[Feasibility of treatment of micro-pollutant water polluted by nitrobenzene with IBAC-process].
Wang, Chen; Ma, Fang; Shan, Dan; Yang, Ji-xian; Lan, Yuan-dong; Gao, Guo-wei
2007-07-01
The performance and feasibility of immobilization biological activated carbon (IBAC) were investigated to treat micro-pollutant water containing nitrobenzene. IBAC has been developed on the granular activated carbon by immobilization of selected and acclimated species of engineering bacteria to treat the micro-pollutant water containing nitrobenzene. The IBAC removal efficiencies for nitrobenzene, permanganate index, turbidity, UV, ammonia and nitrite were compared with granular activated carbon (GAC) process. Biological toxicity of influent and effluent of filter were determined. Amount of bacteria in carbon was measured when carbon filter was inoculated and circulated stably. The results showed that compared with GAC, it took short time for IABC to startup and recover to normal after impact burden. In addition, IBAC was more effective to treat micro-pollutants. In order to ensure security of drinking water, the influent nitrobenzene should be controlled below 26 microg/L. Effluent biological toxicity treated with IBAC was less than that with GAC. The performance of IBAC was much better than that of GAC. Amount of bacteria in both activated carbon filter increased first and then declined from inlet to outlet.
Schut, Henk; Stroebe, Margaret S.; Wilson, Stewart; Birrell, John
2016-01-01
Objective This study assessed the validity of the Indicator of Bereavement Adaptation Cruse Scotland (IBACS). Designed for use in clinical and non-clinical settings, the IBACS measures severity of grief symptoms and risk of developing complications. Method N = 196 (44 male, 152 female) help-seeking, bereaved Scottish adults participated at two timepoints: T1 (baseline) and T2 (after 18 months). Four validated assessment instruments were administered: CORE-R, ICG-R, IES-R, SCL-90-R. Discriminative ability was assessed using ROC curve analysis. Concurrent validity was tested through correlation analysis at T1. Predictive validity was assessed using correlation analyses and ROC curve analysis. Optimal IBACS cutoff values were obtained by calculating a maximal Youden index J in ROC curve analysis. Clinical implications were compared across instruments. Results ROC curve analysis results (AUC = .84, p < .01, 95% CI between .77 and .90) indicated the IBACS is a good diagnostic instrument for assessing complicated grief. Positive correlations (p < .01, 2-tailed) with all four instruments at T1 demonstrated the IBACS' concurrent validity, strongest with complicated grief measures (r = .82). Predictive validity was shown to be fair in T2 ROC curve analysis results (n = 67, AUC = .78, 95% CI between .65 and .92; p < .01). Predictive validity was also supported by stable positive correlations between IBACS and other instruments at T2. Clinical indications were found not to differ across instruments. Conclusions The IBACS offers effective grief symptom and risk assessment for use by non-clinicians. Indications are sufficient to support intake assessment for a stepped model of bereavement intervention. PMID:27741246
Information-Flow-Based Access Control for Web Browsers
NASA Astrophysics Data System (ADS)
Yoshihama, Sachiko; Tateishi, Takaaki; Tabuchi, Naoshi; Matsumoto, Tsutomu
The emergence of Web 2.0 technologies such as Ajax and Mashup has revealed the weakness of the same-origin policy[1], the current de facto standard for the Web browser security model. We propose a new browser security model to allow fine-grained access control in the client-side Web applications for secure mashup and user-generated contents. We propose a browser security model that is based on information-flow-based access control (IBAC) to overcome the dynamic nature of the client-side Web applications and to accurately determine the privilege of scripts in the event-driven programming model.
Wang, Guang-zhi; Li, Wei-guang; He, Wen-jie; Han, Hong-da; Ding, Chi; Ma, Xiao-na; Qu, Yan-ming
2006-10-01
By means of immobilizing five kinds of activated carbon, we studied the influence between the chief activated carbon property items and immobilized bioactivated carbon (IBAC) purification effect with the correlation analysis. The result shows that the activated carbon property items which the correlation coefficient is up 0.7 include molasses, abrasion number, hardness, tannin, uniform coefficient, mean particle diameter and effective particle diameter; the activated carbon property items which the correlation coefficient is up 0.5 include pH, iodine, butane and tetrachloride. In succession, the partial correlation analysis shows that activated carbon property items mostly influencing on IBAC purification effect include molasses, hardness, abrasion number, uniform coefficient, mean particle diameter and effective particle diameter. The causation of these property items bringing influence on IBAC purification is that the activated carbon holes distribution (representative activated carbon property item is molasses) provides inhabitable location and adjust food for the dominance bacteria; the mechanical resist-crash property of activated carbon (representative activated carbon property items: abrasion number and hardness) have influence on the stability of biofilm; and the particle diameter size and distribution of activated carbon (representative activated carbon property items: uniform coefficient, mean particle diameter and effective particle diameter) can directly affect the force of water in IBAC filter bed, which brings influence on the dominance bacteria immobilizing on activated carbon.
Degradation of isobutanal at high loading rates in a compost biofilter.
Sercu, Bram; Demeestere, Kristof; Baillieul, Hans; Van Langenhove, Herman; Verstraete, Willy
2005-08-01
Biofiltration has been increasingly used for cleaning waste gases, mostly containing low concentrations of odorous compounds. To expand the application area of this technology, the biofiltration of higher pollutant loading rates has to be investigated. This article focuses on the biodegradation of isobutanal (IBAL) in a compost biofilter (BF) at mass loading rates between 211 and 4123 g/m3/day (30-590 ppm(v)). At mass loading rates up to 785 g/m3/day, near 100% removal efficiencies could be obtained. However, after increasing the loading rate to 1500-1900 g/m3/ day, the degradation efficiency decreased to 62-98%. In addition, a pH decrease and production of isobutanol (IBOL) and isobutyric acid (IBAC) were observed. This is the first report showing that an aldehyde can act as electron donor as well as acceptor in a BF. To study the effects of pH, compost moisture content, and electron acceptor availability on the biofiltration of IBAL, IBOL, and IBAC, additional batch and continuous experiments were performed. A pH of 5.2 reduced the IBAL degradation rate and inhibited the IBOL degradation, although adaptation of the microorganisms to low pH was observed in the BFs. IBAC was not degraded in the batch experiments. High moisture content (51%) initially had no effect on the IBOL production, although it negatively affected the IBAL elimination increasingly during a 21-day time-course experiment. In batch experiments, the reduction of IBAL to IBOL did not decrease when the amount of available electron acceptors (oxygen or nitrate) was increased. The IBAL removal efficiency at higher loading rates was limited by a combination of nutrient limitation, pH decrease, and dehydration, and the importance of each limiting factor depended on the influent concentration.
ERIC Educational Resources Information Center
Onyenekwu, Ifeyinwa Uchechi
2017-01-01
The experience of international Black African collegians (IBAC) in U.S. higher education has not been adequately investigated, particularly as it relates to understanding the diversity within Black and international student populations. In this manuscript, I offer seven culturally relevant suggestions for student affairs professionals, all of…
Digital Audio Radio Field Tests
NASA Technical Reports Server (NTRS)
Hollansworth, James E.
1997-01-01
Radio history continues to be made at the NASA Lewis Research Center with the beginning of phase two of Digital Audio Radio testing conducted by the Consumer Electronic Manufacturers Association (a sector of the Electronic Industries Association and the National Radio Systems Committee) and cosponsored by the Electronic Industries Association and the National Association of Broadcasters. The bulk of the field testing of the four systems should be complete by the end of October 1996, with results available soon thereafter. Lewis hosted phase one of the testing process, which included laboratory testing of seven proposed digital audio radio systems and modes (see the following table). Two of the proposed systems operate in two modes, thus making a total of nine systems for testing. These nine systems are divided into the following types of transmission: in-band on channel (IBOC), in-band adjacent channel (IBAC), and new bands - the L-band (1452 to 1492 MHz) and the S-band (2310 to 2360 MHz).
Digital Audio Radio Broadcast Systems Laboratory Testing Nearly Complete
NASA Technical Reports Server (NTRS)
2005-01-01
Radio history continues to be made at the NASA Lewis Research Center with the completion of phase one of the digital audio radio (DAR) testing conducted by the Consumer Electronics Group of the Electronic Industries Association. This satellite, satellite/terrestrial, and terrestrial digital technology will open up new audio broadcasting opportunities both domestically and worldwide. It will significantly improve the current quality of amplitude-modulated/frequency-modulated (AM/FM) radio with a new digitally modulated radio signal and will introduce true compact-disc-quality (CD-quality) sound for the first time. Lewis is hosting the laboratory testing of seven proposed digital audio radio systems and modes. Two of the proposed systems operate in two modes each, making a total of nine systems being tested. The nine systems are divided into the following types of transmission: in-band on-channel (IBOC), in-band adjacent-channel (IBAC), and new bands. The laboratory testing was conducted by the Consumer Electronics Group of the Electronic Industries Association. Subjective assessments of the audio recordings for each of the nine systems was conducted by the Communications Research Center in Ottawa, Canada, under contract to the Electronic Industries Association. The Communications Research Center has the only CCIR-qualified (Consultative Committee for International Radio) audio testing facility in North America. The main goals of the U.S. testing process are to (1) provide technical data to the Federal Communication Commission (FCC) so that it can establish a standard for digital audio receivers and transmitters and (2) provide the receiver and transmitter industries with the proper standards upon which to build their equipment. In addition, the data will be forwarded to the International Telecommunications Union to help in the establishment of international standards for digital audio receivers and transmitters, thus allowing U.S. manufacturers to compete in the world market.
Vehicle active steering control research based on two-DOF robust internal model control
NASA Astrophysics Data System (ADS)
Wu, Jian; Liu, Yahui; Wang, Fengbo; Bao, Chunjiang; Sun, Qun; Zhao, Youqun
2016-07-01
Because of vehicle's external disturbances and model uncertainties, robust control algorithms have obtained popularity in vehicle stability control. The robust control usually gives up performance in order to guarantee the robustness of the control algorithm, therefore an improved robust internal model control(IMC) algorithm blending model tracking and internal model control is put forward for active steering system in order to reach high performance of yaw rate tracking with certain robustness. The proposed algorithm inherits the good model tracking ability of the IMC control and guarantees robustness to model uncertainties. In order to separate the design process of model tracking from the robustness design process, the improved 2 degree of freedom(DOF) robust internal model controller structure is given from the standard Youla parameterization. Simulations of double lane change maneuver and those of crosswind disturbances are conducted for evaluating the robust control algorithm, on the basis of a nonlinear vehicle simulation model with a magic tyre model. Results show that the established 2-DOF robust IMC method has better model tracking ability and a guaranteed level of robustness and robust performance, which can enhance the vehicle stability and handling, regardless of variations of the vehicle model parameters and the external crosswind interferences. Contradiction between performance and robustness of active steering control algorithm is solved and higher control performance with certain robustness to model uncertainties is obtained.
Automatic control of finite element models for temperature-controlled radiofrequency ablation.
Haemmerich, Dieter; Webster, John G
2005-07-14
The finite element method (FEM) has been used to simulate cardiac and hepatic radiofrequency (RF) ablation. The FEM allows modeling of complex geometries that cannot be solved by analytical methods or finite difference models. In both hepatic and cardiac RF ablation a common control mode is temperature-controlled mode. Commercial FEM packages don't support automating temperature control. Most researchers manually control the applied power by trial and error to keep the tip temperature of the electrodes constant. We implemented a PI controller in a control program written in C++. The program checks the tip temperature after each step and controls the applied voltage to keep temperature constant. We created a closed loop system consisting of a FEM model and the software controlling the applied voltage. The control parameters for the controller were optimized using a closed loop system simulation. We present results of a temperature controlled 3-D FEM model of a RITA model 30 electrode. The control software effectively controlled applied voltage in the FEM model to obtain, and keep electrodes at target temperature of 100 degrees C. The closed loop system simulation output closely correlated with the FEM model, and allowed us to optimize control parameters. The closed loop control of the FEM model allowed us to implement temperature controlled RF ablation with minimal user input.
Improved model predictive control of resistive wall modes by error field estimator in EXTRAP T2R
NASA Astrophysics Data System (ADS)
Setiadi, A. C.; Brunsell, P. R.; Frassinetti, L.
2016-12-01
Many implementations of a model-based approach for toroidal plasma have shown better control performance compared to the conventional type of feedback controller. One prerequisite of model-based control is the availability of a control oriented model. This model can be obtained empirically through a systematic procedure called system identification. Such a model is used in this work to design a model predictive controller to stabilize multiple resistive wall modes in EXTRAP T2R reversed-field pinch. Model predictive control is an advanced control method that can optimize the future behaviour of a system. Furthermore, this paper will discuss an additional use of the empirical model which is to estimate the error field in EXTRAP T2R. Two potential methods are discussed that can estimate the error field. The error field estimator is then combined with the model predictive control and yields better radial magnetic field suppression.
Dynamic Simulation of Human Gait Model With Predictive Capability.
Sun, Jinming; Wu, Shaoli; Voglewede, Philip A
2018-03-01
In this paper, it is proposed that the central nervous system (CNS) controls human gait using a predictive control approach in conjunction with classical feedback control instead of exclusive classical feedback control theory that controls based on past error. To validate this proposition, a dynamic model of human gait is developed using a novel predictive approach to investigate the principles of the CNS. The model developed includes two parts: a plant model that represents the dynamics of human gait and a controller that represents the CNS. The plant model is a seven-segment, six-joint model that has nine degrees-of-freedom (DOF). The plant model is validated using data collected from able-bodied human subjects. The proposed controller utilizes model predictive control (MPC). MPC uses an internal model to predict the output in advance, compare the predicted output to the reference, and optimize the control input so that the predicted error is minimal. To decrease the complexity of the model, two joints are controlled using a proportional-derivative (PD) controller. The developed predictive human gait model is validated by simulating able-bodied human gait. The simulation results show that the developed model is able to simulate the kinematic output close to experimental data.
Automatic control of finite element models for temperature-controlled radiofrequency ablation
Haemmerich, Dieter; Webster, John G
2005-01-01
Background The finite element method (FEM) has been used to simulate cardiac and hepatic radiofrequency (RF) ablation. The FEM allows modeling of complex geometries that cannot be solved by analytical methods or finite difference models. In both hepatic and cardiac RF ablation a common control mode is temperature-controlled mode. Commercial FEM packages don't support automating temperature control. Most researchers manually control the applied power by trial and error to keep the tip temperature of the electrodes constant. Methods We implemented a PI controller in a control program written in C++. The program checks the tip temperature after each step and controls the applied voltage to keep temperature constant. We created a closed loop system consisting of a FEM model and the software controlling the applied voltage. The control parameters for the controller were optimized using a closed loop system simulation. Results We present results of a temperature controlled 3-D FEM model of a RITA model 30 electrode. The control software effectively controlled applied voltage in the FEM model to obtain, and keep electrodes at target temperature of 100°C. The closed loop system simulation output closely correlated with the FEM model, and allowed us to optimize control parameters. Discussion The closed loop control of the FEM model allowed us to implement temperature controlled RF ablation with minimal user input. PMID:16018811
Adaptive control method for core power control in TRIGA Mark II reactor
NASA Astrophysics Data System (ADS)
Sabri Minhat, Mohd; Selamat, Hazlina; Subha, Nurul Adilla Mohd
2018-01-01
The 1MWth Reactor TRIGA PUSPATI (RTP) Mark II type has undergone more than 35 years of operation. The existing core power control uses feedback control algorithm (FCA). It is challenging to keep the core power stable at the desired value within acceptable error bands to meet the safety demand of RTP due to the sensitivity of nuclear research reactor operation. Currently, the system is not satisfied with power tracking performance and can be improved. Therefore, a new design core power control is very important to improve the current performance in tracking and regulate reactor power by control the movement of control rods. In this paper, the adaptive controller and focus on Model Reference Adaptive Control (MRAC) and Self-Tuning Control (STC) were applied to the control of the core power. The model for core power control was based on mathematical models of the reactor core, adaptive controller model, and control rods selection programming. The mathematical models of the reactor core were based on point kinetics model, thermal hydraulic models, and reactivity models. The adaptive control model was presented using Lyapunov method to ensure stable close loop system and STC Generalised Minimum Variance (GMV) Controller was not necessary to know the exact plant transfer function in designing the core power control. The performance between proposed adaptive control and FCA will be compared via computer simulation and analysed the simulation results manifest the effectiveness and the good performance of the proposed control method for core power control.
Singh, Jay; Chattterjee, Kalyan; Vishwakarma, C B
2018-01-01
Load frequency controller has been designed for reduced order model of single area and two-area reheat hydro-thermal power system through internal model control - proportional integral derivative (IMC-PID) control techniques. The controller design method is based on two degree of freedom (2DOF) internal model control which combines with model order reduction technique. Here, in spite of taking full order system model a reduced order model has been considered for 2DOF-IMC-PID design and the designed controller is directly applied to full order system model. The Logarithmic based model order reduction technique is proposed to reduce the single and two-area high order power systems for the application of controller design.The proposed IMC-PID design of reduced order model achieves good dynamic response and robustness against load disturbance with the original high order system. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Modelling and model predictive control for a bicycle-rider system
NASA Astrophysics Data System (ADS)
Chu, T. D.; Chen, C. K.
2018-01-01
This study proposes a bicycle-rider control model based on model predictive control (MPC). First, a bicycle-rider model with leaning motion of the rider's upper body is developed. The initial simulation data of the bicycle rider are then used to identify the linear model of the system in state-space form for MPC design. Control characteristics of the proposed controller are assessed by simulating the roll-angle tracking control. In this riding task, the MPC uses steering and leaning torques as the control inputs to control the bicycle along a reference roll angle. The simulation results in different cases have demonstrated the applicability and performance of the MPC for bicycle-rider modelling.
Model predictive control based on reduced order models applied to belt conveyor system.
Chen, Wei; Li, Xin
2016-11-01
In the paper, a model predictive controller based on reduced order model is proposed to control belt conveyor system, which is an electro-mechanics complex system with long visco-elastic body. Firstly, in order to design low-degree controller, the balanced truncation method is used for belt conveyor model reduction. Secondly, MPC algorithm based on reduced order model for belt conveyor system is presented. Because of the error bound between the full-order model and reduced order model, two Kalman state estimators are applied in the control scheme to achieve better system performance. Finally, the simulation experiments are shown that balanced truncation method can significantly reduce the model order with high-accuracy and model predictive control based on reduced-model performs well in controlling the belt conveyor system. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Development of Control Models and a Robust Multivariable Controller for Surface Shape Control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winters, Scott Eric
2003-06-18
Surface shape control techniques are applied to many diverse disciplines, such as adaptive optics, noise control, aircraft flutter control and satellites, with an objective to achieve a desirable shape for an elastic body by the application of distributed control forces. Achieving the desirable shape is influenced by many factors, such as, actuator locations, sensor locations, surface precision and controller performance. Building prototypes to complete design optimizations or controller development can be costly or impractical. This shortfall, puts significant value in developing accurate modeling and control simulation approaches. This thesis focuses on the field of adaptive optics, although these developments havemore » the potential for application in many other fields. A static finite element model is developed and validated using a large aperture interferometer system. This model is then integrated into a control model using a linear least squares algorithm and Shack-Hartmann sensor. The model is successfully exercised showing functionality for various wavefront aberrations. Utilizing a verified model shows significant value in simulating static surface shape control problems with quantifiable uncertainties. A new dynamic model for a seven actuator deformable mirror is presented and its accuracy is proven through experiment. Bond graph techniques are used to generate the state space model of the multi-actuator deformable mirror including piezo-electric actuator dynamics. Using this verified model, a robust multi-input multi-output (MIMO) H ∞ controller is designed and implemented. This controller proved superior performance as compared to a standard proportional-integral controller (PI) design.« less
A Modular Framework for Modeling Hardware Elements in Distributed Engine Control Systems
NASA Technical Reports Server (NTRS)
Zinnecker, Alicia M.; Culley, Dennis E.; Aretskin-Hariton, Eliot D.
2014-01-01
Progress toward the implementation of distributed engine control in an aerospace application may be accelerated through the development of a hardware-in-the-loop (HIL) system for testing new control architectures and hardware outside of a physical test cell environment. One component required in an HIL simulation system is a high-fidelity model of the control platform: sensors, actuators, and the control law. The control system developed for the Commercial Modular Aero-Propulsion System Simulation 40k (C-MAPSS40k) provides a verifiable baseline for development of a model for simulating a distributed control architecture. This distributed controller model will contain enhanced hardware models, capturing the dynamics of the transducer and the effects of data processing, and a model of the controller network. A multilevel framework is presented that establishes three sets of interfaces in the control platform: communication with the engine (through sensors and actuators), communication between hardware and controller (over a network), and the physical connections within individual pieces of hardware. This introduces modularity at each level of the model, encouraging collaboration in the development and testing of various control schemes or hardware designs. At the hardware level, this modularity is leveraged through the creation of a Simulink(R) library containing blocks for constructing smart transducer models complying with the IEEE 1451 specification. These hardware models were incorporated in a distributed version of the baseline C-MAPSS40k controller and simulations were run to compare the performance of the two models. The overall tracking ability differed only due to quantization effects in the feedback measurements in the distributed controller. Additionally, it was also found that the added complexity of the smart transducer models did not prevent real-time operation of the distributed controller model, a requirement of an HIL system.
A Modular Framework for Modeling Hardware Elements in Distributed Engine Control Systems
NASA Technical Reports Server (NTRS)
Zinnecker, Alicia M.; Culley, Dennis E.; Aretskin-Hariton, Eliot D.
2015-01-01
Progress toward the implementation of distributed engine control in an aerospace application may be accelerated through the development of a hardware-in-the-loop (HIL) system for testing new control architectures and hardware outside of a physical test cell environment. One component required in an HIL simulation system is a high-fidelity model of the control platform: sensors, actuators, and the control law. The control system developed for the Commercial Modular Aero-Propulsion System Simulation 40k (C-MAPSS40k) provides a verifiable baseline for development of a model for simulating a distributed control architecture. This distributed controller model will contain enhanced hardware models, capturing the dynamics of the transducer and the effects of data processing, and a model of the controller network. A multilevel framework is presented that establishes three sets of interfaces in the control platform: communication with the engine (through sensors and actuators), communication between hardware and controller (over a network), and the physical connections within individual pieces of hardware. This introduces modularity at each level of the model, encouraging collaboration in the development and testing of various control schemes or hardware designs. At the hardware level, this modularity is leveraged through the creation of a SimulinkR library containing blocks for constructing smart transducer models complying with the IEEE 1451 specification. These hardware models were incorporated in a distributed version of the baseline C-MAPSS40k controller and simulations were run to compare the performance of the two models. The overall tracking ability differed only due to quantization effects in the feedback measurements in the distributed controller. Additionally, it was also found that the added complexity of the smart transducer models did not prevent real-time operation of the distributed controller model, a requirement of an HIL system.
A Modular Framework for Modeling Hardware Elements in Distributed Engine Control Systems
NASA Technical Reports Server (NTRS)
Zinnecker, Alicia Mae; Culley, Dennis E.; Aretskin-Hariton, Eliot D.
2014-01-01
Progress toward the implementation of distributed engine control in an aerospace application may be accelerated through the development of a hardware-in-the-loop (HIL) system for testing new control architectures and hardware outside of a physical test cell environment. One component required in an HIL simulation system is a high-fidelity model of the control platform: sensors, actuators, and the control law. The control system developed for the Commercial Modular Aero-Propulsion System Simulation 40k (40,000 pound force thrust) (C-MAPSS40k) provides a verifiable baseline for development of a model for simulating a distributed control architecture. This distributed controller model will contain enhanced hardware models, capturing the dynamics of the transducer and the effects of data processing, and a model of the controller network. A multilevel framework is presented that establishes three sets of interfaces in the control platform: communication with the engine (through sensors and actuators), communication between hardware and controller (over a network), and the physical connections within individual pieces of hardware. This introduces modularity at each level of the model, encouraging collaboration in the development and testing of various control schemes or hardware designs. At the hardware level, this modularity is leveraged through the creation of a Simulink (R) library containing blocks for constructing smart transducer models complying with the IEEE 1451 specification. These hardware models were incorporated in a distributed version of the baseline C-MAPSS40k controller and simulations were run to compare the performance of the two models. The overall tracking ability differed only due to quantization effects in the feedback measurements in the distributed controller. Additionally, it was also found that the added complexity of the smart transducer models did not prevent real-time operation of the distributed controller model, a requirement of an HIL system.
Reduced-order modeling for hyperthermia control.
Potocki, J K; Tharp, H S
1992-12-01
This paper analyzes the feasibility of using reduced-order modeling techniques in the design of multiple-input, multiple-output (MIMO) hyperthermia temperature controllers. State space thermal models are created based upon a finite difference expansion of the bioheat transfer equation model of a scanned focused ultrasound system (SFUS). These thermal state space models are reduced using the balanced realization technique, and an order reduction criterion is tabulated. Results show that a drastic reduction in model dimension can be achieved using the balanced realization. The reduced-order model is then used to design a reduced-order optimal servomechanism controller for a two-scan input, two thermocouple output tissue model. In addition, a full-order optimal servomechanism controller is designed for comparison and validation purposes. These two controllers are applied to a variety of perturbed tissue thermal models to test the robust nature of the reduced-order controller. A comparison of the two controllers validates the use of open-loop balanced reduced-order models in the design of MIMO hyperthermia controllers.
Model predictive control of P-time event graphs
NASA Astrophysics Data System (ADS)
Hamri, H.; Kara, R.; Amari, S.
2016-12-01
This paper deals with model predictive control of discrete event systems modelled by P-time event graphs. First, the model is obtained by using the dater evolution model written in the standard algebra. Then, for the control law, we used the finite-horizon model predictive control. For the closed-loop control, we used the infinite-horizon model predictive control (IH-MPC). The latter is an approach that calculates static feedback gains which allows the stability of the closed-loop system while respecting the constraints on the control vector. The problem of IH-MPC is formulated as a linear convex programming subject to a linear matrix inequality problem. Finally, the proposed methodology is applied to a transportation system.
NASA Astrophysics Data System (ADS)
Pohjoranta, Antti; Halinen, Matias; Pennanen, Jari; Kiviaho, Jari
2015-03-01
Generalized predictive control (GPC) is applied to control the maximum temperature in a solid oxide fuel cell (SOFC) stack and the temperature difference over the stack. GPC is a model predictive control method and the models utilized in this work are ARX-type (autoregressive with extra input), multiple input-multiple output, polynomial models that were identified from experimental data obtained from experiments with a complete SOFC system. The proposed control is evaluated by simulation with various input-output combinations, with and without constraints. A comparison with conventional proportional-integral-derivative (PID) control is also made. It is shown that if only the stack maximum temperature is controlled, a standard PID controller can be used to obtain output performance comparable to that obtained with the significantly more complex model predictive controller. However, in order to control the temperature difference over the stack, both the stack minimum and the maximum temperature need to be controlled and this cannot be done with a single PID controller. In such a case the model predictive controller provides a feasible and effective solution.
Dual-loop model of the human controller
NASA Technical Reports Server (NTRS)
Hess, R. A.
1978-01-01
A dual-loop model of the human controller in single-axis compensatory tracking tasks is introduced. This model possesses an inner-loop closure that involves feeding back that portion of controlled element output rate that is due to control activity. A novel feature of the model is the explicit appearance of the human's internal representation of the manipulator-controlled element dynamics in the inner loop. The sensor inputs to the human controller are assumed to be system error and control force. The former can be sensed via visual, aural, or tactile displays, whereas the latter is assumed to be sensed in kinesthetic fashion. A set of general adaptive characteristics for the model is hypothesized, including a method for selecting simplified internal models of the manipulator-controlled element dynamics. It is demonstrated that the model can produce controller describing functions that closely approximate those measured in four laboratory tracking tasks in which the controlled element dynamics vary considerably in terms of ease of control. An empirically derived expression for the normalized injected error remnant spectrum is introduced.
Multiplexed Predictive Control of a Large Commercial Turbofan Engine
NASA Technical Reports Server (NTRS)
Richter, hanz; Singaraju, Anil; Litt, Jonathan S.
2008-01-01
Model predictive control is a strategy well-suited to handle the highly complex, nonlinear, uncertain, and constrained dynamics involved in aircraft engine control problems. However, it has thus far been infeasible to implement model predictive control in engine control applications, because of the combination of model complexity and the time allotted for the control update calculation. In this paper, a multiplexed implementation is proposed that dramatically reduces the computational burden of the quadratic programming optimization that must be solved online as part of the model-predictive-control algorithm. Actuator updates are calculated sequentially and cyclically in a multiplexed implementation, as opposed to the simultaneous optimization taking place in conventional model predictive control. Theoretical aspects are discussed based on a nominal model, and actual computational savings are demonstrated using a realistic commercial engine model.
Prakash, J; Srinivasan, K
2009-07-01
In this paper, the authors have represented the nonlinear system as a family of local linear state space models, local PID controllers have been designed on the basis of linear models, and the weighted sum of the output from the local PID controllers (Nonlinear PID controller) has been used to control the nonlinear process. Further, Nonlinear Model Predictive Controller using the family of local linear state space models (F-NMPC) has been developed. The effectiveness of the proposed control schemes has been demonstrated on a CSTR process, which exhibits dynamic nonlinearity.
Sensitivity, optimal scaling and minimum roundoff errors in flexible structure models
NASA Technical Reports Server (NTRS)
Skelton, Robert E.
1987-01-01
Traditional modeling notions presume the existence of a truth model that relates the input to the output, without advanced knowledge of the input. This has led to the evolution of education and research approaches (including the available control and robustness theories) that treat the modeling and control design as separate problems. The paper explores the subtleties of this presumption that the modeling and control problems are separable. A detailed study of the nature of modeling errors is useful to gain insight into the limitations of traditional control and identification points of view. Modeling errors need not be small but simply appropriate for control design. Furthermore, the modeling and control design processes are inevitably iterative in nature.
High pressure common rail injection system modeling and control.
Wang, H P; Zheng, D; Tian, Y
2016-07-01
In this paper modeling and common-rail pressure control of high pressure common rail injection system (HPCRIS) is presented. The proposed mathematical model of high pressure common rail injection system which contains three sub-systems: high pressure pump sub-model, common rail sub-model and injector sub-model is a relative complicated nonlinear system. The mathematical model is validated by the software Matlab and a virtual detailed simulation environment. For the considered HPCRIS, an effective model free controller which is called Extended State Observer - based intelligent Proportional Integral (ESO-based iPI) controller is designed. And this proposed method is composed mainly of the referred ESO observer, and a time delay estimation based iPI controller. Finally, to demonstrate the performances of the proposed controller, the proposed ESO-based iPI controller is compared with a conventional PID controller and ADRC. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Modeling and Control for Microgrids
NASA Astrophysics Data System (ADS)
Steenis, Joel
Traditional approaches to modeling microgrids include the behavior of each inverter operating in a particular network configuration and at a particular operating point. Such models quickly become computationally intensive for large systems. Similarly, traditional approaches to control do not use advanced methodologies and suffer from poor performance and limited operating range. In this document a linear model is derived for an inverter connected to the Thevenin equivalent of a microgrid. This model is then compared to a nonlinear simulation model and analyzed using the open and closed loop systems in both the time and frequency domains. The modeling error is quantified with emphasis on its use for controller design purposes. Control design examples are given using a Glover McFarlane controller, gain scheduled Glover McFarlane controller, and bumpless transfer controller which are compared to the standard droop control approach. These examples serve as a guide to illustrate the use of multi-variable modeling techniques in the context of robust controller design and show that gain scheduled MIMO control techniques can extend the operating range of a microgrid. A hardware implementation is used to compare constant gain droop controllers with Glover McFarlane controllers and shows a clear advantage of the Glover McFarlane approach.
A discrete control model of PLANT
NASA Technical Reports Server (NTRS)
Mitchell, C. M.
1985-01-01
A model of the PLANT system using the discrete control modeling techniques developed by Miller is described. Discrete control models attempt to represent in a mathematical form how a human operator might decompose a complex system into simpler parts and how the control actions and system configuration are coordinated so that acceptable overall system performance is achieved. Basic questions include knowledge representation, information flow, and decision making in complex systems. The structure of the model is a general hierarchical/heterarchical scheme which structurally accounts for coordination and dynamic focus of attention. Mathematically, the discrete control model is defined in terms of a network of finite state systems. Specifically, the discrete control model accounts for how specific control actions are selected from information about the controlled system, the environment, and the context of the situation. The objective is to provide a plausible and empirically testable accounting and, if possible, explanation of control behavior.
The Lateral Tracking Control for the Intelligent Vehicle Based on Adaptive PID Neural Network.
Han, Gaining; Fu, Weiping; Wang, Wen; Wu, Zongsheng
2017-05-30
The intelligent vehicle is a complicated nonlinear system, and the design of a path tracking controller is one of the key technologies in intelligent vehicle research. This paper mainly designs a lateral control dynamic model of the intelligent vehicle, which is used for lateral tracking control. Firstly, the vehicle dynamics model (i.e., transfer function) is established according to the vehicle parameters. Secondly, according to the vehicle steering control system and the CARMA (Controlled Auto-Regression and Moving-Average) model, a second-order control system model is built. Using forgetting factor recursive least square estimation (FFRLS), the system parameters are identified. Finally, a neural network PID (Proportion Integral Derivative) controller is established for lateral path tracking control based on the vehicle model and the steering system model. Experimental simulation results show that the proposed model and algorithm have the high real-time and robustness in path tracing control. This provides a certain theoretical basis for intelligent vehicle autonomous navigation tracking control, and lays the foundation for the vertical and lateral coupling control.
The Lateral Tracking Control for the Intelligent Vehicle Based on Adaptive PID Neural Network
Han, Gaining; Fu, Weiping; Wang, Wen; Wu, Zongsheng
2017-01-01
The intelligent vehicle is a complicated nonlinear system, and the design of a path tracking controller is one of the key technologies in intelligent vehicle research. This paper mainly designs a lateral control dynamic model of the intelligent vehicle, which is used for lateral tracking control. Firstly, the vehicle dynamics model (i.e., transfer function) is established according to the vehicle parameters. Secondly, according to the vehicle steering control system and the CARMA (Controlled Auto-Regression and Moving-Average) model, a second-order control system model is built. Using forgetting factor recursive least square estimation (FFRLS), the system parameters are identified. Finally, a neural network PID (Proportion Integral Derivative) controller is established for lateral path tracking control based on the vehicle model and the steering system model. Experimental simulation results show that the proposed model and algorithm have the high real-time and robustness in path tracing control. This provides a certain theoretical basis for intelligent vehicle autonomous navigation tracking control, and lays the foundation for the vertical and lateral coupling control. PMID:28556817
Reduced-order model based feedback control of the modified Hasegawa-Wakatani model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goumiri, I. R.; Rowley, C. W.; Ma, Z.
2013-04-15
In this work, the development of model-based feedback control that stabilizes an unstable equilibrium is obtained for the Modified Hasegawa-Wakatani (MHW) equations, a classic model in plasma turbulence. First, a balanced truncation (a model reduction technique that has proven successful in flow control design problems) is applied to obtain a low dimensional model of the linearized MHW equation. Then, a model-based feedback controller is designed for the reduced order model using linear quadratic regulators. Finally, a linear quadratic Gaussian controller which is more resistant to disturbances is deduced. The controller is applied on the non-reduced, nonlinear MHW equations to stabilizemore » the equilibrium and suppress the transition to drift-wave induced turbulence.« less
A Model-based B2B (Batch to Batch) Control for An Industrial Batch Polymerization Process
NASA Astrophysics Data System (ADS)
Ogawa, Morimasa
This paper describes overview of a model-based B2B (batch to batch) control for an industrial batch polymerization process. In order to control the reaction temperature precisely, several methods based on the rigorous process dynamics model are employed at all design stage of the B2B control, such as modeling and parameter estimation of the reaction kinetics which is one of the important part of the process dynamics model. The designed B2B control consists of the gain scheduled I-PD/II2-PD control (I-PD with double integral control), the feed-forward compensation at the batch start time, and the model adaptation utilizing the results of the last batch operation. Throughout the actual batch operations, the B2B control provides superior control performance compared with that of conventional control methods.
Control algorithms and applications of the wavefront sensorless adaptive optics
NASA Astrophysics Data System (ADS)
Ma, Liang; Wang, Bin; Zhou, Yuanshen; Yang, Huizhen
2017-10-01
Compared with the conventional adaptive optics (AO) system, the wavefront sensorless (WFSless) AO system need not to measure the wavefront and reconstruct it. It is simpler than the conventional AO in system architecture and can be applied to the complex conditions. Based on the analysis of principle and system model of the WFSless AO system, wavefront correction methods of the WFSless AO system were divided into two categories: model-free-based and model-based control algorithms. The WFSless AO system based on model-free-based control algorithms commonly considers the performance metric as a function of the control parameters and then uses certain control algorithm to improve the performance metric. The model-based control algorithms include modal control algorithms, nonlinear control algorithms and control algorithms based on geometrical optics. Based on the brief description of above typical control algorithms, hybrid methods combining the model-free-based control algorithm with the model-based control algorithm were generalized. Additionally, characteristics of various control algorithms were compared and analyzed. We also discussed the extensive applications of WFSless AO system in free space optical communication (FSO), retinal imaging in the human eye, confocal microscope, coherent beam combination (CBC) techniques and extended objects.
Modeling and control design of a wind tunnel model support
NASA Technical Reports Server (NTRS)
Howe, David A.
1990-01-01
The 12-Foot Pressure Wind Tunnel at Ames Research Center is being restored. A major part of the restoration is the complete redesign of the aircraft model supports and their associated control systems. An accurate trajectory control servo system capable of positioning a model (with no measurable overshoot) is needed. Extremely small errors in scaled-model pitch angle can increase airline fuel costs for the final aircraft configuration by millions of dollars. In order to make a mechanism sufficiently accurate in pitch, a detailed structural and control-system model must be created and then simulated on a digital computer. The model must contain linear representations of the mechanical system, including masses, springs, and damping in order to determine system modes. Electrical components, both analog and digital, linear and nonlinear must also be simulated. The model of the entire closed-loop system must then be tuned to control the modes of the flexible model-support structure. The development of a system model, the control modal analysis, and the control-system design are discussed.
NASA Technical Reports Server (NTRS)
Zipf, Mark E.
1989-01-01
An overview is presented of research work focussed on the design and insertion of classical models of human pilot dynamics within the flight control loops of V/STOL aircraft. The pilots were designed and configured for use in integrated control system research and design. The models of human behavior that were considered are: McRuer-Krendel (a single variable transfer function model); and Optimal Control Model (a multi-variable approach based on optimal control and stochastic estimation theory). These models attempt to predict human control response characteristics when confronted with compensatory tracking and state regulation tasks. An overview, mathematical description, and discussion of predictive limitations of the pilot models is presented. Design strategies and closed loop insertion configurations are introduced and considered for various flight control scenarios. Models of aircraft dynamics (both transfer function and state space based) are developed and discussed for their use in pilot design and application. Pilot design and insertion are illustrated for various flight control objectives. Results of pilot insertion within the control loops of two V/STOL research aricraft (Sikorski Black Hawk UH-60A, McDonnell Douglas Harrier II AV-8B) are presented and compared against actual pilot flight data. Conclusions are reached on the ability of the pilot models to adequately predict human behavior when confronted with similar control objectives.
Correlations in state space can cause sub-optimal adaptation of optimal feedback control models.
Aprasoff, Jonathan; Donchin, Opher
2012-04-01
Control of our movements is apparently facilitated by an adaptive internal model in the cerebellum. It was long thought that this internal model implemented an adaptive inverse model and generated motor commands, but recently many reject that idea in favor of a forward model hypothesis. In theory, the forward model predicts upcoming state during reaching movements so the motor cortex can generate appropriate motor commands. Recent computational models of this process rely on the optimal feedback control (OFC) framework of control theory. OFC is a powerful tool for describing motor control, it does not describe adaptation. Some assume that adaptation of the forward model alone could explain motor adaptation, but this is widely understood to be overly simplistic. However, an adaptive optimal controller is difficult to implement. A reasonable alternative is to allow forward model adaptation to 're-tune' the controller. Our simulations show that, as expected, forward model adaptation alone does not produce optimal trajectories during reaching movements perturbed by force fields. However, they also show that re-optimizing the controller from the forward model can be sub-optimal. This is because, in a system with state correlations or redundancies, accurate prediction requires different information than optimal control. We find that adding noise to the movements that matches noise found in human data is enough to overcome this problem. However, since the state space for control of real movements is far more complex than in our simple simulations, the effects of correlations on re-adaptation of the controller from the forward model cannot be overlooked.
Controlling flexible structures with second order actuator dynamics
NASA Technical Reports Server (NTRS)
Inman, Daniel J.; Umland, Jeffrey W.; Bellos, John
1989-01-01
The control of flexible structures for those systems with actuators that are modeled by second order dynamics is examined. Two modeling approaches are investigated. First a stability and performance analysis is performed using a low order finite dimensional model of the structure. Secondly, a continuum model of the flexible structure to be controlled, coupled with lumped parameter second order dynamic models of the actuators performing the control is used. This model is appropriate in the modeling of the control of a flexible panel by proof-mass actuators as well as other beam, plate and shell like structural numbers. The model is verified with experimental measurements.
NASA Workshop on Distributed Parameter Modeling and Control of Flexible Aerospace Systems
NASA Technical Reports Server (NTRS)
Marks, Virginia B. (Compiler); Keckler, Claude R. (Compiler)
1994-01-01
Although significant advances have been made in modeling and controlling flexible systems, there remains a need for improvements in model accuracy and in control performance. The finite element models of flexible systems are unduly complex and are almost intractable to optimum parameter estimation for refinement using experimental data. Distributed parameter or continuum modeling offers some advantages and some challenges in both modeling and control. Continuum models often result in a significantly reduced number of model parameters, thereby enabling optimum parameter estimation. The dynamic equations of motion of continuum models provide the advantage of allowing the embedding of the control system dynamics, thus forming a complete set of system dynamics. There is also increased insight provided by the continuum model approach.
A dual-loop model of the human controller in single-axis tracking tasks
NASA Technical Reports Server (NTRS)
Hess, R. A.
1977-01-01
A dual loop model of the human controller in single axis compensatory tracking tasks is introduced. This model possesses an inner-loop closure which involves feeding back that portion of the controlled element output rate which is due to control activity. The sensory inputs to the human controller are assumed to be system error and control force. The former is assumed to be sensed via visual, aural, or tactile displays while the latter is assumed to be sensed in kinesthetic fashion. A nonlinear form of the model is briefly discussed. This model is then linearized and parameterized. A set of general adaptive characteristics for the parameterized model is hypothesized. These characteristics describe the manner in which the parameters in the linearized model will vary with such things as display quality. It is demonstrated that the parameterized model can produce controller describing functions which closely approximate those measured in laboratory tracking tasks for a wide variety of controlled elements.
Adaptive control of bivalirudin in the cardiac intensive care unit.
Zhao, Qi; Edrich, Thomas; Paschalidis, Ioannis Ch
2015-02-01
Bivalirudin is a direct thrombin inhibitor used in the cardiac intensive care unit when heparin is contraindicated due to heparin-induced thrombocytopenia. Since it is not a commonly used drug, clinical experience with its dosing is sparse. In earlier work [1], we developed a dynamic system model that accurately predicts the effect of bivalirudin given dosage over time and patient physiological characteristics. This paper develops adaptive dosage controllers that regulate its effect to desired levels. To that end, and in the case that bivalirudin model parameters are available, we develop a Model Reference Control law. In the case that model parameters are unknown, an indirect Model Reference Adaptive Control scheme is applied to estimate model parameters first and then adapt the controller. Alternatively, direct Model Reference Adaptive Control is applied to adapt the controller directly without estimating model parameters first. Our algorithms are validated using actual patient data from a large hospital in the Boston area.
Neural control of fast nonlinear systems--application to a turbocharged SI engine with VCT.
Colin, Guillaume; Chamaillard, Yann; Bloch, Gérard; Corde, Gilles
2007-07-01
Today, (engine) downsizing using turbocharging appears as a major way in reducing fuel consumption and pollutant emissions of spark ignition (SI) engines. In this context, an efficient control of the air actuators [throttle, turbo wastegate, and variable camshaft timing (VCT)] is needed for engine torque control. This paper proposes a nonlinear model-based control scheme which combines separate, but coordinated, control modules. Theses modules are based on different control strategies: internal model control (IMC), model predictive control (MPC), and optimal control. It is shown how neural models can be used at different levels and included in the control modules to replace physical models, which are too complex to be online embedded, or to estimate nonmeasured variables. The results obtained from two different test benches show the real-time applicability and good control performance of the proposed methods.
Minimal time spiking in various ChR2-controlled neuron models.
Renault, Vincent; Thieullen, Michèle; Trélat, Emmanuel
2018-02-01
We use conductance based neuron models, and the mathematical modeling of optogenetics to define controlled neuron models and we address the minimal time control of these affine systems for the first spike from equilibrium. We apply tools of geometric optimal control theory to study singular extremals, and we implement a direct method to compute optimal controls. When the system is too large to theoretically investigate the existence of singular optimal controls, we observe numerically the optimal bang-bang controls.
Analytical and experimental study of control effort associated with model reference adaptive control
NASA Technical Reports Server (NTRS)
Messer, R. S.; Haftka, R. T.; Cudney, H. H.
1992-01-01
Numerical simulation results presently obtained for the performance of model reference adaptive control (MRAC) are experimentally verified, with a view to accounting for differences between the plant and the reference model after the control function has been brought to bear. MRAC is both experimentally and analytically applied to a single-degree-of-freedom system, as well as analytically to a MIMO system having controlled differences between the reference model and the plant. The control effort is noted to be sensitive to differences between the plant and the reference model.
Fuzzy model-based servo and model following control for nonlinear systems.
Ohtake, Hiroshi; Tanaka, Kazuo; Wang, Hua O
2009-12-01
This correspondence presents servo and nonlinear model following controls for a class of nonlinear systems using the Takagi-Sugeno fuzzy model-based control approach. First, the construction method of the augmented fuzzy system for continuous-time nonlinear systems is proposed by differentiating the original nonlinear system. Second, the dynamic fuzzy servo controller and the dynamic fuzzy model following controller, which can make outputs of the nonlinear system converge to target points and to outputs of the reference system, respectively, are introduced. Finally, the servo and model following controller design conditions are given in terms of linear matrix inequalities. Design examples illustrate the utility of this approach.
The cost of model reference adaptive control - Analysis, experiments, and optimization
NASA Technical Reports Server (NTRS)
Messer, R. S.; Haftka, R. T.; Cudney, H. H.
1993-01-01
In this paper the performance of Model Reference Adaptive Control (MRAC) is studied in numerical simulations and verified experimentally with the objective of understanding how differences between the plant and the reference model affect the control effort. MRAC is applied analytically and experimentally to a single degree of freedom system and analytically to a MIMO system with controlled differences between the model and the plant. It is shown that the control effort is sensitive to differences between the plant and the reference model. The effects of increased damping in the reference model are considered, and it is shown that requiring the controller to provide increased damping actually decreases the required control effort when differences between the plant and reference model exist. This result is useful because one of the first attempts to counteract the increased control effort due to differences between the plant and reference model might be to require less damping, however, this would actually increase the control effort. Optimization of weighting matrices is shown to help reduce the increase in required control effort. However, it was found that eventually the optimization resulted in a design that required an extremely high sampling rate for successful realization.
General model and control of an n rotor helicopter
NASA Astrophysics Data System (ADS)
Sidea, A. G.; Yding Brogaard, R.; Andersen, N. A.; Ravn, O.
2014-12-01
The purpose of this study was to create a dynamic, nonlinear mathematical model of a multirotor that would be valid for different numbers of rotors. Furthermore, a set of Single Input Single Output (SISO) controllers were implemented for attitude control. Both model and controllers were tested experimentally on a quadcopter. Using the combined model and controllers, simple system simulation and control is possible, by replacing the physical values for the individual systems.
Model-based Acceleration Control of Turbofan Engines with a Hammerstein-Wiener Representation
NASA Astrophysics Data System (ADS)
Wang, Jiqiang; Ye, Zhifeng; Hu, Zhongzhi; Wu, Xin; Dimirovsky, Georgi; Yue, Hong
2017-05-01
Acceleration control of turbofan engines is conventionally designed through either schedule-based or acceleration-based approach. With the widespread acceptance of model-based design in aviation industry, it becomes necessary to investigate the issues associated with model-based design for acceleration control. In this paper, the challenges for implementing model-based acceleration control are explained; a novel Hammerstein-Wiener representation of engine models is introduced; based on the Hammerstein-Wiener model, a nonlinear generalized minimum variance type of optimal control law is derived; the feature of the proposed approach is that it does not require the inversion operation that usually upsets those nonlinear control techniques. The effectiveness of the proposed control design method is validated through a detailed numerical study.
Adaptive model-based control systems and methods for controlling a gas turbine
NASA Technical Reports Server (NTRS)
Brunell, Brent Jerome (Inventor); Mathews, Jr., Harry Kirk (Inventor); Kumar, Aditya (Inventor)
2004-01-01
Adaptive model-based control systems and methods are described so that performance and/or operability of a gas turbine in an aircraft engine, power plant, marine propulsion, or industrial application can be optimized under normal, deteriorated, faulted, failed and/or damaged operation. First, a model of each relevant system or component is created, and the model is adapted to the engine. Then, if/when deterioration, a fault, a failure or some kind of damage to an engine component or system is detected, that information is input to the model-based control as changes to the model, constraints, objective function, or other control parameters. With all the information about the engine condition, and state and directives on the control goals in terms of an objective function and constraints, the control then solves an optimization so the optimal control action can be determined and taken. This model and control may be updated in real-time to account for engine-to-engine variation, deterioration, damage, faults and/or failures using optimal corrective control action command(s).
Reduced-Order Model Based Feedback Control For Modified Hasegawa-Wakatani Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goumiri, I. R.; Rowley, C. W.; Ma, Z.
2013-01-28
In this work, the development of model-based feedback control that stabilizes an unstable equilibrium is obtained for the Modi ed Hasegawa-Wakatani (MHW) equations, a classic model in plasma turbulence. First, a balanced truncation (a model reduction technique that has proven successful in ow control design problems) is applied to obtain a low dimensional model of the linearized MHW equation. Then a modelbased feedback controller is designed for the reduced order model using linear quadratic regulators (LQR). Finally, a linear quadratic gaussian (LQG) controller, which is more resistant to disturbances is deduced. The controller is applied on the non-reduced, nonlinear MHWmore » equations to stabilize the equilibrium and suppress the transition to drift-wave induced turbulence.« less
Multiplicity Control in Structural Equation Modeling
ERIC Educational Resources Information Center
Cribbie, Robert A.
2007-01-01
Researchers conducting structural equation modeling analyses rarely, if ever, control for the inflated probability of Type I errors when evaluating the statistical significance of multiple parameters in a model. In this study, the Type I error control, power and true model rates of famsilywise and false discovery rate controlling procedures were…
Feedback control by online learning an inverse model.
Waegeman, Tim; Wyffels, Francis; Schrauwen, Francis
2012-10-01
A model, predictor, or error estimator is often used by a feedback controller to control a plant. Creating such a model is difficult when the plant exhibits nonlinear behavior. In this paper, a novel online learning control framework is proposed that does not require explicit knowledge about the plant. This framework uses two learning modules, one for creating an inverse model, and the other for actually controlling the plant. Except for their inputs, they are identical. The inverse model learns by the exploration performed by the not yet fully trained controller, while the actual controller is based on the currently learned model. The proposed framework allows fast online learning of an accurate controller. The controller can be applied on a broad range of tasks with different dynamic characteristics. We validate this claim by applying our control framework on several control tasks: 1) the heating tank problem (slow nonlinear dynamics); 2) flight pitch control (slow linear dynamics); and 3) the balancing problem of a double inverted pendulum (fast linear and nonlinear dynamics). The results of these experiments show that fast learning and accurate control can be achieved. Furthermore, a comparison is made with some classical control approaches, and observations concerning convergence and stability are made.
Schmitt, John; Beller, Justin; Russell, Brian; Quach, Anthony; Hermann, Elizabeth; Lyon, David; Breit, Jeffrey
2017-01-01
As the biopharmaceutical industry evolves to include more diverse protein formats and processes, more robust control of Critical Quality Attributes (CQAs) is needed to maintain processing flexibility without compromising quality. Active control of CQAs has been demonstrated using model predictive control techniques, which allow development of processes which are robust against disturbances associated with raw material variability and other potentially flexible operating conditions. Wide adoption of model predictive control in biopharmaceutical cell culture processes has been hampered, however, in part due to the large amount of data and expertise required to make a predictive model of controlled CQAs, a requirement for model predictive control. Here we developed a highly automated, perfusion apparatus to systematically and efficiently generate predictive models using application of system identification approaches. We successfully created a predictive model of %galactosylation using data obtained by manipulating galactose concentration in the perfusion apparatus in serialized step change experiments. We then demonstrated the use of the model in a model predictive controller in a simulated control scenario to successfully achieve a %galactosylation set point in a simulated fed‐batch culture. The automated model identification approach demonstrated here can potentially be generalized to many CQAs, and could be a more efficient, faster, and highly automated alternative to batch experiments for developing predictive models in cell culture processes, and allow the wider adoption of model predictive control in biopharmaceutical processes. © 2017 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers Biotechnol. Prog., 33:1647–1661, 2017 PMID:28786215
Dynamics and control of quadcopter using linear model predictive control approach
NASA Astrophysics Data System (ADS)
Islam, M.; Okasha, M.; Idres, M. M.
2017-12-01
This paper investigates the dynamics and control of a quadcopter using the Model Predictive Control (MPC) approach. The dynamic model is of high fidelity and nonlinear, with six degrees of freedom that include disturbances and model uncertainties. The control approach is developed based on MPC to track different reference trajectories ranging from simple ones such as circular to complex helical trajectories. In this control technique, a linearized model is derived and the receding horizon method is applied to generate the optimal control sequence. Although MPC is computer expensive, it is highly effective to deal with the different types of nonlinearities and constraints such as actuators’ saturation and model uncertainties. The MPC parameters (control and prediction horizons) are selected by trial-and-error approach. Several simulation scenarios are performed to examine and evaluate the performance of the proposed control approach using MATLAB and Simulink environment. Simulation results show that this control approach is highly effective to track a given reference trajectory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simpson, L.; Britt, J.; Birkmire, R.
ITN Energy Systems, Inc., and Global Solar Energy, Inc., assisted by NREL's PV Manufacturing R&D program, have continued to advance CIGS production technology by developing trajectory-oriented predictive/control models, fault-tolerance control, control platform development, in-situ sensors, and process improvements. Modeling activities included developing physics-based and empirical models for CIGS and sputter-deposition processing, implementing model-based control, and applying predictive models to the construction of new evaporation sources and for control. Model-based control is enabled by implementing reduced or empirical models into a control platform. Reliability improvement activities include implementing preventive maintenance schedules; detecting failed sensors/equipment and reconfiguring to tinue processing; and systematicmore » development of fault prevention and reconfiguration strategies for the full range of CIGS PV production deposition processes. In-situ sensor development activities have resulted in improved control and indicated the potential for enhanced process status monitoring and control of the deposition processes. Substantial process improvements have been made, including significant improvement in CIGS uniformity, thickness control, efficiency, yield, and throughput. In large measure, these gains have been driven by process optimization, which in turn have been enabled by control and reliability improvements due to this PV Manufacturing R&D program.« less
Comprehensive modeling and control of flexible flapping wing micro air vehicles
NASA Astrophysics Data System (ADS)
Nogar, Stephen Michael
Flapping wing micro air vehicles hold significant promise due to the potential for improved aerodynamic efficiency, enhanced maneuverability and hover capability compared to fixed and rotary configurations. However, significant technical challenges exist to due the lightweight, highly integrated nature of the vehicle and coupling between the actuators, flexible wings and control system. Experimental and high fidelity analysis has demonstrated that aeroelastic effects can change the effective kinematics of the wing, reducing vehicle stability. However, many control studies for flapping wing vehicles do not consider these effects, and instead validate the control strategy with simple assumptions, including rigid wings, quasi-steady aerodynamics and no consideration of actuator dynamics. A control evaluation model that includes aeroelastic effects and actuator dynamics is developed. The structural model accounts for geometrically nonlinear behavior using an implicit condensation technique and the aerodynamic loads are found using a time accurate approach that includes quasi-steady, rotational, added mass and unsteady effects. Empirically based parameters in the model are fit using data obtained from a higher fidelity solver. The aeroelastic model and its ingredients are compared to experiments and computations using models of higher fidelity, and indicate reasonable agreement. The developed control evaluation model is implemented in a previously published, baseline controller that maintains stability using an asymmetric wingbeat, known as split-cycle, along with changing the flapping frequency and wing bias. The model-based controller determines the control inputs using a cycle-averaged, linear control design model, which assumes a rigid wing and no actuator dynamics. The introduction of unaccounted for dynamics significantly degrades the ability of the controller to track a reference trajectory, and in some cases destabilizes the vehicle. This demonstrates the importance of considering coupled aeroelastic and actuator dynamics in closed-loop control of flapping wings. A controller is developed that decouples the normal form of the vehicle dynamics, which accounts for coupling of the forces and moments acting on the vehicle and enables enhanced tuning capabilities. This controller, using the same control design model as the baseline controller, stabilizes the system despite the uncertainty between the control design and evaluation models. The controller is able to stabilize cases with significant wing flexibility and limited actuator capabilities, despite a reduction in control effectiveness. Additionally, to achieve a minimally actuated vehicle, the wing bias mechanism is removed. Using the same control design methodology, increased performance is observed compared to the baseline controller. However, due to the dependence on the split-cycle mechanism to generate a pitching moment instead of wing bias, the controller is more susceptible to instability from wing flexibility and limited actuator capacity. This work highlights the importance of coupled dynamics in the design and control of flapping wing micro air vehicles. Future enhancements to this work should focus on the reduced order structural and aerodynamics models. Applications include using the developed dynamics model to evaluate other kinematics and control schemes, ultimately enabling improved vehicle and control design.
Hybrid Adaptive Flight Control with Model Inversion Adaptation
NASA Technical Reports Server (NTRS)
Nguyen, Nhan
2011-01-01
This study investigates a hybrid adaptive flight control method as a design possibility for a flight control system that can enable an effective adaptation strategy to deal with off-nominal flight conditions. The hybrid adaptive control blends both direct and indirect adaptive control in a model inversion flight control architecture. The blending of both direct and indirect adaptive control provides a much more flexible and effective adaptive flight control architecture than that with either direct or indirect adaptive control alone. The indirect adaptive control is used to update the model inversion controller by an on-line parameter estimation of uncertain plant dynamics based on two methods. The first parameter estimation method is an indirect adaptive law based on the Lyapunov theory, and the second method is a recursive least-squares indirect adaptive law. The model inversion controller is therefore made to adapt to changes in the plant dynamics due to uncertainty. As a result, the modeling error is reduced that directly leads to a decrease in the tracking error. In conjunction with the indirect adaptive control that updates the model inversion controller, a direct adaptive control is implemented as an augmented command to further reduce any residual tracking error that is not entirely eliminated by the indirect adaptive control.
Wind Turbine Modeling Overview for Control Engineers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moriarty, P. J.; Butterfield, S. B.
2009-01-01
Accurate modeling of wind turbine systems is of paramount importance for controls engineers seeking to reduce loads and optimize energy capture of operating turbines in the field. When designing control systems, engineers often employ a series of models developed in the different disciplines of wind energy. The limitations and coupling of each of these models is explained to highlight how these models might influence control system design.
Hybrid Analytical and Data-Driven Modeling for Feed-Forward Robot Control †
Reinhart, René Felix; Shareef, Zeeshan; Steil, Jochen Jakob
2017-01-01
Feed-forward model-based control relies on models of the controlled plant, e.g., in robotics on accurate knowledge of manipulator kinematics or dynamics. However, mechanical and analytical models do not capture all aspects of a plant’s intrinsic properties and there remain unmodeled dynamics due to varying parameters, unmodeled friction or soft materials. In this context, machine learning is an alternative suitable technique to extract non-linear plant models from data. However, fully data-based models suffer from inaccuracies as well and are inefficient if they include learning of well known analytical models. This paper thus argues that feed-forward control based on hybrid models comprising an analytical model and a learned error model can significantly improve modeling accuracy. Hybrid modeling here serves the purpose to combine the best of the two modeling worlds. The hybrid modeling methodology is described and the approach is demonstrated for two typical problems in robotics, i.e., inverse kinematics control and computed torque control. The former is performed for a redundant soft robot and the latter for a rigid industrial robot with redundant degrees of freedom, where a complete analytical model is not available for any of the platforms. PMID:28208697
Hybrid Analytical and Data-Driven Modeling for Feed-Forward Robot Control.
