Soil and Nutrient Loss Following Site Preparation Burning
J.P. Field; E.A. Carter
2000-01-01
Sediment loss and nutrient cpncentrations in runoff were evaluated to determine the effects of site preparation burning on a recently harvested loblolly pine (Pinus taeda L.) site in east Texas. Sediment and nutrient losses prior to treatment were approximately the same from control plots and pretreatment burn plots. Nutrient analysis of runoff...
Soil and nutrient loss following site preparation burning
J.P. Field; K.W. Farrish; E.A. Carter
2000-01-01
Sediment loss and nutrient cpncentrations in runoff were evaluated to determine the effects of site preparation burning on a recently harvested loblolly pine (Pinur taeda L.) site in east Texas. Sediment and nutrient losses prior to treatment were approximately the same from control plots and pretreatment burn plots. Nutrient analysis of runoff...
Soil an-d nutrient loss following site preparation burning
E.A. Carter; J.P. Field; K.W. Farrish
2000-01-01
Sediment loss and nutrient cpncentrations in runoff were evaluated to determine the effects of site preparation burning on a recently harvested loblolly pine (Pinur taeda L.) site in east Texas. Sediment and nutrient losses prior to treatment were approximately the same from control plots and pretreatment burn plots. Nutrient analysis of runoff samples indicated that...
Herbivores and nutrients control grassland plant diversity via light limitation
Borer, Elizabeth T.; Seabloom, Eric W.; Gruner, Daniel S.; Harpole, W. Stanley; Hillebrand, Helmut; Lind, Eric M.; Alder, Peter B.; Alberti, Juan; Anderson, T. Michael; Bakker, Jonathan D.; Biederman, Lori; Blumenthal, Dana; Brown, Cynthia S.; Brudvig, Lars A.; Buckley, Yvonne M.; Cadotte, Marc; Chu, Cheng-Jin; Cleland, Elsa E.; Crawley, Michael J.; Daleo, Pedro; Damschen, Ellen Ingman; Davies, Kendi F.; DeCrappeo, Nicole M.; Du, Guozhen; Firn, Jennifer; Hautier, Yann; Heckman, Robert W.; Hector, Andy; HilleRisLambers, Janneke; Iribarne, Oscar; Klein, Julia A.; Knops, Johannes M.H.; La Pierre, Kimberly J.; Leakey, Andrew D.B.; Li, Wei; MacDougall, Andrew S.; McCulley, Rebecca L.; Melbourne, Brett A.; Mitchell, Charles E.; Moore, Joslin L.; Mortensen, Brent; O'Halloran, Lydia R.; Orrock, John L.; Pascual, Jesús; Prober, Suzanne M.; Pyke, David A.; Risch, Anita C.; Schuetz, Martin; Smith, Melinda D.; Stevens, Carly J.; Sullivan, Lauren L.; Williams, Ryan J.; Wragg, Peter D.; Wright, Justin P.; Yang, Louie H.
2014-01-01
Human alterations to nutrient cycles and herbivore communities are affecting global biodiversity dramatically. Ecological theory predicts these changes should be strongly counteractive: nutrient addition drives plant species loss through intensified competition for light, whereas herbivores prevent competitive exclusion by increasing ground-level light, particularly in productive systems. Here we use experimental data spanning a globally relevant range of conditions to test the hypothesis that herbaceous plant species losses caused by eutrophication may be offset by increased light availability due to herbivory. This experiment, replicated in 40 grasslands on 6 continents, demonstrates that nutrients and herbivores can serve as counteracting forces to control local plant diversity through light limitation, independent of site productivity, soil nitrogen, herbivore type and climate. Nutrient addition consistently reduced local diversity through light limitation, and herbivory rescued diversity at sites where it alleviated light limitation. Thus, species loss from anthropogenic eutrophication can be ameliorated in grasslands where herbivory increases ground-level light.
Herbivores and nutrients control grassland plant diversity via light limitation.
Borer, Elizabeth T; Seabloom, Eric W; Gruner, Daniel S; Harpole, W Stanley; Hillebrand, Helmut; Lind, Eric M; Adler, Peter B; Alberti, Juan; Anderson, T Michael; Bakker, Jonathan D; Biederman, Lori; Blumenthal, Dana; Brown, Cynthia S; Brudvig, Lars A; Buckley, Yvonne M; Cadotte, Marc; Chu, Chengjin; Cleland, Elsa E; Crawley, Michael J; Daleo, Pedro; Damschen, Ellen I; Davies, Kendi F; DeCrappeo, Nicole M; Du, Guozhen; Firn, Jennifer; Hautier, Yann; Heckman, Robert W; Hector, Andy; HilleRisLambers, Janneke; Iribarne, Oscar; Klein, Julia A; Knops, Johannes M H; La Pierre, Kimberly J; Leakey, Andrew D B; Li, Wei; MacDougall, Andrew S; McCulley, Rebecca L; Melbourne, Brett A; Mitchell, Charles E; Moore, Joslin L; Mortensen, Brent; O'Halloran, Lydia R; Orrock, John L; Pascual, Jesús; Prober, Suzanne M; Pyke, David A; Risch, Anita C; Schuetz, Martin; Smith, Melinda D; Stevens, Carly J; Sullivan, Lauren L; Williams, Ryan J; Wragg, Peter D; Wright, Justin P; Yang, Louie H
2014-04-24
Human alterations to nutrient cycles and herbivore communities are affecting global biodiversity dramatically. Ecological theory predicts these changes should be strongly counteractive: nutrient addition drives plant species loss through intensified competition for light, whereas herbivores prevent competitive exclusion by increasing ground-level light, particularly in productive systems. Here we use experimental data spanning a globally relevant range of conditions to test the hypothesis that herbaceous plant species losses caused by eutrophication may be offset by increased light availability due to herbivory. This experiment, replicated in 40 grasslands on 6 continents, demonstrates that nutrients and herbivores can serve as counteracting forces to control local plant diversity through light limitation, independent of site productivity, soil nitrogen, herbivore type and climate. Nutrient addition consistently reduced local diversity through light limitation, and herbivory rescued diversity at sites where it alleviated light limitation. Thus, species loss from anthropogenic eutrophication can be ameliorated in grasslands where herbivory increases ground-level light.
Estimation of postfire nutrient loss in the Florida everglades.
Qian, Y; Miao, S L; Gu, B; Li, Y C
2009-01-01
Postfire nutrient release into ecosystem via plant ash is critical to the understanding of fire impacts on the environment. Factors determining a postfire nutrient budget are prefire nutrient content in the combustible biomass, burn temperature, and the amount of combustible biomass. Our objective was to quantitatively describe the relationships between nutrient losses (or concentrations in ash) and burning temperature in laboratory controlled combustion and to further predict nutrient losses in field fire by applying predictive models established based on laboratory data. The percentage losses of total nitrogen (TN), total carbon (TC), and material mass showed a significant linear correlation with a slope close to 1, indicating that TN or TC loss occurred predominantly through volatilization during combustion. Data obtained in laboratory experiments suggest that the losses of TN, TC, as well as the ratio of ash total phosphorus (TP) concentration to leaf TP concentration have strong relationships with burning temperature and these relationships can be quantitatively described by nonlinear equations. The potential use of these nonlinear models relating nutrient loss (or concentration) to temperature in predicting nutrient concentrations in field ash appear to be promising. During a prescribed fire in the northern Everglades, 73.1% of TP was estimated to be retained in ash while 26.9% was lost to the atmosphere, agreeing well with the distribution of TP during previously reported wild fires. The use of predictive models would greatly reduce the cost associated with measuring field ash nutrient concentrations.
Plant litter decomposition and nutrient release in peatlands
NASA Astrophysics Data System (ADS)
Bragazza, Luca; Buttler, Alexandre; Siegenthaler, Andy; Mitchell, Edward A. D.
Decomposition of plant litter is a crucial process in controlling the carbon balance of peatlands. Indeed, as long as the rate of litter decomposition remains lower than the rate of above- and belowground litter production, a net accumulation of peat and, thus, carbon will take place. In addition, decomposition controls the release of important nutrients such as nitrogen, phosphorus, and potassium, the availability of which affects the structure and the functioning of plant communities. This chapter describes the role of the main drivers in affecting mass loss and nutrient release from recently deposited plant litter. In particular, the rate of mass loss of Sphagnum litter and vascular plant litter is reviewed in relation to regional climatic conditions, aerobic/anaerobic conditions, and litter chemistry. The rate of nutrient release is discussed in relation to the rate of mass loss and associated litter chemistry by means of a specific case study.
Minimising losses to predation during microalgae cultivation.
Flynn, Kevin J; Kenny, Philip; Mitra, Aditee
2017-01-01
We explore approaches to minimise impacts of zooplanktonic pests upon commercial microalgal crops using system dynamics models to describe algal growth controlled by light and nutrient availability and zooplankton growth controlled by crop abundance and nutritional quality. Losses of microalgal crops are minimised when their growth is fastest and, in contrast, also when growing slowly under conditions of nutrient exhaustion. In many culture systems, however, dwindling light availability due to self-shading in dense suspensions favours slow growth under nutrient sufficiency. Such a situation improves microalgal quality as prey, enhancing zooplankton growth, and leads to rapid crop collapse. Timing of pest entry is important; crop losses are least likely in established, nutrient-exhausted microalgal communities grown for high C-content (e.g. for biofuels). A potentially useful approach is to promote a low level of P-stress that does not adversely affect microalgal growth but which produces a crop that is suboptimal for zooplankton growth.
Herbivores and nutrients control grassland plant diversity via light limitation
USDA-ARS?s Scientific Manuscript database
Human alterations to nutrient cycles and herbivore communities are dramatically altering global biodiversity. Theory predicts these changes to be strongly counteractive: nutrient addition drives plant species loss through intensified competition for light, whereas herbivores prevent competitive excl...
Post-fire soil nutrient redistribution in northern Chihuahuan Desert
NASA Astrophysics Data System (ADS)
Wang, G.; Li, J. J.; Ravi, S.; Sankey, J. B.; Duke, D.; Gonzales, H. B.; Van Pelt, S.
2016-12-01
The desert grassland in the southwestern US has undergone dramatic land degradation with woody shrub encroachment over the last 150 years. Wind erosion and periodic fires are major drivers of vegetation dynamics in these ecosystems. Due to climate change and anthropogenic disturbances, many drylands are undergoing changes in fire regimes, which can largely alter the nutrient loss rate as well as the soil resource heterogeneity. In this study, we used manipulative field experiments, laboratory and geostatistical analyses to investigate the distribution of fertile islands, nutrient loss rate and spatial variation. Replicated burned and control experimental plots were set up in a desert grassland in northern Chihuahuan Desert in March 2016. Windblown sediments were monitored by multiple MWAC sediment collectors on each plot. Surface soil samples, with their locations accurately recorded (i.e., under shrub, under grass, and bare interspace) were collected twice per year in spring and again in summer after the experimental setup. Our preliminary results show that the spatial heterogeneity of soil C and N in the burned plots has changed notably compared to the control plots. Our results further demonstrated that areas with burned shrubs is most vulnerable to wind erosion, therefore the soil nutrient loss is most significant, almost five times of the nutrient loss rate of bare areas. Interspace bare areas is in the lowest micro-land and some of the surface has caliche, which makes the surface resistant to wind erosion. And areas with burned grass receive the lightest wind erosion and nutrient loss, around one third of the erosion on bare areas, because burned grasses still cover the surface and the dead bodies can eliminate wind erosion to a large extent. Hence, periodic fire in desert grassland favors the evenness distribution of soil nutrients and can retard the shrub encroachment process.
Liu, Juxiu; Fang, Xiong; Deng, Qi; Han, Tianfeng; Huang, Wenjuan; Li, Yiyong
2015-01-01
As atmospheric CO2 concentration increases, many experiments have been carried out to study effects of CO2 enrichment on litter decomposition and nutrient release. However, the result is still uncertain. Meanwhile, the impact of CO2 enrichment on nutrients other than N and P are far less studied. Using open-top chambers, we examined effects of elevated CO2 and N addition on leaf litter decomposition and nutrient release in subtropical model forest ecosystems. We found that both elevated CO2 and N addition increased nutrient (C, N, P, K, Ca, Mg and Zn) loss from the decomposing litter. The N, P, Ca and Zn loss was more than tripled in the chambers exposed to both elevated CO2 and N addition than those in the control chambers after 21 months of treatment. The stimulation of nutrient loss under elevated CO2 was associated with the increased soil moisture, the higher leaf litter quality and the greater soil acidity. Accelerated nutrient release under N addition was related to the higher leaf litter quality, the increased soil microbial biomass and the greater soil acidity. Our results imply that elevated CO2 and N addition will increase nutrient cycling in subtropical China under the future global change. PMID:25608664
German, Alexander J; Holden, Shelley L; Serisier, Samuel; Queau, Yann; Biourge, Vincent
2015-10-07
Canine obesity is usually treated with dietary energy restriction, but data are limited regarding nutritional adequacy. The aim of the current study was to compare intake of essential nutrients with National Research Council recommendations in obese dogs during weight management with a purpose-formulated diet. Twenty-seven dogs were included in this non-randomised retrospective observational cohort study. All were determined to be systemically well, and without significant abnormalities based upon physical examination and clinicopathological assessments. The dogs underwent a controlled weight loss protocol of at least 182 days' duration using a high protein high fibre weight loss diet. Median, maximum, and minimum daily intakes of all essential nutrients were compared against NRC 2006 recommended allowances (RA) for adult dogs. Median weight loss was 28 % (16-40 %), mean daily energy intake was 61 kcal/kg(0.75) (44-74 kcal/kg(0.75)), and no clinical signs of nutrient deficiency were observed in any dog. Based upon the average nutrient content of the diet, daily intake of the majority of essential nutrients was greater than their NRC 2006 recommended allowance (RA per kg body weight(0.75)), except for selenium, choline, methionine/cysteine, tryptophan, magnesium, and potassium. However, apart from choline (2/27 dogs) and methionine/cysteine (2/27 dogs), all essential nutrients remained above NRC minimum requirements (MR) throughout the trial. When fed the diet used in the current study, daily intakes of most essential nutrients meet both their NRC 2006 RA and MR in obese dogs during weight loss. In light of absence of clinical signs of nutrient deficiency, it is unclear what significance intakes less that NRC cut-offs for some nutrients have (especially selenium and choline), and further studies are recommended.
Xu, Ran; Obbard, Jeffrey P
2003-01-01
Nutrient amendment to oil-contaminated beach sediments is a critical factor for the enhancement of indigenous microbial activity and biodegradation of petroleum hydrocarbons in the intertidal marine environment. In this study, we investigated the stimulatory effect of the slow-release fertilizers Osmocote (Os; Scotts, Marysville, OH) and Inipol EAP-22 (Ip; ATOFINA Chemicals, Philadelphia, PA) combined with inorganic nutrients on the bioremediation of oil-spiked beach sediments using an open irrigation system with artificial seawater over a 45-d period. Osmocote is comprised of a semipermeable membrane surrounding water-soluble inorganic N, P, and K. Inipol, which contains organic N and P, has been used for oil cleanup on beach substrate. Nutrient concentrations and microbial activity in sediments were monitored by analyzing sediment leachates and metabolic dehydrogenase activity of the microbial biomass, respectively. Loss of aliphatics (n-C12 to n-C33, pristane, and phytane) was significantly greater (total loss between 95 and 97%) in oil-spiked sediments treated with Os alone or in combination with other nutrient amendments, compared with an unamended oil-spiked control (26% loss) or sediments treated with the other nutrient amendments (28-65% loss). A combination of Os and soluble nutrients (SN) was favorable for the rapid metabolic stimulation of the indigenous microbial biomass, the sustained release of nutrients, and the enhanced biodegradation of petroleum hydrocarbons in leached, oil-contaminated sediments.
Baptista, Isaurinda; Ritsema, Coen; Geissen, Violette
2015-01-01
Soil erosion, runoff and related nutrient losses are a big risk for soil fertility in Cabo Verde drylands. In 2012, field trials were conducted in two agro-ecological zones to evaluate the effects of selected techniques of soil-water management combined with organic amendments (T1: compost/manure + soil surfactant; T2: compost/animal or green manure + pigeon-pea hedges + soil surfactant; T3: compost/animal or green manure + mulch + pigeon-pea hedges) on nitrogen (N) and phosphorus (P) losses in eroded soil and runoff and on crop yields. Three treatments and one control (traditional practice) were tested in field plots at three sites with a local maize variety and two types of beans. Runoff and eroded soil were collected after each erosive rain, quantified, and analysed for NO3-N and PO4-P concentrations. In all treatments runoff had higher concentrations of NO3-N (2.20-4.83 mg L-1) than of PO4-P (0.02-0.07 mg L-1), and the eroded soil had higher content of PO4-P (5.27-18.8 mg g-1) than of NO3-N (1.30-8.51 mg g-1). The control had significantly higher losses of both NO3-N (5.4, 4.4 and 19 kg ha-1) and PO4-P (0.2, 0.1 and 0.4 kg ha-1) than the other treatments. T3 reduced soil loss, runoff and nutrient losses to nearly a 100% while T1 and T2 reduced those losses from 43 to 88%. The losses of NO3-N and PO4-P were highly correlated with the amounts of runoff and eroded soil. Nutrient losses from the applied amendments were low (5.7% maximum), but the losses in the control could indicate long-term nutrient depletion in the soil (19 and 0.4 kg ha-1 of NO3-N and PO4-P, respectively). T1-T3 did not consistently increase crop yield or biomass in all three sites, but T1 increased both crop yield and biomass. We conclude that T3 (combining crop-residue mulch with organic amendment and runoff hedges) is the best treatment for steep slope areas but, the pigeon-pea hedges need to be managed for higher maize yield. T1 (combining organic amendment with soil surfactant) could be a better choice for flatter areas with deeper soils. PMID:26230549
Baptista, Isaurinda; Ritsema, Coen; Geissen, Violette
2015-01-01
Soil erosion, runoff and related nutrient losses are a big risk for soil fertility in Cabo Verde drylands. In 2012, field trials were conducted in two agro-ecological zones to evaluate the effects of selected techniques of soil-water management combined with organic amendments (T1: compost/manure + soil surfactant; T2: compost/animal or green manure + pigeon-pea hedges + soil surfactant; T3: compost/animal or green manure + mulch + pigeon-pea hedges) on nitrogen (N) and phosphorus (P) losses in eroded soil and runoff and on crop yields. Three treatments and one control (traditional practice) were tested in field plots at three sites with a local maize variety and two types of beans. Runoff and eroded soil were collected after each erosive rain, quantified, and analysed for NO3-N and PO4-P concentrations. In all treatments runoff had higher concentrations of NO3-N (2.20-4.83 mg L-1) than of PO4-P (0.02-0.07 mg L-1), and the eroded soil had higher content of PO4-P (5.27-18.8 mg g-1) than of NO3-N (1.30-8.51 mg g-1). The control had significantly higher losses of both NO3-N (5.4, 4.4 and 19 kg ha-1) and PO4-P (0.2, 0.1 and 0.4 kg ha-1) than the other treatments. T3 reduced soil loss, runoff and nutrient losses to nearly a 100% while T1 and T2 reduced those losses from 43 to 88%. The losses of NO3-N and PO4-P were highly correlated with the amounts of runoff and eroded soil. Nutrient losses from the applied amendments were low (5.7% maximum), but the losses in the control could indicate long-term nutrient depletion in the soil (19 and 0.4 kg ha-1 of NO3-N and PO4-P, respectively). T1-T3 did not consistently increase crop yield or biomass in all three sites, but T1 increased both crop yield and biomass. We conclude that T3 (combining crop-residue mulch with organic amendment and runoff hedges) is the best treatment for steep slope areas but, the pigeon-pea hedges need to be managed for higher maize yield. T1 (combining organic amendment with soil surfactant) could be a better choice for flatter areas with deeper soils.
R. Gordon; James H. Miller; C. Brewer
1981-01-01
Site disturbance, vegetation control, and nutrient loss were assessed following complete biomass harvesting of a pine plantation by the Nicholson-Koch mobile chipper. Thirty-two percent of the soil area was significantly compacted to a 10 cm depth. Litter zone material showed a two-fold increase due to chips lost during harvest. Herbicide treatments (Tordon 10K and...
Jiang, Yueyang; Rastetter, Edward B; Shaver, Gaius R; Rocha, Adrian V; Zhuang, Qianlai; Kwiatkowski, Bonnie L
2017-01-01
To investigate the underlying mechanisms that control long-term recovery of tundra carbon (C) and nutrients after fire, we employed the Multiple Element Limitation (MEL) model to simulate 200-yr post-fire changes in the biogeochemistry of three sites along a burn severity gradient in response to increases in air temperature, CO 2 concentration, nitrogen (N) deposition, and phosphorus (P) weathering rates. The simulations were conducted for severely burned, moderately burned, and unburned arctic tundra. Our simulations indicated that recovery of C balance after fire was mainly determined by the internal redistribution of nutrients among ecosystem components (controlled by air temperature), rather than the supply of nutrients from external sources (e.g., nitrogen deposition and fixation, phosphorus weathering). Increases in air temperature and atmospheric CO 2 concentration resulted in (1) a net transfer of nutrient from soil organic matter to vegetation and (2) higher C : nutrient ratios in vegetation and soil organic matter. These changes led to gains in vegetation biomass C but net losses in soil organic C stocks. Under a warming climate, nutrients lost in wildfire were difficult to recover because the warming-induced acceleration in nutrient cycles caused further net nutrient loss from the system through leaching. In both burned and unburned tundra, the warming-caused acceleration in nutrient cycles and increases in ecosystem C stocks were eventually constrained by increases in soil C : nutrient ratios, which increased microbial retention of plant-available nutrients in the soil. Accelerated nutrient turnover, loss of C, and increasing soil temperatures will likely result in vegetation changes, which further regulate the long-term biogeochemical succession. Our analysis should help in the assessment of tundra C budgets and of the recovery of biogeochemical function following fire, which is in turn necessary for the maintenance of wildlife habitat and tundra vegetation. © 2016 by the Ecological Society of America.
Marshall, Lynne; Rideout, Elizabeth J; Grewal, Savraj S
2012-01-01
The nutrient/target-of-rapamycin (TOR) pathway has emerged as a key regulator of tissue and organismal growth in metazoans. The signalling components of the nutrient/TOR pathway are well defined; however, the downstream effectors are less understood. Here, we show that the control of RNA polymerase (Pol) III-dependent transcription is an essential target of TOR in Drosophila. We find that TOR activity controls Pol III in growing larvae via inhibition of the repressor Maf1 and, in part, via the transcription factor Drosophila Myc (dMyc). Moreover, we show that loss of the Pol III factor, Brf, leads to reduced tissue and organismal growth and prevents TOR-induced cellular growth. TOR activity in the larval fat body, a tissue equivalent to vertebrate fat or liver, couples nutrition to insulin release from the brain. Accordingly, we find that fat-specific loss of Brf phenocopies nutrient limitation and TOR inhibition, leading to decreased systemic insulin signalling and reduced organismal growth. Thus, stimulation of Pol III is a key downstream effector of TOR in the control of cellular and systemic growth. PMID:22367393
Felix Ponder; John M. Kabrick; Mary Beth Adams; Deborah S. Page-Dumroese; Marty F. Jurgensen
2017-01-01
Mass loss and nutrient concentrations of northern red oak (Quercus rubra) and white oak (Q. alba) wood stakes were measured 30 months after their burial in the upper 10 cm of soil in a regenerating forest after harvesting and soil disturbance. Disturbance treatments were two levels of organic matter (OM) removal (only...
Watts, D B; Way, T R; Torbert, H A
2011-01-01
Environmental pressure to reduce nutrient losses from agricultural fields has increased in recent years. To abate this nutrient loss to the environment, better management practices and new technologies need to be developed. Thus, research was conducted to evaluate if subsurface banding poultry litter (PL) would reduce nitrogen (N) and phosphorus (P) loss in surface water runoff using a four-row prototype implement. Rainfall simulations were conducted to create a 40-min runoff event in an established bermudagrass (Cynodon dactylon L.) pasture on soil types common to the Coastal Plain and Piedmont regions. The Coastal Plain soil type was a Marvyn loamy sand (fine-loamy, kaolinitic, thermic Typic Kanhapludults) and the Piedmont soil type was a Hard Labor loamy sand (fine, kaolinitic, thermic Oxyaquic Kanhapludults). Treatments consisted of surface- and subsurface-applied PL at a rate of 9 Mg ha(-1), surface broadcast-applied commercial fertilizer (CF; urea and triple superphosphate blend) at the equivalent N (330 kg N ha(-1)) and P (315 kg N ha(-1)) content of PL, and a nonfertilized control. The greatest loss for inorganic N, total N, dissolved reactive P (DRP), and total P occurred with the surface broadcast treatments, with CF contributing to the greatest loss. Nutrient losses from the subsurface banded treatment reduced N and P in surface water runoff to levels of the control. Subsurface banding of PL reduced concentrations of inorganic N 91%, total N 90%, DRP 86%, and total P 86% in runoff water compared with surface broadcasted PL. These results show that subsurface band-applied PL can greatly reduce the impact of N and P loss to the environment compared with conventional surface-applied PL and CF practices.
Competition for light causes plant biodiversity loss after eutrophication.
Hautier, Yann; Niklaus, Pascal A; Hector, Andy
2009-05-01
Human activities have increased the availability of nutrients in terrestrial and aquatic ecosystems. In grasslands, this eutrophication causes loss of plant species diversity, but the mechanism of this loss has been difficult to determine. Using experimental grassland plant communities, we found that addition of light to the grassland understory prevented the loss of biodiversity caused by eutrophication. There was no detectable role for competition for soil resources in diversity loss. Thus, competition for light is a major mechanism of plant diversity loss after eutrophication and explains the particular threat of eutrophication to plant diversity. Our conclusions have implications for grassland management and conservation policy and underscore the need to control nutrient enrichment if plant diversity is to be preserved.
NASA Astrophysics Data System (ADS)
Williams, Mark R.; Livingston, Stanley J.; Penn, Chad J.; Smith, Douglas R.; King, Kevin W.; Huang, Chi-hua
2018-04-01
Understanding the processes controlling nutrient delivery in headwater agricultural watersheds is essential for predicting and mitigating eutrophication and harmful algal blooms in receiving surface waters. The objective of this study was to elucidate nutrient transport pathways and examine key components driving nutrient delivery processes during storm events in four nested agricultural watersheds (298-19,341 ha) in the western Lake Erie basin with poorly drained soils and an extensive artificial drainage network typical of the Midwestern U.S. Concentration-discharge hysteresis patterns of nitrate-nitrogen (NO3-N), dissolved reactive phosphorus (DRP), and particulate phosphorus (PP) occurring during 47 storm events over a 6 year period (2004-2009) were evaluated. An assessment of the factors producing nutrient hysteresis was completed following a factor analysis on a suite of measured environmental variables representing the fluvial and wider watershed conditions prior to, and during the monitored storm events. Results showed the artificial drainage network (i.e., surface tile inlets and subsurface tile drains) in these watersheds was the primary flow pathway for nutrient delivery to streams, but nutrient behavior and export during storm events was regulated by the flow paths to and the intensity of the drainage network, the availability of nutrients, and the relative contributions of upland and in-stream nutrient sources. Potential sources and flow pathways for transport varied among NO3-N, PP, and DRP with results underscoring the challenge of mitigating nutrient loss in these watersheds. Conservation practices addressing both nutrient management and hydrologic connectivity will likely be required to decrease nutrient loss in artificially drained landscapes.
NASA Astrophysics Data System (ADS)
Arhonditsis, G.; Giourga, C.; Loumou, A.; Koulouri, M.
2002-09-01
Three mathematical models, the runoff curve number equation, the universal soil loss equation, and the mass response functions, were evaluated for predicting nonpoint source nutrient loading from agricultural watersheds of the Mediterranean region. These methodologies were applied to a catchment, the gulf of Gera Basin, that is a typical terrestrial ecosystem of the islands of the Aegean archipelago. The calibration of the model parameters was based on data from experimental plots from which edge-of-field losses of sediment, water runoff, and nutrients were measured. Special emphasis was given to the transport of dissolved and solid-phase nutrients from their sources in the farmers' fields to the outlet of the watershed in order to estimate respective attenuation rates. It was found that nonpoint nutrient loading due to surface losses was high during winter, the contribution being between 50% and 80% of the total annual nutrient losses from the terrestrial ecosystem. The good fit between simulated and experimental data supports the view that these modeling procedures should be considered as reliable and effective methodological tools in Mediterranean areas for evaluating potential control measures, such as management practices for soil and water conservation and changes in land uses, aimed at diminishing soil loss and nutrient delivery to surface waters. Furthermore, the modifications of the general mathematical formulations and the experimental values of the model parameters provided by the study can be used in further application of these methodologies in watersheds with similar characteristics.
Lamba, Jasmeet; Srivastava, Puneet; Way, Thomas R; Sen, Sumit; Wood, C Wesley; Yoo, Kyung H
2013-09-01
Subsurface band application of poultry litter has been shown to reduce the transport of nutrients from fields in surface runoff compared with conventional surface broadcast application. Little research has been conducted to determine the effects of surface broadcast application and subsurface banding of litter on nutrients in leachate. Therefore, a field experiment was conducted to determine the effects of subsurface band application and surface broadcast application of poultry litter on nutrient losses in leachate. Zero-tension pan and passive capillary fiberglass wick lysimeters were installed in situ 50 cm beneath the soil surface of an established tall fescue ( Schreb.) pasture on a sandy loam soil. The treatments were surface broadcast and subsurface-banded poultry litter at 5 Mg ha and an unfertilized control. Results of the rainfall simulations showed that the concentrations of PO-P and total phosphorus (TP) in leachate were reduced by 96 and 37%, respectively, in subsurface-banded litter treatment compared with the surface-applied litter treatment. There was no significant difference in PO-P concentration between control and subsurface-banded litter treatment in leachate. The trend in the loading of nutrients in leachate was similar to the trend in concentration. Concentration and loading of the nutrients (TP, PO-P, NH-N, and NO-N) in runoff from the subsurface-banded treatment were significantly less than for the surface-applied treatment and were similar to those from control plots. These results show that, compared with conventional surface broadcast application of litter, subsurface band application of litter can greatly reduce loss of P in surface runoff and leachate. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Rocha Junior, Paulo Roberto da; Andrade, Felipe Vaz; Mendonça, Eduardo de Sá; Donagemma, Guilherme Kangussú; Fernandes, Raphael Bragança Alves; Bhattharai, Rabin; Kalita, Prasanta Kumar
2017-04-01
The objective of this study was to evaluate sediment, water and nutrient losses from different pasture managements in the Atlantic Rainforest biome. A field study was carried out in Alegre Espiríto Santo, Brazil, on a Xanthic Ferralsol cultivated with braquiaria (Brachiaria brizantha). The six pasture managements studied were: control (CON), chisel (CHI), fertilizer (FER), burned (BUR), plowing and harrowing (PH), and integrated crop-livestock (iCL). Runoff and sediment samples were collected and analyzed for calcium (Ca), magnesium (Mg), potassium (K), phosphorus (P) and organic carbon contents. Soil physical attributes and above and below biomass were also evaluated. The results indicated that higher water loss was observed for iCL (129.90mm) and CON (123.25mm) managements, and the sediment losses were higher for CON (10.24tha -1 ) and BUR (5.20tha -1 ) managements when compared to the other managements. Majority of the nutrients losses occurred in dissolved fraction (99% of Ca, 99% of Mg, 96% of K, and 65% of P), whereas a significant fraction of organic carbon (80%) loss occurred in a particulate form. Except for P, other nutrients (Ca, Mg and K) and organic carbon losses were higher in coarse sediment compared to fine sediment. The greater losses of sediment, organic carbon, and nutrients were observed for CON followed by BUR management (p<0.05). Our findings indicated that the traditional pasture management adopted in the Atlantic Rainforest needs to be rethought and burned management should be avoided. Based on the water, soil, and nutrient losses from various practices, to reduce pasture degradation, farmers should adopt edaphic practices by applying lime and fertilize to improve pasture growth and soil cover, and reducing soil erosion in the hilly Brazilian Atlantic Rainforest biome. Copyright © 2016. Published by Elsevier B.V.
Testing of The Harp Guidelines On A Small Watershed In Finland
NASA Astrophysics Data System (ADS)
Granlund, K.; Rekolainen, S.
TESTING of THE HARP GUIDELINES ON A SMALL WATERSHED IN FIN- LAND K. Granlund, S. Rekolainen Finnish Environment Institute, Research Department kirsti.granlund@vyh.fi Watersheds have emerged as environmental units for assessing, controlling and reduc- ing non-point-source pollution. Within the framework of the international conventions, such as OSPARCOM, HELCOM, and in the implementation of the EU Water Frame- work Directive, the criteria for model selection is of key importance. Harmonized Quantification and Reporting Procedures for Nutrients (HARP) aims at helping the implementation of OSPAR's (Convention for the Protection of the Marine Environ- ment of the North-East Atlantic) strategy in controlling eutrophication and reducing nutrient input to marine ecosystems by 50nitrogen and phosphorus losses from both point and nonpoint sources and help assess the effectiveness of the pollution reduction strategy. The HARP guidelines related respectively to the "Quantification of Nitrogen and Phosphorus Losses from Diffuse Anthropogenic Sources and Natural Background Losses" and to the "Quantification and Reporting of the Retention of Nitrogen and Phosphorus in River Catchments" were tested on a small, well instrumented agricul- tural watershed in Finland. The project was coordinated by the Environment Institute of the Joint Research Centre. Three types of methodologies for estimating nutrient losses to watercourses were eval- uated during the project. Simple methods based on regression equations or loading functions provide a quick method for estimating nutrient losses. Through these meth- ods the pollutant load can be related to parameters such as slope, soil type, land-use, management practices etc. Relevant nutrient loading functions for the study catch- ment were collected during the project. One mid-range model was applied to simulate the nitrogen cycle in a simplified manner in relation to climate, soil properties, land- use and management practices. Physically based models describe in detail the water and nutrient cycle within the watershed. ICECREAM and SWAT models were applied on the study watershed. ICECREAM is a management model based on CREAMS model for predicting field-scale runoff and erosion. The nitrogen and phosphorus sub- models are based on GLEAMS model. SWAT is a continuous time and spatially dis- tributed model, which includes hydrological, sediment and chemical processes in river 1 basins.The simple methods and the mid-range model for nitrogen proved to be fast and easy to apply, but due limited information on crop-specific loading functions and ni- trogen process rates (e.g. mineralisation in soil), only order-of-magnitude estimates for nutrient loads could be calculated. The ICECREAM model was used to estimate crop-specific nutrient losses from the agricultural area. The potential annual nutrient loads for the whole catchment were then calculated by including estimates for nutri- ent loads from other land-use classes (forested area and scattered settlement). Finally, calibration of the SWAT model was started to study in detail the effects of catchment characteristics on nutrient losses. The preliminary results of model testing are pre- sented and the suitability of different methodologies for estimating nutrient losses in Finnish catchments is discussed. 2
Strong hydrological control on nutrient cycling of subtropical rainforests
NASA Astrophysics Data System (ADS)
Lin, T. C.; Chang, C. T.; Huang, J. C.; Wang, L.; Lin, N. H.
2016-12-01
Forest nutrient cycling is strongly controlled by both biological and hydrological factors. However, based on a close examination of earlier reports, we highlight the role of hydrological control on nutrient cycling at a global scale and is more important at humid tropical and subtropical forests. we analyzed the nutrient budget of precipitation input and stream water output from 1994 to 2013 in a subtropical forest in Taiwan and conducted a data synthesis using results from 32 forests across the globe. The results revealed that monthly input and output of ions were positively correlated with water quantity, indicating hydrological control on nutrient cycling. Hydrological control is also evident from the greater ions export via stream water during the warm and wet growing season. The synthesis also illustrates that strong hydrological control leads to lower nitrogen retention and greater net loss of base cations in humid regions, particularly in the humid tropical and subtropical forests. Our result is of great significance in an era of global climate change because climate change could directly affect ecosystem nutrient cycling particularly in the tropics through changes in patterns of precipitation regime.
Fish farming enhances biomass and nutrient loss in Posidonia oceanica (L.) Delile
NASA Astrophysics Data System (ADS)
Apostolaki, Eugenia T.; Marbà, Núria; Holmer, Marianne; Karakassis, Ioannis
2009-02-01
Fish farming impact on the seasonal biomass, carbon and nutrient (nitrogen and phosphorus) balance of the endemic Mediterranean seagrass Posidonia oceanica was assessed in the Aegean Sea (Greece) in order to detect changes in magnitude and fate of seagrass production and nutrient incorporation with organic loading of the meadows. Phosphorus concentration in the leaves, rhizomes and roots was enhanced under the cages throughout the study. Standing biomass was diminished by 64% and carbon, nitrogen and phosphorus standing stock by 64%, 61% and 48%, respectively, under the cages in relation to those at the control. Seagrass production decreased by 68% and element (C, N, P) incorporation by 67%, 58% and 58%, respectively, under the cages. Leaf shedding was reduced by 81% and loss of elements (C, N, and P) through shedding by 82%, 74% and 72%, respectively, under the cages. Leaf and element (C, N, P) residual loss rate, accounting for grazing and mechanical breakage of leaves, was decreased by 79%, 85%, 100% and 96%, respectively, at the control station. At the control station, 13.98 g C m -2 yr -1, 1.91 g N m -2 yr -1 and 0.05 g P m -2 yr -1 were produced in excess of export and loss. In contrast, under the cages 12.69 g C m -2 yr -1, 0.31 g N m -2 yr -1 and 0.04 g P m -2 yr -1 were released from the meadow. Organic loading due to fish farm discharges transformed the seagrass meadow under the cages from a typical sink to a source of organic carbon and nutrients.
Integrated watershed management for saturation excess generated runoff, erosion and nutrient control
USDA-ARS?s Scientific Manuscript database
Understanding the basic hydrology and erosion is vital for effective management and utilization of water resources and soil conservation planning. An important question for judging effectiveness of soil and water conservation practices is whether runoff erosion and nutrient loss is affected by infil...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borer, Elizabeth T.; et al, et al
Human alterations to nutrient cycles1,2 and herbivore communities3–7 are affecting global biodiversity dramatically2. Ecological theory predicts these changes should be strongly counteractive: nutrient addition drives plant species loss through intensified competition for light, whereas herbivores prevent competitive exclusion by increasing ground-level light, particularly in productive systems8,9. Here we use experimental data spanning a globally relevant range of conditions to test the hypothesis that herbaceous plant species losses caused by eutrophication may be offset by increased light availability due to herbivory. This experiment, replicated in 40 grasslands on 6 continents, demonstrates that nutrients and herbivores can serve as counteracting forces tomore » control local plant diversity through light limitation, independent of site productivity, soil nitrogen, herbivore type and climate. Nutrient addition consistently reduced local diversity through light limitation, and herbivory rescued diversity at sites where it alleviated light limitation. Thus, species loss from anthropogenic eutrophication can be ameliorated in grasslands where herbivory increases ground-level light.« less
Ecosystem Succession and Nutrient Retention: A Hypothesis
ERIC Educational Resources Information Center
Vitousek, Peter M.; Reiners, William A.
1975-01-01
A hypothesis is presented for the regulation of elemental losses from terrestrial ecosystems. Losses of elements are controlled by the net increment of biomass growth and the elemental composition of this net increment. According to this hypothesis, loss rates are highest in early succession and in steady state ecosystems. (Author/EB)
Vascular plant abundance and diversity in an alpine heath under observed and simulated global change
Alatalo, Juha M.; Little, Chelsea J.; Jägerbrand, Annika K.; Molau, Ulf
2015-01-01
Global change is predicted to cause shifts in species distributions and biodiversity in arctic tundra. We applied factorial warming and nutrient manipulation to a nutrient and species poor alpine/arctic heath community for seven years. Vascular plant abundance in control plots increased by 31%. There were also notable changes in cover in the nutrient and combined nutrient and warming treatments, with deciduous and evergreen shrubs declining, grasses overgrowing these plots. Sedge abundance initially increased significantly with nutrient amendment and then declined, going below initial values in the combined nutrient and warming treatment. Nutrient addition resulted in a change in dominance hierarchy from deciduous shrubs to grasses. We found significant declines in vascular plant diversity and evenness in the warming treatment and a decline in diversity in the combined warming and nutrient addition treatment, while nutrient addition caused a decline in species richness. The results give some experimental support that species poor plant communities with low diversity may be more vulnerable to loss of species diversity than communities with higher initial diversity. The projected increase in nutrient deposition and warming may therefore have negative impacts on ecosystem processes, functioning and services due to loss of species diversity in an already impoverished environment. PMID:25950370
Lentz, R D; Lehrsch, G A
2010-01-01
Use of dairy manure to supply crop nutrients is gaining broader acceptance as the cost of fertilizer rises. However, there are concerns regarding manure's effect on water quality. In 2003 and 2004, we measured sediment, NO3-N, NH4-N, K, dissolved reactive P (DRP), and total P (TP) concentrations in runoff from furrow irrigated field plots (6-7 irrigations yr(-1)) cropped to corn (Zea mays L.) in the semiarid climate of southern Idaho. Annual treatments included 13 (Year 1) and 34 Mg ha(-1) (Year 2) stockpiled dairy manure (M); 78 (Year 1) and 195 kg N ha(-1) (Year 2) inorganic N fertilizer (F); or control-no amendment (C). Available N in manure applied each year was similar to amounts applied in fertilizer. Constituent concentrations (mg L(-1)) in runoff ranged widely among all treatments: sediment, 10 to 50,000; NO3-N, 0 to 4.07; NH4-N, 0 to 2.28; K, 3.6 to 46.4; DRP, 0.02 to 14.3; and TP, 0.03 to 41.5. Over both years, fertilizer and manure treatments increased irrigation mean values (averaged across irrigations) for NO3-N runoff concentrations (M = 0.30, F = 0.26, C = 0.21 mg L(-1)) and mass losses (M = 0.50, F = 0.42, C = 0.33 kg ha(-1)) relative to the control. Over both years, the manure treatment also increased mean irrigation runoff concentrations of DRP (M = 0.19, F = 0.09, C = 0.08 mg L(-1)) and K (M = 1.13, F = 0.79, C = 0.62 mg L(-1)) compared with fertilizer and control plots. Average DRP and K runoff mass losses were 2.0 to 2.4 times greater in manure treatments than in control plots. Neither F or M affected season-long cumulative infiltration. Runoff DRP and inorganic-N losses appeared to be influenced more by the timing of the amendment application and environmental conditions than by the quantity of nutrients applied. Nutrient additions to furrow irrigated soils, whether from fertilizer or manure, can potentially increase nutrient losses in irrigation runoff, with the degree of impact depending on the nutrient, amount, and timing of application and whether inorganic fertilizer or manure was applied.
USDA-ARS?s Scientific Manuscript database
Anaerobic soil disinfestation (ASD) is proposed as a pre-plant, non-chemical soil disinfestation technique to control several soilborne phytosanitary issues. Limited information is available on the impact of ASD on soil fertility, plant growth, and potential nutrient loss. The objectives of the curr...
PATTERNS OF NITRATE LOSSES FROM FORESTED BASINS IN THE OREGON COAST RANGE
Numerous factors may control losses of dissolved nutrients from forested basins in the Oregon Coast Range. Potentially important factors include forest composition, stand age, forest management, grazing, agriculture, sewage inputs and bedrock types, as well as others perhaps not...
The role of arbuscular mycorrhizas in reducing soil nutrient loss.
Cavagnaro, Timothy R; Bender, S Franz; Asghari, Hamid R; Heijden, Marcel G A van der
2015-05-01
Substantial amounts of nutrients are lost from soils via leaching and as gaseous emissions. These losses can be environmentally damaging and expensive in terms of lost agricultural production. Plants have evolved many traits to optimize nutrient acquisition, including the formation of arbuscular mycorrhizas (AM), associations of plant roots with fungi that acquire soil nutrients. There is emerging evidence that AM have the ability to reduce nutrient loss from soils by enlarging the nutrient interception zone and preventing nutrient loss after rain-induced leaching events. Until recently, this important ecosystem service of AM had been largely overlooked. Here we review the role of AM in reducing nutrient loss and conclude that this role cannot be ignored if we are to increase global food production in an environmentally sustainable manner. Copyright © 2015 Elsevier Ltd. All rights reserved.
Use of FGD gypsum to reduce p loss from agricultural fields
USDA-ARS?s Scientific Manuscript database
Controlling P loss from agricultural fields has become a major issue in recent years, especially in areas where manure is used as nutrient sources. It is believed that FGD gypsum can be used as a management practice to reduce soluble P loss. Thus, the objective of this study was to determine FGD gy...
Erro, Javier; Urrutia, Oscar; San Francisco, Sara; Garcia-Mina, Jose M
2007-09-19
To optimize the economical cost of each unit of fertilizer applied and to reduce the environmental contamination caused by nutrient losses, the development of highly efficient granulated fertilizers is of great importance. This study proposes a strategy that consists of developing specific fertilizers having nutrient release patterns that are dependent on plant activity in the rhizosphere. This type of fertilizer is named "rhizosphere-controlled fertilizer" (RCF fertilizer). This fertilizer is based on the introduction of an organomineral matrix composed of metal [Mg (Ca is also possible), Zn (Fe and other metals are also possible)]-humic phosphates. The presence of this matrix modifies the nutrient release pattern of the fertilizer. In this way there are two main nutrient fractions: (i) a water-soluble fraction or "starter" fraction and (ii) a "rhizosphere-controlled" fraction insoluble in water but soluble by the action of the rhizospheric acids released by plants and microorganisms. This study shows the chemical and structural characterization of the organomineral matrix, as well as its efficiency in slowing the nutrient release rate of the RCF fertilizer, principally with respect to P and N. It is demonstrated how these properties of the matrix were also reflected in the significant reduction in both ammonia volatilization and N leaching in a pot system consisting of wheat plants cultivated in a calcareous soil and fertilized with a RCF fertilizer.
Artiles, Karen; Anastasia, Stephanie; McCusker, Derek; Kellogg, Douglas R.
2009-01-01
The key molecular event that marks entry into the cell cycle is transcription of G1 cyclins, which bind and activate cyclin-dependent kinases. In yeast cells, initiation of G1 cyclin transcription is linked to achievement of a critical cell size, which contributes to cell-size homeostasis. The critical cell size is modulated by nutrients, such that cells growing in poor nutrients are smaller than cells growing in rich nutrients. Nutrient modulation of cell size does not work through known critical regulators of G1 cyclin transcription and is therefore thought to work through a distinct pathway. Here, we report that Rts1, a highly conserved regulatory subunit of protein phosphatase 2A (PP2A), is required for normal control of G1 cyclin transcription. Loss of Rts1 caused delayed initiation of bud growth and delayed and reduced accumulation of G1 cyclins. Expression of the G1 cyclin CLN2 from an inducible promoter rescued the delayed bud growth in rts1Δ cells, indicating that Rts1 acts at the level of transcription. Moreover, loss of Rts1 caused altered regulation of Swi6, a key component of the SBF transcription factor that controls G1 cyclin transcription. Epistasis analysis revealed that Rts1 does not work solely through several known critical upstream regulators of G1 cyclin transcription. Cells lacking Rts1 failed to undergo nutrient modulation of cell size. Together, these observations demonstrate that Rts1 is a key player in pathways that link nutrient availability, cell size, and G1 cyclin transcription. Since Rts1 is highly conserved, it may function in similar pathways in vertebrates. PMID:19911052
Bouraima, Abdel-Kabirou; He, Binghui; Tian, Taiqiang
2016-03-01
Soil erosion along with soil particles and nutrients losses is detrimental to crop production. We carried out a 5-year (2010 to 2014) study to characterize the soil erosion and nitrogen and phosphorus losses caused by rainfall under different fertilizer application levels in order to provide a theoretical evidence for the agricultural production and coordinate land management to improve ecological environment. The experiment took place under rotation cropping, winter wheat-summer maize, on a 15° slope purple soil in Chongqing (China) within the Three Gorges Region (TGR). Four treatments, control (CK) without fertilizer, combined manure with chemical fertilizer (T1), chemical fertilization (T2), and chemical fertilizer with increasing fertilization (T3), were designed on experimental runoff plots for a long-term observation aiming to study their effects on soil erosion and nutrients losses. The results showed that fertilization reduced surface runoff and nutrient losses as compared to CK. T1, T2, and T3, compared to CK, reduced runoff volume by 35.7, 29.6, and 16.8 %, respectively and sediment yield by 40.5, 20.9, and 49.6 %, respectively. Regression analysis results indicated that there were significant relationships between soil loss and runoff volume in all treatments. The combined manure with chemical fertilizer (T1) treatment highly reduced total nitrogen and total phosphorus losses by 41.2 and 33.33 %, respectively as compared with CK. Through this 5-year experiment, we can conclude that, on the sloping purple soil, the combined application of manure with fertilizer is beneficial for controlling runoff sediments losses and preventing soil erosion.
Ceulemans, Tobias; Hulsmans, Eva; Vanden Ende, Wim; Honnay, Olivier
2017-01-01
Pollinators are declining worldwide and possible underlying causes include disease, invasive pest species and large scale land use changes resulting in habitat loss and degradation. One particular cause of habitat degradation is the increased inflow of nutrients due to anthropogenic combustion processes and large scale application of agricultural fertilizers. This nutrient pollution has been shown to affect pollinators through the loss of nectar and pollen-providing plant species. However, it may also affect pollinators through altering the nectar and pollen chemical composition of plant species, hence influencing pollinator food quality. Here, we experimentally investigated the effect of nutrient enrichment on amino acid and sugar composition of nectar and pollen in the grassland plant Sucissa pratensis, and the subsequent colony size and larval mortality of the pollinating bumblebee Bombus terrestris. We found less of the essential amino acids glycine and arginine in the pollen of fertilized plants, and more arginine, ornithine and threonine in the pollen of control plants. Nectar glucose and pollen fructose levels were lower in fertilized plants as compared to control plants. Furthermore, bumblebee colonies visiting fertilized plants showed more dead larvae than colonies visiting control plants. Our results suggest that the fitness of bumblebees can be negatively affected by changes in their food quality following nutrient pollution. If similar patterns hold for other plant and pollinator species, this may have far reaching implications for the maintenance of pollination ecosystem services, as nutrient pollution continues to rise worldwide.
Vanden Ende, Wim; Honnay, Olivier
2017-01-01
Pollinators are declining worldwide and possible underlying causes include disease, invasive pest species and large scale land use changes resulting in habitat loss and degradation. One particular cause of habitat degradation is the increased inflow of nutrients due to anthropogenic combustion processes and large scale application of agricultural fertilizers. This nutrient pollution has been shown to affect pollinators through the loss of nectar and pollen-providing plant species. However, it may also affect pollinators through altering the nectar and pollen chemical composition of plant species, hence influencing pollinator food quality. Here, we experimentally investigated the effect of nutrient enrichment on amino acid and sugar composition of nectar and pollen in the grassland plant Sucissa pratensis, and the subsequent colony size and larval mortality of the pollinating bumblebee Bombus terrestris. We found less of the essential amino acids glycine and arginine in the pollen of fertilized plants, and more arginine, ornithine and threonine in the pollen of control plants. Nectar glucose and pollen fructose levels were lower in fertilized plants as compared to control plants. Furthermore, bumblebee colonies visiting fertilized plants showed more dead larvae than colonies visiting control plants. Our results suggest that the fitness of bumblebees can be negatively affected by changes in their food quality following nutrient pollution. If similar patterns hold for other plant and pollinator species, this may have far reaching implications for the maintenance of pollination ecosystem services, as nutrient pollution continues to rise worldwide. PMID:28406910
Nitrogen and phosphorus losses from agricultural systems in China: a meta-analysis.
Cao, Di; Cao, Wenzhi; Fang, Jing; Cai, Longyan
2014-08-30
Studies worldwide have indicated that agricultural pollution is the main source of nitrogen and phosphorus (N and P) in surface waters. A systematic understanding of N and P sources and sinks in agricultural systems is important for selecting the appropriate remedial strategies to control nutrient losses and water pollution. Based on nationwide data and a long-term monitoring program in Southeast China, the nationwide spatial and temporal patterns of N and P losses and the relationships between such losses and N and P inputs and rainfall were analyzed. The results showed that the annual nutrient losses from agricultural systems in China strongly varied, and the N/P values ranged from 0.01 to 51.0, with a majority at approximately 0-20, and an arithmetic mean of 9.73; these values mostly overlap the suitable range of N/P (6-15) for red bloom algae. Copyright © 2014 Elsevier Ltd. All rights reserved.
CONTROLS ON WATER CHEMISTRY OF AN OREGON COAST RANGE STREAM
Numerous factors may control losses of dissolved nutrients from forested basins in the Oregon Coast Range. Potentially important factors include forest composition, stand age, forest management, grazing, agriculture, sewage inputs and bedrock types, as well as others perhaps not...
NASA Astrophysics Data System (ADS)
Basu, N. B.
2017-12-01
Wetlands provide a wide variety of ecosystem services, including retention of sediment and nutrients, and subsequent improvements in downstream water quality. In fact, a recent review suggests that 64% of reactive nitrogen (N) retention in US freshwater systems occurs in wetlands, while 28% occurs in lakes and reservoirs, and only 8% occurs in streams and rivers. Although the processes controlling nutrient retention in wetlands are well known, there is a lack of quantitative understanding of the relative nutrient filtering abilities of wetlands of various sizes, and in various landscape positions. Our inability to recognize the value of wetlands has led to their dramatic loss in the last few decades. Specifically, there has been an increased loss of geographically isolated wetlands, small upland wetlands that receive fewer legal protections due to their apparent isolation from jurisdictional waters. In this study, we use a meta-analyses approach to quantify the role of small wetlands in landscape scale nutrient processing. We synthesized data from 600 lentic systems around the world to gain insight into the relationship between hydrologic and biogeochemical controls on nutrient retention. Our results indicate that the first-order reaction rate constant k(T-1), is inversely proportional to the residence time, across 6 orders of magnitude in residence time for total N, total P, nitrate, and phosphate. We used a sediment-water model to show how nutrient removal processes are impacted by system size. Finally, the k-residence time relationships were upscaled to the landscape scale using a wetland size-frequency distribution. Results suggest that small wetlands play a disproportionately large role in landscape-scale nutrient processing—50% of nitrogen removal occurs in wetlands smaller than 10^2.5 m2 in our example. Thus, given the same loss in wetland area, the nutrient retention potential lost is greater when smaller wetlands are preferentially lost from the landscape. Such findings are significant to wetland protection and restoration efforts, which have historically focused on maximizing total wetland area rather than on preserving a distribution of different wetlands sizes within a landscape.
Addition of multiple limiting resources reduces grassland diversity.
Harpole, W Stanley; Sullivan, Lauren L; Lind, Eric M; Firn, Jennifer; Adler, Peter B; Borer, Elizabeth T; Chase, Jonathan; Fay, Philip A; Hautier, Yann; Hillebrand, Helmut; MacDougall, Andrew S; Seabloom, Eric W; Williams, Ryan; Bakker, Jonathan D; Cadotte, Marc W; Chaneton, Enrique J; Chu, Chengjin; Cleland, Elsa E; D'Antonio, Carla; Davies, Kendi F; Gruner, Daniel S; Hagenah, Nicole; Kirkman, Kevin; Knops, Johannes M H; La Pierre, Kimberly J; McCulley, Rebecca L; Moore, Joslin L; Morgan, John W; Prober, Suzanne M; Risch, Anita C; Schuetz, Martin; Stevens, Carly J; Wragg, Peter D
2016-09-01
Niche dimensionality provides a general theoretical explanation for biodiversity-more niches, defined by more limiting factors, allow for more ways that species can coexist. Because plant species compete for the same set of limiting resources, theory predicts that addition of a limiting resource eliminates potential trade-offs, reducing the number of species that can coexist. Multiple nutrient limitation of plant production is common and therefore fertilization may reduce diversity by reducing the number or dimensionality of belowground limiting factors. At the same time, nutrient addition, by increasing biomass, should ultimately shift competition from belowground nutrients towards a one-dimensional competitive trade-off for light. Here we show that plant species diversity decreased when a greater number of limiting nutrients were added across 45 grassland sites from a multi-continent experimental network. The number of added nutrients predicted diversity loss, even after controlling for effects of plant biomass, and even where biomass production was not nutrient-limited. We found that elevated resource supply reduced niche dimensionality and diversity and increased both productivity and compositional turnover. Our results point to the importance of understanding dimensionality in ecological systems that are undergoing diversity loss in response to multiple global change factors.
Schnell, Ronnie W; Vietor, Donald M; Provin, Tony L; Munster, Clyde L; Capareda, Sergio
2012-01-01
Pyrolysis of crop biomass generates a by-product, biochar, which can be recycled to sustain nutrient and organic C concentrations in biomass production fields. We evaluated effects of biochar rate and application method on soil properties, nutrient balance, biomass production, and water quality. Three replications of eight sorghum [ (L.) Moench] treatments were installed in box lysimeters under greenhouse conditions. Treatments comprised increasing rates (0, 1.5, and 3.0 Mg ha) of topdressed or incorporated biochar supplemented with N fertilizer or N, P, and K fertilizer. Simulated rain was applied at 21 and 34 d after planting, and mass runoff loss of N, P, and K was measured. A mass balance of total N, P, and K was performed after 45 d. Returning 3.0 Mg ha of biochar did not affect sorghum biomass, soil total, or Mehlich-3-extractable nutrients compared to control soil. Yet, biochar contributed to increased concentration of dissolved reactive phosphorus (DRP) and mass loss of total phosphorus (TP) in simulated runoff, especially if topdressed. It was estimated that up to 20% of TP in topdressed biochar was lost in surface runoff after two rain events. Poor recovery of nutrients during pyrolysis and excessive runoff loss of nutrients for topdressed biochar, especially K, resulted in negative nutrient balances. Efforts to conserve nutrients during pyrolysis and incorporation of biochar at rates derived from annual biomass yields will be necessary for biochar use in sustainable energy crop production. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Miller, J J; Bremer, E; Curtis, T
2016-07-01
Cattle grazing in wet riparian pastures may influence nutrient dynamics due to nutrient deposition in feces and urine, soil compaction, and vegetation loss. We conducted a lab incubation study with a saline-sodic riparian soil to study nutrient (N, P, S, Fe, Mn, Cu, and Zn) dynamics in soil pore water using Plant Root Simulator (PRS) probes and release of nutrients into the overlying ponded water during flooding. The treatment factors were organic amendment (manure, roots, and unamended control), compaction (compacted, uncompacted), and burial time (3, 7, and 14 d). Amendment treatment had the greatest impact on nutrient dynamics, followed by burial time, whereas compaction had little impact. The findings generally supported our hypothesis that organic amendments should first increase nitrate loss, then increase Mn mobility, then Fe mobility and associated release of P, and finally increase sulfate loss. Declines in nitrate due to amendment addition were small because nitrate was at low levels in all treatments due to high denitrification potential instead of being released to soil pore water or overlying water. Addition of organic amendment strongly increased Mn and Fe concentrations in overlying water and of adsorbed Fe on PRS probes but only increased Mn on PRS probes on Day 3 due to subsequent displacement from ion exchange membranes. Transport of P to overlying water was increased by organic amendment addition but less so for manure than roots despite higher P on PRS probes. The findings showed that saline-sodic soils in riparian zones are generally a nutrient source for P and are a nutrient sink for N as measured using PRS probes after 3 to 7 d of flooding. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
van Wijk, Nick; Broersen, Laus M; de Wilde, Martijn C; Hageman, Robert J J; Groenendijk, Martine; Sijben, John W C; Kamphuis, Patrick J G H
2014-01-01
Synapse loss and synaptic dysfunction are pathological processes already involved in the early stages of Alzheimer's disease (AD). Synapses consist principally of neuronal membranes, and the neuronal and synaptic losses observed in AD have been linked to the degeneration and altered composition and structure of these membranes. Consequently, synapse loss and membrane-related pathology provide viable targets for intervention in AD. The specific nutrient combination Fortasyn Connect (FC) is designed to ameliorate synapse loss and synaptic dysfunction in AD by addressing distinct nutritional needs believed to be present in these patients. This nutrient combination comprises uridine, docosahexaenoic acid, eicosapentaenoic acid, choline, phospholipids, folic acid, vitamins B12, B6, C, and E, and selenium, and is present in Souvenaid, a medical food intended for use in early AD. It has been hypothesized that FC counteracts synaptic loss and reduces membrane-related pathology in AD by providing nutritional precursors and cofactors that act together to support neuronal membrane formation and function. Preclinical studies formed the basis of this hypothesis which is being validated in a broad clinical study program investigating the potential of this nutrient combination in AD. Memory dysfunction is one key early manifestation in AD and is associated with synapse loss. The clinical studies to date show that the FC-containing medical food improves memory function and preserves functional brain network organization in mild AD compared with controls, supporting the hypothesis that this intervention counteracts synaptic dysfunction. This review provides a comprehensive overview of basic scientific studies that led to the creation of FC and of its effects in various preclinical models.
Does microbial biomass affect pelagic ecosystem efficiency? An experimental study.
Wehr, J D; Le, J; Campbell, L
1994-01-01
Bacteria and other microorganisms in the pelagic zone participate in the recycling of organic matter and nutrients within the water column. The microbial loop is thought to enhance ecosystem efficiency through rapid recycling and reduced sinking rates, thus reducing the loss of nutrients contained in organisms remaining within the photic zone. We conducted experiments with lake communities in 5400-liter mesocosms, and measured the flux of materials and nutrients out of the water column. A factorial design manipulated 8 nutrient treatments: 4 phosphorus levels × 2 nitrogen levels. Total sedimentation rates were greatest in high-N mesocosms; within N-surplus communities, [Symbol: see text]1 µM P resulted in 50% increase in total particulate losses. P additions without added N had small effects on nutrient losses from the photic zone; +2 µM P tanks received 334 mg P per tank, yet after 14 days lost only 69 mg more particulate-P than did control communities. Nutrient treatments resulted in marked differences in phytoplankton biomass (twofold N effect, fivefold P effect in +N mesocosms only), bacterioplankton densities (twofold N-effect, twofold P effects in -N and +N mesocosms), and the relative importance of autotrophic picoplankton (maximum in high NY mesocosms). Multiple regression analysis found that of 8 plankton and water chemistry variables, the ratio of autotrophic picoplankton to total phytoplankton (measured as chlorophyll α) explained the largest portion of the total variation in sedimentation loss rates (65% of P-flux, 57% of N-flux, 26% of total flux). In each case, systems with greater relative importance of autotrophic picoplankton had significantly reduced loss rates. In contrast, greater numbers of planktonic bacteria were associated with increased sedimentation rates and lower system efficiency. We suggest that different microbial components may have contrasting effects on the presumed enhanced efficiency provided by the microbial loop.
Wei, Xiaocheng; Liu, Dongfang; Li, Wenjiao; Liao, Lirui; Wang, Zhendong; Huang, Weiwei; Huang, Wenli
2018-08-01
Biochar was applied during the bioleaching of heavy metals (HMs) from swine manure (SM), in an attempt to accelerate the HMs removal rates and to reduce the losses of nutrient elements (nitrogen and phosphorus). Results showed that the addition of biochar (5gL -1 ) could not only significantly shorten the leaching time of HMs (Cu, Zn, Mn and Cd) from 10 (control) to 7days with a high solubilization efficiency of 90%, but also decrease the total nitrogen loss efficiency by 42.7% from 180.3 (control) to 103.3mgL -1 in the leachate. In addition, biochar addition facilitated Fe 2+ oxidation rate, achieving much better pH and ORP conditions. Electronic conductivity and adsorption properties of biochar with changed microbial community probably contributed a lot to the enhanced HMs solubilization and reduced nitrogen loss during bioleaching. Although the addition of biochar only slightly reduced the total amount of phosphorus loss, the bioavailable phosphorus in SM after bioleaching was markedly increased by 13.7%. Copyright © 2018 Elsevier B.V. All rights reserved.
CONTROLS ON STREAM CHEMISTRY IN AN OREGON COASTAL WATERSHED: THE SALMON RIVER
Numerous factors may control losses of dissolved nutrients from forested basins in the Oregon Coast Range. Potentially important factors include forest composition, stand age, forest management, grazing, agriculture, sewage inputs and bedrock types, as well as others perhaps not...
Growth Responses of Three Dominant Wetland Plant Species to Various Flooding and Nutrient Levels
NASA Astrophysics Data System (ADS)
Barrett, S.; Shaffer, G. P.
2017-12-01
Coastal Louisiana is experiencing a greater rate of wetland loss than any other wetland system in the United States. This is primarily due to anthropogenic stressors such as flood control levees, backfilling and development of wetlands, and other hydrologic modifications. Methods employed to mitigate wetland loss include the construction of river diversions and assimilation wetlands, which can provide consistent sources of freshwater influx and nutrients to impounded swamps and marshes. It is well known that prolonged flooding causes strain on wetland plant communities and facilitates or exacerbates wetland degradation. However, because river diversions and assimilation wetlands bring high nutrient loads along with freshwater, there is debate over whether prolonged flooding or high influx of nutrients is the primary cause of stress in river diversion and assimilation wetland discharge areas. This mesocosm experiment addresses this question by isolating the effects of flooding and nutrients on the biomass of baldcypress (Taxodium distichum), maidencane (Panicum hemitomon), and cordgrass (Spartina patens) over the course of a growing season. The results of this study provide clarity as to whether flooding stress, high nutrient loads, or both cause a reduction in wetland plant productivity. By evaluating the growth responses of T. distichum, P. hemitomon, and S. patens at varying nutrient regimes, we gain insight on how these more dominant species will react to high nutrient discharges from large river diversions, such as those proposed in Louisiana's 2017 Master Plan.
Pearce, A R; Rastetter, E B; Kwiatkowski, B L; Bowden, W B; Mack, M C; Jiang, Y
2015-07-01
Abstract. We calibrated the Multiple Element Limitation (MEL) model to Alaskan arctic tundra to simulate recovery of thermal erosion features (TEFs) caused by permafrost thaw and mass wasting. TEFs could significantly alter regional carbon (C) and nutrient budgets because permafrost soils contain large stocks of soil organic matter (SOM) and TEFs are expected to become more frequent as the climate warms. We simulated recovery following TEF stabilization and did not address initial, short-term losses of C and nutrients during TEF formation. To capture the variability among and within TEFs, we modeled a range of post-stabilization conditions by varying the initial size of SOM stocks and nutrient supply rates. Simulations indicate that nitrogen (N) losses after the TEF stabilizes are small, but phosphorus (P) losses continue. Vegetation biomass recovered 90% of its undisturbed C, N, and P stocks in 100 years using nutrients mineralized from SOM. Because of low litter inputs but continued decomposition, younger SOM continued to be lost for 10 years after the TEF began to recover, but recovered to about 84% of its undisturbed amount in 100 years. The older recalcitrant SOM in mineral soil continued to be lost throughout the 100-year simulation. Simulations suggest that biomass recovery depended on the amount of SOM remaining after disturbance. Recovery was initially limited by the photosynthetic capacity of vegetation but became co-limited by N and P once a plant canopy developed. Biomass and SOM recovery was enhanced by increasing nutrient supplies, but the magnitude, source, and controls on these supplies are poorly understood. Faster mineralization of nutrients from SOM (e.g., by warming) enhanced vegetation recovery but delayed recovery of SOM. Taken together, these results suggest that although vegetation and surface SOM on TEFs recovered quickly (25 and 100 years, respectively), the recovery of deep, mineral soil SOM took centuries and represented a major ecosystem C loss.
Nutrient limitation in tropical savannas across multiple scales and mechanisms.
Pellegrini, Adam F A
2016-02-01
Nutrients have been hypothesized to influence the distribution of the savanna biome through two possible mechanisms. Low nutrient availability may restrict growth rates of trees, thereby allowing for intermittent fires to maintain low tree cover; alternatively, nutrient deficiency may even place an absolute constraint on the ability of forests to form, independent of fire. However, we have little understanding of the scales at which nutrient limitation operates, what nutrients are limiting, and the mechanisms that influence how nutrient limitation regulates savanna-forest transitions. Here, I review literature, synthesize existing data, and present a simple calculation of nutrient demand to evaluate how nutrient limitation may regulate the distribution of the savanna biome. The literature primarily supports the hypothesis that nutrients may interact dynamically with fire to restrict the transition of savanna into forest. A compilation of indirect metrics of nutrient limitation suggest that nitrogen and phosphorus are both in short supply and may limit plants. Nutrient demand calculations provided a number of insights. First, trees required high rates of nitrogen and phosphorus supply relative to empirically determined inputs. Second, nutrient demand increased as landscapes approached the transition point between savanna and forest. Third, the potential for fire-driven nutrient losses remained high throughout transitions, which may exaggerate limitation and could be a key feedback stabilizing the savanna biome. Fourth, nutrient limitation varied between functional groups, with fast-growing forest species having substantially greater nutrient demand and a higher susceptibility to fire-driven nutrient losses. Finally, African savanna trees required substantially larger amounts of nutrients supplied at greater rates, although this varied across plant functional groups. In summary, the ability of nutrients to control transitions emerges at individual and landscape scales, and is regulated through different mechanisms based on spatial (differences in underlying geology), temporal (stage in biome transition) and biological (species traits and community composition) variability.
USDA-ARS?s Scientific Manuscript database
Poultry litter is a common organic amendment in agricultural production systems, but nutrient losses can reduce the effectiveness as a fertilizer. Three studies were conducted to determine differences in nutrient availability and loss when comparing injection and surface application. These investi...
Manure Application under Winter Conditions: Nutrient Runoff and Leaching Losses
USDA-ARS?s Scientific Manuscript database
Winter application of manure is commonly practiced and potential nutrient losses can be difficult to predict due to wide variations in weather within a year and between years. This study was conducted to determine nutrient losses via surface runoff and subsurface leachate from winter-applied manure ...
Manure application under winter conditions: Nutrient runoff and leaching losses
USDA-ARS?s Scientific Manuscript database
Winter application of manure is commonly practiced and potential nutrient losses are difficult to predict. This study was conducted in order to determine nutrient losses via surface runoff and subsurface leachate from winter-applied manure based on its relative placement with respect to snow. A labo...
Manure Application Under Winter Conditions: Nutrient Runoff and Leaching Losses
USDA-ARS?s Scientific Manuscript database
Winter application of manure is commonly practiced and potential nutrient losses are difficult to predict. This study was conducted in order to determine nutrient losses via surface runoff and subsurface leachate from winter-applied manure based on its relative placement with respect to snow. A labo...
Sun, Xiaoxiao; Liang, Xinqiang; Zhang, Feng; Fu, Chaodong
2016-11-01
Nutrient runoff losses from cropping fields can lead to nonpoint source pollution; however, the level of nutrient export is difficult to evaluate, particularly at the regional scale. This study aimed to establish a novel yet simple approach for estimating total nitrogen (TN) and total phosphorus (TP) runoff losses from regional paddy fields. In this approach, temporal changes of nutrient concentrations in floodwater were coupled with runoff-processing functions in rice ( L.) fields to calculate nutrient runoff losses for three site-specific field experiments. Validation experiments verified the accuracy of this method. The geographic information system technique was used to upscale and visualize the TN and TP runoff losses from field to regional scales. The results indicated that nutrient runoff losses had significant spatio-temporal variation characteristics during rice seasons, which were positively related to fertilizer rate and precipitation. The average runoff losses over five study seasons were 20.21 kg N ha for TN and 0.76 kg P ha for TP. Scenario analysis showed that TN and TP losses dropped by 7.64 and 3.0%, respectively, for each 10% reduction of fertilizer input. For alternate wetting and drying water management, the corresponding reduction ratio was 24.7 and 14.0% respectively. Our results suggest that, although both water and fertilizer management can mitigate nutrient runoff losses, the former is significantly more effective. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Rainfall-induced nutrient losses from manure-fertilized farmland in an alluvial plain.
Wang, Yiyao; Li, Huaizheng; Xu, Zuxin
2016-01-01
Nutrient transport and loss in farmlands are affected by factors such as land cover, fertilization, soil type, rainfall, and management practices. We investigated the temporal and spatial changes in macronutrient transport and loss after fertilization and precipitation in manure-fertilized eggplant farmland in an alluvial plain. Upon adding topical fertilizer, concentrations of most nutrients in runoff and groundwater increased, and nitrogen runoff increased from 22.11 to 35.81 kg/ha, although eggplant yield did not increase correspondingly. Incorporation of fertilizer by plowing reduced nutrient losses (nitrogen runoff/fertilizer decreased from 18.40 to 12.29 %). Measurements taken along the nutrient transport route (runoff, drainage ditch, groundwater, river water, and finally rainfall) revealed that concentrations of most nutrients declined at each stage. Nutrient characteristics varied by transport, and the forms of nitrogen and phosphorus differed greatly between runoff and groundwater (nitrate/nitrogen in runoff was ~43.49 %, while in groundwater ~5.41 %). Most nutrient concentrations in runoff decreased greatly during the planting season (total nitrogen decreased from 62.25 to 4.17 mg/L), correlated positively with temperature and stage of plant growth, but little temporal change was observed in groundwater. This field investigation during one planting season exemplifies the basic principles of nutrient loss and transport from manure-fertilized farmland in an alluvial plain.
Moore, Jonathan W; Olden, Julian D
2017-05-01
Integrating knowledge of environmental degradation, biodiversity change, and ecosystem processes across large spatial scales remains a key challenge to illuminating the resilience of earth's systems. There is now a growing realization that the manner in which communities will respond to anthropogenic impacts will ultimately control the ecosystem consequences. Here, we examine the response of freshwater fishes and their nutrient excretion - a key ecosystem process that can control aquatic productivity - to human land development across the contiguous United States. By linking a continental-scale dataset of 533 fish species from 8100 stream locations with species functional traits, nutrient excretion, and land remote sensing, we present four key findings. First, we provide the first geographic footprint of nutrient excretion by freshwater fishes across the United States and reveal distinct local- and continental-scale heterogeneity in community excretion rates. Second, fish species exhibited substantial response diversity in their sensitivity to land development; for native species, the more tolerant species were also the species contributing greater ecosystem function in terms of nutrient excretion. Third, by modeling increased land-use change and resultant shifts in fish community composition, land development is estimated to decrease fish nutrient excretion in the majority (63%) of ecoregions. Fourth, the loss of nutrient excretion would be 28% greater if biodiversity loss was random or 84% greater if there were no nonnative species. Thus, ecosystem processes are sensitive to increased anthropogenic degradation but biotic communities provide multiple pathways for resistance and this resistance varies across space. © 2016 John Wiley & Sons Ltd.
USDA-ARS?s Scientific Manuscript database
Cox (2010) reported that under business as usual, the environmental impacts of nutrient losses from agriculture will not be resolved and that precision conservation and precision regulation are two mechanisms to reduce the environmental impacts of nutrient losses. This is in agreement with the rece...
Composting and gypsum amendment of broiler litter to reduce nutrient leaching loss
USDA-ARS?s Scientific Manuscript database
Relative to fresh broiler litter, little is known about the dynamics of composted litter derived-nutrient in the ecosystem. In this study, the potential leaching losses of nutrients from compost relative to fresh broiler litter along with flue gas desulfurization (FGD gypsum), as a nutrient immobil...
NASA Astrophysics Data System (ADS)
Keiblinger, Katharina Maria; Hämmerle, Ieda; Zechmeister-Boltenstern, Sophie
2010-05-01
Little is known about how the variance in resources in terms of carbon (C), nitrogen (N), phosphorus (P) ratios affects respiration and nutrient dynamics. To elucidate how resource quantity and stoichiometry affect the decomposition process of beech (Fagus sylvatica) litter a terrestrial microcosm experiment was conducted. Our aim was to follow changes of beech litter stoichiometry and biogeochemical processes, and to quantify element losses as affected by temperature and moisture extremes. In addition to gaseous element losses (CO2) we examined the release of nutrients prone to leaching and the importance of environmental controls. We addressed mechanisms and pathways of carbon, nitrogen and phosphorus losses. In our experiment sterilised dried leaves were inoculated with a litter-soil suspension from a beech forest in order to ensure similar starting conditions. Beech litter from different Austrian sites covering C:N ratios from 45 to 66 and C:P ratios from 652 to 1467 were incubated at 15°C for six months. The water content was adjusted to 60% at regular intervals to keep the moisture constant. To monitor transient and persistent influences of environmental stress, the microcosms were subject to extreme changes in temperature (+30°C and -20°C) and moisture (draught) after an incubation time of three months. Litter stoichiometries (C:N, C:P) turned out to be strong predictors for respiration, and nitrogen, and phosphorous losses. (i) Litter with narrow litter C:nutrient ratios decomposed faster than litter with wider litter C:nutrient ratios; and therefore showed higher respiration rates. (ii) Increased nutrient losses as leachates were observed for high quality leaf litter i.e. inorganic nitrogen losses for sites with narrow litter C:N ratios and phosphate was released more quickly in sites with narrow C:P ratios. There was a strong functional response of the microbial community to environmental extremes. Respiration increased upon temperature extremes, especially in the litter with highest C:P ratio. A persistent effect of temperature extremes on NH4 and NO3 concentrations was observed for three months after stress application. However, the effect on PO4 concentrations was only transient. Environmental conditions had a strong affect on nutrient losses but only a minor affect on microbial carbon Cmic and microbial nitrogen Nmic. The impact of environmental stress (heat or freezing) on microbes in terms of Cmic, Nmic and C:Nmic was strongest in sites with narrow litter C:N ratios. Our results indicate a similar stoichiometric demand of microbes, with temporal changes which results in differences in nutrient cycling on substrates with different C:N:P ratios.
