 or anti-IL-17 antibody treated mouse prostates had reduced proliferation, increased apoptosis, and reduced angiogenesis, as well as reduced inflammatory cell infiltration. By assessing the epithelial-to-mesenchymal transition (EMT) markers, we found that SR1001 or anti-IL-17 antibody treated prostate tissues had weaker EMT phenotype compared to the control treated prostates. Conclusions These results demonstrated that Th17-IL-17 pathway plays a key role in prostate cancer progression in Pten-null mice. Targeting Th17-IL-17 pathway could prevent micro-invasive prostate cancer formation in mice. PMID:28240383
Liu, Mao-Sen; Ko, Miau-Hwa; Li, Hui-Chun; Tsai, Shwu-Jene; Lai, Ying-Mi; Chang, You-Ming; Wu, Min-Tze; Chen, Long-Fang O
2014-08-28
Previously, we showed improved shelf life for agrobacterial isopentenyltransferase (ipt) transgenic broccoli (Brassica oleracea var. italica), with yield comparable to commercial varieties, because of the protection mechanism offered by molecular chaperones and stress-related proteins. Here, we used proximate analysis to examine macronutrients, chemical and mineral constituents as well as anti-nutrient and protein changes of ipt-transgenic broccoli and corresponding controls. We also preliminarily assessed safety in mice. Most aspects were comparable between ipt-transgenic broccoli and controls, except for a significant increase in carbohydrate level and a decrease in magnesium content in ipt-transgenic lines 101, 102 and 103, as compared with non-transgenic controls. In addition, the anti-nutrient glucosinolate content was increased and crude fat content decreased in inbred control 104 and transgenic lines as compared with the parental control, "Green King". Gel-based proteomics detected more than 50 protein spots specifically found in ipt-transgenic broccoli at harvest and after cooking; one-third of these proteins showed homology to potential allergens that also play an important role in plant defense against stresses and senescence. Mice fed levels of ipt-transgenic broccoli mimicking the 120 g/day of broccoli eaten by a 60-kg human adult showed normal growth and immune function. In conclusion, the compositional and proteomic changes attributed to the transgenic ipt gene did not affect the growth and immune response of mice under the feeding regimes examined.
Liu, Mao-Sen; Ko, Miau-Hwa; Li, Hui-Chun; Tsai, Shwu-Jene; Lai, Ying-Mi; Chang, You-Ming; Wu, Min-Tze; Chen, Long-Fang O.
2014-01-01
Previously, we showed improved shelf life for agrobacterial isopentenyltransferase (ipt) transgenic broccoli (Brassica oleracea var. italica), with yield comparable to commercial varieties, because of the protection mechanism offered by molecular chaperones and stress-related proteins. Here, we used proximate analysis to examine macronutrients, chemical and mineral constituents as well as anti-nutrient and protein changes of ipt-transgenic broccoli and corresponding controls. We also preliminarily assessed safety in mice. Most aspects were comparable between ipt-transgenic broccoli and controls, except for a significant increase in carbohydrate level and a decrease in magnesium content in ipt-transgenic lines 101, 102 and 103, as compared with non-transgenic controls. In addition, the anti-nutrient glucosinolate content was increased and crude fat content decreased in inbred control 104 and transgenic lines as compared with the parental control, “Green King”. Gel-based proteomics detected more than 50 protein spots specifically found in ipt-transgenic broccoli at harvest and after cooking; one-third of these proteins showed homology to potential allergens that also play an important role in plant defense against stresses and senescence. Mice fed levels of ipt-transgenic broccoli mimicking the 120 g/day of broccoli eaten by a 60-kg human adult showed normal growth and immune function. In conclusion, the compositional and proteomic changes attributed to the transgenic ipt gene did not affect the growth and immune response of mice under the feeding regimes examined. PMID:25170807
Heart rate complexity in sinoaortic-denervated mice.
Silva, Luiz Eduardo V; Rodrigues, Fernanda Luciano; de Oliveira, Mauro; Salgado, Hélio Cesar; Fazan, Rubens
2015-02-01
What is the central question of this study? New measurements for cardiovascular complexity, such as detrended fluctuation analysis (DFA) and multiscale entropy (MSE), have been shown to predict cardiovascular outcomes. Given that cardiovascular diseases are accompanied by autonomic imbalance and decreased baroreflex sensitivity, the central question is: do baroreceptors contribute to cardiovascular complexity? What is the main finding and its importance? Sinoaortic denervation altered both DFA scaling exponents and MSE, indicating that both short- and long-term mechanisms of complexity are altered in sinoaortic denervated mice, resulting in a loss of physiological complexity. These results suggest that the baroreflex is a key element in the complex structures involved in heart rate variability regulation. Recently, heart rate (HR) oscillations have been recognized as complex behaviours derived from non-linear processes. Physiological complexity theory is based on the idea that healthy systems present high complexity, i.e. non-linear, fractal variability at multiple scales, with long-range correlations. The loss of complexity in heart rate variability (HRV) has been shown to predict adverse cardiovascular outcomes. Based on the idea that most cardiovascular diseases are accompanied by autonomic imbalance and a decrease in baroreflex sensitivity, we hypothesize that the baroreflex plays an important role in complex cardiovascular behaviour. Mice that had been subjected to sinoaortic denervation (SAD) were implanted with catheters in the femoral artery and jugular vein 5 days prior to the experiment. After recording the baseline arterial pressure (AP), pulse interval time series were generated from the intervals between consecutive values of diastolic pressure. The complexity of the HRV was determined using detrended fluctuation analysis and multiscale entropy. The detrended fluctuation analysis α1 scaling exponent (a short-term index) was remarkably decreased in the SAD mice (0.79 ± 0.06 versus 1.13 ± 0.04 for the control mice), whereas SAD slightly increased the α2 scaling exponent (a long-term index; 1.12 ± 0.03 versus 1.04 ± 0.02 for control mice). In the SAD mice, the total multiscale entropy was decreased (13.2 ± 1.3) compared with the control mice (18.9 ± 1.4). In conclusion, fractal and regularity structures of HRV are altered in SAD mice, affecting both short- and long-term mechanisms of complexity, suggesting that the baroreceptors play a considerable role in the complex structure of HRV. © 2014 The Authors. Experimental Physiology © 2014 The Physiological Society.
Sengupta, Mahuya; Sharma, Gauri Dutta; Chakraborty, Biswajit
2011-01-01
Objective To evaluate the hepatoprotective and immunotherapeutic effects of aqueous extract of turmeric rhizome in CCl4 intoxicated Swiss albino mice. Methods First group of mice (n=5) received CCl4 treatment at a dose of 0.5 mL/kg bw (i.p.) for 7 days. Second group was fed orally the aqueous extract of turmeric at a dose of 50 mg/kg bw for 15 days. The third group was given both the turmeric extract (for 15 days, orally) and CCl4 (for last 7 days, i.p.). The fourth group was kept as a control. To study the liver function, the transaminase enzymes (SGOT and SGPT) and bilirubin level were measured in the serum of respective groups. For assaying the immunotherapeutic action of Curcuma longa (C. longa), non specific host response parameters like morphological alteration, phagocytosis, nitric oxide release, myeloperoxidase release and intracellular killing capacity of peritoneal macrophages were studied from the respective groups. Results The result of present study suggested that CCl4 administration increased the level of SGOT and SGPT and bilirubin level in serum. However, the aqueous extract of turmeric reduced the level of SGOT, SGPT and bilirubin in CCl4 intoxicated mice. Apart from damaging the liver system, CCl4 also reduced non specific host response parameters like morphological alteration, phagocytosis, nitric oxide release, myeloperoxidase release and intracellular killing capacity of peritoneal macrophages. Administration of aqueous extract of C. longa offered significant protection from these damaging actions of CCl4 on the non specific host response in the peritoneal macrophages of CCl4 intoxicated mice. Conclusions In conclusion, the present study suggests that C. longa has immunotherapeutic properties along with its ability to ameliorate hepatotoxicity. PMID:23569758
Theodorakis, Nicholas G; Wang, Yining N; Korshunov, Vyacheslav A; Maluccio, Mary A; Skill, Nicholas J
2015-01-01
AIM: Portal hypertension is a common complication of liver cirrhosis and significantly increases mortality and morbidity. Previous reports have suggested that the compound thalidomide attenuates portal hypertension (PHT). However, the mechanism for this action is not fully elucidated. One hypothesis is that thalidomide destabilizes tumor necrosis factor α (TNFα) mRNA and therefore diminishes TNFα induction of nitric oxide synthase (NOS) and the production of nitric oxide (NO). To examine this hypothesis, we utilized the murine partial portal vein ligation (PVL) PHT model in combination with endothelial or inducible NOS isoform gene knockout mice. METHODS: Wild type, inducible nitric oxide synthase (iNOS)-/- and endothelial nitric oxide synthase (eNOS)-/- mice received either PVL or sham surgery and were given either thalidomide or vehicle. Serum nitrate (total nitrate, NOx) was measured daily for 7 d as a surrogate of NO synthesis. Serum TNFα level was quantified by enzyme-linked immunosorbent assay. TNFα mRNA was quantified in liver and aorta tissue by reverse transcription-polymerase chain reaction. PHT was determined by recording splenic pulp pressure (SPP) and abdominal aortic flow after 0-7 d. Response to thalidomide was determined by measurement of SPP and mean arterial pressure (MAP). RESULTS: SPP, abdominal aortic flow (Qao) and plasma NOx were increased in wild type and iNOS-/- PVL mice when compared to sham operated control mice. In contrast, SPP, Qao and plasma NOx were not increased in eNOS-/- PVL mice when compared to sham controls. Serum TNFα level in both sham and PVL mice was below the detection limit of the commercial ELISA used. Therefore, the effect of thalidomide on serum TNFα levels was undetermined in wild type, eNOS-/- or iNOS-/- mice. Thalidomide acutely increased plasma NOx in wild type and eNOS-/- mice but not iNOS-/- mice. Moreover, thalidomide temporarily (0-90 min) decreased mean arterial pressure, SPP and Qao in wild type, eNOS-/- and iNOS-/- PVL mice, after which time levels returned to the respective baseline. CONCLUSION: Thalidomide does not reduce portal pressure in the murine PVL model by modulation of NO biosynthesis. Rather, thalidomide reduces PHT by decreasing MAP by an undetermined mechanism. PMID:25892862
2014-01-01
Background Compound Danshen Tablet (CDT), a Traditional Chinese Medicine, has recently been reported to improve spatial cognition in a rat model of Alzheimer’s disease. However, in vivo neuroprotective mechanism of the CDT in models of spatial memory impairment is not yet evaluated. The present study is aimed to elucidate the cellular mechanism of CDT on Aβ25-35-induced cognitive impairment in mice. Methods Mice were randomly divided into 5 groups: the control group (sham operated), the Aβ25-35 treated group, the positive drug group, and large and small dosage of the CDT groups, respectively. CDT was administered at a dose of 0.81 g/kg and 0.405 g/kg for 3 weeks. The mice in the positive drug group were treated with 0.4 mg/kg of Huperzine A, whereas the mice of the control and Aβ25-35 treated groups were administrated orally with equivalent saline. After 7 days of preventive treatment, mice were subjected to lateral ventricle injection of Aβ25-35 to establish the mice model of Alzheimer’s disease. Spatial memory impairment was evaluated by Morris water maze test. Choline acetyltransferase (ChAT) contents in hippocampus and cortex were quantified by ELISA. The levels of cytokines, receptor of activated protein kinase C1 (RACK1) and brain-derived neurotrophic factor (BDNF) in hippocampus were measured by RT-PCR and ELISA. Results The results showed that Aβ25-35 caused spatial memory impairment as demonstrated by performance in the Morris water maze test. CDT was able to confer a significant improvement in spatial memory, and protect mice from Aβ25-35-induced neurotoxicity. Additionally, CDT also inhibited the increase of TNF-α and IL-6 level, and increased the expression of choline acetyltransferase (ChAT), receptor of activated protein kinase C1 (RACK1) and brain-derived neurotrophic factor (BDNF) in brain as compared to model mice. Conclusion These findings strongly implicate that CDT may be a useful treatment against learning and memory deficits in mice by rescuing imbalance between cytokines and neurotrophins. PMID:24422705
Deficiency of bone marrow beta3-integrin enhances non-functional neovascularization.
Watson, Alan R; Pitchford, Simon C; Reynolds, Louise E; Direkze, Natalie; Brittan, Mairi; Alison, Malcolm R; Rankin, Sara; Wright, Nicholas A; Hodivala-Dilke, Kairbaan M
2010-03-01
beta3-Integrin is a cell surface adhesion and signalling molecule important in the regulation of tumour angiogenesis. Mice with a global deficiency in beta3-integrin show increased pathological angiogenesis, most likely due to increased vascular endothelial growth factor receptor 2 expression on beta3-null endothelial cells. Here we transplanted beta3-null bone marrow (BM) into wild-type (WT) mice to dissect the role of BM beta3-integrin deficiency in pathological angiogenesis. Mice transplanted with beta3-null bone marrow show significantly enhanced angiogenesis in subcutaneous B16F0 melanoma and Lewis lung carcinoma (LLC) cell models and in B16F0 melanoma lung metastasis when compared with tumours grown in mice transplanted with WT bone marrow. The effect of bone marrow beta3-integrin deficiency was also assessed in the RIPTAg mouse model of pancreatic tumour growth. Again, angiogenesis in mice lacking BM beta3-integrin was enhanced. However, tumour weight between the groups was not significantly altered, suggesting that the enhanced blood vessel density in the mice transplanted with beta3-null bone marrow was not functional. Indeed, we demonstrate that in mice transplanted with beta3-null bone marrow a significant proportion of tumour blood vessels are non-functional when compared with tumour blood vessels in WT-transplanted controls. Furthermore, beta3-null-transplanted mice showed an increased angiogenic response to VEGF in vivo when compared with WT-transplanted animals. BM beta3-integrin deficiency affects the mobilization of progenitor cells to the peripheral circulation. We show that VEGF-induced mobilization of endothelial progenitor cells is enhanced in mice transplanted with beta3-null bone marrow when compared with WT-transplanted controls, suggesting a possible mechanism underlying the increased blood vessel density seen in beta3-null-transplanted mice. In conclusion, although BM beta3-integrin is not required for pathological angiogenesis, our studies demonstrate a role for BM beta3-integrin in VEGF-induced mobilization of bone marrow-derived cells to the peripheral circulation and for the functionality of those vessels in which BM-derived cells become incorporated.
Robinson, Austin T; Fancher, Ibra S; Sudhahar, Varadarajan; Bian, Jing Tan; Cook, Marc D; Mahmoud, Abeer M; Ali, Mohamed M; Ushio-Fukai, Masuko; Brown, Michael D; Fukai, Tohru; Phillips, Shane A
2017-05-01
High blood pressure has been shown to elicit impaired dilation in the vasculature. The purpose of this investigation was to elucidate the mechanisms through which high pressure may elicit vascular dysfunction and determine the mechanisms through which regular aerobic exercise protects arteries against high pressure. Male C57BL/6J mice were subjected to 2 wk of voluntary running (~6 km/day) for comparison with sedentary controls. Hindlimb adipose resistance arteries were dissected from mice for measurements of flow-induced dilation (FID; with or without high intraluminal pressure exposure) or protein expression of NADPH oxidase II (NOX II) and superoxide dismutase (SOD). Microvascular endothelial cells were subjected to high physiological laminar shear stress (20 dyn/cm 2 ) or static condition and treated with ANG II + pharmacological inhibitors. Cells were analyzed for the detection of ROS or collected for Western blot determination of NOX II and SOD. Resistance arteries from exercised mice demonstrated preserved FID after high pressure exposure, whereas FID was impaired in control mouse arteries. Inhibition of ANG II or NOX II restored impaired FID in control mouse arteries. High pressure increased superoxide levels in control mouse arteries but not in exercise mouse arteries, which exhibited greater ability to convert superoxide to H 2 O 2 Arteries from exercised mice exhibited less NOX II protein expression, more SOD isoform expression, and less sensitivity to ANG II. Endothelial cells subjected to laminar shear stress exhibited less NOX II subunit expression. In conclusion, aerobic exercise prevents high pressure-induced vascular dysfunction through an improved redox environment in the adipose microvasculature. NEW & NOTEWORTHY We describe potential mechanisms contributing to aerobic exercise-conferred protection against high intravascular pressure. Subcutaneous adipose microvessels from exercise mice express less NADPH oxidase (NOX) II and more superoxide dismutase (SOD) and demonstrate less sensitivity to ANG II. In microvascular endothelial cells, shear stress reduced NOX II but did not influence SOD expression.
Tammen, Stephanie A; Liu, Zhenhua; Friso, Simonetta
2015-01-01
BACKGROUND/OBJECTIVES Previous studies have indicated that when compared to young mice, old mice have lower global DNA methylation and higher p16 promoter methylation in colonic mucosa, which is a common finding in colon cancer. It is also known that a Western-style diet (WSD) high in fat and calories, and low in calcium, vitamin D, fiber, methionine and choline (based on the AIN 76A diet) is tumorigenic in colons of mice. Because DNA methylation is modifiable by diet, we investigate whether a WSD disrupts DNA methylation patterns, creating a tumorigenic environment. SUBJECTVIES/METHODS We investigated the effects of a WSD and aging on global and p16 promoter DNA methylation in the colon. Two month old male C57BL/6 mice were fed either a WSD or a control diet (AIN76A) for 6, 12 or 17 months. Global DNA methylation, p16 promoter methylation and p16 expression were determined by LC/MS, methyl-specific PCR and real time RT-PCR, respectively. RESULTS The WSD group demonstrated significantly decreased global DNA methylation compared with the control at 17 months (4.05 vs 4.31%, P = 0.019). While both diets did not change global DNA methylation over time, mice fed the WSD had lower global methylation relative to controls when comparing all animals (4.13 vs 4.30%, P = 0.0005). There was an increase in p16 promoter methylation from 6 to 17 months in both diet groups (P < 0.05) but no differences were observed between diet groups. Expression of p16 increased with age in both control and WSD groups. CONCLUSIONS In this model a WSD reduces global DNA methylation, whereas aging itself has no affect. Although the epigenetic effect of aging was not strong enough to alter global DNA methylation, changes in promoter-specific methylation and gene expression occurred with aging regardless of diet, demonstrating the complexity of epigenetic patterns. PMID:26244073
Rieder, Sadiye Amcaoglu; Metidji, Amina; Glass, Deborah Dacek; Thornton, Angela M.; Ikeda, Tohru; Morgan, Bruce A.; Shevach, Ethan M.
2015-01-01
Eos is a transcription factor that belongs to the Ikaros family of transcription factors. Eos has been reported to be a T regulatory cell (Treg) signature gene, to play a critical role in Treg suppressor functions, and to maintain Treg stability. We have utilized mice with a global deficiency of Eos to re-examine the role of Eos expression in both Treg and T conventional (Tconv) cells. Treg from Eos deficient (Eos−/−) mice developed normally, displayed a normal Treg phenotype, and exhibited normal suppressor function in vitro. Eos−/− Treg were as effective as Treg from wild type (WT) mice in suppression of inflammation in a model of inflammatory bowel disease. Bone marrow (BM) from Eos−/− mice was as effective as BM from WT mice in controlling T cell activation when used to reconstitute immunodeficient mice in the presence of Scurfy fetal liver cells. Surprisingly, Eos was expressed in activated Tconv cells and was required for IL-2 production, CD25 expression and proliferation in vitro by CD4+ Tconv cells. Eos−/− mice developed more severe Experimental Autoimmune Encephalomyelitis than WT mice, displayed increased numbers of effector T cells in the periphery and CNS, and amplified IL-17 production. In conclusion, our studies are not consistent with a role for Eos in Treg development and function, but demonstrate that Eos plays an important role in the activation and differentiation of Tconv cells. PMID:26062998
Altered Morphology and Function of the Lacrimal Functional Unit in Protein Kinase Cα Knockout Mice
Chen, Zhuo; Li, Zhijie; Basti, Surendra; Farley, William J.
2010-01-01
Purpose. Protein kinase C (PKC) α plays a major role in the parasympathetic neural stimulation of lacrimal gland (LG) secretion. It also has been reported to have antiapoptotic properties and to promote cell survival. Therefore, the hypothesis for the present study was that PKCα knockout (−/−) mice have impaired ocular surface–lacrimal gland signaling, rendering them susceptible to desiccating stress and impaired corneal epithelial wound healing. In this study, the lacrimal function unit (LFU) and the stressed wound-healing response were examined in PKCα−/− mice. Methods. In PKCα+/+ control mice and PKCα−/− mice, tear production, osmolarity, and clearance rate were evaluated before and after experimental desiccating stress. Histology and immunofluorescent staining of PKC and epidermal growth factor were performed in tissues of the LFU. Cornified envelope (CE) precursor protein expression and cell proliferation were evaluated. The time course of healing and degree of neutrophil infiltration was evaluated after corneal epithelial wounding. Results. Compared with the PKCα+/+ mice, the PKCα−/− mice were noted to have significantly increased lacrimal gland weight, with enlarged, carbohydrate-rich, PAS-positive acinar cells; increased corneal epithelia permeability, with reduced CE expression; and larger conjunctival epithelial goblet cells. The PKCα−/− mice showed more rapid corneal epithelial healing, with less neutrophil infiltration and fewer proliferating cells than did the PKCα+/+ mice. Conclusions. The PKCα−/− mice showed lower tear production, which appeared to be caused by impaired secretion by the LG and conjunctival goblet cells. Despite their altered tear dynamics, the PKCα−/− mice demonstrated more rapid corneal epithelial wound healing, perhaps due to decreased neutrophil infiltration. PMID:20505191
Fahrenkrug, Jan; Georg, Birgitte; Hannibal, Jens; Jørgensen, Henrik Løvendahl
2018-04-01
The intraocular pressure of mice displays a daily rhythmicity being highest during the dark period. The present study was performed to elucidate the role of the circadian clock and light in the diurnal and the circadian variations in intraocular pressure in mice, by using animals with disrupted clock function (VPAC2 receptor knockout mice) or impaired light information to the clock (PACAP knockout mice). In wildtype mice, intraocular pressure measured under light/dark conditions showed a statistically significant 24 h sinusoidal rhythm with nadir during the light phase and peak during the dark phase. After transfer of the wildtype mice into constant darkness, the intraocular pressure increased, but the rhythmic changes in intraocular pressure continued with a pattern identical to that obtained during the light/dark cycle. The intraocular pressure in VPAC2 receptor deficient mice during light/dark conditions also showed a sinusoidal pattern with significant changes as a function of a 24 h cycle. However, transfer of the VPAC2 receptor knockout mice into constant darkness completely abolished the rhythmic changes in intraocular pressure. The intraocular pressure in PACAP deficient mice oscillated significantly during both 24 h light and darkness and during constant darkness. During LD conditions, the amplitude of PACAP deficient was significantly lower compared to wildtype mice, resulting in higher daytime and lower nighttime values. In conclusion, by studying the VPAC2 receptor knockout mouse which lacks circadian control and the PACAP knockout mouse which displays impaired light signaling, we provided evidence that the daily intraocular pressure rhythms are primarily generated by the circadian master clock and to a lesser extent by environmental light and darkness. Copyright © 2018 Elsevier Ltd. All rights reserved.
IL-33 induces protective effects in adipose tissue inflammation during obesity in mice
Miller, Ashley M.; Asquith, Darren L.; Hueber, Axel J.; Anderson, Lesley A.; Holmes, William M.; McKenzie, Andrew N.; Xu, Damo; Sattar, Naveed; McInnes, Iain B.; Liew, Foo Y.
2014-01-01
Rationale Chronic low-grade inflammation involving adipose tissue likely contributes to the metabolic consequences of obesity. The cytokine IL-33 and its receptor ST2 are expressed in adipose tissue but their role in adipose tissue inflammation during obesity is unclear. Objective To examine the functional role of IL-33 in adipose tissues, and investigate the effects on adipose tissue inflammation and obesity in vivo. Methods and Results We demonstrate that treatment of adipose tissue cultures in vitro with IL-33 induced production of Th2 cytokines (IL-5, IL-13, IL-10), and reduced expression of adipogenic and metabolic genes. Administration of recombinant IL-33 to genetically obese diabetic (ob/ob) mice led to reduced adiposity, reduced fasting glucose and improved glucose and insulin tolerance. IL-33 also induced accumulation of Th2 cells in adipose tissue and polarization of adipose tissue macrophages towards an M2 alternatively activated phenotype (CD206+), a lineage associated with protection against obesity-related metabolic events. Furthermore, mice lacking endogenous ST2 fed HFD had increased body weight and fat mass, impaired insulin secretion and glucose regulation compared to WT controls fed HFD. Conclusions In conclusion, IL-33 may play a protective role in the development of adipose tissue inflammation during obesity. PMID:20634488
Romanelli, Filippo; Corbo, AnthonyMarco; Salehi, Maryam; Yadav, Manisha C.; Salman, Soha; Petrosian, David; Rashidbaigi, Omid J.; Chait, Jesse; Kuruvilla, Jes; Plummer, Maria; Radichev, Ilian; Margulies, Kenneth B.; Gerdes, A. Martin; Pinkerton, Anthony B.; Millán, José Luis; Savinov, Alexei Y.
2017-01-01
Objective Overexpression of tissue-nonspecific alkaline phosphatase (TNAP) in endothelium leads to arterial calcification in mice. The purpose of this study was to examine the effect of elevated endothelial TNAP on coronary atherosclerosis. In addition, we aimed to examine endogenous TNAP activity in human myocardium. Approach and results A vascular pattern of TNAP activity was observed in human non-failing, ischemic, and idiopathic dilated hearts (5 per group); no differences were noted between groups in this study. Endothelial overexpression of TNAP was achieved in mice harboring a homozygous recessive mutation in the low density lipoprotein receptor (whc allele) utilizing a Tie2-cre recombinase (WHC-eTNAP mice). WHC-eTNAP developed significant coronary artery calcification at baseline compared WHC controls (4312 vs 0μm2 alizarin red area, p<0.001). Eight weeks after induction of atherosclerosis, lipid deposition in the coronary arteries of WHC-eTNAP was increased compared to WHC controls (121633 vs 9330μm2 oil red O area, p<0.05). Coronary lesions in WHC-eTNAP mice exhibited intimal thickening, calcifications, foam cells, and necrotic cores. This was accompanied by the reduction in body weight and left ventricular ejection fraction (19.5 vs. 23.6g, p<0.01; 35% vs. 47%, p<0.05). In a placebo-controlled experiment under atherogenic conditions, pharmacological inhibition of TNAP in WHC-eTNAP mice by a specific inhibitor SBI-425 (30mg*kg-1*d-1, for 5 weeks) reduced coronary calcium (78838 vs.144622μm2) and lipids (30754 vs. 77317μm2); improved body weight (22.4 vs.18.8g) and ejection fraction (59 vs. 47%). The effects of SBI-425 were significant in the direct comparisons with placebo but disappeared after TNAP-negative placebo-treated group was included in the models as healthy controls. Conclusions Endogenous TNAP activity is present in human cardiac tissues. TNAP overexpression in vascular endothelium in mice leads to an unusual course of coronary atherosclerosis, in which calcification precedes lipid deposition. The prevalence and significance of this mechanism in human atherosclerosis requires further investigations. PMID:29023576
Billington, Charles J; Schmidt, Brian; Zhang, Lei; Hodges, James S; Georgieff, Michael K; Schotta, Gunnar; Gopalakrishnan, Rajaram; Petryk, Anna
2013-03-01
Diets rich in methyl-donating compounds, including folate, can provide protection against neural tube defects, but their role in preventing craniofacial defects is less clear. Mice deficient in Twisted gastrulation (TWSG1), an extracellular modulator of bone morphogenetic protein signaling, manifest both midline facial defects and jaw defects, allowing study of the effects of methyl donors on various craniofacial defects in an experimentally tractable animal model. The goal of this study was to examine the effects of maternal dietary supplementation with methyl donors on the incidence and type of craniofacial defects among Twsg1(-/-) offspring. Nulliparous and primiparous female mice were fed an NIH31 standard diet (control) or a methyl donor supplemented (MDS) diet (folate, vitamin B-12, betaine, and choline). Observed defects in the pups were divided into those derived mostly from the first branchial arch (BA1) (micrognathia, agnathia, cleft palate) and midline facial defects in the holoprosencephaly spectrum (cyclopia, proboscis, and anterior truncation). In the first pregnancy, offspring of mice fed the MDS diet had lower incidence of BA1-derived defects (12.8% in MDS vs. 32.5% in control; P = 0.02) but similar incidence of midline facial defects (6.4% in MDS vs. 5.2% in control; P = 1.0). Increased maternal parity was independently associated with increased incidence of craniofacial defects after adjusting for diet (from 37.7 to 59.5% in control, P = 0.04 and from 19.1 to 45.3% in MDS, P = 0.045). In conclusion, methyl donor supplementation shows protective effects against jaw defects, but not midline facial defects, and increased parity can be a risk factor for some craniofacial defects.
Lim, Jae-Youn; Kim, Ok-Kyung; Lee, Jeongmin; Lee, Min-Jae; Kang, Namgil
2014-01-01
BACKGROUND/OBJECTIVES Ultraviolet B (UVB) irradiation on skin can induce production of reactive oxygen species (ROS), which cause expression of matrix metalloproteinases (MMPs) and collagen degradation. Thus, chronic exposure of skin to UVB irradiation leads to histological changes consistent with aging, such as wrinkling, abnormal pigmentation, and loss of elasticity. We investigated the protective effect of the standardized green tea seed extract (GSE) on UVB-induced skin photoaging in hairless mice. MATERIALS/METHODS Skin photoaging was induced by UVB irradiation on the back of Skh-1 hairless mice three times per week and UVB irradiation was performed for 10 weeks. Mice were divided into six groups; normal control, UVB irradiated control group, positive control (UVB + dietary supplement of vitamin C 100 mg/kg), GSE 10 mg/kg (UVB + dietary supplement of GSE 10 mg/kg), GSE 100 mg/kg (UVB + dietary supplement of GSE 100 mg/kg), and GSE 200 mg/kg (UVB + dietary supplement of GSE 200 mg/kg). RESULTS The dietary supplement GSE attenuated UVB irradiation-induced wrinkle formation and the decrease in density of dermal collagen fiber. In addition, results of the antioxidant analysis showed that GSE induced a significant increase in antioxidant enzyme activity compared with the UVB irradiation control group. Dietary supplementation with GSE 200 mg/kg resulted in a significant decrease in expression of MMP-1, MMP-3, and MMP-9 and an increase in expression of TIMP and type-1 collagen. CONCLUSIONS Findings of this study suggest that dietary supplement GSE could be useful in attenuation of UVB irradiation-induced skin photoaging and wrinkle formation due to regulation of antioxidant defense systems and MMPs expression. PMID:25110559
Tsai, Jui-He; Schulte, Maureen; O'Neill, Kathleen; Chi, Maggie M.-Y.; Frolova, Antonina I.; Moley, Kelle H.
2013-01-01
ABSTRACT Embryo implantation in the uterus depends on decidualization of the endometrial stromal cells (ESCs), and glucose utilization via the pentose phosphate pathway is critical in this process. We hypothesized that the amino sugar glucosamine may block the pentose phosphate pathway via inhibition of the rate-limiting enzyme glucose-6-phosphate dehydrogenase in ESCs and therefore impair decidualization and embryo implantation, thus preventing pregnancy. Both human primary and immortalized ESCs were decidualized in vitro in the presence of 0, 2.5, or 5 mM glucosamine for 9 days. Viability assays demonstrated that glucosamine was well tolerated by human ESCs. Exposure of human ESCs to glucosamine resulted in significant decreases in the activity and expression of glucose-6-phosphate dehydrogenase and in the mRNA expression of the decidual markers prolactin, somatostatin, interleukin-15, and left-right determination factor 2. In mouse ESCs, expression of the decidual marker Prp decreased upon addition of glucosamine. In comparison with control mice, glucosamine-treated mice showed weak artificial deciduoma formation along the stimulated uterine horn. In a complementary in vivo experiment, a 60-day-release glucosamine (15, 150, or 1500 μg) or placebo pellet was implanted in a single uterine horn of mice. Mice with a glucosamine pellet delivered fewer live pups per litter than those with a control pellet, and pup number returned to normal after the end of the pellet-active period. In conclusion, glucosamine is a nonhormonal inhibitor of decidualization of both human and mouse ESCs and of pregnancy in mice. Our data indicate the potential for development of glucosamine as a novel, reversible, nonhormonal contraceptive. PMID:23718985
Sharron, Matthew; Hoptay, Claire E.; Wiles, Andrew A.; Garvin, Lindsay M.; Geha, Mayya; Benton, Angela S.; Nagaraju, Kanneboyina; Freishtat, Robert J.