Reinhart, René Felix; Shareef, Zeeshan; Steil, Jochen Jakob
2017-02-08
Feed-forward model-based control relies on models of the controlled plant, e.g., in robotics on accurate knowledge of manipulator kinematics or dynamics. However, mechanical and analytical models do not capture all aspects of a plant's intrinsic properties and there remain unmodeled dynamics due to varying parameters, unmodeled friction or soft materials. In this context, machine learning is an alternative suitable technique to extract non-linear plant models from data. However, fully data-based models suffer from inaccuracies as well and are inefficient if they include learning of well known analytical models. This paper thus argues that feed-forward control based on hybrid models comprising an analytical model and a learned error model can significantly improve modeling accuracy. Hybrid modeling here serves the purpose to combine the best of the two modeling worlds. The hybrid modeling methodology is described and the approach is demonstrated for two typical problems in robotics, i.e., inverse kinematics control and computed torque control. The former is performed for a redundant soft robot and the latter for a rigid industrial robot with redundant degrees of freedom, where a complete analytical model is not available for any of the platforms.
Delay-feedback control strategy for reducing CO2 emission of traffic flow system
NASA Astrophysics Data System (ADS)
Zhang, Li-Dong; Zhu, Wen-Xing
2015-06-01
To study the signal control strategy for reducing traffic emission theoretically, we first presented a kind of discrete traffic flow model with relative speed term based on traditional coupled map car-following model. In the model, the relative speed difference between two successive running cars is incorporated into following vehicle's acceleration running equation. Then we analyzed its stability condition with discrete control system stability theory. Third, we designed a delay-feedback controller to suppress traffic jam and decrease traffic emission based on modern controller theory. Last, numerical simulations are made to support our theoretical results, including the comparison of models' stability analysis, the influence of model type and signal control on CO2 emissions. The results show that the temporal behavior of our model is superior to other models, and the traffic signal controller has good effect on traffic jam suppression and traffic CO2 emission, which fully supports the theoretical conclusions.
Six Questions for the Resource Model of Control (and Some Answers)
Inzlicht, Michael; Berkman, Elliot
2017-01-01
The resource model of self-control casts self-control as a capacity that relies on some limited resource that exhausts with use. The model captured our imagination and brought much-needed attention on an important yet neglected psychological construct. Despite its success, basic issues with the model remain. Here, we ask six questions: (i) Does self-control really wane over time? (ii) Is ego depletion a form of mental fatigue? (iii) What is the resource that is depleted by ego depletion? (iv) How can changes in motivation, perception, and expectations replenish an exhausted resource? (v) Has the revised resource model unwittingly become a model about motivation? (vi) Do self-control exercises increase self-control? By providing some answers to these questions – including conducting a meta-analysis of the self-control training literature – we highlight how the resource model needs to be revised if not supplanted altogether. PMID:28966660
Reduced order modeling and active flow control of an inlet duct
NASA Astrophysics Data System (ADS)
Ge, Xiaoqing
Many aerodynamic applications require the modeling of compressible flows in or around a body, e.g., the design of aircraft, inlet or exhaust duct, wind turbines, or tall buildings. Traditional methods use wind tunnel experiments and computational fluid dynamics (CFD) to investigate the spatial and temporal distribution of the flows. Although they provide a great deal of insight into the essential characteristics of the flow field, they are not suitable for control analysis and design due to the high physical/computational cost. Many model reduction methods have been studied to reduce the complexity of the flow model. There are two main approaches: linearization based input/output modeling and proper orthogonal decomposition (POD) based model reduction. The former captures mostly the local behavior near a steady state, which is suitable to model laminar flow dynamics. The latter obtains a reduced order model by projecting the governing equation onto an "optimal" subspace and is able to model complex nonlinear flow phenomena. In this research we investigate various model reduction approaches and compare them in flow modeling and control design. We propose an integrated model-based control methodology and apply it to the reduced order modeling and active flow control of compressible flows within a very aggressive (length to exit diameter ratio, L/D, of 1.5) inlet duct and its upstream contraction section. The approach systematically applies reduced order modeling, estimator design, sensor placement and control design to improve the aerodynamic performance. The main contribution of this work is the development of a hybrid model reduction approach that attempts to combine the best features of input/output model identification and POD method. We first identify a linear input/output model by using a subspace algorithm. We next project the difference between CFD response and the identified model response onto a set of POD basis. This trajectory is fit to a nonlinear dynamical model to augment the linear input/output model. Thus, the full system is decomposed into a dominant linear subsystem and a low order nonlinear subsystem. The hybrid model is then used for control design and compared with other modeling methods in CFD simulations. Numerical results indicate that the hybrid model accurately predicts the nonlinear behavior of the flow for a 2D diffuser contraction section model. It also performs best in terms of feedback control design and learning control. Since some outputs of interest (e.g., the AIP pressure recovery) are not observable during normal operations, static and dynamic estimators are designed to recreate the information from available sensor measurements. The latter also provides a state estimation for feedback controller. Based on the reduced order models and estimators, different controllers are designed to improve the aerodynamic performance of the contraction section and inlet duct. The integrated control methodology is evaluated with CFD simulations. Numerical results demonstrate the feasibility and efficacy of the active flow control based on reduced order models. Our reduced order models not only generate a good approximation of the nonlinear flow dynamics over a wide input range, but also help to design controllers that significantly improve the flow response. The tools developed for model reduction, estimator and control design can also be applied to wind tunnel experiment.
Modeling, system identification, and control of ASTREX
NASA Technical Reports Server (NTRS)
Abhyankar, Nandu S.; Ramakrishnan, J.; Byun, K. W.; Das, A.; Cossey, Derek F.; Berg, J.
1993-01-01
The modeling, system identification and controller design aspects of the ASTREX precision space structure are presented in this work. Modeling of ASTREX is performed using NASTRAN, TREETOPS and I-DEAS. The models generated range from simple linear time-invariant models to nonlinear models used for large angle simulations. Identification in both the time and frequency domains are presented. The experimental set up and the results from the identification experiments are included. Finally, controller design for ASTREX is presented. Simulation results using this optimal controller demonstrate the controller performance. Finally the future directions and plans for the facility are addressed.
Usefulness of Neuro-Fuzzy Models' Application for Tobacco Control
NASA Astrophysics Data System (ADS)
Petrovic-Lazarevic, Sonja; Zhang, Jian Ying
2007-12-01
The paper presents neuro-fuzzy models' application appropriate for tobacco control: the fuzzy control model, Adaptive Network Based Fuzzy Inference System, Evolving Fuzzy Neural Network models, and EVOlving POLicies. We propose further the use of Fuzzy Casual Networks to help tobacco control decision makers develop policies and measure their impact on social regulation.
Predictive Multiple Model Switching Control with the Self-Organizing Map
NASA Technical Reports Server (NTRS)
Motter, Mark A.
2000-01-01
A predictive, multiple model control strategy is developed by extension of self-organizing map (SOM) local dynamic modeling of nonlinear autonomous systems to a control framework. Multiple SOMs collectively model the global response of a nonautonomous system to a finite set of representative prototype controls. Each SOM provides a codebook representation of the dynamics corresponding to a prototype control. Different dynamic regimes are organized into topological neighborhoods where the adjacent entries in the codebook represent the global minimization of a similarity metric. The SOM is additionally employed to identify the local dynamical regime, and consequently implements a switching scheme that selects the best available model for the applied control. SOM based linear models are used to predict the response to a larger family of control sequences which are clustered on the representative prototypes. The control sequence which corresponds to the prediction that best satisfies the requirements on the system output is applied as the external driving signal.
Study on DFIG wind turbines control strategy for improving frequency response characteristics
NASA Astrophysics Data System (ADS)
Zhao, Dongmei; Wu, Di; Liu, Yanhua; Zhou, Zhiyu
2012-01-01
The active and reactive power decoupling control for the double-fed induction generator wind turbines(DFIG) does not play a positive role to the frequency response ability of power grid because it performs as the hidden inertia for the power grid. If we want to improve the transient frequency stability of the wind turbine when it is integrated with the system, we must ameliorate its frequency response characteristics. The inability of frequency control due to DFIG decoupling control could be overcome through releasing (or absorbing) a part of the kinetic energy stored in the rotor, so as to increase (or decrease) active power injected to the power system when the deviation of power system frequency appears. This paper discusses the mathematical model of the variable speed DFIG, including the aerodynamic model, pitch control system model, shaft model, generator model and inverter control model, and other key components, focusing on the mathematical model of the converters in rotor side and grid side. Based on the existing model of wind generator, the paper attaches the frequency control model on the platform of the simulation software DIgSILENT/PowerFactory. The simulation results show that the proposed control strategy can response quickly to transient frequency deviation and prove that wind farms can participate in the system frequency regulation to a certain extent. Finally, the result verifies the accuracy and plausibility of the inverter control model which attaches the frequency control module.
Study on DFIG wind turbines control strategy for improving frequency response characteristics
NASA Astrophysics Data System (ADS)
Zhao, Dongmei; Wu, Di; Liu, Yanhua; Zhou, Zhiyu
2011-12-01
The active and reactive power decoupling control for the double-fed induction generator wind turbines(DFIG) does not play a positive role to the frequency response ability of power grid because it performs as the hidden inertia for the power grid. If we want to improve the transient frequency stability of the wind turbine when it is integrated with the system, we must ameliorate its frequency response characteristics. The inability of frequency control due to DFIG decoupling control could be overcome through releasing (or absorbing) a part of the kinetic energy stored in the rotor, so as to increase (or decrease) active power injected to the power system when the deviation of power system frequency appears. This paper discusses the mathematical model of the variable speed DFIG, including the aerodynamic model, pitch control system model, shaft model, generator model and inverter control model, and other key components, focusing on the mathematical model of the converters in rotor side and grid side. Based on the existing model of wind generator, the paper attaches the frequency control model on the platform of the simulation software DIgSILENT/PowerFactory. The simulation results show that the proposed control strategy can response quickly to transient frequency deviation and prove that wind farms can participate in the system frequency regulation to a certain extent. Finally, the result verifies the accuracy and plausibility of the inverter control model which attaches the frequency control module.
Modeling and closed-loop control of hypnosis by means of bispectral index (BIS) with isoflurane.
Gentilini, A; Rossoni-Gerosa, M; Frei, C W; Wymann, R; Morari, M; Zbinden, A M; Schnider, T W
2001-08-01
A model-based closed-loop control system is presented to regulate hypnosis with the volatile anesthetic isoflurane. Hypnosis is assessed by means of the bispectral index (BIS), a processed parameter derived from the electroencephalogram. Isoflurane is administered through a closed-circuit respiratory system. The model for control was identified on a population of 20 healthy volunteers. It consists of three parts: a model for the respiratory system, a pharmacokinetic model and a pharmacodynamic model to predict BIS at the effect compartment. A cascaded internal model controller is employed. The master controller compares the actual BIS and the reference value set by the anesthesiologist and provides expired isoflurane concentration references to the slave controller. The slave controller maneuvers the fresh gas anesthetic concentration entering the respiratory system. The controller is designed to adapt to different respiratory conditions. Anti-windup measures protect against performance degradation in the event of saturation of the input signal. Fault detection schemes in the controller cope with BIS and expired concentration measurement artifacts. The results of clinical studies on humans are presented.
Model-Based Design of Air Traffic Controller-Automation Interaction
NASA Technical Reports Server (NTRS)
Romahn, Stephan; Callantine, Todd J.; Palmer, Everett A.; Null, Cynthia H. (Technical Monitor)
1998-01-01
A model of controller and automation activities was used to design the controller-automation interactions necessary to implement a new terminal area air traffic management concept. The model was then used to design a controller interface that provides the requisite information and functionality. Using data from a preliminary study, the Crew Activity Tracking System (CATS) was used to help validate the model as a computational tool for describing controller performance.
A Two-Time Scale Decentralized Model Predictive Controller Based on Input and Output Model
Niu, Jian; Zhao, Jun; Xu, Zuhua; Qian, Jixin
2009-01-01
A decentralized model predictive controller applicable for some systems which exhibit different dynamic characteristics in different channels was presented in this paper. These systems can be regarded as combinations of a fast model and a slow model, the response speeds of which are in two-time scale. Because most practical models used for control are obtained in the form of transfer function matrix by plant tests, a singular perturbation method was firstly used to separate the original transfer function matrix into two models in two-time scale. Then a decentralized model predictive controller was designed based on the two models derived from the original system. And the stability of the control method was proved. Simulations showed that the method was effective. PMID:19834542
A Model of Manual Control with Perspective Scene Viewing
NASA Technical Reports Server (NTRS)
Sweet, Barbara Townsend
2013-01-01
A model of manual control during perspective scene viewing is presented, which combines the Crossover Model with a simpli ed model of perspective-scene viewing and visual- cue selection. The model is developed for a particular example task: an idealized constant- altitude task in which the operator controls longitudinal position in the presence of both longitudinal and pitch disturbances. An experiment is performed to develop and vali- date the model. The model corresponds closely with the experimental measurements, and identi ed model parameters are highly consistent with the visual cues available in the perspective scene. The modeling results indicate that operators used one visual cue for position control, and another visual cue for velocity control (lead generation). Additionally, operators responded more quickly to rotation (pitch) than translation (longitudinal).
Modeling ecological traps for the control of feral pigs
Dexter, Nick; McLeod, Steven R
2015-01-01
Ecological traps are habitat sinks that are preferred by dispersing animals but have higher mortality or reduced fecundity compared to source habitats. Theory suggests that if mortality rates are sufficiently high, then ecological traps can result in extinction. An ecological trap may be created when pest animals are controlled in one area, but not in another area of equal habitat quality, and when there is density-dependent immigration from the high-density uncontrolled area to the low-density controlled area. We used a logistic population model to explore how varying the proportion of habitat controlled, control mortality rate, and strength of density-dependent immigration for feral pigs could affect the long-term population abundance and time to extinction. Increasing control mortality, the proportion of habitat controlled and the strength of density-dependent immigration decreased abundance both within and outside the area controlled. At higher levels of these parameters, extinction was achieved for feral pigs. We extended the analysis with a more complex stochastic, interactive model of feral pig dynamics in the Australian rangelands to examine how the same variables as the logistic model affected long-term abundance in the controlled and uncontrolled area and time to extinction. Compared to the logistic model of feral pig dynamics, the stochastic interactive model predicted lower abundances and extinction at lower control mortalities and proportions of habitat controlled. To improve the realism of the stochastic interactive model, we substituted fixed mortality rates with a density-dependent control mortality function, empirically derived from helicopter shooting exercises in Australia. Compared to the stochastic interactive model with fixed mortality rates, the model with the density-dependent control mortality function did not predict as substantial decline in abundance in controlled or uncontrolled areas or extinction for any combination of variables. These models demonstrate that pest eradication is theoretically possible without the pest being controlled throughout its range because of density-dependent immigration into the area controlled. The stronger the density-dependent immigration, the better the overall control in controlled and uncontrolled habitat combined. However, the stronger the density-dependent immigration, the poorer the control in the area controlled. For feral pigs, incorporating environmental stochasticity improves the prospects for eradication, but adding a realistic density-dependent control function eliminates these prospects. PMID:26045954
Design of disturbances control model at automotive company
NASA Astrophysics Data System (ADS)
Marie, I. A.; Sari, D. K.; Astuti, P.; Teorema, M.
2017-12-01
The discussion was conducted at PT. XYZ which produces automotive components and motorcycle products. The company produced X123 type cylinder head which is a motor vehicle forming component. The disturbances in the production system has affected the company performance in achieving the target of Key Performance Indicator (KPI). Currently, the determination of the percentage of safety stock of cylinder head products is not in accordance to the control limits set by the company (60% - 80%), and tends to exceed the control limits that cause increasing the inventory wastage in the company. This study aims to identify the production system disturbances that occurs in the production process of manufacturing components of X123 type cylinder head products and design the control model of disturbance to obtain control action and determine the safety stock policy in accordance with the needs of the company. The design stage has been done based on the Disturbance Control Model which already existing and customized with the company need in controlling the production system disturbances at the company. The design of the disturbances control model consists of sub-model of the risk level of the disturbance, sub-model of action status, sub-model action control of the disturbance, and sub-model of determining the safety stock. The model can assist the automotive company in taking the decision to perform the disturbances control action in production system cylinder head while controlling the percentage of the safety stock.
Trajectory tracking in quadrotor platform by using PD controller and LQR control approach
NASA Astrophysics Data System (ADS)
Islam, Maidul; Okasha, Mohamed; Idres, Moumen Mohammad
2017-11-01
The purpose of the paper is to discuss a comparative evaluation of performance of two different controllers i.e. Proportional-Derivative Controller (PD) and Linear Quadratic Regulation (LQR) in Quadrotor dynamic system that is under-actuated with high nonlinearity. As only four states can be controlled at the same time in the Quadrotor, the trajectories are designed on the basis of the four states whereas three dimensional position and rotation along an axis, known as yaw movement are considered. In this work, both the PD controller and LQR control approach are used for Quadrotor nonlinear model to track the trajectories. LQR control approach for nonlinear model is designed on the basis of a linear model of the Quadrotor because the performance of linear model and nonlinear model around certain nominal point is almost similar. Simulink and MATLAB software is used to design the controllers and to evaluate the performance of both the controllers.
Dubay, Rickey; Hassan, Marwan; Li, Chunying; Charest, Meaghan
2014-09-01
This paper presents a unique approach for active vibration control of a one-link flexible manipulator. The method combines a finite element model of the manipulator and an advanced model predictive controller to suppress vibration at its tip. This hybrid methodology improves significantly over the standard application of a predictive controller for vibration control. The finite element model used in place of standard modelling in the control algorithm provides a more accurate prediction of dynamic behavior, resulting in enhanced control. Closed loop control experiments were performed using the flexible manipulator, instrumented with strain gauges and piezoelectric actuators. In all instances, experimental and simulation results demonstrate that the finite element based predictive controller provides improved active vibration suppression in comparison with using a standard predictive control strategy. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kajiwara, Itsuro; Furuya, Keiichiro; Ishizuka, Shinichi
2018-07-01
Model-based controllers with adaptive design variables are often used to control an object with time-dependent characteristics. However, the controller's performance is influenced by many factors such as modeling accuracy and fluctuations in the object's characteristics. One method to overcome these negative factors is to tune model-based controllers. Herein we propose an online tuning method to maintain control performance for an object that exhibits time-dependent variations. The proposed method employs the poles of the controller as design variables because the poles significantly impact performance. Specifically, we use the simultaneous perturbation stochastic approximation (SPSA) to optimize a model-based controller with multiple design variables. Moreover, a vibration control experiment of an object with time-dependent characteristics as the temperature is varied demonstrates that the proposed method allows adaptive control and stably maintains the closed-loop characteristics.
Roy, Sandip; McElwain, Terry F; Wan, Yan
2011-10-01
Developing control policies for zoonotic diseases is challenging, both because of the complex spread dynamics exhibited by these diseases, and because of the need for implementing complex multi-species surveillance and control efforts using limited resources. Mathematical models, and in particular network models, of disease spread are promising as tools for control-policy design, because they can provide comprehensive quantitative representations of disease transmission. A layered dynamical network model for the transmission and control of zoonotic diseases is introduced as a tool for analyzing disease spread and designing cost-effective surveillance and control. The model development is achieved using brucellosis transmission among wildlife, cattle herds, and human sub-populations in an agricultural system as a case study. Precisely, a model that tracks infection counts in interacting animal herds of multiple species (e.g., cattle herds and groups of wildlife for brucellosis) and in human subpopulations is introduced. The model is then abstracted to a form that permits comprehensive targeted design of multiple control capabilities as well as model identification from data. Next, techniques are developed for such quantitative design of control policies (that are directed to both the animal and human populations), and for model identification from snapshot and time-course data, by drawing on recent results in the network control community. The modeling approach is shown to provide quantitative insight into comprehensive control policies for zoonotic diseases, and in turn to permit policy design for mitigation of these diseases. For the brucellosis-transmission example in particular, numerous insights are obtained regarding the optimal distribution of resources among available control capabilities (e.g., vaccination, surveillance and culling, pasteurization of milk) and points in the spread network (e.g., transhumance vs. sedentary herds). In addition, a preliminary identification of the network model for brucellosis is achieved using historical data, and the robustness of the obtained model is demonstrated. As a whole, our results indicate that network modeling can aid in designing control policies for zoonotic diseases.
Roy, Sandip; McElwain, Terry F.; Wan, Yan
2011-01-01
Background Developing control policies for zoonotic diseases is challenging, both because of the complex spread dynamics exhibited by these diseases, and because of the need for implementing complex multi-species surveillance and control efforts using limited resources. Mathematical models, and in particular network models, of disease spread are promising as tools for control-policy design, because they can provide comprehensive quantitative representations of disease transmission. Methodology/Principal Findings A layered dynamical network model for the transmission and control of zoonotic diseases is introduced as a tool for analyzing disease spread and designing cost-effective surveillance and control. The model development is achieved using brucellosis transmission among wildlife, cattle herds, and human sub-populations in an agricultural system as a case study. Precisely, a model that tracks infection counts in interacting animal herds of multiple species (e.g., cattle herds and groups of wildlife for brucellosis) and in human subpopulations is introduced. The model is then abstracted to a form that permits comprehensive targeted design of multiple control capabilities as well as model identification from data. Next, techniques are developed for such quantitative design of control policies (that are directed to both the animal and human populations), and for model identification from snapshot and time-course data, by drawing on recent results in the network control community. Conclusions/Significance The modeling approach is shown to provide quantitative insight into comprehensive control policies for zoonotic diseases, and in turn to permit policy design for mitigation of these diseases. For the brucellosis-transmission example in particular, numerous insights are obtained regarding the optimal distribution of resources among available control capabilities (e.g., vaccination, surveillance and culling, pasteurization of milk) and points in the spread network (e.g., transhumance vs. sedentary herds). In addition, a preliminary identification of the network model for brucellosis is achieved using historical data, and the robustness of the obtained model is demonstrated. As a whole, our results indicate that network modeling can aid in designing control policies for zoonotic diseases. PMID:22022621
Active vibration suppression of self-excited structures using an adaptive LMS algorithm
NASA Astrophysics Data System (ADS)
Danda Roy, Indranil
The purpose of this investigation is to study the feasibility of an adaptive feedforward controller for active flutter suppression in representative linear wing models. The ability of the controller to suppress limit-cycle oscillations in wing models having root springs with freeplay nonlinearities has also been studied. For the purposes of numerical simulation, mathematical models of a rigid and a flexible wing structure have been developed. The rigid wing model is represented by a simple three-degree-of-freedom airfoil while the flexible wing is modelled by a multi-degree-of-freedom finite element representation with beam elements for bending and rod elements for torsion. Control action is provided by one or more flaps attached to the trailing edge and extending along the entire wing span for the rigid model and a fraction of the wing span for the flexible model. Both two-dimensional quasi-steady aerodynamics and time-domain unsteady aerodynamics have been used to generate the airforces in the wing models. An adaptive feedforward controller has been designed based on the filtered-X Least Mean Squares (LMS) algorithm. The control configuration for the rigid wing model is single-input single-output (SISO) while both SISO and multi-input multi-output (MIMO) configurations have been applied on the flexible wing model. The controller includes an on-line adaptive system identification scheme which provides the LMS controller with a reasonably accurate model of the plant. This enables the adaptive controller to track time-varying parameters in the plant and provide effective control. The wing models in closed-loop exhibit highly damped responses at airspeeds where the open-loop responses are destructive. Simulations with the rigid and the flexible wing models in a time-varying airstream show a 63% and 53% increase, respectively, over their corresponding open-loop flutter airspeeds. The ability of the LMS controller to suppress wing store flutter in the two models has also been investigated. With 10% measurement noise introduced in the flexible wing model, the controller demonstrated good robustness to the extraneous disturbances. In the examples studied it is found that adaptation is rapid enough to successfully control flutter at accelerations in the airstream of up to 15 ft/sec2 for the rigid wing model and 9 ft/sec2 for the flexible wing model.
NASA Astrophysics Data System (ADS)
Xu, M.; van Overloop, P. J.; van de Giesen, N. C.
2011-02-01
Model predictive control (MPC) of open channel flow is becoming an important tool in water management. The complexity of the prediction model has a large influence on the MPC application in terms of control effectiveness and computational efficiency. The Saint-Venant equations, called SV model in this paper, and the Integrator Delay (ID) model are either accurate but computationally costly, or simple but restricted to allowed flow changes. In this paper, a reduced Saint-Venant (RSV) model is developed through a model reduction technique, Proper Orthogonal Decomposition (POD), on the SV equations. The RSV model keeps the main flow dynamics and functions over a large flow range but is easier to implement in MPC. In the test case of a modeled canal reach, the number of states and disturbances in the RSV model is about 45 and 16 times less than the SV model, respectively. The computational time of MPC with the RSV model is significantly reduced, while the controller remains effective. Thus, the RSV model is a promising means to balance the control effectiveness and computational efficiency.
Modelling and multi-parametric control for delivery of anaesthetic agents.
Dua, Pinky; Dua, Vivek; Pistikopoulos, Efstratios N
2010-06-01
This article presents model predictive controllers (MPCs) and multi-parametric model-based controllers for delivery of anaesthetic agents. The MPC can take into account constraints on drug delivery rates and state of the patient but requires solving an optimization problem at regular time intervals. The multi-parametric controller has all the advantages of the MPC and does not require repetitive solution of optimization problem for its implementation. This is achieved by obtaining the optimal drug delivery rates as a set of explicit functions of the state of the patient. The derivation of the controllers relies on using detailed models of the system. A compartmental model for the delivery of three drugs for anaesthesia is developed. The key feature of this model is that mean arterial pressure, cardiac output and unconsciousness of the patient can be simultaneously regulated. This is achieved by using three drugs: dopamine (DP), sodium nitroprusside (SNP) and isoflurane. A number of dynamic simulation experiments are carried out for the validation of the model. The model is then used for the design of model predictive and multi-parametric controllers, and the performance of the controllers is analyzed.
Downey, Brandon; Schmitt, John; Beller, Justin; Russell, Brian; Quach, Anthony; Hermann, Elizabeth; Lyon, David; Breit, Jeffrey
2017-11-01
As the biopharmaceutical industry evolves to include more diverse protein formats and processes, more robust control of Critical Quality Attributes (CQAs) is needed to maintain processing flexibility without compromising quality. Active control of CQAs has been demonstrated using model predictive control techniques, which allow development of processes which are robust against disturbances associated with raw material variability and other potentially flexible operating conditions. Wide adoption of model predictive control in biopharmaceutical cell culture processes has been hampered, however, in part due to the large amount of data and expertise required to make a predictive model of controlled CQAs, a requirement for model predictive control. Here we developed a highly automated, perfusion apparatus to systematically and efficiently generate predictive models using application of system identification approaches. We successfully created a predictive model of %galactosylation using data obtained by manipulating galactose concentration in the perfusion apparatus in serialized step change experiments. We then demonstrated the use of the model in a model predictive controller in a simulated control scenario to successfully achieve a %galactosylation set point in a simulated fed-batch culture. The automated model identification approach demonstrated here can potentially be generalized to many CQAs, and could be a more efficient, faster, and highly automated alternative to batch experiments for developing predictive models in cell culture processes, and allow the wider adoption of model predictive control in biopharmaceutical processes. © 2017 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers Biotechnol. Prog., 33:1647-1661, 2017. © 2017 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers.
Li, YuHui; Jin, FeiTeng
2017-01-01
The inversion design approach is a very useful tool for the complex multiple-input-multiple-output nonlinear systems to implement the decoupling control goal, such as the airplane model and spacecraft model. In this work, the flight control law is proposed using the neural-based inversion design method associated with the nonlinear compensation for a general longitudinal model of the airplane. First, the nonlinear mathematic model is converted to the equivalent linear model based on the feedback linearization theory. Then, the flight control law integrated with this inversion model is developed to stabilize the nonlinear system and relieve the coupling effect. Afterwards, the inversion control combined with the neural network and nonlinear portion is presented to improve the transient performance and attenuate the uncertain effects on both external disturbances and model errors. Finally, the simulation results demonstrate the effectiveness of this controller. PMID:29410680
Modeling and control for closed environment plant production systems
NASA Technical Reports Server (NTRS)
Fleisher, David H.; Ting, K. C.; Janes, H. W. (Principal Investigator)
2002-01-01
A computer program was developed to study multiple crop production and control in controlled environment plant production systems. The program simulates crop growth and development under nominal and off-nominal environments. Time-series crop models for wheat (Triticum aestivum), soybean (Glycine max), and white potato (Solanum tuberosum) are integrated with a model-based predictive controller. The controller evaluates and compensates for effects of environmental disturbances on crop production scheduling. The crop models consist of a set of nonlinear polynomial equations, six for each crop, developed using multivariate polynomial regression (MPR). Simulated data from DSSAT crop models, previously modified for crop production in controlled environments with hydroponics under elevated atmospheric carbon dioxide concentration, were used for the MPR fitting. The model-based predictive controller adjusts light intensity, air temperature, and carbon dioxide concentration set points in response to environmental perturbations. Control signals are determined from minimization of a cost function, which is based on the weighted control effort and squared-error between the system response and desired reference signal.
Application of neural models as controllers in mobile robot velocity control loop
NASA Astrophysics Data System (ADS)
Cerkala, Jakub; Jadlovska, Anna
2017-01-01
This paper presents the application of an inverse neural models used as controllers in comparison to classical PI controllers for velocity tracking control task used in two-wheel, differentially driven mobile robot. The PI controller synthesis is based on linear approximation of actuators with equivalent load. In order to obtain relevant datasets for training of feed-forward multi-layer perceptron based neural network used as neural model, the mathematical model of mobile robot, that combines its kinematic and dynamic properties such as chassis dimensions, center of gravity offset, friction and actuator parameters is used. Neural models are trained off-line to act as an inverse dynamics of DC motors with particular load using data collected in simulation experiment for motor input voltage step changes within bounded operating area. The performances of PI controllers versus inverse neural models in mobile robot internal velocity control loops are demonstrated and compared in simulation experiment of navigation control task for line segment motion in plane.
NASA Astrophysics Data System (ADS)
Ji, Yu; Sheng, Wanxing; Jin, Wei; Wu, Ming; Liu, Haitao; Chen, Feng
2018-02-01
A coordinated optimal control method of active and reactive power of distribution network with distributed PV cluster based on model predictive control is proposed in this paper. The method divides the control process into long-time scale optimal control and short-time scale optimal control with multi-step optimization. The models are transformed into a second-order cone programming problem due to the non-convex and nonlinear of the optimal models which are hard to be solved. An improved IEEE 33-bus distribution network system is used to analyse the feasibility and the effectiveness of the proposed control method
Wiener sliding-mode control for artificial pancreas: a new nonlinear approach to glucose regulation.
Abu-Rmileh, Amjad; Garcia-Gabin, Winston
2012-08-01
Type 1 diabetic patients need insulin therapy to keep their blood glucose close to normal. In this paper an attempt is made to show how nonlinear control-oriented model may be used to improve the performance of closed-loop control of blood glucose in diabetic patients. The nonlinear Wiener model is used as a novel modeling approach to be applied to the glucose control problem. The identified Wiener model is used in the design of a robust nonlinear sliding mode control strategy. Two configurations of the nonlinear controller are tested and compared to a controller designed with a linear model. The controllers are designed in a Smith predictor structure to reduce the effect of system time delay. To improve the meal compensation features, the controllers are provided with a simple feedforward controller to inject an insulin bolus at meal time. Different simulation scenarios have been used to evaluate the proposed controllers. The obtained results show that the new approach outperforms the linear control scheme, and regulates the glucose level within safe limits in the presence of measurement and modeling errors, meal uncertainty and patient variations. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
A service-oriented data access control model
NASA Astrophysics Data System (ADS)
Meng, Wei; Li, Fengmin; Pan, Juchen; Song, Song; Bian, Jiali
2017-01-01
The development of mobile computing, cloud computing and distributed computing meets the growing individual service needs. Facing with complex application system, it's an urgent problem to ensure real-time, dynamic, and fine-grained data access control. By analyzing common data access control models, on the basis of mandatory access control model, the paper proposes a service-oriented access control model. By regarding system services as subject and data of databases as object, the model defines access levels and access identification of subject and object, and ensures system services securely to access databases.
Control of large flexible structures - An experiment on the NASA Mini-Mast facility
NASA Technical Reports Server (NTRS)
Hsieh, Chen; Kim, Jae H.; Liu, Ketao; Zhu, Guoming; Skelton, Robert E.
1991-01-01
The output variance constraint controller design procedure is integrated with model reduction by modal cost analysis. A procedure is given for tuning MIMO controller designs to find the maximal rms performance of the actual system. Controller designs based on a finite-element model of the system are compared with controller designs based on an identified model (obtained using the Q-Markov Cover algorithm). The identified model and the finite-element model led to similar closed-loop performance, when tested in the Mini-Mast facility at NASA Langley.
Model based control of dynamic atomic force microscope.
Lee, Chibum; Salapaka, Srinivasa M
2015-04-01
A model-based robust control approach is proposed that significantly improves imaging bandwidth for the dynamic mode atomic force microscopy. A model for cantilever oscillation amplitude and phase dynamics is derived and used for the control design. In particular, the control design is based on a linearized model and robust H(∞) control theory. This design yields a significant improvement when compared to the conventional proportional-integral designs and verified by experiments.
Model based design introduction: modeling game controllers to microprocessor architectures
NASA Astrophysics Data System (ADS)
Jungwirth, Patrick; Badawy, Abdel-Hameed
2017-04-01
We present an introduction to model based design. Model based design is a visual representation, generally a block diagram, to model and incrementally develop a complex system. Model based design is a commonly used design methodology for digital signal processing, control systems, and embedded systems. Model based design's philosophy is: to solve a problem - a step at a time. The approach can be compared to a series of steps to converge to a solution. A block diagram simulation tool allows a design to be simulated with real world measurement data. For example, if an analog control system is being upgraded to a digital control system, the analog sensor input signals can be recorded. The digital control algorithm can be simulated with the real world sensor data. The output from the simulated digital control system can then be compared to the old analog based control system. Model based design can compared to Agile software develop. The Agile software development goal is to develop working software in incremental steps. Progress is measured in completed and tested code units. Progress is measured in model based design by completed and tested blocks. We present a concept for a video game controller and then use model based design to iterate the design towards a working system. We will also describe a model based design effort to develop an OS Friendly Microprocessor Architecture based on the RISC-V.
Optimal treatment interruptions control of TB transmission model
NASA Astrophysics Data System (ADS)
Nainggolan, Jonner; Suparwati, Titik; Kawuwung, Westy B.
2018-03-01
A tuberculosis model which incorporates treatment interruptions of infectives is established. Optimal control of individuals infected with active TB is given in the model. It is obtained that the control reproduction numbers is smaller than the reproduction number, this means treatment controls could optimize the decrease in the spread of active TB. For this model, controls on treatment of infection individuals to reduce the actively infected individual populations, by application the Pontryagins Maximum Principle for optimal control. The result further emphasized the importance of controlling disease relapse in reducing the number of actively infected and treatment interruptions individuals with tuberculosis.
The numerical modelling and process simulation for the fault diagnosis of rotary kiln incinerator.
Roh, S D; Kim, S W; Cho, W S
2001-10-01
The numerical modelling and process simulation for the fault diagnosis of rotary kiln incinerator were accomplished. In the numerical modelling, two models applied to the modelling within the kiln are the combustion chamber model including the mass and energy balance equations for two combustion chambers and 3D thermal model. The combustion chamber model predicts temperature within the kiln, flue gas composition, flux and heat of combustion. Using the combustion chamber model and 3D thermal model, the production-rules for the process simulation can be obtained through interrelation analysis between control and operation variables. The process simulation of the kiln is operated with the production-rules for automatic operation. The process simulation aims to provide fundamental solutions to the problems in incineration process by introducing an online expert control system to provide an integrity in process control and management. Knowledge-based expert control systems use symbolic logic and heuristic rules to find solutions for various types of problems. It was implemented to be a hybrid intelligent expert control system by mutually connecting with the process control systems which has the capability of process diagnosis, analysis and control.
Basic Research on Adaptive Model Algorithmic Control
1985-12-01
Control Conference. Richalet, J., A. Rault, J.L. Testud and J. Papon (1978). Model predictive heuristic control: applications to industrial...pp.977-982. Richalet, J., A. Rault, J. L. Testud and J. Papon (1978). Model predictive heuristic control: applications to industrial processes
NASA Astrophysics Data System (ADS)
Wahid, A.; Taqwallah, H. M. H.
2018-03-01
Compressors and a steam reformer are the important units in biohydrogen from biomass plant. The compressors are useful for achieving high-pressure operating conditions while the steam reformer is the main process to produce H2 gas. To control them, in this research used a model predictive control (MPC) expected to have better controller performance than conventional controllers. Because of the explicit model empowerment in MPC, obtaining a better model is the main objective before employing MPC. The common way to get the empirical model is through the identification system, so that obtained a first-order plus dead-time (FOPDT) model. This study has already improved that way since used the system re-identification (SRI) based on closed loop mode. Based on this method the results of the compressor pressure control and temperature control of steam reformer were that MPC based on system re-identification (MPC-SRI) has better performance than MPC without system re-identification (MPCWSRI) and the proportional-integral (PI) controller, by % improvement of 73% against MPCWSRI and 75% against the PI controller.
NASA Astrophysics Data System (ADS)
Itoh, Masato; Hagimori, Yuki; Nonaka, Kenichiro; Sekiguchi, Kazuma
2016-09-01
In this study, we apply a hierarchical model predictive control to omni-directional mobile vehicle, and improve the tracking performance. We deal with an independent four-wheel driving/steering vehicle (IFWDS) equipped with four coaxial steering mechanisms (CSM). The coaxial steering mechanism is a special one composed of two steering joints on the same axis. In our previous study with respect to IFWDS with ideal steering, we proposed a model predictive tracking control. However, this method did not consider constraints of the coaxial steering mechanism which causes delay of steering. We also proposed a model predictive steering control considering constraints of this mechanism. In this study, we propose a hierarchical system combining above two control methods for IFWDS. An upper controller, which deals with vehicle kinematics, runs a model predictive tracking control, and a lower controller, which considers constraints of coaxial steering mechanism, runs a model predictive steering control which tracks the predicted steering angle optimized an upper controller. We verify the superiority of this method by comparing this method with the previous method.
The Strength Model of Self-Control in Sport and Exercise Psychology
Englert, Chris
2016-01-01
The strength model of self-control assumes that all acts of self-control (e.g., emotion regulation, persistence) are empowered by a single global metaphorical strength that has limited capacity. This strength can become temporarily depleted after a primary self-control act, which, in turn, can impair performance in subsequent acts of self-control. Recently, the assumptions of the strength model of self-control also have been adopted and tested in the field of sport and exercise psychology. The present review paper aims to give an overview of recent developments in self-control research based on the strength model of self-control. Furthermore, recent research on interventions on how to improve and revitalize self-control strength will be presented. Finally, the strength model of self-control has been criticized lately, as well as expanded in scope, so the present paper will also discuss alternative explanations of why previous acts of self-control can lead to impaired performance in sport and exercise. PMID:26973590
Variable cycle control model for intersection based on multi-source information
NASA Astrophysics Data System (ADS)
Sun, Zhi-Yuan; Li, Yue; Qu, Wen-Cong; Chen, Yan-Yan
2018-05-01
In order to improve the efficiency of traffic control system in the era of big data, a new variable cycle control model based on multi-source information is presented for intersection in this paper. Firstly, with consideration of multi-source information, a unified framework based on cyber-physical system is proposed. Secondly, taking into account the variable length of cell, hysteresis phenomenon of traffic flow and the characteristics of lane group, a Lane group-based Cell Transmission Model is established to describe the physical properties of traffic flow under different traffic signal control schemes. Thirdly, the variable cycle control problem is abstracted into a bi-level programming model. The upper level model is put forward for cycle length optimization considering traffic capacity and delay. The lower level model is a dynamic signal control decision model based on fairness analysis. Then, a Hybrid Intelligent Optimization Algorithm is raised to solve the proposed model. Finally, a case study shows the efficiency and applicability of the proposed model and algorithm.
Linearized aerodynamic and control law models of the X-29A airplane and comparison with flight data
NASA Technical Reports Server (NTRS)
Bosworth, John T.
1992-01-01
Flight control system design and analysis for aircraft rely on mathematical models of the vehicle dynamics. In addition to a six degree of freedom nonlinear simulation, the X-29A flight controls group developed a set of programs that calculate linear perturbation models throughout the X-29A flight envelope. The models include the aerodynamics as well as flight control system dynamics and were used for stability, controllability, and handling qualities analysis. These linear models were compared to flight test results to help provide a safe flight envelope expansion. A description is given of the linear models at three flight conditions and two flight control system modes. The models are presented with a level of detail that would allow the reader to reproduce the linear results if desired. Comparison between the response of the linear model and flight measured responses are presented to demonstrate the strengths and weaknesses of the linear models' ability to predict flight dynamics.
Passion, Trait Self-Control, and Wellbeing: Comparing Two Mediation Models Predicting Wellbeing.
Briki, Walid
2017-01-01
Research has found that passion and trait self-control represented key determinants of wellbeing. Yet, no study to date has attempted to investigate the mediating influences of trait self-control and passion for accounting for the relationships between passion, trait self-control, and wellbeing (dependent variable). Using different frameworks, such as the dualistic model of passion and the neo-socioanalytic theory, the present study proposed two mediation models, considering either trait self-control (model 1) or passion (model 2) as the mediating variable. Five hundred nine volunteers from the United States (326 females and 183 males; M age = 31.74, SD age = 11.05, from 18 to 70 years old), who reported being passionate about a specific activity (e.g., fishing, swimming, blogging; M passion = 5.94, SD passion = 0.89), answered questionnaires assessing harmonious and obsessive passion, trait self-control, and wellbeing (measured through hedonic and eudaimonic wellbeing scales). Preliminary analyses revealed that both models were significant ( model 1: absolute GoF = 0.366, relative GoF = 0.971, outer model GoF = 0.997, inner model GoF = 0.973, R 2 = 18.300%, p < 0.001; model 2: absolute GoF = 0.298; relative GoF = 0.980; outer model GoF = 0.997; inner model GoF = 0.982; R 2 = 12.111%, p < 0.001). Correlational analyses revealed positive relationships between harmonious passion, trait self-control, and wellbeing, and no relationships of obsessive passion with trait self-control and wellbeing. Mediation analyses revealed that trait self-control significantly mediated the relationship between harmonious passion and wellbeing (i.e., partial mediation, VAF = 33.136%). Harmonious passion appeared to significantly mediate the positive effect of trait self-control on wellbeing; however, the size of the mediating effect indicated that (almost) no mediation would take place (i.e., VAF = 11.144%). The present study is the first to examine the relationships between passion, trait self-control, and wellbeing, and supports the view that trait self-control and harmonious passion represent not only adaptive and powerful constructs, but also key determinants of wellbeing. Implications for the study of passion, trait self-control and wellbeing are discussed.
Passion, Trait Self-Control, and Wellbeing: Comparing Two Mediation Models Predicting Wellbeing
Briki, Walid
2017-01-01
Research has found that passion and trait self-control represented key determinants of wellbeing. Yet, no study to date has attempted to investigate the mediating influences of trait self-control and passion for accounting for the relationships between passion, trait self-control, and wellbeing (dependent variable). Using different frameworks, such as the dualistic model of passion and the neo-socioanalytic theory, the present study proposed two mediation models, considering either trait self-control (model 1) or passion (model 2) as the mediating variable. Five hundred nine volunteers from the United States (326 females and 183 males; Mage = 31.74, SDage = 11.05, from 18 to 70 years old), who reported being passionate about a specific activity (e.g., fishing, swimming, blogging; Mpassion = 5.94, SDpassion = 0.89), answered questionnaires assessing harmonious and obsessive passion, trait self-control, and wellbeing (measured through hedonic and eudaimonic wellbeing scales). Preliminary analyses revealed that both models were significant (model 1: absolute GoF = 0.366, relative GoF = 0.971, outer model GoF = 0.997, inner model GoF = 0.973, R2 = 18.300%, p < 0.001; model 2: absolute GoF = 0.298; relative GoF = 0.980; outer model GoF = 0.997; inner model GoF = 0.982; R2 = 12.111%, p < 0.001). Correlational analyses revealed positive relationships between harmonious passion, trait self-control, and wellbeing, and no relationships of obsessive passion with trait self-control and wellbeing. Mediation analyses revealed that trait self-control significantly mediated the relationship between harmonious passion and wellbeing (i.e., partial mediation, VAF = 33.136%). Harmonious passion appeared to significantly mediate the positive effect of trait self-control on wellbeing; however, the size of the mediating effect indicated that (almost) no mediation would take place (i.e., VAF = 11.144%). The present study is the first to examine the relationships between passion, trait self-control, and wellbeing, and supports the view that trait self-control and harmonious passion represent not only adaptive and powerful constructs, but also key determinants of wellbeing. Implications for the study of passion, trait self-control and wellbeing are discussed. PMID:28611704
Decentralized control of sound radiation using iterative loop recovery.
Schiller, Noah H; Cabell, Randolph H; Fuller, Chris R
2010-10-01
A decentralized model-based control strategy is designed to reduce low-frequency sound radiation from periodically stiffened panels. While decentralized control systems tend to be scalable, performance can be limited due to modeling error introduced by the unmodeled interaction between neighboring control units. Since bounds on modeling error are not known in advance, it is difficult to ensure the decentralized control system will be robust without making the controller overly conservative. Therefore an iterative approach is suggested, which utilizes frequency-shaped loop recovery. The approach accounts for modeling error introduced by neighboring control loops, requires no communication between subsystems, and is relatively simple. The control strategy is evaluated numerically using a model of a stiffened aluminum panel that is representative of the sidewall of an aircraft. Simulations demonstrate that the iterative approach can achieve significant reductions in radiated sound power from the stiffened panel without destabilizing neighboring control units.
Decentralized Control of Sound Radiation Using Iterative Loop Recovery
NASA Technical Reports Server (NTRS)
Schiller, Noah H.; Cabell, Randolph H.; Fuller, Chris R.
2009-01-01
A decentralized model-based control strategy is designed to reduce low-frequency sound radiation from periodically stiffened panels. While decentralized control systems tend to be scalable, performance can be limited due to modeling error introduced by the unmodeled interaction between neighboring control units. Since bounds on modeling error are not known in advance, it is difficult to ensure the decentralized control system will be robust without making the controller overly conservative. Therefore an iterative approach is suggested, which utilizes frequency-shaped loop recovery. The approach accounts for modeling error introduced by neighboring control loops, requires no communication between subsystems, and is relatively simple. The control strategy is evaluated numerically using a model of a stiffened aluminum panel that is representative of the sidewall of an aircraft. Simulations demonstrate that the iterative approach can achieve significant reductions in radiated sound power from the stiffened panel without destabilizing neighboring control units.
Flight Characteristics of a 1/4-Scale Model of the XFV-1 Airplane (TED No. NACA DE-378)
NASA Technical Reports Server (NTRS)
Kelly, Mark W.; Smaus, Louis H.
1952-01-01
A l/4-scale dynamically similar model of the XFV-1 airplane has been flown in the Ames 40- by 80-foot wind tunnel, using the trailing flight-cable technique. This investigation was devoted to establishing the flight characteristics of the model in forward flight from hovering to wing stall, and in yawed flight (wing span alined with the relative wind) from hovering to the maximum speed at which controlled flight could be maintained. Landings, take-offs, and hovering characteristics in flights close to the ground were also investigated.. Since the remote control system for the model was rather complicated and provided artificial damping about the pitch, roll, and yaw axes, sufficient data from the control-system calibration tests are included in this report to specify the performance of the control system in relation to both the model flight tests and the design of an automatic control system for the full-scale airplane. The model in hovering flight appeared to be neutrally stable. The response of the model to the controls was very rapid, and it was always necessary to provide some amount of artificial damping to maintain control. The model could be landed with little difficulty by hovering approximately a foot above the floor and then cutting the power. Take-offs were more difficult to perform, primarily because the rate of change in power to the model motors was limited by the characteristics of the available power source. The model was,capable of controlled yawed flight at translational velocities up to and including 20 feet per second. The effectiveness of the controls decreased with increasing speed, however, and at 25 fps control in pitch, and probably roll, was lost completely. The model was flown in controlled forward flight from hovering up to 70 fps. During these flights the model appeared to be more difficult to control in yaw than it was in pitch or roll. The flights of the model were recorded by motion picture cameras. These motion pictures are available on loan from NACA Headquarters as a film supplement to this report.
NASA Technical Reports Server (NTRS)
Zaychik, Kirill B.; Cardullo, Frank M.
2012-01-01
Results have been obtained using conventional techniques to model the generic human operator?s control behavior, however little research has been done to identify an individual based on control behavior. The hypothesis investigated is that different operators exhibit different control behavior when performing a given control task. Two enhancements to existing human operator models, which allow personalization of the modeled control behavior, are presented. One enhancement accounts for the testing control signals, which are introduced by an operator for more accurate control of the system and/or to adjust the control strategy. This uses the Artificial Neural Network which can be fine-tuned to model the testing control. Another enhancement takes the form of an equiripple filter which conditions the control system power spectrum. A novel automated parameter identification technique was developed to facilitate the identification process of the parameters of the selected models. This utilizes a Genetic Algorithm based optimization engine called the Bit-Climbing Algorithm. Enhancements were validated using experimental data obtained from three different sources: the Manual Control Laboratory software experiments, Unmanned Aerial Vehicle simulation, and NASA Langley Research Center Visual Motion Simulator studies. This manuscript also addresses applying human operator models to evaluate the effectiveness of motion feedback when simulating actual pilot control behavior in a flight simulator.
NASA Technical Reports Server (NTRS)
Campbell, Stefan F.; Kaneshige, John T.
2010-01-01
Presented here is a Predictor-Based Model Reference Adaptive Control (PMRAC) architecture for a generic transport aircraft. At its core, this architecture features a three-axis, non-linear, dynamic-inversion controller. Command inputs for this baseline controller are provided by pilot roll-rate, pitch-rate, and sideslip commands. This paper will first thoroughly present the baseline controller followed by a description of the PMRAC adaptive augmentation to this control system. Results are presented via a full-scale, nonlinear simulation of NASA s Generic Transport Model (GTM).
Simulating closed- and open-loop voluntary movement: a nonlinear control-systems approach.
Davidson, Paul R; Jones, Richard D; Andreae, John H; Sirisena, Harsha R
2002-11-01
In many recent human motor control models, including feedback-error learning and adaptive model theory (AMT), feedback control is used to correct errors while an inverse model is simultaneously tuned to provide accurate feedforward control. This popular and appealing hypothesis, based on a combination of psychophysical observations and engineering considerations, predicts that once the tuning of the inverse model is complete the role of feedback control is limited to the correction of disturbances. This hypothesis was tested by looking at the open-loop behavior of the human motor system during adaptation. An experiment was carried out involving 20 normal adult subjects who learned a novel visuomotor relationship on a pursuit tracking task with a steering wheel for input. During learning, the response cursor was periodically blanked, removing all feedback about the external system (i.e., about the relationship between hand motion and response cursor motion). Open-loop behavior was not consistent with a progressive transfer from closed- to open-loop control. Our recently developed computational model of the brain--a novel nonlinear implementation of AMT--was able to reproduce the observed closed- and open-loop results. In contrast, other control-systems models exhibited only minimal feedback control following adaptation, leading to incorrect open-loop behavior. This is because our model continues to use feedback to control slow movements after adaptation is complete. This behavior enhances the internal stability of the inverse model. In summary, our computational model is currently the only motor control model able to accurately simulate the closed- and open-loop characteristics of the experimental response trajectories.
Constant speed control of four-stroke micro internal combustion swing engine
NASA Astrophysics Data System (ADS)
Gao, Dedong; Lei, Yong; Zhu, Honghai; Ni, Jun
2015-09-01
The increasing demands on safety, emission and fuel consumption require more accurate control models of micro internal combustion swing engine (MICSE). The objective of this paper is to investigate the constant speed control models of four-stroke MICSE. The operation principle of the four-stroke MICSE is presented based on the description of MICSE prototype. A two-level Petri net based hybrid model is proposed to model the four-stroke MICSE engine cycle. The Petri net subsystem at the upper level controls and synchronizes the four Petri net subsystems at the lower level. The continuous sub-models, including breathing dynamics of intake manifold, thermodynamics of the chamber and dynamics of the torque generation, are investigated and integrated with the discrete model in MATLAB Simulink. Through the comparison of experimental data and simulated DC voltage output, it is demonstrated that the hybrid model is valid for the four-stroke MICSE system. A nonlinear model is obtained from the cycle average data via the regression method, and it is linearized around a given nominal equilibrium point for the controller design. The feedback controller of the spark timing and valve duration timing is designed with a sequential loop closing design approach. The simulation of the sequential loop closure control design applied to the hybrid model is implemented in MATLAB. The simulation results show that the system is able to reach its desired operating point within 0.2 s, and the designed controller shows good MICSE engine performance with a constant speed. This paper presents the constant speed control models of four-stroke MICSE and carries out the simulation tests, the models and the simulation results can be used for further study on the precision control of four-stroke MICSE.
Identification of the feedforward component in manual control with predictable target signals.
Drop, Frank M; Pool, Daan M; Damveld, Herman J; van Paassen, Marinus M; Mulder, Max
2013-12-01
In the manual control of a dynamic system, the human controller (HC) often follows a visible and predictable reference path. Compared with a purely feedback control strategy, performance can be improved by making use of this knowledge of the reference. The operator could effectively introduce feedforward control in conjunction with a feedback path to compensate for errors, as hypothesized in literature. However, feedforward behavior has never been identified from experimental data, nor have the hypothesized models been validated. This paper investigates human control behavior in pursuit tracking of a predictable reference signal while being perturbed by a quasi-random multisine disturbance signal. An experiment was done in which the relative strength of the target and disturbance signals were systematically varied. The anticipated changes in control behavior were studied by means of an ARX model analysis and by fitting three parametric HC models: two different feedback models and a combined feedforward and feedback model. The ARX analysis shows that the experiment participants employed control action on both the error and the target signal. The control action on the target was similar to the inverse of the system dynamics. Model fits show that this behavior can be modeled best by the combined feedforward and feedback model.
Modelling the human operator of slowly responding systems using linear models
NASA Technical Reports Server (NTRS)
Veldhuyzen, W.
1977-01-01
Control of slowly responding systems, such as, helmsman steering a large ship, is examined. It is shown that the describing function techniques are useful in analyzing the control behavior of the helmsman. Models are developed to describe the helmsman's control behavior. It is shown that the cross over model is applicable to the analysis of control of slowly responding systems.
Offset-Free Model Predictive Control of Open Water Channel Based on Moving Horizon Estimation
NASA Astrophysics Data System (ADS)
Ekin Aydin, Boran; Rutten, Martine
2016-04-01
Model predictive control (MPC) is a powerful control option which is increasingly used by operational water managers for managing water systems. The explicit consideration of constraints and multi-objective management are important features of MPC. However, due to the water loss in open water systems by seepage, leakage and evaporation a mismatch between the model and the real system will be created. These mismatch affects the performance of MPC and creates an offset from the reference set point of the water level. We present model predictive control based on moving horizon estimation (MHE-MPC) to achieve offset free control of water level for open water canals. MHE-MPC uses the past predictions of the model and the past measurements of the system to estimate unknown disturbances and the offset in the controlled water level is systematically removed. We numerically tested MHE-MPC on an accurate hydro-dynamic model of the laboratory canal UPC-PAC located in Barcelona. In addition, we also used well known disturbance modeling offset free control scheme for the same test case. Simulation experiments on a single canal reach show that MHE-MPC outperforms disturbance modeling offset free control scheme.
NASA Technical Reports Server (NTRS)
Kucuk, Senol
1988-01-01
Importance of the role of human operator in control systems has led to the particular area of manual control theory. Human describing functions were developed to model human behavior for manual control studies to take advantage of the successful and safe human operations. A single variable approach is presented that can be extended for multi-variable tasks where a low order human response model is used together with its rules, to adapt the model on-line, being capable of responding to the changes in the controlled element dynamics. Basic control theory concepts are used to combine the model, constrained with the physical observations, particularly, for the case of aircraft control. Pilot experience is represented as the initial model parameters. An adaptive root-locus method is presented as the adaptation law of the model where the closed loop bandwidth of the system is to be preserved in a stable manner with the adjustments of the pilot handling qualities which relate the latter to the closed loop bandwidth and damping of the closed loop pilot aircraft combination. A Kalman filter parameter estimator is presented as the controlled element identifier of the adaptive model where any discrepancies of the open loop dynamics from the presented one, are sensed to be compensated.
A decentralized linear quadratic control design method for flexible structures
NASA Technical Reports Server (NTRS)
Su, Tzu-Jeng; Craig, Roy R., Jr.
1990-01-01
A decentralized suboptimal linear quadratic control design procedure which combines substructural synthesis, model reduction, decentralized control design, subcontroller synthesis, and controller reduction is proposed for the design of reduced-order controllers for flexible structures. The procedure starts with a definition of the continuum structure to be controlled. An evaluation model of finite dimension is obtained by the finite element method. Then, the finite element model is decomposed into several substructures by using a natural decomposition called substructuring decomposition. Each substructure, at this point, still has too large a dimension and must be reduced to a size that is Riccati-solvable. Model reduction of each substructure can be performed by using any existing model reduction method, e.g., modal truncation, balanced reduction, Krylov model reduction, or mixed-mode method. Then, based on the reduced substructure model, a subcontroller is designed by an LQ optimal control method for each substructure independently. After all subcontrollers are designed, a controller synthesis method called substructural controller synthesis is employed to synthesize all subcontrollers into a global controller. The assembling scheme used is the same as that employed for the structure matrices. Finally, a controller reduction scheme, called the equivalent impulse response energy controller (EIREC) reduction algorithm, is used to reduce the global controller to a reasonable size for implementation. The EIREC reduced controller preserves the impulse response energy of the full-order controller and has the property of matching low-frequency moments and low-frequency power moments. An advantage of the substructural controller synthesis method is that it relieves the computational burden associated with dimensionality. Besides that, the SCS design scheme is also a highly adaptable controller synthesis method for structures with varying configuration, or varying mass and stiffness properties.
Performance-based maintenance of gas turbines for reliable control of degraded power systems
NASA Astrophysics Data System (ADS)
Mo, Huadong; Sansavini, Giovanni; Xie, Min
2018-03-01
Maintenance actions are necessary for ensuring proper operations of control systems under component degradation. However, current condition-based maintenance (CBM) models based on component health indices are not suitable for degraded control systems. Indeed, failures of control systems are only determined by the controller outputs, and the feedback mechanism compensates the control performance loss caused by the component deterioration. Thus, control systems may still operate normally even if the component health indices exceed failure thresholds. This work investigates the CBM model of control systems and employs the reduced control performance as a direct degradation measure for deciding maintenance activities. The reduced control performance depends on the underlying component degradation modelled as a Wiener process and the feedback mechanism. To this aim, the controller features are quantified by developing a dynamic and stochastic control block diagram-based simulation model, consisting of the degraded components and the control mechanism. At each inspection, the system receives a maintenance action if the control performance deterioration exceeds its preventive-maintenance or failure thresholds. Inspired by realistic cases, the component degradation model considers random start time and unit-to-unit variability. The cost analysis of maintenance model is conducted via Monte Carlo simulation. Optimal maintenance strategies are investigated to minimize the expected maintenance costs, which is a direct consequence of the control performance. The proposed framework is able to design preventive maintenance actions on a gas power plant, to ensuring required load frequency control performance against a sudden load increase. The optimization results identify the trade-off between system downtime and maintenance costs as a function of preventive maintenance thresholds and inspection frequency. Finally, the control performance-based maintenance model can reduce maintenance costs as compared to CBM and pre-scheduled maintenance.
Cognitive control predicts use of model-based reinforcement learning.
Otto, A Ross; Skatova, Anya; Madlon-Kay, Seth; Daw, Nathaniel D
2015-02-01
Accounts of decision-making and its neural substrates have long posited the operation of separate, competing valuation systems in the control of choice behavior. Recent theoretical and experimental work suggest that this classic distinction between behaviorally and neurally dissociable systems for habitual and goal-directed (or more generally, automatic and controlled) choice may arise from two computational strategies for reinforcement learning (RL), called model-free and model-based RL, but the cognitive or computational processes by which one system may dominate over the other in the control of behavior is a matter of ongoing investigation. To elucidate this question, we leverage the theoretical framework of cognitive control, demonstrating that individual differences in utilization of goal-related contextual information--in the service of overcoming habitual, stimulus-driven responses--in established cognitive control paradigms predict model-based behavior in a separate, sequential choice task. The behavioral correspondence between cognitive control and model-based RL compellingly suggests that a common set of processes may underpin the two behaviors. In particular, computational mechanisms originally proposed to underlie controlled behavior may be applicable to understanding the interactions between model-based and model-free choice behavior.
Adaptive control using neural networks and approximate models.
Narendra, K S; Mukhopadhyay, S
1997-01-01
The NARMA model is an exact representation of the input-output behavior of finite-dimensional nonlinear discrete-time dynamical systems in a neighborhood of the equilibrium state. However, it is not convenient for purposes of adaptive control using neural networks due to its nonlinear dependence on the control input. Hence, quite often, approximate methods are used for realizing the neural controllers to overcome computational complexity. In this paper, we introduce two classes of models which are approximations to the NARMA model, and which are linear in the control input. The latter fact substantially simplifies both the theoretical analysis as well as the practical implementation of the controller. Extensive simulation studies have shown that the neural controllers designed using the proposed approximate models perform very well, and in many cases even better than an approximate controller designed using the exact NARMA model. In view of their mathematical tractability as well as their success in simulation studies, a case is made in this paper that such approximate input-output models warrant a detailed study in their own right.