Status of selected nutrients in obese dogs undergoing caloric restriction.
Linder, Deborah E; Freeman, Lisa M; Holden, Shelley L; Biourge, Vincent; German, Alexander J
2013-10-24
The purpose of this study was to test the hypothesis that dog plasma concentrations of selected nutrients decrease after undergoing caloric restriction for weight loss. Thirty-one overweight dogs that had successfully lost at least 15% of initial body weight were included in the study. Nutrients that had been previously identified to be at potential risk of deficiency during caloric restriction were measured in plasma (choline, amino acids) and urine (selenium) at the initiation and completion of a standardized weight loss regimen in dogs. Dogs remained healthy throughout the study, and no signs attributable to nutrient deficiency were noted. Percentage weight loss was 28.3% (16.0-40.1%) starting body weight, over a period of 250 days (91-674 days). Median energy intake during the weight loss period was 62 (44 to 74) Kcal/kg(0.75) target weight per day. Choline (P = 0.046) and threonine (P = 0.02) decreased after weight loss. Glycine (P = 0.041), and urinary selenium:creatinine ratio (P = 0.006) both increased after weight loss. There were no other significant differences in plasma nutrient concentrations. Since concentrations of most measured nutrients did not change significantly, the data are not consistent with widespread nutrient deficiency in dogs undergoing caloric restriction using a diet formulated for weight loss. However, the significance of the decrease in plasma choline concentration requires further assessment.
Climate and soil-age constraints on nutrient uplift and retention by plants.
Porder, Stephen; Chadwick, Oliver A
2009-03-01
Plants and soils represent coevolving components of ecosystems, and while the effects of soils (e.g., nutrient availability) on plants have been extensively documented, the effect of plants on soils has received less attention. Furthermore there has been no systematic investigation of how plant effects vary across important ecological gradients in climate or soil age, which leaves a substantial gap in our understanding of how plant-soil systems develop. In this context, we analyzed changes in nutrient availability and elemental losses from the entire weathering zone at 35 sites arrayed across climatic and soil-age gradients on the island of Hawai'i. The sites are located on three basaltic lava flows (ages 10, 170, and 350 kyr) each of which crosses a precipitation gradient from approximately 500 to 2500 mm/yr. By comparing the loss of nutrient (potassium, phosphorus) and non-nutrient (e.g., sodium) rock-derived elements, we identify a climatic zone at intermediate rainfall where the retention of plant nutrients in the upper soil is most pronounced. We further show that there are several abiotic constraints on plant-driven retention of nutrients. At the dry sites (< or = 750 mm/yr on all three flows), plants slow the loss of nutrients, but the effect (as measured by the difference between K and Na losses) is small, perhaps because of low plant cover and productivity. At intermediate rainfall (750-1400 mm/yr) but negative water balance, plants substantially enrich both nutrient cations and P relative to Na in the surface horizons, an effect that remains strong even after 350 kyr of soil development. In contrast, at high rainfall (> or = 1500 mm/yr) and positive water balance, the effect of plants on nutrient distributions diminishes with soil age as leaching losses overwhelm the uplift and retention of nutrients by plants after 350 kyr of soil development. The effect of plants on soil nutrient distributions can also be mediated by the movement of iron (Fe), and substantial Fe losses at high rainfall on the older flows are highly correlated with P losses. Thus redox-driven redistribution of Fe may place a further abiotic constraint on nutrient retention by plants. In combination, these data indicate that the effects of soil aging on plant uplift and retention of nutrients differ markedly with precipitation, and we view this as a potentially fruitful area for future research.
NASA Astrophysics Data System (ADS)
Gronwald, M.; Don, A.; Tiemeyer, B.; Helfrich, M.
2015-01-01
Leaching of nutrients from agricultural soils causes major environmental problems that may be reduced with biochar amendments to the soils. Biochars are characterised by a high adsorption capacity, i.e., they may retain nutrients such nitrate and ammonium. However, biochar properties strongly depend on feedstock and the production process. We investigated the nutrient retention capacity of biochars derived from pyrolysis (pyrochar) as well as from hydrothermal carbonization (hydrochar; produced at 200 and 250 °C) from three different feedstocks (digestates, Miscanthus, woodchips) mixed into different soil substrates (sandy loam and silty loam). Moreover, we investigated the influence of biochar degradation on its nutrient retention capacity using a seven-month in-situ field incubation of pyrochar and hydrochar. Pyrochars showed the highest ability to retain nitrate, ammonium and phosphate, with pyrochar from woodchips being particularly efficient in nitrate adsorption. Ammonium adsorption of pyrochars was controlled by the soil type of the soil-biochar mixture. We found some ammonium retention on sandy soils, but no pyrochar effect or even ammonium leaching from the loamy soil. The phosphate retention capacity of pyrochars strongly depended on the pyrochar feedstock with large phosphate leaching from digestate-derived pyrochar and some adsorption capacity from woodchip-derived pyrochar. Application of hydrochars to agricultural soils caused small, and often not significant, effects on nutrient retention. In contrast, some hydrochars did increase the leaching of nutrients compared to the non-amended control soil. We found a surprisingly rapid loss of the biochars' adsorption capacity after field application of the biochars. For all sites and for hydrochar and pyrochar, the adsorption capacity was reduced by 60-80% to less or no nitrate and ammonium adsorption. Thus, our results cast doubt on the efficiency of biochar applications to temperate zone soils to minimize nutrient losses via leaching.
NASA Astrophysics Data System (ADS)
Gronwald, M.; Don, A.; Tiemeyer, B.; Helfrich, M.
2015-06-01
Leaching of nutrients from agricultural soils causes major environmental problems that may be reduced with amendments of chars derived from pyrolysis (pyrochars) or hydrothermal carbonization (hydrochars). Chars are characterized by a high adsorption capacity - i.e. they may retain nutrients such as nitrate and ammonium. However, the physicochemical properties of the chars and hence their sorption capacity likely depend on feedstock and the production process. We investigated the nutrient retention capacity of pyrochars and hydrochars from three different feedstocks (digestates, Miscanthus, woodchips) mixed into different soil substrates (sandy loam and silty loam). Moreover, we investigated the influence of char degradation on its nutrient retention capacity using a 7-month in situ field incubation of pyrochar and hydrochar mixed into soils at three different field sites. Pyrochars showed the highest ability to retain nitrate, ammonium and phosphate, with pyrochar from woodchips being particularly efficient in nitrate adsorption. Ammonium adsorption of pyrochars was controlled by the soil type of the soil-char mixture. We found some ammonium retention on sandy soils, but no pyrochar effect or even ammonium leaching from the loamy soil. The phosphate retention capacity of pyrochars strongly depended on the pyrochar feedstock with large phosphate leaching from digestate-derived pyrochar and some adsorption capacity from woodchip-derived pyrochar. Application of hydrochars to agricultural soils caused small, and often not significant, effects on nutrient retention. In contrast, some hydrochars did increase the leaching of nutrients compared to the non-amended control soil. We found a surprisingly rapid loss of the chars' adsorption capacity after field application of the chars. For all sites and for hydrochar and pyrochar, the adsorption capacity was reduced by 60-80 % to less or no nitrate and ammonium adsorption. Thus, our results cast doubt on the efficiency of char applications to temperate zone soils to minimize nutrient losses via leaching.
Zhao, Hongmei; Huang, Gang; Li, Yan; Ma, Jian; Sheng, Jiandong; Jia, Hongtao; Li, Congjuan
2015-01-01
Background Climate change scenarios that include precipitation shifts and nitrogen (N) deposition are impacting carbon (C) budgets in arid ecosystems. Roots constitute an important part of the C cycle, but it is still unclear which factors control root mass loss and nutrient release in arid lands. Methodology/Principal Findings Litterbags were used to investigate the decomposition rate and nutrient dynamics in root litter with water and N-addition treatments in the Gurbantunggut Desert in China. Water and N addition had no significant effect on root mass loss and the N and phosphorus content of litter residue. The loss of root litter and nutrient releases were strongly controlled by the initial lignin content and the lignin:N ratio, as evidenced by the negative correlations between decomposition rate and litter lignin content and the lignin:N ratio. Fine roots of Seriphidium santolinum (with higher initial lignin content) had a slower decomposition rate in comparison to coarse roots. Conclusion/Significance Results from this study indicate that small and temporary changes in rainfall and N deposition do not affect root decomposition patterns in the Gurbantunggut Desert. Root decomposition rates were significantly different between species, and also between fine and coarse roots, and were determined by carbon components, especially lignin content, suggesting that root litter quality may be the primary driver of belowground carbon turnover. PMID:26544050
Transport pathways of nitrogen and phosphorus in tile-drained cranberry farms
NASA Astrophysics Data System (ADS)
Kennedy, C. D.; Alversion, N.; Jeranyama, P.; DeMoranville, C.; Sandler, H.; Caruso, F.
2013-12-01
Rapid, controlled drainage of cranberry farms is critical to optimizing production in Massachusetts, where approximately 1/3 of the industry's crop is produced. Relatively new to cranberry farming, tile drainage has been billed as a low-cost drainage management option for reducing crop disease and weed infestations. Despite its well documented agronomic benefits, tile drainage may exacerbate nutrient loss and promote eutrophication in nearby ponds receiving cranberry drainage waters. In this study, a monitoring program was established on a Massachusetts cranberry bed to quantify (1) mass loss of nitrogen and phosphorous via tile drainage to a perimeter ditch surrounding the cranberry bed, (2) the attenuation of N and P in the ditch prior to discharge from the cranberry bed, and (3) and the component contributions of preferential vs. matrix transport of N and P in tile drainage. A combination of compound weirs, acoustic-velocity meters, propeller-driven flow meters, and rain gauges were installed to quantify drainage management characteristics of the cranberry bed. Automatic samplers were also installed to collect water samples at each monitoring site (i.e., four tile drains, an irrigation pond, and a flume used to control ditch height) for analysis of N and P concentrations and hydrogen and oxygen stable isotope ratios to estimate nutrient loss and transport pathways. These data will be used to develop a mechanistic synthesis of nutrient cycling in tile-drained cranberry beds.
Nutrients: a major consideration in intensive forest management
James W. Hornbeck
1977-01-01
Estimates of nutrient losses are compared for stem-only harvest versus a whole-tree harvest of a clearcut northern hardwood stand. Combined nutrient losses due to increased leaching and removal of vegetation after stem-only harvesting are estimated to be 334 kg/ha for calcium and 265 kg/ha for nitrogen. For a whole-tree harvest, combined losses are estimated at 537 kg/...
Brooks, J P; Adeli, A; McLaughlin, M R; Miles, D M
2012-12-01
Increasing costs associated with inorganic fertilizer have led to widespread use of broiler litter. Proper land application, typically limiting nutrient loss, is essential to protect surface water. This study was designed to evaluate litter-borne microbial runoff (heterotrophic plate count bacteria, staphylococci, Escherichia coli, enterococci, and Clostridium perfringens) while applying typical nutrient-control methods. Field studies were conducted in which plots with high and low litter rates, inorganic fertilizer, AlCl(3)-treated litter, and controls were rained on five times using a rain generator. Overall, microbial runoff from poultry litter applied plots was consistently greater (2-5 log(10) plot(-1)) than controls. No appreciable effect on microbial runoff was noted from variable litter application rate or AlCl(3) treatments, though rain event, not time, significantly affected runoff load. C. perfringens and staphylococci runoff were consistently associated with poultry litter application, during early rain events, while other indicators were unreliable. Large microbial runoff pulses were observed, ranging from 10(2) to 10(10) CFU plot(-1); however, only a small fraction of litter-borne microbes were recoverable in runoff. This study indicated that microbial runoff from litter-applied plots can be substantial, and that methods intended to reduce nutrient losses do not necessarily reduce microbial runoff.
USDA-ARS?s Scientific Manuscript database
Agricultural nutrient management is an issue due to nitrogen (NH4) and phosphorus (P) losses from fields and water quality degradation. Better information is needed on the risk of nutrient loss in runoff from dairy manure applied in winter. We investigated the effect of temperature on nutrient relea...
Li, Xia; Cui, Baoshan; Yang, Qichun; Tian, Hanqin; Lan, Yan; Wang, Tingting; Han, Zhen
2012-01-01
Macrophyte decomposition is important for carbon and nutrient cycling in lake ecosystems. Currently, little is known about how this process responds to detritus quality and water nutrient conditions in eutrophic shallow lakes in which incomplete decomposition of detritus accelerates the lake terrestrialization process. In this study, we investigated the effects of detritus quality and water nutrient concentrations on macrophyte decomposition in Lake Baiyangdian, China, by analyzing the decomposition of three major aquatic plants at three sites with different pollution intensities (low, medium, and high pollution sites). Detritus quality refers to detritus nutrient contents as well as C∶N, C∶P, and N∶P mass ratios in this study. Effects of detritus mixtures were tested by combining pairs of representative macrophytes at ratios of 75∶25, 50∶50 and 25∶75 (mass basis). The results indicate that the influence of species types on decomposition was stronger than that of site conditions. Correlation analysis showed that mass losses at the end of the experimental period were significantly controlled by initial detritus chemistry, especially by the initial phosphorus (P) content, carbon to nitrogen (C∶N), and carbon to phosphorus (C∶P) mass ratios in the detritus. The decomposition processes were also influenced by water chemistry. The NO3-N and NH4-N concentrations in the lake water retarded detritus mass loss at the low and high pollution sites, respectively. Net P mineralization in detritus was observed at all sites and detritus P release at the high pollution site was slower than at the other two sites. Nonadditive effects of mixtures tended to be species specific due to the different nutrient contents in each species. Results suggest that the nonadditive effects varied significantly among different sites, indicating that interactions between the detritus quality in species mixtures and site water chemistry may be another driver controlling decomposition in eutrophic shallow lakes. PMID:22848699
Status of selected nutrients in obese dogs undergoing caloric restriction
2013-01-01
Background The purpose of this study was to test the hypothesis that dog plasma concentrations of selected nutrients decrease after undergoing caloric restriction for weight loss. Thirty-one overweight dogs that had successfully lost at least 15% of initial body weight were included in the study. Nutrients that had been previously identified to be at potential risk of deficiency during caloric restriction were measured in plasma (choline, amino acids) and urine (selenium) at the initiation and completion of a standardized weight loss regimen in dogs. Results Dogs remained healthy throughout the study, and no signs attributable to nutrient deficiency were noted. Percentage weight loss was 28.3% (16.0-40.1%) starting body weight, over a period of 250 days (91–674 days). Median energy intake during the weight loss period was 62 (44 to 74) Kcal/kg0.75 target weight per day. Choline (P = 0.046) and threonine (P = 0.02) decreased after weight loss. Glycine (P = 0.041), and urinary selenium:creatinine ratio (P = 0.006) both increased after weight loss. There were no other significant differences in plasma nutrient concentrations. Conclusions Since concentrations of most measured nutrients did not change significantly, the data are not consistent with widespread nutrient deficiency in dogs undergoing caloric restriction using a diet formulated for weight loss. However, the significance of the decrease in plasma choline concentration requires further assessment. PMID:24156605
NASA Astrophysics Data System (ADS)
Hess, L.; Basso, B.; Hinckley, E. L. S.; Robertson, G. P.; Matson, P. A.
2015-12-01
In the coming century, the proportion of total rainfall that falls in heavy storm events is expected to increase in many areas, especially in the US Midwest, a major agricultural region. These changes in rainfall patterns may have consequences for hydrologic flow and nutrient losses, especially in agricultural soils, with potentially negative consequences for receiving ground- and surface waters. We used a tracer experiment to examine how more extreme rainfall patterns may affect the movement of water and solutes through an agricultural soil profile in the upper Midwest, and to what extent tillage may moderate these effects. Two rainfall patterns were created with 5m x 5m rainout shelters at the Kellogg Biological Station LTER site in replicated plots with either conventional tillage or no-till management. Control rainfall treatments received water 3x per week, and extreme rainfall treatments received the same total amount of water but once every two weeks, to simulate less frequent but larger storms. In April 2015, potassium bromide (KBr) was added as a conservative tracer of water flow to all plots, and Br- concentrations in soil water at 1.2m depth were measured weekly from April through July. Soil water Br- concentrations increased and peaked more quickly under the extreme rainfall treatment, suggesting increased infiltration and solute transfer to depth compared to soils exposed to control rainfall patterns. Soil water Br- also increased and peaked more quickly in no-till than in conventional tillage treatments, indicating differences in flow paths between management systems. Soil moisture measured every 15 minutes at 10, 40, and 100cm depths corroborates tracer experiment results: rainfall events simulated in extreme rainfall treatments led to large increases in deep soil moisture, while the smaller rainfall events simulated under control conditions did not. Deep soil moisture in no-till treatments also increased sooner after water application as compared to in conventional soils. Our results suggest that exposure to more extreme rainfall patterns will likely increase infiltration depth and nutrient losses in agricultural soils. In particular, soils under no-till management, which leads to development of preferential flow paths, may be particularly vulnerable to vertical nutrient losses.
The impact of changing climate on surface and ground water quality in southeast of Ireland
NASA Astrophysics Data System (ADS)
Tribak, Kamal
2015-04-01
In the current changing climate globally, Ireland have been experiencing a yearly recurrent extreme heavy rainfall events in the last decade, with damaging visible effects socially, economically and on the environment. Ireland intensive agriculture production is a major treat to the aquatic environment, Nitrogen and phosphorus losses to the water courses are major causes to eutrophication. The European Water Frame Directive (WFD 2000/60/EC) and Nitrates Directive (91/676/EEC) sets a number of measures to better protect and improve water status. Five years of high temporal resolution river water quality data measurement from two contrasting catchment in the southeast of Ireland were correlated with rain fall and nutrients losses to the ground and surface water, additional to the integrated Southeast River District Basin ground and surface water quality to establish spatiotemporal connection to the agriculture activities, the first well-drained soil catchment had high coefficient correlation with rain fall with higher losses to groundwater, on the other hand higher nutrients losses to surface water were higher with less influence from groundwater recharge of N and P transfer, the poorly clay base soil contributed to higher increased losses to surface water during excessive rain fall. Agriculture activities, hydrology, geology and human interaction can interact according to their site specific setting and the effects will fluctuate dependent on the conditions influencing the impact on water quality, there is a requirement to better distinguish those effects together and identify areas and land uses control and nutrients management to improve the water quality, stakeholders co-operation along with effective polices, long term monitoring, nutrients pathways management and better understanding of the environmental factors interaction on national, regional and catchment scale to enable planning policies and enforcement measures to be more focused on areas of high risk than others.
Agroforestry practices, runoff, and nutrient loss: a paired watershed comparison.
Udawatta, Ranjith P; Krstansky, J John; Henderson, Gray S; Garrett, Harold E
2002-01-01
A paired watershed study consisting of agroforestry (trees plus grass buffer strips), contour strips (grass buffer strips), and control treatments with a corn (Zea mays L.)-soybean [Glycine max (L.) Merr.] rotation was used to examine treatment effects on runoff, sediment, and nutrient losses. During the (1991-1997) calibration and subsequent three-year treatment periods, runoff was measured in 0.91- and 1.37-m H-flumes with bubbler flow meters. Composite samples were analyzed for sediment, total phosphorus (TP), total nitrogen (TN), nitrate, and ammonium. Calibration equations developed to predict runoff, sediment, and nutrients losses explained 66 to 97% of the variability between treatment watersheds. The contour strip and agroforestry treatments reduced runoff by 10 and 1% during the treatment period. In both treatments, most runoff reductions occurred in the second and third years after treatment establishment. The contour strip treatment reduced erosion by 19% in 1999, while erosion in the agroforestry treatment exceeded the predicted loss. Treatments reduced TP loss by 8 and 17% on contour strip and agroforestry watersheds. Treatments did not result in reductions in TN during the first two years of the treatment period. The contour strip and agroforestry treatments reduced TN loss by 21 and 20%, respectively, during a large precipitation event in the third year. During the third year of treatments, nitrate N loss was reduced 24 and 37% by contour strip and agroforestry treatments. Contour strip and agroforestry management practices effectively reduced nonpoint-source pollution in runoff from a corn-soybean rotation in the clay pan soils of northeastern Missouri.
NASA Astrophysics Data System (ADS)
Han, Zhen; Cui, Baoshan; Zhang, Yongtao
2015-09-01
Rhizomes are essential organs for growth and expansion of Phragmites australis. They function as an important source of organic matter and as a nutrient source, especially in the artificial land-water transitional zones (ALWTZs) of shallow lakes. In this study, decomposition experiments on 1- to 6-year-old P. australis rhizomes were conducted in the ALWTZ of Lake Baiyangdian to evaluate the contribution of the rhizomes to organic matter accumulation and nutrient release. Mass loss and changes in nutrient content were measured after 3, 7, 15, 30, 60, 90, 120, and 180 days. The decomposition process was modeled with a composite exponential model. The Pearson correlation analysis was used to analyze the relationships between mass loss and litter quality factors. A multiple stepwise regression model was utilized to determine the dominant factors that affect mass loss. Results showed that the decomposition rates in water were significantly higher than those in soil for 1- to 6-year-old rhizomes. However, the sequence of decomposition rates was identical in both water and soil. Significant relationships between mass loss and litter quality factors were observed at a later stage, and P-related factors proved to have a more significant impact than N-related factors on mass loss. According to multiple stepwise models, the C/P ratio was found to be the dominant factor affecting the mass loss in water, and the C/N and C/P ratios were the main factors affecting the mass loss in soil. The combined effects of harvesting, ditch broadening, and control of water depth should be considered for lake administrators.
Regulation of Manganese Antioxidants by Nutrient Sensing Pathways in Saccharomyces cerevisiae
Reddi, Amit R.; Culotta, Valeria C.
2011-01-01
In aerobic organisms, protection from oxidative damage involves the combined action of enzymatic and nonproteinaceous cellular factors that collectively remove harmful reactive oxygen species. One class of nonproteinaceous antioxidants includes small molecule complexes of manganese (Mn) that can scavenge superoxide anion radicals and provide a backup for superoxide dismutase enzymes. Such Mn antioxidants have been identified in diverse organisms; however, nothing regarding their physiology in the context of cellular adaptation to stress was known. Using a molecular genetic approach in Bakers’ yeast, Saccharomyces cerevisiae, we report that the Mn antioxidants can fall under control of the same pathways used for nutrient sensing and stress responses. Specifically, a serine/threonine PAS-kinase, Rim15p, that is known to integrate phosphate, nitrogen, and carbon sensing, can also control Mn antioxidant activity in yeast. Rim15p is negatively regulated by the phosphate-sensing kinase complex Pho80p/Pho85p and by the nitrogen-sensing Akt/S6 kinase homolog, Sch9p. We observed that loss of either of these upstream kinase sensors dramatically inhibited the potency of Mn as an antioxidant. Downstream of Rim15p are transcription factors Gis1p and the redundant Msn2/Msn4p pair that typically respond to nutrient and stress signals. Both transcription factors were found to modulate the potency of the Mn antioxidant but in opposing fashions: loss of Gis1p was seen to enhance Mn antioxidant activity whereas loss of Msn2/4p greatly suppressed it. Our observed roles for nutrient and stress response kinases and transcription factors in regulating the Mn antioxidant underscore its physiological importance in aerobic fitness. PMID:21926297
Input-output budgets of selected nutrients on an experimental watershed near Parsons, West Virginia
J. D. Helvey; Samuel H. Kunkle; Samuel H. Kunkle
1986-01-01
A control watershed at the Fernow Experimental Watershed effectively neutralizes acids received in precipitation. However, sulfate input by precipitation greatly exceeds sulfate losses as streamflow and watershed acidification is a real concern.
Chronic nutrient enrichment increases prevalence and severity of coral disease and bleaching.
Vega Thurber, Rebecca L; Burkepile, Deron E; Fuchs, Corinne; Shantz, Andrew A; McMinds, Ryan; Zaneveld, Jesse R
2014-02-01
Nutrient loading is one of the strongest drivers of marine habitat degradation. Yet, the link between nutrients and disease epizootics in marine organisms is often tenuous and supported only by correlative data. Here, we present experimental evidence that chronic nutrient exposure leads to increases in both disease prevalence and severity and coral bleaching in scleractinian corals, the major habitat-forming organisms in tropical reefs. Over 3 years, from June 2009 to June 2012, we continuously exposed areas of a coral reef to elevated levels of nitrogen and phosphorus. At the termination of the enrichment, we surveyed over 1200 scleractinian corals for signs of disease or bleaching. Siderastrea siderea corals within enrichment plots had a twofold increase in both the prevalence and severity of disease compared with corals in unenriched control plots. In addition, elevated nutrient loading increased coral bleaching; Agaricia spp. of corals exposed to nutrients suffered a 3.5-fold increase in bleaching frequency relative to control corals, providing empirical support for a hypothesized link between nutrient loading and bleaching-induced coral declines. However, 1 year later, after nutrient enrichment had been terminated for 10 months, there were no differences in coral disease or coral bleaching prevalence between the previously enriched and control treatments. Given that our experimental enrichments were well within the ranges of ambient nutrient concentrations found on many degraded reefs worldwide, these data provide strong empirical support to the idea that coastal nutrient loading is one of the major factors contributing to the increasing levels of both coral disease and coral bleaching. Yet, these data also suggest that simple improvements to water quality may be an effective way to mitigate some coral disease epizootics and the corresponding loss of coral cover in the future. © 2013 John Wiley & Sons Ltd.
Maltais-Landry, Gabriel; Neufeld, Katarina; Poon, David; Grant, Nicholas; Nesic, Zoran; Smukler, Sean
2018-04-01
Manure-based soil amendments (herein "amendments") are important fertility sources, but differences among amendment types and management can significantly affect their nutrient value and environmental impacts. A 6-month in situ decomposition experiment was conducted to determine how protection from wintertime rainfall affected nutrient losses and greenhouse gas (GHG) emissions in poultry (broiler chicken and turkey) and horse amendments. Changes in total nutrient concentration were measured every 3 months, changes in ammonium (NH 4 + ) and nitrate (NO 3 - ) concentrations every month, and GHG emissions of carbon dioxide (CO 2 ), methane (CH 4 ), and nitrous oxide (N 2 O) every 7-14 days. Poultry amendments maintained higher nutrient concentrations (except for K), higher emissions of CO 2 and N 2 O, and lower CH 4 emissions than horse amendments. Exposing amendments to rainfall increased total N and NH 4 + losses in poultry amendments, P losses in turkey and horse amendments, and K losses and cumulative N 2 O emissions for all amendments. However, it did not affect CO 2 or CH 4 emissions. Overall, rainfall exposure would decrease total N inputs by 37% (horse), 59% (broiler chicken), or 74% (turkey) for a given application rate (wet weight basis) after 6 months of decomposition, with similar losses for NH 4 + (69-96%), P (41-73%), and K (91-97%). This study confirms the benefits of facilities protected from rainfall to reduce nutrient losses and GHG emissions during amendment decomposition. The impact of rainfall protection on nutrient losses and GHG emissions was monitored during the decomposition of broiler chicken, turkey, and horse manure-based soil amendments. Amendments exposed to rainfall had large ammonium and potassium losses, resulting in a 37-74% decrease in N inputs when compared with amendments protected from rainfall. Nitrous oxide emissions were also higher with rainfall exposure, although it had no effect on carbon dioxide and methane emissions. Overall, this work highlights the benefits of rainfall protection during amendment decomposition to reduce nutrient losses and GHG emissions.
Reducing nutrient movement in manure-treated, tile-drained fields
USDA-ARS?s Scientific Manuscript database
Loss of nutrients from cropped soil represents an economic loss to producers and a threat to environmental quality. In this study, we monitored water, nutrient, and sediment in tile drainage from agricultural fields treated with manure in western Minnesota. Phosphorus results will be presented here....
Effects of nutrient loading on the carbon balance of coastal wetland sediments
Morris, J.T.; Bradley, P.M.
1999-01-01
Results of a 12-yr study in an oligotrophic South Carolina salt marsh demonstrate that soil respiration increased by 795 g C m-2 yr-1 and that carbon inventories decreased in sediments fertilized with nitrogen and phosphorus. Fertilized plots became net sources of carbon to the atmosphere, and sediment respiration continues in these plots at an accelerated pace. After 12 yr of treatment, soil macroorganic matter in the top 5 cm of sediment was 475 g C m-2 lower in fertilized plots than in controls, which is equivalent to a constant loss rate of 40 g C m-2 yr-1. It is not known whether soil carbon in fertilized plots has reached a new equilibrium or continues to decline. The increase in soil respiration in the fertilized plots was far greater than the loss of sediment organic matter, which indicates that the increase in soil respiration was largely due to an increase in primary production. Sediment respiration in laboratory incubations also demonstrated positive effects of nutrients. Thus, the results indicate that increased nutrient loading of oligotrophic wetlands can lead to an increased rate of sediment carbon turnover and a net loss of carbon from sediments.
Tao, Wanghai; Wu, Junhu; Wang, Quanjiu
2017-01-01
Rainfall erosion is a major cause of inducing soil degradation, and rainfall patterns have a significant influence on the process of sediment yield and nutrient loss. The mathematical models developed in this study were used to simulate the sediment and nutrient loss in surface runoff. Four rainfall patterns, each with a different rainfall intensity variation, were applied during the simulated rainfall experiments. These patterns were designated as: uniform-type, increasing-type, increasing- decreasing -type and decreasing-type. The results revealed that changes in the rainfall intensity can have an appreciable impact on the process of runoff generation, but only a slight effect on the total amount of runoff generated. Variations in the rainfall intensity in a rainfall event not only had a significant effect on the process of sediment yield and nutrient loss, but also the total amount of sediment and nutrient produced, and early high rainfall intensity may lead to the most severe erosion and nutrient loss. In this study, the calculated data concur with the measured values. The model can be used to predict the process of surface runoff, sediment transport and nutrient loss associated with different rainfall patterns. PMID:28272431
Symbiotic soil fungi enhance ecosystem resilience to climate change.
Martínez-García, Laura B; De Deyn, Gerlinde B; Pugnaire, Francisco I; Kothamasi, David; van der Heijden, Marcel G A
2017-12-01
Substantial amounts of nutrients are lost from soils through leaching. These losses can be environmentally damaging, causing groundwater eutrophication and also comprise an economic burden in terms of lost agricultural production. More intense precipitation events caused by climate change will likely aggravate this problem. So far it is unresolved to which extent soil biota can make ecosystems more resilient to climate change and reduce nutrient leaching losses when rainfall intensity increases. In this study, we focused on arbuscular mycorrhizal (AM) fungi, common soil fungi that form symbiotic associations with most land plants and which increase plant nutrient uptake. We hypothesized that AM fungi mitigate nutrient losses following intensive precipitation events (higher amount of precipitation and rain events frequency). To test this, we manipulated the presence of AM fungi in model grassland communities subjected to two rainfall scenarios: moderate and high rainfall intensity. The total amount of nutrients lost through leaching increased substantially with higher rainfall intensity. The presence of AM fungi reduced phosphorus losses by 50% under both rainfall scenarios and nitrogen losses by 40% under high rainfall intensity. Thus, the presence of AM fungi enhanced the nutrient interception ability of soils, and AM fungi reduced the nutrient leaching risk when rainfall intensity increases. These findings are especially relevant in areas with high rainfall intensity (e.g., such as the tropics) and for ecosystems that will experience increased rainfall due to climate change. Overall, this work demonstrates that soil biota such as AM fungi can enhance ecosystem resilience and reduce the negative impact of increased precipitation on nutrient losses. © 2017 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.
Hutchesson, M J; Collins, C E; Morgan, P J; Watson, J F; Guest, M; Callister, R
2014-01-01
The primary aim of this secondary analysis was to compare changes in dietary intake among participants randomized to two versions of a 12-week commercial web-based weight loss program (basic or enhanced) with a waiting-list control. An additional investigation compared changes in dietary intake of successful participants (weight loss ≥5%) with those not successful. Dietary intake was assessed at baseline and 12 weeks using a validated 120-item semiquantitative food frequency questionnaire. Adults (n=268, 60% female participants, body mass index 32.1 ± 3.9) classified as plausible reporters of energy intake were included in the analyses. Analysis of covariance with baseline observations carried forward for drop-outs (n=38) was used. The basic and enhanced groups significantly increased their percentage of energy contribution from fruits and reduced energy-dense, nutrient-poor foods compared with controls (P<0.001). Successful participants (n=49) reported superior improvements in dietary intake including greater reductions in the mean daily energy intake (P<0.001), the percentage of energy from energy-dense, nutrient-poor foods (-12.0% E vs -4.3% E, P<0.001) and greater increases in the energy contribution from fruits (P<0.001), vegetables (P=0.003) and breads/cereals (P=0.02). Use of a commercial web-based weight loss program facilitated some improvements in the dietary intake. The enhanced web-based tools appeared not to have generated greater improvements in reported dietary intake, compared with the basic or control groups. Those who achieved a weight loss of ≥5% improved their dietary intake in line with the program recommendations and dietary guidelines. Further research to determine web-based components that may improve success and the reasons why programs are successful for some participants is required.
A review of mathematical modeling and simulation of controlled-release fertilizers.
Irfan, Sayed Ameenuddin; Razali, Radzuan; KuShaari, KuZilati; Mansor, Nurlidia; Azeem, Babar; Ford Versypt, Ashlee N
2018-02-10
Nutrients released into soils from uncoated fertilizer granules are lost continuously due to volatilization, leaching, denitrification, and surface run-off. These issues have caused economic loss due to low nutrient absorption efficiency and environmental pollution due to hazardous emissions and water eutrophication. Controlled-release fertilizers (CRFs) can change the release kinetics of the fertilizer nutrients through an abatement strategy to offset these issues by providing the fertilizer content in synchrony with the metabolic needs of the plants. Parametric analysis of release characteristics of CRFs is of paramount importance for the design and development of new CRFs. However, the experimental approaches are not only time consuming, but they are also cumbersome and expensive. Scientists have introduced mathematical modeling techniques to predict the release of nutrients from the CRFs to elucidate fundamental understanding of the dynamics of the release processes and to design new CRFs in a shorter time and with relatively lower cost. This paper reviews and critically analyzes the latest developments in the mathematical modeling and simulation techniques that have been reported for the characteristics and mechanisms of nutrient release from CRFs. The scope of this review includes the modeling and simulations techniques used for coated, controlled-release fertilizers. Copyright © 2017 Elsevier B.V. All rights reserved.
Significant or negligible sediment and nutrient losses after fire? Pre- and post-fire comparisons
NASA Astrophysics Data System (ADS)
Shakesby, R. A.; Ferreira, A. J. D.; Ferreira, C. S. S.; Stoof, C. R.; Urbanek, E.; Walsh, R. P. D.
2009-04-01
Prescribed fire (or a controlled burn) is a management tool used in wildfire-prone areas to reduce the fuel load of living and dead biomass, while attempting to keep disturbance of the ground surface and soil to a minimum. We know that wildfire, particularly of moderate or extreme severity, can cause important changes to the chemical and physical properties of soil, typically leading to a reduction in aggregate stability, surface roughness and water storage capacity, and an increase in overland flow. It has also been shown that wildfire disturbance can cause major loss of soil, particularly at plot and hillslope scales. There is less information on soil losses at catchment scales, but it is known that losses particularly of organic-rich fine sediment and nutrients can undergo hillslope to channel transfer, where they can affect water quality. Far less research has been carried out into the effects of prescribed fire on soil and nutrient losses at all scales, but particularly at catchment scales. This paper considers the impact of an experimental fire (equivalent to a severe prescribed fire) on soil and nutrient losses. These losses have been monitored at a range of scales (small rainfall simulation plots, long-term erosion plot, erosion plot, hillslope sediment traps (sediment fences) and catchment) before and after the fire in a 10-ha catchment near Góis, central Portugal, which forms part of the 5-year DESIRE research programme concerning desertification and its mitigation at a range of study sites worldwide. The catchment has steep slopes covered mainly with scrub vegetation ranging from c. 0.15 to 2m in height. The soil is thin, stony and highly water repellent. Long-term pre-burn erosion rates are known from a c. 10-year record of soil losses from a small erosion plot (8 x 2m in size) and sediment accumulation in the weir pool of a subcatchment gauging station. Rainfall simulations carried out under dry and wet antecedent conditions before and after the fire, eroded soil collected in sediment fences installed in strategic locations on the catchment slopes and suspended sediment and bedload determinations at the catchment gauging station provide the evidence for pre- and post-fire erosional losses. Comparison with wildfire effects is provided by instrumented scrub-covered hillslopes burnt in early summer 2008 in the same area. In addition to monitoring soil losses in the small catchment, losses of selected nutrients in eroded soil and runoff together with determinations of pre- and post-fire vegetation cover, fuel loads and soil water repellency have been determined. The soil degradational implications are discussed and placed in the context of the literature on prescribed fire and wildfire impacts from elsewhere in the Mediterranean and from further afield.
Pendleton, Richard M.; Hoeinghaus, David J.; Gomes, Luiz C.; Agostinho, Angelo A.
2014-01-01
Experiments with realistic scenarios of species loss from multitrophic ecosystems may improve insight into how biodiversity affects ecosystem functioning. Using 1000 L mesocoms, we examined effects of nonrandom species loss on community structure and ecosystem functioning of experimental food webs based on multitrophic tropical floodplain lagoon ecosystems. Realistic biodiversity scenarios were developed based on long-term field surveys, and experimental assemblages replicated sequential loss of rare species which occurred across all trophic levels of these complex food webs. Response variables represented multiple components of ecosystem functioning, including nutrient cycling, primary and secondary production, organic matter accumulation and whole ecosystem metabolism. Species richness significantly affected ecosystem function, even after statistically controlling for potentially confounding factors such as total biomass and direct trophic interactions. Overall, loss of rare species was generally associated with lower nutrient concentrations, phytoplankton and zooplankton densities, and whole ecosystem metabolism when compared with more diverse assemblages. This pattern was also observed for overall ecosystem multifunctionality, a combined metric representing the ability of an ecosystem to simultaneously maintain multiple functions. One key exception was attributed to time-dependent effects of intraguild predation, which initially increased values for most ecosystem response variables, but resulted in decreases over time likely due to reduced nutrient remineralization by surviving predators. At the same time, loss of species did not result in strong trophic cascades, possibly a result of compensation and complexity of these multitrophic ecosystems along with a dominance of bottom-up effects. Our results indicate that although rare species may comprise minor components of communities, their loss can have profound ecosystem consequences across multiple trophic levels due to a combination of direct and indirect effects in diverse multitrophic ecosystems. PMID:24416246
Reducing soil erosion and nutrient loss on sloping land under crop-mulberry management system.
Fan, Fangling; Xie, Deti; Wei, Chaofu; Ni, Jiupai; Yang, John; Tang, Zhenya; Zhou, Chuan
2015-09-01
Sloping croplands could result in soil erosion, which leads to non-point source pollution of the aquatic system in the Three Gorges Reservoir Region. Mulberry, a commonly grown cash plant in the region, is traditionally planted in contour hedgerows as an effective management practice to control soil erosion and non-point source pollution. In this field study, surface runoff and soil N and P loss on sloping land under crop-mulberry management were investigated. The experiments consisted of six crop-mulberry treatments: Control (no mulberry hedgerow with mustard-corn rotation); T1 (two-row contour mulberry with mustard-corn rotation); T2 (three-row contour mulberry with mustard-corn rotation); T3 (border mulberry and one-row contour mulberry with mustard-corn rotation); T4 (border mulberry with mustard-corn rotation); T5 (two-row longitudinal mulberry with mustard). The results indicated that crop-mulberry systems could effectively reduce surface runoff and soil and nutrient loss from arable slope land. Surface runoff from T1 (342.13 m(3) hm(-2)), T2 (260.6 m(3) hm(-2)), T3 (113.13 m(3) hm(-2)), T4 (114 m(3) hm(-2)), and T5 (129 m(3) hm(-2)) was reduced by 15.4, 35.6, 72.0, 71.8, and 68.1%, respectively, while soil loss from T1 (0.21 t hm(-2)), T2 (0.13 t hm(-2)), T3 (0.08 t hm(-2)), T4 (0.11 t hm(-2)), and T5 (0.12 t hm(-2)) was reduced by 52.3, 70.5, 81.8, 75.0, and 72.7%, respectively, as compared with the control. Crop-mulberry ecosystem would also elevate soil N by 22.3% and soil P by 57.4%, and soil nutrient status was contour-line dependent.
Nutrient losses from Fall and Winter-applied manure: Effects of timing and soil temperature
USDA-ARS?s Scientific Manuscript database
Soil temperature is a major environmental factor that affects both the infiltration of meltwater and precipitation, and nutrient cycling. The objectives of this study were to determine nutrient losses in runoff and leachate from fall and winter-applied dairy manure based on the soil temperature at t...
Nutrient losses from fall- and winter-applied manure: effects of timing and soil temperature
USDA-ARS?s Scientific Manuscript database
Soil temperature is a major environmental factor that affects meltwater and precipitation infiltration and nutrient cycling. The objective of this study was to determine nutrient losses in runoff and leachate from fall- and winter-applied dairy manure as affected by soil temperature at the time of a...
O'Reilly, Andrew M.; Wanielista, Martin P.; Chang, Ni-Bin; Xuan, Zhemin; Harris, Willie G.
2012-01-01
Soil beneath a stormwater infiltration basin receiving runoff from a 22.7 ha predominantly residential watershed in central Florida, USA, was amended using biosorption activated media (BAM) to study the effectiveness of this technology in reducing inputs of nitrogen and phosphorus to groundwater. The functionalized soil amendment BAM consists of a 1.0:1.9:4.1 mixture (by volume) of tire crumb (to increase sorption capacity), silt and clay (to increase soil moisture retention), and sand (to promote sufficient infiltration), which was applied to develop a prototype stormwater infiltration basin utilizing nutrient reduction and flood control sub-basins. Comparison of nitrate/chloride (NO3-/Cl-) ratios for the shallow groundwater indicate that prior to using BAM, NO3- concentrations were substantially influenced by nitrification or variations in NO3- input. In contrast, for the prototype basin utilizing BAM, NO3-/Cl- ratios indicate minor nitrification and NO3- losses with the exception of one summer sample that indicated a 45% loss. Biogeochemical indicators (denitrifier activity derived from real-time polymerase chain reaction and variations in major ions, nutrients, dissolved and soil gases, and stable isotopes) suggest NO3- losses are primarily attributable to denitrification, whereas dissimilatory nitrate reduction to ammonium is a minor process. Denitrification was likely occurring intermittently in anoxic microsites in the unsaturated zone, which was enhanced by increased soil moisture within the BAM layer and resultant reductions in surface/subsurface oxygen exchange that produced conditions conducive to increased denitrifier activity. Concentrations of total dissolved phosphorus and orthophosphate (PO43-) were reduced by more than 70% in unsaturated zone soil water, with the largest decreases in the BAM layer where sorption was the most likely mechanism for removal. Post-BAM PO43-/Cl- ratios for shallow groundwater indicate predominantly minor increases and decreases in PO43- with the exception of one summer sample that indicated a 50% loss. Differences in nutrient variations between the unsaturated zone and shallow groundwater may be the result of the intensity and duration of nutrient removal processes and mixing ratios with water that had not undergone significant chemical changes. Observed nitrogen and phosphorus losses demonstrate the potential, as well as future research needs to improve performance, of the prototype stormwater infiltration basin using BAM for providing passive, economical, stormwater nutrient-treatment technology to support green infrastructure.
NASA Astrophysics Data System (ADS)
van Beek, Christy; van Duivenbooden, Niek; Noij, Gert-Jan
2014-05-01
The threat of declining soil fertility levels is well known. Yet, and despite numerous efforts, we seem incapable of changing the current situation of sink areas in developed countries and depletion areas in developing countries. With negative consequences (i.e. loss in productive capacity and loss in environmental quality) in both areas. Moreover, due to globalization and urbanization nutrient flows become increasingly disconnected. Soil nutrient depletion cannot simply be compensated for with mineral fertilisers, for the following reasons: • mineral fertilisers are often not affordable for smallholders and fertiliser subsidy systems are not always successful • mineral fertilisers do not contain organic matter and therefore do not halt the degradation of the soil • mineral fertilisers work best in combination with organic sources of nutrients (compost, farm yard manure, etc.) • To halt soil degradation an integrated approach is needed, including reducing losses of nutrients and organic matter from soils at risk. Presently, more actors are getting involved in reallocation of nutrients, especially in the energy and waste sector. Time has come for a new approach to bring together demands and supplies for nutrients. We therefore present the Fertile Grounds Initiative: a broker for nutrient supply and demand in the region. The Fertile Grounds Initiative is based on the findings that: • Organic ánd mineral nutrients are required for increased and sustainable production; • Nutrients have a value and should be treated as such; • Due to globalization and urbanization nutrient flows are ever more polarized between depletion and concentration areas; • The demand for energy poses new threats and opportunities for nutrient management. In the Fertile Grounds Initiative nutrient suppliers from the energy sector, waste management, fertilizer companies, etc. and demands for nutrients from farmers are brought together in a dynamic platform. This platform acts as a nutrient bank and integrates different sources of nutrients into high quality crop nutrition products. A capacity building programme ensures proper application of the nutrients and optimal use of on-farm nutrients. To further shape our ideas of the Fertile Grounds Initiative you are cordially invited to become involved.
... Pets and Animals myhealthfinder Food and Nutrition Healthy Food Choices Weight Loss and Diet Plans Nutrients and Nutritional ... Pets and Animals myhealthfinder Food and Nutrition Healthy Food Choices Weight Loss and Diet Plans Nutrients and Nutritional ...
NASA Astrophysics Data System (ADS)
Sunaryani, A.; Harsono, E.; Rustini, H. A.; Nomosatryo, S.
2018-02-01
Lake Toba is the largest lake in Indonesia utilized as a source of life-support for drinking and clean water, energy sources, aquaculture and tourism. Nowadays the water quality in Lake Toba has decreased due to the presence of excessive nutrient (nitrogen: N and phosphorus: P). This study aims to describe the spatial distribution of nutrient pollution and to develop a decision support tool for the identification and evaluation of nutrient pollution control in Lake Toba. Spatial distribution method was conducted by 2D-multi layers hydrodynamic model, while DPSIR Framework is used as a tool for the assessment. The results showed that the concentration of nutrient was low and tended to increase along the water depth, but nutrient concentration in aquaculture zones was very high and the trophic state index has reached eutrophic state. The principal anthropogenic driving forces were population growth and the development of aquaculture, livestock, agriculture, and tourism. The main environmental pressures showed that aquaculture and livestock waste are the most important nutrient sources (93% of N and 87% of P loads). State analysis showed that high nutrient concentration and increased algal growth lead to oxygen depletion. The impacts of these conditions were massive fish kills, loss of amenities and tourism value, also decreased usability of clean water supply. This study can be a useful information for decision-makers to evaluate nutrient pollution control. Nutrient pollution issue in Lake Toba requires the attention of local government and public society to maintain its sustainability.
Water Quality Protection from Nutrient Pollution: Case ...
Water bodies and coastal areas around the world are threatened by increases in upstream sediment and nutrient loads, which influence drinking water sources, aquatic species, and other ecologic functions and services of streams, lakes, and coastal water bodies. For example, increased nutrient fluxes from the Mississippi River Basin have been linked to increased occurrences of seasonal hypoxia in northern Gulf of Mexico. Lake Erie is another example where in the summer of 2014 nutrients, nutrients, particularly phosphorus, washed from fertilized farms, cattle feedlots, and leaky septic systems; caused a severe algae bloom, much of it poisonous; and resulted in the loss of drinking water for a half-million residents. Our current management strategies for point and non-point source nutrient loadings need to be improved to protect and meet the expected increased future demands of water for consumption, recreation, and ecological integrity. This presentation introduces management practices being implemented and their effectiveness in reducing nutrient loss from agricultural fields, a case analysis of nutrient pollution of the Grand Lake St. Marys and possible remedies, and ongoing work on watershed modeling to improve our understanding on nutrient loss and water quality. Presented at the 3rd International Conference on Water Resource and Environment.
CONTROLS ON NUTRIENT LOSSES FROM A FORESTED BASIN IN THE OREGON COAST RANGE
Although conceptual models of watershed biogeochemistry emphasize the movement of materials from the land to the sea, important transfers occur in the reverse direction in coastal watersheds through salt spray deposition and returning anadromous fish. To understand the connectio...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nabholz, J. V.; Crossley, Jr., D. A.
The objective was to test the hypothesis that destruction of a biotic compartment of an ecosystem will increase system nutrient loss. Four ecosystems were described and their input-output budgets monitored. The vegetation of one ecosystem was killed with an herbicide. In another, an insecticide eliminated arthropods. The remaining two were controls.
EVALUATION OF MEASURES FOR CONTROLLING SEDIMENT AND NUTRIENT LOSSES FROM IRRIGATED AREAS
Field studies were conducted in two southern Idaho areas to determine the effects of different management practices on the quality and quantity of the runoff from surface-irrigated fields. Pollutant removal systems (primarily mini-basins, vegetated buffer strips and sediment rete...
Hannafin, J A; Arnoczky, S P
1994-05-01
This study was designed to determine the effects of various loading conditions (no load and static and cyclic tensile load) on the water content and pattern of nutrient diffusion of canine flexor tendons in vitro. Region D (designated by Okuda et al.) of the flexor digitorum profundus was subjected to a cyclic or static tensile load of 100 g for times ranging from 5 minutes to 24 hours. The results demonstrated a statistically significant loss of water in tendons subjected to both types of load as compared with the controls (no load). This loss appeared to progress with time. However, neither static nor cyclic loading appeared to alter the diffusion of 3H-glucose into the tendon over a 24-hour period compared with the controls. These results suggest that any benefit in tendon repair derived from intermittent passive motion is probably not a result of an increase in the diffusion of small nutrients in response to intermittent tensile load.
... Pets and Animals myhealthfinder Food and Nutrition Healthy Food Choices Weight Loss and Diet Plans Nutrients and Nutritional ... Pets and Animals myhealthfinder Food and Nutrition Healthy Food Choices Weight Loss and Diet Plans Nutrients and Nutritional ...
Miller, G D; Beavers, D P; Hamm, D; Mihalko, S L; Messier, S P
2017-01-01
Dietary restriction in obese older adults undergoing weight loss may exacerbate nutrient deficiencies common in this group; the nutritional health of older adults is a factor in their quality of life, disability, and mortality. This study examined the effect of an 18-month weight loss program based in social cognitive theory incorporating partial meal replacements, on nutrient intake in older overweight and obese adults. The following analysis is from the Intensive Diet and Exercise for Arthritis (IDEA) trial, a single-blind, randomized controlled trial. Individuals were randomized into one of three 18-month interventions: exercise (E); intensive diet-induced weight loss (D); or intensive diet-induced weight loss plus exercise (D+E). The study setting was at a university research facility. Overweight and obese older adults (n=388; BMI=33.7±3.8 kg/m2; 65.8±6.1 years) were recruited. The D and D+E interventions (group mean goal of ≥10% loss by 18-months) utilized partial meal replacements (2 meal replacement shakes/day for 6-months). Exercise training for E and D+E was 3 days/week, 60 minutes/day. Three day food records were collected at baseline, 6-months, and 18-months and analyzed for total energy and macro- and micronutrient intake. Comparisons of dietary intake among treatment groups were performed at 6 and 18 months using mixed linear models. Weight loss at 18-months was 11.3±8.3% (D), 10.3±6.8% (D+E), and 1.2±4.2% (E). Meal replacements were used by more than 60% (6-months) and 50% (18-months) of D and D+E participants, compared to ≤15% for E. Both D and D+E consumed less energy and fat, and more carbohydrates and selected micronutrients than E during follow-up. More than 50% of all participants consumed less than the recommended intake of particular vitamins and minerals. The diet intervention improved intakes of several nutrients. However, inadequate intake of several vitamins and minerals of concern for older adults suggests they need further guidance to assure adequate intake.
Reducing nutrient losses in runoff from furrow irrigation
USDA-ARS?s Scientific Manuscript database
Few studies have comprehensively examined nutrient losses in runoff from furrow-irrigated fields, but the rising cost of fertilizer and finite nature of the resource encourages further research. A 2-yr experiment measured runoff losses of sediment, particulate P and N, and dissolved NO3-N, NH4-N, K...
Prairie and turf buffer strips for controlling runoff from paved surfaces.
Steinke, K; Stier, J C; Kussow, W R; Thompson, A
2007-01-01
Eutrophication of surface waters due to nonpoint source pollution from urban environments has raised awareness of the need to decrease runoff from roads and other impervious surfaces. These concerns have led to precautionary P application restrictions on turf and requirements for vegetative buffer strips. The impacts of two plant communities and three impervious/pervious surface ratios were assessed on runoff water quality and quantity. A mixed forb/grass prairie and a Kentucky bluegrass (Poa pratensis L.) blend were seeded and runoff was monitored and analyzed for total volume, total P, soluble P, soluble organic P, bioavailable P, total suspended solids, and total organic suspended solids. Mean annual runoff volumes, all types of mean annual P nutrient losses, and sediment loads were not significantly affected by treatments because over 80% of runoff occurred during frozen soil conditions. Total P losses from prairie and turf were similar, averaging 1.96 and 2.12 kg ha(-1) yr(-1), respectively. Vegetation appeared to be a likely contributor of nutrients, particularly from prairie during winter dormancy. When runoff occurred during non-frozen soil conditions turf allowed significantly (P < or = 0.10) lower runoff volumes compared with prairie vegetation and the 1:2 and 1:4 impervious/pervious surface ratios had less runoff than the 1:1 ratio (P < or = 0.05). In climates where the majority of runoff occurs during frozen ground conditions, vegetative buffers strips alone are unlikely to dramatically reduce runoff and nutrient loading into surface waters. Regardless of vegetation type or size, natural nutrient biogeochemical cycling will cause nutrient loss in surface runoff waters, and these values may represent baseline thresholds below which values cannot be obtained.
Evaluation of Karst Soil Erosion and Nutrient Loss Based on RUSLE Model in Guizhou Province
NASA Astrophysics Data System (ADS)
Zeng, Cheng; Li, Yangbing; Bai, Xiaoyong; Luo, Guangjie
2018-01-01
Based on GIS technology and RUSLE model, the spatial variation characteristics of soil erosion were analyzed in karst areas, and the relationship between soil erosion and soil nutrient loss was discussed. The results showed that the soil differences in spatial variation between nutrient losses. The results illustrate the total soil erosion in is 10316.31 × 104t • a-1, accounting for 84.95% of the total land area in Guizhou Province. The spatial distribution of soil erosion showing the characteristics of the southeast to the northwest strip. The annual average soil erosion modulu is 691.94 t • km-2 • a-1, of which karst is 720.28t • km-2 • a-1 and non-karst is 689.53 t • km-2 • a-1. The total nutrient losses such as soil organic carbon (SOC), total nitrogen (TN), total phosphorus (TP) and total potassium (TK) were 596.72 × 104t • a-1 due to soil erosion, and SOC, TN and TP and TK were 38.13, 1.61, 0.41 and 14.70t • km-2 • a-1, respectively. The average amount of loss and total loss are the largest in non-karst, and four kinds of nutrient is the smallest in karst gorge. The spatial variation of soil erosion in the study area is the process of increasing the erosion area with the increase of the erosion rate, and the difference of the spatial distribution of soil erosion determines the spatial distribution of soil nutrient loss.
... Pets and Animals myhealthfinder Food and Nutrition Healthy Food Choices Weight Loss and Diet Plans Nutrients and Nutritional ... Pets and Animals myhealthfinder Food and Nutrition Healthy Food Choices Weight Loss and Diet Plans Nutrients and Nutritional ...
Nutrient Runoff Losses from Liquid Dairy Manure Applied with Low-Disturbance Methods.
Jokela, William; Sherman, Jessica; Cavadini, Jason
2016-09-01
Manure applied to cropland is a source of phosphorus (P) and nitrogen (N) in surface runoff and can contribute to impairment of surface waters. Tillage immediately after application incorporates manure into the soil, which may reduce nutrient loss in runoff as well as N loss via NH volatilization. However, tillage also incorporates crop residue, which reduces surface cover and may increase erosion potential. We applied liquid dairy manure in a silage corn ( L.)-cereal rye ( L.) cover crop system in late October using methods designed to incorporate manure with minimal soil and residue disturbance. These include strip-till injection and tine aerator-band manure application, which were compared with standard broadcast application, either incorporated with a disk or left on the surface. Runoff was generated with a portable rainfall simulator (42 mm h for 30 min) three separate times: (i) 2 to 5 d after the October manure application, (ii) in early spring, and (iii) after tillage and planting. In the postmanure application runoff, the highest losses of total P and dissolved reactive P were from surface-applied manure. Dissolved P loss was reduced 98% by strip-till injection; this result was not statistically different from the no-manure control. Reductions from the aerator band method and disk incorporation were 53 and 80%, respectively. Total P losses followed a similar pattern, with 87% reduction from injected manure. Runoff losses of N had generally similar patterns to those of P. Losses of P and N were, in most cases, lower in the spring rain simulations with fewer significant treatment effects. Overall, results show that low-disturbance manure application methods can significantly reduce nutrient runoff losses compared with surface application while maintaining residue cover better than incorporation by tillage. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Organic Biochar Based Fertilization
NASA Astrophysics Data System (ADS)
Schmidt, Hans-Peter; Pandit, Bishnu Hari; Cornelissen, Gerard; Kammann, Claudia
2017-04-01
Biochar produced in cost-efficient flame curtain kilns (Kon-Tiki) was nutrient enriched either with cow urine or with dissolved mineral (NPK) fertilizer to produce biochar-based fertilizers containing between 60-100 kg N, 5-60 kg P2O5 and 60-100 kg K2O, respectively, per ton of biochar. In 21 field trials nutrient-enriched biochars were applied at rates of 0.5 to 2 t ha-1 into the root zone of 13 different annual and perennial crops. Treatments combining biochar, compost and organic or chemical fertilizer were evaluated; control treatments contained the same amounts of nutrients but without biochar. All nutrient-enriched biochar substrates improved yields compared to their respective no-biochar controls. Biochar enriched with dissolved NPK produced on average 20% ± 5.1% (N=4) higher yields than standard NPK fertilization without biochar. Cow urine-enriched biochar blended with compost resulted on average in 123% ± 76.7% (N=13) higher yields compared to the organic farmer practice with cow urine-blended compost and outcompeted NPK-enriched biochar (same nutrient dose) by 103% ± 12.4% (N=4) on average. 21 field trials robustly revealed that low-dosage root zone application of organic biochar-based fertilizers caused substantial yield increases in rather fertile silt loam soils compared to traditional organic fertilization and to mineral NPK- or NPK-biochar fertilization. This can likely be explained by the nutrient carrier effect of biochar causing a slow nutrient release behavior, more balanced nutrient fluxes and reduced nutrient losses especially when liquid organic nutrients are used for the biochar enrichment. The results promise new pathways for optimizing organic farming and improving on-farm nutrient cycling.
Petit, Lolita; Ma, Shan; Cipi, Joris; Cheng, Shun-Yun; Zieger, Marina; Hay, Nissim; Punzo, Claudio
2018-05-29
Aerobic glycolysis accounts for ∼80%-90% of glucose used by adult photoreceptors (PRs); yet, the importance of aerobic glycolysis for PR function or survival remains unclear. Here, we further established the role of aerobic glycolysis in murine rod and cone PRs. We show that loss of hexokinase-2 (HK2), a key aerobic glycolysis enzyme, does not affect PR survival or structure but is required for normal rod function. Rods with HK2 loss increase their mitochondrial number, suggesting an adaptation to the inhibition of aerobic glycolysis. In contrast, cones adapt without increased mitochondrial number but require HK2 to adapt to metabolic stress conditions such as those encountered in retinitis pigmentosa, where the loss of rods causes a nutrient shortage in cones. The data support a model where aerobic glycolysis in PRs is not a necessity but rather a metabolic choice that maximizes PR function and adaptability to nutrient stress conditions. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
Long-term Nutrient Fertilization Increases CO2 Loss in Arctic Tundra
NASA Astrophysics Data System (ADS)
Graham, L. M.; Natali, S.; Rastetter, E. B.; Shaver, G. R.; Risk, D. A.; Loranty, M. M.; Jastrow, J. D.
2015-12-01
As anthropogenic climate change warms the Arctic, organic carbon (C) trapped in permafrost is at an increased risk of being released to the atmosphere as carbon dioxide (CO2). At the same time, higher rates of decomposition may increase nutrient availability and enhance plant growth, leading to an uptake of C that may offset respiratory losses. Arctic tundra ecosystems are highly nitrogen (N) limited, and the indirect effects of warming on nutrient availability will be the most likely outcome of increased temperature on plant productivity. This study aims to understand the effects of nutrient addition on arctic CO2 and H2O exchange in a tundra ecosystem at Toolik Lake Field Station, Alaska. The nutrient addition experiment, which began in 2006, is comprised of 7 fertilization treatments: 0.5, 1, 2, 5, and 10 g m-2 of N as NO3- and NH4+ (1:1) with 0.25, 0.5, 1, 2.5, and 5 g m-2 of phosphorus as PO43-; 5 g m-2 of N as NO3-; 5 g m-2 of N as NH4+, and one control plot. Plot-level CO2 and H2O exchange was measured at 5 light levels 7 times over a four-week period in June and July 2015. We measured ecosystem CO2 and H2O exchange using a rectangular plexiglass chamber (0.49 m2) that was connected to an infrared gas analyzer (LI-840). Other ecosystem variables measured include thaw depth, soil moisture and temperature, and normalized difference vegetation index. After 10 years of nutrient addition, fertilization significantly altered ecosystem C cycling. Soil respiration was greatest in the highest fertilization treatment (2.97 μmol m-2 s-1), increasing linearly with nutrient level at a rate of 0.133 μmol m-2 s-1 per g m-2 of N added (R2=0.914). Net CO2 uptake was greatest under highest fertilization (-2.06 μmol m-2 s-1), decreasing linearly with nutrient addition at a rate of -0.068 μmol m-2 s-1 per g m-2 of N added (R2=0.687). These results suggest that as nutrients become more available under a warmer climate, plant productivity increases may not offset respiratory losses, leading to a positive feedback to global climate.
Continuous feedings of fortified human milk lead to nutrient losses of fat, calcium, and phosphorous
USDA-ARS?s Scientific Manuscript database
Substantial losses of nutrients may occur during tube (gavage) feeding of fortified human milk. Our objective was to compare the losses of key macronutrients and minerals based on method of fortification, and gavage feeding method. We used clinically available gavage feeding systems and measured pre...
Impact of prescribed fire on understory and forest floor nutrients
Walter A. Hough
1981-01-01
The impact of low-intensity prescribed fires on slash pine/saw-palmetto/gallberry understory and forest floor nutrients was estimated from measurements before and after burning. Highly significant correlations existed between weight loss of these fuel components and the weight loss of several elements. Energy loss was also highly correlated with forestfloor and...
Getting the Most from Your OTC Medicine
... Pets and Animals myhealthfinder Food and Nutrition Healthy Food Choices Weight Loss and Diet Plans Nutrients and Nutritional ... Pets and Animals myhealthfinder Food and Nutrition Healthy Food Choices Weight Loss and Diet Plans Nutrients and Nutritional ...
NASA Astrophysics Data System (ADS)
Mutema, M.; Chaplot, V.; Jewitt, G.; Chivenge, P.; Blöschl, G.
2015-11-01
Process controls on water, sediment, nutrient, and organic carbon exports from the landscape through runoff are not fully understood. This paper provides analyses from 446 sites worldwide to evaluate the impact of environmental factors (MAP and MAT: mean annual precipitation and temperature; CLAY and BD: soil clay content and bulk density; S: slope gradient; LU: land use) on annual exports (RC: runoff coefficients; SL: sediment loads; TOCL: organic carbon losses; TNL: nitrogen losses; TPL: phosphorus losses) from different spatial scales. RC was found to increase, on average, from 18% at local scale (in headwaters), 25% at microcatchment and subcatchment scale (midreaches) to 41% at catchment scale (lower reaches of river basins) in response to multiple factors. SL increased from microplots (468 g m-2 yr-1) to plots (901 g m-2 yr-1), accompanied by decreasing TOCL and TNL. Climate was a major control masking the effects of other factors. For example, RC, SL, TOCL, TNL, and TPL tended to increase with MAP at all spatial scales. These variables, however, decreased with MAT. The impact of CLAY, BD, LU, and S on erosion variables was largely confined to the hillslope scale, where RC, SL, and TOCL decreased with CLAY, while TNL and TPL increased. The results contribute to better understanding of water, nutrient, and carbon cycles in terrestrial ecosystems and should inform river basin modeling and ecosystem management. The important role of spatial climate variability points to a need for comparative research in specific environments at nested spatiotemporal scales.
Ramírez, Sara; Gómez-Valadés, Alicia G; Schneeberger, Marc; Varela, Luis; Haddad-Tóvolli, Roberta; Altirriba, Jordi; Noguera, Eduard; Drougard, Anne; Flores-Martínez, Álvaro; Imbernón, Mónica; Chivite, Iñigo; Pozo, Macarena; Vidal-Itriago, Andrés; Garcia, Ainhoa; Cervantes, Sara; Gasa, Rosa; Nogueiras, Ruben; Gama-Pérez, Pau; Garcia-Roves, Pablo M; Cano, David A; Knauf, Claude; Servitja, Joan-Marc; Horvath, Tamas L; Gomis, Ramon; Zorzano, Antonio; Claret, Marc
2017-06-06
Proopiomelanocortin (POMC) neurons are critical sensors of nutrient availability implicated in energy balance and glucose metabolism control. However, the precise mechanisms underlying nutrient sensing in POMC neurons remain incompletely understood. We show that mitochondrial dynamics mediated by Mitofusin 1 (MFN1) in POMC neurons couple nutrient sensing with systemic glucose metabolism. Mice lacking MFN1 in POMC neurons exhibited defective mitochondrial architecture remodeling and attenuated hypothalamic gene expression programs during the fast-to-fed transition. This loss of mitochondrial flexibility in POMC neurons bidirectionally altered glucose sensing, causing abnormal glucose homeostasis due to defective insulin secretion by pancreatic β cells. Fed mice lacking MFN1 in POMC neurons displayed enhanced hypothalamic mitochondrial oxygen flux and reactive oxygen species generation. Central delivery of antioxidants was able to normalize the phenotype. Collectively, our data posit MFN1-mediated mitochondrial dynamics in POMC neurons as an intrinsic nutrient-sensing mechanism and unveil an unrecognized link between this subset of neurons and insulin release. Copyright © 2017 Elsevier Inc. All rights reserved.
Anjum, Naser A.; Gill, Sarvajeet S.; Umar, Shahid; Ahmad, Iqbal; Duarte, Armando C.; Pereira, Eduarda
2012-01-01
Mineral nutrients are the integral part of the agricultural systems. Among important plant nutrients, nitrogen (N) and sulphur (S) are known essential elements for growth, development, and various physiological functions in plants. Oleiferous brassicas (rapeseed and mustard) require higher amounts of S in addition to N for optimum growth and yield. Therefore, balancing S-N fertilization, optimization of nutrient replenishment, minimization of nutrient losses to the environment, and the concept of coordination in action between S and N could be a significant strategy for improvement of growth and productivity of oleiferous brassicas. Additionally, positive interaction between S and N has been reported to be beneficial for various aspects of oilseed brassicas. The current paper updates readers on the significance of N and S for the improvement of plant growth, development, and productivity in detail. In addition, S-N nutrition-mediated control of major plant antioxidant defense system components involved in the removal and/or metabolism of stress-induced/generated reactive oxygen species in plants (hence, the control of plant growth, development, and productivity) has been overviewed. PMID:22629181
Heer, Martina
2012-01-01
Nutrients affect hunger and satiety. However, food structure, in particular that of emulsions, may also affect the body's satiety mechanisms. Olibra™ is a fat emulsion, a mixture of fractionated palm oil and fractionated oat oil manufactured by Lipid Technologies Provider AB, Sweden, which affects hunger sensation. However, up to now, no data have shown convincingly that reduced appetite or hunger sensations induced by Olibra lead, in the long run, to a significant and clinically relevant reduction in body mass. To clearly demonstrate a cause-and-effect relationship of Olibra to weight loss, it seems that longer studies with strict control of energy intake and nutrient composition, as well as control of energy expenditure by exercise, are needed. PMID:22768903
Nutrient enrichment enhances black band disease progression in corals
NASA Astrophysics Data System (ADS)
Voss, Joshua D.; Richardson, Laurie L.
2006-11-01
Infectious diseases are recognized as significant contributors to the dramatic loss of corals observed worldwide. However, the causes of increased coral disease prevalence and severity are not well understood. One potential factor is elevated nutrient concentration related to localized anthropogenic activities such as inadequate waste water treatment or terrestrial runoff. In this study the effect of nutrient enrichment on the progression of black band disease (BBD) was investigated using both in situ and laboratory experiments. Experimental increases in localized nutrient availability using commercial time release fertilizer in situ resulted in doubling of BBD progression and coral tissue loss in the common reef framework coral Siderastrea siderea. Laboratory experiments in which artificially infected S. siderea colonies were exposed to increased nitrate concentrations (up to 3 μM) demonstrated similar increases in BBD progression. These findings provide evidence that the impacts of this disease on coral populations are exacerbated by nutrient enrichment and that management to curtail excess nutrient loading may be important for reducing coral cover loss due to BBD.
Photodegradation alleviates the lignin bottleneck for carbon turnover in terrestrial ecosystems
Austin, Amy T.; Méndez, M. Soledad; Ballaré, Carlos L.
2016-01-01
A mechanistic understanding of the controls on carbon storage and losses is essential for our capacity to predict and mitigate human impacts on the global carbon cycle. Plant litter decomposition is an important first step for carbon and nutrient turnover, and litter inputs and losses are essential in determining soil organic matter pools and the carbon balance in terrestrial ecosystems. Photodegradation, the photochemical mineralization of organic matter, has been recently identified as a mechanism for previously unexplained high rates of litter mass loss in arid lands; however, the global significance of this process as a control on carbon cycling in terrestrial ecosystems is not known. Here we show that, across a wide range of plant species, photodegradation enhanced subsequent biotic degradation of leaf litter. Moreover, we demonstrate that the mechanism for this enhancement involves increased accessibility to plant litter carbohydrates for microbial enzymes. Photodegradation of plant litter, driven by UV radiation, and especially visible (blue–green) light, reduced the structural and chemical bottleneck imposed by lignin in secondary cell walls. In leaf litter from woody species, specific interactions with UV radiation obscured facilitative effects of solar radiation on biotic decomposition. The generalized effect of sunlight exposure on subsequent microbial activity, mediated by increased accessibility to cell wall polysaccharides, suggests that photodegradation is quantitatively important in determining rates of mass loss, nutrient release, and the carbon balance in a broad range of terrestrial ecosystems. PMID:27044070
Remote sensing to monitor cover crop adoption in southeastern Pennsylvania
USDA-ARS?s Scientific Manuscript database
In the Chesapeake Bay watershed, winter cereal cover crops are often planted in rotation with summer crops to reduce the loss of nutrients and sediment from agricultural systems. Cover crops can also improve soil health, control weeds and pests, supplement forage needs, and support resilient croppin...
The role of hillslope hydrology in controlling nutrient loss
Willem J. van Verseveld; Jeffrey J. McDonnell; Kate Lajtha
2009-01-01
Hydrological controls on DOC and N transport at the catchment scale were studied for five storm events from the fall of 2004 through the spring of 2005 in WS10, H,J, Andrews Experimental Forest in the western Cascade Mountains of Oregon, This catchment is devoid of any riparian zone and characterized by hillslopes that issue directly into the stream. This enabled us to...
Speratti, Alicia B; Johnson, Mark S; Sousa, Heiriane Martins; Dalmagro, Higo J; Couto, Eduardo Guimarães
2018-04-01
Dissolved organic carbon (DOC) leached from Brazilian Cerrado Arenosols can lead to carbon (C) losses and lower soil fertility, while excessive nutrient, e.g. nitrate (NO 3 - ), leaching can potentially cause water contamination. As biochar has been shown to stabilize C and retain soil nutrients, a greenhouse experiment was conducted to test different biochars' contributions to DOC and NO 3 - leaching from a sandy soil. Biochars were made from four local agricultural waste feedstocks (cotton residue, swine manure, eucalyptus sawmill residue, sugarcane filtercake) pyrolysed at 400, 500 and 600 °C. Biochar was mixed with soil at 5% weight in pots and maize seeds planted. Leachate was collected weekly for six weeks and analyzed for DOC and NO 3 - concentrations, while fluorescence spectroscopy with parallel factor analysis (PARAFAC) was used to interpret DOC characteristics. Cotton and swine manure biochar treatments had higher DOC and NO 3 - losses than eucalyptus biochar, filtercake biochar, and control treatments. Cotton and swine manure biochar treatments at high temperatures lost mostly terrestrial, humified DOC, while swine manure, filtercake, and eucalyptus biochars at low temperatures lost mostly labile, microbially-derived DOC. Through the practical use of fluorescence spectroscopy, our study identified filtercake and eucalyptus biochars as most promising for retaining DOC and NO 3 - in a Cerrado Arenosol, potentially reducing stable C and nutrient losses. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kurniawan, Syahrul; Corre, Marife D.; Matson, Amanda L.; Schulte-Bisping, Hubert; Rahayu Utami, Sri; van Straaten, Oliver; Veldkamp, Edzo
2017-04-01
We examined the impact of forest conversion to rubber and oil palm plantations on nutrient leaching and nutrient retention efficiency in the soil. In Jambi province, Indonesia, we selected two landscapes with highly weathered Acrisol soils, which differed in texture: loam and clay. Within each landscape, we compared two reference land uses (lowland forest and jungle rubber, defined as rubber trees interspersed in secondary forest) with two converted land uses (smallholder rubber and oil palm plantations). The first three land uses were represented by four replicate sites and the oil palm by three sites within each landscape. We measured leaching losses using suction cup lysimeters, sampled biweekly to monthly from February to December 2013. In these highly weathered soils, texture controlled nutrient- and water-holding capacity and leaching losses. The clay Acrisol reference land uses had larger soil cation exchange capacity, base saturation and soil organic C than those in the loam Acrisol; this resulted in lower leaching of dissolved N and base cations (P=0.01-0.06) and in higher retention efficiency of N and base cations in the clay soils (P<0.01-0.07). The fertilized area in smallholder oil palm plantations resulted in increased leaching of dissolved N, organic C and base cation (P<0.01-0.08) and in reduced N and base cation retention efficiencies compared to the reference land uses and/or the rubber plantations (P<0.01), particularly in the loam Acrisol. Additionally, N fertilization in the loam Acrisol oil palm plantations had decreased soil solution pH and increased dissolved Al. The unfertilized rubber plantations had low nutrient leaching fluxes brought about by its reduced soil fertility. Our results highlight the importance of developing soil management practices to maintain soil fertility in unfertilized rubber plantations and to increase nutrient retention efficiency in fertilized oil palm plantations in order to minimize the reductions of ecosystem provisioning services (e.g., soil fertility and water quality) in these converted landscapes.
Holmer, Marianne; Marbá, Núria; Terrados, Jorge; Duarte, Carlos M; Fortes, Mike D
2002-07-01
Sediment oxygen consumption, TCO2 production and nutrient fluxes across the sediment-water interface were measured in sediments within and along a transect from four fish pens with production of milkfish (Chanos chanos) in the Bolinao area, The Philippines. The four fish pens were each representing a specific period in the production cycling. There was a positive linear relationship between the rates of sedimentation inside the fish pens and the sediment oxygen consumption indicating that the benthic processes were controlled by the input of organic matter from fish production. The nutrient fluxes were generally higher inside the fish pens, and nitrate was taken up (1.7-5.8 mmol m(-2) d(-1)) whereas ammonium (1-22 mmol m(-2) d(-1)) and phosphate (0.2-4.7 mmol m(-2) d(-1)) were released from the sediments. The sediments were enriched in organic matter with up to a factor 4 compared to outside. A mass balance for one crop of milkfish was constructed based on production data and on measured fluxes of nutrients in the fish pens to assess the loss of carbon and nutrients to the environment. There was a loss to the surroundings of carbon and nitrogen of 51-68% of the total input, whereas phosphorus was buried in the sediments inside the fish pens which acted as net sinks of phosphorus. The results obtained suggest that fish pen culture as practiced in the Bolinao area, leads to even greater impacts on benthic carbon and nutrient cycling than those found in suspended cage cultures.