2012-01-01
Purpose End-organ apoptosis is well-described in progressive sepsis and Multiple Organ Dysfunction Syndrome (MODS), especially where platelets accumulate (e.g. spleen and lung). We previously reported an acute sepsis-induced cytotoxic platelet phenotype expressing serine protease granzyme B. We now aim to define the site(s) of and mechanism(s) by which platelet granzyme B induces end-organ apoptosis in sepsis. Methods End-organ apoptosis in murine sepsis (i.e. polymicrobial peritonitis) was analyzed by immunohistochemistry. Platelet cytotoxicity was measured by flow cytometry following 90 minute ex vivo co-incubation with healthy murine splenocytes. Sepsis progression was measured via validated preclinical murine sepsis score. Measurements and Main Results There was evident apoptosis in spleen, lung, and kidney sections from septic wild type mice. In contrast, there was a lack of TUNEL staining in spleens and lungs from septic granzyme B null mice and these mice survived longer following induction of sepsis than wild type mice. In co-incubation experiments, physical separation of septic platelets from splenocytes by a semi-permeable membrane reduced splenocyte apoptosis to a rate indistinguishable from negative controls. Chemical separation by the platelet GPIIb/IIIa receptor inhibitor eptifibatide decreased apoptosis by 66.6±10.6% (p = 0.008). Mice treated with eptifibatide in vivo survived longer following induction of sepsis than vehicle control mice. Conclusions In sepsis, platelet granzyme B-mediated apoptosis occurs in spleen and lung, and absence of granzyme B slows sepsis progression. This process proceeds in a contact-dependent manner that is inhibited ex vivo and in vivo by the platelet GPIIb/IIIa receptor inhibitor eptifibatide. The GPIIb/IIIa inhibitors and other classes of anti-platelet drugs may be protective in sepsis. PMID:22844498
Drewniak, Elizabeth I; Jay, Gregory D; Fleming, Braden C; Zhang, Ling; Warman, Matthew L; Crisco, Joseph J
2012-01-01
Objective To investigate the effects of lubricin gene dosage and cyclic loading on whole joint coefficient of friction and articular cartilage surface integrity in mouse knee joints. Methods Joints from mice with 2 (Prg4+/+), 1 (Prg4+/−), or no (Prg4−/−) functioning lubricin alleles were subjected to 26 hours of cyclic loading using a custom-built pendulum. Coefficient of friction values were measured at multiple time points. Contralateral control joints were left unloaded. Following testing, joints were examined for histologic evidence of damage and cell viability. Results At baseline, the coefficient of friction values in Prg4−/− mice were significantly higher than those in Prg4+/+ and Prg4+/− mice (P < 0.001). Cyclic loading continuously increased the coefficient of friction in Prg4−/− mouse joints. In contrast, Prg4+/− and Prg4+/+ mouse joints had no coefficient of friction increases during the first 4 hours of loading. After 26 hours of loading, joints from all genotypes had increased coefficient of friction values compared to baseline and unloaded controls. Significantly greater increases occurred in Prg4−/− and Prg4+/− mouse joints compared to Prg4+/+ mouse joints. The coefficient of friction values were not significantly associated with histologic evidence of damage or loss of cell viability. Conclusion Our findings indicate that mice lacking lubricin have increased baseline coefficient of friction values and are not protected against further increases caused by loading. Prg4+/− mice are indistinguishable from Prg4+/+ mice at baseline, but have significantly greater coefficient of friction values following 26 hours of loading. Lubricin dosage affects joint properties during loading, and may have clinical implications in patients for whom injury or illness alters lubricin abundance. PMID:21905020
Hofmann, Anja; Brunssen, Coy; Peitzsch, Mirko; Balyura, Mariya; Mittag, Jennifer; Frenzel, Annika; Jannasch, Anett; Brown, Nicholas F; Weldon, Steven M; Gueneva-Boucheva, Kristina K; Eisenhofer, Graeme; Bornstein, Stefan R; Morawietz, Henning
2017-06-01
Inhibition of aldosterone synthase is an alternative treatment option to mineralocorticoid receptor antagonism to prevent harmful aldosterone actions. FAD286 is one of the best characterized aldosterone synthase inhibitors to date. FAD286 improves glucose tolerance and increases glucose-stimulated insulin secretion in obese and diabetic ZDF rats. However, there is limited knowledge about the dose-dependent effects of FAD286 on plasma aldosterone, corticosterone, and 11-deoxycorticosterone in ZDF rats and in db / db mice, a second important rodent model of obesity and type 2 diabetes. In addition, effects of FAD286 on plasma steroids in mice and rats are controversial. Therefore, obese Zucker diabetic fatty (ZDF) rats and db / db mice were treated with FAD286 for up to 15 weeks and plasma steroids were evaluated using highly sensitive liquid chromatography-tandem mass spectrometry. In ZDF rats, FAD286 (10 mg/kg/d) treatment resulted in nearly complete disappearance of plasma aldosterone while corticosterone levels remained unaffected and those of 11-deoxycorticosterone were increased ~4-fold compared to vehicle control. A lower dose of FAD286 (3 mg/kg / d) showed no effect on plasma aldosterone or corticosterone, but 11-deoxycorticosterone was again increased ~4-fold compared to control. In contrast to ZDF rats, a high dose of FAD286 (40 mg/kg/d) did not affect plasma aldosterone levels in db / db mice although 11-deoxycorticosterone increased ~2.5-fold. A low dose of FAD286 (10 mg/kg/d) increased plasma aldosterone without affecting corticosterone or 11-deoxycorticosterone. In conclusion, the aldosterone synthase inhibitor, FAD286, lowers plasma aldosterone in obese ZDF rats, but not in obese db / db mice. © Georg Thieme Verlag KG Stuttgart · New York.
The Hajdu Cheney Mutation Is a Determinant of B-Cell Allocation of the Splenic Marginal Zone.
Yu, Jungeun; Zanotti, Stefano; Walia, Bhavita; Jellison, Evan; Sanjay, Archana; Canalis, Ernesto
2018-01-01
The neurogenic locus notch homolog protein (Notch)-2 receptor is a determinant of B-cell allocation, and gain-of-NOTCH2-function mutations are associated with Hajdu-Cheney syndrome (HCS), a disease presenting with osteoporosis and acro-osteolysis. We generated a mouse model reproducing the HCS mutation (Notch2HCS), and heterozygous global mutant mice displayed gain-of-Notch2 function. In the mutant spleen, the characteristic perifollicular rim marking the marginal zone (MZ), which is the interface between the nonlymphoid red pulp and the lymphoid white pulp, merged with components of the white pulp. As a consequence, the MZ of Notch2HCS mice occupied most of the splenic structure. To explore the mechanisms involved, lymphocyte populations from the bone marrow and spleen were harvested from heterozygous Notch2HCS mice and sex-matched control littermates and analyzed by flow cytometry. Notch2HCS mice had an increase in CD21/35 high CD23 - splenic MZ B cells of approximately fivefold and a proportional decrease in splenic follicular B cells (CD21/35 int CD23 + ) at 1, 2, and 12 months of age. Western blot analysis revealed that Notch2HCS mutant splenocytes had increased phospho-Akt and phospho-Jun N-terminal kinase, and gene expression analysis of splenic CD19 + B cells demonstrated induction of Hes1 and Hes5 in Notch2HCS mutants. Anti-Notch2 antibodies decreased MZ B cells in control and Notch2HCS mice. In conclusion, Notch2HCS mutant mice have increased mature B cells in the MZ of the spleen. Copyright © 2018 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
2013-01-01
Background Arsenic is widely distributed in the environment and has been found to be associated with the various health related problems including skin lesions, cancer, cardiovascular and immunological disorders. The fruit extract of Emblica officinalis (amla) has been shown to have anti-oxidative and immunomodulatory properties. In view of increasing health risk of arsenic, the present study has been carried out to investigate the protective effect of amla against arsenic induced oxidative stress and apoptosis in thymocytes of mice. Methods Mice were exposed to arsenic (sodium arsenite 3 mg/kg body weight p.o.) or amla (500 mg/kg body weight p.o.) or simultaneously with arsenic and amla for 28 days. The antioxidant enzyme assays were carried out using spectrophotometer and generation of ROS, apoptotic parameters, change in cell cycle were carried out using flow cytometer following the standard protocols. Results Arsenic exposure to mice caused a significant increase in the lipid peroxidation, ROS production and decreased cell viability, levels of reduced glutathione, the activity of superoxide dismutase, catalase, cytochrome c oxidase and mitochondrial membrane potential in the thymus as compared to controls. Increased activity of caspase-3 linked with apoptosis assessed by the cell cycle analysis and annexin V/PI binding was also observed in mice exposed to arsenic as compared to controls. Co-treatment with arsenic and amla decreased the levels of lipid peroxidation, ROS production, activity of caspase-3, apoptosis and increased cell viability, levels of antioxidant enzymes, cytochrome c oxidase and mitochondrial membrane potential as compared to mice treated with arsenic alone. Conclusions The results of the present study exhibits that arsenic induced oxidative stress and apoptosis significantly protected by co-treatment with amla that could be due to its strong antioxidant potential. PMID:23889914
The MAP kinase JNK2 mediates cigarette smoke-induced arterial thrombosis.
Breitenstein, Alexander; Stämpfli, Simon F; Reiner, Martin F; Shi, Yi; Keller, Stephan; Akhmedov, Alexander; Schaub Clerigué, Ariane; Spescha, Remo D; Beer, Hans-Jürg; Lüscher, Thomas F; Tanner, Felix C; Camici, Giovanni G
2017-01-05
Despite public awareness of its deleterious effects, smoking remains a major cause of death. Indeed, it is a risk factor for atherothrombotic complications and in line with this, the introduction of smoking ban in public areas reduced smoking-associated cardiovascular complications. Nonetheless, smoking remains a major concern, and molecular mechanisms by which it causes cardiovascular disease are not known. Peripheral blood monocytes from healthy smokers displayed increased JNK2 and tissue factor (TF) gene expression compared to non-smokers (n=15, p<0.05). Similarly, human aortic endothelial cells exposed to cigarette smoke total particulate matter (CS-TPM) revealed increased TF expression mediated by JNK2 (n=4; p<0.05). Wild-type and JNK2 -/- mice were exposed to cigarette smoke for two weeks after which arterial thrombosis was investigated. Wild-type mice exposed to smoke displayed reduced time to thrombotic arterial occlusion (n=8; p<0.05) and increased tissue factor activity (n=7; p<0.05) as compared to wild-type controls (n=6), while JNK2 -/- mice exposed to smoke maintained an unaltered thrombotic potential (n=8; p=NS) and tissue factor activity (n=8) comparable to that of JNK2 -/- and wild-type controls (n=6; p=NS). Smoking caused an increased production of reactive oxygen species (ROS) in wild-type but not in JNK2 -/- mice (n=7; p<0.05 for wild-type mice and n=5-6; p=NS for JNK2 -/- mice). In conclusion, the MAP kinase JNK2 mediates cigarette smoke-induced TF activation, arterial thrombosis and ROS production. These results underscore a major role of JNK2 in smoke-mediated thrombus formation and may offer an attractive target to prevent smoke-related thrombosis in those subjects which do not manage quitting.
Ueta, Cintia B; Olivares, Emerson L; Bianco, Antonio C
2011-09-01
Thyroid hormone accelerates energy expenditure (EE) and is critical for cold-induced thermogenesis. To define the metabolic role played by thyroid hormone in the dissipation of calories from diet, hypothyroid mice were studied for 60 d in a comprehensive lab animal monitoring system. Hypothyroidism decreased caloric intake and body fat while down-regulating genes in the skeletal muscle but not brown adipose tissue thermogenic programs, without affecting daily EE. Only at thermoneutrality (30 C) did hypothyroid mice exhibit slower rate of EE, indicating a metabolic response to hypothyroidism that depends on ambient temperature. A byproduct of this mechanism is that at room temperature (22 C), hypothyroid mice are protected against diet-induced obesity, i.e. only at thermoneutrality did hypothyroid mice become obese when placed on a high-fat diet (HFD). This is in contrast to euthyroid controls, which on a HFD gained more body weight and fat at any temperature while activating the brown adipose tissue and accelerating daily EE but not the skeletal muscle thermogenic program. In the liver of euthyroid controls, HFD caused an approximately 5-fold increase in triglyceride content and expression of key metabolic genes, whereas acclimatization to 30 C cut triglyceride content by half and normalized gene expression. However, in hypothyroid mice, HFD-induced changes in liver persisted at 30 C, resulting in marked liver steatosis. Acclimatization to thermoneutrality dramatically improves glucose homeostasis, but this was not affected by hypothyroidism. In conclusion, hypothyroid mice are metabolically sensitive to environmental temperature, constituting a mechanism that defines resistance to diet-induced obesity and hepatic lipid metabolism.
X-rays and photocarcinogenesis in hairless mice.
Lerche, Catharina M; Philipsen, Peter A; Wulf, Hans Christian
2013-08-01
It is well known that excessive X-ray radiation can cause non-melanoma skin cancers. With the increased incidence of sun-related skin cancer there is a need to investigate the combination of sunlight and X-rays. Immunocompetent C3.Cg/TifBomTac mice (n = 298) were divided into 12 groups. Mice were irradiated with 12, 29 or 50 kV X-rays. The mice received a total dose of 45 Gy. They were irradiated with 3 SED simulated solar radiation (SSR) either before or after irradiation with X-rays. The groups irradiated with X-rays alone, 0, 3, 9 and 10 mice (0, 12, 29 and 50 kV, respectively) developed squamous cell carcinoma. In the groups irradiated with SSR after X-rays the development of tumours was significantly faster in the 50 kV group than in the corresponding control group (175 vs. 194 days, p < 0.001). In the groups irradiated with SSR prior to the X-ray radiation the development of tumours was significantly faster in the 29 and the 50 kV groups than in the corresponding control group (175 vs. 202 days, p < 0.001 and 158 vs. 202 days, p < 0.001, respectively). In conclusion, X-ray radiation alone is a weak carcinogen in hairless mice. There is an added carcinogenic effect if X-ray radiation is given on prior sun-exposed skin or if the skin is sun-exposed after X-rays. We still believe that X-ray radiation is a safe and effective therapy for various dermatological diseases but caution should be observed if a patient has severely sun-damaged skin or has a high-risk sun behaviour.
Eybl, Vladislav; Kotyzová, Dana; Lesetický, Ladislav; Bludovská, Monika; Koutenský, Jaroslav
2006-01-01
Curcumin (diferuoyl methane) from turmeric is a well-known biologically active compound. It has been shown to ameliorate oxidative stress and it is considered to be a potent cancer chemopreventive agent. In our previous study the antioxidative effects of curcumin in cadmium exposed animals were demonstrated. Also manganese exerts protective effects in experimental cadmium intoxication. The present study examined the ability of the manganese complex of curcumin (Mn-curcumin) and curcumin to protect against oxidative damage and changes in trace element status in cadmium-intoxicated male mice. Curcumin or Mn-curcumin were administered at equimolar doses (0.14 mmol/kg b.w.) for 3 days, by gastric gavages, dispersed in methylcellulose. One hour after the last dose of antioxidants, cadmium chloride (33 micromol/kg) was administered subcutaneously. Both curcumin and Mn-curcumin prevented the increase of hepatic lipid peroxidation -- expressed as MDA level, induced by cadmium intoxication and attenuated the Cd-induced decrease of hepatic GSH level. No change in hepatic glutathione peroxidase or catalase activities was found in Cd-exposed mice. A decreased GSH-Px activity was measured in curcumin and Mn-curcumin alone treated mice. Neither curcumin nor Mn-curcumin treatment influenced cadmium distribution in the tissues and did not correct the changes in the balance of essential elements caused by Cd-treatment. The treatment with Mn-curcumin increased the Fe and Mn content in the kidneys of both control and Cd-treated mice and Fe and Cu content in the brain of control mice. In conclusion, regarding the antioxidative action, introducing manganese into the curcumin molecule does not potentiate the studied effects of curcumin. Copyright 2006 John Wiley & Sons, Ltd.
Ueta, Cintia B.; Olivares, Emerson L.
2011-01-01
Thyroid hormone accelerates energy expenditure (EE) and is critical for cold-induced thermogenesis. To define the metabolic role played by thyroid hormone in the dissipation of calories from diet, hypothyroid mice were studied for 60 d in a comprehensive lab animal monitoring system. Hypothyroidism decreased caloric intake and body fat while down-regulating genes in the skeletal muscle but not brown adipose tissue thermogenic programs, without affecting daily EE. Only at thermoneutrality (30 C) did hypothyroid mice exhibit slower rate of EE, indicating a metabolic response to hypothyroidism that depends on ambient temperature. A byproduct of this mechanism is that at room temperature (22 C), hypothyroid mice are protected against diet-induced obesity, i.e. only at thermoneutrality did hypothyroid mice become obese when placed on a high-fat diet (HFD). This is in contrast to euthyroid controls, which on a HFD gained more body weight and fat at any temperature while activating the brown adipose tissue and accelerating daily EE but not the skeletal muscle thermogenic program. In the liver of euthyroid controls, HFD caused an approximately 5-fold increase in triglyceride content and expression of key metabolic genes, whereas acclimatization to 30 C cut triglyceride content by half and normalized gene expression. However, in hypothyroid mice, HFD-induced changes in liver persisted at 30 C, resulting in marked liver steatosis. Acclimatization to thermoneutrality dramatically improves glucose homeostasis, but this was not affected by hypothyroidism. In conclusion, hypothyroid mice are metabolically sensitive to environmental temperature, constituting a mechanism that defines resistance to diet-induced obesity and hepatic lipid metabolism. PMID:21771890
Richard, Allison J.; Burris, Thomas P.; Sanchez-Infantes, David; Wang, Yongjun; Ribnicky, David M.; Stephens, Jacqueline M.
2014-01-01
Objective Studies have shown that the inability of adipose tissue to properly expand during the obese state or respond to insulin can lead to metabolic dysfunction. Artemisia is a diverse group of plants that has a history of medicinal use. This study examines the ability of ethanolic extracts of Artemisia scoparia (SCO) and Artemisia santolinifolia (SAN) to modulate adipocyte development in cultured adipocytes and white adipose tissue (WAT) function in vivo using a mouse model of diet-induced obesity. Research Design & Procedures Adipogenesis was assessed using Oil Red O staining and immunoblotting. A nuclear receptor specificity assay was used to examine the specificity of SCO- and SAN-induced PPARγ activation. C57BL/6J mice, fed a high-fat diet, were gavaged with saline, SCO, or SAN for 2 weeks. Whole-body insulin sensitivity was examined using insulin tolerance tests. WAT depots were assessed via immunoblotting for markers of insulin action and adipokine production. Results We established that SCO and SAN were highly specific activators of PPARγ and did not activate other nuclear receptors. After a one-week daily gavage, SCO- and SAN-treated mice had lower insulin-induced glucose disposal rates than control mice. At the end of the 2-week treatment period, SCO- and SAN-treated mice had enhanced insulin-responsive Akt serine-473 phosphorylation and significantly decreased MCP-1 levels in visceral WAT relative to control mice; these differences were depot specific. Moreover, plasma adiponectin levels were increased following SCO treatment. Conclusion Overall, these studies demonstrate that extracts from two Artemisia species can have metabolically favorable effects on adipocytes and WAT. PMID:24985103
Toib, Amir; Zhang, Chen; Borghetti, Giulia; Zhang, Xiaoxiao; Wallner, Markus; Yang, Yijun; Troupes, Constantine D; Kubo, Hajime; Sharp, Thomas E; Feldsott, Eric; Berretta, Remus M; Zalavadia, Neil; Trappanese, Danielle M; Harper, Shavonn; Gross, Polina; Chen, Xiongwen; Mohsin, Sadia; Houser, Steven R
2017-09-01
Hypertrophic cardiomyopathy (HCM) is one of the most common genetic cardiac diseases and among the leading causes of sudden cardiac death (SCD) in the young. The cellular mechanisms leading to SCD in HCM are not well known. Prolongation of the action potential (AP) duration (APD) is a common feature predisposing hypertrophied hearts to SCD. Previous studies have explored the roles of inward Na + and Ca 2+ in the development of HCM, but the role of repolarizing K + currents has not been defined. The objective of this study was to characterize the arrhythmogenic phenotype and cellular electrophysiological properties of mice with HCM, induced by myosin-binding protein C (MyBPC) knockout (KO), and to test the hypothesis that remodeling of repolarizing K + currents causes APD prolongation in MyBPC KO myocytes. We demonstrated that MyBPC KO mice developed severe hypertrophy and cardiac dysfunction compared with wild-type (WT) control mice. Telemetric electrocardiographic recordings of awake mice revealed prolongation of the corrected QT interval in the KO compared with WT control mice, with overt ventricular arrhythmias. Whole cell current- and voltage-clamp experiments comparing KO with WT mice demonstrated ventricular myocyte hypertrophy, AP prolongation, and decreased repolarizing K + currents. Quantitative RT-PCR analysis revealed decreased mRNA levels of several key K + channel subunits. In conclusion, decrease in repolarizing K + currents in MyBPC KO ventricular myocytes contributes to AP and corrected QT interval prolongation and could account for the arrhythmia susceptibility. NEW & NOTEWORTHY Ventricular myocytes isolated from the myosin-binding protein C knockout hypertrophic cardiomyopathy mouse model demonstrate decreased repolarizing K + currents and action potential and QT interval prolongation, linking cellular repolarization abnormalities with arrhythmia susceptibility and the risk for sudden cardiac death in hypertrophic cardiomyopathy. Copyright © 2017 the American Physiological Society.
Inhibition of subcutaneously implanted human pituitary tumor cells in nude mice by LRIG1.
Wang, X; He, X J; Xu, H Q; Chen, Z W; Fan, H H
2016-05-06
The aim of this study was to explore the inhibition of subcutaneously implanted human pituitary tumor cells in nude mice by LRIG1 and its mechanism. For this study, athymic nude mice were injected with either normal pituitary tumor RC-4B/C cells or LRIG1-transfected RC-4B/C cells. We then calculated the volume inhibition rate of the tumors, as well as the apoptosis index of tumor cells and the expression of Ras, Raf, AKt, and ERK mRNA in tumor cells. Tumor cell morphological and structural changes were also observed under electron microscope. Our data showed that subcutaneous tumor growth was slowed or even halted in LRIG1-transfected tumors. The tumor volumes were significantly different between the two groups of mice (χ2 = 2.14, P < 0.05). The tumor apoptosis index was found to be 8.72% in the control group and 39.7% in LRIG1-transfected mice (χ2 = 7.59, P < 0.05). The levels of Ras, Raf, and AKt mRNA in LRIG1-transfected RC-4B/C cells were significantly reduced after transfection (P < 0.01). Transfected subcutaneous tumor cells appeared to be in early or late apoptosis under an electron microscope, while only a few subcutaneous tumor cells appeared to be undergoing apoptosis in the control group. In conclusion, the LRIG1 gene is able to inhibit proliferation and promote apoptosis in subcutaneously implanted human pituitary tumors in nude mice. The mechanism of LRIG1 may involve the inhibition of the PI3K/ Akt and Ras/Raf/ERK signal transduction pathways.
Chu, Cuilin; Wei, Hui; Zhu, Wanwan; Shen, Yan
2017-01-01
Abstract Background Prostaglandin (PG) D2 is the most abundant prostaglandin in the mammalian brain. The physiological and pharmacological actions of PGD2 in the central nervous system seem to be associated with some of the symptoms exhibited by patients with major depressive disorder. Previous studies have found that PGD2 synthase was decreased in the cerebrospinal fluid of major depressive disorder patients. We speculated that there may be a dysregulation of PGD2 levels in major depressive disorder. Methods Ultra-performance liquid chromatography-tandem mass spectrometry coupled with a stable isotopic-labeled internal standard was used to determine PGD2 levels in the plasma of major depressive disorder patients and in the brains of depressive mice. A total of 32 drug-free major depressive disorder patients and 30 healthy controls were recruited. An animal model of depression was constructed by exposing mice to 5 weeks of chronic unpredictable mild stress. To explore the role of PGD2 in major depressive disorder, selenium tetrachloride was administered to simulate the change in PGD2 levels in mice. Results Mice exposed to chronic unpredictable mild stress exhibited depression-like behaviors, as indicated by reduced sucrose preference and increased immobility time in the forced swimming test. PGD2 levels in the plasma of major depressive disorder patients and in the brains of depressive mice were both decreased compared with their corresponding controls. Further inhibiting PGD2 production in mice resulted in an increased immobility time in the forced swimming test that could be reversed by imipramine. Conclusion Decreased PGD2 levels in major depressive disorder are associated with depression-like behaviors. PMID:28582515
AHANGARPOUR, Akram; OROOJAN, Ali Akbar; HEIDARI, Hamid; GHAEDI, Ehsan; TAHERKHANI, Reza
2015-01-01
Background: Reproductive dysfunction is a complication of diabetes. Arctium lappa (burdock) root has hypoglycemic and antioxidative properties, which are traditionally used for treatment of impotence and sterility. Therefore, the aim of this study is to investigate the effects of its hydro alcoholic extract on gonadotropin, testosterone, and sperm parameters in nicotinamide/ streptozotocin-induced diabetic mice. Methods: In this experimental study, 56 adult male Naval Medical Research Institute (NMRI) mice (30–35 g) were randomly divided into seven groups: control, diabetes, diabetes + glibenclamide (0.25 mg/kg), diabetes + extract (200 or 300 mg/kg), and extract (200 or 300 mg/kg). Diabetes was induced with intraperitoneal injection of nicotinamide (NA) and streptozotocin (STZ). Twenty-four hours after the last extract and drug administration, serum samples, testes, and cauda epididymis were removed immediately for experimental assessment. Results: Body weight, serum luteinizing hormone (LH), follicle stimulating hormone (FSH), and testosterone levels, and sperm count (P < 0.05) and viability (P < 0.01) decreased in diabetic mice. Administration of glibenclamide significantly improved these reductions in diabetic animals (P < 0.05). However, the hydro alcoholic extract (300 mg/kg) enhanced sperm viability only in diabetic mice (P < 0.01). In addition, this dose of extract increased sperm count, LH, FSH, and testosterone in nondiabetic animals compared with the control group (P < 0.05). Conclusion: The results indicate that applied burdock root extract has anti-infertility effects in nondiabetic mice. Hence, this part of the A. lappa plant has an effect on the health of the reproductive system in order to improve diabetic conditions. PMID:26023292
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mao, Jian -Hua; Langley, Sasha A.; Huang, Yurong
Evidence has emerged that suggests a link between motor deficits, obesity and many neurological disorders. However, the contributing genetic risk factors are poorly understood. Here we used the Collaborative Cross (CC), a large panel of newly inbred mice that captures 90% of the known variation among laboratory mice, to identify the genetic loci controlling rotarod performance and its relationship with body weight in a cohort of 365 mice across 16 CC strains. Body weight and rotarod performance varied widely across CC strains and were significantly negatively correlated. Genetic linkage analysis identified 14 loci that were associated with body weight. However,more » 45 loci affected rotarod performance, seven of which were also associated with body weight, suggesting a strong link at the genetic level. As a result, we show that genes identified in this study overlap significantly with those related to neurological disorders and obesity found in human GWA studies. In conclusion, our results provide a genetic framework for studies of the connection between body weight, the central nervous system and behavior.« less
Protective effects of Moringa oleifera Lam. leaves against arsenic-induced toxicity in mice
Sheikh, Afzal; Yeasmin, Fouzia; Agarwal, Smita; Rahman, Mashiur; Islam, Khairul; Hossain, Ekhtear; Hossain, Shakhawoat; Karim, Md Rezaul; Nikkon, Farjana; Saud, Zahangir Alam; Hossain, Khaled
2014-01-01
Objective To evaluate the protective role of leaves of Moringa oleifera (M. oleifera) Lam. against arsenic-induced toxicity in mice. Methods Swiss albino male mice were divided into four groups. The first group was used as non-treated control group while, the second, third, and fourth groups were treated with M. oleifera leaves (50 mg/kg body weight per day), sodium arsenite (10 mg/kg body weight per day) and sodium arsenite plus M. oleifera leaves, respectively. Serum indices related to cardiac, liver and renal functions were analyzed to evaluate the protective effect of Moringa leaves on arsenic-induced effects in mice. Results It revealed that food supplementation of M. oleifera leaves abrogated the arsenic-induced elevation of triglyceride, glucose, urea and the activities of alkaline phospatase, aspartate aminotransferase and alanine aminotransferase in serum. M. oleifera leaves also prevented the arsenic-induced perturbation of serum butyryl cholinesterase activity, total cholesterol and high density lipoprotein cholesterol. Conclusions The results indicate that the leaves of M. oleifera may be useful in reducing the effects of arsenic-induced toxicity. PMID:25183111
Mao, Jian -Hua; Langley, Sasha A.; Huang, Yurong; ...
2015-11-09
Evidence has emerged that suggests a link between motor deficits, obesity and many neurological disorders. However, the contributing genetic risk factors are poorly understood. Here we used the Collaborative Cross (CC), a large panel of newly inbred mice that captures 90% of the known variation among laboratory mice, to identify the genetic loci controlling rotarod performance and its relationship with body weight in a cohort of 365 mice across 16 CC strains. Body weight and rotarod performance varied widely across CC strains and were significantly negatively correlated. Genetic linkage analysis identified 14 loci that were associated with body weight. However,more » 45 loci affected rotarod performance, seven of which were also associated with body weight, suggesting a strong link at the genetic level. As a result, we show that genes identified in this study overlap significantly with those related to neurological disorders and obesity found in human GWA studies. In conclusion, our results provide a genetic framework for studies of the connection between body weight, the central nervous system and behavior.« less
Delayed animal aging through the recovery of stem cell senescence by platelet rich plasma.