Jiang, Ping; Chiba, Ryosuke; Takakusaki, Kaoru; Ota, Jun
2016-01-01
The development of a physiologically plausible computational model of a neural controller that can realize a human-like biped stance is important for a large number of potential applications, such as assisting device development and designing robotic control systems. In this paper, we develop a computational model of a neural controller that can maintain a musculoskeletal model in a standing position, while incorporating a 120-ms neurological time delay. Unlike previous studies that have used an inverted pendulum model, a musculoskeletal model with seven joints and 70 muscular-tendon actuators is adopted to represent the human anatomy. Our proposed neural controller is composed of both feed-forward and feedback controls. The feed-forward control corresponds to the constant activation input necessary for the musculoskeletal model to maintain a standing posture. This compensates for gravity and regulates stiffness. The developed neural controller model can replicate two salient features of the human biped stance: (1) physiologically plausible muscle activations for quiet standing; and (2) selection of a low active stiffness for low energy consumption. PMID:27655271
Abstracting event-based control models for high autonomy systems
NASA Technical Reports Server (NTRS)
Luh, Cheng-Jye; Zeigler, Bernard P.
1993-01-01
A high autonomy system needs many models on which to base control, management, design, and other interventions. These models differ in level of abstraction and in formalism. Concepts and tools are needed to organize the models into a coherent whole. The paper deals with the abstraction processes for systematic derivation of related models for use in event-based control. The multifaceted modeling methodology is briefly reviewed. The morphism concepts needed for application to model abstraction are described. A theory for supporting the construction of DEVS models needed for event-based control is then presented. An implemented morphism on the basis of this theory is also described.
Nonlinear Dynamic Modeling and Controls Development for Supersonic Propulsion System Research
NASA Technical Reports Server (NTRS)
Connolly, Joseph W.; Kopasakis, George; Paxson, Daniel E.; Stuber, Eric; Woolwine, Kyle
2012-01-01
This paper covers the propulsion system component modeling and controls development of an integrated nonlinear dynamic simulation for an inlet and engine that can be used for an overall vehicle (APSE) model. The focus here is on developing a methodology for the propulsion model integration, which allows for controls design that prevents inlet instabilities and minimizes the thrust oscillation experienced by the vehicle. Limiting thrust oscillations will be critical to avoid exciting vehicle aeroelastic modes. Model development includes both inlet normal shock position control and engine rotor speed control for a potential supersonic commercial transport. A loop shaping control design process is used that has previously been developed for the engine and verified on linear models, while a simpler approach is used for the inlet control design. Verification of the modeling approach is conducted by simulating a two-dimensional bifurcated inlet and a representative J-85 jet engine previously used in a NASA supersonics project. Preliminary results are presented for the current supersonics project concept variable cycle turbofan engine design.
Modelling the influence of sensory dynamics on linear and nonlinear driver steering control
NASA Astrophysics Data System (ADS)
Nash, C. J.; Cole, D. J.
2018-05-01
A recent review of the literature has indicated that sensory dynamics play an important role in the driver-vehicle steering task, motivating the design of a new driver model incorporating human sensory systems. This paper presents a full derivation of the linear driver model developed in previous work, and extends the model to control a vehicle with nonlinear tyres. Various nonlinear controllers and state estimators are compared with different approximations of the true system dynamics. The model simulation time is found to increase significantly with the complexity of the controller and state estimator. In general the more complex controllers perform best, although with certain vehicle and tyre models linearised controllers perform as well as a full nonlinear optimisation. Various extended Kalman filters give similar results, although the driver's sensory dynamics reduce control performance compared with full state feedback. The new model could be used to design vehicle systems which interact more naturally and safely with a human driver.
Optimal speech motor control and token-to-token variability: a Bayesian modeling approach.
Patri, Jean-François; Diard, Julien; Perrier, Pascal
2015-12-01
The remarkable capacity of the speech motor system to adapt to various speech conditions is due to an excess of degrees of freedom, which enables producing similar acoustical properties with different sets of control strategies. To explain how the central nervous system selects one of the possible strategies, a common approach, in line with optimal motor control theories, is to model speech motor planning as the solution of an optimality problem based on cost functions. Despite the success of this approach, one of its drawbacks is the intrinsic contradiction between the concept of optimality and the observed experimental intra-speaker token-to-token variability. The present paper proposes an alternative approach by formulating feedforward optimal control in a probabilistic Bayesian modeling framework. This is illustrated by controlling a biomechanical model of the vocal tract for speech production and by comparing it with an existing optimal control model (GEPPETO). The essential elements of this optimal control model are presented first. From them the Bayesian model is constructed in a progressive way. Performance of the Bayesian model is evaluated based on computer simulations and compared to the optimal control model. This approach is shown to be appropriate for solving the speech planning problem while accounting for variability in a principled way.
NASA Astrophysics Data System (ADS)
Begum, A. Yasmine; Gireesh, N.
2018-04-01
In superheater, steam temperature is controlled in a cascade control loop. The cascade control loop consists of PI and PID controllers. To improve the superheater steam temperature control the controller's gains in a cascade control loop has to be tuned efficiently. The mathematical model of the superheater is derived by sets of nonlinear partial differential equations. The tuning methods taken for study here are designed for delay plus first order transfer function model. Hence from the dynamical model of the superheater, a FOPTD model is derived using frequency response method. Then by using Chien-Hrones-Reswick Tuning Algorithm and Gain-Phase Assignment Algorithm optimum controller gains has been found out based on the least value of integral time weighted absolute error.
A novel direct yaw moment controller for in-wheel motor electric vehicles
NASA Astrophysics Data System (ADS)
Chen, Yuhang; Hedrick, J. Karl; Guo, Konghui
2013-06-01
A novel direct yaw moment controller is developed in this paper. A hierarchical control architecture is adopted in the controller design. In the upper controller, a driver model and a vehicle model are used to obtain the driver's intention and the vehicle states, respectively. The upper controller determines the desired yaw moment by means of sliding mode control. The lower controller distributes differential longitudinal forces according to the desired yaw moment. A nonlinear tyre model, 'UniTire', is utilised to develop the novel distribution strategy and the control boundary.
NASA Technical Reports Server (NTRS)
Connolly, Joseph W.; Kopasakis, George
2010-01-01
This paper covers the propulsion system component modeling and controls development of an integrated mixed compression inlet and turbojet engine that will be used for an overall vehicle Aero-Propulso-Servo-Elastic (APSE) model. Using previously created nonlinear component-level propulsion system models, a linear integrated propulsion system model and loop shaping control design have been developed. The design includes both inlet normal shock position control and jet engine rotor speed control for a potential supersonic commercial transport. A preliminary investigation of the impacts of the aero-elastic effects on the incoming flow field to the propulsion system are discussed, however, the focus here is on developing a methodology for the propulsion controls design that prevents unstart in the inlet and minimizes the thrust oscillation experienced by the vehicle. Quantitative Feedback Theory (QFT) specifications and bounds, and aspects of classical loop shaping are used in the control design process. Model uncertainty is incorporated in the design to address possible error in the system identification mapping of the nonlinear component models into the integrated linear model.
Simple control-theoretic models of human steering activity in visually guided vehicle control
NASA Technical Reports Server (NTRS)
Hess, Ronald A.
1991-01-01
A simple control theoretic model of human steering or control activity in the lateral-directional control of vehicles such as automobiles and rotorcraft is discussed. The term 'control theoretic' is used to emphasize the fact that the model is derived from a consideration of well-known control system design principles as opposed to psychological theories regarding egomotion, etc. The model is employed to emphasize the 'closed-loop' nature of tasks involving the visually guided control of vehicles upon, or in close proximity to, the earth and to hypothesize how changes in vehicle dynamics can significantly alter the nature of the visual cues which a human might use in such tasks.
NASA Technical Reports Server (NTRS)
Cho, Jeongho; Principe, Jose C.; Erdogmus, Deniz; Motter, Mark A.
2005-01-01
The next generation of aircraft will have dynamics that vary considerably over the operating regime. A single controller will have difficulty to meet the design specifications. In this paper, a SOM-based local linear modeling scheme of an unmanned aerial vehicle (UAV) is developed to design a set of inverse controllers. The SOM selects the operating regime depending only on the embedded output space information and avoids normalization of the input data. Each local linear model is associated with a linear controller, which is easy to design. Switching of the controllers is done synchronously with the active local linear model that tracks the different operating conditions. The proposed multiple modeling and control strategy has been successfully tested in a simulator that models the LoFLYTE UAV.
Basic Research in Digital Stochastic Model Algorithmic Control.
1980-11-01
IDCOM Description 115 8.2 Basic Control Computation 117 8.3 Gradient Algorithm 119 8.4 Simulation Model 119 8.5 Model Modifications 123 8.6 Summary 124...constraints, and 3) control traJectorv comouta- tion. 2.1.1 Internal Model of the System The multivariable system to be controlled is represented by a...more flexible and adaptive, since the model , criteria, and sampling rates can be adjusted on-line. This flexibility comes from the use of the impulse
The semiotics of control and modeling relations in complex systems.
Joslyn, C
2001-01-01
We provide a conceptual analysis of ideas and principles from the systems theory discourse which underlie Pattee's semantic or semiotic closure, which is itself foundational for a school of theoretical biology derived from systems theory and cybernetics, and is now being related to biological semiotics and explicated in the relational biological school of Rashevsky and Rosen. Atomic control systems and models are described as the canonical forms of semiotic organization, sharing measurement relations, but differing topologically in that control systems are circularly and models linearly related to their environments. Computation in control systems is introduced, motivating hierarchical decomposition, hybrid modeling and control systems, and anticipatory or model-based control. The semiotic relations in complex control systems are described in terms of relational constraints, and rules and laws are distinguished as contingent and necessary functional entailments, respectively. Finally, selection as a meta-level of constraint is introduced as the necessary condition for semantic relations in control systems and models.
Rate-Based Model Predictive Control of Turbofan Engine Clearance
NASA Technical Reports Server (NTRS)
DeCastro, Jonathan A.
2006-01-01
An innovative model predictive control strategy is developed for control of nonlinear aircraft propulsion systems and sub-systems. At the heart of the controller is a rate-based linear parameter-varying model that propagates the state derivatives across the prediction horizon, extending prediction fidelity to transient regimes where conventional models begin to lose validity. The new control law is applied to a demanding active clearance control application, where the objectives are to tightly regulate blade tip clearances and also anticipate and avoid detrimental blade-shroud rub occurrences by optimally maintaining a predefined minimum clearance. Simulation results verify that the rate-based controller is capable of satisfying the objectives during realistic flight scenarios where both a conventional Jacobian-based model predictive control law and an unconstrained linear-quadratic optimal controller are incapable of doing so. The controller is evaluated using a variety of different actuators, illustrating the efficacy and versatility of the control approach. It is concluded that the new strategy has promise for this and other nonlinear aerospace applications that place high importance on the attainment of control objectives during transient regimes.
Model Predictive Control of LCL Three-level Photovoltaic Grid-connected Inverter
NASA Astrophysics Data System (ADS)
Liang, Cheng; Tian, Engang; Pang, Baobing; Li, Juan; Yang, Yang
2018-05-01
In this paper, neutral point clamped three-level inverter circuit is analyzed to establish a mathematical model of the three-level inverter in the αβ coordinate system. The causes and harms of the midpoint potential imbalance problem are described. The paper use the method of model predictive control to control the entire inverter circuit[1]. The simulation model of the inverter system is built in Matlab/Simulink software. It is convenient to control the grid-connected current, suppress the unbalance of the midpoint potential and reduce the switching frequency by changing the weight coefficient in the cost function. The superiority of the model predictive control in the control method of the inverter system is verified.
Fuzzy Model-based Pitch Stabilization and Wing Vibration Suppression of Flexible Wing Aircraft.
NASA Technical Reports Server (NTRS)
Ayoubi, Mohammad A.; Swei, Sean Shan-Min; Nguyen, Nhan T.
2014-01-01
This paper presents a fuzzy nonlinear controller to regulate the longitudinal dynamics of an aircraft and suppress the bending and torsional vibrations of its flexible wings. The fuzzy controller utilizes full-state feedback with input constraint. First, the Takagi-Sugeno fuzzy linear model is developed which approximates the coupled aeroelastic aircraft model. Then, based on the fuzzy linear model, a fuzzy controller is developed to utilize a full-state feedback and stabilize the system while it satisfies the control input constraint. Linear matrix inequality (LMI) techniques are employed to solve the fuzzy control problem. Finally, the performance of the proposed controller is demonstrated on the NASA Generic Transport Model (GTM).
NASA Astrophysics Data System (ADS)
Ejiri, Arata; Sasaki, Jun; Kinoshita, Yusuke; Fujimoto, Junya; Maruyama, Tsugito; Shimotani, Keiji
For the purpose of contributing to global environment protection, several research studies have been conducted involving clean-burning diesel engines. In recent diesel engines with Exhaust Gas Recirculation (EGR) systems and a Variable Nozzle Turbocharger (VNT), mutual interference between EGR and VNT has been noted. Hence, designing and adjusting control of the conventional PID controller is particularly difficult at the transient state in which the engine speed and fuel injection rate change. In this paper, we formulate 1st principal model of air intake system of diesel engines and transform it to control oriented model including an engine steady state model and a transient model. And we propose a model-based control system with the LQR Controller, Saturation Compensator, the Dynamic Feed-forward and Disturbance Observer using a transient model. Using this method, we achieved precise reference tracking and emission reduction in transient mode test with the real engine evaluations.
Modeling and Simulation of Bus Dispatching Policy for Timed Transfers on Signalized Networks
NASA Astrophysics Data System (ADS)
Cho, Hsun-Jung; Lin, Guey-Shii
2007-12-01
The major work of this study is to formulate the system cost functions and to integrate the bus dispatching policy with signal control. The integrated model mainly includes the flow dispersion model for links, signal control model for nodes, and dispatching control model for transfer terminals. All such models are inter-related for transfer operations in one-center transit network. The integrated model that combines dispatching policies with flexible signal control modes can be applied to assess the effectiveness of transfer operations. It is found that, if bus arrival information is reliable, an early dispatching decision made at the mean bus arrival times is preferable. The costs for coordinated operations with slack times are relatively low at the optimal common headway when applying adaptive route control. Based on such findings, a threshold function of bus headway for justifying an adaptive signal route control under various time values of auto drivers is developed.
Wind turbine model and loop shaping controller design
NASA Astrophysics Data System (ADS)
Gilev, Bogdan
2017-12-01
A model of a wind turbine is evaluated, consisting of: wind speed model, mechanical and electrical model of generator and tower oscillation model. Model of the whole system is linearized around of a nominal point. By using the linear model with uncertainties is synthesized a uncertain model. By using the uncertain model is developed a H∞ controller, which provide mode of stabilizing the rotor frequency and damping the tower oscillations. Finally is simulated work of nonlinear system and H∞ controller.
Lattice hydrodynamic model based traffic control: A transportation cyber-physical system approach
NASA Astrophysics Data System (ADS)
Liu, Hui; Sun, Dihua; Liu, Weining
2016-11-01
Lattice hydrodynamic model is a typical continuum traffic flow model, which describes the jamming transition of traffic flow properly. Previous studies in lattice hydrodynamic model have shown that the use of control method has the potential to improve traffic conditions. In this paper, a new control method is applied in lattice hydrodynamic model from a transportation cyber-physical system approach, in which only one lattice site needs to be controlled in this control scheme. The simulation verifies the feasibility and validity of this method, which can ensure the efficient and smooth operation of the traffic flow.
A model of neuro-musculo-skeletal system for human locomotion under position constraint condition.
Ni, Jiangsheng; Hiramatsu, Seiji; Kato, Atsuo
2003-08-01
The human locomotion was studied on the basis of the interaction of the musculo-skeletal system, the neural system and the environment. A mathematical model of human locomotion under position constraint condition was established. Besides the neural rhythm generator, the posture controller and the sensory system, the environment feedback controller and the stability controller were taken into account in the model. The environment feedback controller was proposed for two purposes, obstacle avoidance and target position control of the swing foot. The stability controller was proposed to imitate the self-balancing ability of a human body and improve the stability of the model. In the stability controller, the ankle torque was used to control the velocity of the body gravity center. A prediction control algorithm was applied to calculate the torque magnitude of the stability controller. As an example, human stairs climbing movement was simulated and the results were given. The simulation result proved that the mathematical modeling of the task was successful.
Control of the NASA Langley 16-Foot Transonic Tunnel with the Self-Organizing Feature Map
NASA Technical Reports Server (NTRS)
Motter, Mark A.
1998-01-01
A predictive, multiple model control strategy is developed based on an ensemble of local linear models of the nonlinear system dynamics for a transonic wind tunnel. The local linear models are estimated directly from the weights of a Self Organizing Feature Map (SOFM). Local linear modeling of nonlinear autonomous systems with the SOFM is extended to a control framework where the modeled system is nonautonomous, driven by an exogenous input. This extension to a control framework is based on the consideration of a finite number of subregions in the control space. Multiple self organizing feature maps collectively model the global response of the wind tunnel to a finite set of representative prototype controls. These prototype controls partition the control space and incorporate experimental knowledge gained from decades of operation. Each SOFM models the combination of the tunnel with one of the representative controls, over the entire range of operation. The SOFM based linear models are used to predict the tunnel response to a larger family of control sequences which are clustered on the representative prototypes. The control sequence which corresponds to the prediction that best satisfies the requirements on the system output is applied as the external driving signal. Each SOFM provides a codebook representation of the tunnel dynamics corresponding to a prototype control. Different dynamic regimes are organized into topological neighborhoods where the adjacent entries in the codebook represent the minimization of a similarity metric which is the essence of the self organizing feature of the map. Thus, the SOFM is additionally employed to identify the local dynamical regime, and consequently implements a switching scheme than selects the best available model for the applied control. Experimental results of controlling the wind tunnel, with the proposed method, during operational runs where strict research requirements on the control of the Mach number were met, are presented. Comparison to similar runs under the same conditions with the tunnel controlled by either the existing controller or an expert operator indicate the superiority of the method.
Inverse Modelling to Obtain Head Movement Controller Signal
NASA Technical Reports Server (NTRS)
Kim, W. S.; Lee, S. H.; Hannaford, B.; Stark, L.
1984-01-01
Experimentally obtained dynamics of time-optimal, horizontal head rotations have previously been simulated by a sixth order, nonlinear model driven by rectangular control signals. Electromyography (EMG) recordings have spects which differ in detail from the theoretical rectangular pulsed control signal. Control signals for time-optimal as well as sub-optimal horizontal head rotations were obtained by means of an inverse modelling procedures. With experimentally measured dynamical data serving as the input, this procedure inverts the model to produce the neurological control signals driving muscles and plant. The relationships between these controller signals, and EMG records should contribute to the understanding of the neurological control of movements.
NASA Astrophysics Data System (ADS)
Zhang, Chuanwei; Zhang, Dongsheng; Wen, Jianping
2018-02-01
In order to coordinately control the torque distribution of existing two-wheel independent drive electric vehicle, and improve the energy efficiency and control stability of the whole vehicle, the control strategies based on fuzzy control were designed which adopt the direct yaw moment control as the main line. For realizing the torque coordination simulation of the two-wheel independent drive vehicle, the vehicle model, motor model and tire model were built, including the vehicle 7 - DOF dynamics model, motion equation, torque equation. Finally, in the Carsim - Simulink joint simulation platform, the feasibility of the drive control strategy was verified.
2007-11-01
Control Theory Perspective of Effects-Based Thinking and Operations Modelling “Operations” as a Feedback Control System Philip S. E... Theory Perspective of Effects-Based Thinking and Operations Modelling “Operations” as a Feedback Control System Philip S. E. Farrell...Abstract This paper explores operations that involve effects-based thinking (EBT) using Control Theory techniques in order to highlight the concept’s
NASA Technical Reports Server (NTRS)
Waszak, Martin R.
1998-01-01
This report describes the formulation of a model of the dynamic behavior of the Benchmark Active Controls Technology (BACT) wind tunnel model for active control design and analysis applications. The model is formed by combining the equations of motion for the BACT wind tunnel model with actuator models and a model of wind tunnel turbulence. The primary focus of this report is the development of the equations of motion from first principles by using Lagrange's equations and the principle of virtual work. A numerical form of the model is generated by making use of parameters obtained from both experiment and analysis. Comparisons between experimental and analytical data obtained from the numerical model show excellent agreement and suggest that simple coefficient-based aerodynamics are sufficient to accurately characterize the aeroelastic response of the BACT wind tunnel model. The equations of motion developed herein have been used to aid in the design and analysis of a number of flutter suppression controllers that have been successfully implemented.
Data-based virtual unmodeled dynamics driven multivariable nonlinear adaptive switching control.
Chai, Tianyou; Zhang, Yajun; Wang, Hong; Su, Chun-Yi; Sun, Jing
2011-12-01
For a complex industrial system, its multivariable and nonlinear nature generally make it very difficult, if not impossible, to obtain an accurate model, especially when the model structure is unknown. The control of this class of complex systems is difficult to handle by the traditional controller designs around their operating points. This paper, however, explores the concepts of controller-driven model and virtual unmodeled dynamics to propose a new design framework. The design consists of two controllers with distinct functions. First, using input and output data, a self-tuning controller is constructed based on a linear controller-driven model. Then the output signals of the controller-driven model are compared with the true outputs of the system to produce so-called virtual unmodeled dynamics. Based on the compensator of the virtual unmodeled dynamics, the second controller based on a nonlinear controller-driven model is proposed. Those two controllers are integrated by an adaptive switching control algorithm to take advantage of their complementary features: one offers stabilization function and another provides improved performance. The conditions on the stability and convergence of the closed-loop system are analyzed. Both simulation and experimental tests on a heavily coupled nonlinear twin-tank system are carried out to confirm the effectiveness of the proposed method.
NASA Technical Reports Server (NTRS)
Sicard, Pierre; Wen, John T.
1992-01-01
A passivity approach for the control design of flexible joint robots is applied to the rate control of a three-link arm modeled after the shoulder yaw joint of the Space Shuttle Remote Manipulator System (RMS). The system model includes friction and elastic joint couplings modeled as nonlinear springs. The basic structure of the proposed controller is the sum of a model-based feedforward and a model-independent feedback. A regulator approach with link state feedback is employed to define the desired motor state. Passivity theory is used to design a motor state-based controller to stabilize the error system formed by the feedforward. Simulation results show that greatly improved performance was obtained by using the proposed controller over the existing RMS controller.
Adaptive control of large space structures using recursive lattice filters
NASA Technical Reports Server (NTRS)
Sundararajan, N.; Goglia, G. L.
1985-01-01
The use of recursive lattice filters for identification and adaptive control of large space structures is studied. Lattice filters were used to identify the structural dynamics model of the flexible structures. This identification model is then used for adaptive control. Before the identified model and control laws are integrated, the identified model is passed through a series of validation procedures and only when the model passes these validation procedures is control engaged. This type of validation scheme prevents instability when the overall loop is closed. Another important area of research, namely that of robust controller synthesis, was investigated using frequency domain multivariable controller synthesis methods. The method uses the Linear Quadratic Guassian/Loop Transfer Recovery (LQG/LTR) approach to ensure stability against unmodeled higher frequency modes and achieves the desired performance.
Self-Learning Variable Structure Control for a Class of Sensor-Actuator Systems
Chen, Sanfeng; Li, Shuai; Liu, Bo; Lou, Yuesheng; Liang, Yongsheng
2012-01-01
Variable structure strategy is widely used for the control of sensor-actuator systems modeled by Euler-Lagrange equations. However, accurate knowledge on the model structure and model parameters are often required for the control design. In this paper, we consider model-free variable structure control of a class of sensor-actuator systems, where only the online input and output of the system are available while the mathematic model of the system is unknown. The problem is formulated from an optimal control perspective and the implicit form of the control law are analytically obtained by using the principle of optimality. The control law and the optimal cost function are explicitly solved iteratively. Simulations demonstrate the effectiveness and the efficiency of the proposed method. PMID:22778633
Optimal control of anthracnose using mixed strategies.
Fotsa Mbogne, David Jaures; Thron, Christopher
2015-11-01
In this paper we propose and study a spatial diffusion model for the control of anthracnose disease in a bounded domain. The model is a generalization of the one previously developed in [15]. We use the model to simulate two different types of control strategies against anthracnose disease. Strategies that employ chemical fungicides are modeled using a continuous control function; while strategies that rely on cultivational practices (such as pruning and removal of mummified fruits) are modeled with a control function which is discrete in time (though not in space). For comparative purposes, we perform our analyses for a spatially-averaged model as well as the space-dependent diffusion model. Under weak smoothness conditions on parameters we demonstrate the well-posedness of both models by verifying existence and uniqueness of the solution for the growth inhibition rate for given initial conditions. We also show that the set [0, 1] is positively invariant. We first study control by impulsive strategies, then analyze the simultaneous use of mixed continuous and pulse strategies. In each case we specify a cost functional to be minimized, and we demonstrate the existence of optimal control strategies. In the case of pulse-only strategies, we provide explicit algorithms for finding the optimal control strategies for both the spatially-averaged model and the space-dependent model. We verify the algorithms for both models via simulation, and discuss properties of the optimal solutions. Copyright © 2015 Elsevier Inc. All rights reserved.
Loft, Shayne; Bolland, Scott; Humphreys, Michael S; Neal, Andrew
2009-06-01
A performance theory for conflict detection in air traffic control is presented that specifies how controllers adapt decisions to compensate for environmental constraints. This theory is then used as a framework for a model that can fit controller intervention decisions. The performance theory proposes that controllers apply safety margins to ensure separation between aircraft. These safety margins are formed through experience and reflect the biasing of decisions to favor safety over accuracy, as well as expectations regarding uncertainty in aircraft trajectory. In 2 experiments, controllers indicated whether they would intervene to ensure separation between pairs of aircraft. The model closely predicted the probability of controller intervention across the geometry of problems and as a function of controller experience. When controller safety margins were manipulated via task instructions, the parameters of the model changed in the predicted direction. The strength of the model over existing and alternative models is that it better captures the uncertainty and decision biases involved in the process of conflict detection. (PsycINFO Database Record (c) 2009 APA, all rights reserved).
Model and controller reduction of large-scale structures based on projection methods
NASA Astrophysics Data System (ADS)
Gildin, Eduardo
The design of low-order controllers for high-order plants is a challenging problem theoretically as well as from a computational point of view. Frequently, robust controller design techniques result in high-order controllers. It is then interesting to achieve reduced-order models and controllers while maintaining robustness properties. Controller designed for large structures based on models obtained by finite element techniques yield large state-space dimensions. In this case, problems related to storage, accuracy and computational speed may arise. Thus, model reduction methods capable of addressing controller reduction problems are of primary importance to allow the practical applicability of advanced controller design methods for high-order systems. A challenging large-scale control problem that has emerged recently is the protection of civil structures, such as high-rise buildings and long-span bridges, from dynamic loadings such as earthquakes, high wind, heavy traffic, and deliberate attacks. Even though significant effort has been spent in the application of control theory to the design of civil structures in order increase their safety and reliability, several challenging issues are open problems for real-time implementation. This dissertation addresses with the development of methodologies for controller reduction for real-time implementation in seismic protection of civil structures using projection methods. Three classes of schemes are analyzed for model and controller reduction: nodal truncation, singular value decomposition methods and Krylov-based methods. A family of benchmark problems for structural control are used as a framework for a comparative study of model and controller reduction techniques. It is shown that classical model and controller reduction techniques, such as balanced truncation, modal truncation and moment matching by Krylov techniques, yield reduced-order controllers that do not guarantee stability of the closed-loop system, that is, the reduced-order controller implemented with the full-order plant. A controller reduction approach is proposed such that to guarantee closed-loop stability. It is based on the concept of dissipativity (or positivity) of linear dynamical systems. Utilizing passivity preserving model reduction together with dissipative-LQG controllers, effective low-order optimal controllers are obtained. Results are shown through simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simpson, L.
ITN Energy Systems, Inc., and Global Solar Energy, Inc., with the assistance of NREL's PV Manufacturing R&D program, have continued the advancement of CIGS production technology through the development of trajectory-oriented predictive/control models, fault-tolerance control, control-platform development, in-situ sensors, and process improvements. Modeling activities to date include the development of physics-based and empirical models for CIGS and sputter-deposition processing, implementation of model-based control, and application of predictive models to the construction of new evaporation sources and for control. Model-based control is enabled through implementation of reduced or empirical models into a control platform. Reliability improvement activities include implementation of preventivemore » maintenance schedules; detection of failed sensors/equipment and reconfiguration to continue processing; and systematic development of fault prevention and reconfiguration strategies for the full range of CIGS PV production deposition processes. In-situ sensor development activities have resulted in improved control and indicated the potential for enhanced process status monitoring and control of the deposition processes. Substantial process improvements have been made, including significant improvement in CIGS uniformity, thickness control, efficiency, yield, and throughput. In large measure, these gains have been driven by process optimization, which, in turn, have been enabled by control and reliability improvements due to this PV Manufacturing R&D program. This has resulted in substantial improvements of flexible CIGS PV module performance and efficiency.« less
Rational metareasoning and the plasticity of cognitive control.
Lieder, Falk; Shenhav, Amitai; Musslick, Sebastian; Griffiths, Thomas L
2018-04-01
The human brain has the impressive capacity to adapt how it processes information to high-level goals. While it is known that these cognitive control skills are malleable and can be improved through training, the underlying plasticity mechanisms are not well understood. Here, we develop and evaluate a model of how people learn when to exert cognitive control, which controlled process to use, and how much effort to exert. We derive this model from a general theory according to which the function of cognitive control is to select and configure neural pathways so as to make optimal use of finite time and limited computational resources. The central idea of our Learned Value of Control model is that people use reinforcement learning to predict the value of candidate control signals of different types and intensities based on stimulus features. This model correctly predicts the learning and transfer effects underlying the adaptive control-demanding behavior observed in an experiment on visual attention and four experiments on interference control in Stroop and Flanker paradigms. Moreover, our model explained these findings significantly better than an associative learning model and a Win-Stay Lose-Shift model. Our findings elucidate how learning and experience might shape people's ability and propensity to adaptively control their minds and behavior. We conclude by predicting under which circumstances these learning mechanisms might lead to self-control failure.
Rational metareasoning and the plasticity of cognitive control
Shenhav, Amitai; Musslick, Sebastian; Griffiths, Thomas L.
2018-01-01
The human brain has the impressive capacity to adapt how it processes information to high-level goals. While it is known that these cognitive control skills are malleable and can be improved through training, the underlying plasticity mechanisms are not well understood. Here, we develop and evaluate a model of how people learn when to exert cognitive control, which controlled process to use, and how much effort to exert. We derive this model from a general theory according to which the function of cognitive control is to select and configure neural pathways so as to make optimal use of finite time and limited computational resources. The central idea of our Learned Value of Control model is that people use reinforcement learning to predict the value of candidate control signals of different types and intensities based on stimulus features. This model correctly predicts the learning and transfer effects underlying the adaptive control-demanding behavior observed in an experiment on visual attention and four experiments on interference control in Stroop and Flanker paradigms. Moreover, our model explained these findings significantly better than an associative learning model and a Win-Stay Lose-Shift model. Our findings elucidate how learning and experience might shape people’s ability and propensity to adaptively control their minds and behavior. We conclude by predicting under which circumstances these learning mechanisms might lead to self-control failure. PMID:29694347
Evidence-based Controls for Epidemics Using Spatio-temporal Stochastic Model as a Bayesian Framwork
USDA-ARS?s Scientific Manuscript database
The control of highly infectious diseases of agricultural and plantation crops and livestock represents a key challenge in epidemiological and ecological modelling, with implemented control strategies often being controversial. Mathematical models, including the spatio-temporal stochastic models con...
Real time closed loop control of an Ar and Ar/O2 plasma in an ICP
NASA Astrophysics Data System (ADS)
Faulkner, R.; Soberón, F.; McCarter, A.; Gahan, D.; Karkari, S.; Milosavljevic, V.; Hayden, C.; Islyaikin, A.; Law, V. J.; Hopkins, M. B.; Keville, B.; Iordanov, P.; Doherty, S.; Ringwood, J. V.
2006-10-01
Real time closed loop control for plasma assisted semiconductor manufacturing has been the subject of academic research for over a decade. However, due to process complexity and the lack of suitable real time metrology, progress has been elusive and genuine real time, multi-input, multi-output (MIMO) control of a plasma assisted process has yet to be successfully implemented in an industrial setting. A Splasma parameter control strategy T is required to be adopted whereby process recipes which are defined in terms of plasma properties such as critical species densities as opposed to input variables such as rf power and gas flow rates may be transferable between different chamber types. While PIC simulations and multidimensional fluid models have contributed considerably to the basic understanding of plasmas and the design of process equipment, such models require a large amount of processing time and are hence unsuitable for testing control algorithms. In contrast, linear dynamical empirical models, obtained through system identification techniques are ideal in some respects for control design since their computational requirements are comparatively small and their structure facilitates the application of classical control design techniques. However, such models provide little process insight and are specific to an operating point of a particular machine. An ideal first principles-based, control-oriented model would exhibit the simplicity and computational requirements of an empirical model and, in addition, despite sacrificing first principles detail, capture enough of the essential physics and chemistry of the process in order to provide reasonably accurate qualitative predictions. This paper will discuss the development of such a first-principles based, control-oriented model of a laboratory inductively coupled plasma chamber. The model consists of a global model of the chemical kinetics coupled to an analytical model of power deposition. Dynamics of actuators including mass flow controllers and exhaust throttle are included and sensor characteristics are also modelled. The application of this control-oriented model to achieve multivariable closed loop control of specific species e.g. atomic Oxygen and ion density using the actuators rf power, Oxygen and Argon flow rates, and pressure/exhaust flow rate in an Ar/O2 ICP plasma will be presented.
Modeling and control of flexible structures
NASA Technical Reports Server (NTRS)
Gibson, J. S.; Mingori, D. L.
1988-01-01
This monograph presents integrated modeling and controller design methods for flexible structures. The controllers, or compensators, developed are optimal in the linear-quadratic-Gaussian sense. The performance objectives, sensor and actuator locations and external disturbances influence both the construction of the model and the design of the finite dimensional compensator. The modeling and controller design procedures are carried out in parallel to ensure compatibility of these two aspects of the design problem. Model reduction techniques are introduced to keep both the model order and the controller order as small as possible. A linear distributed, or infinite dimensional, model is the theoretical basis for most of the text, but finite dimensional models arising from both lumped-mass and finite element approximations also play an important role. A central purpose of the approach here is to approximate an optimal infinite dimensional controller with an implementable finite dimensional compensator. Both convergence theory and numerical approximation methods are given. Simple examples are used to illustrate the theory.
Modeling Piezoelectric Stack Actuators for Control of Micromanipulation
NASA Technical Reports Server (NTRS)
Goldfarb, Michael; Celanovic, Nikola
1997-01-01
A nonlinear lumped-parameter model of a piezoelectric stack actuator has been developed to describe actuator behavior for purposes of control system analysis and design, and, in particular, for microrobotic applications requiring accurate position and/or force control. In formulating this model, the authors propose a generalized Maxwell resistive capacitor as a lumped-parameter causal representation of rate-independent hysteresis. Model formulation is validated by comparing results of numerical simulations to experimental data. Validation is followed by a discussion of model implications for purposes of actuator control.
Control of Crazyflie nano quadcopter using Simulink
NASA Astrophysics Data System (ADS)
Gopabhat Madhusudhan, Meghana
This thesis focuses on developing a mathematical model in Simulink to Crazyflie, an open source platform. Attitude, altitude and position controllers of a Crazyflie are designed in the mathematical model. The mathematical model is developed based on the quadcopter system dynamics using a non-linear approach. The parameters of translational and rotational dynamics of the quadcopter system are linearized and tuned individually. The tuned attitude and altitude controllers from the mathematical model are implemented on real time Crazyflie Simulink model to achieve autonomous and controlled flight.
A combined-slip predictive control of vehicle stability with experimental verification
NASA Astrophysics Data System (ADS)
Jalali, Milad; Hashemi, Ehsan; Khajepour, Amir; Chen, Shih-ken; Litkouhi, Bakhtiar
2018-02-01
In this paper, a model predictive vehicle stability controller is designed based on a combined-slip LuGre tyre model. Variations in the lateral tyre forces due to changes in tyre slip ratios are considered in the prediction model of the controller. It is observed that the proposed combined-slip controller takes advantage of the more accurate tyre model and can adjust tyre slip ratios based on lateral forces of the front axle. This results in an interesting closed-loop response that challenges the notion of braking only the wheels on one side of the vehicle in differential braking. The performance of the proposed controller is evaluated in software simulations and is compared to a similar pure-slip controller. Furthermore, experimental tests are conducted on a rear-wheel drive electric Chevrolet Equinox equipped with differential brakes to evaluate the closed-loop response of the model predictive control controller.
Tang, Xiaoming; Qu, Hongchun; Wang, Ping; Zhao, Meng
2015-03-01
This paper investigates the off-line synthesis approach of model predictive control (MPC) for a class of networked control systems (NCSs) with network-induced delays. A new augmented model which can be readily applied to time-varying control law, is proposed to describe the NCS where bounded deterministic network-induced delays may occur in both sensor to controller (S-A) and controller to actuator (C-A) links. Based on this augmented model, a sufficient condition of the closed-loop stability is derived by applying the Lyapunov method. The off-line synthesis approach of model predictive control is addressed using the stability results of the system, which explicitly considers the satisfaction of input and state constraints. Numerical example is given to illustrate the effectiveness of the proposed method. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Adaptive online inverse control of a shape memory alloy wire actuator using a dynamic neural network
NASA Astrophysics Data System (ADS)
Mai, Huanhuan; Song, Gangbing; Liao, Xiaofeng
2013-01-01
Shape memory alloy (SMA) actuators exhibit severe hysteresis, a nonlinear behavior, which complicates control strategies and limits their applications. This paper presents a new approach to controlling an SMA actuator through an adaptive inverse model based controller that consists of a dynamic neural network (DNN) identifier, a copy dynamic neural network (CDNN) feedforward term and a proportional (P) feedback action. Unlike fixed hysteresis models used in most inverse controllers, the proposed one uses a DNN to identify online the relationship between the applied voltage to the actuator and the displacement (the inverse model). Even without a priori knowledge of the SMA hysteresis and without pre-training, the proposed controller can precisely control the SMA wire actuator in various tracking tasks by identifying online the inverse model of the SMA actuator. Experiments were conducted, and experimental results demonstrated real-time modeling capabilities of DNN and the performance of the adaptive inverse controller.
A Control Model: Interpretation of Fitts' Law
NASA Technical Reports Server (NTRS)
Connelly, E. M.
1984-01-01
The analytical results for several models are given: a first order model where it is assumed that the hand velocity can be directly controlled, and a second order model where it is assumed that the hand acceleration can be directly controlled. Two different types of control-laws are investigated. One is linear function of the hand error and error rate; the other is the time-optimal control law. Results show that the first and second order models with the linear control-law produce a movement time (MT) function with the exact form of the Fitts' Law. The control-law interpretation implies that the effect of target width on MT must be a result of the vertical motion which elevates the hand from the starting point and drops it on the target at the target edge. The time optimal control law did not produce a movement-time formula simular to Fitt's Law.
An Improved Inventory Control Model for the Brazilian Navy Supply System
2001-12-01
Portuguese Centro de Controle de Inventario da Marinha, the Brazilian Navy Inventory Control Point (ICP) developed an empirical model called SPAADA...NAVAL POSTGRADUATE SCHOOL Monterey, California THESIS Approved for public release; distribution is unlimited AN IMPROVED INVENTORY CONTROL ...AN IMPROVED INVENTORY CONTROL MODEL FOR THE BRAZILIAN NAVY SUPPLY SYSTEM Contract Number Grant Number Program Element Number Author(s) Moreira
Artificial neural networks and approximate reasoning for intelligent control in space
NASA Technical Reports Server (NTRS)
Berenji, Hamid R.
1991-01-01
A method is introduced for learning to refine the control rules of approximate reasoning-based controllers. A reinforcement-learning technique is used in conjunction with a multi-layer neural network model of an approximate reasoning-based controller. The model learns by updating its prediction of the physical system's behavior. The model can use the control knowledge of an experienced operator and fine-tune it through the process of learning. Some of the space domains suitable for applications of the model such as rendezvous and docking, camera tracking, and tethered systems control are discussed.
Markkula, Gustav; Boer, Erwin; Romano, Richard; Merat, Natasha
2018-06-01
A conceptual and computational framework is proposed for modelling of human sensorimotor control and is exemplified for the sensorimotor task of steering a car. The framework emphasises control intermittency and extends on existing models by suggesting that the nervous system implements intermittent control using a combination of (1) motor primitives, (2) prediction of sensory outcomes of motor actions, and (3) evidence accumulation of prediction errors. It is shown that approximate but useful sensory predictions in the intermittent control context can be constructed without detailed forward models, as a superposition of simple prediction primitives, resembling neurobiologically observed corollary discharges. The proposed mathematical framework allows straightforward extension to intermittent behaviour from existing one-dimensional continuous models in the linear control and ecological psychology traditions. Empirical data from a driving simulator are used in model-fitting analyses to test some of the framework's main theoretical predictions: it is shown that human steering control, in routine lane-keeping and in a demanding near-limit task, is better described as a sequence of discrete stepwise control adjustments, than as continuous control. Results on the possible roles of sensory prediction in control adjustment amplitudes, and of evidence accumulation mechanisms in control onset timing, show trends that match the theoretical predictions; these warrant further investigation. The results for the accumulation-based model align with other recent literature, in a possibly converging case against the type of threshold mechanisms that are often assumed in existing models of intermittent control.
NASA Astrophysics Data System (ADS)
Xavier, Marcelo A.; Trimboli, M. Scott
2015-07-01
This paper introduces a novel application of model predictive control (MPC) to cell-level charging of a lithium-ion battery utilizing an equivalent circuit model of battery dynamics. The approach employs a modified form of the MPC algorithm that caters for direct feed-though signals in order to model near-instantaneous battery ohmic resistance. The implementation utilizes a 2nd-order equivalent circuit discrete-time state-space model based on actual cell parameters; the control methodology is used to compute a fast charging profile that respects input, output, and state constraints. Results show that MPC is well-suited to the dynamics of the battery control problem and further suggest significant performance improvements might be achieved by extending the result to electrochemical models.
Optimal sensor placement for control of a supersonic mixed-compression inlet with variable geometry
NASA Astrophysics Data System (ADS)
Moore, Kenneth Thomas
A method of using fluid dynamics models for the generation of models that are useable for control design and analysis is investigated. The problem considered is the control of the normal shock location in the VDC inlet, which is a mixed-compression, supersonic, variable-geometry inlet of a jet engine. A quasi-one-dimensional set of fluid equations incorporating bleed and moving walls is developed. An object-oriented environment is developed for simulation of flow systems under closed-loop control. A public interface between the controller and fluid classes is defined. A linear model representing the dynamics of the VDC inlet is developed from the finite difference equations, and its eigenstructure is analyzed. The order of this model is reduced using the square root balanced model reduction method to produce a reduced-order linear model that is suitable for control design and analysis tasks. A modification to this method that improves the accuracy of the reduced-order linear model for the purpose of sensor placement is presented and analyzed. The reduced-order linear model is used to develop a sensor placement method that quantifies as a function of the sensor location the ability of a sensor to provide information on the variable of interest for control. This method is used to develop a sensor placement metric for the VDC inlet. The reduced-order linear model is also used to design a closed loop control system to control the shock position in the VDC inlet. The object-oriented simulation code is used to simulate the nonlinear fluid equations under closed-loop control.
Structural model of control system for hydraulic stepper motor complex
NASA Astrophysics Data System (ADS)
Obukhov, A. D.; Dedov, D. L.; Kolodin, A. N.
2018-03-01
The article considers the problem of developing a structural model of the control system for a hydraulic stepper drive complex. A comparative analysis of stepper drives and assessment of the applicability of HSM for solving problems, requiring accurate displacement in space with subsequent positioning of the object, are carried out. The presented structural model of the automated control system of the multi-spindle complex of hydraulic stepper drives reflects the main components of the system, as well as the process of its control based on the control signals transfer to the solenoid valves by the controller. The models and methods described in the article can be used to formalize the control process in technical systems based on the application hydraulic stepper drives and allow switching from mechanical control to automated control.
Motion and force control of multiple robotic manipulators
NASA Technical Reports Server (NTRS)
Wen, John T.; Kreutz-Delgado, Kenneth
1992-01-01
This paper addresses the motion and force control problem of multiple robot arms manipulating a cooperatively held object. A general control paradigm is introduced which decouples the motion and force control problems. For motion control, different control strategies are constructed based on the variables used as the control input in the controller design. There are three natural choices; acceleration of a generalized coordinate, arm tip force vectors, and the joint torques. The first two choices require full model information but produce simple models for the control design problem. The last choice results in a class of relatively model independent control laws by exploiting the Hamiltonian structure of the open loop system. The motion control only determines the joint torque to within a manifold, due to the multiple-arm kinematic constraint. To resolve the nonuniqueness of the joint torques, two methods are introduced. If the arm and object models are available, an optimization can be performed to best allocate the desired and effector control force to the joint actuators. The other possibility is to control the internal force about some set point. It is shown that effective force regulation can be achieved even if little model information is available.
Feedback control laws for highly maneuverable aircraft
NASA Technical Reports Server (NTRS)
Garrard, William L.; Balas, Gary J.
1994-01-01
During the first half of the year, the investigators concentrated their efforts on completing the design of control laws for the longitudinal axis of the HARV. During the second half of the year they concentrated on the synthesis of control laws for the lateral-directional axes. The longitudinal control law design efforts can be briefly summarized as follows. Longitudinal control laws were developed for the HARV using mu synthesis design techniques coupled with dynamic inversion. An inner loop dynamic inversion controller was used to simplify the system dynamics by eliminating the aerodynamic nonlinearities and inertial cross coupling. Models of the errors resulting from uncertainties in the principal longitudinal aerodynamic terms were developed and included in the model of the HARV with the inner loop dynamic inversion controller. This resulted in an inner loop transfer function model which was an integrator with the modeling errors characterized as uncertainties in gain and phase. Outer loop controllers were then designed using mu synthesis to provide robustness to these modeling errors and give desired response to pilot inputs. Both pitch rate and angle of attack command following systems were designed. The following tasks have been accomplished for the lateral-directional controllers: inner and outer loop dynamic inversion controllers have been designed; an error model based on a linearized perturbation model of the inner loop system was derived; controllers for the inner loop system have been designed, using classical techniques, that control roll rate and Dutch roll response; the inner loop dynamic inversion and classical controllers have been implemented on the six degree of freedom simulation; and lateral-directional control allocation scheme has been developed based on minimizing required control effort.
Muntaner, C; Schoenbach, C
1994-01-01
The authors use confirmatory factor analysis to investigate the psychosocial dimensions of work environments relevant to health outcomes, in a representative sample of five U.S. metropolitan areas. Through an aggregated inference system, scales from Schwartz and associates' job scoring system and from the Dictionary of Occupational Titles (DOT) were employed to examine two alternative models: the demand-control model of Karasek and Theorell and Johnson's demand-control-support model. Confirmatory factor analysis was used to test the two models. The two multidimensional models yielded better fits than an unstructured model. After allowing for the measurement error variance due to the method of assessment (Schwartz and associates' system or DOT), both models yielded acceptable goodness-of-fit indices, but the fit of the demand-control-support model was significantly better. Overall these results indicate that the dimensions of Control (substantive complexity of work, skill discretion, decision authority), Demands (physical exertion, physical demands and hazards), and Social Support (coworker and supervisor social supports) provide an acceptable account of the psychosocial dimensions of work associated with health outcomes.
Adaptive neural network motion control for aircraft under uncertainty conditions
NASA Astrophysics Data System (ADS)
Efremov, A. V.; Tiaglik, M. S.; Tiumentsev, Yu V.
2018-02-01
We need to provide motion control of modern and advanced aircraft under diverse uncertainty conditions. This problem can be solved by using adaptive control laws. We carry out an analysis of the capabilities of these laws for such adaptive systems as MRAC (Model Reference Adaptive Control) and MPC (Model Predictive Control). In the case of a nonlinear control object, the most efficient solution to the adaptive control problem is the use of neural network technologies. These technologies are suitable for the development of both a control object model and a control law for the object. The approximate nature of the ANN model was taken into account by introducing additional compensating feedback into the control system. The capabilities of adaptive control laws under uncertainty in the source data are considered. We also conduct simulations to assess the contribution of adaptivity to the behavior of the system.
Performance Optimizing Adaptive Control with Time-Varying Reference Model Modification
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.; Hashemi, Kelley E.
2017-01-01
This paper presents a new adaptive control approach that involves a performance optimization objective. The control synthesis involves the design of a performance optimizing adaptive controller from a subset of control inputs. The resulting effect of the performance optimizing adaptive controller is to modify the initial reference model into a time-varying reference model which satisfies the performance optimization requirement obtained from an optimal control problem. The time-varying reference model modification is accomplished by the real-time solutions of the time-varying Riccati and Sylvester equations coupled with the least-squares parameter estimation of the sensitivities of the performance metric. The effectiveness of the proposed method is demonstrated by an application of maneuver load alleviation control for a flexible aircraft.
Earth observing system instrument pointing control modeling for polar orbiting platforms
NASA Technical Reports Server (NTRS)
Briggs, H. C.; Kia, T.; Mccabe, S. A.; Bell, C. E.
1987-01-01
An approach to instrument pointing control performance assessment for large multi-instrument platforms is described. First, instrument pointing requirements and reference platform control systems for the Eos Polar Platforms are reviewed. Performance modeling tools including NASTRAN models of two large platforms, a modal selection procedure utilizing a balanced realization method, and reduced order platform models with core and instrument pointing control loops added are then described. Time history simulations of instrument pointing and stability performance in response to commanded slewing of adjacent instruments demonstrates the limits of tolerable slew activity. Simplified models of rigid body responses are also developed for comparison. Instrument pointing control methods required in addition to the core platform control system to meet instrument pointing requirements are considered.
NASA Astrophysics Data System (ADS)
Li, Guang
2017-01-01
This paper presents a fast constrained optimization approach, which is tailored for nonlinear model predictive control of wave energy converters (WEC). The advantage of this approach relies on its exploitation of the differential flatness of the WEC model. This can reduce the dimension of the resulting nonlinear programming problem (NLP) derived from the continuous constrained optimal control of WEC using pseudospectral method. The alleviation of computational burden using this approach helps to promote an economic implementation of nonlinear model predictive control strategy for WEC control problems. The method is applicable to nonlinear WEC models, nonconvex objective functions and nonlinear constraints, which are commonly encountered in WEC control problems. Numerical simulations demonstrate the efficacy of this approach.
Variable structure control of nonlinear systems through simplified uncertain models
NASA Technical Reports Server (NTRS)
Sira-Ramirez, Hebertt
1986-01-01
A variable structure control approach is presented for the robust stabilization of feedback equivalent nonlinear systems whose proposed model lies in the same structural orbit of a linear system in Brunovsky's canonical form. An attempt to linearize exactly the nonlinear plant on the basis of the feedback control law derived for the available model results in a nonlinearly perturbed canonical system for the expanded class of possible equivalent control functions. Conservatism tends to grow as modeling errors become larger. In order to preserve the internal controllability structure of the plant, it is proposed that model simplification be carried out on the open-loop-transformed system. As an example, a controller is developed for a single link manipulator with an elastic joint.
A nonlinear optimal control approach to stabilization of a macroeconomic development model
NASA Astrophysics Data System (ADS)
Rigatos, G.; Siano, P.; Ghosh, T.; Sarno, D.
2017-11-01
A nonlinear optimal (H-infinity) control approach is proposed for the problem of stabilization of the dynamics of a macroeconomic development model that is known as the Grossman-Helpman model of endogenous product cycles. The dynamics of the macroeconomic development model is divided in two parts. The first one describes economic activities in a developed country and the second part describes variation of economic activities in a country under development which tries to modify its production so as to serve the needs of the developed country. The article shows that through control of the macroeconomic model of the developed country, one can finally control the dynamics of the economy in the country under development. The control method through which this is achieved is the nonlinear H-infinity control. The macroeconomic model for the country under development undergoes approximate linearization round a temporary operating point. This is defined at each time instant by the present value of the system's state vector and the last value of the control input vector that was exerted on it. The linearization is based on Taylor series expansion and the computation of the associated Jacobian matrices. For the linearized model an H-infinity feedback controller is computed. The controller's gain is calculated by solving an algebraic Riccati equation at each iteration of the control method. The asymptotic stability of the control approach is proven through Lyapunov analysis. This assures that the state variables of the macroeconomic model of the country under development will finally converge to the designated reference values.
Nonlinear feedback model attitude control using CCD in magnetic suspension system
NASA Technical Reports Server (NTRS)
Lin, CHIN-E.; Hou, Ann-San
1994-01-01
A model attitude control system for a CCD camera magnetic suspension system is studied in this paper. In a recent work, a position and attitude sensing method was proposed. From this result, model position and attitude of a magnetic suspension system can be detected by generating digital outputs. Based on this achievement, a control system design using nonlinear feedback techniques for magnetic suspended model attitude control is proposed.
Dissipative rendering and neural network control system design
NASA Technical Reports Server (NTRS)
Gonzalez, Oscar R.
1995-01-01
Model-based control system designs are limited by the accuracy of the models of the plant, plant uncertainty, and exogenous signals. Although better models can be obtained with system identification, the models and control designs still have limitations. One approach to reduce the dependency on particular models is to design a set of compensators that will guarantee robust stability to a set of plants. Optimization over the compensator parameters can then be used to get the desired performance. Conservativeness of this approach can be reduced by integrating fundamental properties of the plant models. This is the approach of dissipative control design. Dissipative control designs are based on several variations of the Passivity Theorem, which have been proven for nonlinear/linear and continuous-time/discrete-time systems. These theorems depend not on a specific model of a plant, but on its general dissipative properties. Dissipative control design has found wide applicability in flexible space structures and robotic systems that can be configured to be dissipative. Currently, there is ongoing research to improve the performance of dissipative control designs. For aircraft systems that are not dissipative active control may be used to make them dissipative and then a dissipative control design technique can be used. It is also possible that rendering a system dissipative and dissipative control design may be combined into one step. Furthermore, the transformation of a non-dissipative system to dissipative can be done robustly. One sequential design procedure for finite dimensional linear time-invariant systems has been developed. For nonlinear plants that cannot be controlled adequately with a single linear controller, model-based techniques have additional problems. Nonlinear system identification is still a research topic. Lacking analytical models for model-based design, artificial neural network algorithms have recently received considerable attention. Using their universal approximation property, neural networks have been introduced into nonlinear control designs in several ways. Unfortunately, little work has appeared that analyzes neural network control systems and establishes margins for stability and performance. One approach for this analysis is to set up neural network control systems in the framework presented above. For example, one neural network could be used to render a system to be dissipative, a second strictly dissipative neural network controller could be used to guarantee robust stability.
NASA Astrophysics Data System (ADS)
Zaychik, Kirill B.
Acceptable results have been obtained using conventional techniques to model the generic human operator's control behavior. However, little research has been done in an attempt to identify an individual based on his/her control behavior. The main hypothesis investigated in this dissertation is that different operators exhibit different control behavior when performing a given control task. Furthermore, inter-person differences are manifested in the amplitude and frequency content of the non-linear component of the control behavior. Two enhancements to the existing models of the human operator, which allow personalization of the modeled control behavior, are presented in this dissertation. One of the proposed enhancements accounts for the "testing" control signals, which are introduced by an operator for more accurate control of the system and/or to adjust his/her control strategy. Such enhancement uses the Artificial Neural Network (ANN), which can be fine-tuned to model the "testing" control behavior of a given individual. The other model enhancement took the form of an equiripple filter (EF), which conditions the power spectrum of the control signal before it is passed through the plant dynamics block. The filter design technique uses Parks-McClellan algorithm, which allows parameterization of the desired levels of power at certain frequencies. A novel automated parameter identification technique (APID) was developed to facilitate the identification process of the parameters of the selected models of the human operator. APID utilizes a Genetic Algorithm (GA) based optimization engine called the Bit-climbing Algorithm (BCA). Proposed model enhancements were validated using the experimental data obtained at three different sources: the Manual Control Laboratory software experiments, Unmanned Aerial Vehicle simulation, and NASA Langley Research Center Visual Motion Simulator studies. Validation analysis involves comparison of the actual and simulated control activity signals. Validation criteria used in this dissertation is based on comparing Power Spectral Densities of the control signals against that of the Precision model of the human operator. This dissertation also addresses the issue of applying the proposed human operator model augmentation to evaluate the effectiveness of the motion feedback when simulating the actual pilot control behavior in a flight simulator. The proposed modeling methodology allows for quantitative assessments and prediction of the need for platform motion, while performing aircraft/pilot simulation studies.
Objective Model Selection for Identifying the Human Feedforward Response in Manual Control.
Drop, Frank M; Pool, Daan M; van Paassen, Marinus Rene M; Mulder, Max; Bulthoff, Heinrich H
2018-01-01
Realistic manual control tasks typically involve predictable target signals and random disturbances. The human controller (HC) is hypothesized to use a feedforward control strategy for target-following, in addition to feedback control for disturbance-rejection. Little is known about human feedforward control, partly because common system identification methods have difficulty in identifying whether, and (if so) how, the HC applies a feedforward strategy. In this paper, an identification procedure is presented that aims at an objective model selection for identifying the human feedforward response, using linear time-invariant autoregressive with exogenous input models. A new model selection criterion is proposed to decide on the model order (number of parameters) and the presence of feedforward in addition to feedback. For a range of typical control tasks, it is shown by means of Monte Carlo computer simulations that the classical Bayesian information criterion (BIC) leads to selecting models that contain a feedforward path from data generated by a pure feedback model: "false-positive" feedforward detection. To eliminate these false-positives, the modified BIC includes an additional penalty on model complexity. The appropriate weighting is found through computer simulations with a hypothesized HC model prior to performing a tracking experiment. Experimental human-in-the-loop data will be considered in future work. With appropriate weighting, the method correctly identifies the HC dynamics in a wide range of control tasks, without false-positive results.
Applications of active adaptive noise control to jet engines
NASA Technical Reports Server (NTRS)
Shoureshi, Rahmat; Brackney, Larry
1993-01-01
During phase 2 research on the application of active noise control to jet engines, the development of multiple-input/multiple-output (MIMO) active adaptive noise control algorithms and acoustic/controls models for turbofan engines were considered. Specific goals for this research phase included: (1) implementation of a MIMO adaptive minimum variance active noise controller; and (2) turbofan engine model development. A minimum variance control law for adaptive active noise control has been developed, simulated, and implemented for single-input/single-output (SISO) systems. Since acoustic systems tend to be distributed, multiple sensors, and actuators are more appropriate. As such, the SISO minimum variance controller was extended to the MIMO case. Simulation and experimental results are presented. A state-space model of a simplified gas turbine engine is developed using the bond graph technique. The model retains important system behavior, yet is of low enough order to be useful for controller design. Expansion of the model to include multiple stages and spools is also discussed.
NASA Astrophysics Data System (ADS)
TayyebTaher, M.; Esmaeilzadeh, S. Majid
2017-07-01
This article presents an application of Model Predictive Controller (MPC) to the attitude control of a geostationary flexible satellite. SIMO model has been used for the geostationary satellite, using the Lagrange equations. Flexibility is also included in the modelling equations. The state space equations are expressed in order to simplify the controller. Naturally there is no specific tuning rule to find the best parameters of an MPC controller which fits the desired controller. Being an intelligence method for optimizing problem, Genetic Algorithm has been used for optimizing the performance of MPC controller by tuning the controller parameter due to minimum rise time, settling time, overshoot of the target point of the flexible structure and its mode shape amplitudes to make large attitude maneuvers possible. The model included geosynchronous orbit environment and geostationary satellite parameters. The simulation results of the flexible satellite with attitude maneuver shows the efficiency of proposed optimization method in comparison with LQR optimal controller.
Muniraj, Murali; Arulmozhiyal, Ramaswamy
2015-01-01
A control actuation system has been used extensively in automotive, aerospace, and defense applications. The major challenges in modeling control actuation system are rise time, maximum peak to peak overshoot, and response to nonlinear system with percentage error. This paper addresses the challenges in modeling and real time implementation of control actuation system for missiles glider applications. As an alternative fuzzy-PID controller is proposed in BLDC motor drive followed by linkage mechanism to actuate fins in missiles and gliders. The proposed system will realize better rise time and less overshoot while operating in extreme nonlinear dynamic system conditions. A mathematical model of BLDC motor is derived in state space form. The complete control actuation system is modeled in MATLAB/Simulink environment and verified by performing simulation studies. A real time prototype of the control actuation is developed with dSPACE-1104 hardware controller and a detailed analysis is carried out to confirm the viability of the proposed system. PMID:26613102
Muniraj, Murali; Arulmozhiyal, Ramaswamy
2015-01-01
A control actuation system has been used extensively in automotive, aerospace, and defense applications. The major challenges in modeling control actuation system are rise time, maximum peak to peak overshoot, and response to nonlinear system with percentage error. This paper addresses the challenges in modeling and real time implementation of control actuation system for missiles glider applications. As an alternative fuzzy-PID controller is proposed in BLDC motor drive followed by linkage mechanism to actuate fins in missiles and gliders. The proposed system will realize better rise time and less overshoot while operating in extreme nonlinear dynamic system conditions. A mathematical model of BLDC motor is derived in state space form. The complete control actuation system is modeled in MATLAB/Simulink environment and verified by performing simulation studies. A real time prototype of the control actuation is developed with dSPACE-1104 hardware controller and a detailed analysis is carried out to confirm the viability of the proposed system.