NASA Astrophysics Data System (ADS)
Li, Danfeng; Wang, Xunming; Lou, Junpeng; Liu, Wenbin; Li, Hui; Ma, Wenyong; Jiao, Linlin
2018-02-01
The heterogeneity of the composition of surface soils that are affected by aeolian processes plays important roles in ecological evolution and the occurrence of aeolian desertification in fragile ecological zones, but the associated mechanisms are poorly understood. Using field investigation, wind tunnel experiments, and particle size and element analyses, we discuss the variation in the nutrient elements of surface soils that forms in the presence of aeolian processes of four vegetation species (Caragana microphylla Lam, Artemisia frigida Willd. Sp. Pl., Leymus chinensis (Trin.) Tzvel. and Stipa grandis P. Smirn) growing in the Otindag Desert, China. These four vegetation communities correspond to increasing degrees of degradation. A total of 40 macro elements, trace elements, and oxides were measured in the surface soil and in wind-transported samples. The results showed that under the different degradation stages, the compositions and concentrations of nutrients in surface soils differed for the four vegetation species. Aeolian processes may cause higher heterogeneity and higher loss of soil nutrient elements for the communities of Artemisia frigida Willd. Sp. Pl., Leymus chinensis (Trin.) Tzvel, and Stipa grandis P. Smirn than for the Caragana microphylla Lam community. There was remarkable variation in the loss of nutrients under different aeolian transportation processes. Over the past several decades, the highest loss of soil elements occurred in the 1970s, whereas the loss from 2011 to the present was generally 4.0% of that in the 1970s. These results indicate that the evident decrease in nutrient loss has played an important role in the rehabilitation that has occurred in the region recently.
Riverine C, N, Si and P transport to the coastal ocean: An overview
Peterson, David H.; Hager, Stephen W.; Schemel, Laurence E.; Cayan, Daniel R.
1988-01-01
Terrestrial ecosystems cycle and recyle inorganic nutrients including a feedback to atmospheric dry deposition and precipitation (cf. Lewis et al., 1985). Each year, however, a small fraction per unit area of the atmosphere/plant/soil flux leaks from these land-based cycles via precipitation/runoff (Meybeck, 1982). These losses are, in general, unpreventable. Moreover, such nutrient “losses” have increased with increasing human population (Wollast, 1983); although to some extent this anthropogenic component can be controlled. Most rivers eventually flow into estuaries and the coastal ocean where their natural and anthropogenic nutrient loads continue to recycle, are lost to the atmosphere, or are buried in sediment. In one extreme, when riverine nutrient concentrations are exceedingly low, as in southwestern Canadian streams (Naiman and Sibert, 1978; Stockner and Shortreed, 1978, 1985), downstream plant biomass can be nutrient limited. In the other extreme, when these nutrient concentrations are very high such as in highly populated European river basins, downstream plant biomass can increase, perhaps intensifying natural anoxia cycles within the receiving estuarine/coastal ocean waters if these waters are stratified (Rosenberg, 1985).
Shukla, Praveen; Ghatta, Srinivas; Dubey, Nidhi; Lemley, Caleb O; Johnson, Mary Lynn; Modgil, Amit; Vonnahme, Kimberly; Caton, Joel S; Reynolds, Lawrence P; Sun, Chengwen; O'Rourke, Stephen T
2014-07-15
The mechanisms underlying developmental programming are poorly understood but may be associated with adaptations by the fetus in response to changes in the maternal environment during pregnancy. We hypothesized that maternal nutrient restriction during pregnancy alters vasodilator responses in fetal coronary arteries. Pregnant ewes were fed a control [100% U.S. National Research Council (NRC)] or nutrient-restricted (60% NRC) diet from days 50 to 130 of gestation (term = 145 days); fetal tissues were collected at day 130. In coronary arteries isolated from control fetal lambs, relaxation to bradykinin was unaffected by nitro-l-arginine (NLA). Iberiotoxin or contraction with KCl abolished the NLA-resistant response to bradykinin. In fetal coronary arteries from nutrient-restricted ewes, relaxation to bradykinin was fully suppressed by NLA. Large-conductance, calcium-activated potassium channel (BKCa) currents did not differ in coronary smooth muscle cells from control and nutrient-restricted animals. The BKCa openers, BMS 191011 and NS1619, and 14,15-epoxyeicosatrienoic acid [a putative endothelium-derived hyperpolarizing factor (EDHF)] each caused fetal coronary artery relaxation and BKCa current activation that was unaffected by maternal nutrient restriction. Expression of BKCa-channel subunits did not differ in fetal coronary arteries from control or undernourished ewes. The results indicate that maternal undernutrition during pregnancy results in loss of the EDHF-like pathway in fetal coronary arteries in response to bradykinin, an effect that cannot be explained by a decreased number or activity of BKCa channels or by decreased sensitivity to mediators that activate BKCa channels in vascular smooth muscle cells. Under these conditions, bradykinin-induced relaxation is completely dependent on nitric oxide, which may represent an adaptive response to compensate for the absence of the EDHF-like pathway. Copyright © 2014 the American Physiological Society.
Tidal Pumping-Induced Nutrients Dynamics and Biogeochemical Implications in an Intertidal Aquifer
NASA Astrophysics Data System (ADS)
Liu, Yi; Jiao, Jiu Jimmy; Liang, Wenzhao; Luo, Xin
2017-12-01
Tidal pumping is a major driving force affecting water exchange between land and sea, biogeochemical reactions in the intertidal aquifer, and nutrient loading to the sea. At a sandy beach of Tolo Harbour, Hong Kong, the nutrient (NH4+, NO2-, NO3-, and PO43-) dynamic in coastal groundwater mixing zone (CGMZ) is found to be fluctuated with tidal oscillation. Nutrient dynamic is mainly controlled by tidal pumping-induced organic matter that serves as a reagent of remineralization in the aquifer. NH4+, NO2-, and PO43- are positively correlated with salinity. Both NH4+ and PO43- have negative correlations with oxidation/reduction potential. NH4+ is the major dissolved inorganic nitrogen species in CGMZ. The adsorption of PO43- onto iron oxides occurs at the deep transition zone with a salinity of 5-10 practical salinity unit (psu), and intensive N-loss occurs in near-surface area with a salinity of 10-25 psu. The biogeochemical reactions, producing PO43- and consuming NH4+, are synergistic effect of remineralization-nitrification-denitrification. In CGMZ, the annual NH4+ loss is estimated to be 4.32 × 105 mol, while the minimum annual PO43- production is estimated to be 2.55 × 104 mol. Applying these rates to the entire Tolo Harbour, the annual NH4+ input to the harbor through the remineralization of organic matters is estimated to be 1.02 × 107 mol. The annual NH4+ loss via nitrification is 1.32 × 107 mol, and the annual PO43- production is 7.76 × 105 mol.
Nutrient-enhanced decomposition of plant biomass in a freshwater wetland
Bodker, James E.; Turner, Robert Eugene; Tweel, Andrew; Schulz, Christopher; Swarzenski, Christopher M.
2015-01-01
We studied soil decomposition in a Panicum hemitomon (Schultes)-dominated freshwater marsh located in southeastern Louisiana that was unambiguously changed by secondarily-treated municipal wastewater effluent. We used four approaches to evaluate how belowground biomass decomposition rates vary under different nutrient regimes in this marsh. The results of laboratory experiments demonstrated how nutrient enrichment enhanced the loss of soil or plant organic matter by 50%, and increased gas production. An experiment demonstrated that nitrogen, not phosphorus, limited decomposition. Cellulose decomposition at the field site was higher in the flowfield of the introduced secondarily treated sewage water, and the quality of the substrate (% N or % P) was directly related to the decomposition rates. We therefore rejected the null hypothesis that nutrient enrichment had no effect on the decomposition rates of these organic soils. In response to nutrient enrichment, plants respond through biomechanical or structural adaptations that alter the labile characteristics of plant tissue. These adaptations eventually change litter type and quality (where the marsh survives) as the % N content of plant tissue rises and is followed by even higher decomposition rates of the litter produced, creating a positive feedback loop. Marsh fragmentation will increase as a result. The assumptions and conditions underlying the use of unconstrained wastewater flow within natural wetlands, rather than controlled treatment within the confines of constructed wetlands, are revealed in the loss of previously sequestered carbon, habitat, public use, and other societal benefits.
Song, Zhiyong; Zhu, Weiyao; Sun, Gangzheng; Blanckaert, Koen
2015-08-01
Microbial enhanced oil recovery (MEOR) depends on the in situ microbial activity to release trapped oil in reservoirs. In practice, undesired consumption is a universal phenomenon but cannot be observed effectively in small-scale physical simulations due to the scale effect. The present paper investigates the dynamics of oil recovery, biomass and nutrient consumption in a series of flooding experiments in a dedicated large-scale sand-pack column. First, control experiments of nutrient transportation with and without microbial consumption were conducted, which characterized the nutrient loss during transportation. Then, a standard microbial flooding experiment was performed recovering additional oil (4.9 % Original Oil in Place, OOIP), during which microbial activity mostly occurred upstream, where oil saturation declined earlier and steeper than downstream in the column. Subsequently, more oil remained downstream due to nutrient shortage. Finally, further research was conducted to enhance the ultimate recovery by optimizing the injection strategy. An extra 3.5 % OOIP was recovered when the nutrients were injected in the middle of the column, and another additional 11.9 % OOIP were recovered by altering the timing of nutrient injection.
O'Reilly, Andrew M; Wanielista, Martin P; Chang, Ni-Bin; Xuan, Zhemin; Harris, Willie G
2012-08-15
Soil beneath a stormwater infiltration basin receiving runoff from a 23 ha predominantly residential watershed in north-central Florida, USA, was amended using biosorption activated media (BAM) to study the effectiveness of this technology in reducing inputs of nitrogen and phosphorus to groundwater. The functionalized soil amendment BAM consists of a 1.0:1.9:4.1 mixture (by volume) of tire crumb (to increase sorption capacity), silt and clay (to increase soil moisture retention), and sand (to promote sufficient infiltration), which was applied to develop an innovative stormwater infiltration basin utilizing nutrient reduction and flood control sub-basins. Comparison of nitrate/chloride (NO(3)(-)/Cl(-)) ratios for the shallow groundwater indicates that prior to using BAM, NO(3)(-) concentrations were substantially influenced by nitrification or variations in NO(3)(-) input. In contrast, for the new basin utilizing BAM, NO(3)(-)/Cl(-) ratios indicate minor nitrification and NO(3)(-) losses with the exception of one summer sample that indicated a 45% loss. Biogeochemical indicators (denitrifier activity derived from real-time polymerase chain reaction and variations in major ions, nutrients, dissolved and soil gases, and stable isotopes) suggest that NO(3)(-) losses are primarily attributable to denitrification, whereas dissimilatory nitrate reduction to ammonium is a minor process. Denitrification was likely occurring intermittently in anoxic microsites in the unsaturated zone, which was enhanced by the increased soil moisture within the BAM layer and resultant reductions in surface/subsurface oxygen exchange that produced conditions conducive to increased denitrifier activity. Concentrations of total dissolved phosphorus and orthophosphate (PO(4)(3-)) were reduced by more than 70% in unsaturated zone soil water, with the largest decreases in the BAM layer where sorption was the most likely mechanism for removal. Post-BAM PO(4)(3-)/Cl(-) ratios for shallow groundwater indicate predominantly minor increases and decreases in PO(4)(3-) with the exception of one summer sample that indicated a 50% loss. Differences in nutrient variations between the unsaturated zone and shallow groundwater may be the result of the intensity and duration of nutrient removal processes and mixing ratios with water that had undergone little biogeochemical transformation. Observed nitrogen and phosphorus losses demonstrate the potential, as well as the future research needs to improve performance, of the innovative stormwater infiltration basin using BAM for providing passive, economical, stormwater nutrient-treatment technology to support green infrastructure. Copyright © 2012 Elsevier B.V. All rights reserved.
Subsurface application enhances benefits of manure redistribution
USDA-ARS?s Scientific Manuscript database
Sustainable nutrient management requires redistribution of livestock manure from nutrient-excess areas to nutrient-deficit areas. Field experiments were conducted to assess agronomic (i.e., corn yield) and environmental (i.e., ammonia volatilization and surface nutrient losses) effects of different ...
Nanotechnology in Sustainable Agriculture: Recent Developments, Challenges, and Perspectives
Prasad, Ram; Bhattacharyya, Atanu; Nguyen, Quang D.
2017-01-01
Nanotechnology monitors a leading agricultural controlling process, especially by its miniature dimension. Additionally, many potential benefits such as enhancement of food quality and safety, reduction of agricultural inputs, enrichment of absorbing nanoscale nutrients from the soil, etc. allow the application of nanotechnology to be resonant encumbrance. Agriculture, food, and natural resources are a part of those challenges like sustainability, susceptibility, human health, and healthy life. The ambition of nanomaterials in agriculture is to reduce the amount of spread chemicals, minimize nutrient losses in fertilization and increased yield through pest and nutrient management. Nanotechnology has the prospective to improve the agriculture and food industry with novel nanotools for the controlling of rapid disease diagnostic, enhancing the capacity of plants to absorb nutrients among others. The significant interests of using nanotechnology in agriculture includes specific applications like nanofertilizers and nanopesticides to trail products and nutrients levels to increase the productivity without decontamination of soils, waters, and protection against several insect pest and microbial diseases. Nanotechnology may act as sensors for monitoring soil quality of agricultural field and thus it maintain the health of agricultural plants. This review covers the current challenges of sustainability, food security and climate change that are exploring by the researchers in the area of nanotechnology in the improvement of agriculture. PMID:28676790
Nanotechnology in Sustainable Agriculture: Recent Developments, Challenges, and Perspectives.
Prasad, Ram; Bhattacharyya, Atanu; Nguyen, Quang D
2017-01-01
Nanotechnology monitors a leading agricultural controlling process, especially by its miniature dimension. Additionally, many potential benefits such as enhancement of food quality and safety, reduction of agricultural inputs, enrichment of absorbing nanoscale nutrients from the soil, etc. allow the application of nanotechnology to be resonant encumbrance. Agriculture, food, and natural resources are a part of those challenges like sustainability, susceptibility, human health, and healthy life. The ambition of nanomaterials in agriculture is to reduce the amount of spread chemicals, minimize nutrient losses in fertilization and increased yield through pest and nutrient management. Nanotechnology has the prospective to improve the agriculture and food industry with novel nanotools for the controlling of rapid disease diagnostic, enhancing the capacity of plants to absorb nutrients among others. The significant interests of using nanotechnology in agriculture includes specific applications like nanofertilizers and nanopesticides to trail products and nutrients levels to increase the productivity without decontamination of soils, waters, and protection against several insect pest and microbial diseases. Nanotechnology may act as sensors for monitoring soil quality of agricultural field and thus it maintain the health of agricultural plants. This review covers the current challenges of sustainability, food security and climate change that are exploring by the researchers in the area of nanotechnology in the improvement of agriculture.
Evidence Report: Risk Factor of Inadequate Nutrition
NASA Technical Reports Server (NTRS)
Smith, Scott M.; Zwart, Sara R.; Heer, Martina
2015-01-01
The importance of nutrition in exploration has been documented repeatedly throughout history, where, for example, in the period between Columbus' voyage in 1492 and the invention of the steam engine, scurvy resulted in more sailor deaths than all other causes of death combined. Because nutrients are required for the structure and function of every cell and every system in the body, defining the nutrient requirements for spaceflight and ensuring provision and intake of those nutrients are primary issues for crew health and mission success. Unique aspects of nutrition during space travel include the overarching physiological adaptation to weightlessness, psychological adaptation to extreme and remote environments, and the ability of nutrition and nutrients to serve as countermeasures to ameliorate the negative effects of spaceflight on the human body. Key areas of clinical concern for long-duration spaceflight include loss of body mass (general inadequate food intake), bone and muscle loss, cardiovascular and immune system decrements, increased radiation exposure and oxidative stress, vision and ophthalmic changes, behavior and performance, nutrient supply during extravehicular activity, and general depletion of body nutrient stores because of inadequate food supply, inadequate food intake, increased metabolism, and/or irreversible loss of nutrients. These topics are reviewed herein, based on the current gap structure.
Evaluating soil erodibility dynamics to improve estimates of wind erosion in drylands
USDA-ARS?s Scientific Manuscript database
Wind erosion is a key driver of land degradation in the world’s drylands. Soil loss and nutrient decline due to wind erosion increase the sensitivity of drylands to climate stressors. Better understanding the factors controlling wind erosion in drylands will provide a basis for identifying and testi...
Zhang, Nannan; Bai, Zhaohai; Luo, Jiafa; Ledgard, Stewart; Wu, Zhiguo; Ma, Lin
2017-11-15
The dairy industry in China was rapidly expanded and intensified from 1980 to 2010, engendering potential long-term impacts on the environment and natural resources. However, impacts of dairy intensification on nitrogen (N) and phosphorus (P) losses and greenhouse gas (GHG) emissions were unknown. This study was undertaken to examine these relations using the NUtrient flows in Food chains, Environment and Resources use (NUFER)-dairy model. Results showed that milk yield increased by 64% from 1980 to 2010 on average, and the use of concentrate feeds increased by 57% associated with a shift of production from traditional and grassland systems to collective and industrialized systems. At herd level, the N use efficiency (NUE; conversion of N inputs to products) doubled from 7 to 15%, and the P use efficiency (PUE) increased from 10 to 17%, primarily resulting from increased milk yield per cow. In contrast, at the system level, NUE showed a small increase (from 10 to 15%, associated with reduced gaseous losses) while PUE decreased from 46 to 30% due to a large increase in manure discharges. This is attributed to decoupling of feed and dairy production, as the proportion of manure N and P recycled to cropland decreased by 52% and 54%, respectively. Despite this, the average total N loss decreased from 63 to 48gkg -1 milk, and the average GHG emissions from 1.7 to 1.1kgCO 2 equivalentkg -1 milk associated with increased per-cow productivity. However, average P loss increased from 1.4 to 2.8gPkg -1 milk due to higher discharge rate to wastewater and landfill in collective and industrialized systems. Anyhow, average N and P losses exceeded levels in developed countries. There were large regional variations in nutrient use efficiency, nutrient losses and GHG emissions in China, largely determined by the dairy production structure. Average N losses and GHG emissions per unit of milk showed a negative correlation with production intensification based on the proportion of farms in collective or industrialized systems, while average P losses per unit of milk in different regions showed a positive relationship with intensification. In conclusion, dairy intensification was associated with increased milk yield per cow and reduced average N losses and GHG emissions per unit of milk, but reduced system level PUE and manure recycling contributed to high levels of total N and P losses. Dairy production in China is likely to continue to be intensified as a result of rising milk demand, and significant improvements must be made in manure management to control N and P losses and GHG emissions. Copyright © 2017 Elsevier B.V. All rights reserved.
Galán, María Gimena; Llopart, Emilce Elina; Drago, Silvina Rosa
2018-05-01
The aims were to optimise pearling process of red and white sorghum by assessing the effects of pearling time and grain moisture on endosperm yield and flour ash content and to assess nutrient and anti-nutrient losses produced by pearling different cultivars in optimised conditions. Both variables significantly affected both responses. Losses of ashes (58%), proteins (9.5%), lipids (54.5%), Na (37%), Mg (48.5%) and phenolic compounds (43%) were similar among red and white hybrids. However, losses of P (30% vs. 51%), phytic acid (47% vs. 66%), Fe (22% vs. 55%), Zn (32% vs. 62%), Ca (60% vs. 66%), K (46% vs. 61%) and Cu (51% vs. 71%) were lower for red than white sorghum due to different degree of extraction and distribution of components in the grain. Optimised pearling conditions were extrapolated to other hybrids, indicating these criteria could be applied at industrial level to obtain refined flours with proper quality and good endosperm yields.
Moore, Richard Bridge; Johnston, Craig M.; Robinson, Keith W.; Deacon, Jeffrey R.
2004-01-01
The U.S. Geological Survey (USGS), in cooperation with the U.S. Environmental Protection Agency (USEPA) and the New England Interstate Water Pollution Control Commission (NEIWPCC), has developed a water-quality model, called SPARROW (Spatially Referenced Regressions on Watershed Attributes), to assist in regional total maximum daily load (TMDL) and nutrient-criteria activities in New England. SPARROW is a spatially detailed, statistical model that uses regression equations to relate total nitrogen and phosphorus (nutrient) stream loads to nutrient sources and watershed characteristics. The statistical relations in these equations are then used to predict nutrient loads in unmonitored streams. The New England SPARROW models are built using a hydrologic network of 42,000 stream reaches and associated watersheds. Watershed boundaries are defined for each stream reach in the network through the use of a digital elevation model and existing digitized watershed divides. Nutrient source data is from permitted wastewater discharge data from USEPA's Permit Compliance System (PCS), various land-use sources, and atmospheric deposition. Physical watershed characteristics include drainage area, land use, streamflow, time-of-travel, stream density, percent wetlands, slope of the land surface, and soil permeability. The New England SPARROW models for total nitrogen and total phosphorus have R-squared values of 0.95 and 0.94, with mean square errors of 0.16 and 0.23, respectively. Variables that were statistically significant in the total nitrogen model include permitted municipal-wastewater discharges, atmospheric deposition, agricultural area, and developed land area. Total nitrogen stream-loss rates were significant only in streams with average annual flows less than or equal to 2.83 cubic meters per second. In streams larger than this, there is nondetectable in-stream loss of annual total nitrogen in New England. Variables that were statistically significant in the total phosphorus model include discharges for municipal wastewater-treatment facilities and pulp and paper facilities, developed land area, agricultural area, and forested area. For total phosphorus, loss rates were significant for reservoirs with surface areas of 10 square kilometers or less, and in streams with flows less than or equal to 2.83 cubic meters per second. Applications of SPARROW for evaluating nutrient loading in New England waters include estimates of the spatial distributions of total nitrogen and phosphorus yields, sources of the nutrients, and the potential for delivery of those yields to receiving waters. This information can be used to (1) predict ranges in nutrient levels in surface waters, (2) identify the environmental variables that are statistically significant predictors of nutrient levels in streams, (3) evaluate monitoring efforts for better determination of nutrient loads, and (4) evaluate management options for reducing nutrient loads to achieve water-quality goals.
Liess, Antonia; Guo, Junwen; Lind, Martin I; Rowe, Owen
2015-11-01
Endothermic organisms can adapt to short growing seasons, low temperatures and nutrient limitation by developing high growth rates and high gross growth efficiencies (GGEs). Animals with high GGEs are better at assimilating limiting nutrients and thus should recycle (or lose) fewer nutrients. Longer guts in relation to body mass may facilitate higher GGE under resource limitation. Within the context of ecological stoichiometry theory, this study combines ecology with evolution by relating latitudinal life-history adaptations in GGE, mediated by gut length, to its ecosystem consequences, such as consumer-mediated nutrient recycling. In common garden experiments, we raised Rana temporaria tadpoles from two regions (Arctic/Boreal) under two temperature regimes (18/23 °C) crossed with two food quality treatments (high/low-nitrogen content). We measured tadpole GGEs, total nutrient loss (excretion + egestion) rates and gut length during ontogeny. In order to maintain their elemental balance, tadpoles fed low-nitrogen (N) food had lower N excretion rates and higher total phosphorous (P) loss rates than tadpoles fed high-quality food. In accordance with expectations, Arctic tadpoles had higher GGEs and lower N loss rates than their low-latitude conspecifics, especially when fed low-N food, but only in ambient temperature treatments. Arctic tadpoles also had relatively longer guts than Boreal tadpoles during early development. That temperature and food quality interacted with tadpole region of origin in affecting tadpole GGEs, nutrient loss rates and relative gut length, suggests evolved adaptation to temperature and resource differences. With future climate change, mean annual temperatures will increase. Additionally, species and genotypes will migrate north. This will change the functioning of Boreal and Arctic ecosystems by affecting consumer-mediated nutrient recycling and thus affect nutrient dynamics in general. Our study shows that evolved latitudinal adaption can change key ecosystem functions. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.
Wu, Dong; Huang, Zhi-lin; Xiao, Wen-fa; Zeng, Li-xiong
2015-10-01
Annual soil nutrient loss characteristics on typical reforestation patterns in watershed along the Three Gorges Reservoir Area were studied based on runoff plot experiment. Runoff and sediment nutrition content from May to October 2014 of typical reforestation patterns including garden plot (tea garden), forest land (Chinese chestnut) and the original slope farmland were determined and then analyzed. The results showed that: (1) After the Returning Farmland to Forest Project the quantity of annual soil nutrient (nitrogen and phosphorus, the sum of them in sediment and runoff) loss decreased. The output of total nitrogen (TN) was in the order of slope farmland (2 444.27 g x hm(-2)) > tea garden (998.70 g x hm(-2)) > Chinese chestnut forest (532.61 g x hm(-2)), and for total phosphorus (TP) loss was slope farmland (1 690.48 g x hm(-2)) > tea garden (488.06 g x hm(-2)) > Chinese chestnut forest (129.00 g x hm(-2)) . Compared with slope farmland, the load of TN and TP output of reforestation patterns decreased 68.68% and 81.75%, respectively. (2) Compared with slope farmland, available nitrogen loss decreased in reforestation patterns. Total nitrate nitrogen (NO3(-)-N) loss ranked in the order of slope farmland (113.79 g x hm(-2)) > tea garden (73.75 g x hm(-2)) > Chinese chestnut forest (56.06 g x hm(-2)) The largest amount of ammonium nitrogen (NH4(+)-N) was found in tea garden (69.34 g x hm(-2)), then in farmland (52.45 g x hm(-2)), and the least in Chinese chestnut forest (47.23 g x hm(-2)). (3) The main route of NO3(-)-N and NH4(+)-N loss was both through runoff, the quantity of NO3(-)-N and NH4(+)-N output in which accounted for 91.4% and 92.2% of the total, respectively. The quantity of TN and TP in sediment accounted for 86.6% and 98.4% of the total. TN and TP loss showed an extremely significant correlation with sediments, which showed that sediment output was the main approach of TN and TP loss.
Chen, Zhang; Chen, Wenlu; Li, Chengjun; Pu, Yanpin; Sun, Haifeng
2016-06-01
Erosion of denuded steep rocky slopes causes increasing losses of nitrogen and phosphorus, which is a severe problem in rocky slope protection. Thus, it is important to determine the appropriate materials that can reduce the erodibility and losses of nitrogen and phosphorus of the soil. In this paper, twenty-seven simulated rainfall events were carried out in a greenhouse, in which the substrate material was artificial soil; nine types of anionic polyacrylamide (PAM) were studied, which consisted of three molecular weight (6, 12, and 18 Mg mol(-1)) and three charge density (10, 20, and 30%) formulations in a 3 by 3 factorial design. The results showed that: (1) Polyacrylamide application reduced total nitrogen losses by 35.3% to 50.0% and total phosphorus losses by 34.9% to 48.0% relative to the control group. (2) The losses of total nitrogen and total phosphorus had significant correlation with the molecular weight. Besides, the losses of total phosphorus, particulate-bound phosphorus and inorganic nitrogen (NH4-N) were significantly correlated with their molecular weight and charge density. However, the losses of dissolved organic nitrogen, inorganic nitrogen (NO3-N), dissolved organic phosphorus, inorganic phosphorus (PO4-P) were non-significantly correlated with molecular weight and charge density. (3) Particulate-bound nitrogen and phosphorus were responsible for the losses of nitrogen and phosphorus during runoff events, where particulate-bound nitrogen made up 71.7% to 73.2% of total nitrogen losses, and particulate-bound phosphorus made up 82.3% to 85.2% of total phosphorus losses. (4) Polyacrylamide treatments increased water-stable aggregates content by 32.3% to 59.1%, total porosity by 11.3% to 49.0%, final infiltrative rate by 41.3% to 72.5%, and reduced soil erosion by 18.9% to 39.8% compared with the control group. Overall, the results of this study indicated that polyacrylamide application in the steep rocky slope stabilization projects could significantly reduce nutrient losses and soil erosion of substrate material. Copyright © 2016 Elsevier B.V. All rights reserved.
Reduction of suspended solid and nutrient loss from agricultural lands by tailwater recovery systems
USDA-ARS?s Scientific Manuscript database
Best management practices are being implemented throughout the Lower Mississippi River Alluvial Valley with the aim of alleviating pressures placed on downstream aquatic systems by sediment and nutrient losses from agricultural land; however, research evaluating the performance of one practice, tail...
Hydrology and Water Quality from Managed Turf
USDA-ARS?s Scientific Manuscript database
Quantification of nutrient and pesticide losses from managed turf systems (golf courses) is scant. A study was initiated at Northland Country Club in Duluth, MN, in 2003 to quantify nutrient and pesticide losses in surface and subsurface discharge waters. Based on the four years of data collected at...
NASA Astrophysics Data System (ADS)
Bubier, J. L.; Arnkil, S.; Humphreys, E.; Juutinen, S.; Larmola, T.; Moore, T. R.
2015-12-01
Atmospheric nitrogen (N) deposition has led to nutrient enrichment in wetlands globally, affecting plant community composition, carbon (C) cycling, and microbial dynamics. Nutrient-limited boreal bogs are long-term sinks of carbon dioxide (CO2), but sources of methane (CH4), an important greenhouse gas. We fertilized Mer Bleue Bog, a Sphagnum moss and evergreen shrub-dominated ombrotrophic bog near Ottawa, Ontario, for 10-15 years with N as NO3 and NH4 at 5, 10 and 20 times ambient N deposition (0.6-0.8 g N m-2 y-1), with and without phosphorus (P) and potassium (K). Treatments were applied to triplicate plots (3 x 3 m) from May - August 2000-2015 and control plots received distilled water. We measured net ecosystem CO2 exchange (NEE), ecosystem photosynthesis and respiration, and CH4 flux with climate-controlled chambers; leaf-level CO2 exchange and biochemistry; substrate-induced respiration, CH4 production and consumption potentials with laboratory incubations; plant species composition and abundance; and microclimate (peat temperature, moisture, light interception). After 15 years, we have found that NEE has decreased, and CH4 emissions have increased, in the highest nutrient treatments owing to changes in vegetation, microtopography, and peat characteristics. Vegetation changes include a loss of Sphagnum moss and introduction of new deciduous species. Simulated atmospheric N deposition has not benefitted the photosynthetic apparatus of the dominant evergreen shrubs, but resulted in higher foliar respiration, contributing to a weaker ecosystem CO2 sink. Loss of moss has led to wetter near-surface substrate, higher rates of decomposition and CH4 emission, and a shift in microbial communities. Thus, elevated atmospheric deposition of nutrients may endanger C storage in peatlands through a complex suite of feedbacks and interactions among vegetation, microclimate, and microbial communities.
NASA Astrophysics Data System (ADS)
Pathak, P. C.; Pandey, A. N.; Singh, J. S.
1984-03-01
Overland flow, sediment output and input and output of precipitation nutrients were evaluated on six forested sites in the central Himalaya during the 1981 and 1982 monsoon seasons. Overland flow was significantly different across the forests and the months of the rainy season. It was positively related with rainfall quantity and intensity, and was negatively related with tree canopy cover and with ground vegetation cover. Average overland flow was only 0.66% of the total incident rainfall, indicating that these sites are subsurface-flow systems. Sediment output was positively related to overland flow. Rainfall added a significant amount of nutrients to the forests. This extra-system input was greater than loss through overland flow + sediment output. The loss of nutrients from the forested sites was in the order: Mg > C > Ca > K = N = P.
Nitrogen and phosphorus limitation over long-term ecosystem development in terrestrial ecosystems.
Menge, Duncan N L; Hedin, Lars O; Pacala, Stephen W
2012-01-01
Nutrient limitation to net primary production (NPP) displays a diversity of patterns as ecosystems develop over a range of timescales. For example, some ecosystems transition from N limitation on young soils to P limitation on geologically old soils, whereas others appear to remain N limited. Under what conditions should N limitation and P limitation prevail? When do transitions between N and P limitation occur? We analyzed transient dynamics of multiple timescales in an ecosystem model to investigate these questions. Post-disturbance dynamics in our model are controlled by a cascade of rates, from plant uptake (very fast) to litter turnover (fast) to plant mortality (intermediate) to plant-unavailable nutrient loss (slow) to weathering (very slow). Young ecosystems are N limited when symbiotic N fixation (SNF) is constrained and P weathering inputs are high relative to atmospheric N deposition and plant N:P demand, but P limited under opposite conditions. In the absence of SNF, N limitation is likely to worsen through succession (decades to centuries) because P is mineralized faster than N. Over long timescales (centuries and longer) this preferential P mineralization increases the N:P ratio of soil organic matter, leading to greater losses of plant-unavailable N versus P relative to plant N:P demand. These loss dynamics favor N limitation on older soils despite the rising organic matter N:P ratio. However, weathering depletion favors P limitation on older soils when continual P inputs (e.g., dust deposition) are low, so nutrient limitation at the terminal equilibrium depends on the balance of these input and loss effects. If NPP switches from N to P limitation over long time periods, the transition time depends most strongly on the P weathering rate. At all timescales SNF has the capacity to overcome N limitation, so nutrient limitation depends critically on limits to SNF.
Coastal eutrophication as a driver of salt marsh loss.
Deegan, Linda A; Johnson, David Samuel; Warren, R Scott; Peterson, Bruce J; Fleeger, John W; Fagherazzi, Sergio; Wollheim, Wilfred M
2012-10-18
Salt marshes are highly productive coastal wetlands that provide important ecosystem services such as storm protection for coastal cities, nutrient removal and carbon sequestration. Despite protective measures, however, worldwide losses of these ecosystems have accelerated in recent decades. Here we present data from a nine-year whole-ecosystem nutrient-enrichment experiment. Our study demonstrates that nutrient enrichment, a global problem for coastal ecosystems, can be a driver of salt marsh loss. We show that nutrient levels commonly associated with coastal eutrophication increased above-ground leaf biomass, decreased the dense, below-ground biomass of bank-stabilizing roots, and increased microbial decomposition of organic matter. Alterations in these key ecosystem properties reduced geomorphic stability, resulting in creek-bank collapse with significant areas of creek-bank marsh converted to unvegetated mud. This pattern of marsh loss parallels observations for anthropogenically nutrient-enriched marshes worldwide, with creek-edge and bay-edge marsh evolving into mudflats and wider creeks. Our work suggests that current nutrient loading rates to many coastal ecosystems have overwhelmed the capacity of marshes to remove nitrogen without deleterious effects. Projected increases in nitrogen flux to the coast, related to increased fertilizer use required to feed an expanding human population, may rapidly result in a coastal landscape with less marsh, which would reduce the capacity of coastal regions to provide important ecological and economic services.
Liang, X Q; Chen, Y X; Nie, Z Y; Ye, Y S; Liu, J; Tian, G M; Wang, G H; Tuong, T P
2013-10-01
Resource-conserving irrigation and fertilizer management practices have been developed for rice systems which may help address water quality concerns by reducing N and P losses via surface runoff. Field experiments under three treatments, i.e., farmers' conventional practice (FCP), alternate wetting and drying (AWD), and AWD integrated with site-specific nutrient management (AWD + SSNM) were carried out during two rice seasons at two sites in the southwest Yangtze River delta region. Across site years, results indicated that under AWD irrigation (i.e., AWD and AWD + SSNM), water inputs were reduced by 13.4~27.5 % and surface runoff was reduced by 30.2~36.7 % compared to FCP. When AWD was implemented alone, total N and P loss masses via surface runoff were reduced by 23.3~30.4 % and 26.9~31.7 %, respectively, compared to FCP. However, nutrient concentrations of surface runoff did not decrease under AWD alone. Under AWD + SSNM, total N and P loss masses via surface runoff were reduced to a greater extent than AWD alone (39.4~47.6 % and 46.1~48.3 % compared to FCP, respectively), while fertilizer inputs and N surpluses significantly decreased and rice grain yields increased relative to FCP. Therefore, by more closely matching nutrient supply with crop demand and reducing both surface runoff and nutrient concentrations of surface runoff, our results demonstrate that integration of AWD and SSNM practices can mitigate N and P losses via surface runoff from rice fields while maintaining high yields.
Sharma, E; Rai, S C; Sharma, R
2001-02-01
The Khanikhola watershed in Sikkim is agrarian with about 50% area under rain-fed agriculture representing the conditions of the middle mountains all over the Himalaya. The study was conducted to assess overland flow, soil loss and subsequent nutrient losses from different land uses in the watershed, and identify biotechnological inputs for management of mountain farming systems. Overland flow, soil and nutrient losses were very high from open agricultural (cropped) fields compared to other land uses, and more than 72% of nutrient losses were attributable to agriculture land use. Forests and large cardamom agroforestry conserved more soil compared to other land uses. Interventions, like cultivation of broom grass upon terrace risers, N2-fixing Albizia trees for maintenance of soil fertility and plantation of horticulture trees, have reduced the soil loss (by 22%). Soil and water conservation values (> 80%) of both large cardamom and broom grass were higher compared to other crops. Use of N2-fixing Albizia tree in large cardamom agroforestry and croplands contributed to soil fertility, and increased productivity and yield. Bio-composting of farm resources ensured increase in nutrient availability specially phosphorus in cropped areas. Agricultural practices in mountain areas should be strengthened with more agroforestry components, and cash crops like large cardamom and broom grass in agroforestry provide high economic return and are hydroecologically sustainable.
Nutrient removal from swine lagoon effluent by duckweed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bergmann, B.A.; Cheng, J.; Classen, J.
2000-04-01
Three duckweed geographic isolates were grown on varying concentrations of swine lagoon effluent in a greenhouse to determine their ability to remove nutrients from the effluent. Duckweed biomass was harvested every other day over a 12-day period. Duckweed biomass production, nutrient loss from the swine lagoon effluent, and nutrient content of duckweed biomass were used to identify effluent concentrations/geographic isolate combinations that are effective in terms of nutrient utilization from swine lagoon effluent and production of healthy duckweed biomass. When Lemna minor geographic isolate 8627 was grown on 50% swine lagoon effluent, respective losses of TKN, NH{sub 3}-N, TP, OPO{submore » 4}-P, TOC, K, Cu, and Zn were 83, 100, 49, 31, 68, 21, 28 and 67%.« less
USDA-ARS?s Scientific Manuscript database
The timing of manure application to agricultural soils remains a contentious area of nutrient management, particularly with regard to the impact of timing on nutrient loss in runoff and downstream water quality. We examined the effect of seasonal manure application timing and manure storage capacity...
Major losses of nutrients following a severe drought in a boreal forest.
Houle, Daniel; Lajoie, Geneviève; Duchesne, Louis
2016-11-28
Because of global warming, the frequency and severity of droughts are expected to increase, which will have an impact on forest ecosystem health worldwide 1 . Although the impact of drought on tree growth and mortality is being increasingly documented 2-4 , very little is known about the impact on nutrient cycling in forest ecosystems. Here, based on long-term monitoring data, we report nutrient fluxes in a boreal forest before, during and following a severe drought in July 2012. During and shortly after the drought, we observed high throughfall (rain collected below the canopy) concentrations of nutrient base cations (potassium, calcium and magnesium), chlorine, phosphorus and dissolved organic carbon (DOC), differing by one to two orders of magnitude relative to the long-term normal, and resulting in important canopy losses. The high throughfall fluxes had repercussions in the soil solution at a depth of 30 cm, leading to high DOC, chlorine and potassium concentrations. The net potassium losses (atmospheric deposition minus leaching losses) following the drought were especially important, being the equivalent of nearly 20 years of net losses under 'normal' conditions. Our data show that droughts have unexpected impacts on nutrient cycling through impacts on tree canopy and soils and may lead to important episodes of potassium losses from boreal forest ecosystems. The potassium losses associated with drought will add to those originating from tree harvesting and from forest fires and insect outbreaks 5-7 (with the last two being expected to increase in the future as a result of climate change), and may contribute to reduced potassium availability in boreal forests in a warming world.
Enhanced efficiency fertilisers: a review of formulation and nutrient release patterns.
Timilsena, Yakindra Prasad; Adhikari, Raju; Casey, Phil; Muster, Tim; Gill, Harsharn; Adhikari, Benu
2015-04-01
Fertilisers are one of the most important elements of modern agriculture. The application of fertilisers in agricultural practices has markedly increased the production of food, feed, fuel, fibre and other plant products. However, a significant portion of nutrients applied in the field is not taken up by plants and is lost through leaching, volatilisation, nitrification, or other means. Such a loss increases the cost of fertiliser and severely pollutes the environment. To alleviate these problems, enhanced efficiency fertilisers (EEFs) are produced and used in the form of controlled release fertilisers and nitrification/urease inhibitors. The application of biopolymers for coating in EEFs, tailoring the release pattern of nutrients to closely match the growth requirement of plants and development of realistic models to predict the release pattern of common nutrients have been the foci of fertiliser research. In this context, this paper intends to review relevant aspects of new developments in fertiliser production and use, agronomic, economic and environmental drives for enhanced efficiency fertilisers and their formulation process and the nutrient release behaviour. Application of biopolymers and complex coacervation technique for nutrient encapsulation is also explored as a promising technology to produce EEFs. © 2014 Society of Chemical Industry.
USDA-ARS?s Scientific Manuscript database
Nutrient application and its uptake by crops are essential to increasing agricultural production, which is essential to feed a growing world population. Efficiency in management of nutrients could be increased with conservation practices that reduce nutrient losses to the environment and promote con...
Xuan, Zhemin; Chang, Ni-Bin; Wanielista, Martin P; Williams, Evan Shane
2013-07-01
Stormwater infiltration basins, one of the typical stormwater best management practices, are commonly constructed for surface water pollution control, flood mitigation, and groundwater restoration in rural or residential areas. These basins have soils with better infiltration capacity than the native soil; however, the ever-increasing contribution of nutrients to groundwater from stormwater due to urban expansion makes existing infiltration basins unable to meet groundwater quality criteria related to environmental sustainability and public health. This issue requires retrofitting current infiltration basins for flood control as well as nutrient control before the stormwater enters the groundwater. An existing stormwater infiltration basin in north-central Florida was selected, retrofitted, and monitored to identify subsurface physiochemical and biological processes during 2007-2010 to investigate nutrient control processes. This implementation in the nexus of contaminant hydrology and ecological engineering adopted amended soil layers packed with biosorption activated media (BAM; tire crumb, silt, clay, and sand) to perform nutrient removal in a partitioned forebay using a berm. This study presents an infiltration basin-nitrogen removal (IBNR) model, a system dynamics model that simulates nitrogen cycling in this BAM-based stormwater infiltration basin with respect to changing hydrologic conditions and varying dissolved nitrogen concentrations. Modeling outputs of IBNR indicate that denitrification is the biogeochemical indicator in the BAM layer that accounted for a loss of about one third of the total dissolved nitrogen mass input. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Vibart, Ronaldo; Vogeler, Iris; Dennis, Samuel; Kaye-Blake, William; Monaghan, Ross; Burggraaf, Vicki; Beautrais, Josef; Mackay, Alec
2015-06-01
Using a novel approach that links geospatial land resource information with individual farm-scale simulation, we conducted a regional assessment of nitrogen (N) and phosphorous (P) losses to water and greenhouse gas (GHG) emissions to air from the predominant mix of pastoral industries in Southland, New Zealand. An evaluation of the cost-effectiveness of several nutrient loss mitigation strategies applied at the farm-scale, set primarily for reducing N and P losses and grouped by capital cost and potential ease of adoption, followed an initial baseline assessment. Grouped nutrient loss mitigation strategies were applied on an additive basis on the assumption of full adoption, and were broadly identified as 'improved nutrient management' (M1), 'improved animal productivity' (M2), and 'restricted grazing' (M3). Estimated annual nitrate-N leaching losses occurring under representative baseline sheep and beef (cattle) farms, and representative baseline dairy farms for the region were 10 ± 2 and 32 ± 6 kg N/ha (mean ± standard deviation), respectively. Both sheep and beef and dairy farms were responsive to N leaching loss mitigation strategies in M1, at a low cost per kg N-loss mitigated. Only dairy farms were responsive to N leaching loss abatement from adopting M2, at no additional cost per kg N-loss mitigated. Dairy farms were also responsive to N leaching loss abatement from adopting M3, but this reduction came at a greater cost per kg N-loss mitigated. Only dairy farms were responsive to P-loss mitigation strategies, in particular by adopting M1. Only dairy farms were responsive to GHG abatement; greater abatement was achieved by the most intensified dairy farm system simulated. Overall, M1 provided for high levels of regional scale N- and P-loss abatement at a low cost per farm without affecting overall farm production, M2 provided additional N-loss abatement but only marginal P-loss abatement, whereas M3 provided the greatest N-loss abatement, but delivered no additional P abatement, and came at a large financial cost to farmers, sheep and beef farmers in particular. The modelling approach provides a farm-scale framework that can be extended to other regions to accommodate different farm production systems and performances, capturing the interactions between farm types, land use capabilities and production levels, as these influence nutrient losses and GHG emissions, and the effectiveness of mitigation strategies. Copyright © 2015 Elsevier Ltd. All rights reserved.
Illustrated manual on composting for improved soil fertility and enhanced cocoa production
USDA-ARS?s Scientific Manuscript database
In West and Central Africa, most cocoa farms are old and the soils are highly depleted in major nutrients. Cocoa pod harvest continues to remove nutrients, and this loss of soil fertility is one of the major causes of low cocoa yields and subsequent economic losses. Plant pathogens, including nema...
Tillage system and time post-liquid dairy manure: Effects on runoff, sediment and nutrients losses
USDA-ARS?s Scientific Manuscript database
Liquid manure applied in agricultural lands improves soil quality. However, incorrect management of manure may cause environmental problems due to sediments and nutrients losses associated to runoff. The aims of this work were to: (i) evaluate the time effect of post-liquid dairy manure (LDM) applic...
USDA-ARS?s Scientific Manuscript database
Rainfall simulations were used to determine the effect of broiler litter (BL) treated with N and P immobilizing agents on nutrient losses from a bermudagrass (Cynodon doctylon) hayfield on Marietta silt loam (Fine-loamy, siliceous, active, thermic Fluvaquentic Eutrudepts). The experimental design w...
USDA-ARS?s Scientific Manuscript database
Nitrogen (N) and phosphorus (P) loss from agriculture persists as a water quality issue, and outdoor cattle lots can have a high loss potential. We monitored hydrology and nutrient concentrations in leachate and runoff from dairy heifer lots constructed with three surface materials (soil, sand, bark...
USDA-ARS?s Scientific Manuscript database
Agricultural phosphorus (P) loss has been linked to the eutrophication of surface water bodies throughout the world and minimizing offsite P transport continues to be a priority in many watersheds. In the U.S. Midwest and other tile-drained regions, there is a critical need to identify nutrient mana...
Nutrient-Enhanced Diet Reduces Noise-Induced Damage to the Inner Ear and Hearing Loss
Le Prell, C. G.; Gagnon, P. M; Bennett, D. C.; Ohlemiller, K. K.
2011-01-01
Oxidative stress has been broadly implicated as a cause of cell death and neural degeneration in multiple disease conditions; however, the evidence for successful intervention with dietary antioxidant manipulations has been mixed. In this study, we investigated the potential for protection of cells in the inner ear using a dietary supplement with multiple antioxidant components, selected for their potential interactive effectiveness. Protection against permanent threshold shift (PTS) was observed in CBA/J mice maintained on a diet supplemented with a combination of β-carotene, vitamins C and E, and magnesium when compared to PTS in control mice maintained on a nutritionally complete control diet. Although hair cell survival was not enhanced, noise-induced loss of Type II fibrocytes in the lateral wall was significantly reduced (p<0.05), and there was a trend towards less noise-induced loss in strial cell density in animals maintained on the supplemented diet. Taken together, our data suggest that pre-noise oral treatment with the high-nutrient diet can protect cells in the inner ear and reduce PTS in mice. Demonstration of functional and morphological preservation of cells in the inner ear with oral administration of this antioxidant supplemented diet supports the possibility of translation to human patients, and suggests an opportunity to evaluate antioxidant protection in mouse models of oxidative stress-related disease and pathology. PMID:21708355
Reducing Nutrient Losses with Directed Fertilization of Degraded Soils
NASA Astrophysics Data System (ADS)
Menzies, E.; Walter, M. T.; Schneider, R.
2016-12-01
Degraded soils around the world are stunting agricultural productivity in places where people need it the most. In China, hundreds of years of agriculture and human activity have turned large swaths of productive grasslands into expanses of sandy soils where nothing can grow. Returning soils such as these to healthy productive landscapes is crucial to the livelihoods of rural families and to feeding the expanding population of China and the world at large. Buried wood chips can be used to improve the soils' water holding capacity but additional nutrient inputs are crucial to support plant growth and completely restore degraded soils in China and elsewhere. Improperly applied fertilizer can cause large fluxes of soluble nutrients such as nitrogen (N) and phosphorus (P) to pollute groundwater, and reach surface water bodies causing harmful algal blooms or eutrophication. Similarly, fertilization can create increases in nutrient losses in the form of greenhouse gases (GHGs). It is imperative that nutrient additions to this system be done in a way that fosters restoration and a return to productivity, but minimizes nutrient losses to adjacent surface water bodies and the atmosphere. The primary objective of this study is to characterize soluble and gaseous N and P losses from degraded sandy soils with wood chip and fertilizer amendments in order to identify optimal fertilization methods, frequencies, and quantities for soil restoration. A laboratory soil column study is currently underway to begin examining these questions results of this study will be presented at the Fall Meeting.
NASA Astrophysics Data System (ADS)
Berkovich, Yu. A.; Krivobok, N. M.; Krivobok, A. S.; Smolyanina, S. O.
2016-02-01
A compact and reliable automatic method for plant nutrition supply is needed to monitor and control space-based plant production systems. The authors of this study have designed a nutrient root-feeding system that minimizes and regulates nutrient and water supply without loss of crop yields in a space greenhouse. The system involves an ion-exchange fibrous artificial soil (AS) BIONA-V3TM as the root-inhabited medium; a pack with slow-release fertilizer as the main source of nitrogen, phosphorus, and potassium; and a cartridge with granular mineral-rich ionite (GMRI) as a source of calcium, magnesium, sulfur, and iron. A controller equipped with an electrical conductivity meter controls the solution flow and concentration of the solution in the mixing tank at specified values. Experiments showed that the fibrous AS-stabilized pH of the substrate solution within the range of 6.0-6.6 is favorable to the majority of crops. The experimental data confirmed that this technique allowed solution preparation for crops in space greenhouses by means of pumping water through the cartridge and minimization of the AS stock onboard the space vehicle.
Whole Farm Nutrient Balance Calculator for New York Dairy Farms
ERIC Educational Resources Information Center
Soberon, Melanie A.; Ketterings, Quirine M.; Rasmussen, Caroline N.; Czymmek, Karl J.
2013-01-01
Nutrient loss and accumulation as well as associated environmental degradation have been a concern for animal agriculture for many decades. Federal and New York (NY) regulations apply to Concentrated Animal Feeding Operations and a comprehensive nutrient management plan (CNMP) is required for regulated farms. The whole farm nutrient mass balance…
Inclusion of phytogenic blends in different nutrient density diets of meat-type ducks.
Gheisar, Mohsen Mohammadi; Im, Yong Woon; Lee, Hae Hyoung; Choi, Yang Il; Kim, In Ho
2015-12-01
A total of 160 1-day-old ducklings (average initial body weight of 53 g), were used in a 42-d feeding trial to evaluate the effects of reducing nutrient density of diets, and supplementing the diets with a phytogenic blend (quillaja, anise, and thyme) on their growth, carcass quality, and nutrient digestibility. After checking body weight on d 1, the birds were sorted into pens with 5 birds/pen and 8 pens/treatment. The treatments were: T1, Basal diet; T2, T1+150 ppm phytogenic blend; T3, T1-(1% CP, 0.04% Lys, 0.05% Met+Cys, 0.02% Ca, and 0.02% P, and 50 kcal ME); T4, T3+150 ppm phytogenic blend. The results indicated that reducing nutrient density of the diets had an adverse effect (P<0.05) on body weight gain (BWG) on d 1 to 21, d 21 to 42, and the overall experimental period. Supplementing the diets with the phytogenic blend improved (P<0.05) BWG and feed conversion ratio (FCR) on d 21 to 42 and the overall experimental period. Feed intake was not affected by treatments. Low nutrient density diets increased (P<0.05) the cooking loss percentage of breast meat. Supplementing the diets with the phytogenic blend decreased (P<0.05) the lightness of breast meat. The percentage of drip loss was influenced (P<0.05) by nutrient density and the phytogenic blend on d 1 and d 7. The relative weights of breast meat, abdominal fat, gizzard, liver, spleen, and bursa of Fabricius, pH, and TBARS values were not affected by the treatments. The digestibility of dry matter, energy, nitrogen, ADF, and NDF was decreased (P<0.05) by reducing nutrients density of the diets, but addition of the phytogenic blend alleviated (P<0.05) the negative effects of lowering the nutrient density. The results indicated that the ducks fed high nutrient density diets supplemented with the phytogenic blend showed higher BWG and nutrient digestibility and lower FCR, cooking loss, drip loss, and TBARS value, without any negative effect on meat quality and relative organs weights. © 2015 Poultry Science Association Inc.
Nutrient variations from swine manure to agricultural land
You, Byung-Gu; Shim, Soomin; Choi, Yoon-Seok
2018-01-01
Objective Swine manure in Korea is separated into solid and liquid phases which are composted separately and then applied on land. The nutrient accumulation in soil has been a big issue in Korea but the basic investigation about nutrient input on arable land has not been achieved in detail. Within the nutrient production from livestock at the national level, most values are calculated by multiplication of the number of animals with the excreta unit per animal. However, the actual amount of nutrients from swine manure may be totally different with the nutrients applied to soil since livestock breeding systems are not the same with each country. Methods This study investigated 15 farms producing solid compost and 14 farms producing liquid compost. Composting for solid phase used the Turning+Aeration (TA) or Turning (T) only methods, while liquid phase aeration composting was achieved by continuous (CA), intermittent (IA), or no aeration (NA). Three scenarios were constructed for investigating solid compost: i) farm investigation, ii) reference study, and iii) theoretical P changes (ΔP = 0), whereas an experiment for water evaporation was conducted for analyzing liquid compost. Results In farm investigation, weight loss rates of 62% and 63% were obtained for TA and T, respectively, while evaporation rates for liquid compost were 8.75, 7.27, and 5.14 L/m2·d for CA, IA, and NA, respectively. Farm investigation provided with the combined nutrient load (solid+liquid) of VS, N, and P of 117.6, 7.2, and 2.7 kg/head·yr. Nutrient load calculated from farm investigation is about two times higher than the calculated with reference documents. Conclusion The nutrient loading coefficients from one swine (solid+liquid) were (volatile solids, 0.79; nitrogen, 0.53; phosphorus, 0.71) with nutrient loss of 21%, 47%, and 29%, respectively. The nutrient count from livestock manure using the excretion unit has probably been overestimated without consideration of the nutrient loss. PMID:29268574
Lee, Chia-Hsing; Wang, Chung-Chi; Lin, Huan-Hsuan; Lee, Sang Soo; Tsang, Daniel C W; Jien, Shih-Hao; Ok, Yong Sik
2018-04-01
Climate change gives rise to rapid degradation of rural soils in sloping subtropical and tropical areas and might further threaten environmental sustainability. In this study, we conducted an integrated evaluation of the effects of wood biochar (WB) application mixed with a green waste dreg compost (GWC) on runoff quality, soil losses, and agricultural productivity for a highly weathered tropical soil. A conventional agriculture method, in which soils are treated with anionic polyacrylamide (PAM), was also conducted for comparison. The amounts of runoff and soil loss, and nutrient retention were evaluated a year after WB application. Soil fertility was also investigated through a year pot experiment with rape (Brassica campestris L.) cultivation. Our results showed that the WB application not only effectively increased soil pH, soil organic carbon (SOC) and exchangeable K + but also increased the production of rape plants. Significant reduction of runoff and the increases of inorganic nitrogen (IN) and total phosphorus (TP) were found in the WB-treated soil. Compared to the control, the co-application of WB and GWC, particularly for the WB at 4%, decreased runoff by 16.8%, soil loss by 25%, and IN loss (via runoff) by 41.8%. Meanwhile, compared to the control and PAM treatments, the co-application of WB and GWC improved soil acidity and the contents of SOC, IN, TP, and exchangeable K + . The co-application of WB and GWC could be an alternative agricultural strategy to obtain benefits to agricultural productivity and environmental sustainability. Copyright © 2017 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
A study was conducted to assess the impact of cultivar and weed management on accumulation and loss of plant biomass and nutrients during the first 3 years of establishment when using organic fertilizer in trailing blackberry. Treatments included two cultivars, Marion and Black Diamond, each with ei...
Climate change impacts on the nutrient losses of two watersheds in the Great Lakes region
USDA-ARS?s Scientific Manuscript database
Non-point sources (NPS) of agricultural chemical pollution are one major reason for the degradation of water quality in the Great Lakes. This study focuses on quantifying the impacts of climate change on nutrient (Nitrogen and Phosphorus) losses from NPS in the Great Lakes region through the end of ...
NASA Astrophysics Data System (ADS)
Maggi, F.; Gu, C.; Venterea, R.; Riley, W.; Oldenburg, C.
2007-12-01
The biogeochemical cycle of nitrogen and production of NO, N2O, and CO2 gas and NO2- and NO3- ions in nutrient-enriched agricultural fields is mediated by soil microbial activity, the hydrological cycle, plant dynamics, and climatic forcing. Understanding how NO, N2O, CO2 gases and NO2- and NO3- ions are released from agricultural fields to the environment is a key factor in controlling the green-house effect and water contamination, and assumes ever greater importance in view of the foreseen increase in biofuel, food, and fiber production. To address these issues we have developed a mechanistic model (TOUGHREACT-N) for various nitrification and denitrification pathways, multiple microbial biomass dynamics, heat and water flows, and various chemical reactions at local and kinetic equilibrium. The soil column is represented in a 1D framework, with hydraulic properties described by a water tension-saturation model. Biotic and abiotic reactions are assumed to follow Michaelis-Menten kinetics, while a consortium of several micro-organismal strains is assumed to follow multiple Monod growth kinetics accounting for electron donor, electron acceptor, and inhibitor concentrations. Water flow is modeled with the Darcy-Richards equation, while nutrient transport is modeled by Fickian advective and diffusive processes in both gaseous and liquid phases. Heat flow is modeled with the Fourier equation. Plant dynamics is taken into account by coupling TOUGHREACT-N with CERES to determine water and nutrient uptake, and soil carbon accumulation. TOUGHREACT-N was calibrated against field measurements to assess pathways of N losses following fertilization. A good agreement between field observations and model predictions was found. We identified two dominant time scales in the system response that depended on plants dynamics. Before plants have substantial impact on soil nutrients and moisture content, N losses are characterized by rapid increases as a function of water application rate and fertilizer amount and application depth. Under reference fertilization and irrigation practices, approximately 1.64% and 1.61% of the total applied N is lost as N-NO(g) and N-N2O(g), respectively, while losses of N-N2(g), N-NO2-, and N-NO3- where several orders of magnitude smaller. When plants grow, pulses in N losses became smoother due to nutrient and water uptake. Contrarily to predictions of non- mechanistic, coarse-scale models (e.g., CASA, CENTURY) N losses are predominantly non-linearly increasing with fertilizer and water application amount, and with fertilizer application depth, thus invoking a revision of long- term estimates of nitrogen and carbon balances at global scales
Pedruzzi, Ivo; Bürckert, Niels; Egger, Pascal; De Virgilio, Claudio
2000-01-01
The Saccharomyces cerevisiae protein kinase Rim15 was identified previously as a component of the Ras/cAMP pathway acting immediately downstream of cAMP-dependent protein kinase (cAPK) to control a broad range of adaptations in response to nutrient limitation. Here, we show that the zinc finger protein Gis1 acts as a dosage-dependent suppressor of the rim15Δ defect in nutrient limitation-induced transcriptional derepression of SSA3. Loss of Gis1 results in a defect in transcriptional derepression upon nutrient limitation of various genes that are negatively regulated by the Ras/cAMP pathway (e.g. SSA3, HSP12 and HSP26). Tests of epistasis as well as transcriptional analyses of Gis1-dependent expression indicate that Gis1 acts in this pathway downstream of Rim15 to mediate transcription from the previously identified post-diauxic shift (PDS) element. Accordingly, deletion of GIS1 partially suppresses, and overexpression of GIS1 exacerbates the growth defect of mutant cells that are compromised for cAPK activity. Moreover, PDS element-driven expression, which is negatively regulated by the Ras/cAMP pathway and which is induced upon nutrient limitation, is almost entirely dependent on the presence of Gis1. PMID:10835355
Timber-harvest clearcutting and nutrients in the Northeastern United States
K. G. Reinhart
1973-01-01
The effect of ecosystem disturbance on nutrients in the system has been receiving widespread attention. An appraisal of research results in the Northeast indicates that timber-harvest clearcutting has not increased nutrient levels sufficiently to reduce water quality below drinking water standards. Losses of nutrients from clearcuttings in New Hampshire over a 2-year...
A Loblolly Pine Management Guide: Foresters' Primer in Nutrient Cycling
Jacques R. Jorgensen; Carol G. Wells
1986-01-01
The nutrient cycle, which includes the input of nutrients to the site, their losses, and their movement from one soil or vegetation component to another, can be modified by site preparation, rotation length, harvest system, fertilization, and fire, and by using soil-improving plants. Included is a report on how alternative procedures affect site nutrients, and provides...
21 CFR 104.20 - Statement of purpose.
Code of Federal Regulations, 2014 CFR
2014-04-01
... handling procedures cannot prevent the loss of such nutrient(s), (3) All nutrients, including protein... standard: Nutrient Unit of measurement DRV or RDI 1 Amount per 100 calories Protein grams (g) 50 2.5 Vitamin A International Unit (IU) 5,000 250 Vitamin C milligrams (mg) 60 3 Calcium g 1 0.05 Iron mg 18 0.9...
21 CFR 104.20 - Statement of purpose.
Code of Federal Regulations, 2011 CFR
2011-04-01
... handling procedures cannot prevent the loss of such nutrient(s), (3) All nutrients, including protein... standard: Nutrient Unit of measurement DRV or RDI 1 Amount per 100 calories Protein grams (g) 50 2.5 Vitamin A International Unit (IU) 5,000 250 Vitamin C milligrams (mg) 60 3 Calcium g 1 0.05 Iron mg 18 0.9...
21 CFR 104.20 - Statement of purpose.
Code of Federal Regulations, 2010 CFR
2010-04-01
... handling procedures cannot prevent the loss of such nutrient(s), (3) All nutrients, including protein... standard: Nutrient Unit of measurement DRV or RDI 1 Amount per 100 calories Protein grams (g) 50 2.5 Vitamin A International Unit (IU) 5,000 250 Vitamin C milligrams (mg) 60 3 Calcium g 1 0.05 Iron mg 18 0.9...
21 CFR 104.20 - Statement of purpose.
Code of Federal Regulations, 2013 CFR
2013-04-01
... handling procedures cannot prevent the loss of such nutrient(s), (3) All nutrients, including protein... standard: Nutrient Unit of measurement DRV or RDI 1 Amount per 100 calories Protein grams (g) 50 2.5 Vitamin A International Unit (IU) 5,000 250 Vitamin C milligrams (mg) 60 3 Calcium g 1 0.05 Iron mg 18 0.9...
21 CFR 104.20 - Statement of purpose.
Code of Federal Regulations, 2012 CFR
2012-04-01
... handling procedures cannot prevent the loss of such nutrient(s), (3) All nutrients, including protein... standard: Nutrient Unit of measurement DRV or RDI 1 Amount per 100 calories Protein grams (g) 50 2.5 Vitamin A International Unit (IU) 5,000 250 Vitamin C milligrams (mg) 60 3 Calcium g 1 0.05 Iron mg 18 0.9...
Contaminant Transport to Shallow Drainage Water in Pothole Topography
USDA-ARS?s Scientific Manuscript database
Nutrient and herbicide losses from row crop agriculture represent potential environmental and human health hazards. In order to determine where nutrient and herbicide mitigation strategies can be targeted for optimum performance, levels of nutrients and herbicides were measured in an agricultural dr...
Overview of Considerations in Assessing the Biomass Potential of Army Installations.
1981-08-01
stage. Will the species grow well in poor soils and on harsh, open sites? Trees that met these standards were then grouped according to their...frequency of fire, (2) reduces the need of fire control methods such as controlled burns, and (3) makes site preparation easier.21 Whole-tree chipping...the "aesthetic" value of the stand is increased.22 The negative effect most often thought to occur with whole-tree chipping is loss of soil nutrients
Snyder, Daniel T.; Morace, Jennifer L.
1997-01-01
The results of this study could be useful in helping to prioritize which drained wetlands may provide the greatest benefits with regard to reducing nutrient loads to the lake if restoration or land-use modifications are instituted. Recent acquisition and planned restoration of drained wetland areas at the Wood River and Williamson River North properties may produce significant reduction in the quantity of nutrients released by the decomposition of peat soils of these areas. If the water table rises to predrainage levels, the peats soils may become inundated most of the year, resulting in the continued long-term storage of nutrients within the peat soils by reducing aerobic decomposition. The maximum benefit, in terms of decreasing potential nutrient loss due to peat decomposition, could be the reduction of total nitrogen and total phosphorus loss to about one-half that of the 1994–95 annual loss estimated for all the drained wetlands sampled for this study.
Aoyama, Takashi; Imataki, Osamu; Mori, Keita; Yoshitsugu, Kanako; Fukaya, Masafumi; Okamura, Ikue; Enami, Terukazu; Tatara, Raine; Ikeda, Takashi
2017-04-01
Hematopoietic stem cell transplantation carries nutrition-related risks. Therefore, nutritional therapy needs to be initiated before transplantation even takes place. We assessed nutritional risk among patients who underwent allogeneic stem cell transplantation. We assessed nutrient supply (calorie supply and protein supply) by chart review. Assessments were made from the pretreatment phase of transplantation to after the end of parenteral nutrition in 51 patients who underwent allogeneic stem cell transplantation at Shizuoka Cancer Center between 2007 and 2012. We compared nutrition-related adverse events and parameters between two groups: those in whom % loss of body weight was ≥7.5 and those in whom % loss of body weight was <7.5. A correlation was observed between changes in weight and skeletal muscle mass (r = 0.89; P < 0.0001). A weak correlation was observed between % loss of body weight and nutrient supply of calories (r = 0.517; P = 0.0001). There were significant differences between the % loss of body weight ≥7.5 group and the % loss of body weight <7.5 group in the following variables: % loss of body weight, nutrient supply from calories and protein; orally ingested nutrient supply from calories and protein; start day of oral intake; and acute graft-versus-host disease. Orally ingested calories were negatively correlated with nutrition-related adverse events in both groups. Early and customized nutritional intervention may be optimal for all patients who undergo allogeneic stem cell transplantation to ameliorate body weight loss associated with nutrition-related adverse events.
USDA-ARS?s Scientific Manuscript database
Micro-nutrients deficiency in soil result in crop yield loss and poor seed quality. Correcting this deficiency is normally conducted by foliar or soil application. The objective of this research was to determine the effects of soil applications of five micro-nutrients (Mn, Cu, Zn, Mo, and B) with a ...
Gustatory and metabolic perception of nutrient stress in Drosophila.
Linford, Nancy J; Ro, Jennifer; Chung, Brian Y; Pletcher, Scott D
2015-02-24
Sleep loss is an adaptive response to nutrient deprivation that alters behavior to maximize the chances of feeding before imminent death. Organisms must maintain systems for detecting the quality of the food source to resume healthy levels of sleep when the stress is alleviated. We determined that gustatory perception of sweetness is both necessary and sufficient to suppress starvation-induced sleep loss when animals encounter nutrient-poor food sources. We further find that blocking specific dopaminergic neurons phenocopies the absence of gustatory stimulation, suggesting a specific role for these neurons in transducing taste information to sleep centers in the brain. Finally, we show that gustatory perception is required for survival, specifically in a low nutrient environment. Overall, these results demonstrate an important role for gustatory perception when environmental food availability approaches zero and illustrate the interplay between sensory and metabolic perception of nutrient availability in regulating behavioral state.
NASA Astrophysics Data System (ADS)
Zhang, Yongyong; Zhou, Yujian; Shao, Quanxi; Liu, Hongbin; Lei, Qiuliang; Zhai, Xiaoyan; Wang, Xuelei
2016-12-01
Diffuse nutrient loss mechanism is complicated and shows remarkably regional differences due to spatial heterogeneities of underlying surface conditions, climate and agricultural practices. Moreover, current available observations are still hard to support the identification of impact factors due to different time or space steps. In this study, an integrated water system model (HEQM) was adopted to obtain the simulated loads of diffuse components (carriers: runoff and sediment; nutrient: total nitrogen (TN) and total phosphorous (TP)) with synchronous scales. Multivariable statistical analysis approaches (Analysis of Similarity and redundancy analysis) were used to assess the regional differences, and to identify impact factors as well as their contributions. Four catchments were selected as our study areas, i.e., Xiahui and Zhangjiafen Catchments of Miyun Basin in North China, Yuliang and Tunxi Catchments of Xin'anjiang Basin in South China. Results showed that the model performances of monthly processes were very good for runoff and good for sediment, TN and TP. The annual average coefficients of all the diffuse components in Xin'anjiang Basin were much greater than those in Miyun Basin, and showed significantly regional differences. All the selected impact factors interpreted 72.87-82.16% of the regional differences of carriers, and 62.72-71.62% of those of nutrient coefficients, respectively. For individual impact factor categories, the critical category was geography, followed by land-use/cover, carriers, climate, as well as soil and agricultural practices in Miyun Basin, or agricultural practices and soil in Xin'anjiang Basin. For individual factors, the critical factors were locations for the carrier regional differences, and carriers or chemical fertilizer for the nutrient regional differences. This study is expected to promote further applications of integrated water system model and multivariable statistical analysis in the diffuse nutrient studies, and provide a scientific support for the diffuse pollution control and management in China.
Nonlinear responses of coastal salt marshes to nutrient additions and sea level rise
Increasing nutrients and accelerated sea level rise (SLR) can cause marsh loss in some coastal systems. Responses to nutrients and SLR are complex and vary with soil matrix, marsh elevation, sediment inputs, and hydroperiod. We describe field and greenhouse studies examining sing...
R. Kasten Dumroese; Deborah S. Page-Dumroese; K. Francis Salifu; Douglass F. Jacobs
2005-01-01
We evaluated nutrient uptake efficiency and subsequent leaching fractions for western white pine (Pinus monticola Dougl. ex D. Don) seedlings grown with exponentially increasing or conventional (constant) fertilization in a greenhouse. Conventional fertilization was associated with higher leachate electrical conductivity and greater nutrient losses,...
Kearns, Patrick J.; Angell, John H.; Howard, Evan M.; Deegan, Linda A.; Stanley, Rachel H. R.; Bowen, Jennifer L.
2016-01-01
Microorganisms control key biogeochemical pathways, thus changes in microbial diversity, community structure and activity can affect ecosystem response to environmental drivers. Understanding factors that control the proportion of active microbes in the environment and how they vary when perturbed is critical to anticipating ecosystem response to global change. Increasing supplies of anthropogenic nitrogen to ecosystems globally makes it imperative that we understand how nutrient supply alters active microbial communities. Here we show that nitrogen additions to salt marshes cause a shift in the active microbial community despite no change in the total community. The active community shift causes the proportion of dormant microbial taxa to double, from 45 to 90%, and induces diversity loss in the active portion of the community. Our results suggest that perturbations to salt marshes can drastically alter active microbial communities, however these communities may remain resilient by protecting total diversity through increased dormancy. PMID:27666199
Kearns, Patrick J; Angell, John H; Howard, Evan M; Deegan, Linda A; Stanley, Rachel H R; Bowen, Jennifer L
2016-09-26
Microorganisms control key biogeochemical pathways, thus changes in microbial diversity, community structure and activity can affect ecosystem response to environmental drivers. Understanding factors that control the proportion of active microbes in the environment and how they vary when perturbed is critical to anticipating ecosystem response to global change. Increasing supplies of anthropogenic nitrogen to ecosystems globally makes it imperative that we understand how nutrient supply alters active microbial communities. Here we show that nitrogen additions to salt marshes cause a shift in the active microbial community despite no change in the total community. The active community shift causes the proportion of dormant microbial taxa to double, from 45 to 90%, and induces diversity loss in the active portion of the community. Our results suggest that perturbations to salt marshes can drastically alter active microbial communities, however these communities may remain resilient by protecting total diversity through increased dormancy.
NASA Astrophysics Data System (ADS)
Kearns, Patrick J.; Angell, John H.; Howard, Evan M.; Deegan, Linda A.; Stanley, Rachel H. R.; Bowen, Jennifer L.
2016-09-01
Microorganisms control key biogeochemical pathways, thus changes in microbial diversity, community structure and activity can affect ecosystem response to environmental drivers. Understanding factors that control the proportion of active microbes in the environment and how they vary when perturbed is critical to anticipating ecosystem response to global change. Increasing supplies of anthropogenic nitrogen to ecosystems globally makes it imperative that we understand how nutrient supply alters active microbial communities. Here we show that nitrogen additions to salt marshes cause a shift in the active microbial community despite no change in the total community. The active community shift causes the proportion of dormant microbial taxa to double, from 45 to 90%, and induces diversity loss in the active portion of the community. Our results suggest that perturbations to salt marshes can drastically alter active microbial communities, however these communities may remain resilient by protecting total diversity through increased dormancy.
NASA Astrophysics Data System (ADS)
Thuss, E.; English, M. C.; Spoelstra, J.
2009-05-01
When nitrogen availability exceeds biological demand, excess nitrogen, especially nitrate, may subsequently pollute ground and surface water. Agricultural practices in Southern Ontario typically supplement soils with organic and inorganic nutrients to aid in crop development, and employ various management techniques to limit nutrient loss. Excess nitrogen has several potential fates, which are controlled by the net effects of numerous nitrogen cycling reactions in the soil that are often difficult to measure directly. Nitrogen cycling in soils is controlled in large part by soil moisture, as it affects microbial activity and soil redox conditions. Stable isotope geochemistry is a powerful tool that provides information on nitrogen sources and processes. This study uses crop nitrogen and carbon isotope ratios to provide insights into the net effects of soil nitrogen cycling and nitrogen fate. This research was conducted at the Strawberry Creek Watershed (SCW), an agricultural research watershed located between Kitchener-Waterloo and Guelph, Ontario. The SCW exhibits elevated nitrate concentrations in groundwater, tile discharge, and the stream itself. Previous isotopic work revealed that this nitrate is largely derived from chemical fertilizer and manure applications. Field-scale hydrological processes lead to areas where the fate of applied nitrogen differs, which has an isotopic effect on the residual nitrogen that is available to plants. Results of this study indicate significant patterns in the isotopic signature of plant tissue, in both temporal and spatial scales. At the plot-scale where soil conditions are similar, there is little to no variation in foliar isotope values, but at the field-scale there appears to be a significant amount of variability related to soil moisture and nitrogen loss. This relationship can potentially provide insight into ideal conditions for nitrogen uptake efficiency. Reducing agricultural nitrogen leaching to ground and surface water requires a better understanding of nitrogen fate in the soil zone, and will result in more effective agricultural nutrient management.
Shappell, N W; Billey, L O; Shipitalo, M J
2016-02-01
Confined Animal Feeding Operations generate large amounts of wastes that are land-applied to provide nutrients for crop production and return organic matter to the soil. Production practices and storage limitations often necessitate that wastes be applied to frozen and snow-covered soil. Use of application setbacks have reduced concerns related to nutrient losses in surface runoff from manure, but the estrogenic activity of runoff under these conditions has not been evaluated. Therefore, we measured and sampled surface runoff when manure was applied in the winter at a rate to meet crop N needs and measured estradiol equivalents (E2Eqs) using E-Screen. In year one, six small watersheds used to produce corn were evaluated, treatments: 2 no-manure controls, 2 liquid swine manure with 30-m setbacks, and 2 turkey litter with 30-m setbacks. In addition, beef manure was applied to six frozen plots of forage. For years 2 and 3, applications were repeated on the swine manure watersheds and one control watershed. E2Eqs and nutrient concentrations generally peaked in the first runoff event after application. The highest measured E2Eq (5.6 ng L(-1)) was in the first event after swine manure application and was less than the 8.9 ng L(-1) Lowest Observable Effect Concentration (LOEC) for aquatic species and well below the concentrations measured in other studies using ELISAs to measure hormone concentrations. No runoff occurred from plots planted with forage, indicating low risk for environmental impact, and therefore plots were discontinued from study. In years 2 and 3, estrogenic activity never exceeded the Predicted No Effect Concentrations for E2 of 2 ng L(-1). When post-application runoff contained high estrogenic activity, strong correlations (R(2) 0.86 to 0.96) of E2Eq to Ca(2+), Mg(2+), and K(+) concentrations were observed, indicating under some condition these cations might be useful surrogates for E2Eq measurements. Published by Elsevier B.V.