Liu, Hen-Yu; Huang, Chiung-Fang; Lin, Tzu-Chieh; Tsai, Ching-Yu; Tina Chen, Szu-Yu; Liu, Alice; Chen, Wei-Hong; Wei, Hong-Jian; Wang, Ming-Fu; Williams, David F; Deng, Win-Ping
2014-12-01
Aging is related to loss of functional stem cell accompanying loss of tissue and organ regeneration potentials. Previously, we demonstrated that the life span of ovariectomy-senescence accelerated mice (OVX-SAMP8) was significantly prolonged and similar to that of the congenic senescence-resistant strain of mice after platelet rich plasma (PRP)/embryonic fibroblast transplantation. The aim of this study is to investigate the potential of PRP for recovering cellular potential from senescence and then delaying animal aging. We first examined whether stem cells would be senescent in aged mice compared to young mice. Primary adipose derived stem cells (ADSCs) and bone marrow derived stem cells (BMSCs) were harvested from young and aged mice, and found that cell senescence was strongly correlated to animal aging. Subsequently, we demonstrated that PRP could recover cell potential from senescence, such as promote cell growth (cell proliferation and colony formation), increase osteogenesis, decrease adipogenesis, restore cell senescence related markers and resist the oxidative stress in stem cells from aged mice. The results also showed that PRP treatment in aged mice could delay mice aging as indicated by survival, body weight and aging phenotypes (behavior and gross morphology) in term of recovering the cellular potential of their stem cells compared to the results on aged control mice. In conclusion these findings showed that PRP has potential to delay aging through the recovery of stem cell senescence and could be used as an alternative medicine for tissue regeneration and future rejuvenation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Krishnan, Shuba; Paredes, João A.; Zhou, Xiaoshan; Kuiper, Raoul V.; Hultenby, Kjell; Curbo, Sophie; Karlsson, Anna
2014-01-01
Mitochondrial DNA depletion caused by thymidine kinase 2 (TK2) deficiency can be compensated by a nucleoside kinase from Drosophila melanogaster (Dm-dNK) in mice. We show that transgene expression of Dm-dNK in Tk2 knock-out (Tk2−/−) mice extended the life span of Tk2−/− mice from 3 weeks to at least 20 months. The Dm-dNK+/−Tk2−/− mice maintained normal mitochondrial DNA levels throughout the observation time. A significant difference in total body weight due to the reduction of subcutaneous and visceral fat in the Dm-dNK+/−Tk2−/− mice was the only visible difference compared with control mice. This indicates an effect on fat metabolism mediated through residual Tk2 deficiency because Dm-dNK expression was low in both liver and fat tissues. Dm-dNK expression led to increased dNTP pools and an increase in the catabolism of purine and pyrimidine nucleotides but these alterations did not apparently affect the mice during the 20 months of observation. In conclusion, Dm-dNK expression in the cell nucleus expanded the total dNTP pools to levels required for efficient mitochondrial DNA synthesis, thereby compensated the Tk2 deficiency, during a normal life span of the mice. The Dm-dNK+/− mouse serves as a model for nucleoside gene or enzyme substitutions, nucleotide imbalances, and dNTP alterations in different tissues. PMID:25296759
Krishnan, Shuba; Paredes, João A; Zhou, Xiaoshan; Kuiper, Raoul V; Hultenby, Kjell; Curbo, Sophie; Karlsson, Anna
2014-11-21
Mitochondrial DNA depletion caused by thymidine kinase 2 (TK2) deficiency can be compensated by a nucleoside kinase from Drosophila melanogaster (Dm-dNK) in mice. We show that transgene expression of Dm-dNK in Tk2 knock-out (Tk2(-/-)) mice extended the life span of Tk2(-/-) mice from 3 weeks to at least 20 months. The Dm-dNK(+/-)Tk2(-/-) mice maintained normal mitochondrial DNA levels throughout the observation time. A significant difference in total body weight due to the reduction of subcutaneous and visceral fat in the Dm-dNK(+/-)Tk2(-/-) mice was the only visible difference compared with control mice. This indicates an effect on fat metabolism mediated through residual Tk2 deficiency because Dm-dNK expression was low in both liver and fat tissues. Dm-dNK expression led to increased dNTP pools and an increase in the catabolism of purine and pyrimidine nucleotides but these alterations did not apparently affect the mice during the 20 months of observation. In conclusion, Dm-dNK expression in the cell nucleus expanded the total dNTP pools to levels required for efficient mitochondrial DNA synthesis, thereby compensated the Tk2 deficiency, during a normal life span of the mice. The Dm-dNK(+/-) mouse serves as a model for nucleoside gene or enzyme substitutions, nucleotide imbalances, and dNTP alterations in different tissues. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Zhang, Jie; Yan, Hong; Löfgren, Stefan; Tian, Xiaoli; Lou, Marjorie F.
2012-01-01
Purpose. To study the effect of age on the morphologic and biochemical alterations induced by in vivo exposure of ultraviolet radiation (UV). Methods. Young and old C57BL/6 mice were exposed to broadband UVB+UVA and euthanized after 2 days. Another batch of UV-exposed young mice was monitored for changes after 1, 2, 4, and 8 days. Age-matched nonexposed mice served as controls. Lens changes were documented in vivo by slit-lamp biomicroscopy and dark field microscopy photographs ex vivo. Lens homogenates were analyzed for glutathione (GSH) level, and the activities of thioredoxin (Trx), thioltransferase (TTase), and glyceraldehyde-3-phosphate dehydrogenase (G3PD). Glutathionylated lens proteins (PSSGs) were detected by immunoblotting using GSH antibody. Western blot analysis was also done for the expression levels of TTase and Trx. Results. Both age groups developed epithelial and superficial anterior subcapsular cataract at 2 days postexposure. The lens GSH level and G3PD activity were decreased, and PSSGs were elevated in both age groups, but more prominent in the older mice. TTase and Trx activity and protein expression were elevated only in the young mice. Interestingly, lens TTase and Trx in the young mice showed a transient increase, peaking at 2 days after UV exposure and returning to baseline at day 8, corroborated by lens transparency. Conclusions. The lenses of old mice were more susceptible to UV radiation–induced cataract. The upregulated TTase and Trx likely provided oxidation damage repair in the young mice. PMID:23010639
Bone morphogenetic protein signaling is impaired in an Hfe knockout mouse model of hemochromatosis
Corradini, Elena; Garuti, Cinzia; Montosi, Giuliana; Ventura, Paolo; Andriopoulos, Billy; Lin, Herbert Y.; Pietrangelo, Antonello; Babitt, Jodie L.
2009-01-01
Background and Aims Mutations in HFE are the most common cause of the iron-overload disorder hereditary hemochromatosis (HH). Levels of the main iron regulatory hormone, hepcidin, are inappropriately low in HH mouse models and patients with HFE mutations, indicating that HFE regulates hepcidin. The bone morphogenetic protein 6 (BMP6)-SMAD signaling pathway is an important endogenous regulator of hepcidin expression. We investigated whether HFE is involved in BMP6-SMAD regulation of hepcidin expression. Methods The BMP6-SMAD pathway was examined in Hfe knockout (KO) mice and in wild-type (WT) mice as controls. Mice were placed on diets of varying iron content. Hepcidin induction by BMP6 was examined in primary hepatocytes from Hfe KO mice; data were compared with those of WT mice. Results Liver levels of Bmp6 mRNA were higher in Hfe KO mice; these were appropriate for the increased hepatic levels of iron in these mice, compared with WT mice. However, levels of hepatic phosphorylated Smad 1/5/8 protein (an intracellular mediator of Bmp6 signaling) and Id1 mRNA (a target gene of Bmp6) were inappropriately low for the body iron burden and Bmp6 mRNA levels in Hfe KO, compared with WT mice. BMP6 induction of hepcidin expression was reduced in Hfe KO hepatocytes compared with WT hepatocytes. Conclusions HFE is not involved in regulation of BMP6 by iron, but does regulate the downstream signals of BMP6 that are triggered by iron. PMID:19591830
Kapanadze, Tamar; Gamrekelashvili, Jaba; Ma, Chi; Chan, Carmen; Zhao, Fei; Hewitt, Stephen; Zender, Lars; Kapoor, Veena; Felsher, Dean W.; Manns, Michael P.; Korangy, Firouzeh; Greten, Tim F.
2013-01-01
Background and aims Myeloid derived suppressor cells (MDSC) are immature myeloid cells with immunosuppressive activity. They accumulate in tumor-bearing mice and humans with different types of cancer, including hepatocellular carcinoma (HCC). The aim of this study was to examine the biology of MDSC in murine HCC models and to identify a model, which mimics the human disease. Methods: The comparative analysis of MDSC was performed in mice, bearing transplantable, diethylnitrosoamine (DEN)-induced and MYC-expressing HCC at different ages. Results: An accumulation of MDSC was found in mice with HCC irrespectively of the model tested. Transplantable tumors rapidly induced systemic recruitment of MDSC, in contrast to slow-growing DEN-induced or MYC-expressing HCC, where MDSC numbers only increased intra-hepatically in mice with advanced tumors. MDSC derived from mice with subcutaneous tumors were more suppressive than those from mice with DEN-induced HCC. Enhanced expression of genes associated with MDSC generation (GM-CSF, VEGF, IL-6, IL-1β) and migration (MCP-1, KC, S100A8, S100A9) was observed in mice with subcutaneous tumors. In contrast, only KC levels increased in mice with DEN-induced HCC. Both KC and GM-CSF over-expression or anti-KC and anti-GM-CSF treatment controlled MDSC frequency in mice with HCC. Finally, the frequency of MDSC decreased upon successful anti-tumor treatment with sorafenib. Conclusions: Our data indicate that MDSC accumulation is a late event during hepatocarcinogenesis and differs significantly depending on the tumor model studied. PMID:23796475
Qin, Yan-wen; Ye, Ping; He, Ji-qiang; Sheng, Li; Wang, Lu-ya; Du, Jie
2010-01-01
Aim: The examine the cardiac hypertrophy and fibrosis in apolipoprotein E-deficient mice (ApoE−/− mice) fed a “Western-style diet” and the effect of simvastatin intervention. Methods: Male ApoE−/− mice (n=36) were fed a “Western-style diet” from the age of 8 weeks. After 16 weeks, they were randomly given either simvastatin (25 mg·kg−1·d−1) or normal saline (control group) by gavage for 8, 16, or 24 weeks. The left ventricular (LV) wall thickness and diameter of the myocardial cells were determined with Hematoxylin-Eosin stain, and the level of fibrosis of the myocardial matrix was assessed with Masson stain. Real-time quantitative polymerase chain reaction and Western blotting analysis were used to determine the mRNA and protein expression of matrix metalloproteinase-9 (MMP-9), Cathepsin S (Cat S), and the peroxisome proliferator-activated receptors (PPARs) in the myocardium of ApoE−/− mice. Results: ApoE−/− mice fed a “Western-style diet” showed an significant age-dependent increase in total cholesterol (TC), LV wall thickness, myocardial cell diameter and LV collagen content (P<0.05). The simvastatin treatment group showed significantly reduced LV wall thickness, myocardial cell diameters and LV collagen content at 40 weeks when compared with the control group (P<0.05). Furthermore, treatment with simvastatin also significantly inhibited the mRNA and protein expressions of MMP-9 and Cat S as well as increased the mRNA and protein expressions of PPAR alpha and PPAR gamma at 32 and 40 weeks compared with the control group (P<0.05). Conclusion: ApoE−/− mice fed a “Western-style diet” had cardiac hypertrophy and fibrosis, which worsened with age. Simvastatin treatment inhibits the development of cardiac hypertrophy and fibrosis, and this effect may be mediated through increased levels of PPAR alpha and PPAR gamma and reduced levels of TC, MMP-9, and Cat S. PMID:20835264
Konstantoudaki, Xanthippi; Chalkiadaki, Kleanthi; Vasileiou, Elisabeth; Kalemaki, Katerina; Karagogeos, Domna; Sidiropoulou, Kyriaki
2018-03-01
Adolescence is a highly vulnerable period for the emergence of major neuropsychological disorders and is characterized by decreased cognitive control and increased risk-taking behavior and novelty-seeking. The prefrontal cortex (PFC) is involved in the cognitive control of impulsive and risky behavior. Although the PFC is known to reach maturation later than other cortical areas, little information is available regarding the functional changes from adolescence to adulthood in PFC, particularly compared with other primary cortical areas. This study aims to understand the development of PFC-mediated, compared with non-PFC-mediated, cognitive functions. Toward this aim, we performed cognitive behavioral tasks in adolescent and adult mice and subsequently investigated synaptic plasticity in two different cortical areas. Our results showed that adolescent mice exhibit impaired performance in PFC-dependent cognitive tasks compared with adult mice, whereas their performance in non-PFC-dependent tasks is similar to that of adults. Furthermore, adolescent mice exhibited decreased long-term potentiation (LTP) within upper-layer synapses of the PFC but not the barrel cortex. Blocking GABA A receptor function significantly augments LTP in both the adolescent and adult PFC. No change in intrinsic excitability of PFC pyramidal neurons was observed between adolescent and adult mice. Finally, increased expression of the NR2A subunit of the N-methyl-d-aspartate receptors is found only in the adult PFC, a change that could underlie the emergence of LTP. In conclusion, our results demonstrate physiological and behavioral changes during adolescence that are specific to the PFC and could underlie the reduced cognitive control in adolescents. NEW & NOTEWORTHY This study reports that adolescent mice exhibit impaired performance in cognitive functions dependent on the prefrontal cortex but not in cognitive functions dependent on other cortical regions. The current results propose reduced synaptic plasticity in the upper layers of the prefrontal cortex as a cellular correlate of this weakened cognitive function. This decreased synaptic plasticity is due to reduced N-methyl-d-aspartate receptor expression but not due to dampened intrinsic excitability or enhanced GABAergic signaling during adolescence.
Critical role of aldehydes in cigarette smoke-induced acute airway inflammation
2013-01-01
Background Cigarette smoking (CS) is the most important risk factor for COPD, which is associated with neutrophilic airway inflammation. We hypothesize, that highly reactive aldehydes are critical for CS-induced neutrophilic airway inflammation. Methods BALB/c mice were exposed to CS, water filtered CS (WF-CS) or air for 5 days. Levels of total particulate matter (TPM) and aldehydes in CS and WF-CS were measured. Six hours after the last exposure, inflammatory cells and cytokine levels were measured in lung tissue and bronchoalveolar lavage fluid (BALF). Furthermore, Beas-2b bronchial epithelial cells were exposed to CS extract (CSE) or WF-CS extract (WF-CSE) in the absence or presence of the aldehyde acrolein and IL-8 production was measured after 24 hrs. Results Compared to CS, in WF-CS strongly decreased (CS; 271.1 ± 41.5 μM, WF-CS; 58.5 ± 8.2 μM) levels of aldehydes were present whereas levels of TPM were only slightly reduced (CS; 20.78 ± 0.59 mg, WF-CS; 16.38 ± 0.36 mg). The numbers of mononuclear cells in BALF (p<0.01) and lung tissue (p<0.01) were significantly increased in the CS- and WF-CS-exposed mice compared to air control mice. Interestingly, the numbers of neutrophils (p<0.001) in BALF and neutrophils and eosinophils (p<0.05) in lung tissue were significantly increased in the CS-exposed but not in WF-CS-exposed mice as compared to air control mice. Levels of the neutrophil and eosinophil chemoattractants KC, MCP-1, MIP-1α and IL-5 were all significantly increased in lung tissue from CS-exposed mice compared to both WF-CS-exposed and air control mice. Interestingly, depletion of aldehydes in WF-CS extract significantly reduced IL-8 production in Beas-2b as compared to CSE, which could be restored by the aldehyde acrolein. Conclusion Aldehydes present in CS play a critical role in inflammatory cytokine production and neutrophilic- but not mononuclear airway inflammation. PMID:23594194
2010-01-01
Background Korean red ginseng (KRG) is a ginseng that has been cultivated and aged for 4-6 years or more, and goes through an extensive cleaning, steaming and drying process. KRG contains more than 30 kinds of saponin components and has been reported as having various biological properties, such as anti-fatigue action, immune restoration, and neurovegetative effect. The purpose of this study was to assess the effects of a KRG-containing drug (KRGCD) on gastric ulcer models in mice. Methods Stomach ulcers were induced by oral ingestion of hydrochloride (HCl)/ethanol or indomethacin. Treatment with KRGCD (30, 100, and 300 mg/kg, p.o.) occurred 1 hr before the ulcer induction. Effect of KRGCD on anti-oxidant activity and gastric mucosal blood flow with a laser Doppler flowmeter in mice stomach tissue was evaluated. Results KRGCD (100 and 300 mg/kg, p.o.) significantly decreased ethanol- and indomethacin-induced gastric ulcer compared with the vehicle-treated (control) group. KRGCD (100 and 300 mg/kg) also decreased the level of thiobarbituric acid reactive substance (TBARS) and increased gastric mucosal blood flow compared with the control group. Conclusions These results suggest that the gastroprotective effects of KRGCD on mice ulcer models can be attributed to its ameliorating effect on oxidative damage and improving effect of gastric mucosal blood flow. PMID:20718962
Costa, Celso A R A; Bidinotto, Lucas T; Takahira, Regina K; Salvadori, Daisy M F; Barbisan, Luís F; Costa, Mirtes
2011-09-01
Cymbopogon citratus (lemongrass) is currently used in traditional folk medicine. Although this species presents widespread use, there are no scientific data on its efficacy or safety after repeated treatments. Therefore, this work investigated the toxicity and genotoxicity of this lemongrass's essential oil (EO) in male Swiss mice. The single LD(50) based on a 24h acute oral toxicity study was found to be around 3500 mg/kg. In a repeated-dose 21-day oral toxicity study, mice were randomly assigned to two control groups, saline- or Tween 80 0.01%-treated groups, or one of the three experimental groups receiving lemongrass EO (1, 10 or 100mg/kg). No significant changes in gross pathology, body weight, absolute or relative organ weights, histology (brain, heart, kidneys, liver, lungs, stomach, spleen and urinary bladder), urinalysis or clinical biochemistry were observed in EO-treated mice relative to the control groups. Additionally, blood cholesterol was reduced after EO-treatment at the highest dose tested. Similarly, data from the comet assay in peripheral blood cells showed no genotoxic effect from the EO. In conclusion, our findings verified the safety of lemongrass intake at the doses used in folk medicine and indicated the beneficial effect of reducing the blood cholesterol level. Copyright © 2011 Elsevier Ltd. All rights reserved.
Phospholipases D1 and D2 Suppress Appetite and Protect against Overweight.
Trujillo Viera, Jonathan; El-Merahbi, Rabih; Nieswandt, Bernhard; Stegner, David; Sumara, Grzegorz
2016-01-01
Obesity is a major risk factor predisposing to the development of peripheral insulin resistance and type 2 diabetes (T2D). Elevated food intake and/or decreased energy expenditure promotes body weight gain and acquisition of adipose tissue. Number of studies implicated phospholipase D (PLD) enzymes and their product, phosphatidic acid (PA), in regulation of signaling cascades controlling energy intake, energy dissipation and metabolic homeostasis. However, the impact of PLD enzymes on regulation of metabolism has not been directly determined so far. In this study we utilized mice deficient for two major PLD isoforms, PLD1 and PLD2, to assess the impact of these enzymes on regulation of metabolic homeostasis. We showed that mice lacking PLD1 or PLD2 consume more food than corresponding control animals. Moreover, mice deficient for PLD2, but not PLD1, present reduced energy expenditure. In addition, deletion of either of the PLD enzymes resulted in development of elevated body weight and increased adipose tissue content in aged animals. Consistent with the fact that elevated content of adipose tissue predisposes to the development of hyperlipidemia and insulin resistance, characteristic for the pre-diabetic state, we observed that Pld1-/- and Pld2-/- mice present elevated free fatty acids (FFA) levels and are insulin as well as glucose intolerant. In conclusion, our data suggest that deficiency of PLD1 or PLD2 activity promotes development of overweight and diabetes.
Chen, Evan C.; Karl, Taylor A.; Kalisky, Tomer; Gupta, Santosh K.; O’Brien, Catherine A.; Longacre, Teri A.; van de Rijn, Matt; Quake, Stephen R.; Clarke, Michael F.; Rothenberg, Michael E.
2015-01-01
Background & Aims Receptor tyrosine kinase (RTK) inhibitors have advanced colon cancer treatment. We investigated the role of the RTK KIT in development of human colon cancer. Methods An array of 137 patient-derived colon tumors and their associated xenografts were analyzed by immunohistochemistry to measure levels of KIT and its ligand KITLG. KIT and/or KITLG was stably knocked down by expression of small hairpin RNAs from lentiviral vectors in DLD1, HT29, LS174T, and COLO320 colon cancer cell lines, and in UM-COLON#8 and POP77 xenografts; cells transduced with only vector were used as controls. Cells were analyzed by real-time quantitative reverse transcription PCR, single-cell gene expression analysis, flow cytometry, and immunohistochemical, immunoblot, and functional assays. Xenograft tumors were grown from control and KIT-knockdown DLD1 and UM-COLON#8 cells in immunocompromised mice and compared. Some mice were given the RTK inhibitor imatinib following injection of cancer cells; tumor growth was measured based on bioluminescence. We assessed tumorigenicity using limiting dilution analysis. Results KIT and KITLG were expressed heterogeneously by a subset of human colon tumors. Knockdown of KIT decreased proliferation of colon cancer cell lines and growth of xenograft tumors in mice, compared with control cells. KIT knockdown cells had increased expression of enterocyte markers, decreased expression of cycling genes, and, unexpectedly, increased expression of LGR5-associated genes. No activating mutations in KIT were detected in DLD1, POP77, or UM-COLON#8 cell lines. However, KITLG-knockdown DLD1 cells formed smaller xenograft tumors than control cells. Gene expression analysis of single CD44+ cells indicated that KIT may promote growth via KITLG autocrine and/or paracrine signaling. Imatinib inhibited growth of KIT+ colon cancer organoids in culture and growth of xenograft tumors in mice. Cancer cells with endogenous KIT expression were more tumorigenic in mice. Conclusions KIT and KITLG are expressed by a subset of human colon tumors. KIT signaling promotes growth of colon cancer cells and organoids in culture and xenograft tumors in mice via its ligand, KITLG, in an autocrine or paracrine manner. Patients with KIT-expressing colon tumors may benefit from KIT RTK inhibitors. PMID:26026391
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fox, Jessica; Haston, Christina K., E-mail: christina.haston@mcgill.ca
2013-01-01
Purpose: We previously reported increased numbers of neutrophils to be associated with the development of the radiation-induced lung responses of alveolitis (pneumonitis) and fibrosis in mice. In the present study we investigated whether CXC receptor 1 and 2 antagonism with DF2156A, a small molecule inhibitor of neutrophil chemotaxis, or the neutrophil elastase inhibitor sivelestat decreases the lung response to irradiation. Methods and Materials: KK/HIJ mice received 14 Gy whole-thorax irradiation, and a subset of them received drug treatment 3 times per week from the day of irradiation until they were killed because of respiratory distress symptoms. Results: Irradiated mice receivingmore » sivelestat survived 18% longer than did mice receiving radiation alone (73 vs 60 days for female mice, 91 vs 79 days for male mice), whereas postirradiation survival times did not differ between the group of mice receiving DF2156A and the radiation-only group. The numbers of neutrophils in lung tissue and in bronchoalveolar lavage fluid did not differ among groups of irradiated mice, but they significantly exceeded the levels in unirradiated control mice. The extent of alveolitis, assessed histologically, did not differ between irradiated mice treated with either drug and those receiving radiation alone, when assessed at the end of the experiment, but it was significantly reduced, as were the neutrophil measures, in sivelestat-treated mice at the common kill time of 60 days after irradiation. Mice treated with radiation and DF2156A developed significantly less fibrosis than did mice receiving radiation alone, and this difference was associated with decreased expression of interleukin-13 in lung tissue. Conclusions: We conclude that neutrophil elastase inhibition affects alveolitis and prolongs survival, whereas CXCR1/2 antagonism reduces radiation-induced fibrotic lung disease in mice without affecting the onset of distress.« less
High susceptibility to experimental myopia in a mouse model with a retinal ON pathway defect
Pardue, Machelle T.; Faulkner, Amanda E.; Fernandes, Alcides; Yin, Hang; Schaeffel, Frank; Williams, Robert W.; Pozdeyev, Nikita; Iuvone, P. Michael
2009-01-01
Purpose Nob mice share the same mutation in the Nyx gene that is found in humans with complete congenital stationary night blindness (CSNB1). We studied nob mutant mice to determine whether this defect resulted in myopia as it does in humans. Methods Refractive development was measured in unmanipulated wildtype C57BL/6J (WT) and nob mice from 4 to 12 weeks of age using an infrared photorefractor. The right eye was form-deprived by means of a skull-mounted goggling apparatus at 4 weeks of age. Refractive errors were recorded every 2 weeks after goggling. The content of dopamine and the dopamine metabolite, DOPAC, were measured using HPLC-ECD in retinas of nob and WT mice under light- and dark-adapted conditions. Results Nob mice had greater hyperopic refractive errors than WT mice under normal visual conditions until 12 weeks of age, when both strains had similar refractions. At 6 weeks of age, refractions became less hyperopic in nob mice but continued to become more hyperopic in WT mice. Following two weeks of form deprivation (6 weeks of age), nob mice displayed a significant myopic shift (~4 D) in refractive error relative to the opposite and control eyes, while WT mice required 6 weeks of goggling to elicit a similar response. As expected with loss of ON pathway transmission, light exposure did not alter DOPAC levels in nob mice. However, dopamine and DOPAC levels were significantly lower in nob mice compared to WT. Conclusions Under normal laboratory visual conditions, only minor differences in refractive development were observed between nob and WT mice. The largest myopic shift in nob mice resulted after form deprivation, suggesting that visual pathways dependent on nyctalopin and/or abnormally low dopaminergic activity play a role in regulating refractive development. These findings demonstrate an interaction of genetics and environment in refractive development. PMID:18235018
Hypervitaminosis D mediates compensatory Ca2+ hyperabsorption in TRPV5 knockout mice.
Renkema, Kirsten Y; Nijenhuis, Tom; van der Eerden, Bram C J; van der Kemp, Annemiete W C M; Weinans, Harrie; van Leeuwen, Johannes P T M; Bindels, René J M; Hoenderop, Joost G J
2005-11-01
Vitamin D plays an important role in Ca(2+) homeostasis by controlling Ca(2+) (re)absorption in intestine, kidney, and bone. The epithelial Ca(2+) channel TRPV5 mediates the Ca(2+) entry step in active Ca(2+) reabsorption. TRPV5 knockout (TRPV5(-/-)) mice show impaired Ca(2+) reabsorption, hypercalciuria, hypervitaminosis D, and intestinal hyperabsorption of Ca(2+). Moreover, these mice demonstrate upregulation of intestinal TRPV6 and calbindin-D(9K) expression compared with wild-type mice. For addressing the role of the observed hypervitaminosis D in the maintenance of Ca(2+) homeostasis and the regulation of expression levels of the Ca(2+) transport proteins in kidney and intestine, TRPV5/25-hydroxyvitamin-D(3)-1alpha-hydroxylase double knockout (TRPV5(-/-)/1alpha-OHase(-/-)) mice, which show undetectable serum 1,25(OH)(2)D(3) levels, were generated. TRPV5(-/-)/1alpha-OHase(-/-) mice displayed a significant hypocalcemia compared with wild-type mice (1.10 +/- 0.02 and 2.54 +/- 0.01 mM, respectively; P < 0.05). mRNA levels of renal calbindin-D(28K) (7 +/- 2%), calbindin-D(9K) (32 +/- 4%), Na(+)/Ca(2+) exchanger (12 +/- 2%), and intestinal TRPV6 (40 +/- 8%) and calbindin-D(9K) (26 +/- 4%) expression levels were decreased compared with wild-type mice. Hyperparathyroidism and rickets were present in TRPV5(-/-)/1alpha-OHase(-/-) mice, more pronounced than observed in single TRPV5 or 1alpha-OHase knockout mice. It is interesting that a renal Ca(2+) leak, as demonstrated in TRPV5(-/-) mice, persisted in TRPV5(-/-)/1alpha-OHase(-/-) mice, but a compensatory upregulation of intestinal Ca(2+) transporters was abolished. In conclusion, the elevation of serum 1,25(OH)(2)D(3) levels in TRPV5(-/-) mice is responsible for the upregulation of intestinal Ca(2+) transporters and Ca(2+) hyperabsorption. Hypervitaminosis D, therefore, is of crucial importance to maintain normocalcemia in impaired Ca(2+) reabsorption in TRPV5(-/-) mice.
Both core and F proteins of hepatitis C virus could enhance cell proliferation in transgenic mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Wen-Ta; Li, Hui-Chun; Lee, Shen-Kao
Highlights: •HCV core and F proteins could induce hepatocyte proliferation in the transgenic mice. •β-Catenin signaling pathway was activated by core protein in the transgenic mice. •β-Catenin signaling pathway was activated by myc-F protein in the transgenic mice. •Expression of SMA protein was enhanced by core but not myc-F protein. -- Abstract: The role of the protein encoded by the alternative open reading frame (ARF/F/core+1) of the Hepatitis C virus (HCV) genome in viral pathogenesis remains unknown. The different forms of ARF/F/core+1 protein were labile in cultured cells, a myc-tag fused at the N-terminus of the F protein made itmore » more stable. To determine the role of core and F proteins in HCV pathogenesis, transgenic mice with either protein expression under the control of Albumin promoter were generated. Expression of core protein and F protein with myc tag (myc-F) could be detected by Western blotting analysis in the livers of these mice. The ratio of liver to body weight is increased for both core and myc-F transgenic mice compared to that of wild type mice. Indeed, the proliferating cell nuclear antigen protein, a proliferation marker, was up-regulated in the transgenic mice with core or myc-F protein. Further analyses by microarray and Western blotting suggested that β-catenin signaling pathway was activated by either core or myc-F protein in the transgenic mice. These transgenic mice were further treated with either Diethynitrosamine (a tumor initiator) or Phenobarbital (a tumor promoter). Phenobarbital but not Diethynitrosamine treatment could increase the liver/body weight ratio of these mice. However, no tumor formation was observed in these mice. In conclusion, HCV core and myc-F proteins could induce hepatocyte proliferation in the transgenic mice possibly through β-catenin signaling pathway.« less
2013-01-01
Background Epidemiological evidence indicates that diabetic patients have increased susceptibility to adverse cardiovascular outcomes related to acute increases in exposures to particulate air pollution. However, mechanisms underlying these effects remain unclear. Methods To evaluate the possible mechanisms underlying these actions, we assessed the systemic effects of diesel exhaust particles (DEP) in control mice, and mice with streptozotocin–induced type 1 diabetes. Four weeks following induction of diabetes, the animals were intratracheally instilled (i.t.) with DEP (0.4 mg/kg) or saline, and several cardiovascular endpoints were measured 24 h thereafter. Results DEP caused leukocytosis and a significant increase in plasma C-reactive protein and 8-isoprostane concentrations in diabetic mice compared to diabetic mice exposed to saline or non-diabetic mice exposed to DEP. The arterial PO2 as well as the number of platelets and the thrombotic occlusion time in pial arterioles assessed in vivo were significantly decreased following the i.t. instillation of DEP in diabetic mice compared to diabetic mice exposed to saline or non-diabetic mice exposed to DEP. Both alanine aminotransferase and aspartate transaminase activities, as well as the plasma concentrations of plasminogen activator inhibitor and von Willebrand factor were significantly increased in DEP-exposed diabetic mice compared to diabetic mice exposed to saline or DEP-exposed non-diabetic mice. The in vitro addition of DEP (0.25-1 μg/ml) to untreated mouse blood significantly and dose-dependently induced in vitro platelet aggregation, and these effects were exacerbated in blood of diabetic mice. Conclusion This study has shown that systemic and coagulation events are aggravated by type 1 diabetes in mice, acutely exposed to DEP and has described the possible mechanisms for these actions that may also be relevant to the exacerbation of cardiovascular morbidity accompanying particulate air pollution in diabetic patients. PMID:23587270
The Role of Palladin in Podocytes.
Artelt, Nadine; Ludwig, Tim A; Rogge, Henrik; Kavvadas, Panagiotis; Siegerist, Florian; Blumenthal, Antje; van den Brandt, Jens; Otey, Carol A; Bang, Marie-Louise; Amann, Kerstin; Chadjichristos, Christos E; Chatziantoniou, Christos; Endlich, Karlhans; Endlich, Nicole
2018-05-02
Background Podocyte loss and effacement of interdigitating podocyte foot processes are the major cause of a leaky filtration barrier and ESRD. Because the complex three-dimensional morphology of podocytes depends on the actin cytoskeleton, we studied the role in podocytes of the actin bundling protein palladin, which is highly expressed therein. Methods We knocked down palladin in cultured podocytes by siRNA transfection or in zebrafish embryos by morpholino injection and studied the effects by immunofluorescence and live imaging. We also investigated kidneys of mice with podocyte-specific knockout of palladin (PodoPalld-/- mice) by immunofluorescence and ultrastructural analysis and kidney biopsy specimens from patients by immunostaining for palladin. Results Compared with control-treated podocytes, palladin-knockdown podocytes had reduced actin filament staining, smaller focal adhesions, and downregulation of the podocyte-specific proteins synaptopodin and α -actinin-4. Furthermore, palladin-knockdown podocytes were more susceptible to disruption of the actin cytoskeleton with cytochalasin D, latrunculin A, or jasplakinolide and showed altered migration dynamics. In zebrafish embryos, palladin knockdown compromised the morphology and dynamics of epithelial cells at an early developmental stage. Compared with PodoPalld+/+ controls, PodoPalld-/- mice developed glomeruli with a disturbed morphology, an enlarged subpodocyte space, mild effacement, and significantly reduced expression of nephrin and vinculin. Furthermore, nephrotoxic serum injection led to significantly higher levels of proteinuria in PodoPalld-/- mice than in controls. Kidney biopsy specimens from patients with diabetic nephropathy and FSGS showed downregulation of palladin in podocytes as well. Conclusions Palladin has an important role in podocyte function in vitro and in vivo . Copyright © 2018 by the American Society of Nephrology.