Nonlinear flight control design using backstepping methodology
NASA Astrophysics Data System (ADS)
Tran, Thanh Trung
The subject of nonlinear flight control design using backstepping control methodology is investigated in the dissertation research presented here. Control design methods based on nonlinear models of the dynamic system provide higher utility and versatility because the design model more closely matches the physical system behavior. Obtaining requisite model fidelity is only half of the overall design process, however. Design of the nonlinear control loops can lessen the effects of nonlinearity, or even exploit nonlinearity, to achieve higher levels of closed-loop stability, performance, and robustness. The goal of the research is to improve control quality for a general class of strict-feedback dynamic systems and provide flight control architectures to augment the aircraft motion. The research is divided into two parts: theoretical control development for the strict-feedback form of nonlinear dynamic systems and application of the proposed theory for nonlinear flight dynamics. In the first part, the research is built on two components: transforming the nonlinear dynamic model to a canonical strict-feedback form and then applying backstepping control theory to the canonical model. The research considers a process to determine when this transformation is possible, and when it is possible, a systematic process to transfer the model is also considered when practical. When this is not the case, certain modeling assumptions are explored to facilitate the transformation. After achieving the canonical form, a systematic design procedure for formulating a backstepping control law is explored in the research. Starting with the simplest subsystem and ending with the full system, pseudo control concepts based on Lyapunov control functions are used to control each successive subsystem. Typically each pseudo control must be solved from a nonlinear algebraic equation. At the end of this process, the physical control input must be re-expressed in terms of the physical states by eliminating the pseudo control transformations. In the second part, the research focuses on nonlinear control design for flight dynamics of aircraft motion. Some assumptions on aerodynamics of the aircraft are addressed to transform full nonlinear flight dynamics into the canonical strict-feedback form. The assumptions are also analyzed, validated, and compared to show the advantages and disadvantages of the design models. With the achieved models, investigation focuses on formulating the backstepping control laws and provides an advanced control algorithm for nonlinear flight dynamics of the aircraft. Experimental and simulation studies are successfully implemented to validate the proposed control method. Advancement of nonlinear backstepping control theory and its application to nonlinear flight control are achieved in the dissertation research.
Control Activity in Support of NASA Turbine Based Combined Cycle (TBCC) Research
NASA Technical Reports Server (NTRS)
Stueber, Thomas J.; Vrnak, Daniel R.; Le, Dzu K.; Ouzts, Peter J.
2010-01-01
Control research for a Turbine Based Combined Cycle (TBCC) propulsion system is the current focus of the Hypersonic Guidance, Navigation, and Control (GN&C) discipline team. The ongoing work at the NASA Glenn Research Center (GRC) supports the Hypersonic GN&C effort in developing tools to aid the design of control algorithms to manage a TBCC airbreathing propulsion system during a critical operating period. The critical operating period being addressed in this paper is the span when the propulsion system transitions from one cycle to another, referred to as mode transition. One such tool, that is a basic need for control system design activities, is computational models (hereto forth referred to as models) of the propulsion system. The models of interest for designing and testing controllers are Control Development Models (CDMs) and Control Validation Models (CVMs). CDMs and CVMs are needed for each of the following propulsion system elements: inlet, turbine engine, ram/scram dual-mode combustor, and nozzle. This paper presents an overall architecture for a TBCC propulsion system model that includes all of the propulsion system elements. Efforts are under way, focusing on one of the propulsion system elements, to develop CDMs and CVMs for a TBCC propulsion system inlet. The TBCC inlet aerodynamic design being modeled is that of the Combined-Cycle Engine (CCE) Testbed. The CCE Testbed is a large-scale model of an aerodynamic design that was verified in a small-scale screening experiment. The modeling approach includes employing existing state-of-the-art simulation codes, developing new dynamic simulations, and performing system identification experiments on the hardware in the NASA GRC 10 by10-Foot Supersonic Wind Tunnel. The developed CDMs and CVMs will be available for control studies prior to hardware buildup. The system identification experiments on the CCE Testbed will characterize the necessary dynamics to be represented in CDMs for control design. These system identification models will also be the reference models to validate the CDM and CVM models. Validated models will give value to the tools used to develop the models.
Adjoint Method and Predictive Control for 1-D Flow in NASA Ames 11-Foot Transonic Wind Tunnel
NASA Technical Reports Server (NTRS)
Nguyen, Nhan; Ardema, Mark
2006-01-01
This paper describes a modeling method and a new optimal control approach to investigate a Mach number control problem for the NASA Ames 11-Foot Transonic Wind Tunnel. The flow in the wind tunnel is modeled by the 1-D unsteady Euler equations whose boundary conditions prescribe a controlling action by a compressor. The boundary control inputs to the compressor are in turn controlled by a drive motor system and an inlet guide vane system whose dynamics are modeled by ordinary differential equations. The resulting Euler equations are thus coupled to the ordinary differential equations via the boundary conditions. Optimality conditions are established by an adjoint method and are used to develop a model predictive linear-quadratic optimal control for regulating the Mach number due to a test model disturbance during a continuous pitch
Experimental investigation of elastic mode control on a model of a transport aircraft
NASA Technical Reports Server (NTRS)
Abramovitz, M.; Heimbaugh, R. M.; Nomura, J. K.; Pearson, R. M.; Shirley, W. A.; Stringham, R. H.; Tescher, E. L.; Zoock, I. E.
1981-01-01
A 4.5 percent DC-10 derivative flexible model with active controls is fabricated, developed, and tested to investigate the ability to suppress flutter and reduce gust loads with active controlled surfaces. The model is analyzed and tested in both semispan and complete model configuration. Analytical methods are refined and control laws are developed and successfully tested on both versions of the model. A 15 to 25 percent increase in flutter speed due to the active system is demonstrated. The capability of an active control system to significantly reduce wing bending moments due to turbulence is demonstrated. Good correlation is obtained between test and analytical prediction.
Model-Based Control of an Aircraft Engine using an Optimal Tuner Approach
NASA Technical Reports Server (NTRS)
Connolly, Joseph W.; Chicatelli, Amy; Garg, Sanjay
2012-01-01
This paper covers the development of a model-based engine control (MBEC) method- ology applied to an aircraft turbofan engine. Here, a linear model extracted from the Commercial Modular Aero-Propulsion System Simulation 40,000 (CMAPSS40k) at a cruise operating point serves as the engine and the on-board model. The on-board model is up- dated using an optimal tuner Kalman Filter (OTKF) estimation routine, which enables the on-board model to self-tune to account for engine performance variations. The focus here is on developing a methodology for MBEC with direct control of estimated parameters of interest such as thrust and stall margins. MBEC provides the ability for a tighter control bound of thrust over the entire life cycle of the engine that is not achievable using traditional control feedback, which uses engine pressure ratio or fan speed. CMAPSS40k is capable of modeling realistic engine performance, allowing for a verification of the MBEC tighter thrust control. In addition, investigations of using the MBEC to provide a surge limit for the controller limit logic are presented that could provide benefits over a simple acceleration schedule that is currently used in engine control architectures.
Cognitive Control Predicts Use of Model-Based Reinforcement-Learning
Otto, A. Ross; Skatova, Anya; Madlon-Kay, Seth; Daw, Nathaniel D.
2015-01-01
Accounts of decision-making and its neural substrates have long posited the operation of separate, competing valuation systems in the control of choice behavior. Recent theoretical and experimental work suggest that this classic distinction between behaviorally and neurally dissociable systems for habitual and goal-directed (or more generally, automatic and controlled) choice may arise from two computational strategies for reinforcement learning (RL), called model-free and model-based RL, but the cognitive or computational processes by which one system may dominate over the other in the control of behavior is a matter of ongoing investigation. To elucidate this question, we leverage the theoretical framework of cognitive control, demonstrating that individual differences in utilization of goal-related contextual information—in the service of overcoming habitual, stimulus-driven responses—in established cognitive control paradigms predict model-based behavior in a separate, sequential choice task. The behavioral correspondence between cognitive control and model-based RL compellingly suggests that a common set of processes may underpin the two behaviors. In particular, computational mechanisms originally proposed to underlie controlled behavior may be applicable to understanding the interactions between model-based and model-free choice behavior. PMID:25170791
Nonlinear and Digital Man-machine Control Systems Modeling
NASA Technical Reports Server (NTRS)
Mekel, R.
1972-01-01
An adaptive modeling technique is examined by which controllers can be synthesized to provide corrective dynamics to a human operator's mathematical model in closed loop control systems. The technique utilizes a class of Liapunov functions formulated for this purpose, Liapunov's stability criterion and a model-reference system configuration. The Liapunov function is formulated to posses variable characteristics to take into consideration the identification dynamics. The time derivative of the Liapunov function generate the identification and control laws for the mathematical model system. These laws permit the realization of a controller which updates the human operator's mathematical model parameters so that model and human operator produce the same response when subjected to the same stimulus. A very useful feature is the development of a digital computer program which is easily implemented and modified concurrent with experimentation. The program permits the modeling process to interact with the experimentation process in a mutually beneficial way.
A control-theory model for human decision-making
NASA Technical Reports Server (NTRS)
Levison, W. H.; Tanner, R. B.
1971-01-01
A model for human decision making is an adaptation of an optimal control model for pilot/vehicle systems. The models for decision and control both contain concepts of time delay, observation noise, optimal prediction, and optimal estimation. The decision making model was intended for situations in which the human bases his decision on his estimate of the state of a linear plant. Experiments are described for the following task situations: (a) single decision tasks, (b) two-decision tasks, and (c) simultaneous manual control and decision making. Using fixed values for model parameters, single-task and two-task decision performance can be predicted to within an accuracy of 10 percent. Agreement is less good for the simultaneous decision and control situation.
An Integrated Approach to Damage Accommodation in Flight Control
NASA Technical Reports Server (NTRS)
Boskovic, Jovan D.; Knoebel, Nathan; Mehra, Raman K.; Gregory, Irene
2008-01-01
In this paper we present an integrated approach to in-flight damage accommodation in flight control. The approach is based on Multiple Models, Switching and Tuning (MMST), and consists of three steps: In the first step the main objective is to acquire a realistic aircraft damage model. Modeling of in-flight damage is a highly complex problem since there is a large number of issues that need to be addressed. One of the most important one is that there is strong coupling between structural dynamics, aerodynamics, and flight control. These effects cannot be studied separately due to this coupling. Once a realistic damage model is available, in the second step a large number of models corresponding to different damage cases are generated. One possibility is to generate many linear models and interpolate between them to cover a large portion of the flight envelope. Once these models have been generated, we will implement a recently developed-Model Set Reduction (MSR) technique. The technique is based on parameterizing damage in terms of uncertain parameters, and uses concepts from robust control theory to arrive at a small number of "centered" models such that the controllers corresponding to these models assure desired stability and robustness properties over a subset in the parametric space. By devising a suitable model placement strategy, the entire parametric set is covered with a relatively small number of models and controllers. The third step consists of designing a Multiple Models, Switching and Tuning (MMST) strategy for estimating the current operating regime (damage case) of the aircraft, and switching to the corresponding controller to achieve effective damage accommodation and the desired performance. In the paper present a comprehensive approach to damage accommodation using Model Set Design,MMST, and Variable Structure compensation for coupling nonlinearities. The approach was evaluated on a model of F/A-18 aircraft dynamics under control effector damage, augmented by nonlinear cross-coupling terms and a structural dynamics model. The proposed approach achieved excellent performance under severe damage effects.
Dynamics modeling and adaptive control of flexible manipulators
NASA Technical Reports Server (NTRS)
Sasiadek, J. Z.
1991-01-01
An application of Model Reference Adaptive Control (MRAC) to the position and force control of flexible manipulators and robots is presented. A single-link flexible manipulator is analyzed. The problem was to develop a mathematical model of a flexible robot that is accurate. The objective is to show that the adaptive control works better than 'conventional' systems and is suitable for flexible structure control.
Phillips, L Alison; Tuhrim, Stanley; Kronish, Ian M; Horowitz, Carol R
2014-01-01
Perceptions that stress causes and stress-reduction controls hypertension have been associated with poorer blood pressure (BP) control in hypertension populations. The current study investigated these "stress-model perceptions" in stroke survivors regarding prevention of recurrent stroke and the influence of these perceptions on patients' stroke risk factor control. Stroke and transient ischemic attack survivors (N=600) participated in an in-person interview in which they were asked about their beliefs regarding control of future stroke; BP and cholesterol were measured directly after the interview. Counter to expectations, patients who endorsed a "stress-model" but not a "medication-model" of stroke prevention were in better control of their stroke risk factors (BP and cholesterol) than those who endorsed a medication-model but not a stress-model of stroke prevention (OR for poor control=.54, Wald statistic=6.07, p=.01). This result was not explained by between group differences in patients' reported medication adherence. The results have implications for theory and practice, regarding the role of stress belief models and acute cardiac events, compared to chronic hypertension.
NASA Astrophysics Data System (ADS)
Gu, Xiaoyu; Yu, Yang; Li, Jianchun; Li, Yancheng
2017-10-01
Magnetorheological elastomer (MRE) base isolations have attracted considerable attention over the last two decades thanks to its self-adaptability and high-authority controllability in semi-active control realm. Due to the inherent nonlinearity and hysteresis of the devices, it is challenging to obtain a reasonably complicated mathematical model to describe the inverse dynamics of MRE base isolators and hence to realise control synthesis of the MRE base isolation system. Two aims have been achieved in this paper: i) development of an inverse model for MRE base isolator based on optimal general regression neural network (GRNN); ii) numerical and experimental validation of a real-time semi-active controlled MRE base isolation system utilising LQR controller and GRNN inverse model. The superiority of GRNN inverse model lays in fewer input variables requirement, faster training process and prompt calculation response, which makes it suitable for online training and real-time control. The control system is integrated with a three-storey shear building model and control performance of the MRE base isolation system is compared with bare building, passive-on isolation system and passive-off isolation system. Testing results show that the proposed GRNN inverse model is able to reproduce desired control force accurately and the MRE base isolation system can effectively suppress the structural responses when compared to the passive isolation system.
Control system design for flexible structures using data models
NASA Technical Reports Server (NTRS)
Irwin, R. Dennis; Frazier, W. Garth; Mitchell, Jerrel R.; Medina, Enrique A.; Bukley, Angelia P.
1993-01-01
The dynamics and control of flexible aerospace structures exercises many of the engineering disciplines. In recent years there has been considerable research in the developing and tailoring of control system design techniques for these structures. This problem involves designing a control system for a multi-input, multi-output (MIMO) system that satisfies various performance criteria, such as vibration suppression, disturbance and noise rejection, attitude control and slewing control. Considerable progress has been made and demonstrated in control system design techniques for these structures. The key to designing control systems for these structures that meet stringent performance requirements is an accurate model. It has become apparent that theoretically and finite-element generated models do not provide the needed accuracy; almost all successful demonstrations of control system design techniques have involved using test results for fine-tuning a model or for extracting a model using system ID techniques. This paper describes past and ongoing efforts at Ohio University and NASA MSFC to design controllers using 'data models.' The basic philosophy of this approach is to start with a stabilizing controller and frequency response data that describes the plant; then, iteratively vary the free parameters of the controller so that performance measures become closer to satisfying design specifications. The frequency response data can be either experimentally derived or analytically derived. One 'design-with-data' algorithm presented in this paper is called the Compensator Improvement Program (CIP). The current CIP designs controllers for MIMO systems so that classical gain, phase, and attenuation margins are achieved. The center-piece of the CIP algorithm is the constraint improvement technique which is used to calculate a parameter change vector that guarantees an improvement in all unsatisfied, feasible performance metrics from iteration to iteration. The paper also presents a recently demonstrated CIP-type algorithm, called the Model and Data Oriented Computer-Aided Design System (MADCADS), developed for achieving H(sub infinity) type design specifications using data models. Control system design for the NASA/MSFC Single Structure Control Facility are demonstrated for both CIP and MADCADS. Advantages of design-with-data algorithms over techniques that require analytical plant models are also presented.
NASA Astrophysics Data System (ADS)
Sun, Xiaoqiang; Yuan, Chaochun; Cai, Yingfeng; Wang, Shaohua; Chen, Long
2017-09-01
This paper presents the hybrid modeling and the model predictive control of an air suspension system with damping multi-mode switching damper. Unlike traditional damper with continuously adjustable damping, in this study, a new damper with four discrete damping modes is applied to vehicle semi-active air suspension. The new damper can achieve different damping modes by just controlling the on-off statuses of two solenoid valves, which makes its damping adjustment more efficient and more reliable. However, since the damping mode switching induces different modes of operation, the air suspension system with the new damper poses challenging hybrid control problem. To model both the continuous/discrete dynamics and the switching between different damping modes, the framework of mixed logical dynamical (MLD) systems is used to establish the system hybrid model. Based on the resulting hybrid dynamical model, the system control problem is recast as a model predictive control (MPC) problem, which allows us to optimize the switching sequences of the damping modes by taking into account the suspension performance requirements. Numerical simulations results demonstrate the efficacy of the proposed control method finally.
Control Theoretic Modeling and Generated Flow Patterns of a Fish-Tail Robot
NASA Astrophysics Data System (ADS)
Massey, Brian; Morgansen, Kristi; Dabiri, Dana
2003-11-01
Many real-world engineering problems involve understanding and manipulating fluid flows. One of the challenges to further progress in the area of active flow control is the lack of appropriate models that are amenable to control-theoretic studies and algorithm design and also incorporate reasonably realistic fluid dynamic effects. We focus here on modeling and model-verification of bio-inspired actuators (fish-fin type structures) used to control fluid dynamic artifacts that will affect speed, agility, and stealth of Underwater Autonomous Vehicles (UAVs). Vehicles using fish-tail type systems are more maneuverable, can turn in much shorter and more constrained spaces, have lower drag, are quieter and potentially more efficient than those using propellers. We will present control-theoretic models for a simple prototype coupled fluid and mechanical actuator where fluid effects are crudely modeled by assuming only lift, drag, and added mass, while neglecting boundary effects. These models will be tested with different control input parameters on an experimental fish-tail robot with the resulting flow captured with DPIV. Relations between the model, the control function choices, the obtained thrust and drag, and the corresponding flow patterns will be presented and discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bills, K.C.; Kress, R.L.; Kwon, D.S.
1994-12-31
This paper describes ORNL`s development of an environment for the simulation of robotic manipulators. Simulation includes the modeling of kinematics, dynamics, sensors, actuators, control systems, operators, and environments. Models will be used for manipulator design, proposal evaluation, control system design and analysis, graphical preview of proposed motions, safety system development, and training. Of particular interest is the development of models for robotic manipulators having at least one flexible link. As a first application, models have been developed for the Pacific Northwest Laboratory`s Flexible Beam Test Bed (PNL FBTB), which is a 1-Degree-of-Freedom, flexible arm with a hydraulic base actuator. ORNLmore » transferred control algorithms developed for the PNL FBTB to controlling IGRIP models. A robust notch filter is running in IGRIP controlling a full dynamics model of the PNL test bed. Model results provide a reasonable match to the experimental results (quantitative results are being determined) and can run on ORNL`s Onyx machine in approximately realtime. The flexible beam is modeled as six rigid sections with torsional springs between each segment. The spring constants were adjusted to match the physical response of the flexible beam model to the experimental results. The controller is able to improve performance on the model similar to the improvement seen on the experimental system. Some differences are apparent, most notably because the IGRIP model presently uses a different trajectory planner than the one used by ORNL on the PNL test bed. In the future, the trajectory planner will be modified so that the experiments and models are the same. The successful completion of this work provides the ability to link C code with IGRIP, thus allowing controllers to be developed, tested, and tuned in simulation and then ported directly to hardware systems using the C language.« less
Flatness-based control in successive loops for stabilization of heart's electrical activity
NASA Astrophysics Data System (ADS)
Rigatos, Gerasimos; Melkikh, Alexey
2016-12-01
The article proposes a new flatness-based control method implemented in successive loops which allows for stabilization of the heart's electrical activity. Heart's pacemaking function is modeled as a set of coupled oscillators which potentially can exhibit chaotic behavior. It is shown that this model satisfies differential flatness properties. Next, the control and stabilization of this model is performed with the use of flatness-based control implemented in cascading loops. By applying a per-row decomposition of the state-space model of the coupled oscillators a set of nonlinear differential equations is obtained. Differential flatness properties are shown to hold for the subsystems associated with the each one of the aforementioned differential equations and next a local flatness-based controller is designed for each subsystem. For the i-th subsystem, state variable xi is chosen to be the flat output and state variable xi+1 is taken to be a virtual control input. Then the value of the virtual control input which eliminates the output tracking error for the i-th subsystem becomes reference setpoint for the i + 1-th subsystem. In this manner the control of the entire state-space model is performed by successive flatness-based control loops. By arriving at the n-th row of the state-space model one computes the control input that can be actually exerted on the aforementioned biosystem. This real control input of the coupled oscillators' system, contains recursively all virtual control inputs associated with the previous n - 1 rows of the state-space model. This control approach achieves asymptotically the elimination of the chaotic oscillation effects and the stabilization of the heart's pulsation rhythm. The stability of the proposed control scheme is proven with the use of Lyapunov analysis.
Neural network application to aircraft control system design
NASA Technical Reports Server (NTRS)
Troudet, Terry; Garg, Sanjay; Merrill, Walter C.
1991-01-01
The feasibility of using artificial neural networks as control systems for modern, complex aerospace vehicles is investigated via an example aircraft control design study. The problem considered is that of designing a controller for an integrated airframe/propulsion longitudinal dynamics model of a modern fighter aircraft to provide independent control of pitch rate and airspeed responses to pilot command inputs. An explicit model following controller using H infinity control design techniques is first designed to gain insight into the control problem as well as to provide a baseline for evaluation of the neurocontroller. Using the model of the desired dynamics as a command generator, a multilayer feedforward neural network is trained to control the vehicle model within the physical limitations of the actuator dynamics. This is achieved by minimizing an objective function which is a weighted sum of tracking errors and control input commands and rates. To gain insight in the neurocontrol, linearized representations of the nonlinear neurocontroller are analyzed along a commanded trajectory. Linear robustness analysis tools are then applied to the linearized neurocontroller models and to the baseline H infinity based controller. Future areas of research are identified to enhance the practical applicability of neural networks to flight control design.
Neural network application to aircraft control system design
NASA Technical Reports Server (NTRS)
Troudet, Terry; Garg, Sanjay; Merrill, Walter C.
1991-01-01
The feasibility of using artificial neural network as control systems for modern, complex aerospace vehicles is investigated via an example aircraft control design study. The problem considered is that of designing a controller for an integrated airframe/propulsion longitudinal dynamics model of a modern fighter aircraft to provide independent control of pitch rate and airspeed responses to pilot command inputs. An explicit model following controller using H infinity control design techniques is first designed to gain insight into the control problem as well as to provide a baseline for evaluation of the neurocontroller. Using the model of the desired dynamics as a command generator, a multilayer feedforward neural network is trained to control the vehicle model within the physical limitations of the actuator dynamics. This is achieved by minimizing an objective function which is a weighted sum of tracking errors and control input commands and rates. To gain insight in the neurocontrol, linearized representations of the nonlinear neurocontroller are analyzed along a commanded trajectory. Linear robustness analysis tools are then applied to the linearized neurocontroller models and to the baseline H infinity based controller. Future areas of research identified to enhance the practical applicability of neural networks to flight control design.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delgoshaei, Parastoo; Austin, Mark A.; Pertzborn, Amanda J.
State-of-the-art building simulation control methods incorporate physical constraints into their mathematical models, but omit implicit constraints associated with policies of operation and dependency relationships among rules representing those constraints. To overcome these shortcomings, there is a recent trend in enabling the control strategies with inference-based rule checking capabilities. One solution is to exploit semantic web technologies in building simulation control. Such approaches provide the tools for semantic modeling of domains, and the ability to deduce new information based on the models through use of Description Logic (DL). In a step toward enabling this capability, this paper presents a cross-disciplinary data-drivenmore » control strategy for building energy management simulation that integrates semantic modeling and formal rule checking mechanisms into a Model Predictive Control (MPC) formulation. The results show that MPC provides superior levels of performance when initial conditions and inputs are derived from inference-based rules.« less
Modelling and control of a rotor supported by magnetic bearings
NASA Technical Reports Server (NTRS)
Gurumoorthy, R.; Pradeep, A. K.
1994-01-01
In this paper we develop a dynamical model of a rotor and the active magnetic bearings used to support the rotor. We use this model to develop a stable state feedback control of the magnetic bearing system. We present the development of a rigid body model of the rotor, utilizing both Rotation Matrices (Euler Angles) and Euler Parameters (Quaternions). In the latter half of the paper we develop a stable state feedback control of the actively controlled magnetic bearing to control the rotor position under inbalances. The control law developed takes into account the variation of the model with rotational speed. We show stability over the whole operating range of speeds for the magnetic bearing system. Simulation results are presented to demonstrate the closed loop system performance. We develop the model of the magnetic bearing, and present two schemes for the excitation of the poles of the actively controlled magnetic bearing. We also present a scheme for averaging multiple sensor measurements and splitting the actuation forces amongst redundant actuators.
NASA Astrophysics Data System (ADS)
CheshmehBeigi, Hassan Moradi
2018-05-01
In this paper, a novel speed control method for Homopolar Brushless DC (HBLDC) motor based on the adaptive nonlinear internal-model control (ANIMC) is presented. Rotor position information is obtained online by the Hall-Effect sensors placed on the motor's shaft, and is used to calculate the accurate model and accurate inverse model of the HBLDC motor. The online inverse model of the motor is used in the controller structure. To suppress the reference ? error, the negative feedback of difference between the motor speed and its model output ? is applied in the proposed controller. An appropriate signal is the output of the controller, which drives the power switches to converge the motor speed to the constant desired speed. Simulations and experiments are carried out on a ? three-phase HBLDC motor. The proposed drive system operates well in the speed response and has good robustness with respect to the disturbances. To validate the theoretical analysis, several experimental results are discussed in this paper.
Predictor-Based Model Reference Adaptive Control
NASA Technical Reports Server (NTRS)
Lavretsky, Eugene; Gadient, Ross; Gregory, Irene M.
2010-01-01
This paper is devoted to the design and analysis of a predictor-based model reference adaptive control. Stable adaptive laws are derived using Lyapunov framework. The proposed architecture is compared with the now classical model reference adaptive control. A simulation example is presented in which numerical evidence indicates that the proposed controller yields improved transient characteristics.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-19
... metal with composite empennage and control surfaces. The Model EMB-550 airplane is designed for 8...; Electronic Flight Control System: Control Surface Awareness and Mode Annunciation AGENCY: Federal Aviation... Embraer S.A. Model EMB-550 airplane. This airplane will have a novel or unusual design feature(s...
Díaz, José; Acosta, Jesús; González, Rafael; Cota, Juan; Sifuentes, Ernesto; Nebot, Àngela
2018-02-01
The control of the central nervous system (CNS) over the cardiovascular system (CS) has been modeled using different techniques, such as fuzzy inductive reasoning, genetic fuzzy systems, neural networks, and nonlinear autoregressive techniques; the results obtained so far have been significant, but not solid enough to describe the control response of the CNS over the CS. In this research, support vector machines (SVMs) are used to predict the response of a branch of the CNS, specifically, the one that controls an important part of the cardiovascular system. To do this, five models are developed to emulate the output response of five controllers for the same input signal, the carotid sinus blood pressure (CSBP). These controllers regulate parameters such as heart rate, myocardial contractility, peripheral and coronary resistance, and venous tone. The models are trained using a known set of input-output response in each controller; also, there is a set of six input-output signals for testing each proposed model. The input signals are processed using an all-pass filter, and the accuracy performance of the control models is evaluated using the percentage value of the normalized mean square error (MSE). Experimental results reveal that SVM models achieve a better estimation of the dynamical behavior of the CNS control compared to others modeling systems. The main results obtained show that the best case is for the peripheral resistance controller, with a MSE of 1.20e-4%, while the worst case is for the heart rate controller, with a MSE of 1.80e-3%. These novel models show a great reliability in fitting the output response of the CNS which can be used as an input to the hemodynamic system models in order to predict the behavior of the heart and blood vessels in response to blood pressure variations. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xavier, MA; Trimboli, MS
This paper introduces a novel application of model predictive control (MPC) to cell-level charging of a lithium-ion battery utilizing an equivalent circuit model of battery dynamics. The approach employs a modified form of the MPC algorithm that caters for direct feed-though signals in order to model near-instantaneous battery ohmic resistance. The implementation utilizes a 2nd-order equivalent circuit discrete-time state-space model based on actual cell parameters; the control methodology is used to compute a fast charging profile that respects input, output, and state constraints. Results show that MPC is well-suited to the dynamics of the battery control problem and further suggestmore » significant performance improvements might be achieved by extending the result to electrochemical models. (C) 2015 Elsevier B.V. All rights reserved.« less
Orbit control of a stratospheric satellite with parameter uncertainties
NASA Astrophysics Data System (ADS)
Xu, Ming; Huo, Wei
2016-12-01
When a stratospheric satellite travels by prevailing winds in the stratosphere, its cross-track displacement needs to be controlled to keep a constant latitude orbital flight. To design the orbit control system, a 6 degree-of-freedom (DOF) model of the satellite is established based on the second Lagrangian formulation, it is proven that the input/output feedback linearization theory cannot be directly implemented for the orbit control with this model, thus three subsystem models are deduced from the 6-DOF model to develop a sequential nonlinear control strategy. The control strategy includes an adaptive controller for the balloon-tether subsystem with uncertain balloon parameters, a PD controller based on feedback linearization for the tether-sail subsystem, and a sliding mode controller for the sail-rudder subsystem with uncertain sail parameters. Simulation studies demonstrate that the proposed control strategy is robust to uncertainties and satisfies high precision requirements for the orbit flight of the satellite.
Existence and characterization of optimal control in mathematics model of diabetics population
NASA Astrophysics Data System (ADS)
Permatasari, A. H.; Tjahjana, R. H.; Udjiani, T.
2018-03-01
Diabetes is a chronic disease with a huge burden affecting individuals and the whole society. In this paper, we constructed the optimal control mathematical model by applying a strategy to control the development of diabetic population. The constructed mathematical model considers the dynamics of disabled people due to diabetes. Moreover, an optimal control approach is proposed in order to reduce the burden of pre-diabetes. Implementation of control is done by preventing the pre-diabetes develop into diabetics with and without complications. The existence of optimal control and characterization of optimal control is discussed in this paper. Optimal control is characterized by applying the Pontryagin minimum principle. The results indicate that there is an optimal control in optimization problem in mathematics model of diabetic population. The effect of the optimal control variable (prevention) is strongly affected by the number of healthy people.
Switching control of an R/C hovercraft: stabilization and smooth switching.
Tanaka, K; Iwasaki, M; Wang, H O
2001-01-01
This paper presents stable switching control of an radio-controlled (R/C) hovercraft that is a nonholonomic (nonlinear) system. To exactly represent its nonlinear dynamics, more importantly, to maintain controllability of the system, we newly propose a switching fuzzy model that has locally Takagi-Sugeno (T-S) fuzzy models and switches them according to states, external variables, and/or time. A switching fuzzy controller is constructed by mirroring the rule structure of the switching fuzzy model of an R/C hovercraft. We derive linear matrix inequality (LMI) conditions for ensuring the stability of the closed-loop system consisting of a switching fuzzy model and controller. Furthermore, to guarantee smooth switching of control input at switching boundaries, we also derive a smooth switching condition represented in terms of LMIs. A stable switching fuzzy controller satisfying the smooth switching condition is designed by simultaneously solving both of the LMIs. The simulation and experimental results for the trajectory control of an R/C hovercraft show the validity of the switching fuzzy model and controller design, particularly, the smooth switching condition.
Nonlinear Tracking Control of a Conductive Supercoiled Polymer Actuator.
Luong, Tuan Anh; Cho, Kyeong Ho; Song, Min Geun; Koo, Ja Choon; Choi, Hyouk Ryeol; Moon, Hyungpil
2018-04-01
Artificial muscle actuators made from commercial nylon fishing lines have been recently introduced and shown as a new type of actuator with high performance. However, the actuators also exhibit significant nonlinearities, which make them difficult to control, especially in precise trajectory-tracking applications. In this article, we present a nonlinear mathematical model of a conductive supercoiled polymer (SCP) actuator driven by Joule heating for model-based feedback controls. Our efforts include modeling of the hysteresis behavior of the actuator. Based on nonlinear modeling, we design a sliding mode controller for SCP actuator-driven manipulators. The system with proposed control law is proven to be asymptotically stable using the Lyapunov theory. The control performance of the proposed method is evaluated experimentally and compared with that of a proportional-integral-derivative (PID) controller through one-degree-of-freedom SCP actuator-driven manipulators. Experimental results show that the proposed controller's performance is superior to that of a PID controller, such as the tracking errors are nearly 10 times smaller compared with those of a PID controller, and it is more robust to external disturbances such as sensor noise and actuator modeling error.
NASA Technical Reports Server (NTRS)
Balas, Gary J.
1992-01-01
The use is studied of active control to attenuate structural vibrations of the NASA Langley Phase Zero Evolutionary Structure due to external disturbance excitations. H sub infinity and structured singular value (mu) based control techniques are used to analyze and synthesize control laws for the NASA Langley Controls Structures Interaction (CSI) Evolutionary Model (CEM). The CEM structure experiment provides an excellent test bed to address control design issues for large space structures. Specifically, control design for structures with numerous lightly damped, coupled flexible modes, collocated and noncollocated sensors and actuators and stringent performance specifications. The performance objectives are to attenuate the vibration of the structure due to external disturbances, and minimize the actuator control force. The control design problem formulation for the CEM Structure uses a mathematical model developed with finite element techniques. A reduced order state space model for the control design is formulated from the finite element model. It is noted that there are significant variations between the design model and the experimentally derived transfer function data.
Fault tolerant control of multivariable processes using auto-tuning PID controller.
Yu, Ding-Li; Chang, T K; Yu, Ding-Wen
2005-02-01
Fault tolerant control of dynamic processes is investigated in this paper using an auto-tuning PID controller. A fault tolerant control scheme is proposed composing an auto-tuning PID controller based on an adaptive neural network model. The model is trained online using the extended Kalman filter (EKF) algorithm to learn system post-fault dynamics. Based on this model, the PID controller adjusts its parameters to compensate the effects of the faults, so that the control performance is recovered from degradation. The auto-tuning algorithm for the PID controller is derived with the Lyapunov method and therefore, the model predicted tracking error is guaranteed to converge asymptotically. The method is applied to a simulated two-input two-output continuous stirred tank reactor (CSTR) with various faults, which demonstrate the applicability of the developed scheme to industrial processes.
Integrated identification, modeling and control with applications
NASA Astrophysics Data System (ADS)
Shi, Guojun
This thesis deals with the integration of system design, identification, modeling and control. In particular, six interdisciplinary engineering problems are addressed and investigated. Theoretical results are established and applied to structural vibration reduction and engine control problems. First, the data-based LQG control problem is formulated and solved. It is shown that a state space model is not necessary to solve this problem; rather a finite sequence from the impulse response is the only model data required to synthesize an optimal controller. The new theory avoids unnecessary reliance on a model, required in the conventional design procedure. The infinite horizon model predictive control problem is addressed for multivariable systems. The basic properties of the receding horizon implementation strategy is investigated and the complete framework for solving the problem is established. The new theory allows the accommodation of hard input constraints and time delays. The developed control algorithms guarantee the closed loop stability. A closed loop identification and infinite horizon model predictive control design procedure is established for engine speed regulation. The developed algorithms are tested on the Cummins Engine Simulator and desired results are obtained. A finite signal-to-noise ratio model is considered for noise signals. An information quality index is introduced which measures the essential information precision required for stabilization. The problems of minimum variance control and covariance control are formulated and investigated. Convergent algorithms are developed for solving the problems of interest. The problem of the integrated passive and active control design is addressed in order to improve the overall system performance. A design algorithm is developed, which simultaneously finds: (i) the optimal values of the stiffness and damping ratios for the structure, and (ii) an optimal output variance constrained stabilizing controller such that the active control energy is minimized. A weighted q-Markov COVER method is introduced for identification with measurement noise. The result is use to develop an iterative closed loop identification/control design algorithm. The effectiveness of the algorithm is illustrated by experimental results.
Flatness-based control and Kalman filtering for a continuous-time macroeconomic model
NASA Astrophysics Data System (ADS)
Rigatos, G.; Siano, P.; Ghosh, T.; Busawon, K.; Binns, R.
2017-11-01
The article proposes flatness-based control for a nonlinear macro-economic model of the UK economy. The differential flatness properties of the model are proven. This enables to introduce a transformation (diffeomorphism) of the system's state variables and to express the state-space description of the model in the linear canonical (Brunowsky) form in which both the feedback control and the state estimation problem can be solved. For the linearized equivalent model of the macroeconomic system, stabilizing feedback control can be achieved using pole placement methods. Moreover, to implement stabilizing feedback control of the system by measuring only a subset of its state vector elements the Derivative-free nonlinear Kalman Filter is used. This consists of the Kalman Filter recursion applied on the linearized equivalent model of the financial system and of an inverse transformation that is based again on differential flatness theory. The asymptotic stability properties of the control scheme are confirmed.
On the dynamics of a generalized predator-prey system with Z-type control.
Lacitignola, Deborah; Diele, Fasma; Marangi, Carmela; Provenzale, Antonello
2016-10-01
We apply the Z-control approach to a generalized predator-prey system and consider the specific case of indirect control of the prey population. We derive the associated Z-controlled model and investigate its properties from the point of view of the dynamical systems theory. The key role of the design parameter λ for the successful application of the method is stressed and related to specific dynamical properties of the Z-controlled model. Critical values of the design parameter are also found, delimiting the λ-range for the effectiveness of the Z-method. Analytical results are then numerically validated by the means of two ecological models: the classical Lotka-Volterra model and a model related to a case study of the wolf-wild boar dynamics in the Alta Murgia National Park. Investigations on these models also highlight how the Z-control method acts in respect to different dynamical regimes of the uncontrolled model. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
A dual-loop model of the human controller
NASA Technical Reports Server (NTRS)
Hess, R. A.
1977-01-01
A representative model of the human controller in single-axis compensatory tracking tasks that exhibits an internal feedback loop which is not evident in single-loop models now in common use is presented. This hypothetical inner-loop involves a neuromuscular command signal derived from the time rate of change of controlled element output which is due to control activity. It is not contended that the single-loop human controller models now in use are incorrect, but that they contain an implicit but important internal loop closure, which, if explicitly considered, can account for a good deal of the adaptive nature of the human controller in a systematic manner.
Integrated control system for electron beam processes
NASA Astrophysics Data System (ADS)
Koleva, L.; Koleva, E.; Batchkova, I.; Mladenov, G.
2018-03-01
The ISO/IEC 62264 standard is widely used for integration of the business systems of a manufacturer with the corresponding manufacturing control systems based on hierarchical equipment models, functional data and manufacturing operations activity models. In order to achieve the integration of control systems, formal object communication models must be developed, together with manufacturing operations activity models, which coordinate the integration between different levels of control. In this article, the development of integrated control system for electron beam welding process is presented as part of a fully integrated control system of an electron beam plant, including also other additional processes: surface modification, electron beam evaporation, selective melting and electron beam diagnostics.
Improved LTVMPC design for steering control of autonomous vehicle
NASA Astrophysics Data System (ADS)
Velhal, Shridhar; Thomas, Susy
2017-01-01
An improved linear time varying model predictive control for steering control of autonomous vehicle running on slippery road is presented. Control strategy is designed such that the vehicle will follow the predefined trajectory with highest possible entry speed. In linear time varying model predictive control, nonlinear vehicle model is successively linearized at each sampling instant. This linear time varying model is used to design MPC which will predict the future horizon. By incorporating predicted input horizon in each successive linearization the effectiveness of controller has been improved. The tracking performance using steering with front wheel and braking at four wheels are presented to illustrate the effectiveness of the proposed method.
Nonlinear adaptive inverse control via the unified model neural network
NASA Astrophysics Data System (ADS)
Jeng, Jin-Tsong; Lee, Tsu-Tian
1999-03-01
In this paper, we propose a new nonlinear adaptive inverse control via a unified model neural network. In order to overcome nonsystematic design and long training time in nonlinear adaptive inverse control, we propose the approximate transformable technique to obtain a Chebyshev Polynomials Based Unified Model (CPBUM) neural network for the feedforward/recurrent neural networks. It turns out that the proposed method can use less training time to get an inverse model. Finally, we apply this proposed method to control magnetic bearing system. The experimental results show that the proposed nonlinear adaptive inverse control architecture provides a greater flexibility and better performance in controlling magnetic bearing systems.
Modelling machine ensembles with discrete event dynamical system theory
NASA Technical Reports Server (NTRS)
Hunter, Dan
1990-01-01
Discrete Event Dynamical System (DEDS) theory can be utilized as a control strategy for future complex machine ensembles that will be required for in-space construction. The control strategy involves orchestrating a set of interactive submachines to perform a set of tasks for a given set of constraints such as minimum time, minimum energy, or maximum machine utilization. Machine ensembles can be hierarchically modeled as a global model that combines the operations of the individual submachines. These submachines are represented in the global model as local models. Local models, from the perspective of DEDS theory , are described by the following: a set of system and transition states, an event alphabet that portrays actions that takes a submachine from one state to another, an initial system state, a partial function that maps the current state and event alphabet to the next state, and the time required for the event to occur. Each submachine in the machine ensemble is presented by a unique local model. The global model combines the local models such that the local models can operate in parallel under the additional logistic and physical constraints due to submachine interactions. The global model is constructed from the states, events, event functions, and timing requirements of the local models. Supervisory control can be implemented in the global model by various methods such as task scheduling (open-loop control) or implementing a feedback DEDS controller (closed-loop control).
NASA Technical Reports Server (NTRS)
Waszak, Martin R.
1996-01-01
This paper describes the formulation of a model of the dynamic behavior of the Benchmark Active Controls Technology (BACT) wind-tunnel model for application to design and analysis of flutter suppression controllers. The model is formed by combining the equations of motion for the BACT wind-tunnel model with actuator models and a model of wind-tunnel turbulence. The primary focus of this paper is the development of the equations of motion from first principles using Lagrange's equations and the principle of virtual work. A numerical form of the model is generated using values for parameters obtained from both experiment and analysis. A unique aspect of the BACT wind-tunnel model is that it has upper- and lower-surface spoilers for active control. Comparisons with experimental frequency responses and other data show excellent agreement and suggest that simple coefficient-based aerodynamics are sufficient to accurately characterize the aeroelastic response of the BACT wind-tunnel model. The equations of motion developed herein have been used to assist the design and analysis of a number of flutter suppression controllers that have been successfully implemented.
Market-oriented Programming Using Small-world Networks for Controlling Building Environments
NASA Astrophysics Data System (ADS)
Shigei, Noritaka; Miyajima, Hiromi; Osako, Tsukasa
The market model, which is one of the economic activity models, is modeled as an agent system, and applying the model to the resource allocation problem has been studied. For air conditioning control of building, which is one of the resource allocation problems, an effective method based on the agent system using auction has been proposed for traditional PID controller. On the other hand, it has been considered that this method is performed by decentralized control. However, its decentralization is not perfect, and its performace is not enough. In this paper, firstly, we propose a perfectly decentralized agent model and show its performance. Secondly, in order to improve the model, we propose the agent model based on small-world model. The effectiveness of the proposed model is shown by simulation.
[The improvement of mixed human serum-induced anaphylactic reaction death model in guinea pigs].
Chen, Jiong-Yuan; Lai, Yue; Li, Dang-Ri; Yue, Xia; Wang, Hui-Jun
2012-12-01
To increase the death rate of fatal anaphylaxis in guinea pigs and the detectahie level of the tryptase of mast cell in hlood serum. Seventy-four guinea pigs were randomly divided into five groups: original model group, original model control group, improved model group, improved model control group, improved model with non-anaphylaxis group. Using mixed human serum as the allergen, the way of injection, sensitization and induction were improved. ELISA was used to detect the serum mast cell tryptase and total IgE in guinea pigs of each group. The death rate of fatal anaphylaxis in original model group was 54.2% with the different degree of hemopericardium. The severe pericardial tamponade appeared in 9 guinea pigs in original model group and original model control group. The death rate of fatal anaphylaxis in improved model group was 75% without pericardial tamponade. The concentration of the serum total IgE showed no statistically difference hetween original model group and original model control group (P > 0.05), hut the serum mast cell tryptase level was higher in the original model group than that in the original model control group (P > 0.05). The concentration of the serum total IgE and the serum mast cell tryptase level were significantly higher in improved model group than that in the improved model control group (P < 0.05). The death rate of the improved model significantly increases, which can provide effective animal model for the study of serum total IgE and mast cell tryptase.
Pilot-model analysis and simulation study of effect of control task desired control response
NASA Technical Reports Server (NTRS)
Adams, J. J.; Gera, J.; Jaudon, J. B.
1978-01-01
A pilot model analysis was performed that relates pilot control compensation, pilot aircraft system response, and aircraft response characteristics for longitudinal control. The results show that a higher aircraft short period frequency is required to achieve superior pilot aircraft system response in an altitude control task than is required in an attitude control task. These results were confirmed by a simulation study of target tracking. It was concluded that the pilot model analysis provides a theoretical basis for determining the effect of control task on pilot opinions.
NASA Technical Reports Server (NTRS)
1974-01-01
The transient and steady state response of the respiratory control system for variations in volumetric fractions of inspired gases and special system parameters are modeled. The program contains the capability to change workload. The program is based on Grodins' respiratory control model and can be envisioned as a feedback control system comprised of a plant (the controlled system) and the regulating component (controlling system). The controlled system is partitioned into 3 compartments corresponding to lungs, brain, and tissue with a fluid interconnecting patch representing the blood.
Learning and Control Model of the Arm for Loading
NASA Astrophysics Data System (ADS)
Kim, Kyoungsik; Kambara, Hiroyuki; Shin, Duk; Koike, Yasuharu
We propose a learning and control model of the arm for a loading task in which an object is loaded onto one hand with the other hand, in the sagittal plane. Postural control during object interactions provides important points to motor control theories in terms of how humans handle dynamics changes and use the information of prediction and sensory feedback. For the learning and control model, we coupled a feedback-error-learning scheme with an Actor-Critic method used as a feedback controller. To overcome sensory delays, a feedforward dynamics model (FDM) was used in the sensory feedback path. We tested the proposed model in simulation using a two-joint arm with six muscles, each with time delays in muscle force generation. By applying the proposed model to the loading task, we showed that motor commands started increasing, before an object was loaded on, to stabilize arm posture. We also found that the FDM contributes to the stabilization by predicting how the hand changes based on contexts of the object and efferent signals. For comparison with other computational models, we present the simulation results of a minimum-variance model.
Research environments that promote integrity.
Jeffers, Brenda Recchia; Whittemore, Robin
2005-01-01
The body of empirical knowledge about research integrity and the factors that promote research integrity in nursing research environments remains small. To propose an internal control model as an innovative framework for the design and structure of nursing research environments that promote integrity. An internal control model is adapted to illustrate its use for conceptualizing and designing research environments that promote integrity. The internal control model integrates both the organizational elements necessary to promote research integrity and the processes needed to assess research environments. The model provides five interrelated process components within which any number of research integrity variables and processes may be used and studied: internal control environment, risk assessment, internal control activities, monitoring, and information and communication. The components of the proposed research integrity internal control model proposed comprise an integrated conceptualization of the processes that provide reasonable assurance that research integrity will be promoted within the nursing research environment. Schools of nursing can use the model to design, implement, and evaluate systems that promote research integrity. The model process components need further exploration to substantiate the use of the model in nursing research environments.
NASA Astrophysics Data System (ADS)
Tuan, Le Anh; Lee, Soon-Geul
2018-03-01
In this study, a new mathematical model of crawler cranes is developed for heavy working conditions, with payload-lifting and boom-hoisting motions simultaneously activated. The system model is built with full consideration of wind disturbances, geometrical nonlinearities, and cable elasticities of cargo lifting and boom luffing. On the basis of this dynamic model, three versions of sliding mode control are analyzed and designed to control five system outputs with only two inputs. When used in complicated operations, the effectiveness of the controllers is analyzed using analytical investigation and numerical simulation. Results indicate the effectiveness of the control algorithms and the proposed dynamic model. The control algorithms asymptotically stabilize the system with finite-time convergences, remaining robust amid disturbances and parametric uncertainties.
REVIEW: Internal models in sensorimotor integration: perspectives from adaptive control theory
NASA Astrophysics Data System (ADS)
Tin, Chung; Poon, Chi-Sang
2005-09-01
Internal models and adaptive controls are empirical and mathematical paradigms that have evolved separately to describe learning control processes in brain systems and engineering systems, respectively. This paper presents a comprehensive appraisal of the correlation between these paradigms with a view to forging a unified theoretical framework that may benefit both disciplines. It is suggested that the classic equilibrium-point theory of impedance control of arm movement is analogous to continuous gain-scheduling or high-gain adaptive control within or across movement trials, respectively, and that the recently proposed inverse internal model is akin to adaptive sliding control originally for robotic manipulator applications. Modular internal models' architecture for multiple motor tasks is a form of multi-model adaptive control. Stochastic methods, such as generalized predictive control, reinforcement learning, Bayesian learning and Hebbian feedback covariance learning, are reviewed and their possible relevance to motor control is discussed. Possible applicability of a Luenberger observer and an extended Kalman filter to state estimation problems—such as sensorimotor prediction or the resolution of vestibular sensory ambiguity—is also discussed. The important role played by vestibular system identification in postural control suggests an indirect adaptive control scheme whereby system states or parameters are explicitly estimated prior to the implementation of control. This interdisciplinary framework should facilitate the experimental elucidation of the mechanisms of internal models in sensorimotor systems and the reverse engineering of such neural mechanisms into novel brain-inspired adaptive control paradigms in future.
Free-Flight Investigation of Radio Controlled Models with Parawings
NASA Technical Reports Server (NTRS)
Hewes, Donald E.
1961-01-01
A free-flight investigation of two radio-controlled models with parawings, a glider configuration and an airplane (powered) configuration, was made to evaluate the performance, stability, and methods of controlling parawing vehicles. The flight tests showed that the models were stable and could be controlled either by shifting the center of gravity or by using conventional elevator and rudder control surfaces. Static wind-tunnel force-test data were also obtained.
NASA Technical Reports Server (NTRS)
Whorton, M. S.
1998-01-01
Many spacecraft systems have ambitious objectives that place stringent requirements on control systems. Achievable performance is often limited because of difficulty of obtaining accurate models for flexible space structures. To achieve sufficiently high performance to accomplish mission objectives may require the ability to refine the control design model based on closed-loop test data and tune the controller based on the refined model. A control system design procedure is developed based on mixed H2/H(infinity) optimization to synthesize a set of controllers explicitly trading between nominal performance and robust stability. A homotopy algorithm is presented which generates a trajectory of gains that may be implemented to determine maximum achievable performance for a given model error bound. Examples show that a better balance between robustness and performance is obtained using the mixed H2/H(infinity) design method than either H2 or mu-synthesis control design. A second contribution is a new procedure for closed-loop system identification which refines parameters of a control design model in a canonical realization. Examples demonstrate convergence of the parameter estimation and improved performance realized by using the refined model for controller redesign. These developments result in an effective mechanism for achieving high-performance control of flexible space structures.
Andrade Neto, A S; Secchi, A R; Souza, M B; Barreto, A G
2016-10-28
An adaptive nonlinear model predictive control of a simulated moving bed unit for the enantioseparation of praziquantel is presented. A first principle model was applied at the proposed purity control scheme. The main concern about this kind of model in a control framework is in regard to the computational effort to solve it; however, a fast enough solution was achieved. In order to evaluate the controller's performance, several cases were simulated, including external pumps and switching valve malfunctions. The problem of plant-model mismatch was also investigated, and for that reason a parameter estimation step was introduced in the control strategy. In every studied scenario, the controller was able to maintain the purity levels at their set points, which were set to 99% and 98.6% for extract and raffinate, respectively. Additionally, fast responses and smooth actuation were achieved. Copyright © 2016 Elsevier B.V. All rights reserved.
Development of a cerebral circulation model for the automatic control of brain physiology.
Utsuki, T
2015-01-01
In various clinical guidelines of brain injury, intracranial pressure (ICP), cerebral blood flow (CBF) and brain temperature (BT) are essential targets for precise management for brain resuscitation. In addition, the integrated automatic control of BT, ICP, and CBF is required for improving therapeutic effects and reducing medical costs and staff burden. Thus, a new model of cerebral circulation was developed in this study for integrative automatic control. With this model, the CBF and cerebral perfusion pressure of a normal adult male were regionally calculated according to cerebrovascular structure, blood viscosity, blood distribution, CBF autoregulation, and ICP. The analysis results were consistent with physiological knowledge already obtained with conventional studies. Therefore, the developed model is potentially available for the integrative control of the physiological state of the brain as a reference model of an automatic control system, or as a controlled object in various control simulations.
Fractional Control of An Active Four-wheel-steering Vehicle
NASA Astrophysics Data System (ADS)
Wang, Tianting; Tong, Jun; Chen, Ning; Tian, Jie
2018-03-01
A four-wheel-steering (4WS) vehicle model and reference model with a drop filter are constructed. The decoupling of 4WS vehicle model is carried out. And a fractional PIλDμ controller is introduced into the decoupling strategy to reduce the effects of the uncertainty of the vehicle parameters as well as the unmodelled dynamics on the system performance. Based on optimization techniques, the design of fractional controller are obtained to ensure the robustness of 4WS vehicle during the special range of frequencies through proper choice of the constraints. In order to compare with fractional robust controller, an optimal controller for the same vehicle is also designed. The simulations of the two control systems are carried out and it reveals that the decoupling and fractional robust controller is able to make vehicle model trace the reference model very well with better robustness.
A rationale for human operator pulsive control behavior
NASA Technical Reports Server (NTRS)
Hess, R. A.
1979-01-01
When performing tracking tasks which involve demanding controlled elements such as those with K/s-squared dynamics, the human operator often develops discrete or pulsive control outputs. A dual-loop model of the human operator is discussed, the dominant adaptive feature of which is the explicit appearance of an internal model of the manipulator-controlled element dynamics in an inner feedback loop. Using this model, a rationale for pulsive control behavior is offered which is based upon the assumption that the human attempts to reduce the computational burden associated with time integration of sensory inputs. It is shown that such time integration is a natural consequence of having an internal representation of the K/s-squared-controlled element dynamics in the dual-loop model. A digital simulation is discussed in which a modified form of the dual-loop model is shown to be capable of producing pulsive control behavior qualitively comparable to that obtained in experiment.
NASA Technical Reports Server (NTRS)
Cramer, Nick; Swei, Sean Shan-Min; Cheung, Kenny; Teodorescu, Mircea
2015-01-01
This paper presents a modeling and control of aerostructure developed by lattice-based cellular materials/components. The proposed aerostructure concept leverages a building block strategy for lattice-based components which provide great adaptability to varying ight scenarios, the needs of which are essential for in- ight wing shaping control. A decentralized structural control design is proposed that utilizes discrete-time lumped mass transfer matrix method (DT-LM-TMM). The objective is to develop an e ective reduced order model through DT-LM-TMM that can be used to design a decentralized controller for the structural control of a wing. The proposed approach developed in this paper shows that, as far as the performance of overall structural system is concerned, the reduced order model can be as e ective as the full order model in designing an optimal stabilizing controller.
Controlling Microbial Byproducts using Model-Based Substrate Monitoring and Control Strategies
NASA Technical Reports Server (NTRS)
Smernoff, David T.; Blackwell, Charles; Mancinelli, Rocco L.; DeVincenzi, Donald (Technical Monitor)
2000-01-01
We have developed a computer-controlled bioreactor system to study various aspects of microbially-mediated nitrogen cycling. The system has been used to investigate methods for controlling microbial denitrification (the dissimilatory reduction of nitrate to N2O and N2) in hydroponic plant growth chambers. Such chambers are key elements of advanced life support systems being designed for use on long duration space missions, but nitrogen use efficiency in them is reduced by denitrification. Control software architecture was designed which permits the heterogeneous control of system hardware using traditional feedback control, and quantitative and qualitative models of various system features. Model-based feed forward control entails prediction of future systems in states and automated regulation of system parameters to achieve desired and avoid undesirable system states. A bacterial growth rate model based on the classic Monod model of saturation kinetics was used to evaluate the response of several individual denitrifying species to varying environmental conditions. The system and models are now being applied to mixed microbial communities harvested from the root zone of a hydroponic growth chamber. The use of a modified Monod organism interaction model was evaluated as a means of achieving more accurate description of the dynamic behavior of the communities. A minimum variance parameter estimation routine was also' used to calibrate the constant parameters in the model by iterative evaluation of substrate (nitrate) uptake and growth kinetics. This representation of processes and interactions aids in the formulation of control laws. The feed forward control strategy being developed will increase system autonomy, reduce crew intervention and limit the accumulation of undesirable waste products (NOx).
Active vibration and noise control of vibro-acoustic system by using PID controller
NASA Astrophysics Data System (ADS)
Li, Yunlong; Wang, Xiaojun; Huang, Ren; Qiu, Zhiping
2015-07-01
Active control simulation of the acoustic and vibration response of a vibro-acoustic cavity of an airplane based on a PID controller is presented. A full numerical vibro-acoustic model is developed by using an Eulerian model, which is a coupled model based on the finite element formulation. The reduced order model, which is used to design the closed-loop control system, is obtained by the combination of modal expansion and variable substitution. Some physical experiments are made to validate and update the full-order and the reduced-order numerical models. Optimization of the actuator placement is employed in order to get an effective closed-loop control system. For the controller design, an iterative method is used to determine the optimal parameters of the PID controller. The process is illustrated by the design of an active noise and vibration control system for a cavity structure. The numerical and experimental results show that a PID-based active control system can effectively suppress the noise inside the cavity using a sound pressure signal as the controller input. It is also possible to control the noise by suppressing the vibration of the structure using the structural displacement signal as the controller input. For an airplane cavity structure, considering the issue of space-saving, the latter is more suitable.
Validation of air traffic controller workload models
DOT National Transportation Integrated Search
1979-09-01
During the past several years, computer models have been developed for off-site : estimat ion of control ler's workload. The inputs to these models are audio and : digital data normally recorded at an Air Route Traffic Control Center (ARTCC). : This ...
A Control Concept for Large Flexible Spacecraft Using Order Reduction Techniques
NASA Technical Reports Server (NTRS)
Thieme, G.; Roth, H.
1985-01-01
Results found during the investigation of control problems of large flexible spacecraft are given. A triple plate configuration of such a spacecraft is defined and studied. The model is defined by modal data derived from infinite element modeling. The order reduction method applied is briefly described. An attitude control concept with low and high authority control has been developed to design an attitude controller for the reduced model. The stability and response of the original system together with the reduced controller is analyzed.
STOVL Control Integration Program
NASA Technical Reports Server (NTRS)
Weiss, C.; Mcdowell, P.; Watts, S.
1994-01-01
An integrated flight/propulsion control for an advanced vector thrust supersonic STOVL aircraft, was developed by Pratt & Whitney and McDonnell Douglas Aerospace East. The IFPC design was based upon the partitioning of the global requirements into flight control and propulsion control requirements. To validate the design, aircraft and engine models were also developed for use on a NASA Ames piloted simulator. Different flight control implementations, evaluated for their handling qualities, are documented in the report along with the propulsion control, engine model, and aircraft model.
Cheng, Kung-Shan; Yuan, Yu; Li, Zhen; Stauffer, Paul R; Maccarini, Paolo; Joines, William T; Dewhirst, Mark W; Das, Shiva K
2009-04-07
In large multi-antenna systems, adaptive controllers can aid in steering the heat focus toward the tumor. However, the large number of sources can greatly increase the steering time. Additionally, controller performance can be degraded due to changes in tissue perfusion which vary non-linearly with temperature, as well as with time and spatial position. The current work investigates whether a reduced-order controller with the assumption of piecewise constant perfusion is robust to temperature-dependent perfusion and achieves steering in a shorter time than required by a full-order controller. The reduced-order controller assumes that the optimal heating setting lies in a subspace spanned by the best heating vectors (virtual sources) of an initial, approximate, patient model. An initial, approximate, reduced-order model is iteratively updated by the controller, using feedback thermal images, until convergence of the heat focus to the tumor. Numerical tests were conducted in a patient model with a right lower leg sarcoma, heated in a 10-antenna cylindrical mini-annual phased array applicator operating at 150 MHz. A half-Gaussian model was used to simulate temperature-dependent perfusion. Simulated magnetic resonance temperature images were used as feedback at each iteration step. Robustness was validated for the controller, starting from four approximate initial models: (1) a 'standard' constant perfusion lower leg model ('standard' implies a model that exactly models the patient with the exception that perfusion is considered constant, i.e., not temperature dependent), (2) a model with electrical and thermal tissue properties varied from 50% higher to 50% lower than the standard model, (3) a simplified constant perfusion pure-muscle lower leg model with +/-50% deviated properties and (4) a standard model with the tumor position in the leg shifted by 1.5 cm. Convergence to the desired focus of heating in the tumor was achieved for all four simulated models. The controller accomplished satisfactory therapeutic outcomes: approximately 80% of the tumor was heated to temperatures 43 degrees C and approximately 93% was maintained at temperatures <41 degrees C. Compared to the controller without model reduction, a approximately 9-25 fold reduction in convergence time was accomplished using approximately 2-3 orthonormal virtual sources. In the situations tested, the controller was robust to the presence of temperature-dependent perfusion. The results of this work can help to lay the foundation for real-time thermal control of multi-antenna hyperthermia systems in clinical situations where perfusion can change rapidly with temperature.