Berkovich, Yu A; Krivobok, N M; Krivobok, A S; Smolyanina, S O
2016-02-01
A compact and reliable automatic method for plant nutrition supply is needed to monitor and control space-based plant production systems. The authors of this study have designed a nutrient root-feeding system that minimizes and regulates nutrient and water supply without loss of crop yields in a space greenhouse. The system involves an ion-exchange fibrous artificial soil (AS) BIONA-V3(TM) as the root-inhabited medium; a pack with slow-release fertilizer as the main source of nitrogen, phosphorus, and potassium; and a cartridge with granular mineral-rich ionite (GMRI) as a source of calcium, magnesium, sulfur, and iron. A controller equipped with an electrical conductivity meter controls the solution flow and concentration of the solution in the mixing tank at specified values. Experiments showed that the fibrous AS-stabilized pH of the substrate solution within the range of 6.0-6.6 is favorable to the majority of crops. The experimental data confirmed that this technique allowed solution preparation for crops in space greenhouses by means of pumping water through the cartridge and minimization of the AS stock onboard the space vehicle. Copyright © 2015 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.
Rubino, Francesco; Forgione, Antonello; Cummings, David E; Vix, Michel; Gnuli, Donatella; Mingrone, Geltrude; Castagneto, Marco; Marescaux, Jacques
2006-11-01
Most patients who undergo Roux-en-Y gastric bypass (RYGB) experience rapid resolution of type 2 diabetes. Prior studies indicate that this results from more than gastric restriction and weight loss, implicating the rearranged intestine as a primary mediator. It is unclear, however, if diabetes improves because of enhanced delivery of nutrients to the distal intestine and increased secretion of hindgut signals that improve glucose homeostasis, or because of altered signals from the excluded segment of proximal intestine. We sought to distinguish between these two mechanisms. Goto-Kakizaki (GK) type 2 diabetic rats underwent duodenal-jejunal bypass (DJB), a stomach-preserving RYGB that excludes the proximal intestine, or a gastrojejunostomy (GJ), which creates a shortcut for ingested nutrients without bypassing any intestine. Controls were pair-fed (PF) sham-operated and untreated GK rats. Rats that had undergone GJ were then reoperated to exclude the proximal intestine; and conversely, duodenal passage was restored in rats that had undergone DJB. Oral glucose tolerance (OGTT), food intake, body weight, and intestinal nutrient absorption were measured. There were no differences in food intake, body weight, or nutrient absorption among surgical groups. DJB-treated rats had markedly better oral glucose tolerance compared with all control groups as shown by lower peak and area-under-the-curve glucose values (P < 0.001 for both). GJ did not affect glucose homeostasis, but exclusion of duodenal nutrient passage in reoperated GJ rats significantly improved glucose tolerance. Conversely, restoration of duodenal passage in DJB rats reestablished impaired glucose tolerance. This study shows that bypassing a short segment of proximal intestine directly ameliorates type 2 diabetes, independently of effects on food intake, body weight, malabsorption, or nutrient delivery to the hindgut. These findings suggest that a proximal intestinal bypass could be considered for diabetes treatment and that potentially undiscovered factors from the proximal bowel might contribute to the pathophysiology of type 2 diabetes.
Increased plant growth from nitrogen addition should conserve phosphorus in terrestrial ecosystems.
Perring, Michael P; Hedin, Lars O; Levin, Simon A; McGroddy, Megan; de Mazancourt, Claire
2008-02-12
Inputs of available nitrogen (N) to ecosystems have grown over the recent past. There is limited general understanding of how increased N inputs affect the cycling and retention of other potentially limiting nutrients. Using a plant-soil nutrient model, and by explicitly coupling N and phosphorus (P) in plant biomass, we examine the impact of increasing N supply on the ecosystem cycling and retention of P, assuming that the main impact of N is to increase plant growth. We find divergent responses in the P cycle depending on the specific pathway by which nutrients are lost from the ecosystem. Retention of P is promoted if the relative propensity for loss of plant available P is greater than that for the loss of less readily available organic P. This is the first theoretical demonstration that the coupled response of ecosystem-scale nutrient cycles critically depends on the form of nutrient loss. P retention might be lessened, or reversed, depending on the kinetics and size of a buffering reactive P pool. These properties determine the reactive pool's ability to supply available P. Parameterization of the model across a range of forest ecosystems spanning various environmental and climatic conditions indicates that enhanced plant growth due to increased N should trigger increased P conservation within ecosystems while leading to more dissolved organic P loss. We discuss how the magnitude and direction of the effect of N may also depend on other processes.
Tully, Katherine L; Lawrence, Deborah
2012-06-01
In a coffee agroforest, the crop is cultivated under the shade of fruit-bearing and nitrogen (N)-fixing trees. These trees are periodically pruned to promote flowering and fruiting as well as to make nutrients stored in tree biomass available to plants. We investigated the effect of canopy composition and substrate quality on decomposition rates and patterns of nutrient release from pruning residues in a coffee agroforest located in Costa Rica's Central Valley. Initial phosphorus (P) release was enhanced under a canopy composed solely of N-fixing, Erythrina poeppigiana compared to a mixed canopy of Erythrina and Musa acuminata (banana). Both initial and final N release were similar under the two canopy types. However, after five months of decomposition, a higher proportion of initial N had been released under the single canopy. Although patterns of decomposition and nutrient release were not predicted by initial substrate quality, mass loss in leaf mixtures rates were well predicted by mean mass loss of their component species. This study identifies specific pruning regimes that may regulate N and P release during crucial growth periods, and it suggests that strategic pruning can enhance nutrient availability. For example, during the onset of rapid fruit growth, a two-species mixture may release more P than a three-species mixture. However, by the time of the harvest, the two- and three-species mixtures have released roughly the same amount of N and P. These nutrients do not always follow the same pattern, as N release can be maximized in single-species substrates, while P release is often facilitated in species mixtures. Our study indicates the importance of management practices in mediating patterns of nutrient release. Future research should investigate how canopy composition and farm management can also mediate on-farm nutrient losses.
Marcarelli, Amy M.; Baxter, Colden V.; Wipfli, Mark S.
2014-01-01
Mitigation activities designed to supplement nutrient and organic matter inputs to streams experiencing decline or loss of Pacific salmon typically presuppose that an important pathway by which salmon nutrients are moved to fish (anadromous and/or resident) is via nutrient incorporation by biofilms and subsequent bottom-up stimulation of biofilm production, which is nutrient-limited in many ecosystems where salmon returns have declined. Our objective was to quantify the magnitude of nutrient incorporation and biofilm dynamics that underpin this indirect pathway in response to experimental additions of salmon carcasses and pelletized fish meal (a.k.a., salmon carcass analogs) to 500-m reaches of central Idaho streams over three years. Biofilm standing crops increased 2–8-fold and incorporated marine-derived nutrients (measured using 15N and 13C) in the month following treatment, but these responses did not persist year-to-year. Biofilms were nitrogen (N) limited before treatments, and remained N limited in analog, but not carcass-treated reaches. Despite these biofilm responses, in the month following treatment total N load was equal to 33–47% of the N added to the treated reaches, and N spiraling measurements suggested that as much as 20%, but more likely 2–3% of added N was taken up by microbes. Design of biologically and cost-effective strategies for nutrient addition will require understanding the rates at which stream microbes take up nutrients and the downstream distance traveled by exported nutrients.
The Potential Role of Yogurt in Weight Management and Prevention of Type 2 Diabetes.
Panahi, Shirin; Tremblay, Angelo
2016-01-01
Yogurt is a semisolid fermented milk product that originated centuries ago and is viewed as an essential food and important source of nutrients in the diet of humans. Over the last 30 years, overweight and obesity have become characteristic of Western and developing countries, which has led to deleterious health outcomes, including cardiovascular disease, type 2 diabetes, hypertension, and other chronic conditions. Recent epidemiological and clinical evidence suggests that yogurt is involved in the control of body weight and energy homeostasis and may play a role in reducing the risk for type 2 diabetes partly via the replacement of less healthy foods in the diet, its food matrix, the effect of specific nutrients such as calcium and protein on appetite control and glycemia, and alteration in gut microbiota. This review will discuss the specific properties that make yogurt a unique food among the dairy products, epidemiological and clinical evidence supporting yogurt's role in body weight, energy balance, and type 2 diabetes, including its potential mechanisms of action and gaps that need to be explored. Key teaching points • Several epidemiological and clinical studies have suggested a beneficial effect of yogurt consumption in the control of body weight and energy homeostasis, although this remains controversial. • Yogurt possesses unique properties, including its nutritional composition; lactic acid bacteria, which may affect gut microbiota; and food matrix, which may have a potential role in appetite and glycemic control. • Potential mechanisms of action of yogurt include an increase in body fat loss, decrease in food intake and increase in satiety, decrease in glycemic and insulin response, altered gut hormone response, replacement of less healthy foods, and altered gut microbiota. • The relative energy and nutrient content and contribution of a standard portion of yogurt to the overall diet suggest that the percentage daily intake of these nutrients largely contributes to nutrient requirements and provides a strong contribution to the regulation of energy metabolism.
Horie, Ichiro; Abiru, Norio; Hongo, Ryoko; Nakamura, Takeshi; Ito, Ayako; Haraguchi, Ai; Natsuda, Shoko; Sagara, Ikuko; Ando, Takao; Kawakami, Atsushi
2018-01-01
Sodium-glucose cotransporter 2 inhibitors (SGLT2i) cause substantially less weight loss than would be expected based on their caloric deficits, probably due to enhanced appetite regulation known as "compensatory hyperphagia," which occurs to offset the negative energy balance caused by increased glycosuria. We examined whether any specific nutrients contributed to the compensatory hyperphagia in diabetic patients taking SGLT2i. Sixteen patients with type 2 diabetes were newly administered dapagliflozin 5 mg daily as the experimental SGLT2i group. Sixteen age-, sex- and BMI-matched type 2 diabetes patients not receiving dapagliflozin served as controls. A brief-type self-administered diet history questionnaire (BDHQ) was undertaken just before and 3 months after study initiation to evaluate changes of energy and nutrient intakes in each group. At 3 months, daily intakes of total calories and the proportions of the three major nutrients were not significantly increased in either group. However, daily sucrose intake was significantly increased after treatment versus the baseline value in the SGLT2i group (p = .003), but not in controls. The calculated intakes of all other nutrients were not significantly changed in either group. Dapagliflozin treatment specifically increased sucrose intake, which might be an ideal target for nutritional approaches to attenuate compensatory hyperphagia. Copyright © 2017 Elsevier B.V. All rights reserved.
Total N exports from once vs. repeatedly burnt Pine plantations
NASA Astrophysics Data System (ADS)
Gonzalez Pelayo, Oscar; Hosseini, Mohammadreza; Varandas, Daniela; Machado, Ana Isabel; Prats Alegre, Sergio; Coelho, Celeste O. A.; Geissen, Violette; Ritsema, Coen; Keizer, Jan Jacob
2014-05-01
Post-fire nutrient losses in Mediterranean forested areas have been suggested as a key driver for ecosystem degradation. The role of fire recurrence in soil nutrient depletion, however, has been poorly studied. The EU-funded CASCADE project addresses this research gap in the study case in Portugal, having as overarching aim to assess if repeated wildfires lead to land degradation in Maritime Pine stands through a gradual process or, instead, through tipping-points in plant-water-soil relationships. Following a large wildfire in September 2012 affecting more than 3000 ha in the municipality of Viseu (central Portugal), total N losses are being monitored in three zones: 4x burnt since 1975; 1x burnt since 197, i.e. in 2012); unburnt since 1975. Within each zone, three replicate slopes were selected with similar slope angles and expositions and, at each slope, three pairs of erosion plots of approximately 0.25 m2 were installed on the lower, middle and lower slope section. Additionally, a catchment outlet within the 4x burned zones was equipped with a gauging station for automatic recording of water level sensor and tubidity and for collecting stream flow samples using an automatic sampler. Preliminary results from the first 6 months after the 2012-wildfire suggested that total N losses were, on average, twice as high at the 4x times burned slopes than at the 1x burned slopes. Nonetheless, temporal patterns in average losses during these initial six months were similar for the two zones. By contrast, the results obtained during the subsequent spring and summer seasons suggested that average total N losses from the 1x burned slopes closely approximated those from the 4x burned slopes. At the unburned slopes, total N losses were very small and limited to few rainfall events. Interestingly, at the catchment outlet the total N values were 66% higher compared to the 4x times burned microplots, highlighting the importance of up-scaling effects in terms of nutrient losses. Preliminary results on total N losses during the first post-fire year showed that nutrient depletion can be triggered by increasing the fire regime. The up-scaling effect suggested an increase in nutrient exportations from micro-plot to catchment scale. These results are being further investigated to establish the relationships between soil fertility losses and fire recurrence.
USDA-ARS?s Scientific Manuscript database
Understanding the nature and extent of soils prone to nutrient losses in runoff is central to the success of nutrient management in agricultural watersheds. Drawing upon case studies from USDA-ARS’s Mahantango Creek Experimental Watershed in east-central Pennsylvania, this presentation will discuss ...
Effects of seasonal nitrogen on binary mixtures of tall fescue and bermudagrass
USDA-ARS?s Scientific Manuscript database
The nutrients in broiler litter, especially N, should be applied in phase with crop demands to reduce the potential for nutrient loss. A 2-yr field experiment studied broiler litter and inorganic N application timing effects on seasonal dry matter (DM) yield, total nutrient uptake, and soil P in mix...
Detecting temporal change in watershed nutrient yields
James D. Wickham; Timothy G. Wade; Kurt H. Riitters
2008-01-01
Meta-analyses reveal that nutrient yields tend to be higher for watersheds dominated by anthropogenic uses (e.g., urban, agriculture) and lower for watersheds dominated by natural vegetation. One implication of this pattern is that loss of natural vegetation will produce increases in watershed nutrient yields. Yet, the same meta-analyses also reveal that, absent land-...
Detecting Temporal Change in Watershed Nutrient Yields
James D. Wickham; Timothy G. Wade; Kurt H. Riitters
2008-01-01
Meta-analyses reveal that nutrient yields tend to be higher for watersheds dominated by anthropogenic uses (e.g., urban, agriculture) and lower for watersheds dominated by natural vegetation. One implication of this pattern is that loss of natural vegetation will produce increases in watershed nutrient yields. Yet, the same meta-analyses also reveal that, absent land-...
Nutrient losses from timber harvesting in a larch/ Douglas-fir forest
Nellie M. Stark
1979-01-01
Nutrient levels as a result of experimental clearcutting, shelterwood cutting, and group selection cutting - each with three levels of harvesting intensity - were studied in a larchfir forest in northwest Montana, experimentally logged with a skyline system. None of the treatments altered nutrient levels in an intermittent stream, nor were excessive amounts of...
Nutrient Loss in Runoff from Turf: Effect on Surface Water Quality
USDA-ARS?s Scientific Manuscript database
Excess nutrients in surface waters may result in enhanced algal blooms and plant growth that can lead to eutrophication and a decline in water quality. The applicatin of fertilizer to golf courses may be a source of nutrients to surface waters. Runoff studies were conducted to measure applied nitrog...
NASA Astrophysics Data System (ADS)
Quijano, Laura; Gaspar, Leticia; Navas, Ana
2016-04-01
Mediterranean mountain agroecosystems are prone to soil loss mainly due to the accelerated erosion as a consequence of human induced changes from agriculture and grazing practices over the last centuries and the climatic conditions (i.e. irregular and scarce precipitations and drought periods). Soil erosion leads to soil degradation inducing the loss of soil functions. The progressive decline of soil functions thereof soil quality is associated to a decrease of soil productivity and can threat the sustainability of cultivated soils. The use of fallout 137Cs as a soil movement tracer provides useful data to identify areas where loss and gain of 137Cs occurs and that of soil. This study aims to address soil movement and soil nutrient dynamics closely related to the status of soil degradation. A rain-fed cereal field (1.6 ha) representative of Mediterranean mountain agricultural landscapes (42°25'41''N 1°13'8''W) was selected to examine the effects of soil redistribution processes on the spatial variability of soil organic carbon (SOC) and nitrogen (SON) and their relationships with soil properties and topographic characteristics. From the hydrological point of view, the field is isolated due to the effect of landscape features and man-made structures. Climate is continental Mediterranean with an average annual rainfall of 500 mm and soils are Calcisols. The reference inventories of 137Cs and soil nutrients were established from 21 soil samples collected in nearby undisturbed areas under typical Mediterranean vegetation cover. A total of 156 bulk soil samples (30-50 cm depth) and 156 topsoil samples (5 cm) were collected on a 10 m grid. 137Cs and soil nutrients loss and gain areas were identified by comparing the reference inventories with the values of inventories at the sampling points. A new approach to characterize and measure active (ACF) and stable (SCF) carbon fraction contents by using a dry combustion method based on the oxidation temperature of carbon fractions to analyze the SOC pool dynamics is presented in this study. A detailed field topographic survey and mapping of the spatial variability of soil properties and nutrient contents from soil analyses displayed similar spatial patterns of 137Cs and soil nutrients that also were directly and significantly correlated (p≤0.01). As much as 70% of the surface of the study field had lower values of 137Cs inventory indicating a predominance of soil loss linked to a generalized loss of soil nutrients. SOC gain was found in less than 1% of the study field and there was a large loss of SON compared to the undisturbed reference site. Higher and significant (p≤0.01) contents of soil nutrients were found in topsoil samples than in the bulk ones. Furthermore, there was an enrichment of the relative contribution of ACF to total SOC in sampling points where there was a 137Cs gain in both bulk and topsoil samples. Understanding patterns of soil nutrients can be useful for developing and implementing land management strategies to preserve soil quality in Mediterranean agricultural areas.
Kayira, Dumbani; Bentley, Margaret E; Wiener, Jeffrey; Mkhomawanthu, Chimwemwe; King, Caroline C; Chitsulo, Phindile; Chigwenembe, Maggie; Ellington, Sascha; Hosseinipour, Mina C; Kourtis, Athena P; Chasela, Charles; Tembo, Martin; Tohill, Beth; Piwoz, Ellen G; Jamieson, Denise J; van der Horst, Charles; Adair, Linda
2012-03-01
Breastfeeding increases metabolic demands on the mother, and excessive postnatal weight loss increases maternal mortality. We evaluated the efficacy of a lipid-based nutrient supplement (LNS) for prevention of excess weight loss in breastfeeding, HIV-infected women. The BAN (Breastfeeding, Antiretrovirals, and Nutrition) Study was a randomized controlled trial in Lilongwe, Malawi. At delivery, HIV-infected mothers and their infants were randomly assigned according to a 2-arm (with and without LNS) by 3-arm (maternal triple-antiretroviral prophylaxis, infant-nevirapine prophylaxis, or neither) factorial design. The 28-wk LNS intervention provided daily energy (700 kcal), protein (20 g), and micronutrients (except for vitamin A) to meet lactation needs. Women were counseled to breastfeed exclusively for 24 wk and to wean by 28 wk. Weight change (0-28 wk) was tested in an intent-to-treat analysis by using 2-factor ANOVA and with longitudinal mixed-effects models. At delivery, the LNS (n = 1184) and control (n = 1185) groups had similar mean weights and BMIs. Women receiving the LNS had less 0-28-wk weight loss (-1.97 compared with -2.56 kg, P = 0.003). This difference remained significant after adjustment for maternal antiretroviral drug therapy and baseline BMI. Women receiving antiretroviral drugs had more weight loss than did those not receiving antiretroviral drugs (-2.93 compared with -1.90 kg, P < 0.001). The benefit of the LNS for reducing weight loss was observed both in those receiving antiretroviral drugs (-2.56 compared with -3.32 kg, P = 0.019) and in those not receiving antiretroviral drugs (-1.63 compared with -2.16 kg, P = 0.034). The LNS reduced weight loss among HIV-infected, breastfeeding women, both in those taking maternal antiretroviral prophylaxis to prevent postnatal HIV transmission and in those not receiving antiretroviral prophylaxis. Provision of an LNS may benefit HIV-infected, breastfeeding women in resource-limited settings. This trial was registered at clinicaltrials.gov as NCT00164762.
NASA Astrophysics Data System (ADS)
Vilmin, L.; Beusen, A.; Mogollón, J.; Bouwman, L.
2017-12-01
Sediment dynamics play a significant role in river biogeochemical functioning. They notably control the transfer of particle-bound nutrients, have a direct influence on light availability for primary production, and particle accumulation can affect oxic conditions of river beds. In the perspective of improving our current understanding of large scale nutrient fluxes in rivers, it is hence necessary to include these dynamics in global models. In this scope, we implement particle accumulation and remobilization in a coupled global hydrology-nutrient model (IMAGE-GNM), at a spatial resolution of 0.5°. The transfer of soil loss from natural and agricultural lands is simulated mechanistically, from headwater streams to estuaries. First tests of the model are performed in the Mississippi river basin. At a yearly time step for the period 1978-2000, the average difference between simulated and measured suspended sediment concentrations at the most downstream monitoring station is 25%. Sediment retention is estimated in the different Strahler stream orders, in lakes and reservoirs. We discuss: 1) the distribution of sediment loads to small streams, which has a significant effect on transfers through watersheds and larger scale river fluxes and 2) the potential effect of damming on the fate of particle-bound nutrients. These new developments are crucial for future assessments of large scale nutrient and carbon fluxes in river systems.
Condensate Recycling in Closed Plant Growth Chambers
NASA Technical Reports Server (NTRS)
Bledsoe, J. O.; Sager, J. C.; Fortson, R. E.
1994-01-01
Water used in the the Controlled Ecological Life Support System (CELSS) Breadboard Project at the Kennedy Space Center is being recycled. Condensation is collected in the air ducts, filtered and deionized, and resupplied to the system for nutrient solutions, supplemental humidification, solvents and diluents. While the system functions well from a process control standpoint, precise and accurate tracking of water movement through the system to answer plant physiological questions is not consistent. Possible causes include hardware errors, undetected vapor loss from chamber leakage, and unmeasured changes in water volume in the plant growth trays.
Contreras, Esteban G.; Sierralta, Jimena
2018-01-01
Background Animal growth is influenced by the genetic background and the environmental circumstances. How genes promote growth and coordinate adaptation to nutrient availability is still an open question. p53 is a transcription factor that commands the cellular response to different types of stresses. In adult Drosophila melanogaster, p53 regulates the metabolic adaptation to nutrient restriction that supports fly viability. Furthermore, the larval brain is protected from nutrient restriction in a phenomenon called ‘brain sparing’. Therefore, we hypothesised that p53 may regulate brain growth and show a protective role over brain development under nutrient restriction. Results Here, we studied the function of p53 during brain growth in normal conditions and in animals subjected to developmental nutrient restriction. We showed that p53 loss of function reduced animal growth and larval brain size. Endogenous p53 was expressed in larval neural stem cells, but its levels and activity were not affected by nutritional stress. Interestingly, p53 knockdown only in neural stem cells was sufficient to decrease larval brain growth. Finally, we showed that in p53 mutant larvae under nutrient restriction, the energy storage levels were not altered, and these larvae generated adults with brains of similar size than wild-type animals. Conclusions Using genetic approaches, we demonstrate that p53 is required for proper growth of the larval brain. This developmental role of p53 does not have an impact on animal resistance to nutritional stress since brain growth in p53 mutants under nutrient restriction is similar to control animals. PMID:29621246
Contreras, Esteban G; Sierralta, Jimena; Glavic, Alvaro
2018-01-01
Animal growth is influenced by the genetic background and the environmental circumstances. How genes promote growth and coordinate adaptation to nutrient availability is still an open question. p53 is a transcription factor that commands the cellular response to different types of stresses. In adult Drosophila melanogaster, p53 regulates the metabolic adaptation to nutrient restriction that supports fly viability. Furthermore, the larval brain is protected from nutrient restriction in a phenomenon called 'brain sparing'. Therefore, we hypothesised that p53 may regulate brain growth and show a protective role over brain development under nutrient restriction. Here, we studied the function of p53 during brain growth in normal conditions and in animals subjected to developmental nutrient restriction. We showed that p53 loss of function reduced animal growth and larval brain size. Endogenous p53 was expressed in larval neural stem cells, but its levels and activity were not affected by nutritional stress. Interestingly, p53 knockdown only in neural stem cells was sufficient to decrease larval brain growth. Finally, we showed that in p53 mutant larvae under nutrient restriction, the energy storage levels were not altered, and these larvae generated adults with brains of similar size than wild-type animals. Using genetic approaches, we demonstrate that p53 is required for proper growth of the larval brain. This developmental role of p53 does not have an impact on animal resistance to nutritional stress since brain growth in p53 mutants under nutrient restriction is similar to control animals.
Reducing runoff and nutrient loss from agricultural land in the Lower Mississippi River Basin
NASA Astrophysics Data System (ADS)
Reba, M. L.; Bouldin, J.; Teague, T.; Choate, J.
2011-12-01
The Lower Mississippi River Basin (LMRB) yields suspended sediment, total phosphorus, total nitrogen and silicate that are disproportionately high for the area. In addition, groundwater pumping of the alluvial aquifer has been deemed unsustainable under current practices. Much of the LMRB is used for large-scale agricultural production of primarily cotton, soybeans and rice. The incorporation of conservation practices may improve nutrient use efficiency and reduce runoff from agricultural fields. Three paired fields have been instrumented at the edge-of-field to quantify nutrients and runoff. The fields are located in northeastern Arkansas in the Little River Ditches and St. Francis watersheds. Nutrient use efficiency will be gained by utilizing variable rate fertilizer application technology. Reduced runoff will be gained through improved irrigation management. This study quantifies the runoff and nutrient loss from the first year of a 5-year study and will serve as a baseline for a comparative study of conservation practices employed on the paired fields.
NASA Astrophysics Data System (ADS)
Li, J.; Okin, G.; Hartman, L.; Epstein, H.
2005-12-01
Wind is a key abiotic factor that determines the spatial distribution of soil nutrients in arid grasslands with large unvegetated gaps, such as those found in the southwestern US. On the landscape scale, basic relationships such as wind erosion rate vs. vegetative cover, and soil nutrient removal rate vs. vegetative cover have not yet been extensively studied. In a series of experiments conducted in the Jornada Experimental Range near Las Cruces, New Mexico, we have examined these relationships to determine the impact of wind erosion and dust emission on pools of soil nutrients. In the experiments, varying levels of cover were achieved by vegetation removal on 25 m x 50 m plots. Intense surface soil sampling was conducted to monitor spatial distribution of soil nutrients. Large numbers of aeolian sediment samplers were installed to obtain estimates of vertical and horizontal dust flux. Available data from one wind erosion season show that: 1) total organic C (TOC) and total N (TN) content in the windblown sediment collected at the height of 1 m were 2.2 to 7.2 times larger than those of nutrients in the surface soil (enrichment ratio); 2) enrichment ratio generally increases with the increase of vegetative cover, indicating biotic processes continually add nutrients to surface soil in high-cover treatments, while nutrients are depleted in low-cover treatments; 3) average horizontal mass flux is 12 times larger in the bare plot than in the control plot, indicating the extreme importance of vegetative cover in protecting soil nutrient loss caused by wind erosion; 4) detectable soil nutrient depletion happened within one windy season in plots with vegetation removal, especially for TOC and TN, reflecting the importance of biotic processes in maintaining nutrient pools in the surface soil; and, 5) after only a single windy season, wind erosion can significantly alter the spatial pattern of soil nutrients.
Havens, K E; Hauxwell, J; Tyler, A C; Thomas, S; McGlathery, K J; Cebrian, J; Valiela, I; Steinman, A D; Hwang, S J
2001-01-01
The relative biomass of autotrophs (vascular plants, macroalgae, microphytobenthos, phytoplankton) in shallow aquatic ecosystems is thought to be controlled by nutrient inputs and underwater irradiance. Widely accepted conceptual models indicate that this is the case both in marine and freshwater systems. In this paper we examine four case studies and test whether these models generally apply. We also identify other complex interactions among the autotrophs that may influence ecosystem response to cultural eutrophication. The marine case studies focus on macroalgae and its interactions with sediments and vascular plants. The freshwater case studies focus on interactions between phytoplankton, epiphyton, and benthic microalgae. In Waquoit Bay, MA (estuary), controlled experiments documented that blooms of macroalgae were responsible for the loss of eelgrass beds at nutrient-enriched locations. Macroalgae covered eelgrass and reduced irradiance to the extent that the plants could not maintain net growth. In Hog Island Bay, VA (estuary), a dense lawn of macroalgae covered the bottom sediments. There was reduced sediment-water nitrogen exchange when the algae were actively growing and high nitrogen release during algal senescence. In Lakes Brobo (West Africa) and Okeechobee (FL), there were dramatic seasonal changes in the biomass and phosphorus content of planktonic versus attached algae, and these changes were coupled with changes in water level and abiotic turbidity. Deeper water and/or greater turbidity favored dominance by phytoplankton. In Lake Brobo there also was evidence that phytoplankton growth was stimulated following a die-off of vascular plants. The case studies from Waquoit Bay and Lake Okeechobee support conceptual models of succession from vascular plants to benthic algae to phytoplankton along gradients of increasing nutrients and decreasing under-water irradiance. The case studies from Hog Island Bay and Lake Brobo illustrate additional effects (modified sediment-water nutrient fluxes, allelopathy or nutrient release during plant senescence) that could play a role in ecosystem response to nutrient stress.
Decomposition and nutrient release from fresh and dried pine roots under two fertilizer regimes
Kim H. Ludovici; Lance W. Kress
2006-01-01
Root decomposition and nutrient release are typically estimated from dried root tissues; however, it is unlikely that roots dehydrate prior to decomposing. Soil fertility and root diameter may also affect the rate of decomposition. This study monitored mass loss and nutrient concentrations of dried and fresh roots of two size classes (
F.G. Scholz; S.J. Bucci; G. Goldstein; F.C. Meinzer; A.C. Franco; F. Miralles-Wilhelm
2007-01-01
Under certain environmental conditions, nocturnal transpiration can be relatively high in temperate and tropical woody species. In nutrient-poor systems such as the Brazilian Cerrado, nocturnal transpiration may enhance delivery of nutrients to roots. We compared nocturnal transpiration of three dominant Cerrado tree species growing in unfertilized plots and plots to...
Adeli, Ardeshir; Read, John J; Brooks, John P; Miles, Dana; Feng, Gary; Jenkins, Johnie N
2017-03-01
The inability to incorporate broiler litter (BL) into permanent hayfields and pastures leads to nutrient accumulation near the soil surface and increases the potential transport of nutrients in runoff. This study was conducted on Marietta silt loam soil to determine the effect of flue gas desulfurization (FGD) gypsum and lignite on P, N, C, and microbial concentrations in runoff. Treatments were (i) control (unfertilized) and (ii) BL at 13.4 Mg ha alone or (iii) treated with either FGD gypsum or lignite applied at 20% (w/w) (2.68 Mg ha). Rainfall simulators were used to produce a 5.6 cm h storm event sufficient in duration to cause 15 min of continuous runoff. Repeated rains were applied at 3-d intervals to determine how long FGD gypsum and lignite are effective in reducing loss of litter-derived N, P, and C from soil. Application of BL increased N, P, and C concentrations in runoff as compared to the control. Addition of FGD gypsum reduced ( < 0.05) water-soluble P and dissolved organic C concentrations in runoff by 39 and 16%, respectively, as compared to BL alone. Lignite reduced runoff total N and NH-N concentrations by 38 and 70%, respectively, as compared to BL alone. Addition of FGD gypsum or lignite failed to significantly reduce microbial loads in runoff, although both treatments reduced microbial concentration by >20%. Thus, BL treated with FGD and lignite can be considered as cost-effective management practices in the mitigation of P, N, and C and possibly microbial concentration in runoff. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Bone, body weight, and weight reduction: what are the concerns?
Shapses, Sue A; Riedt, Claudia S
2006-06-01
Of the U.S. population, 65% is either overweight or obese, and weight loss is recommended to reduce co-morbid conditions. However, bone mobilization and loss may also occur with weight loss. The risk for bone loss depends on initial body weight, age, gender, physical activity, and conditions of dieting such as the extent of energy restriction and specific levels of nutrient intake. Older populations are more prone to bone loss with weight loss; in women, this is due at least in part to a reduced dietary Ca intake and/or efficiency of absorption. Potential hormonal mechanisms regulating bone loss during weight loss are discussed, including decreases in estrogen, leptin, glucagon-like peptide-2, growth hormone, and insulin-like growth factor-1, or an increase in cortisol. In contrast, the rise in adiponectin and ghrelin with weight reduction should not be detrimental to bone. Combining energy restriction with exercise does not necessarily prevent bone loss, but may attenuate loss as was shown with additional Ca intake or osteoporosis medications. Future controlled weight loss trials should be designed to further address mechanisms influencing the density and quality of bone sites vulnerable to fracture, in the prevention of osteoporosis.
NRMRL'S NUTRIENT-RELATED RISK MANAGEMENT RESEARCH
Anthropogenic loadings of nutrients into our Nation's atmosphere, aquatic, and terrestrial ecosystems have increased dramatically within the past few decades. Environmental impairments associated with this over fertilization include aquatic habitat loss due to low dissolved oxyge...
The role of red meat in the diet: nutrition and health benefits.
Wyness, Laura
2016-08-01
Red meat has been an important part of the human diet throughout human evolution. When included as part of a healthy, varied diet, red meat provides a rich source of high biological value protein and essential nutrients, some of which are more bioavailable than in alternative food sources. Particular nutrients in red meat have been identified as being in short supply in the diets of some groups of the population. The present paper discusses the role of red meat in the diets of young infants, adolescents, women of childbearing age and older adults and highlights key nutrients red meat can provide for these groups. The role of red meat in relation to satiety and weight control is discussed as the inclusion of lean red meat in a healthy, varied diet may help weight loss as part of an energy-reduced diet. A summary of the UK advice on the amount of red meat that can be consumed as part of a healthy, varied diet is also provided.
NASA Astrophysics Data System (ADS)
Riekenberg, Philip M.; Oakes, Joanne M.; Eyre, Bradley D.
2018-05-01
Shallow coastal waters in many regions are subject to nutrient enrichment. Microphytobenthos (MPB) can account for much of the carbon (C) fixation in these environments, depending on the depth of the water column, but the effect of enhanced nutrient availability on the processing and fate of MPB-derived C (MPB-C) is relatively unknown. In this study, MPB was labeled (stable isotope enrichment) in situ using 13C-sodium bicarbonate. The processing and fate of the newly fixed MPB-C was then traced using ex situ incubations over 3.5 days under different concentrations of nutrients (NH4+ and PO43-: ambient, 2 × ambient, 5 × ambient, and 10 × ambient). After 3.5 days, sediments incubated with increased nutrient concentrations (amended treatments) had increased loss of 13C from sediment organic matter (OM) as a portion of initial uptake (95 % remaining in ambient vs. 79-93 % for amended treatments) and less 13C in MPB (52 % ambient, 26-49 % amended), most likely reflecting increased turnover of MPB-derived C supporting increased production of extracellular enzymes and storage products. Loss of MPB-derived C to the water column via dissolved organic C (DOC) was minimal regardless of treatment (0.4-0.6 %). Loss due to respiration was more substantial, with effluxes of dissolved inorganic C (DIC) increasing with additional nutrient availability (4 % ambient, 6.6-19.8 % amended). These shifts resulted in a decreased turnover time for algal C (419 days ambient, 134-199 days amended). This suggests that nutrient enrichment of estuaries may ultimately lead to decreased retention of carbon within MPB-dominated sediments.
Vaughn, Caryn C; Atkinson, Carla L; Julian, Jason P
2015-01-01
Extreme hydro-meteorological events such as droughts are becoming more frequent, intense, and persistent. This is particularly true in the south central USA, where rapidly growing urban areas are running out of water and human-engineered water storage and management are leading to broad-scale changes in flow regimes. The Kiamichi River in southeastern Oklahoma, USA, has high fish and freshwater mussel biodiversity. However, water from this rural river is desired by multiple urban areas and other entities. Freshwater mussels are large, long-lived filter feeders that provide important ecosystem services. We ask how observed changes in mussel biomass and community composition resulting from drought-induced changes in flow regimes might lead to changes in river ecosystem services. We sampled mussel communities in this river over a 20-year period that included two severe droughts. We then used laboratory-derived physiological rates and river-wide estimates of species-specific mussel biomass to estimate three aggregate ecosystem services provided by mussels over this time period: biofiltration, nutrient recycling (nitrogen and phosphorus), and nutrient storage (nitrogen, phosphorus, and carbon). Mussel populations declined over 60%, and declines were directly linked to drought-induced changes in flow regimes. All ecosystem services declined over time and mirrored biomass losses. Mussel declines were exacerbated by human water management, which has increased the magnitude and frequency of hydrologic drought in downstream reaches of the river. Freshwater mussels are globally imperiled and declining around the world. Summed across multiple streams and rivers, mussel losses similar to those we document here could have considerable consequences for downstream water quality although lost biofiltration and nutrient retention. While we cannot control the frequency and severity of climatological droughts, water releases from reservoirs could be used to augment stream flows and prevent compounded anthropogenic stressors. PMID:25859334
Correlation of nutritional parameters of gallbladder cancer patients.
Rai, Arundhati; Tewari, Mallika; Mohapatra, S C; Shukla, H S
2006-06-15
Gallbladder cancer (GBC) is a highly fatal disease with poor prognosis and 5-year survival <5%. Weight loss and nutritional deterioration are associated with adverse outcomes in terms of cancer prognosis. Protein-calorie malnutrition is the single most common secondary diagnosis in a patient with cancer, and is a direct consequence of the anorexia of malignancy and altered host metabolism induced by the tumor. The present study of nutritional assessment is of particular interest for it helps in better understanding the extent of malnutrition in patients of GBC. A case-control study was designed comprising of 153 cases of GBC and 153 controls of gallstone disease (GSD). To assess the nutritional status of the GBC patients, anthropometric measurements such as height, weight, mid arm circumference, and skinfold thickness were recorded together with the biochemical parameters and their nutrient intake. The present study showed that GBC influences the nutritional status of the patients. Forty-three percent of GBC patients were malnourished with low body mass index (BMI). A significant reduction in all the anthropometric measures was observed for GBC patients compared to those with GSD. GBC patients had significantly low hemoglobin and serum albumin levels compared to the control group. The hemoglobin levels in case and control groups were 10.87 g/dl (+/-1.81 SD) and 11.62 g/dl (+/-1.89 SD), respectively (P < 0.001). Intake of almost all the nutrients was far below the recommendations of Indian Council of Medical Research. GBC patients had anorexia and weight loss. Copyright 2006 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Kothyari, B. P.; Verma, P. K.; Joshi, B. K.; Kothyari, U. C.
2004-06-01
The Bhetagad watershed in Kumaon Hills of Central Himalaya represents for hydro-meteorological conditions of the middle mountains over the Hindu Kush Himalayas. This study was conducted to assess the runoff, soil loss and subsequent nutrient losses from different prominent land uses in the Bhetagad watershed of Central Himalayas. Four experimental natural plots each of 20 m length and 5 m width were delineated on four most common land covers viz, pine forests, tea plantation, rainfed agricultural and degraded lands. Monthly values of runoff, soil loss and nutrient loss, for four successive years (1998-2001), from these land uses were quantified following standard methodologies. The annual runoff in these plots ranged between 51 and 3593 m 3/ha while the annual soil loss varied between 0.06 and 5.47 tonnes/ha during the entire study period. The loss of organic matter was found to be maximum in plot having pine forest followed by plot having tea plantation as the land cover. Annual loss of total N (6.24 kg/ha), total P (3.88 kg/ha) and total K (5.98 kg/ha),per unit loss of soil (tonnes/ha), was maximum from the plot having rainfed agricultural crop as the land cover. The loss of total N ranged between 0.30 and 21.27 kg/ha, total P ranged between 0.14 and 9.42 kg/ha, total K ranged from 0.12 to 11.31 kg/ha whereas organic matter loss varied between 3.65 and 255.16 kg/ha, from different experimental plots. The findings will lead towards devising better conservation/management options for mountain land use systems.
NASA Astrophysics Data System (ADS)
Schindewolf, Marcus; Schultze, Nico; Schönke, Daniela; Amorim, Ricardo S. S.; Schmidt, Jürgen
2014-05-01
The study area of central Mato Grosso is subjected to severe soil erosion. Continuous erosion leads to massive losses of top soil and related organic carbon. Consequently agricultural soil soils suffer a drop in soil fertility which only can be balanced by mineral fertilization. In order to control soil degradation and organic carbon losses of Mato Grosso cropland soils a process based soil loss and deposition model is used. Applying the model it will be possible to: - identify the main areas affected by soil erosion or deposition in different scales under present and future climate and socio-economic conditions - estimate the related nutrient and organic carbon losses/yields - figure out site-related causes of soil mobilization/deposition - locate sediment and sediment related nutrient and organic matter pass over points into surface water bodies - estimate the impacts of climate and land use changes on the losses of top soil, sediment bound nutrients and organic carbon. Model input parameters include digital elevation data, precipitation characteristics and standard soil properties as particle size distribution, total organic carbon (TOC) and bulk density. The effects of different types of land use and agricultural management practices are accounted for by varying site-specific parameters predominantly related to soil surface properties such as erosional resistance, hydraulic roughness and percentage ground cover. In this context the existing EROSION 3D soil parameter data base deducted from large scale rainfall simulations in Germany is verified for application in the study area, using small scale disc type rainfall simulator with an additional runoff reflux approach. Thus it's possible to enlarge virtual plot length up to at least 10 m. Experimental plots are located in Cuiabá region of central Mato Grosso in order to cover the most relevant land use variants and tillage practices in the region. Results show that derived model parameters are highly influenced by soil management. This indicates a high importance of tillage impact on resistance to erosion, mulch cover and TOC. The measured parameter ranges can generally be confirmed by the existing data base, which only need to be completed due to changed phenological stages in Mato Grosso compared to German conditions.
NASA Astrophysics Data System (ADS)
Tripathi, G.; Deora, R.; Singh, G.
2013-07-01
Studies to understand litter processes and soil properties are useful for maintaining pastureland productivity as animal husbandry is the dominant occupation in the hot arid region. We aimed to quantify how micro-habitats and combinations of litters of the introduced leguminous tree Colophospermum mopane with the grasses Cenchrus ciliaris or Lasiurus sindicus influence decomposition rate and soil nutrient changes in a hot desert silvopasture system. Litter bags with tree litter alone (T), tree + C. ciliaris in 1:1 ratio (TCC) and tree + L. sindicus 1:1 ratio (TLS) litter were placed inside and outside of the C. mopane canopy and at the surface, 3-7 cm and 8-12 cm soil depths. We examined litter loss, soil fauna abundance, organic carbon (SOC), total (TN), ammonium (NH4-N) and nitrate (NO3-N) nitrogen, phosphorus (PO4-P), soil respiration (SR) and dehydrogenase activity (DHA) in soil adjacent to each litter bag. After 12 months exposure, the mean residual litter was 40.2% of the initial value and annual decomposition rate constant (k) was 0.98 (0.49-1.80). Highest (p < 0.01) litter loss was in the first four months, when faunal abundance, SR, DHA and humidity were highest but it decreased with time. These variables and k were highest under the tree canopies. The litter loss and k were highest (p < 0.01) in TLS under the tree canopy, but the reverse trend was found for litter outside the canopy. Faunal abundance, litter loss, k, nutrient release and biochemical activities were highest (p < 0.01) in the 3-7 cm soil layer. Positive correlations of litter loss and soil fauna abundance with soil nutrients, SR and DHA demonstrated the interactions of litter quality and micro-habitats together with soil fauna on increased soil fertility. These results suggest that a Colophospermum mopane and L. sindicus silvopasture system best promotes faunal abundance, litter decomposition and soil fertility. The properties of these species and the associated faunal resources may be utilised as an ecosystem-restoration strategy in designing a silvopasture system. This may help to control land degradation and increase productivity sustainably in this environment.
NASA Astrophysics Data System (ADS)
Saleh, A.; Niraula, R.; Gallego, O.; Osei, E.; Kannan, N.
2017-12-01
The Nutrient Tracking Tool (NTT) is a user-friendly web-based computer program that estimate nutrient (nitrogen and phosphorus) and sediment losses from fields managed under a variety of cropping patterns and management practices. The NTT includes a user-friendly web-based interface and is linked to the Agricultural Policy Environmental eXtender (APEX) model. It also accesses USDA-NRCS's Web Soil Survey to obtain field, weather, and soil information. NTT provides producers, government officials, and other users with a fast and efficient method of estimating the nutrient, sediment, and atmosphoric gases (N2o, Co2, and NH4) losses, and crop production under different conservation practices regims at the farm-level. The information obtained from NTT can help producers to determine the most cost-effective conservation practice(s) to reduce the nutrient and sediment losses while optimizing the crop production. Also, the recent version of NTT (NTTg3) has been developed for those coutries without access to national databasis, such as soils and wether. The NTTg3 also has been designed as easy to use APEX interface. NTT is currently being evaluated for trading and other programs at Cheaseapea Bay regions and numerous states in US. During this presentation the new capabilities of NTTg3 will be described and demonstrated.
Experimental nutrient additions accelerate terrestrial carbon loss from stream ecosystems
Amy D. Rosemond; Jonathan P. Benstead; Phillip M. Bumpers; Vladislav Gulis; John S. Kominoski; David W.P. Manning; Keller Suberkropp; J. Bruce Wallace
2015-01-01
Nutrient pollution of freshwater ecosystems results in predictable increases in carbon (C) sequestration by algae. Tests of nutrient enrichment on the fates of terrestrial organic C, which supports riverine food webs and is a source of CO2, are lacking. Using whole-stream nitrogen (N) and phosphorus (P) additions spanning the equivalent of 27 years, we found that...
Pamela Edwards; Karl W.J. Williard
2010-01-01
Quantifying the effects of forestry best management practices (BMPs) on sediment and nutrient loads is a critical need. Through an exhaustive literature search, three paired forested watershed studies in the eastern United States were found that permitted the calculation of BMP efficiencies--the percent reduction in sediment or nutrients achieved by BMPs. For sediment...
Whole-system nutrient enrichment increases secondary production in a detritus-based ecosystem
W.F. Cross; J.B. Wallace; A.D. Rosemond; S.L. Eggert
2006-01-01
Although the effects of nutrient enrichment on consumer-resource dynamics are relatively well studied in ecosystems based on living plants, little is known about the manner in which enrichment influences the dynamics and productivity of consumers and resources in detritus-based ecosystems. Because nutrients can stimulate loss of carbon at the base of detrital food webs...
Li, Pengfei; Lu, Jianwei; Hou, Wenfeng; Pan, Yonghui; Wang, Yang; Khan, Muhammad Rizwan; Ren, Tao; Cong, Rihuan; Li, Xiaokun
2017-04-01
Controlled release fertilizer can reduce nitrogen losses to the environment while increasing grain yield and improving apparent nitrogen recovery (ANR) of rice. However, few studies have evaluated the comparative efficacy of different polymer-coated urea products on nitrogen (N) losses, ANR, and N uptake of rice. A 2-year field experiment was conducted to compare the effects of three different types of polymer-coated urea fertilizer on nitrogen losses through NH 3 volatilization and surface runoff to the environment, ANR, grain yield, and N uptake as compared to conventional urea of rice. Six treatments including (1) control with 0 kg N ha -1 (CK), (2) basal application of urea (U b ), (3) split application (U s ) of urea (50% at transplanting, 25% at tillering, and 25% at panicle stages), (4) CRU-1 (polyurethane-coated urea), (5) CRU-2 (degradable polymer-coated urea), and (6) CRU-3 (water-based polymer-coated urea) all applied at 165 kg N ha -1 . It was found that CRU-2 resulted in the highest grain yield and panicle numbers among the N fertilization treatments in 2013 and 2014. Applying CRU could help increase N uptake in rice, reduce N losses through NH 3 volatilization and surface runoff, and hence improve ANR. Its single dose can meet the nutrient demand of the rice plant. Controlled release urea could be adopted as an effective mitigation alternative to retard N losses through NH 3 volatilization and surface runoff while improving ANR of double cropping of late rice.
Dust and nutrient enrichment by wind erosion from Danish soils in dependence of tillage direction
NASA Astrophysics Data System (ADS)
Mohammadian Behbahani, Ali; Fister, Wolfgang; Heckrath, Goswin; Kuhn, Nikolaus J.
2016-04-01
Wind erosion is a selective process, which promotes erosion of fine particles. Therefore, it can be assumed that increasing erosion rates are generally associated with increasing loss of dust sized particles and nutrients. However, this selective process is strongly affected by the orientation and respective trapping efficiency of tillage ridges and furrows. Since tillage ridges are often the only protection measure available on poorly aggregated soils in absence of a protective vegetation cover, it is very important to know which orientation respective to the dominant wind direction provides best protection. This knowledge could be very helpful for planning erosion protection measures on fields with high wind erosion susceptibility. The main objective of this study, therefore, was to determine the effect of tillage direction on dust and nutrient mobilization by wind, using wind tunnel simulations. In order to assess the relationship between the enrichment ratio of specific particle sizes and the amount of eroded nutrients, three soils with loamy sand texture, but varying amounts of sand-sized particles, were selected. In addition, a soil with slightly less sand, but much higher organic matter content was chosen. The soils were tested with three different soil surface scenarios - flat surface, parallel tillage, perpendicular tillage. The parallel tillage operation experienced the greatest erosion rates, independent of soil type. Particles with D50 between 100-155 μm showed the greatest risk of erosion. However, due to a greater loss of dust sized particles from perpendicularly tilled surfaces, this wind-surface arrangement showed a significant increase in nutrient enrichment ratio compared to parallel tillage and flat surfaces. The main reason for this phenomenon is most probably the trapping of larger particles in the perpendicular furrows. This indicates that the highest rate of soil protection does not necessarily coincide with lowest soil nutrient losses and dust emissions. For the evaluation of protection measures on these soil types in Denmark it is, therefore, important to differentiate between their effectivity to reduce total soil erosion amount, dust emission, and nutrient loss.
Nutrient and dust enrichment in Danish wind erosion sediments for different tillage directions
NASA Astrophysics Data System (ADS)
Mohammadian Behbahani, Ali; Fister, Wolfgang; Heckrath, Goswin; Kuhn, Nikolaus J.
2015-04-01
More than 80% of the soil types in Denmark have a sandy texture. Denmark is also subject to strong offshore and onshore winds, therefore, Danish soils are considered especially vulnerable to wind erosion. Where conventional tillage operations are applied on poorly aggregated soils, tillage ridges are more or less the only roughness element that can be used to protect soils against wind erosion until crop plants are large enough to provide sufficient breaks. Since wind erosion is a selective process, it can be assumed that increasing erosion rates are associated with increasing loss of dust sized particles and nutrients. However, selective erosion is strongly affected by the orientation and respective trapping efficiency of tillage ridges and furrows. The main objective of this study, therefore, was to determine the effect of tillage direction on nutrient mobilization by wind erosion from agricultural land in Denmark. In order to assess the relationship between the enrichment ratio of specific particle sizes and the amount of eroded nutrients, three soils with loamy sand texture, but varying amounts of sand-sized particles, were selected. In addition, a soil with slightly less sand, but much higher organic matter content was chosen. The soils were tested with three different soil surface scenarios (flat surface, parallel tillage, perpendicular tillage) in a wind tunnel simulation. The parallel tillage operation experienced the greatest erosion rates, independent of soil type. Particles with D50 between 100-155 µm showed the greatest risk of erosion. However, due to a greater loss of dust sized particles from perpendicularly tilled surfaces, this wind-surface arrangement showed a significant increase in nutrient enrichment ratio compared to parallel tillage and flat surfaces. The main reason for this phenomenon is most probably the trapping of larger particles in the perpendicular furrows. This indicates that the highest rate of soil protection does not necessarily coincide with lowest soil nutrient losses and dust emissions. For the evaluation of protection measures on these soil types in Denmark it is, therefore, important to differentiate between their effectivity to reduce total soil erosion amount, dust emission, and nutrient loss.
Nutrient loading and macrophyte growth in Wilson Inlet, a bar-built southwestern Australian estuary
NASA Astrophysics Data System (ADS)
Lukatelich, R. J.; Schofield, N. J.; McComb, A. J.
1987-02-01
Wilson Inlet is a 'bar-built' estuary, open to the ocean only when a sandbar has been breached after river flow. estimates are presented of phosphorus and nitrogen loadings from rivers, losses to the ocean, and amounts present in estuarine components during a particular year. Following bar opening, a volume of water equivalent to 35% of estuarine volume at the time was lost, providing a major loss of dissolved nutrients from the estuary. While the bar was open (51 days) water was displaced through river flow, but there was little tidal exchange. There was net retention of phosphorus (about 60% of river input) and some loss of nitrogen (less than 15%). Much of the nutrient held in the estuary was in surface sediments, but concentrations have shown little change with time and are similar to other southwestern estuaries. In contrast there have been massive increases in the biomass of Ruppia megacarpa Mason in recent years; this constitutes more than 90% of plant biomass. The nutrient bank in this plant is large compared to the water column, and amounts recycled through plant material greatly exceeded riverine loading in the year of the study. Tissue N concentrations were relatively high and constant, tissue P relatively low and seasonally variable, suggesting P limitation of plant biomass. Estimates of nutrient loading from streams showed relatively higher nutrient inputs from catchments cleared for agriculture. These are in higher rainfall areas, have high drainage densities, large proportions of sandy soils and are subjected to phosphatic fertilizer application.
Nowak, Agnieszka; Schneider, Christian
2017-07-15
Environmental degradation encompasses multiple processes that are rarely combined in analyses. This study refers to three types of environmental degradation resulting from agricultural activity: soil erosion, nutrient loss, and groundwater pollution. The research was conducted in seven distinct study areas in the Malopolska Province, Poland, each characterized by different environmental properties. Calculations were made on the basis of common models, i.e., USLE (soil erosion), InVEST (nutrient loss), and DRASTIC (groundwater pollution). Two scenarios were calculated to identify the areas contributing to potential and actual degradation. For the potential degradation scenario all study areas were treated as arable land. To identify the areas actually contributing to all three types of degradation, the de facto land use pattern was used for a second scenario. The results show that the areas most endangered by agricultural activity are located in the mountainous region, whereas most of the degraded zones were located in valley bottoms and areas with intensive agriculture. The different hazards rarely overlap spatially in the given study areas - meaning that different areas require different management approaches. The distribution of arable land was negatively correlated with soil erosion hazard, whereas no linkage was found between nutrient loss or groundwater pollution hazards and the proportion of arable land. This indicates that the soil erosion hazard is the most influential factor in the distribution of arable land, whereas nutrient loss and groundwater pollution is widely ignored during land use decision-making. Slope largely and most frequently influences all hazard types, whereas land use also played an important role in the case of soil and nutrient losses. In this study we presented a consistent methodology to capture complex degradation processes and provide robust indicators which can be included in existing impact assessment approaches like Life Cycle Assessments and Grey Water Footprint analyses. Copyright © 2017 Elsevier B.V. All rights reserved.
Recycling of treated domestic effluent from an on-site wastewater treatment system for hydroponics.
Oyama, N; Nair, J; Ho, G E
2005-01-01
An alternative method to conserve water and produce crops in arid regions is through hydroponics. Application of treated wastewater for hydroponics will help in stripping off nutrients from wastewater, maximising reuse through reduced evaporation losses, increasing control on quality of water and reducing risk of pathogen contamination. This study focuses on the efficiency of treated wastewater from an on-site aerobic wastewater treatment unit. The experiment aimed to investigate 1) nutrient reduction 2) microbial reduction and 3) growth rate of plants fed on wastewater compared to a commercial hydroponics medium. The study revealed that the chemical and microbial quality of wastewater after hydroponics was safe and satisfactory for irrigation and plant growth rate in wastewater hydroponics was similar to those grown in a commercial medium.
Nutrient production from dairy cattle manure and loading on arable land.
Won, Seunggun; Shim, Soo-Min; You, Byung-Gu; Choi, Yoon-Seok; Ra, Changsix
2017-01-01
Along with increasing livestock products via intensive rearing, the accumulation of livestock manure has become a serious issue due to the fact that there is finite land for livestock manure recycling via composting. The nutrients from livestock manure accumulate on agricultural land and the excess disembogues into streams causing eutrophication. In order to systematically manage nutrient loading on agricultural land, quantifying the amount of nutrients according to their respective sources is very important. However, there is a lack of research concerning nutrient loss from livestock manure during composting or storage on farms. Therefore, in the present study we quantified the nutrients from dairy cattle manure that were imparted onto agricultural land. Through investigation of 41 dairy farms, weight reduction and volatile solids (VS), total nitrogen (TN), and total phosphorus (TP) changes of dairy cattle manure during the storage and composting periods were analyzed. In order to support the direct investigation and survey on site, the three cases of weight reduction during the storing and composting periods were developed according to i) experiment, ii) reference, and iii) theoretical changes in phosphorus content (ΔP = 0). The data revealed the nutrient loading coefficients (NLCs) of VS, TN, and TP on agricultural land were 1.48, 0.60, and 0.66, respectively. These values indicated that the loss of nitrogen and phosphorus was 40% and 34%, respectively, and that there was an increase of VS since bedding materials were mixed with excretion in the barn. As result of nutrient-footprint analyses, the amounts of TN and TP particularly entered on arable land have been overestimated if applying the nutrient amount in fresh manure. The NLCs obtained in this study may assist in the development of a database to assess the accurate level of manure nutrient loading on soil and facilitate systematic nutrient management.
Predicting TDN losses from heat damaged hays and haylages with NIR
USDA-ARS?s Scientific Manuscript database
During the storage of hay or haylage, heating damage may occur and lead to losses of available protein and digestible nutrients. Recent research indicates that losses of TDN may be more significant economically than losses of available protein. Our objectives for this study were to establish a near-...
Miller, G D
2010-06-01
Physicians are often reluctant to advise older obese patients to lose weight for fear of compromised nutrition and excessive loss of muscle mass and strength, all of which may lead to a loss of independence and accelerate disability. Therefore, the purpose of this study was to examine nutrient intake in older obese adults undergoing a weight loss intervention. The study setting was at a university research facility. A total of 71 participants (age, 69.5 (SD = 5.8) yrs; 62% female; BMI, 34.6 (4.4) kg/m2) were recruited. Individuals were randomized into either a weight stable (WS) control group or an intensive weight loss (WL) group. The WL intervention was for 6 months and utilized partial meal replacements (PMR) and a facility-based 3 d/wk, 60 min/session exercise training program encompassing both aerobic and strength exercises. Weight loss goal for WL was 10% from baseline at 6-months. Variables were obtained at baseline and 6-months and included 3 day dietary records along with daily step counts for 7 days. Total energy, macronutrients (g and % of energy), micronutrients (vitamins and minerals), as well as use of PMR were assessed from the diet records. Body mass and body fat (g and % of body mass) were determined at the 2 time points. Estimated marginal means (SEM) for weight loss at 6-months was -8.8 (0.7)% for WL and -0.1 (0.7)% for WS. Daily energy intake at 6-months was lower for WL (1396 (64) kcals) compared to WS (1817 (71) kcals). Additionally, those in the WL group (compared to WS) had lower intakes of total fat (27.5 (1.2)%, WL vs. 36.1 (4.6)%, WS) and saturated fatty acids (8.5 (0.4)% vs. 10.8 (0.5)%), and had higher levels of carbohydrates (57.6 (1.5)% vs. 49.0 (1.7)%), protein (18.4 (0.5% vs. 16.2 (0.6)%), and dietary fiber (21.0 (0.9) g vs. 17.4 (1.0) g) at 6-months. Even with reduced total calorie intake, key micronutrients (calcium, iron, vitamin D, vitamin E, vitamin C) were higher for WL vs. WS at 6-months. Total daily step counts were higher for WL vs. WS at 6-months. A nutrition intervention to promote weight loss in older obese adults was achieved using PMR as a primary strategy. Diet quality was improved for WL vs. WS in using the nutrient fortified product, even with a reduction in total energy intake.
NASA Astrophysics Data System (ADS)
Hess, L.; Basso, B.; Hinckley, E. L. S.; Robertson, G. P.; Matson, P. A.
2014-12-01
In the coming century, the proportion of total rainfall that falls in heavy storm events is expected to increase in many areas, especially in the US Midwest, a major agricultural region. These changes in rainfall patterns may have consequences for hydrologic flow and nutrient losses, especially in agricultural soils, with potentially negative consequences for receiving ground- and surface waters. We used a tracer experiment to examine how more extreme rainfall patterns may affect the movement of water and solutes through an agricultural soil profile in the upper Midwest, and to what extent tillage may moderate these effects. Two rainfall patterns were created with 5m x 5m rainout shelters at the Kellogg Biological Station LTER site in replicated plots with either conventional tillage or no-till management. Control rainfall treatments received water 3x per week, and extreme rainfall treatments received the same total amount of water but once every two weeks, to simulate less frequent but larger storms. In April 2015, potassium bromide (KBr) was added as a conservative tracer of water flow to all plots, and Br- concentrations in soil water at 1.2m depth were measured weekly from April through July. Soil water Br- concentrations increased and peaked more quickly under the extreme rainfall treatment, suggesting increased infiltration and solute transfer to depth compared to soils exposed to control rainfall patterns. Soil water Br- also increased and peaked more quickly in no-till than in conventional tillage treatments, indicating differences in flow paths between management systems. Soil moisture measured every 15 minutes at 10, 40, and 100cm depths corroborates tracer experiment results: rainfall events simulated in extreme rainfall treatments led to large increases in deep soil moisture, while the smaller rainfall events simulated under control conditions did not. Deep soil moisture in no-till treatments also increased sooner after water application as compared to in conventional soils. Our results suggest that exposure to more extreme rainfall patterns will likely increase infiltration depth and nutrient losses in agricultural soils. In particular, soils under no-till management, which leads to development of preferential flow paths, may be particularly vulnerable to vertical nutrient losses.
Perazzolo, Francesca; Mattachini, Gabriele; Riva, Elisabetta; Provolo, Giorgio
2017-07-01
Management factors affect nutrient loss during animal manure slurry storage in different ways. We conducted a pilot-scale study to evaluate carbon (C) and nitrogen (N) losses from unseparated and digested dairy slurry during winter and summer storage. In addition to season, treatments included mechanical separation of digestate into liquid and solid fractions and bimonthly mixing. Chemical analyses were performed every 2 wk for the mixed materials and at the start and end of storage for unmixed materials. The parameters examined allowed us to estimate C and N losses and examine the factors that determine these losses as well as emission patterns. Gas measurements were done every 2 wk to determine the main forms in which gaseous losses occurred. To evaluate the effect of separation, measured losses and emissions of separated liquid and solid fractions were mathematically combined using the mass separation efficiency of the mechanical separator. Nutrient losses were mainly affected by climatic conditions. Losses of C (up to 23%) from unseparated, unmixed digestate and of N (38% from combined separated fractions and from unseparated digestate) were much greater in summer than in winter, when C and N losses were <7%. Mixing tended to significantly increase N losses ( < 0.1) only in winter. Mechanical separation resulted in lower GHG emissions from combined separated fractions than from unseparated digestate. Results indicate that to maximize the fertilizer value of digested slurry, dairy farmers must carefully choose management practices, especially in summer. For separated digestates, practices should focus on storage of the liquid fraction, the major contributor of C and N losses (up to 64 and 90% of total losses, respectively) in summer. Moreover, management practices should limit NH, the main form of N losses (up to 99.5%). Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
De Steur, Hans; Wesana, Joshua; Dora, Manoj K; Pearce, Darian; Gellynck, Xavier
2016-12-01
The interest to reduce food losses and wastes has grown considerably in order to guarantee adequate food for the fast growing population. A systematic review was used to show the potential of Value Stream Mapping (VSM) not only to identify and reduce food losses and wastes, but also as a way to establish links with nutrient retention in supply chains. The review compiled literature from 24 studies that applied VSM in the agri-food industry. Primary production, processing, storage, food service and/or consumption were identified as susceptible hotspots for losses and wastes. Results further revealed discarding and nutrient loss, most especially at the processing level, as the main forms of loss/waste in food, which were adapted to four out of seven lean manufacturing wastes (i.e. defect, unnecessary inventory, overproduction and inappropriate processing). This paper presents the state of the art of applying lean manufacturing practices in the agri-food industry by identifying lead time as the most applicable performance indicator. VSM was also found to be compatible with other lean tools such as Just-In-Time and 5S which are continuous improvement strategies, as well as simulation modelling that enhances adoption. In order to ensure successful application of lean practices aimed at minimizing food or nutrient losses and wastes, multi-stakeholder collaboration along the entire food supply chain is indispensable. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mackay, D. S.
2001-05-01
Recent efforts to measure and model the interacting influences of climate, soil, and vegetation on soil water and nutrient dynamics have identified numerous important feedbacks that produce nonlinear responses. In particular, plant physiological factors that control rates of transpiration respond to soil water deficits and vapor pressure deficits (VPD) in the short-term, and to climate, nutrient cycling and disturbance in the long-term. The starting point of this presentation is the observation that in many systems, in particular forest ecosystems, conservative water use emerges as a result of short-term closure of stomata in response to high evaporative demand, and long-term vegetative canopy development under nutrient limiting conditions. Evidence for important short-term controls is presented from sap flux measurements of stand transpiration, remote sensing, and modeling of transpiration through a combination of physically-based modeling and Monte Carlo analysis. A common result is a strong association between stomatal conductance (gs) and the negative evaporative gain (∂ gs/∂ VPD) associated with the sensitivity of stomatal closure to rates of water loss. The importance of this association from the standpoint of modeling transpiration depends on the degree of canopy-atmosphere coupling. This suggests possible simplifications to future canopy component models for use in watershed and larger-scale hydrologic models for short-term processes. However, further results are presented from theoretical modeling, which suggest that feedbacks between hydrology and vegetation in current long-term (inter-annual to century) models may be too simple, as they do not capture the spatially variable nature of slow nutrient cycling in response to soil water dynamics and site history. Memory effects in the soil nutrient pools can leave lasting effects on more rapid processes associated with soil, vegetation, atmosphere coupling.
Schilling, K.E.; Jacobson, P.
2009-01-01
Floodplains during non-flood periods are less well documented than when flooding occurs, but non-flood periods offer opportunities to investigate vegetation controls on water and nutrient cycling. In this study, we characterized water uptake and nutrient concentration patterns from 2005 to 2007 under an oak savanna located on the floodplain of the Cedar River in Muscatine County, Iowa. The water table ranged from 0.5 to 2.5 m below ground surface and fluctuated in response to stream stage, plant water demand and rainfall inputs. Applying the White method to diurnal water table fluctuations, daily ET from groundwater averaged more than 3.5 mm/day in June and July and approximately 2 mm/day in May and August. Total annual ET averaged 404 mm for a growing season from mid-May to mid-October. Savanna groundwater concentrations of nitrate-N, ammonium-N, and phosphate-P were very low (mean <0.18, <0.14, <0.08 mg/l, respectively), whereas DOC concentrations were high (7.1 mg/l). Low concentrations of N and P were in contrast to high nutrient concentrations in the nearby Cedar River, where N and P averaged 7.5 mg/ l and 0.13, respectively. In regions dominated by intensive agriculture, study results document valuable ecosystem services for native floodplain ecosystems in reducing watershed-scale nutrient losses and providing an oasis for biological complexity. Improved understanding of the environmental conditions of regionally significant habitats, including major controls on water table elevations and water quality, offers promise for better management aimed at preserving the ecology of these important habitats. Copyright ?? 2009 John Wiley & Sons, Ltd.
Tapsell, Linda C; Batterham, Marijka J
2016-01-01
Hypertension is a major risk factor for developing cardiovascular disease, stroke, and kidney disease. To lower blood pressure (BP), several lifestyle changes are recommended such as weight loss, exercise, and following a healthy diet. Investigating the effect of single nutrients may have positive results, but food is consumed as part of a whole diet, resulting in nutrient interactions. The aim of this systematic review and meta-analysis was to assess the effect of dietary patterns on BP in adults. Studies that were published between January 1999 and June 2014 were retrieved using Scopus, Web of Science, and the MEDLINE database. Seventeen randomized controlled trials were included in the meta-analysis. The results suggest that healthy dietary patterns such as the Dietary Approaches to Stop Hypertension diet, Nordic diet, and Mediterranean diet significantly lowered systolic BP and diastolic BP by 4.26 mm Hg and 2.38 mm Hg, respectively. These diets are rich in fruit, vegetables, whole grains, legumes, seeds, nuts, fish, and dairy and low in meat, sweets, and alcohol. Lifestyle factors such as exercise and weight loss in combination with dietary changes may also reduce BP. Further research is needed to establish the effect of dietary patterns on BP in different cultures other than those identified in this review. The review was registered on PROSPERO (International prospective register of systematic reviews) as CRD42015016272. PMID:26773016
D. Jean Lodge; Sharon A. Cantrell; Grizelle Gonzalez
2014-01-01
Fungi are important for maintaining fast rates of decomposition in low quality tropical leaf litter via immobilization and translocation of limiting nutrients from sources to sinks and conserving nutrients after disturbance. Tropical trees often have low nutrient to carbon ratios. Disturbances such as hurricanes and logging transfer a large mass of green leaves with...
DETECTING TEMPORAL CHANGE IN WATERSHED NUTRIENT YIELDS
Meta-analyses reveal that nutrient yields tend to be higher for watersheds dominated by anthropogenic uses (e.g., urban, agriculture) and lower for watersheds dominated by natural vegetation. One implication of this pattern is that loss of natural vegetation will produce increase...
Gautam, Mukesh Kumar; Lee, Kwang-Sik; Song, Byeong-Yeol; Lee, Dongho; Bong, Yeon-Sik
2016-05-01
Decomposition, nutrient, and isotopic (δ(13)C and δ(15)N) dynamics during 1 year were studied for leaf and twig litters of Pinus densiflora, Castanea crenata, Erigeron annuus, and Miscanthus sinensis growing on a highly weathered soil with constrained nutrient supply using litterbags in a cool temperate region of South Korea. Decay constant (k/year) ranged from 0.58 to 1.29/year, and mass loss ranged from 22.36 to 58.43 % among litter types. The results demonstrate that mass loss and nutrient dynamics of decomposing litter were influenced by the seasonality of mineralization and immobilization processes. In general, most nutrients exhibited alternate phases of rapid mineralization followed by gradual immobilization, except K, which was released throughout the field incubation. At the end of study, among all the nutrients only N and P showed net immobilization. Mobility of different nutrients from decomposing litter as the percentage of initial litter nutrient concentration was in the order of K > Mg > Ca > N ≈ P. The δ(13)C (0.32-6.70 ‰) and δ(15)N (0.74-3.90 ‰) values of residual litters showed nonlinear increase and decrease, respectively compared to initial isotopic values during decomposition. Litter of different functional types and chemical quality converged toward a conservative nutrient use strategy through mechanisms of slow decomposition and slow nutrient mobilization. Our results indicate that litter quality and season, are the most important regulators of litter decomposition in these forests. The results revealed significant relationships between litter decomposition rates and N, C:N ratio and P, and seasonality (temperature). These results and the convergence of different litters towards conservative nutrient use in these nutrient constrained ecosystems imply optimization of litter management because litter removal can have cascading effects on litter decomposition and nutrient availability in these systems.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., if two groups (product A and a non-nutrient control) are tested at each of three points in time (day... groups: Group 1: Non-nutrient Control Group 2: Nutrient Control Group 3: Test Product 4.7.4.2The raw data... different from those of both the nutrient control (group 2) and the non-nutrient control (group 1) for those...
Code of Federal Regulations, 2011 CFR
2011-07-01
..., if two groups (product A and a non-nutrient control) are tested at each of three points in time (day... groups: Group 1: Non-nutrient Control Group 2: Nutrient Control Group 3: Test Product 4.7.4.2The raw data... different from those of both the nutrient control (group 2) and the non-nutrient control (group 1) for those...
Code of Federal Regulations, 2013 CFR
2013-07-01
..., if two groups (product A and a non-nutrient control) are tested at each of three points in time (day... groups: Group 1: Non-nutrient Control Group 2: Nutrient Control Group 3: Test Product 4.7.4.2The raw data... different from those of both the nutrient control (group 2) and the non-nutrient control (group 1) for those...
Code of Federal Regulations, 2010 CFR
2010-07-01
..., if two groups (product A and a non-nutrient control) are tested at each of three points in time (day... groups: Group 1: Non-nutrient Control Group 2: Nutrient Control Group 3: Test Product 4.7.4.2The raw data... different from those of both the nutrient control (group 2) and the non-nutrient control (group 1) for those...
Surface Soil Changes Following Selective Logging in an Eastern Amazon Forest
NASA Technical Reports Server (NTRS)
Olander, Lydia P.; Bustamante, Mercedes M.; Asner, Gregory P.; Telles, Everaldo; Prado, Zayra; Camargo, Plinio B.
2005-01-01
In the Brazilian Amazon, selective logging is second only to forest conversion in its extent. Conversion to pasture or agriculture tends to reduce soil nutrients and site productivity over time unless fertilizers are added. Logging removes nutrients in bole wood, enough that repeated logging could deplete essential nutrients over time. After a single logging event, nutrient losses are likely to be too small to observe in the large soil nutrient pools, but disturbances associated with logging also alter soil properties. Selective logging, particularly reduced-impact logging, results in consistent patterns of disturbance that may be associated with particular changes in soil properties. Soil bulk density, pH, carbon (C), nitrogen (N), phosphorus (P), calcium (Ca), magnesium (Mg), potassium (K), iron (Fe), aluminum (Al), delta(sup 3)C, delta(sup 15)N, and P fractionations were measured on the soils of four different types of loggingrelated disturbances: roads, decks, skids, and treefall gaps. Litter biomass and percent bare ground were also determined in these areas. To evaluate the importance of fresh foliage inputs from downed tree crowns in treefall gaps, foliar nutrients for mature forest trees were also determined and compared to that of fresh litterfall. The immediate impacts of logging on soil properties and how these might link to the longer-term estimated nutrient losses and the observed changes in soils were studied.
Matson, Amanda L; Corre, Marife D; Veldkamp, Edzo
2014-12-01
Although the canopy can play an important role in forest nutrient cycles, canopy-based processes are often overlooked in studies on nutrient deposition. In areas of nitrogen (N) and phosphorus (P) deposition, canopy soils may retain a significant proportion of atmospheric inputs, and also receive indirect enrichment through root uptake followed by throughfall or recycling of plant litter in the canopy. We measured net and gross rates of N cycling in canopy soils of tropical montane forests along an elevation gradient and assessed indirect effects of elevated nutrient inputs to the forest floor. Net N cycling rates were measured using the buried bag method. Gross N cycling rates were measured using (15) N pool dilution techniques. Measurements took place in the field, in the wet and dry season, using intact cores of canopy soil from three elevations (1000, 2000 and 3000 m). The forest floor had been fertilized biannually with moderate amounts of N and P for 4 years; treatments included control, N, P, and N + P. In control plots, gross rates of NH4 (+) transformations decreased with increasing elevation; gross rates of NO3 (-) transformations did not exhibit a clear elevation trend, but were significantly affected by season. Nutrient-addition effects were different at each elevation, but combined N + P generally increased N cycling rates at all elevations. Results showed that canopy soils could be a significant N source for epiphytes as well as contributing up to 23% of total (canopy + forest floor) mineral N production in our forests. In contrast to theories that canopy soils are decoupled from nutrient cycling in forest floor soil, N cycling in our canopy soils was sensitive to slight changes in forest floor nutrient availability. Long-term atmospheric N and P deposition may lead to increased N cycling, but also increased mineral N losses from the canopy soil system. © 2014 John Wiley & Sons Ltd.