Effects of Testosterone on Erythropoiesis in a Female Mouse Model of Anemia of Inflammation
Schmidt, Paul J.; Fleming, Mark D.; Bhasin, Shalender
2016-01-01
The anemia of inflammation is a common problem in inflammatory and autoimmune diseases. We characterized a mouse model of anemia of chronic inflammation induced by repeated injections of low doses of heat-killed Brucella abortus (HKBA), and determined the effects of T administration on erythropoiesis in this model. Female C57BL/6NCrl mice were injected weekly with HKBA for 10 wk. Weekly injections of T or vehicle oil were started 4 wk later. Control mice were injected with saline and vehicle oil in parallel. HKBA-injected mice had significantly lower hemoglobin, hematocrit, mean corpuscular volume, reticulocyte hemoglobin, transferrin saturation (TSAT), and tissue nonheme iron in liver and spleen, enlarged spleen, and up-regulated hepatic expression of inflammatory markers, serum amyloid A1, and TNFα, but down-regulated IL-6, bone morphogenic protein 6, and hepcidin compared with saline controls. HKBA also reduced serum hepcidin and increased serum erythropoietin. Bone marrow erythroid precursors were substantially reduced in HKBA-injected mice. Cotreatment with T increased the percentage of late-stage erythroid precursors in the bone marrow relative to HKBA-injected and saline controls and reversed HKBA-induced suppression of hemoglobin and hematocrit. T also normalized serum erythropoietin, TSAT, and reticulocyte hemoglobin without correcting the expression of the hepatic inflammation markers. Conclusions are that low-dose HKBA induces moderate anemia characterized by chronic inflammation, decreased iron stores, and suppression of erythroid precursors in the bone marrow. T administration reverses HKBA-induced anemia by stimulating erythropoiesis, which is associated with a shift toward accelerated maturation of erythroid precursors in the bone marrow. PMID:27074351
Mast cells promote melanoma colonization of lungs.
Öhrvik, Helena; Grujic, Mirjana; Waern, Ida; Gustafson, Ann-Marie; Ernst, Nancy; Roers, Axel; Hartmann, Karin; Pejler, Gunnar
2016-10-18
Mast cells have been implicated in malignant processes, mainly through clinical correlative studies and by experiments performed using animals lacking mast cells due to defective c-kit signaling. However, mast cell-deficient mouse models based on c-kit defects have recently been questioned for their relevance. Here we addressed the effect of mast cells in a tumor setting by using transgenic Mcpt5-Cre+ R-DTA+ mice, in which the deficiency of mast cells is independent of c-kit defects. Melanoma cells (B16.F10) were administered either subcutaneously or intravenously into Mcpt5-Cre+ R-DTA+ mice or Mcpt5-Cre- R-DTA+ littermate controls, followed by the assessment of formed tumors. In the subcutaneous model, mast cells were abundant in the tumor stroma of control mice but were absent in Mcpt5-Cre+ R-DTA+ mice. However, the absence of mast cells did not affect tumor size. In contrast, after intravenous administration of B16.F10 cells, melanoma colonization of the lungs was markedly reduced in Mcpt5-Cre+ R-DTA+ vs. Mcpt5-Cre- R-DTA+ animals. Decreased melanoma colonization of the lungs in Mcpt5-Cre+ R-DTA+ animals was accompanied by increased inflammatory cell recruitment into the bronchoalveolar lavage fluid, suggesting that mast cells suppress inflammation in this setting. Further, qPCR analysis revealed significant alterations in the expression of Twist and E-cadherin in lungs of Mcpt5-Cre+ R-DTA+ vs. control Mcpt5-Cre- R-DTA+ animals, suggesting an impact of mast cells on epithelial-mesenchymal transition. In conclusion, this study reveals that mast cells promote melanoma colonization of the lung.
Lycopene Attenuates Tulathromycin and Diclofenac Sodium-Induced Cardiotoxicity in Mice.
Abdel-Daim, Mohamed M; Eltaysh, Rasha; Hassan, Azza; Mousa, Shaker A
2018-01-24
Recent experiments showed a potential cardiotoxic effect of the macrolide antibiotic (tulathromycin). This study was performed to investigate whether diclofenac sodium (DFS) potentiates the cardiotoxicity of tulathromycin and increases the cardioprotective effects of lycopene against DFS and tulathromycin. Seven groups (eight per group) of adult Swiss albino mice received saline (control), tulathromycin (a single subcutaneous dose of 28 mg/kg/bw on day 14), DFS (a single oral dose of 100 mg/kg/bw on day 14), tulathromycin plus DFS, or lycopene (oral, 10 mg/kg/bw daily for 15 d) combined with tulathromycin, DFS, or both. Compared to the control group, the administration of tulathromycin or DFS (individually or in combination) caused significantly elevated ( p < 0.05) serum levels of Creatine kinase-myocardial B fraction (CK-MB), lactate dehydrogenase, and cardiac-specific troponin-T and tissue levels of nitric oxide and malondialdehyde that were accompanied by significantly decreased tissue reduced glutathione content and glutathione peroxidase, superoxide dismutase, and catalase antioxidant enzyme activity. Upon histopathological and immunohistochemical examination, the mean pathology scores and the percentages of caspase-3-, Bax-, and CK-positive regions were significantly higher in the tulathromycin- and/or DFS-treated groups than in control mice. For all these parameters, the pathological changes were more significant in the tulathromycin-DFS combination group than in mice treated with either drug individually. Interestingly, co-administration of lycopene with tulathromycin and/or DFS significantly ameliorated the changes described above. In conclusion, DFS could potentiate the cardiotoxic effects of tulathromycin, whereas lycopene can serve as a cardioprotective agent against DFS and tulathromycin.
Acute toxicity and mutagenesis of three metabolites mixture of nitrobenzene in mice.
Wang, Guixia; Zhang, Xiuying; Yao, Chunzhu; Tian, Meizhan
2011-03-01
Nitrobenzene is a synthetic compound, more than 95% of which is used in the production of aniline. Nitrobenzene has been demonstrated to be substantially metabolized to p-Nitrophenol, p-Aminophenol and p-Nitroaniline in food animals (e.g., bovines, fowls). There have been no studies on the acute toxicity and the mutagenesis of the mixture of the three metabolites mentioned above. The aim of the present study is to testify the acute toxicity and the mutagenesis of the three metabolites mixture. Seventy Kunming mice (half male, half female) received an intragastric administration exposure to metabolites-containing suspension of 750, 638, 542, 461, 392, 333 mg kg(-1) body weight and 0.5% sodium carboxymethyl cellulose (control), followed by a 14-day observation. The medial lethal dose (LD(50)) concentration for nitrobenzene metabolites mixture in this study was 499.92 mg/kg. Their mutagenic toxicology was studied through micronucleus and sperm abnormality test. Kunming mice were twice intragastrically exposed to 1/5 LD(50), 1/10 LD(50), 1/20 LD(50) mg kg(-1) nitrobenzene metabolites-containing suspension spaced 24-h apart. Cyclophosphamide, pure water and sodium carboxymethyl cellulose served as doses of the positive group, the negative group and the solvent control group, respectively. The incidence of micronucleus and sperm abnormality increased significantly in the 1/5 LD(50) and 1/10 LD(50) group compared with the negative and solvent control group. A dose-related increase in the incidence of micronucleus and sperm abnormality was noted. In conclusion, the three metabolites mixture of nitrobenzene was secondary toxicity and mutagenic substances in mice.
Transgenic Mouse Model for Reducing Oxidative Damage in Bone
NASA Technical Reports Server (NTRS)
Schreurs, A.-S.; Torres, S.; Truong, T.; Kumar, A.; Alwood, J. S.; Limoli, C. L.; Globus, R. K.
2014-01-01
Exposure to musculoskeletal disuse and radiation result in bone loss; we hypothesized that these catabolic treatments cause excess reactive oxygen species (ROS), and thereby alter the tight balance between bone resorption by osteoclasts and bone formation by osteoblasts, culminating in bone loss. To test this, we used transgenic mice which over-express the human gene for catalase, targeted to mitochondria (MCAT). Catalase is an anti-oxidant that converts the ROS hydrogen peroxide into water and oxygen. MCAT mice were shown previously to display reduced mitochondrial oxidative stress and radiosensitivity of the CNS compared to wild type controls (WT). As expected, MCAT mice expressed the transgene in skeletal tissue, and in marrow-derived osteoblasts and osteoclast precursors cultured ex vivo, and also showed greater catalase activity compared to wildtype (WT) mice (3-6 fold). Colony expansion in marrow cells cultured under osteoblastogenic conditions was 2-fold greater in the MCAT mice compared to WT mice, while the extent of mineralization was unaffected. MCAT mice had slightly longer tibiae than WT mice (2%, P less than 0.01), although cortical bone area was slightly lower in MCAT mice than WT mice (10%, p=0.09). To challenge the skeletal system, mice were treated by exposure to combined disuse (2 wk Hindlimb Unloading) and total body irradiation Cs(137) (2 Gy, 0.8 Gy/min), then bone parameters were analyzed by 2-factor ANOVA to detect possible interaction effects. Treatment caused a 2-fold increase (p=0.015) in malondialdehyde levels of bone tissue (ELISA) in WT mice, but had no effect in MCAT mice. These findings indicate that the transgene conferred protection from oxidative damage caused by treatment. Unexpected differences between WT and MCAT mice emerged in skeletal responses to treatment.. In WT mice, treatment did not alter osteoblastogenesis, cortical bone area, moment of inertia, or bone perimeter, whereas in MCAT mice, treatment increased these parameters. Taken together, this typically catabolic treatment (disuse and irradiation) appeared to stimulate cortical expansion in MCAT mice but not WT mice. In conclusion, these results reveal the importance of mitochondrial ROS generation in skeletal remodeling and show that MCAT mice provide a useful animal model for bone studies.
Peroni, Cibele N.; Hayashida, Cesar Y.; Nascimento, Nancy; Longuini, Viviane C.; Toledo, Rodrigo A.; Bartolini, Paolo; Bowers, Cyril Y.; Toledo, Sergio P.A.
2012-01-01
OBJECTIVE: To investigate a possible direct, growth hormone-releasing, hormone-independent action of a growth hormone secretagogue, GHRP-2, in pituitary somatotroph cells in the presence of inactive growth hormone-releasing hormone receptors. MATERIALS AND METHODS: The responses of serum growth hormone to acutely injected growth hormone-releasing P-2 in lit/lit mice, which represent a model of GH deficiency arising from mutated growth hormone-releasing hormone-receptors, were compared to those observed in the heterozygous (lit/+) littermates and wild-type (+/+) C57BL/6J mice. RESULTS: After the administration of 10 mcg of growth hormone-releasing P-2 to lit/lit mice, a growth hormone release of 9.3±1.5 ng/ml was observed compared with 1.04±1.15 ng/ml in controls (p<0.001). In comparison, an intermediate growth hormone release of 34.5±9.7 ng/ml and a higher growth hormone release of 163±46 ng/ml were induced in the lit/+ mice and wild-type mice, respectively. Thus, GHRP-2 stimulated growth hormone in the lit/lit mice, and the release of growth hormone in vivo may be only partially dependent on growth hormone-releasing hormone. Additionally, the plasma leptin and ghrelin levels were evaluated in the lit/lit mice under basal and stimulated conditions. CONCLUSIONS: Here, we have demonstrated that lit/lit mice, which harbor a germline mutation in the Growth hormone-releasing hormone gene, maintain a limited but statistically significant growth hormone elevation after exogenous stimulation with GHRP-2. The present data probably reflect a direct, growth hormone-independent effect on Growth hormone S (ghrelin) stimulation in the remaining pituitary somatotrophs of little mice that is mediated by growth hormone S-R 1a. PMID:22473409
Adedara, Isaac A; Ajayi, Babajide O; Awogbindin, Ifeoluwa O; Farombi, Ebenezer O
2017-11-01
Available epidemiological reports have indicated an increase in the incidence of ulcerative colitis, as well as alcohol consumption, globally. The present study investigated the possible interactive effects of ethanol consumption on ulcerative colitis and its associated testicular dysfunction using six groups of 12 pubertal mice each. Group I (Control) mice received drinking water alone. Group II mice received ethanol alone at 5 g/kg body weight. Group III mice received 2.5% dextran sulphate sodium (DSS) in drinking water followed by normal drinking water. Groups IV, V, and VI mice received DSS followed by ethanol at 1.25, 2.5, and 5 g/kg, respectively. Administration of ethanol to mice with ulcerative colitis intensified the disease-activity index with marked reduction in colon length, colon mass index, body weight gain, and organo-somatic indices of testes and epididymis when compared with the DSS-alone group. Moreover, ethanol exacerbated colitis-mediated decrease in enzymatic and non-enzymatic antioxidants but increased the oxidative stress and inflammatory biomarkers in the testes and epididymis. The diminution in luteinizing hormone, follicle stimulating hormone, and testosterone levels was intensified following administration of ethanol to mice with ulcerative colitis that were administered 5 g/kg ethanol alone. The decrease in sperm functional parameters and testicular spermatogenic indices as well as histopathological damage in colon, testes, and epididymis was aggravated following administration of ethanol to mice with ulcerative colitis. In conclusion, the exacerbating effects of ethanol on ulcerative colitis-induced testicular dysfunction are related to increased oxidative stress and inflammation in the treated mice. Copyright © 2017 Elsevier Inc. All rights reserved.
ter Horst, Judith P.; Kentrop, Jiska; Arp, Marit; Hubens, Chantal J.; de Kloet, E. Ron; Oitzl, Melly S.
2013-01-01
Corticosterone facilitates behavioral adaptation to a novel experience in a coordinate manner via mineralocorticoid (MR) and glucocorticoid receptors (GR). Initially, MR mediates corticosterone action on appraisal processes, risk assessment and behavioral flexibility and then, GR activation promotes consolidation of the new information into memory. Here, we studied on the circular holeboard (CHB) the spatial performance of female mice with genetic deletion of MR from the forebrain (MRCaMKCre) and their wild type littermates (MRflox/flox mice) over the estrous cycle and in response to an acute stressor. The estrous cycle had no effect on the spatial performance of MRflox/flox mice and neither did the acute stressor. However, the MRCaMKCre mutants needed significantly more time to find the exit and made more hole visit errors than the MRflox/flox mice, especially when in proestrus and estrus. In addition, stressed MRCaMKCre mice in estrus had a shorter exit latency than the control estrus MRCaMKCre mice. About 70% of the female MRCaMKCre and MRflox/flox mice used a hippocampal (spatial, extra maze cues) rather than the caudate nucleus (stimulate-response, S-R, intra-maze cue) strategy and this preference did neither change over the estrous cycle nor after stress. However, stressed MRCaMKCre mice using the S-R strategy needed significantly more time to find the exit hole as compared to the spatial strategy using mice suggesting that the MR could be needed for the stress-induced strategy switch toward a spatial strategy. In conclusion, the results suggest that loss of MR interferes with performance of a spatial task especially when estrogen levels are high suggesting a strong interaction between stress and sex hormones. PMID:23754993
Dietary eicosapentaenoic acid prevents systemic immunosuppression in mice induced by UVB radiation.
Moison, R M; Beijersbergen Van Henegouwen, G M
2001-07-01
Moison, R. M. W. and Beijersbergen van Henegouwen, G. M. J. Dietary Eicosapentaenoic Acid Prevents Systemic Immunosuppression in Mice Induced by UVB Radiation. Radiat. Res. 156, 36-44 (2001). Reactive oxygen species (ROS) contribute to the immunosuppression induced by UVB radiation. Omega-3 fatty acids in fish oil, e.g. eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), can modulate immunoresponsiveness, but because of their susceptibility to ROS-induced damage, they can also challenge the epidermal antioxidant defense system. The influence of dietary supplementation with different omega-3 fatty acids on systemic immunosuppression induced in mice by UVB radiation was studied using the contact hypersensitivity response to trinitrochlorobenzene. In an attempt to study the mechanisms involved, UVB-radiation-induced changes in epidermal antioxidant status were also studied. Mice received high-fat (25% w/w) diets enriched with either oleic acid (control diet), EPA, DHA, or EPA + DHA (MaxEPA). Immunosuppression induced by UVB radiation was 53% in mice fed the oleic acid diet and 69% in mice fed the DHA diet. In contrast, immunosuppression was only 4% and 24% in mice fed the EPA and MaxEPA diets, respectively. Increased lipid peroxidation and decreased vitamin E levels (P < 0.05) were found in unirradiated mice fed the MaxEPA and DHA diets. For all diets, exposure to UVB radiation increased lipid peroxidation (P < 0.05), but levels of glutathione (P < 0.05) and vitamin C (P > 0.05) decreased only in the mice given fish oil. UVB irradiation did not influence vitamin E levels. In conclusion, dietary EPA, but not DHA, protects against UVB-radiation-induced immunosuppression in mice. The degree of protection appears to be related to the amount of EPA incorporated and the ability of the epidermis to maintain an adequate antioxidant level after irradiation.
Fibrinogen deficiency suppresses the development of early and delayed radiation enteropathy
Wang, Junru; Pathak, Rupak; Garg, Sarita; Hauer-Jensen, Martin
2017-01-01
AIM To determine the mechanistic role of fibrinogen, a key regulator of inflammation and fibrosis, in early and delayed radiation enteropathy. METHODS Fibrinogen wild-type (Fib+/+), fibrinogen heterozygous (Fib+/-), and fibrinogen knockout (Fib-/-) mice were exposed to localized intestinal irradiation and assessed for early and delayed structural changes in the intestinal tissue. A 5-cm segment of ileum of mice was exteriorized and exposed to 18.5 Gy of x-irradiation. Intestinal tissue injury was assessed by quantitative histology, morphometry, and immunohistochemistry at 2 wk and 26 wk after radiation. Plasma fibrinogen level was measured by enzyme-linked immunosorbent assay. RESULTS There was no difference between sham-irradiated Fib+/+ and Fib+/- mice in terms of fibrinogen concentration in plasma and intestinal tissue, intestinal histology, morphometry, intestinal smooth muscle cell proliferation, and neutrophil infiltration. Therefore, Fib+/- mice were used as littermate controls. Unlike sham-irradiated Fib+/+ and Fib+/- mice, no fibrinogen was detected in the plasma and intestinal tissue of sham-irradiated Fib-/- mice. Moreover, fibrinogen level was not elevated after irradiation in the intestinal tissue of Fib-/- mice, while significant increase in intestinal fibrinogen level was noticed in irradiated Fib+/+ and Fib+/- mice. Importantly, irradiated Fib-/- mice exhibited substantially less overall intestinal structural injury (RIS, P = 0.000002), intestinal wall thickness (P = 0.003), intestinal serosal thickness (P = 0.009), collagen deposition (P = 0.01), TGF-β immunoreactivity (P = 0.03), intestinal smooth muscle proliferation (P = 0.046), neutrophil infiltration (P = 0.01), and intestinal mucosal injury (P = 0.0003), compared to irradiated Fib+/+ and Fib+/- mice at both 2 wk and 26 wk. CONCLUSION These data demonstrate that fibrinogen deficiency directly attenuates development of early and delayed radiation enteropathy. Fibrinogen could be a novel target in treating intestinal damage. PMID:28765691
List, Edward O; Berryman, Darlene E; Funk, Kevin; Jara, Adam; Kelder, Bruce; Wang, Feiya; Stout, Michael B; Zhi, Xu; Sun, Liou; White, Thomas A; LeBrasseur, Nathan K; Pirtskhalava, Tamara; Tchkonia, Tamara; Jensen, Elizabeth A; Zhang, Wenjuan; Masternak, Michal M; Kirkland, James L; Miller, Richard A; Bartke, Andrzej; Kopchick, John J
2014-05-01
GH is an important regulator of body growth and composition as well as numerous other metabolic processes. In particular, liver plays a key role in the GH/IGF-I axis, because the majority of circulating "endocrine" IGF-I results from GH-stimulated liver IGF-I production. To develop a better understanding of the role of liver in the overall function of GH, we generated a strain of mice with liver-specific GH receptor (GHR) gene knockout (LiGHRKO mice). LiGHRKO mice had a 90% decrease in circulating IGF-I levels, a 300% increase in circulating GH, and significant changes in IGF binding protein (IGFBP)-1, IGFBP-2, IGFBP-3, IGFBP-5, and IGFBP-7. LiGHRKO mice were smaller than controls, with body length and body weight being significantly decreased in both sexes. Analysis of body composition over time revealed a pattern similar to those found in GH transgenic mice; that is, LiGHRKO mice had a higher percentage of body fat at early ages followed by lower percentage of body fat in adulthood. Local IGF-I mRNA levels were significantly increased in skeletal muscle and select adipose tissue depots. Grip strength was increased in LiGHRKO mice. Finally, circulating levels of leptin, resistin, and adiponectin were increased in LiGHRKO mice. In conclusion, LiGHRKO mice are smaller despite increased local mRNA expression of IGF-I in several tissues, suggesting that liver-derived IGF-I is indeed important for normal body growth. Furthermore, our data suggest that novel GH-dependent cross talk between liver and adipose is important for regulation of adipokines in vivo.
Ter Horst, Judith P; Kentrop, Jiska; Arp, Marit; Hubens, Chantal J; de Kloet, E Ron; Oitzl, Melly S
2013-01-01
Corticosterone facilitates behavioral adaptation to a novel experience in a coordinate manner via mineralocorticoid (MR) and glucocorticoid receptors (GR). Initially, MR mediates corticosterone action on appraisal processes, risk assessment and behavioral flexibility and then, GR activation promotes consolidation of the new information into memory. Here, we studied on the circular holeboard (CHB) the spatial performance of female mice with genetic deletion of MR from the forebrain (MR(CaMKCre)) and their wild type littermates (MR(flox/flox) mice) over the estrous cycle and in response to an acute stressor. The estrous cycle had no effect on the spatial performance of MR(flox/flox) mice and neither did the acute stressor. However, the MR(CaMKCre) mutants needed significantly more time to find the exit and made more hole visit errors than the MR(flox/flox) mice, especially when in proestrus and estrus. In addition, stressed MR(CaMKCre) mice in estrus had a shorter exit latency than the control estrus MR(CaMKCre) mice. About 70% of the female MR(CaMKCre) and MR(flox/flox) mice used a hippocampal (spatial, extra maze cues) rather than the caudate nucleus (stimulate-response, S-R, intra-maze cue) strategy and this preference did neither change over the estrous cycle nor after stress. However, stressed MR(CaMKCre) mice using the S-R strategy needed significantly more time to find the exit hole as compared to the spatial strategy using mice suggesting that the MR could be needed for the stress-induced strategy switch toward a spatial strategy. In conclusion, the results suggest that loss of MR interferes with performance of a spatial task especially when estrogen levels are high suggesting a strong interaction between stress and sex hormones.
Drouin, Annick; Bolduc, Virginie; Thorin-Trescases, Nathalie; Bélanger, Élisabeth; Fernandes, Priscilla; Baraghis, Edward; Lesage, Frédéric; Gillis, Marc-Antoine; Villeneuve, Louis; Hamel, Edith; Ferland, Guylaine; Thorin, Eric
2013-01-01
Severe dyslipidemia and the associated oxidative stress could accelerate the age-related decline in cerebrovascular endothelial function and cerebral blood flow (CBF), leading to neuronal loss and impaired learning abilities. We hypothesized that a chronic treatment with the polyphenol catechin would prevent endothelial dysfunction, maintain CBF responses, and protect learning abilities in atherosclerotic (ATX) mice. We treated ATX (C57Bl/6-LDLR−/− hApoB+/+; 3 mo old) mice with catechin (30 mg·kg−1·day−1) for 3 mo, and C57Bl/6 [wild type (WT), 3 and 6 mo old] mice were used as controls. ACh- and flow-mediated dilations (FMD) were recorded in pressurized cerebral arteries. Basal CBF and increases in CBF induced by whisker stimulation were measured by optical coherence tomography and Doppler, respectively. Learning capacities were evaluated with the Morris water maze test. Compared with 6-mo-old WT mice, cerebral arteries from 6-mo-old ATX mice displayed a higher myogenic tone, lower responses to ACh and FMD, and were insensitive to NOS inhibition (P < 0.05), suggesting endothelial dysfunction. Basal and increases in CBF were lower in 6-mo-old ATX than WT mice (P < 0.05). A decline in the learning capabilities was also observed in ATX mice (P < 0.05). Catechin 1) reduced cerebral superoxide staining (P < 0.05) in ATX mice, 2) restored endothelial function by reducing myogenic tone, improving ACh- and FMD and restoring the sensitivity to nitric oxide synthase inhibition (P < 0.05), 3) increased the changes in CBF during stimulation but not basal CBF, and 4) prevented the decline in learning abilities (P < 0.05). In conclusion, catechin treatment of ATX mice prevents cerebrovascular dysfunctions and the associated decline in learning capacities. PMID:21186270
Association of Diet With Skin Histological Features in UV-B–Exposed Mice
Hsia, Yvonne; Weeks, David M.; Dixon, Tatiana K.; Lepe, Jessica; Thomas, J. Regan
2017-01-01
Importance Long-term exposure to solar radiation produces deleterious photoaging of the skin. It is not known if diet can influence skin photoaging. Objectives To study the influence of a calorie-restricted diet and an obesity diet in mice exposed to long-term UV-B irradiation to assess if there is an association between diet and histopathological response to UV-B irradiation. Design, Setting, and Participants In this animal model study in an academic setting, the dorsal skin of SKH1 hairless mice receiving normal, calorie-restricted, and obesity diets was exposed to UV-B irradiation 3 times a week for 10 weeks and were compared with corresponding controls. The mice were placed in the following groups, with 8 animals in each group: (1) intact control (C) with regular diet and no UV-B exposure, (2) intact control with UV-B exposure (CR), (3) calorie-restricted diet (CrC), (4) calorie-restricted diet with UV-B exposure (CrR), (5) obesity diet (OC), and (6) obesity diet with UV-B exposure (OR). The experiment was conducted during October through December 2013. Tissue processing and histological analysis were completed in 2016. Main Outcomes and Measures Histomorphometric analysis was performed on paraffin-embedded skin sections stained by histological and immunohistochemical methods for estimation of epidermal thickness, epidermal proliferating cell nuclear antigen index, collagen I, elastic fibers, fibroblasts, mast cells, dermal cellularity, and adipose layer ratio. Changes in wrinkles were noted. Results Hairless female mice (age range, 6-8 weeks) were obtained. With a normal diet, changes from UV-B irradiation occurred in epidermal thickness, epidermal proliferating cell nuclear antigen index, collagen I, elastic fibers, fibroblasts, and mast cells, which were modestly influenced by an obesity diet. Calorie restriction influenced the skin in nonirradiated control animals, with higher values for most variables. After UV-B exposure in animals with calorie restriction, epidermal thickness was increased, but other variables were unaffected. Animals receiving the calorie-restricted diet lost weight when exposed to long-term UV-B irradiation. Wrinkles were reduced in the calorie-restricted control group and in UV-B–exposed animals who received the obesity diet. Conclusions and Relevance Dietary alterations seem to modify histopathological responses to UV-B exposure in the skin of hairless mice. Level of Evidence NA. PMID:28418519
Westerterp, Marit; Murphy, Andrew J.; Wang, Mi; Pagler, Tamara A.; Vengrenyuk, Yuliya; Kappus, Mojdeh S.; Gorman, Darren J.; Nagareddy, Prabhakara R.; Zhu, Xuewei; Abramowicz, Sandra; Parks, John S.; Welch, Carrie; Fisher, Edward A.; Wang, Nan; Yvan-Charvet, Laurent; Tall, Alan R.
2013-01-01
Rationale Plasma HDL levels are inversely correlated with atherosclerosis. Although it is widely assumed that this is due to the ability of HDL to promote cholesterol efflux from macrophage foam cells, direct experimental support for this hypothesis is lacking. Objective To assess the role of macrophage cholesterol efflux pathways in atherogenesis. Methods and Results We developed MAC-ABCDKO mice with efficient deletion of the ATP Binding Cassette Transporters A1 and G1 (ABCA1 and ABCG1) in macrophages but not in hematopoietic stem or progenitor populations. MAC-ABCDKO bone marrow (BM) was transplanted into Ldlr-/- recipients. On the chow diet, these mice had similar plasma cholesterol and blood monocyte levels but increased atherosclerosis compared to controls. On the Western type diet (WTD), MAC-ABCDKO BM transplanted Ldlr-/- mice had disproportionate atherosclerosis, considering they also had lower VLDL/LDL cholesterol levels than controls. ABCA1/G1 deficient macrophages in lesions showed increased inflammatory gene expression. Unexpectedly, WTD-fed MAC-ABCDKO BM transplanted Ldlr-/- mice displayed monocytosis and neutrophilia in the absence of HSPC proliferation. Mechanistic studies revealed increased expression of M-CSF and G-CSF in splenic macrophage foam cells, driving BM monocyte and neutrophil production. Conclusion These studies 1) show that macrophage deficiency of ABCA1/G1 is pro-atherogenic likely by promoting plaque inflammation and 2) uncover a novel positive feedback loop in which cholesterol-laden splenic macrophages signal BM progenitors to produce monocytes, with suppression by macrophage cholesterol efflux pathways. PMID:23572498
Sordo, Yusmel; Suárez, Marisela; Caraballo, Rosalina; Sardina, Talía; Brown, Emma; Duarte, Carlos; Lugo, Joanna; Gil, Lázaro; Perez, Danny; Oliva, Ayme; Vargas, Milagros; Santana, Elaine; Valdés, Rodolfo; Rodríguez, María Pilar
2018-03-01
The development of subunit vaccines against classical swine fever is a desirable goal, because it allows discrimination between vaccinated and infected animals. In this study, humoral and cellular immune response elicited in inbred BALB/c mice by immunization with a recombinant classical swine fever virus (CSFV) E2 protein fused to porcine CD154 antigen (E2CD154) was assessed. This model was used as a predictor of immune response in swine. Mice were immunized with E2CD154 emulsified in Montanide ISA50V2 or dissolved in saline on days 1 and 21. Another group received E2His antigen, without CD154, in the same adjuvant. Montanide ISA50V2 or saline served as negative controls for each experimental group. Animals immunized with 12.5 and 2.5 μg/dose of E2CD154 developed the highest titers (>1:2000) of CSFV neutralizing antibodies. Moreover, CSFV specific splenocyte gamma-interferon production, measured after seven and twenty-eight days of immunization, was significantly higher in mice immunized with 12.5 μg of E2CD154. As a conclusion, E2CD154 emulsified in Montanide ISA50 V2 was able to induce a potent humoral and an early cellular immune response in inbred BALB/c mice. Therefore, this immunogen might be an appropriate candidate to elicit immune response in swine, control CSF disease and to eliminate CSFV in swine. Copyright © 2018 International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.
CCN4/WISP-1 positively regulates chondrogenesis by controlling TGF-β3 function.