Shimansky, Yury P; Kang, Tao; He, Jiping
2004-02-01
A computational model of a learning system (LS) is described that acquires knowledge and skill necessary for optimal control of a multisegmental limb dynamics (controlled object or CO), starting from "knowing" only the dimensionality of the object's state space. It is based on an optimal control problem setup different from that of reinforcement learning. The LS solves the optimal control problem online while practicing the manipulation of CO. The system's functional architecture comprises several adaptive components, each of which incorporates a number of mapping functions approximated based on artificial neural nets. Besides the internal model of the CO's dynamics and adaptive controller that computes the control law, the LS includes a new type of internal model, the minimal cost (IM(mc)) of moving the controlled object between a pair of states. That internal model appears critical for the LS's capacity to develop an optimal movement trajectory. The IM(mc) interacts with the adaptive controller in a cooperative manner. The controller provides an initial approximation of an optimal control action, which is further optimized in real time based on the IM(mc). The IM(mc) in turn provides information for updating the controller. The LS's performance was tested on the task of center-out reaching to eight randomly selected targets with a 2DOF limb model. The LS reached an optimal level of performance in a few tens of trials. It also quickly adapted to movement perturbations produced by two different types of external force field. The results suggest that the proposed design of a self-optimized control system can serve as a basis for the modeling of motor learning that includes the formation and adaptive modification of the plan of a goal-directed movement.
NASA Astrophysics Data System (ADS)
Sun, Xiaoqiang; Cai, Yingfeng; Wang, Shaohua; Liu, Yanling; Chen, Long
2016-01-01
The control problems associated with vehicle height adjustment of electronically controlled air suspension (ECAS) still pose theoretical challenges for researchers, which manifest themselves in the publications on this subject over the last years. This paper deals with modeling and control of a vehicle height adjustment system for ECAS, which is an example of a hybrid dynamical system due to the coexistence and coupling of continuous variables and discrete events. A mixed logical dynamical (MLD) modeling approach is chosen for capturing enough details of the vehicle height adjustment process. The hybrid dynamic model is constructed on the basis of some assumptions and piecewise linear approximation for components nonlinearities. Then, the on-off statuses of solenoid valves and the piecewise approximation process are described by propositional logic, and the hybrid system is transformed into the set of linear mixed-integer equalities and inequalities, denoted as MLD model, automatically by HYSDEL. Using this model, a hybrid model predictive controller (HMPC) is tuned based on online mixed-integer quadratic optimization (MIQP). Two different scenarios are considered in the simulation, whose results verify the height adjustment effectiveness of the proposed approach. Explicit solutions of the controller are computed to control the vehicle height adjustment system in realtime using an offline multi-parametric programming technology (MPT), thus convert the controller into an equivalent explicit piecewise affine form. Finally, bench experiments for vehicle height lifting, holding and lowering procedures are conducted, which demonstrate that the HMPC can adjust the vehicle height by controlling the on-off statuses of solenoid valves directly. This research proposes a new modeling and control method for vehicle height adjustment of ECAS, which leads to a closed-loop system with favorable dynamical properties.
Modal-space reference-model-tracking fuzzy control of earthquake excited structures
NASA Astrophysics Data System (ADS)
Park, Kwan-Soon; Ok, Seung-Yong
2015-01-01
This paper describes an adaptive modal-space reference-model-tracking fuzzy control technique for the vibration control of earthquake-excited structures. In the proposed approach, the fuzzy logic is introduced to update optimal control force so that the controlled structural response can track the desired response of a reference model. For easy and practical implementation, the reference model is constructed by assigning the target damping ratios to the first few dominant modes in modal space. The numerical simulation results demonstrate that the proposed approach successfully achieves not only the adaptive fault-tolerant control system against partial actuator failures but also the robust performance against the variations of the uncertain system properties by redistributing the feedback control forces to the available actuators.
The Airspace Concepts Evaluation System Architecture and System Plant
NASA Technical Reports Server (NTRS)
Windhorst, Robert; Meyn, Larry; Manikonda, Vikram; Carlos, Patrick; Capozzi, Brian
2006-01-01
The Airspace Concepts Evaluation System is a simulation of the National Airspace System. It includes models of flights, airports, airspaces, air traffic controls, traffic flow managements, and airline operation centers operating throughout the United States. It is used to predict system delays in response to future capacity and demand scenarios and perform benefits assessments of current and future airspace technologies and operational concepts. Facilitation of these studies requires that the simulation architecture supports plug and play of different air traffic control, traffic flow management, and airline operation center models and multi-fidelity modeling of flights, airports, and airspaces. The simulation is divided into two parts that are named, borrowing from classical control theory terminology, control and plant. The control consists of air traffic control, traffic flow management, and airline operation center models, and the plant consists of flight, airport, and airspace models. The plant can run open loop, in the absence of the control. However, undesired affects, such as conflicts and over congestions in the airspaces and airports, can occur. Different controls are applied, "plug and played", to the plant. A particular control is evaluated by analyzing how well it managed conflicts and congestions. Furthermore, the terminal area plants consist of models of airports and terminal airspaces. Each model consists of a set of nodes and links which are connected by the user to form a network. Nodes model runways, fixes, taxi intersections, gates, and/or other points of interest, and links model taxiways, departure paths, and arrival paths. Metering, flow distribution, and sequencing functions can be applied at nodes. Different fidelity model of how a flight transits are can be used by links. The fidelity of the model can be adjusted by the user by either changing the complexity of the node/link network-or the way that the link models how the flights transit from one node to the other.
Predictive Feedback and Feedforward Control for Systems with Unknown Disturbances
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan; Eure, Kenneth W.
1998-01-01
Predictive feedback control has been successfully used in the regulation of plate vibrations when no reference signal is available for feedforward control. However, if a reference signal is available it may be used to enhance regulation by incorporating a feedforward path in the feedback controller. Such a controller is known as a hybrid controller. This paper presents the theory and implementation of the hybrid controller for general linear systems, in particular for structural vibration induced by acoustic noise. The generalized predictive control is extended to include a feedforward path in the multi-input multi-output case and implemented on a single-input single-output test plant to achieve plate vibration regulation. There are cases in acoustic-induce vibration where the disturbance signal is not available to be used by the hybrid controller, but a disturbance model is available. In this case the disturbance model may be used in the feedback controller to enhance performance. In practice, however, neither the disturbance signal nor the disturbance model is available. This paper presents the theory of identifying and incorporating the noise model into the feedback controller. Implementations are performed on a test plant and regulation improvements over the case where no noise model is used are demonstrated.
Modeling and Control of the Redundant Parallel Adjustment Mechanism on a Deployable Antenna Panel
Tian, Lili; Bao, Hong; Wang, Meng; Duan, Xuechao
2016-01-01
With the aim of developing multiple input and multiple output (MIMO) coupling systems with a redundant parallel adjustment mechanism on the deployable antenna panel, a structural control integrated design methodology is proposed in this paper. Firstly, the modal information from the finite element model of the structure of the antenna panel is extracted, and then the mathematical model is established with the Hamilton principle; Secondly, the discrete Linear Quadratic Regulator (LQR) controller is added to the model in order to control the actuators and adjust the shape of the panel. Finally, the engineering practicality of the modeling and control method based on finite element analysis simulation is verified. PMID:27706076
Evaluation of a Guideline by Formal Modelling of Cruise Control System in Event-B
NASA Technical Reports Server (NTRS)
Yeganefard, Sanaz; Butler, Michael; Rezazadeh, Abdolbaghi
2010-01-01
Recently a set of guidelines, or cookbook, has been developed for modelling and refinement of control problems in Event-B. The Event-B formal method is used for system-level modelling by defining states of a system and events which act on these states. It also supports refinement of models. This cookbook is intended to systematize the process of modelling and refining a control problem system by distinguishing environment, controller and command phenomena. Our main objective in this paper is to investigate and evaluate the usefulness and effectiveness of this cookbook by following it throughout the formal modelling of cruise control system found in cars. The outcomes are identifying the benefits of the cookbook and also giving guidance to its future users.
A Method for Generating Reduced Order Linear Models of Supersonic Inlets
NASA Technical Reports Server (NTRS)
Chicatelli, Amy; Hartley, Tom T.
1997-01-01
For the modeling of high speed propulsion systems, there are at least two major categories of models. One is based on computational fluid dynamics (CFD), and the other is based on design and analysis of control systems. CFD is accurate and gives a complete view of the internal flow field, but it typically has many states and runs much slower dm real-time. Models based on control design typically run near real-time but do not always capture the fundamental dynamics. To provide improved control models, methods are needed that are based on CFD techniques but yield models that are small enough for control analysis and design.
A TCP model for external beam treatment of intermediate-risk prostate cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walsh, Sean; Putten, Wil van der
2013-03-15
Purpose: Biological models offer the ability to predict clinical outcomes. The authors describe a model to predict the clinical response of intermediate-risk prostate cancer to external beam radiotherapy for a variety of fractionation regimes. Methods: A fully heterogeneous population averaged tumor control probability model was fit to clinical outcome data for hyper, standard, and hypofractionated treatments. The tumor control probability model was then employed to predict the clinical outcome of extreme hypofractionation regimes, as utilized in stereotactic body radiotherapy. Results: The tumor control probability model achieves an excellent level of fit, R{sup 2} value of 0.93 and a root meanmore » squared error of 1.31%, to the clinical outcome data for hyper, standard, and hypofractionated treatments using realistic values for biological input parameters. Residuals Less-Than-Or-Slanted-Equal-To 1.0% are produced by the tumor control probability model when compared to clinical outcome data for stereotactic body radiotherapy. Conclusions: The authors conclude that this tumor control probability model, used with the optimized radiosensitivity values obtained from the fit, is an appropriate mechanistic model for the analysis and evaluation of external beam RT plans with regard to tumor control for these clinical conditions.« less
NASA Technical Reports Server (NTRS)
Swift, David C.
1992-01-01
This project dealt with the application of a Direct Model Reference Adaptive Control algorithm to the control of a PUMA 560 Robotic Manipulator. This chapter will present some motivation for using Direct Model Reference Adaptive Control, followed by a brief historical review, the project goals, and a summary of the subsequent chapters.
78 FR 76248 - Special Conditions: Airbus, Model A350-900 Series Airplane; Side Stick Controller
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-17
... control columns and wheels. This kind of controller is designed for only one-hand operation. The... same subject: For the Airbus Model A350-900 series airplane equipped with stick controls designed for... Airbus Model A350-900 series airplanes. These airplanes will have a novel or unusual design feature...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-19
... or unusual design feature(s) associated with an electronic flight control system with respect to... control surfaces. The Model EMB-550 airplane is designed for 8 passengers, with a maximum of 12 passengers... the pilot or copilot sidestick. The Embraer S.A. Model EMB-550 airplane has a flight control design...
Two-strain Tuberculosis Transmission Model under Three Control Strategies
NASA Astrophysics Data System (ADS)
Rayhan, S. N.; Bakhtiar, T.; Jaharuddin
2017-03-01
In 1997, Castillo-Chavez and Feng developed a two-strain tuberculosis (TB) model, which is typical TB and resistant TB. Castillo-Chavez and Feng’s model was then subsequently developed by Jung et al. (2002) by adding two control variables. In this work, Jung et al.’s model was modified by introducing a new control variable so that there are three controls, namely chemoprophylaxis and two treatment strategies, with the application of three different scenarios related to the objective functional form and control application. Pontryagin maximum principle was applied to derive the differential equations system as a condition that must be satisfied by the optimal control variables. Furthermore, the fourth-order Runge-Kutta method was exploited to determine the numerical solution of the optimal control problem. In this numerical solution, it is shown that the controls treated on TB transmission model provide a good effect because latent and infected individuals are decreasing, and the number of individuals that is treated effectively is increasing.
A Mathematical Model of Marine Diesel Engine Speed Control System
NASA Astrophysics Data System (ADS)
Sinha, Rajendra Prasad; Balaji, Rajoo
2018-02-01
Diesel engine is inherently an unstable machine and requires a reliable control system to regulate its speed for safe and efficient operation. Also, the diesel engine may operate at fixed or variable speeds depending upon user's needs and accordingly the speed control system should have essential features to fulfil these requirements. This paper proposes a mathematical model of a marine diesel engine speed control system with droop governing function. The mathematical model includes static and dynamic characteristics of the control loop components. Model of static characteristic of the rotating fly weights speed sensing element provides an insight into the speed droop features of the speed controller. Because of big size and large time delay, the turbo charged diesel engine is represented as a first order system or sometimes even simplified to a pure integrator with constant gain which is considered acceptable in control literature. The proposed model is mathematically less complex and quick to use for preliminary analysis of the diesel engine speed controller performance.
Stereo Sound Field Controller Design Using Partial Model Matching on the Frequency Domain
NASA Astrophysics Data System (ADS)
Kumon, Makoto; Miike, Katsuhiro; Eguchi, Kazuki; Mizumoto, Ikuro; Iwai, Zenta
The objective of sound field control is to make the acoustic characteristics of a listening room close to those of the desired system. Conventional methods apply feedforward controllers, such as digital filters, to achieve this objective. However, feedback controllers are also necessary in order to attenuate noise or to compensate the uncertainty of the acoustic characteristics of the listening room. Since acoustic characteristics are well modeled on the frequency domain, it is efficient to design controllers with respect to frequency responses, but it is difficult to design a multi input multi output (MIMO) control system on a wide frequency domain. In the present study, a partial model matching method on the frequency domain was adopted because this method requires only sampled data, rather than complex mathematical models of the plant, in order to design controllers for MIMO systems. The partial model matching method was applied to design two-degree-of-freedom controllers for acoustic equalization and noise reduction. Experiments demonstrated effectiveness of the proposed method.
Adaptive control of large space structures using recursive lattice filters
NASA Technical Reports Server (NTRS)
Goglia, G. L.
1985-01-01
The use of recursive lattice filters for identification and adaptive control of large space structures was studied. Lattice filters are used widely in the areas of speech and signal processing. Herein, they are used to identify the structural dynamics model of the flexible structures. This identified model is then used for adaptive control. Before the identified model and control laws are integrated, the identified model is passed through a series of validation procedures and only when the model passes these validation procedures control is engaged. This type of validation scheme prevents instability when the overall loop is closed. The results obtained from simulation were compared to those obtained from experiments. In this regard, the flexible beam and grid apparatus at the Aerospace Control Research Lab (ACRL) of NASA Langley Research Center were used as the principal candidates for carrying out the above tasks. Another important area of research, namely that of robust controller synthesis, was investigated using frequency domain multivariable controller synthesis methods.
PDEMOD: Software for control/structures optimization
NASA Technical Reports Server (NTRS)
Taylor, Lawrence W., Jr.; Zimmerman, David
1991-01-01
Because of the possibility of adverse interaction between the control system and the structural dynamics of large, flexible spacecraft, great care must be taken to ensure stability and system performance. Because of the high cost of insertion of mass into low earth orbit, it is prudent to optimize the roles of structure and control systems simultaneously. Because of the difficulty and the computational burden in modeling and analyzing the control structure system dynamics, the total problem is often split and treated iteratively. It would aid design if the control structure system dynamics could be represented in a single system of equations. With the use of the software PDEMOD (Partial Differential Equation Model), it is now possible to optimize structure and control systems simultaneously. The distributed parameter modeling approach enables embedding the control system dynamics into the same equations for the structural dynamics model. By doing this, the current difficulties involved in model order reduction are avoided. The NASA Mini-MAST truss is used an an example for studying integrated control structure design.
Development of model reference adaptive control theory for electric power plant control applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mabius, L.E.
1982-09-15
The scope of this effort includes the theoretical development of a multi-input, multi-output (MIMO) Model Reference Control (MRC) algorithm, (i.e., model following control law), Model Reference Adaptive Control (MRAC) algorithm and the formulation of a nonlinear model of a typical electric power plant. Previous single-input, single-output MRAC algorithm designs have been generalized to MIMO MRAC designs using the MIMO MRC algorithm. This MRC algorithm, which has been developed using Command Generator Tracker methodologies, represents the steady state behavior (in the adaptive sense) of the MRAC algorithm. The MRC algorithm is a fundamental component in the MRAC design and stability analysis.more » An enhanced MRC algorithm, which has been developed for systems with more controls than regulated outputs, alleviates the MRC stability constraint of stable plant transmission zeroes. The nonlinear power plant model is based on the Cromby model with the addition of a governor valve management algorithm, turbine dynamics and turbine interactions with extraction flows. An application of the MRC algorithm to a linearization of this model demonstrates its applicability to power plant systems. In particular, the generated power changes at 7% per minute while throttle pressure and temperature, reheat temperature and drum level are held constant with a reasonable level of control. The enhanced algorithm reduces significantly control fluctuations without modifying the output response.« less
Park, Yu-Ri; Park, Eun-Young; Kim, Jung-Hee
2017-11-09
According to the self-control model, self-control works as a protective factor and a psychological resource. Although an understanding of the effect(s) of peripheral neuropathy on quality of life is important to healthcare professionals, previous studies do not facilitate broad comprehension in this regard. The purpose of this cross-sectional study was to test the multidimensional assumptions of quality of life of patients with cancer, with focus on their self-control. A structural equation model was tested on patients with cancer at the oncology clinic of a university hospital where patients received chemotherapy. A model was tested using structural equation modeling, which allows the researcher to find the empirical evidence by testing a measurement model and a structural model. The model comprised three variables, self-control, health related quality of life, and chemotherapy-induced peripheral neuropathy. Among the variables, self-control was the endogenous and mediating variable. The proposed models showed good fit indices. Self-control partially mediated chemotherapy-induced peripheral neuropathy and quality of life. It was found that the physical symptoms of peripheral neuropathy influenced health-related quality of life both indirectly and directly. Self-control plays a significant role in the protection and promotion of physical and mental health in various stressful situations, and thus, as a psychological resource, it plays a significant role in quality of life. Our results can be used to develop a quality of life model for patients receiving chemotherapy and as a theoretical foundation for the development of appropriate nursing interventions.
Evaluating vaccination strategies to control foot-and-mouth disease: a model comparison study.
Roche, S E; Garner, M G; Sanson, R L; Cook, C; Birch, C; Backer, J A; Dube, C; Patyk, K A; Stevenson, M A; Yu, Z D; Rawdon, T G; Gauntlett, F
2015-04-01
Simulation models can offer valuable insights into the effectiveness of different control strategies and act as important decision support tools when comparing and evaluating outbreak scenarios and control strategies. An international modelling study was performed to compare a range of vaccination strategies in the control of foot-and-mouth disease (FMD). Modelling groups from five countries (Australia, New Zealand, USA, UK, The Netherlands) participated in the study. Vaccination is increasingly being recognized as a potentially important tool in the control of FMD, although there is considerable uncertainty as to how and when it should be used. We sought to compare model outputs and assess the effectiveness of different vaccination strategies in the control of FMD. Using a standardized outbreak scenario based on data from an FMD exercise in the UK in 2010, the study showed general agreement between respective models in terms of the effectiveness of vaccination. Under the scenario assumptions, all models demonstrated that vaccination with 'stamping-out' of infected premises led to a significant reduction in predicted epidemic size and duration compared to the 'stamping-out' strategy alone. For all models there were advantages in vaccinating cattle-only rather than all species, using 3-km vaccination rings immediately around infected premises, and starting vaccination earlier in the control programme. This study has shown that certain vaccination strategies are robust even to substantial differences in model configurations. This result should increase end-user confidence in conclusions drawn from model outputs. These results can be used to support and develop effective policies for FMD control.
NASA Astrophysics Data System (ADS)
Balas, Mark
1991-11-01
Assembly and operation of large space structures (LSS) in orbit will require robot-assisted docking and berthing of partially-assembled structures. These operations require new solutions to the problems of controls. This is true because of large transient and persistent disturbances, controller-structure interaction with unmodeled modes, poorly known structure parameters, slow actuator/sensor dynamical behavior, and excitation of nonlinear structure vibrations during control and assembly. For on-orbit assembly, controllers must start with finite element models of LSS and adapt on line to the best operating points, without compromising stability. This is not easy to do, since there are often unmodeled dynamic interactions between the controller and the structure. The indirect adaptive controllers are based on parameter estimation. Due to the large number of modes in LSS, this approach leads to very high-order control schemes with consequent poor stability and performance. In contrast, direct model reference adaptive controllers operate to force the LSS to track the desirable behavior of a chosen model. These schemes produce simple control algorithms which are easy to implement on line. One problem with their use for LSS has been that the model must be the same dimension as the LSS - i.e., quite large. A control theory based on the command generator tracker (CGT) ideas of Sobel, Mabins, Kaufman and Wen, Balas to obtain very low-order models based on adaptive algorithms was developed. Closed-loop stability for both finite element models and distributed parameter models of LSS was proved. In addition, successful numerical simulations on several LSS databases were obtained. An adaptive controller based on our theory was also implemented on a flexible robotic manipulator at Martin Marietta Astronautics. Computation schemes for controller-structure interaction with unmodeled modes, the residual mode filters or RMF, were developed. The RMF theory was modified to compensate slow actuator/sensor dynamics. These new ideas are being applied to LSS simulations to demonstrate the ease with which one can incorporate slow actuator/sensor effects into our design. It was also shown that residual mode filter compensation can be modified for small nonlinearities to produce exponentially stable closed-loop control.
NASA Technical Reports Server (NTRS)
Balas, Mark
1991-01-01
Assembly and operation of large space structures (LSS) in orbit will require robot-assisted docking and berthing of partially-assembled structures. These operations require new solutions to the problems of controls. This is true because of large transient and persistent disturbances, controller-structure interaction with unmodeled modes, poorly known structure parameters, slow actuator/sensor dynamical behavior, and excitation of nonlinear structure vibrations during control and assembly. For on-orbit assembly, controllers must start with finite element models of LSS and adapt on line to the best operating points, without compromising stability. This is not easy to do, since there are often unmodeled dynamic interactions between the controller and the structure. The indirect adaptive controllers are based on parameter estimation. Due to the large number of modes in LSS, this approach leads to very high-order control schemes with consequent poor stability and performance. In contrast, direct model reference adaptive controllers operate to force the LSS to track the desirable behavior of a chosen model. These schemes produce simple control algorithms which are easy to implement on line. One problem with their use for LSS has been that the model must be the same dimension as the LSS - i.e., quite large. A control theory based on the command generator tracker (CGT) ideas of Sobel, Mabins, Kaufman and Wen, Balas to obtain very low-order models based on adaptive algorithms was developed. Closed-loop stability for both finite element models and distributed parameter models of LSS was proved. In addition, successful numerical simulations on several LSS databases were obtained. An adaptive controller based on our theory was also implemented on a flexible robotic manipulator at Martin Marietta Astronautics. Computation schemes for controller-structure interaction with unmodeled modes, the residual mode filters or RMF, were developed. The RMF theory was modified to compensate slow actuator/sensor dynamics. These new ideas are being applied to LSS simulations to demonstrate the ease with which one can incorporate slow actuator/sensor effects into our design. It was also shown that residual mode filter compensation can be modified for small nonlinearities to produce exponentially stable closed-loop control. A theory for disturbance accommodating controllers based on reduced order models of structures was developed, and stability results for these controllers in closed-loop with large-scale finite element models of structures were obtained.
Centipod WEC, Advanced Controls, Resultant LCOE
McCall, Alan
2016-02-15
Project resultant LCOE model after implementation of MPC controller. Contains AEP, CBS, model documentation, and LCOE content model. This is meant for comparison with this project's baseline LCOE model.
Integrated Control Modeling for Propulsion Systems Using NPSS
NASA Technical Reports Server (NTRS)
Parker, Khary I.; Felder, James L.; Lavelle, Thomas M.; Withrow, Colleen A.; Yu, Albert Y.; Lehmann, William V. A.
2004-01-01
The Numerical Propulsion System Simulation (NPSS), an advanced engineering simulation environment used to design and analyze aircraft engines, has been enhanced by integrating control development tools into it. One of these tools is a generic controller interface that allows NPSS to communicate with control development software environments such as MATLAB and EASY5. The other tool is a linear model generator (LMG) that gives NPSS the ability to generate linear, time-invariant state-space models. Integrating these tools into NPSS enables it to be used for control system development. This paper will discuss the development and integration of these tools into NPSS. In addition, it will show a comparison of transient model results of a generic, dual-spool, military-type engine model that has been implemented in NPSS and Simulink. It will also show the linear model generator s ability to approximate the dynamics of a nonlinear NPSS engine model.
Diabetes: Models, Signals and control
NASA Astrophysics Data System (ADS)
Cobelli, C.
2010-07-01
Diabetes and its complications impose significant economic consequences on individuals, families, health systems, and countries. The control of diabetes is an interdisciplinary endeavor, which includes significant components of modeling, signal processing and control. Models: first, I will discuss the minimal (coarse) models which describe the key components of the system functionality and are capable of measuring crucial processes of glucose metabolism and insulin control in health and diabetes; then, the maximal (fine-grain) models which include comprehensively all available knowledge about system functionality and are capable to simulate the glucose-insulin system in diabetes, thus making it possible to create simulation scenarios whereby cost effective experiments can be conducted in silico to assess the efficacy of various treatment strategies - in particular I will focus on the first in silico simulation model accepted by FDA as a substitute to animal trials in the quest for optimal diabetes control. Signals: I will review metabolic monitoring, with a particular emphasis on the new continuous glucose sensors, on the crucial role of models to enhance the interpretation of their time-series signals, and on the opportunities that they present for automation of diabetes control. Control: I will review control strategies that have been successfully employed in vivo or in silico, presenting a promise for the development of a future artificial pancreas and, in particular, I will discuss a modular architecture for building closed-loop control systems, including insulin delivery and patient safety supervision layers.
Telerobotic control of a mobile coordinated robotic server. M.S. Thesis Annual Technical Report
NASA Technical Reports Server (NTRS)
Lee, Gordon
1993-01-01
The annual report on telerobotic control of a mobile coordinated robotic server is presented. The goal of this effort is to develop advanced control methods for flexible space manipulator systems. As such, an adaptive fuzzy logic controller was developed in which model structure as well as parameter constraints are not required for compensation. The work builds upon previous work on fuzzy logic controllers. Fuzzy logic controllers have been growing in importance in the field of automatic feedback control. Hardware controllers using fuzzy logic have become available as an alternative to the traditional PID controllers. Software has also been introduced to aid in the development of fuzzy logic rule-bases. The advantages of using fuzzy logic controllers include the ability to merge the experience and intuition of expert operators into the rule-base and that a model of the system is not required to construct the controller. A drawback of the classical fuzzy logic controller, however, is the many parameters needed to be turned off-line prior to application in the closed-loop. In this report, an adaptive fuzzy logic controller is developed requiring no system model or model structure. The rule-base is defined to approximate a state-feedback controller while a second fuzzy logic algorithm varies, on-line, parameters of the defining controller. Results indicate the approach is viable for on-line adaptive control of systems when the model is too complex or uncertain for application of other more classical control techniques.
From Wake Steering to Flow Control
Fleming, Paul A.; Annoni, Jennifer; Churchfield, Matthew J.; ...
2017-11-22
In this article, we investigate the role of flow structures generated in wind farm control through yaw misalignment. A pair of counter-rotating vortices are shown to be important in deforming the shape of the wake and in explaining the asymmetry of wake steering in oppositely signed yaw angles. We motivate the development of new physics for control-oriented engineering models of wind farm control, which include the effects of these large-scale flow structures. Such a new model would improve the predictability of control-oriented models. Results presented in this paper indicate that wind farm control strategies, based on new control-oriented models withmore » new physics, that target total flow control over wake redirection may be different, and perhaps more effective, than current approaches. We propose that wind farm control and wake steering should be thought of as the generation of large-scale flow structures, which will aid in the improved performance of wind farms.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-17
... for transport category airplanes. These design features include an electronic flight control system... Design Features The GVI has an electronic flight control system and no direct coupling from the cockpit...: Gulfstream Model GVI Airplane; Electronic Flight Control System: Control Surface Position Awareness AGENCY...
NASA Astrophysics Data System (ADS)
Hu, Xiaoxiang; Wu, Ligang; Hu, Changhua; Wang, Zhaoqiang; Gao, Huijun
2014-08-01
By utilising Takagi-Sugeno (T-S) fuzzy set approach, this paper addresses the robust H∞ dynamic output feedback control for the non-linear longitudinal model of flexible air-breathing hypersonic vehicles (FAHVs). The flight control of FAHVs is highly challenging due to the unique dynamic characteristics, and the intricate couplings between the engine and fight dynamics and external disturbance. Because of the dynamics' enormous complexity, currently, only the longitudinal dynamics models of FAHVs have been used for controller design. In this work, T-S fuzzy modelling technique is utilised to approach the non-linear dynamics of FAHVs, then a fuzzy model is developed for the output tracking problem of FAHVs. The fuzzy model contains parameter uncertainties and disturbance, which can approach the non-linear dynamics of FAHVs more exactly. The flexible models of FAHVs are difficult to measure because of the complex dynamics and the strong couplings, thus a full-order dynamic output feedback controller is designed for the fuzzy model. A robust H∞ controller is designed for the obtained closed-loop system. By utilising the Lyapunov functional approach, sufficient solvability conditions for such controllers are established in terms of linear matrix inequalities. Finally, the effectiveness of the proposed T-S fuzzy dynamic output feedback control method is demonstrated by numerical simulations.
Computer simulation of a pilot in V/STOL aircraft control loops
NASA Technical Reports Server (NTRS)
Vogt, William G.; Mickle, Marlin H.; Zipf, Mark E.; Kucuk, Senol
1989-01-01
The objective was to develop a computerized adaptive pilot model for the computer model of the research aircraft, the Harrier II AV-8B V/STOL with special emphasis on propulsion control. In fact, two versions of the adaptive pilot are given. The first, simply called the Adaptive Control Model (ACM) of a pilot includes a parameter estimation algorithm for the parameters of the aircraft and an adaption scheme based on the root locus of the poles of the pilot controlled aircraft. The second, called the Optimal Control Model of the pilot (OCM), includes an adaption algorithm and an optimal control algorithm. These computer simulations were developed as a part of the ongoing research program in pilot model simulation supported by NASA Lewis from April 1, 1985 to August 30, 1986 under NASA Grant NAG 3-606 and from September 1, 1986 through November 30, 1988 under NASA Grant NAG 3-729. Once installed, these pilot models permitted the computer simulation of the pilot model to close all of the control loops normally closed by a pilot actually manipulating the control variables. The current version of this has permitted a baseline comparison of various qualitative and quantitative performance indices for propulsion control, the control loops and the work load on the pilot. Actual data for an aircraft flown by a human pilot furnished by NASA was compared to the outputs furnished by the computerized pilot and found to be favorable.
NASA Astrophysics Data System (ADS)
Xiong, Yan; Chen, Yang; Sun, Zhiyong; Hao, Lina; Dong, Jie
2014-07-01
Ionic polymer metal composites (IPMCs) are a type of electroactive polymer (EAP) that can be used as both sensors and actuators. An IPMC has enormous potential application in the field of biomimetic robotics, medical devices, and so on. However, an IPMC actuator has a great number of disadvantages, such as creep and time-variation, making it vulnerable to external disturbances. In addition, the complex actuation mechanism makes it difficult to model and the demand of the control algorithm is laborious to implement. In this paper, we obtain a creep model of the IPMC by means of model identification based on the method of creep operator linear superposition. Although the mathematical model is not approximate to the IPMC accurate model, it is accurate enough to be used in MATLAB to prove the control algorithm. A controller based on the active disturbance rejection control (ADRC) method is designed to solve the drawbacks previously given. Because the ADRC controller is separate from the mathematical model of the controlled plant, the control algorithm has the ability to complete disturbance estimation and compensation. Some factors, such as all external disturbances, uncertainty factors, the inaccuracy of the identification model and different kinds of IPMCs, have little effect on controlling the output block force of the IPMC. Furthermore, we use the particle swarm optimization algorithm to adjust ADRC parameters so that the IPMC actuator can approach the desired block force with unknown external disturbances. Simulations and experimental examples validate the effectiveness of the ADRC controller.
NASA Technical Reports Server (NTRS)
Balakrishna, S.; Kilgore, W. Allen
1992-01-01
The NASA Langley 0.3-m Transonic Cryogenic Tunnel is to be modified to operate with sulfur hexafluoride gas while retaining its present capability to operate with nitrogen. The modified tunnel will provide high Reynolds number flow on aerodynamic models with two different test gases. The document details a study of the SF6 tunnel performance boundaries, thermodynamic modeling of the tunnel process, nonlinear dynamical simulation of math model to yield tunnel responses, the closed loop control requirements, control laws, and mechanization of the control laws on the microprocessor based controller.
Modelling and control of a diffusion/LPCVD furnace
NASA Astrophysics Data System (ADS)
Dewaard, H.; Dekoning, W. L.
1988-12-01
Heat transfer inside a cylindrical resistance diffusion/Low Pressure Chemical Vapor Deposition (LPCVD) furnace is studied with the aim of developing an improved temperature controller. A model of the thermal behavior is derived, which covers the important class of furnaces equipped with semitransparent quartz process tubes. The model takes into account the thermal behavior of the thermocouples. Currently used temperature controllers are shown to be highly inefficient for very large scale integration applications. Based on the model an alternative temperature controller of the LQG (linear quadratic Gaussian) type is proposed which features direct wafer temperature control. Some simulation results are given.
Active vibration control with model correction on a flexible laboratory grid structure
NASA Technical Reports Server (NTRS)
Schamel, George C., II; Haftka, Raphael T.
1991-01-01
This paper presents experimental and computational comparisons of three active damping control laws applied to a complex laboratory structure. Two reduced structural models were used with one model being corrected on the basis of measured mode shapes and frequencies. Three control laws were investigated, a time-invariant linear quadratic regulator with state estimation and two direct rate feedback control laws. Experimental results for all designs were obtained with digital implementation. It was found that model correction improved the agreement between analytical and experimental results. The best agreement was obtained with the simplest direct rate feedback control.
Model reference, sliding mode adaptive control for flexible structures
NASA Technical Reports Server (NTRS)
Yurkovich, S.; Ozguner, U.; Al-Abbass, F.
1988-01-01
A decentralized model reference adaptive approach using a variable-structure sliding model control has been developed for the vibration suppression of large flexible structures. Local models are derived based upon the desired damping and response time in a model-following scheme, and variable structure controllers are then designed which employ colocated angular rate and position feedback. Numerical simulations have been performed using NASA's flexible grid experimental apparatus.
A Direct Adaptive Control Approach in the Presence of Model Mismatch
NASA Technical Reports Server (NTRS)
Joshi, Suresh M.; Tao, Gang; Khong, Thuan
2009-01-01
This paper considers the problem of direct model reference adaptive control when the plant-model matching conditions are violated due to abnormal changes in the plant or incorrect knowledge of the plant's mathematical structure. The approach consists of direct adaptation of state feedback gains for state tracking, and simultaneous estimation of the plant-model mismatch. Because of the mismatch, the plant can no longer track the state of the original reference model, but may be able to track a new reference model that still provides satisfactory performance. The reference model is updated if the estimated plant-model mismatch exceeds a bound that is determined via robust stability and/or performance criteria. The resulting controller is a hybrid direct-indirect adaptive controller that offers asymptotic state tracking in the presence of plant-model mismatch as well as parameter deviations.
Puig, V; Cembrano, G; Romera, J; Quevedo, J; Aznar, B; Ramón, G; Cabot, J
2009-01-01
This paper deals with the global control of the Riera Blanca catchment in the Barcelona sewer network using a predictive optimal control approach. This catchment has been modelled using a conceptual modelling approach based on decomposing the catchments in subcatchments and representing them as virtual tanks. This conceptual modelling approach allows real-time model calibration and control of the sewer network. The global control problem of the Riera Blanca catchment is solved using a optimal/predictive control algorithm. To implement the predictive optimal control of the Riera Blanca catchment, a software tool named CORAL is used. The on-line control is simulated by interfacing CORAL with a high fidelity simulator of sewer networks (MOUSE). CORAL interchanges readings from the limnimeters and gate commands with MOUSE as if it was connected with the real SCADA system. Finally, the global control results obtained using the predictive optimal control are presented and compared against the results obtained using current local control system. The results obtained using the global control are very satisfactory compared to those obtained using the local control.
Intelligent robot control using an adaptive critic with a task control center and dynamic database
NASA Astrophysics Data System (ADS)
Hall, E. L.; Ghaffari, M.; Liao, X.; Alhaj Ali, S. M.
2006-10-01
The purpose of this paper is to describe the design, development and simulation of a real time controller for an intelligent, vision guided robot. The use of a creative controller that can select its own tasks is demonstrated. This creative controller uses a task control center and dynamic database. The dynamic database stores both global environmental information and local information including the kinematic and dynamic models of the intelligent robot. The kinematic model is very useful for position control and simulations. However, models of the dynamics of the manipulators are needed for tracking control of the robot's motions. Such models are also necessary for sizing the actuators, tuning the controller, and achieving superior performance. Simulations of various control designs are shown. Also, much of the model has also been used for the actual prototype Bearcat Cub mobile robot. This vision guided robot was designed for the Intelligent Ground Vehicle Contest. A novel feature of the proposed approach is that the method is applicable to both robot arm manipulators and robot bases such as wheeled mobile robots. This generality should encourage the development of more mobile robots with manipulator capability since both models can be easily stored in the dynamic database. The multi task controller also permits wide applications. The use of manipulators and mobile bases with a high-level control are potentially useful for space exploration, certain rescue robots, defense robots, and medical robotics aids.
Retrospective Cost Adaptive Control with Concurrent Closed-Loop Identification
NASA Astrophysics Data System (ADS)
Sobolic, Frantisek M.
Retrospective cost adaptive control (RCAC) is a discrete-time direct adaptive control algorithm for stabilization, command following, and disturbance rejection. RCAC is known to work on systems given minimal modeling information which is the leading numerator coefficient and any nonminimum-phase (NMP) zeros of the plant transfer function. This information is normally needed a priori and is key in the development of the filter, also known as the target model, within the retrospective performance variable. A novel approach to alleviate the need for prior modeling of both the leading coefficient of the plant transfer function as well as any NMP zeros is developed. The extension to the RCAC algorithm is the use of concurrent optimization of both the target model and the controller coefficients. Concurrent optimization of the target model and controller coefficients is a quadratic optimization problem in the target model and controller coefficients separately. However, this optimization problem is not convex as a joint function of both variables, and therefore nonconvex optimization methods are needed. Finally, insights within RCAC that include intercalated injection between the controller numerator and the denominator, unveil the workings of RCAC fitting a specific closed-loop transfer function to the target model. We exploit this interpretation by investigating several closed-loop identification architectures in order to extract this information for use in the target model.
Propulsive Reaction Control System Model
NASA Technical Reports Server (NTRS)
Brugarolas, Paul; Phan, Linh H.; Serricchio, Frederick; San Martin, Alejandro M.
2011-01-01
This software models a propulsive reaction control system (RCS) for guidance, navigation, and control simulation purposes. The model includes the drive electronics, the electromechanical valve dynamics, the combustion dynamics, and thrust. This innovation follows the Mars Science Laboratory entry reaction control system design, and has been created to meet the Mars Science Laboratory (MSL) entry, descent, and landing simulation needs. It has been built to be plug-and-play on multiple MSL testbeds [analysis, Monte Carlo, flight software development, hardware-in-the-loop, and ATLO (assembly, test and launch operations) testbeds]. This RCS model is a C language program. It contains two main functions: the RCS electronics model function that models the RCS FPGA (field-programmable-gate-array) processing and commanding of the RCS valve, and the RCS dynamic model function that models the valve and combustion dynamics. In addition, this software provides support functions to initialize the model states, set parameters, access model telemetry, and access calculated thruster forces.
Modeling the human as a controller in a multitask environment
NASA Technical Reports Server (NTRS)
Govindaraj, T.; Rouse, W. B.
1978-01-01
Modeling the human as a controller of slowly responding systems with preview is considered. Along with control tasks, discrete noncontrol tasks occur at irregular intervals. In multitask situations such as these, it has been observed that humans tend to apply piecewise constant controls. It is believed that the magnitude of controls and the durations for which they remain constant are dependent directly on the system bandwidth, preview distance, complexity of the trajectory to be followed, and nature of the noncontrol tasks. A simple heuristic model of human control behavior in this situation is presented. The results of a simulation study, whose purpose was determination of the sensitivity of the model to its parameters, are discussed.
NASA Astrophysics Data System (ADS)
Yang, Jingyu; Lin, Jiahui; Liu, Yuejun; Yang, Kang; Zhou, Lanwei; Chen, Guoping
2017-08-01
It is well known that intelligent control theory has been used in many research fields, novel modeling method (DROMM) is used for flexible rectangular active vibration control, and then the validity of new model is confirmed by comparing finite element model with new model. In this paper, taking advantage of the dynamics of flexible rectangular plate, a two-loop sliding mode (TSM) MIMO approach is introduced for designing multiple-input multiple-output continuous vibration control system, which can overcome uncertainties, disturbances or unstable dynamics. An illustrative example is given in order to show the feasibility of the method. Numerical simulations and experiment confirm the effectiveness of the proposed TSM MIMO controller.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unseren, M.A.
The report reviews a method for modeling and controlling two serial link manipulators which mutually lift and transport a rigid body object in a three dimensional workspace. A new vector variable is introduced which parameterizes the internal contact force controlled degrees of freedom. A technique for dynamically distributing the payload between the manipulators is suggested which yields a family of solutions for the contact forces and torques the manipulators impart to the object. A set of rigid body kinematic constraints which restricts the values of the joint velocities of both manipulators is derived. A rigid body dynamical model for themore » closed chain system is first developed in the joint space. The model is obtained by generalizing the previous methods for deriving the model. The joint velocity and acceleration variables in the model are expressed in terms of independent pseudovariables. The pseudospace model is transformed to obtain reduced order equations of motion and a separate set of equations governing the internal components of the contact forces and torques. A theoretic control architecture is suggested which explicitly decouples the two sets of equations comprising the model. The controller enables the designer to develop independent, non-interacting control laws for the position control and internal force control of the system.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unseren, M.A.
The paper reviews a method for modeling and controlling two serial link manipulators which mutually lift and transport a rigid body object in a three dimensional workspace. A new vector variable is introduced which parameterizes the internal contact force controlled degrees of freedom. A technique for dynamically distributing the payload between the manipulators is suggested which yields a family of solutions for the contact forces and torques the manipulators impart to the object. A set of rigid body kinematic constraints which restrict the values of the joint velocities of both manipulators is derived. A rigid body dynamical model for themore » closed chain system is first developed in the joint space. The model is obtained by generalizing the previous methods for deriving the model. The joint velocity and acceleration variables in the model are expressed in terms of independent pseudovariables. The pseudospace model is transformed to obtain reduced order equations of motion and a separate set of equations governing the internal components of the contact forces and torques. A theoretic control architecture is suggested which explicitly decouples the two sets of equations comprising the model. The controller enables the designer to develop independent, non-interacting control laws for the position control and internal force control of the system.« less
Stable modeling based control methods using a new RBF network.
Beyhan, Selami; Alci, Musa
2010-10-01
This paper presents a novel model with radial basis functions (RBFs), which is applied successively for online stable identification and control of nonlinear discrete-time systems. First, the proposed model is utilized for direct inverse modeling of the plant to generate the control input where it is assumed that inverse plant dynamics exist. Second, it is employed for system identification to generate a sliding-mode control input. Finally, the network is employed to tune PID (proportional + integrative + derivative) controller parameters automatically. The adaptive learning rate (ALR), which is employed in the gradient descent (GD) method, provides the global convergence of the modeling errors. Using the Lyapunov stability approach, the boundedness of the tracking errors and the system parameters are shown both theoretically and in real time. To show the superiority of the new model with RBFs, its tracking results are compared with the results of a conventional sigmoidal multi-layer perceptron (MLP) neural network and the new model with sigmoid activation functions. To see the real-time capability of the new model, the proposed network is employed for online identification and control of a cascaded parallel two-tank liquid-level system. Even though there exist large disturbances, the proposed model with RBFs generates a suitable control input to track the reference signal better than other methods in both simulations and real time. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.
Learn about EPA’s use of the Integrated Planning Model (IPM) to develop estimates of SO2 and NOx emission control costs, projections of futureemissions, and projections of capacity of future control retrofits, assuming controls on EGUs.
Stability of model-based event-triggered control systems: a separation property
NASA Astrophysics Data System (ADS)
Hao, Fei; Yu, Hao
2017-04-01
To save resource of communication, this paper investigates the model-based event-triggered control systems. Two main problems are considered in this paper. One is, for given plant and model, to design event conditions to guarantee the stability of the systems. The other is to consider the effect of the model matrices on the stability. The results show that the closed-loop systems can be asymptotically stabilised with any model matrices in compact sets if the parameters in the event conditions are within the designed ranges. Then, a separation property of model-based event-triggered control is proposed. Namely, the design of the controller gain and the event condition can be separated from the selection of the model matrices. Based on this property, an adaption mechanism is introduced to the model-based event-triggered control systems, which can further improve the sampling performance. Finally, a numerical example is given to show the efficiency and feasibility of the developed results.
Integrated Model Reduction and Control of Aircraft with Flexible Wings
NASA Technical Reports Server (NTRS)
Swei, Sean Shan-Min; Zhu, Guoming G.; Nguyen, Nhan T.
2013-01-01
This paper presents an integrated approach to the modeling and control of aircraft with exible wings. The coupled aircraft rigid body dynamics with a high-order elastic wing model can be represented in a nite dimensional state-space form. Given a set of desired output covariance, a model reduction process is performed by using the weighted Modal Cost Analysis (MCA). A dynamic output feedback controller, which is designed based on the reduced-order model, is developed by utilizing output covariance constraint (OCC) algorithm, and the resulting OCC design weighting matrix is used for the next iteration of the weighted cost analysis. This controller is then validated for full-order evaluation model to ensure that the aircraft's handling qualities are met and the uttering motion of the wings suppressed. An iterative algorithm is developed in CONDUIT environment to realize the integration of model reduction and controller design. The proposed integrated approach is applied to NASA Generic Transport Model (GTM) for demonstration.
REAL-TIME MODEL-BASED ELECTRICAL POWERED WHEELCHAIR CONTROL
Wang, Hongwu; Salatin, Benjamin; Grindle, Garrett G.; Ding, Dan; Cooper, Rory A.
2009-01-01
The purpose of this study was to evaluate the effects of three different control methods on driving speed variation and wheel-slip of an electric-powered wheelchair (EPW). A kinematic model as well as 3-D dynamic model was developed to control the velocity and traction of the wheelchair. A smart wheelchair platform was designed and built with a computerized controller and encoders to record wheel speeds and to detect the slip. A model based, a proportional-integral-derivative (PID) and an open-loop controller were applied with the EPW driving on four different surfaces at three specified speeds. The speed errors, variation, rise time, settling time and slip coefficient were calculated and compared for a speed step-response input. Experimental results showed that model based control performed best on all surfaces across the speeds. PMID:19733494
Dynamic analysis of gas-core reactor system
NASA Technical Reports Server (NTRS)
Turner, K. H., Jr.
1973-01-01
A heat transfer analysis was incorporated into a previously developed model CODYN to obtain a model of open-cycle gaseous core reactor dynamics which can predict the heat flux at the cavity wall. The resulting model was used to study the sensitivity of the model to the value of the reactivity coefficients and to determine the system response for twenty specified perturbations. In addition, the model was used to study the effectiveness of several control systems in controlling the reactor. It was concluded that control drums located in the moderator region capable of inserting reactivity quickly provided the best control.
NASA Astrophysics Data System (ADS)
Goupil, Ph.; Puyou, G.
2013-12-01
This paper presents a high-fidelity generic twin engine civil aircraft model developed by Airbus for advanced flight control system research. The main features of this benchmark are described to make the reader aware of the model complexity and representativeness. It is a complete representation including the nonlinear rigid-body aircraft model with a full set of control surfaces, actuator models, sensor models, flight control laws (FCL), and pilot inputs. Two applications of this benchmark in the framework of European projects are presented: FCL clearance using optimization and advanced fault detection and diagnosis (FDD).
Assessment of Energy Efficient and Model Based Control
2017-06-15
ARL-TR-8042 ● JUNE 2017 US Army Research Laboratory Assessment of Energy -Efficient and Model- Based Control by Craig Lennon...originator. ARL-TR-8042 ● JUNE 2017 US Army Research Laboratory Assessment of Energy -Efficient and Model- Based Control by Craig...
Experiment and simulation for CSI: What are the missing links?
NASA Technical Reports Server (NTRS)
Belvin, W. Keith; Park, K. C.
1989-01-01
Viewgraphs on experiment and simulation for control structure interaction (CSI) are presented. Topics covered include: control structure interaction; typical control/structure interaction system; CSI problem classification; actuator/sensor models; modeling uncertainty; noise models; real-time computations; and discrete versus continuous.
Development and Integration of Control System Models
NASA Technical Reports Server (NTRS)
Kim, Young K.
1998-01-01
The computer simulation tool, TREETOPS, has been upgraded and used at NASA/MSFC to model various complicated mechanical systems and to perform their dynamics and control analysis with pointing control systems. A TREETOPS model of Advanced X-ray Astrophysics Facility - Imaging (AXAF-1) dynamics and control system was developed to evaluate the AXAF-I pointing performance for Normal Pointing Mode. An optical model of Shooting Star Experiment (SSE) was also developed and its optical performance analysis was done using the MACOS software.
A Mathematical Model for Railway Control Systems
NASA Technical Reports Server (NTRS)
Hoover, D. N.
1996-01-01
We present a general method for modeling safety aspects of railway control systems. Using our modeling method, one can progressively refine an abstract railway safety model, sucessively adding layers of detail about how a real system actually operates, while maintaining a safety property that refines the original abstract safety property. This method supports a top-down approach to specification of railway control systems and to proof of a variety of safety-related properties. We demonstrate our method by proving safety of the classical block control system.
Nonlinear control of linear parameter varying systems with applications to hypersonic vehicles
NASA Astrophysics Data System (ADS)
Wilcox, Zachary Donald
The focus of this dissertation is to design a controller for linear parameter varying (LPV) systems, apply it specifically to air-breathing hypersonic vehicles, and examine the interplay between control performance and the structural dynamics design. Specifically a Lyapunov-based continuous robust controller is developed that yields exponential tracking of a reference model, despite the presence of bounded, nonvanishing disturbances. The hypersonic vehicle has time varying parameters, specifically temperature profiles, and its dynamics can be reduced to an LPV system with additive disturbances. Since the HSV can be modeled as an LPV system the proposed control design is directly applicable. The control performance is directly examined through simulations. A wide variety of applications exist that can be effectively modeled as LPV systems. In particular, flight systems have historically been modeled as LPV systems and associated control tools have been applied such as gain-scheduling, linear matrix inequalities (LMIs), linear fractional transformations (LFT), and mu-types. However, as the type of flight environments and trajectories become more demanding, the traditional LPV controllers may no longer be sufficient. In particular, hypersonic flight vehicles (HSVs) present an inherently difficult problem because of the nonlinear aerothermoelastic coupling effects in the dynamics. HSV flight conditions produce temperature variations that can alter both the structural dynamics and flight dynamics. Starting with the full nonlinear dynamics, the aerothermoelastic effects are modeled by a temperature dependent, parameter varying state-space representation with added disturbances. The model includes an uncertain parameter varying state matrix, an uncertain parameter varying non-square (column deficient) input matrix, and an additive bounded disturbance. In this dissertation, a robust dynamic controller is formulated for a uncertain and disturbed LPV system. The developed controller is then applied to a HSV model, and a Lyapunov analysis is used to prove global exponential reference model tracking in the presence of uncertainty in the state and input matrices and exogenous disturbances. Simulations with a spectrum of gains and temperature profiles on the full nonlinear dynamic model of the HSV is used to illustrate the performance and robustness of the developed controller. In addition, this work considers how the performance of the developed controller varies over a wide variety of control gains and temperature profiles and are optimized with respect to different performance metrics. Specifically, various temperature profile models and related nonlinear temperature dependent disturbances are used to characterize the relative control performance and effort for each model. Examining such metrics as a function of temperature provides a potential inroad to examine the interplay between structural/thermal protection design and control development and has application for future HSV design and control implementation.
Diabetes: Models, Signals, and Control
Cobelli, Claudio; Man, Chiara Dalla; Sparacino, Giovanni; Magni, Lalo; De Nicolao, Giuseppe; Kovatchev, Boris P.
2010-01-01
The control of diabetes is an interdisciplinary endeavor, which includes a significant biomedical engineering component, with traditions of success beginning in the early 1960s. It began with modeling of the insulin-glucose system, and progressed to large-scale in silico experiments, and automated closed-loop control (artificial pancreas). Here, we follow these engineering efforts through the last, almost 50 years. We begin with the now classic minimal modeling approach and discuss a number of subsequent models, which have recently resulted in the first in silico simulation model accepted as substitute to animal trials in the quest for optimal diabetes control. We then review metabolic monitoring, with a particular emphasis on the new continuous glucose sensors, on the analyses of their time-series signals, and on the opportunities that they present for automation of diabetes control. Finally, we review control strategies that have been successfully employed in vivo or in silico, presenting a promise for the development of a future artificial pancreas and, in particular, discuss a modular architecture for building closed-loop control systems, including insulin delivery and patient safety supervision layers. We conclude with a brief discussion of the unique interactions between human physiology, behavioral events, engineering modeling and control relevant to diabetes. PMID:20936056
Multiple Model Adaptive Attitude Control of LEO Satellite with Angular Velocity Constraints
NASA Astrophysics Data System (ADS)
Shahrooei, Abolfazl; Kazemi, Mohammad Hosein
2018-04-01
In this paper, the multiple model adaptive control is utilized to improve the transient response of attitude control system for a rigid spacecraft. An adaptive output feedback control law is proposed for attitude control under angular velocity constraints and its almost global asymptotic stability is proved. The multiple model adaptive control approach is employed to counteract large uncertainty in parameter space of the inertia matrix. The nonlinear dynamics of a low earth orbit satellite is simulated and the proposed control algorithm is implemented. The reported results show the effectiveness of the suggested scheme.
NASA Technical Reports Server (NTRS)
Zeigler, Bernard P.
1989-01-01
It is shown how systems can be advantageously represented as discrete-event models by using DEVS (discrete-event system specification), a set-theoretic formalism. Such DEVS models provide a basis for the design of event-based logic control. In this control paradigm, the controller expects to receive confirming sensor responses to its control commands within definite time windows determined by its DEVS model of the system under control. The event-based contral paradigm is applied in advanced robotic and intelligent automation, showing how classical process control can be readily interfaced with rule-based symbolic reasoning systems.
Use Of REX Control System For The Ball On Spool Model
NASA Astrophysics Data System (ADS)
Ožana, Štěpán; Pieš, Martin; Hájovský, Radovan; Dočekal, Tomáš
2015-07-01
This paper deals with the design and implementation of linear quadratic controller (LQR) for modeling of Ball on Spool. The paper presents the entire process, starting from mathematical model through control design towards application of controller with the use of given hardware platform. Proposed solution by means of REX Control System provides a high level of user comfort regarding implementation of control loop, diagnostics and automatically generated visualization based on HTML5. It represents an ideal example of a complex nonlinear mechatronic system with a lot of possibilities to apply other types of controllers.
Model predictive control for spacecraft rendezvous in elliptical orbit
NASA Astrophysics Data System (ADS)
Li, Peng; Zhu, Zheng H.
2018-05-01
This paper studies the control of spacecraft rendezvous with attitude stable or spinning targets in an elliptical orbit. The linearized Tschauner-Hempel equation is used to describe the motion of spacecraft and the problem is formulated by model predictive control. The control objective is to maximize control accuracy and smoothness simultaneously to avoid unexpected change or overshoot of trajectory for safe rendezvous. It is achieved by minimizing the weighted summations of control errors and increments. The effects of two sets of horizons (control and predictive horizons) in the model predictive control are examined in terms of fuel consumption, rendezvous time and computational effort. The numerical results show the proposed control strategy is effective.
Active vibration control of thin-plate structures with partial SCLD treatment
NASA Astrophysics Data System (ADS)
Lu, Jun; Wang, Pan; Zhan, Zhenfei
2017-02-01
To effectively suppress the low-frequency vibration of a thin-plate, the strategy adopted is to develop a model-based approach to the investigation on the active vibration control of a clamped-clamped plate with partial SCLD treatment. Firstly, a finite element model is developed based on the constitutive equations of elastic, piezoelectric and viscoelastic materials. The characteristics of viscoelastic materials varying with temperature and frequency are described by GHM damping model. A low-dimensional real modal control model which can be used as the basis for active vibration control is then obtained from the combined reduction. The emphasis is placed on the feedback control system to attenuate the vibration of plates with SCLD treatments. A modal controller in conjunction with modal state estimator is designed to solve the problem of full state feedback, making it much more feasible to real-time control. Finally, the theoretical model is verified by modal test, and an active vibration control is validated by hardware-in-the-loop experiment under different external excitations. The numerical and experimental study demonstrate how the piezoelectric actuators actively control the lower modes (first bending and torsional modes) using modal controller, while the higher frequency vibration attenuated by viscoelastic passive damping layer.
Decision-making for foot-and-mouth disease control: Objectives matter
Probert, William J. M.; Shea, Katriona; Fonnesbeck, Christopher J.; Runge, Michael C.; Carpenter, Tim E.; Durr, Salome; Garner, M. Graeme; Harvey, Neil; Stevenson, Mark A.; Webb, Colleen T.; Werkman, Marleen; Tildesley, Michael J.; Ferrari, Matthew J.
2016-01-01
Formal decision-analytic methods can be used to frame disease control problems, the first step of which is to define a clear and specific objective. We demonstrate the imperative of framing clearly-defined management objectives in finding optimal control actions for control of disease outbreaks. We illustrate an analysis that can be applied rapidly at the start of an outbreak when there are multiple stakeholders involved with potentially multiple objectives, and when there are also multiple disease models upon which to compare control actions. The output of our analysis frames subsequent discourse between policy-makers, modellers and other stakeholders, by highlighting areas of discord among different management objectives and also among different models used in the analysis. We illustrate this approach in the context of a hypothetical foot-and-mouth disease (FMD) outbreak in Cumbria, UK using outputs from five rigorously-studied simulation models of FMD spread. We present both relative rankings and relative performance of controls within each model and across a range of objectives. Results illustrate how control actions change across both the base metric used to measure management success and across the statistic used to rank control actions according to said metric. This work represents a first step towards reconciling the extensive modelling work on disease control problems with frameworks for structured decision making.
NASA Astrophysics Data System (ADS)
Sun, Zhiyong; Hao, Lina; Song, Bo; Yang, Ruiguo; Cao, Ruimin; Cheng, Yu
2016-10-01
Micro/nano positioning technologies have been attractive for decades for their various applications in both industrial and scientific fields. The actuators employed in these technologies are typically smart material actuators, which possess inherent hysteresis that may cause systems behave unexpectedly. Periodic reference tracking capability is fundamental for apparatuses such as scanning probe microscope, which employs smart material actuators to generate periodic scanning motion. However, traditional controller such as PID method cannot guarantee accurate fast periodic scanning motion. To tackle this problem and to conduct practical implementation in digital devices, this paper proposes a novel control method named discrete extended unparallel Prandtl-Ishlinskii model based internal model (d-EUPI-IM) control approach. To tackle modeling uncertainties, the robust d-EUPI-IM control approach is investigated, and the associated sufficient stabilizing conditions are derived. The advantages of the proposed controller are: it is designed and represented in discrete form, thus practical for digital devices implementation; the extended unparallel Prandtl-Ishlinskii model can precisely represent forward/inverse complex hysteretic characteristics, thus can reduce modeling uncertainties and benefits controllers design; in addition, the internal model principle based control module can be utilized as a natural oscillator for tackling periodic references tracking problem. The proposed controller was verified through comparative experiments on a piezoelectric actuator platform, and convincing results have been achieved.
Stabilization of business cycles of finance agents using nonlinear optimal control
NASA Astrophysics Data System (ADS)
Rigatos, G.; Siano, P.; Ghosh, T.; Sarno, D.