Degradation of Tibetan grasslands: Consequences for soil organic carbon and nutrients losses
NASA Astrophysics Data System (ADS)
Liu, Shibin; Schleuss, Per-Marten; Kuzyakov, Yakov
2017-04-01
The Kobresia pastures, commonly known as "alpine meadow", cover the southeastern quarter of the Tibetan Highlands ( 450, 000 km2). They host important grazing ground for livestock (i.e. yaks, sheep and goats) and thus ensure the livelihood of the Tibetan herders. The Kobresia pastures also store huge amount of soil organic carbon (SOC) and nutrients (e.g. nitrogen (N) and phosphorus (P)), which are required for sufficient forage production. In recent decades, the Kobresia pastures have experienced severe degradation due to anthropogenic activities and climate change, which has initiated high losses of SOC and nutrients and threatened the functioning of this ecosystem. Plenty studies have been implemented showing the response of degradation on SOC and nutrients levels on local scale. They classify these alpine pastures into various degradation stages that are mainly based on vegetation characteristics (e.g. vegetation coverage, proportion of edible plants). Within this study we synthesized their results in a review for a better understanding of SOC and nutrients losses following pasture degradation across the whole ecosystem. We aggregated the degraded Kobresia pastures into five degradation stages: Non-degraded, Light degradation, Moderate degradation, Heavy degradation and Extreme degradation. Results show that degradation from light to extreme stages has lost on average 42 ± 2 % SOC, 33 ± 6 % N and 17 ± 4 % P as compared to the non-degraded pastures. This implies strong reduction of soil fertility and an exacerbation prevailing N and P limitations. Concurrently, degradation has decreased aboveground and belowground biomass by 42 ± 3 % and 45 ± 6 %, which reflects (a) decreasing photosynthetic C input and (b) less available forage for livestock. Besides, the declining vegetation promotes wind and water erosion. In conclusion, our results provide an overview and a quantification of degradation impacts on plant characteristics and soil properties that improve estimations regarding SOC and nutrients losses across the whole ecosystem. This highly matters because large amounts of SOC have been lost due to erosion and mineralization. Most likely this has polluted the Tibetan headwaters and contributed to climate change, respectively. Further, the decreasing N and P losses have reduced soil fertility lowering forage production. Therefore, it endangers the livelihood of the Tibetan herders, which highly rely on forage to feed their livestock. Despite plenty of ameliorations (e.g. fertilization, grazing enclosure, reseeding) have been proposed and implemented at many locations, their impacts on pasture ecosystems (especially on soil fertility) are still subtle and thus require further investigations. Keywords: Kobresia pastures, Tibetan Plateau, Grassland degradation, Soil organic carbon, Soil nutrients
DEVELOPMENT OF SAV LOSS-NUTRIENT LOAD RELATIONSHIPS
The Nutrient Team effort related to SAV is comprised of two components. 1) collection of necessary data to determine the effectiveness of modeling SAV important to Gulf of Mexico estuarine environments; and 2) collaboration with the USGS wetland research center to analyze changes...
Novel/non-conventional manure application practices to minimize environmental impacts
USDA-ARS?s Scientific Manuscript database
Livestock manure can supply essential crop nutrients and contribute to improved soil quality. However, conventional surface broadcast application can result in adverse environmental effects from NH3 volatilization, odor, and runoff losses of nutrients and pathogens. Incorporation of manure by tillag...
Long-term implications of forest harvesting on nutrient cycling in central hardwood forests
J.A. Lynch; E.S. Corbett
1991-01-01
Fourteen years of streamflow and water quality data from the Leading Ridge Experimental Watersheds in central Pennsylvania were analyzed to determine the long-term impacts of a commercial forest harvest on stream water chemistry and nutrient loss.
Zhou, Xiaohong; Feng, Deyou; Wen, Chunzi; Liu, Dan
2018-03-29
In freshwater ecosystems, aquatic macrophytes play significant roles in nutrient cycling. One problem in this process is nutrient loss in the tissues of untimely harvested plants. In this study, we used two aquatic species, Nelumbo nucifera and Trapa bispinosa Roxb., to investigate the decomposition dynamics and nutrient release from detritus. Litter bags containing 10 g of stems (plus petioles) and leaves for each species detritus were incubated in the pond from November 2016 to May 2017. Nine times litterbags were retrieved on days 6, 14, 25, 45, 65, 90, 125, 145, and 165 after the decomposition experiment for the monitoring of biomass loss and nutrient release. The results suggested that the dry masses of N. nucifera and T. bispinosa decomposed by 49.35-69.40 and 82.65-91.65%, respectively. The order of decomposition rate constants (k) is as follows: leaves of T. bispinosa (0.0122 day -1 ) > stems (plus petioles) of T. bispinosa (0.0090 day -1 ) > leaves of N. nucifera (0.0060 day -1 ) > stems (plus petioles) of N. nucifera (0.0030 day -1 ). Additionally, the orders of time for 50% dry mass decay, time for 95% dry mass decay, and turnover rate are as follows: leaves < stems (plus petioles) and T. bispinosa < N. nucifera, respectively. This result indicated that the dry mass loss, k values, and other parameters related to k values are significantly different in species- and tissue-specific. The C, N, and P concentration and the C/N, C/P, and N/P ratios presented the irregular temporal changes trends during the whole decay period. In addition, nutrient accumulation index (AI) was significantly changed depending on the dry mass remaining and C, N, and P concentration in detritus at different decomposition times. The nutrient AIs were 36.72, 8.08, 6.35, and 2.56% for N; 31.25, 9.85, 4.00, and 1.63% for P; 25.15, 16.96, 7.36, and 6.16% for C in the stems (plus petioles) of N. nucifera, leaves of N. nucifera, stems (plus petioles) of T. bispinosa, and leaves of T. bispinosa, respectively, at the day 165. These results indicated that 63.28-97.44% of N, 68.75-98.37% of P, and 74.85-93.84% of C were released from the plant detritus to the water at the day 165 of the decomposition period. The initial detritus chemistry, particularly the P-related parameters (P concentration and C/P and N/P ratios), strongly affected dry mass loss, decomposition rates, and nutrient released from detritus into water. Two-way ANOVA results also confirm that the effects on the species were significant for decomposition dynamics (dry mass loss), nutrient release (nutrient concentration, their ratios, and nutrient AI) (P < 0.01), and expected N concentration (P > 0.05). In addition, the decomposition time had also significant effects on the detritus decomposition dynamic and nutrient release. However, the contributors of species and decomposition time on detritus decomposition were significantly different on the basis of their F values of two-way ANOVA results. This study can provide scientific bases for the aquatic plant scientific management in freshwater ecosystems of the East region of China.
Phosphorus and nitrogen losses from winter stacking of manure
USDA-ARS?s Scientific Manuscript database
Appropriate management of animal manure including storage is essential for minimizing nutrient losses and guaranteeing good water quality. A field lysimeter study was carried out at the Susquehanna River Basin, northeastern USA to investigate phosphorus (P) and nitrogen (N) losses in leachate and ru...
Bowles, Timothy M; Jackson, Louise E; Cavagnaro, Timothy R
2018-01-01
Climate change will alter both the amount and pattern of precipitation and soil water availability, which will directly affect plant growth and nutrient acquisition, and potentially, ecosystem functions like nutrient cycling and losses as well. Given their role in facilitating plant nutrient acquisition and water stress resistance, arbuscular mycorrhizal (AM) fungi may modulate the effects of changing water availability on plants and ecosystem functions. The well-characterized mycorrhizal tomato (Solanum lycopersicum L.) genotype 76R (referred to as MYC+) and the mutant mycorrhiza-defective tomato genotype rmc were grown in microcosms in a glasshouse experiment manipulating both the pattern and amount of water supply in unsterilized field soil. Following 4 weeks of differing water regimes, we tested how AM fungi affected plant productivity and nutrient acquisition, short-term interception of a 15NH4+ pulse, and inorganic nitrogen (N) leaching from microcosms. AM fungi enhanced plant nutrient acquisition with both lower and more variable water availability, for instance increasing plant P uptake more with a pulsed water supply compared to a regular supply and increasing shoot N concentration more when lower water amounts were applied. Although uptake of the short-term 15NH4+ pulse was higher in rmc plants, possibly due to higher N demand, AM fungi subtly modulated NO3- leaching, decreasing losses by 54% at low and high water levels in the regular water regime, with small absolute amounts of NO3- leached (<1 kg N/ha). Since this study shows that AM fungi will likely be an important moderator of plant and ecosystem responses to adverse effects of more variable precipitation, management strategies that bolster AM fungal communities may in turn create systems that are more resilient to these changes. © 2017 John Wiley & Sons Ltd.
Christiansen, Casper T; Haugwitz, Merian S; Priemé, Anders; Nielsen, Cecilie S; Elberling, Bo; Michelsen, Anders; Grogan, Paul; Blok, Daan
2017-01-01
Many Arctic regions are currently experiencing substantial summer and winter climate changes. Litter decomposition is a fundamental component of ecosystem carbon and nutrient cycles, with fungi being among the primary decomposers. To assess the impacts of seasonal climatic changes on litter fungal communities and their functioning, Betula glandulosa leaf litter was surface-incubated in two adjacent low Arctic sites with contrasting soil moisture regimes: dry shrub heath and wet sedge tundra at Disko Island, Greenland. At both sites, we investigated the impacts of factorial combinations of enhanced summer warming (using open-top chambers; OTCs) and deepened snow (using snow fences) on surface litter mass loss, chemistry and fungal decomposer communities after approximately 1 year. Enhanced summer warming significantly restricted litter mass loss by 32% in the dry and 17% in the wet site. Litter moisture content was significantly reduced by summer warming in the dry, but not in the wet site. Likewise, fungal total abundance and diversity were reduced by OTC warming at the dry site, while comparatively modest warming effects were observed in the wet site. These results suggest that increased evapotranspiration in the OTC plots lowered litter moisture content to the point where fungal decomposition activities became inhibited. In contrast, snow addition enhanced fungal abundance in both sites but did not significantly affect litter mass loss rates. Across sites, control plots only shared 15% of their fungal phylotypes, suggesting strong local controls on fungal decomposer community composition. Nevertheless, fungal community functioning (litter decomposition) was negatively affected by warming in both sites. We conclude that although buried soil organic matter decomposition is widely expected to increase with future summer warming, surface litter decay and nutrient turnover rates in both xeric and relatively moist tundra are likely to be significantly restricted by the evaporative drying associated with warmer air temperatures. © 2016 John Wiley & Sons Ltd.
Burwell, Robert W; Beasley, Jeffrey S; Gaston, Lewis A; Borst, Steven M; Sheffield, Ron E; Strahan, Ron E; Munshaw, Gregg C
2011-01-01
Nutrient and sediment runoff from newly constructed levee embankments pose a threat to water quality during soft armor vegetation establishment. Research was initiated in 2008 and 2009 to evaluate the effect of bermudagrass ( L.) coverage and N source on nutrient and sediment runoff from levee embankments during establishment. Bermudagrass plots were seeded at 195.3 kg pure live seed ha and fertilized at 50 kg N ha using a water-soluble N source, urea or NH-NO, or slow-release N source, S-coated urea (SCU) or urea formaldehyde (UF), with controls unfertilized. Vegetative cover percentage, time until the onset of runoff, runoff volume, and total solids (TS), NO-N, and NH-N concentrations were measured from simulated and natural rainfall events for 70 d in 2008 and 56 d in 2009. Bermudagrass at 90% grass cover delayed the onset of runoff an additional 441 to 538 s and reduced runoff volumes 74 to 84% of that exhibited at 10% grass cover. Nitrogen fertilizers did not accelerate bermudagrass growth sufficiently, however, to reduce TS loading compared with unfertilized bermudagrass in either year of the study. The application of urea and SCU resulted in cumulative N losses of 2.45 and 3.13 kg ha compared with 1.59 kg ha from the unfertilized bermudagrass in 2008, and 1.73 kg ha from NH-NO vs. 0.24 kg ha from controls in 2009. Only UF increased bermudagrass establishment without increasing cumulative N losses compared with unfertilized bermudagrass. Therefore, the benefit of greater erosion and runoff resistance expected from N-accelerated vegetative growth did not occur but had the unintended consequence of higher N losses when water-soluble N and SCU fertilizers were applied. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Estimates of Nutrient Drain by Dormant-Season Harvests of Coppice American Sycamore
B.G. Blackmon
1979-01-01
Estimates of the amount of nutrients removed by dormant-season harvests of coppice American sycamore indicated that harvesting once (at age 4) or twice (at ages 2 and 4) removed 20-145 kg/ha of N, P, K, Ca, and Mg and small quantities of Mn, Zn, Fe, and Cu. Calculations of nutrient drain indicated that for N, gains through natural processes about equal losses, but...
Jäger, Christoph G; Diehl, Sebastian; Emans, Maximilian
2010-04-01
Most phytoplankters face opposing vertical gradients in light versus nutrient supplies but have limited capacities for vertical habitat choice. We therefore explored a dynamical model of negatively buoyant algae inhabiting a one-dimensional water column to ask how water column depth and turbulence constrain total (areal) phytoplankton biomass. We show that the population persistence boundaries in water column depth-turbulence space are set by sinking losses and light limitation but that nutrients are most limiting to total biomass in water columns that are neither too shallow or too weakly mixed (where sinking losses prevail) nor too deep and turbulent (where light limitation prevails). In shallow waters, the most strongly limiting process is nutrient influx to the bottom of the water column (e.g., from sediments). In deep waters, the most strongly limiting process is turbulent upward transport of nutrients to the photic zone. Consequently, the highest total biomasses are attained in turbulent waters at intermediate water column depths and in deep waters at intermediate turbulences. These patterns are insensitive to the assumption of fixed versus flexible algal carbon-to-nutrient stoichiometry, and they arise irrespective of whether the water column is a surface layer above a deep water compartment or has direct contact with sediments.
Kanjanamaneesathian, Mana
2015-01-01
In Thailand, yield loss due to plant diseases in vegetables grown hydroponically is very high as a result of the growers` lack of knowledge for controlling diseases and their un- willingness to invest in setting-up the proper hydroponic system from the beginning. Severe root rot disease caused by Pythium spp. is frequent and can be anticipated in the hot climate in Thailand. This review focuses on the diseases in temperate lettuces which have been produced hydroponically and have been attacked by plant pathogens, particularly Pythium spp. Biological control of vegetable diseases grown hydroponically has been investigated in Thailand. Research is being carried out to identify effective strains of the antagonists, formulating the applicable products and delivering them appropriately to control the disease. Products of Bacillus subtilis, Chaetomium globosom and Trichoderma harzianum have been recommended for use to control diseases in vegetables grown hydroponically. Control efficacy of these products is varied as the biological products have been used by the growers in the paradigm of using chemical fungicide for disease control in hydroponic production system, overlooking the intrinsic characteristics of the biological control products. The recent patent, which minimizes the effects of sunlight and heat on the nutrient solution without the use of an external energy for cooling the nutrient, should be applied in producing hydroponic vegetables to mitigate poor plant growth and root rot disease outbreak in Thailand.
NUTRIENT AND HABITAT INDICATORS FOR CRITERIA DEVELOPMENT IN GREAT LAKES COASTAL WETLANDS
EPA's Mid-Continent Ecology Division is testing indicators and establishing stressor - response relationships to support development of nutrient and habitat criteria for Great Lakes coastal wetlands. Our focus is on water quality changes, food web shifts, and vegetation loss as ...
2011-12-01
7,386 acres). Hurricanes and other extreme extratropical storms have been shown to contribute to extensive shoreline erosion and breaching, and the...that provide protection from storms ; serve as species habitat; act as a control for nutrient and pollution transfer; support fish, agriculture...quickly and accurately classify historical panchromatic photography in order to identify storm -induced land loss and impacts (Morton et al. 2005; Barras
Lü, Shaoyu; Feng, Chen; Gao, Chunmei; Wang, Xinggang; Xu, Xiubin; Bai, Xiao; Gao, Nannan; Liu, Mingzhu
2016-06-22
Fertilizer is one of the most important elements of modern agriculture. However, conventional fertilizer, when applied to crops, is vulnerable to losses through volatilization, leaching, nitrification, or other means. Such a loss limits crop yields and pollutes the environment. In an effort to enhance nutrient use efficiency and reduce environmental pollution, an environmental smart fertilizer was reported in the current study. Poly(aspartic acid) and a degradable macro-cross-linker based on l-aspartic acid were synthesized and introduced into the fertilizer as a superabsorbent to improve the fertilizer degradability and soil moisture-retention capacity. Sustained release behavior of the fertilizer was achieved in soil. Cumulative release of nitrogen and phosphorus was 79.8% and 64.4% after 30 days, respectively. The water-holding and water-retention capacities of soil with the superabsorbent are obviously higher than those of the control soil without superabsorbent. For the sample of 200 g of soil with 1.5 g of superabsorbent, the water-holding capacity is 81.8%, and the water-retention capacity remains 22.6% after 23 days. All of the current results in this study indicated that the as-prepared fertilizer has a promising application in sustainable modern agriculture.
Simulation of Nitrogen and Phosphorus Losses in Loess Landforms of Northern Iran
NASA Astrophysics Data System (ADS)
Kiani, F.; Behtarinejad, B.; Najafinejad, A.; Kaboli, R.
2018-02-01
Population growth, urban expansion and intensive agriculture and thus increased use of fertilizers aimed at increasing the production capacity cause extensive loss of nutrients such as nitrogen and phosphorus and lead to reduced quality of soil and water. Therefore, identification of nutrients in the soil and their potential are essential. The aim of this study was to evaluate the capability of the SWAT model in simulating runoff, sediment, and nitrogen and phosphorus losses in Tamer catchment. Runoff and sediment measured at Tamar gauging station were used to calibrate and validate the model. Simulated values were generally consistent with the data observed during calibration and validation period (0.6 < R 2 and 0.5 < NS). In the case of nitrogen loss, the model performed an almost good simulation (0.6 < R 2 and 0.47 < NS), but phosphorus simulation yielded better results (0.76 < R 2 and 0.66 < NS). The results showed that cultivated lands had higher loss of nitrogen and phosphorus than other types of land use. Among the various forms of nitrogen and phosphorus, the loss of organic nitrogen and nitrate and soluble phosphorus and mineral phosphorus attached to the sediments showed the greatest sensitivity to the type of land use. Results also showed that the average nutrient loss caused by erosion in this catchment, was 6.99 kg/ha for nitrogen, 0.35 kg/ha for nitrate, 1.3 kg/ha for organic phosphorus, 0.015 kg/ha for soluble phosphorus, and 0.45 kg/ha for mineral phosphorus.
Model development for nutrient loading estimates from paddy rice fields in Korea.
Jeon, Ji-Hong; Yoon, Chun G; Ham, Jong-Hwa; Jung, Kwang-Wook
2004-01-01
A field experiment was performed to evaluate water and nutrient balances in paddy rice culture operations during 2001-2002. The water balance analysis indicated that about half (50-60%) of the total outflow was lost by surface drainage, with the remainder occurring by evapotranspiration (490-530 mm). The surface drainage from paddy fields was mainly caused by rainfall and forced-drainage, and in particular, the runoff during early rice culture periods depends more on the forced-drainage due to fertilization practices. Most of the total phosphorus (T-P) inflow was supplied by fertilization at transplanting, while the total nitrogen (T-N) inflow was supplied by the three fertilizations, precipitation. and from the upper paddy field, which comprised 13-33% of the total inflow. Although most of the nutrient outflow was attributed to plant uptake. nutrient loss by surface drainage was substantial, comprising 20% for T-N and 10% for T-P. Water and nutrient balances indicate that reduction of surface drainage from paddy rice fields is imperative for nonpoint source pollution control. The simplified computer model, PADDIMOD, was developed to simulate water and nutrient (T-N and T-P) behavior in the paddy rice field. The model predicts daily ponded water depth, surface drainage, and nutrient concentrations. It was formulated with a few equations and simplified assumptions, but its application and a model fitness test indicated that the simulation results reasonably matched the observed data. It is a simple and convenient planning model that could be used to evaluate BMPs of paddy rice fields alone or in combination with other complex watershed models. Application of the PADDIMOD to other paddy rice fields with different agricultural environments might require further calibration and validation.
Phosphorus runoff from agricultural land and direct fertilizer effects: a review.
Hart, Murray R; Quin, Bert F; Nguyen, M Long
2004-01-01
Phosphorus (P) is one of the most important mineral nutrients in agricultural systems, and along with nitrogen (N), is generally the most limiting nutrient for plant production. Farming systems have intensified greatly over time, and in recent years it has become apparent that the concomitant increase in losses of N and P from agricultural land is having a serious detrimental effect on water quality and the environment. The last two decades have seen a marked increase in research into the issues surrounding diffuse losses of P to surface and ground water. This paper reviews this research, examining the issue of P forms in runoff, and highlighting the exceptions to some generally held assumptions about land use and P transport. In particular the review focuses on P losses associated with recent P fertilizer application, as opposed to organic manures, both on the amounts and the forms of P in runoff water. The effects of the physicochemical characteristics of different forms of P fertilizer are explored, particularly in relation to water solubility. Various means of mitigating the risk of loss of P are discussed. It is argued that the influence of recent fertilizer applications is an under-researched area, yet may offer the most readily applicable opportunity to mitigate P losses by land users. This review highlights and discusses some options that have recently become available that may make a significant contribution to the task of sustainable management of nutrient losses from agriculture.
Callbeck, Cameron M.; Lavik, Gaute; Stramma, Lothar; Kuypers, Marcel M. M.; Bristow, Laura A.
2017-01-01
The eastern tropical South Pacific (ETSP) upwelling region is one of the ocean’s largest sinks of fixed nitrogen, which is lost as N2 via the anaerobic processes of anammox and denitrification. One-third of nitrogen loss occurs in productive shelf waters stimulated by organic matter export as a result of eastern boundary upwelling. Offshore, nitrogen loss rates are lower, but due to its sheer size this area accounts for ~70% of ETSP nitrogen loss. How nitrogen loss and primary production are regulated in the offshore ETSP region where coastal upwelling is less influential remains unclear. Mesoscale eddies, ubiquitous in the ETSP region, have been suggested to enhance vertical nutrient transport and thereby regulate primary productivity and hence organic matter export. Here, we investigated the impact of mesoscale eddies on anammox and denitrification activity using 15N-labelled in situ incubation experiments. Anammox was shown to be the dominant nitrogen loss process, but varied across the eddy, whereas denitrification was below detection at all stations. Anammox rates at the eddy periphery were greater than at the center. Similarly, depth-integrated chlorophyll paralleled anammox activity, increasing at the periphery relative to the eddy center; suggestive of enhanced organic matter export along the periphery supporting nitrogen loss. This can be attributed to enhanced vertical nutrient transport caused by an eddy-driven submesoscale mechanism operating at the eddy periphery. In the ETSP region, the widespread distribution of eddies and the large heterogeneity observed in anammox rates from a compilation of stations suggests that eddy-driven vertical nutrient transport may regulate offshore primary production and thereby nitrogen loss. PMID:28122044
Nitrogen conservation and acidity control during food wastes composting through struvite formation.
Wang, Xuan; Selvam, Ammaiyappan; Chan, Manting; Wong, Jonathan W C
2013-11-01
One of the main problems of food waste composting is the intensive acidification due to initial rapid fermentation that retards decomposition efficiency. Lime addition overcame this problem, but resulted in significant loss of nitrogen as ammonia that reduces the nutrient contents of composts. Therefore, this study investigated the feasibility of struvite formation as a strategy to control pH and reduce nitrogen loss during food waste composting. MgO and K2HPO4 were added to food waste in different molar ratios (P1, 1:1; P2, 1:2), and composted in 20-L composters. Results indicate that K2HPO4 buffered the pH in treatment P2 besides supplementing phosphate into the compost. In P2, organic decomposition reached 64% while the formation of struvite effectively reduced the nitrogen loss from 40.8% to 23.3% during composting. However, electrical conductivity of the compost increased due to the addition of Mg and P salts that requires further investigation to improve this technology. Copyright © 2013 Elsevier Ltd. All rights reserved.
Plant growth improvement mediated by nitrate capture in co-composted biochar
Kammann, Claudia I.; Schmidt, Hans-Peter; Messerschmidt, Nicole; Linsel, Sebastian; Steffens, Diedrich; Müller, Christoph; Koyro, Hans-Werner; Conte, Pellegrino; Stephen, Joseph
2015-01-01
Soil amendment with pyrogenic carbon (biochar) is discussed as strategy to improve soil fertility to enable economic plus environmental benefits. In temperate soils, however, the use of pure biochar mostly has moderately-negative to -positive yield effects. Here we demonstrate that co-composting considerably promoted biochars’ positive effects, largely by nitrate (nutrient) capture and delivery. In a full-factorial growth study with Chenopodium quinoa, biomass yield increased up to 305% in a sandy-poor soil amended with 2% (w/w) co-composted biochar (BCcomp). Conversely, addition of 2% (w/w) untreated biochar (BCpure) decreased the biomass to 60% of the control. Growth-promoting (BCcomp) as well as growth-reducing (BCpure) effects were more pronounced at lower nutrient-supply levels. Electro-ultra filtration and sequential biochar-particle washing revealed that co-composted biochar was nutrient-enriched, particularly with the anions nitrate and phosphate. The captured nitrate in BCcomp was (1) only partly detectable with standard methods, (2) largely protected against leaching, (3) partly plant-available, and (4) did not stimulate N2O emissions. We hypothesize that surface ageing plus non-conventional ion-water bonding in micro- and nano-pores promoted nitrate capture in biochar particles. Amending (N-rich) bio-waste with biochar may enhance its agronomic value and reduce nutrient losses from bio-wastes and agricultural soils. PMID:26057083
Plant growth improvement mediated by nitrate capture in co-composted biochar
NASA Astrophysics Data System (ADS)
Kammann, Claudia I.; Schmidt, Hans-Peter; Messerschmidt, Nicole; Linsel, Sebastian; Steffens, Diedrich; Müller, Christoph; Koyro, Hans-Werner; Conte, Pellegrino; Stephen, Joseph
2015-06-01
Soil amendment with pyrogenic carbon (biochar) is discussed as strategy to improve soil fertility to enable economic plus environmental benefits. In temperate soils, however, the use of pure biochar mostly has moderately-negative to -positive yield effects. Here we demonstrate that co-composting considerably promoted biochars’ positive effects, largely by nitrate (nutrient) capture and delivery. In a full-factorial growth study with Chenopodium quinoa, biomass yield increased up to 305% in a sandy-poor soil amended with 2% (w/w) co-composted biochar (BCcomp). Conversely, addition of 2% (w/w) untreated biochar (BCpure) decreased the biomass to 60% of the control. Growth-promoting (BCcomp) as well as growth-reducing (BCpure) effects were more pronounced at lower nutrient-supply levels. Electro-ultra filtration and sequential biochar-particle washing revealed that co-composted biochar was nutrient-enriched, particularly with the anions nitrate and phosphate. The captured nitrate in BCcomp was (1) only partly detectable with standard methods, (2) largely protected against leaching, (3) partly plant-available, and (4) did not stimulate N2O emissions. We hypothesize that surface ageing plus non-conventional ion-water bonding in micro- and nano-pores promoted nitrate capture in biochar particles. Amending (N-rich) bio-waste with biochar may enhance its agronomic value and reduce nutrient losses from bio-wastes and agricultural soils.
Nutrient-rich meat proteins in offsetting age-related muscle loss.
Phillips, Stuart M
2012-11-01
From a health perspective, an underappreciated consequence of the normal aging process is the impacts that the gradual loss of skeletal muscle mass, termed sarcopenia, has on health beyond an effect on locomotion. Sarcopenia, refers to the loss of muscle mass, and associated muscle weakness, which occurs in aging and is thought to proceed at a rate of approximately 1% loss per year. However, periods of inactivity due to illness or recovery from orthopedic procedures such as hip or knee replacement are times of accelerated sarcopenic muscle loss from which it may be more difficult for older persons to recover. Some of the consequences of age-related sarcopenia are easy to appreciate such as weakness and, eventually, reduced mobility; however, other lesser recognized consequences include, due to the metabolic role the skeletal muscle plays, an increased risk for poor glucose control and a predisposition toward weight gain. What we currently know is that two stimuli can counter this age related muscle loss and these are physical activity, specifically resistance exercise (weightlifting), and nutrition. The focus of this paper is on the types of dietary protein that people might reasonably consume to offset sarcopenic muscle loss. Copyright © 2012 Elsevier Ltd. All rights reserved.
Uneven nutrient load and potential offsite loss
USDA-ARS?s Scientific Manuscript database
Landscape and management often results in uneven nutrient loads within a field. The hypotheses of this study are that: 1) phosphorus accumulates at low areas in the landscape adjacent to waterways; and 2) nitrate at lower landscape positions will be decreased in the subsoil due to denitrification an...
NASA Astrophysics Data System (ADS)
Serna, A.; Richards, J.; Scinto, L.
2012-12-01
The effect of water depth and flow on tissue nutrients and decomposition rates of marsh plant species, and soil chemistry in vegetated plots was measured in the Loxahatchee Impoundment Landscape Assessment (LILA) facility in Boynton Beach, Florida, USA. The LILA facility consists of replicated wetland macrocosms that mimic Everglades ridge-and-slough landscape features. The experiments were conducted in two macrocosms that each had three habitats at different water depths (ridge, shallow slough and deep slough) but differed in flow. Decomposition rates of three common Everglades species, Cladium jamaicense (sawgrass), Eleocharis cellulosa (spikerush), and Nymphaea odorata (white water lily), were measured using litter bags incubated during both a wet and dry condition. Litter bag losses were more pronounced under wet conditions, and decomposition rates were not affected by the hydrologic conditions in this experiment, but rather by litter nutrient content and species. Litter nutrient (TC, TN, TP) concentrations varied over time. Species rich in the limiting nutrient (P) in the ecosystem decomposed faster. Therefore, N. odorata decomposed faster than C. jamaicense and E. cellulosa, confirming the importance of P availability in controlling microbial processes in the Everglades. Planted species had no effect on soil nutrient content over the 3 yrs period of plant growth in these plots. Our results have contributed to defining potential flow targets for restoration in Florida's Everglades by showing that average water velocities of 0.5 cm s-1 may not be sufficient to drive ecosystem changes in decomposition rates for the native species and soil chemistry.
Soil as a record of the past: Mass migration as the result of soil exhausting
NASA Astrophysics Data System (ADS)
van Mourik, Jan; Kluiving, Sjoerd
2014-05-01
An extensive area in Northwest Europe is covered by chemical poor Late Glacial aeolian sands. Till the Bronze Age the soils evolution in the coversand landscapes correlated with the geomorphological structure, Umbric Podzols on coversand ridges, Gleyic Podzols on coversand planes and Umbric or Histic Arenosols in brook valleys. Essential was the storage of nutrients in the biomass of the forest system. The nutrient cycle has been for long time a stabilizing factor in the forest ecosystems, repressing further soil acidification. Human occupation resulted in transformation of natural to cultural soilscapes. Agricultural management introduced lateral transport of nutrients from the soil system to the market and interrupted the natural vertical cycling. The results were soil exhaustion and acceleration of soil acidification. 1. In the early Bronze Age, shifting cultivation was applied to create small lots of arable land. Burning of forest means acceleration of the release of organic stored nutrients, available for crop production. However, the moderate rain climate of Northwest Europe caused leaching of released nutrients that were not quickly recycled. Nutrient losses stimulated the soil acidification and in very dry seasons even small scale sand drifting could occur. Without any nutrient addition (fertilization), shifting cultivation is not a form of sustainable land use and led to land degradation. 2. In the early Iron Age, the system Celtic field came in use. Systematic transport of nutrients from green strips to production lots and harvesting caused gradual nutrient losses of the soilscape and accelerated the soil acidification; Umbric Podzols degraded to Carbic Podzols. Celtic Field land management was also not a sustainable form of land use and led to land degradation. 3. Later in time, the lateral transport of nutrients increased during application of plaggic agriculture. Soil acidification continued on heath lands, the production area of organic manure. During the period with plaggic agriculture, the soils on arable fields development from Umbric Podzols to Plaggic podzols and Plaggic Anthrosols. Agriculture on such field became sustainable under conditions of a low productivity. In several archaeological studies there is evidence that the human impact on soils caused significant nutrient losses, soil degradation and diminishing crop production. People had to migrate to another area which a higher soil fertility to guarantee food production. Patterns of migration to fertile areas (if available) have been studied by archaeologists. Lack of space urged people to invent management techniques and equipment to increase crop production inside the occupied area.
Mass migration as the result of soil exhausting
NASA Astrophysics Data System (ADS)
van Mourik, Jan; Kluiving, Sjoerd
2014-05-01
An extensive area in Northwest Europe is covered by chemical poor Late Glacial aeolian sands. Till the Bronze Age the soils evolution in the coversand landscapes correlated with the geomorphological structure, Umbric Podzols on coversand ridges, Gleyic Podzols on coversand planes and Umbric or Histic Arenosols in brook valleys. Essential was the storage of nutrients in the biomass of the forest system. The nutrient cycle has been for long time a stabilizing factor in the forest ecosystems, repressing further soil acidification. Human occupation resulted in transformation of natural to cultural soilscapes. Agricultural management introduced lateral transport of nutrients from the soil system to the market and interrupted the natural vertical cycling. The results were soil exhaustion and acceleration of soil acidification. 1. In the early Bronze Age, shifting cultivation was applied to create small lots of arable land. Burning of forest means acceleration of the release of organic stored nutrients, available for crop production. However, the moderate rain climate of Northwest Europe caused leaching of released nutrients that were not quickly recycled. Nutrient losses stimulated the soil acidification and in very dry seasons even small scale sand drifting could occur. Without any nutrient addition (fertilization), shifting cultivation is not a form of sustainable land use and led to land degradation. 2. In the early Iron Age, the system Celtic field came in use. Systematic transport of nutrients from green strips to production lots and harvesting caused gradual nutrient losses of the soilscape and accelerated the soil acidification; Umbric Podzols degraded to Carbic Podzols. Celtic Field land management was also not a sustainable form of land use and led to land degradation. 3. Later in time, the lateral transport of nutrients increased during application of plaggic agriculture. Soil acidification continued on heath lands, the production area of organic manure. During the period with plaggic agriculture, the soils on arable fields development from Umbric Podzols to Plaggic podzols and Plaggic Anthrosols. Agriculture on such field became sustainable under conditions of a low productivity. In several archaeological studies there is evidence that the human impact on soils caused significant nutrient losses, soil degradation and diminishing crop production. People had to migrate to another area which a higher soil fertility to guarantee food production. Patterns of migration to fertile areas (if available) have been studied by archaeologists. Lack of space urged people to invent management techniques and equipment to increase crop production inside the occupied area.
Tera E. Lewandowski; Jodi A. Forrester; David J. Mladenoff; Anthony W. D' Amato; Brian J. Palik
2016-01-01
Intensive forest biomass harvesting, or the removal of harvesting slash (woody debris from tree branches and tops) for use as biofuel, has the potential to negatively affect the soil microbial community (SMC) due to loss of carbon and nutrient inputs from the slash, alteration of the soil microclimate, and increased nutrient leaching. These effects could result in...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rozemeijer, J. C.; Visser, A.; Borren, W.
High nitrogen (N) and phosphorus (P) fluxes from upstream agriculture threaten aquatic ecosystems in surface waters and estuaries, especially in areas characterized by high agricultural N and P inputs and densely drained catchments like the Netherlands. Controlled drainage has been recognized as an effective option to optimize soil moisture conditions for agriculture and to reduce unnecessary losses of fresh water and nutrients. This is achieved by introducing control structures with adjustable overflow levels into subsurface tube drain systems. A small-scale (1 ha) field experiment was designed to investigate the hydrological and chemical changes after introducing controlled drainage. Precipitation rates andmore » the response of water tables and drain fluxes were measured in the periods before the introduction of controlled drainage (2007–2008) and after (2009–2011). For the N and P concentration measurements, auto-analyzers for continuous records were combined with passive samplers for time-averaged concentrations at individual drain outlets. The experimental setup enabled the quantification of changes in the water and solute balance after introducing controlled drainage. The results showed that introducing controlled drainage reduced the drain discharge and increased the groundwater storage in the field. To achieve this, the overflow levels have to be elevated in early spring, before the drain discharge stops due to dryer conditions and falling groundwater levels. The groundwater storage in the field would have been larger if the water levels in the adjacent ditch were controlled as well by an adjustable weir. The N concentrations and loads increased, which was largely related to elevated concentrations in one of the three monitored tube drains. The P loads via the tube drains reduced due to the reduction in discharge after introducing controlled drainage. Furthermore, this may be counteracted by the higher groundwater levels and the larger contribution of N- and P-rich shallow groundwater and overland flow to the surface water.« less
Rozemeijer, J. C.; Visser, A.; Borren, W.; ...
2016-01-19
High nitrogen (N) and phosphorus (P) fluxes from upstream agriculture threaten aquatic ecosystems in surface waters and estuaries, especially in areas characterized by high agricultural N and P inputs and densely drained catchments like the Netherlands. Controlled drainage has been recognized as an effective option to optimize soil moisture conditions for agriculture and to reduce unnecessary losses of fresh water and nutrients. This is achieved by introducing control structures with adjustable overflow levels into subsurface tube drain systems. A small-scale (1 ha) field experiment was designed to investigate the hydrological and chemical changes after introducing controlled drainage. Precipitation rates andmore » the response of water tables and drain fluxes were measured in the periods before the introduction of controlled drainage (2007–2008) and after (2009–2011). For the N and P concentration measurements, auto-analyzers for continuous records were combined with passive samplers for time-averaged concentrations at individual drain outlets. The experimental setup enabled the quantification of changes in the water and solute balance after introducing controlled drainage. The results showed that introducing controlled drainage reduced the drain discharge and increased the groundwater storage in the field. To achieve this, the overflow levels have to be elevated in early spring, before the drain discharge stops due to dryer conditions and falling groundwater levels. The groundwater storage in the field would have been larger if the water levels in the adjacent ditch were controlled as well by an adjustable weir. The N concentrations and loads increased, which was largely related to elevated concentrations in one of the three monitored tube drains. The P loads via the tube drains reduced due to the reduction in discharge after introducing controlled drainage. Furthermore, this may be counteracted by the higher groundwater levels and the larger contribution of N- and P-rich shallow groundwater and overland flow to the surface water.« less
NASA Astrophysics Data System (ADS)
Rozemeijer, J. C.; Visser, A.; Borren, W.; Winegram, M.; van der Velde, Y.; Klein, J.; Broers, H. P.
2016-01-01
High nitrogen (N) and phosphorus (P) fluxes from upstream agriculture threaten aquatic ecosystems in surface waters and estuaries, especially in areas characterized by high agricultural N and P inputs and densely drained catchments like the Netherlands. Controlled drainage has been recognized as an effective option to optimize soil moisture conditions for agriculture and to reduce unnecessary losses of fresh water and nutrients. This is achieved by introducing control structures with adjustable overflow levels into subsurface tube drain systems. A small-scale (1 ha) field experiment was designed to investigate the hydrological and chemical changes after introducing controlled drainage. Precipitation rates and the response of water tables and drain fluxes were measured in the periods before the introduction of controlled drainage (2007-2008) and after (2009-2011). For the N and P concentration measurements, auto-analyzers for continuous records were combined with passive samplers for time-averaged concentrations at individual drain outlets. The experimental setup enabled the quantification of changes in the water and solute balance after introducing controlled drainage. The results showed that introducing controlled drainage reduced the drain discharge and increased the groundwater storage in the field. To achieve this, the overflow levels have to be elevated in early spring, before the drain discharge stops due to dryer conditions and falling groundwater levels. The groundwater storage in the field would have been larger if the water levels in the adjacent ditch were controlled as well by an adjustable weir. The N concentrations and loads increased, which was largely related to elevated concentrations in one of the three monitored tube drains. The P loads via the tube drains reduced due to the reduction in discharge after introducing controlled drainage. However, this may be counteracted by the higher groundwater levels and the larger contribution of N- and P-rich shallow groundwater and overland flow to the surface water.
Nutrient production from dairy cattle manure and loading on arable land
You, Byung-Gu; Choi, Yoon-Seok; Ra, Changsix
2017-01-01
Objective Along with increasing livestock products via intensive rearing, the accumulation of livestock manure has become a serious issue due to the fact that there is finite land for livestock manure recycling via composting. The nutrients from livestock manure accumulate on agricultural land and the excess disembogues into streams causing eutrophication. In order to systematically manage nutrient loading on agricultural land, quantifying the amount of nutrients according to their respective sources is very important. However, there is a lack of research concerning nutrient loss from livestock manure during composting or storage on farms. Therefore, in the present study we quantified the nutrients from dairy cattle manure that were imparted onto agricultural land. Methods Through investigation of 41 dairy farms, weight reduction and volatile solids (VS), total nitrogen (TN), and total phosphorus (TP) changes of dairy cattle manure during the storage and composting periods were analyzed. In order to support the direct investigation and survey on site, the three cases of weight reduction during the storing and composting periods were developed according to i) experiment, ii) reference, and iii) theoretical changes in phosphorus content (ΔP = 0). Results The data revealed the nutrient loading coefficients (NLCs) of VS, TN, and TP on agricultural land were 1.48, 0.60, and 0.66, respectively. These values indicated that the loss of nitrogen and phosphorus was 40% and 34%, respectively, and that there was an increase of VS since bedding materials were mixed with excretion in the barn. Conclusion As result of nutrient-footprint analyses, the amounts of TN and TP particularly entered on arable land have been overestimated if applying the nutrient amount in fresh manure. The NLCs obtained in this study may assist in the development of a database to assess the accurate level of manure nutrient loading on soil and facilitate systematic nutrient management. PMID:27492346
Watershed-Scale Cover Crops Reduce Nutrient Export From Agricultural Landscapes.
NASA Astrophysics Data System (ADS)
Tank, J. L.; Hanrahan, B.; Christopher, S. F.; Trentman, M. T.; Royer, T. V.; Prior, K.
2016-12-01
The Midwestern US has undergone extensive land use change as forest, wetlands, and prairies have been converted to agroecosystems. Today, excess fertilizer nutrients from farm fields enter Midwestern agricultural streams, which degrades both local and downstream water quality, resulting in algal blooms and subsequent hypoxic "dead zones" far from the nutrient source. We are quantifying the benefits of watershed-scale conservation practices that may reduce nutrient runoff from adjacent farm fields. Specifically, research is lacking on whether the planting of winter cover crops in watersheds currently dominated by row-crop agriculture can significantly reduce nutrient inputs to adjacent streams. Since 2013, farmers have planted cover crops on 70% of croppable acres in the Shatto Ditch Watershed (IN), and "saturation level" implementation of this conservation practice has been sustained for 3 years. Every 14 days, we have quantified nutrient loss from fields by sampling nutrient fluxes from multiple subsurface tile drains and longitudinally along the stream channel throughout the watershed. Cover crops improved stream water quality by reducing dissolved inorganic nutrients exported downstream; nitrate-N and DRP concentrations and fluxes were significantly lower in tiles draining fields with cover crops compared to those without. Annual watershed nutrient export also decreased, and reductions in N and P loss ( 30-40%) exceeded what we expected based on only a 6-10% reduction in runoff due to increased watershed water holding capacity. We are also exploring the processes responsible for increased nutrient retention, where they are occurring (terrestrial vs. aquatic) and when (baseflow vs. storms). For example, whole-stream metabolism also responded to cover crop planting, showing reduced variation in primary production and respiration in years after watershed-scale planting of cover crops. In summary, widespread land cover change, through cover crop planting, can significantly reduce annual watershed-scale nutrient export. Moreover, successful outcomes highlighted through demonstration projects may facilitate widespread adoption, making them powerful agents of change for advancing conservation success.
Effect of different starvation conditions on the flocculation of Saccharomyces cerevisiae.
Soares, E V; Vroman, A
2003-01-01
To study the effect of different starvation conditions on the flocculation of an ale brewing yeast of Saccharomyces cerevisiae NCYC 1195. Flocculation was assessed by a micro-flocculation technique (Soares and Mota 1997). Carbon-starved cells of a NewFlo phenotype strain did not lose flocculation during a 48 h period. Cells incubated only in the presence of fermentable carbon sources (glucose, galactose and maltose at 2%, w/v), showed a progressive flocculation loss. The incubation of cells in 4% (v/v) ethanol did not induce a flocculation loss. The simultaneous incubation of cells in the presence of 2% (w/v) glucose and 15 microg ml(-1) cycloheximide hindered flocculation loss. The presence of 0.1 mmol l(-1) PMSF or 10 mmol l-1 EDTA prevented partially or completely, respectively, the loss of flocculation in the presence of glucose. Fermentable sugars induced a flocculation loss, which seems to require de novo protein synthesis and the involvement of different proteases. The findings reported here contribute to the elucidation of the role of nutrients on the physiological control of yeast flocculation.
The effect of fire on soil properties
Leonard F. DeBano
1991-01-01
Fire affects nutrient cycling and the physical, chemical, and biological properties of soils occupied by western montane forests. Combustion of litter and soil organic matter (OM) increases the availability of some nutrients, although others are volatilized (for example, N, P, S). Soil OM loss also affects cation exchange capacity, organic chelation, aggregate...
USDA-ARS?s Scientific Manuscript database
Subsurface band application of poultry litter has been shown to reduce the transport of nutrients from fields in surface runoff, compared to the conventional surface broadcast application. Little in situ research has been conducted to determine effects of surface broadcast application and subsurfac...
Phosphorus and nitrogen losses from poultry litter stacks and leaching through soils
USDA-ARS?s Scientific Manuscript database
The practice of stacking poultry litter in fields prior to spreading provides important logistical benefits to farmers but is controversial due to its potential to serve as a source of nutrients to leachate and runoff. We evaluated nutrient fate under stacked poultry litter to assess differences in ...
USDA-ARS?s Scientific Manuscript database
The presence of excess nutrients in surfaces waters can result in undesirable environmental and economic consequences including nuisance algal blooms and eutrophication. Fertilizer use in highly managed turf systems such as golf courses and commercial and residential landscapes has raised questions ...
Testing for thresholds of ecosystem collapse in seagrass meadows.
Connell, Sean D; Fernandes, Milena; Burnell, Owen W; Doubleday, Zoë A; Griffin, Kingsley J; Irving, Andrew D; Leung, Jonathan Y S; Owen, Samuel; Russell, Bayden D; Falkenberg, Laura J
2017-10-01
Although the public desire for healthy environments is clear-cut, the science and management of ecosystem health has not been as simple. Ecological systems can be dynamic and can shift abruptly from one ecosystem state to another. Such unpredictable shifts result when ecological thresholds are crossed; that is, small cumulative increases in an environmental stressor drive a much greater change than could be predicted from linear effects, suggesting an unforeseen tipping point is crossed. In coastal waters, broad-scale seagrass loss often occurs as a sudden event associated with human-driven nutrient enrichment (eutrophication). We tested whether the response of seagrass ecosystems to coastal nutrient enrichment is subject to a threshold effect. We exposed seagrass plots to different levels of nutrient enrichment (dissolved inorganic nitrogen) for 10 months and measured net production. Seagrass response exhibited a threshold pattern when nutrient enrichment exceeded moderate levels: there was an abrupt and large shift from positive to negative net leaf production (from approximately 0.04 leaf production to 0.02 leaf loss per day). Epiphyte load also increased as nutrient enrichment increased, which may have driven the shift in leaf production. Inadvertently crossing such thresholds, as can occur through ineffective management of land-derived inputs such as wastewater and stormwater runoff along urbanized coasts, may account for the widely observed sudden loss of seagrass meadows. Identification of tipping points may improve not only adaptive-management monitoring that seeks to avoid threshold effects, but also restoration approaches in systems that have crossed them. © 2017 Society for Conservation Biology.
NASA Astrophysics Data System (ADS)
Kurniawan, Syahrul; Corre, Marife D.; Rahayu Utami, Sri; Veldkamp, Edzo
2015-04-01
In the last two decades, Sumatra, Indonesia is experiencing rapid expansion of oil palm and rubber plantations by conversion of rainforest. This is evident from the 2.9 thousand km2 decrease in forest area in this region over the last 15 years. Such rapid land-use change necessitates assessment of its environmental impacts. Our study was aimed to assess the impact of forest conversion to oil palm and rubber plantations on nutrient leaching losses. Land-use conversion increases nutrient leaching losses due to changes in vegetation litter input, rooting depth, nutrient cycling and management (e.g. fertilization) practices. Our study area was in Jambi Province, Sumatra, Indonesia. We selected two soil landscapes in this region: loam and clay Acrisol soils. At each soil landscape, we investigated four land-use systems: lowland secondary rainforest, secondary forest with regenerating rubber (referred here as jungle rubber), rubber (7-17 years old) and oil palm plantations (9-16 years old). Each land use in each soil landscape was represented by four sites as replicates, totaling to 32 sites. We measured leaching losses using suction lysimeters installed at 1.5-m soil depth, which was well below the rooting depth, with bi-weekly to monthly sampling from February to December 2013. In general, the loam Acrisol landscape, particularly the forest and oil palm plantations, had lower soil solution pH and higher leaching fluxes of dissolved organic N, Na, Ca, Mg, total Al, total S and Cl than the clay Acrisol of the same land uses (all P ≤ 0.05). Among land uses in the loam Acrisol landscape, oil palm had lower soil solution pH and higher leaching fluxes of NH4+, NO3-, dissolved organic C, total P, total S and Cl than rubber plantation whereas forest and jungle rubber showed intermediate fluxes (all P ≤ 0.05, except P ≤ 0.09 for total P); oil palm had also higher Na, Ca, Mg and total Al leaching fluxes than all the other land uses (all P ≤ 0.05, except P ≤ 0.09 for Na and Mg). In the clay Acrisol landscape, oil palm showed higher leaching losses of dissolved organic C and Ca than forest whereas jungle rubber and rubber plantation had intermediate fluxes; oil palm had also higher Na, Mg and total Si leaching losses than all the other land uses (all P ≤ 0.05). The low soil solution pH, which was negatively correlated with total Al, and large mineral N and total P leaching losses in oil palm were due to N and P fertilization, and the large base cation losses were attributable to liming and ash from biomass burning. Such increased nutrient leaching losses with forest conversion to oil palm plantation calls for improved management to minimize losses and its effects on ground water quality.
Weight-loss attempts and reporting of foods and nutrients, and biomarkers in a national cohort.
Kant, A K
2002-09-01
This study examined the reported intake of foods and nutrients, and biomarkers of dietary exposure and cardiovascular disease in relation to history of trying to lose weight. Dietary, anthropometric and biochemical data were from the third National Health and Nutrition Examination Survey (1988-1994), n=13 092. The history of attempting weight loss variable was created as follows: trying to lose currently and tried in the past 12 months (Y/Y); trying to lose currently, but not tried in the past 12 months (Y/N), not trying currently, but tried in the past 12 months (N/Y); not trying now and not tried in the past 12 months (N/N). Multiple regression methods were used to examine the independent association of history of trying to lose weight with reported intakes of energy, nutrients, percentage energy from low-nutrient-dense foods (sweeteners, baked and dairy desserts, visible fats and salty snacks), and serum concentrations of vitamins, carotenoids and lipids. Men and women in the Y/Y group reported lower energy intake relative to the N/N group (P<0.0000). However, the reported percentage energy from fat and carbohydrate by the Y/Y group did not differ from the N/N group. Percentage of energy from low-nutrient-dense foods was lower in men in the Y/Y group but not women. The relative odds of reporting the estimated average requirement (EAR) of folate, and vitamins A, B(6), B(12), C, E and iron and adequate intake (AI) of calcium were not adversely affected by history of trying to lose weight in men. In women, the odds of meeting the folate and vitamin E EAR were lower in the Y/Y group. Some history of weight loss categories were significant positive predictors of serum vitamin and carotenoid concentrations, or unrelated to cardiovascular disease risk biomarkers. There was little evidence for increased nutritional risk in those reporting repeat attempts at weight loss.
Nutrient sensing and signaling in the yeast Saccharomyces cerevisiae
Conrad, Michaela; Schothorst, Joep; Kankipati, Harish Nag; Van Zeebroeck, Griet; Rubio-Texeira, Marta; Thevelein, Johan M
2014-01-01
The yeast Saccharomyces cerevisiae has been a favorite organism for pioneering studies on nutrient-sensing and signaling mechanisms. Many specific nutrient responses have been elucidated in great detail. This has led to important new concepts and insight into nutrient-controlled cellular regulation. Major highlights include the central role of the Snf1 protein kinase in the glucose repression pathway, galactose induction, the discovery of a G-protein-coupled receptor system, and role of Ras in glucose-induced cAMP signaling, the role of the protein synthesis initiation machinery in general control of nitrogen metabolism, the cyclin-controlled protein kinase Pho85 in phosphate regulation, nitrogen catabolite repression and the nitrogen-sensing target of rapamycin pathway, and the discovery of transporter-like proteins acting as nutrient sensors. In addition, a number of cellular targets, like carbohydrate stores, stress tolerance, and ribosomal gene expression, are controlled by the presence of multiple nutrients. The protein kinase A signaling pathway plays a major role in this general nutrient response. It has led to the discovery of nutrient transceptors (transporter receptors) as nutrient sensors. Major shortcomings in our knowledge are the relationship between rapid and steady-state nutrient signaling, the role of metabolic intermediates in intracellular nutrient sensing, and the identity of the nutrient sensors controlling cellular growth. PMID:24483210
Effects of different cooking methods on health-promoting compounds of broccoli*
Yuan, Gao-feng; Sun, Bo; Yuan, Jing; Wang, Qiao-mei
2009-01-01
The effects of five domestic cooking methods, including steaming, microwaving, boiling, stir-frying, and stir-frying followed by boiling (stir-frying/boiling), on the nutrients and health-promoting compounds of broccoli were investigated. The results show that all cooking treatments, except steaming, caused significant losses of chlorophyll and vitamin C and significant decreases of total soluble proteins and soluble sugars. Total aliphatic and indole glucosinolates were significantly modified by all cooking treatments but not by steaming. In general, the steaming led to the lowest loss of total glucosinolates, while stir-frying and stir-frying/boiling presented the highest loss. Stir-frying and stir-frying/boiling, the two most popular methods for most homemade dishes in China, cause great losses of chlorophyll, soluble protein, soluble sugar, vitamin C, and glucosinolates, but the steaming method appears the best in retention of the nutrients in cooking broccoli. PMID:19650196
Erdi, Balázs; Nagy, Péter; Zvara, Agnes; Varga, Agnes; Pircs, Karolina; Ménesi, Dalma; Puskás, László G; Juhász, Gábor
2012-07-01
Autophagy delivers cytoplasmic material for lysosomal degradation in eukaryotic cells. Starvation induces high levels of autophagy to promote survival in the lack of nutrients. We compared genome-wide transcriptional profiles of fed and starved control, autophagy-deficient Atg7 and Atg1 null mutant Drosophila larvae to search for novel regulators of autophagy. Genes involved in catabolic processes including autophagy were transcriptionally upregulated in all cases. We also detected repression of genes involved in DNA replication in autophagy mutants compared with control animals. The expression of Rack1 (receptor of activated protein kinase C 1) increased 4.1- to 5.5-fold during nutrient deprivation in all three genotypes. The scaffold protein Rack1 plays a role in a wide range of processes including translation, cell adhesion and migration, cell survival and cancer. Loss of Rack1 led to attenuated autophagic response to starvation, and glycogen stores were decreased 11.8-fold in Rack1 mutant cells. Endogenous Rack1 partially colocalized with GFP-Atg8a and early autophagic structures on the ultrastructural level, suggesting its involvement in autophagosome formation. Endogenous Rack1 also showed a high degree of colocalization with glycogen particles in the larval fat body, and with Shaggy, the Drosophila homolog of glycogen synthase kinase 3B (GSK-3B). Our results, for the first time, demonstrated the fundamental role of Rack1 in autophagy and glycogen synthesis.
The elemental stoichiometry (C, Si, N, P) of the Hebrides Shelf and its role in carbon export
NASA Astrophysics Data System (ADS)
Painter, Stuart C.; Hartman, Susan E.; Kivimäe, Caroline; Salt, Lesley A.; Clargo, Nicola M.; Daniels, Chris J.; Bozec, Yann; Daniels, Lucie; Allen, Stephanie; Hemsley, Victoria S.; Moschonas, Grigorios; Davidson, Keith
2017-12-01
A detailed analysis of the internal stoichiometry of a temperate latitude shelf sea system is presented which reveals strong vertical and horizontal gradients in dissolved nutrient and particulate concentrations and in the elemental stoichiometry of those pools. Such gradients have implications for carbon and nutrient export from coastal waters to the open ocean. The mixed layer inorganic nutrient stoichiometry shifted from balanced N:P in winter, to elevated N:P in spring and to depleted N:P in summer, relative to the Redfield ratio. This pattern suggests increased likelihood of P limitation of fast growing phytoplankton species in spring and of N limitation of slower growing species in summer. However, as only silicate concentrations were below potentially limiting concentrations during summer and autumn the stoichiometric shifts in inorganic nutrient N:P are considered due to phytoplankton nutrient preference patterns rather than nutrient exhaustion. Elevated particulate stoichiometries corroborate non-Redfield optima underlying organic matter synthesis and nutrient uptake. Seasonal variation in the stoichiometry of the inorganic and organic nutrient pools has the potential to influence the efficiency of nutrient export. In summer, when organic nutrient concentrations were at their highest and inorganic nutrient concentrations were at their lowest, the organic nutrient pool was comparatively C poor whilst the inorganic nutrient pool was comparatively C rich. The cross-shelf export of these pools at this time would be associated with different efficiencies regardless of the total magnitude of exchange. In autumn the elemental stoichiometries increased with depth in all pools revealing widespread carbon enrichment of shelf bottom waters with P more intensely recycled than N, N more intensely recycled than C, and Si weakly remineralized relative to C. Offshelf carbon fluxes were most efficient via the inorganic nutrient pool, intermediate for the organic nutrient pool and least efficient for the particulate pool. N loss from the shelf however was most efficient via the dissolved organic nutrient pool. Mass balance calculations suggest that 28% of PO43-, 34% of NO3- and 73% of Si drawdown from the mixed layer fails to reappear in the benthic water column thereby indicating the proportion of the nutrient pools that must be resupplied from the ocean each year to maintain shelf wide productivity. Loss to the neighbouring ocean, the sediments, transference to the dissolved organic nutrient pool and higher trophic levels are considered the most likely fate for these missing nutrients.
NASA Technical Reports Server (NTRS)
Davis, D.; Dogan, N.; Aglan, H.; Mortley, D.; Loretan, P.
1998-01-01
Control of nutrient solution parameters is very important for the growth and development of plants grown hydroponically. Protocols involving different nutrient solution replenishment times (e.g. one-week, two-week, or two-day replenishment) provide manual periodic control of the nutrient solution's electrical conductivity (EC). Since plants take-up nutrients as they grow, manual control has a drawback in that EC is not held constant between replenishments. In an effort to correct this problem the Center for Food and Environmental Systems for Human Exploration of Space at Tuskegee University has developed a system for managing and controlling levels of EC over a plant's entire growing cycle. A prototype system is being tested on sweetpotato production using the nutrient film technique (NFT), and it is being compared to a system in which sweetpotatoes are grown using NFT with manual control. NASA has played an important role in the development of environmental control systems. They have become a forerunner in growing plants hydroponically with some control systems through the use of networked data acquisition and control using environmental growth chambers. Data acquisition systems which involve the use of real-time, calibration, set points, user panel, and graphical representation programming provide a good method of controlling nutrient solution parameters such as EC and pH [Bledsoe, 19931]. In NASA's Biomass Production Chamber (BPC) at Kennedy Space Center, control is provided by a programmable logic controller (PLC). This is an industrial controller which combines ladder computer logic which has the ability to handle various levels of electrical power. The controller controls temperature, light and other parameters that affect the plant's environment, in the BPC, the Nutrient Delivery System (NIX), a sub-system of the PLC, controls nutrient solution parameters such as EC, pH, and solution levels. When the nutrient EC measurement goes outside a preset range (120-130 mS/m) a set amount of a stock solution of nutrients is automatically added by a metering pump to bring the EC back into operating range [Fortson, 1992]. This paper describes a system developed at Tuskegee University for controlling the EC of a nutrient solution used for growing sweetpotatoes with an EC controller and a computer with LabView data acquisition and instrumentation software. It also describes the preliminary data obtained from the growth of sweetpotatoes using this prototype control system.
Do Plot Scale Studies Yield Useful Data When Assessing Field Scale Practices?
USDA-ARS?s Scientific Manuscript database
Plot scale data has been used to develop models used to assess field and watershed scale nutrient losses. The objective of this study was to determine if phosphorus (P) loss results from plot scale rainfall simulation studies are “directionally correct” when compared to field scale P losses. Two fie...
USDA-ARS?s Scientific Manuscript database
Losses of soluble nutrients from cropland and their transport to surface and groundwater are a continuing water quality concern. In this study we evaluated tillage impact on dissolved losses of ammonium (NH4-N) and nitrate nitrogen (NO3-N), chloride (Cl), and potassium (K) during rotational cotton ...
Assessment of management-dependent nutrient losses in tropical industrial tree plantations.
Mackensen, Jens; Klinge, Rudolf; Ruhiyat, Daddy; Fölster, Horst
2003-03-01
Industrial tree plantations in the tropics usually follow short rotations and intensive site management including slash and burn, and the use of heavy machinery. We attempt to quantify the implied nutrient losses (harvest export, erosion, slash and burn, leaching) in order to give plantation managers a chance to understand the significance of their planning and decisions. We used the scarce globally available information and a case study plantation in East Kalimantan, Indonesia (Acacia mangium and Eucalyptus deglupta). Adaptation involves problems and is discussed in some detail. Results are approximate only. Assuming a harvest volume of 200 m3 ha(-1), we assessed a loss of 427-680 kg ha(-1) N, 12-13 kg ha(-1) P, 178-252 kg ha(-1) Ca, 276-370 kg ha(-1) K, and 45-57 kg ha(-1) Mg per rotation. Of this overall loss, stand harvest accounted for 18-29% (N), 21-30% (P), 56-26% (K), 48-64% (Ca) and 22-37% (Mg). This means that the cumulative loss by erosion, slash and burn, and leaching exceeds that of the harvest. These losses can be influenced by management.
Water as an essential nutrient: the physiological basis of hydration.
Jéquier, E; Constant, F
2010-02-01
How much water we really need depends on water functions and the mechanisms of daily water balance regulation. The aim of this review is to describe the physiology of water balance and consequently to highlight the new recommendations with regard to water requirements. Water has numerous roles in the human body. It acts as a building material; as a solvent, reaction medium and reactant; as a carrier for nutrients and waste products; in thermoregulation; and as a lubricant and shock absorber. The regulation of water balance is very precise, as a loss of 1% of body water is usually compensated within 24 h. Both water intake and water losses are controlled to reach water balance. Minute changes in plasma osmolarity are the main factors that trigger these homeostatic mechanisms. Healthy adults regulate water balance with precision, but young infants and elderly people are at greater risk of dehydration. Dehydration can affect consciousness and can induce speech incoherence, extremity weakness, hypotonia of ocular globes, orthostatic hypotension and tachycardia. Human water requirements are not based on a minimal intake because it might lead to a water deficit due to numerous factors that modify water needs (climate, physical activity, diet and so on). Water needs are based on experimentally derived intake levels that are expected to meet the nutritional adequacy of a healthy population. The regulation of water balance is essential for the maintenance of health and life. On an average, a sedentary adult should drink 1.5 l of water per day, as water is the only liquid nutrient that is really essential for body hydration.
Improving water management practices to reduce nutrient export from rice paddy fields.
Zhang, Zhi-Jian; Yao, Ju-Xiang; Wang, Zhao-De; Xu, Xin; Lin, Xian-Yong; Czapar, George F; Zhang, Jian-Ying
2011-01-01
Nitrogen (N) and phosphorus (P) loss from rice paddy fields represents a significant threat to water quality in China. In this project, three irrigation-drainage regimes were compared, including one conventional irrigation-drainage regime, i.e. continuous submergence regime (CSR), and two improved regimes, i.e. the alternating submergence-nonsubmergence regime (ASNR) and the zero-drainage irrigation technology (ZDIT), to seek cost-effective practices for reducing nutrient loss. The data from these comparisons showed that, excluding the nutrient input from irrigation, the net exports of total N and total P via surface field drainage ranged from -3.93 to 2.39 kg ha and 0.17 to 0.95 g ha(-1) under the CSR operation, respectively, while N loss was -2.46 to -2.23 kg ha(-1) and P export was -0.65 to 0.31 kg ha(-1) under the improved regimes. The intensity of P export was positively correlated to the rate of P application. Reducing the draining frequency or postponing the draining operation would shift the ecological role of the paddy field from a nutrient export source to an interception sink when ASNR or the zero-drainage water management was used. In addition, since the rice yields are being guaranteed at no additional cost, the improved irrigation-drainage operations would have economic as well as environmental benefits.
Climate change and wetland loss impacts on a Western river's water quality
NASA Astrophysics Data System (ADS)
Records, R. M.; Arabi, M.; Fassnacht, S. R.; Duffy, W. G.; Ahmadi, M.; Hegewisch, K. C.
2014-05-01
An understanding of potential stream water quality conditions under future climate is critical for the sustainability of ecosystems and protection of human health. Changes in wetland water balance under projected climate could alter wetland extent or cause wetland loss. This study assessed the potential climate-induced changes to in-stream sediment and nutrients loads in the historically snow melt-dominated Sprague River, Oregon, Western United States. Additionally, potential water quality impacts of combined changes in wetland water balance and wetland area under future climatic conditions were evaluated. The study utilized the Soil and Water Assessment Tool (SWAT) forced with statistical downscaling of general circulation model (GCM) data from the Coupled Model Intercomparison Project 5 (CMIP5) using the Multivariate Adaptive Constructed Analogs (MACA) method. Our findings suggest that in the Sprague River (1) mid-21st century nutrient and sediment loads could increase significantly during the high flow season under warmer-wetter climate projections, or could change only nominally in a warmer and somewhat drier future; (2) although water quality conditions under some future climate scenarios and no wetland loss may be similar to the past, the combined impact of climate change and wetland losses on nutrient loads could be large; (3) increases in stream total phosphorus (TP) concentration with wetland loss under future climate scenarios would be greatest at high-magnitude, low-probability flows; and (4) loss of riparian wetlands in both headwaters and lowlands could increase outlet TP loads to a similar degree, but this could be due to distinctly different mechanisms in different parts of the watershed.
Effects of Pesticide Treatments on Nutrient Levels in Worker Honey Bees (Apis mellifera).
Feazel-Orr, Haley K; Catalfamo, Katelyn M; Brewster, Carlyle C; Fell, Richard D; Anderson, Troy D; Traver, Brenna E
2016-03-01
Honey bee colony loss continues to be an issue and no factor has been singled out as to the cause. In this study, we sought to determine whether two beekeeper-applied pesticide products, tau-fluvalinate and Fumagilin-B(®), and one agrochemical, chlorothalonil, impact the nutrient levels in honey bee workers in a natural colony environment. Treatments were performed in-hive and at three different periods (fall, spring, and summer) over the course of one year. Bees were sampled both at pre-treatment and two and four weeks post-treatment, weighed, and their protein and carbohydrate levels were determined using BCA and anthrone based biochemical assays, respectively. We report that, based on the pesticide concentrations tested, no significant negative impact of the pesticide products was observed on wet weight, protein levels, or carbohydrate levels of bees from treated colonies compared with bees from untreated control colonies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walsh, David A.; Zaikova, Elena; Howes, Charles L.
Oxygen minimum zones (OMZs), also known as oceanic"dead zones", are widespread oceanographic features currently expanding due to global warming and coastal eutrophication. Although inhospitable to metazoan life, OMZs support a thriving but cryptic microbiota whose combined metabolic activity is intimately connected to nutrient and trace gas cycling within the global ocean. Here we report time-resolved metagenomic analyses of a ubiquitous and abundant but uncultivated OMZ microbe (SUP05) closely related to chemoautotrophic gill symbionts of deep-sea clams and mussels. The SUP05 metagenome harbors a versatile repertoire of genes mediating autotrophic carbon assimilation, sulfur-oxidation and nitrate respiration responsive to a wide rangemore » of water column redox states. Thus, SUP05 plays integral roles in shaping nutrient and energy flow within oxygen-deficient oceanic waters via carbon sequestration, sulfide detoxification and biological nitrogen loss with important implications for marine productivity and atmospheric greenhouse control.« less
Day-Lewis, F. D.; White, E.A.; Johnson, C.D.; Lane, J.W.; Belaval, M.
2006-01-01
Aquifer-ocean interaction, saline intrusion, and submarine groundwater discharge (SGD) are emerging topics in hydrology and oceanography with important implications for water-resource management and estuarine ecology. Although the threat of saltwater intrusion has long been recognized in coastal areas, SGD has, until recently, received much less attention. It is clear that SGD constitutes a major nutrient flux to coastal waters, with implications for estuarine ecology, eutrophication, and loss of coral reefs; however, fundamental questions regarding SGD remain unanswered: What are the spatial and temporal distributions of SGD offshore? How do seasonal and storm-related variations in aquifer recharge affect SGD flux and nutrient loading? What controls do aquifer structure and heterogeneity impose? How are SGD and saline recirculation related? Geophysical methods can provide insights to help answer these questions and improve the understanding of this intriguing and environmentally relevant hydrologic phenomenon. ?? 2006 Society of Exploration Geophysicists.
Effects of Pesticide Treatments on Nutrient Levels in Worker Honey Bees (Apis mellifera)
Feazel-Orr, Haley K.; Catalfamo, Katelyn M.; Brewster, Carlyle C.; Fell, Richard D.; Anderson, Troy D.; Traver, Brenna E.
2016-01-01
Honey bee colony loss continues to be an issue and no factor has been singled out as to the cause. In this study, we sought to determine whether two beekeeper-applied pesticide products, tau-fluvalinate and Fumagilin-B®, and one agrochemical, chlorothalonil, impact the nutrient levels in honey bee workers in a natural colony environment. Treatments were performed in-hive and at three different periods (fall, spring, and summer) over the course of one year. Bees were sampled both at pre-treatment and two and four weeks post-treatment, weighed, and their protein and carbohydrate levels were determined using BCA and anthrone based biochemical assays, respectively. We report that, based on the pesticide concentrations tested, no significant negative impact of the pesticide products was observed on wet weight, protein levels, or carbohydrate levels of bees from treated colonies compared with bees from untreated control colonies. PMID:26938563
Calcium and vitamin D for obesity: a review of randomized controlled trials.
Soares, M J; Chan She Ping-Delfos, W; Ghanbari, M H
2011-09-01
Obesity often coexists with low calcium intake and vitamin D insufficiency. There is emerging evidence of a role for these nutrients in the regulation of body weight. However, it is unclear whether increasing intakes of calcium and/or vitamin D during energy restriction, is a better strategy for weight and fat loss. We searched the literature from 2000 to date for randomized controlled trials (RCTs) on weight loss that had increased calcium or vitamin D per se, or in combination. Primary and secondary studies were included for this analysis. A total of 15 RCTs on calcium with or without vitamin D and seven on vitamin D alone met our criteria. Two studies reported that supplemental calcium significantly increased fat loss during caloric restriction by 1.8 and 2.2 kg, three found differences between 1 and 3.5 kg but were statistically nonsignificant, while nine trials were equivocal (±0.7 kg). The data on vitamin D supplementation during weight loss were too few to make firm conclusions. Current evidence from RCTs did not consistently support the contention that calcium and vitamin D accelerated weight or fat loss in obesity. There were studies that favoured the hypothesis but lacked the statistical power. There is a need for RCTs to examine the influence of vitamin D on body fat.
Brauer, Verena S; Stomp, Maayke; Huisman, Jef
2012-06-01
Resource competition theory predicts that the outcome of competition for two nutrients depends on the ratio at which these nutrients are supplied. Yet there is considerable debate whether nutrient ratios or absolute nutrient loads determine the species composition of phytoplankton and plant communities. Here we extend the classical resource competition model for two nutrients by including light as additional resource. Our results suggest the nutrient-load hypothesis, which predicts that nutrient ratios determine the species composition in oligotrophic environments, whereas nutrient loads are decisive in eutrophic environments. The underlying mechanism is that nutrient enrichment shifts the species interactions from competition for nutrients to competition for light, which favors the dominance of superior light competitors overshadowing all other species. Intermediate nutrient loads can generate high biodiversity through a fine-grained patchwork of two-species and three-species coexistence equilibria. Depending on the species traits, however, competition for nutrients and light may also produce multiple alternative stable states, suppressing the predictability of the species composition. The nutrient-load hypothesis offers a solution for several discrepancies between classical resource competition theory and field observations, explains why eutrophication often leads to diversity loss, and provides a simple conceptual framework for patterns of biodiversity and community structure observed in nature.
USDA-ARS?s Scientific Manuscript database
Current restoration efforts for the Chesapeake Bay watershed mandate a timeline for reducing the load of nutrients and sediment to receiving waters. The Chesapeake Bay Watershed Model (WSM) has been used for two decades to simulate hydrology and nutrient and sediment transport; however, spatial limi...
USDA-ARS?s Scientific Manuscript database
Agriculture in the Mississippi-Atchafalaya River basin (MARB) is important in terms of both the national economy and the nutrients discharged to the basin and the Gulf of Mexico. Conservation practices are installed on cropland to reduce the nutrient losses. A recent study by the Conservation Effec...
USDA-ARS?s Scientific Manuscript database
Excess nutrients in surfaces waters can result in undesirable consequences. Experiments were designed to quantify phosphorus and nitrogen transport with runoff from plots maintained as a golf course fairway to identify which cultural practice, solid tine or hollow tine core cultivation, will maximiz...
Soil and Nutrient Losses from Small Sprinkler and Furrow Irrigated Watersheds in Southern Idaho
USDA-ARS?s Scientific Manuscript database
Sediment and associated nutrients flowing to the Snake River with furrow irrigation runoff and unused irrigation water have been a concern in the Twin Falls irrigation tract in southern Idaho. Converting furrow irrigated fields to sprinkler irrigation is one practice that has been promoted, and rece...
Nutrient losses from an irrigated watershed in southern Idaho
USDA-ARS?s Scientific Manuscript database
Water, sediment and nutrients flowing into and out of the 82,000 ha Twin Falls, ID irrigation tract were measured from 2005 to 2008. Approximately 80% of the water flowing into the watershed was irrigation water diverted from the Snake River. About 40% of the watershed inflow returned to the Snake R...
USDA-ARS?s Scientific Manuscript database
Silage runoff produced during the preservation and storage of dairy forage in horizontal bunkers is a source of nutrient loss from the farmstead and a threat to surface water quality. This research evaluated the runoff characteristics from six dairy bunker facilities to determine runoff water qualit...
Balancing the Phosphorus Budget of a Swine Farm: A Case Study
ERIC Educational Resources Information Center
Nelson, Nathan O.; Mikkelsen, Robert L.
2005-01-01
Trends in animal production have moved the industry toward large confined animal feeding operations (CAFOs). These CAFOs concentrate large amounts of manure-based nutrients in relatively small areas, which increases the risk of nutrient loss to the surrounding environment. In response to water quality concerns, P-based manure application…
USDA-ARS?s Scientific Manuscript database
Enhancement of nutrient use efficiency is imperative for increasing economic returns and reduction of environmental pollution caused by fertilization in crop production systems. In this paper, we have demonstrated at a given soil temperature and nitrogen (N) rate, N loss via ammonia (NH3) emission f...
Matthew E. Craig; Jennifer M. Fraterrigo
2017-01-01
Many invasive plant species show high rates of nutrient acquisition relative to their competitors. Yet the mechanisms underlying this phenomenon, and its implications for ecosystem functioning, are poorly understood, particularly in nutrient-limited systems. Here, we test the hypothesis that an invasive plant species (Microstegium vimineum...
USDA-ARS?s Scientific Manuscript database
In the era of sustainability, utilization of livestock wastes as soil amendment to provide micronutrients for crops is very economical and sustainable. It is well understood that livestock wastes are comparable, if not better, nutrient sources for crops as chemical fertilizers. However, the large c...
Douglas, G; Adeney, J; Johnston, K; Wendling, L; Coleman, S
2012-01-01
This study investigates the use of a mineral processing by-product, neutralized used acid (NUA), primarily composed of gypsum and Fe-oxyhydroxide, as a soil amendment. A 1489-d turf farm field trial assessed nutrient, trace element, and radionuclide mobility of a soil amended with ∼5% by mass to a depth of 15 cm of NUA. Average PO-P fluxes collected as subsoil leachates were 0.7 and 26.6 kg ha yr for NUA-amended and control sites, respectively, equating to a 97% reduction in PO-P loss after 434 kg P ha was applied. Total nitrogen fluxes in NUA-amended soil leachates were similarly reduced by 82%. Incorporation of NUA conferred major changes in leachate geochemistry with a diverse suite of trace elements depleted within NUA-amended leachates. Gypsum dissolution from NUA resulted in an increase from under- to oversaturation of the soil leachates for a range of Fe- and Ca-minerals including calcite and ferrihydrite, many of which have a well-documented ability to assimilate PO-P and trace elements. Isotopic analysis indicated little Pb addition from NUA. Both Sr and Nd isotope results revealed that NUA and added fertilizer became an important source of Ca to leachate and turf biomass. The NUA-amended soils retained a range of U-Th series radionuclides, with little evidence of transfer to soil leachate or turf biomass. Calculated radioactivity dose rates indicate only a small increment due to NUA amendment. With increased nutrient, trace element, and solute retention, and increased productivity, a range of potential agronomic benefits may be conferred by NUA amendment of soils, in addition to the potential to limit offsite nutrient loss and eutrophication. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Factors Controlling Nitrogen Loadings in Major River Basins Across the United States
NASA Astrophysics Data System (ADS)
Boyer, E. W.; Alexander, R. B.; Galloway, J. N.; Golden, H. E.; Moore, R. B.; Schwarz, G. E.; Harvey, J. W.; Gomez-Velez, J. D.; Scott, D.; Clune, J.