Yoshioka, Yuya; Ono, Mitsuaki; Maeda, Azusa; Kilts, Tina M; Hara, Emilio Satoshi; Khattab, Hany; Ueda, Junji; Aoyama, Eriko; Oohashi, Toshitaka; Takigawa, Masaharu; Young, Marian F; Kuboki, Takuo
2016-02-01
The CCN family of proteins plays important roles in development and homeostasis of bone and cartilage. To understand the role of CCN4 in chondrogenesis, human bone marrow stromal cells (hBMSCs) were transduced with CCN4 adenovirus (adCCN4) or siRNA to CCN4 (siCCN4) in the presence or absence of transforming growth factor-β3 (TGF-β3). Overexpression of CCN4 enhanced TGF-β3-induced SMAD2/3 phosphorylation and chondrogenesis of hBMSCs in an in vitro assay using a micromass culture model. On the other hand, knockdown of CCN4 inhibited the TGF-β3-induced SMAD2/3 phosphorylation and synthesis of cartilage matrix in micromass cultures of hBMSCs. Immunoprecipitation-western blot analysis revealed that CCN4 bound to TGF-β3 and regulated the ability of TGF-β3 to bind to hBMSCs. In vivo analysis confirmed there was a significant decrease in the gene expression levels of chondrocyte markers in cartilage samples from Ccn4-knock out (KO) mice, compared to those from wild type (WT) control. In order to investigate the regenerative properties of the articular cartilage in Ccn4-KO mice, articular cartilage defects were surgically performed in the knee joints of young mice, and the results showed that the cartilage was partially repaired in WT mice, but not in Ccn4-KO mice. In conclusion, these results show, for the first time, that CCN4 has a positive influence on chondrogenic differentiation by modulating the effects of TGF-β3. Copyright © 2015 Elsevier Inc. All rights reserved.
2010-01-01
Background Interactions between fractalkine (CX3CL1) and fractalkine receptor (CX3CR1) regulate microglial activation in the CNS. Recent findings indicate that age-associated impairments in CX3CL1 and CX3CR1 are directly associated with exaggerated microglial activation and an impaired recovery from sickness behavior after peripheral injection of lipopolysaccharide (LPS). Therefore, the purpose of this study was to determine the extent to which an acute LPS injection causes amplified and prolonged microglial activation and behavioral deficits in CX3CR1-deficient mice (CX3CR1-/-). Methods CX3CR1-/- mice or control heterozygote mice (CX3CR1+/-) were injected with LPS (0.5 mg/kg i.p.) or saline and behavior (i.e., sickness and depression-like behavior), microglial activation, and markers of tryptophan metabolism were determined. All data were analyzed using Statistical Analysis Systems General Linear Model procedures and were subjected to one-, two-, or three-way ANOVA to determine significant main effects and interactions. Results LPS injection caused a prolonged duration of social withdrawal in CX3CR1-/- mice compared to control mice. This extended social withdrawal was associated with enhanced mRNA expression of IL-1β, indolamine 2,3-dioxygenase (IDO) and kynurenine monooxygenase (KMO) in microglia 4 h after LPS. Moreover, elevated expression of IL-1β and CD14 was still detected in microglia of CX3CR1-/- mice 24 h after LPS. There was also increased turnover of tryptophan, serotonin, and dopamine in the brain 24 h after LPS, but these increases were independent of CX3CR1 expression. When submitted to the tail suspension test 48 and 72 h after LPS, an increased duration of immobility was evident only in CX3CR1-/- mice. This depression-like behavior in CX3CR1-/- mice was associated with a persistent activated microglial phenotype in the hippocampus and prefrontal cortex. Conclusions Taken together, these data indicate that a deficiency of CX3CR1 is permissive to protracted microglial activation and prolonged behavioral alterations in response to transient activation of the innate immune system. PMID:21167054
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Keisha M.; Franzi, Lisa M.; Last, Jerold A., E-mail: jalast@ucdavis.edu
2013-01-01
Our previous work has shown that coarse particulate matter (PM{sub 10-2.5}) from wildfire smoke is more toxic to lung macrophages on an equal dose (by mass) basis than coarse PM isolated from normal ambient air, as evidenced by decreased numbers of macrophages in lung lavage fluid 6 and 24 hours after PM instillation into mouse lungs in vivo and by cytotoxicity to a macrophage cell line observed directly in vitro. We hypothesized that pulmonary macrophages from mice instilled with wildfire coarse PM would undergo more cytotoxicity than macrophages from controls, and that there would be an increase in oxidative stressmore » in their lungs. Cytotoxicity was quantified as decreased viable macrophages and increased percentages of dead macrophages in the bronchoalveolar lavage fluid (BALF) of mice instilled with wildfire coarse PM. At 1 hour after PM instillation, we observed both decreased numbers of viable macrophages and increased dead macrophage percentages as compared to controls. An increase in free isoprostanes, an indicator of oxidative stress, from control values of 28.1 ± 3.2 pg/mL to 83.9 ± 12.2 pg/mL was observed a half-hour after PM instillation. By 1 hour after PM instillation, isoprostane values had returned to 30.4 ± 7.6 pg/mL, not significantly different from control concentrations. Lung sections from mice instilled with wildfire coarse PM showed rapid Clara cell responses, with decreased intracellular staining for the Clara cell secretory protein CCSP 1 hour after wildfire PM instillation. In conclusion, very rapid cytotoxicity occurs in pulmonary macrophages and oxidative stress responses are seen 0.5–1 hour after wildfire coarse PM instillation. These results define early cellular and biochemical events occurring in vivo and support the hypothesis that oxidative stress-mediated macrophage toxicity plays a key role in the initial response of the mouse lung to wildfire PM exposure. -- Highlights: ► We studied very early events (0.5–1 hour) after giving wildfire PM{sub 10-2.5} to mice. ► Wildfire PM{sub 10-2.5} rapidly kills lung macrophages in mice. ► Wildfire PM{sub 10-2.5} rapidly elicits oxidative stress in mice. ► Wildfire PM{sub 10-2.5} rapidly elicits Clara cell CCSP secretion in mice. ► Wildfire PM{sub 10-2.5} rapidly elicits TNF-α secretion into BALF in mice.« less
Cancer causes increased mortality and is associated with altered apoptosis in murine sepsis
Fox, Amy C.; Robertson, Charles M.; Belt, Brian; Clark, Andrew T.; Chang, Katherine C.; Leathersich, Ann M.; Dominguez, Jessica A.; Perrone, Erin E.; Dunne, W. Michael; Hotchkiss, Richard S.; Buchman, Timothy G.; Linehan, David C.; Coopersmith, Craig M.
2009-01-01
Objective While most septic patients have an underlying comorbidity, most animal models of sepsis use mice that were healthy prior to the onset of infection. Malignancy is the most common comorbidity associated with sepsis. The purpose of this study was to determine whether mice with cancer have a different response to sepsis than healthy animals. Design Prospective, randomized controlled study. Setting Animal laboratory in a university medical center. Subjects C57Bl/6 mice. Interventions Animals received a subcutaneous injection of either 250,000 cells of the transplantable pancreatic adenocarcinoma cell line Pan02 (cancer) or phosphate-buffered saline (healthy). Three weeks later, mice given Pan02 cells developed reproducible, non-metastatic tumors. Both groups of mice then underwent intratracheal injection of either Pseudomonas aeruginosa (septic) or 0.9% NaCl (sham). Animals were sacrificed 24 hours post-operatively or followed seven days for survival. Measurements and Main Results Cancer and healthy mice appeared similar when subjected to sham operation, although cancer animals had lower levels of T and B lymphocyte apoptosis. Cancer septic mice had increased mortality compared to previously healthy septic mice subjected to the identical injury (52% vs. 28%, p=0.04). This was associated with increased bacteremia but no difference in local pulmonary infection. Cancer septic mice also had increased intestinal epithelial apoptosis. Although sepsis induced an increase in T and B lymphocyte apoptosis in all animals, cancer septic mice had decreased T and B lymphocyte apoptosis compared to previously healthy septic mice. Serum and pulmonary cytokines, lung histology, complete blood counts and intestinal proliferation were similar between cancer septic and previously healthy septic mice. Conclusions When subjected to the same septic insult, mice with cancer have increased mortality compared to previously healthy animals. Decreased systemic bacterial clearance and alterations in both intestinal epithelial and lymphocyte apoptosis may help explain this differential response. PMID:20009755
Effects of Dorzolamide on Retinal and Choroidal Blood Flow in the DBA/2J Mouse Model of Glaucoma
Chandra, Saurav; Muir, Eric R.; Deo, Kaiwalya; Kiel, Jeffrey W.; Duong, Timothy Q.
2016-01-01
Purpose To test the hypothesis that acute topical dorzolamide (DZ) decreases intraocular pressure (IOP) and increases retinal and choroidal blood flow in the DBA/2J mouse model of glaucoma. Methods Retinal and choroidal blood flow were measured in 4- and 9-month-old DBA/2J mice, and 4-month C57BL/6 (control) mice under isoflurane anesthesia using magnetic resonance imaging. Ocular blood flow was measured at baseline, and 1 and 2 hours after topical dorzolamide. Intraocular pressure was measured using a rebound tonometer in a subset of animals at the same time points. Results Baseline IOP in the 4-month-old DBA/2J mice and C57BL/6 mice was not significantly different (P > 0.05), and IOP in both groups was less than in the 9-month-old DBA/2J mice (P < 0.05 for both). Compared to baseline, dorzolamide reduced IOP at 1 and 2 hours after dorzolamide in the 4- (P < 0.05) and 9-month-old (P < 0.01) DBA/2J mice, but not in the C57BL/6J mice (P > 0.05). Baseline retinal blood flow was lower in the 4-month and 9-month-old DBA/2J mice compared with the 4-month-old C57BL/6J mice (P < 0.05). Baseline choroidal blood flow in the 9-month-old DBA/2J mice was less than in the C57BL/6J mice (P < 0.05). Compared with baseline, both retinal and choroidal blood flow increased at 1-hour post-dorzolamide and remained elevated 2 hours later in the 9-month-old DBA/2J mice (P < 0.05). Conclusions Dorzolamide lowers IOP and raises retinal and choroidal blood flow in older DBA/2J mice, consistent with the study hypothesis. PMID:26934140
Rajapakse, Niwanthi W; Johnston, Tamara; Kiriazis, Helen; Chin-Dusting, Jaye P; Du, Xiao-Jun; Kaye, David M
2015-07-01
What is the central question of this study? What is the potential role of endothelial NO production via overexpression of the l-arginine transporter, CAT1, as a mitigator of cardiac hypertrophy? What is the main finding and its importance? Augmentation of endothelium-specific l-arginine transport via CAT1 can attenuate pressure-overload-dependent cardiac hypertrophy and fibrosis. Our findings support the conclusion that interventions that improve endothelial l-arginine transport may provide therapeutic utility in the setting of myocardial hypertrophy. Such modifications may be introduced by exercise training or locally delivered gene therapy, but further experimental and clinical studies are required. Endothelial dysfunction has been postulated to play a central role in the development of cardiac hypertrophy, probably as a result of reduced NO bioavailability. We tested the hypothesis that increased endothelial NO production, mediated by increased l-arginine transport, could attenuate pressure-overload-induced cardiac hypertrophy. Echocardiography and blood pressure measurements were performed 15 weeks after transverse aortic constriction (TAC) in wild-type (WT) mice (n = 12) and in mice with endothelium-specific overexpression of the l-arginine transporter, CAT1 (CAT+; n = 12). Transverse aortic constriction induced greater increases in heart weight to body weight ratio in WT (by 47%) than CAT+ mice (by 25%) compared with the respective controls (P ≤ 0.05). Likewise, the increase in left ventricular wall thickness induced by TAC was significantly attenuated in CAT+ mice (P = 0.05). Cardiac collagen type I mRNA expression was greater in WT mice with TAC (by 22%; P = 0.03), but not in CAT+ mice with TAC, compared with the respective controls. Transverse aortic constriction also induced lesser increases in β-myosin heavy chain mRNA expression in CAT+ mice compared with WT (P ≤ 0.05). Left ventricular systolic pressure after TAC was 36 and 39% greater in WT and CAT+ mice, respectively, compared with the respective controls (P ≤ 0.001). Transverse aortic constriction had little effect on left ventricular end-diastolic pressure in both genotypes. Taken together, these data indicate that augmenting endothelial function by overexpression of l-arginine transport can attenuate pressure-overload-induced cardiac hypertrophy. © 2015 The Authors. Experimental Physiology © 2015 The Physiological Society.
Chandra, Dev; Korpi, Esa R; Miralles, Celia P; De Blas, Angel L; Homanics, Gregg E
2005-01-01
Background Gamma-aminobutyric acid type A receptors (GABAA-Rs) are the major inhibitory receptors in the mammalian brain and are modulated by a number of sedative/hypnotic drugs including benzodiazepines and anesthetics. The significance of specific GABAA-Rs subunits with respect to behavior and in vivo drug responses is incompletely understood. The γ2 subunit is highly expressed throughout the brain. Global γ2 knockout mice are insensitive to the hypnotic effects of diazepam and die perinatally. Heterozygous γ2 global knockout mice are viable and have increased anxiety-like behaviors. To further investigate the role of the γ2 subunit in behavior and whole animal drug action, we used gene targeting to create a novel mouse line with attenuated γ2 expression, i.e., γ2 knockdown mice. Results Knockdown mice were created by inserting a neomycin resistance cassette into intron 8 of the γ2 gene. Knockdown mice, on average, showed a 65% reduction of γ2 subunit mRNA compared to controls; however γ2 gene expression was highly variable in these mice, ranging from 10–95% of normal. Immunohistochemical studies demonstrated that γ2 protein levels were also variably reduced. Pharmacological studies using autoradiography on frozen brain sections demonstrated that binding of the benzodiazepine site ligand Ro15-4513 was decreased in mutant mice compared to controls. Behaviorally, knockdown mice displayed enhanced anxiety-like behaviors on the elevated plus maze and forced novelty exploration tests. Surprisingly, mutant mice had an unaltered response to hypnotic doses of the benzodiazepine site ligands diazepam, midazolam and zolpidem as well as ethanol and pentobarbital. Lastly, we demonstrated that the γ2 knockdown mouse line can be used to create γ2 global knockout mice by crossing to a general deleter cre-expressing mouse line. Conclusion We conclude that: 1) insertion of a neomycin resistance gene into intron 8 of the γ2 gene variably reduced the amount of γ2, and that 2) attenuated expression of γ2 increased anxiety-like behaviors but did not lead to differences in the hypnotic response to benzodiazepine site ligands. This suggests that reduced synaptic inhibition can lead to a phenotype of increased anxiety-like behavior. In contrast, normal drug effects can be maintained despite a dramatic reduction in GABAA-R targets. PMID:15850489
Yan, Zhiyi; Jiao, Haiyan; Ding, Xiufang; Ma, Qingyu; Li, Xiaojuan; Pan, Qiuxia; Wang, Tingye; Hou, Yajing; Jiang, Youming; Liu, Yueyun; Chen, Jiaxu
2018-05-03
Background: The apelin-APJ system has been considered to play a crucial role in HPA axis function, and how the traditional Chinese compound prescription Xiaoyaosan regulates the apelin-APJ system as a supplement to treat depressive disorders. Objective: To investigate the depression-like behaviors and expression of apelin and APJ in hypothalamus of chronic unpredictable mild stress (CUMS) mice and study whether these changes related to the regulation of Xiaoyaosan. Methods: 60 adult C57BL/6J mice were randomly divided into four groups, including control group, CUMS group, Xiaoyaosan treatment group and fluoxetine treatment group. Mice in the control group and CUMS group received 0.5 mL physiological saline once a day by intragastric administration. Mice in two treatment groups received Xiaoyaosan (0.25 g/kg/d) and fluoxetine (2.6 mg/kg/d), respectively. After 21 days of modeling with CUMS, the expression of apelin and APJ in hypothalamus were measured by real-time fluorescence quantitative PCR, western blot and immunohistochemical staining. The physical condition, body weight, food intake and behavior tests such as open field test, sucrose preference test and force swimming test were measured to evaluate depressive-like behaviors. Results: In this study, significant behavioral changes were found in CUMS-induced mice, meanwhile the expressions of apelin and APJ in the hypothalamus were changed after modeling. The body weight, food-intake and depressive-like behaviors in CUMS-induced mice could be improved by Xiaoyaosan treatment which is similar with the efficacy of fluoxetine, while the expressions of apelin and APJ in hypothalamus were modified by Xiaoyaosan. Conclusions: The data suggest that apelin-APJ system changes in the hypothalamus may be a target of depressive disorders, and the beneficial effects of Chinese compound prescription Xiaoyaosan on depressive-like behaviors may be mediated by the apelin-APJ system.
Rozier, Kelvin; Bondarenko, Vladimir E
2018-03-01
Transgenic (TG) mice overexpressing β 2 -adrenergic receptors (β 2 -ARs) demonstrate enhanced myocardial function, which manifests in increased basal adenylyl cyclase activity, enhanced atrial contractility, and increased left ventricular function in vivo. To gain insights into the mechanisms of these effects, we developed a comprehensive mathematical model of the mouse ventricular myocyte overexpressing β 2 -ARs. We found that most of the β 2 -ARs are active in control conditions in TG mice. The simulations describe the dynamics of major signaling molecules in different subcellular compartments, increased basal adenylyl cyclase activity, modifications of action potential shape and duration, and the effects on L-type Ca 2+ current and intracellular Ca 2+ concentration ([Ca 2+ ] i ) transients upon stimulation of β 2 -ARs in control, after the application of pertussis toxin, upon stimulation with a specific β 2 -AR agonist zinterol, and upon stimulation with zinterol in the presence of pertussis toxin. The model also describes the effects of the β 2 -AR inverse agonist ICI-118,551 on adenylyl cyclase activity, action potential, and [Ca 2+ ] i transients. The simulation results were compared with experimental data obtained in ventricular myocytes from TG mice overexpressing β 2 -ARs and with simulation data on wild-type mice. In conclusion, a new comprehensive mathematical model was developed that describes multiple experimental data on TG mice overexpressing β 2 -ARs and can be used to test numerous hypotheses. As an example, using the developed model, we proved the hypothesis of the major contribution of L-type Ca 2+ current to the changes in the action potential and [Ca 2+ ] i transient upon stimulation of β 2 -ARs with zinterol. NEW & NOTEWORTHY We developed a new mathematical model for transgenic mouse ventricular myocytes overexpressing β 2 -adrenoceptors that describes the experimental findings in transgenic mice. The model reveals mechanisms of the differential effects of stimulation of β 2 -adrenoceptors in wild-type and transgenic mice overexpressing β 2 -adrenoceptors.
Shanmugasamy, Kathirvelu; Anbalagan, Jayaram; Rajanarayanan, Swamynathan; Meenachi, Swamynathan
2016-01-01
Introduction The advancement in the telecommunications technology with multi-functional added features in mobile phone, attracts more users of all age group. It is alarming to note that, the mobile phone use has increased amongst children and they are exposed to potentially harmful radiofrequency radiation in their lifetime. Aim To investigate the long term exposure of 900 to 1800 MHz radiations emitted from 2G mobile phone in mice hippocampus at histomorphometric level. Materials and Methods With due approval from institutional animal ethics committee, 36 mice were exposed to 2G mobile phone radiation, 48 minutes per day for a period of 30-180 days. The control group was kept under similar conditions without 2G exposure. Mice were sacrificed and the brain was removed from the first month to six months period. Brain was removed from the cranial cavity and hippocampus region was dissected out carefully and processed for routine histological study. Random serial sections were analysed under microscope for histomorphometric changes. For statistical analysis, independent t-test was used for comparing control and 2G exposed groups. Results The mean density of neurons in the hippocampus regions CA1, CA2 and DGDB from first to sixth month was significantly lower in the 2G exposed groups; however, in CA3 and DGVB, the 2G exposed mice showed significantly higher density of neurons. The mean nuclear diameter of neurons in the hippocampus region of CA1, CA2, CA3, DGDB and DGVB from first to sixth months showed lower nuclear diameter in 2G exposed mice. Conclusion The long term exposure to 900-1800 MHz frequency radiations emitted from 2G mobile phone could cause significantly reduced neuron density and decreased nuclear diameter in the hippocampus neurons of mice. PMID:27656427
Yamazaki, Tomomi; Kishimoto, Kyoko; Miura, Shinji; Ezaki, Osamu
2012-02-01
Diets high in sucrose/fructose or fat can result in hepatic steatosis (fatty liver). Mice fed a high-fat diet, especially that of saturated-fat-rich oil, develop fatty liver with an increase in peroxisome proliferator-activated receptor (PPAR) γ2 protein in liver. The fatty liver induced by a high-fat diet is improved by knockdown of liver PPARγ2. In this study, we investigated whether β-conglycinin (a major protein of soy protein) could reduce PPARγ2 protein and prevent high-fat-diet-induced fatty liver in ddY mice. Mice were fed a high-starch diet (70 energy% [en%] starch) plus 20% (wt/wt) sucrose in their drinking water or a high-safflower-oil diet (60 en%) or a high-butter diet (60 en%) for 11 weeks, by which fatty liver is developed. As a control, mice were fed a high-starch diet with drinking water. Either β-conglycinin or casein (control) was given as dietary protein. β-Conglycinin supplementation completely prevented fatty liver induced by each type of diet, along with a reduction in adipose tissue weight. β-Conglycinin decreased sterol regulatory element-binding protein (SREBP)-1c and carbohydrate response element-binding protein (ChREBP) messenger RNAs (mRNAs) in sucrose-supplemented mice, whereas it decreased PPARγ2 mRNA (and its target genes CD36 and FSP27), but did not decrease SREBP-1c and ChREBP mRNAs, in mice fed a high-fat diet. β-Conglycinin decreased PPARγ2 protein and liver triglyceride (TG) concentration in a dose-dependent manner in mice fed a high-butter diet; a significant decrease in liver TG concentration was observed at a concentration of 15 en%. In conclusion, β-conglycinin effectively prevents fatty liver induced by a high-fat diet through a decrease in liver PPARγ2 protein. Copyright © 2012 Elsevier Inc. All rights reserved.
Xu, Jinxian; Mo, Juan; Liu, Xinglou; Marshall, Brendan; Atherton, Sally S.; Dong, Zheng; Smith, Sylvia
2018-01-01
Purpose The purpose of this study was to determine if the receptor-interacting protein kinase 3 (RIP3) plays a significant role in innate immune responses and death of bystander retinal neurons during murine cytomegalovirus (MCMV) retinal infection, by comparing the innate immune response and cell death in RIP3-depleted mice (Rip3−/−) and Rip3+/+ control mice. Methods Rip3−/− and Rip3+/+ mice were immunosuppressed (IS) and inoculated with MCMV via the supraciliary route. Virus-injected and mock-injected control eyes were removed at days 4, 7, and 10 post infection (p.i.) and markers of innate immunity and cell death were analyzed. Results Compared to Rip3+/+ mice, significantly more MCMV was recovered and more MCMV-infected RPE cells were observed in injected eyes of Rip3−/− mice at days 4 and 7 p.i. In contrast, fewer TUNEL-stained photoreceptors were observed in Rip3−/− eyes than in Rip3+/+ eyes at these times. Electron microscopy showed that significantly more apoptotic photoreceptor cells were present in Rip3+/+ mice than in Rip3−/− mice. Immunohistochemistry showed that the majority of TUNEL-stained photoreceptors died via mitochondrial flavoprotein apoptosis-inducing factor (AIF)-mediated, caspase 3–independent apoptosis. The majority of RIP3-expressing cells in infected eyes were RPE cells, microglia/macrophages, and glia, whereas retinal neurons contained much lower amounts of RIP3. Western blots showed significantly higher levels of activated nuclear factor–κB and caspase 1 were present in Rip3+/+ eyes compared to Rip3−/− eyes. Conclusions Our results suggest that RIP3 enhances innate immune responses against ocular MCMV infection via activation of the inflammasome and nuclear factor–κB, which also leads to inflammation and death of bystander cells by multiple pathways including apoptosis and necroptosis.
Characterization of locomotor activity circadian rhythms in athymic nude mice
2013-01-01
Background The relation between circadian dysregulation and cancer incidence and progression has become a topic of major interest over the last decade. Also, circadian timing has gained attention regarding the use of chronopharmacology-based therapeutics. Given its lack of functional T lymphocytes, due to a failure in thymus development, mice carrying the Foxn1(Δ/Δ) mutation (nude mice) have been traditionally used in studies including implantation of xenogeneic tumors. Since the immune system is able to modulate the circadian clock, we investigated if there were alterations in the circadian system of the athymic mutant mice. Methods General activity circadian rhythms in 2–4 month-old Foxn1(Δ/Δ) mice (from Swiss Webster background) and their corresponding wild type (WT) controls was recorded. The response of the circadian system to different manipulations (constant darkness, light pulses and shifts in the light–dark schedule) was analyzed. Results Free-running periods of athymic mice and their wild type counterpart were 23.86 ± 0.03 and 23.88 ± 0.05 hours, respectively. Both strains showed similar phase delays in response to 10 or 120 minutes light pulses applied in the early subjective night and did not differ in the number of c-Fos-expressing cells in the suprachiasmatic nuclei, after a light pulse at circadian time (CT) 15. Similarly, the two groups showed no significant difference in the time needed for resynchronization after 6-hour delays or advances in the light–dark schedule. The proportion of diurnal activity, phase-angle with the zeitgeber, subjective night duration and other activity patterns were similar between the groups. Conclusions Since athymic Foxn1(Δ/Δ) mice presented no differences with the WT controls in the response of the circadian system to the experimental manipulations performed in this work, we conclude that they represent a good model in studies that combine xenograft implants with either alteration of the circadian schedules or chronopharmacological approaches to therapeutics. PMID:23369611
Mandal, Subhra; Prathipati, Pavan K.; Kang, Guobin; Zhao, You; Yuan, Zhe; Fan, Wejlin; Li, Qingsheng; Destache, Christopher J.
2016-01-01
Objective This report presents tenofovir alafenamide (TAF) and elvitegravir (EVG) fabricated into nanoparticles (NPs) for subcutaneous (SubQ) delivery as prevention strategy. Design Prospective prevention study in hu-BLT mice. Methods Using an oil-in-water emulsion solvent evaporation technique, TAF+EVG drugs were entrapped together into NPs containing poly(lactic-co-glycolic acid) (PLGA). In vitro prophylaxis studies (IC90) compared NPs to drugs in solution. Humanized-BLT (n=5/group) mice were given 200 mg/kg SubQ, and vaginally challenged with HIV-1 (5×105 TCID50) 4 and 14 days (d) post-NP administration (PI). Control mice (n=5) were challenged at 4 d. Weekly plasma viral load (pVL) was performed using RT-PCR. Hu-BLT mice were sacrificed and lymph nodes were harvested for HIV-1 viral RNA detection by in situ hybridization (ISH). In parallel, CD34+ humanized mice (3/time point) compared tenofovir (TFV) and EVG drug levels in vaginal tissues from NPs and solution. TFV and EVG were analyzed from tissue using LC-MS/MS. Results TAF+EVG NPs were < 200 nm in size. In-vitro prophylaxis indicates TAF+EVG NPs IC90 was 0.002 μg/mL and TAF+EVG solution was 0.78 μg/mL. TAF+EVG NPs demonstrated detectable drugs for 14 days and 72 h for solution, respectively. All Hu-BLT control mice became infected within 14 d after HIV-1 challenge. In contrast, hu-BLT mice that received NPs and challenged at 4 d PI, 100% were uninfected, and 60% challenged at 14 d PI were uninfected (p = 0.007; Mantel-Cox test). ISH confirmed these results. Conclusions This proof-of-concept study demonstrated sustained protection for TAF+EVG NPs in a hu-BLT mouse model of HIV vaginal transmission. PMID:28121666
Cha, Ji Hyeon; Lee, Sheen-Woo; Park, Kyeongsoon; Moon, Dae Hyuk; Kim, Kwangmeyung; Biswal, Sandip
2012-01-01
Objective To evaluate the potential and correlation between near-infrared fluorescence (NIRF) imaging using cyanine 5.5 conjugated with hydrophobically modified glycol chitosan nanoparticles (HGC-Cy5.5) and 18F-fluorodeoxyglucose-positron emission tomography (18F-FDG-PET) imaging of collagen-induced arthritis (CIA). Materials and Methods We used 10 CIA and 3 normal mice. Nine days after the injecting collagen twice, microPET imaging was performed 40 minutes after the intravenous injection of 9.3 MBq 18F-FDG in 200 µL PBS. One day later, NIRF imaging was performed two hours after the intravenous injection of HGC-cy5.5 (5 mg/kg). We assessed the correlation between these two modalities in the knees and ankles of CIA mice. Results The mean standardized uptake values of 18F-FDG for knees and ankles were 1.68 ± 0.76 and 0.79 ± 0.71, respectively, for CIA mice; and 0.57 ± 0.17 and 0.54 ± 0.20 respectively for control mice. From the NIRF images, the total photon counts per 30 mm2 for knees and ankles were 2.32 ± 1.54 × 105 and 2.75 ± 1.51 × 105, respectively, for CIA mice, and 1.22 ± 0.27 × 105 and 0.88 ± 0.24 × 105, respectively, for control mice. These two modalities showed a moderate correlation for knees (r = 0.604, p = 0.005) and ankles (r = 0.464, p = 0.039). Moreover, both HGC-Cy5.5 (p = 0.002) and 18F-FDG-PET (p = 0.005) imaging also showed statistically significant differences between CIA and normal mice. Conclusion NIRF imaging using HGC-Cy5.5 was moderately correlated with 18F-FDG-PET imaging in the CIA model. As such, HGC-Cy5.5 imaging can be used for the early detection of rheumatoid arthritis. PMID:22778567
Hougaard, Karin S; Jensen, Keld A; Nordly, Pernille; Taxvig, Camilla; Vogel, Ulla; Saber, Anne T; Wallin, Håkan
2008-01-01
Background Results from epidemiological studies indicate that particulate air pollution constitutes a hazard for human health. Recent studies suggest that diesel exhaust possesses endocrine activity and therefore may affect reproductive outcome. This study in mice aimed to investigate whether exposure to diesel exhaust particles (DEP; NIST 2975) would affect gestation, postnatal development, activity, learning and memory, and biomarkers of transplacental toxicity. Pregnant mice (C57BL/6; BomTac) were exposed to 19 mg/m3 DEP (~1·106 particles/cm3; mass median diameter ≅ 240 nm) on gestational days 9–19, for 1 h/day. Results Gestational parameters were similar in control and diesel groups. Shortly after birth, body weights of DEP offspring were slightly lower than in controls. This difference increased during lactation, so by weaning the DEP exposed offspring weighed significantly less than the control progeny. Only slight effects of exposure were observed on cognitive function in female DEP offspring and on biomarkers of exposure to particles or genotoxic substances. Conclusion In utero exposure to DEP decreased weight gain during lactation. Cognitive function and levels of biomarkers of exposure to particles or to genotoxic substances were generally similar in exposed and control offspring. The particle size and chemical composition of the DEP and differences in exposure methods (fresh, whole exhaust versus aged, resuspended DEP) may play a significant role on the biological effects observed in this compared to other studies. PMID:18331653
Intact urothelial barrier function in a mouse model of ketamine-induced voiding dysfunction
Rajandram, Retnagowri; Ong, Teng Aik; Razack, Azad H. A.; MacIver, Bryce; Zeidel, Mark
2016-01-01
Ketamine is a popular choice for young drug abusers. Ketamine abuse causes lower urinary tract symptoms, with the underlying pathophysiology poorly understood. Disruption of urothelial barrier function has been hypothesized to be a major mechanism for ketamine cystitis, yet the direct evidence of impaired urothelial barrier function is still lacking. To address this question, 8-wk-old female C57BL/6J mice were injected intraperitoneally with 30 mg·kg−1·day−1 ketamine for 12 wk to induce ketamine cystitis. A spontaneous voiding spot assay showed that ketamine-treated mice had increased primary voiding spot numbers and smaller primary voiding spot sizes than control mice (P < 0.05), indicating a contracted bladder and bladder overactivity. Consistently, significantly increased voiding frequency was observed in ketamine-treated mice on cystometrograms. These functional experiments indicate that ketamine induces voiding dysfunction in mice. Surprisingly, urothelial permeability in ketamine-treated mice was not changed when measured using an Ussing chamber system with isotopic urea and water. Mouse urothelial structure was also not altered, and intact umbrella cell structure was observed by both transmission and scanning electron microscopy. Furthermore, immunostaining and confocal microscopy confirmed the presence of a well-defined distribution of zonula occuldens-1 in tight junctions and uroplakin in umbrella cells. In conclusion, these data indicate that ketamine injection induces voiding dysfunction in mice but does not necessarily disrupt mouse bladder barrier function. Disruption of urothelial barrier function may not be the major mechanism in ketamine cystitis. PMID:26911853
Oxytocin in the Treatment of Dystocia in Mice
Narver, Heather L
2012-01-01
Physicians and veterinarians often prescribe oxytocin to treat dystocia. However, oxytocin administration to pregnant women or animals is not without risk. In the venue of laboratory animal medicine, the use of oxytocin may present confounding variables to research. Although oxytocin has been studied extensively, many of its physiologic effects and interactions with other hormones remain unclear. Investigator concerns about adverse and confounding effects of oxytocin in their research mice prompted the current review of oxytocin and its use to treat murine dystocia. Well-controlled studies of oxytocin in dystocic mice have not been conducted. However, in humans and other animals, inconsistent and adverse effects are well-documented. Limited knowledge of the complex physiologic and molecular mechanisms of action of oxytocin and scant support for the efficacy of oxytocin in dystocic mice fail to meet the standards of evidence-based veterinary medical practice. The administration of oxytocin is contraindicated in many cases of dystocia in research mice, and its use in dystocic mice may be unfounded. A brief review of oxytocin and the physiologic mechanisms of parturition are provided to support this conclusion. Alternative treatments for murine dystocia are discussed, and a holistic approach is advocated to better serve animal welfare and to safeguard the integrity of valuable research. Laboratory animal veterinarians overseeing the development of guidelines or standard operating procedures for technician or investigator treatment of dystocic mice should understand the effects of oxytocin administration in light of relevant research. PMID:22330862
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Tai L.; Chi, Rui P.; Karrow, Niel A.