2017-11-01
Stabilization of the business cycles of interconnected finance agents is performed with the use of a new nonlinear optimal control method. First, the dynamics of the interacting finance agents and of the associated business cycles is described by a modeled of coupled nonlinear oscillators. Next, this dynamic model undergoes approximate linearization round a temporary operating point which is defined by the present value of the system's state vector and the last value of the control inputs vector that was exerted on it. The linearization procedure is based on Taylor series expansion of the dynamic model and on the computation of Jacobian matrices. The modelling error, which is due to the truncation of higher-order terms in the Taylor series expansion is considered as a disturbance which is compensated by the robustness of the control loop. Next, for the linearized model of the interacting finance agents, an H-infinity feedback controller is designed. The computation of the feedback control gain requires the solution of an algebraic Riccati equation at each iteration of the control algorithm. Through Lyapunov stability analysis it is proven that the control scheme satisfies an H-infinity tracking performance criterion, which signifies elevated robustness against modelling uncertainty and external perturbations. Moreover, under moderate conditions the global asymptotic stability features of the control loop are proven.
Robust independent modal space control of a coupled nano-positioning piezo-stage
NASA Astrophysics Data System (ADS)
Zhu, Wei; Yang, Fufeng; Rui, Xiaoting
2018-06-01
In order to accurately control a coupled 3-DOF nano-positioning piezo-stage, this paper designs a hybrid controller. In this controller, a hysteresis observer based on a Bouc-Wen model is established to compensate the hysteresis nonlinearity of the piezoelectric actuator first. Compared to hysteresis compensations using Preisach model and Prandt-Ishlinskii model, the compensation method using the hysteresis observer is computationally lighter. Then, based on the proposed dynamics model, by constructing the modal filter, a robust H∞ independent modal space controller is designed and utilized to decouple the piezo-stage and deal with the unmodeled dynamics, disturbance, and hysteresis compensation error. The effectiveness of the proposed controller is demonstrated experimentally. The experimental results show that the proposed controller can significantly achieve the high-precision positioning.
Percival, Matthew W.; Zisser, Howard; Jovanovič, Lois; Doyle, Francis J.
2008-01-01
Background Using currently available technology, it is possible to apply modern control theory to produce a closed-loop artificial β cell. Novel use of established control techniques would improve glycemic control, thereby reducing the complications of diabetes. Two popular controller structures, proportional–integral–derivative (PID) and model predictive control (MPC), are compared first in a theoretical sense and then in two applications. Methods The Bergman model is transformed for use in a PID equivalent model-based controller. The internal model control (IMC) structure, which makes explicit use of the model, is compared with the PID controller structure in the transfer function domain. An MPC controller is then developed as an optimization problem with restrictions on its tuning parameters and is shown to be equivalent to an IMC controller. The controllers are tuned for equivalent performance and evaluated in a simulation study as a closed-loop controller and in an advisory mode scenario on retrospective clinical data. Results Theoretical development shows conditions under which PID and MPC controllers produce equivalent output via IMC. The simulation study showed that the single tuning parameter for the equivalent controllers relates directly to the closed-loop speed of response and robustness, an important result considering system uncertainty. The risk metric allowed easy identification of instances of inadequate control. Results of the advisory mode simulation showed that suitable tuning produces consistently appropriate delivery recommendations. Conclusion The conditions under which PID and MPC are equivalent have been derived. The MPC framework is more suitable given the extensions necessary for a fully closed-loop artificial β cell, such as consideration of controller constraints. Formulation of the control problem in risk space is attractive, as it explicitly addresses the asymmetry of the problem; this is done easily with MPC. PMID:19885240
NASA Technical Reports Server (NTRS)
Nobbs, Steven G.
1995-01-01
An overview of the performance seeking control (PSC) algorithm and details of the important components of the algorithm are given. The onboard propulsion system models, the linear programming optimization, and engine control interface are described. The PSC algorithm receives input from various computers on the aircraft including the digital flight computer, digital engine control, and electronic inlet control. The PSC algorithm contains compact models of the propulsion system including the inlet, engine, and nozzle. The models compute propulsion system parameters, such as inlet drag and fan stall margin, which are not directly measurable in flight. The compact models also compute sensitivities of the propulsion system parameters to change in control variables. The engine model consists of a linear steady state variable model (SSVM) and a nonlinear model. The SSVM is updated with efficiency factors calculated in the engine model update logic, or Kalman filter. The efficiency factors are used to adjust the SSVM to match the actual engine. The propulsion system models are mathematically integrated to form an overall propulsion system model. The propulsion system model is then optimized using a linear programming optimization scheme. The goal of the optimization is determined from the selected PSC mode of operation. The resulting trims are used to compute a new operating point about which the optimization process is repeated. This process is continued until an overall (global) optimum is reached before applying the trims to the controllers.
Integrated energy balance analysis for Space Station Freedom
NASA Technical Reports Server (NTRS)
Tandler, John
1991-01-01
An integrated simulation model is described which characterizes the dynamic interaction of the energy transport subsystems of Space Station Freedom for given orbital conditions and for a given set of power and thermal loads. Subsystems included in the model are the Electric Power System (EPS), the Internal Thermal Control System (ITCS), the External Thermal Control System (ETCS), and the cabin Temperature and Humidity Control System (THC) (which includes the avionics air cooling, cabin air cooling, and intermodule ventilation systems). Models of the subsystems were developed in a number of system-specific modeling tools and validated. The subsystem models are then combined into integrated models to address a number of integrated performance issues involving the ability of the integrated energy transport system of Space Station Freedom to provide power, controlled cabin temperature and humidity, and equipment thermal control to support operations.
Kamesh, Reddi; Rani, Kalipatnapu Yamuna
2017-12-01
In this paper, a novel formulation for nonlinear model predictive control (MPC) has been proposed incorporating the extended Kalman filter (EKF) control concept using a purely data-driven artificial neural network (ANN) model based on measurements for supervisory control. The proposed scheme consists of two modules focusing on online parameter estimation based on past measurements and control estimation over control horizon based on minimizing the deviation of model output predictions from set points along the prediction horizon. An industrial case study for temperature control of a multiproduct semibatch polymerization reactor posed as a challenge problem has been considered as a test bed to apply the proposed ANN-EKFMPC strategy at supervisory level as a cascade control configuration along with proportional integral controller [ANN-EKFMPC with PI (ANN-EKFMPC-PI)]. The proposed approach is formulated incorporating all aspects of MPC including move suppression factor for control effort minimization and constraint-handling capability including terminal constraints. The nominal stability analysis and offset-free tracking capabilities of the proposed controller are proved. Its performance is evaluated by comparison with a standard MPC-based cascade control approach using the same adaptive ANN model. The ANN-EKFMPC-PI control configuration has shown better controller performance in terms of temperature tracking, smoother input profiles, as well as constraint-handling ability compared with the ANN-MPC with PI approach for two products in summer and winter. The proposed scheme is found to be versatile although it is based on a purely data-driven model with online parameter estimation.
NASA Astrophysics Data System (ADS)
Maljaars, E.; Felici, F.; Blanken, T. C.; Galperti, C.; Sauter, O.; de Baar, M. R.; Carpanese, F.; Goodman, T. P.; Kim, D.; Kim, S. H.; Kong, M.; Mavkov, B.; Merle, A.; Moret, J. M.; Nouailletas, R.; Scheffer, M.; Teplukhina, A. A.; Vu, N. M. T.; The EUROfusion MST1-team; The TCV-team
2017-12-01
The successful performance of a model predictive profile controller is demonstrated in simulations and experiments on the TCV tokamak, employing a profile controller test environment. Stable high-performance tokamak operation in hybrid and advanced plasma scenarios requires control over the safety factor profile (q-profile) and kinetic plasma parameters such as the plasma beta. This demands to establish reliable profile control routines in presently operational tokamaks. We present a model predictive profile controller that controls the q-profile and plasma beta using power requests to two clusters of gyrotrons and the plasma current request. The performance of the controller is analyzed in both simulation and TCV L-mode discharges where successful tracking of the estimated inverse q-profile as well as plasma beta is demonstrated under uncertain plasma conditions and the presence of disturbances. The controller exploits the knowledge of the time-varying actuator limits in the actuator input calculation itself such that fast transitions between targets are achieved without overshoot. A software environment is employed to prepare and test this and three other profile controllers in parallel in simulations and experiments on TCV. This set of tools includes the rapid plasma transport simulator RAPTOR and various algorithms to reconstruct the plasma equilibrium and plasma profiles by merging the available measurements with model-based predictions. In this work the estimated q-profile is merely based on RAPTOR model predictions due to the absence of internal current density measurements in TCV. These results encourage to further exploit model predictive profile control in experiments on TCV and other (future) tokamaks.
Modelling and study of active vibration control for off-road vehicle
NASA Astrophysics Data System (ADS)
Zhang, Junwei; Chen, Sizhong
2014-05-01
In view of special working characteristics and structure, engineering machineries do not have conventional suspension system typically. Consequently, operators have to endure severe vibrations which are detrimental both to their health and to the productivity of the loader. Based on displacement control, a kind of active damping method is developed for a skid-steer loader. In this paper, the whole hydraulic system for active damping method is modelled which include swash plate dynamics model, proportional valve model, piston accumulator model, pilot-operated check valve model, relief valve model, pump loss model, and cylinder model. A new road excitation model is developed for the skid-steer loader specially. The response of chassis vibration acceleration to road excitation is verified through simulation. The simulation result of passive accumulator damping is compared with measurements and the comparison shows that they are close. Based on this, parallel PID controller and track PID controller with acceleration feedback are brought into the simulation model, and the simulation results are compared with passive accumulator damping. It shows that the active damping methods with PID controllers are better in reducing chassis vibration acceleration and pitch movement. In the end, the test work for active damping method is proposed for the future work.
Development of a model for on-line control of crystal growth by the AHP method
NASA Astrophysics Data System (ADS)
Gonik, M. A.; Lomokhova, A. V.; Gonik, M. M.; Kuliev, A. T.; Smirnov, A. D.
2007-05-01
The possibility to apply a simplified 2D model for heat transfer calculations in crystal growth by the axial heat close to phase interface (AHP) method is discussed in this paper. A comparison with global heat transfer calculations with the CGSim software was performed to confirm the accuracy of this model. The simplified model was shown to provide adequate results for the shape of the melt-crystal interface and temperature field in an opaque (Ge) and a transparent crystal (CsI:Tl). The model proposed is used for identification of the growth setup as a control object, for synthesis of a digital controller (PID controller at the present stage) and, finally, in on-line simulations of crystal growth control.
Predictive Rotation Profile Control for the DIII-D Tokamak
NASA Astrophysics Data System (ADS)
Wehner, W. P.; Schuster, E.; Boyer, M. D.; Walker, M. L.; Humphreys, D. A.
2017-10-01
Control-oriented modeling and model-based control of the rotation profile are employed to build a suitable control capability for aiding rotation-related physics studies at DIII-D. To obtain a control-oriented model, a simplified version of the momentum balance equation is combined with empirical representations of the momentum sources. The control approach is rooted in a Model Predictive Control (MPC) framework to regulate the rotation profile while satisfying constraints associated with the desired plasma stored energy and/or βN limit. Simple modifications allow for alternative control objectives, such as maximizing the plasma rotation while maintaining a specified input torque. Because the MPC approach can explicitly incorporate various types of constraints, this approach is well suited to a variety of control objectives, and therefore serves as a valuable tool for experimental physics studies. Closed-loop TRANSP simulations are presented to demonstrate the effectiveness of the control approach. Supported by the US DOE under DE-SC0010661 and DE-FC02-04ER54698.
Real-time Adaptive Control Using Neural Generalized Predictive Control
NASA Technical Reports Server (NTRS)
Haley, Pam; Soloway, Don; Gold, Brian
1999-01-01
The objective of this paper is to demonstrate the feasibility of a Nonlinear Generalized Predictive Control algorithm by showing real-time adaptive control on a plant with relatively fast time-constants. Generalized Predictive Control has classically been used in process control where linear control laws were formulated for plants with relatively slow time-constants. The plant of interest for this paper is a magnetic levitation device that is nonlinear and open-loop unstable. In this application, the reference model of the plant is a neural network that has an embedded nominal linear model in the network weights. The control based on the linear model provides initial stability at the beginning of network training. In using a neural network the control laws are nonlinear and online adaptation of the model is possible to capture unmodeled or time-varying dynamics. Newton-Raphson is the minimization algorithm. Newton-Raphson requires the calculation of the Hessian, but even with this computational expense the low iteration rate make this a viable algorithm for real-time control.
NASA Astrophysics Data System (ADS)
Li, Peng; Zhu, Zheng H.; Meguid, S. A.
2016-07-01
This paper studies the pulse-width pulse-frequency modulation based trajectory planning for orbital rendezvous and proximity maneuvering near a non-cooperative spacecraft in an elliptical orbit. The problem is formulated by converting the continuous control input, output from the state dependent model predictive control, into a sequence of pulses of constant magnitude by controlling firing frequency and duration of constant-magnitude thrusters. The state dependent model predictive control is derived by minimizing the control error of states and control roughness of control input for a safe, smooth and fuel efficient approaching trajectory. The resulting nonlinear programming problem is converted into a series of quadratic programming problem and solved by numerical iteration using the receding horizon strategy. The numerical results show that the proposed state dependent model predictive control with the pulse-width pulse-frequency modulation is able to effectively generate optimized trajectories using equivalent control pulses for the proximity maneuvering with less energy consumption.
Vehicle Hybrid Braking Control Using Sliding Mode Control
NASA Astrophysics Data System (ADS)
Kasahara, Misawa; Kanai, Yuki; Shiraki, Ryoko; Mori, Yasuchika
Anti-lock brake system and brake-by-wire are proposed in the vehicle control using a brake, and the braking power is expected to be improved more than ever. The researches such as an application to the ABS of Siliding mode control which considered a actuator dynamics and a hybrid control of the brake using model reference adaptive control are done so far. However, in the former case, speed following that becomes a target exists physically impossible situation by saturation of tire frictional force because only speed following is done. In the latter, the model error is caused because the simulation model and the controller design model are different. Therefore, there is a problem that an accurate follow cannot be done. In this paper, the braking control is performed using the sliding mode control which has high robustness for disturbance that fulfils matching conditions. In so doing, it aims at the achievement of optimal braking control to switch wheel speed following to slip ratio following.
Proceedings of the Workshop on Identification and Control of Flexible Space Structures, volume 1
NASA Technical Reports Server (NTRS)
Rodriguez, G. (Editor)
1985-01-01
Identification and control of flexible space structures were studied. Exploration of the most advanced modeling estimation, identification and control methodologies to flexible space structures was discussed. The following general areas were discussed: space platforms, antennas, and flight experiments; control/structure interactions - modeling, integrated design and optimization, control and stabilization, and shape control; control technology; control of space stations; large antenna control, dynamics and control experiments, and control/structure interaction experiments.
Joint Control for Dummies: An Elaboration of Lowenkron's Model of Joint (Stimulus) Control
ERIC Educational Resources Information Center
Sidener, David W.
2006-01-01
The following paper describes Lowenkron's model of joint (stimulus) control. Joint control is described as a means of accounting for performances, especially generalized performances, for which a history of contingency control does not provide an adequate account. Examples are provided to illustrate instances in which joint control may facilitate…
Output-Feedback Model Predictive Control of a Pasteurization Pilot Plant based on an LPV model
NASA Astrophysics Data System (ADS)
Karimi Pour, Fatemeh; Ocampo-Martinez, Carlos; Puig, Vicenç
2017-01-01
This paper presents a model predictive control (MPC) of a pasteurization pilot plant based on an LPV model. Since not all the states are measured, an observer is also designed, which allows implementing an output-feedback MPC scheme. However, the model of the plant is not completely observable when augmented with the disturbance models. In order to solve this problem, the following strategies are used: (i) the whole system is decoupled into two subsystems, (ii) an inner state-feedback controller is implemented into the MPC control scheme. A real-time example based on the pasteurization pilot plant is simulated as a case study for testing the behavior of the approaches.
A Modelica-based Model Library for Building Energy and Control Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wetter, Michael
2009-04-07
This paper describes an open-source library with component models for building energy and control systems that is based on Modelica, an equation-based objectoriented language that is well positioned to become the standard for modeling of dynamic systems in various industrial sectors. The library is currently developed to support computational science and engineering for innovative building energy and control systems. Early applications will include controls design and analysis, rapid prototyping to support innovation of new building systems and the use of models during operation for controls, fault detection and diagnostics. This paper discusses the motivation for selecting an equation-based object-oriented language.more » It presents the architecture of the library and explains how base models can be used to rapidly implement new models. To demonstrate the capability of analyzing novel energy and control systems, the paper closes with an example where we compare the dynamic performance of a conventional hydronic heating system with thermostatic radiator valves to an innovative heating system. In the new system, instead of a centralized circulation pump, each of the 18 radiators has a pump whose speed is controlled using a room temperature feedback loop, and the temperature of the boiler is controlled based on the speed of the radiator pump. All flows are computed by solving for the pressure distribution in the piping network, and the controls include continuous and discrete time controls.« less
NASA Astrophysics Data System (ADS)
Ji, Xuewu; He, Xiangkun; Lv, Chen; Liu, Yahui; Wu, Jian
2018-06-01
Modelling uncertainty, parameter variation and unknown external disturbance are the major concerns in the development of an advanced controller for vehicle stability at the limits of handling. Sliding mode control (SMC) method has proved to be robust against parameter variation and unknown external disturbance with satisfactory tracking performance. But modelling uncertainty, such as errors caused in model simplification, is inevitable in model-based controller design, resulting in lowered control quality. The adaptive radial basis function network (ARBFN) can effectively improve the control performance against large system uncertainty by learning to approximate arbitrary nonlinear functions and ensure the global asymptotic stability of the closed-loop system. In this paper, a novel vehicle dynamics stability control strategy is proposed using the adaptive radial basis function network sliding mode control (ARBFN-SMC) to learn system uncertainty and eliminate its adverse effects. This strategy adopts a hierarchical control structure which consists of reference model layer, yaw moment control layer, braking torque allocation layer and executive layer. Co-simulation using MATLAB/Simulink and AMESim is conducted on a verified 15-DOF nonlinear vehicle system model with the integrated-electro-hydraulic brake system (I-EHB) actuator in a Sine With Dwell manoeuvre. The simulation results show that ARBFN-SMC scheme exhibits superior stability and tracking performance in different running conditions compared with SMC scheme.
Development of self-control in children aged 3 to 9 years: Perspective from a dual-systems model
Tao, Ting; Wang, Ligang; Fan, Chunlei; Gao, Wenbin
2014-01-01
The current study tested a set of interrelated theoretical propositions based on a dual-systems model of self-control. Data were collected from 2135 children aged 3 to 9 years. The results suggest that (a) there was positive growth in good self-control, whereas poor control remained relatively stable; and (b) girls performed better than boys on tests of good self-control. The results are discussed in terms of their implications for a dual-systems model of self-control theory and future empirical work. PMID:25501669
de Croon, E M; Blonk, R; de Zwart, B C H; Frings-Dresen, M; Broersen, J
2002-01-01
Objectives: Building on Karasek's model of job demands and control (JD-C model), this study examined the effects of job control, quantitative workload, and two occupation specific job demands (physical demands and supervisor demands) on fatigue and job dissatisfaction in Dutch lorry drivers. Methods: From 1181 lorry drivers (adjusted response 63%) self reported information was gathered by questionnaire on the independent variables (job control, quantitative workload, physical demands, and supervisor demands) and the dependent variables (fatigue and job dissatisfaction). Stepwise multiple regression analyses were performed to examine the main effects of job demands and job control and the interaction effect between job control and job demands on fatigue and job dissatisfaction. Results: The inclusion of physical and supervisor demands in the JD-C model explained a significant amount of variance in fatigue (3%) and job dissatisfaction (7%) over and above job control and quantitative workload. Moreover, in accordance with Karasek's interaction hypothesis, job control buffered the positive relation between quantitative workload and job dissatisfaction. Conclusions: Despite methodological limitations, the results suggest that the inclusion of (occupation) specific job control and job demand measures is a fruitful elaboration of the JD-C model. The occupation specific JD-C model gives occupational stress researchers better insight into the relation between the psychosocial work environment and wellbeing. Moreover, the occupation specific JD-C model may give practitioners more concrete and useful information about risk factors in the psychosocial work environment. Therefore, this model may provide points of departure for effective stress reducing interventions at work. PMID:12040108
de Croon, E M; Blonk, R W B; de Zwart, B C H; Frings-Dresen, M H W; Broersen, J P J
2002-06-01
Building on Karasek's model of job demands and control (JD-C model), this study examined the effects of job control, quantitative workload, and two occupation specific job demands (physical demands and supervisor demands) on fatigue and job dissatisfaction in Dutch lorry drivers. From 1181 lorry drivers (adjusted response 63%) self reported information was gathered by questionnaire on the independent variables (job control, quantitative workload, physical demands, and supervisor demands) and the dependent variables (fatigue and job dissatisfaction). Stepwise multiple regression analyses were performed to examine the main effects of job demands and job control and the interaction effect between job control and job demands on fatigue and job dissatisfaction. The inclusion of physical and supervisor demands in the JD-C model explained a significant amount of variance in fatigue (3%) and job dissatisfaction (7%) over and above job control and quantitative workload. Moreover, in accordance with Karasek's interaction hypothesis, job control buffered the positive relation between quantitative workload and job dissatisfaction. Despite methodological limitations, the results suggest that the inclusion of (occupation) specific job control and job demand measures is a fruitful elaboration of the JD-C model. The occupation specific JD-C model gives occupational stress researchers better insight into the relation between the psychosocial work environment and wellbeing. Moreover, the occupation specific JD-C model may give practitioners more concrete and useful information about risk factors in the psychosocial work environment. Therefore, this model may provide points of departure for effective stress reducing interventions at work.
Liu, Yanchen; Shi, Hanchang; Shi, Huiming; Wang, Zhiqiang
2010-10-01
The aim of study was proposed a new control model feasible on-line implemented by Programmable Logic Controller (PLC) to enhance nitrogen removal against the fluctuation of influent in Carrousel oxidation ditch. The discrete-time control model was established by confirmation model of operational conditions based on a expert access, which was obtained by a simulation using Activated Sludge Model 2-D (ASM2-D) and Computation Fluid Dynamics (CFD), and discrete-time control model to switch between different operational stages. A full-scale example is provided to demonstrate the feasibility of the proposed operation and the procedure of the control design. The effluent quality was substantially improved, to the extent that it met the new wastewater discharge standards of NH(3)-N<5mg/L and TN<15 mg/L enacted in China throughout a one-day period with fluctuation of influent. Copyright © 2010 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Hamer, H. A.; Johnson, K. G.
1986-01-01
An analysis was performed to determine the effects of model error on the control of a large flexible space antenna. Control was achieved by employing two three-axis control-moment gyros (CMG's) located on the antenna column. State variables were estimated by including an observer in the control loop that used attitude and attitude-rate sensors on the column. Errors were assumed to exist in the individual model parameters: modal frequency, modal damping, mode slope (control-influence coefficients), and moment of inertia. Their effects on control-system performance were analyzed either for (1) nulling initial disturbances in the rigid-body modes, or (2) nulling initial disturbances in the first three flexible modes. The study includes the effects on stability, time to null, and control requirements (defined as maximum torque and total momentum), as well as on the accuracy of obtaining initial estimates of the disturbances. The effects on the transients of the undisturbed modes are also included. The results, which are compared for decoupled and linear quadratic regulator (LQR) control procedures, are shown in tabular form, parametric plots, and as sample time histories of modal-amplitude and control responses. Results of the analysis showed that the effects of model errors on the control-system performance were generally comparable for both control procedures. The effect of mode-slope error was the most serious of all model errors.
Novel associative-memory-based self-learning neurocontrol model
NASA Astrophysics Data System (ADS)
Chen, Ke
1992-09-01
Intelligent control is an important field of AI application, which is closely related to machine learning, and the neurocontrol is a kind of intelligent control that controls actions of a physical system or a plant. Linear associative memory model is a good analytic tool for artificial neural networks. In this paper, we present a novel self-learning neurocontrol on the basis of the linear associative memory model to support intelligent control. Using our self-learning neurocontrol model, the learning process is viewed as an extension of one of J. Piaget's developmental stages. After a particular linear associative model developed by us is presented, a brief introduction to J. Piaget's cognitive theory is described as the basis of our self-learning style control. It follows that the neurocontrol model is presented, which usually includes two learning stages, viz. primary learning and high-level learning. As a demonstration of our neurocontrol model, an example is also presented with simulation techniques, called that `bird' catches an aim. The tentative experimental results show that the learning and controlling performance of this approach is surprisingly good. In conclusion, future research is pointed out to improve our self-learning neurocontrol model and explore other areas of application.
A lumped parameter mathematical model for simulation of subsonic wind tunnels
NASA Technical Reports Server (NTRS)
Krosel, S. M.; Cole, G. L.; Bruton, W. M.; Szuch, J. R.
1986-01-01
Equations for a lumped parameter mathematical model of a subsonic wind tunnel circuit are presented. The equation state variables are internal energy, density, and mass flow rate. The circuit model is structured to allow for integration and analysis of tunnel subsystem models which provide functions such as control of altitude pressure and temperature. Thus the model provides a useful tool for investigating the transient behavior of the tunnel and control requirements. The model was applied to the proposed NASA Lewis Altitude Wind Tunnel (AWT) circuit and included transfer function representations of the tunnel supply/exhaust air and refrigeration subsystems. Both steady state and frequency response data are presented for the circuit model indicating the type of results and accuracy that can be expected from the model. Transient data for closed loop control of the tunnel and its subsystems are also presented, demonstrating the model's use as a control analysis tool.
What can formal methods offer to digital flight control systems design
NASA Technical Reports Server (NTRS)
Good, Donald I.
1990-01-01
Formal methods research begins to produce methods which will enable mathematic modeling of the physical behavior of digital hardware and software systems. The development of these methods directly supports the NASA mission of increasing the scope and effectiveness of flight system modeling capabilities. The conventional, continuous mathematics that is used extensively in modeling flight systems is not adequate for accurate modeling of digital systems. Therefore, the current practice of digital flight control system design has not had the benefits of extensive mathematical modeling which are common in other parts of flight system engineering. Formal methods research shows that by using discrete mathematics, very accurate modeling of digital systems is possible. These discrete modeling methods will bring the traditional benefits of modeling to digital hardware and hardware design. Sound reasoning about accurate mathematical models of flight control systems can be an important part of reducing risk of unsafe flight control.
Extended cooperative control synthesis
NASA Technical Reports Server (NTRS)
Davidson, John B.; Schmidt, David K.
1994-01-01
This paper reports on research for extending the Cooperative Control Synthesis methodology to include a more accurate modeling of the pilot's controller dynamics. Cooperative Control Synthesis (CCS) is a methodology that addresses the problem of how to design control laws for piloted, high-order, multivariate systems and/or non-conventional dynamic configurations in the absence of flying qualities specifications. This is accomplished by emphasizing the parallel structure inherent in any pilot-controlled, augmented vehicle. The original CCS methodology is extended to include the Modified Optimal Control Model (MOCM), which is based upon the optimal control model of the human operator developed by Kleinman, Baron, and Levison in 1970. This model provides a modeling of the pilot's compensation dynamics that is more accurate than the simplified pilot dynamic representation currently in the CCS methodology. Inclusion of the MOCM into the CCS also enables the modeling of pilot-observation perception thresholds and pilot-observation attention allocation affects. This Extended Cooperative Control Synthesis (ECCS) allows for the direct calculation of pilot and system open- and closed-loop transfer functions in pole/zero form and is readily implemented in current software capable of analysis and design for dynamic systems. Example results based upon synthesizing an augmentation control law for an acceleration command system in a compensatory tracking task using the ECCS are compared with a similar synthesis performed by using the original CCS methodology. The ECCS is shown to provide augmentation control laws that yield more favorable, predicted closed-loop flying qualities and tracking performance than those synthesized using the original CCS methodology.
The neural optimal control hierarchy for motor control
NASA Astrophysics Data System (ADS)
DeWolf, T.; Eliasmith, C.
2011-10-01
Our empirical, neuroscientific understanding of biological motor systems has been rapidly growing in recent years. However, this understanding has not been systematically mapped to a quantitative characterization of motor control based in control theory. Here, we attempt to bridge this gap by describing the neural optimal control hierarchy (NOCH), which can serve as a foundation for biologically plausible models of neural motor control. The NOCH has been constructed by taking recent control theoretic models of motor control, analyzing the required processes, generating neurally plausible equivalent calculations and mapping them on to the neural structures that have been empirically identified to form the anatomical basis of motor control. We demonstrate the utility of the NOCH by constructing a simple model based on the identified principles and testing it in two ways. First, we perturb specific anatomical elements of the model and compare the resulting motor behavior with clinical data in which the corresponding area of the brain has been damaged. We show that damaging the assigned functions of the basal ganglia and cerebellum can cause the movement deficiencies seen in patients with Huntington's disease and cerebellar lesions. Second, we demonstrate that single spiking neuron data from our model's motor cortical areas explain major features of single-cell responses recorded from the same primate areas. We suggest that together these results show how NOCH-based models can be used to unify a broad range of data relevant to biological motor control in a quantitative, control theoretic framework.
Simulation to coating weight control for galvanizing
NASA Astrophysics Data System (ADS)
Wang, Junsheng; Yan, Zhang; Wu, Kunkui; Song, Lei
2013-05-01
Zinc coating weight control is one of the most critical issues for continuous galvanizing line. The process has the characteristic of variable-time large time delay, nonlinear, multivariable. It can result in seriously coating weight error and non-uniform coating. We develop a control system, which can automatically control the air knives pressure and its position to give a constant and uniform zinc coating, in accordance with customer-order specification through an auto-adaptive empirical model-based feed forward adaptive controller, and two model-free adaptive feedback controllers . The proposed models with controller were applied to continuous galvanizing line (CGL) at Angang Steel Works. By the production results, the precise and stability of the control model reduces over-coating weight and improves coating uniform. The product for this hot dip galvanizing line does not only satisfy the customers' quality requirement but also save the zinc consumption.
Combined monitoring, decision and control model for the human operator in a command and control desk
NASA Technical Reports Server (NTRS)
Muralidharan, R.; Baron, S.
1978-01-01
A report is given on the ongoing efforts to mode the human operator in the context of the task during the enroute/return phases in the ground based control of multiple flights of remotely piloted vehicles (RPV). The approach employed here uses models that have their analytical bases in control theory and in statistical estimation and decision theory. In particular, it draws heavily on the modes and the concepts of the optimal control model (OCM) of the human operator. The OCM is being extended into a combined monitoring, decision, and control model (DEMON) of the human operator by infusing decision theoretic notions that make it suitable for application to problems in which human control actions are infrequent and in which monitoring and decision-making are the operator's main activities. Some results obtained with a specialized version of DEMON for the RPV control problem are included.
Motion and force control for multiple cooperative manipulators
NASA Technical Reports Server (NTRS)
Wen, John T.; Kreutz, Kenneth
1989-01-01
The motion and force control of multiple robot arms manipulating a commonly held object is addressed. A general control paradigm that decouples the motion and force control problems is introduced. For motion control, there are three natural choices: (1) joint torques, (2) arm-tip force vectors, and (3) the acceleration of a generalized coordinate. Choice (1) allows a class of relatively model-independent control laws by exploiting the Hamiltonian structure of the open-loop system; (2) and (3) require the full model information but produce simpler problems. To resolve the nonuniqueness of the joint torques, two methods are introduced. If the arm and object models are available, the allocation of the desired end-effector control force to the joint actuators can be optimized; otherwise the internal force can be controlled about some set point. It is shown that effective force regulation can be achieved even if little model information is available.
Sebold, Miriam; Nebe, Stephan; Garbusow, Maria; Guggenmos, Matthias; Schad, Daniel J; Beck, Anne; Kuitunen-Paul, Soeren; Sommer, Christian; Frank, Robin; Neu, Peter; Zimmermann, Ulrich S; Rapp, Michael A; Smolka, Michael N; Huys, Quentin J M; Schlagenhauf, Florian; Heinz, Andreas
2017-12-01
Addiction is supposedly characterized by a shift from goal-directed to habitual decision making, thus facilitating automatic drug intake. The two-step task allows distinguishing between these mechanisms by computationally modeling goal-directed and habitual behavior as model-based and model-free control. In addicted patients, decision making may also strongly depend upon drug-associated expectations. Therefore, we investigated model-based versus model-free decision making and its neural correlates as well as alcohol expectancies in alcohol-dependent patients and healthy controls and assessed treatment outcome in patients. Ninety detoxified, medication-free, alcohol-dependent patients and 96 age- and gender-matched control subjects underwent functional magnetic resonance imaging during the two-step task. Alcohol expectancies were measured with the Alcohol Expectancy Questionnaire. Over a follow-up period of 48 weeks, 37 patients remained abstinent and 53 patients relapsed as indicated by the Alcohol Timeline Followback method. Patients who relapsed displayed reduced medial prefrontal cortex activation during model-based decision making. Furthermore, high alcohol expectancies were associated with low model-based control in relapsers, while the opposite was observed in abstainers and healthy control subjects. However, reduced model-based control per se was not associated with subsequent relapse. These findings suggest that poor treatment outcome in alcohol dependence does not simply result from a shift from model-based to model-free control but is instead dependent on the interaction between high drug expectancies and low model-based decision making. Reduced model-based medial prefrontal cortex signatures in those who relapse point to a neural correlate of relapse risk. These observations suggest that therapeutic interventions should target subjective alcohol expectancies. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Gorzelic, P.; Schiff, S. J.; Sinha, A.
2013-04-01
Objective. To explore the use of classical feedback control methods to achieve an improved deep brain stimulation (DBS) algorithm for application to Parkinson's disease (PD). Approach. A computational model of PD dynamics was employed to develop model-based rational feedback controller design. The restoration of thalamocortical relay capabilities to patients suffering from PD is formulated as a feedback control problem with the DBS waveform serving as the control input. Two high-level control strategies are tested: one that is driven by an online estimate of thalamic reliability, and another that acts to eliminate substantial decreases in the inhibition from the globus pallidus interna (GPi) to the thalamus. Control laws inspired by traditional proportional-integral-derivative (PID) methodology are prescribed for each strategy and simulated on this computational model of the basal ganglia network. Main Results. For control based upon thalamic reliability, a strategy of frequency proportional control with proportional bias delivered the optimal control achieved for a given energy expenditure. In comparison, control based upon synaptic inhibitory output from the GPi performed very well in comparison with those of reliability-based control, with considerable further reduction in energy expenditure relative to that of open-loop DBS. The best controller performance was amplitude proportional with derivative control and integral bias, which is full PID control. We demonstrated how optimizing the three components of PID control is feasible in this setting, although the complexity of these optimization functions argues for adaptive methods in implementation. Significance. Our findings point to the potential value of model-based rational design of feedback controllers for Parkinson's disease.
Gorzelic, P; Schiff, S J; Sinha, A
2013-04-01
To explore the use of classical feedback control methods to achieve an improved deep brain stimulation (DBS) algorithm for application to Parkinson's disease (PD). A computational model of PD dynamics was employed to develop model-based rational feedback controller design. The restoration of thalamocortical relay capabilities to patients suffering from PD is formulated as a feedback control problem with the DBS waveform serving as the control input. Two high-level control strategies are tested: one that is driven by an online estimate of thalamic reliability, and another that acts to eliminate substantial decreases in the inhibition from the globus pallidus interna (GPi) to the thalamus. Control laws inspired by traditional proportional-integral-derivative (PID) methodology are prescribed for each strategy and simulated on this computational model of the basal ganglia network. For control based upon thalamic reliability, a strategy of frequency proportional control with proportional bias delivered the optimal control achieved for a given energy expenditure. In comparison, control based upon synaptic inhibitory output from the GPi performed very well in comparison with those of reliability-based control, with considerable further reduction in energy expenditure relative to that of open-loop DBS. The best controller performance was amplitude proportional with derivative control and integral bias, which is full PID control. We demonstrated how optimizing the three components of PID control is feasible in this setting, although the complexity of these optimization functions argues for adaptive methods in implementation. Our findings point to the potential value of model-based rational design of feedback controllers for Parkinson's disease.
Model-based control strategies for systems with constraints of the program type
NASA Astrophysics Data System (ADS)
Jarzębowska, Elżbieta
2006-08-01
The paper presents a model-based tracking control strategy for constrained mechanical systems. Constraints we consider can be material and non-material ones referred to as program constraints. The program constraint equations represent tasks put upon system motions and they can be differential equations of orders higher than one or two, and be non-integrable. The tracking control strategy relies upon two dynamic models: a reference model, which is a dynamic model of a system with arbitrary order differential constraints and a dynamic control model. The reference model serves as a motion planner, which generates inputs to the dynamic control model. It is based upon a generalized program motion equations (GPME) method. The method enables to combine material and program constraints and merge them both into the motion equations. Lagrange's equations with multipliers are the peculiar case of the GPME, since they can be applied to systems with constraints of first orders. Our tracking strategy referred to as a model reference program motion tracking control strategy enables tracking of any program motion predefined by the program constraints. It extends the "trajectory tracking" to the "program motion tracking". We also demonstrate that our tracking strategy can be extended to a hybrid program motion/force tracking.
A Queueing Model for Supervisory Control of Unmanned Autonomous Vehicles
2013-09-01
Autonomous Vehicles Joseph DiVita, PhD Robert L. Morris Maria Olinda Rodas SSC Pacific Approved...298 (Rev. 8/98) Prescribed by ANSI Std. Z39.18 09–2013 Final A Queueing Model for Supervisory Control of Unmanned Autonomous Vehicles Joseph...Mission Area: Command and Control, Queueing Model; Supervisory Control; Unmanned Autonomous Vehicles M. O. Rodas U U U U 38 (619)
ERIC Educational Resources Information Center
Lee, Jayoung; Puig, Ana; Lee, Sang Min
2012-01-01
The purpose of this study was to examine the effects of the Demand Control Model (DCM) and the Effort Reward Imbalance Model (ERIM) on academic burnout for Korean students. Specifically, this study identified the effects of the predictor variables based on DCM and ERIM (i.e., demand, control, effort, reward, Demand Control Ratio, Effort Reward…
Bayesian modeling of flexible cognitive control
Jiang, Jiefeng; Heller, Katherine; Egner, Tobias
2014-01-01
“Cognitive control” describes endogenous guidance of behavior in situations where routine stimulus-response associations are suboptimal for achieving a desired goal. The computational and neural mechanisms underlying this capacity remain poorly understood. We examine recent advances stemming from the application of a Bayesian learner perspective that provides optimal prediction for control processes. In reviewing the application of Bayesian models to cognitive control, we note that an important limitation in current models is a lack of a plausible mechanism for the flexible adjustment of control over conflict levels changing at varying temporal scales. We then show that flexible cognitive control can be achieved by a Bayesian model with a volatility-driven learning mechanism that modulates dynamically the relative dependence on recent and remote experiences in its prediction of future control demand. We conclude that the emergent Bayesian perspective on computational mechanisms of cognitive control holds considerable promise, especially if future studies can identify neural substrates of the variables encoded by these models, and determine the nature (Bayesian or otherwise) of their neural implementation. PMID:24929218
NASA Astrophysics Data System (ADS)
Wahid, A.; Putra, I. G. E. P.
2018-03-01
Dimethyl ether (DME) as an alternative clean energy has attracted a growing attention in the recent years. DME production via reactive distillation has potential for capital cost and energy requirement savings. However, combination of reaction and distillation on a single column makes reactive distillation process a very complex multivariable system with high non-linearity of process and strong interaction between process variables. This study investigates a multivariable model predictive control (MPC) based on two-point temperature control strategy for the DME reactive distillation column to maintain the purities of both product streams. The process model is estimated by a first order plus dead time model. The DME and water purity is maintained by controlling a stage temperature in rectifying and stripping section, respectively. The result shows that the model predictive controller performed faster responses compared to conventional PI controller that are showed by the smaller ISE values. In addition, the MPC controller is able to handle the loop interactions well.
Active disturbance rejection controller for chemical reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Both, Roxana; Dulf, Eva H.; Muresan, Cristina I., E-mail: roxana.both@aut.utcluj.ro
2015-03-10
In the petrochemical industry, the synthesis of 2 ethyl-hexanol-oxo-alcohols (plasticizers alcohol) is of high importance, being achieved through hydrogenation of 2 ethyl-hexenal inside catalytic trickle bed three-phase reactors. For this type of processes the use of advanced control strategies is suitable due to their nonlinear behavior and extreme sensitivity to load changes and other disturbances. Due to the complexity of the mathematical model an approach was to use a simple linear model of the process in combination with an advanced control algorithm which takes into account the model uncertainties, the disturbances and command signal limitations like robust control. However themore » resulting controller is complex, involving cost effective hardware. This paper proposes a simple integer-order control scheme using a linear model of the process, based on active disturbance rejection method. By treating the model dynamics as a common disturbance and actively rejecting it, active disturbance rejection control (ADRC) can achieve the desired response. Simulation results are provided to demonstrate the effectiveness of the proposed method.« less
Design of Linear Control System for Wind Turbine Blade Fatigue Testing
NASA Astrophysics Data System (ADS)
Toft, Anders; Roe-Poulsen, Bjarke; Christiansen, Rasmus; Knudsen, Torben
2016-09-01
This paper proposes a linear method for wind turbine blade fatigue testing at Siemens Wind Power. The setup consists of a blade, an actuator (motor and load mass) that acts on the blade with a sinusoidal moment, and a distribution of strain gauges to measure the blade flexure. Based on the frequency of the sinusoidal input, the blade will start oscillating with a given gain, hence the objective of the fatigue test is to make the blade oscillate with a controlled amplitude. The system currently in use is based on frequency control, which involves some non-linearities that make the system difficult to control. To make a linear controller, a different approach has been chosen, namely making a controller which is not regulating on the input frequency, but on the input amplitude. A non-linear mechanical model for the blade and the motor has been constructed. This model has been simplified based on the desired output, namely the amplitude of the blade. Furthermore, the model has been linearised to make it suitable for linear analysis and control design methods. The controller is designed based on a simplified and linearised model, and its gain parameter determined using pole placement. The model variants have been simulated in the MATLAB toolbox Simulink, which shows that the controller design based on the simple model performs adequately with the non-linear model. Moreover, the developed controller solves the robustness issue found in the existent solution and also reduces the needed energy for actuation as it always operates at the blade eigenfrequency.
Adaptive control system having hedge unit and related apparatus and methods
NASA Technical Reports Server (NTRS)
Johnson, Eric Norman (Inventor); Calise, Anthony J. (Inventor)
2003-01-01
The invention includes an adaptive control system used to control a plant. The adaptive control system includes a hedge unit that receives at least one control signal and a plant state signal. The hedge unit generates a hedge signal based on the control signal, the plant state signal, and a hedge model including a first model having one or more characteristics to which the adaptive control system is not to adapt, and a second model not having the characteristic(s) to which the adaptive control system is not to adapt. The hedge signal is used in the adaptive control system to remove the effect of the characteristic from a signal supplied to an adaptation law unit of the adaptive control system so that the adaptive control system does not adapt to the characteristic in controlling the plant.
C code generation from Petri-net-based logic controller specification
NASA Astrophysics Data System (ADS)
Grobelny, Michał; Grobelna, Iwona; Karatkevich, Andrei
2017-08-01
The article focuses on programming of logic controllers. It is important that a programming code of a logic controller is executed flawlessly according to the primary specification. In the presented approach we generate C code for an AVR microcontroller from a rule-based logical model of a control process derived from a control interpreted Petri net. The same logical model is also used for formal verification of the specification by means of the model checking technique. The proposed rule-based logical model and formal rules of transformation ensure that the obtained implementation is consistent with the already verified specification. The approach is validated by practical experiments.
Modeling and control of diffusion and low-pressure chemical vapor deposition furnaces
NASA Astrophysics Data System (ADS)
De Waard, H.; De Koning, W. L.
1990-03-01
In this paper a study is made of the heat transfer inside cylindrical resistance diffusion and low-pressure chemical vapor deposition furnaces, aimed at developing an improved temperature controller. A model of the thermal behavior is derived which also covers the important class of furnaces equipped with semitransparent quartz process tubes. The model takes into account the thermal behavior of the thermocouples. It is shown that currently used temperature controllers are highly inefficient for very large scale integration applications. Based on the model an alternative temperature controller of the linear-quadratic-Gaussian type is proposed which features direct wafer temperature control. Some simulation results are given.
NASA Astrophysics Data System (ADS)
Yang, Kangjian; Yang, Ping; Wang, Shuai; Dong, Lizhi; Xu, Bing
2018-05-01
We propose a method to identify tip-tilt disturbance model for Linear Quadratic Gaussian control. This identification method based on Levenberg-Marquardt method conducts with a little prior information and no auxiliary system and it is convenient to identify the tip-tilt disturbance model on-line for real-time control. This identification method makes it easy that Linear Quadratic Gaussian control runs efficiently in different adaptive optics systems for vibration mitigation. The validity of the Linear Quadratic Gaussian control associated with this tip-tilt disturbance model identification method is verified by experimental data, which is conducted in replay mode by simulation.
NASA Astrophysics Data System (ADS)
Goumiri, Imene; Rowley, Clarence; Sabbagh, Steven; Gates, David; Gerhardt, Stefan; Boyer, Mark
2015-11-01
A model-based system is presented allowing control of the plasma rotation profile in a magnetically confined toroidal fusion device to maintain plasma stability for long pulse operation. The analysis, using NSTX data and NSTX-U TRANSP simulations, is aimed at controlling plasma rotation using momentum from six injected neutral beams and neoclassical toroidal viscosity generated by three-dimensional applied magnetic fields as actuators. Based on the momentum diffusion and torque balance model obtained, a feedback controller is designed and predictive simulations using TRANSP will be presented. Robustness of the model and the rotation controller will be discussed.
Nonlinear Model Predictive Control with Constraint Satisfactions for a Quadcopter
NASA Astrophysics Data System (ADS)
Wang, Ye; Ramirez-Jaime, Andres; Xu, Feng; Puig, Vicenç
2017-01-01
This paper presents a nonlinear model predictive control (NMPC) strategy combined with constraint satisfactions for a quadcopter. The full dynamics of the quadcopter describing the attitude and position are nonlinear, which are quite sensitive to changes of inputs and disturbances. By means of constraint satisfactions, partial nonlinearities and modeling errors of the control-oriented model of full dynamics can be transformed into the inequality constraints. Subsequently, the quadcopter can be controlled by an NMPC controller with the updated constraints generated by constraint satisfactions. Finally, the simulation results applied to a quadcopter simulator are provided to show the effectiveness of the proposed strategy.
Advances and new directions in crystallization control.
Nagy, Zoltan K; Braatz, Richard D
2012-01-01
The academic literature on and industrial practice of control of solution crystallization processes have seen major advances in the past 15 years that have been enabled by progress in in-situ real-time sensor technologies and driven primarily by needs in the pharmaceutical industry for improved and more consistent quality of drug crystals. These advances include the accurate measurement of solution concentrations and crystal characteristics as well as the first-principles modeling and robust model-based and model-free feedback control of crystal size and polymorphic identity. Research opportunities are described in model-free controller design, new crystallizer designs with enhanced control of crystal size distribution, strategies for the robust control of crystal shape, and interconnected crystallization systems for multicomponent crystallization.
NASA Astrophysics Data System (ADS)
Ibrahim, I. N.; Akkad, M. A. Al; Abramov, I. V.
2018-05-01
This paper discusses the control of Unmanned Aerial Vehicles (UAVs) for active interaction and manipulation of objects. The manipulator motion with an unknown payload was analysed concerning force and moment disturbances, which influence the mass distribution, and the centre of gravity (CG). Therefore, a general dynamics mathematical model of a hexacopter was formulated where a stochastic state-space model was extracted in order to build anti-disturbance controllers. Based on the compound pendulum method, the disturbances model that simulates the robotic arm with a payload was inserted into the stochastic model. This study investigates two types of controllers in order to study the stability of a hexacopter. A controller based on Ackermann’s method and the other - on the linear quadratic regulator (LQR) approach - were presented. The latter constitutes a challenge for UAV control performance especially with the presence of uncertainties and disturbances.
NASA Astrophysics Data System (ADS)
Rong, Bao; Rui, Xiaoting; Lu, Kun; Tao, Ling; Wang, Guoping; Ni, Xiaojun
2018-05-01
In this paper, an efficient method of dynamics modeling and vibration control design of a linear hybrid multibody system (MS) is studied based on the transfer matrix method. The natural vibration characteristics of a linear hybrid MS are solved by using low-order transfer equations. Then, by constructing the brand-new body dynamics equation, augmented operator and augmented eigenvector, the orthogonality of augmented eigenvector of a linear hybrid MS is satisfied, and its state space model expressed in each independent model space is obtained easily. According to this dynamics model, a robust independent modal space-fuzzy controller is designed for vibration control of a general MS, and the genetic optimization of some critical control parameters of fuzzy tuners is also presented. Two illustrative examples are performed, which results show that this method is computationally efficient and with perfect control performance.
Nonlinear engine model for idle speed control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Livshiz, M.; Sanvido, D.J.; Stiles, S.D.
1994-12-31
This paper describes a nonlinear model of an engine used for the design of idle speed control and prediction in a broad range of idle speeds and operational conditions. Idle speed control systems make use of both spark advance and the idle air actuator to control engine speed for improved response relative to variations in the target idle speed due to load disturbances. The control system at idle can be presented by a multiple input multiple output (MIMO) nonlinear model. Information of nonlinearities helps to improve performance of the system over the whole range of engine speeds. A proposed simplemore » nonlinear model of the engine at idle was applied for design of optimal controllers and predictors for improved steady state, load rejection and transition from and to idle. This paper describes vehicle results of engine speed prediction based on the described model.« less
Task Delegation Based Access Control Models for Workflow Systems
NASA Astrophysics Data System (ADS)
Gaaloul, Khaled; Charoy, François
e-Government organisations are facilitated and conducted using workflow management systems. Role-based access control (RBAC) is recognised as an efficient access control model for large organisations. The application of RBAC in workflow systems cannot, however, grant permissions to users dynamically while business processes are being executed. We currently observe a move away from predefined strict workflow modelling towards approaches supporting flexibility on the organisational level. One specific approach is that of task delegation. Task delegation is a mechanism that supports organisational flexibility, and ensures delegation of authority in access control systems. In this paper, we propose a Task-oriented Access Control (TAC) model based on RBAC to address these requirements. We aim to reason about task from organisational perspectives and resources perspectives to analyse and specify authorisation constraints. Moreover, we present a fine grained access control protocol to support delegation based on the TAC model.
NASA Technical Reports Server (NTRS)
Regan, Timothy F.
2004-01-01
The free-piston Stirling convertor end-to-end modeling effort at the NASA Glenn Research Center has produced a software-based test bed in which free-piston Stirling convertors can be simulated and evaluated. The simulation model includes all the components of the convertor: the Stirling cycle engine, heat source, linear alternator, controller, and load. So far, it has been used in evaluating the performance of electronic controller designs. Three different controller design concepts were simulated using the model: 1) Controllers with parasitic direct current loading. 2) Controllers with parasitic alternating current loading. 3) Controllers that maintain a reference current. The free-piston Stirling convertor is an electromechanical device that operates at resonance. It is the function of the electronic load controller to ensure that the electrical load seen by the machine is always great enough to keep the amplitude of the piston and alternator oscillation at the rated value. This is done by regulating the load on the output bus. The controller monitors the instantaneous voltage, regulating it by switching loads called parasitic loads onto the bus whenever the bus voltage is too high and removing them whenever the voltage is too low. In the first type of controller, the monitor-ing and switching are done on the direct-current (dc) bus. In the second type, the alternating current bus is used. The model allows designers to test a controller concept before investing time in hardware. The simulation code used to develop the model also offers detailed models of digital and analog electronic components so that the resulting designs are realistic enough to translate directly into hardware circuits.
Modeling Prosocial Behavior Increases Helping in 16-Month-Olds.
Schuhmacher, Nils; Köster, Moritz; Kärtner, Joscha
2018-04-17
In two experiments, the imitation of helping behavior in 16-month-olds was investigated. In Study 1 (N = 31), infants either observed an adult model helping or not helping another individual before they had the opportunity to assist an unfamiliar experimenter. In one of two tasks, more children helped in the prosocial model condition than in the no model control condition. In Study 2 (N = 60), a second control condition was included to test whether infants imitated the prosocial intention (no neediness control). Children in the prosocial model condition helped more readily than children in the no model condition, with the second control condition falling in between. These findings propose that modeling provides a critical learning mechanism in early prosocial development. © 2018 Society for Research in Child Development.
Havas, K A; Boone, R B; Hill, A E; Salman, M D
2014-06-01
Brucellosis has been reported in livestock and humans in the country of Georgia with Brucella melitensis as the most common species causing disease. Georgia lacked sufficient data to assess effectiveness of the various potential control measures utilizing a reliable population-based simulation model of animal-to-human transmission of this infection. Therefore, an agent-based model was built using data from previous studies to evaluate the effect of an animal-level infection control programme on human incidence and sheep flock and cattle herd prevalence of brucellosis in the Kakheti region of Georgia. This model simulated the patterns of interaction of human-animal workers, sheep flocks and cattle herds with various infection control measures and returned population-based data. The model simulates the use of control measures needed for herd and flock prevalence to fall below 2%. As per the model output, shepherds had the greatest disease reduction as a result of the infection control programme. Cattle had the greatest influence on the incidence of human disease. Control strategies should include all susceptible animal species, sheep and cattle, identify the species of brucellosis present in the cattle population and should be conducted at the municipality level. This approach can be considered as a model to other countries and regions when assessment of control strategies is needed but data are scattered. © 2013 Blackwell Verlag GmbH.
Flynn, Niamh; James, Jack E
2009-05-01
The hypothesis that work control has beneficial effects on well-being is the basis of the widely applied, yet inconsistently supported, Job Demand Control (JDC) Model [Karasek, R.A., 1979. Job demands, job decision latitude and mental strain: Implications for job redesign. Adm. Sci. Q. 24, 285-308.; Karasek, R., Theorell, T., 1990. Healthy Work: Stress, Productivity, and the Reconstruction of Working Life. Basic Books, Oxford]. The model was tested in an experiment (N=60) using a cognitive stressor paradigm that sought to prevent confounding between demand and control. High-demand was found to be associated with deleterious effects on physiological, subjective, and performance outcomes. In contrast, few main effects were found for control. Evidence for the buffer interpretation of the JDC Model was limited to a significant demand-control interaction for performance accuracy, whereas substantial support was found for the strain interpretation of the model [van der Doef, M., Maes, S., 1998. The job demand-control(-support) model and physical health outcomes: A review of the strain and buffer hypotheses. Psychol. Health 13, 909-936., van der Doef, M., Maes, S., 1999. The Job Demand-Control(-Support) model and psychological well-being: A review of 20 years of empirical research. Work Stress 13, 87-114]. Manipulation checks revealed that objective control altered perceptions of control but not perceptions of demand. It is suggested that beneficial effects of work-related control are unlikely to occur in the absence of reductions in perceived demand. Thus, contrary to the propositions of Karasek and colleagues, demand and control do not appear to be independent factors.
Real-time plasma control in a dual-frequency, confined plasma etcher
NASA Astrophysics Data System (ADS)
Milosavljević, V.; Ellingboe, A. R.; Gaman, C.; Ringwood, J. V.
2008-04-01
The physics issues of developing model-based control of plasma etching are presented. A novel methodology for incorporating real-time model-based control of plasma processing systems is developed. The methodology is developed for control of two dependent variables (ion flux and chemical densities) by two independent controls (27 MHz power and O2 flow). A phenomenological physics model of the nonlinear coupling between the independent controls and the dependent variables of the plasma is presented. By using a design of experiment, the functional dependencies of the response surface are determined. In conjunction with the physical model, the dependencies are used to deconvolve the sensor signals onto the control inputs, allowing compensation of the interaction between control paths. The compensated sensor signals and compensated set-points are then used as inputs to proportional-integral-derivative controllers to adjust radio frequency power and oxygen flow to yield the desired ion flux and chemical density. To illustrate the methodology, model-based real-time control is realized in a commercial semiconductor dielectric etch chamber. The two radio frequency symmetric diode operates with typical commercial fluorocarbon feed-gas mixtures (Ar/O2/C4F8). Key parameters for dielectric etching are known to include ion flux to the surface and surface flux of oxygen containing species. Control is demonstrated using diagnostics of electrode-surface ion current, and chemical densities of O, O2, and CO measured by optical emission spectrometry and/or mass spectrometry. Using our model-based real-time control, the set-point tracking accuracy to changes in chemical species density and ion flux is enhanced.
Modeling Aircraft Wing Loads from Flight Data Using Neural Networks
NASA Technical Reports Server (NTRS)
Allen, Michael J.; Dibley, Ryan P.
2003-01-01
Neural networks were used to model wing bending-moment loads, torsion loads, and control surface hinge-moments of the Active Aeroelastic Wing (AAW) aircraft. Accurate loads models are required for the development of control laws designed to increase roll performance through wing twist while not exceeding load limits. Inputs to the model include aircraft rates, accelerations, and control surface positions. Neural networks were chosen to model aircraft loads because they can account for uncharacterized nonlinear effects while retaining the capability to generalize. The accuracy of the neural network models was improved by first developing linear loads models to use as starting points for network training. Neural networks were then trained with flight data for rolls, loaded reversals, wind-up-turns, and individual control surface doublets for load excitation. Generalization was improved by using gain weighting and early stopping. Results are presented for neural network loads models of four wing loads and four control surface hinge moments at Mach 0.90 and an altitude of 15,000 ft. An average model prediction error reduction of 18.6 percent was calculated for the neural network models when compared to the linear models. This paper documents the input data conditioning, input parameter selection, structure, training, and validation of the neural network models.
Djuris, Jelena; Djuric, Zorica
2017-11-30
Mathematical models can be used as an integral part of the quality by design (QbD) concept throughout the product lifecycle for variety of purposes, including appointment of the design space and control strategy, continual improvement and risk assessment. Examples of different mathematical modeling techniques (mechanistic, empirical and hybrid) in the pharmaceutical development and process monitoring or control are provided in the presented review. In the QbD context, mathematical models are predominantly used to support design space and/or control strategies. Considering their impact to the final product quality, models can be divided into the following categories: high, medium and low impact models. Although there are regulatory guidelines on the topic of modeling applications, review of QbD-based submission containing modeling elements revealed concerns regarding the scale-dependency of design spaces and verification of models predictions at commercial scale of manufacturing, especially regarding real-time release (RTR) models. Authors provide critical overview on the good modeling practices and introduce concepts of multiple-unit, adaptive and dynamic design space, multivariate specifications and methods for process uncertainty analysis. RTR specification with mathematical model and different approaches to multivariate statistical process control supporting process analytical technologies are also presented. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lim, Yeerang; Jung, Youeyun; Bang, Hyochoong
2018-05-01
This study presents model predictive formation control based on an eccentricity/inclination vector separation strategy. Alternative collision avoidance can be accomplished by using eccentricity/inclination vectors and adding a simple goal function term for optimization process. Real-time control is also achievable with model predictive controller based on convex formulation. Constraint-tightening approach is address as well improve robustness of the controller, and simulation results are presented to verify performance enhancement for the proposed approach.
Modular design attitude control system
NASA Technical Reports Server (NTRS)
Chichester, F. D.
1982-01-01
A hybrid multilevel linear quadratic regulator (ML-LQR) approach was developed and applied to the attitude control of models of the rotational dynamics of a prototype flexible spacecraft and of a typical space platform. Three axis rigid body flexible suspension models were developed for both the spacecraft and the space platform utilizing augmented body methods. Models of the spacecraft with hybrid ML-LQR attitude control and with LQR attitude control were simulated and their response with the two different types of control were compared.
Thrust vector control algorithm design for the Cassini spacecraft
NASA Technical Reports Server (NTRS)
Enright, Paul J.
1993-01-01
This paper describes a preliminary design of the thrust vector control algorithm for the interplanetary spacecraft, Cassini. Topics of discussion include flight software architecture, modeling of sensors, actuators, and vehicle dynamics, and controller design and analysis via classical methods. Special attention is paid to potential interactions with structural flexibilities and propellant dynamics. Controller performance is evaluated in a simulation environment built around a multi-body dynamics model, which contains nonlinear models of the relevant hardware and preliminary versions of supporting attitude determination and control functions.
The Preventive Control of a Dengue Disease Using Pontryagin Minimum Principal
NASA Astrophysics Data System (ADS)
Ratna Sari, Eminugroho; Insani, Nur; Lestari, Dwi
2017-06-01
Behaviour analysis for host-vector model without control of dengue disease is based on the value of basic reproduction number obtained using next generation matrices. Furthermore, the model is further developed involving a preventive control to minimize the contact between host and vector. The purpose is to obtain an optimal preventive strategy with minimal cost. The Pontryagin Minimum Principal is used to find the optimal control analytically. The derived optimality model is then solved numerically to investigate control effort to reduce infected class.
NASA Technical Reports Server (NTRS)
Silva, Walter A.; Vartio, Eric; Shimko, Anthony; Kvaternik, Raymond G.; Eure, Kenneth W.; Scott,Robert C.