2017-12-01
Inputs of reactive nitrogen (all N species except for N2) have been increasing worldwide, largely due to human activities associated with food production and energy consumption via the combustion of fossil fuels and biofuels. Despite the obvious essential benefits of a plentiful supply of food and energy, the adverse consequences associated with the accumulation of N in the environment are large. Most of the N created by human activities is released to the environment, often with unintended negative consequences. The greater the inputs of N to the landscape, the greater the potential for negative effects - caused by greenhouse gas production, ground level ozone, acid deposition, and N overload; which in turn can contribute to climate change, degradation of soils and vegetation, acidification of surface waters, coastal eutrophication, hypoxia, habitat loss, and loss of stratospheric ozone. Here we present a contemporary inventory of reactive N inputs to major water regions in the United States, and discuss accounting methods for quantifying N sources and transport. Furthermore, we quantify loadings of N from terrestrial headwaters downstream to coastal estuaries and embayments. N delivery to downstream waters is influenced by nutrient sources as well as coupled hydrological and biogeochemical processes occurring along the river corridor (e.g., travel time distributions, denitrification, and storage) that scale with stream size and are affected by impoundments such as lakes and reservoirs. This underscores the need to account for the nonlinear interactions of aquatic transport processes with watershed nutrient sources, as well as cumulative effects, in developing efficient nutrient reduction strategies. Our work is useful as a benchmark of the current N situation against which future progress can be assessed in varying water regions of the country; amidst changing N inputs, policies, and management strategies. Our results stem from the EPA Integrated Nitrogen Advisory Committee, the EPA Center for Integrated Multi-Scale Nutrient Pollution Solutions, and the John Wesley Powell Center River Corridor Working Group.
Biofilms affecting progression of mild steel corrosion by Gram positive Bacillus sp.
Lin, Johnson; Madida, Bafana B
2015-10-01
The biodeterioration of metals have detrimental effects on the environment with economic implications. The deterioration of metals is of great concern to industry. In this study, mild steel coupons which were immersed in a medium containing Gram-positive Bacillus spp. and different nutrient sources were compared with the control in sterile deionized water. The weight loss of the coupons in the presence of Bacillus spp. alone was lower than the control and was further reduced when additional carbon sources, especially fructose, were added. The level of metal corrosion was significantly increased in the presence of nitrate with or without bacteria. There was a significant strong correlation between the weight loss and biofilm level (r = 0.64; p < 0.05). The addition of nitrate and Bacillus spp. produced more biofilms on the coupons and resulted in greater weight loss compared to that with Bacillus spp. only under the same conditions. However, Bacillus spp. enriched with carbon sources formed less biofilms and results in lower weight loss compared to that with Bacillus spp. only. The production of biofilm by Bacillus spp. influences the level of metal corrosion under different environmental conditions, thereby, supporting the development of a preventive strategy against corrosion. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crossley, D.A. Jr.
1986-08-29
This report summarizes progress in a three-year research project on the influence of soil arthropods (mites, collembolans, insects, millipedes and others) upon decomposition rates and nutrient dynamics in decaying vegetable matter. Research has concentrated on two aspects of elemental dynamics in decomposing organic matter: Effects of arthropods on rates of decomposition and nutrient loss (mineralization of carbon and other elements), and arthropod stimulation of microbial immobilization of nutrient elements during decomposition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lutz, Brian D; Mulholland, Patrick J; Bernhardt, Emily
2012-01-01
We present 20 years of weekly stream water chemistry, hydrology, and climate data for the Walker Branch watershed in eastern Tennessee, USA. Since 1989, the watershed has experienced a similar to 1.08 degrees C increase in mean annual temperature, a similar to 20% decline in precipitation, and a similar to 30% increase in forest evapotranspiration rates. As a result, stream runoff has declined by similar to 34%. We evaluate long-term trends in stream water concentrations and fluxes for nine solutes and use wet deposition data to calculate approximate watershed input-output budgets. Dissolved constituents were classified as geochemical solutes (Ca2+, Mg2+,more » and SO42-) or nutrients (NH4+, NO3-, soluble reactive phosphorus [SRP], total soluble nitrogen [TSN], total soluble phosphorus [TSP], and dissolved organic carbon [DOC]). Geochemical solutes are predominantly controlled by discharge, and the long-term changes in catchment hydrology have led to significant trends in the concentrations and fluxes of these solutes. Further, the trends in geochemical solute concentrations indicate shifting soil flowpath contributions to streamflow generation through time, with deep groundwater having a greater proportional contribution in recent years. Despite dramatic changes in watershed runoff, there were no trends in inorganic nutrient concentrations (NH4+, NO3-, and SRP). While most nutrients entering the watershed are retained, stream fluxes of nutrient solutes have declined significantly as a result of decreasing runoff. Nutrient concentrations in the stream exhibit large seasonality controlled by in-stream biological uptake. Stream benthic communities are sensitive to hydrologic disturbance, and changes in the frequency or intensity of storm events through time can affect nutrient fluxes. Stream NO3- concentrations are also sensitive to drought, with concentrations decreasing (increasing) if conditions during the three years prior to the time of sampling were drier (wetter) than the long-term mean. Future changes in the incidence of storm events, as well as the number and duration of droughts, have the potential to significantly alter watershed nutrient losses. Our analysis indicates that changing climates can differentially affect watershed element cycles either through changes in biogeochemical process rates or through changes in catchment hydrology. Furthermore, climate change can include both long-term trending in mean climate variables, as well as changes in the frequency and intensity of storms and droughts, with each of these types of change having distinct effects on the biological and geochemical processes governing different solutes.« less
Ares Segura, Susana; Arena Ansótegui, José; Díaz-Gómez, N Marta
2016-06-01
Breastmilk is the best food for newborns and infants. The nutritional stores of a lactating woman may be more or less depleted as a result of the pregnancy and the loss of blood during childbirth. Lactation raises nutrient needs, mainly because of the loss of nutrients, first through colostrum and then through breastmilk. Breastmilk volume varies widely. The nutrients present in this milk come from the diet of the mother or from her nutrient reserves. The conversion of nutrients in food to nutrients in breastmilk is not complete. To have good nutritional status the breastfeeding woman has to increase nutrient intake. Human breastmilk has a fairly constant composition, and is only selectively affected by the diet of the mother. The fat content of breastmilk varies somewhat. The carbohydrate, protein, fat, calcium and iron contents do not change much, even if the mother is short of these in her diet. A mother whose diet is deficient in thiamine and vitamins A and D, however, produces less of these in her milk. The mother should be given advice on consuming a mixed diet. At each postnatal visit, both the mother and the baby should be examined, and advice on the diets of both mother and infant should be provided. A satisfactory gain in the infant's weight is the best way to judge the adequacy of the diet of the infant. Mothers should not receive less than 1800 calories per day. Copyright © 2015 Asociación Española de Pediatría. Published by Elsevier España, S.L.U. All rights reserved.
Predictive modeling of transient storage and nutrient uptake: Implications for stream restoration
O'Connor, Ben L.; Hondzo, Miki; Harvey, Judson W.
2010-01-01
This study examined two key aspects of reactive transport modeling for stream restoration purposes: the accuracy of the nutrient spiraling and transient storage models for quantifying reach-scale nutrient uptake, and the ability to quantify transport parameters using measurements and scaling techniques in order to improve upon traditional conservative tracer fitting methods. Nitrate (NO3–) uptake rates inferred using the nutrient spiraling model underestimated the total NO3– mass loss by 82%, which was attributed to the exclusion of dispersion and transient storage. The transient storage model was more accurate with respect to the NO3– mass loss (±20%) and also demonstrated that uptake in the main channel was more significant than in storage zones. Conservative tracer fitting was unable to produce transport parameter estimates for a riffle-pool transition of the study reach, while forward modeling of solute transport using measured/scaled transport parameters matched conservative tracer breakthrough curves for all reaches. Additionally, solute exchange between the main channel and embayment surface storage zones was quantified using first-order theory. These results demonstrate that it is vital to account for transient storage in quantifying nutrient uptake, and the continued development of measurement/scaling techniques is needed for reactive transport modeling of streams with complex hydraulic and geomorphic conditions.
Reduction of solids and nutrient loss from agricultural land by tailwater recovery systems
Omer, A.R.; Miranda, Leandro E.; Moore, M. T.; Krutz, L. J.; Prince Czarnecki, J. M.; Kröger, R.; Baker, B. H.; Hogue, J.; Allen, P. J.
2018-01-01
Best management practices are being implemented throughout the Lower Mississippi River Alluvial Valley with the aim of alleviating pressures placed on downstream aquatic systems by sediment and nutrient losses from agricultural land; however, research evaluating the performance of tailwater recovery (TWR) systems, an increasingly important practice, is limited. This study evaluated the ability of TWR systems to retain sediment and nutrients draining from agricultural landscapes. Composite flow-based samples were collected during flow events (precipitation or irrigation) over a two-year period in six TWR systems. Performance was evaluated by comparing concentrations and loads in water entering TWR systems (i.e., runoff or influent) from agricultural fields to water overflow exiting TWR systems (effluent). Tailwater recovery systems did not reduce concentrations of solids and nutrients, but did reduce loads of solids, phosphorus (P), and nitrogen (N) by 43%, 32%, and 44%, respectively. Annual mean load reductions were 1,142 kg solids, 0.7 kg of P, and 3.8 kg of N. Performance of TWR systems was influenced by effluent volume, system fullness, time since the previous event, and capacity of the TWR system. Mechanistically, TWR systems retain runoff on the agricultural landscape, thereby reducing the amount of sediment and nutrients entering downstream waterbodies. System performance can be improved through manipulation of influential parameters.
Lister, N B; Gow, M L; Chisholm, K; Grunseit, A; Garnett, S P; Baur, L A
2017-05-01
Adolescents have unique nutrient requirements due to rapid growth and development. High rates of obesity in adolescents require a variety of diet interventions to achieve weight loss under clinical supervision. The aim of this study is to examine the nutritional adequacy of energy-restricted diets for adolescents. Three popular diets were modelled for 7 days and assessed by comparing the nutrient profile to the Australian Nutrient Reference Values. Three diets were: (1) a standard energy restricted diet based on current dietary guidelines; (2) a modified carbohydrate diet; and (3) a modified alternate day fasting diet. Initial modelling revealed limiting nutrients (that is, not meeting the recommended intakes) across the diets. Subsequent modelling was required to achieve nutritional adequacy for all three diets. The dietary guidelines diet design met most nutrient targets except essential fatty acids before subsequent modelling, however this diet also provided the highest energy (8.8 vs 8.0 MJ and 6.8 MJ for the modified carbohydrate and modified alternate day fasting diet, respectively). Energy-restricted diets need careful consideration to meet nutritional requirements of adolescents. A variety of eating patterns can be adapted to achieve nutritional adequacy and energy restriction, however health practitioners need to consider adequacy when prescribing diet interventions for weight loss during adolescence.
Soluble calcium amendments: reducing pathogen losses
USDA-ARS?s Scientific Manuscript database
Flue gas desulfurization (FGD) gypsum is a byproduct of coal-fired power plants. Its application to agricultural fields may increase water infiltration, reduce soil erosion, and decrease nutrient losses from applications of animal manures. It may also reduce fecal bacterial contamination of surface ...
Peak health and the need for more sustainable urban water systems
Large centralized urban water services in developed countries like the USA still provide significant environmental impact via loss of ecological water services, energy use, loss of nutrients from agricultural production, and eutrophication issues. Current climate models predict t...
E-cigarettes and weight loss - product design innovation insights from industry patents.
Singh, Harkirat; Kennedy, Ryan David; Lagasse, Lisa; Czaplicki, Lauren M; Cohen, Joanna E
2017-05-19
There is emerging evidence that e-cigarettes are being used by some to mitigate weight gain after quitting smoking, and being used to help control weight. This study sought to identify and describe patents related to innovations for e-cigarette devices associated and weight loss. Relevant patents were identified using Google Patents with the core search terms: "electronic cigarette" OR "e-cigarette" OR "vaporizer" OR "vapourizer" AND "nicotine" AND "weight loss" OR "weight control" OR "obesity" OR "hunger". Patents were reviewed to identify and classify the innovation related to weight loss or weight control. Our search identified 23 unique patents that were filed between 2004 and 2015. Patent applications were sponsored by individual inventors (n=7), tobacco companies (n=5), e-cigarette companies (n=8), pharmaceutical companies (n=2) and a cannabis company (n=1). More than half the patents (n=12) were filed in the US; other countries included China, Germany, South Korea and South Africa. Strategies included using e-cigarette devices to deliver constituents to users that support weight loss through altered metabolism, reduced nutrient absorption, suppressed appetite, or supported healthy behavior change. In most cases (n=18), the innovations detailed in the patents were intended to be used with an e-cigarette device that delivered nicotine to the user. Companies from around the world, and from a range of industries are developing and patenting technologies related to e-cigarettes and weight loss. E-cigarettes may be presented to cigarette users as a possible solution to support smoking cessation and address the fear of weight gain. © The Author 2017. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Mellander, P.-E.; Melland, A. R.; Shortle, G.; Wall, D.; Mechan, S.; Buckley, C.; Fealy, R.; Jordan, P.
2009-04-01
Eutrophication of fresh, transitional and coastal waters by excessive nutrient inputs is one of the most widespread water quality problems in developed countries. Sources of nutrient nitrogen (N) and phosphorus (P) can come from a multiplicity of sources and be dependent on numerous hydrological controls from catchments with both urban and agricultural landuses. Aquatic impacts are widely reported as a result of excessive nutrient transfers from land to water and include changes in ecological integrity and loss of amenity. In the European Union, the Water Framework Directive (WFD) and associated Directives are the key structures with which member states must develop national and often trans-national polices to deal with issues of water resources management. The linked Nitrates Directive is particularly concerned with integrating sustainable agriculture and good water quality objectives and is written into national polices. In Ireland this policy is the Nitrates Directive National Action Programme (NAP), Statutory Instruction 378, Good Agricultural Practise regulation, and amongst other things, sets targets and limits on the use of organic and inorganic fertilisers, soil fertility and slurry/fertiliser spreading and cultivation times. To evaluate the effectiveness of this policy, Teagasc, the Irish Agriculture and Food Development Authority, is undertaking a catchment scale audit on sources, sinks, and changes in nutrient use and export over several years. The Agricultural Catchments Programme is based on a science-stakeholder-management partnership to generate knowledge and specifically to protect water quality from nitrogen and phosphorus transfers within the constraints of the requirements of modern Irish agricultural practises. Eight catchments of 5-12 km2 have been selected for the programme to represent a range of agricultural intensities and vulnerabilities to nitrogen and phosphorus loss including catchments that are situated on permeable and impermeable grassland soils; areas where arable production represents a significant landuse; and catchments on productive and unproductive aquifers. The catchments were identified using a GIS-based multicriteria decision analysis with objective criteria that included landuse data (including agricultural and settlement statistics) combined with soils and geology data to evaluate the risk of P and N loss. Shortlisted catchments were then finalised using practical criteria based on the potential for hydrometry and hydrochemistry research. In each catchment, a conceptual model approach is being used to hypothesize the sources, seasonal mobilisation and pathways of nutrients and water through the soil/subsoil system and transfer into surface and ground water systems to stratify each catchment experimental design. Knowledge of the nutrient management of each catchment farm and resulting soil fertility will be used to monitor the sources of agricultural N and P. Environmental soil nutrient tests will provide baselines and checks on the potential for mobilisation. Areas of high soil fertility that are coincident with high surface or sub-surface hydrological connectivity will be monitored for subsequent nutrient transfer. Other potential nutrient source loads within the catchments, such as rural waste-water treatment plants and domestic septic systems, will be factored in as non-agricultural sources. Similarly, the potential for farmyard transfers will also be assessed. The net balance of nutrient transfer at the catchment outlets will be monitored using a high resolution method that is coincident with hydrometric measurements to ensure that there is a full understanding of the inter-dependence between point and diffuse nutrient transfers and hydrodynamics. This source to transfer approach is highly appropriate and a move towards inductive understanding of nutrient use and export in river catchments - the scale at which policies for water resources management will be assessed under the WFD. The data are also highly conducive to constraining catchment scale, distributed models for predicting chemical transfers in runoff. As the Programme is aiming to integrate the often perceived contentious objectives of water quality management with those of sustainable agriculture, farm economics will also be monitored at the same time and an assessment made of farmer attitudes. An advisory programme is also a major component and dedicated farm advisors will ensure that farmers are fully appraised of obligations and opportunities in the National Action Programme.
Yen, Haw; White, Michael J; Arnold, Jeffrey G; Keitzer, S Conor; Johnson, Mari-Vaughn V; Atwood, Jay D; Daggupati, Prasad; Herbert, Matthew E; Sowa, Scott P; Ludsin, Stuart A; Robertson, Dale M; Srinivasan, Raghavan; Rewa, Charles A
2016-11-01
Complex watershed simulation models are powerful tools that can help scientists and policy-makers address challenging topics, such as land use management and water security. In the Western Lake Erie Basin (WLEB), complex hydrological models have been applied at various scales to help describe relationships between land use and water, nutrient, and sediment dynamics. This manuscript evaluated the capacity of the current Soil and Water Assessment Tool (SWAT) to predict hydrological and water quality processes within WLEB at the finest resolution watershed boundary unit (NHDPlus) along with the current conditions and conservation scenarios. The process based SWAT model was capable of the fine-scale computation and complex routing used in this project, as indicated by measured data at five gaging stations. The level of detail required for fine-scale spatial simulation made the use of both hard and soft data necessary in model calibration, alongside other model adaptations. Limitations to the model's predictive capacity were due to a paucity of data in the region at the NHDPlus scale rather than due to SWAT functionality. Results of treatment scenarios demonstrate variable effects of structural practices and nutrient management on sediment and nutrient loss dynamics. Targeting treatment to acres with critical outstanding conservation needs provides the largest return on investment in terms of nutrient loss reduction per dollar spent, relative to treating acres with lower inherent nutrient loss vulnerabilities. Importantly, this research raises considerations about use of models to guide land management decisions at very fine spatial scales. Decision makers using these results should be aware of data limitations that hinder fine-scale model interpretation. Copyright © 2016 Elsevier B.V. All rights reserved.
Yen, Haw; White, Michael J.; Arnold, Jeffrey G.; Keitzer, S. Conor; Johnson, Mari-Vaughn V; Atwood, Jay D.; Daggupati, Prasad; Herbert, Matthew E.; Sowa, Scott P.; Ludsin, Stuart A.; Robertson, Dale M.; Srinivasan, Raghavan; Rewa, Charles A.
2016-01-01
Complex watershed simulation models are powerful tools that can help scientists and policy-makers address challenging topics, such as land use management and water security. In the Western Lake Erie Basin (WLEB), complex hydrological models have been applied at various scales to help describe relationships between land use and water, nutrient, and sediment dynamics. This manuscript evaluated the capacity of the current Soil and Water Assessment Tool (SWAT2012) to predict hydrological and water quality processes within WLEB at the finest resolution watershed boundary unit (NHDPlus) along with the current conditions and conservation scenarios. The process based SWAT model was capable of the fine-scale computation and complex routing used in this project, as indicated by measured data at five gaging stations. The level of detail required for fine-scale spatial simulation made the use of both hard and soft data necessary in model calibration, alongside other model adaptations. Limitations to the model's predictive capacity were due to a paucity of data in the region at the NHDPlus scale rather than due to SWAT functionality. Results of treatment scenarios demonstrate variable effects of structural practices and nutrient management on sediment and nutrient loss dynamics. Targeting treatment to acres with critical outstanding conservation needs provides the largest return on investment in terms of nutrient loss reduction per dollar spent, relative to treating acres with lower inherent nutrient loss vulnerabilities. Importantly, this research raises considerations about use of models to guide land management decisions at very fine spatial scales. Decision makers using these results should be aware of data limitations that hinder fine-scale model interpretation.
NASA Astrophysics Data System (ADS)
Hewins, D. B.; Chuan, S.; Stolnikova, E.; Bork, E. W.; Carlyle, C. N.; Chang, S. X.
2015-12-01
Grassland ecosystems are ubiquitous across the globe covering an estimated 40 % of Earth's terrestrial landmass. These ecosystems are widely valued for providing forage for domestic livestock and a suite of important ecosystem goods and services including carbon (C) storage. Despite storing more than 30 % of soil C globally, the effect of both livestock grazing and the associated change in plant community structure in response to grazing on C and nutrient cycling remains uncertain. To gain a quantitative understanding of the direct and indirect effects of livestock grazing on C and nutrient cycling, we established study sites at 15 existing site localities with paired long-term grazing (ca. 30 y) and non-grazed treatments (totaling 30 unique plant communities). Our sites were distributed widely across Alberta in three distinct grassland bioclimatic zones allowing us to make comparisons across the broad range of climate variability typical of western Canadian grasslands. In each plant community we decomposed 5 common plant species that are known to increase or decrease in response to grazing pressure, a unique plant community sample, and a cellulose paper control. We measured mass loss, initial lignin, C and N concentrations at 0, 1, 3, 6 and 12 months of field incubation. In addition we assayed hydrolytic and oxidative extracellular enzymes associated with for C (n= 5 hydrolytic; phenoloxidase and peroxidase) and nutrients (i.e. N and P; n=1 ea.) cycling from each litter sample at each collection. Our results suggest that by changing the plant community structure, grazing can affect rates of decomposition and associated biogeochemical cycling by changing plant species and associated litter inputs. Moreover, measures of microbial function are controlled by site-specific conditions (e.g. temperature and precipitation), litter chemistry over the course of our incubation.
NASA Astrophysics Data System (ADS)
Potthast, Karin; Meyer, Stefanie; Crecelius, Anna; Schubert, Ulrich; Michalzik, Beate
2016-04-01
It is supposed that the changing climate will promote extreme weather events that in turn will increase drought periods and the abundance of fire events in temperate climate regions such as Central Europe. The impact of fires on the nutrient budgets of ecosystems is highly diverse and seems to depend on the ecosystem type. For example, little is known about fire effects on water-bound organic matter (OM) and nutrient fluxes in temperate managed forest ecosystems. Fires can strongly alter the distribution (forest floor vs. mineral soil), binding forms (organic vs. inorganic) and availability (solubility by water) of OM and associated nutrients. To elucidate the effects and seasonality of low intensity fires on the mobilization of dissolved organic carbon and nutrients, an experimental ground fire was conducted in November 2014 in the Hainich region, Central Germany. In addition, differences in response patterns between two land-use types (pasture and beech forest) were investigated. Lysimeters (n=5 controls/ 5 fire-manipulated) with topsoil monoliths (0-4 cm), rainfall/throughfall samplers, littertraps as well as temperature and moisture sensors were installed on three sites of each land-use type. During the one year of monitoring (Sep14-Dec15) soil solution, rainfall, and throughfall samples were taken biweekly and analyzed for pH, dissolved and particulate organic carbon (DOC, POC) and nitrogen (DN, PN) as well as for nutrients (e.g. K, Ca, Mg, P, S). Compared to the control sites, the ground fire immediately induced a short-run release peak of DOC in both land-use types. Within two weeks these differences were muted in the post-fire period. The effect of fire was land-use specific with annual DOC fluxes of 82 and 45 kg/(ha*a) for forest and pasture sites, respectively. In contrast, nitrogen fluxes responded differently to the fire event. In the forest, a significant increase in DN concentrations was notable five months after the fire, at the beginning of the vegetation period and lasted until November with DN concentrations in June being 4 times higher compared to the control (82 vs. 18 mg DN/L) and being negatively correlated with pH-values (r=-0.51 p<0.001). Annual DN fluxes from fire manipulated forest plots were two times higher compared to control ones (62 vs. 29 kg DN/(ha*a)) whereas only low impact was found at the pasture with 45 and 38 kg DN/(ha*a) for fire-manipulated plots and control, respectively. In general, the results exhibit highly differing response patterns of elements to fire between the two land-use types and with season. Starting in spring higher DN fluxes following fire event at the forest site could be associated with accelerated activity of soil microbes mineralizing released organic substances from burned forest floor and/or from dead roots. This mineralization process resulted in a significant increase in acidity of the soil solution that may affect important ecosystem functions like nutrient cycling and primary production. Hence, high resolution monitoring following a low intensive fire indicated nutrient losses from the forest ecosystem that could be a hazard for managed forests on nutrient poor soils if fire frequency increases with climate change.
Plant growth improvement mediated by nitrate capture in co-composted biochar.
Kammann, Claudia I; Schmidt, Hans-Peter; Messerschmidt, Nicole; Linsel, Sebastian; Steffens, Diedrich; Müller, Christoph; Koyro, Hans-Werner; Conte, Pellegrino; Joseph, Stephen; Stephen, Joseph
2015-06-09
Soil amendment with pyrogenic carbon (biochar) is discussed as strategy to improve soil fertility to enable economic plus environmental benefits. In temperate soils, however, the use of pure biochar mostly has moderately-negative to -positive yield effects. Here we demonstrate that co-composting considerably promoted biochars' positive effects, largely by nitrate (nutrient) capture and delivery. In a full-factorial growth study with Chenopodium quinoa, biomass yield increased up to 305% in a sandy-poor soil amended with 2% (w/w) co-composted biochar (BC(comp)). Conversely, addition of 2% (w/w) untreated biochar (BC(pure)) decreased the biomass to 60% of the control. Growth-promoting (BC(comp)) as well as growth-reducing (BC(pure)) effects were more pronounced at lower nutrient-supply levels. Electro-ultra filtration and sequential biochar-particle washing revealed that co-composted biochar was nutrient-enriched, particularly with the anions nitrate and phosphate. The captured nitrate in BC(comp) was (1) only partly detectable with standard methods, (2) largely protected against leaching, (3) partly plant-available, and (4) did not stimulate N2O emissions. We hypothesize that surface ageing plus non-conventional ion-water bonding in micro- and nano-pores promoted nitrate capture in biochar particles. Amending (N-rich) bio-waste with biochar may enhance its agronomic value and reduce nutrient losses from bio-wastes and agricultural soils.
Gemmell, Brad J; Oh, Genesok; Buskey, Edward J; Villareal, Tracy A
2016-10-12
Phytoplankton sinking is an important property that can determine community composition in the photic zone and material loss to the deep ocean. To date, studies of diatom suspension have relied on bulk measurements with assumptions that bulk rates adequately capture the essential characteristics of diatom sinking. However, recent work has illustrated that individual diatom sinking rates vary considerably from the mean bulk rate. In this study, we apply high-resolution optical techniques, individual-based observations of diatom sinking and a recently developed method of flow visualization around freely sinking cells. The results show that in both field samples and laboratory cultures, some large species of centric diatoms are capable of a novel behaviour, whereby cells undergo bursts of rapid sinking that alternate with near-zero sinking rates on the timescales of seconds. We also demonstrate that this behaviour is under direct metabolic control of the cell. We discuss these results in the context of implications for nutrient flux to the cell surface. While nutrient flux in large diatoms increases during fast sinking, current mass transport models cannot incorporate the unsteady sinking behaviour observed in this study. However, large diatoms appear capable of benefiting from the enhanced nutrient flux to their surface during rapid sinking even during brief intervening periods of near-zero sinking rates. © 2016 The Author(s).
Kaarlejärvi, Elina; Eskelinen, Anu; Olofsson, Johan
2017-09-04
Climate warming is altering the diversity of plant communities but it remains unknown which species will be lost or gained under warming, especially considering interactions with other factors such as herbivory and nutrient availability. Here, we experimentally test effects of warming, mammalian herbivory and fertilization on tundra species richness and investigate how plant functional traits affect losses and gains. We show that herbivory reverses the impact of warming on diversity: in the presence of herbivores warming increases species richness through higher species gains and lower losses, while in the absence of herbivores warming causes higher species losses and thus decreases species richness. Herbivores promote gains of short-statured species under warming, while herbivore removal and fertilization increase losses of short-statured and resource-conservative species through light limitation. Our results demonstrate that both rarity and traits forecast species losses and gains, and mammalian herbivores are essential for preventing trait-dependent extinctions and mitigate diversity loss under warming and eutrophication.Warming can reduce plant diversity but it is unclear which species will be lost or gained under interacting global changes. Kaarlejärvi et al. manipulate temperature, herbivory and nutrients in a tundra system and find that herbivory maintains diversity under warming by reducing species losses and promoting gains.
Stakeholder co-development of farm level nutrient management software
NASA Astrophysics Data System (ADS)
Buckley, Cathal; Mechan, Sarah; Macken-Walsh, Aine; Heanue, Kevin
2013-04-01
Over the last number of decades intensification in the use nitrogen (N) and phosphorus (P) in agricultural production has lead to excessive accumulations of these nutrients in soils, groundwaters and surface water bodies (Sutton et al., 2011). According to the European Environment Agency (2012) despite some progress diffuse pollution from agriculture is still significant in more than 40% of Europe's water bodies in rivers and coastal waters, and in one third of the water bodies in lakes and transitional waters. Recently it was estimated that approximately 29% of monitored river channel length is polluted to some degree across the Republic of Ireland. Agricultural sources were suspected in 47 per cent of cases (EPA, 2012). Farm level management practices to reduce nutrient transfers from agricultural land to watercourses can be divided into source reduction and source interception approaches (Ribaudo et al., 2001). Source interception approaches involve capturing nutrients post mobilisation through policy instruments such as riparian buffer zones or wetlands. Conversely, the source reduction approach is preventative in nature and promotes strict management of nutrient at farm and field level to reduce risk of mobilisation in the first instance. This has the potential to deliver a double dividend of reduced nutrient loss to the wider ecosystem while maximising economic return to agricultural production at the field and farm levels. Adoption and use of nutrient management plans among farmers is far from the norm. This research engages key farmer and extension stakeholders to explore how current nutrient management planning software and outputs should be developed to make it more user friendly and usable in a practical way. An open innovation technology co-development approach was adopted to investigate what is demanded by the end users - farm advisors and farmers. Open innovation is a knowledge management strategy that uses the input of stakeholders to improve internal innovation processes. Open innovation incorporates processes such as 'user-led' (farmer and advisor) innovation and the 'co-development' (by technologists and users) of a technology. This strategy is increasingly used by a variety of organisations across sectors to try to ensure that the use of their outputs (products/services/technologies) is optimised by their target customers/clients, by incorporating user insights into the development of outputs. This research use the open innovation co-development framework through farmer and farm advisor focus group sessions to inform the development of a desirable software package for nutrient management planners (farm advisors) and desirable output formats for the end user (farmers). References Sutton, M., Oenema, O., Erisman, J. W., Leip, A., Grinsven, H. & Winiwarter, W. 2011. Too much of a good thing. Nature, 472, 159.161. European Environment Agency, 2012. European waters — assessment of status and pressures. Environmental Protection Agency, 2012. Ireland's Environment: An assessment 2012. Ribaudo, M.O., Heimlich, R., Claassen, R., Peters, M., 2001. Least-cost management of nonpoint source pollution: source reduction versus interception strategies for controlling nitrogen loss in the Mississippi Basin. Ecological Economics, 37, 183-197.
Collaborative Catchment-Scale Water Quality Management using Integrated Wireless Sensor Networks
NASA Astrophysics Data System (ADS)
Zia, Huma; Harris, Nick; Merrett, Geoff
2013-04-01
Electronics and Computer Science, University of Southampton, United Kingdom Summary The challenge of improving water quality (WQ) is a growing global concern [1]. Poor WQ is mainly attributed to poor water management and outdated agricultural activities. We propose that collaborative sensor networks spread across an entire catchment can allow cooperation among individual activities for integrated WQ monitoring and management. We show that sharing information on critical parameters among networks of water bodies and farms can enable identification and quantification of the contaminant sources, enabling better decision making for agricultural practices and thereby reducing contaminants fluxes. Motivation and results Nutrient losses from land to water have accelerated due to agricultural and urban pursuits [2]. In many cases, the application of fertiliser can be reduced by 30-50% without any loss of yield [3]. Thus information about nutrient levels and trends around the farm can improve agricultural practices and thereby reduce water contamination. The use of sensor networks for monitoring WQ in a catchment is in its infancy, but more applications are being tested [4]. However, these are focussed on local requirements and are mostly limited to water bodies. They have yet to explore the use of this technology for catchment-scale monitoring and management decisions, in an autonomous and dynamic manner. For effective and integrated WQ management, we propose a system that utilises local monitoring networks across a catchment, with provision for collaborative information sharing. This system of networks shares information about critical events, such as rain or flooding. Higher-level applications make use of this information to inform decisions about nutrient management, improving the quality of monitoring through the provision of richer datasets of catchment information to local networks. In the full paper, we present example scenarios and analyse how the benefits of collaborative information sharing can have a direct influence on agricultural practice. We apply a nutrient management scheme to a model of an example catchment with several individual networks. The networks are able to correlate catchment events to events within their zone of influence, allowing them to adapt their monitoring and control strategy in light of wider changes across the catchment. Results indicate that this can lead to significant reductions in nutrient losses (up to 50%) and better reutilization of nutrients amongst farms, having a positive impact on catchment scale water quality and fertilizer costs. 1. EC, E.C., Directive 2000/60/EC establishing a framework for Community action in the field of water policy, 2000. 2. Rivers, M., K. Smettem, and P. Davies. Estimating future scenarios for farm-watershed nutrient fluxes using dynamic simulation modelling-Can on-farm BMPs really do the job at the watershed scale? in Proc.29th Int.Conf System Dynamics Society, 2011. 2010. Washington 3. Liu, C., et al., On-farm evaluation of winter wheat yield response to residual soil nitrate-N in North China Plain. Agronomy Journal, 2008. 100(6): p. 1527-1534. 4. Kotamäki, N., et al., Wireless in-situ sensor network for agriculture and water monitoring on a river basin scale in Southern Finland: Evaluation from a data user's perspective. Sensors, 2009. 9(4): p. 2862-2883.
Du, Xinzhong; Li, Xuyong; Hao, Shaonan; Wang, Huiliang; Shen, Xiao
2014-01-01
Nutrient discharge during storm events is a critical pathway for nutrient export in semi-arid catchments. We investigated nutrient dynamics during three summer storms characterized by different rainfall magnitude in 2012 in a semi-arid catchment of northern China. The results showed that, in response to storm events, nutrient dynamics displayed big variation in temporal trends of nutrient concentration and in nutrient concentration-flow discharge relationships. Nutrient concentrations had broader fluctuations during an extreme storm than during lesser storms, whereas the concentration ranges of the a moderate storm were no broader than those of a smaller one. The different concentration fluctuations were caused by storm magnitude and intensity coupled with the antecedent rainfall amount and cumulative nutrients. Correlation coefficients between nutrient concentrations and flow discharge varied from positive to negative for the three different events. There were no consistent hysteresis effects for the three different events, and no hysteresis effects were observed for any of the variables during the moderate storm (E2). Our findings provide useful information for better understanding nutrient loss mechanisms during storm events in semi-arid areas of a monsoon climate region.
Adapting dairy farms to climate change
USDA-ARS?s Scientific Manuscript database
Climate change is projected to affect many aspects of dairy production. These aspects include the growing season length, crop growth processes, harvest timing and losses, heat stress on cattle, nutrient emissions and losses, and ultimately farm profitability. To assess the sensitivity of dairy farms...
Adaptive management for soil ecosystem services
Birge, Hannah E.; Bevans, Rebecca A.; Allen, Craig R.; Angeler, David G.; Baer, Sara G.; Wall, Diana H.
2016-01-01
Ecosystem services provided by soil include regulation of the atmosphere and climate, primary (including agricultural) production, waste processing, decomposition, nutrient conservation, water purification, erosion control, medical resources, pest control, and disease mitigation. The simultaneous production of these multiple services arises from complex interactions among diverse aboveground and belowground communities across multiple scales. When a system is mismanaged, non-linear and persistent losses in ecosystem services can arise. Adaptive management is an approach to management designed to reduce uncertainty as management proceeds. By developing alternative hypotheses, testing these hypotheses and adjusting management in response to outcomes, managers can probe dynamic mechanistic relationships among aboveground and belowground soil system components. In doing so, soil ecosystem services can be preserved and critical ecological thresholds avoided. Here, we present an adaptive management framework designed to reduce uncertainty surrounding the soil system, even when soil ecosystem services production is not the explicit management objective, so that managers can reach their management goals without undermining soil multifunctionality or contributing to an irreversible loss of soil ecosystem services.
Development and evaluation of a nutritional health program for adolescents
Djalalinia, Shirin; Ramezani-Tehrani, Fahimeh; Malekafzali, Hossein; Hejazi, Farzaneh; Peykari, Niloofar
2013-01-01
Background: Unhealthy nutritional behaviors are a threat to adolescents. In this regard, we compared different training methods through a participatory interventional study. Materials and Methods: Through proportional random selection, 1823 female students were selected from 15 middle schools of Tehran. Following 2 years of intervention, nutritional habits of three different interventional groups were assessed. Results: Eating breakfast was significantly higher in the trained groups, and the use of weight loss diets was lower in them than in the control group. Also, satisfactory consumption of various kinds of nutrients in the trained groups was more than in the control group. Conclusion: Participatory health training, especially through parents, leads to adolescence nutritional health promotion. PMID:24403948
Zhang, Wenzhao; Yin, Chunmei; Chen, Chunlan; Chen, Anlei; Xie, Xiaoli; Fu, Xingan; Hou, Haijun; Wei, Wenxue
2016-06-01
Soil Ca(2+) loss from agricultural lands through surface runoff can accelerate soil acidification and render soil degradation, but the characteristics of Ca(2+) loss and influencing factors in watershed scale are unclear. This study was carried out in a watershed with various land uses in a subtropical region of China. The outlet flow was automatically monitored every 5 min all year round, and the water samples were collected twice a year from 2001 to 2011. The concentrations of Ca(2+), Mg(2+), K(+), total nitrogen (TN), and total phosphorus (TP) of water samples were measured. The dynamic losses of the nutrients through the outlet flow were estimated, and the relationships between the nutrient losses and rainfall intensity as well as antecedent soil moisture were investigated. The results showed that great variations of nutrient concentrations and losses appeared during the investigation period. The average concentrations of Ca(2+), Mg(2+), K(+), TN, and TP were 0.43, 0.08, 0.10, 0.19, and 0.003 mmol L(-1), respectively. The average Ca(2+) loss reached 1493.79 mol ha(-1) year(-1) and was several times higher than for Mg(2+), K(+), and TN, about 140 times higher than for TP. Rainfall intensity had remarkable effects on Ca(2+) concentration (P < 0.01) and loss (P < 0.05) when it reached rainstorm level (50 mm day(-1)), while a quadratic relationship was observed between antecedent soil moisture and Ca(2+) concentration only when rainfall intensity was less than 50 mm day(-1). In a word, much greater amounts of Ca(2+) were lost from the watershed, and this may be one important contributor to the increasing acidification of acidic soils in subtropical regions.
USDA-ARS?s Scientific Manuscript database
The effects of various production practices on biomass, C, and nutrient content, accumulation, and loss were assessed over 2 years in a mature organic trailing blackberry (Rubus L. subgenus Rubus, Watson) production system. Treatments included two irrigation options (no irrigation after harvest and ...
1998-08-01
5 Estimating Snowmelt Infiltration into Frozen Soils L . Zhao and D .M . G ray...andY Matsuura ......................................................... 17 Effect of Subalpine Canopy Removal on Snowpack, Soil Solution, and Nutrient...Tonnessen, and K. Heuer ..................................................................... 26 Snow Depth. Soil Frost, and Nutrient Loss in a Northern
Prefire and postfire erosion of soil nutrients within a chaparral watershed
Jason P. de Koff; Robert C. Graham; Ken R. Hubbert; Peter M. Wohlgemuth
2006-01-01
Prescribed burns are an effective and increasingly popular strategy for inhibiting wildfires. The goal of this study was to characterize soil nutrient loss after a prescribed fire within a chaparral watershed in southern California. The study compared hillslope sediments for approximately 1 year before the fire with those during the year after the fire. Samples were...
Nutrient loss from disturbed forest watersheds in Oregon's Coast Range
James H. Miller; M. Newton
1983-01-01
Dissolved nutrients were monitored bi-weekly in stream water draining 14 upland watetzhcds in Oregon's Coast Range after sprayin g with 2,4,5-T + 2,4-D, clearcut harvesting and slash burning. Anion generation and leaching were primarily studied. The nitrate concentrations fell and the bicarbonate concentrations rose during summer low-flows from treated watersheds...
USDA-ARS?s Scientific Manuscript database
Corn (Zea mays L.) harvested for silage is a productive forage crop, but one that can exacerbate soil loss, surface water runoff, and nonpoint source nutrient pollution from agricultural fields. The objective of this research was to compare the effects of using Kura clover (Trifolium ambiguum M. Bie...
Impact of harvesting and atmospheric pollution on nutrient depletion of eastern US hardwood forests
M.B. Adams; J.A. Burger; A.B. Jenkins; L. Zelazny
2000-01-01
The eastern hardwood forests of the US may be threatened by the changing atmospheric chemistry and by changes in harvesting levels. Many studies have documented accelerated base cation losses with intensive forest harvesting. Acidic deposition can also alter nutrient cycling in these forests. The combination of increased harvesting, shorter rotations, and more...
Nutrient intake, nutritional status, and cognitive function with aging.
Tucker, Katherine L
2016-03-01
With the demographic aging of populations worldwide, diseases associated with aging are becoming more prevalent and costly to individuals, families, and healthcare systems. Among aging-related impairments, a decline in cognitive function is of particular concern, as it erodes memory and processing abilities and eventually leads to the need for institutionalized care. Accumulating evidence suggests that nutritional status is a key factor in the loss of cognitive abilities with aging. This is of tremendous importance, as dietary intake is a modifiable risk factor that can be improved to help reduce the burden of cognitive impairment. With respect to nutrients, there is evidence to support the critical role of several B vitamins in particular, but also of vitamin D, antioxidant vitamins (including vitamin E), and omega-3 fatty acids, which are preferentially taken up by brain tissue. On the other hand, high intakes of nutrients that contribute to hypertension, atherosclerosis, and poor glycemic control may have negative effects on cognition through these conditions. Collectively, the evidence suggests that considerable slowing and reduction of cognitive decline may be achieved by following a healthy dietary pattern, which limits intake of added sugars, while maximizing intakes of fish, fruits, vegetables, nuts, and seeds. © 2016 New York Academy of Sciences.
Man-induced transformation of mountain meadow soils of Aragats mountain massif (Armenia)
NASA Astrophysics Data System (ADS)
Avetisyan, M. H.
2018-01-01
The article considers issues of degradation of mountain meadow soils of the Aragats mountain massif of the Republic of Armenia and provides the averaged research results obtained for 2013 and 2014. The present research was initiated in the frames of long-term complex investigations of agroecosystems of Armenia’s mountain massifs and covered sod soils of high mountain meadow pasturelands and meadow steppe grasslands lying on southern slope of Mt. Aragats. With a purpose of studying the peculiarities of migration and transformation of flows of major nutrients namely carbon, nitrogen, phosphorus in study mountain meadow and meadow steppe belts of the Aragats massif we investigated water migration of chemical elements and regularities of their leaching depending on different belts. Field measurement data have indicated that organic carbon and humus in a heavily grazed plot are almost twice as low as on a control site. Lysimetric data analysis has demonstrated that heavy grazing and illegal deforestation have brought to an increase in intrasoil water acidity. The results generated from this research support a conclusion that a man’s intervention has brought to disturbance of structure and nutrient and water regimes of soils and loss of significant amounts of soil nutrients throughout the studied region.
Akdoğan, Emel; Tardu, Mehmet; Garipler, Görkem; Baytek, Gülkız; Kavakli, İ. Halil; Dunn, Cory D.
2016-01-01
Damage to the mitochondrial genome (mtDNA) can lead to diseases for which there are no clearly effective treatments. Since mitochondrial function and biogenesis are controlled by the nutrient environment of the cell, it is possible that perturbation of conserved, nutrient-sensing pathways may successfully treat mitochondrial disease. We found that restricting glucose or otherwise reducing the activity of the protein kinase A (PKA) pathway can lead to improved proliferation of Saccharomyces cerevisiae cells lacking mtDNA and that the transcriptional response to mtDNA loss is reduced in cells with diminished PKA activity. We have excluded many pathways and proteins from being individually responsible for the benefits provided to cells lacking mtDNA by PKA inhibition, and we found that robust import of mitochondrial polytopic membrane proteins may be required in order for cells without mtDNA to receive the full benefits of PKA reduction. Finally, we have discovered that the transcription of genes involved in arginine biosynthesis and aromatic amino acid catabolism is altered after mtDNA damage. Our results highlight the potential importance of nutrient detection and availability on the outcome of mitochondrial dysfunction. PMID:26751567
Soil management practices under organic farming
NASA Astrophysics Data System (ADS)
Aly, Adel; Chami Ziad, Al; Hamdy, Atef
2015-04-01
Organic farming methods combine scientific knowledge of ecology and modern technology with traditional farming practices based on naturally occurring biological processes. Soil building practices such as crop rotations, intercropping, symbiotic associations, cover crops, organic fertilizers and minimum tillage are central to organic practices. Those practices encourage soil formation and structure and creating more stable systems. In farm nutrient and energy cycling is increased and the retentive abilities of the soil for nutrients and water are enhanced. Such management techniques also play an important role in soil erosion control. The length of time that the soil is exposed to erosive forces is decreased, soil biodiversity is increased, and nutrient losses are reduced, helping to maintain and enhance soil productivity. Organic farming as systematized and certifiable approach for agriculture, there is no surprise that it faces some challenges among both farmers and public sector. This can be clearly demonstrated particularly in the absence of the essential conditions needed to implement successfully the soil management practices like green manure and composting to improve soil fertility including crop rotation, cover cropping and reduced tillage. Those issues beside others will be fully discussed highlighting their beneficial impact on the environmental soil characteristics. Keywords: soil fertility, organic matter, plant nutrition
Long-Term Changes in Nitrogen Budgets and Retention in the Elbe Estuary
NASA Astrophysics Data System (ADS)
Eisele, Annika; van Beusekom, Justus E. E.; Wirtz, Kai
2016-04-01
Eutrophication remains one of the major factors influencing the ecological state of coastal ecosystems. Coastal eutrophication is in turn intimately linked to riverine nutrient loads. At the freshwater side of the estuary, nutrient loads can easily be quantified but estuarine processes including organic matter import from the sea and loss factors like denitrification can modify the actual nutrient loads reaching the coastal seas. We quantified and localized nutrient retention processes by analyzing changes of nutrient concentrations along the estuary and constructing nutrient budgets. Two methods -the Officer method based on conservative mixing and a new method based on changes in nitrogen concentrations along the freshwater part of the estuary- were compared using long term records for the Elbe River, a major European waterway. Nutrient budgets and dynamics reveal that nutrient retention processes in the water column play a substantial role in the Elbe River. Overall, ~25 mio mol/day N are imported into the Elbe estuary and ~20 mio mol/day DIN is exported, with obvious variations depending on river discharge and season. A nitrogen loss of about 20% falls within the range found in other studies. Whereas in the 1980s a significant part of the nitrogen input was retained by the estuary, in the 1990s and 2000s most of the imported total nitrogen was exported as DIN. At present, the retention of nitrogen -presumably due to increased denitrification- increases again. As these long-term changes in the retention capacity of the Elbe were supported by both methods, the calibrated station-based approach can now be used to calculate nutrient budgets in estuaries where no or only few transect data are available, such as the Weser and Ems estuary. Our presentation will finally discuss the possible impact of increased phytoplankton import from the Elbe River and increased import of suspended matter from the North Sea ecosystem on estuarine nitrogen dynamics.
Evaluation of NASA Foodbars as a Standard Diet for Use in Short-Term Rodent Space Flight Studies
NASA Technical Reports Server (NTRS)
Tou, Janet; Grindeland, Richard; Barrett, Joyce; Dalton, Bonnie; Mandel, Adrian; Wade, Charles
2003-01-01
A standard rodent diet for space flight must meet the unique conditions imposed by the space environment and must be nutritionally adequate since diet can influence the outcome of experiments. This paper evaluates the use of National Aeronautics and Space Administration (NASA) developed Foodbars as a standard space flight diet for rats. The Foodbar's semi-purified formulation permits criteria such as nutrient consistency, high nutrient bioavailability and flexibility of formulation to be met. Extrusion of the semi-purified diet produces Foodbars with the proper texture and a non-crumbing solid form for use in space. Treatment of Foodbar with 0.1% potassium sorbate prevents mold growth. Irradiation (15-25 kGy) prevents bacterial growth and in combination with sorbate-treatment provides added protection against mold for shelf-stability. However, during the development process, nutrient analyses indicated that extrusion and irradiation produced nutrient losses. Nutrients were adjusted accordingly to compensate for processing losses. Nutrient analysis of Foodbars continues to be performed routinely to monitor nutrient levels. It is important that the standard rodent diet provide nutrients that will prevent deficiency but also avoid excess that may mask physiological changes produced by space flight. All vitamins levels in the Foodbars, except for vitamin K conformed to or exceeded the current NRC (1995) recommendations. All indispensable amino acids in Foodbar conformed to or exceeded the NRC nutrient recommendation for mice growth and rat maintenance. However, some indispensable amino acids were slightly below recommendations for rat reproduction/growth. Short-term (18-20 d) animal feeding studies indicated that Foodbars were palatable, supported growth and maintained health in rats. Results indicated that NASA rodent Foodbars meet both the physical and nutritional criteria required to support rodents in the space environment and thus, may be used successfully as a standard diet for short-term space flight studies. However, nutritional adequacy of NASA Rodent Foodbars as a standard diet on longer duration (>20 d) space flight missions remains to be determined.
NASA Astrophysics Data System (ADS)
Cooper, Teresa M.; Frank, J. Howard; Cave, Ronald D.
2014-01-01
Epiphytic tank bromeliads are important ecosystem engineers because they form phytotelmata that create habitat, increase species richness and abundance, create water sources and nutrient reservoirs in the canopy, and collect and redirect nutrients in forest ecosystems. Native bromeliad populations have been devastated in Florida (USA) because an invasive bromeliad-eating weevil (Metamasius callizona) has been destroying the plants. Tillandsia utriculata is a tank bromeliad that was once widespread from central to south Florida. Its populations have been hit hard by the weevil and are declining rapidly. This study quantifies the mortality rate caused by the weevil in a population of T. utriculata at the Enchanted Forest Sanctuary in central Florida and estimates the associated loss of phytotelmata. Estimations of phytotelmata were calculated for the T. utriculata baseline population, the population at 6 months into the study when 87% of the population was destroyed, and at the end of the study when less than 3% of the bromeliad population remained (99% of all deaths were caused by the weevil). The baseline population contained 16,758 L of water. At six months, there were 3180 L, and at the end of the study, there were 408 L. The loss of phytotelmata results in the loss of habitat, a decrease in biological diversity, and altered water and nutrient cycles and availability.
NASA Technical Reports Server (NTRS)
Strayer, R. F.; Alazraki, M. P.; Judkins, J.
2003-01-01
Inorganic nutrients can be easily recovered from ALS crop residue solid wastes by aqueous leaching. However, oven drying and milling pretreatment of these residues has been frequently required to accommodate crop scientists and facility storage limitations. As part of a research study that will compare three different bioreactor technologies for processing these wastes, we realized that different drying and size-reduction pretreatments had been utilized for each technology. This paper compares the effects of residue pretreatment on recovery of nutrients by leaching. Pretreatments included three drying methods [fresh, oven-dried (70 degrees C overnight), and freeze-dried] and two size reduction methods [chopped (2 cm length) and milled (2 mm diameter)]. Determination of mass balances (dry weight and ash content of solids) before and after leaching indicated solubilization was least for fresh residues (23% dry weight loss and 50% for ash loss), and most for freeze-dried residues (41-47% dry weight loss and nearly 100% for ash loss). Mineral recovery of major elements (NO3, PO4, K, Ca, and Mg) in leachates was poorest for fresh residues. P and K recovery in leachates were best for oven-dried residues and Ca, Mg, and N recovery best for freeze-dried residues. The differences in recovery for N, P, and K in leachates were minimal between chopping and milling and slightly better for Ca and Mg from milled residues.
Climate change and wetland loss impacts on a western river's water quality
NASA Astrophysics Data System (ADS)
Records, R. M.; Arabi, M.; Fassnacht, S. R.; Duffy, W. G.; Ahmadi, M.; Hegewisch, K. C.
2014-11-01
An understanding of potential stream water quality conditions under future climate is critical for the sustainability of ecosystems and the protection of human health. Changes in wetland water balance under projected climate could alter wetland extent or cause wetland loss (e.g., via increased evapotranspiration and lower growing season flows leading to reduced riparian wetland inundation) or altered land use patterns. This study assessed the potential climate-induced changes to in-stream sediment and nutrient loads in the snowmelt-dominated Sprague River, Oregon, western US. Additionally, potential water quality impacts of combined changes in wetland water balance and wetland area under future climatic conditions were evaluated. The study utilized the Soil and Water Assessment Tool (SWAT) forced with statistical downscaling of general circulation model (GCM) data from the Coupled Model Intercomparison Project 5 (CMIP5) using the Multivariate Adaptive Constructed Analogs (MACA) method. Our findings suggest that, in the Sprague River, (1) mid-21st century nutrient and sediment loads could increase significantly during the high-flow season under warmer, wetter climate projections or could change only nominally in a warmer and somewhat drier future; (2) although water quality conditions under some future climate scenarios and no wetland loss may be similar to the past, the combined impact of climate change and wetland losses on nutrient loads could be large; (3) increases in stream total phosphorus (TP) concentration with wetland loss under future climate scenarios would be greatest at high-magnitude, low-probability flows; and (4) loss of riparian wetlands in both headwaters and lowlands could increase outlet TP loads to a similar degree, but this could be due to distinctly different mechanisms in different parts of the watershed.
Protein-induced satiety: effects and mechanisms of different proteins.
Veldhorst, M; Smeets, A; Soenen, S; Hochstenbach-Waelen, A; Hursel, R; Diepvens, K; Lejeune, M; Luscombe-Marsh, N; Westerterp-Plantenga, M
2008-05-23
Relatively high protein diets, i.e. diets that maintain the absolute number of grams of protein ingested as compared to before dieting, are a popular strategy for weight loss and weight maintenance. Research into multiple mechanisms regulating body weight has focused on the effects of different quantities and types of dietary protein. Satiety and energy expenditure are important in protein-enhanced weight loss and weight maintenance. Protein-induced satiety has been shown acutely, with single meals, with contents of 25% to 81% of energy from protein in general or from specific proteins, while subsequent energy intake reduction was significant. Protein-induced satiety has been shown with high protein ad libitum diets, lasting from 1 to 6 days, up to 6 months. Also significantly greater weight loss has been observed in comparison with control. Mechanisms explaining protein-induced satiety are nutrient-specific, and consist mainly of synchronization with elevated amino acid concentrations. Different proteins cause different nutrient related responses of (an)orexigenic hormones. Protein-induced satiety coincides with a relatively high GLP-1 release, stimulated by the carbohydrate content of the diet, PYY release, while ghrelin does not seem to be especially affected, and little information is available on CCK. Protein-induced satiety is related to protein-induced energy expenditure. Finally, protein-induced satiety appears to be of vital importance for weight loss and weight maintenance. With respect to possible adverse events, chronic ingestion of large amounts of sulphur-containing amino acids may have an indirect effect on blood pressure by induction of renal subtle structural damage, ultimately leading to loss of nephron mass, and a secondary increase in blood pressure. The established synergy between obesity and low nephron number on induction of high blood pressure and further decline of renal function identifies subjects with obesity, metabolic syndrome and diabetes mellitus II as particularly susceptible groups.
Raynor, Hollie A; Steeves, Elizabeth A; Hecht, Jacki; Fava, Joseph L; Wing, Rena R
2012-06-01
Dietary variety is a factor that influences consumption but has received little attention in obesity treatment. This study examined the effect of limiting the variety of different non-nutrient-dense, energy-dense foods (NND-EDFs) (i.e., chips, ice cream, cookies) on dietary intake and weight loss during an 18-mo lifestyle intervention. Two hundred two adults aged 51.3 ± 9.5 y with a BMI (in kg/m2) of 34.9 ± 4.3 (57.8% women, 92.2% white) were randomly assigned to 1 of 2 interventions: Lifestyle (1200-1500 kcal/d, ≤30% of energy as fat; n = 101) or Lifestyle + limited variety (LV) (limit variety of NND-EDFs, i.e., 2 choices; n = 101). Both interventions involved 48 group sessions. Dietary intake, NND-EDF hedonics, NND-EDF variety in the home, and weight were assessed at 0, 6, 12, and 18 mo. Intent-to-treat analyses showed that the Lifestyle+LV group consumed less variety (P < 0.01) and energy daily (P < 0.05) from NND-EDFs than did the Lifestyle group at 6, 12, and 18 mo. The Lifestyle+LV group consumed less total energy daily (P < 0.05) at 6 mo than did the Lifestyle group. The Lifestyle+LV group reported less (P < 0.05) NND-EDF variety in the home at 6 and 18 mo than did the Lifestyle group. The hedonics of one chosen NND-EDF decreased more (P < 0.05) in the Lifestyle+LV group. Despite these effects, no difference in percentage weight loss occurred at 18 mo (Lifestyle+LV: -9.9 ± 7.6%; Lifestyle: -9.6 ± 9.2%). Limitations in dietary variety decreased intakes in the targeted area but did not affect weight loss. Limiting variety in more areas may be needed to improve weight loss and weight-loss maintenance. This trial was registered at clinicaltrials.gov as NCT01096719.
Steeves, Elizabeth A; Hecht, Jacki; Fava, Joseph L; Wing, Rena R
2012-01-01
Background: Dietary variety is a factor that influences consumption but has received little attention in obesity treatment. Objective: This study examined the effect of limiting the variety of different non-nutrient-dense, energy-dense foods (NND-EDFs) (ie, chips, ice cream, cookies) on dietary intake and weight loss during an 18-mo lifestyle intervention. Design: Two hundred two adults aged 51.3 ± 9.5 y with a BMI (in kg/m2) of 34.9 ± 4.3 (57.8% women, 92.2% white) were randomly assigned to 1 of 2 interventions: Lifestyle (1200–1500 kcal/d, ≤30% of energy as fat; n = 101) or Lifestyle + limited variety (LV) (limit variety of NND-EDFs, ie, 2 choices; n = 101). Both interventions involved 48 group sessions. Dietary intake, NND-EDF hedonics, NND-EDF variety in the home, and weight were assessed at 0, 6, 12, and 18 mo. Results: Intent-to-treat analyses showed that the Lifestyle+LV group consumed less variety (P < 0.01) and energy daily (P < 0.05) from NND-EDFs than did the Lifestyle group at 6, 12, and 18 mo. The Lifestyle+LV group consumed less total energy daily (P < 0.05) at 6 mo than did the Lifestyle group. The Lifestyle+LV group reported less (P < 0.05) NND-EDF variety in the home at 6 and 18 mo than did the Lifestyle group. The hedonics of one chosen NND-EDF decreased more (P < 0.05) in the Lifestyle+LV group. Despite these effects, no difference in percentage weight loss occurred at 18 mo (Lifestyle+LV: −9.9 ± 7.6%; Lifestyle: −9.6 ± 9.2%). Conclusions: Limitations in dietary variety decreased intakes in the targeted area but did not affect weight loss. Limiting variety in more areas may be needed to improve weight loss and weight-loss maintenance. This trial was registered at clinicaltrials.gov as NCT01096719. PMID:22552025
NASA Astrophysics Data System (ADS)
Wilson, Robyn S.; Howard, Gregory; Burnett, Elizabeth A.
2014-08-01
A recent increase in the amount of dissolved reactive phosphorus (DRP) entering the western Lake Erie basin is likely due to increased spring storm events in combination with issues related to fertilizer application and timing. These factors in combination with warmer lake temperatures have amplified the spread of toxic algal blooms. We assessed the attitudes of farmers in northwest Ohio toward taking at least one additional action to reduce nutrient loss on their farm. Specifically, we (1) identified to what extent farm and farmer characteristics (e.g., age, gross farm sales) as well as risk-based beliefs (e.g., efficacy, risk perception) influenced attitudes, and (2) assessed how these characteristics and beliefs differ in their predictive ability based on unobservable latent classes of farmers. Risk perception, or a belief that negative impacts to profit and water quality from nutrient loss were likely, was the most consistent predictor of farmer attitudes. Response efficacy, or a belief that taking action on one's farm made a difference, was found to significantly influence attitudes, although this belief was particularly salient for the minority class of farmers who were older and more motivated by profit. Communication efforts should focus on the negative impacts of nutrient loss to both the farm (i.e., profit) and the natural environment (i.e., water quality) to raise individual perceived risk among the majority, while the minority need higher perceived efficacy or more specific information about the economic effectiveness of particular recommended practices.
Assessment of Nutritional Intake During Space Flight and Space Flight Analogs
NASA Technical Reports Server (NTRS)
Rice, Barbara L.; Dlouhy, Holly; Zwart, Sara R.; Smith, Scott M.
2011-01-01
Background: Maintaining adequate nutrient intake in microgravity is important not only to meet health maintenance needs of astronauts but also to help counteract the negative effects of space flight. Beyond this, food provides psychosocial benefits throughout a mission. Objective: The purpose of this presentation is to discuss dietary intake data from multiple space programs, including Space Shuttle and the International Space Station. Description: These data arise from medical monitoring of both dietary intake and crew health, as well as research protocols designed to assess the role of diet in counteracting bone loss and other health concerns. Ground-based studies are conducted to better understand some of the negative issues related to space flight. Examples of these analog studies are extended bed rest studies, vitamin D supplementation studies in Antarctica, and saturation diving missions on the floor of the ocean. Methods and findings will be presented describing the use of weighed records, diet diaries, and food frequency questionnaires in these various environments. Provision of food and nutrients in spaceflight is important for many body systems including cardiovascular, musculoskeletal, endocrine, immune, and others. Some key areas of concern are loss of body mass, bone and muscle loss, radiation exposure, nutrient intakes during spacewalks, depletion of nutrient stores, and inadequate dietary intake. Initial experimental research studies using food and nutrition as a countermeasure to aid in mitigating these concerns are underway. Conclusion: Beyond their importance for the few individuals leaving the planet, these studies have significant implications for those remaining on Earth.
Cohen, Juliana F.W.; Richardson, Scott; Austin, S. Bryn; Economos, Christina D.; Rimm, Eric B.
2013-01-01
Background The National School Lunch Program has been guided by modest nutrient standards, and the palatability of meals, which drives consumption, receives inadequate attention. School food waste can have important nutritional and cost implications for policy makers, students, and their families. Purpose Nutrient losses and economic costs associated with school meal waste were examined. The study also assessed if school foods served were valid proxies for foods consumed by students. Methods Plate waste measurements were collected from middle school students in Boston attending two Chef Initiative schools (n=1609) and two control schools (n=1440) during a two-year pilot study (2007-2009) where a professional chef trained cafeteria staff to make healthier school meals. The costs associated with food waste were calculated and the percent of foods consumed was compared with a gold standard of 85% consumption. Analyses were conducted in 2010-2011. Results Overall, students consumed less than the required/recommended levels of nutrients. An estimated $432,349 of food (26.1% of the total food budget) was discarded by middle school students annually at lunch in Boston middle schools. For most meal components, significantly less than 85% was consumed. Conclusions There is substantial food waste among middle school students in Boston. Overall, students' nutrient consumption levels were below school meal standards and foods served were not valid proxies for foods consumed. The costs associated with discarded foods are high; if translated nationally for school lunches, roughly $1,238,846,400 annually is wasted. Students would benefit if additional focus was given to the quality and palatability of school meals. PMID:23332326
Phillipson, Oliver T
2017-11-01
The motor deficits which characterise the sporadic form of Parkinson's disease arise from age-related loss of a subset of dopamine neurons in the substantia nigra. Although motor symptoms respond to dopamine replacement therapies, the underlying disease process remains. This review details some features of the progressive molecular pathology and proposes deployment of a combination of nutrients: R-lipoic acid, acetyl-l-carnitine, ubiquinol, melatonin (or receptor agonists) and vitamin D3, with the collective potential to slow progression of these features. The main nutrient targets include impaired mitochondria and the associated oxidative/nitrosative stress, calcium stress and impaired gene transcription induced by pathogenic forms of alpha- synuclein. Benefits may be achieved via nutrient influence on epigenetic signaling pathways governing transcription factors for mitochondrial biogenesis, antioxidant defences and the autophagy-lysosomal pathway, via regulation of the metabolic energy sensor AMP activated protein kinase (AMPK) and the mammalian target of rapamycin mTOR. Nutrients also benefit expression of the transcription factor for neuronal survival (NR4A2), trophic factors GDNF and BDNF, and age-related calcium signals. In addition a number of non-motor related dysfunctions in circadian control, clock genes and associated metabolic, endocrine and sleep-wake activity are briefly addressed, as are late-stage complications in respect of cognitive decline and osteoporosis. Analysis of the network of nutrient effects reveals how beneficial synergies may counter the accumulation and promote clearance of pathogenic alpha-synuclein. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.
Palamiuc, Lavinia; Noble, Tallie; Witham, Emily; Ratanpal, Harkaranveer; Vaughan, Megan; Srinivasan, Supriya
2017-01-01
Serotonin, a central neuromodulator with ancient ties to feeding and metabolism, is a major driver of body fat loss. However, mechanisms by which central serotonin action leads to fat loss remain unknown. Here, we report that the FLP-7 neuropeptide and its cognate receptor, NPR-22, function as the ligand-receptor pair that defines the neuroendocrine axis of serotonergic body fat loss in Caenorhabditis elegans. FLP-7 is secreted as a neuroendocrine peptide in proportion to fluctuations in neural serotonin circuit functions, and its release is regulated from secretory neurons via the nutrient sensor AMPK. FLP-7 acts via the NPR-22/Tachykinin2 receptor in the intestine and drives fat loss via the adipocyte triglyceride lipase ATGL-1. Importantly, this ligand-receptor pair does not alter other serotonin-dependent behaviours including food intake. For global modulators such as serotonin, the use of distinct neuroendocrine peptides for each output may be one means to achieve phenotypic selectivity. PMID:28128367
Hotspots for Nitrogen and Phosphorus Losses from Food Production in China: A County-Scale Analysis.
Wang, Mengru; Ma, Lin; Strokal, Maryna; Ma, Wenqi; Liu, Xuejun; Kroeze, Carolien
2018-04-27
Food production in China results in large losses of nitrogen (N) and phosphorus (P) to the environment. Our objective is to identify hotspots for N and P losses to the environment from food production in China at the county scale. To do this, we used the NUFER (Nutrient flows in Food chains, Environment and Resources use) model. Between 1990 and 2012, the hotspot area expanded by a factor of 3 for N, and 24 for P. In 2012 most hotspots were found in the North China Plain. Hotspots covered less than 10% of the Chinese land area, but contributed by more than half to N and P losses to the environment. Direct discharge of animal manure to rivers was an important cause of N and P losses. Food production was found to be more intensive in hotspots than in other counties. Synthetic fertilizer use and animal numbers in hotspots were a factor of 4-5 higher than in other counties in 2012. Also the number of people working in food production and the incomes of farmers are higher in hotspots than in other counties. This study concludes with suggestions for region-specific pollution control technologies for food production in China.
Long term (1997-2014) spatial and temporal variations in nitrogen in Dongting Lake, China
Tian, Zebin; Zheng, Binghui; Wang, Lijing; Li, Liqiang; Wang, Xing; Li, Hong; Norra, Stefan
2017-01-01
In order to protect the water quality of Dongting Lake, it is significant to find out its nitrogen pollution characteristics. Using long-term monthly to seasonally data (1997–2014), we investigated the spatial and temporal variations in nitrogen in Dongting Lake, the second largest freshwater lake in China. The average concentrations of total nitrogen (TN) in the eastern, southern, and western parts of the lake were 1.77, 1.56, and 1.35 mg/L, respectively, in 2014. TN pollution was generally worse in the southern area than in the western area. Concentrations showed temporal variation, and were significantly higher during the dry season than during the wet season. Based on the concentration and growth rate of TN, three different stages were identified in the long term lake data, from 1997 to 2002, from 2003 to 2008, and from 2009 to 2014, during which the concentrations and the growth rate ranged from 1.09–1.51 mg/L and 22.09%-40.03%, 1.05–1.57 mg/L and -9.05%-7.74%, and 1.68–2.02 mg/L and 57.99%-60.41%, respectively. The main controls on the lake water TN concentrations were the quality and quantity of the lake inflows, spatial and temporal variations in hydrodynamic conditions within the lake (flow velocity, flow direction), and point and nonpoint inputs from human activities. Diffuse nutrient losses from agricultural land are a significant contributor. As a priority, the local government should aim to control the pollutant inputs from upstream and non-point nutrient losses from land. PMID:28166245
Dust emission and soil loss due to anthropogenic activities by wind erosion simulations
NASA Astrophysics Data System (ADS)
Katra, Itzhak; Swet, Nitzan; Tanner, Smadar
2017-04-01
Wind erosion is major process of soil loss and air pollution by dust emission of clays, nutrients, and microorganisms. Many soils throughout the world are currently or potentially associated with dust emissions, especially in dryland zones. The research focuses on wind erosion in semi-arid soils (Northern Negev, Israel) that are subjected to increased human activities of urban development and agriculture. A boundary-layer wind tunnel has been used to study dust emission and soil loss by simulation and quantification of high-resolution wind processes. Field experiments were conducted in various surface types of dry loess soils. The experimental plots represent soils with long-term and short term influences of land uses such as agriculture (conventional and organic practices), grazing, and natural preserves. The wind tunnel was operated under various wind velocities that are above the threshold velocity of aeolian erosion. Total soil sediment and particulate matter (PM) fluxes were calculated. Topsoil samples from the experimental plots were analysed in the laboratory for physical and chemical characteristics including aggregation, organic matter, and high-resolution particle size distribution. The results showed variations in dust emission in response to surface types and winds to provide quantitative estimates of soil loss over time. Substantial loss of particulate matter that is < 10 micrometer in diameter, including clays and nutrients, was recorded in most experimental conditions. Integrative analyses of the topsoil properties and dust experiment highlight the significant implications for soil nutrient resources and management strategies as well as for PM loading to the atmosphere and air pollution.
Autophagy: not good OR bad, but good AND bad.
Altman, Brian J; Rathmell, Jeffrey C
2009-05-01
Autophagy is a well-established mechanism to degrade intracellular components and provide a nutrient source to promote survival of cells in metabolic distress. Such stress can be caused by a lack of available nutrients or by insufficient rates of nutrient uptake. Indeed, growth factor deprivation leads to internalization and degradation of nutrient transporters, leaving cells with limited means to access extracellular nutrients even when plentiful.This loss of growth factor signaling and extracellular nutrients ultimately leads to apoptosis, but also activates autophagy, which may degrade intracellular components and provide fuel for mitochondrial bioenergetics. The precise metabolic role of autophagy and how it intersects with the apoptotic pathways in growth factor withdrawal, however, has been uncertain. Our recent findings ingrowth factor-deprived hematopoietic cells show that autophagy can simultaneously contribute to cell metabolism and initiate a pathway to sensitize cells to apoptotic death. This pathway may promote tissue homeostasis by ensuring that only cells with high resistance to apoptosis may utilize autophagy as a survival mechanism when growth factors are limiting and nutrient uptake decreases.
Nutrition-focused wellness coaching promotes a reduction in body weight in overweight US veterans.
Shahnazari, Mohammad; Ceresa, Carol; Foley, Sharon; Fong, Angela; Zidaru, Elena; Moody, Sandra
2013-07-01
Diet plays a critical role in the pathogenesis of major chronic diseases common in populations of US veterans. The role of nutrition-focused wellness coaching in improving dietary behavior and/or reducing weight in overweight and obese US veterans is not known. At the San Francisco Veterans Affairs Medical Center, US veterans aged 25 to 80 years were randomized to receive nutrition coaching on eating behaviors at baseline only (control group, n=22) or an additional eight times over the course of 6 months (intervention group, n=28) in 2010-2011. Multiple coaching contacts decreased intake of energy, fat, and carbohydrate by 31% (P≤0.001) as evaluated by the 2005 Block food frequency questionnaire, which is composed of 111 food items. A weight loss of 5% from baseline (92.8 to 88.2 kg; P<0.01) was observed in the intervention group with mean body mass index decreasing from 30.4 to 28.9 (P<0.05). The control group showed a decrease in fat intake by 20% (P=0.01), but no statistically significant changes in intake of other nutrients or body weight (88.7 to 87.4 kg). Those in the intervention group reported diets at follow-up that were lower in cholesterol, saturated fat, sodium, sugar (P≤0.01), calcium (P< 0.05), and vitamin D (P<0.01), although when adjusted for energy (ie, nutrient density) calcium intake increased and vitamin D remained unchanged. Veterans' readiness to change eating behavior for weight loss improved with nutrition coaching. This study demonstrates that intermittent nutrition coaching can be an effective strategy to promote reductions in energy intake, body weight, and body mass index in overweight US veterans. Further research is needed to determine whether nutrition coaching improves other clinical outcomes and sustains weight loss. Copyright © 2013 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
The health of the Chesapeake Bay Basin ecosystem, which lies within the heavily populated Northeastern United States, relies on reducing nutrient loading to the Chesapeake Bay by the 2025 TMDL deadline and on into the future. Doing so requires evaluating the impact of current agricultural management...
Effects of livestock grazing on nutrient retention in a headwater stream of the Rio Puerco Basin
Mark A. Sewards; H. Maurice Valett
1996-01-01
Sediment and nutrient loss from headwater streams of sedimentary basins in the semi-arid Southwest have been attributed to both over-grazing by livestock and to climatic cycles that influence arroyo formation. Considerable effort has been directed toward the influence of livestock grazing on riparian species abundance and diversity. Less work has concentrated on the...
Emma F. Betts; Jeremy B. Jones
2009-01-01
With climatic warming, wildfire occurrence is increasing in the boreal forest of interior Alaska. Loss of catchment vegetation during fire can impact streams directly through altered solute and debris inputs and changed light and temperature regimes. Over longer time scales, fire can accelerate permafrost degradation, altering catchment hydrology and stream nutrient...
mTOR Regulates Endocytosis and Nutrient Transport in Proximal Tubular Cells.
Grahammer, Florian; Ramakrishnan, Suresh K; Rinschen, Markus M; Larionov, Alexey A; Syed, Maryam; Khatib, Hazim; Roerden, Malte; Sass, Jörn Oliver; Helmstaedter, Martin; Osenberg, Dorothea; Kühne, Lucas; Kretz, Oliver; Wanner, Nicola; Jouret, Francois; Benzing, Thomas; Artunc, Ferruh; Huber, Tobias B; Theilig, Franziska
2017-01-01
Renal proximal tubular cells constantly recycle nutrients to ensure minimal loss of vital substrates into the urine. Although most of the transport mechanisms have been discovered at the molecular level, little is known about the factors regulating these processes. Here, we show that mTORC1 and mTORC2 specifically and synergistically regulate PTC endocytosis and transport processes. Using a conditional mouse genetic approach to disable nonredundant subunits of mTORC1, mTORC2, or both, we showed that mice lacking mTORC1 or mTORC1/mTORC2 but not mTORC2 alone develop a Fanconi-like syndrome of glucosuria, phosphaturia, aminoaciduria, low molecular weight proteinuria, and albuminuria. Interestingly, proteomics and phosphoproteomics of freshly isolated kidney cortex identified either reduced expression or loss of phosphorylation at critical residues of different classes of specific transport proteins. Functionally, this resulted in reduced nutrient transport and a profound perturbation of the endocytic machinery, despite preserved absolute expression of the main scavenger receptors, MEGALIN and CUBILIN. Our findings highlight a novel mTOR-dependent regulatory network for nutrient transport in renal proximal tubular cells. Copyright © 2016 by the American Society of Nephrology.
Small-seeded Hakea species tolerate cotyledon loss better than large-seeded congeners
El-Amhir, Sh-hoob; Lamont, Byron B.; He, Tianhua; Yan, George
2017-01-01
Six Hakea species varying greatly in seed size were selected for cotyledon damage experiments. The growth of seedlings with cotyledons partially or completely removed was monitored over 90 days. All seedlings perished by the fifth week when both cotyledons were removed irrespective of seed size. Partial removal of cotyledons caused a significant delay in the emergence of the first leaf, and reduction in root and shoot growth of the large-seeded species. The growth of seedlings of small-seeded species was less impacted by cotyledon damage. The rate of survival, root and shoot lengths and dry biomass of the seedlings were determined after 90 days. When seedlings were treated with balanced nutrient solutions following removal of the cotyledons, survival was 95–98%, but 0% when supplied with nutrient solutions lacking N or P or with water only. The addition of a balanced nutrient solution failed to restore complete growth of any species, but the rate of root elongation for the small-seeded species was maintained. Cotyledons provide nutrients to support early growth of Hakea seedlings, but other physiological roles for the cotyledons are also implicated. In conclusion, small-seeded Hakea species can tolerate cotyledons loss better than large-seeded species. PMID:28139668
Rude, Robert K; Gruber, Helen E; Norton, H James; Wei, Livia Y; Frausto, Angelica; Kilburn, Jeremy
2005-08-01
Low dietary magnesium (Mg) may be a risk factor for osteoporosis. In animals, severe Mg deficiency (0.04% of nutrient requirement [NR]) results in bone loss. We have also found that a more moderate dietary Mg restriction (10% of NR) also resulted in loss of bone. We now report the effect of Mg intake of 25% NR on bone and mineral metabolism in the rat. Serum Mg, Ca, PTH, 1,25(OH)2-vitamin D, alkaline phosphatase, osteocalcin, and pyridinoline were measured at 2, 4, and 6 months in control and Mg-deficient animals. Femurs and tibias were collected for mineral content, micro-computerized tomography, histomorphometry, and immunocytochemical localization. Profound Mg deficiency developed as assessed by marked hypomagnesemia and 27% reduction in bone Mg content. Serum calcium was not significantly different between groups. Mg depletion resulted in a significantly lower serum PTH concentrations. Serum 1,25(OH)2-vitamin D was also significantly lower. No difference was noted in markers of bone turnover. Histomorphometry and micro-computerized tomography demonstrated decreased bone volume and trabecular thickness. No difference was observed for osteoclast or osteoblast number. Inflammatory cytokines may contribute to bone loss. We found that immunocytochemical localization of TNFalpha in osteoclasts was increased 138-150%. This increase in TNFalpha may be due to increased substance P as it was found to be elevated from 179% to 432%. These data demonstrate that Mg intake of 25% NR in the rat causes lower bone mass which may be related to increased release of substance P and TNFalpha.