2005-12-15
Previously, we have reported that thalidomide can modulate the immune responses in female B6C3F1 mice. Furthermore, thalidomide immunomodulation increased primary host resistance to intravenously infected Listeria monocytogenes. The present study was intended to evaluate the mechanisms underlying the enhanced host resistance to L. monocytogenes by focusing on the neutrophils. Female B6C3F1 mice were treated intraperitoneally with thalidomide (100 mg/kg) for 15 days. Exposure to thalidomide increased the numbers of neutrophils in the spleens and livers of L. monocytogenes-infected mice when compared to the L. monocytogenes-infected control mice. Additionally, the percentage of neutrophils was also significantly increased after Thd treatment inmore » L. monocytogenes-infected mice. Further studies using antibodies to deplete corresponding cells indicated that thalidomide-mediated increase in primary host resistance (both the moribundity and colony counts in the liver and spleen) to L. monocytogenes infection was due to its effect on neutrophils but not CD8{sup +} T cells or NK cells. Finally, Thd exposure also increased host resistance to secondary host resistance to L. monocytogenes infection, and depletion of neutrophils abolished the protective effect. In conclusion, thalidomide enhanced host resistance to both primary and secondary L. monocytogenes infections by a neutrophil-related mechanism in female B6C3F1 mice.« less
Mast Cells Regulate Wound Healing in Diabetes.
Tellechea, Ana; Leal, Ermelindo C; Kafanas, Antonios; Auster, Michael E; Kuchibhotla, Sarada; Ostrovsky, Yana; Tecilazich, Francesco; Baltzis, Dimitrios; Zheng, Yongjun; Carvalho, Eugénia; Zabolotny, Janice M; Weng, Zuyi; Petra, Anastasia; Patel, Arti; Panagiotidou, Smaro; Pradhan-Nabzdyk, Leena; Theoharides, Theoharis C; Veves, Aristidis
2016-07-01
Diabetic foot ulceration is a severe complication of diabetes that lacks effective treatment. Mast cells (MCs) contribute to wound healing, but their role in diabetes skin complications is poorly understood. Here we show that the number of degranulated MCs is increased in unwounded forearm and foot skin of patients with diabetes and in unwounded dorsal skin of diabetic mice (P < 0.05). Conversely, postwounding MC degranulation increases in nondiabetic mice, but not in diabetic mice. Pretreatment with the MC degranulation inhibitor disodium cromoglycate rescues diabetes-associated wound-healing impairment in mice and shifts macrophages to the regenerative M2 phenotype (P < 0.05). Nevertheless, nondiabetic and diabetic mice deficient in MCs have delayed wound healing compared with their wild-type (WT) controls, implying that some MC mediator is needed for proper healing. MCs are a major source of vascular endothelial growth factor (VEGF) in mouse skin, but the level of VEGF is reduced in diabetic mouse skin, and its release from human MCs is reduced in hyperglycemic conditions. Topical treatment with the MC trigger substance P does not affect wound healing in MC-deficient mice, but improves it in WT mice. In conclusion, the presence of nondegranulated MCs in unwounded skin is required for proper wound healing, and therapies inhibiting MC degranulation could improve wound healing in diabetes. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.
Ma, Zhiyong; Liu, Jia; Wu, Weimin; Zhang, Ejuan; Zhang, Xiaoyong; Li, Qian; Zelinskyy, Gennadiy; Buer, Jan; Dittmer, Ulf; Kirschning, Carsten J; Lu, Mengji
2017-12-01
The outcome of hepatitis B viral (HBV) infection is determined by the complex interactions between replicating HBV and the immune system. While the role of the adaptive immune system in the resolution of HBV infection has been studied extensively, the contribution of innate immune mechanisms remains to be defined. Here we examined the role of the interleukin-1 receptor/Toll-like receptor (IL-1R/TLR) signaling pathway in adaptive immune responses and viral clearance by exploring the HBV mouse model. Hydrodynamic injection with a replication-competent HBV genome was performed in wild-type mice (WT) and a panel of mouse strains lacking specific innate immunity component expression. We found higher levels of HBV protein production and replication in Tlr2 -/- , Tlr23479 -/- , 3d/Tlr24 -/- , Myd88/Trif -/- and Irak4 -/- mice, which was associated with reduced HBV-specific CD8 + T-cell responses in these mice. Importantly, HBV clearance was delayed for more than 2 weeks in 3d/Tlr24 -/- , Myd88/Trif -/- and Irak4 -/- mice compared to WT mice. HBV-specific CD8 + T-cell responses were functionally impaired for producing the cytokines IFN-γ, TNF-α and IL-2 in TLR signaling-deficient mice compared to WT mice. In conclusion, the IL-1R/TLR signaling pathway might contribute to controlling HBV infection by augmenting HBV-specific CD8 + T-cell responses.
Angiotensin-(1-7)/Mas axis modulates fear memory and extinction in mice.
Lazaroni, Thiago Luiz do Nascimento; Bastos, Cristiane Perácio; Moraes, Márcio Flávio Dutra; Santos, Robson Souza; Pereira, Grace Schenatto
2016-01-01
Inappropriate defense-alerting reaction to fear is a common feature of neuropsychiatric diseases. Therefore, impairments in brain circuits, as well as in molecular pathways underlying the neurovegetative adjustments to fear may play an essential role on developing neuropsychiatric disorders. Here we tested the hypothesis that interfering with angiotensin-(1-7) [Ang-(1-7)]/Mas receptor axis homeostasis, which appears to be essential to arterial pressure control, would affect fear memory and extinction. Mas knockout (MasKO) mice, in FVB/N background, showed normal cued fear memory and extinction, but increased freezing in response to context. Next, as FVB/N has poor performance in contextual fear memory, we tested MasKO in mixed 129xC57BL/6 background. MasKO mice behaved similarly to wild-type (WT), but memory extinction was slower in contextual fear conditioning to a weak protocol (1CS/US). In addition, delayed extinction in MasKO mice was even more pronounced after a stronger protocol (3CS/US). We showed previously that Angiotensin II receptor AT1 antagonist, losantan, rescued object recognition memory deficit in MasKO mice. Here, losartan was also effective. Memory extinction was accelerated in MasKO mice after treatment with losartan. In conclusion, we showed for the first time that Ang-(1-7)/Mas axis may modulate fear memory extinction. Furthermore, we suggest MasKO mice as an animal model to study post-traumatic stress disorder (PTSD). Copyright © 2015 Elsevier Inc. All rights reserved.
Tang, Hong-Bo; Ren, Yu-Ping; Zhang, Jun; Ma, Shi-Hui; Gao, Feng; Wu, Yi-Ping
2007-11-01
Insulin-like growth factors (IGFs) play important roles in the development and progression of tumors. But the mechanism of tumorigenesis in relation to IGF-1 is unclear yet. This study was to explore the correlation of circulating IGF-1 level to the angiogenesis of breast cancer in IGF-1-deficient mice. The liver-specific IGF-1-deficient (LID) mice and control mice were injected with 7,12-dimethybenz(a)anthracene (DMBA) to develop breast cancer. Ginsenoside Rg3 was used to intervene tumor growth. The occurrence rates of breast cancer were compared. The expression of vascular endothelial growth factor (VEGF) and microvessel density (MVD) was detected by immunohistochemistry. The occurrence rate of breast cancer was 66.67% in untreated control mice, 33.33% in untreated LID mice, 36.00% in Rg3-treated control mice, and 12.00% in Rg3-treated LID mice. The tumor size was (0.79+/-0.20) cm in untreated control mice, (0.37+/-0.08) cm in untreated LID mice, (0.32+/-0.08) cm in Rg3-treated control mice, and (0.15+/-0.05) cm in Rg3-treated LID mice. The average light density and positive rate of VEGF were the highest in untreated control mice (0.34+/-0.10 and 0.04+/-0.02, P<0.05), and the lowest in Rg3-treated LID mice (0.13+/-0.03 and 0.01+/-0.00, P<0.05). The MVD was 31.9+/-5.3 in untreated control mice, 26.8+/-4.9 in untreated LID mice, 20.1+/-4.9 in Rg3-treated control mice, and 14.4+/-4.9 in Rg3-treated LID mice. Circulating IGF-1 plays a role in the onset and development of breast cancer. Degrading serum IGF-1 level could inhibit angiogenesis and growth of breast cancer. Rg3 could promote this effect.
Shaw, Laura A; Stefanski, Adrianne L; Peterson, Lisa K; Rumer, Kristen K; Vondracek, Andrea; Phang, Tzu L; Sakaguchi, Shimon; Winn, Virginia D; Dragone, Leonard L
2012-06-30
OBJECTIVES: Pregnancy leads to rheumatoid arthritis remission in humans. The objective of this study was to determine if the SKG mouse could serve as a model for pregnancy-associated inflammatory arthritis amelioration. In addition, the maternal peripheral blood mononuclear cell (PBMC) transcriptome was assessed to define a biomarker associated with remission. METHODS: Cohorts of zymosan-treated pregnant SKG mice and controls were monitored for arthritis progression. Microarray analysis evaluated alterations in gene expression in maternal PBMCs at embryonic day 14.5 (E14.5) between arthritic and pregnancy-remitted mice. A selected target, serum amyloid A3 (SAA3), was further investigated using quantitative reverse transcriptase PCR (qRT-PCR) and an enzyme-linked immunosorbent assay (ELISA). RESULTS: Pregnancy resulted in complete or partial remission in the majority of the zymosan-treated SKG mice. Twenty-seven transcripts were differentially expressed in the PBMCs between arthritic and pregnancy-remitted mice. Expression and plasma SAA3 levels decreased with pregnancy-induced arthritis amelioration and plasma SAA3 levels correlated with arthritis severity. CONCLUSIONS: These results establish the SKG mouse as a model system to study pregnancy-induced amelioration of arthritis. These studies also establish SAA3 as a biomarker of arthritis amelioration in SKG mice. This model can be used to elucidate the molecular and cellular mechanisms underlying the impact of pregnancy on the maternal immune system that results in arthritis amelioration.
Deficiency of liver Comparative Gene Identification-58 causes steatohepatitis and fibrosis in mice
Guo, Feng; Ma, Yinyan; Kadegowda, Anil K. G.; Betters, Jenna L.; Xie, Ping; Liu, George; Liu, Xiuli; Miao, Hongming; Ou, Juanjuan; Su, Xiong; Zheng, Zhenlin; Xue, Bingzhong; Shi, Hang; Yu, Liqing
2013-01-01
Triglyceride (TG) accumulation in hepatocytes (hepatic steatosis) preludes the development of advanced nonalcoholic fatty liver diseases (NAFLDs) such as steatohepatitis, fibrosis, and cirrhosis. Mutations in human Comparative Gene Identification-58 (CGI-58) cause cytosolic TG-rich lipid droplets to accumulate in almost all cell types including hepatocytes. However, it is unclear if CGI-58 mutation causes hepatic steatosis locally or via altering lipid metabolism in other tissues. To directly address this question, we created liver-specific CGI-58 knockout (LivKO) mice. LivKO mice on standard chow diet displayed microvesicular and macrovesicular panlobular steatosis, and progressed to advanced NAFLD stages over time, including lobular inflammation and centrilobular fibrosis. Compared with CGI-58 floxed control littermates, LivKO mice showed 8-fold and 52-fold increases in hepatic TG content, which was associated with 40% and 58% decreases in hepatic TG hydrolase activity at 16 and 42 weeks, respectively. Hepatic cholesterol also increased significantly in LivKO mice. At 42 weeks, LivKO mice showed increased hepatic oxidative stress, plasma aminotransferases, and hepatic mRNAs for genes involved in fibrosis and inflammation, such as α-smooth muscle actin, collagen type 1 α1, tumor necrosis factor α, and interleukin-1β. In conclusion, CGI-58 deficiency in the liver directly causes not only hepatic steatosis but also steatohepatitis and fibrosis. PMID:23733885
Effects of Diet-Induced Mild Obesity on Airway Hyperreactivity and Lung Inflammation in Mice
Jung, Sun Hee; Kwon, Jang-Mi; Shim, Jae Won; Kim, Deok Soo; Jung, Hye Lim; Park, Moon Soo; Park, Soo-Hee; Lee, Jinmi; Lee, Won-Young
2013-01-01
Purpose Obesity has been suggested to be linked to asthma. However, it is not yet known whether obesity directly leads to airway hyperreactivity (AHR) or obesity-induced airway inflammation associated with asthma. We investigated obesity-related changes in adipokines, AHR, and lung inflammation in a murine model of asthma and obesity. Materials and Methods We developed mouse models of chronic asthma via ovalbumin (OVA)-challenge and of obesity by feeding a high-fat diet, and then performed the methacholine bronchial provocation test, and real-time PCR for leptin, leptin receptor, adiponectin, adiponectin receptor (adipor1 and 2), vascular endothelial growth factor (VEGF), transforming growth factor (TGF) β, and tumor necrosis factor (TNF) α in lung tissue. We also measured cell counts in bronchoalveolar lavage fluid. Results Both obese and lean mice chronically exposed to OVA developed eosinophilic lung inflammation and AHR to methacholine. However, obese mice without OVA challenge did not develop AHR or eosinophilic inflammation in lung tissue. In obese mice, lung mRNA expressions of leptin, leptin receptor, VEGF, TGF, and TNF were enhanced, and adipor1 and 2 expressions were decreased compared to mice in the control group. On the other hand, there were no differences between obese mice with or without OVA challenge. Conclusion Diet-induced mild obesity may not augment AHR or eosinophilic lung inflammation in asthma. PMID:24142648
Loss of polyubiquitin gene Ubb leads to metabolic and sleep abnormalities in mice
Ryu, K.-Y.; Fujiki, N.; Kazantzis, M.; Garza, J. C.; Bouley, D. M.; Stahl, A.; Lu, X.-Y.; Nishino, S.; Kopito, R. R.
2010-01-01
Aims Ubiquitin performs essential roles in a myriad of signalling pathways required for cellular function and survival. Recently, we reported that disruption of the stress-inducible ubiquitin-encoding gene Ubb reduces ubiquitin content in the hypothalamus and leads to adult-onset obesity coupled with a loss of arcuate nucleus neurones and disrupted energy homeostasis in mice. Neuropeptides expressed in the hypothalamus control both metabolic and sleep behaviours. In order to demonstrate that the loss of Ubb results in broad hypothalamic abnormalities, we attempted to determine whether metabolic and sleep behaviours were altered in Ubb knockout mice. Methods Metabolic rate and energy expenditure were measured in a metabolic chamber, and sleep stage was monitored via electroencephalographic/electromyographic recording. The presence of neurodegeneration and increased reactive gliosis in the hypothalamus were also evaluated. Results We found that Ubb disruption leads to early-onset reduced activity and metabolic rate. Additionally, we have demonstrated that sleep behaviour is altered and sleep homeostasis is disrupted in Ubb knockout mice. These early metabolic and sleep abnormalities are accompanied by persistent reactive gliosis and the loss of arcuate nucleus neurones, but are independent of neurodegeneration in the lateral hypothalamus. Conclusions Ubb knockout mice exhibit phenotypes consistent with hypothalamic dysfunction. Our data also indicate that Ubb is essential for the maintenance of the ubiquitin levels required for proper regulation of metabolic and sleep behaviours in mice. PMID:20002312
Impaired Insulin Secretion and Enhanced Insulin Sensitivity in Cholecystokinin-Deficient Mice
Lo, Chun-Min; Obici, Silvana; Dong, H. Henry; Haas, Michael; Lou, Dawnwen; Kim, Dae Hyun; Liu, Min; D’Alessio, David; Woods, Stephen C.; Tso, Patrick
2011-01-01
OBJECTIVE Cholecystokinin (CCK) is released in response to lipid intake and stimulates insulin secretion. We hypothesized that CCK deficiency would alter the regulation of insulin secretion and glucose homeostasis. RESEARCH DESIGN AND METHODS We used quantitative magnetic resonance imaging to determine body composition and studied plasma glucose and insulin secretion of CCK gene knockout (CCK-KO) mice and their wild-type controls using intraperitoneal glucose and arginine infusions. The area of anti-insulin staining in pancreatic islets was measured by immunohistochemistry. Insulin sensitivity was assessed with euglycemic-hyperinsulemic clamps. RESULTS CCK-KO mice fed a low-fat diet had a reduced acute insulin response to glucose but a normal response to arginine and normal glucose tolerance, associated with a trend toward greater insulin sensitivity. However, when fed a high-fat diet (HFD) for 10 weeks, CCK-KO mice developed glucose intolerance despite increased insulin sensitivity that was associated with low insulin secretion in response to both glucose and arginine. The deficiency of insulin secretion in CCK-KO mice was not associated with changes in β-cell or islet size. CONCLUSIONS CCK is involved in regulating insulin secretion and glucose tolerance in mice eating an HFD. The impaired insulin response to intraperitoneal stimuli that do not typically elicit CCK release suggests that this hormone has chronic effects on β-cell adaptation to diet in addition to acute incretin actions. PMID:21602512
Wang, Zhong Q; Yu, Yongmei; Zhang, Xian H; Floyd, Z Elizabeth; Boudreau, Anik; Lian, Kun; Cefalu, William T
2012-01-01
Aim To compare the effects of dietary fibers on hepatic cellular signaling in mice. Methods Mice were randomly divided into four groups (n = 9/group): high-fat diet (HFD) control, cellulose, psyllium, and sugarcane fiber (SCF) groups. All mice were fed a HFD with or without 10% dietary fiber (w/w) for 12 weeks. Body weight, food intake, fasting glucose, and fasting insulin levels were measured. At the end of the study, hepatic fibroblast growth factor (FGF) 21, AMP-activated protein kinase (AMPK) and insulin signaling protein content were determined. Results Hepatic FGF21 content was significantly lowered, but βKlotho, fibroblast growth factor receptor 1, fibroblast growth factor receptor 3, and peroxisome proliferator-activated receptor alpha proteins were significantly increased in the SCF group compared with those in the HFD group (P < 0.01). SCF supplementation also significantly enhanced insulin and AMPK signaling, as well as decreased hepatic triglyceride and cholesterol in comparison with the HFD mice. The study has shown that dietary fiber, especially SCF, significantly attenuates lipid accumulation in the liver by enhancing hepatic FGF21, insulin, and AMPK signaling in mice fed a HFD. Conclusion This study suggests that the modulation of gastrointestinal factors by dietary fibers may play a key role in both enhancing hepatic multiple cellular signaling and reducing lipid accumulation. PMID:22787396
Lin, Xu; You, Yanwu; Wang, Jie; Qin, Youling; Huang, Peng; Yang, Fafen
2015-04-01
MiR-155 has been reported to be involved in both innate and adaptive immune responses. But the role of miR-155 in hyperglycemia-induced nephropathy is still unknown. In our current study, 3-month-old male wild-type C57 mice and Mir-155(-/-) mice were used to establish hyperglycemia-induced nephropathy. In our hyperglycemia-induced nephropathy model, the expression of podocyte injury marker desmin was markedly increased in the diabetes group when compared with control. Diabetes also significantly decreased the levels of nephrin and acetylated nephrin, whereas the expression of miR-155 was markedly increased in diabetes group when compared with control. MiR-155(-/-) mice showed significantly increased expression of nephrin, acetylated nephrin, and Wilm's tumor-1 protein (WT-1) when compared with wild-type control. MiR-155 deficiency results in significantly decrease in IL-17A expression both in vivo and in vitro. And the increased expression of WT-1, nephrin, and ac-nephrin was reversed with additional treatment of rmIL-17. Furthermore, we found that the inhibited Th17 differentiation induced by miR-155 deficiency was dependent on increased expression of SOCS1. In conclusion, miR-155 deficiency promotes nephrin acetylation and attenuates renal damage in hyperglycemia-induced nephropathy. This was associated with inhibited IL-17 production through enhancement of SOCS1 expression.
Zarei, Leila; Sadrkhanlou, Rajabali; Shahrooz, Rasoul; Malekinejad, Hassan; Eilkhanizadeh, Behroz; Ahmadi, Abbas
2014-01-01
This study was aimed to assess the protective effects of Cornus mas fruit extract (CMFE) and vitamin E (Vit E) on sperm quality parameters in the methotrexate (MTX)-treated mice. Forty-eight young adult male mice (8-12 weeks) were randomly divided into six groups including control and test groups. The control group received normal saline orally , and the test groups were treated MTX (20 mg kg(-1), ip, once weekly), MTX + CMFE (250 mg kg(-1)), MTX + CMFE (500 mg kg(-1)), MTX + CMFE (1000 mg kg(-1)), and MTX + Vit E (100 IU kg(-1), po) for 35 consecutive days. On day 35, after euthanasia the epididymal sperms were isolated. Then the total mean sperm count, sperm viability and motility were determined. The total antioxidant capacity (TAOC) of all experimental groups were also evaluated. The MTX-treated animals showed a significant changes in all parameters of sperm quality assessment compared to the control group. Both Vit E and CMFE were able to protect from MTX-induced effects on sperm maturity and DNA damage. Co-administration of MTX and CMFE and/or Vit E resulted in protection from MTX-reduced TAOC. In conclusion, these data suggested that MTX administration could adversely affect the sperm quality. Moreover, the protective effect of Vit E and CMFE on MTX-induced sperm toxicity was also documented.
Cell recruitment by amnion chorion grafts promotes neovascularization
Koob, Thomas J.; Januszyk, Michael; Li, William W.; Gurtner, Geoffrey C.
2015-01-01
Background Nonhealing wounds are a significant health burden. Stem and progenitor cells can accelerate wound repair and regeneration. Human amniotic membrane has demonstrated efficacy in promoting wound healing, though the underlying mechanisms remain unknown. A dehydrated human amnion chorion membrane (dHACM) was tested for its ability to recruit hematopoietic progenitor cells to a surgically implanted graft in a murine model of cutaneous ischemia. Methods dHACM was subcutaneously implanted under elevated skin (ischemic stimulus) in either wild-type mice or mice surgically parabiosed to green fluorescent protein (GFP) + reporter mice. A control acellular dermal matrix, elevated skin without an implant, and normal unwounded skin were used as controls. Wound tissue was harvested and processed for histology and flow cytometric analysis. Results Implanted dHACMs recruited significantly more progenitor cells compared with controls (*P < 0.05) and displayed in vivo SDF-1 expression with incorporation of CD34 + progenitor cells within the matrix. Parabiosis modeling confirmed the circulatory origin of recruited cells, which coexpressed progenitor cell markers and were localized to foci of neovascularization within implanted matrices. Conclusions In summary, dHACM effectively recruits circulating progenitor cells, likely because of stromal derived factor 1 (SDF-1) expression. The recruited cells express markers of “stemness” and localize to sites of neovascularization, providing a partial mechanism for the clinical efficacy of human amniotic membrane in the treatment of chronic wounds. PMID:25266600
Baumeier, Christian; Kaiser, Daniel; Heeren, Jörg; Scheja, Ludger; John, Clara; Weise, Christoph; Eravci, Murat; Lagerpusch, Merit; Schulze, Gunnar; Joost, Hans-Georg; Schwenk, Robert Wolfgang; Schürmann, Annette
2015-05-01
Caloric restriction and intermittent fasting are known to improve glucose homeostasis and insulin resistance in several species including humans. The aim of this study was to unravel potential mechanisms by which these interventions improve insulin sensitivity and protect from type 2 diabetes. Diabetes-susceptible New Zealand Obese mice were either 10% calorie restricted (CR) or fasted every other day (IF), and compared to ad libitum (AL) fed control mice. AL mice showed a diabetes prevalence of 43%, whereas mice under CR and IF were completely protected against hyperglycemia. Proteomic analysis of hepatic lipid droplets revealed significantly higher levels of PSMD9 (co-activator Bridge-1), MIF (macrophage migration inhibitor factor), TCEB2 (transcription elongation factor B (SIII), polypeptide 2), ACY1 (aminoacylase 1) and FABP5 (fatty acid binding protein 5), and a marked reduction of GSTA3 (glutathione S-transferase alpha 3) in samples of CR and IF mice. In addition, accumulation of diacylglycerols (DAGs) was significantly reduced in livers of IF mice (P=0.045) while CR mice showed a similar tendency (P=0.062). In particular, 9 DAG species were significantly reduced in response to IF, of which DAG-40:4 and DAG-40:7 also showed significant effects after CR. This was associated with a decreased PKCε activation and might explain the improved insulin sensitivity. In conclusion, our data indicate that protection against diabetes upon caloric restriction and intermittent fasting associates with a modulation of lipid droplet protein composition and reduction of intracellular DAG species. Copyright © 2015. Published by Elsevier B.V.
Ostlund, Sean B.; Kosheleff, Alisa; Maidment, Nigel T.; Murphy, Niall P.
2013-01-01
Summary Rationale Evidence suggests that the palatability of food (i.e., the hedonic impact produced by its sensory features) can promote feeding and may underlie compulsive eating, leading to obesity. Pharmacological studies implicate opioid transmission in the hedonic control of feeding, though these studies often rely on agents lacking specificity for particular opioid receptors. Objectives Here, we investigated the role of mu opioid receptors (MORs) specifically in determining hedonic responses to palatable sweet stimuli. Methods In Experiment 1, licking microstructure when consuming sucrose solution (2 to 20 %) was compared in MOR knockout and wildtype mice as a function of sucrose concentration and level of food deprivation. In Experiment 2, a similar examination was conducted using the palatable but calorie-free stimulus sucralose (0.001 to 1%), allowing study of licking behavior independent of homeostatic variables. Results In Experiment 1, MOR knockout mice exhibited several alterations in sucrose licking. Although wildtype mice exhibited a two-fold increase in the burst length when food deprived, relative to the nondeprived test, this aspect of sucrose licking was generally insensitive to manipulations of food deprivation for MOR knockout mice. Furthermore, during concentration testing, their rate of sucrose licking was less than half that of wildtype mice. During sucralose testing (Experiment 2), MOR knockout mice licked at approximately half the wildtype rate, providing more direct evidence that MOR knockout mice were impaired in processing stimulus palatability. Conclusions These results suggest that transmission through MORs mediates hedonic responses to palatable stimuli, and therefore likely contributes to normal and pathological eating. PMID:23568577
Greenman, Yona; Drori, Yonat; Asa, Sylvia L.; Navon, Inbal; Forkosh, Oren; Gil, Shosh; Stern, Naftali
2013-01-01
Proopiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus are central components of systems regulating appetite and energy homeostasis. Here we report on the establishment of a mouse model in which the ribonuclease III ribonuclease Dicer-1 has been specifically deleted from POMC-expressing neurons (POMCΔDCR), leading to postnatal cell death. Mice are born phenotypically normal, at the expected genetic ratio and with normal hypothalamic POMC-mRNA levels. At 6 weeks of age, no POMC neurons/cells could be detected either in the arcuate nucleus or in the pituitary of POMCΔDCR mice. POMCΔDCR develop progressive obesity secondary to decreased energy expenditure but unrelated to food intake, which was surprisingly lower than in control mice. Reduced expression of AgRP and ghrelin receptor in the hypothalamus and reduced uncoupling protein 1 expression in brown adipose tissue can potentially explain the decreased food intake and decreased heat production, respectively, in these mice. Fasting glucose levels were dramatically elevated in POMCΔDCR mice and the glucose tolerance test revealed marked glucose intolerance in these mice. Secondary to corticotrope ablation, basal and stress-induced corticosterone levels were undetectable in POMCΔDCR mice. Despite this lack of activation of the neuroendocrine stress response, POMCΔDCR mice exhibited an anxiogenic phenotype, which was accompanied with elevated levels of hypothalamic corticotropin-releasing factor and arginine-vasopressin transcripts. In conclusion, postnatal ablation of POMC neurons leads to enhanced anxiety and the development of obesity despite decreased food intake and glucocorticoid deficiency. PMID:23676213
Park, Chan Hum; Yokozawa, Takako; Noh, Jeong Sook
2014-08-01
This study was conducted to examine whether oligonol, a low-molecular-weight polyphenol derived from lychee fruit, has an ameliorative effect on diabetes-induced alterations, such as advanced glycation end product (AGE) formation or apoptosis in the kidneys of db/db mice with type 2 diabetes. Oligonol [10 or 20 mg/(kg body weight · d), orally] was administered every day for 8 wk to prediabetic db/db mice, and its effect was compared with vehicle-treated db/db and normal control mice (m/m). The administration of oligonol decreased the elevated renal glucose concentrations and reactive oxygen species in db/db mice (P < 0.05). The increased serum urea nitrogen and creatinine concentrations, which reflect renal dysfunction in db/db mice, were substantially lowered by oligonol. Oligonol reduced renal protein expression of NAD(P)H oxidase subunits (p22 phagocytic oxidase and NAD(P)H oxidase-4), AGEs (except for pentosidine), and c-Jun N-terminal kinase B-targeting proinflammatory tumor necrosis factor-α (P < 0.05). Oligonol improved the expressions of antiapoptotic [B-cell lymphoma protein 2 (Bcl-2) and survivin] and proapoptotic [Bcl-2-associated X protein, cytochrome c, and caspase-3] proteins in the kidneys of db/db mice (P < 0.05). In conclusion, these results provide important evidence that oligonol exhibits a pleiotropic effect on AGE formation and apoptosis-related variables, representing renoprotective effects against the development of diabetic complications in db/db mice with type 2 diabetes. © 2014 American Society for Nutrition.
Time-dependent negative reinforcement of ethanol intake by alleviation of acute withdrawal
Cunningham, Christopher L.; Fidler, Tara L.; Murphy, Kevin V.; Mulgrew, Jennifer A.; Smitasin, Phoebe J.
2012-01-01
Background Drinking to alleviate the symptoms of acute withdrawal is included in diagnostic criteria for alcoholism, but the contribution of acute withdrawal relief to high alcohol intake has been difficult to model in animals. Methods Ethanol dependence was induced by passive intragastric ethanol infusions in C57BL/6J (B6) and DBA/2J (D2) mice; non-dependent controls received water infusions. Mice were then allowed to self-administer ethanol or water intragastrically. Results The time course of acute withdrawal was similar to that produced by chronic ethanol vapor exposure in mice, reaching a peak at 7-9 h and returning to baseline within 24 h; withdrawal severity was greater in D2 than in B6 mice (Exp. 1). Post-withdrawal delays in initial ethanol access (1, 3 or 5 days) reduced the enhancement in later ethanol intake normally seen in D2 (but not B6) mice allowed to self-infuse ethanol during acute withdrawal (Exp. 2). The post-withdrawal enhancement of ethanol intake persisted over a 5-d abstinence period in D2 mice (Exp. 3). D2 mice allowed to drink ethanol during acute withdrawal drank more ethanol and self-infused more ethanol than non-dependent mice (Exp. 4). Conclusions Alcohol access during acute withdrawal increased later alcohol intake in a time-dependent manner, an effect that may be related to a genetic difference in sensitivity to acute withdrawal. This promising model of negative reinforcement encourages additional research on the mechanisms underlying acute withdrawal relief and its role in determining risk for alcoholism. PMID:22999529
Thomas, G. M.; Brill, A.; Mezouar, S.; Crescence, L.; Gallant, M.; Dubois, C.; Wagner, D. D.