2007-01-01
Aeroservoelastic (ASE) analytical models of a SensorCraft wind-tunnel model are generated using measured data. The data was acquired during the ASE wind-tunnel test of the HiLDA (High Lift-to-Drag Active) Wing model, tested in the NASA Langley Transonic Dynamics Tunnel (TDT) in late 2004. Two time-domain system identification techniques are applied to the development of the ASE analytical models: impulse response (IR) method and the Generalized Predictive Control (GPC) method. Using measured control surface inputs (frequency sweeps) and associated sensor responses, the IR method is used to extract corresponding input/output impulse response pairs. These impulse responses are then transformed into state-space models for use in ASE analyses. Similarly, the GPC method transforms measured random control surface inputs and associated sensor responses into an AutoRegressive with eXogenous input (ARX) model. The ARX model is then used to develop the gust load alleviation (GLA) control law. For the IR method, comparison of measured with simulated responses are presented to investigate the accuracy of the ASE analytical models developed. For the GPC method, comparison of simulated open-loop and closed-loop (GLA) time histories are presented.
NASA Technical Reports Server (NTRS)
Silva, Walter A.; Shimko, Anthony; Kvaternik, Raymond G.; Eure, Kenneth W.; Scott, Robert C.
2006-01-01
Aeroservoelastic (ASE) analytical models of a SensorCraft wind-tunnel model are generated using measured data. The data was acquired during the ASE wind-tunnel test of the HiLDA (High Lift-to-Drag Active) Wing model, tested in the NASA Langley Transonic Dynamics Tunnel (TDT) in late 2004. Two time-domain system identification techniques are applied to the development of the ASE analytical models: impulse response (IR) method and the Generalized Predictive Control (GPC) method. Using measured control surface inputs (frequency sweeps) and associated sensor responses, the IR method is used to extract corresponding input/output impulse response pairs. These impulse responses are then transformed into state-space models for use in ASE analyses. Similarly, the GPC method transforms measured random control surface inputs and associated sensor responses into an AutoRegressive with eXogenous input (ARX) model. The ARX model is then used to develop the gust load alleviation (GLA) control law. For the IR method, comparison of measured with simulated responses are presented to investigate the accuracy of the ASE analytical models developed. For the GPC method, comparison of simulated open-loop and closed-loop (GLA) time histories are presented.
An Analysis of the Optimal Control Modification Method Applied to Flutter Suppression
NASA Technical Reports Server (NTRS)
Drew, Michael; Nguyen, Nhan T.; Hashemi, Kelley E.; Ting, Eric; Chaparro, Daniel
2017-01-01
Unlike basic Model Reference Adaptive Control (MRAC)l, Optimal Control Modification (OCM) has been shown to be a promising MRAC modification with robustness and analytical properties not present in other adaptive control methods. This paper presents an analysis of the OCM method, and how the asymptotic property of OCM is useful for analyzing and tuning the controller. We begin with a Lyapunov stability proof of an OCM controller having two adaptive gain terms, then the less conservative and easily analyzed OCM asymptotic property is presented. Two numerical examples are used to show how this property can accurately predict steady state stability and quantitative robustness in the presence of time delay, and relative to linear plant perturbations, and nominal Loop Transfer Recovery (LTR) tuning. The asymptotic property of the OCM controller is then used as an aid in tuning the controller applied to a large scale aeroservoelastic longitudinal aircraft model for flutter suppression. Control with OCM adaptive augmentation is shown to improve performance over that of the nominal non-adaptive controller when significant disparities exist between the controller/observer model and the true plant model.
Simulation analysis of adaptive cruise prediction control
NASA Astrophysics Data System (ADS)
Zhang, Li; Cui, Sheng Min
2017-09-01
Predictive control is suitable for multi-variable and multi-constraint system control.In order to discuss the effect of predictive control on the vehicle longitudinal motion, this paper establishes the expected spacing model by combining variable pitch spacing and the of safety distance strategy. The model predictive control theory and the optimization method based on secondary planning are designed to obtain and track the best expected acceleration trajectory quickly. Simulation models are established including predictive and adaptive fuzzy control. Simulation results show that predictive control can realize the basic function of the system while ensuring the safety. The application of predictive and fuzzy adaptive algorithm in cruise condition indicates that the predictive control effect is better.
Stabilization of model-based networked control systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miranda, Francisco; Instituto Politécnico de Viana do Castelo, Viana do Castelo; Abreu, Carlos
2016-06-08
A class of networked control systems called Model-Based Networked Control Systems (MB-NCSs) is considered. Stabilization of MB-NCSs is studied using feedback controls and simulation of stabilization for different feedbacks is made with the purpose to reduce the network trafic. The feedback control input is applied in a compensated model of the plant that approximates the plant dynamics and stabilizes the plant even under slow network conditions. Conditions for global exponential stabilizability and for the choosing of a feedback control input for a given constant time between the information moments of the network are derived. An optimal control problem to obtainmore » an optimal feedback control is also presented.« less
78 FR 24368 - Airworthiness Directives; Bell Helicopter Textron, Inc. (Bell) Model Helicopters
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-25
... chain and cable control system with a push-pull control system. Since we issued that AD, we have... requires replacing the existing chain and cable control system with a push-pull control system. Both... Model 205A-1 to replace the tail rotor chain and cable control system with a push-pull control system...
A variable-gain output feedback control design approach
NASA Technical Reports Server (NTRS)
Haylo, Nesim
1989-01-01
A multi-model design technique to find a variable-gain control law defined over the whole operating range is proposed. The design is formulated as an optimal control problem which minimizes a cost function weighing the performance at many operating points. The solution is obtained by embedding into the Multi-Configuration Control (MCC) problem, a multi-model robust control design technique. In contrast to conventional gain scheduling which uses a curve fit of single model designs, the optimal variable-gain control law stabilizes the plant at every operating point included in the design. An iterative algorithm to compute the optimal control gains is presented. The methodology has been successfully applied to reconfigurable aircraft flight control and to nonlinear flight control systems.
Variable-Structure Control of a Model Glider Airplane
NASA Technical Reports Server (NTRS)
Waszak, Martin R.; Anderson, Mark R.
2008-01-01
A variable-structure control system designed to enable a fuselage-heavy airplane to recover from spin has been demonstrated in a hand-launched, instrumented model glider airplane. Variable-structure control is a high-speed switching feedback control technique that has been developed for control of nonlinear dynamic systems.
A Robustly Stabilizing Model Predictive Control Algorithm
NASA Technical Reports Server (NTRS)
Ackmece, A. Behcet; Carson, John M., III
2007-01-01
A model predictive control (MPC) algorithm that differs from prior MPC algorithms has been developed for controlling an uncertain nonlinear system. This algorithm guarantees the resolvability of an associated finite-horizon optimal-control problem in a receding-horizon implementation.
NASA Astrophysics Data System (ADS)
Al-Rabadi, Anas N.
2009-10-01
This research introduces a new method of intelligent control for the control of the Buck converter using newly developed small signal model of the pulse width modulation (PWM) switch. The new method uses supervised neural network to estimate certain parameters of the transformed system matrix [Ã]. Then, a numerical algorithm used in robust control called linear matrix inequality (LMI) optimization technique is used to determine the permutation matrix [P] so that a complete system transformation {[B˜], [C˜], [Ẽ]} is possible. The transformed model is then reduced using the method of singular perturbation, and state feedback control is applied to enhance system performance. The experimental results show that the new control methodology simplifies the model in the Buck converter and thus uses a simpler controller that produces the desired system response for performance enhancement.
System Identification and Steering Control Characteristic of Rice Combine Harvester Model
NASA Astrophysics Data System (ADS)
Sutisna, S. P.; Setiawan, R. P. A.; Subrata, I. D. M.; Mandang, T.
2018-05-01
This study is a preliminary research of rice combine harvester trajectory. A vehicle model of rice combine used crawler with differential steering. Turning process of differential steering used speed difference of right and left tracks This study aims to learn of rice combine harvester steering control. In real condition, the hydraulic break on each track produced the speed difference. The model used two DC motors with maximum speed 100 rpm for each tracks. A rotary encoder with resolution 600 pulse/rotation was connected to each DC motors shaft to monitor the speed of tracks and connected to the input shaft of a gearbox with ratio 1:46. The motor speed control for each track used pulse width modulation to produce the speed difference. A gyroscope sensor with resolution 0.01° was used to determine the model orientation angle. Like the real rice combine, the tracks can not rotate to the opposite direction at the same time so it makes the model can not perform the pivot turn. The turn radius of the model was 28 cm and the forward maximum speed was 17.8 cm/s. The model trajectory control used PID odometry controller. Parameters input were the speed of each track and the orientation of the vehicle. The straight line test showed the controller can control the rice combine model trajectory with the average error 0.67 cm.
Aggregate modeling of fast-acting demand response and control under real-time pricing
Chassin, David P.; Rondeau, Daniel
2016-08-24
This paper develops and assesses the performance of a short-term demand response (DR) model for utility load control with applications to resource planning and control design. Long term response models tend to underestimate short-term demand response when induced by prices. This has two important consequences. First, planning studies tend to undervalue DR and often overlook its benefits in utility demand management program development. Second, when DR is not overlooked, the open-loop DR control gain estimate may be too low. This can result in overuse of load resources, control instability and excessive price volatility. Our objective is therefore to develop amore » more accurate and better performing short-term demand response model. We construct the model from first principles about the nature of thermostatic load control and show that the resulting formulation corresponds exactly to the Random Utility Model employed in economics to study consumer choice. The model is tested against empirical data collected from field demonstration projects and is shown to perform better than alternative models commonly used to forecast demand in normal operating conditions. Finally, the results suggest that (1) existing utility tariffs appear to be inadequate to incentivize demand response, particularly in the presence of high renewables, and (2) existing load control systems run the risk of becoming unstable if utilities close the loop on real-time prices.« less
Aggregate modeling of fast-acting demand response and control under real-time pricing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chassin, David P.; Rondeau, Daniel
This paper develops and assesses the performance of a short-term demand response (DR) model for utility load control with applications to resource planning and control design. Long term response models tend to underestimate short-term demand response when induced by prices. This has two important consequences. First, planning studies tend to undervalue DR and often overlook its benefits in utility demand management program development. Second, when DR is not overlooked, the open-loop DR control gain estimate may be too low. This can result in overuse of load resources, control instability and excessive price volatility. Our objective is therefore to develop amore » more accurate and better performing short-term demand response model. We construct the model from first principles about the nature of thermostatic load control and show that the resulting formulation corresponds exactly to the Random Utility Model employed in economics to study consumer choice. The model is tested against empirical data collected from field demonstration projects and is shown to perform better than alternative models commonly used to forecast demand in normal operating conditions. Finally, the results suggest that (1) existing utility tariffs appear to be inadequate to incentivize demand response, particularly in the presence of high renewables, and (2) existing load control systems run the risk of becoming unstable if utilities close the loop on real-time prices.« less
Aggregate modeling of fast-acting demand response and control under real-time pricing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chassin, David P.; Rondeau, Daniel
This paper develops and assesses the performance of a short-term demand response (DR) model for utility load control with applications to resource planning and control design. Long term response models tend to underestimate short-term demand response when induced by prices. This has two important consequences. First, planning studies tend to undervalue DR and often overlook its benefits in utility demand management program development. Second, when DR is not overlooked, the open-loop DR control gain estimate may be too low. This can result in overuse of load resources, control instability and excessive price volatility. Our objective is therefore to develop amore » more accurate and better performing short-term demand response model. We construct the model from first principles about the nature of thermostatic load control and show that the resulting formulation corresponds exactly to the Random Utility Model employed in economics to study consumer choice. The model is tested against empirical data collected from field demonstration projects and is shown to perform better than alternative models commonly used to forecast demand in normal operating conditions. The results suggest that (1) existing utility tariffs appear to be inadequate to incentivize demand response, particularly in the presence of high renewables, and (2) existing load control systems run the risk of becoming unstable if utilities close the loop on real-time prices.« less
NASA Astrophysics Data System (ADS)
Bonne, François; Alamir, Mazen; Hoa, Christine; Bonnay, Patrick; Bon-Mardion, Michel; Monteiro, Lionel
2015-12-01
In this article, we present a new Simulink library of cryogenics components (such as valve, phase separator, mixer, heat exchanger...) to assemble to generate model-based control schemes. Every component is described by its algebraic or differential equation and can be assembled with others to build the dynamical model of a complete refrigerator or the model of a subpart of it. The obtained model can be used to automatically design advanced model based control scheme. It also can be used to design a model based PI controller. Advanced control schemes aim to replace classical user experience designed approaches usually based on many independent PI controllers. This is particularly useful in the case where cryoplants are submitted to large pulsed thermal loads, expected to take place in future fusion reactors such as those expected in the cryogenic cooling systems of the International Thermonuclear Experimental Reactor (ITER) or the Japan Torus-60 Super Advanced Fusion Experiment (JT- 60SA). The paper gives the example of the generation of the dynamical model of the 400W@1.8K refrigerator and shows how to build a Constrained Model Predictive Control for it. Based on the scheme, experimental results will be given. This work is being supported by the French national research agency (ANR) through the ANR-13-SEED-0005 CRYOGREEN program.
Integrative approaches for modeling regulation and function of the respiratory system.
Ben-Tal, Alona; Tawhai, Merryn H
2013-01-01
Mathematical models have been central to understanding the interaction between neural control and breathing. Models of the entire respiratory system-which comprises the lungs and the neural circuitry that controls their ventilation-have been derived using simplifying assumptions to compartmentalize each component of the system and to define the interactions between components. These full system models often rely-through necessity-on empirically derived relationships or parameters, in addition to physiological values. In parallel with the development of whole respiratory system models are mathematical models that focus on furthering a detailed understanding of the neural control network, or of the several functions that contribute to gas exchange within the lung. These models are biophysically based, and rely on physiological parameters. They include single-unit models for a breathing lung or neural circuit, through to spatially distributed models of ventilation and perfusion, or multicircuit models for neural control. The challenge is to bring together these more recent advances in models of neural control with models of lung function, into a full simulation for the respiratory system that builds upon the more detailed models but remains computationally tractable. This requires first understanding the mathematical models that have been developed for the respiratory system at different levels, and which could be used to study how physiological levels of O2 and CO2 in the blood are maintained. Copyright © 2013 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Kong, Xiangxi; Zhang, Xueliang; Chen, Xiaozhe; Wen, Bangchun; Wang, Bo
2016-05-01
In this paper, phase and speed synchronization control of four eccentric rotors (ERs) driven by induction motors in a linear vibratory feeder with unknown time-varying load torques is studied. Firstly, the electromechanical coupling model of the linear vibratory feeder is established by associating induction motor's model with the dynamic model of the system, which is a typical under actuated model. According to the characteristics of the linear vibratory feeder, the complex control problem of the under actuated electromechanical coupling model converts to phase and speed synchronization control of four ERs. In order to keep the four ERs operating synchronously with zero phase differences, phase and speed synchronization controllers are designed by employing adaptive sliding mode control (ASMC) algorithm via a modified master-slave structure. The stability of the controllers is proved by Lyapunov stability theorem. The proposed controllers are verified by simulation via Matlab/Simulink program and compared with the conventional sliding mode control (SMC) algorithm. The results show the proposed controllers can reject the time-varying load torques effectively and four ERs can operate synchronously with zero phase differences. Moreover, the control performance is better than the conventional SMC algorithm and the chattering phenomenon is attenuated. Furthermore, the effects of reference speed and parametric perturbations are discussed to show the strong robustness of the proposed controllers. Finally, experiments on a simple vibratory test bench are operated by using the proposed controllers and without control, respectively, to validate the effectiveness of the proposed controllers further.
The Career Locus of Control Scale for Adolescents: Further Evidence of Validity in the United States
ERIC Educational Resources Information Center
Perry, Justin C.; Liu, Xiongyi; Griffin, Grant C.
2011-01-01
This study examined the construct validity of the Career Locus of Control Scale (CLCS) among diverse urban youth within the United States (N = 308). Confirmatory factor analyses verified two of the three models as acceptable fits. Two new models were also explored. Model 5 (Internality, Luck, and Non-Control), which was one of the new models, was…
Designing for Damage: Robust Flight Control Design using Sliding Mode Techniques
NASA Technical Reports Server (NTRS)
Vetter, T. K.; Wells, S. R.; Hess, Ronald A.; Bacon, Barton (Technical Monitor); Davidson, John (Technical Monitor)
2002-01-01
A brief review of sliding model control is undertaken, with particular emphasis upon the effects of neglected parasitic dynamics. Sliding model control design is interpreted in the frequency domain. The inclusion of asymptotic observers and control 'hedging' is shown to reduce the effects of neglected parasitic dynamics. An investigation into the application of observer-based sliding mode control to the robust longitudinal control of a highly unstable is described. The sliding mode controller is shown to exhibit stability and performance robustness superior to that of a classical loop-shaped design when significant changes in vehicle and actuator dynamics are employed to model airframe damage.
NASA Technical Reports Server (NTRS)
Hess, Ronald A.
1990-01-01
A collection of technical papers are presented that cover modeling pilot interaction with automated digital avionics systems and guidance and control algorithms for contour and nap-of-the-earth flight. The titles of the papers presented are as follows: (1) Automation effects in a multiloop manual control system; (2) A qualitative model of human interaction with complex dynamic systems; (3) Generalized predictive control of dynamic systems; (4) An application of generalized predictive control to rotorcraft terrain-following flight; (5) Self-tuning generalized predictive control applied to terrain-following flight; and (6) Precise flight path control using a predictive algorithm.
Longitudinal Control for Mengshi Autonomous Vehicle via Cloud Model
NASA Astrophysics Data System (ADS)
Gao, H. B.; Zhang, X. Y.; Li, D. Y.; Liu, Y. C.
2018-03-01
Dynamic robustness and stability control is a requirement for self-driving of autonomous vehicle. Longitudinal control method of autonomous is a key technique which has drawn the attention of industry and academe. In this paper, we present a longitudinal control algorithm based on cloud model for Mengshi autonomous vehicle to ensure the dynamic stability and tracking performance of Mengshi autonomous vehicle. An experiments is applied to test the implementation of the longitudinal control algorithm. Empirical results show that if the longitudinal control algorithm based Gauss cloud model are applied to calculate the acceleration, and the vehicles drive at different speeds, a stable longitudinal control effect is achieved.
Fuzzy – PI controller to control the velocity parameter of Induction Motor
NASA Astrophysics Data System (ADS)
Malathy, R.; Balaji, V.
2018-04-01
The major application of Induction motor includes the usage of the same in industries because of its high robustness, reliability, low cost, highefficiency and good self-starting capability. Even though it has the above mentioned advantages, it also have some limitations: (1) the standard motor is not a true constant-speed machine, itsfull-load slip varies less than 1 % (in high-horsepower motors).And (2) it is not inherently capable of providing variable-speedoperation. In order to solve the above mentioned problem smart motor controls and variable speed controllers are used. Motor applications involve non linearity features, which can be controlled by Fuzzy logic controller as it is capable of handling those features with high efficiency and it act similar to human operator. This paper presents individuality of the plant modelling. The fuzzy logic controller (FLC)trusts on a set of linguistic if-then rules, a rule-based Mamdani for closed loop Induction Motor model. Themotor model is designed and membership functions are chosenaccording to the parameters of the motor model. Simulation results contains non linearity in induction motor model. A conventional PI controller iscompared practically to fuzzy logic controller using Simulink.
A survey on hysteresis modeling, identification and control
NASA Astrophysics Data System (ADS)
Hassani, Vahid; Tjahjowidodo, Tegoeh; Do, Thanh Nho
2014-12-01
The various mathematical models for hysteresis such as Preisach, Krasnosel'skii-Pokrovskii (KP), Prandtl-Ishlinskii (PI), Maxwell-Slip, Bouc-Wen and Duhem are surveyed in terms of their applications in modeling, control and identification of dynamical systems. In the first step, the classical formalisms of the models are presented to the reader, and more broadly, the utilization of the classical models is considered for development of more comprehensive models and appropriate controllers for corresponding systems. In addition, the authors attempt to encourage the reader to follow the existing mathematical models of hysteresis to resolve the open problems.
Modified optimal control pilot model for computer-aided design and analysis
NASA Technical Reports Server (NTRS)
Davidson, John B.; Schmidt, David K.
1992-01-01
This paper presents the theoretical development of a modified optimal control pilot model based upon the optimal control model (OCM) of the human operator developed by Kleinman, Baron, and Levison. This model is input compatible with the OCM and retains other key aspects of the OCM, such as a linear quadratic solution for the pilot gains with inclusion of control rate in the cost function, a Kalman estimator, and the ability to account for attention allocation and perception threshold effects. An algorithm designed for each implementation in current dynamic systems analysis and design software is presented. Example results based upon the analysis of a tracking task using three basic dynamic systems are compared with measured results and with similar analyses performed with the OCM and two previously proposed simplified optimal pilot models. The pilot frequency responses and error statistics obtained with this modified optimal control model are shown to compare more favorably to the measured experimental results than the other previously proposed simplified models evaluated.
Are fashion models a group at risk for eating disorders and substance abuse?
Santonastaso, Paolo; Mondini, Silvia; Favaro, Angela
2002-01-01
Few studies to date have investigated whether in fact the prevalence of eating disorders (ED) and/or use of illicit drugs is higher among models than among other groups of females. A group of 63 professional fashion models of various nationalities were studied by means of self-reported questionnaires. They were compared with a control group of 126 female subjects recruited from the general population. Fashion models weigh significantly less than controls, but only a small percentage of them uses unhealthy methods to control their weight. The current frequency of full-syndrome ED did not differ between the groups, but partial-syndrome ED were significantly more common among fashion models than among controls. Current substance use or alcohol abuse was reported by 35% of fashion models and 12% of controls. Our findings suggest that fashion models are more at risk for partial ED and use of illicit drugs than females in the general population. Copyright 2002 S. Karger AG, Basel
Modeling and control for vibration suppression of a flexible smart structure
NASA Technical Reports Server (NTRS)
Dosch, J.; Leo, D.; Inman, D.
1993-01-01
Theoretical and experimental results of the modeling and control of a flexible ribbed antenna are presented. The antenna consists of eight flexible ribs which constitutes a smart antenna in the sense that the actuator and sensors are an integral part of the structure. The antenna exhibits closely space and repeated modes, thus multi-input multi-output (MIMO) control is necessary for controllability and observability of the structure. The structure also exhibits mode localization phenomenon and contains post buckled members making an accurate finite element model of the structure difficult to obtain. An identified MIMO minimum order model of the antenna is synthesized from identified single-input single-output (SISO) transfer functions curve fit in the frequency domain. The identified model is used to design a positive position feedback (PPF) controller that increases damping in all of the modes in the targeted frequency range. Due to the accuracy of the open loop model of the antenna, the closed loop response predicted by the identified model correlates well wtih experimental results.
Theoretical and Numerical Investigation of the Cavity Evolution in Gypsum Rock
NASA Astrophysics Data System (ADS)
Li, Wei; Einstein, Herbert H.
2017-11-01
When water flows through a preexisting cylindrical tube in gypsum rock, the nonuniform dissolution alters the tube into an enlarged tapered tube. A 2-D analytical model is developed to study the transport-controlled dissolution in an enlarged tapered tube, with explicit consideration of the tapered geometry and induced radial flow. The analytical model shows that the Graetz solution can be extended to model dissolution in the tapered tube. An alternative form of the governing equations is proposed to take advantage of the invariant quantities in the Graetz solution to facilitate modeling cavity evolution in gypsum rock. A 2-D finite volume model was developed to validate the extended Graetz solution. The time evolution of the transport-controlled and the reaction-controlled dissolution models for a single tube with time-invariant flow rate are compared. This comparison shows that for time-invariant flow rate, the reaction-controlled dissolution model produces a positive feedback between the tube enlargement and dissolution, while the transport-controlled dissolution does not.
An Optimal Control Modification to Model-Reference Adaptive Control for Fast Adaptation
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.; Krishnakumar, Kalmanje; Boskovic, Jovan
2008-01-01
This paper presents a method that can achieve fast adaptation for a class of model-reference adaptive control. It is well-known that standard model-reference adaptive control exhibits high-gain control behaviors when a large adaptive gain is used to achieve fast adaptation in order to reduce tracking error rapidly. High gain control creates high-frequency oscillations that can excite unmodeled dynamics and can lead to instability. The fast adaptation approach is based on the minimization of the squares of the tracking error, which is formulated as an optimal control problem. The necessary condition of optimality is used to derive an adaptive law using the gradient method. This adaptive law is shown to result in uniform boundedness of the tracking error by means of the Lyapunov s direct method. Furthermore, this adaptive law allows a large adaptive gain to be used without causing undesired high-gain control effects. The method is shown to be more robust than standard model-reference adaptive control. Simulations demonstrate the effectiveness of the proposed method.
Nonlinear aeroservoelastic analysis of a controlled multiple-actuated-wing model with free-play
NASA Astrophysics Data System (ADS)
Huang, Rui; Hu, Haiyan; Zhao, Yonghui
2013-10-01
In this paper, the effects of structural nonlinearity due to free-play in both leading-edge and trailing-edge outboard control surfaces on the linear flutter control system are analyzed for an aeroelastic model of three-dimensional multiple-actuated-wing. The free-play nonlinearities in the control surfaces are modeled theoretically by using the fictitious mass approach. The nonlinear aeroelastic equations of the presented model can be divided into nine sub-linear modal-based aeroelastic equations according to the different combinations of deflections of the leading-edge and trailing-edge outboard control surfaces. The nonlinear aeroelastic responses can be computed based on these sub-linear aeroelastic systems. To demonstrate the effects of nonlinearity on the linear flutter control system, a single-input and single-output controller and a multi-input and multi-output controller are designed based on the unconstrained optimization techniques. The numerical results indicate that the free-play nonlinearity can lead to either limit cycle oscillations or divergent motions when the linear control system is implemented.
Artificial intelligence in process control: Knowledge base for the shuttle ECS model
NASA Technical Reports Server (NTRS)
Stiffler, A. Kent
1989-01-01
The general operation of KATE, an artificial intelligence controller, is outlined. A shuttle environmental control system (ECS) demonstration system for KATE is explained. The knowledge base model for this system is derived. An experimental test procedure is given to verify parameters in the model.
NREL, EPRI Validate Advanced Microgrid Controller with ESIF's Virtual
Microgrid Controller with ESIF's Virtual Microgrid Model NREL, EPRI Validate Advanced Microgrid Controller with ESIF's Virtual Microgrid Model NREL is working with the Electric Power Research Institute (EPRI Energy Systems Integration Facility, by connecting it to a virtual model of a microgrid. NREL researchers
Control theory for scanning probe microscopy revisited.
Stirling, Julian
2014-01-01
We derive a theoretical model for studying SPM feedback in the context of control theory. Previous models presented in the literature that apply standard models for proportional-integral-derivative controllers predict a highly unstable feedback environment. This model uses features specific to the SPM implementation of the proportional-integral controller to give realistic feedback behaviour. As such the stability of SPM feedback for a wide range of feedback gains can be understood. Further consideration of mechanical responses of the SPM system gives insight into the causes of exciting mechanical resonances of the scanner during feedback operation.
A tensor approach to modeling of nonhomogeneous nonlinear systems
NASA Technical Reports Server (NTRS)
Yurkovich, S.; Sain, M.
1980-01-01
Model following control methodology plays a key role in numerous application areas. Cases in point include flight control systems and gas turbine engine control systems. Typical uses of such a design strategy involve the determination of nonlinear models which generate requested control and response trajectories for various commands. Linear multivariable techniques provide trim about these motions; and protection logic is added to secure the hardware from excursions beyond the specification range. This paper reports upon experience in developing a general class of such nonlinear models based upon the idea of the algebraic tensor product.
H∞ output tracking control of discrete-time nonlinear systems via standard neural network models.
Liu, Meiqin; Zhang, Senlin; Chen, Haiyang; Sheng, Weihua
2014-10-01
This brief proposes an output tracking control for a class of discrete-time nonlinear systems with disturbances. A standard neural network model is used to represent discrete-time nonlinear systems whose nonlinearity satisfies the sector conditions. H∞ control performance for the closed-loop system including the standard neural network model, the reference model, and state feedback controller is analyzed using Lyapunov-Krasovskii stability theorem and linear matrix inequality (LMI) approach. The H∞ controller, of which the parameters are obtained by solving LMIs, guarantees that the output of the closed-loop system closely tracks the output of a given reference model well, and reduces the influence of disturbances on the tracking error. Three numerical examples are provided to show the effectiveness of the proposed H∞ output tracking design approach.
NASA Technical Reports Server (NTRS)
Frederick, D. K.; Lashmet, P. K.; Sandor, G. N.; Shen, C. N.; Smith, E. V.; Yerazunis, S. W.
1973-01-01
Problems related to the design and control of a mobile planetary vehicle to implement a systematic plan for the exploration of Mars are reported. Problem areas include: vehicle configuration, control, dynamics, systems and propulsion; systems analysis, terrain modeling and path selection; and chemical analysis of specimens. These tasks are summarized: vehicle model design, mathematical model of vehicle dynamics, experimental vehicle dynamics, obstacle negotiation, electrochemical controls, remote control, collapsibility and deployment, construction of a wheel tester, wheel analysis, payload design, system design optimization, effect of design assumptions, accessory optimal design, on-board computer subsystem, laser range measurement, discrete obstacle detection, obstacle detection systems, terrain modeling, path selection system simulation and evaluation, gas chromatograph/mass spectrometer system concepts, and chromatograph model evaluation and improvement.
Aircraft system modeling error and control error
NASA Technical Reports Server (NTRS)
Kulkarni, Nilesh V. (Inventor); Kaneshige, John T. (Inventor); Krishnakumar, Kalmanje S. (Inventor); Burken, John J. (Inventor)
2012-01-01
A method for modeling error-driven adaptive control of an aircraft. Normal aircraft plant dynamics is modeled, using an original plant description in which a controller responds to a tracking error e(k) to drive the component to a normal reference value according to an asymptote curve. Where the system senses that (1) at least one aircraft plant component is experiencing an excursion and (2) the return of this component value toward its reference value is not proceeding according to the expected controller characteristics, neural network (NN) modeling of aircraft plant operation may be changed. However, if (1) is satisfied but the error component is returning toward its reference value according to expected controller characteristics, the NN will continue to model operation of the aircraft plant according to an original description.
Optimal Battery Charging for Damage Mitigation
NASA Technical Reports Server (NTRS)
Hartley, Tom T.; Lorenzo, Carl F.
2003-01-01
Our control philosophy is to charge the NiH2 cell in such a way that the damage incurred during the charging period is minimized, thus extending its cycle life. This requires nonlinear dynamic model of NiH2 cell and a damage rate model. We must do this first. This control philosophy is generally considered damage mitigating control or life-extending control. This presentation covers how NiH2 cells function, electrode behavior, an essentialized model, damage mechanisms for NiH2 batteries, battery continuum damage modeling, and battery life models. The presentation includes graphs and a chart illustrating how charging a NiH2 battery with different voltages and currents affects damages the battery and affects its life. The presentation concludes with diagrams of control system architectures for tracking battery recharging.
Simulation modelling for new gas turbine fuel controller creation.
NASA Astrophysics Data System (ADS)
Vendland, L. E.; Pribylov, V. G.; Borisov, Yu A.; Arzamastsev, M. A.; Kosoy, A. A.
2017-11-01
State of the art gas turbine fuel flow control systems are based on throttle principle. Major disadvantage of such systems is that they require high pressure fuel intake. Different approach to fuel flow control is to use regulating compressor. And for this approach because of controller and gas turbine interaction a specific regulating compressor is required. Difficulties emerge as early as the requirement definition stage. To define requirements for new object, his properties must be known. Simulation modelling helps to overcome these difficulties. At the requirement definition stage the most simplified mathematical model is used. Mathematical models will get more complex and detailed as we advance in planned work. If future adjusting of regulating compressor physical model to work with virtual gas turbine and physical control system is planned.
NASA Technical Reports Server (NTRS)
Tesar, Delbert; Tosunoglu, Sabri; Lin, Shyng-Her
1990-01-01
Research results on general serial robotic manipulators modeled with structural compliances are presented. Two compliant manipulator modeling approaches, distributed and lumped parameter models, are used in this study. System dynamic equations for both compliant models are derived by using the first and second order influence coefficients. Also, the properties of compliant manipulator system dynamics are investigated. One of the properties, which is defined as inaccessibility of vibratory modes, is shown to display a distinct character associated with compliant manipulators. This property indicates the impact of robot geometry on the control of structural oscillations. Example studies are provided to illustrate the physical interpretation of inaccessibility of vibratory modes. Two types of controllers are designed for compliant manipulators modeled by either lumped or distributed parameter techniques. In order to maintain the generality of the results, neither linearization is introduced. Example simulations are given to demonstrate the controller performance. The second type controller is also built for general serial robot arms and is adaptive in nature which can estimate uncertain payload parameters on-line and simultaneously maintain trajectory tracking properties. The relation between manipulator motion tracking capability and convergence of parameter estimation properties is discussed through example case studies. The effect of control input update delays on adaptive controller performance is also studied.
NASA Astrophysics Data System (ADS)
Radisavljevic, Verica
2011-10-01
In this paper we first show that the linear models of proton exchange membrane (polymer electrolyte membrane, PEM) and solid oxide (SO) fuel cells, commonly used in power and energy literature, are not controllable. The source of uncontrollability is the equation for pressure of the water vapor that is only affected by the fuel cell current, which in fact is a disturbance in this system and cannot be controlled by the given model inputs: inlet molar flow rates of hydrogen and oxygen. Being uncontrollable these models are not good candidates for studying control of dynamic processes in PEM and SO fuel cells. However, due to their simplicity, they can be used in hybrid configurations with other energy producing devices such as photovoltaic (solar) cells, wind turbine, micro gas turbine, battery (ultra capacitor) to demonstrate some other phenomena, but not for control purposes unless the hybrid models formed in such hybrid configurations are controllable. Testing controllability of such hybrid models is mandatory. Secondly, we introduce some algebraic constraints that follow from the model dynamics and the Nernst open-loop fuel cell voltage formula. These constraints must be satisfied in simulation of considered fuel cell modes, for example, via MATLAB/Simulink or any other computer software package.
Neural networks for continuous online learning and control.
Choy, Min Chee; Srinivasan, Dipti; Cheu, Ruey Long
2006-11-01
This paper proposes a new hybrid neural network (NN) model that employs a multistage online learning process to solve the distributed control problem with an infinite horizon. Various techniques such as reinforcement learning and evolutionary algorithm are used to design the multistage online learning process. For this paper, the infinite horizon distributed control problem is implemented in the form of real-time distributed traffic signal control for intersections in a large-scale traffic network. The hybrid neural network model is used to design each of the local traffic signal controllers at the respective intersections. As the state of the traffic network changes due to random fluctuation of traffic volumes, the NN-based local controllers will need to adapt to the changing dynamics in order to provide effective traffic signal control and to prevent the traffic network from becoming overcongested. Such a problem is especially challenging if the local controllers are used for an infinite horizon problem where online learning has to take place continuously once the controllers are implemented into the traffic network. A comprehensive simulation model of a section of the Central Business District (CBD) of Singapore has been developed using PARAMICS microscopic simulation program. As the complexity of the simulation increases, results show that the hybrid NN model provides significant improvement in traffic conditions when evaluated against an existing traffic signal control algorithm as well as a new, continuously updated simultaneous perturbation stochastic approximation-based neural network (SPSA-NN). Using the hybrid NN model, the total mean delay of each vehicle has been reduced by 78% and the total mean stoppage time of each vehicle has been reduced by 84% compared to the existing traffic signal control algorithm. This shows the efficacy of the hybrid NN model in solving large-scale traffic signal control problem in a distributed manner. Also, it indicates the possibility of using the hybrid NN model for other applications that are similar in nature as the infinite horizon distributed control problem.
NASA Astrophysics Data System (ADS)
Sabanin, V. R.; Starostin, A. A.; Repin, A. I.; Popov, A. I.
2017-02-01
The problems of operation effectiveness increase of steam boilers are considered. To maintain the optimum fuel combustion modes, it is proposed to use an extremal controller (EC) determining the value of airflow rate, at which the boiler generating the desired amount of heat will consume a minimum amount of fuel. EC sets the determined value of airflow rate to airflow rate controller (ARC). The test results of numerical simulation dynamic nonlinear model of steam boiler with the connected system of automatic control of load and combustion efficiency using EC are presented. The model is created in the Simulink modeling package of MATLAB software and can be used to optimize the combustion modes. Based on the modeling results, the conclusion was drawn about the possibility in principle of simultaneously boiler load control and optimizing by EC the combustion modes when changing the fuel combustion heat and the boiler characteristics and its operating mode. It is shown that it is possible to automatically control the operation efficiency of steam boilers when using EC without applying the standard flue gas analyzers. The article considers the numerical simulation dynamic model of steam boiler with the schemes of control of fuel consumption and airflow rate, the steam pressure and EC; the purpose of using EC in the scheme with linear controllers and the requirements to the quality of its operation; the results of operation of boiler control schemes without EC with estimation of influence of roughness of thermal mode maps on the nature of static and dynamic connection of the control units of fuel consumption and airflow rate; the phase trajectories and the diagrams of transient processes occurring in the control scheme with EC with stepped changing the fuel quality and boiler characteristics; analysis of modeling results and prospects for using EC in the control schemes of boilers.
An aircraft model for the AIAA controls design challenge
NASA Technical Reports Server (NTRS)
Brumbaugh, Randal W.
1991-01-01
A generic, state-of-the-art, high-performance aircraft model, including detailed, full-envelope, nonlinear aerodynamics, and full-envelope thrust and first-order engine response data is described. While this model was primarily developed Controls Design Challenge, the availability of such a model provides a common focus for research in aeronautical control theory and methodology. An implementation of this model using the FORTRAN computer language, associated routines furnished with the aircraft model, and techniques for interfacing these routines to external procedures is also described. Figures showing vehicle geometry, surfaces, and sign conventions are included.
Effects of wireless packet loss in industrial process control systems.
Liu, Yongkang; Candell, Richard; Moayeri, Nader
2017-05-01
Timely and reliable sensing and actuation control are essential in networked control. This depends on not only the precision/quality of the sensors and actuators used but also on how well the communications links between the field instruments and the controller have been designed. Wireless networking offers simple deployment, reconfigurability, scalability, and reduced operational expenditure, and is easier to upgrade than wired solutions. However, the adoption of wireless networking has been slow in industrial process control due to the stochastic and less than 100% reliable nature of wireless communications and lack of a model to evaluate the effects of such communications imperfections on the overall control performance. In this paper, we study how control performance is affected by wireless link quality, which in turn is adversely affected by severe propagation loss in harsh industrial environments, co-channel interference, and unintended interference from other devices. We select the Tennessee Eastman Challenge Model (TE) for our study. A decentralized process control system, first proposed by N. Ricker, is adopted that employs 41 sensors and 12 actuators to manage the production process in the TE plant. We consider the scenario where wireless links are used to periodically transmit essential sensor measurement data, such as pressure, temperature and chemical composition to the controller as well as control commands to manipulate the actuators according to predetermined setpoints. We consider two models for packet loss in the wireless links, namely, an independent and identically distributed (IID) packet loss model and the two-state Gilbert-Elliot (GE) channel model. While the former is a random loss model, the latter can model bursty losses. With each channel model, the performance of the simulated decentralized controller using wireless links is compared with the one using wired links providing instant and 100% reliable communications. The sensitivity of the controller to the burstiness of packet loss is also characterized in different process stages. The performance results indicate that wireless links with redundant bandwidth reservation can meet the requirements of the TE process model under normal operational conditions. When disturbances are introduced in the TE plant model, wireless packet loss during transitions between process stages need further protection in severely impaired links. Techniques such as retransmission scheduling, multipath routing and enhanced physical layer design are discussed and the latest industrial wireless protocols are compared. Published by Elsevier Ltd.
Effects of Wireless Packet Loss in Industrial Process Control Systems
Liu, Yongkang; Candell, Richard; Moayeri, Nader
2017-01-01
Timely and reliable sensing and actuation control are essential in networked control. This depends on not only the precision/quality of the sensors and actuators used but also on how well the communications links between the field instruments and the controller have been designed. Wireless networking offers simple deployment, reconfigurability, scalability, and reduced operational expenditure, and is easier to upgrade than wired solutions. However, the adoption of wireless networking has been slow in industrial process control due to the stochastic and less than 100 % reliable nature of wireless communications and lack of a model to evaluate the effects of such communications imperfections on the overall control performance. In this paper, we study how control performance is affected by wireless link quality, which in turn is adversely affected by severe propagation loss in harsh industrial environments, co-channel interference, and unintended interference from other devices. We select the Tennessee Eastman Challenge Model (TE) for our study. A decentralized process control system, first proposed by N. Ricker, is adopted that employs 41 sensors and 12 actuators to manage the production process in the TE plant. We consider the scenario where wireless links are used to periodically transmit essential sensor measurement data, such as pressure, temperature and chemical composition to the controller as well as control commands to manipulate the actuators according to predetermined setpoints. We consider two models for packet loss in the wireless links, namely, an independent and identically distributed (IID) packet loss model and the two-state Gilbert-Elliot (GE) channel model. While the former is a random loss model, the latter can model bursty losses. With each channel model, the performance of the simulated decentralized controller using wireless links is compared with the one using wired links providing instant and 100 % reliable communications. The sensitivity of the controller to the burstiness of packet loss is also characterized in different process stages. The performance results indicate that wireless links with redundant bandwidth reservation can meet the requirements of the TE process model under normal operational conditions. When disturbances are introduced in the TE plant model, wireless packet loss during transitions between process stages need further protection in severely impaired links. Techniques such as retransmission scheduling, multipath routing and enhanced physical layer design are discussed and the latest industrial wireless protocols are compared. PMID:28190566
Closed-loop model identification of cooperative manipulators holding deformable objects
NASA Astrophysics Data System (ADS)
Alkathiri, A. A.; Akmeliawati, R.; Azlan, N. Z.
2017-11-01
This paper presents system identification to obtain the closed-loop models of a couple of cooperative manipulators in a system, which function to hold deformable objects. The system works using the master-slave principle. In other words, one of the manipulators is position-controlled through encoder feedback, while a force sensor gives feedback to the other force-controlled manipulator. Using the closed-loop input and output data, the closed-loop models, which are useful for model-based control design, are estimated. The criteria for model validation are a 95% fit between the measured and simulated output of the estimated models and residual analysis. The results show that for both position and force control respectively, the fits are 95.73% and 95.88%.
Osier, Nicole; Dixon, C. Edward
2017-01-01
Controlled cortical impact (CCI) is a commonly used and highly regarded model of brain trauma that uses a pneumatically or electromagnetically controlled piston to induce reproducible and well-controlled injury. The CCI model was originally used in ferrets and it has since been scaled for use in many other species. This chapter will describe the historical development of the CCI model, compare and contrast the pneumatic and electromagnetic models, and summarize key short- and long-term consequences of TBI that have been gleaned using this model. In accordance with the recent efforts to promote high-quality evidence through the reporting of common data elements (CDEs), relevant study details—that should be reported in CCI studies—will be noted. PMID:27604719
Osier, Nicole; Dixon, C Edward
2016-01-01
Controlled cortical impact (CCI) is a commonly used and highly regarded model of brain trauma that uses a pneumatically or electromagnetically controlled piston to induce reproducible and well-controlled injury. The CCI model was originally used in ferrets and it has since been scaled for use in many other species. This chapter will describe the historical development of the CCI model, compare and contrast the pneumatic and electromagnetic models, and summarize key short- and long-term consequences of TBI that have been gleaned using this model. In accordance with the recent efforts to promote high-quality evidence through the reporting of common data elements (CDEs), relevant study details-that should be reported in CCI studies-will be noted.
NASA Technical Reports Server (NTRS)
Kopasakis, George
1997-01-01
Performance Seeking Control (PSC) attempts to find and control the process at the operating condition that will generate maximum performance. In this paper a nonlinear multivariable PSC methodology will be developed, utilizing the Fuzzy Model Reference Learning Control (FMRLC) and the method of Steepest Descent or Gradient (SDG). This PSC control methodology employs the SDG method to find the operating condition that will generate maximum performance. This operating condition is in turn passed to the FMRLC controller as a set point for the control of the process. The conventional SDG algorithm is modified in this paper in order for convergence to occur monotonically. For the FMRLC control, the conventional fuzzy model reference learning control methodology is utilized, with guidelines generated here for effective tuning of the FMRLC controller.
Substructural controller synthesis
NASA Technical Reports Server (NTRS)
Su, Tzu-Jeng; Craig, Roy R., Jr.
1989-01-01
A decentralized design procedure which combines substructural synthesis, model reduction, decentralized controller design, subcontroller synthesis, and controller reduction is proposed for the control design of flexible structures. The structure to be controlled is decomposed into several substructures, which are modeled by component mode synthesis methods. For each substructure, a subcontroller is designed by using the linear quadratic optimal control theory. Then, a controller synthesis scheme called Substructural Controller Synthesis (SCS) is used to assemble the subcontrollers into a system controller, which is to be used to control the whole structure.
MODEL VERSION CONTROL FOR GREAT LAKES MODELS ON UNIX SYSTEMS
Scientific results of the Lake Michigan Mass Balance Project were provided where atrazine was measured and modeled. The presentation also provided the model version control system which has been used for models at Grosse Ile for approximately a decade and contains various version...
Algorithms for output feedback, multiple-model, and decentralized control problems
NASA Technical Reports Server (NTRS)
Halyo, N.; Broussard, J. R.
1984-01-01
The optimal stochastic output feedback, multiple-model, and decentralized control problems with dynamic compensation are formulated and discussed. Algorithms for each problem are presented, and their relationship to a basic output feedback algorithm is discussed. An aircraft control design problem is posed as a combined decentralized, multiple-model, output feedback problem. A control design is obtained using the combined algorithm. An analysis of the design is presented.
High-Performance Integrated Control of water quality and quantity in urban water reservoirs
NASA Astrophysics Data System (ADS)
Galelli, S.; Castelletti, A.; Goedbloed, A.
2015-11-01
This paper contributes a novel High-Performance Integrated Control framework to support the real-time operation of urban water supply storages affected by water quality problems. We use a 3-D, high-fidelity simulation model to predict the main water quality dynamics and inform a real-time controller based on Model Predictive Control. The integration of the simulation model into the control scheme is performed by a model reduction process that identifies a low-order, dynamic emulator running 4 orders of magnitude faster. The model reduction, which relies on a semiautomatic procedural approach integrating time series clustering and variable selection algorithms, generates a compact and physically meaningful emulator that can be coupled with the controller. The framework is used to design the hourly operation of Marina Reservoir, a 3.2 Mm3 storm-water-fed reservoir located in the center of Singapore, operated for drinking water supply and flood control. Because of its recent formation from a former estuary, the reservoir suffers from high salinity levels, whose behavior is modeled with Delft3D-FLOW. Results show that our control framework reduces the minimum salinity levels by nearly 40% and cuts the average annual deficit of drinking water supply by about 2 times the active storage of the reservoir (about 4% of the total annual demand).
Adaptive Neural Network Based Control of Noncanonical Nonlinear Systems.
Zhang, Yanjun; Tao, Gang; Chen, Mou
2016-09-01
This paper presents a new study on the adaptive neural network-based control of a class of noncanonical nonlinear systems with large parametric uncertainties. Unlike commonly studied canonical form nonlinear systems whose neural network approximation system models have explicit relative degree structures, which can directly be used to derive parameterized controllers for adaptation, noncanonical form nonlinear systems usually do not have explicit relative degrees, and thus their approximation system models are also in noncanonical forms. It is well-known that the adaptive control of noncanonical form nonlinear systems involves the parameterization of system dynamics. As demonstrated in this paper, it is also the case for noncanonical neural network approximation system models. Effective control of such systems is an open research problem, especially in the presence of uncertain parameters. This paper shows that it is necessary to reparameterize such neural network system models for adaptive control design, and that such reparameterization can be realized using a relative degree formulation, a concept yet to be studied for general neural network system models. This paper then derives the parameterized controllers that guarantee closed-loop stability and asymptotic output tracking for noncanonical form neural network system models. An illustrative example is presented with the simulation results to demonstrate the control design procedure, and to verify the effectiveness of such a new design method.
Multi input single output model predictive control of non-linear bio-polymerization process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arumugasamy, Senthil Kumar; Ahmad, Z.
This paper focuses on Multi Input Single Output (MISO) Model Predictive Control of bio-polymerization process in which mechanistic model is developed and linked with the feedforward neural network model to obtain a hybrid model (Mechanistic-FANN) of lipase-catalyzed ring-opening polymerization of ε-caprolactone (ε-CL) for Poly (ε-caprolactone) production. In this research, state space model was used, in which the input to the model were the reactor temperatures and reactor impeller speeds and the output were the molecular weight of polymer (M{sub n}) and polymer polydispersity index. State space model for MISO created using System identification tool box of Matlab™. This state spacemore » model is used in MISO MPC. Model predictive control (MPC) has been applied to predict the molecular weight of the biopolymer and consequently control the molecular weight of biopolymer. The result shows that MPC is able to track reference trajectory and give optimum movement of manipulated variable.« less
Data-driven modeling, control and tools for cyber-physical energy systems
NASA Astrophysics Data System (ADS)
Behl, Madhur
Energy systems are experiencing a gradual but substantial change in moving away from being non-interactive and manually-controlled systems to utilizing tight integration of both cyber (computation, communications, and control) and physical representations guided by first principles based models, at all scales and levels. Furthermore, peak power reduction programs like demand response (DR) are becoming increasingly important as the volatility on the grid continues to increase due to regulation, integration of renewables and extreme weather conditions. In order to shield themselves from the risk of price volatility, end-user electricity consumers must monitor electricity prices and be flexible in the ways they choose to use electricity. This requires the use of control-oriented predictive models of an energy system's dynamics and energy consumption. Such models are needed for understanding and improving the overall energy efficiency and operating costs. However, learning dynamical models using grey/white box approaches is very cost and time prohibitive since it often requires significant financial investments in retrofitting the system with several sensors and hiring domain experts for building the model. We present the use of data-driven methods for making model capture easy and efficient for cyber-physical energy systems. We develop Model-IQ, a methodology for analysis of uncertainty propagation for building inverse modeling and controls. Given a grey-box model structure and real input data from a temporary set of sensors, Model-IQ evaluates the effect of the uncertainty propagation from sensor data to model accuracy and to closed-loop control performance. We also developed a statistical method to quantify the bias in the sensor measurement and to determine near optimal sensor placement and density for accurate data collection for model training and control. Using a real building test-bed, we show how performing an uncertainty analysis can reveal trends about inverse model accuracy and control performance, which can be used to make informed decisions about sensor requirements and data accuracy. We also present DR-Advisor, a data-driven demand response recommender system for the building's facilities manager which provides suitable control actions to meet the desired load curtailment while maintaining operations and maximizing the economic reward. We develop a model based control with regression trees algorithm (mbCRT), which allows us to perform closed-loop control for DR strategy synthesis for large commercial buildings. Our data-driven control synthesis algorithm outperforms rule-based demand response methods for a large DoE commercial reference building and leads to a significant amount of load curtailment (of 380kW) and over $45,000 in savings which is 37.9% of the summer energy bill for the building. The performance of DR-Advisor is also evaluated for 8 buildings on Penn's campus; where it achieves 92.8% to 98.9% prediction accuracy. We also compare DR-Advisor with other data driven methods and rank 2nd on ASHRAE's benchmarking data-set for energy prediction.
NASA Technical Reports Server (NTRS)
Mookerjee, P.; Molusis, J. A.; Bar-Shalom, Y.
1985-01-01
An investigation of the properties important for the design of stochastic adaptive controllers for the higher harmonic control of helicopter vibration is presented. Three different model types are considered for the transfer relationship between the helicopter higher harmonic control input and the vibration output: (1) nonlinear; (2) linear with slow time varying coefficients; and (3) linear with constant coefficients. The stochastic controller formulations and solutions are presented for a dual, cautious, and deterministic controller for both linear and nonlinear transfer models. Extensive simulations are performed with the various models and controllers. It is shown that the cautious adaptive controller can sometimes result in unacceptable vibration control. A new second order dual controller is developed which is shown to modify the cautious adaptive controller by adding numerator and denominator correction terms to the cautious control algorithm. The new dual controller is simulated on a simple single-control vibration example and is found to achieve excellent vibration reduction and significantly improves upon the cautious controller.
Esna-Ashari, Mojgan; Zekri, Maryam; Askari, Masood; Khalili, Noushin
2017-01-01
Because of increasing risk of diabetes, the measurement along with control of blood sugar has been of great importance in recent decades. In type I diabetes, because of the lack of insulin secretion, the cells cannot absorb glucose leading to low level of glucose. To control blood glucose (BG), the insulin must be injected to the body. This paper proposes a method for BG level regulation in type I diabetes. The control strategy is based on nonlinear model predictive control. The aim of the proposed controller optimized with genetics algorithms is to measure BG level each time and predict it for the next time interval. This merit causes a less amount of control effort, which is the rate of insulin delivered to the patient body. Consequently, this method can decrease the risk of hypoglycemia, a lethal phenomenon in regulating BG level in diabetes caused by a low BG level. Two delay differential equation models, namely Wang model and Enhanced Wang model, are applied as controller model and plant, respectively. The simulation results exhibit an acceptable performance of the proposed controller in meal disturbance rejection and robustness against parameter changes. As a result, if the nutrition of the person decreases instantly, the hypoglycemia will not happen. Furthermore, comparing this method with other works, it was shown that the new method outperforms previous studies.
Esna-Ashari, Mojgan; Zekri, Maryam; Askari, Masood; Khalili, Noushin
2017-01-01
Because of increasing risk of diabetes, the measurement along with control of blood sugar has been of great importance in recent decades. In type I diabetes, because of the lack of insulin secretion, the cells cannot absorb glucose leading to low level of glucose. To control blood glucose (BG), the insulin must be injected to the body. This paper proposes a method for BG level regulation in type I diabetes. The control strategy is based on nonlinear model predictive control. The aim of the proposed controller optimized with genetics algorithms is to measure BG level each time and predict it for the next time interval. This merit causes a less amount of control effort, which is the rate of insulin delivered to the patient body. Consequently, this method can decrease the risk of hypoglycemia, a lethal phenomenon in regulating BG level in diabetes caused by a low BG level. Two delay differential equation models, namely Wang model and Enhanced Wang model, are applied as controller model and plant, respectively. The simulation results exhibit an acceptable performance of the proposed controller in meal disturbance rejection and robustness against parameter changes. As a result, if the nutrition of the person decreases instantly, the hypoglycemia will not happen. Furthermore, comparing this method with other works, it was shown that the new method outperforms previous studies. PMID:28487828
Automated Deployment of Advanced Controls and Analytics in Buildings
NASA Astrophysics Data System (ADS)
Pritoni, Marco
Buildings use 40% of primary energy in the US. Recent studies show that developing energy analytics and enhancing control strategies can significantly improve their energy performance. However, the deployment of advanced control software applications has been mostly limited to academic studies. Larger-scale implementations are prevented by the significant engineering time and customization required, due to significant differences among buildings. This study demonstrates how physics-inspired data-driven models can be used to develop portable analytics and control applications for buildings. Specifically, I demonstrate application of these models in all phases of the deployment of advanced controls and analytics in buildings: in the first phase, "Site Preparation and Interface with Legacy Systems" I used models to discover or map relationships among building components, automatically gathering metadata (information about data points) necessary to run the applications. During the second phase: "Application Deployment and Commissioning", models automatically learn system parameters, used for advanced controls and analytics. In the third phase: "Continuous Monitoring and Verification" I utilized models to automatically measure the energy performance of a building that has implemented advanced control strategies. In the conclusions, I discuss future challenges and suggest potential strategies for these innovative control systems to be widely deployed in the market. This dissertation provides useful new tools in terms of procedures, algorithms, and models to facilitate the automation of deployment of advanced controls and analytics and accelerate their wide adoption in buildings.
Dynamic Modeling, Model-Based Control, and Optimization of Solid Oxide Fuel Cells
NASA Astrophysics Data System (ADS)
Spivey, Benjamin James
2011-07-01
Solid oxide fuel cells are a promising option for distributed stationary power generation that offers efficiencies ranging from 50% in stand-alone applications to greater than 80% in cogeneration. To advance SOFC technology for widespread market penetration, the SOFC should demonstrate improved cell lifetime and load-following capability. This work seeks to improve lifetime through dynamic analysis of critical lifetime variables and advanced control algorithms that permit load-following while remaining in a safe operating zone based on stress analysis. Control algorithms typically have addressed SOFC lifetime operability objectives using unconstrained, single-input-single-output control algorithms that minimize thermal transients. Existing SOFC controls research has not considered maximum radial thermal gradients or limits on absolute temperatures in the SOFC. In particular, as stress analysis demonstrates, the minimum cell temperature is the primary thermal stress driver in tubular SOFCs. This dissertation presents a dynamic, quasi-two-dimensional model for a high-temperature tubular SOFC combined with ejector and prereformer models. The model captures dynamics of critical thermal stress drivers and is used as the physical plant for closed-loop control simulations. A constrained, MIMO model predictive control algorithm is developed and applied to control the SOFC. Closed-loop control simulation results demonstrate effective load-following, constraint satisfaction for critical lifetime variables, and disturbance rejection. Nonlinear programming is applied to find the optimal SOFC size and steady-state operating conditions to minimize total system costs.
High-speed tracking control of piezoelectric actuators using an ellipse-based hysteresis model.
Gu, Guoying; Zhu, Limin
2010-08-01
In this paper, an ellipse-based mathematic model is developed to characterize the rate-dependent hysteresis in piezoelectric actuators. Based on the proposed model, an expanded input space is constructed to describe the multivalued hysteresis function H[u](t) by a multiple input single output (MISO) mapping Gamma:R(2)-->R. Subsequently, the inverse MISO mapping Gamma(-1)(H[u](t),H[u](t);u(t)) is proposed for real-time hysteresis compensation. In controller design, a hybrid control strategy combining a model-based feedforward controller and a proportional integral differential (PID) feedback loop is used for high-accuracy and high-speed tracking control of piezoelectric actuators. The real-time feedforward controller is developed to cancel the rate-dependent hysteresis based on the inverse hysteresis model, while the PID controller is used to compensate for the creep, modeling errors, and parameter uncertainties. Finally, experiments with and without hysteresis compensation are conducted and the experimental results are compared. The experimental results show that the hysteresis compensation in the feedforward path can reduce the hysteresis-caused error by up to 88% and the tracking performance of the hybrid controller is greatly improved in high-speed tracking control applications, e.g., the root-mean-square tracking error is reduced to only 0.34% of the displacement range under the input frequency of 100 Hz.
Risk Factors for Addiction and Their Association with Model-Based Behavioral Control.
Reiter, Andrea M F; Deserno, Lorenz; Wilbertz, Tilmann; Heinze, Hans-Jochen; Schlagenhauf, Florian
2016-01-01
Addiction shows familial aggregation and previous endophenotype research suggests that healthy relatives of addicted individuals share altered behavioral and cognitive characteristics with individuals suffering from addiction. In this study we asked whether impairments in behavioral control proposed for addiction, namely a shift from goal-directed, model-based toward habitual, model-free control, extends toward an unaffected sample (n = 20) of adult children of alcohol-dependent fathers as compared to a sample without any personal or family history of alcohol addiction (n = 17). Using a sequential decision-making task designed to investigate model-free and model-based control combined with a computational modeling analysis, we did not find any evidence for altered behavioral control in individuals with a positive family history of alcohol addiction. Independent of family history of alcohol dependence, we however observed that the interaction of two different risk factors of addiction, namely impulsivity and cognitive capacities, predicts the balance of model-free and model-based behavioral control. Post-hoc tests showed a positive association of model-based behavior with cognitive capacity in the lower, but not in the higher impulsive group of the original sample. In an independent sample of particularly high- vs. low-impulsive individuals, we confirmed the interaction effect of cognitive capacities and high vs. low impulsivity on model-based control. In the confirmation sample, a positive association of omega with cognitive capacity was observed in highly impulsive individuals, but not in low impulsive individuals. Due to the moderate sample size of the study, further investigation of the association of risk factors for addiction with model-based behavior in larger sample sizes is warranted.
Oguz, Ozgur S; Zhou, Zhehua; Glasauer, Stefan; Wollherr, Dirk
2018-04-03
Human motor control is highly efficient in generating accurate and appropriate motor behavior for a multitude of tasks. This paper examines how kinematic and dynamic properties of the musculoskeletal system are controlled to achieve such efficiency. Even though recent studies have shown that the human motor control relies on multiple models, how the central nervous system (CNS) controls this combination is not fully addressed. In this study, we utilize an Inverse Optimal Control (IOC) framework in order to find the combination of those internal models and how this combination changes for different reaching tasks. We conducted an experiment where participants executed a comprehensive set of free-space reaching motions. The results show that there is a trade-off between kinematics and dynamics based controllers depending on the reaching task. In addition, this trade-off depends on the initial and final arm configurations, which in turn affect the musculoskeletal load to be controlled. Given this insight, we further provide a discomfort metric to demonstrate its influence on the contribution of different inverse internal models. This formulation together with our analysis not only support the multiple internal models (MIMs) hypothesis but also suggest a hierarchical framework for the control of human reaching motions by the CNS.