Reduction of orthophosphates loss in agricultural soil by nano calcium sulfate.
Chen, Dong; Szostak, Paul; Wei, Zongsu; Xiao, Ruiyang
2016-01-01
Nutrient loss from soil, especially phosphorous (P) from farmlands to natural water bodies via surface runoff or infiltration, have caused significant eutrophication problems. This is because dissolved orthophosphates are usually the limiting nutrient for algal blooms. Currently, available techniques to control eutrophication are surprisingly scarce. Calcium sulfate or gypsum is a common soil amendment and has a strong complexation to orthophosphates. The results showed that calcium sulfate reduced the amount of water extractable P (WEP) through soil incubation tests, suggesting less P loss from farmlands. A greater decrease in WEP occurred with a greater dosage of calcium sulfate. Compared to conventional coarse calcium sulfate, nano calcium sulfate further reduced WEP by providing a much greater specific surface area, higher solubility, better contact with the fertilizer and the soil particles, and superior dispersibility. The enhancement of the nano calcium sulfate for WEP reduction is more apparent for a pellet- than a powdered- fertilizer. At the dosage of Ca/P weight ratio of 2.8, the WEP decreased by 31±5% with the nano calcium sulfate compared to 20±5% decrease with the coarse calcium sulfate when the pellet fertilizer was used. Computation of the chemical equilibrium speciation shows that calcium hydroxyapatite has the lowest solubility. However, other mineral phases such as hydroxydicalcium phosphate, dicalcium phosphate dihydrate, octacalcium phosphate, and tricalcium phosphate might form preceding to calcium hydroxyapatite. Since calcium sulfate is the major product of the flue gas desulfurization (FGD) process, this study demonstrates a potential beneficial reuse and reduction of the solid FGD waste. Copyright © 2015 Elsevier B.V. All rights reserved.
Peyton, D P; Healy, M G; Fleming, G T A; Grant, J; Wall, D; Morrison, L; Cormican, M; Fenton, O
2016-01-15
Treated municipal sewage sludge ("biosolids") and dairy cattle slurry (DCS) may be applied to agricultural land as an organic fertiliser. This study investigates losses of nutrients in runoff water (nitrogen (N) and phosphorus (P)), metals (copper (Cu), nickel (Ni), lead (Pb), zinc (Zn), cadmium (Cd), chromium (Cr)), and microbial indicators of pollution (total and faecal coliforms) arising from the land application of four types of treated biosolids and DCS to field micro-plots at three time intervals (24, 48, 360 h) after application. Losses from biosolids-amended plots or DCS-amended plots followed a general trend of highest losses occurring during the first rainfall event and reduced losses in the subsequent events. However, with the exception of total and faecal coliforms and some metals (Ni, Cu), the greatest losses were from the DCS-amended plots. For example, average losses over the three rainfall events for dissolved reactive phosphorus and ammonium-nitrogen from DCS-amended plots were 5 and 11.2 mg L(-1), respectively, which were in excess of the losses from the biosolids plots. When compared with slurry treatments, for the parameters monitored biosolids generally do not pose a greater risk in terms of losses along the runoff pathway. This finding has important policy implications, as it shows that concern related to the reuse of biosolids as a soil fertiliser, mainly related to contaminant losses upon land application, may be unfounded. Copyright © 2015 Elsevier B.V. All rights reserved.
Shah, Ghulam Abbas; Groot, Jeroen C.J.; Shah, Ghulam Mustafa; Lantinga, Egbert A.
2013-01-01
Many measures have been proposed to mitigate gaseous emissions and other nutrient losses from agroecosystems, which can have large detrimental effects for the quality of soils, water and air, and contribute to eutrophication and global warming. Due to complexities in farm management, biological interactions and emission measurements, most experiments focus on analysis of short-term effects of isolated mitigation practices. Here we present a model that allows simulating long-term effects at the whole-farm level of combined measures related to grassland management, animal housing and manure handling after excretion, during storage and after field application. The model describes the dynamics of pools of organic carbon and nitrogen (N), and of inorganic N, as affected by farm management in grassland-based dairy systems. We assessed the long-term effects of delayed grass mowing, housing type (cubicle and sloping floor barns, resulting in production of slurry and solid cattle manure, respectively), manure additives, contrasting manure storage methods and irrigation after application of covered manure. Simulations demonstrated that individually applied practices often result in compensatory loss pathways. For instance, methods to reduce ammonia emissions during storage like roofing or covering of manure led to larger losses through ammonia volatilization, nitrate leaching or denitrification after application, unless extra measures like irrigation were used. A strategy of combined management practices of delayed mowing and fertilization with solid cattle manure that is treated with zeolite, stored under an impermeable sheet and irrigated after application was effective to increase soil carbon stocks, increase feed self-sufficiency and reduce losses by ammonia volatilization and soil N losses. Although long-term datasets (>25 years) of farm nutrient dynamics and loss flows are not available to validate the model, the model is firmly based on knowledge of processes and measured effects of individual practices, and allows the integrated exploration of effective emission mitigation strategies. PMID:23826255
Can limiting dietary variety assist with reducing energy intake and weight loss?☆
Raynor, Hollie A.
2013-01-01
Due to the high prevalence of overweight and obesity, developing strategies to improve weight loss and weight loss maintenance is imperative. One dietary environmental variable that has received little attention in being targeted in an intervention to assist with obesity treatment is dietary variety. Experimental research has consistently shown that greater dietary variety increases consumption, with the effect of variety on consumption hypothesized to be a consequence of the differential experience of the more varied sensory properties of food under those conditions with greater dietary variety. As reduced energy intake is required for weight loss, limiting variety, particularly in food groups that are high in energy-density and low in nutrient-density, may assist with reducing energy intake and improving weight loss. A series of investigations, both observational and experimental, were conducted to examine if limiting variety in an energydense, non-nutrient-dense food group, snack foods (i.e., cookies, chips), assisted with reducing energy intake of the food group and improving weight loss. Results of the investigations suggest that a prescription for limiting variety in a food group can be implemented during obesity treatment, limiting variety is associated with the occurrence of monotony, and that reducing food group variety is related to decreased consumption of that food group. Future research is needed to ascertain the long-term effect of prescriptions targeting dietary variety on weight loss and weight loss maintenance. PMID:22450259
Ouyang, Wei; Wei, Xinfeng; Hao, Fanghua
2013-04-15
There are two kinds of land policies, the smallholding land policy (SLP) and the farmland policy (FLP) in China. The farmland nutrient dynamics under the two land policies were analysed with the soil system budget method. The averaged nitrogen (N) input of the SLP and the FLP over sixteen years increased about 23.9% and 33.3%, respectively and the phosphorus (P) input climbed about 39.1% and 42.3%, respectively. The statistical analysis showed that the land policies had significant impacts on N and P input from fertilizer and manure, but did not obviously affect the N input from seeds and biological N fixation. The efficiency percentage of N of the SLP and the FLP climbed about 54.5% and 59.4%, respectively, and the P efficiency improved by 52.7% and 82.6%, respectively. About the nutrient output, the F-test analysis indicated that the land polices had remarkable impacts on N output by crop uptake, ammonia volatilisation, denitrification, leaching and runoff, and P output by uptake, runoff, and leach. The balance showed that the absolute loss of N from land deceased about 43.6% and 46.0%, respectively, in the SLP and the FLP, and P discharge reduced about 34.2% and 75.2%, respectively. The F-test analysis of N and P efficiency and balance of between two polices both indicated that the FLP had significant impact on nutrient dynamic. With the Mitscherlich model, the correlations between nutrient input and crop uptake, usage efficiency and loss were analysed and showed that was a threshold value for the optimal nutrient input with the highest efficiency rate. For the optimal nutrient efficiency, the space for extra P addition was bigger than the N input. The FLP have more advantage than the SLP on the crop yield, nutrient efficiency and environmental discharge. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Msita, H. B.; Kimaro, D. N.; Mtakwa, P. W.; Msanya, B. M.; Dondyene, S.; Poesen, J.; Deckers, J.
2012-04-01
Soil erosion by water is rampant mainly in mountainous areas of Tanzania leading to environmental hazards, low land productivity, low income and increased poverty. Despite the severity of the soil erosion problem, there is not much quantitative data on the erosion effects and effectiveness of indigenous soil and water conservation (SWC) measures. The consequence is that indigenous knowledge in SWC planning is ignored. The on-farm field experiment was conducted for three years in Migambo village, Lushoto district in Tanzania, to determine the effectiveness of improved Miraba (IM) an indigenous soil erosion control measure on reducing runoff and soil loss. Management practices were tested viz: control that is without any soil conservation measure (C), Miraba alone (M), Miraba with farmyard manure and mulching (MFM) replicated three times in CRD setting. Maize (Zea mays) and beans (Phaseolus vulgaris) were used as test crops, due to their importance as food crops and the high erosion rates on fields with these crops. The crops were planted in rotation, maize and beans in short and long rains respectively. Gerlach troughs and runoff plots were used to evaluate the physical effectiveness. Results show significant effects of IM against control on crop yields, soil loss, surface runoff and moisture retention. MFM is the most effective measure in reducing soil and water losses followed by MF and M. The results further showed that these management practices can be implemented to reduce soil erosion and nutrient losses in the study area and areas with similar ecological setting. To facilitate adoption of these practices further research works is recommended for identifying economically feasible indigenous SWC measures under different biophysical and socio-economic conditions.
NASA Astrophysics Data System (ADS)
Liu, Juxiu; Zhang, Deqiang; Huang, Wenjuan; Zhou, Guoyi; Li, Yuelin; Liu, Shizhong
2014-04-01
Previous studies have reported that atmospheric CO2 enrichment would increase the ion concentrations in the soil water. However, none of these studies could exactly quantify the amount of ion changes in the soil water induced by elevated CO2 and all of these experiments were carried out only in the temperate areas. Using an open-top chamber design, we studied the effects of CO2 enrichment alone and together with nitrogen (N) addition on soil water chemistry in the subtropics. Three years of exposure to an atmospheric CO2 concentration of 700 ppm resulted in accelerated base cation loss via leaching water below the 70 cm soil profile. The total of base cation (K+ + Na+ + Ca2+ + Mg2+) loss in the elevated CO2 treatment was higher than that of the control by 220%, 115%, and 106% in 2006, 2007, and 2008, respectively. The N treatment decreased the effect of high CO2 treatment on the base cation loss in the leachates. Compared to the control, N addition induced greater metal cation (Al3+ and Mn2+) leaching loss in 2008 and net Al3+ and Mn2+ loss in the high N treatment increased by 100% and 67%, respectively. However, the CO2 treatment decreased the effect of high N treatment on the metal cation loss. Changes of ion export followed by the exposure to the elevated CO2, and N treatments were related to both ion concentrations and leached water amount. We hypothesize that forests in subtropical China might suffer from nutrient limitation and some poisonous metal activation in plant biomass under future global change.
ROLE OF RED ALDER IN NITROGEN LOSSES FROM FORESTED WATERSHEDS IN THE OREGON COAST RANGE
Variations in plant community composition across the landscape may have strong impacts on nutrient losses from small forested watersheds. One extreme example of this impact is the role of the nitrogen-fixing tree, red alder, in the biogeochemistry of forested watersheds in the P...
USDA-ARS?s Scientific Manuscript database
To meet Chesapeake Bay Total Maximum Daily Load requirements for agricultural pollution, conservation districts and farmers are tasked with implementing best management practices (BMPs) that reduce farm losses of nutrients and sediment. The importance of the agricultural industry to the regional eco...
NASA Technical Reports Server (NTRS)
Glatzel, H.
1978-01-01
Losses of various nutrients through sweat of persons working under hot conditions were considered. On the basis of these considerations a supplemental drink was formulated consisting of 1 liter of water per hour containing salt, potassium chloride, iron, thiamine and ascorbic acid.
Carbon and nitrogen loss in windblown dust on the Columbia Plateau
USDA-ARS?s Scientific Manuscript database
Soil erosion from windstorms may lead to high nutrient loss in fields and cause environmental degradation as a result of suspension in the atmosphere or deposition in surface water systems. In particular, high wind weather events can emit particulates from tilled agricultural soils on the Columbia P...
Signal transduction during wheat grain development.
Kong, Lingan; Guo, Honghai; Sun, Mingze
2015-04-01
This review examines the signaling pathways from the developmental and environmental point of view and the interactions among external conditions, hormonal regulations, and sugarsensing in wheat. Grain development is the key phase of reproductive growth that is closely associated with vegetative organ senescence, initiation of grain filling, pre-stored assimilates remobilization, and maturation. Senescence is characterized by loss of chlorophyll and the degradation of proteins, nucleic acids, lipids as well as nutrient exports to the sink. The initiation and progression of vegetative organ senescence are under the control of an array of environmental signals (such as biotic and abiotic stresses, darkness, and nutrient availability) and endogenous factors (including aging, multiple hormones, and sugar availability). This review will discuss the major breakthroughs in signal transduction for the wheat (Triticum aestivum) grain development achieved in the past several years, with focuses on the regulation of senescence, reserves remobilization and biosynthesis of main components of the grain. Different mechanisms of diverse signals in controlling different phrases of wheat grain development, and cross talks between different signaling pathways will also be discussed. For perspectives, key signaling networks for grain development remain to be elucidated, including cross talks and the interactions between various environmental factors and internal signals.
NASA Astrophysics Data System (ADS)
Engel, V.; Cheng, Y.; Stieglitz, M.
2009-12-01
Pattern formation in vegetated communities reflects the underlying mechanisms governing resource utilization and distribution across the landscape. An example of a patterned ecosystem is the Florida Everglades, which is characterized by parallel and slightly elevated peat "ridges" separated by deeper water "slough" communities (R&S). Ridges are dominated by sawgrass (Cladium jamaiscence). These patterns are thought to be aligned with and develop in response to the historic surface water flow direction, though the precise mechanisms which lead to their formation are poorly understood. Over the years this R&S habitat has degraded in areas where the natural flow regime, hydroperiod, and water depths have been impacted by human development. Managing and restoring this habitat has been an objective of the U.S. Federal and Florida State governments since the Comprehensive Everglades Restoration Plan (CERP) was authorized in 2000. It is imperative, however, to develop a mechanistic understanding of ridge-slough formation before the potential benefits of hydrologic forecasts associated with CERP can be evaluated. Recently, Cheng et al (see Cheng et al, session NG14) employed a simple 2D advection-diffusion model developed by Rietkerk et al (2004) to describe for the first time, the formation of parallel stripes from hydrologic interactions. To simulate parallel stripes, Cheng et al retained the basic equations of the Rietkerk model but allowed for constant advection of water and nutrient in one direction to simulate slope conditions, with evapotranspiration driven advection of water and nutrient perpendicular to the downhill flow direction. We employ this modeling framework and parameterize the model with Everglades field data to simulate ridge-slough formation. In this model, the relatively higher rates of evapotranspiration on the ridges compared to the sloughs create hydraulic gradients which carry dissolved nutrients from the sloughs to the faster growing ridges. With time, the patches aggregate and spread laterally in the direction of the downhill flow. The characteristic wavelengths and spatial patterning of the ridge-slough habitat found in the historic Everglades is reproduced by the model. Nutrient distributions across the landscape and across the ridge-slough interfaces also match observations. Perturbations to the system are modeled in the form of altered hydraulic gradients and nutrient input functions, similar to actual stressors on the system. Under the altered conditions, a loss of patterning in the habitat is observed, in some cases leading to ridge expansion into the sloughs, and in others leading to a complete loss of vegetation pattern. Simulations indicate that the hydrologic changes required to regenerate coherence in the ridge slough patterns in degraded areas are different from those in which the system originally formed. Plant-nutrient interactions and the overall nutrient status are shown to be a major determinant in how the system will respond to hydrologic changes associated with CERP.
NASA Astrophysics Data System (ADS)
Juutinen, Sari; Bubier, Jill; Larmola, Tuula; Humphreys, Elyn; Arnkil, Sini; Roy, Cameron; Moore, Tim
2016-04-01
Atmospheric nitrogen (N) deposition has led to nutrient enrichment in wetlands, particularly in temperate areas, affecting plant community composition, carbon (C) cycling, and microbial dynamics. It is vital to understand the temporal scales and mechanisms of the changes, because peatlands are long-term sinks of C, but sources of methane (CH4), an important greenhouse gas. Rainwater fed (ombrotrophic) bogs are considered to be vulnerable to nutrient loading due to their natural nutrient poor status. We fertilized Mer Bleue Bog, a Sphagnum moss and evergreen shrub-dominated ombrotrophic bog near Ottawa, Ontario, now for 11-16 years with N (NO3 NH4) at 0.6, 3.2, and 6.4 g N m-2 y-1 (~5, 10 and 20 times ambient N deposition during summer months) with and without phosphorus (P) and potassium (K). Treatments were applied to triplicate plots (3 x 3 m) from May - August 2000-2015 and control plots received distilled water. We measured CH4 fluxes with static chambers weekly from May to September 2015 and peat samples were incubated in laboratory to measure CH4 production and consumption potentials. Methane fluxes at the site were generally low, but after 16 years, mean CH4 emissions have increased and more than doubled in high nitrogen addition treatments if P and K input was also increased (3.2 and 6.4 g N m-2yr-1 with PK), owing to drastic changes in vegetation and soil moisture. Vegetation changes include a loss of Sphagnum moss and introduction of new species, typical to minerogenic mires, which together with increased decomposition have led to decreased surface elevation and to higher water table level relative to the surface. The trajectories indicate that the N only treatments may result in similar responses, but only over longer time scales. Elevated atmospheric deposition of nutrients to peatlands may increase loss of C not only due to changes in CO2 exchange but also due to enhanced CH4 emissions in peatlands through a complex suite of feedbacks and interactions among vegetation, microclimate, and microbial processes. It is uncertain, however, how the vegetation change continues due to collapsing surface and higher water table levels, and how that will affect future CH4 emissions and C balance.
Variation in nitrogen use efficiencies on Dutch dairy farms.
Daatselaar, Co Hg; Reijs, Joan R; Oenema, Jouke; Doornewaard, Gerben J; Aarts, H Frans M
2015-12-01
On dairy farms, the input of nutrients including nitrogen is higher than the output in products such as milk and meat. This causes losses of nitrogen to the environment. One of the indicators for the losses of nitrogen is the nitrogen use efficiency. In the Dutch Minerals Policy Monitoring Program (LMM), many data on nutrients of a few hundred farms are collected which can be processed by the instrument Annual Nutrient Cycle Assessment (ANCA, in Dutch: Kringloopwijzer) in order to provide nitrogen use efficiencies. After dividing the dairy farms (available in the LMM program) according to soil type and in different classes for milk production ha(-1) , it is shown that considerable differences in nitrogen use efficiency exist between farms on the same soil type and with the same level of milk production ha(-1) . This offers opportunities for improvement of the nitrogen use efficiency on many dairy farms. Benchmarking will be a useful first step in this process. © 2015 Society of Chemical Industry.
Zeng, Qiufeng; Huang, Xueqin; Luo, Yuheng; Ding, Xuemei; Bai, Shiping; Wang, Jianping; Xuan, Yue; Su, Zhuowei; Liu, Yonggang; Zhang, Keying
2015-01-01
Previous studies with broiler have shown dietary supplementation with multi-enzyme complex containing non-starch polysaccharides (NSP) degrading enzymes and phytase is efficient in releasing phosphorus (P), calcium (Ca), energy and amino acids from corn-soybean meal diets or corn-sorghum diets, hence compensating considerable levels of nutrients in formulation. Notwithstanding, such potentials have not been well defined in duck nutrition. Giving China being the largest duck producing country, we conducted this study to establish adequate specifications of major nutrients along with multi-enzyme complex to meat duck from day-old to slaughter, focusing on performance, utilization of nutrients and bone mineralization. Five dietary treatments were: Positive control (PC,T1 ): the nutrients concentration of diet for 1 to 14 d of age were apparent metabolizable energy(AME) 2,800 kcal/kg, crude protein (CP)19.39%, Ca 0.85%, available phosphorus (avP) 0.42%; for 15 to 35 d of age these parameters were AME 2,900 kcal/kg, CP 16.47%,Ca 0.76%,avP 0.38%; Negative control 1(NC1,T2), the AME and digestible amino acids (DAA) were reduced by 70 kcal/kg and 2.0%, avP and Ca by 1.0 g/kg from PC diet; Negative control 2( NC2,T4), the down-spec from PC diet was AME 100 kcal/kg, DAA 2.5%, avP 1.5 g/kg and Ca 1.2 g/kg; The enzyme complex was added at the same dosage (200 mL/ 1,000 kg) on NC1 (T3) and NC2 (T5) diets. Comparing with the ducks fed on T1, T3 and T5 diets, the birds fed on NC2 diet showed the lowest (P < 0.05) body weight ( d 14 and 35), feed intake (d 35), tibia ash, Ca and P contents (d 14 and 35), and the utilization of nutrients (P < 0.05). The supplementation with the enzyme complex to the NC diets restored growth rate, utilization of nutrients and bone mineralization to the level of the PC diet, and increased AME by 60 kcal/kg and 117 kcal/kg, respectively for the NC1 and NC2 diets. These results suggest that down-spec AME by 100 kcal/kg, DAA by 2.5%, avP by 1.5 g/kg and Ca by 1.2 g/kg caused detrimental effects on duck performance compared with those fed on the PC diet, and these performance losses can be compensated by the addition of the multiple-enzyme complex.
Extreme anthropogenic erosion: Topsoil Selling in the Mekong Delta and consequences for soil quality
NASA Astrophysics Data System (ADS)
Weigand, Susanne; Sebesvari, Zita; Vien, Duong Minh; Kruse, Jens; Guong, Vo Thi; Amelung, Wulf
2017-04-01
Increasing urbanization and industrialization leads to increasing demands for construction material, especially in low income countries. For this purpose topsoil is sometimes removed and used as construction material. Topsoil Selling is practiced around the world from America, Europe and Africa to Asia. In the Mekong Delta, Vietnam farmers physically remove the upper 10-40 cm of their paddy fields and sell it to contractors (= Topsoil Selling, TSS). The excavated material is used for road construction or brick production and therefore the most fertile part of the paddy soil is irrecoverably lost. The temporal effects of topsoil removal on soil quality are not yet fully understood. We hypothesized that after soil removal, soil quality and yield potential are significantly lower compared to the original topsoil. To test this hypothesis, we sampled two chronosequences in two different provinces of the Mekong Delta. The provinces are Sóc Trăng (Control, 1, 2, 3, 8 years after TSS) and Trà Vinh (Control, 3, 5, 8 years after TSS). The sampling areas differ in texture and cultivation practice: clayey-loamy vs. sandy-loamy and double vs. triple rice cropping. For each year of the chronosequence, 4 field sites were investigated. We sampled the Ap, Bg1, and Bg2 horizon up to 40 cm depth as composite samples from 6 to 8 cores per field. Soil organic carbon (Corg) stocks at TSS sites were up to 20 t/ha lower than at Control sites (Control: 50 t/ha) in Sóc Trăng and up to 15 t/ha lower in Tra Vinh (Control: 30 t/ha). Especially the Bg horizons revealed a continuous decline in Corg with time after soil removal. Analysis of available nutrients (Na, K, Ca, Mg, S, Fe, Al, Mn, Zn, Cu) determined by the Mehlich3-Method are still ongoing. Preliminary results, however, suggest that there is not sustainable loss of these elements after selling, but that initial risk of losses are reverted under prolonged management. Phosphorus fractionation according to the Hedley method indicate, however, that easily and moderately plant available P forms are depleted, which has to be accounted for in land-restoration measures. Overall, the current data we received so far revealed that TSS induces mainly a dramatic loss of soil organic matter. It was ongoing up to the 8th year of our chronosequence; yet, it was not necessarily accompanied by losses in inorganic nutrients. As a result, there is a chance also for the farmers to overcome risks in yield decline because the former subsoils overtake the role of the former topsoils in maintaining rice production.
NASA Astrophysics Data System (ADS)
Davidson, Eric A.; Neill, Christopher; Krusche, Alex V.; Ballester, Victoria V. R.; Markewitz, Daniel; Figueiredo, Ricardo de O.
Rates of deforestation in the Amazon region have been accelerating, but the quantity and timing of nutrient losses from forested and deforested ecosystems are poorly understood. This paper investigates the broad variation in soil properties of the Amazon Basin as they influence transfers of plant nutrients from the terrestrial biosphere to the atmosphere and the aquatic biosphere. The dominant lowland soils are highly weathered Oxisols and Ultisols, but significant areas of Alfisols also exist, resulting in a wide range of weatherable primary minerals. Despite this considerable variation among Amazonian soils, a common feature in most mature lowland Amazonian forests is a conservative P cycle and excess N availability. In cattle pastures and secondary forests, however, low rates of internal terrestrial N cycling, low N export to streams, and low gaseous N emissions from soils are common, due to significant previous losses of N through repeated fire. Export of P to streams may increase or remain nearly undetectable after forest-to-pasture conversion, depending on soil type. Oxisols exhibit very low P export, whereas increased P export to pasture streams has been observed in Ultisols of western Amazonia. Calcium is mostly retained in terrestrial ecosystems following deforestation, although increased inputs to streams can be detected when background fluxes are naturally low. Because soil mineralogy and soil texture are both variable and important, the effects of land-use change on nutrient export to aquatic ecosystems and to the atmosphere must be understood within the context of varying soil properties across the Amazon Basin.
Assessment of nutrient supplement to reduce gentamicin-induced ototoxicity.
Le Prell, C G; Ojano-Dirain, C; Rudnick, E W; Nelson, M A; DeRemer, S J; Prieskorn, D M; Miller, J M
2014-06-01
Gentamicin is an aminoglycoside antibiotic used to treat gram-negative bacterial infections. Treatment with this antibiotic carries the potential for adverse side effects, including ototoxicity and nephrotoxicity. Ototoxic effects are at least in part a consequence of oxidative stress, and various antioxidants have been used to attenuate gentamicin-induced hair cell death and hearing loss. Here, a combination of nutrients previously shown to reduce oxidative stress in the hair cells and attenuate hearing loss after other insults was evaluated for potential protection against gentamicin-induced ototoxicity. Guinea pigs were maintained on a nutritionally complete standard laboratory animal diet or a diet supplemented with β-carotene, vitamins C and E, and magnesium. Three diets with iterative increases in nutrient levels were screened; the final diet selected for study use was one that produced statistically reliable increases in plasma levels of vitamins C and E and magnesium. In two separate studies, significant decreases in gentamicin-induced hearing loss at frequencies including 12 kHz and below were observed, with less benefit at the higher frequencies. Consistent with the functional protection, robust protection of both the inner and outer hair cell populations was observed, with protection largely in the upper half of the cochlea. Protection was independently assessed in two different laboratories, using two different strains of guinea pigs. Additional in vitro tests did not reveal any decrease in antimicrobial activity with nutrient additives. Currently, there are no FDA-approved treatments for the prevention of gentamicin-induced ototoxicity. The current data provide a rationale for continued investigations regarding translation to human patients.
Tanner, Chris C; Sukias, James P S
2011-01-01
Subsurface tile drain flows can be a major s ource of nurient loss from agricultural landscapes. This study quantifies flows and nitrogen and phosphorus yields from tile drains at three intensively grazed dairy pasture sites over 3- to 5-yr periods and evaluates the capacity of constructed wetlands occupying 0.66 to 1.6% of the drained catchments too reduce nutrient loads. Continuous flow records are combined with automated flow-proportional sampling of nutrient concentrations to calculate tile drain nutrient yields and wetland mass removal rates. Annual drainage water yields rangedfrom 193 to 564 mm (16-51% of rainfall) at two rain-fed sites and from 827 to 853 mm (43-51% of rainfall + irrigation) at an irrigated site. Annually, the tile drains exported 14 to 109 kg ha(-1) of total N (TN), of which 58 to 90% was nitrate-N. Constructed wetlands intercepting these flows removed 30 to 369 gTN m(-2) (7-63%) of influent loadings annually. Seasonal percentage nitrate-N and TN removal were negatively associated with wetland N mass loadings. Wetland P removal was poor in all wetlands, with 12 to 115% more total P exported annually overall than received. Annually, the tile drains exported 0.12 to 1.38 kg ha of total P, of which 15 to 93% was dissolved reactive P. Additional measures are required to reduce these losses or provide supplementary P removal. Wetland N removal performance could be improved by modifying drainage systems to release flows more gradually and improving irrigation practices to reduce drainage losses.
Vladislav Gulis; Keller Suberkropp
2003-01-01
The relative contributions of fungi and bacteria to carbon flow from submerged decaying plant litter at different levels of inorganic nutrients (N and P) were studied. We estimated leaf mass loss, fungal and bacterial biomass and production, and microbial respiration and constructed partial carbon budgets for red maple leaf disks precolonized in a stream and then...
Soil heating in chaparral fires: effects on soil properties, plant nutrients, erosion, and runoff
Leonard F. DeBano; Raymond M. Rice; Conrad C. Eugene
1979-01-01
This state-of-the-art report summarizes what is known about the effects of heat on soil during chaparral fires. It reviews the literature on the effects of such fires on soil properties, availabilty and loss of plant nutrients, soil wettability, erosion, and surface runoff. And it reports new data collected during recent prescribed burns and a wildfire in southern...
Hal O. Liechty; Michael G. Shelton
2004-01-01
Abstract - This study was initiated to determine the effects of various regeneration cutting methods on forest floor mass and nutrient content in shortleaf pine-hardwood communities in the Ouachita and Ozark National Forests. Clearcutting generally altered forest floor concentrations of N, P, and S as well as loss on ignition by increasing the amount...
Including spatial data in nutrient balance modelling on dairy farms
NASA Astrophysics Data System (ADS)
van Leeuwen, Maricke; van Middelaar, Corina; Stoof, Cathelijne; Oenema, Jouke; Stoorvogel, Jetse; de Boer, Imke
2017-04-01
The Annual Nutrient Cycle Assessment (ANCA) calculates the nitrogen (N) and phosphorus (P) balance at a dairy farm, while taking into account the subsequent nutrient cycles of the herd, manure, soil and crop components. Since January 2016, Dutch dairy farmers are required to use ANCA in order to increase understanding of nutrient flows and to minimize nutrient losses to the environment. A nutrient balance calculates the difference between nutrient inputs and outputs. Nutrients enter the farm via purchased feed, fertilizers, deposition and fixation by legumes (nitrogen), and leave the farm via milk, livestock, manure, and roughages. A positive balance indicates to which extent N and/or P are lost to the environment via gaseous emissions (N), leaching, run-off and accumulation in soil. A negative balance indicates that N and/or P are depleted from soil. ANCA was designed to calculate average nutrient flows on farm level (for the herd, manure, soil and crop components). ANCA was not designed to perform calculations of nutrient flows at the field level, as it uses averaged nutrient inputs and outputs across all fields, and it does not include field specific soil characteristics. Land management decisions, however, such as the level of N and P application, are typically taken at the field level given the specific crop and soil characteristics. Therefore the information that ANCA provides is likely not sufficient to support farmers' decisions on land management to minimize nutrient losses to the environment. This is particularly a problem when land management and soils vary between fields. For an accurate estimate of nutrient flows in a given farming system that can be used to optimize land management, the spatial scale of nutrient inputs and outputs (and thus the effect of land management and soil variation) could be essential. Our aim was to determine the effect of the spatial scale of nutrient inputs and outputs on modelled nutrient flows and nutrient use efficiencies at Dutch dairy farms. We selected two dairy farms located on cover sands in the Netherlands. One farm was located on relatively homogeneous soil type, and one on many different soil types within the sandy soils. A full year of data of N and P inputs and outputs on farm and field level were provided by the farmers, including field level yields, yield composition, manure composition, degree of grazing and degree of mowing. Soil heterogeneity was defined as the number of soil units within the farm corrected for surface area, and quantified from the Dutch 1:50.000 soil map. N and P balances at farm and field level were determined, as well as differences in nutrient use efficiency, leaching, and N emission. We will present the effect of the spatial scale on nutrient balance analysis and discuss to which degree any differences are caused by within-farm land management and soil variation. This study highlights to which extent within-farm land management and soil variation should be taken into account when modelling nutrient flows and nutrient use efficiencies at farm level, to contribute to field-based decision making for improved land management.
Electrochemical control of pH in a hydroponic nutrient solution
NASA Technical Reports Server (NTRS)
Schwartzkopf, S. H.
1986-01-01
The electrochemical pH control system described was found to provide a feasible alternative method of controlling nutrient solution pH for CELSS applications. The plants grown in nutrient solution in which the pH was controlled electrochemically showed no adverse effects. Further research into the design of a larger capacity electrode bridge for better control is indicated by the results of this experiment, and is currently under way.
NASA Astrophysics Data System (ADS)
Reed, S.; Cleveland, C. C.; Davidson, E. A.; Townsend, A. R.
2013-12-01
During leaf senescence, nutrient rich compounds are transported to other parts of the plant and this 'resorption' recycles nutrients for future growth, reducing losses of potentially limiting nutrients. Variations in leaf chemistry resulting from nutrient resorption also directly affect litter quality, in turn, regulating decomposition rates and soil nutrient availability. Here we investigated stoichiometric patterns of nitrogen (N) and phosphorus (P) resorption efficiency at multiple spatial scales. First, we assembled a global database to explore nutrient resorption among and within biomes and to examine potential relationships between resorption stoichiometry and ecosystem nutrient status. Next, we used a forest regeneration chronosequence in Brazil to assess how resorption stoichiometry linked with a suite of other nutrient cycling measures and with ideas of how nutrient limitation may change over secondary forest regrowth. Finally, we measured N:P resorption ratios of six canopy tree species in a Costa Rican tropical forest. We calculated species-specific resorption ratios and compared them with patterns in leaf litter and topsoil nutrient concentrations. At the global scale, N:P resorption ratios increased with latitude and decreased with mean annual temperature (MAT) and precipitation (MAP; P<0.001 for each). In particular, we observed a notable switch across latitudes: N:P resorption ratios were generally <1 in latitudes <23° and >1 in latitudes >23°. Focusing on tropical sites in our global dataset we found that, despite fewer data and a restricted latitudinal range, a significant relationship between latitude and N:P resorption ratios persisted (P<0.001). In contrast, tropical N:P resorption ratios did not vary with MAT (P=0.965) and the relationship with MAP was only marginally significant (P=0.089). Data suggest that soil type, at least in part, helps explain N:P resorption patterns across tropical latitudes: plants on more weathered soils (Oxisols and Ultisols) resorbed much more P relative to N and weathered soils were proportionally more abundant at the lowest latitudes. In our assessment of nutrient resorption along an Amazon Basin chronosequence of regenerating forests, where previous work reported a transition from apparent N limitation in younger forests to P limitation in mature forests, we found N resorption was highest in the youngest forest, whereas P resorption was greatest in the mature forest. Over the course of succession, N resorption efficiency leveled off but P resorption continued to increase with forest age. In Costa Rica, though we found species-specific patterns in resorption, data support the idea that lowland tropical forest plants on highly weathered soils resorb more P relative to N. Together, these data highlight how stoichiometric perspectives can help distill the complexity of coupled biogeochemical cycles and suggest that nutrient resorption ratios offer a complementary metric for assessing nutrient limitation in terrestrial ecosystems.
Nutrient enrichment, biodiversity loss, and consequent declines in ecosystem productivity.
Isbell, Forest; Reich, Peter B; Tilman, David; Hobbie, Sarah E; Polasky, Stephen; Binder, Seth
2013-07-16
Anthropogenic drivers of environmental change often have multiple effects, including changes in biodiversity, species composition, and ecosystem functioning. It remains unknown whether such shifts in biodiversity and species composition may, themselves, be major contributors to the total, long-term impacts of anthropogenic drivers on ecosystem functioning. Moreover, although numerous experiments have shown that random losses of species impact the functioning of ecosystems, human-caused losses of biodiversity are rarely random. Here we use results from long-term grassland field experiments to test for direct effects of chronic nutrient enrichment on ecosystem productivity, and for indirect effects of enrichment on productivity mediated by resultant species losses. We found that ecosystem productivity decreased through time most in plots that lost the most species. Chronic nitrogen addition also led to the nonrandom loss of initially dominant native perennial C4 grasses. This loss of dominant plant species was associated with twice as great a loss of productivity per lost species than occurred with random species loss in a nearby biodiversity experiment. Thus, although chronic nitrogen enrichment initially increased productivity, it also led to loss of plant species, including initially dominant species, which then caused substantial diminishing returns from nitrogen fertilization. In contrast, elevated CO2 did not decrease grassland plant diversity, and it consistently promoted productivity over time. Our results support the hypothesis that the long-term impacts of anthropogenic drivers of environmental change on ecosystem functioning can strongly depend on how such drivers gradually decrease biodiversity and restructure communities.
NASA Astrophysics Data System (ADS)
Kurz, Isabelle; Coxon, Catherine; Tunney, Hubert; Ryan, Declan
2005-03-01
The loss of nutrients from agricultural land to water bodies is a serious concern in river basin management in many countries. To gain information on the contributions of agricultural grassland to the eutrophication of water bodies, this study set out to assess phosphorus (P) loss from grassland areas on poorly drained soils. A second aim was to look at the impact of grassland management practices on nutrient concentrations in overland flow. Edge-of-field measurements of overland flow quantity and of P and nitrogen (N) concentrations in overland flow were carried out at three study sites with different soil P levels. The amounts of overland flow and the P concentrations in overland flow varied considerably during events, and among sites and events. Despite this variability, there was a clear increase in P loss in overland flow from the low to the medium and high soil P sites. The inter-site variability of the P concentrations in overland flow greatly exceeded the variability of the amounts of overland flow from the different sites. Thus, P concentrations had a larger impact than the volume of overland flow on the differences in P exports from the three sites. Management practices which, at times, influenced the P and N concentrations in overland flow were grazing and N fertilisation.
Palanivell, Perumal; Ahmed, Osumanu Haruna; Ab Majid, Nik Muhamad; Jalloh, Mohamadu Boyie; Susilawati, Kasim
2015-01-01
High cation exchange capacity and organic matter content of crude humic substances from compost could be exploited to reduce ammonia loss from urea and to as well improve rice growth and soil chemical properties for efficient nutrients utilization in lowland rice cultivation. Close-dynamic air flow system was used to determine the effects of crude humic substances on ammonia volatilization. A pot experiment was conducted to determine the effects of crude humic substances on rice plant growth, nutrients uptake, nutrients recovery, and soil chemical properties using an acid soil mixed with three rates of crude humic substances (20, 40, and 60 g pot(-1)). Standard procedures were used to evaluate rice plant dry matter production, nutrients uptake, nutrients recovery, and soil chemical properties. Application of crude humic substances increased ammonia volatilization. However, the lowest rate of crude humic substances (20 g pot(-1)) significantly improved total dry matter, nutrients uptake, nutrients recovery, and soil nutrients availability compared with crude humic substances (40 and 60 g pot(-1)) and the normal fertilization. Apart from improving growth of rice plants, crude humic substances can be used to ameliorate acid soils in rice cultivation. The findings of this study are being validated in our ongoing field trials.
Palanivell, Perumal; Ahmed, Osumanu Haruna; Ab Majid, Nik Muhamad; Jalloh, Mohamadu Boyie; Susilawati, Kasim
2015-01-01
High cation exchange capacity and organic matter content of crude humic substances from compost could be exploited to reduce ammonia loss from urea and to as well improve rice growth and soil chemical properties for efficient nutrients utilization in lowland rice cultivation. Close-dynamic air flow system was used to determine the effects of crude humic substances on ammonia volatilization. A pot experiment was conducted to determine the effects of crude humic substances on rice plant growth, nutrients uptake, nutrients recovery, and soil chemical properties using an acid soil mixed with three rates of crude humic substances (20, 40, and 60 g pot−1). Standard procedures were used to evaluate rice plant dry matter production, nutrients uptake, nutrients recovery, and soil chemical properties. Application of crude humic substances increased ammonia volatilization. However, the lowest rate of crude humic substances (20 g pot−1) significantly improved total dry matter, nutrients uptake, nutrients recovery, and soil nutrients availability compared with crude humic substances (40 and 60 g pot−1) and the normal fertilization. Apart from improving growth of rice plants, crude humic substances can be used to ameliorate acid soils in rice cultivation. The findings of this study are being validated in our ongoing field trials. PMID:25977938
Bret-Harte, M Syndonia; Mack, Michelle C; Goldsmith, Gregory R; Sloan, Daniel B; DeMarco, Jennie; Shaver, Gaius R; Ray, Peter M; Biesinger, Zy; Chapin, F Stuart
2008-01-01
Plant communities in natural ecosystems are changing and species are being lost due to anthropogenic impacts including global warming and increasing nitrogen (N) deposition. We removed dominant species, combinations of species and entire functional types from Alaskan tussock tundra, in the presence and absence of fertilization, to examine the effects of non-random species loss on plant interactions and ecosystem functioning. After 6 years, growth of remaining species had compensated for biomass loss due to removal in all treatments except the combined removal of moss, Betula nana and Ledum palustre (MBL), which removed the most biomass. Total vascular plant production returned to control levels in all removal treatments, including MBL. Inorganic soil nutrient availability, as indexed by resins, returned to control levels in all unfertilized removal treatments, except MBL. Although biomass compensation occurred, the species that provided most of the compensating biomass in any given treatment were not from the same functional type (growth form) as the removed species. This provides empirical evidence that functional types based on effect traits are not the same as functional types based on response to perturbation. Calculations based on redistributing N from the removed species to the remaining species suggested that dominant species from other functional types contributed most of the compensatory biomass. Fertilization did not increase total plant community biomass, because increases in graminoid and deciduous shrub biomass were offset by decreases in evergreen shrub, moss and lichen biomass. Fertilization greatly increased inorganic soil nutrient availability. In fertilized removal treatments, deciduous shrubs and graminoids grew more than expected based on their performance in the fertilized intact community, while evergreen shrubs, mosses and lichens all grew less than expected. Deciduous shrubs performed better than graminoids when B. nana was present, but not when it had been removed. Synthesis. Terrestrial ecosystem response to warmer temperatures and greater nutrient availability in the Arctic may result in vegetative stable-states dominated by either deciduous shrubs or graminoids. The current relative abundance of these dominant growth forms may serve as a predictor for future vegetation composition. PMID:18784797
NASA Astrophysics Data System (ADS)
Jenny, Jean-Philippe; Arnaud, Fabien; Dorioz, Jean-Marcel; Alric, Benjamin; Sabatier, Pierre; Perga, Marie-Elodie
2013-04-01
Among manifestations of the entry in a new geological era -The Anthropocene- marked by the fingerprinting of human activities in global ecology, the development of persistent zones of oxygen-depletion particularly threatens aquatic ecosystems. This results in a loss of fisheries, a loss of biodiversity, an alteration of food-webs and even, in extreme cases, mass mortality of fauna1. Whereas hypoxia -defined as dissolved oxygen ≤2 mg/l- has long been considered as a consequence of the sole eutrophication, recent studies showed it also depends on climate change. Despite basic processes of oxygen-depletion are well-known, till now no study evaluated the contrasted effects of climate changes on a long-term perspective. Here we show that climate change paced fluctuation of hypoxia in 3 large lakes (Lake Geneva, Lake Bourget and Lake Annecy) that were previously disturbed by unprecedented nutrient input. Our approach couples century-scale paleo-reconstruction of 1) hypoxia, 2) flood regime and 3) nutrient level, thanks to an exceptional 80 sediment core data collection taken in three large lakes (Geneva, Bourget, Annecy), and monitoring data. Our results show that volume of hypoxia can be annually estimated according to varve records through large lakes. Quantitative additive models were then used to identify and hierarchy environmental forcings on hypoxia. Flood regime and air temperatures hence appeared as significant forcing factors of hypolimnetic hypoxia. Noticeably, their effects are highly contrasted between lakes, depending on specific lake morphology and local hydrological regime. We hence show that greater is the lake specific river discharge the more is the control of winter mixing and the lower is the control of thermal stratification on oxygen depletion. Our study confirms that the perturbation of food web due to nutrient input led to a higher vulnerability of aquatic ecosystems to climate change. We further show specific hydrological regime play a crucial role in oxygen-depletion processes. This implies a careful attention must be paid to changes in hydrological patterns while assessing the effect of climate change on large water bodies.
Carbon balance of a fertile forestry-drained peatland in southern Finland
NASA Astrophysics Data System (ADS)
Lohila, Annalea; Korkiakoski, Mika; Tuovinen, Juha-Pekka; Minkkinen, Kari; Penttilä, Timo; Ojanen, Paavo; Launiainen, Samuli; Laurila, Tuomas
2016-04-01
Forestry on peatlands is a significant land use form and has been economically important during the last decades particularly in the Nordic countries. While nutrient-poor forests are generally able to maintain their carbon sink status even after drainage, the peat soil at the fertile sites is typically considered as a large carbon dioxide (CO2) source. This means that despite of high timber production capacity, the fertile peatland forests gradually lose their peat carbon store. In addition, many of the nutrient-rich sites emit considerable amount of nitrous oxide (N2O) into the atmosphere. While the current estimates of the greenhouse gas (GHG) balance of forestry-drained peatlands are largely based on soil inventories or on data combining soil GHG fluxes and tree growth litter input measurements and modelling, only few studies have utilized the high-resolution, continuous eddy covariance (EC) data to address the short-term dynamics of the net CO2 fluxes covering both the soil, forest floor vegetation and the trees. Hence, little is known about the factors which control the year-to-year variation in fluxes. Here we present a 5-year dataset of CO2 fluxes measured with the EC method above a nutrient-rich forestry-drained peatland in southern Finland. The site, drained in the beginning of 1970's, is a well growing pine forest with some spruces and birches, the tree volume and carbon fixation rate equaling 8.0 kg C m-2 and 0.273 kg C m-2 yr-1, respectively. The average summer-time water level depth is -50 cm. By combining the gap-filled half-hourly net ecosystem exchange (NEE) data, the tree growth measurements, and the measurements on dissolved organic carbon (DOC) losses and soil methane (CH4) exchange, we will in this presentation estimate the total annual loss of peat carbon of this fertile peatland forest. In addition, using the N2O flux data we will estimate the contribution of different gases to the total GHG balance. Factors controlling the carbon balance and its seasonal and inter-annual variation are discussed.
Adimassu, Zenebe; Langan, Simon; Johnston, Robyn; Mekuria, Wolde; Amede, Tilahun
2017-01-01
Research results published regarding the impact of soil and water conservation practices in the highland areas of Ethiopia have been inconsistent and scattered. In this paper, a detailed review and synthesis is reported that was conducted to identify the impacts of soil and water conservation practices on crop yield, surface run-off, soil loss, nutrient loss, and the economic viability, as well as to discuss the implications for an integrated approach and ecosystem services. The review and synthesis showed that most physical soil and water conservation practices such as soil bunds and stone bunds were very effective in reducing run-off, soil erosion and nutrient depletion. Despite these positive impacts on these services, the impact of physical soil and water conservation practices on crop yield was negative mainly due to the reduction of effective cultivable area by soil/stone bunds. In contrast, most agronomic soil and water conservation practices increase crop yield and reduce run-off and soil losses. This implies that integrating physical soil and water conservation practices with agronomic soil and water conservation practices are essential to increase both provisioning and regulating ecosystem services. Additionally, effective use of unutilized land (the area occupied by bunds) by planting multipurpose grasses and trees on the bunds may offset the yield lost due to a reduction in planting area. If high value grasses and trees can be grown on this land, farmers can harvest fodder for animals or fuel wood, both in scarce supply in Ethiopia. Growing of these grasses and trees can also help the stability of the bunds and reduce maintenance cost. Economic feasibility analysis also showed that, soil and water conservation practices became economically more viable if physical and agronomic soil and water conservation practices are integrated.
Wildfire and forest disease interaction lead to greater loss of soil nutrients and carbon.
Cobb, Richard C; Meentemeyer, Ross K; Rizzo, David M
2016-09-01
Fire and forest disease have significant ecological impacts, but the interactions of these two disturbances are rarely studied. We measured soil C, N, Ca, P, and pH in forests of the Big Sur region of California impacted by the exotic pathogen Phytophthora ramorum, cause of sudden oak death, and the 2008 Basin wildfire complex. In Big Sur, overstory tree mortality following P. ramorum invasion has been extensive in redwood and mixed evergreen forests, where the pathogen kills true oaks and tanoak (Notholithocarpus densiflorus). Sampling was conducted across a full-factorial combination of disease/no disease and burned/unburned conditions in both forest types. Forest floor organic matter and associated nutrients were greater in unburned redwood compared to unburned mixed evergreen forests. Post-fire element pools were similar between forest types, but lower in burned-invaded compared to burned-uninvaded plots. We found evidence disease-generated fuels led to increased loss of forest floor C, N, Ca, and P. The same effects were associated with lower %C and higher PO4-P in the mineral soil. Fire-disease interactions were linear functions of pre-fire host mortality which was similar between the forest types. Our analysis suggests that these effects increased forest floor C loss by as much as 24.4 and 21.3 % in redwood and mixed evergreen forests, respectively, with similar maximum losses for the other forest floor elements. Accumulation of sudden oak death generated fuels has potential to increase fire-related loss of soil nutrients at the region-scale of this disease and similar patterns are likely in other forests, where fire and disease overlap.
NASA Astrophysics Data System (ADS)
Adimassu, Zenebe; Langan, Simon; Johnston, Robyn; Mekuria, Wolde; Amede, Tilahun
2017-01-01
Research results published regarding the impact of soil and water conservation practices in the highland areas of Ethiopia have been inconsistent and scattered. In this paper, a detailed review and synthesis is reported that was conducted to identify the impacts of soil and water conservation practices on crop yield, surface run-off, soil loss, nutrient loss, and the economic viability, as well as to discuss the implications for an integrated approach and ecosystem services. The review and synthesis showed that most physical soil and water conservation practices such as soil bunds and stone bunds were very effective in reducing run-off, soil erosion and nutrient depletion. Despite these positive impacts on these services, the impact of physical soil and water conservation practices on crop yield was negative mainly due to the reduction of effective cultivable area by soil/stone bunds. In contrast, most agronomic soil and water conservation practices increase crop yield and reduce run-off and soil losses. This implies that integrating physical soil and water conservation practices with agronomic soil and water conservation practices are essential to increase both provisioning and regulating ecosystem services. Additionally, effective use of unutilized land (the area occupied by bunds) by planting multipurpose grasses and trees on the bunds may offset the yield lost due to a reduction in planting area. If high value grasses and trees can be grown on this land, farmers can harvest fodder for animals or fuel wood, both in scarce supply in Ethiopia. Growing of these grasses and trees can also help the stability of the bunds and reduce maintenance cost. Economic feasibility analysis also showed that, soil and water conservation practices became economically more viable if physical and agronomic soil and water conservation practices are integrated.
School lunch waste among middle school students: nutrients consumed and costs.
Cohen, Juliana F W; Richardson, Scott; Austin, S Bryn; Economos, Christina D; Rimm, Eric B
2013-02-01
The National School Lunch Program has been guided by modest nutrient standards, and the palatability of meals, which drives consumption, receives inadequate attention. School food waste can have important nutritional and cost implications for policymakers, students, and their families. Nutrient losses and economic costs associated with school meal waste were examined. The study also assessed if school foods served were valid proxies for foods consumed by students. Plate waste measurements were collected from middle school students in Boston attending two Chef Initiative schools (n=1609) and two control schools (n=1440) during a 2-year pilot study (2007-2009) in which a professional chef trained cafeteria staff to make healthier school meals. The costs associated with food waste were calculated and the percentage of foods consumed was compared with a gold standard of 85% consumption. Analyses were conducted in 2010-2011. Overall, students consumed less than the required/recommended levels of nutrients. An estimated $432,349 of food (26.1% of the total food budget) was discarded by middle school students annually at lunch in these Boston middle schools. For most meal components, substantially less than 85% was consumed. There is substantial food waste among middle school students in Boston. Overall, students' nutrient consumption levels were below school meal standards, and foods served were not valid proxies for foods consumed. The costs associated with discarded foods are high; if translated nationally for school lunches, roughly $1,238,846,400 annually is wasted. Students might benefit if additional focus were given to the quality and palatability of school meals. Copyright © 2013 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.
Rationale and clinical data supporting nutritional intervention in Alzheimer's disease.
Engelborghs, S; Gilles, C; Ivanoiu, A; Vandewoude, M
2014-01-01
Adequate nutrition plays an important role in the maintenance of cognitive function, particularly during aging. Malnutrition is amongst the risk factors for developing mild cognitive impairment (MCI) and Alzheimer's disease (AD). Epidemiological studies have associated deficiencies in some nutrients with a higher risk of cognitive dysfunction and/or AD. Cognitive decline in AD is correlated with synaptic loss and many of the components required to maintain optimal synaptic function are derived from dietary sources. As synapses are part of the neuronal membrane and are continuously being remodelled, the availability of sufficient levels of nutritional precursors (mainly uridine monophosphate, choline and omega-3 fatty acids) to make the phospholipids required to build neuronal membranes may have beneficial effects on synaptic degeneration in AD. In addition, B-vitamins, phospholipids and other micronutrients act as cofactors to enhance the supply of precursors required to make neuronal membranes and synapses. Despite this, no randomized controlled trial has hitherto provided evidence that any single nutrient has a beneficial effect on cognition or lowers the risk for AD. However, a multi-target approach using combinations of (micro)nutrients might have beneficial effects on cognitive function in neurodegenerative brain disorders like AD leading to synaptic degeneration. Here we review the clinical evidence for supplementation, based on a multi-target approach with a focus on key nutrients with a proposed role in synaptic dysfunction. Based on preclinical evidence, a nutrient mixture, Souvenaid(®) (Nutricia N.V., Zoetermeer, The Netherlands) was developed. Clinical trials with Souvenaid(®) have shown improved memory performance in patients with mild AD. Further clinical trials to evaluate the effects of nutritional intervention in MCI and early dementia due to AD are on-going.
Evaluation of NASA Foodbars as a standard diet for use in short-term rodent space flight studies.
Tou, Janet; Grindeland, Richard; Barrett, Joyce; Dalton, Bonnie; Mandel, Adrian; Wade, Charles
2003-01-01
[corrected] A standard rodent diet for space flight must meet the unique conditions imposed by the space environment and must be nutritionally adequate because diet can influence the outcome of experiments. We evaluated the use of National Aeronautics and Space Administration (NASA) Foodbars as a standard space flight diet for rats. The Foodbar's semi-purified formulation permitted criteria such as nutrient consistency, high nutrient bioavailability, and flexibility of formulation to be met. Extrusion of the semi-purified diet produced Foodbars with the proper texture and a non-crumbing solid form for use in space. Treatment of Foodbar with 0.1% potassium sorbate prevented mold growth. Irradiation (15 to 25 kGy) prevented bacterial growth and, in combination with sorbate treatment, added protection against mold for shelf stability. During the development process, nutrient analyses indicated that extrusion and irradiation produces nutrient losses. Nutrients were adjusted accordingly to compensate for processing losses. Nutrient analysis of Foodbars continues to be performed routinely to monitor nutrient levels. It is important that the standard rodent diet provide nutrients that will prevent deficiency but also avoid excess that may mask physiologic changes produced by space flight. All vitamin levels in the Foodbars, except for vitamin K, conformed to or exceeded the current National Research Council (NRC) 1995 recommendations. All indispensable amino acids in Foodbar conformed to or exceeded the NRC nutrient recommendation for mouse growth and rat maintenance. However, some indispensable amino acids were slightly below recommendations for rat reproduction and growth. Short-term (18 to 20 d) animal feeding studies indicated that Foodbars are palatable, support growth, and maintain health in rats. Results indicated that NASA Rodent Foodbars meet the physical and nutritional criteria required to support rodents in the space environment and thus may be used successfully as a standard diet for short-term space flight studies. However, the nutritional adequacy of NASA Rodent Foodbars as a standard diet on longer-duration (>20 d) space flight missions remains to be determined.
Land use not litter quality is a stronger driver of decomposition in hyperdiverse tropical forest.
Both, Sabine; Elias, Dafydd M O; Kritzler, Ully H; Ostle, Nick J; Johnson, David
2017-11-01
In hyperdiverse tropical forests, the key drivers of litter decomposition are poorly understood despite its crucial role in facilitating nutrient availability for plants and microbes. Selective logging is a pressing land use with potential for considerable impacts on plant-soil interactions, litter decomposition, and nutrient cycling. Here, in Borneo's tropical rainforests, we test the hypothesis that decomposition is driven by litter quality and that there is a significant "home-field advantage," that is positive interaction between local litter quality and land use. We determined mass loss of leaf litter, collected from selectively logged and old-growth forest, in a fully factorial experimental design, using meshes that either allowed or precluded access by mesofauna. We measured leaf litter chemical composition before and after the experiment. Key soil chemical and biological properties and microclimatic conditions were measured as land-use descriptors. We found that despite substantial differences in litter quality, the main driver of decomposition was land-use type. Whilst inclusion of mesofauna accelerated decomposition, their effect was independent of land use and litter quality. Decomposition of all litters was slower in selectively logged forest than in old-growth forest. However, there was significantly greater loss of nutrients from litter, especially phosphorus, in selectively logged forest. The analyses of several covariates detected minor microclimatic differences between land-use types but no alterations in soil chemical properties or free-living microbial composition. These results demonstrate that selective logging can significantly reduce litter decomposition in tropical rainforest with no evidence of a home-field advantage. We show that loss of key limiting nutrients from litter (P & N) is greater in selectively logged forest. Overall, the findings hint at subtle differences in microclimate overriding litter quality that result in reduced decomposition rates in selectively logged forests and potentially affect biogeochemical nutrient cycling in the long term.
Vonnahme, K A; Hess, B W; Nijland, M J; Nathanielsz, P W; Ford, S P
2006-12-01
Maternal nutrient restriction from early to midgestation can lead to fetal growth retardation, with long-term impacts on offspring growth, physiology, and metabolism. We hypothesized that ewes from flocks managed under markedly different environmental conditions and levels of nutrition might differ in their ability to protect their own fetus from a bout of maternal nutrient restriction. We utilized multiparous ewes of similar breeding, age, and parity from 2 flocks managed as 1) ewes adapted to a nomadic existence and year-long, limited nutrition near Baggs, WY (Baggs ewes), and 2) University of Wyoming ewes with a sedentary lifestyle and continuous provision of more than adequate nutrition (UW ewes). Groups of Baggs ewes and UW ewes were fed 50 (nutrient restricted) or 100% (control fed) of National Research Council recommendations from d 28 to 78 of gestation, then necropsied, and fetal and placental data were obtained. Although there was a marked decrease (P < 0.05) in fetal weight and blood glucose concentrations in nutrient-restricted vs. control fed UW ewes, there was no difference in these fetal measurements between nutrient-restricted and control-fed Baggs ewes. Nutrient-restricted and control-fed UW ewes exhibited predominantly type A placentomes on d 78, but there were fewer (P c0.05) type A and greater (P < 0.05) numbers of type B, C, and D placentomes in nutrient-restricted than control-fed Baggs ewes. Placental efficiency (fetal weight/placentomal weight) was reduced (P = 0.04) in d 78 nutrient-restricted UW ewes when compared with control-fed UW ewes. In contrast, nutrient-restricted and control-fed Baggs ewes exhibited similar placental efficiencies on d 78. This is the first report of different placental responses to a nutritional challenge during pregnancy when ewes were selected under different management systems. These data are consistent with the concept that Baggs ewes or their conceptuses, which were adapted to both harsh environments and limited nutrition, initiated conversion of type A placentomes to other placentomal types when subjected to an early to mid-gestational nutrient restriction, whereas this conversion failed to occur in UW ewes. This early placentomal conversion in the Baggs ewes may function to maintain normal nutrient delivery to their developing fetuses during maternal nutrient restriction.
Fishing down nutrients on coral reefs.
Allgeier, Jacob E; Valdivia, Abel; Cox, Courtney; Layman, Craig A
2016-08-16
Fishing is widely considered a leading cause of biodiversity loss in marine environments, but the potential effect on ecosystem processes, such as nutrient fluxes, is less explored. Here, we test how fishing on Caribbean coral reefs influences biodiversity and ecosystem functions provided by the fish community, that is, fish-mediated nutrient capacity. Specifically, we modelled five processes of nutrient storage (in biomass) and supply (via excretion) of nutrients, as well as a measure of their multifunctionality, onto 143 species of coral reef fishes across 110 coral reef fish communities. These communities span a gradient from extreme fishing pressure to protected areas with little to no fishing. We find that in fished sites fish-mediated nutrient capacity is reduced almost 50%, despite no substantial changes in the number of species. Instead, changes in community size and trophic structure were the primary cause of shifts in ecosystem function. These findings suggest that a broader perspective that incorporates predictable impacts of fishing pressure on ecosystem function is imperative for effective coral reef conservation and management.
Eutrophication threatens Caribbean seagrasses - An example from Curaçao and Bonaire.
Govers, Laura L; Lamers, Leon P M; Bouma, Tjeerd J; de Brouwer, Jan H F; van Katwijk, Marieke M
2014-12-15
Seagrass beds are globally declining due to human activities in coastal areas. We here aimed to identify threats from eutrophication to the valuable seagrass beds of Curaçao and Bonaire in the Caribbean, which function as nursery habitats for commercial fish species. We documented surface- and porewater nutrient concentrations, and seagrass nutrient concentrations in 6 bays varying in nutrient loads. Water measurements only provided a momentary snapshot, due to timing, tidal stage, etc., but Thalassia testudinum nutrient concentrations indicated long-term nutrient loads. Nutrient levels in most bays did not raise any concern, but high leaf % P values of Thalassia in Piscadera Bay (∼0.31%) and Spanish Water Bay (∼0.21%) showed that seagrasses may be threatened by eutrophication, due to emergency overflow of waste water and coastal housing. We thus showed that seagrasses may be threatened and measures should be taken to prevent loss of these important nursery areas due to eutrophication. Copyright © 2014 Elsevier Ltd. All rights reserved.
Estimating Legacy Soil Phosphorus Impacts on Phosphorus Loss in The Chesapeake Bay Watershed
USDA-ARS?s Scientific Manuscript database
Agricultural nutrient management is an issue due to phosphorus (P) loss from fields and water quality degradation. This is especially true in watersheds where a history of P application in excess of crop needs has resulted in elevated soil P (legacy P). As practices and policy are implemented in suc...
NASA Astrophysics Data System (ADS)
Junakova, N.; Balintova, M.; Junak, J.
2017-10-01
The aim of this paper is to propose a mathematical model for determining of total nitrogen (N) and phosphorus (P) content in eroded soil particles with emphasis on prediction of bottom sediment quality in reservoirs. The adsorbed nutrient concentrations are calculated using the Universal Soil Loss Equation (USLE) extended by the determination of the average soil nutrient concentration in top soils. The average annual vegetation and management factor is divided into five periods of the cropping cycle. For selected plants, the average plant nutrient uptake divided into five cropping periods is also proposed. The average nutrient concentrations in eroded soil particles in adsorbed form are modified by sediment enrichment ratio to obtain the total nutrient content in transported soil particles. The model was designed for the conditions of north-eastern Slovakia. The study was carried out in the agricultural basin of the small water reservoir Klusov.
Computer model of hydroponics nutrient solution pH control using ammonium.
Pitts, M; Stutte, G
1999-01-01
A computer simulation of a hydroponics-based plant growth chamber using ammonium to control pH was constructed to determine the feasibility of such a system. In nitrate-based recirculating hydroponics systems, the pH will increase as plants release hydroxide ions into the nutrient solution to maintain plant charge balance. Ammonium is an attractive alternative to traditional pH controls in an ALSS, but requires careful monitoring and control to avoid overdosing the plants with ammonium. The primary advantage of using NH4+ for pH control is that it exploits the existing plant nutrient uptake charge balance mechanisms to maintain solution pH. The simulation models growth, nitrogen uptake, and pH of a l-m2 stand of wheat. Simulation results indicated that ammonium-based control of nutrient solution pH is feasible using a proportional integral controller. Use of a 1 mmol/L buffer (Ka = 1.6 x 10(-6)) in the nutrient solution is required.
Glacial runoff strongly influences food webs in Gulf of Alaska fjords
NASA Astrophysics Data System (ADS)
Arimitsu, M.; Piatt, J. F.; Mueter, F. J.
2015-12-01
Melting glaciers contribute large volumes of freshwater to the Gulf of Alaska coast. Rates of glacier volume loss have increased markedly in recent decades, raising concern about the eventual loss of glaciers as a source of freshwater in coastal waters. To better understand the influence of glacier melt water on fjord ecosystems, we sampled oceanography, nutrients, zooplankton, forage fish, and seabirds within four fjords in the coastal Gulf of Alaska. We used generalized additive models and geostatistics to identify the range of influence of glacier runoff in fjords of varying estuarine and topographic complexity. We also modeled the responses of chlorophyll a concentration, copepod biomass, fish and seabird abundance to physical, nutrient and biotic predictor variables. Physical and nutrient signatures of glacial runoff extended 10-20 km into coastal fjords. Glacially modified physical gradients and among-fjord differences explained 66% of the variation in phytoplankton abundance, which drives ecosystem structure at higher trophic levels. Copepod, euphausiid, fish and seabird distribution and abundance were also related to environmental gradients that could be traced to glacial freshwater input. Seabird density was predicted by prey availability and silica concentrations, which may indicate upwelling areas where this nutrient is in excess. Similarities in ecosystem structure among fjords were due to influx of cold, fresh, sediment and nutrient laden water, while differences were due to fjord topography and the relative importance of estuarine vs. ocean influences. We anticipate continued changes in the volume and magnitude of glacial runoff will affect coastal marine food webs in the future.
NASA Astrophysics Data System (ADS)
Street, L. E.; Burns, N. R.; Woodin, S. J.
2012-04-01
We re-visit a unique field manipulation study in Svalbard to assess the long-term recovery of plant species composition, leaf tissue chemistry and total ecosystem carbon storage from nutrient enrichment. The experiment was established in 1991. The original aim was to quantify the 'critical load' of nitrogen (N) for tundra; that is, the minimum rate of N deposition affecting ecosystem structure and function. Dissolved N was applied to heath vegetation, both alone and in combination with phosphorous (P), during the growing season over three years. The rates of N addition were lower than in most other nutrient manipulation studies, and were designed to represent typical rates of deposition in the Scottish highlands (50 kg N ha-1 yr-1) and maximum deposition rates experienced in the Arctic (10 kg N ha-1 yr-1). Significant changes in shrub cover, the greenness and N content of the moss layer, and the extent of ecosystem N saturation had occurred by the end of the treatment period. After 18 years of recovery without further treatment, we assessed primary productivity using CO2 flux measurements, and the 'greenness' of vegetation using the Normalised Difference Vegetation Index. We made destructive measurements of above- and below-ground carbon and nutrient stocks, quantified species composition and sampled leaf tissue for chemical analysis. Total carbon storage in organic soils and vegetation was c. 40 % lower in the plots treated with 50 kg N ha-1 yr-1 compared to controls. Species composition in N treated plots also differed significantly, but there was no clear treatment effect on primary productivity. Where 50 kg N ha-1 yr-1 was applied in combination with P (at 5 kg P ha-1 yr-1 ), organic carbon storage was c. 70 % greater than controls, the vegetation was greener, and primary productivity higher. Effects of the treatments were also still clearly apparent in moss tissue nutrient status, even at the lower nitrogen application rate. Our results imply that the effects of nutrient enrichment on High Arctic ecosystems are not readily reversible, and that short-term addition of N can result in long-term carbon losses. We show that mosses perform an important role in retaining deposited N aboveground. Our results also highlight the importance of P in mediating carbon cycle responses to increased N availability.
Suitability of Commercial Transport Media for Biological Pathogens under Nonideal Conditions
2011-01-01
microscopy (see supplemental data available online at doi:10.1155/2dl/463096), which showed the increase in recovery was the result of sporulation of...both nutrient poor, promoted sporulation [20]. Lower temper- atures inhibited B. anthracis Sterne sporulation , which in turn resulted in a rapid loss...for microorganisms capable of sporulation in nutrient-poor transport media. Unfortunately, if a sample slowly converts from the vegetative to the
Laboratory evaluation of oil spill bioremediation products in salt and freshwater systems.
Haines, John R; Kleiner, Eric J; McClellan, Kim A; Koran, Karen M; Holder, Edith L; King, Dennis W; Venosa, Albert D
2005-05-01
Ten oil spill bioremediation products were tested in the laboratory for their ability to enhance biodegradation of weathered Alaskan North Slope crude oil in both freshwater and saltwater media. The products included nutrients to stimulate inoculated microorganisms, nutrients plus an oil-degrading inoculum, nutrients plus compounds intended to stimulate oil-degrading activity, or other compounds intended to enhance microbial activity. The product tests were undertaken to evaluate significant modifications in the existing official United States Environmental Protection Agency (EPA) protocol used for qualifying commercial bioremediation agents for use in oil spills. The EPA protocol was modified to include defined formulas for the exposure waters (freshwater, saltwater), a positive control using a known inoculum and nutrients, two negative controls (one sterile, the other inoculated but nutrient-limited), and simplified oil chemical analysis. Three analysts conducted the product test independently in each type of exposure water in round-robin fashion. Statistical tests were performed on analyst variability, reproducibility, and repeatability, and the performance of the various products was quantified in both exposure media. Analysis of variance showed that the analyst error at each time-point was highly significant (P values ranged from 0.0001 to 0.008, depending on water type and oil fraction). In the saltwater tests, six products demonstrated various degrees of biodegradative activity against the alkane fraction of the crude oil and three degraded the aromatic hydrocarbons by >10%. In the freshwater tests, eight products caused >20% loss of alkane hydrocarbons, of which five degraded the alkanes by >50%. Only four products were able to degrade polycyclic aromatic hydrocarbons (PAHs) by >20%, one of which caused 88% removal. However, when the variability of the analysts was taken into consideration, only one of the ten products was found to yield significant percent removals of the PAH fraction and only in freshwater. Viable microorganism population analysis (most-probable-number method) was also performed on every sample by each operator to measure the changes in aromatic and alkane hydrocarbon-degrading organism numbers. In general, little evidence of significant growth of either alkane- or PAH-degraders occurred among any of the ten products in either the saltwater or freshwater testing.
Villagra, Mariana; Campanello, Paula I; Bucci, Sandra J; Goldstein, Guillermo
2013-12-01
Leaves can be both a hydraulic bottleneck and a safety valve against hydraulic catastrophic dysfunctions, and thus changes in traits related to water movement in leaves and associated costs may be critical for the success of plant growth. A 4-year fertilization experiment with nitrogen (N) and phosphorus (P) addition was done in a semideciduous Atlantic forest in northeastern Argentina. Saplings of five dominant canopy species were grown in similar gaps inside the forests (five control and five N + P addition plots). Leaf lifespan (LL), leaf mass per unit area (LMA), leaf and stem vulnerability to cavitation, leaf hydraulic conductance (K(leaf_area) and K(leaf_mass)) and leaf turgor loss point (TLP) were measured in the five species and in both treatments. Leaf lifespan tended to decrease with the addition of fertilizers, and LMA was significantly higher in plants with nutrient addition compared with individuals in control plots. The vulnerability to cavitation of leaves (P50(leaf)) either increased or decreased with the nutrient treatment depending on the species, but the average P50(leaf) did not change with nutrient addition. The P50(leaf) decreased linearly with increasing LMA and LL across species and treatments. These trade-offs have an important functional significance because more expensive (higher LMA) and less vulnerable leaves (lower P50(leaf)) are retained for a longer period of time. Osmotic potentials at TLP and at full turgor became more negative with decreasing P50(leaf) regardless of nutrient treatment. The K(leaf) on a mass basis was negatively correlated with LMA and LL, indicating that there is a carbon cost associated with increased water transport that is compensated by a longer LL. The vulnerability to cavitation of stems and leaves were similar, particularly in fertilized plants. Leaves in the species studied may not function as safety valves at low water potentials to protect the hydraulic pathway from water stress-induced cavitation. The lack of rainfall seasonality in the subtropical forest studied probably does not act as a selective pressure to enhance hydraulic segmentation between leaves and stems.
Do ungulates accelerate or decelerate nitrogen cycling?
Singer, F.J.; Schoenecker, K.A.
2003-01-01
Nitrogen (N) is an essential nutrient for plants and animals, and N may be limiting in many western US grassland and shrubland ungulate winter ranges. Ungulates may influence N pools and they may alter N inputs and outputs (losses) to the ecosystem in a number of ways. In this paper we compare the ecosystem effects of ungulate herbivory in two western national parks, Rocky Mountain National Park (RMNP), Colorado, and Yellowstone National Park (YNP), Wyoming. We compare ungulate herbivory effects on N pools, N fluxes, N yields, and plant productivity in the context of the accelerating and decelerating nutrient cycling scenarios [Ecology 79 (1998) 165]. We concluded that the YNP grasslands fit the accelerating nutrient cycling scenario for ungulate herbivory: in response to grazing, grassland plant species abundance was largely unaltered, net annual aboveground primary productivity (NAPP) was stimulated (except during drought), consumption of key N-rich forages by ungulates was moderate and their abundance was sustained, soil N mineralization rates doubled, N pools increased, aboveground N yield increased, and N concentrations increased in most grassland plant species. Grazing in grasslands in RMNP resulted in no consistent detectable acceleration or deceleration of nutrient cycling. Grazing effects in short willow and aspen vegetation types in RMNP fit the decelerating nutrient cycling scenario of Ritchie et al. [Ecology 79 (1998) 165]. Key N-rich forages declined due to herbivory (willows, aspen, herbaceous vegetation). Aboveground production declined, soil N mineralization rates declined, N pools declined (NO3− pools were 30% that of ungrazed controls), and aboveground N yield declined. We believe that the higher ungulate densities and rates of plant consumption in RMNP, large declines in N-rich forage plants, and possibly a tendency of ungulates to move N from willow and aspen vegetation types to other types in RMNP, contributed to deceleration of nutrient cycling in two vegetation types in RMNP compared to acceleration in grasslands in YNP.
S6K links cell fate, cell cycle and nutrient response in C. elegans germline stem/progenitor cells
Korta, Dorota Z.; Tuck, Simon; Hubbard, E. Jane Albert
2012-01-01
Coupling of stem/progenitor cell proliferation and differentiation to organismal physiological demands ensures the proper growth and homeostasis of tissues. However, in vivo mechanisms underlying this control are poorly characterized. We investigated the role of ribosomal protein S6 kinase (S6K) at the intersection of nutrition and the establishment of a stem/progenitor cell population using the C. elegans germ line as a model. We find that rsks-1 (which encodes the worm homolog of mammalian p70S6K) is required germline-autonomously for proper establishment of the germline progenitor pool. In the germ line, rsks-1 promotes cell cycle progression and inhibits larval progenitor differentiation, promotes growth of adult tumors and requires a conserved TOR phosphorylation site. Loss of rsks-1 and ife-1 (eIF4E) together reduces the germline progenitor pool more severely than either single mutant and similarly to reducing the activity of let-363 (TOR) or daf-15 (RAPTOR). Moreover, rsks-1 acts in parallel with the glp-1 (Notch) and daf-2 (insulin-IGF receptor) pathways, and does not share the same genetic dependencies with its role in lifespan control. We show that overall dietary restriction and amino acid deprivation cause germline defects similar to a subset of rsks-1 mutant phenotypes. Consistent with a link between diet and germline proliferation via rsks-1, loss of rsks-1 renders the germ line largely insensitive to the effects of dietary restriction. Our studies establish the C. elegans germ line as an in vivo model to understand TOR-S6K signaling in proliferation and differentiation and suggest that this pathway is a key nutrient-responsive regulator of germline progenitors. PMID:22278922
Song, Yanyu; Song, Changchun; Ren, Jiusheng; Tan, Wenwen; Jin, Shaofei; Jiang, Lei
2018-06-01
Nitrogen (N) availability affects litter decomposition and nutrient dynamics, especially in N-limited ecosystems. We investigated the response of litter decomposition to N additions in Eriophorum vaginatum and Vaccinium uliginosum peatlands. These two species dominate peatlands in Northeast China. In 2012, mesh bags containing senesced leaf litter of Eriophorum vaginatum and Vaccinium uliginosum were placed in N addition plots and sprayed monthly for two years with NH 4 NO 3 solution at dose rates of 0, 6, 12, and 24gNm -2 year -1 (CK, N1, N2 and N3, respectively). Mass loss, N and phosphorus (P) content, and enzymatic activity were measured over time as litter decomposed. In the control plots, V. uliginosum litter decomposed faster than E. vaginatum litter. N1, N2, and N3 treatments increased the mass losses of V. uliginosum litter by 6%, 9%, and 4% respectively, when compared with control. No significant influence of N additions was found on the decomposition of E. vaginatum litter. However, N and P content in E. vaginatum litter and V. uliginosum litter significantly increased with N additions. Moreover, N additions significantly promoted invertase and β-glucosidase activity in E. vaginatum and V. uliginosum litter. However, only in V. uliginosum litter was polyphenol oxidase activity significantly enhanced. Our results showed that initial litter quality and polyphenol oxidase activity influence the response of plant litter to N additions in peatland ecosystems. Increased N availability may change peatland soil N and P cycling by enhancing N and P immobilization during litter decomposition. Copyright © 2018 Elsevier B.V. All rights reserved.