2015-01-01
Background The risk of thrombotic complications such as deep vein thrombosis (DVT) during tumor development is well known. Tumors release into circulation procoagulant microparticles (MPs) that can participate in thrombus formation following vessel injury. The importance of this MP tissue factor (TF) in the initiation of cancer-associated DVT remains uncertain. Objective To address how pancreatic cancer MPs promote DVT in vivo. Methods We combined a DVT mouse model where thrombosis is induced by flow restriction of the inferior vena cava with one of subcutaneous pancreatic cancer in C57BL/6J mice. We infused high and low TF tumor MPs to determine the importance of TF in experimental cancer-associated DVT. Results Both tumor-bearing mice and mice infused with tumor MPs submitted to 3 hours of partial flow restriction developed an occlusive thrombus; fewer than a third of the control mice did. We observed that MPs adhered to neutrophil extracellular traps (NETs), functionally important players during DVT, whereas neither P-selectin nor GPIb were required for the MP recruitment in DVT. The thrombotic phenotype induced by MP infusion was suppressed by hirudin suggesting the importance of thrombin generation. TF carried by tumor MPs was essential to promote DVT as mice infused with low TF tumor MPs had less thrombosis than mice infused with high TF tumor MPs. Conclusions TF expressed on tumor MPs contributes to the increased incidence of cancer-associated venous thrombosis in mice in vivo. These MPs may adhere to NETs formed at the site of thrombosis. PMID:25955268
The Effect of Taraxacum officinale Hydroalcoholic Extract on Blood Cells in Mice
Modaresi, Mehrdad; Resalatpour, Narges
2012-01-01
Objectives. Dandelion (Taraxacum officinale) is a herbaceous perennial plant of the family Asteraceae and has medicinal and culinary uses. Dandelion has been used as a remedy for anemia, purifing the blood, and providing immune modulation. Therefore, the aim of this study was to investigate the effect of hydro alcoholic extract on blood cells in mice. Methods. Five groups each including ten adult female (Balb/C) mice weighing 30 ± 5 g were chosen. Normal saline was administered as placebo for group, and dandelion hydro alcoholic extract in doses of 50,100, and 200 mg/kg was injected intraperitoneally for 20 days to test groups and the last group was control group.WBC, RBC, HB, HCT, platelet, and other cells were measured with automated cell counter. Main Results. The number of RBC and the rate of HB in three doses of 100 and 200 mg/kg significantly increased (P < 0.05). As compared with control group, the number of WBC in three doses of 50, 100, and 200 mg/kg increased, but it was significantly in 200 mg/kg dandelion treated group as compared with control group(P < 0.05). The rate of platelet in three doses of 50, 100 and 200 mg/kg significantly decreased as compared with control group (P < 0.01). 3 doses of dandelion increased lymphocyte numbers significantly compared with controls. Conclusion. The study indicates efficacy of dandelion extract on RBC and HB in doses of 50, 100, and 200 mg/kg and in 200 mg/kg on WBC to achieve normal body balance. PMID:22844289
Pant, Kamala; Springer, S; Bruce, S; Lawlor, T; Hewitt, N; Aardema, M J
2014-10-01
There is increased interest in the in vivo comet assay in rodents as a follow-up approach for determining the biological relevance of chemicals that are genotoxic in in vitro assays. This is partly because, unlike other assays, DNA damage can be assessed in this assay in virtually any tissue. Since background levels of DNA damage can vary with the species, tissue, and cell processing method, a robust historical control database covering multiple tissues is essential. We describe extensive vehicle and positive control data for multiple tissues from rats and mice. In addition, we report historical data from control and genotoxin-treated human blood. Technical issues impacting comet results are described, including the method of cell preparation and freezing. Cell preparation by scraping (stomach and other GI tract organs) resulted in higher % tail DNA than mincing (liver, spleen, kidney etc) or direct collection (blood or bone marrow). Treatment with the positive control genotoxicant, ethyl methanesulfonate (EMS) in rats and methyl methanesulfonate in mice, resulted in statistically significant increases in % tail DNA. Background DNA damage was not markedly increased when cell suspensions were stored frozen prior to preparing slides, and the outcome of the assay was unchanged (EMS was always positive). In conclusion, historical data from our laboratory for the in vivo comet assay for multiple tissues from rats and mice, as well as human blood show very good reproducibility. These data and recommendations provided are aimed at contributing to the design and proper interpretation of results from comet assays. © 2014 Wiley Periodicals, Inc.
Mesquita, Fernanda C. P.; Brasil, Guilherme V.; Rocha, Nazareth N.; Takiya, Christina M.; Lima, Ana Paula C. A.; Campos de Carvalho, Antonio C.; Goldenberg, Regina S.; Carvalho, Adriana B.
2015-01-01
Background Chagas disease, caused by the protozoan Trypanosoma cruzi (T.cruzi), is a complex disease endemic in Central and South America. It has been gathering interest due to increases in non-vectorial forms of transmission, especially in developed countries. The objective of this work was to investigate if adipose tissue-derived mesenchymal stromal cells (ASC) can alter the course of the disease and attenuate pathology in a mouse model of chagasic cardiomyopathy. Methodology/Principal Findings ASC were injected intraperitoneally at 3 days post-infection (dpi). Tracking by bioluminescence showed that cells remained in the abdominal cavity for up to 9 days after injection and most of them migrated to the abdominal or subcutaneous fat, an early parasite reservoir. ASC injection resulted in a significant reduction in blood parasitemia, which was followed by a decrease in cardiac tissue inflammation, parasitism and fibrosis at 30 dpi. At the same time point, analyses of cytokine release in cells isolated from the heart and exposed to T. cruzi antigens indicated an anti-inflammatory response in ASC-treated animals. In parallel, splenocytes exposed to the same antigens produced a pro-inflammatory response, which is important for the control of parasite replication, in placebo and ASC-treated groups. However, splenocytes from the ASC group released higher levels of IL-10. At 60 dpi, magnetic resonance imaging revealed that right ventricular (RV) dilation was prevented in ASC-treated mice. Conclusions/Significance In conclusion, the injection of ASC early after T. cruzi infection prevents RV remodeling through the modulation of immune responses. Lymphoid organ response to the parasite promoted the control of parasite burden, while the heart, a target organ of Chagas disease, was protected from damage due to an improved control of inflammation in ASC-treated mice. PMID:26248209
Bhanot, Abhishek; Shri, Richa
2010-01-01
Introduction: Diabetic Neuropathy (DN) is a major microvascular complication of uncontrolled diabetes. This may result from increased oxidative stress that accompanies diabetes. Hence plants with antioxidant action play an important role in management of diabetes and its complications. Materials and Methods: This study was designed to evaluate preventive as well as curative effect of methanol extracts of outer scales and edible portions of two plants with established antioxidant action - Allium cepa and Allium sativum, in induced DN in albino mice. Mice were divided into control, diabetic and test extracts treated groups. Test extracts were administered daily at a dose of 200 mg/kg p.o. for 21 days, in the preventive group prior to onset of DN, and in the curative group after the onset of DN. Hyperalgesia and oxidative stress markers were assessed. STZ-diabetic mice showed a significant thermal hyperalgesia (as assessed by the tail-flick test), indicating development of DN. Results: Treatment with test extracts prevented loss in body weight, decreased plasma glucose level, and significantly ameliorated the hyperalgesia, TBARS, serum nitrite and GSH levels in diabetic mice. Conclusion: Methanol extract of outer scales of onion has shown most significant improvement; may be due to higher content of phenolic compounds in outer scales of A. cepa. PMID:21713142
Salim, Muhammad Nur; Masyitha, Dian; Harris, Abdul; Balqis, Ummu; Iskandar, Cut Dahlia; Hambal, Muhammad; Darmawi
2018-01-01
Aim: The purpose of the present study was to determine the potential of Jatropha curcas latex in the cream formulation on CD68 immune expression (macrophages) during inflammatory phase wound healing process in mice skin. Materials and Methods: Amount of 12 two-months-old male mice were used between 30 and 40 g. To surgical procedures, wound skin incision was performed 2.0 cm in length until subcutaneous on the paravertebral of each animal. The treatment was carried under locally anesthetized with procaine cream. The mice were allotted into four groups of each, entire surface of each group wound covered by base cream control, sulfadiazine 0.1% cream, J. curcas latex cream 10% and, 15%, respectively. All experiments were performed twice a day for 3 days. The wound healing was assayed in stained histological sections in immunohistochemical of the wounds. CD68 expression was investigated under a microscope. Results: The results showed that the cream from the 10% and 15% latex of J. curcas revealed moderate immune reaction to CD68 on wound healing. Conclusion: We concluded that the latex cream of J. curcas possesses anti-inflammatory activity in wound healing process of mice skin. PMID:29657387
Koh, J J; Ko, K S; Lee, M; Han, S; Park, J S; Kim, S W
2000-12-01
Recently, we have reported that biodegradable poly [alpha-(4-aminobutyl)-L-glycolic acid] (PAGA) can condense and protect plasmid DNA from DNase I. In this study, we investigated whether the systemic administration of pCAGGS mouse IL-10 (mIL-10) expression plasmid complexed with PAGA can reduce the development of insulitis in non-obese diabetic (NOD) mice. PAGA/mIL-10 plasmid complexes were stable for more than 60 min, but the naked DNA was destroyed within 10 min by DNase I. The PAGA/DNA complexes were injected into the tail vein of 3-week-old NOD mice. Serum mIL-10 level peaked at 5 days after injection, and could be detected for more than 9 weeks. The prevalence of severe insulitis on 12-week-old NOD mice was markedly reduced by the intravenous injection of PAGA/DNA complex (15.7%) compared with that of naked DNA injection (34.5%) and non-treated controls (90.9%). In conclusion, systemic administration of pCAGGS mIL-10 plasmid/PAGA complexes can reduce the severity of insulitis in NOD mice. This study shows that the PAGA/DNA complex has the potential for the prevention of autoimmune diabetes mellitus. Gene Therapy (2000) 7, 2099-2104.
Bahgat, Mahmoud; Aboul-Enein, Mohamed N; El Azzouny, Aida A; Maghraby, Amany; Ruppel, Andreas; Soliman, Wael M
2009-01-01
A cyclohexanecarboxamide derivative, N-phenyl-N-[1-(piperidine-1-carbonyl)cyclohexyl] benzamide (MNRC-5), was evaluated for its inhibitory effects on Schistosoma mansoni cercarial serine protease activity and cercarial penetration. MNRC-5 exerted an inhibitory effect on S. mansoni cercarial serine protease at serial concentrations of the specific chromogenic substrate Boc-Val-Leu-Gly-Arg-PNA for such enzyme family and the inhibitory coefficient (Ki) value was deduced. Moreover, topical treatment of mice tails with the most potent inhibitory concentration of MNRC-5 formulated in jojoba oil successfully blocked cercarial penetration as demonstrated by a significant reduction (75%; p < 0.05) in the recovered S. mansoni worms from treated mice in comparison to control ones whose tails were painted with jojoba oil base containing no MNRC-5. In addition, the IgM and IgG reactivities to crude S. mansoni cercarial, worm and egg antigens were generally lower in sera from treated infected mice than untreated infected mice. In conclusion, we report on a new serine protease inhibitor capable for blocking penetration of host skin by S. mansoni cercariae as measured by lowering worm burden and decrease in the levels of both IgM and IgG towards different bilharzial antigens upon topical treatment.
Cortés, Alba; Sotillo, Javier; Muñoz-Antoli, Carla; Fried, Bernard; Esteban, J. Guillermo; Toledo, Rafael
2015-01-01
Background Echinostoma caproni (Trematoda: Echinostomatidae) is an intestinal trematode that has been extensively used as experimental model to investigate the factors determining the expulsion of intestinal helminths or, in contrast, the development of chronic infections. Herein, we analyze the changes in protein expression induced by E. caproni infection in ICR mice, a host of high compatibility in which the parasites develop chronic infections. Methodology/Principal Findings To determine the changes in protein expression, a two-dimensional DIGE approach using protein extracts from the intestine of naïve and infected mice was employed; and spots showing significant differential expression were analyzed by mass spectrometry. A total of 37 spots were identified differentially expressed in infected mice (10 were found to be over-expressed and 27 down-regulated). These proteins were related to the restoration of the intestinal epithelium and the control of homeostatic dysregulation, concomitantly with mitochondrial and cytoskeletal proteins among others. Conclusion/Significance Our results suggests that changes in these processes in the ileal epithelium of ICR mice may facilitate the establishment of the parasite and the development of chronic infections. These results may serve to explain the factors determining the development of chronicity in intestinal helminth infection. PMID:26390031
Prolonged action potential duration in cardiac ablation of PDK1 mice.
Han, Zhonglin; Jiang, Yu; Yang, Zhongzhou; Cao, Kejiang; Wang, Dao W
2015-01-01
The involvement of the AGC protein kinase family in regulating arrhythmia has drawn considerable attention, but the underlying mechanisms are still not clear. The aim of this study is to explore the role of 3-phosphoinositide-dependent protein kinase-1 (PDK1), one of upstream protein kinases of the AGC protein kinase family, in the pathogenesis of dysregulated electrophysiological basis. PDK1(F/F) αMHC-Cre mice and PDK1(F/F) mice were divided into experiment group and control group. Using patch clamping technology, we explored action potential duration in both groups, and investigated the functions of transient outward potassium channel and L-type Ca(2+) channel to explain the abnormal action potential duration. Significant prolongation action potential duration was found in mice with PDK1 deletion. Further, the peak current of transient outward potassium current and L-type Ca(2+) current were decreased by 84% and 49% respectively. In addition, dysregulation of channel kinetics lead to action potential duration prolongation further. In conclusion, we have demonstrated that PDK1 participates in action potential prolongation in cardiac ablation of PDK1 mice. This effect is likely to be mediated largely through downregulation of transient outward potassium current. These findings indicate the modulation of the PDK1 pathway could provide a new mechanism for abnormal electrophysiological basis.
HogenEsch, Harm; Dunham, Anisa; Burlet, Elodie; Lu, Fangjia; Mosley, Yung-Yi C; Morefield, Garry
2017-02-01
A recombinant vaccine composed of a fusion protein formulated with aluminum hydroxide adjuvant is under development for protection against diseases caused by Streptococcus pyogenes. The safety and local reactogenicity of the vaccine was assessed by a comprehensive series of clinical, pathologic and immunologic tests in preclinical experiments. Outbred mice received three intramuscular injections of 1/5th of the human dose (0.1 ml) and rabbits received two injections of the full human dose. Control groups received adjuvant or protein antigen. The vaccine did not cause clinical evidence of systemic toxicity in mice or rabbits. There was a transient increase of peripheral blood neutrophils after the third vaccination of mice. In addition, the concentration of acute phase proteins serum amyloid A and haptoglobin was significantly increased 1 day after injection of the vaccine in mice. There was mild transient swelling and erythema of the injection site in both mice and rabbits. Treatment-related pathology was limited to inflammation at the injection site and accumulation of adjuvant-containing macrophages in the draining lymph nodes. In conclusion, the absence of clinical toxicity in two animal species suggest that the vaccine is safe for use in a phase I human clinical trial. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Huang, Chun Lian; Wang, Yi Ming; Li, Ning; Liang, Qiong Lin
2018-01-01
Objective Cytokines are essential promoters in the pathogenesis of diabetic nephropathy (DN) in type 2 diabetes. The following study investigates the adjustment mechanism of Tangshen formula (TSF) on cytokine expressions in db/db mice (DN animal model). Materials and Methods Db/db mice were randomly divided into three groups. The treated groups were orally administered with TSF and losartan for 12 weeks. Biochemical and histological examinations were determined at 8 and 12 weeks posttreatment, while the cytokine antibody array analysis was applied to analyze the expression of 144 cytokines in kidney tissues at the end of the 12th week posttreatment. Results TSF significantly reduced urinary albumin excretion and the levels of blood glucose, cholesterol, triglyceride, creatinine, and urea nitrogen. Furthermore, a significant decrease in glomerulus and mesangial area, as well as the downregulation of 24 cytokines and upregulated expressions of 5 cytokines, was found in the TSF-treated mice. Conclusions The present study reveals that TSF could ameliorate the metabolic anomalies and renal injury in db/db mice. One of the important mechanisms for treatment of DN using the treatment of TSF is the control of the JAK/STAT signaling pathway via regulation of IL-2, IL-6, IL-13, Il-15, and IFN-γ expression. PMID:29682583
NASA Astrophysics Data System (ADS)
Hernawati; Setiawan, N. A.; Shintawati, R.; Priyandoko, D.
2018-05-01
The purpose of this research was to know the role of red dragon fruit peel powder to total cholesterol, triglyceride, high-density lipoprotein (HDL), low-density lipoprotein (LDL), and weight in the male hyperlipidaemic Balb-C mice (Mus musculus). This study used a completely randomized design (CRD) and four replicates for each dose treatments. Samples were 24 male mice that divided into six groups i.e. positive and negative controls, doses of 50; 100; 150 and 200 mg/kgBW/days red dragon fruit peel powder. Before being given treatment, mice were given feed containing high fat for 20 days until experiencing conditions hyperlipidaemia. The red dragon fruit peel powder was given at oral with used gavage for 30 days. Blood samples were taken from the tail on vena caudalis. Blood lipid samples were analysed at enzymatic with BIOLABO kits. The results of this study indicate that after administration of red dragon fruit peel powder total cholesterol levels, triglycerides and LDL-c decreased, along with increasing doses of red dragon fruit peel powder for 30 days. Furthermore showed that dragon fruit powder can increase HDL-c levels. The conclusion of this research was The red dragon fruit peel powder can improve blood lipid level of male Balb-c mice hyperlipidaemia.
Heme Catabolism by Heme Oxygenase-1 Confers Host Resistance to Mycobacterium Infection
Silva-Gomes, Sandro; Appelberg, Rui; Larsen, Rasmus; Soares, Miguel Parreira
2013-01-01
Heme oxygenases (HO) catalyze the rate-limiting step of heme degradation. The cytoprotective action of the inducible HO-1 isoform, encoded by the Hmox1 gene, is required for host protection against systemic infections. Here we report that upregulation of HO-1 expression in macrophages (Mϕ) is strictly required for protection against mycobacterial infection in mice. HO-1-deficient (Hmox1−/−) mice are more susceptible to intravenous Mycobacterium avium infection, failing to mount a protective granulomatous response and developing higher pathogen loads, than infected wild-type (Hmox1+/+) controls. Furthermore, Hmox1−/− mice also develop higher pathogen loads and ultimately succumb when challenged with a low-dose aerosol infection with Mycobacterium tuberculosis. The protective effect of HO-1 acts independently of adaptive immunity, as revealed in M. avium-infected Hmox1−/− versus Hmox1+/+ SCID mice lacking mature B and T cells. In the absence of HO-1, heme accumulation acts as a cytotoxic pro-oxidant in infected Mϕ, an effect mimicked by exogenous heme administration to M. avium-infected wild-type Mϕ in vitro or to mice in vivo. In conclusion, HO-1 prevents the cytotoxic effect of heme in Mϕ, contributing critically to host resistance to Mycobacterium infection. PMID:23630967
Nourian, Alireza; Soleimanzadeh, Ali; Shalizar Jalali, Ali; Najafi, Gholamreza
2017-01-01
Bisphenol-S (BPS) is a new bisphenol-A substitute widely used in many plastic products. Bisphenol-A as a main member of bisphenol family has been known as an endocrine system disrupter chemical compound. Like other members of bisphenol family, there is public health concern about the toxic effects of BPS on reproductive system, thus, we examined BPS effects on in vitro fertilization (IVF) potential and oxidative stress status in a murine model. Adult female mice (n = 70) were randomly divided into control and BPS-treated groups. Bisphenol-S was administered at doses of 0, 1, 5, 10, 50 and 100 µg kg-1 body weight per day intraperitoneally for 21 consecutive days. Twenty-Four hr after the last treatment, five mice in each group were super-ovulated and the oocytes were harvested for IVF. All ovaries were collected and used for biochemical factors analyses. Bisphenol-S exposure at doses more than 10 µg kg-1 induced developmental arrest of pre-implantation embryos. Further, lipid peroxidation measurement in ovaries indicated that all doses of BPS cause oxidative stress in female mice. In conclusion, BPS administration even in low doses can result in female reproductive toxicities and oxidative stress in mice. PMID:29326794
Nourian, Alireza; Soleimanzadeh, Ali; Shalizar Jalali, Ali; Najafi, Gholamreza
2017-01-01
Bisphenol-S (BPS) is a new bisphenol-A substitute widely used in many plastic products. Bisphenol-A as a main member of bisphenol family has been known as an endocrine system disrupter chemical compound. Like other members of bisphenol family, there is public health concern about the toxic effects of BPS on reproductive system, thus, we examined BPS effects on in vitro fertilization (IVF) potential and oxidative stress status in a murine model. Adult female mice (n = 70) were randomly divided into control and BPS-treated groups. Bisphenol-S was administered at doses of 0, 1, 5, 10, 50 and 100 µg kg -1 body weight per day intraperitoneally for 21 consecutive days. Twenty-Four hr after the last treatment, five mice in each group were super-ovulated and the oocytes were harvested for IVF. All ovaries were collected and used for biochemical factors analyses. Bisphenol-S exposure at doses more than 10 µg kg -1 induced developmental arrest of pre-implantation embryos. Further, lipid peroxidation measurement in ovaries indicated that all doses of BPS cause oxidative stress in female mice. In conclusion, BPS administration even in low doses can result in female reproductive toxicities and oxidative stress in mice.
Alternate-day fasting diet improves fructose-induced insulin resistance in mice.
Beigy, M; Vakili, S; Berijani, S; Aminizade, M; Ahmadi-Dastgerdi, M; Meshkani, R
2013-12-01
Increased fructose consumption is linked to insulin resistance, weight gain, hyperlipidemia and hypertension. Although the advantages of several dietary restriction regimens have been demonstrated, the effects of alternate-day fasting (ADF) on fructose-induced insulin resistance have not yet been studied. This study is based on a new modification on ADF by combining the fructose-rich solution (10% w/v) and regular mice diet. Mice were randomly allocated into four groups: ADF50% (50% restriction in chow food intake but ad libitum fructose drink), ADF100% (100% restriction for chow food but ad libitum fructose drink), control (ad libitum chow food intake plus tap water) and daily food and fructose (DFF) (had free access to both chow and fructose solution). Biweekly fasting blood sugar (FBS), glucose tolerance test (GTT) and insulin tolerance test (ITT) were conducted. All groups gained weight during the study (p < 0.05). Body weights of DFF and control groups did not differ from that of ADF groups, but ADF50% gained more (p < 0.01) weights than ADF100% through the study. Total calorie intake (feed + fast days) of ADF50% was higher than that of ADF100% (p < 0.001) and control (p < 0.03). In addition, ADF groups consumed more energy than the control and DFF groups in feed (ad libitum) days (p < 0.05). At the end of the study, the mean FBS levels in the control and ADF100% groups were similar and significantly lower in relation to that of DFF and ADF50% groups (p < 0.01). Measurements of area under the curve in GTT and ITT revealed that the ADF100% group was more insulin-sensitive than the DFF and ADF50% groups. In conclusion, these data suggest that the ADF100% improves fructose-induced insulin resistance in mice. © 2013 Blackwell Verlag GmbH.
Hyperoxia Inhibits T Cell Activation in Mice
NASA Astrophysics Data System (ADS)
Hughes-Fulford, M.; Meissler, J.; Aguayo, E. T.; Globus, R.; Aguado, J.; Candelario, T.
2013-02-01
Background: The immune response is blunted in mice and humans in spaceflight. The effects of hyperoxia in mice alter expression of some of the same immune response genes. If these two conditions are additive, there could be an increased risk of infection in long duration missions. Immunosuppression is seen in healthy astronauts who have flown in space; however little is known about the mechanisms that cause the reduced immunity in spaceflight. Here we examine the role of oxidative stress on mice exposed to periods of high O2 levels mimicking pre-breathing protocols and extravehicular activity (EVA). To prevent decompression sickness, astronauts are exposed to elevated oxygen (hyperoxia) before and during EVA activities. Spaceflight missions may entail up to 24 hours of EVA per crewmember per week to perform construction and maintenance tasks. The effectiveness and success of these missions depends on designing EVA systems and protocols that maximize human performance and efficiency while minimizing health and safety risks for crewmembers. To our knowledge, no studies have been conducted on the immune system under 100% oxygen exposures to determine the potential for immune compromise due to prolonged and repeated EVAs. Methods: Animals were exposed to hyperoxic or control conditions for 8 hours per day over a period of 3 days, initiated 4 hours into the dark cycle (12h dark/12h light), using animal environmental control cabinets and oxygen controller (Biospherix, Lacona, NY). Experimental mice were exposed to 98-100% oxygen as a model for pre-breathing and EVA conditions, while control mice were maintained in chambers supplied with compressed air. These are ground control studies where we use real-time RTPCR (qRTPCR) to measure gene expression of the early immune gene expression during bead activation of splenocytes of normoxic and hyperoxic mice. All procedures were reviewed and approved by the IACUC at Ames Research Center. After the last 8h of hyperoxic exposure, spleens were removed and the splenocytes were isolated and kept as individual biological samples. We have also examined transcription factors (JASPAR) and pathways of the immune system to help us understand the mechanism of regulation. Results: Our recent mouse immunology experiment aboard STS-131 suggests that the early T cell immune response was inhibited in animals that have been exposed to spaceflight, even 24 hours after return to earth. Moreover, recent experiments in hyperoxic mice show that many of the same genes involved in early T cell activation were altered. Specifically, expression of IL-2Rα, Cxcl2, TNFα, FGF2, LTA and BCL2 genes are dysregulated in mice exposed to hyperoxia. Conclusions: If these hyperoxia-induced changes of gene expression in early T cell activation are additive to the changes seen in the microgravity of spaceflight, there could be an increased infection risk to EVA astronauts, which should be addressed prior to conducting a Mars or other long-term mission.
[Establishment of β-aminopropionitrile-induced aortic dissection model in C57Bl/6J mice].
Gao, Y X; Liu, Y T; Zhang, Y Y; Qiu, J J; Zhao, T T; Yu, C A; Zheng, J G
2018-02-24
Objective: To establish the mouse aorta dissection (AD) model through drinking water containing β-aminopropionitrile (BAPN). Methods: Forty 3-week-old C57B1/6J male mice were divided into four groups according to randomized block design: control, 0.2, 0.4 and 0.8 g·kg(-1)·d(-1) BAPN groups (dissolving respective dose of BAPN in the drinking water, n= 10 each group). Arterial systolic blood pressure and heart rate were measured weekly in conscious, restrained mice using a noninvasive computerized tail-cuff system. Mice those died of rupture of aortic dissecting aneurysm during the study were autopsied and the aorta was examined. After 4 weeks, survived mice were sacrificed by an overdose of sodium pentobarbital and the whole aorta was harvested and analyzed. Results: The incidence of AD and the mortality of ruptured AD was 0 and 0 in control group, 30% (3/10) and 20% (2/10) in 0.2 g·kg(-1)·d(-1) BAPN group, 50% (5/10) and 40% (4/10) in 0.4 g·kg(-1)·d(-1) BAPN group, 90% (9/10) and 70% (7/10) in 0.8 g·kg(-1)·d(-1) BAPN group (both P< 0.05 vs. control group). The incidence of AD and the mortality of ruptured AD increased in proportion to BAPN concentration increase. In 0.8 g·kg(-1)·d(-1) BAPN group, 7 mice died of dissecting aneurysm rupture during the experiment, among which 5 dissecting aneurysms were mainly located in the thoracic aorta and 2 dissecting aneurysms in abdominal aorta. The diameters of thoracic aorta and abdominal aorta were (1.38±0.19) and (1.23±0.13) mm in control group, (2.43±1.56) and (1.30±0.26) mm in 0.2 g·kg(-1)·d(-1) BAPN group, (2.45±1.28) and (1.30±0.31) mm in 0.4 g·kg(-1)·d(-1) BAPN group, (2.87±0.57) and (1.95±0.81) mm in 0.8 g·kg(-1)·d(-1) BAPN group (both P< 0.05 vs. control group). The diameters of thoracic aorta and abdominal aorta in mice also increased in proportion with BAPN concentration increase. Furthermore, blood-filled false lumen formation and elastic fibers fragmentation were evidenced in hematoxylin-eosin stained and Vitoria blue-Sirius red stained aortic cross-sections of mice in the 0.8 g·kg(-1)·d(-1) BAPN group. Conclusion: BAPN treatment induced aortic dissection model in C57Bl/6J mice can serve as a useful wild-type mouse model for the mechanism and pharmaceutical studies of AD.
Growth hormone resistance exacerbates cholestasis-induced murine liver fibrosis
Stiedl, Patricia; McMahon, Robert; Blaas, Leander; Stanek, Victoria; Svinka, Jasmin; Grabner, Beatrice; Zollner, Gernot; Kessler, Sonja M.; Claudel, Thierry; Müller, Mathias; Mikulits, Wolfgang; Bilban, Martin; Esterbauer, Harald; Eferl, Robert; Haybaeck, Johannes; Trauner, Michael; Casanova, Emilio
2016-01-01
Growth hormone (GH) resistance has been associated with liver cirrhosis in humans but its contribution to the disease remains controversial. In order to elucidate whether GH resistance plays a causal role in the establishment and development of liver fibrosis, or rather represents a major consequence thereof, we challenged mice lacking the Growth hormone receptor gene (Ghr-/-, a model for GH resistance) by crossing them with Mdr2 knockout mice (Mdr2-/-), a mouse model of inflammatory cholestasis and liver fibrosis. Ghr-/-;Mdr2-/- mice showed elevated serum markers associated with liver damage and cholestasis, extensive bile duct proliferation and increased collagen deposition relative to Mdr2 -/- mice, thus suggesting a more severe liver fibrosis phenotype. Additionally, Ghr-/-;Mdr2-/- mice had a pronounced down-regulation of hepato-protective genes Hnf6, Egfr and Igf-1, and significantly increased levels of ROS and apoptosis in hepatocytes, compared to control mice. Moreover, single knockout mice (Ghr-/-) fed with a diet containing 1% cholic acid displayed an increase in hepatocyte ROS production, hepatocyte apoptosis and bile infarcts compared to their wildtype littermates, indicating that loss of Ghr renders hepatocytes more susceptible to toxic bile acid accumulation. Surprisingly, and despite their severe fibrotic phenotype, Ghr-/-;Mdr2-/- mice displayed a significant decrease in tumour incidence compared to Mdr2-/- mice, indicating that loss of Ghr signaling may slow the progression from fibrosis/cirrhosis to cancer in the liver. Conclusion Our findings suggest that GH resistance dramatically exacerbates liver fibrosis in a mouse model of inflammatory cholestasis, therefore suggesting that GH resistance plays a causal role in the disease and provides a novel target for the development of liver fibrosis treatments. PMID:25179284
Duque, Aránzazu; Vinader-Caerols, Concepción; Monleón, Santiago
2017-01-01
We have previously observed the impairing effects of chronic social defeat stress (CSDS) on emotional memory in mice. Given the relation between stress and inflammatory processes, we sought to study the effectiveness of the anti-inflammatory indomethacin in reversing the detrimental effects of CSDS on emotional memory in mice. The effects of CSDS and indomethacin on recognition memory were also evaluated. Male CD1 mice were randomly divided into four groups: non-stressed + saline (NS+SAL); non-stressed + indomethacin (NS+IND); stressed + saline (S+SAL); and stressed + indomethacin (S+IND). Stressed animals were exposed to a daily 10 min agonistic confrontation (CSDS) for 20 days. All subjects were treated daily with saline or indomethacin (10 mg/kg, i.p.). 24 h after the CSDS period, all the mice were evaluated in a social interaction test to distinguish between those that were resilient or susceptible to social stress. All subjects (n = 10-12 per group) were then evaluated in inhibitory avoidance (IA), novel object recognition (NOR), elevated plus maze and hot plate tests. As in control animals (NS+SAL group), IA learning was observed in the resilient groups, as well as in the susceptible mice treated with indomethacin (S+IND group). Recognition memory was observed in the non-stressed and the resilient mice, but not in the susceptible animals. Also, stressed mice exhibited higher anxiety levels. No significant differences were observed in locomotor activity or analgesia. In conclusion, CSDS induces anxiety in post-pubertal mice and impairs emotional and recognition memory in the susceptible subjects. The effects of CSDS on emotional memory, but not on recognition memory and anxiety, are reversed by indomethacin. Moreover, memory impairment is not secondary to the effects of CSDS on locomotor activity, emotionality or pain sensitivity.