Mixed Model Association with Family-Biased Case-Control Ascertainment.
Hayeck, Tristan J; Loh, Po-Ru; Pollack, Samuela; Gusev, Alexander; Patterson, Nick; Zaitlen, Noah A; Price, Alkes L
2017-01-05
Mixed models have become the tool of choice for genetic association studies; however, standard mixed model methods may be poorly calibrated or underpowered under family sampling bias and/or case-control ascertainment. Previously, we introduced a liability threshold-based mixed model association statistic (LTMLM) to address case-control ascertainment in unrelated samples. Here, we consider family-biased case-control ascertainment, where case and control subjects are ascertained non-randomly with respect to family relatedness. Previous work has shown that this type of ascertainment can severely bias heritability estimates; we show here that it also impacts mixed model association statistics. We introduce a family-based association statistic (LT-Fam) that is robust to this problem. Similar to LTMLM, LT-Fam is computed from posterior mean liabilities (PML) under a liability threshold model; however, LT-Fam uses published narrow-sense heritability estimates to avoid the problem of biased heritability estimation, enabling correct calibration. In simulations with family-biased case-control ascertainment, LT-Fam was correctly calibrated (average χ 2 = 1.00-1.02 for null SNPs), whereas the Armitage trend test (ATT), standard mixed model association (MLM), and case-control retrospective association test (CARAT) were mis-calibrated (e.g., average χ 2 = 0.50-1.22 for MLM, 0.89-2.65 for CARAT). LT-Fam also attained higher power than other methods in some settings. In 1,259 type 2 diabetes-affected case subjects and 5,765 control subjects from the CARe cohort, downsampled to induce family-biased ascertainment, LT-Fam was correctly calibrated whereas ATT, MLM, and CARAT were again mis-calibrated. Our results highlight the importance of modeling family sampling bias in case-control datasets with related samples. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Model predictive control of a wind turbine modelled in Simpack
NASA Astrophysics Data System (ADS)
Jassmann, U.; Berroth, J.; Matzke, D.; Schelenz, R.; Reiter, M.; Jacobs, G.; Abel, D.
2014-06-01
Wind turbines (WT) are steadily growing in size to increase their power production, which also causes increasing loads acting on the turbine's components. At the same time large structures, such as the blades and the tower get more flexible. To minimize this impact, the classical control loops for keeping the power production in an optimum state are more and more extended by load alleviation strategies. These additional control loops can be unified by a multiple-input multiple-output (MIMO) controller to achieve better balancing of tuning parameters. An example for MIMO control, which has been paid more attention to recently by wind industry, is Model Predictive Control (MPC). In a MPC framework a simplified model of the WT is used to predict its controlled outputs. Based on a user-defined cost function an online optimization calculates the optimal control sequence. Thereby MPC can intrinsically incorporate constraints e.g. of actuators. Turbine models used for calculation within the MPC are typically simplified. For testing and verification usually multi body simulations, such as FAST, BLADED or FLEX5 are used to model system dynamics, but they are still limited in the number of degrees of freedom (DOF). Detailed information about load distribution (e.g. inside the gearbox) cannot be provided by such models. In this paper a Model Predictive Controller is presented and tested in a co-simulation with SlMPACK, a multi body system (MBS) simulation framework used for detailed load analysis. The analysis are performed on the basis of the IME6.0 MBS WT model, described in this paper. It is based on the rotor of the NREL 5MW WT and consists of a detailed representation of the drive train. This takes into account a flexible main shaft and its main bearings with a planetary gearbox, where all components are modelled flexible, as well as a supporting flexible main frame. The wind loads are simulated using the NREL AERODYN v13 code which has been implemented as a routine to SlMPACK. This modeling approach allows to investigate the nonlinear behavior of wind loads and nonlinear drive train dynamics. Thereby the MPC's impact on specific loads and effects not covered by standard simulation tools can be assessed and investigated. Keywords. wind turbine simulation, model predictive control, multi body simulation, MIMO, load alleviation
Control Oriented Modeling and Validation of Aeroservoelastic Systems
NASA Technical Reports Server (NTRS)
Crowder, Marianne; deCallafon, Raymond (Principal Investigator)
2002-01-01
Lightweight aircraft design emphasizes the reduction of structural weight to maximize aircraft efficiency and agility at the cost of increasing the likelihood of structural dynamic instabilities. To ensure flight safety, extensive flight testing and active structural servo control strategies are required to explore and expand the boundary of the flight envelope. Aeroservoelastic (ASE) models can provide online flight monitoring of dynamic instabilities to reduce flight time testing and increase flight safety. The success of ASE models is determined by the ability to take into account varying flight conditions and the possibility to perform flight monitoring under the presence of active structural servo control strategies. In this continued study, these aspects are addressed by developing specific methodologies and algorithms for control relevant robust identification and model validation of aeroservoelastic structures. The closed-loop model robust identification and model validation are based on a fractional model approach where the model uncertainties are characterized in a closed-loop relevant way.
A conceptual modeling framework for discrete event simulation using hierarchical control structures.
Furian, N; O'Sullivan, M; Walker, C; Vössner, S; Neubacher, D
2015-08-01
Conceptual Modeling (CM) is a fundamental step in a simulation project. Nevertheless, it is only recently that structured approaches towards the definition and formulation of conceptual models have gained importance in the Discrete Event Simulation (DES) community. As a consequence, frameworks and guidelines for applying CM to DES have emerged and discussion of CM for DES is increasing. However, both the organization of model-components and the identification of behavior and system control from standard CM approaches have shortcomings that limit CM's applicability to DES. Therefore, we discuss the different aspects of previous CM frameworks and identify their limitations. Further, we present the Hierarchical Control Conceptual Modeling framework that pays more attention to the identification of a models' system behavior, control policies and dispatching routines and their structured representation within a conceptual model. The framework guides the user step-by-step through the modeling process and is illustrated by a worked example.
Petri Net controller synthesis based on decomposed manufacturing models.
Dideban, Abbas; Zeraatkar, Hashem
2018-06-01
Utilizing of supervisory control theory on the real systems in many modeling tools such as Petri Net (PN) becomes challenging in recent years due to the significant states in the automata models or uncontrollable events. The uncontrollable events initiate the forbidden states which might be removed by employing some linear constraints. Although there are many methods which have been proposed to reduce these constraints, enforcing them to a large-scale system is very difficult and complicated. This paper proposes a new method for controller synthesis based on PN modeling. In this approach, the original PN model is broken down into some smaller models in which the computational cost reduces significantly. Using this method, it is easy to reduce and enforce the constraints to a Petri net model. The appropriate results of our proposed method on the PN models denote worthy controller synthesis for the large scale systems. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Design and experiment of data-driven modeling and flutter control of a prototype wing
NASA Astrophysics Data System (ADS)
Lum, Kai-Yew; Xu, Cai-Lin; Lu, Zhenbo; Lai, Kwok-Leung; Cui, Yongdong
2017-06-01
This paper presents an approach for data-driven modeling of aeroelasticity and its application to flutter control design of a wind-tunnel wing model. Modeling is centered on system identification of unsteady aerodynamic loads using computational fluid dynamics data, and adopts a nonlinear multivariable extension of the Hammerstein-Wiener system. The formulation is in modal coordinates of the elastic structure, and yields a reduced-order model of the aeroelastic feedback loop that is parametrized by airspeed. Flutter suppression is thus cast as a robust stabilization problem over uncertain airspeed, for which a low-order H∞ controller is computed. The paper discusses in detail parameter sensitivity and observability of the model, the former to justify the chosen model structure, and the latter to provide a criterion for physical sensor placement. Wind tunnel experiments confirm the validity of the modeling approach and the effectiveness of the control design.
Pifferi, Massimo; Bush, Andrew; Pioggia, Giovanni; Di Cicco, Maria; Chinellato, Iolanda; Bodini, Alessandro; Macchia, Pierantonio; Boner, Attilio L
2011-02-01
Asthma control is emphasized by new guidelines but remains poor in many children. Evaluation of control relies on subjective patient recall and may be overestimated by health-care professionals. This study assessed the value of spirometry and fractional exhaled nitric oxide (FeNO) measurements, used alone or in combination, in models developed by a machine learning approach in the objective classification of asthma control according to Global Initiative for Asthma guidelines and tested the model in a second group of children with asthma. Fifty-three children with persistent atopic asthma underwent two to six evaluations of asthma control, including spirometry and FeNO. Soft computing evaluation was performed by means of artificial neural networks and principal component analysis. The model was then tested in a cross-sectional study in an additional 77 children with allergic asthma. The machine learning method was not able to distinguish different levels of control using either spirometry or FeNO values alone. However, their use in combination modeled by soft computing was able to discriminate levels of asthma control. In particular, the model is able to recognize all children with uncontrolled asthma and correctly identify 99.0% of children with totally controlled asthma. In the cross-sectional study, the model prospectively identified correctly all the uncontrolled children and 79.6% of the controlled children. Soft computing analysis of spirometry and FeNO allows objective categorization of asthma control status.
Modeling and control of flexible space platforms with articulated payloads
NASA Technical Reports Server (NTRS)
Graves, Philip C.; Joshi, Suresh M.
1989-01-01
The first steps in developing a methodology for spacecraft control-structure interaction (CSI) optimization are identification and classification of anticipated missions, and the development of tractable mathematical models in each mission class. A mathematical model of a generic large flexible space platform (LFSP) with multiple independently pointed rigid payloads is considered. The objective is not to develop a general purpose numerical simulation, but rather to develop an analytically tractable mathematical model of such composite systems. The equations of motion for a single payload case are derived, and are linearized about zero steady-state. The resulting model is then extended to include multiple rigid payloads, yielding the desired analytical form. The mathematical models developed clearly show the internal inertial/elastic couplings, and are therefore suitable for analytical and numerical studies. A simple decentralized control law is proposed for fine pointing the payloads and LFSP attitude control, and simulation results are presented for an example problem. The decentralized controller is shown to be adequate for the example problem chosen, but does not, in general, guarantee stability. A centralized dissipative controller is then proposed, requiring a symmetric form of the composite system equations. Such a controller guarantees robust closed loop stability despite unmodeled elastic dynamics and parameter uncertainties.
Pereira, José N; Silva, Porfírio; Lima, Pedro U; Martinoli, Alcherio
2014-01-01
The work described is part of a long term program of introducing institutional robotics, a novel framework for the coordination of robot teams that stems from institutional economics concepts. Under the framework, institutions are cumulative sets of persistent artificial modifications made to the environment or to the internal mechanisms of a subset of agents, thought to be functional for the collective order. In this article we introduce a formal model of institutional controllers based on Petri nets. We define executable Petri nets-an extension of Petri nets that takes into account robot actions and sensing-to design, program, and execute institutional controllers. We use a generalized stochastic Petri net view of the robot team controlled by the institutional controllers to model and analyze the stochastic performance of the resulting distributed robotic system. The ability of our formalism to replicate results obtained using other approaches is assessed through realistic simulations of up to 40 e-puck robots. In particular, we model a robot swarm and its institutional controller with the goal of maintaining wireless connectivity, and successfully compare our model predictions and simulation results with previously reported results, obtained by using finite state automaton models and controllers.
Model-based Optimization and Feedback Control of the Current Density Profile Evolution in NSTX-U
NASA Astrophysics Data System (ADS)
Ilhan, Zeki Okan
Nuclear fusion research is a highly challenging, multidisciplinary field seeking contributions from both plasma physics and multiple engineering areas. As an application of plasma control engineering, this dissertation mainly explores methods to control the current density profile evolution within the National Spherical Torus eXperiment-Upgrade (NSTX-U), which is a substantial upgrade based on the NSTX device, which is located in Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ. Active control of the toroidal current density profile is among those plasma control milestones that the NSTX-U program must achieve to realize its next-step operational goals, which are characterized by high-performance, long-pulse, MHD-stable plasma operation with neutral beam heating. Therefore, the aim of this work is to develop model-based, feedforward and feedback controllers that can enable time regulation of the current density profile in NSTX-U by actuating the total plasma current, electron density, and the powers of the individual neutral beam injectors. Motivated by the coupled, nonlinear, multivariable, distributed-parameter plasma dynamics, the first step towards control design is the development of a physics-based, control-oriented model for the current profile evolution in NSTX-U in response to non-inductive current drives and heating systems. Numerical simulations of the proposed control-oriented model show qualitative agreement with the high-fidelity physics code TRANSP. The next step is to utilize the proposed control-oriented model to design an open-loop actuator trajectory optimizer. Given a desired operating state, the optimizer produces the actuator trajectories that can steer the plasma to such state. The objective of the feedforward control design is to provide a more systematic approach to advanced scenario planning in NSTX-U since the development of such scenarios is conventionally carried out experimentally by modifying the tokamak's actuator trajectories and analyzing the resulting plasma evolution. Finally, the proposed control-oriented model is embedded in feedback control schemes based on optimal control and Model Predictive Control (MPC) approaches. Integrators are added to the standard Linear Quadratic Gaussian (LQG) and MPC formulations to provide robustness against various modeling uncertainties and external disturbances. The effectiveness of the proposed feedback controllers in regulating the current density profile in NSTX-U is demonstrated in closed-loop nonlinear simulations. Moreover, the optimal feedback control algorithm has been implemented successfully in closed-loop control simulations within TRANSP through the recently developed Expert routine. (Abstract shortened by ProQuest.).
Mina, Petros; Tsaneva-Atanasova, Krasimira; Bernardo, Mario di
2016-07-15
We extend a spatially explicit agent based model (ABM) developed previously to investigate entrainment and control of the emergent behavior of a population of synchronized oscillating cells in a microfluidic chamber. Unlike most of the work in models of control of cellular systems which focus on temporal changes, we model individual cells with spatial dependencies which may contribute to certain behavioral responses. We use the model to investigate the response of both open loop and closed loop strategies, such as proportional control (P-control), proportional-integral control (PI-control) and proportional-integral-derivative control (PID-control), to heterogeinities and growth in the cell population, variations of the control parameters and spatial effects such as diffusion in the spatially explicit setting of a microfluidic chamber setup. We show that, as expected from the theory of phase locking in dynamical systems, open loop control can only entrain the cell population in a subset of forcing periods, with a wide variety of dynamical behaviors obtained outside these regions of entrainment. Closed-loop control is shown instead to guarantee entrainment in a much wider region of control parameter space although presenting limitations when the population size increases over a certain threshold. In silico tracking experiments are also performed to validate the ability of classical control approaches to achieve other reference behaviors such as a desired constant output or a linearly varying one. All simulations are carried out in BSim, an advanced agent-based simulator of microbial population which is here extended ad hoc to include the effects of control strategies acting onto the population.
The influence of the non-motor vehicles for the car-following model considering traffic jerk
NASA Astrophysics Data System (ADS)
Liu, Yi; Cheng, Rong-jun; Lei, Li; Ge, Hong-xia
2016-12-01
The influence of the non-motor vehicles and traffic jerk is considered for the car-following model in this paper. The control method is used to analyze the stability of the model. A control signal which is the velocity difference between the target vehicle and the following vehicle is added into the model and the stability condition is obtained. Numerical simulation is used to display the results for the stability of the model with and without control signal.
Robust Fuzzy Logic Stabilization with Disturbance Elimination
Danapalasingam, Kumeresan A.
2014-01-01
A robust fuzzy logic controller is proposed for stabilization and disturbance rejection in nonlinear control systems of a particular type. The dynamic feedback controller is designed as a combination of a control law that compensates for nonlinear terms in a control system and a dynamic fuzzy logic controller that addresses unknown model uncertainties and an unmeasured disturbance. Since it is challenging to derive a highly accurate mathematical model, the proposed controller requires only nominal functions of a control system. In this paper, a mathematical derivation is carried out to prove that the controller is able to achieve asymptotic stability by processing state measurements. Robustness here refers to the ability of the controller to asymptotically steer the state vector towards the origin in the presence of model uncertainties and a disturbance input. Simulation results of the robust fuzzy logic controller application in a magnetic levitation system demonstrate the feasibility of the control design. PMID:25177713
NASA Technical Reports Server (NTRS)
Kopasakis, George
1997-01-01
Performance Seeking Control attempts to find the operating condition that will generate optimal performance and control the plant at that operating condition. In this paper a nonlinear multivariable Adaptive Performance Seeking Control (APSC) methodology will be developed and it will be demonstrated on a nonlinear system. The APSC is comprised of the Positive Gradient Control (PGC) and the Fuzzy Model Reference Learning Control (FMRLC). The PGC computes the positive gradients of the desired performance function with respect to the control inputs in order to drive the plant set points to the operating point that will produce optimal performance. The PGC approach will be derived in this paper. The feedback control of the plant is performed by the FMRLC. For the FMRLC, the conventional fuzzy model reference learning control methodology is utilized, with guidelines generated here for the effective tuning of the FMRLC controller.
Dynamics of aerospace vehicles
NASA Technical Reports Server (NTRS)
Schmidt, David K.
1991-01-01
The focus of this research was to address the modeling, including model reduction, of flexible aerospace vehicles, with special emphasis on models used in dynamic analysis and/or guidance and control system design. In the modeling, it is critical that the key aspects of the system being modeled be captured in the model. In this work, therefore, aspects of the vehicle dynamics critical to control design were important. In this regard, fundamental contributions were made in the areas of stability robustness analysis techniques, model reduction techniques, and literal approximations for key dynamic characteristics of flexible vehicles. All these areas are related. In the development of a model, approximations are always involved, so control systems designed using these models must be robust against uncertainties in these models.
Evaluating Internal Model Strength and Performance of Myoelectric Prosthesis Control Strategies.
Shehata, Ahmed W; Scheme, Erik J; Sensinger, Jonathon W
2018-05-01
On-going developments in myoelectric prosthesis control have provided prosthesis users with an assortment of control strategies that vary in reliability and performance. Many studies have focused on improving performance by providing feedback to the user but have overlooked the effect of this feedback on internal model development, which is key to improve long-term performance. In this paper, the strength of internal models developed for two commonly used myoelectric control strategies: raw control with raw feedback (using a regression-based approach) and filtered control with filtered feedback (using a classifier-based approach), were evaluated using two psychometric measures: trial-by-trial adaptation and just-noticeable difference. The performance of both strategies was also evaluated using Schmidt's style target acquisition task. Results obtained from 24 able-bodied subjects showed that although filtered control with filtered feedback had better short-term performance in path efficiency ( ), raw control with raw feedback resulted in stronger internal model development ( ), which may lead to better long-term performance. Despite inherent noise in the control signals of the regression controller, these findings suggest that rich feedback associated with regression control may be used to improve human understanding of the myoelectric control system.
NASA Technical Reports Server (NTRS)
Ostroff, Aaron J.; Proffitt, Melissa S.
1994-01-01
This paper describes the design and evaluation of a stochastic optimal feed-forward and feedback technology (SOFFT) control architecture with emphasis on the feed-forward controller design. The SOFFT approach allows the designer to independently design the feed-forward and feedback controllers to meet separate objectives and then integrate the two controllers. The feed-forward controller has been integrated with an existing high-angle-of-attack (high-alpha) feedback controller. The feed-forward controller includes a variable command model with parameters selected to satisfy level 1 flying qualities with a high-alpha adjustment to achieve desired agility guidelines, a nonlinear interpolation approach that scales entire matrices for approximation of the plant model, and equations for calculating feed-forward gains developed for perfect plant-model tracking. The SOFFT design was applied to a nonlinear batch simulation model of an F/A-18 aircraft modified for thrust vectoring. Simulation results show that agility guidelines are met and that the SOFFT controller filters undesired pilot-induced frequencies more effectively during a tracking task than a flight controller that has the same feedback control law but does not have the SOFFT feed-forward control.
Model-free adaptive speed control on travelling wave ultrasonic motor
NASA Astrophysics Data System (ADS)
Di, Sisi; Li, Huafeng
2018-01-01
This paper introduced a new data-driven control (DDC) method for the speed control of ultrasonic motor (USM). The model-free adaptive control (MFAC) strategy was presented in terms of its principles, algorithms, and parameter selection. To verify the efficiency of the proposed method, a speed-frequency-time model, which contained all the measurable nonlinearity and uncertainties based on experimental data was established for simulation to mimic the USM operation system. Furthermore, the model was identified using particle swarm optimization (PSO) method. Then, the control of the simulated system using MFAC was evaluated under different expectations in terms of overshoot, rise time and steady-state error. Finally, the MFAC results were compared with that of proportion iteration differentiation (PID) to demonstrate its advantages in controlling general random system.
Wu, Sheng; Jin, Qibing; Zhang, Ridong; Zhang, Junfeng; Gao, Furong
2017-07-01
In this paper, an improved constrained tracking control design is proposed for batch processes under uncertainties. A new process model that facilitates process state and tracking error augmentation with further additional tuning is first proposed. Then a subsequent controller design is formulated using robust stable constrained MPC optimization. Unlike conventional robust model predictive control (MPC), the proposed method enables the controller design to bear more degrees of tuning so that improved tracking control can be acquired, which is very important since uncertainties exist inevitably in practice and cause model/plant mismatches. An injection molding process is introduced to illustrate the effectiveness of the proposed MPC approach in comparison with conventional robust MPC. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Multiple model self-tuning control for a class of nonlinear systems
NASA Astrophysics Data System (ADS)
Huang, Miao; Wang, Xin; Wang, Zhenlei
2015-10-01
This study develops a novel nonlinear multiple model self-tuning control method for a class of nonlinear discrete-time systems. An increment system model and a modified robust adaptive law are proposed to expand the application range, thus eliminating the assumption that either the nonlinear term of the nonlinear system or its differential term is global-bounded. The nonlinear self-tuning control method can address the situation wherein the nonlinear system is not subject to a globally uniformly asymptotically stable zero dynamics by incorporating the pole-placement scheme. A novel, nonlinear control structure based on this scheme is presented to improve control precision. Stability and convergence can be confirmed when the proposed multiple model self-tuning control method is applied. Furthermore, simulation results demonstrate the effectiveness of the proposed method.
Abbes, Ilham Ben; Richard, Pierre-Yves; Lefebvre, Marie-Anne; Guilhem, Isabelle; Poirier, Jean-Yves
2013-05-01
Most closed-loop insulin delivery systems rely on model-based controllers to control the blood glucose (BG) level. Simple models of glucose metabolism, which allow easy design of the control law, are limited in their parametric identification from raw data. New control models and controllers issued from them are needed. A proportional integral derivative with double phase lead controller was proposed. Its design was based on a linearization of a new nonlinear control model of the glucose-insulin system in type 1 diabetes mellitus (T1DM) patients validated with the University of Virginia/Padova T1DM metabolic simulator. A 36 h scenario, including six unannounced meals, was tested in nine virtual adults. A previous trial database has been used to compare the performance of our controller with their previous results. The scenario was repeated 25 times for each adult in order to take continuous glucose monitoring noise into account. The primary outcome was the time BG levels were in target (70-180 mg/dl). Blood glucose values were in the target range for 77% of the time and below 50 mg/dl and above 250 mg/dl for 0.8% and 0.3% of the time, respectively. The low blood glucose index and high blood glucose index were 1.65 and 3.33, respectively. The linear controller presented, based on the linearization of a new easily identifiable nonlinear model, achieves good glucose control with low exposure to hypoglycemia and hyperglycemia. © 2013 Diabetes Technology Society.
Optimization Control of the Color-Coating Production Process for Model Uncertainty
He, Dakuo; Wang, Zhengsong; Yang, Le; Mao, Zhizhong
2016-01-01
Optimized control of the color-coating production process (CCPP) aims at reducing production costs and improving economic efficiency while meeting quality requirements. However, because optimization control of the CCPP is hampered by model uncertainty, a strategy that considers model uncertainty is proposed. Previous work has introduced a mechanistic model of CCPP based on process analysis to simulate the actual production process and generate process data. The partial least squares method is then applied to develop predictive models of film thickness and economic efficiency. To manage the model uncertainty, the robust optimization approach is introduced to improve the feasibility of the optimized solution. Iterative learning control is then utilized to further refine the model uncertainty. The constrained film thickness is transformed into one of the tracked targets to overcome the drawback that traditional iterative learning control cannot address constraints. The goal setting of economic efficiency is updated continuously according to the film thickness setting until this reaches its desired value. Finally, fuzzy parameter adjustment is adopted to ensure that the economic efficiency and film thickness converge rapidly to their optimized values under the constraint conditions. The effectiveness of the proposed optimization control strategy is validated by simulation results. PMID:27247563
Optimization Control of the Color-Coating Production Process for Model Uncertainty.
He, Dakuo; Wang, Zhengsong; Yang, Le; Mao, Zhizhong
2016-01-01
Optimized control of the color-coating production process (CCPP) aims at reducing production costs and improving economic efficiency while meeting quality requirements. However, because optimization control of the CCPP is hampered by model uncertainty, a strategy that considers model uncertainty is proposed. Previous work has introduced a mechanistic model of CCPP based on process analysis to simulate the actual production process and generate process data. The partial least squares method is then applied to develop predictive models of film thickness and economic efficiency. To manage the model uncertainty, the robust optimization approach is introduced to improve the feasibility of the optimized solution. Iterative learning control is then utilized to further refine the model uncertainty. The constrained film thickness is transformed into one of the tracked targets to overcome the drawback that traditional iterative learning control cannot address constraints. The goal setting of economic efficiency is updated continuously according to the film thickness setting until this reaches its desired value. Finally, fuzzy parameter adjustment is adopted to ensure that the economic efficiency and film thickness converge rapidly to their optimized values under the constraint conditions. The effectiveness of the proposed optimization control strategy is validated by simulation results.
NASA Technical Reports Server (NTRS)
Bachelder, Edward; Hess, Ronald; Godfroy-Cooper, Martine; Aponso, Bimal
2017-01-01
In this study, behavioral models are developed that closely reproduced pulsive control response of two pilots from the experimental pool using markedly different control techniques (styles) while conducting a tracking task. An intriguing find was that the pilots appeared to: 1) produce a continuous, internally-generated stick signal that they integrated in time; 2) integrate the actual stick position; and 3) compare the two integrations to issue and cease pulse commands. This suggests that the pilots utilized kinesthetic feedback in order to perceive and integrate stick position, supporting the hypothesis that pilots can access and employ the proprioceptive inner feedback loop proposed by Hess' pilot Structural Model. The Pulse Models used in conjunction with the pilot Structural Model closely recreated the pilot data both in the frequency and time domains during closed-loop simulation. This indicates that for the range of tasks and control styles encountered, the models captured the fundamental mechanisms governing pulsive and control processes. The pilot Pulse Models give important insight for the amount of remnant (stick output uncorrelated with the forcing function) that arises from nonlinear pilot technique, and for the remaining remnant arising from different sources unrelated to tracking control (i.e. neuromuscular tremor, reallocation of cognitive resources, etc.).
Simulation of a Canard in Fluid Flow Driven by a Piezoelectric Beam with a Software Control Loop
2014-04-01
The canard is actuated by a piezoelectric beam that bends as voltage is applied. The voltage is controlled by a software subroutine that measures...Dynamic system Modeling Co-simulation Simulation Abaqus Finite element analysis (FEA) Finite element method (FEM) Computational...is unlimited. i CONTENTS Page Introduction 1 Model Description 1 Fluid Model 2 Structural Model 3 Control Subroutine 4 Results 4
Input-Output Modeling and Control of the Departure Process of Congested Airports
NASA Technical Reports Server (NTRS)
Pujet, Nicolas; Delcaire, Bertrand; Feron, Eric
2003-01-01
A simple queueing model of busy airport departure operations is proposed. This model is calibrated and validated using available runway configuration and traffic data. The model is then used to evaluate preliminary control schemes aimed at alleviating departure traffic congestion on the airport surface. The potential impact of these control strategies on direct operating costs, environmental costs and overall delay is quantified and discussed.
Switched impulsive control of the endocrine disruptor diethylstilbestrol singular model
NASA Astrophysics Data System (ADS)
Zamani, Iman; Shafiee, Masoud; Ibeas, Asier; de la Sen, M.
2014-12-01
In this work, a switched and impulsive controller is designed to control the Endocrine Disruptor Diethylstilbestrol mechanism which is usually modeled as a singular system. Then the exponential stabilization property of the proposed switched and impulsive singular model is discussed under matrix inequalities. A design algorithm is given and applied for the physiological process of endocrine disruptor diethylstilbestrol model to illustrate the effectiveness of the results.
NASA Astrophysics Data System (ADS)
Sun, Yun-Hsiang; Sun, Yuming; Wu, Christine Qiong; Sepehri, Nariman
2018-04-01
Parameters of friction model identified for a specific control system development are not constants. They vary over time and have a significant effect on the control system stability. Although much research has been devoted to the stability analysis under parametric uncertainty, less attention has been paid to incorporating a realistic friction model into their analysis. After reviewing the common friction models for controller design, a modified LuGre friction model is selected to carry out the stability analysis in this study. Two parameters of the LuGre model, namely σ0 and σ1, are critical to the demonstration of dynamic friction features, yet the identification of which is difficult to carry out, resulting in a high level of uncertainties in their values. Aiming at uncovering the effect of the σ0 and σ1 variations on the control system stability, a servomechanism with modified LuGre friction model is investigated. Two set-point position controllers are synthesised based on the servomechanism model to form two case studies. Through Lyapunov exponents, it is clear that the variation of σ0 and σ1 has an obvious effect on the stabiltiy of the studied systems and should not be overlooked in the design phase.
Deserno, Lorenz; Huys, Quentin J M; Boehme, Rebecca; Buchert, Ralph; Heinze, Hans-Jochen; Grace, Anthony A; Dolan, Raymond J; Heinz, Andreas; Schlagenhauf, Florian
2015-02-03
Dual system theories suggest that behavioral control is parsed between a deliberative "model-based" and a more reflexive "model-free" system. A balance of control exerted by these systems is thought to be related to dopamine neurotransmission. However, in the absence of direct measures of human dopamine, it remains unknown whether this reflects a quantitative relation with dopamine either in the striatum or other brain areas. Using a sequential decision task performed during functional magnetic resonance imaging, combined with striatal measures of dopamine using [(18)F]DOPA positron emission tomography, we show that higher presynaptic ventral striatal dopamine levels were associated with a behavioral bias toward more model-based control. Higher presynaptic dopamine in ventral striatum was associated with greater coding of model-based signatures in lateral prefrontal cortex and diminished coding of model-free prediction errors in ventral striatum. Thus, interindividual variability in ventral striatal presynaptic dopamine reflects a balance in the behavioral expression and the neural signatures of model-free and model-based control. Our data provide a novel perspective on how alterations in presynaptic dopamine levels might be accompanied by a disruption of behavioral control as observed in aging or neuropsychiatric diseases such as schizophrenia and addiction.
NASA Technical Reports Server (NTRS)
Barber, H. T., Jr.; Lundstrom, R. R.
1956-01-01
A model of a cruciform missile configuration having a low-aspectratio wing equipped with flap-type controls was flight tested in order to determine stability and control characteristics while rolling at about 5 radians per second. Comparison is made with results from a similar model which rolled at a much lower rate. Results showed that, if the ratio of roll rate to natural circular frequency in pitch is not greater than about 0.3, the motion following a step disturbance in pitch essentially remains in a plane in space. The slope of normal-force coefficient against angle of attack C(sub N(sub A)) was the same as for the slowly rolling model at O deg control deflection but C(sub N(sub A)) was much higher for the faster rolling model at about 5 deg control deflection. The slope of pitching-moment coefficient against angle of attack & same for both models at 0 deg control deflection but was lower for the faster rolling model at about 5 deg control deflection. Damping data for the faster rolling model showed considerably more scatter than for the slowly rolling model.
NASA Technical Reports Server (NTRS)
Stoliker, Patrick C.; Bosworth, John T.; Georgie, Jennifer
1997-01-01
The X-31A aircraft has a unique configuration that uses thrust-vector vanes and aerodynamic control effectors to provide an operating envelope to a maximum 70 deg angle of attack, an inherently nonlinear portion of the flight envelope. This report presents linearized versions of the X-31A longitudinal and lateral-directional control systems, with aerodynamic models sufficient to evaluate characteristics in the poststall envelope at 30 deg, 45 deg, and 60 deg angle of attack. The models are presented with detail sufficient to allow the reader to reproduce the linear results or perform independent control studies. Comparisons between the responses of the linear models and flight data are presented in the time and frequency domains to demonstrate the strengths and weaknesses of the ability to predict high-angle-of-attack flight dynamics using linear models. The X-31A six-degree-of-freedom simulation contains a program that calculates linear perturbation models throughout the X-31A flight envelope. The models include aerodynamics and flight control system dynamics that are used for stability, controllability, and handling qualities analysis. The models presented in this report demonstrate the ability to provide reasonable linear representations in the poststall flight regime.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-09-01
This document presents a modeling and control study of the Fluid Bed Gasification (FBG) unit at the Morgantown Energy Technology Center (METC). The work is performed under contract no. DE-FG21-94MC31384. The purpose of this study is to generate a simple FBG model from process data, and then use the model to suggest an improved control scheme which will improve operation of the gasifier. The work first developes a simple linear model of the gasifier, then suggests an improved gasifier pressure and MGCR control configuration, and finally suggests the use of a multivariable control strategy for the gasifier.
Robust multi-model control of an autonomous wind power system
NASA Astrophysics Data System (ADS)
Cutululis, Nicolas Antonio; Ceanga, Emil; Hansen, Anca Daniela; Sørensen, Poul
2006-09-01
This article presents a robust multi-model control structure for a wind power system that uses a variable speed wind turbine (VSWT) driving a permanent magnet synchronous generator (PMSG) connected to a local grid. The control problem consists in maximizing the energy captured from the wind for varying wind speeds. The VSWT-PMSG linearized model analysis reveals the resonant nature of its dynamic at points on the optimal regimes characteristic (ORC). The natural frequency of the system and the damping factor are strongly dependent on the operating point on the ORC. Under these circumstances a robust multi-model control structure is designed. The simulation results prove the viability of the proposed control structure. Copyright
The Modular Aero-Propulsion System Simulation (MAPSS) Users' Guide
NASA Technical Reports Server (NTRS)
Parker, Khary I.; Melcher, Kevin J.
2004-01-01
The Modular Aero-Propulsion System Simulation is a flexible turbofan engine simulation environment that provides the user a platform to develop advanced control algorithms. It is capable of testing the performance of control designs on a validated and verified generic engine model. In addition, it is able to generate state-space linear models of the engine model to aid in controller design. The engine model used in MAPSS is a generic high-pressure ratio, dual-spool, lowbypass, military-type, variable cycle turbofan engine with a digital controller. MAPSS is controlled by a graphical user interface (GUI) and this guide explains how to use it to take advantage of the capabilities of MAPSS.
Shakouri, Payman; Ordys, Andrzej; Askari, Mohamad R
2012-09-01
In the design of adaptive cruise control (ACC) system two separate control loops - an outer loop to maintain the safe distance from the vehicle traveling in front and an inner loop to control the brake pedal and throttle opening position - are commonly used. In this paper a different approach is proposed in which a single control loop is utilized. The objective of the distance tracking is incorporated into the single nonlinear model predictive control (NMPC) by extending the original linear time invariant (LTI) models obtained by linearizing the nonlinear dynamic model of the vehicle. This is achieved by introducing the additional states corresponding to the relative distance between leading and following vehicles, and also the velocity of the leading vehicle. Control of the brake and throttle position is implemented by taking the state-dependent approach. The model demonstrates to be more effective in tracking the speed and distance by eliminating the necessity of switching between the two controllers. It also offers smooth variation in brake and throttle controlling signal which subsequently results in a more uniform acceleration of the vehicle. The results of proposed method are compared with other ACC systems using two separate control loops. Furthermore, an ACC simulation results using a stop&go scenario are shown, demonstrating a better fulfillment of the design requirements. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.
A collision model for safety evaluation of autonomous intelligent cruise control.
Touran, A; Brackstone, M A; McDonald, M
1999-09-01
This paper describes a general framework for safety evaluation of autonomous intelligent cruise control in rear-end collisions. Using data and specifications from prototype devices, two collision models are developed. One model considers a train of four cars, one of which is equipped with autonomous intelligent cruise control. This model considers the car in front and two cars following the equipped car. In the second model, none of the cars is equipped with the device. Each model can predict the possibility of rear-end collision between cars under various conditions by calculating the remaining distance between cars after the front car brakes. Comparing the two collision models allows one to evaluate the effectiveness of autonomous intelligent cruise control in preventing collisions. The models are then subjected to Monte Carlo simulation to calculate the probability of collision. Based on crash probabilities, an expected value is calculated for the number of cars involved in any collision. It is found that given the model assumptions, while equipping a car with autonomous intelligent cruise control can significantly reduce the probability of the collision with the car ahead, it may adversely affect the situation for the following cars.
Anticipatory Neurofuzzy Control
NASA Technical Reports Server (NTRS)
Mccullough, Claire L.
1994-01-01
Technique of feedback control, called "anticipatory neurofuzzy control," developed for use in controlling flexible structures and other dynamic systems for which mathematical models of dynamics poorly known or unknown. Superior ability to act during operation to compensate for, and adapt to, errors in mathematical model of dynamics, changes in dynamics, and noise. Also offers advantage of reduced computing time. Hybrid of two older fuzzy-logic control techniques: standard fuzzy control and predictive fuzzy control.
11. VIEW LOOKING EAST AT MODEL AIRCRAFT CONTROL ROOM; MODEL ...
11. VIEW LOOKING EAST AT MODEL AIRCRAFT CONTROL ROOM; MODEL OF BOEING 737 AT TOP OF PHOTOGRAPH IN FULL-SCALE WIND TUNNEL. - NASA Langley Research Center, Full-Scale Wind Tunnel, 224 Hunting Avenue, Hampton, Hampton, VA
Robust Temperature Control of a Thermoelectric Cooler via μ -Synthesis
NASA Astrophysics Data System (ADS)
Kürkçü, Burak; Kasnakoğlu, Coşku
2018-02-01
In this work robust temperature control of a thermoelectric cooler (TEC) via μ -synthesis is studied. An uncertain dynamical model for the TEC that is suitable for robust control methods is derived. The model captures variations in operating point due to current, load and temperature changes. A temperature controller is designed utilizing μ -synthesis, a powerful method guaranteeing robust stability and performance. For comparison two well-known control methods, namely proportional-integral-derivative (PID) and internal model control (IMC), are also realized to benchmark the proposed approach. It is observed that the stability and performance on the nominal model are satisfactory for all cases. On the other hand, under perturbations the responses of PID and IMC deteriorate and even become unstable. In contrast, the μ -synthesis controller succeeds in keeping system stability and achieving good performance under all perturbations within the operating range, while at the same time providing good disturbance rejection.
Singularity-free backstepping controller for model helicopters.
Zou, Yao; Huo, Wei
2016-11-01
This paper develops a backstepping controller for model helicopters to achieve trajectory tracking without singularity, which occurs in the attitude representation when the roll or pitch reaches ±π2. Based on a simplified model with unmodeled dynamics, backstepping technique is introduced to exploit the controller and hyperbolic tangent functions are utilized to compensate the unmodeled dynamics. Firstly, a position loop controller is designed for the position tracking, where an auxiliary dynamic system with suitable parameters is introduced to warrant the singularity-free requirement for the extracted command attitude. Then, a novel attitude loop controller is proposed to obviate singularity. It is demonstrated that, based on the established criteria for selecting controller parameters and desired trajectories, the proposed controller realizes the singularity-free trajectory tracking of the model helicopter. Simulations confirm the theoretical results. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Seldner, K.
1976-01-01
The development of control systems for jet engines requires a real-time computer simulation. The simulation provides an effective tool for evaluating control concepts and problem areas prior to actual engine testing. The development and use of a real-time simulation of the Pratt and Whitney F100-PW100 turbofan engine is described. The simulation was used in a multi-variable optimal controls research program using linear quadratic regulator theory. The simulation is used to generate linear engine models at selected operating points and evaluate the control algorithm. To reduce the complexity of the design, it is desirable to reduce the order of the linear model. A technique to reduce the order of the model; is discussed. Selected results between high and low order models are compared. The LQR control algorithms can be programmed on digital computer. This computer will control the engine simulation over the desired flight envelope.
Model Predictive Optimal Control of a Time-Delay Distributed-Parameter Systems
NASA Technical Reports Server (NTRS)
Nguyen, Nhan
2006-01-01
This paper presents an optimal control method for a class of distributed-parameter systems governed by first order, quasilinear hyperbolic partial differential equations that arise in many physical systems. Such systems are characterized by time delays since information is transported from one state to another by wave propagation. A general closed-loop hyperbolic transport model is controlled by a boundary control embedded in a periodic boundary condition. The boundary control is subject to a nonlinear differential equation constraint that models actuator dynamics of the system. The hyperbolic equation is thus coupled with the ordinary differential equation via the boundary condition. Optimality of this coupled system is investigated using variational principles to seek an adjoint formulation of the optimal control problem. The results are then applied to implement a model predictive control design for a wind tunnel to eliminate a transport delay effect that causes a poor Mach number regulation.
NASA Technical Reports Server (NTRS)
Gettman, Chang-Ching L.; Adams, Neil; Bedrossian, Nazareth; Valavani, Lena
1993-01-01
This paper demonstrates an approach to nonlinear control system design that uses linearization by state feedback to allow faster maneuvering of payloads by the Shuttle Remote Manipulator System (SRMS). A nonlinear feedback law is defined to cancel the nonlinear plant dynamics so that a linear controller can be designed for the SRMS. First a nonlinear design model was generated via SIMULINK. This design model included nonlinear arm dynamics derived from the Lagrangian approach, linearized servo model, and linearized gearbox model. The current SRMS position hold controller was implemented on this system. Next, a trajectory was defined using a rigid body kinematics SRMS tool, KRMS. The maneuver was simulated. Finally, higher bandwidth controllers were developed. Results of the new controllers were compared with the existing SRMS automatic control modes for the Space Station Freedom Mission Build 4 Payload extended on the SRMS.
An adaptive Cartesian control scheme for manipulators
NASA Technical Reports Server (NTRS)
Seraji, H.
1987-01-01
A adaptive control scheme for direct control of manipulator end-effectors to achieve trajectory tracking in Cartesian space is developed. The control structure is obtained from linear multivariable theory and is composed of simple feedforward and feedback controllers and an auxiliary input. The direct adaptation laws are derived from model reference adaptive control theory and are not based on parameter estimation of the robot model. The utilization of feedforward control and the inclusion of auxiliary input are novel features of the present scheme and result in improved dynamic performance over existing adaptive control schemes. The adaptive controller does not require the complex mathematical model of the robot dynamics or any knowledge of the robot parameters or the payload, and is computationally fast for online implementation with high sampling rates.
NASA Technical Reports Server (NTRS)
Lundstrom, Reginald R; Baber, Hal T , Jr
1956-01-01
A model of a cruciform missile configuration having a low-aspect-ratio wing equipped with flap-type controls was flight tested in order to determine stability and control characteristics while rolling at about 5 radians per second. Comparison is made with results from a similar model which rolled at a much lower rate. Results showed that, if the ratio of roll rate to natural circular frequency in pitch is not greater than about 0.3, the motion following a step disturbance in pitch essentially remains in a plane in space. The slope of normal- force coefficient against angle of attack C(sub N(sub alpha)) was the same as for the slowly rolling model at 0 degrees control deflection but C(sub N(sub alpha)) was much higher for the faster rolling model at about 5 degrees control deflection. The slope of pitching-moment coefficient against angle of attack C(sub m(sub alpha)) as determined from the model period of oscillation was the same for both models at 0 degrees control deflection but was lower for the faster rolling model at about 5 degrees control deflection. Damping data for the faster rolling model showed considerably more scatter than for the slowly rolling model.
Implications of asymptomatic carriers for infectious disease transmission and control.
Chisholm, Rebecca H; Campbell, Patricia T; Wu, Yue; Tong, Steven Y C; McVernon, Jodie; Geard, Nicholas
2018-02-01
For infectious pathogens such as Staphylococcus aureus and Streptococcus pneumoniae , some hosts may carry the pathogen and transmit it to others, yet display no symptoms themselves. These asymptomatic carriers contribute to the spread of disease but go largely undetected and can therefore undermine efforts to control transmission. Understanding the natural history of carriage and its relationship to disease is important for the design of effective interventions to control transmission. Mathematical models of infectious diseases are frequently used to inform decisions about control and should therefore accurately capture the role played by asymptomatic carriers. In practice, incorporating asymptomatic carriers into models is challenging due to the sparsity of direct evidence. This absence of data leads to uncertainty in estimates of model parameters and, more fundamentally, in the selection of an appropriate model structure. To assess the implications of this uncertainty, we systematically reviewed published models of carriage and propose a new model of disease transmission with asymptomatic carriage. Analysis of our model shows how different assumptions about the role of asymptomatic carriers can lead to different conclusions about the transmission and control of disease. Critically, selecting an inappropriate model structure, even when parameters are correctly estimated, may lead to over- or under-estimates of intervention effectiveness. Our results provide a more complete understanding of the role of asymptomatic carriers in transmission and highlight the importance of accurately incorporating carriers into models used to make decisions about disease control.
Reduced-Order Structure-Preserving Model for Parallel-Connected Three-Phase Grid-Tied Inverters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Brian B; Purba, Victor; Jafarpour, Saber
Next-generation power networks will contain large numbers of grid-connected inverters satisfying a significant fraction of system load. Since each inverter model has a relatively large number of dynamic states, it is impractical to analyze complex system models where the full dynamics of each inverter are retained. To address this challenge, we derive a reduced-order structure-preserving model for parallel-connected grid-tied three-phase inverters. Here, each inverter in the system is assumed to have a full-bridge topology, LCL filter at the point of common coupling, and the control architecture for each inverter includes a current controller, a power controller, and a phase-locked loopmore » for grid synchronization. We outline a structure-preserving reduced-order inverter model with lumped parameters for the setting where the parallel inverters are each designed such that the filter components and controller gains scale linearly with the power rating. By structure preserving, we mean that the reduced-order three-phase inverter model is also composed of an LCL filter, a power controller, current controller, and PLL. We show that the system of parallel inverters can be modeled exactly as one aggregated inverter unit and this equivalent model has the same number of dynamical states as any individual inverter in the system. Numerical simulations validate the reduced-order model.« less
Goal-Directed Aiming: Two Components but Multiple Processes
ERIC Educational Resources Information Center
Elliott, Digby; Hansen, Steve; Grierson, Lawrence E. M.; Lyons, James; Bennett, Simon J.; Hayes, Spencer J.
2010-01-01
This article reviews the behavioral literature on the control of goal-directed aiming and presents a multiple-process model of limb control. The model builds on recent variants of Woodworth's (1899) two-component model of speed-accuracy relations in voluntary movement and incorporates ideas about dynamic online limb control based on prior…
Some Philosophical Paradigms in Education of Modeling and Control
ERIC Educational Resources Information Center
Keviczky, László; Bányász, Csilla
2017-01-01
The paper discusses some interesting, mainly philosophical paradigms of the modeling and control areas, which are still partly unsolved and/or only partially studied. First the possible introduction of a prejudice free control--similar to the term for the modeling introduced by Rudi Kalman--is investigated. Next the real constraints in real…
Flight Control of Biomimetic Air Vehicles Using Vibrational Control and Averaging
NASA Astrophysics Data System (ADS)
Tahmasian, Sevak; Woolsey, Craig A.
2017-08-01
A combination of vibrational inputs and state feedback is applied to control the flight of a biomimetic air vehicle. First, a control strategy is developed for longitudinal flight, using a quasi-steady aerodynamic model and neglecting wing inertial effects. Vertical and forward motion is controlled by modulating the wings' stroke and feather angles, respectively. Stabilizing control parameter values are determined using the time-averaged dynamic model. Simulations of a system resembling a hawkmoth show that the proposed controller can overcome modeling error associated with the wing inertia and small parameter uncertainties when following a prescribed trajectory. After introducing the approach through an application to longitudinal flight, the control strategy is extended to address flight in three-dimensional space.
A distributed finite-element modeling and control approach for large flexible structures
NASA Technical Reports Server (NTRS)
Young, K. D.
1989-01-01
An unconventional framework is described for the design of decentralized controllers for large flexible structures. In contrast to conventional control system design practice which begins with a model of the open loop plant, the controlled plant is assembled from controlled components in which the modeling phase and the control design phase are integrated at the component level. The developed framework is called controlled component synthesis (CCS) to reflect that it is motivated by the well developed Component Mode Synthesis (CMS) methods which were demonstrated to be effective for solving large complex structural analysis problems for almost three decades. The design philosophy behind CCS is also closely related to that of the subsystem decomposition approach in decentralized control.
NASA Astrophysics Data System (ADS)
Liu, Chun; Jiang, Bin; Zhang, Ke
2018-03-01
This paper investigates the attitude and position tracking control problem for Lead-Wing close formation systems in the presence of loss of effectiveness and lock-in-place or hardover failure. In close formation flight, Wing unmanned aerial vehicle movements are influenced by vortex effects of the neighbouring Lead unmanned aerial vehicle. This situation allows modelling of aerodynamic coupling vortex-effects and linearisation based on optimal close formation geometry. Linearised Lead-Wing close formation model is transformed into nominal robust H-infinity models with respect to Mach hold, Heading hold, and Altitude hold autopilots; static feedback H-infinity controller is designed to guarantee effective tracking of attitude and position while manoeuvring Lead unmanned aerial vehicle. Based on H-infinity control design, an integrated multiple-model adaptive fault identification and reconfigurable fault-tolerant control scheme is developed to guarantee asymptotic stability of close-loop systems, error signal boundedness, and attitude and position tracking properties. Simulation results for Lead-Wing close formation systems validate the efficiency of the proposed integrated multiple-model adaptive control algorithm.
Comparative Study of SSVEP- and P300-Based Models for the Telepresence Control of Humanoid Robots.
Zhao, Jing; Li, Wei; Li, Mengfan
2015-01-01
In this paper, we evaluate the control performance of SSVEP (steady-state visual evoked potential)- and P300-based models using Cerebot-a mind-controlled humanoid robot platform. Seven subjects with diverse experience participated in experiments concerning the open-loop and closed-loop control of a humanoid robot via brain signals. The visual stimuli of both the SSVEP- and P300- based models were implemented on a LCD computer monitor with a refresh frequency of 60 Hz. Considering the operation safety, we set the classification accuracy of a model over 90.0% as the most important mandatory for the telepresence control of the humanoid robot. The open-loop experiments demonstrated that the SSVEP model with at most four stimulus targets achieved the average accurate rate about 90%, whereas the P300 model with the six or more stimulus targets under five repetitions per trial was able to achieve the accurate rates over 90.0%. Therefore, the four SSVEP stimuli were used to control four types of robot behavior; while the six P300 stimuli were chosen to control six types of robot behavior. Both of the 4-class SSVEP and 6-class P300 models achieved the average success rates of 90.3% and 91.3%, the average response times of 3.65 s and 6.6 s, and the average information transfer rates (ITR) of 24.7 bits/min 18.8 bits/min, respectively. The closed-loop experiments addressed the telepresence control of the robot; the objective was to cause the robot to walk along a white lane marked in an office environment using live video feedback. Comparative studies reveal that the SSVEP model yielded faster response to the subject's mental activity with less reliance on channel selection, whereas the P300 model was found to be suitable for more classifiable targets and required less training. To conclude, we discuss the existing SSVEP and P300 models for the control of humanoid robots, including the models proposed in this paper.
Comparative Study of SSVEP- and P300-Based Models for the Telepresence Control of Humanoid Robots
Li, Mengfan
2015-01-01
In this paper, we evaluate the control performance of SSVEP (steady-state visual evoked potential)- and P300-based models using Cerebot—a mind-controlled humanoid robot platform. Seven subjects with diverse experience participated in experiments concerning the open-loop and closed-loop control of a humanoid robot via brain signals. The visual stimuli of both the SSVEP- and P300- based models were implemented on a LCD computer monitor with a refresh frequency of 60 Hz. Considering the operation safety, we set the classification accuracy of a model over 90.0% as the most important mandatory for the telepresence control of the humanoid robot. The open-loop experiments demonstrated that the SSVEP model with at most four stimulus targets achieved the average accurate rate about 90%, whereas the P300 model with the six or more stimulus targets under five repetitions per trial was able to achieve the accurate rates over 90.0%. Therefore, the four SSVEP stimuli were used to control four types of robot behavior; while the six P300 stimuli were chosen to control six types of robot behavior. Both of the 4-class SSVEP and 6-class P300 models achieved the average success rates of 90.3% and 91.3%, the average response times of 3.65 s and 6.6 s, and the average information transfer rates (ITR) of 24.7 bits/min 18.8 bits/min, respectively. The closed-loop experiments addressed the telepresence control of the robot; the objective was to cause the robot to walk along a white lane marked in an office environment using live video feedback. Comparative studies reveal that the SSVEP model yielded faster response to the subject’s mental activity with less reliance on channel selection, whereas the P300 model was found to be suitable for more classifiable targets and required less training. To conclude, we discuss the existing SSVEP and P300 models for the control of humanoid robots, including the models proposed in this paper. PMID:26562524
Output Feedback Adaptive Control of Non-Minimum Phase Systems Using Optimal Control Modification
NASA Technical Reports Server (NTRS)
Nguyen, Nhan; Hashemi, Kelley E.; Yucelen, Tansel; Arabi, Ehsan
2018-01-01
This paper describes output feedback adaptive control approaches for non-minimum phase SISO systems with relative degree 1 and non-strictly positive real (SPR) MIMO systems with uniform relative degree 1 using the optimal control modification method. It is well-known that the standard model-reference adaptive control (MRAC) cannot be used to control non-SPR plants to track an ideal SPR reference model. Due to the ideal property of asymptotic tracking, MRAC attempts an unstable pole-zero cancellation which results in unbounded signals for non-minimum phase SISO systems. The optimal control modification can be used to prevent the unstable pole-zero cancellation which results in a stable adaptation of non-minimum phase SISO systems. However, the tracking performance using this approach could suffer if the unstable zero is located far away from the imaginary axis. The tracking performance can be recovered by using an observer-based output feedback adaptive control approach which uses a Luenberger observer design to estimate the state information of the plant. Instead of explicitly specifying an ideal SPR reference model, the reference model is established from the linear quadratic optimal control to account for the non-minimum phase behavior of the plant. With this non-minimum phase reference model, the observer-based output feedback adaptive control can maintain stability as well as tracking performance. However, in the presence of the mismatch between the SPR reference model and the non-minimum phase plant, the standard MRAC results in unbounded signals, whereas a stable adaptation can be achieved with the optimal control modification. An application of output feedback adaptive control for a flexible wing aircraft illustrates the approaches.
GOES-R active vibration damping controller design, implementation, and on-orbit performance
NASA Astrophysics Data System (ADS)
Clapp, Brian R.; Weigl, Harald J.; Goodzeit, Neil E.; Carter, Delano R.; Rood, Timothy J.
2018-01-01
GOES-R series spacecraft feature a number of flexible appendages with modal frequencies below 3.0 Hz which, if excited by spacecraft disturbances, can be sources of undesirable jitter perturbing spacecraft pointing. To meet GOES-R pointing stability requirements, the spacecraft flight software implements an Active Vibration Damping (AVD) rate control law which acts in parallel with the nadir point attitude control law. The AVD controller commands spacecraft reaction wheel actuators based upon Inertial Measurement Unit (IMU) inputs to provide additional damping for spacecraft structural modes below 3.0 Hz which vary with solar wing angle. A GOES-R spacecraft dynamics and attitude control system identified model is constructed from pseudo-random reaction wheel torque commands and IMU angular rate response measurements occurring over a single orbit during spacecraft post-deployment activities. The identified Fourier model is computed on the ground, uplinked to the spacecraft flight computer, and the AVD controller filter coefficients are periodically computed on-board from the Fourier model. Consequently, the AVD controller formulation is based not upon pre-launch simulation model estimates but upon on-orbit nadir point attitude control and time-varying spacecraft dynamics. GOES-R high-fidelity time domain simulation results herein demonstrate the accuracy of the AVD identified Fourier model relative to the pre-launch spacecraft dynamics and control truth model. The AVD controller on-board the GOES-16 spacecraft achieves more than a ten-fold increase in structural mode damping for the fundamental solar wing mode while maintaining controller stability margins and ensuring that the nadir point attitude control bandwidth does not fall below 0.02 Hz. On-orbit GOES-16 spacecraft appendage modal frequencies and damping ratios are quantified based upon the AVD system identification, and the increase in modal damping provided by the AVD controller for each structural mode is presented. The GOES-16 spacecraft AVD controller frequency domain stability margins and nadir point attitude control bandwidth are presented along with on-orbit time domain disturbance response performance.
GOES-R Active Vibration Damping Controller Design, Implementation, and On-Orbit Performance
NASA Technical Reports Server (NTRS)
Clapp, Brian R.; Weigl, Harald J.; Goodzeit, Neil E.; Carter, Delano R.; Rood, Timothy J.
2017-01-01
GOES-R series spacecraft feature a number of flexible appendages with modal frequencies below 3.0 Hz which, if excited by spacecraft disturbances, can be sources of undesirable jitter perturbing spacecraft pointing. In order to meet GOES-R pointing stability requirements, the spacecraft flight software implements an Active Vibration Damping (AVD) rate control law which acts in parallel with the nadir point attitude control law. The AVD controller commands spacecraft reaction wheel actuators based upon Inertial Measurement Unit (IMU) inputs to provide additional damping for spacecraft structural modes below 3.0 Hz which vary with solar wing angle. A GOES-R spacecraft dynamics and attitude control system identified model is constructed from pseudo-random reaction wheel torque commands and IMU angular rate response measurements occurring over a single orbit during spacecraft post-deployment activities. The identified Fourier model is computed on the ground, uplinked to the spacecraft flight computer, and the AVD controller filter coefficients are periodically computed on-board from the Fourier model. Consequently, the AVD controller formulation is based not upon pre-launch simulation model estimates but upon on-orbit nadir point attitude control and time-varying spacecraft dynamics. GOES-R high-fidelity time domain simulation results herein demonstrate the accuracy of the AVD identified Fourier model relative to the pre-launch spacecraft dynamics and control truth model. The AVD controller on-board the GOES-16 spacecraft achieves more than a ten-fold increase in structural mode damping of the fundamental solar wing mode while maintaining controller stability margins and ensuring that the nadir point attitude control bandwidth does not fall below 0.02 Hz. On-orbit GOES-16 spacecraft appendage modal frequencies and damping ratios are quantified based upon the AVD system identification, and the increase in modal damping provided by the AVD controller for each structural mode is presented. The GOES-16 spacecraft AVD controller frequency domain stability margins and nadir point attitude control bandwidth are presented along with on-orbit time domain disturbance response performance.
Outlier detection in contamination control
NASA Astrophysics Data System (ADS)
Weintraub, Jeffrey; Warrick, Scott
2018-03-01
A machine-learning model is presented that effectively partitions historical process data into outlier and inlier subpopulations. This is necessary in order to avoid using outlier data to build a model for detecting process instability. Exact control limits are given without recourse to approximations and the error characteristics of the control model are derived. A worked example for contamination control is presented along with the machine learning algorithm used and all the programming statements needed for implementation.
Research of MPPT for photovoltaic generation based on two-dimensional cloud model
NASA Astrophysics Data System (ADS)
Liu, Shuping; Fan, Wei
2013-03-01
The cloud model is a mathematical representation to fuzziness and randomness in linguistic concepts. It represents a qualitative concept with expected value Ex, entropy En and hyper entropy He, and integrates the fuzziness and randomness of a linguistic concept in a unified way. This model is a new method for transformation between qualitative and quantitative in the knowledge. This paper is introduced MPPT (maximum power point tracking, MPPT) controller based two- dimensional cloud model through analysis of auto-optimization MPPT control of photovoltaic power system and combining theory of cloud model. Simulation result shows that the cloud controller is simple and easy, directly perceived through the senses, and has strong robustness, better control performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Annoni, Jennifer; Gebraad, Pieter M. O.; Scholbrock, Andrew K.
2015-08-14
Wind turbines are typically operated to maximize their performance without considering the impact of wake effects on nearby turbines. Wind plant control concepts aim to increase overall wind plant performance by coordinating the operation of the turbines. This paper focuses on axial-induction-based wind plant control techniques, in which the generator torque or blade pitch degrees of freedom of the wind turbines are adjusted. The paper addresses discrepancies between a high-order wind plant model and an engineering wind plant model. Changes in the engineering model are proposed to better capture the effects of axial-induction-based control shown in the high-order model.
NASA Astrophysics Data System (ADS)
Lu, Xiaojun; Liu, Changli; Chen, Lei
2018-04-01
In this paper, a redundant Piezo-driven stage having 3RRR compliant mechanism is introduced, we propose the master-slave control with trajectory planning (MSCTP) strategy and Bouc-Wen model to improve its micro-motion tracking performance. The advantage of the proposed controller lies in that its implementation only requires a simple control strategy without the complexity of modeling to avoid the master PEA's tracking error. The dynamic model of slave PEA system with Bouc-Wen hysteresis is established and identified via particle swarm optimization (PSO) approach. The Piezo-driven stage with operating period T=1s and 2s is implemented to track a prescribed circle. The simulation results show that MSCTP with Bouc-Wen model reduces the trajectory tracking errors to the range of the accuracy of our available measurement.