Nitrogen Runoff Losses during Warm-Season Turfgrass Sod Establishment.
Wherley, Benjamin G; Aitkenhead-Peterson, Jacqueline A; Stanley, Nina C; Thomas, James C; Fontanier, Charles H; White, Richard H; Dwyer, Phil
2015-07-01
Concern exists over the potential loss of nitrogen (N) and phosphorus (P) in runoff from newly established and fertilized lawns. Nutrient losses can be higher from turf when shoot density and surface cover are low and root systems are not fully developed. This study was conducted to evaluate fertilizer source and timing effects on nutrient losses from newly sodded lawns of St. Augustinegrass [ (Walt.) Kuntze]. For each study, 12 33.6-m plots were established on an undisturbed Alfisol having a 3.7% slope. Each plot was equipped with a runoff collection system, instrumentation for runoff flow rate measurement, and automated samplers. A 28-d establishment study was initiated on 8 Aug. 2012 and repeated on 9 Sept. 2012. Treatments included unfertilized plots, fertilized plots receiving 4.88 g N m as urea 6 d after planting, fertilized plots receiving 4.88 g N m as sulfur-coated urea 6 d after planting, and fertilized plots receiving 4.88 g N m as urea 19 d after planting. Runoff events were created by irrigating with 17 mm of water over 27 min. Runoff water samples were collected after every 37.8 L and analyzed for NO-N, NH-N, dissolved organic N (DON), and PO-P. Increases of approximately 2 to 4 mg L NO-N and 8 to 12 mg L PO-P occurred in runoff 1 d after fertilization, which returned to background levels within 7 d. Total fertilizer N lost to runoff was 0.6 to 4.2% of that applied. Delaying fertilizer application until 19 d after planting provided no reduction in nutrient loss compared with a similar application 6 d after planting. Approximately 33% of the N lost in runoff was as DON. This large amount of DON suggests significant N loss from decomposing organic matter may occur during sod establishment. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Oricchio, Elisa; Katanayeva, Natalya; Donaldson, Maria Christine; Sungalee, Stephanie; Pasion, Joyce P.; Béguelin, Wendy; Battistello, Elena; Sanghvi, Viraj R.; Jiang, Man; Jiang, Yanwen; Teater, Matt; Parmigiani, Anita; Budanov, Andrei V.; Chan, Fong Chun; Shah, Sohrab P.; Kridel, Robert; Melnick, Ari M.; Ciriello, Giovanni; Wendel, Hans-Guido
2017-01-01
Follicular lymphoma (FL) is an incurable form of B cell lymphoma. Genomic studies have cataloged common genetic lesions in FL such as translocation t(14;18), frequent losses of chromosome 6q, and mutations in epigenetic regulators such as EZH2. Using a focused genetic screen, we identified SESTRIN1 as a relevant target of the 6q deletion and demonstrate tumor suppression by SESTRIN1 in vivo. Moreover, SESTRIN1 is a direct target of the lymphoma-specific EZH2 gain-of-function mutation (EZH2Y641X). SESTRIN1 inactivation disrupts p53-mediated control of mammalian target of rapamycin complex 1 (mTORC1) and enables mRNA translation under genotoxic stress. SESTRIN1 loss represents an alternative to RRAGC mutations that maintain mTORC1 activity under nutrient starvation. The antitumor efficacy of pharmacological EZH2 inhibition depends on SESTRIN1, indicating that mTORC1 control is a critical function of EZH2 in lymphoma. Conversely, EZH2Y641X mutant lymphomas show increased sensitivity to RapaLink-1, a bifunctional mTOR inhibitor. Hence, SESTRIN1 contributes to the genetic and epigenetic control of mTORC1 in lymphoma and influences responses to targeted therapies. PMID:28659443
The effect of obesity, weight gain, and weight loss on asthma inception and control.
Forno, Erick; Celedón, Juan C
2017-04-01
There is ample and growing evidence that obesity increases the risk of asthma and morbidity from asthma. Here, we review recent clinical evidence supporting a causal link between obesity and asthma, and the mechanisms that may lead to 'obese asthma'. Although in some children obesity and asthma simply co-occur, those with 'obese asthma' have increased asthma severity, lower quality of life, and reduced medication response. Underlying mechanistic pathways may include anatomical changes of the airways such as obstruction and dysanapsis, systemic inflammation, production of adipokines, impaired glucose-insulin metabolism, altered nutrient levels, genetic and epigenetic changes, and alterations in the airway and/or gut microbiome. A few small studies have shown that weight loss interventions may lead to improvements in asthma outcomes, but thus far research on therapeutic interventions for these children has been limited. Obesity increases the risk of asthma - and worsens asthma severity or control - via multiple mechanisms. 'Obese asthma' is a complex, multifactorial phenotype in children. Obesity and its complications must be managed as part of the treatment of asthma in obese children.
Adaptive management for soil ecosystem services.
Birgé, Hannah E; Bevans, Rebecca A; Allen, Craig R; Angeler, David G; Baer, Sara G; Wall, Diana H
2016-12-01
Ecosystem services provided by soil include regulation of the atmosphere and climate, primary (including agricultural) production, waste processing, decomposition, nutrient conservation, water purification, erosion control, medical resources, pest control, and disease mitigation. The simultaneous production of these multiple services arises from complex interactions among diverse aboveground and belowground communities across multiple scales. When a system is mismanaged, non-linear and persistent losses in ecosystem services can arise. Adaptive management is an approach to management designed to reduce uncertainty as management proceeds. By developing alternative hypotheses, testing these hypotheses and adjusting management in response to outcomes, managers can probe dynamic mechanistic relationships among aboveground and belowground soil system components. In doing so, soil ecosystem services can be preserved and critical ecological thresholds avoided. Here, we present an adaptive management framework designed to reduce uncertainty surrounding the soil system, even when soil ecosystem services production is not the explicit management objective, so that managers can reach their management goals without undermining soil multifunctionality or contributing to an irreversible loss of soil ecosystem services. Copyright © 2016. Published by Elsevier Ltd.
Cladonia lichens on extensive green roofs: evapotranspiration, substrate temperature, and albedo.
Heim, Amy; Lundholm, Jeremy
2013-01-01
Green roofs are constructed ecosystems that provide ecosystem services in urban environments. Shallow substrate green roofs subject the vegetation layer to desiccation and other environmental extremes, so researchers have evaluated a variety of stress-tolerant vegetation types for green roof applications. Lichens can be found in most terrestrial habitats. They are able to survive extremely harsh conditions, including frequent cycles of desiccation and rehydration, nutrient-poor soil, fluctuating temperatures, and high UV intensities. Extensive green roofs (substrate depth <20cm) exhibit these harsh conditions, making lichens possible candidates for incorporation into the vegetation layer on extensive green roofs. In a modular green roof system, we tested the effect of Cladonia lichens on substrate temperature, water loss, and albedo compared to a substrate-only control. Overall, the Cladonia modules had significantly cooler substrate temperatures during the summer and significantly warmer temperatures during the fall. Additionally, the Cladonia modules lost significantly less water than the substrate-only control. This implies that they may be able to benefit neighboring vascular plant species by reducing water loss and maintaining favorable substrate temperatures.
Hotspots for Nitrogen and Phosphorus Losses from Food Production in China: A County-Scale Analysis
2018-01-01
Food production in China results in large losses of nitrogen (N) and phosphorus (P) to the environment. Our objective is to identify hotspots for N and P losses to the environment from food production in China at the county scale. To do this, we used the NUFER (Nutrient flows in Food chains, Environment and Resources use) model. Between 1990 and 2012, the hotspot area expanded by a factor of 3 for N, and 24 for P. In 2012 most hotspots were found in the North China Plain. Hotspots covered less than 10% of the Chinese land area, but contributed by more than half to N and P losses to the environment. Direct discharge of animal manure to rivers was an important cause of N and P losses. Food production was found to be more intensive in hotspots than in other counties. Synthetic fertilizer use and animal numbers in hotspots were a factor of 4–5 higher than in other counties in 2012. Also the number of people working in food production and the incomes of farmers are higher in hotspots than in other counties. This study concludes with suggestions for region-specific pollution control technologies for food production in China. PMID:29671326
López-Otín, Carlos; Blasco, Maria A.; Partridge, Linda; Serrano, Manuel; Kroemer, Guido
2013-01-01
Aging is characterized by a progressive loss of physiological integrity, leading to impaired function and increased vulnerability to death. This deterioration is the primary risk factor for major human pathologies including cancer, diabetes, cardiovascular disorders, and neurodegenerative diseases. Aging research has experienced an unprecedented advance over recent years, particularly with the discovery that the rate of aging is controlled, at least to some extent, by genetic pathways and biochemical processes conserved in evolution. This review enumerates nine tentative hallmarks that represent common denominators of aging in different organisms, with special emphasis on mammalian aging. These hallmarks are: genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient-sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and altered intercellular communication. A major challenge is to dissect the interconnectedness between the candidate hallmarks and their relative contribution to aging, with the final goal of identifying pharmaceutical targets to improve human health during aging with minimal side-effects. PMID:23746838
Ly, C T; Diallo, A; Simondon, F; Simondon, K B
2006-02-01
Early supplementation of breastfed infants may have consequences both for the mother and the child. We hypothesised that it would result in decreased maternal weight loss and in shorter durations of breastfeeding and birth intervals. Controlled randomised population-based trial. Six villages in the Sine area of Senegal, West Africa. Healthy breastfed infants and their mothers, 68 controls and 66 supplemented infants at randomization. Supplementation with high-energy, nutrient dense food from 4 to 7 months of age, twice daily under supervision of field workers. Both controls and supplemented infants were free to eat other complementary foods. Maternal weight was measured monthly. Dates of breastfeeding cessation and of subsequent births were collected prospectively through weekly demographic surveillance, and were analysed using Cox's regression models and 'intent-to-supplement' approach. Mean maternal weight gain from 4 to 7 months postpartum tended to be greater in the supplemented group (+0.25 kg/months, 95% confidence interval (CI): -0.07, +0.57). Supplemented infants were breastfed for significantly longer durations than controls (medians: 24.9 and 23.7 months, respectively, P: 0.034). Their adjusted hazard ratio (HR) for breastfeeding cessation was 0.59 (95% CI: 0.40, 0.89). Their mothers had a lower risk of a new birth than mothers of controls (adjusted HR: 0.57, 95% CI: 0.36, 0.92). Early short-term infant supplementation tended to decrease maternal postpartum weight loss, but it increased, rather than shortened, the duration of breastfeeding and birth interval. This study was supported by a grant from the French Ministry of Research (Grant 92L0623).
Consequences of waterlogging in cotton and opportunities for mitigation of yield losses
Najeeb, Ullah; Bange, Michael P.; Tan, Daniel K. Y.; Atwell, Brian J.
2015-01-01
Climatic variability, typified by erratic heavy-rainfall events, causes waterlogging in intensively irrigated crops and is exacerbated under warm temperature regimes on soils with poor internal drainage. Irrigated cotton is often grown in precisely these conditions, exposing it to waterlogging-induced yield losses after substantial summer rainfall. This calls for a deeper understanding of mechanisms of waterlogging tolerance and its relevance to cotton. Hence this review suggests possible causes of waterlogging-induced yield loss in cotton and approaches to improvement of waterlogging tolerance, drawing upon the slight body of published data in cotton and principles from other species. The yield penalty depends on soil type, phenological stage and cumulative period of root exposure to air-filled porosities below 10 %. Events in the soil include O2 deficiency in the root zone that changes the redox state of nutrients, making them unavailable (e.g. nitrogen) or potentially toxic for plants. Furthermore, root-derived hormones that are transported in the xylem have long been associated with oxygen deficits. These belowground effects (impaired root growth, nutrient uptake and transport, hormonal signalling) affect the shoots, interfering with canopy development, photosynthesis and radiation-use efficiency. Compared with the more waterlogging-tolerant cereals, cotton does not have identified adaptations to waterlogging in the root zone, forming no conspicuous root aerenchyma and having low fermentative activity. We speculate that these factors contribute substantially to the sensitivity of cotton to sustained periods of waterlogging. We discuss the impact of these belowground factors on shoot performance, photosynthesis and yield components. Management practices, i.e. soil aeration, scheduling irrigation and fertilizer application, can reduce waterlogging-induced damage. Limiting ethylene biosynthesis using anti-ethylene agents and down-regulating expression of genes controlling ethylene biosynthesis are strong candidates to minimize yield losses in waterlogged cotton crops. Other key pathways of anoxia tolerance are also cited as potential tools towards waterlogging-tolerant cotton genotypes. PMID:26194168
Nutrition in the Bin: A Nutritional and Environmental Assessment of Food Wasted in the UK
Cooper, Karen A.; Quested, Tom E.; Lanctuit, Helene; Zimmermann, Diane; Espinoza-Orias, Namy; Roulin, Anne
2018-01-01
The UK currently has the most detailed, directly measured data for food wasted in the home. This includes information on the exact types of food wasted. These data allow calculation of the nutrients within that waste, as well as its environmental impact. The results progress the conversation beyond how much food is wasted or its energy content; it permits the implications for nutrition and sustainability to be assessed in detail. Data for UK household food waste were expressed as an average waste per capita for each type of food. Each food type was matched with an item (or group of items) from the UK Composition of Foods (7th Ed). The level of nutrients wasted was compared to UK Reference Nutrient Intakes (RNIs) for adult women (19–50 years, used as a proxy for general population requirements). The data were normalized into “nutrient days” wasted per capita per year, then into the number of complete diet days (for 21 nutrients plus energy). Results show that approximately 42 daily diets were discarded per capita per year. By individual nutrient, the highest losses were vitamin B12, vitamin C, and thiamin (160, 140, and 130 nutrient days/capita/year, respectively). For protein, dietary energy and carbohydrates, 88, 59, and 53 nutrient days/capita/year, respectively, were lost. Substantial losses were also found for under-consumed nutrients in the UK: calcium, which was mostly lost via bakery (27%) and dairy/eggs (27%). Food folate was mainly lost through fresh vegetables/salads (40%) and bakery (18%), as was dietary fiber (31 and 29%, respectively). Environmental impacts were distributed over the food groups, with wasted meat and fish the single largest contribution. For all environmental impacts studied, the largest contribution came from agricultural production. This paper shows that there are areas where interventions preventing food waste and promoting healthy eating could work together (e.g., encouraging consumption of vegetables or tackling overbuying, especially of unhealthy foods). Food manufacturers and retailers, alongside governments and NGOs, have a key role to minimize waste of environmentally impactful, nutrient-dense foods, for instance, by helping influence people’s behaviors with appropriate formulation of products, packaging, portioning, use of promotions, or public education. PMID:29644218
Nutrition in the Bin: A Nutritional and Environmental Assessment of Food Wasted in the UK.
Cooper, Karen A; Quested, Tom E; Lanctuit, Helene; Zimmermann, Diane; Espinoza-Orias, Namy; Roulin, Anne
2018-01-01
The UK currently has the most detailed, directly measured data for food wasted in the home. This includes information on the exact types of food wasted. These data allow calculation of the nutrients within that waste, as well as its environmental impact. The results progress the conversation beyond how much food is wasted or its energy content; it permits the implications for nutrition and sustainability to be assessed in detail. Data for UK household food waste were expressed as an average waste per capita for each type of food. Each food type was matched with an item (or group of items) from the UK Composition of Foods (7th Ed). The level of nutrients wasted was compared to UK Reference Nutrient Intakes (RNIs) for adult women (19-50 years, used as a proxy for general population requirements). The data were normalized into "nutrient days" wasted per capita per year, then into the number of complete diet days (for 21 nutrients plus energy). Results show that approximately 42 daily diets were discarded per capita per year. By individual nutrient, the highest losses were vitamin B 12 , vitamin C, and thiamin (160, 140, and 130 nutrient days/capita/year, respectively). For protein, dietary energy and carbohydrates, 88, 59, and 53 nutrient days/capita/year, respectively, were lost. Substantial losses were also found for under-consumed nutrients in the UK: calcium, which was mostly lost via bakery (27%) and dairy/eggs (27%). Food folate was mainly lost through fresh vegetables/salads (40%) and bakery (18%), as was dietary fiber (31 and 29%, respectively). Environmental impacts were distributed over the food groups, with wasted meat and fish the single largest contribution. For all environmental impacts studied, the largest contribution came from agricultural production. This paper shows that there are areas where interventions preventing food waste and promoting healthy eating could work together (e.g., encouraging consumption of vegetables or tackling overbuying, especially of unhealthy foods). Food manufacturers and retailers, alongside governments and NGOs, have a key role to minimize waste of environmentally impactful, nutrient-dense foods, for instance, by helping influence people's behaviors with appropriate formulation of products, packaging, portioning, use of promotions, or public education.
Bagwell, Christopher E.; Abernathy, Amanda; Barnwell, Remy; Milliken, Charles E.; Noble, Peter A.; Dale, Taraka; Beauchesne, Kevin R.; Moeller, Peter D. R.
2016-01-01
Microalgae could become an important resource for addressing increasing global demand for food, energy, and commodities while helping to reduce atmospheric greenhouse gasses. Even though Chlorophytes are generally regarded safe for human consumption, there is still much we do not understand about the metabolic and biochemical potential of microscopic algae. The aim of this study was to evaluate biofuel candidate strains of Chlorella and Scenedesmus for the potential to produce bioactive metabolites when grown under nutrient depletion regimes intended to stimulate production of triacylglycerides. Strain specific combinations of macro- and micro-nutrient restricted growth media did stimulate neutral lipid accumulation by microalgal cultures. However, cultures that were restricted for iron consistently and reliably tested positive for cytotoxicity by in vivo bioassays. The addition of iron back to these cultures resulted in the disappearance of the bioactive components by LC/MS fingerprinting and loss of cytotoxicity by in vivo bioassay. Incomplete NMR characterization of the most abundant cytotoxic fractions suggested that small molecular weight peptides and glycosides could be responsible for Chlorella cytotoxicity. Experiments were conducted to determine if the bioactive metabolites induced by Fe-limitation in Chlorella sp. cultures would elicit protection against Vampirovibrio chlorellavorus, an obligate predator of Chlorella. Introduction of V. chlorellavorus resulted in a 72% decrease in algal biomass in the experimental controls after 7 days. Conversely, only slight losses of algal biomass were measured for the iron limited Chlorella cultures (0–9%). This study demonstrates a causal linkage between iron bioavailability and bioactive metabolite production in strains of Chlorella and Scenedesmus. Further study of this phenomenon could contribute to the development of new strategies to extend algal production cycles in open, outdoor systems while ensuring the protection of biomass from predatory losses. PMID:27148205
NASA Astrophysics Data System (ADS)
Sun, Xiaolei; Zhang, Haichao; Sheikhahmadi, Ardashir; Wang, Yufeng; Jiao, Hongchao; Lin, Hai; Song, Zhigang
2015-02-01
In broiler chickens, heat stress disrupts nutrient digestion and absorption. However, the underlying molecular mechanism is not clearly understood. Hence, to investigate the effects of high ambient temperatures on the expression levels of nutrient transporters in the jejunum of broiler chickens, seventy-two 35-day-old male broiler chickens with similar body weights were randomly allocated into two groups: control (24 ± 1 °C) and heat-stressed (32 ± 1 °C). The chickens in the heat-stressed group were exposed to 10 h of heat daily from 08:00 to 18:00 and then raised at 24 ± 1 °C. The rectal temperature and feed intake of the chickens were recorded daily. After 7 days, nine chickens per group were sacrificed by exsanguination, and the jejunum was collected. The results show that heat exposure significantly decreased the feed intake and increased the rectal temperature of the broiler chickens. The plasma concentrations of uric acid and triglyceride significantly increased and decreased, respectively, in the heat-stressed group. No significant differences in the levels of plasma glucose, total amino acids, and very low-density lipoprotein were observed between the heat-stressed and control groups. However, the plasma concentration of glucose tended to be higher ( P = 0.09) in the heat-stressed group than in the control group. Heat exposure did not significantly affect the mRNA levels of Na+-dependent glucose transporter 1 and amino acid transporters y + LAT1, CAT1, r-BAT, and PePT-1. However, the expression levels of GLUT-2, FABP1, and CD36 were significantly decreased by heat exposure. The results of this study provide new insights into the mechanisms by which heat stress affects nutrient absorption in broiler chickens. Our findings suggest that periodic heat exposure might alter the jejunal glucose and lipid transport rather than amino acid transport. However, intestinal epithelial damage and cell loss should be considered when interpreting the effects of heat stress on the expression of intestinal transporters.
Tripathi, M K.; Mishra, A S.; Misra, A K.; Mondal, D; Karim, S A.
2001-03-01
Twenty-four 14-day-old weaner Avivastra (Russian MerinoxNali) male lambs were maintained for 180 days on ad libidum Cenchrus (Cenchrus ciliaris) hay and concentrate mixture (CM) contained groundnut meal (control) and mustard meal (MM group) as major protein source. The two CMs were isonitrogenous (21% CP) and isocaloric (2.78McalMEkg(-1) DM), while, CM fed to MM group contained 24.6mg glucosinolatesg(-1) DM. Digestibility of nutrients was similar (P>0.05) in the two groups except for CP and hemicellulose, which was higher (P<0.05) in control. Urinary N loss was higher (P<0.01) in control than in MM group, whereas N retention (% of N intake and absorbed) was higher (P<0.01) in MM group compared to control. Dry matter (gkg(-1)BW) and glucosinolate intakes were higher in MM fed group, whereas DCP and ME intakes were similar (P>0.05) in the two groups. Average daily gain (ADG) was, however, 22% higher (P<0.01) in control than in MM group. Hemoglobin and albumin contents were lower (P<0.01) in MM group than in control. Serum thiocyanate content was 26.7µgg(-1) in MM fed group, while it was not detected in control group. Thyroid weight was higher (P<0.01) while liver and kidney weights were lower (P<0.01) in MM group. Meat from dissected carcass of control group contained more protein and less fat, whereas the reverse was noticed in MM group. It is concluded that feeding mustard meal as protein supplement reduced growth rate and induced iodine deficiency. Carcass of lambs fed mustard meal had more fat and less protein.
Ecological impacts of winter water level drawdowns on lake littoral zones: A review
Roy, Allison
2017-01-01
Freshwater littoral zones harbor diverse ecological communities and serve numerous ecosystem functions that are controlled, in part, by natural water level fluctuations. However, human alteration of lake hydrologic regimes beyond natural fluctuations threaten littoral zone ecological integrity. One type of hydrologic alteration in lakes is winter water level drawdowns, which are frequently employed for hydropower, flood control, and macrophyte control, among other purposes. Here, we synthesize the abiotic and biotic responses to annual and novel winter water level drawdowns in littoral zones of lakes and reservoirs. The dewatering, freezing, and increased erosion of exposed lakebeds drive changes in the littoral zone. Shoreline-specific physicochemical conditions such as littoral slope and shoreline exposure further induce modifications. Loss of fine sediment decreases nutrient availability over time, but desiccation may promote a temporary nutrient pulse upon re-inundation. Annual winter drawdowns can decrease taxonomic richness of macrophytes and benthic invertebrates and shift assemblage composition to favor taxa with r-selected life history strategies and with functional traits resistant to direct and indirect drawdown effects. Fish assemblages, though less directly affected by winter drawdowns (except where there is critically low dissolved oxygen), experience negative effects via indirect pathways like decreased food resources and spawning habitat. We identify eight general research gaps to guide future research that could improve our understanding about the complex effects of winter drawdowns on littoral zone ecology.
Scharmann, Mathias; Thornham, Daniel G.; Grafe, T. Ulmar; Federle, Walter
2013-01-01
Many plants combat herbivore and pathogen attack indirectly by attracting predators of their herbivores. Here we describe a novel type of insect–plant interaction where a carnivorous plant uses such an indirect defence to prevent nutrient loss to kleptoparasites. The ant Camponotus schmitzi is an obligate inhabitant of the carnivorous pitcher plant Nepenthes bicalcarata in Borneo. It has recently been suggested that this ant–plant interaction is a nutritional mutualism, but the detailed mechanisms and the origin of the ant-derived nutrient supply have remained unexplained. We confirm that N. bicalcarata host plant leaves naturally have an elevated 15N/14N stable isotope abundance ratio (δ15N) when colonised by C. schmitzi. This indicates that a higher proportion of the plants’ nitrogen is insect-derived when C. schmitzi ants are present (ca. 100%, vs. 77% in uncolonised plants) and that more nitrogen is available to them. We demonstrated direct flux of nutrients from the ants to the host plant in a 15N pulse-chase experiment. As C. schmitzi ants only feed on nectar and pitcher contents of their host, the elevated foliar δ15N cannot be explained by classic ant-feeding (myrmecotrophy) but must originate from a higher efficiency of the pitcher traps. We discovered that C. schmitzi ants not only increase the pitchers' capture efficiency by keeping the pitchers’ trapping surfaces clean, but they also reduce nutrient loss from the pitchers by predating dipteran pitcher inhabitants (infauna). Consequently, nutrients the pitchers would have otherwise lost via emerging flies become available as ant colony waste. The plants’ prey is therefore conserved by the ants. The interaction between C. schmitzi, N. bicalcarata and dipteran pitcher infauna represents a new type of mutualism where animals mitigate the damage by nutrient thieves to a plant. PMID:23717446
Scharmann, Mathias; Thornham, Daniel G; Grafe, T Ulmar; Federle, Walter
2013-01-01
Many plants combat herbivore and pathogen attack indirectly by attracting predators of their herbivores. Here we describe a novel type of insect-plant interaction where a carnivorous plant uses such an indirect defence to prevent nutrient loss to kleptoparasites. The ant Camponotus schmitzi is an obligate inhabitant of the carnivorous pitcher plant Nepenthes bicalcarata in Borneo. It has recently been suggested that this ant-plant interaction is a nutritional mutualism, but the detailed mechanisms and the origin of the ant-derived nutrient supply have remained unexplained. We confirm that N. bicalcarata host plant leaves naturally have an elevated (15)N/(14)N stable isotope abundance ratio (δ(15)N) when colonised by C. schmitzi. This indicates that a higher proportion of the plants' nitrogen is insect-derived when C. schmitzi ants are present (ca. 100%, vs. 77% in uncolonised plants) and that more nitrogen is available to them. We demonstrated direct flux of nutrients from the ants to the host plant in a (15)N pulse-chase experiment. As C. schmitzi ants only feed on nectar and pitcher contents of their host, the elevated foliar δ(15)N cannot be explained by classic ant-feeding (myrmecotrophy) but must originate from a higher efficiency of the pitcher traps. We discovered that C. schmitzi ants not only increase the pitchers' capture efficiency by keeping the pitchers' trapping surfaces clean, but they also reduce nutrient loss from the pitchers by predating dipteran pitcher inhabitants (infauna). Consequently, nutrients the pitchers would have otherwise lost via emerging flies become available as ant colony waste. The plants' prey is therefore conserved by the ants. The interaction between C. schmitzi, N. bicalcarata and dipteran pitcher infauna represents a new type of mutualism where animals mitigate the damage by nutrient thieves to a plant.
Upland and in-stream controls on baseflow nutrient dynamics in tile-drained agroecosystem watersheds
USDA-ARS?s Scientific Manuscript database
Controls on baseflow nutrient concentrations in agroecosystems are poorly characterized in comparison with storm events. However, in landscapes with low residence times (e.g., rivers and reservoirs), baseflow nutrient concentration dynamics during sensitive timeframes can drive deleterious environm...
NASA Astrophysics Data System (ADS)
Cerretelli, Stefania; Poggio, Laura; Gimona, Alessandro; Peressotti, Alessandro; Black, Helaina
2017-04-01
Land and soil degradation are widespread especially in dry and developing countries such as Ethiopia. Land degradation leads to ecosystems services (ESS) degradation, because it causes the depletion and loss of several soil functions. Ethiopia's farmland faces intense degradation due to deforestation, agricultural land expansion, land overexploitation and overgrazing. In this study we modelled the impact of physical factors on ESS degradation, in particular soil erodibility, carbon storage and nutrient retention, in the Ethiopian Great Rift Valley, northwestern of Hawassa. We used models of the Sediment retention/loss, the Nutrient Retention/loss (from the software suite InVEST) and Carbon Storage. To run the models we coupled soil local data (such as soil organic carbon, soil texture) with remote sensing data as input in the parametrization phase, e.g. to derive a land use map, to calculate the aboveground and belowground carbon, the evapotraspiration coefficient and the capacity of vegetation to retain nutrient. We then used spatialised Bayesian Belief Networks (sBBNs) predicting ecosystem services degradation on the basis of the results of the three mechanistic models. The results show i) the importance of mapping of ESS degradation taking into consideration the spatial heterogeneity and the cross-correlations between impacts ii) the fundamental role of remote sensing data in monitoring and modelling in remote, data-poor areas and iii) the important role of spatial BBNs in providing spatially explicit measures of risk and uncertainty. This approach could help decision makers to identify priority areas for intervention in order to reduce land and ecosystem services degradation.
NASA Astrophysics Data System (ADS)
Tenhunen, J. D.; Kang, S.
2011-12-01
The Millenium Assessment has provided a broad perspective on the ways and degree to which global change has stressed ecosystems and their potential to deliver goods and services to mankind. Management of natural resources at regional scale requires a clear understanding of the ways that ongoing human activities modify or create new system stressors, leading to net gains or losses in ecosystem services. Ever since information from the International Biological Program (IBP) was summarized in the 1960s, we know that ecosystem stress response, recovery and resilience are related to changes in ecosystem turnover of materials, nutrient retention or loss, resource use efficiencies, and additional ecosystem properties that determine fluxes of carbon, water and nutrients. At landscape or regional scale, changes in system drivers influence land-surface to atmosphere gas exchange (water, carbon and trace gas emissions), the seasonal course of soil resource stores, hydrology, and transport of nutrients and carbon into and through river systems. In today's terminology, shifts in these fluxes indicate a modification of potential ecosystem services provided to us by the landscape or region of interest, and upon which we depend. Ongoing modeling efforts of the TERRECO project carried out in S. Korea focus on describing landscape and regional level flow networks for carbon, water, and nutrients, but in addition monetary flows associated with gains and losses in ecosystem services (cf. Fig. 1). The description is embedded within a framework which examines the trade-offs between agricultural intensification versus yield of high quality water to reservoirs for drinking water supply. The models also quantify hypothetical changes in flow networks that would occur in the context of climate, land use and social change scenarios.
Nutrition in Space: Benefits on Earth
NASA Technical Reports Server (NTRS)
Smith, Scott M.
2006-01-01
History has often proven the criticality for adequate nutrition to ensure expedition success. Space exploration will be no different, with the exception of the certainty that food will not be found along the journey. Ensuring the health and safety of astronauts is critical and nutrition will serve several functions to that end. Nutritional assessment of International Space Station (ISS) crewmembers not only serves to evaluate the nutritional health of individuals, but also allows a better understanding of how space flight affects nutritional requirements, and how nutrition can serve in mitigating the negative effects of weightlessness on the human. Available data suggest that the nutritional status of astronauts is compromised during and after flight. Inadequate dietary intake and subsequent weight loss are often considered hallmarks of space flight, although exceptions to this do exist, and provide hope. However, beyond energy intake, specific nutrient issues also exist. Several vitamins, including D and folate, are affected in space travelers. Hematological and antioxidant defense systems are impacted, with increased iron storage, and increased markers of oxidative damage. Bone loss during space flight remains a critical challenge. Ground-based studies have proven that nutrition is a potent modulator of the bone response to simulated weightlessness. Protein and sodium are two nutrients which tend to exacerbate bone resorption and loss, likely mediated through acid base balance. Defining nutrient requirements, and being able to provide and maintain those nutrients on exploration missions, will be critical for maintaining crew member health. Both flight and ground-based research provide a unique situation, one where healthy individuals are put in a unique and challenging environment. A full understanding of the role of nutrition during space flight will not only enhance crew health and safety during flight, but will also expand our understanding of the role of nutrition in health of those remaining on Earth.
P-body components, Dhh1 and Pat1, are involved in tRNA nuclear-cytoplasmic dynamics
Hurto, Rebecca L.; Hopper, Anita K.
2011-01-01
The nuclear-cytoplasmic distribution of tRNA depends on the balance between tRNA nuclear export/re-export and retrograde tRNA nuclear import in Saccharomyces cerevisiae. The distribution of tRNA is sensitive to nutrient availability as cells deprived of various nutrients exhibit tRNA nuclear accumulation. Starvation induces numerous events that result in translational repression and P-body formation. This study investigated the possible coordination of these responses with tRNA nuclear-cytoplasmic distribution. Dhh1 and Pat1 function in parallel to promote translation repression and P-body formation in response to starvation. Loss of both, Dhh1 and Pat1, results in a failure to repress translation and to induce P-body formation in response to glucose starvation. This study reports that nutrient deprived dhh1 pat1 cells also fail to accumulate tRNA within nuclei. Conversely, inhibition of translation initiation and induction of P-body formation by overproduction of Dhh1 or Pat1 cause tRNA nuclear accumulation in nutrient-replete conditions. Also, loss of the mRNA decapping activator, Lsm1, causes tRNA nuclear accumulation. However, the coordination between P-body formation, translation repression, and tRNA distribution is limited to the early part of the P-body formation/translation repression pathway as loss of mRNA decapping or 5′ to 3′ degradation does not influence tRNA nuclear-cytoplasmic dynamics. The data provide the first link between P-body formation/translation initiation and tRNA nuclear-cytoplasmic dynamics. The current model is that Dhh1 and Pat1 function in parallel to promote starvation-induced tRNA nuclear accumulation. PMID:21398402
Runoff quality from no-till cotton fertilized with broiler litter in subsurface bands.
Adeli, A; Tewolde, H; Shankle, M W; Way, T R; Brooks, J P; McLaughlin, M R
2013-01-01
Surface broadcast of broiler litter to no-till row crops exposes the litter and its nutrients to risks of loss in runoff water and volatilization and may limit the potential benefit of litter to the crops. Subsurface banding of litter could alleviate these risks. A field study was conducted in 2008 and 2009 on an upland Falkner silt loam soil to determine the effect of broiler litter placement on runoff nutrient losses from no-till cotton ( L.). Treatments included surface broadcast broiler litter applied manually, subsurface-banded litter applied by tractor-drawn equipment, and no broiler litter, all in combination with or without winter wheat ( L.) cover crop residue. Broiler litter rate was 5.6 Mg ha. The experimental design was a randomized complete block with a split-plot arrangement of treatments replicated three times. In 2008, simulated rainfall was used to generate runoff 27 d after litter application. Subsurface-banded litter reduced runoff total C, N, P, NH, NO, Cu, Zn and water-soluble P (WP) concentrations by 72, 64, 51, 49, 70, 36, 65, and 77%, respectively, compared with surface broadcast. The reductions were greater in 2009 where runoff occurred 1 d after litter application. Bacterial runoff was decreased by one log with subsurface-banded litter compared to surface broadcast. Except for C, NH, N, and WP, the presence of winter cover crop residue did not affect the load or runoff nutrient concentrations in either year. The results indicate that subsurface banding litter to no-till cotton substantially reduces nutrient and bacterial losses in runoff compared with surface broadcasting. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Nutrient Intake of Dengue Hemorrhagic Fever Patients in Semarang City
NASA Astrophysics Data System (ADS)
Ratri Maharani, Agustina; Restuti, Christina Tri; Sari, Erna; Endah Wahyuningsih, Nur; Murwani, Retno; Hapsari, MMDEAH
2018-05-01
Dengue Hemorrhagic Fever (DHF) is an acute infectious disease caused by dengue virus and transmission of the virus is mediated by mosquitoes bites [1]. Host immunity against dengue infection is affected by nutrient adequacy which is depending on nutrient intake [2]. The aim of this study was to determine nutrient intake of DHF patients in Semarang city. The DHF sample cases were obtained from three hospitals in Semarang city (n=48), from the period of March to May 2016 and the control groups were obtained from healthy respondents with matched age, sex, and district location (n=48). Nutrient intake were obtained by food recall and calculated using Nutrisurvey Indonesia. Afterwards, the result of the nutrisurvey will be compared to Indonesian daily value according to Permenkes no. 75 about daily value based on age and gender. The results showed that both in cases and control groups the macro-(energy, carbohydrate, protein, fat) and micro-nutrient (vitamins A., C, B1, B2, B6, calcium, magnesium, phosphorus, zinc, and Iron) intake were below 80% of nutrient adequacy. No correlation was found between nutrient adequacy and DHF cases. We find that macro and micronutrient intake in DHF case and control groups are the same and below 80% of nutrient adequacy. The nutrient intake was not related to DHF cases.
Davis, Bryce H; Morimoto, Yoshihisa; Sample, Chris; Olbrich, Kevin; Leddy, Holly A; Guilak, Farshid; Taylor, Doris A
2012-10-01
One of the primary limitations of cell therapy for myocardial infarction is the low survival of transplanted cells, with a loss of up to 80% of cells within 3 days of delivery. The aims of this study were to investigate the distribution of nutrients and oxygen in infarcted myocardium and to quantify how macromolecular transport properties might affect cell survival. Transmural myocardial infarction was created by controlled cryoablation in pigs. At 30 days post-infarction, oxygen and metabolite levels were measured in the peripheral skeletal muscle, normal myocardium, the infarct border zone, and the infarct interior. The diffusion coefficients of fluorescein or FITC-labeled dextran (0.3-70 kD) were measured in these tissues using fluorescence recovery after photobleaching. The vascular density was measured via endogenous alkaline phosphatase staining. To examine the influence of these infarct conditions on cells therapeutically used in vivo, skeletal myoblast survival and differentiation were studied in vitro under the oxygen and glucose concentrations measured in the infarct tissue. Glucose and oxygen concentrations, along with vascular density were significantly reduced in infarct when compared to the uninjured myocardium and infarct border zone, although the degree of decrease differed. The diffusivity of molecules smaller than 40 kD was significantly higher in infarct center and border zone as compared to uninjured heart. Skeletal myoblast differentiation and survival were decreased stepwise from control to hypoxia, starvation, and ischemia conditions. Although oxygen, glucose, and vascular density were significantly reduced in infarcted myocardium, the rate of macromolecular diffusion was significantly increased, suggesting that diffusive transport may not be inhibited in infarct tissue, and thus the supply of nutrients to transplanted cells may be possible. in vitro studies mimicking infarct conditions suggest that increasing nutrients available to transplanted cells may significantly increase their ability to survive in infarct.
Reed, Daniel C; Rassweiler, Andrew; Carr, Mark H; Cavanaugh, Kyle C; Malone, Daniel P; Siegel, David A
2011-11-01
We took advantage of regional differences in environmental forcing and consumer abundance to examine the relative importance of nutrient availability (bottom-up), grazing pressure (top-down), and storm waves (disturbance) in determining the standing biomass and net primary production (NPP) of the giant kelp Macrocystis pyrifera in central and southern California. Using a nine-year data set collected from 17 sites we show that, despite high densities of sea urchin grazers and prolonged periods of low nutrient availability in southern California, NPP by giant kelp was twice that of central California where nutrient concentrations were consistently high and sea urchins were nearly absent due to predation by sea otters. Waves associated with winter storms were consistently higher in central California, and the loss of kelp biomass to winter wave disturbance was on average twice that of southern California. These observations suggest that the more intense wave disturbance in central California limited NPP by giant kelp under otherwise favorable conditions. Regional patterns of interannual variation in NPP were similar to those of wave disturbance in that year-to-year variation in disturbance and NPP were both greater in southern California. Our findings provide strong evidence that regional differences in wave disturbance overwhelmed those of nutrient supply and grazing intensity to determine NPP by giant kelp. The important role of disturbance in controlling NPP revealed by our study is likely not unique to giant kelp forests, as vegetation dynamics in many systems are dominated by post-disturbance succession with climax communities being relatively uncommon. The effects of disturbance frequency may be easier to detect in giant kelp because it is fast growing and relatively short lived, with cycles of disturbance and recovery occurring on time scales of years. Much longer data sets (decades to centuries) will likely be needed to properly evaluate the role of disturbance relative to other processes in determining patterns of NPP in other systems.
Dalton, Christopher M; Tracy, Karen E; Hairston, Nelson G; Flecker, Alexander S
2018-03-01
Predators can alter nutrient cycles simply by inducing stress in prey. This stress accelerates prey's protein catabolism, nitrogen waste production, and nitrogen cycling. Yet predators also reduce the feeding rates of their prey, inducing food deprivation that is expected to slow protein catabolism and nitrogen cycling. The physiology of prey under predation risk thus balances the influences of predation risk and food deprivation, and this balance is central to understanding the role of predators in nutrient cycles. We explored the separate and combined effects of predation risk and food deprivation on prey physiology and nutrient cycling by exposing guppies (Poecilia reticulata) to predation risk and food deprivation in a 2 × 2 design. We simulated predation risk using chemical cues from a natural predator of guppies, and we created food deprivation by rationing food availability. We measured guppy response as food consumption, growth, tissue energy density, tissue carbon:nitrogen, and nitrogen (N) excretion and assimilation. We found that N-linked physiological processes (N consumption, assimilation, excretion) were strongly affected by predation risk, independent of food consumption. Guppies excreted substantially less under predation risk than they did under food deprivation or control conditions. These results suggest that predation risk, per se, triggers physiological changes in guppies that increase N retention and decrease N excretion. We suggest that slower N metabolism under predation risk is an adaptive response that minimizes protein loss in the face of predictable, predator-induced food restriction. Notably, N metabolism shares common hormonal control with food seeking behavior, and we speculate that increased N retention is a direct and immediate result of reduced food seeking under predation risk. Contrary to predation-stress-based hypotheses for how predators affect nutrient cycling by prey, our result indicates that even short-term exposure to predators may decelerate, rather than accelerate, the speed of N cycling by suppressing N turnover by prey. © 2018 by the Ecological Society of America.
van Straaten, Elisabeth C. W.; de Waal, Hanneke; Lansbergen, Marieke M.; Scheltens, Philip; Maestu, Fernando; Nowak, Rafal; Hillebrand, Arjan; Stam, Cornelis J.
2016-01-01
Synaptic loss is an early pathological finding in Alzheimer’s disease (AD) and correlates with memory impairment. Changes in macroscopic brain activity measured with electro- and magnetoencephalography (EEG and MEG) in AD indicate synaptic changes and may therefore serve as markers of intervention effects in clinical trials. EEG peak frequency and functional networks have shown, in addition to improved memory performance, to be sensitive to detect an intervention effect in mild AD patients of the medical food Souvenaid containing the specific nutrient combination Fortasyn® Connect, which is designed to enhance synapse formation and function. Here, we explore the value of MEG, with higher spatial resolution than EEG, in identifying intervention effects of the nutrient combination by comparing MEG spectral measures, functional connectivity, and networks between an intervention and a control group. Quantitative markers describing spectral properties, functional connectivity, and graph theoretical aspects of MEG from the exploratory 24-week, double-blind, randomized, controlled Souvenir II MEG sub-study (NTR1975, http://www.trialregister.nl) in drug naïve patients with mild AD were compared between a test group (n = 27), receiving Souvenaid, and a control group (n = 28), receiving an isocaloric control product. The groups were unbalanced at screening with respect to Mini-Mental State Examination. Peak frequencies of MEG were compared with EEG peak frequencies, recorded in the same patients at similar time points, were compared with respect to sensitivity to intervention effects. No consistent statistically significant intervention effects were detected. In addition, we found no difference in sensitivity between MEG and EEG peak frequency. This exploratory study could not unequivocally establish the value of MEG in detecting interventional effects on brain activity, possibly due to small sample size and unbalanced study groups. We found no indication that the difference could be attributed to a lack of sensitivity of MEG compared with EEG. MEG in randomized controlled trials is feasible but its value to disclose intervention effects of Souvenaid in mild AD patients needs to be studied further. PMID:27799918
van Straaten, Elisabeth C W; de Waal, Hanneke; Lansbergen, Marieke M; Scheltens, Philip; Maestu, Fernando; Nowak, Rafal; Hillebrand, Arjan; Stam, Cornelis J
2016-01-01
Synaptic loss is an early pathological finding in Alzheimer's disease (AD) and correlates with memory impairment. Changes in macroscopic brain activity measured with electro- and magnetoencephalography (EEG and MEG) in AD indicate synaptic changes and may therefore serve as markers of intervention effects in clinical trials. EEG peak frequency and functional networks have shown, in addition to improved memory performance, to be sensitive to detect an intervention effect in mild AD patients of the medical food Souvenaid containing the specific nutrient combination Fortasyn ® Connect, which is designed to enhance synapse formation and function. Here, we explore the value of MEG, with higher spatial resolution than EEG, in identifying intervention effects of the nutrient combination by comparing MEG spectral measures, functional connectivity, and networks between an intervention and a control group. Quantitative markers describing spectral properties, functional connectivity, and graph theoretical aspects of MEG from the exploratory 24-week, double-blind, randomized, controlled Souvenir II MEG sub-study (NTR1975, http://www.trialregister.nl) in drug naïve patients with mild AD were compared between a test group ( n = 27), receiving Souvenaid, and a control group ( n = 28), receiving an isocaloric control product. The groups were unbalanced at screening with respect to Mini-Mental State Examination. Peak frequencies of MEG were compared with EEG peak frequencies, recorded in the same patients at similar time points, were compared with respect to sensitivity to intervention effects. No consistent statistically significant intervention effects were detected. In addition, we found no difference in sensitivity between MEG and EEG peak frequency. This exploratory study could not unequivocally establish the value of MEG in detecting interventional effects on brain activity, possibly due to small sample size and unbalanced study groups. We found no indication that the difference could be attributed to a lack of sensitivity of MEG compared with EEG. MEG in randomized controlled trials is feasible but its value to disclose intervention effects of Souvenaid in mild AD patients needs to be studied further.
Bird Perches Increase Forest Seeds on Puerto Rican Landslides.
Aaron B. Shiels; Lawrence R. Walker
2003-01-01
Landslides result in the loss of vertical vegetative structure, soil nutrients, and the soil seed bank. These losses impede timely recovery of tropical forest communities. In this study we added bird perches to six Puerto Rican landslides with three types of surfaces (bare, climbing fern, grass) in an effort to facilitate inputs of forest seeds through bird dispersal...
Automated lettuce nutrient solution management using an array of ion-selective electrodes
USDA-ARS?s Scientific Manuscript database
Automated sensing and control of macronutrients in hydroponic solutions would allow more efficient management of nutrients for crop growth in closed systems. This paper describes the development and evaluation of a computer-controlled nutrient management system with an array of ion-selective electro...
Rahman, Anisur; Nahar, Kamrun; Hasanuzzaman, Mirza; Fujita, Masayuki
The accumulation of cadmium (Cd) alters different physiological and biochemical attributes that affect plant growth and yield. In our study, we investigated the regulatory role of supplemental manganese (Mn) on hydroponically grown rice (Oryza sativa L. cv. BRRI dhan29) seedlings under Cd-stress conditions. Exposure of 14-d-old seedlings to 0.3mM CdCl 2 for three days caused growth inhibition, chlorosis, nutrient imbalance, and higher Cd accumulation. Higher Cd uptake caused oxidative stress through lipid peroxidation, loss of plasma membrane integrity, and overproduction of reactive oxygen species (ROS) and methylglyoxal (MG). The exogenous application of 0.3mM MnSO 4 to Cd-treated seedlings partly recovered Cd-induced water loss, chlorosis, growth inhibition, and nutrient imbalance by reducing Cd uptake and its further translocation to the upper part of the plant. Supplemental Mn also reduced Cd-induced oxidative damage and lipid peroxidation by improved antioxidant defense and glyoxalase systems through enhancing ROS and MG detoxification, respectively. Copyright © 2016 Académie des sciences. Published by Elsevier SAS. All rights reserved.
Soil nutrients losses by wind erosion in a citrus crop at southeast Spain
NASA Astrophysics Data System (ADS)
Segovia, C.; Gómez, J. D.; Gallardo, P.; Lozano, F. J.; Asensio, C.
2017-06-01
The purpose of this study was to analyze the influence of wind erosion on the productivity of citric crops over gypsiric Fluvisols in Gador area (Almeria, SE Spain) by blowing air through a wind tunnel. Wind erosion varies considerably depending on time since the last tillage. This is because a physical crust forms after tilling which protects the soil from wind. Crust formation in the study area is strongly favored by dew, which causes them to form in around a week. The repeated measurements ANOVA, as a nonparametric alternative to the ANOVA, using the Geiiser method and the Friedman test shows significant differences ( P ≤ 0.05) in the fractions of very fine sand and coarse silt, which confirmed that very fine sand and coarse silt are the fractions most susceptible to loss from wind. The same statistical analysis for fertility showed smaller differences in organic carbon and K2O content, while N and P2O5 increased. Nutrients lost from wind imply an additional fertilization cost for a crop to be economically feasible. The cost of this restoration of nutrients lost from the soil because of wind erosion was based on experimental data taken in crusted soil and immediately after tilling. Losses in organic matter (O.M.), N, P2O5 and K2O were estimated based on the cost of fertilizers most commonly used in the area.
Biogeochemical Hotspots: Role of Small Wetlands in Nutrient Processing at the Watershed Scale
NASA Astrophysics Data System (ADS)
Cheng, F. Y.; Basu, N. B.
2016-12-01
Increased loading of nutrients (nitrogen N and phosphorus P) from agricultural and urban intensification in the Anthropocene has led to severe degradation of inland and coastal waters. Amongst aquatic ecosystems, wetlands receive and retain significant quantities of nutrients and thus are important regulators of nutrient transport in watersheds. While the factors controlling N and P retention in wetlands is relatively well known, there is a lack of quantitative understanding on the relative contributions of the different factors on nutrient retention. There is also a deficiency in knowledge of how these processes behave across system size and type. In our study, we synthesized nutrient retention data from wetlands, lakes, and reservoirs to gain insight on the relationship between hydrologic and biogeochemical controls on nutrient retention. Our results indicated that the first-order reaction rate constant, k [T-1], is inversely proportional to the hydraulic residence time, τ, across six orders of magnitude in residence time for total nitrogen, total phosphorus, nitrate and phosphate. We hypothesized that the consistency of the relationship across constituent and system types points to the strong hydrologic control on biogeochemical processing. The hypothesis was tested using a two-compartment mechanistic model that links the nutrient removal processes (denitrification for N and sedimentation for P) with the system size. Finally, the k-τ relationships were upscaled with a regional size-frequency distribution to demonstrate the disproportionately large role of small wetlands in watershed-scale nutrient processing. Our results highlight the importance of hydrological controls as the dominant modifiers of nutrient removal mechanisms and the need for a stronger focus on small lentic ecosystems like wetlands as major nutrient sinks in the landscape.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holderman, Charlie
2009-02-19
The Kootenai River ecosystem has experienced numerous ecological changes since the early 1900s. Some of the largest impacts to habitat, biological communities, and ecological function resulted from levee construction along the 120 km of river upstream from Kootenay Lake, completed by the 1950s, and the construction and operation of Libby Dam, completed in 1972 on the river near Libby Montana. Levee construction isolated tens of thousands of hectares of historic functioning floodplain habitat from the river channel, eliminating nutrient production and habitat diversity crucial to the functioning of a large river-floodplain ecosystem. Libby Dam continues to create large changes inmore » the timing, duration, and magnitude of river flows, and greatly reduces sediment and nutrient transport to downstream river reaches. These changes have contributed to the ecological collapse of the post-development Kootenai River ecosystem and its native biological communities. In response to this artificial loss of nutrients, experimental nutrient addition was initiated in the Kootenay Lake's North Arm in 1992, the South Arm in 2004, and in the Kootenai River at the Idaho-Montana border during 2005. This report characterizes the macroinvertebrate community in the Kootenai River and its response to experimental nutrient addition during 2005 and 2006. This report also provides an initial evaluation of cascading trophic interactions in response to nutrient addition. Macroinvertebrates were sampled at 12 sites along a 325 km section of the Kootenai River, representing an upriver unimpounded reference reach, treatment and control canyon reach sites, and braided and meandering reach sites, all downstream from Libby Dam. Principle component analysis revealed that richness explained the greatest amount of variability in response to nutrient addition as did taxa from Acari, Coleoptera, Ephemeroptera, Plecoptera, and Trichoptera. Analysis of variance revealed that nutrient addition had a significant effect (p<0.0001) on invertebrate abundance, biomass, and richness at sites KR-9 and KR-9.1 combined (the zone of maximum biological response). Richness, a valuable ecological metric, increased more than abundance and biomass, which were subject to greater sampling bias. Cascading trophic interactions were observed as increased algal accrual, increased in-river invertebrate abundance, and increased invertebrate counts in mountain whitefish (Prosopium williamsonii) guts samples, but were not quantitatively tested. Sampling and analyses across trophic levels are currently ongoing and are expected to better characterize ecological responses to experimental nutrient addition in the Kootenai River.« less
NASA Astrophysics Data System (ADS)
López-Vicente, Manuel; Álvarez, Sara
2017-04-01
Mediterranean agro-ecosystems are characterised by fragmented fields and patched vegetation. This shape governs the spatial patterns of water, soil and nutrient redistribution. Rainfall parameters, human infrastructures, crop management, support practices, and land use changes (set aside crops, land abandonment) control the magnitude of these processes. Under rain-fed water supply conditions, runoff generation and soil water content are two important factors in determining crop yield. Soil erosion and nutrient delivery are two of the factors which limit crop yield and thus, the gross earning of the landowner. In hilly landscapes, farmers usually supply extra soil to fill in the ephemeral gullies, and nutrient replenishment with fertilizers is a common practice. The aim of this study is to evaluate the environmental (runoff yield, soil erosion and nutrient delivery) and economic (replenishment of soil and nutrient losses with new soil and fertilizers) consequences of different conventional and conservative practices (fallow/crop rotation, cover crops, land abandonment, buffer strips) in a Mediterranean rain-fed agro-ecosystem (27 ha) with vineyards, cereal crops, cultivated and abandoned olive orchards, several trails and patches of natural vegetation. The five winter cereal fields (wheat and barley) follow fallow/crop rotation. The four vineyards are devoted to the Garnacha variety: one planted in 2007 with white wine grapes, and three planted in 2008 with red wine grapes. The inter-crop strips are managed with a mixture of plant species as cover crop (CC), including: i) spontaneous vegetation, and ii) plantation of common sainfoin (Onobrychis viciifolia). The maintenance of the CC includes one mowing pass at the end of spring, between May and June. The appearance and development of ephemeral gullies and the deposition of soil at the bottom of the hillslope are two of the main concerns of the landowners. In some places, the accumulation of soil complicates grape harvest operations with machinery, forcing manual labour. A total of 222 soil samples were collected in 74 points, and some physical (coarse fragments, effective volume, bulk density, texture, infiltration, etc.) and chemical (soil organic carbon - SOC, total nitrogen, phosphorous and potassium) parameters analysed. The highest values of SOC and TN were found in the forestry (4.64% and 0.198%) and abandoned soils (2.96% and 0.132%), whereas the highest values of TP appeared in the cereal, olive and vineyards (458.4, 458.0 and 440.3 mg / kg P). The highest content of TK appeared in the vineyards (1979.1 mg / kg K), especially in the grapevine strips (2188.3 mg / kg K), due to the fertilizer supply. In order to assess the water, soil and nutrient budgets, four buried sediment traps were installed near the bottom and before reaching the depositional-prone area. The upslope contributing areas of the traps are not nested. Monitoring the magnitude of runoff and sediment yield and the chemical composition of the collected samples allowed calculating the economic cost of water, soil and nutrient losses. The results of this study have implications for other rain-fed productive agro-ecosystems as well as where conservative practices may reduce the economic cost of farmland management.
... age and height). For severe and life-threatening malnutrition , the person may need to be fed through ... minerals, and other important nutrients in the body ( malnutrition ) Seizures due to fluid or sodium loss from ...
... and Nutrition Healthy Food Choices Weight Loss and Diet Plans Nutrients and Nutritional Info Sugar and Sugar Substitutes Exercise and Fitness Exercise Basics Sports Safety Injury Rehabilitation Emotional Well-Being Mental Health ...
USDA-ARS?s Scientific Manuscript database
Understanding the processes controlling nutrient delivery in headwater agricultural watersheds is essential for predicting and mitigating eutrophication and harmful algal blooms in receiving surface waters. The objective of this study was to elucidate nutrient transport pathways and examine key comp...
The duration of mitosis and daughter cell size are modulated by nutrients in budding yeast
2017-01-01
The size of nearly all cells is modulated by nutrients. Thus, cells growing in poor nutrients can be nearly half the size of cells in rich nutrients. In budding yeast, cell size is thought to be controlled almost entirely by a mechanism that delays cell cycle entry until sufficient growth has occurred in G1 phase. Here, we show that most growth of a new daughter cell occurs in mitosis. When the rate of growth is slowed by poor nutrients, the duration of mitosis is increased, which suggests that cells compensate for slow growth in mitosis by increasing the duration of growth. The amount of growth required to complete mitosis is reduced in poor nutrients, leading to a large reduction in cell size. Together, these observations suggest that mechanisms that control the extent of growth in mitosis play a major role in cell size control in budding yeast. PMID:28939614
Nutrient fluxes at the landscape level and the R* rule
Ju, Shu; DeAngelis, Donald L.
2010-01-01
Nutrient cycling in terrestrial ecosystems involves not only the vertical recycling of nutrients at specific locations in space, but also biologically driven horizontal fluxes between different areas of the landscape. This latter process can result in net accumulation of nutrients in some places and net losses in others. We examined the effects of such nutrient-concentrating fluxes on the R* rule, which predicts that the species that can survive in steady state at the lowest level of limiting resource, R*, can exclude all competing species. To study the R* rule in this context, we used a literature model of plant growth and nutrient cycling in which both nutrients and light may limit growth, with plants allocating carbon and nutrients between foliage and roots according to different strategies. We incorporated the assumption that biological processes may concentrate nutrients in some parts of the landscape. We assumed further that these processes draw nutrients from outside the zone of local recycling at a rate proportional to the local biomass density. Analysis showed that at sites where there is a sufficient biomass-dependent accumulation of nutrients, the plant species with the highest biomass production rates (roughly corresponding to the best competitors) do not reduce locally available nutrients to a minimum concentration level (that is, minimum R*), as expected from the R* rule, but instead maximize local nutrient concentration. These new results require broadening of our understanding of the relationships between nutrients and vegetation competition on the landscape level. The R* rule is replaced by a more complex criterion that varies across a landscape and reduces to the R* rule only under certain limiting conditions.
Zhang, Qichun; Shamsi, Imran Haider; Wang, Jinwen; Song, Qiujin; Xue, Qiaoyun; Yu, Yan; Lin, Xianyong; Hussain, Sayed
2013-07-01
Nitrogen (N) losses from agricultural fields have been extensively studied. In contrast, surface runoff and N losses have rarely been considered for bamboo forests that are widespread in regions such as southern China. The thriving of bamboo industries has led to increasing fertilizer use in bamboo forests. In this study, we evaluated surface runoff and N losses in runoff following different fertilization treatments under field conditions in a bamboo (Phyllostachys pubescens) forest in the catchment of Lake Taihu in Jiangsu, China. Under three different fertilization regimes, i.e., control, site-specific nutrient management (SSNM), and farmer's fertilization practice (FFP), the water runoff rate amounted to 356, 361, and 342 m(3) ha(-1) and accounted for 1.91, 1.98, and 1.85% of the water input, respectively, from June 2009 to May 2010. The total N losses via surface runoff ranged from 1.2 to 1.8 kg ha(-1). Compared with FFP, the SSNM treatment reduced total nitrogen (TN) and dissolved nitrogen (DN) losses by 31 and 34%, respectively. The results also showed that variations in N losses depended mainly on runoff fluxes, not N concentrations. Runoff samples collected from all treatments throughout the year showed TN concentrations greater than 0.35 mg L(-1), with the mean TN concentration in the runoff from the FFP treatment reaching 8.97 mg L(-1). The loss of NO3(-)-N was greater than the loss of NH4(+)-N. The total loss of dissolved organic nitrogen (DON) reached 23-41% of the corresponding DN. Therefore, DON is likely the main N species in runoff from bamboo forests and should be emphasized in the assessment and management of N losses in bamboo forest.
Cho, Jaehyun; Annable, Michael D; Jawitz, James W; Hatfield, Kirk
2007-01-01
The passive nutrient flux meter (PNFM) is introduced for simultaneous measurement of both water and nutrient flux through saturated porous media. The PNFM comprises a porous sorbent pre-equilibrated with a suite of alcohol tracers, which have different partitioning coefficients. Water flux was estimated based on the loss of loaded resident tracers during deployment, while nutrient flux was quantified based on the nutrient solute mass captured on the sorbent. An anionic resin, Lewatit 6328 A, was used as a permeable sorbent and phosphate (PO4(3-)) was the nutrient studied. The phosphate sorption capacity of the resin was measured in batch equilibration tests as 56 mg PO4(3-) g(-1), which was determined to be adequate capacity to retain PO4(3-) loads intercepted over typical PNFM deployment periods in most natural systems. The PNFM design was validated with bench-scale laboratory tests for a range of 9.8 to 28.3 cm d(-1) Darcy velocities and 6 to 43 h deployment durations. Nutrient and water fluxes measured by the PNFM averaged within 6 and 12% of the applied values, respectively, indicating that the PNFM shows promise as a tool for simultaneous measurement of water and nutrient fluxes.
Nutritional criteria for closed-loop space food systems
NASA Technical Reports Server (NTRS)
Rambaut, P. C.
1980-01-01
The nutritional requirements for Skylab crews are summarized as a data base for long duration spaceflight nutrient requirements. Statistically significant increases in energy consumption were detected after three months, along with CO2/O2 exhalation during exercise and thyroxine level increases. Linoleic acid amounting to 3-4 g/day was found to fulfill all fat requirements, and carbohydrate and protein (amino acid) necessities are discussed, noting that vigorous exercise programs avoid deconditioning which enhances nitrogen loss. Urinary calcium losses continued at a rate 100% above a baseline figure, a condition which ingestion of vitamin D2 did not correct. Projections are given that spaceflights lasting more than eight years will necessitate recycling of human waste for nutrient growth, which can be processed into highly efficient space food with a variety of tastes.
These Nutrient Control Seminars will present an extensive state-of-the-technology review of the engineering design and operation of nitrogen and phosphorous control technologies and techniques applied at municipal wastewater treatment plants (WWTPs). These seminars will present ...
Turner, R.E.; Rabalais, N.N.; Alexander, Richard B.; McIsaac, G.; Howarth, R.W.
2007-01-01
We synthesize and update the science supporting the Action Plan for Reducing, Mitigating, and Controlling Hypoxia in the Northern Gulf of Mexico (Mississippi River/Gulf of Mexico Watershed Nutrient Task Force 2001) with a focus on the spatial and temporal discharge and patterns of nutrient and organic carbon delivery to the northern Gulf of Mexico, including data through 2006. The discharge of the Mississippi River watershed over 200 years varies but is not demonstrably increasing or decreasing. About 30% of the Mississippi River was shunted westward to form the Atchafalaya River, which redistributed water and nutrient loads on the shelf. Data on nitrogen concentrations from the early 1900s demonstrate that the seasonal and annual concentrations in the lower river have increased considerably since then, including a higher spring loading, following the increase in fertilizer applications after World WarII. The loading of total nitrogen (TN) fell from 1990 to 2006, but the loading of total phosphorus (TP) has risen slightly, resulting in a decline in the TN:TP ratios. The present TN:TP ratios hover around an average indicative of potential nitrogen limitation on phytoplankton growth, or balanced growth limitation, but not phosphorus limitation. The dissolved nitrogen:dissolved silicate ratios are near the Redfield ratio indicative of growth limitations on diatoms. Although nutrient concentrations are relatively high compared to those in many other large rivers, the water quality in the Mississippi River is not unique in that nutrient loads can be described by a variety of land-use models. There is no net removal of nitrogen from water flowing through the Atchafalaya basin, but the concentrations of TP and suspended sediments are lower at the exit point (Morgan City, Louisiana) than in the water entering the Atchafalaya basin. The removal of nutrients entering offshore waters through diversion of river water into wetlands is presently less than 1% of the total loadings going directly offshore, and would be less than 8% if the 10,093 km2 of coastal wetlands were successfully engineered for that purpose. Wetland loss is an insignificant contribution to the carbon loading offshore, compared to in situ marine production. The science-based conclusions in the Action Plan about nutrient loads and sources to the hypoxic zone off Louisiana are sustained by research and monitoring occurring in the subsequent 10 years.
A method to quantify and value floodplain sediment and nutrient retention ecosystem services
Hopkins, Kristina G.; Noe, Gregory; Franco, Fabiano; Pindilli, Emily J.; Gordon, Stephanie; Metes, Marina J.; Claggett, Peter; Gellis, Allen; Hupp, Cliff R.; Hogan, Dianna
2018-01-01
Floodplains provide critical ecosystem services to local and downstream communities by retaining floodwaters, sediments, and nutrients. The dynamic nature of floodplains is such that these areas can both accumulate sediment and nutrients through deposition, and export material downstream through erosion. Therefore, estimating floodplain sediment and nutrient retention should consider the net flux of both depositional and erosive processes. An ecosystem services framework was used to quantify and value the sediment and nutrient ecosystem service provided by floodplains in the Difficult Run watershed, a small (151 km2) suburban watershed located in the Piedmont of Virginia (USA). A sediment balance was developed for Difficult Run and two nested watersheds. The balance included upland sediment delivery to streams, stream bank flux, floodplain flux, and stream load. Upland sediment delivery was estimated using geospatial datasets and a modified Revised Universal Soil Loss Equation. Predictive models were developed to extrapolate field measurements of the flux of sediment, sediment-bound nitrogen (N), and sediment-bound phosphorus (P) from stream banks and floodplains to 3232 delineated stream segments in the study area. A replacement cost approach was used to estimate the economic value of the sediment and nutrient retention ecosystem service based on estimated net stream bank and floodplain flux of sediment-bound N for all streams in the study area. Results indicated the net fluvial fluxes of sediment, sediment-bound N, and sediment-bound P were −10,439 Mg yr−1 (net export), 57,300 kg-N yr−1(net trapping), and 98 kg-P yr−1(net trapping), respectively. For sediment, floodplain retention was offset by substantial losses from stream bank erosion, particularly in headwater catchments, resulting in a net export of sediment. Nutrient retention in the floodplain exceeded that lost through stream bank erosion resulting in net retention of nutrients (TN and TP). Using a conservative cost estimate of $12.69 (USD) per kilogram of nitrogen, derived from wastewater treatment costs, the estimated annual value for sediment and nutrient retention on Difficult Run floodplains was $727,226 ± 194,220 USD/yr. Values and differences in floodplain nitrogen retention among stream reaches can be used to target areas for floodplain conservation and stream restoration. The methods presented are scalable and transferable to other areas if appropriate datasets are available for validation.
USDA-ARS?s Scientific Manuscript database
Cranberry growers are looking for ways to reduce off-site movement of nitrogen (N) and phosphorus (P). Controlled-release fertilizers (CRF) may increase nutrient uptake efficiency in cranberry and decrease potential for nutrient leaching or lateral movement into drainage. Data regarding N and P in...
Oyster reef restoration in controlling coastal pollution around India: A viewpoint.
Chakraborty, Parthasarathi
2017-02-15
Coastal waters receive large amounts of nutrients and pollutants from different point and nonpoint sources through bays and estuaries. Excess supply of nutrients in coastal waters may have detrimental effects, leading to hypoxia and anoxia from eutrophication. Reduction in concentrations of excess nutrients/pollutants in bays/estuarine system is must for healthy coastal ecosystem functioning. Conservations of bays, estuaries and coastal zones are must for sustainable development in any maritime country. Excellent ability of oyster in removing and controlling the concentrations of nutrients, pollutants, suspended particulate matters from bays and estuarine waters stimulated me to provide a viewpoint on oyster reef restoration in controlling nutrient/heavy metals fluxes and marine coastal pollution around India. Oyster reefs restoration may decrease nutrient and heavy metals fluxes in coastal waters and reduce the intensity of oxygen depletion in the coastal Arabian Sea (seasonal) and Bay of Bengal. However, extensive research is recommended to understand the impact of oyster reef restoration in controlling coastal pollution which is essential for sustainable development around India. Copyright © 2016 Elsevier Ltd. All rights reserved.
Management Practices Used in Agricultural Drainage Ditches to Reduce Gulf of Mexico Hypoxia.
Faust, Derek R; Kröger, Robert; Moore, Matthew T; Rush, Scott A
2018-01-01
Agricultural non-point sources of nutrients and sediments have caused eutrophication and other water quality issues in aquatic and marine ecosystems, such as the annual occurrence of hypoxia in the Gulf of Mexico. Management practices have been implemented adjacent to and in agricultural drainage ditches to promote their wetland characteristics and functions, including reduction of nitrogen, phosphorus, and sediment losses downstream. This review: (1) summarized studies examining changes in nutrient and total suspended solid concentrations and loads associated with management practices in drainage ditches (i.e., riser and slotted pipes, two-stage ditches, vegetated ditches, low-grade weirs, and organic carbon amendments) with emphasis on the Lower Mississippi Alluvial Valley, (2) quantified management system effects on nutrient and total suspended solid concentrations and loads and, (3) identified information gaps regarding water quality associated with these management practices and research needs in this area. In general, management practices used in drainage ditches at times reduced losses of total suspended solids, N, and P. However, management practices were often ineffective during storm events that were uncommon and intense in duration and volume, although these types of events could increase in frequency and intensity with climate change. Studies on combined effects of management practices on drainage ditch water quality, along with research towards improved nutrient and sediment reduction efficiency during intense storm events are urgently needed.
Civeira, G; Lavado, R S
2008-09-01
Urban soils may suffer mild to severe degradation as a result of physical and chemical alterations. To reconstruct these soils, a new upper horizon must be created, usually through the application of organic matter, one source of which is biosolids. Different soil mixtures were evaluated with regard to loss of nitrates in percolates and the uptake and incorporation of nutrients and heavy metals into plant tissues. The experiment was conducted in trays; treatments were mixtures of biosolids and a coarse material (e.g., sand or pine wood sawdust), combined in different proportions. Randomized trays were seeded with a mix of tall fescue (Festuca arundinacea L.) and perennial ryegrass (Lolium perenne L.). Plant biomass was quantified. Nitrates in percolates were measured, as were nutrients and heavy metals in mixtures and plant tissues. Plants accumulated substantially more N, and biomass was 40% higher, in the treatments with higher levels of biosolids. The same treatments released more nitrogen and resulted in higher percolate nitrate levels. Plants had normal concentrations of all nutrients, except nitrogen, which was low. Heavy metal concentrations were not significantly different among treatments. Based on the analysis of these data, the proportion of biosolids appears to be the most important factor affecting the quality of reconstructed soil and the rate of improvement. The type of coarse material used did not significantly affect the outcome.
We studied mass loss and nitrogen dynamics during fall and spring initiated decomposition of an N2-fixing epiphytic lichen, Lobaria oregana (Tuck.) Mull. Arg. using 15N. We developed a method of labeling lichens with 15N that involved spraying lichen material with a nutrient sol...
Zieger, Marina; Punzo, Claudio
2016-01-01
Age-related macular degeneration (AMD) is characterized by malfunction and loss of retinal-pigmented epithelium (RPE) cells. Because the RPE transfers nutrients from the choriocapillaris to photoreceptor (PR), PRs are affected as well. Geographic atrophy (GA) is an advanced form of AMD characterized by severe vision impairment due to RPE loss over large areas. Currently there is no treatment to delay the degeneration of nutrient deprived PRs once RPE cells die. Here we show that cell-autonomous activation of the key regulator of cell metabolism, the kinase mammalian target of rapamycin complex 1 (mTORC1), delays PR death in the sodium iodate induced model of RPE atrophy. Consistent with this finding loss of mTORC1 in cones accelerates cone death as cones fail to balance demand with supply. Interestingly, promoting rod survival does not promote cone survival in this model of RPE atrophy as both, rods and cones suffer from a sick and dying RPE. The findings suggest that activation of metabolic genes downstream of mTORC1 can serve as a strategy to prolong PR survival when RPE cells malfunction or die. PMID:26883199
Soil biodiversity and soil community composition determine ecosystem multifunctionality
Wagg, Cameron; Bender, S. Franz; Widmer, Franco; van der Heijden, Marcel G. A.
2014-01-01
Biodiversity loss has become a global concern as evidence accumulates that it will negatively affect ecosystem services on which society depends. So far, most studies have focused on the ecological consequences of above-ground biodiversity loss; yet a large part of Earth’s biodiversity is literally hidden below ground. Whether reductions of biodiversity in soil communities below ground have consequences for the overall performance of an ecosystem remains unresolved. It is important to investigate this in view of recent observations that soil biodiversity is declining and that soil communities are changing upon land use intensification. We established soil communities differing in composition and diversity and tested their impact on eight ecosystem functions in model grassland communities. We show that soil biodiversity loss and simplification of soil community composition impair multiple ecosystem functions, including plant diversity, decomposition, nutrient retention, and nutrient cycling. The average response of all measured ecosystem functions (ecosystem multifunctionality) exhibited a strong positive linear relationship to indicators of soil biodiversity, suggesting that soil community composition is a key factor in regulating ecosystem functioning. Our results indicate that changes in soil communities and the loss of soil biodiversity threaten ecosystem multifunctionality and sustainability. PMID:24639507
Gachango, F G; Pedersen, S M; Kjaergaard, C
2015-12-01
Constructed wetlands have been proposed as cost-effective and more targeted technologies in the reduction of nitrogen and phosphorous water pollution in drainage losses from agricultural fields in Denmark. Using two pig farms and one dairy farm situated in a pumped lowland catchment as case studies, this paper explores the feasibility of implementing surface flow constructed wetlands (SFCW) based on their cost effectiveness. Sensitivity analysis is conducted by varying the cost elements of the wetlands in order to establish the most cost-effective scenario and a comparison with the existing nutrients reduction measures carried out. The analyses show that the cost effectiveness of the SFCW is higher in the drainage catchments with higher nutrient loads. The range of the cost effectiveness ratio on nitrogen reduction differs distinctively with that of catch crop measure. The study concludes that SFCW could be a better optimal nutrients reduction measure in drainage catchments characterized with higher nutrient loads.
Zaneveld, Jesse R; Burkepile, Deron E; Shantz, Andrew A; Pritchard, Catharine E; McMinds, Ryan; Payet, Jérôme P; Welsh, Rory; Correa, Adrienne M S; Lemoine, Nathan P; Rosales, Stephanie; Fuchs, Corinne; Maynard, Jeffrey A; Thurber, Rebecca Vega
2016-06-07
Losses of corals worldwide emphasize the need to understand what drives reef decline. Stressors such as overfishing and nutrient pollution may reduce resilience of coral reefs by increasing coral-algal competition and reducing coral recruitment, growth and survivorship. Such effects may themselves develop via several mechanisms, including disruption of coral microbiomes. Here we report the results of a 3-year field experiment simulating overfishing and nutrient pollution. These stressors increase turf and macroalgal cover, destabilizing microbiomes, elevating putative pathogen loads, increasing disease more than twofold and increasing mortality up to eightfold. Above-average temperatures exacerbate these effects, further disrupting microbiomes of unhealthy corals and concentrating 80% of mortality in the warmest seasons. Surprisingly, nutrients also increase bacterial opportunism and mortality in corals bitten by parrotfish, turning normal trophic interactions deadly for corals. Thus, overfishing and nutrient pollution impact reefs down to microbial scales, killing corals by sensitizing them to predation, above-average temperatures and bacterial opportunism.