Protective Effect of 940 nm Laser on Gamma-Irradiated Mice
Efremova, Yulia; Navratil, Leos
2015-01-01
Abstract Objective: The purpose of this study was to investigate the radioprotective features of 940 nm laser on the life span of mice, and absolute counts of blood cells and their proportions in gamma-irradiated mice. Background data: An important feature of laser light is activation of mitotic division and differentiation of cells, which may be useful in activation of hematopoiesis in gamma-irradiated organisms. Materials and methods: Mice were randomly assigned to 11 groups according to the type(s) of influence. Generally, mice were irradiated in three different ways: with laser at different fluences, with gamma irradiation, or by combination of laser at different fluences and gamma irradiation in a different order. Mice were treated with 940 nm laser at 3, 12, or 18 J/cm2 and/or a lethal dose of gamma irradiation (8.7 Gy). Each group was randomly subdivided into two subgroups, in which the life span of the mice and blood cell counts (on 12th and 45th day after gamma irradiation) were analyzed. Results: Laser (940 nm) at a fluence of 3 J/cm2 significantly prolonged the life span of gamma-irradiated mice (p<0.05). In the same group, counts of white blood cells, lymphocytes, and neutrophils were higher on day 12 than in the gamma group. On day 45 after gamma irradiation, some signs of hematopoiesis repair were found in blood. There were no significant differences in counts of erythrocytes, monocytes, neutrophils, or the proportion of neutrophils between this group and the control group. Conclusions: In summary, 940 nm laser at a fluence of 3 J/cm2 demonstrates radioprotective features in an experiment with lethally irradiated mice. Mechanisms responsible for this effect will be investigated in further studies. PMID:25654740
Modifications of Gait as Predictors of Natural Osteoarthritis Progression in STR/Ort Mice
Poulet, Blandine; de Souza, Roberto; Knights, Chancie B; Gentry, Clive; Wilson, Alan M; Bevan, Stuart; Chang, Yu-Mei; Pitsillides, Andrew A
2014-01-01
Objective Osteoarthritis (OA) is a common chronic disease for which disease-modifying therapies are not currently available. Studies to seek new targets for slowing the progress of OA rely on mouse models, but these do not allow for longitudinal monitoring of disease development. This study was undertaken to determine whether gait can be used to measure disease severity in the STR/Ort mouse model of spontaneous OA and whether gait changes are related to OA joint pain. Methods Gait was monitored using a treadmill-based video system. Correlations between OA severity and gait at 3 treadmill speeds were assessed in STR/Ort mice. Gait and pain behaviors of STR/Ort mice and control CBA mice were analyzed longitudinally, with monthly assessments. Results The best speed to identify paw area changes associated with OA severity in STR/Ort mice was found to be 17 cm · seconds−1. Paw area was modified with age in CBA and STR/Ort mice, but this began earlier in STR/Ort mice and correlated with the onset of OA at 20 weeks of age. In addition, task noncompliance appeared at 20 weeks. Surprisingly, STR/Ort mice did not show any signs of pain with OA development, even when treated with the opioid antagonist naloxone, but did exhibit normal pain behaviors in response to complete Freund's adjuvant–induced arthritis. Conclusion The present results identify an animal model in which OA severity and OA pain can be studied in isolation from one another. The findings suggest that paw area and treadmill noncompliance may be useful tools to longitudinally monitor nonpainful OA development in STR/Ort mice. This will help in providing a noninvasive means of assessing new therapies to slow the progression of OA. PMID:24623711
Urinary proteomic profiling reveals diclofenac-induced renal injury and hepatic regeneration in mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swelm, Rachel P.L. van; Laarakkers, Coby M.M.; Pertijs, Jeanne C.L.M.
Diclofenac (DF) is a widely used non-steroidal anti-inflammatory drug for the treatment of rheumatic disorders, but is often associated with liver injury. We applied urinary proteomic profiling using MALDI-TOF MS to identify biomarkers for DF-induced hepatotoxicity in mice. Female CH3/HeOUJIco mice were treated with 75 mg/kg bw DF by oral gavage and 24 h urine was collected. Proteins identified in urine of DF-treated mice included epidermal growth factor, transthyretin, kallikrein, clusterin, fatty acid binding protein 1 and urokinase, which are related to liver regeneration but also to kidney injury. Both organs showed enhanced levels of oxidative stress (TBARS, p
Xiao, Hui; Yin, Weiguo; Khan, Mohammed A.; Gulen, Muhammet F.; Zhou, Hang; Sham, Ho Pan; Jacobson, Kevan; Vallance, Bruce A.; Li, Xiaoxia
2011-01-01
Background & Aims Commensal bacteria can activate signaling by the toll-like and interleukin-1 receptors (TLR and IL-1R) to mediate pathogenesis of inflammatory bowel diseases and colitis-associated cancer. We investigated the role of the single immunoglobulin IL-1 receptor-related (SIGIRR) molecule, a negative regulator of TLR and IL-1R signaling, as a tumor suppressor to determine whether SIGIRR controls cell cycle progression, genetic instability, and colon tumor initiation by modulating commensal TLR signaling in the gastrointestinal tract. Methods We analyzed Apcmin/+/Sigirr-/- mice for polyps, microadenomas, and anaphase bridge index. Commensal bacteria were depleted from mice with antibiotics. Akt, mTOR and β-catenin pathways were examined by immunoblotting and immunohistochemistry. Loss of heterozygosity (LOH) of Apc and expression of cytokines and proinflammatory mediators were measured by non-quantitative or quantitative PCR. Results Apcmin/+/Sigirr-/- mice had increased LOH of Apc and microadenoma formation, resulting in spontaneous colonic polyposis, compared with Apc min/+/Sigirr+/+ mice. The increased colonic tumorigenesis that occurred in the Apcmin/+/Sigirr-/- mice depended on the presence of commensal bacteria in the gastrointestinal tract. Cell proliferation and chromosomal instability increased in colon crypt cells of the Apcmin/+/Sigirr-/- mice. Akt, mTOR and their substrates were hyper-activated in colon epithelium of Apcmin/+/Sigirr-/- mice in response to TLR or IL-1R ligands. Inhibition of the mTOR pathway by rapamycin reduced formation of microadenomas and polyps in the Apcmin/+/Sigirr-/- mice. Conclusions SIGIRR acts as a tumor suppressor in the colon by inhibiting TLR-induced, mTOR-mediated cell cycle progression and genetic instability. PMID:20416302
Inhibition of PTP1B Restores IRS1-Mediated Hepatic Insulin Signaling in IRS2-Deficient Mice
González-Rodríguez, Águeda; Gutierrez, Jose A. Mas; Sanz-González, Silvia; Ros, Manuel; Burks, Deborah J.; Valverde, Ángela M.
2010-01-01
OBJECTIVE Mice with complete deletion of insulin receptor substrate 2 (IRS2) develop hyperglycemia, impaired hepatic insulin signaling, and elevated gluconeogenesis, whereas mice deficient for protein tyrosine phosphatase (PTP)1B display an opposing hepatic phenotype characterized by increased sensitivity to insulin. To define the relationship between these two signaling pathways in the regulation of liver metabolism, we used genetic and pharmacological approaches to study the effects of inhibiting PTP1B on hepatic insulin signaling and expression of gluconeogenic enzymes in IRS2−/− mice. RESEARCH DESIGN AND METHODS We analyzed glucose homeostasis and insulin signaling in liver and isolated hepatocytes from IRS2−/− and IRS2−/−/PTP1B−/− mice. Additionally, hepatic insulin signaling was assessed in control and IRS2−/− mice treated with resveratrol, an antioxidant present in red wine. RESULTS In livers of hyperglycemic IRS2−/− mice, the expression levels of PTP1B and its association with the insulin receptor (IR) were increased. The absence of PTP1B in the double-mutant mice restored hepatic IRS1-mediated phosphatidylinositol (PI) 3-kinase/Akt/Foxo1 signaling. Moreover, resveratrol treatment of hyperglycemic IRS2−/− mice decreased hepatic PTP1B mRNA and inhibited PTP1B activity, thereby restoring IRS1-mediated PI 3-kinase/Akt/Foxo1 signaling and peripheral insulin sensitivity. CONCLUSIONS By regulating the phosphorylation state of IR, PTB1B determines sensitivity to insulin in liver and exerts a unique role in the interplay between IRS1 and IRS2 in the modulation of hepatic insulin action. PMID:20028942
Yang, Tianxu; Householder, Lara A.; Lubbers, Ellen R.; List, Edward O.; Troike, Katie; Vesel, Clare; Duran-Ortiz, Silvana; Kopchick, John J.
2015-01-01
Reduced GH levels have been associated with improved glucose metabolism and increased longevity despite obesity in multiple mouse lines. However, one mouse line, the GH receptor antagonist (GHA) transgenic mouse, defies this trend because it has reduced GH action and increased adiposity, but glucose metabolism and life span are similar to controls. Slight differences in glucose metabolism and adiposity profiles can become exaggerated on a high-fat (HF) diet. Thus, in this study, male and female GHA and wild-type (WT) mice in a C57BL/6 background were placed on HF and low-fat (LF) diets for 11 weeks, starting at 10 weeks of age, to assess how GHA mice respond to additional metabolic stress of HF feeding. On a HF diet, all mice showed significant weight gain, although GHA gained weight more dramatically than WT mice, with males gaining more than females. Most of this weight gain was due to an increase in fat mass with WT mice increasing primarily in the white adipose tissue perigonadal depots, whereas GHA mice gained in both the sc and perigonadal white adipose tissue regions. Notably, GHA mice were somewhat protected from detrimental glucose metabolism changes on a HF diet because they had only modest increases in serum glucose levels, remained glucose tolerant, and did not develop hyperinsulinemia. Sex differences were observed in many measures with males reacting more dramatically to both a reduction in GH action and HF diet. In conclusion, our findings show that GHA mice, which are already obese, are susceptible to further adipose tissue expansion with HF feeding while remaining resilient to alterations in glucose homeostasis. PMID:25406017
Smith, Dani; Aherrera, Angela; Lopez, Armando; Neptune, Enid; Winickoff, Jonathan P.; Klein, Jonathan D.; Chen, Gang; Lazarus, Philip; Collaco, Joseph M.; McGrath-Morrow, Sharon A.
2015-01-01
Nicotine exposure has been associated with an increased likelihood of developing attention deficit hyperactivity disorder (ADHD) in offspring of mothers who smoked during pregnancy. The goal of this study was to determine if exposure to E-cigarette nicotine vapors during late prenatal and early postnatal life altered behavior in adult mice. Methods Timed-pregnant C57BL/6J mice were exposed to 2.4% nicotine in propylene glycol (PG) or 0% nicotine /PG once a day from gestational day 15 until delivery. After delivery, offspring and mothers were exposed to E-cigarette vapors for an additional 14 days from postnatal day 2 through 16. Following their last exposure serum cotinine levels were measured in female juvenile mice. Male mice underwent behavioral testing at 14 weeks of age to assess sensorimotor, affective, and cognitive functional domains. Results Adult male mice exposed to 2.4% nicotine/PG E-cigarette vapors had significantly more head dips in the zero maze test and higher levels of rearing activity in the open field test compared to 0% nicotine/PG exposed mice and untreated controls. In the water maze test after reversal training, the 2.4% nicotine/PG mice spent more than 25% of time in the new location whereas the other groups did not. Conclusion Adult male mice exhibited increased levels of activity in the zero maze and open field tests when exposed to E-cigarette vapor containing nicotine during late prenatal and early postnatal life. These findings indicate that nicotine exposure from E-cigarettes may cause persistent behavioral changes when exposure occurs during a period of rapid brain growth. PMID:26372012
Boini, Krishna M.; Xia, Min; Koka, Saisudha; Gehr, Todd W.; Li, Pin-Lan
2016-01-01
Ceramide has been reported to initiate inflammasome formation and activation in obesity and different pathological conditions. The present study was performed to explore the role of acid sphingomyelinase (Asm) in the development of high fat diet (HFD)-induced inflammasome and activation and consequent glomerular injury. Asm knockout (Asm−/−) and wild type (Asm+/+) mice with or without Asm short hairpin RNA (shRNA) transfection were fed a HFD or normal chow for 12 weeks to produce obesity and associated glomerular injury. HFD significantly enhanced the Asm activity, ceramide production, colocalization of Nlrp3 (Nod-like receptor protein 3) with ASC (apoptosis-associated speck-like protein) or Caspase-1, NADPH-dependent superoxide (O2•−) production in glomeruli of Asm+/+mice than in control diet-fed mice. However, such HFD-induced increases in Asm activity, ceramide production, colocalization of Nlrp3 with ASC or Caspase-1, superoxide (O2•−) production was attenuated in Asm−/− or Asm shRNA-transfected wild-type mice. In consistency with decreased inflammasome formation, the caspase-1 activity and IL-1β production was significantly attenuated in Asm−/− or Asm shRNA-transfected wild-type mice fed a HFD. Morphological examinations showed that HFD-induced profound injury in glomeruli of Asm+/+ mice which was markedly attenuated in Asm−/− mice. The decreased glomerular damage index in Asm−/− mice was accompanied by attenuated proteinuria. Fluorescent immunohistochemical examinations using podocin as a podocyte marker showed that inflammasome formation induced by the HFD were mostly located in podocytes as demonstrated by co-localization of podocin with Nlrp3. In conclusion, these observations disclose a pivotal role of Asm in the HFD-induced inflammasome formation and consequent glomerular inflammation and injury. PMID:26980705
Wohleb, Eric S.; McKim, Daniel B.; Shea, Daniel T.; Powell, Nicole D.; Tarr, Andrew J.; Sheridan, John F.; Godbout, Jonathan P.
2014-01-01
Background Persistent anxiety-like symptoms may have an inflammatory-related pathophysiology. Our previous work using repeated social defeat (RSD) in mice showed that recruitment of peripheral myeloid cells to the brain is required for the development of anxiety. Here, we aimed to determine if 1) RSD promotes prolonged anxiety through redistribution of myeloid cells and 2) prior exposure to RSD sensitizes the neuroimmune axis to secondary subthreshold stress. Methods Mice were subjected to RSD and several immune and behavioral parameters were determined 0.5, 8, or 24 days later. In follow-up studies, control and RSD mice were subjected to subthreshold stress at 24 days. Results Repeated social defeat-induced macrophage recruitment to the brain corresponded with development and maintenance of anxiety-like behavior 8 days after RSD, but neither remained at 24 days. Nonetheless, social avoidance and an elevated neuroinflammatory profile were maintained at 24 days. Subthreshold social defeat in RSD-sensitized mice increased peripheral macrophage trafficking to the brain that promoted re-establishment of anxiety. Moreover, subthreshold social defeat increased social avoidance in RSD-sensitized mice compared with naïve mice. Stress-induced monocyte trafficking was linked to redistribution of myeloid progenitor cells in the spleen. Splenectomy before subthreshold stress attenuated macrophage recruitment to the brain and prevented anxiety-like behavior in RSD-sensitized mice. Conclusions These data indicate that monocyte trafficking from the spleen to the brain contributes re-establishment of anxiety in stress-sensitized mice. These findings show that neuroinflammatory mechanisms promote mood disturbances following stress-sensitization and outline novel neuroimmune interactions that underlie recurring anxiety disorders such as posttraumatic stress disorder. PMID:24439304
Ahmad, Akbar; Druzhyna, Nadiya; Szabo, Csaba
2017-08-01
Considering the role of H 2 S in critical illness, the aim of this study was to compare the outcome of burn in wild-type mice and in mice deficient in CSE, one of the principal mammalian H 2 S-generating enzymes. Animals were subjected to scald burn. Outcome variables included indices of organ injury, clinical chemistry parameters and plasma levels of inflammatory mediators. Plasma levels of H 2 S significantly increased in response to burn in wild-type mice, but remained unchanged in CSE -/- mice. Expression of the three H 2 S-producing enzymes (CSE, CBS and 3-MST) in the lung and liver, and the capacity of tissue homogenates to produce H 2 S, however, was not affected by burn. In CSE deficient mice there was a significant amelioration of burn-induced accumulation of myeloperoxidase levels in heart, lung, liver and kidney and significantly lower degree of malon dialdehyde accumulation in the heart, lung and kidney than in wild-type mice. CSE deficient mice, compared to wild-type mice, showed a significant attenuation of the burn-induced elevation in circulating alkaline aminotransferase and blood urea nitrogen and creatinine levels, indicative of protective effects of CSE deficiency against burn-induced hepatic, and renal functional impairment. Multiple burn-induced inflammatory mediators (TNF-α, IL-1β, IL-4, IL-6, IL-10 and IL-12) were significantly lower in the plasma of CSE -/- animals after burn than in the plasma of wild-type controls subjected to burns. In conclusion, CSE deficiency improves organ function and attenuates the inflammatory response in a murine model of burn. Copyright © 2017 Elsevier Ltd and ISBI. All rights reserved.
Duque, Aránzazu; Vinader-Caerols, Concepción
2017-01-01
We have previously observed the impairing effects of chronic social defeat stress (CSDS) on emotional memory in mice. Given the relation between stress and inflammatory processes, we sought to study the effectiveness of the anti-inflammatory indomethacin in reversing the detrimental effects of CSDS on emotional memory in mice. The effects of CSDS and indomethacin on recognition memory were also evaluated. Male CD1 mice were randomly divided into four groups: non-stressed + saline (NS+SAL); non-stressed + indomethacin (NS+IND); stressed + saline (S+SAL); and stressed + indomethacin (S+IND). Stressed animals were exposed to a daily 10 min agonistic confrontation (CSDS) for 20 days. All subjects were treated daily with saline or indomethacin (10 mg/kg, i.p.). 24 h after the CSDS period, all the mice were evaluated in a social interaction test to distinguish between those that were resilient or susceptible to social stress. All subjects (n = 10–12 per group) were then evaluated in inhibitory avoidance (IA), novel object recognition (NOR), elevated plus maze and hot plate tests. As in control animals (NS+SAL group), IA learning was observed in the resilient groups, as well as in the susceptible mice treated with indomethacin (S+IND group). Recognition memory was observed in the non-stressed and the resilient mice, but not in the susceptible animals. Also, stressed mice exhibited higher anxiety levels. No significant differences were observed in locomotor activity or analgesia. In conclusion, CSDS induces anxiety in post-pubertal mice and impairs emotional and recognition memory in the susceptible subjects. The effects of CSDS on emotional memory, but not on recognition memory and anxiety, are reversed by indomethacin. Moreover, memory impairment is not secondary to the effects of CSDS on locomotor activity, emotionality or pain sensitivity. PMID:28278165
Zhi, Zhongwei; Chao, Jennifer R.; Wietecha, Tomasz; Hudkins, Kelly L.; Alpers, Charles E.; Wang, Ruikang K.
2014-01-01
Purpose. To evaluate early diabetes-induced changes in retinal thickness and microvasculature in a type 2 diabetic mouse model by using optical coherence tomography (OCT)/optical microangiography (OMAG). Methods. Twenty-two-week-old obese (OB) BTBR mice (n = 10) and wild-type (WT) control mice (n = 10) were imaged. Three-dimensional (3D) data volumes were captured with spectral domain OCT using an ultrahigh-sensitive OMAG scanning protocol for 3D volumetric angiography of the retina and dense A-scan protocol for measurement of the total retinal blood flow (RBF) rate. The thicknesses of the nerve fiber layer (NFL) and that of the NFL to the inner plexiform layer (IPL) were measured and compared between OB and WT mice. The linear capillary densities within intermediate and deep capillary layers were determined by the number of capillaries crossing a 500-μm line. The RBF rate was evaluated using an en face Doppler approach. These quantitative measurements were compared between OB and WT mice. Results. The retinal thickness of the NFL to IPL was significantly reduced in OB mice (P < 0.01) compared to that in WT mice, whereas the NFL thickness between the two was unchanged. 3D depth-resolved OMAG angiography revealed the first in vivo 3D model of mouse retinal microcirculation. Although no obvious differences in capillary vessel densities of the intermediate and deep capillary layers were detected between normal and OB mice, the total RBF rate was significantly lower (P < 0.05) in OB mice than in WT mice. Conclusions. We conclude that OB BTBR mice have significantly reduced NFL–IPL thicknesses and total RBF rates compared with those of WT mice, as imaged by OCT/OMAG. OMAG provides an unprecedented capability for high-resolution depth-resolved imaging of mouse retinal vessels and blood flow that may play a pivotal role in providing a noninvasive method for detecting early microvascular changes in patients with diabetic retinopathy. PMID:24458155
MacEachern, Sarah J.; Patel, Bhavik A.; Keenan, Catherine M.; Dicay, Michael; Chapman, Kevin; McCafferty, Donna-Marie; Savidge, Tor C.; Beck, Paul L.; MacNaughton, Wallace K.; Sharkey, Keith A.
2015-01-01
Background & Aims Disturbances in the control of ion transport lead to epithelial barrier dysfunction in patients with colitis. Enteric glia regulate intestinal barrier function and colonic ion transport. However, it is not clear whether enteric glia are involved in the epithelial hypo-responsiveness. We investigated enteric glial regulation of ion transport in mice with trinitrobenzene sulphonic acid- or dextran sodium sulfate-induced colitis and in Il10−/− mice. Methods Electrically-evoked ion transport was measured in full-thickness segments of colon from CD1 and Il10−/− mice with or without colitis in Ussing chambers. Nitric oxide (NO) production was assessed using amperometry. Bacterial translocation was investigated in the liver, spleen and blood of mice. Results Electrical stimulation of the colon evoked a tetrodotoxin-sensitive chloride secretion. In mice with colitis, ion transport almost completely disappeared. Inhibiting inducible NO synthase (NOS2), but not neuronal NOS (NOS1), partially restored the evoked secretory response. Blocking glial function with fluoroacetate, which is not a NOS2 inhibitor, also partially restored ion transport. Combined NOS2 inhibition and fluoroacetate administration fully restored secretion. Epithelial responsiveness to vasoactive intestinal peptide was increased after enteric glial function was blocked in mice with colitis. In colons of mice without colitis, NO was produced in the myenteric plexus almost completely via NOS1. NO production was increased in mice with colitis, compared to mice without colitis; a substantial proportion of NOS2 was blocked by fluoroacetate administration. Inhibition of enteric glial function in vivo reduced the severity of trinitrobenzene sulphonic acid -induced colitis and associated bacterial translocation. Conclusions Increased production of NOS2 in enteric glia contributes to the dysregulation of intestinal ion transport in mice with colitis. Blocking enteric glial function in these mice restores epithelial barrier function and reduces bacterial translocation. PMID:25865048
Ruby, Christina L.; Walker, Denise L.; An, Joyce; Kim, Jason; Choi, Doo-Sup
2012-01-01
Objectives Adenosine signaling has been implicated in the pathophysiology of several psychiatric disorders including alcoholism, depression, and anxiety. Adenosine levels are controlled in part by transport across the cell membrane by equilibrative nucleoside transporters (ENTs). Recent evidence showed that a polymorphism in the gene encoding ENT1 is associated with comorbid depression and alcoholism in women. We have previously shown that deletion of ENT1 reduces ethanol intoxication and elevates alcohol intake in mice. Interestingly, ENT1 null mice display decreased anxiety-like behavior compared to wild-type littermates. However, our behavioral studies were performed only in male mice. Here, we extend our research to include female mice, and test the effect of ENT1 knockout on other behavioral correlates of alcohol drinking, including depressive and compulsive behavior, in mice. Methods To assess depression-like behavior, we used a forced swim test modified for mice. We examined anxiety-like behavior and locomotor activity in open field chambers, and perseverant behavior using the marble-burying test. Finally, we investigated alcohol consumption and preference in female mice using a two-bottle choice paradigm. Results ENT1 null mice of both sexes showed reduced immobility time in the forced swim test and increased time in the center of the open field compared to wild-type littermates. ENT1 null mice of both sexes showed similar locomotor activity levels and habituation to the open field chambers. Female ENT1 null mice displayed increased marble-burying compared to female wild-types, but no genotype difference was evident in males. Female ENT1 null mice showed increased ethanol consumption and preference compared to female wild-types. Conclusions Our findings suggest that ENT1 contributes to several important behaviors involved in psychiatric disorders. Inhibition of ENT1 may be beneficial in treating depression and anxiety, while enhancement of ENT1 function may reduce compulsive behavior and drinking, particularly in females. PMID:23101030
Sex-specific phenotypes of hyperthyroidism and hypothyroidism in aged mice.
Rakov, Helena; Engels, Kathrin; Hönes, Georg Sebastian; Brix, Klaudia; Köhrle, Josef; Moeller, Lars Christian; Zwanziger, Denise; Führer, Dagmar
2017-12-22
Sex and age play a role in the prevalence of thyroid dysfunction (TD), but their interrelationship for manifestation of hyper- and hypothyroidism is still not well understood. Using a murine model, we asked whether sex impacts the phenotypes of hyper- and hypothyroidism at two life stages. Hyper- and hypothyroidism were induced by i.p. T4 or MMI/ClO 4 -/LoI treatment over 7 weeks in 12- and 20-months-old female and male C57BL/6N mice. Control animals underwent PBS treatment (n = 7-11 animals/sex/treatment). Animals were investigated for impact of sex on body weight, food and water intake, body temperature, heart rate, behaviour (locomotor activity, motor coordination and strength) and serum thyroid hormone (TH) status. Distinct sex impact was found in eu- and hyperthyroid mice, while phenotypic traits of hypothyroidism were similar in male and female mice. No sex difference was found in TH status of euthyroid mice; however, T4 treatment resulted in twofold higher TT4, FT4 and FT3 serum concentrations in adult and old females compared to male animals. Hyperthyroid females consistently showed higher locomotor activity and better coordination but more impairment of muscle function by TH excess at adult age. Importantly and in contrast to male mice, adult and old hyperthyroid female mice showed increased body weight. Higher body temperature in female mice was confirmed in all age groups. No sex impact was found on heart rate irrespective of TH status in adult and old mice. By comparison of male and female mice with TD at two life stages, we found that sex modulates TH action in an organ- and function-specific manner. Sex differences were more pronounced under hyperthyroid conditions. Importantly, sex-specific differences in features of TD in adult and old mice were not conclusively explained by serum TH status in mice.
Dysfunctional Muscle and Liver Glycogen Metabolism in mdx Dystrophic Mice
Stapleton, David I.; Lau, Xianzhong; Flores, Marcelo; Trieu, Jennifer; Gehrig, Stefan M.; Chee, Annabel; Naim, Timur; Lynch, Gordon S.; Koopman, René
2014-01-01
Background Duchenne muscular dystrophy (DMD) is a severe, genetic muscle wasting disorder characterised by progressive muscle weakness. DMD is caused by mutations in the dystrophin (dmd) gene resulting in very low levels or a complete absence of the dystrophin protein, a key structural element of muscle fibres which is responsible for the proper transmission of force. In the absence of dystrophin, muscle fibres become damaged easily during contraction resulting in their degeneration. DMD patients and mdx mice (an animal model of DMD) exhibit altered metabolic disturbances that cannot be attributed to the loss of dystrophin directly. We tested the hypothesis that glycogen metabolism is defective in mdx dystrophic mice. Results Dystrophic mdx mice had increased skeletal muscle glycogen (79%, (P<0.01)). Skeletal muscle glycogen synthesis is initiated by glycogenin, the expression of which was increased by 50% in mdx mice (P<0.0001). Glycogen synthase activity was 12% higher (P<0.05) but glycogen branching enzyme activity was 70% lower (P<0.01) in mdx compared with wild-type mice. The rate-limiting enzyme for glycogen breakdown, glycogen phosphorylase, had 62% lower activity (P<0.01) in mdx mice resulting from a 24% reduction in PKA activity (P<0.01). In mdx mice glycogen debranching enzyme expression was 50% higher (P<0.001) together with starch-binding domain protein 1 (219% higher; P<0.01). In addition, mdx mice were glucose intolerant (P<0.01) and had 30% less liver glycogen (P<0.05) compared with control mice. Subsequent analysis of the enzymes dysregulated in skeletal muscle glycogen metabolism in mdx mice identified reduced glycogenin protein expression (46% less; P<0.05) as a possible cause of this phenotype. Conclusion We identified that mdx mice were glucose intolerant, and had increased skeletal muscle glycogen but reduced amounts of liver glycogen. PMID:24626262
Hellman, Kevin; Hernandez, Pepe; Park, Alice; Abel, Ted
2010-01-01
Study Objectives: Genetic manipulation of cAMP-dependent protein kinase A (PKA) in Drosophila has implicated an important role for PKA in sleep/wake state regulation. Here, we characterize the role of this signaling pathway in the regulation of sleep using electroencephalographic (EEG) and electromyographic (EMG) recordings in R(AB) transgenic mice that express a dominant negative form of the regulatory subunit of PKA in neurons within cortex and hippocampus. Previous studies have revealed that these mutant mice have reduced PKA activity that results in the impairment of hippocampus-dependent long-term memory and long-lasting forms of hippocampal synaptic plasticity. Design: PKA assays, in situ hybridization, immunoblots, and sleep studies were performed in R(AB) transgenic mice and wild-type control mice. Measurements and Results: We have found that R(AB) transgenic mice have reduced PKA activity within cortex and reduced Ser845 phosphorylation of the glutamate receptor subunit GluR1. R(AB) transgenic mice exhibit non-rapid eye movement (NREM) sleep fragmentation and increased amounts of rapid eye movement (REM) sleep relative to wild-type mice. Further, R(AB) transgenic mice have more delta power but less sigma power during NREM sleep relative to wild-type mice. After sleep deprivation, the amounts of NREM and REM sleep were comparable between wild-type and R(AB) transgenic mice. However, the homeostatic rebound of sigma power in R(AB) transgenic mice was reduced. Conclusions: Alterations in cortical synaptic receptors, impairments in sleep continuity, and alterations in sleep oscillations in R(AB) mice imply that PKA is involved not only in synaptic plasticity and memory storage but also in the regulation of sleep/wake states. Citation: Hellman K; Hernandez P; Park A; Abel T. Genetic evidence for a role for protein kinase a in the maintenance of sleep and thalamocortical oscillations. SLEEP 2010;33(1):19-28. PMID:20120617
Effects of growth hormone and insulin-like growth factor 1 deficiency on ageing and longevity.
Laron, Zvi
2002-01-01
Present knowledge on the effects of growth hormone (GH)/insulin-like growth hormone (IGF)1 deficiency on ageing and lifespan are reviewed. Evidence is presented that isolated GH deficiency (IGHD), multiple pituitary hormone deficiencies (MPHD) including GH, as well as primary IGE1 deficiency (GH resistance, Laron syndrome) present signs of early ageing such as thin and wrinkled skin, obesity, hyperglycemia and osteoporosis. These changes do not seem to affect the lifespan, as patients reach old age. Animal models of genetic MPHD (Ames and Snell mice) and GH receptor knockout mice (primary IGF1 deficiency) also have a statistically significant higher longevity compared to normal controls. On the contrary, mice transgenic for GH and acromegalic patients secreting large amounts of GH have premature death. In conclusion longstanding GH/IGF1 deficiency affects several parameters of the ageing process without impairing lifespan, and as shown in animal models prolongs longevity. In contrast high GH/IGF1 levels accelerate death.